Free-breathing Pulmonary (1)H and Hyperpolarized (3)He MRI: Comparison in COPD and Bronchiectasis.

Dante P I Capaldi
Western University, dcapald@uwo.ca

Khadija Sheikh
Western University, ksheikh6@uwo.ca

Fumin Guo
Western University, fguo24@uwo.ca

Sarah Svenningsen
Western University, ssvenni2@uwo.ca

Roya Etemad-Rezai
Western University, roya.etemadrezai@lhsc.on.ca

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/biophyspub
Part of the [Medical Biophysics Commons](https://ir.lib.uwo.ca/biophyspub)

Citation of this paper:
Capaldi, Dante P I; Sheikh, Khadija; Guo, Fumin; Svenningsen, Sarah; Etemad-Rezai, Roya; Coxson, Harvey O; Leipsic, Jonathon A; McCormack, David G; and Parraga, Grace, "Free-breathing Pulmonary (1)H and Hyperpolarized (3)He MRI: Comparison in COPD and Bronchiectasis." (2014). *Medical Biophysics Publications*. 23.
https://ir.lib.uwo.ca/biophyspub/23
Original Investigations

Free-breathing Pulmonary 1H and Hyperpolarized 3He MRI: Comparison in COPD and Bronchiectasis

Dante P. I. Capaldi, BSc, Khadija Sheikh, BSc, Fumin Guo, MEng, Sarah Svenningsen, BMSc, Roya Etemad-Rezai, MD, FRCP, Harvey O. Coxson, PhD, Jonathon A. Leipsic, MD, David G. McCormack, MD, FRCP, Grace Parraga, PhD

Rationale and Objectives: In this proof-of-concept demonstration, we aimed to quantitatively and qualitatively compare pulmonary ventilation abnormalities derived from Fourier decomposition of free-breathing 1H magnetic resonance imaging (FDMRI) to hyperpolarized 3He MRI in subjects with chronic obstructive pulmonary disease (COPD) and bronchiectasis.

Materials and Methods: All subjects provided written informed consent to a protocol approved by a local research ethics board and Health, Canada, and they underwent MRI, computed tomography (CT), spirometry, and plethysmography during a single 2-hour visit. Semiautomated segmentation was used to generate ventilation defect measurements derived from FDMRI and 3He MRI, and these were compared using analysis of variance and Pearson correlations.

Results: Twenty-six subjects were evaluated including 12 COPD subjects (67 ± 9 years) and 14 bronchiectasis subjects (70 ± 11 years). For COPD subjects, FDMRI and 3He MRI ventilation defect percent (VDP) was 7 ± 6% and 24 ± 14%, respectively ($P < .001$; bias = −16 ± 9%). In COPD subjects, FDMRI was significantly correlated with 3He MRI VDP ($r = .88; P = .0001$), 3He MRI apparent diffusion coefficient ($r = .71; P < .05$), airways resistance ($r = .60; P < .05$), and RA950 ($r = .80; P < .01$). In subjects with bronchiectasis, FDMRI VDP (5 ± 3%) and 3He MRI VDP (18 ± 9%) were significantly different ($P < .001$) and not correlated ($P > .05$). The Dice similarity coefficient (DSC) for FDMRI ventilation was 86 ± 7% for COPD and 86 ± 4% for bronchiectasis subjects ($P > .05$); the DSC for FDMRI ventilation defects and CT RA950 was 19 ± 20% in COPD and 2 ± 3% in bronchiectasis subjects ($P < .01$).

Conclusions: FDMRI and 3He MRI VDP were strongly related in COPD but not in bronchiectasis subjects. In COPD only, FDMRI ventilation defects were spatially related with 3He ventilation defects and emphysema.

Key Words: Fourier decomposition; magnetic resonance imaging; bronchiectasis; chronic obstructive pulmonary disease.

