library(ggplot2) # for general plotting
library(car) # for ANOVA (Type II used, better than Type I when there is an unbalanced design)
Fecundity of TU and TU-A mites on Moneymaker tomato leaflets, 2 and 4 dpi following treatment with water (control) or E-64 (cystein protease inhibitor).
E64.fecundity.data <- read.csv("~/Lab Stuff/Adapted mites/Tomato/E-64 assay/Fecundity R data.csv", header = TRUE)
# Trial and Day as factors
E64.fecundity.data$Trial <- factor(E64.fecundity.data$Trial)
E64.fecundity.data$dpi <- factor(E64.fecundity.data$dpi)
str(E64.fecundity.data)
## 'data.frame': 136 obs. of 5 variables:
## $ Trial : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ Mite.Strain: Factor w/ 2 levels "TU","TU-A": 1 1 1 1 1 1 2 2 2 2 ...
## $ Treatment : Factor w/ 2 levels "E-64","Water": 2 2 2 2 2 2 2 2 2 2 ...
## $ Eggs.Mite : num 5.68 6.21 4.11 6.89 4.37 ...
## $ dpi : Factor w/ 2 levels "2","4": 1 1 1 1 1 1 1 1 1 1 ...
# subset mite strains for separate analyses
E64.fecundity.data.TU <- subset(E64.fecundity.data, Mite.Strain =="TU")
E64.fecundity.data.TA <- subset(E64.fecundity.data, Mite.Strain =="TU-A")
H0: There will be no difference in fecundity between water and E-64 treated mites (TU or TU-A).
HA: E-64 treatment will decrease fecundity of TU-A mites.
Eggs.Mite
) within explanatory variables (Trial
, dpi
, Treatment
).# TU
ggplot(E64.fecundity.data.TU, aes(x = Trial, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
ggplot(E64.fecundity.data.TU, aes(x = dpi, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
ggplot(E64.fecundity.data.TU, aes(x = Treatment, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
# TU-A
ggplot(E64.fecundity.data.TA, aes(x = Trial, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
ggplot(E64.fecundity.data.TA, aes(x = dpi, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
ggplot(E64.fecundity.data.TA, aes(x = Treatment, y = Eggs.Mite)) + geom_boxplot() + theme_classic()
Outlier not removed, probably represents real variability.
No, I am treating Trial
as a main effect to check for reproducibility (not a random effect/blocking factor).
Interaction between Trial
and Treatment
will be performed to test for reproducibility.
Interaction between Trial
and dpi
will be performed to test for reproducibility.
An interaction between dpi
and Treatment
will also be included to test for possible feedback loop and for planned comparisons.
No
summary(E64.fecundity.data.TU)
## Trial Mite.Strain Treatment Eggs.Mite dpi
## 1:23 TU :67 E-64 :31 Min. : 1.389 2:34
## 2:21 TU-A: 0 Water:36 1st Qu.: 5.313 4:33
## 3:23 Median : 7.316
## Mean : 7.080
## 3rd Qu.: 9.053
## Max. :12.629
summary(E64.fecundity.data.TA)
## Trial Mite.Strain Treatment Eggs.Mite dpi
## 1:23 TU : 0 E-64 :33 Min. : 8.769 2:35
## 2:23 TU-A:69 Water:36 1st Qu.:12.650 4:34
## 3:23 Median :18.600
## Mean :21.005
## 3rd Qu.:30.389
## Max. :37.333
No, but close.
