Eggs
) within explanatory variables (Trial
, Mite
).library(ggplot2) # for general plotting
library(car) # for ANOVA (Type II used, better than Type I when there is an unbalanced design)
The number of eggs/mite were counted after 4 days of feeding on Moneymaker plants by 20 adult female mites of TU or TU-A on Moneymaker.
fecundity.data <- read.csv("~/Lab Stuff/Adapted mites/Tomato/Fecundity assay/TU-LND vs TU-Adapted LND/Tu vs Tu-A R data/Fecundity R data.csv", header = TRUE)
# Trial as a factor
fecundity.data$Trial <- factor(fecundity.data$Trial)
str(fecundity.data)
## 'data.frame': 32 obs. of 3 variables:
## $ Trial: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ Mite : Factor w/ 2 levels "TU","TU-A": 1 1 1 1 1 1 2 2 2 2 ...
## $ Eggs : num 4 3.85 4.26 4.57 3.82 ...
H0: There will be no difference in fecundity of the mite strains.
HA: TU-A will produce more eggs on Moneymaker leaflets than TU mites.
Eggs
) within explanatory variables (Trial
, Mite
).ggplot(fecundity.data, aes(x = Trial, y = Eggs)) + geom_boxplot() + theme_classic()
ggplot(fecundity.data, aes(x = Mite, y = Eggs)) + geom_boxplot() + theme_classic()
No outliers.
Des not apply, all explanatory variables are categorical/factorial.
No, I am treating Trial
as a main effect to check for reproducibility (not a random effect/blocking factor).
Interaction betweenTrial
and Mite.Strain
will be performed to test for reproducibility.
No
summary(fecundity.data)
## Trial Mite Eggs
## 1:12 TU :16 Min. : 2.000
## 2:10 TU-A:16 1st Qu.: 3.697
## 3:10 Median :12.977
## Mean :15.329
## 3rd Qu.:27.425
## Max. :33.833
Not in Trial
, yes in Mite
.
# fit linear model and display model fit information and ANOVA table
m <- lm(Eggs ~ Mite * Trial, data = fecundity.data)
summary(m)
##
## Call:
## lm(formula = Eggs ~ Mite * Trial, data = fecundity.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7013 -0.8134 -0.1457 0.6802 4.5987
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0837 1.0967 3.724 0.000957 ***
## MiteTU-A 25.1509 1.5510 16.216 4.1e-15 ***
## Trial2 -1.2835 1.6267 -0.789 0.437219
## Trial3 -0.6789 1.6267 -0.417 0.679858
## MiteTU-A:Trial2 -2.9691 2.3005 -1.291 0.208185
## MiteTU-A:Trial3 -1.6206 2.3005 -0.704 0.487401
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.686 on 26 degrees of freedom
## Multiple R-squared: 0.9604, Adjusted R-squared: 0.9528
## F-statistic: 126.2 on 5 and 26 DF, p-value: < 2.2e-16
Anova(m)
## Anova Table (Type II tests)
##
## Response: Eggs
## Sum Sq Df F value Pr(>F)
## Mite 4499.8 1 623.5359 < 2e-16 ***
## Trial 42.2 2 2.9211 0.07171 .
## Mite:Trial 12.1 2 0.8416 0.44241
## Residuals 187.6 26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculate effect size and display
result.anova<-Anova(m)
ss<-result.anova$"Sum Sq" ##ss = sum of squares
pes<-ss/(ss+ss[length(ss)]) ##pes = partial e squared
pes[length(pes)]<-""
result.anova$"Part E Sq"<-pes
result.anova
## Anova Table (Type II tests)
##
## Response: Eggs
## Sum Sq Df F value Pr(>F) Part E Sq
## Mite 4499.8 1 623.5359 0.00000 0.95997
## Trial 42.2 2 2.9211 0.07171 0.18347
## Mite:Trial 12.1 2 0.8416 0.44241 0.06080
## Residuals 187.6 26
# plot interactions
interaction.plot(fecundity.data$Mite, fecundity.data$Trial, fecundity.data$Eggs, type="l", leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs", xlab="Mite Strain", main="Mite:Trial")
fecundity.data$m.fit <- fitted(m) # fitted values
fecundity.data$m.res <- rstandard(m) # Pearson residuals
We assumed normal residuals. This is the least important regression assumption but its can be tested with a qq plot.
ggplot(fecundity.data, aes(sample = m.res)) + geom_qq() +
geom_abline(intercept = 0, slope = 1) + theme_classic()
Looks good.
Testing for:
Linearity - there should be no curvilinear pattern in the residuals.
Equal variance - the vertical spread of the residuals should e constant across all fitted values.
ggplot(fecundity.data, aes(x = m.fit, y = m.res)) +
geom_point() + geom_hline(yintercept = 0) + geom_smooth() + theme_classic()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Linearity - pretty good - confidence interval includes 0 for all values. Residuals farly equally dispersed.
Equal variance - no obvious problems
Should be centered around 0, if not then model requires another explanatory variable(s), to account for observed variation.
ggplot(fecundity.data, aes(x = Mite, y = m.res)) +
geom_boxplot() +
geom_hline(yintercept = 0) + theme_classic()
ggplot(fecundity.data, aes(x = Trial, y = m.res)) +
geom_boxplot() +
geom_hline(yintercept = 0) + theme_classic()
ggplot(fecundity.data, aes(x = Mite:Trial, y = m.res)) +
geom_boxplot() +
geom_hline(yintercept = 0) + theme_classic()
Looks good.
Model is valid and interpretation of ANOVA is good.
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Canada.1252 LC_CTYPE=English_Canada.1252
## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Canada.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] car_3.0-3 carData_3.0-2 ggplot2_3.1.1
##
## loaded via a namespace (and not attached):
## [1] zip_2.0.2 Rcpp_1.0.1 cellranger_1.1.0
## [4] pillar_1.4.1 compiler_3.6.0 plyr_1.8.4
## [7] forcats_0.4.0 tools_3.6.0 digest_0.6.19
## [10] evaluate_0.14 tibble_2.1.1 gtable_0.3.0
## [13] pkgconfig_2.0.2 rlang_0.3.4 openxlsx_4.1.0
## [16] curl_3.3 yaml_2.2.0 haven_2.1.0
## [19] xfun_0.7 rio_0.5.16 withr_2.1.2
## [22] stringr_1.4.0 knitr_1.23 hms_0.4.2
## [25] grid_3.6.0 data.table_1.12.2 readxl_1.3.1
## [28] foreign_0.8-71 rmarkdown_1.13 magrittr_1.5
## [31] scales_1.0.0 htmltools_0.3.6 abind_1.4-5
## [34] colorspace_1.4-1 labeling_0.3 stringi_1.4.3
## [37] lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4