©AUR, 2014

Chronic obstructive pulmonary disease (COPD) is diagnosed and disease severity stratified based on irreversible airflow obstruction measured using spirometry. Airflow obstruction, symptoms, and exercise capacity measurements in COPD are related to both parenchyma destruction (emphysema) and airway remodeling (airways disease and bronchiectasis) (1,2). Although spirometry is relatively easy to implement, reproducible, and inexpensive, it can only provide a global measure of lung function and is weakly predictive of COPD progression, as well as insensitive to early disease stages (3–5). The limitations of spirometry measurements of COPD have motivated the development of thoracic imaging approaches to provide direct and regional measurements of the underlying pathologic features of COPD—airways disease and emphysema.
High-resolution computed tomography is the clinical imaging tool of choice for visualizing and quantifying airways disease (6,7) and emphysema (8–10) in patients with COPD. Emphysema can be quantified to determine the presence of lung volumes including total lung capacity, inspiratory capacity, residual volume, and functional residual capacity (FRC), airways resistance (R_{aw}), and the diffusing capacity of lung for carbon monoxide (DL_{CO}) using the attached gas analyzer. All measurements were performed according to the American Thoracic Society guidelines (35).

Pulmonary Function Tests

Spirometry and whole-body plethysmography were performed using a body plethysmograph (MedGraphics Corporation, St. Paul, MN) to measure the forced expiratory volume in 1 second, forced vital capacity, and static lung volumes including total lung capacity, inspiratory capacity, residual volume, and functional residual capacity (FRC), airways resistance (R_{aw}), and the diffusing capacity of lung for carbon monoxide (DL_{CO}) using the attached gas analyzer. All measurements were performed according to the American Thoracic Society guidelines (35).

Image Acquisition

MRJ was performed with a whole-body 3 T Discovery MR750 system (General Electric Health Care, [GEHC] Milwaukee, WI) capable of performing broadband imaging. All MR images were acquired in the coronal slice orientation. Conventional 1H MRI was performed 5 minutes before hyperpolarized 3He MRI. Subjects were instructed to maintain normal tidal breathing and then from FRC inhale a 1.0 L mixture of 3He/N2. For the purposes of this study and to aid direct comparisons, all MRI and CT images were acquired at FRC + 1.0 L for consistency. By having all subjects inhale 1.0 L of gas after passive expiration, we ensured consistent lung volumes across all imaging methods. We also note that to truly capture the same lung volume consistently, our approach of using a measured volume for inhalation is straightforward and easily undertaken even supine in the CT or MR scanner. 1H MRI was acquired with subjects in a breath-hold position using a whole-body radiofrequency coil and a 1H fast-spoiled gradient-recalled echo (FGRE) sequence with a partial echo (total data acquisition time = 12 seconds; repetition time [TR]/echo time [TE]/flip-angle = 4.3 ms/1.0 ms/30°; field-of-view [FOV] = 40 × 40 cm; matrix = 128 × 80 [zero-padded to 128 × 128]; partial echo percent = 62.5%; bandwidth [BW] = 62.50 kHz; number of excitations [NEX] = 1; number of slices = 14; slice thickness = 15 mm). For all MRI breath-hold maneuvers, oxygen saturation (S_{Po2}) was continuously monitored using a digital pulse oximeter.