# fit linear model and display model fit information and ANOVA table
# full model including 3 way interaction term - to verify it is not significant, if it is, interpretation of hypothesis testing will be problematic
m.TU.0 <- lm(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial + dpi:Trial:Treatment, data = E64.fecundity.data.TU)
summary(m.TU.0)
##
## Call:
## lm(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment +
## Treatment:Trial + dpi:Trial + dpi:Trial:Treatment, data = E64.fecundity.data.TU)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7937 -1.1606 0.1336 1.0253 6.9349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5590 1.0225 4.459 4.11e-05 ***
## dpi4 1.1346 1.3845 0.820 0.416015
## TreatmentWater 0.9727 1.3845 0.703 0.485294
## Trial2 5.4045 1.4460 3.738 0.000444 ***
## Trial3 4.0310 1.3845 2.912 0.005185 **
## dpi4:TreatmentWater -1.5162 1.9129 -0.793 0.431412
## TreatmentWater:Trial2 -1.6198 1.9579 -0.827 0.411643
## TreatmentWater:Trial3 -2.5160 1.9129 -1.315 0.193878
## dpi4:Trial2 -3.4452 2.0662 -1.667 0.101112
## dpi4:Trial3 -3.2755 1.9579 -1.673 0.100012
## dpi4:TreatmentWater:Trial2 3.6086 2.7846 1.296 0.200411
## dpi4:TreatmentWater:Trial3 2.6604 2.7052 0.983 0.329710
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.286 on 55 degrees of freedom
## Multiple R-squared: 0.4095, Adjusted R-squared: 0.2915
## F-statistic: 3.468 on 11 and 55 DF, p-value: 0.001023
Anova(m.TU.0)
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F)
## dpi 9.623 1 1.8409 0.1804
## Treatment 0.540 1 0.1033 0.7491
## Trial 157.103 2 15.0269 6.214e-06 ***
## dpi:Treatment 1.108 1 0.2119 0.6471
## Treatment:Trial 5.840 2 0.5586 0.5752
## dpi:Trial 11.164 2 1.0678 0.3508
## dpi:Treatment:Trial 9.636 2 0.9217 0.4039
## Residuals 287.506 55
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# linear model without non-significant 3-way interaction (want to reduce comparisons made in Tukey-Kramer post-hoc test)
m.TU <- lm(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TU)
summary(m.TU)
##
## Call:
## lm(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment +
## Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TU)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2455 -1.1424 -0.1015 0.9780 7.4192
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.14014 0.92069 5.583 6.86e-07 ***
## dpi4 0.06928 1.12081 0.062 0.950930
## TreatmentWater -0.09268 1.12081 -0.083 0.934388
## Trial2 4.42134 1.23381 3.583 0.000703 ***
## Trial3 3.30069 1.18724 2.780 0.007349 **
## dpi4:TreatmentWater 0.51765 1.12298 0.461 0.646581
## TreatmentWater:Trial2 0.18271 1.38955 0.131 0.895852
## TreatmentWater:Trial3 -1.15227 1.35029 -0.853 0.397035
## dpi4:Trial2 -1.47518 1.38264 -1.067 0.290501
## dpi4:Trial3 -1.88200 1.34923 -1.395 0.168467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.283 on 57 degrees of freedom
## Multiple R-squared: 0.3898, Adjusted R-squared: 0.2934
## F-statistic: 4.045 on 9 and 57 DF, p-value: 0.0004774
Anova(m.TU)
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F)
## dpi 9.623 1 1.8460 0.1796
## Treatment 0.540 1 0.1036 0.7487
## Trial 157.103 2 15.0684 5.581e-06 ***
## dpi:Treatment 1.108 1 0.2125 0.6466
## Treatment:Trial 5.840 2 0.5602 0.5742
## dpi:Trial 11.164 2 1.0708 0.3495
## Residuals 297.142 57
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculate effect size and display
result.anova<-Anova(m.TU)
ss<-result.anova$"Sum Sq" ##ss = sum of squares
pes<-ss/(ss+ss[length(ss)]) ##pes = partial e squared
pes[length(pes)]<-""
result.anova$"Part E Sq"<-pes
result.anova
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F) Part E Sq
## dpi 9.623 1 1.8460 0.17960 0.03137
## Treatment 0.540 1 0.1036 0.74875 0.00181
## Trial 157.103 2 15.0684 0.00001 0.34586
## dpi:Treatment 1.108 1 0.2125 0.64658 0.00371
## Treatment:Trial 5.840 2 0.5602 0.57422 0.01928
## dpi:Trial 11.164 2 1.0708 0.34953 0.03621
## Residuals 297.142 57
# perform post-hoc Tukey-Kramer test of contrasts
TukeyHSD(aov(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TU))
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TU)
##
## $dpi
## diff lwr upr p adj
## 4-2 -0.8847478 -2.001998 0.2325021 0.1183292
##
## $Treatment
## diff lwr upr p adj
## Water-E-64 -0.08810766 -1.208357 1.032142 0.8754121
##
## $Trial
## diff lwr upr p adj
## 2-1 3.792529 2.1342096 5.4508485 0.0000027
## 3-1 1.758005 0.1378128 3.3781969 0.0304819
## 3-2 -2.034524 -3.6928437 -0.3762048 0.0125198
##
## $`dpi:Treatment`
## diff lwr upr p adj
## 4:E-64-2:E-64 -1.1583926 -3.330029 1.013244 0.4974082
## 2:Water-2:E-64 -0.3395281 -2.415661 1.736605 0.9725838
## 4:Water-2:E-64 -0.9862525 -3.062385 1.089880 0.5935746
## 2:Water-4:E-64 0.8188645 -1.293588 2.931317 0.7350599
## 4:Water-4:E-64 0.1721400 -1.940313 2.284593 0.9964167
## 4:Water-2:Water -0.6467245 -2.660869 1.367420 0.8303783
##
## $`Treatment:Trial`
## diff lwr upr p adj
## Water:1-E-64:1 0.1054814 -2.7049588 2.91592169 0.9999975
## E-64:2-E-64:1 3.6542640 0.6280837 6.68044436 0.0093618
## Water:2-E-64:1 3.9847608 1.1743205 6.79520101 0.0013575
## E-64:3-E-64:1 2.3454130 -0.5254737 5.21629978 0.1704526
## Water:3-E-64:1 1.3249109 -1.4855293 4.13535117 0.7326535
## E-64:2-Water:1 3.5487826 0.5798853 6.51767987 0.0104061
## Water:2-Water:1 3.8792793 1.1306145 6.62794410 0.0014453
## E-64:3-Water:1 2.2399316 -0.5705086 5.05037184 0.1915742
## Water:3-Water:1 1.2194295 -1.5292353 3.96809426 0.7793073
## Water:2-E-64:2 0.3304967 -2.6384006 3.29939402 0.9994665
## E-64:3-E-64:2 -1.3088510 -4.3350313 1.71732934 0.7969884
## Water:3-E-64:2 -2.3293531 -5.2982504 0.63954418 0.2056395
## E-64:3-Water:2 -1.6393477 -4.4497880 1.17109252 0.5245956
## Water:3-Water:2 -2.6598498 -5.4085146 0.08881494 0.0632741
## Water:3-E-64:3 -1.0205021 -3.8309424 1.78993812 0.8908890
##
## $`dpi:Trial`
## diff lwr upr p adj
## 4:1-2:1 0.3412575 -2.46918273 3.1516978 0.9991862
## 2:2-2:1 4.5547277 1.68384093 7.4256144 0.0002542
## 4:2-2:1 3.4126382 0.47085468 6.3544217 0.0140519
## 2:3-2:1 2.7150812 -0.09535908 5.5255214 0.0640119
## 4:3-2:1 1.1666341 -1.70425263 4.0375208 0.8358415
## 2:2-4:1 4.2134702 1.40302991 7.0239104 0.0006123
## 4:2-4:1 3.0713807 0.18855673 5.9542046 0.0303600
## 2:3-4:1 2.3738236 -0.37484113 5.1224884 0.1279519
## 4:3-4:1 0.8253766 -1.98506365 3.6358168 0.9530146
## 4:2-2:2 -1.1420895 -4.08387298 1.7996940 0.8603965
## 2:3-2:2 -1.8396465 -4.65008675 0.9707937 0.3949044
## 4:3-2:2 -3.3880936 -6.25898030 -0.5172068 0.0118509
## 2:3-4:2 -0.6975570 -3.58038097 2.1852669 0.9795430
## 4:3-4:2 -2.2460041 -5.18778759 0.6957794 0.2311878
## 4:3-2:3 -1.5484471 -4.35888730 1.2619932 0.5860190
# plot interactions
interaction.plot(E64.fecundity.data.TU$Treatment, E64.fecundity.data.TU$Trial,E64.fecundity.data.TU$Eggs.Mite, type="b", col=c(1:3), leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs.Mite", xlab="Treatment", main="Treatment:Trial")
interaction.plot(E64.fecundity.data.TU$dpi, E64.fecundity.data.TU$Trial, E64.fecundity.data.TU$Eggs.Mite, type="b", col=c(1:3), leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs.Mite", xlab="dpi", main="dpi:Trial")
interaction.plot(E64.fecundity.data.TU$dpi, E64.fecundity.data.TU$Treatment, E64.fecundity.data.TU$Eggs.Mite, type="b", col=c(1:3), leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs.Mite", xlab="dpi", main="dpi:Treatment")