Hyperpolarized 3He MRI was performed using a single-channel rigid elliptical transmit-receive chest coil (RAPID Biomedical, Rimpar, Wuerzburg, Germany). A polarizer system (HeliSpin; Polarean, Durham, NC) was used to polarize the 3He gas, which achieved polarization levels of approximately 40%. Doses of 5 mL/kg of body weight were diluted with medical-grade N2 gas (Spectra Gases, Branchburg, NJ) and administered in 1.0 L Tedlar bags (Jensen Inert Products, Branchburg, NJ).
Hyperpolarized 3He ventilation images were acquired with subjects in breath-hold position after inspiration of a 1.0 L 3He/N$_2$ mixture using an FGRE method with a partial echo (total data acquisition time = 10 seconds; TR/TE/flip-angle = 3.8 ms/1.0 ms/7°; FOV = 40 × 40 cm; matrix = 128 × 128; partial echo percent = 62.5%; BW = 62.50 kHz; NEX = 1; number of slices = 14; slice thickness = 15 mm). The flip angle was determined using a constant flip-angle approach where the flip angle (α) depends on the number of phase encoding steps (Y-gradient steps). Thus, $\alpha = \tan^{-1}\sqrt{2/N}$, where N was the number of Y-gradient steps. Therefore, for this pulse sequence, where there are 128 Y-gradient steps, a 7.12° flip angle was used. Hyperpolarized 3He diffusion-weighted images were acquired using an FGRE sequence with centric k-space sampling (total data acquisition time = 14 seconds; TR/TE/flip-angle = 6.8 ms/4.5 ms/8°; FOV = 40 × 40 cm; matrix = 128 × 128; BW = 62.50 kHz; NEX = 1; number of slices = 7; slice thickness = 30 mm). Two interleaved images were acquired with and without additional diffusion sensitization ($G = 1.94$ G/cm; $b = 1.6$ s/cm2; rise-and-fall time = 0.5 ms; gradient duration = 0.46 ms; diffusion time = 1.46 ms).

Dynamic-free tidal-breathing 1H MRI was acquired over a period of 125 seconds at a rate of four frames per second using an optimized balanced steady-state–free precession sequence and respiratory bellows. We used a fast imaging using steady state pulse sequence [FIESTA; GEHC] with total data acquisition time = 125 seconds; TE/TR/flip-angle = 0.6 ms/1.9 ms/15°; FOV = 40 × 40 cm; matrix = 256 × 256; BW = 250 kHz; NEX = 1; number of phases = 500; slice thickness = 15 mm), and a 32-channel torso coil (GEHC). A single coronal slice was obtained with slice thickness = 15 mm. The number of phases refers to the number of images acquired from one specific location over time. In other words, we acquired multiple frames of one single coronal slice over a certain time span. The slice was prescribed on an axial localizer and was positioned slightly posterior to the cardiac silhouette in an effort to eliminate artifacts due to cardiac motion but allow visualization of the aorta.

CT was acquired using a 64-slice LightSpeed VCT scanner (GEHC) at FRC + 1.0 L of N$_2$ gas using a spiral acquisition (detector configuration = 64 × 0.625 mm; peak x-ray tube voltage = 120 kVp; effective x-ray tube current = 100 mA; x-ray tube rotation time = 500 ms; pitch = 1.0). Image reconstruction was performed using a standard convolution kernel of 1.25 mm.

Image Analysis

Segmentation of 3He MRI and FDMRI ventilation was performed using custom software generated using MATLAB R2013a (Mathworks, Natrick, MA), as previously described (26). 3He MRI apparent diffusion coefficient (ADC) maps were generated as previously described (36). The relative area of the CT density histogram with attenuation values ≤-950 HU (RA$_{950}$) was determined using MATLAB R2013a (Mathworks). Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Coralville, IA) was used to quantify WA% and LA.

Image analysis of dynamic free-breathing 1H MRI was performed using MATLAB R2013a (Mathworks). Nonrigid registration was used to coregister the temporal series of tidal-breathing 1H MRI slices using a modality independent neighborhood descriptor deformable registration method (37). A specific reference image was used so that the corresponding lung volume was consistent with 3He MRI volumes. Pulmonary voxel intensities from the registered free-breathing 1H MRI were aligned along a time axis, and discrete Fourier transforms were performed on the signal intensity oscillation pattern. The frequency of the first ventilation harmonic (corresponding to the respiratory rate) was determined for every voxel, the magnitude of which was used to generate a ventilation map.

The Dice similarity coefficient (DSC) (38) was used to quantify the regional overlap for 3He MRI and FDMRI ventilation, as well as the spatial relationship of CT RA$_{950}$ density maps with FDMRI ventilation defect volume.

Statistics

Independent t tests, tests for normality (determined with a Shapiro–Wilk test), and analysis of variance with post hoc analysis using the Holm–Bonferroni correction were performed using SPSS Statistics, V22.0 (SPSS Inc., Chicago, IL). Pearson correlation coefficients (r) were used to determine the correlation between measurements using SPSS Statistics, V22.0 (SPSS Inc.). Measurement agreement was...
evaluated using the Bland–Altman method using GraphPad Prism v6.0 (GraphPad Software Inc., La Jolla, CA). Correlation coefficients were compared using the Fisher z' transformation for each r value (21). Results were considered significant when the probability of two-tailed type I error was <5% ($P < .05$).

RESULTS

Table 1 shows the demographic and pulmonary function test measurements for all subjects (69 ± 10 years), as well as the 12 subjects with COPD (67 ± 9 years) and 14 with bronchiectasis (70 ± 11 years). For subjects with COPD, three were GOLD grade I, four were GOLD grade II, and five were GOLD grades III/IV. CT evidence of emphysema only was reported in seven subjects with COPD, and there was CT evidence of both emphysema and bronchiectasis in five subjects with COPD.

Figure 1 shows coronal FDMRI and 3He MRI ventilation registered to the 1H MRI of the thorax, as well as RA950 and 3He ADC maps for two subjects representative of COPD and two subjects representative of bronchiectasis. As shown in

![Figure 1](image-url)
Figure 1, for all four subjects, there were qualitatively similar ventilation patterns derived from FDMRI and 3He MRI. In subjects with COPD, regional ventilation defects were also qualitatively similar to regional emphysema apparent in the RA950 density maps and the brighter regions of 3He MRI ADC maps.

Table 2 provides imaging measurements for subjects with COPD and bronchiectasis. FDMRI (94 ± 4%) and 3He MRI (79 ± 12%) ventilation measurements were significantly different ($P < .001$). FDMRI VDP (6 ± 4%) was also significantly different than 3He MRI VDP (21 ± 12%; $P < .001$).

As expected, 3He MRI ADC was significantly greater in subjects with COPD as compared to those with bronchiectasis ($P < .001$), and all CT measurements (RA950, WA%, and LA) were significantly greater in subjects with COPD as compared to those with bronchiectasis.

![Image of Figure 1](image1.png)

![Image of Figure 2](image2.png)
Figure 2 shows the linear correlation of FDMRI with 3He MRI ventilation defects and the agreement between measurements for subjects with COPD and bronchiectasis. Although FDMRI and 3He MRI were significantly different, as shown in Table 2, these measurements were strongly correlated in subjects with COPD ($r = .88, P = .0001$), but not in those with bronchiectasis ($r = .1; P > .05$). Bland–Altman analysis showed a bias of $-16 \pm 9\%$ (95% confidence interval, -35% to 5%) for FDMRI (Fig 2b), and this bias increased with increasing VDP for subjects with COPD. FDMRI VDP was also strongly correlated with RA$_{950}$ ($r = .80; P = .002$) and 3He MRI ADC ($r = .71; P = .01$) for subjects with COPD, both of which are well-established measurements of emphysema (8,16).

Given the strong correlation between FDMRI and 3He MRI VDP for subjects with COPD, we evaluated the spatial relationships for ventilation and ventilation defects derived from using both these methods. These data are shown in Table 3 and for the subjects representative of COPD (S1 and S2) and bronchiectasis (S3 and S4) in Figure 3. Table 3 provides mean DSC for FDMRI and 3He MRI ventilation and ventilation defects. The DSC for FDMRI and 3He MRI ventilation was 86% for both subject groups. In a similar fashion, the spatial overlap of FDMRI ventilation with lung regions $>-$950 HU was 92% and 93% for subjects with COPD and bronchiectasis, respectively. For ventilation defects, the spatial relationship of FDMRI and 3He MRI ventilation defects was 20 \pm 17% and 14 \pm 9% for subjects with COPD and bronchiectasis, respectively. In subjects with COPD, the DSC for FDMRI ventilation defects with lung regions $<-$950 HU, reflective of emphysema, was 19 \pm 29%. For subjects with bronchiectasis, the spatial overlap of FDMRI and lung regions $<-$950 HU (2 \pm 3%) was significantly lower than the spatial overlap of FDMRI and 3He MRI ventilation defects (14 $+/-$ 9% $P < .001$).