# fit linear model and display model fit information and ANOVA table
# full model including 3 way interaction term - to verify it is not significant, if it is, interpretation of hypothesis testing will be problematic
m.TA.0 <- lm(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial + dpi:Trial:Treatment, data = E64.fecundity.data.TA)
summary(m.TA.0)
##
## Call:
## lm(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment +
## Treatment:Trial + dpi:Trial + dpi:Trial:Treatment, data = E64.fecundity.data.TA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.635 -1.053 0.131 1.059 7.330
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9978086 0.9533076 10.487 6.38e-15 ***
## dpi4 15.2397122 1.4139836 10.778 2.25e-15 ***
## TreatmentWater -0.0006748 1.3481805 -0.001 0.9996
## Trial2 3.4808979 1.3481805 2.582 0.0124 *
## Trial3 2.1106709 1.4139836 1.493 0.1410
## dpi4:TreatmentWater 0.0646302 1.9536992 0.033 0.9737
## TreatmentWater:Trial2 0.3605647 1.9066151 0.189 0.8507
## TreatmentWater:Trial3 3.9384407 1.9536992 2.016 0.0485 *
## dpi4:Trial2 4.8013878 1.9996748 2.401 0.0196 *
## dpi4:Trial3 2.9839963 1.9996748 1.492 0.1412
## dpi4:TreatmentWater:Trial2 0.2900052 2.7629478 0.105 0.9168
## dpi4:TreatmentWater:Trial3 -5.0602418 2.7629478 -1.831 0.0723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.335 on 57 degrees of freedom
## Multiple R-squared: 0.9475, Adjusted R-squared: 0.9374
## F-statistic: 93.55 on 11 and 57 DF, p-value: < 2.2e-16
Anova(m.TA.0)
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F)
## dpi 4986.5 1 914.4851 < 2.2e-16 ***
## Treatment 6.7 1 1.2373 0.2706639
## Trial 444.4 2 40.7465 1.027e-11 ***
## dpi:Treatment 10.0 1 1.8289 0.1815932
## Treatment:Trial 5.4 2 0.4991 0.6097143
## dpi:Trial 87.8 2 8.0508 0.0008327 ***
## dpi:Treatment:Trial 25.9 2 2.3717 0.1024737
## Residuals 310.8 57
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# linear model without non-significant 3-way interaction (want to reduce comparisons made in Tukey-Kramer post-hoc test)
m.TA <- lm(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TA)
summary(m.TA)
##
## Call:
## lm(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment +
## Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.256 -1.218 -0.220 1.049 7.709
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6192 0.8945 10.754 1.57e-15 ***
## dpi4 16.0726 1.1669 13.774 < 2e-16 ***
## TreatmentWater 0.7565 1.1394 0.664 0.509313
## Trial2 3.4118 1.2038 2.834 0.006281 **
## Trial3 3.4807 1.2421 2.802 0.006854 **
## dpi4:TreatmentWater -1.5254 1.1539 -1.322 0.191271
## TreatmentWater:Trial2 0.4987 1.4116 0.353 0.725157
## TreatmentWater:Trial3 1.3636 1.4127 0.965 0.338375
## dpi4:Trial2 4.9533 1.4116 3.509 0.000868 ***
## dpi4:Trial3 0.3334 1.4116 0.236 0.814113
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.389 on 59 degrees of freedom
## Multiple R-squared: 0.9431, Adjusted R-squared: 0.9345
## F-statistic: 108.8 on 9 and 59 DF, p-value: < 2.2e-16
Anova(m.TA)
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F)
## dpi 4986.5 1 873.8531 < 2.2e-16 ***
## Treatment 6.7 1 1.1823 0.281308
## Trial 444.4 2 38.9361 1.655e-11 ***
## dpi:Treatment 10.0 1 1.7477 0.191271
## Treatment:Trial 5.4 2 0.4769 0.623071
## dpi:Trial 87.8 2 7.6931 0.001074 **
## Residuals 336.7 59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculate effect size and display
result.anova<-Anova(m.TA)
ss<-result.anova$"Sum Sq" ##ss = sum of squares
pes<-ss/(ss+ss[length(ss)]) ##pes = partial e squared
pes[length(pes)]<-""
result.anova$"Part E Sq"<-pes
result.anova