Some of these spatial relationships are also shown in Figure 3, where the regional similarities of FDMRI with 3He static ventilation images are visually apparent for subjects with COPD (S1 and S2) and less obvious for those with bronchiectasis (S3 and S4). In particular for the subjects with bronchiectasis, there is little evidence of emphysema, and therefore, there is negligible overlap between RA$_{950}$ and ventilation defects.

Table 4 summarizes the significant correlations for FDMRI VDP with 3He MRI, CT, and pulmonary function measurements for the COPD and bronchiectasis subgroups. There were significant correlations for FDMRI VDP with 3He MRI VDP and ADC, RA$_{950}$, and LA ($P < .05$) for subjects with COPD. For subjects with bronchiectasis, there was a significant correlation between FDMRI VDP and LA ($P < .05$). For those with COPD, the FDMRI and 3He MRI VDP correlations were not significantly different; however, for subjects with bronchiectasis, there were significant differences.

DISCUSSION

In this proof-of-concept study, we evaluated 26 patients including 12 subjects with COPD and another 14 with bronchiectasis and observed the following: 1) in all subjects, FDMRI VDP was significantly less than 3He MRI VDP, 2) in subjects with COPD but not in those with bronchiectasis, FDMRI and 3He MRI ventilation and VDP were quantitatively correlated, and these values showed strong spatial relationships with one another and with RA$_{950}$ maps, and 3) in subjects with COPD only, there were significant and similar correlations for FDMRI and 3He MRI VDP with pulmonary function test and CT measurements.

In all subjects, FDMRI VDP was significantly less than 3He MRI VDP. It is difficult to completely understand why FDMRI VDP was significantly less and FDMRI ventilation was significantly greater than 3He MRI measurements in all subjects. However, one explanation may be derived from the underlying principles of the two methods and how they generate or capture ventilation information. Inhaled contrast gas methods provide static breath-hold snapshots of where the high–contrast inhaled gas travels to and resides during the scanning period of 8–15 seconds. In this manner, very high–contrast and signal–to–noise ventilation images can be easily generated and processed. In contrast, but similar to four–dimensional CT (4DCT) that produces three-dimensional image data sets through time (39,40), FDMRI generates ventilation contrast based on image signal differences during the breathing cycle as air enters and leaves the pulmonary system and tissue contracts and expands. This is a more indirect approach that relies on robust and accurate image processing methods to coregister the dynamic free tidal-breathing 1H MRI. This method also relies on the inherent image signal intensity and signal–to–noise ratios of pulmonary images from a system that is
inherently air filled. In CT, the attenuation values for air as compared to tissue provide significant contrast. However, the contrast derived from the 1H signal changes are inherently weak, and this certainly necessitates that the image processing methods used be more complex and robust. Previous work (41) explored the spatial and quantitative relationship of 3He.
TABLE 4. Pearson Correlations for FDMRI and \(^3\)He MRI

<table>
<thead>
<tr>
<th></th>
<th>FDMRI VDP %</th>
<th>(^3)He MRI VDP %</th>
<th>Fisher z’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bronchiectasis (n = 14)</td>
<td>COPD (n = 12)</td>
<td>Bronchiectasis (n = 14)</td>
</tr>
<tr>
<td>FEV1, %pred</td>
<td>0.41/.1</td>
<td>-0.22/.5</td>
<td>-0.73/.003</td>
</tr>
<tr>
<td>FVC, %pred</td>
<td>0.31/.3</td>
<td>0.20/.5</td>
<td>-0.60/.02</td>
</tr>
<tr>
<td>RV/TLC, %</td>
<td>-0.31/.3</td>
<td>-0.19/.6</td>
<td>0.65/.02</td>
</tr>
<tr>
<td>Raw, %pred</td>
<td>-0.23/.4</td>
<td>0.60/.04</td>
<td>0.47/.09</td>
</tr>
<tr>
<td>DLCO, %pred</td>
<td>0.08/.8</td>
<td>-0.57/.05</td>
<td>-0.36/.2</td>
</tr>
<tr>
<td>FDMRI ventilation, %</td>
<td>~-1/<.001</td>
<td>~-1/<.001</td>
<td>0.1/.7</td>
</tr>
<tr>
<td>FDMRI VDP, %</td>
<td>—/—</td>
<td>—/—</td>
<td>-0.1/.7</td>
</tr>
<tr>
<td>(^3)He MRI VDP, %</td>
<td>0.1/.7</td>
<td>-0.88/<.001</td>
<td>~-1/<.001</td>
</tr>
<tr>
<td>(^3)He MRI ADC, cm(^2)/s</td>
<td>0.16/.6</td>
<td>0.71/.01</td>
<td>0.35/.2</td>
</tr>
<tr>
<td>CT RA(_{A50}), %</td>
<td>-0.23/.4</td>
<td>0.80/.002</td>
<td>-0.04/.9</td>
</tr>
<tr>
<td>CT WA, %</td>
<td>-0.35/.2</td>
<td>-0.07/.8</td>
<td>0.29/.3</td>
</tr>
<tr>
<td>CT LA, mm(^2)</td>
<td>0.58/.03</td>
<td>0.43/.2</td>
<td>-0.09/.7</td>
</tr>
</tbody>
</table>

ADC, apparent diffusion coefficient; DLCO, diffusing capacity for carbon monoxide; FEV\(_1\), forced expiratory volume in 1 second; FDMRI, free-breathing \(^1\)H magnetic resonance imaging; FVC, forced vital capacity; LA, lumen area; %pred, percent of predicted value; MRI, magnetic resonance imaging; \(r\), Pearson correlation coefficients; RA\(_{A50}\), relative area of the lung with attenuation < -950 HU; RV/TLC, residual volume/total lung capacity; VDP, ventilation defect percent; WA, wall area.

MRI and 4DCT ventilation measurements in a proof-of-concept demonstration in a small number of non–small cell lung cancer patients. There was excellent spatial correspondence for the ventilation maps derived using static MRI and free-breathing \(^1\)H magnetic resonance imaging techniques with no significant differences in ventilation. These results provided good evidence that ventilation maps and measurements generated using vastly different image acquisition and analysis methods, as well as breathing maneuvers, provide similar regional and quantitative ventilation information.

It is important to note that \(^3\)He MRI ventilation percent and VDP are not independent measurements because these simply sum to 100%. However, because here we are directly comparing VDP, which is a relatively small volume and ventilation which is a large volume for both Fourier decomposition (FD) and \(^3\)He MRI, we think it is important to use and compare both values. This is especially important to show spatial relationships such as the Dice similarity coefficient that is highly dependent on the relative size of the comparators. We think this is also important because the \(^3\)He ventilation MRI depicts gas distribution, whereas the FDMRI ventilation reflects the ventilation fundamental frequency and signal intensity changes related to this value. Because of this, spatial overlap analyses were conducted for both ventilation maps and ventilation defect maps obtained using both \(^3\)He and FDMRI.