## Anova Table (Type II tests)
##
## Response: Eggs.Mite
## Sum Sq Df F value Pr(>F) Part E Sq
## dpi 4986.5 1 873.8531 0.00000 0.93675
## Treatment 6.7 1 1.1823 0.28131 0.01965
## Trial 444.4 2 38.9361 0.00000 0.56894
## dpi:Treatment 10.0 1 1.7477 0.19127 0.02877
## Treatment:Trial 5.4 2 0.4769 0.62307 0.01591
## dpi:Trial 87.8 2 7.6931 0.00107 0.20684
## Residuals 336.7 59
# perform post-hoc Tukey-Kramer test of contrasts
TukeyHSD(aov(Eggs.Mite ~ dpi +Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TA))
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Eggs.Mite ~ dpi + Treatment + Trial + dpi:Treatment + Treatment:Trial + dpi:Trial, data = E64.fecundity.data.TA)
##
## $dpi
## diff lwr upr p adj
## 4-2 17.07466 15.92366 18.22566 0
##
## $Treatment
## diff lwr upr p adj
## Water-E-64 0.6693366 -0.4826307 1.821304 0.2496511
##
## $Trial
## diff lwr upr p adj
## 2-1 6.040988 4.347400 7.73457652 0.0000000
## 3-1 4.322974 2.629385 6.01656229 0.0000002
## 3-2 -1.718014 -3.411603 -0.02442578 0.0460686
##
## $`dpi:Treatment`
## diff lwr upr p adj
## 4:E-64-2:E-64 17.83400820 15.6342358 20.033781 0.0000000
## 2:Water-2:E-64 1.39491758 -0.7409707 3.530806 0.3193021
## 4:Water-2:E-64 17.75475344 15.6188652 19.890642 0.0000000
## 2:Water-4:E-64 -16.43909062 -18.6090342 -14.269147 0.0000000
## 4:Water-4:E-64 -0.07925476 -2.2491983 2.090689 0.9996737
## 4:Water-2:Water 16.35983586 14.2546814 18.464990 0.0000000
##
## $`Treatment:Trial`
## diff lwr upr p adj
## Water:1-E-64:1 -0.07516615 -3.0121582 2.8618259 0.9999996
## E-64:2-E-64:1 5.66334693 2.6631866 8.6635073 0.0000099
## Water:2-E-64:1 6.31199298 3.3750010 9.2489850 0.0000005
## E-64:3-E-64:1 3.53486601 0.5347057 6.5350264 0.0119863
## Water:3-E-64:1 4.96939600 2.0324040 7.9063880 0.0000821
## E-64:2-Water:1 5.73851308 2.8015211 8.6755051 0.0000048
## Water:2-Water:1 6.38715913 3.5147243 9.2595940 0.0000002
## E-64:3-Water:1 3.61003216 0.6730402 6.5470242 0.0076961
## Water:3-Water:1 5.04456215 2.1721273 7.9169970 0.0000414
## Water:2-E-64:2 0.64864605 -2.2883460 3.5856381 0.9864810
## E-64:3-E-64:2 -2.12848092 -5.1286413 0.8716794 0.3067863
## Water:3-E-64:2 -0.69395093 -3.6309429 2.2430411 0.9817096
## E-64:3-Water:2 -2.77712697 -5.7141190 0.1598650 0.0740836
## Water:3-Water:2 -1.34259698 -4.2150318 1.5298379 0.7405560
## Water:3-E-64:3 1.43452999 -1.5024620 4.3715220 0.7035833
##
## $`dpi:Trial`
## diff lwr upr p adj
## 4:1-2:1 15.2656654 12.3286734 18.202657 0.0000000
## 2:2-2:1 3.6769153 0.8044805 6.549350 0.0048758
## 4:2-2:1 23.8856420 20.9486500 26.822634 0.0000000
## 2:3-2:1 4.2280772 1.2910852 7.165069 0.0010796
## 4:3-2:1 19.8263778 16.9539429 22.698813 0.0000000
## 2:2-4:1 -11.5887501 -14.5257421 -8.651758 0.0000000
## 4:2-4:1 8.6199765 5.6198162 11.620137 0.0000000
## 2:3-4:1 -11.0375883 -14.0377486 -8.037428 0.0000000
## 4:3-4:1 4.5607123 1.6237203 7.497704 0.0003484
## 4:2-2:2 20.2087267 17.2717347 23.145719 0.0000000
## 2:3-2:2 0.5511619 -2.3858301 3.488154 0.9935875
## 4:3-2:2 16.1494624 13.2770276 19.021897 0.0000000
## 2:3-4:2 -19.6575648 -22.6577251 -16.657404 0.0000000
## 4:3-4:2 -4.0592642 -6.9962562 -1.122272 0.0018821
## 4:3-2:3 15.5983006 12.6613086 18.535293 0.0000000
# plot interactions
interaction.plot(E64.fecundity.data.TA$Treatment, E64.fecundity.data.TA$Trial,E64.fecundity.data.TA$Eggs.Mite, type="b", col=c(1:3), leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs.Mite", xlab="Treatment", main="Treatment:Trial")
interaction.plot(E64.fecundity.data.TA$dpi, E64.fecundity.data.TA$Trial, E64.fecundity.data.TA$Eggs.Mite, type="b", col=c(1:3), leg.bty="o", leg.bg="grey95", lwd=2, ylab="Eggs.Mite", xlab="dpi", main="dpi:Trial")