In subjects with COPD but not in those with bronchiectasis, FDMRI and \(^3\)He MRI ventilation were quantitatively and spatially related. In addition, FDMRI and \(^3\)He MRI VDP were quantitatively correlated and showed strong spatial relationships with RA\(_{A50}\) maps—those regions that reflected emphysematous destruction or air in CT images. We were surprised to observe such differences in the spatial and quantitative correlations for FDMRI and \(^3\)He MRI in subjects with COPD as compared to those with bronchiectasis. One explanation can be derived from the presence of thick mucus (which appears as greater \(^1\)H signal intensity relative to that of lung parenchyma) in the airways and parenchyma in bronchiectasis that may lead to registration error. To generate FDMRI ventilation images, registration algorithms must account for the movement of the diaphragm, and any registration error will result in regions of high signal intensity (eg, mucus pooling in subjects with bronchiectasis) oscillating at the same frequency as respiration. This registration error can result in apparently increased ventilation, which may or may not accurately reflect truly ventilated regions. Thus, in subjects with bronchiectasis, there may be regions that appear as ventilation in FDMRI that are in fact not ventilated because of misalignment of the mucus’ boundaries via the deformable registration process. We must acknowledge that all three imaging methods measure very different physical parameters. For example, although CT provides a measurement of regional lung tissue density, \(^3\)He MRI provides a functional estimate of pulmonary ventilation and alveolar dimensions using diffusion-weighted imaging. FDMRI on the other hand, provides an estimate of ventilation by quantifying the signal intensity contributions throughout the compression and expansion of the lung parenchyma via the cardiac and the respiratory cycles. However, we recently showed that in subjects with COPD, \(^3\)He MRI ventilation defects often colocalize with large emphysematous bullae (42). In fact, we previously observed this in patients with advanced emphysema and because of this work hypothesized that this spatial colocalization was related to the long time constants for filling of emphysematous bullae and not airways disease. Here, and in light of these previous findings, we directly evaluated the...
spatial colocalization of emphysematous regions with FDMRI and 3He MRI ventilation defects. The spatial relationships observed for FDMRI and 3He MRI ventilation defects with RA0.50 in the present study suggest that in patients with emphysema, ventilation defects generated using FDMRI may also be derived to the long time constants for lung filling. Our findings further support the notion that these methods (ie, FDMRI, 3He MRI, and CT), although very different, are probing and interrogating similar functional, but likely not structural information, in subjects with COPD. It appears that a free-breathing method like FDMRI, shows some dependence on the very long time constants for filling emphysematous bullae, and this finding should be considered when using FDMRI for COPD imaging.

Finally, only in subjects with COPD, there were significant and similar correlations for FDMRI and 3He MRI VDP with pulmonary function test and CT measurements. These are important findings that further support and suggest that both methods provide similar functional information in subjects with COPD even though they are very unique methods. In contrast, for those with bronchiectasis, there was a significant correlation between FDMRI VDP and airway LA. This suggests that elevated LA (corresponding to dilated airways) may be related to low proton density.

We recognize and acknowledge that this work was limited by the relatively small sample size. In addition, we studied mainly subjects with moderate COPD (8 of 12 subjects with GOLD grade II or III), and given our understanding of the heterogeneity of patients with COPD, caution should be used when extrapolating our results to a broader COPD group. Fourier decomposition has recently emerged as a pulmonary functional MRI method, with the promise of serial lung function measurements without a dependence on polarized or other inhaled gases or multinuclear capabilities. This opens up the opportunity for functional lung imaging on conventional MRI scanners—available more universally, albeit the final measurements are dependent on more sophisticated image processing methods. It should be noted that one of the challenges associated with pulmonary proton MRI methods is the weak pulmonary proton signal intensity that is further diminished at higher field strengths because of the relationship between field strength and T2* effects. Previous pilot and development studies at 1.5 T have shown qualitative agreement for regional ventilation and perfusion measurements with the clinical reference standard SPECT/CT (28).

Moreover, recent studies have also demonstrated the reproducibility of FDMRI ventilation-weighted and perfusion-weighted images in healthy volunteers (32). Finally FDMRI-to-3He MRI comparisons in animals showed similar regional abnormalities including pulmonary embolism, atelectasis, and air trapping (30).

To our knowledge, there has been no prospective comparison of FDMRI to 3He MRI at 3 T in subjects with COPD and bronchiectasis. Consistent with previous studies, we showed similar regional ventilation abnormalities using FDMRI and 3He MRI in subjects with COPD, and these appear to be dominated by the presence of regional emphysematous bullae. In summary, FDMRI and 3He MRI ventilation and VDP were strongly correlated in subjects with COPD but not in those with bronchiectasis. Only in subjects with COPD, FDMRI ventilation defects were also spatially related with 3He MRI ventilation defects and CT measurements of emphysema.

ACKNOWLEDGMENTS

The authors thank Sandra Blamires, CCRC, for clinical coordination; Andrew Wheateley, BSc, for production and dispensing of 3He gas; and Trevor Szekeres, RTMR, for magnetic resonance imaging of research volunteers.

REFERENCES

