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Abstract

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening, microvascular blood

disorder that a↵ects approximately 5 people per million per year. The disorder is character-

ized by insu�cient activity in ADAMTS13 (a disintegrin-like and metalloprotease with throm-

bospondin type 1 repeats 13), which is an important enzyme in hemostasis because it prevents

thrombosis. Along with blood clotting, other predominant symptoms are fever, anaemia, kid-

ney failure, and neurological changes. Neurological changes may include confusion and de-

creased levels of consciousness, as well as depression and increased risk of seizures or stroke.

However, little is known about the general pathology of these neurological changes and this

forms the motivation for this research. An observational study using a comprehensive MRI

protocol was evaluated in 13 patients and compared to results from assessments of depression

and cognition. Despite prolonged remission, there is evidence of persistent neurocognitive

decline as manifested in higher scores of depression and widespread white matter lesions.

Keywords: thrombotic thrombocytopenic purpura, atypical haemolytic uremic syndrome,

chronic neurological impairment, human brain imaging, quantitative magnetic resonance imag-

ing, myelin water fraction, white matter
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Résumé

Le purpura thrombotique thrombocytopénique (PTT) est une maladie du sang microvascu-

laire potentiellement mortelle qui a↵ecte environ 5 personnes par million par an. La maladie

est caractérisée par une activité insu�sante d’ADAMTS13 (a disintegrin-like and metallopro-

tease with thrombospondin type 1 repeats 13), qui est une enzyme importante dans l’hémostase

parce qu’elle prévient la thrombose. Outre que la coagulation sanguine, d’autres symptômes

prédominants sont la fièvre, l’anémie, l’insu�sance rénale et les changements neurologiques.

Les changements neurologiques peuvent inclure de la confusion et une diminution des niveaux

de conscience, ainsi que la dépression et un risque accru de convulsions ou d’accident vas-

culaire cérébral. Cependant, la pathologie générale de ces changements neurologiques est

mal comprise, donc c’est la motivation de cette recherche. Une étude observationnelle util-

isant un protocole IRM approfondi a été évaluée chez 13 patients et comparée aux résultats

d’évaluations de la dépression et de la cognition. Malgré une rémission prolongée, il existe

des preuves d’un déclin neurocognitif persistant qui se manifeste par des scores plus élevés de

dépression et des lésions répandues de la substance blanche.

Mots-clés : purpura thrombotique thrombocytopénique, syndrome hémolytique et urémique

atypique, atteinte neurologique chronique, imagerie cérébrale humaine, imagerie par résonance

magnétique quantitative, myéline, substance blanche
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Lay Summary

This project is driven by the poorly-understood neurological findings in the rare, life-

threatening blood disorder called thrombotic thrombocytopenic purpura (TTP). The disorder is

manifested by spontaneous blood clotting throughout the body. Other symptoms include fever

and kidney failure. Furthermore, neurological impairment has been well-documented in the

literature, but few studies have thoroughly investigated how the brain is a↵ected as a result of

TTP. Neurological impairment includes increased risk of having a stroke or a seizure, as well

as depression and confusion. These persist despite the the most e↵ective treatments.

This is an observational study to evaluate brain health over time in patients at various stages

of the disorder from soon-after their first episode to remission to several years without relapse.

The following thesis presents results from 13 patients at the first timepoint. Primary testing was

conducted through a comprehensive, 65-minute magnetic resonance imaging (MRI) protocol.

MRI is a widely-used imaging modality that o↵ers great flexibility in the types of images that

can be acquired. The acquistion includes five qualitative sequences, which are viewed by a

neuroradiologist, and three novel, quantitative sequences. The principle quantitative imaging

sequence in this thesis is called myelin water imaging (MWI). It is a technique to quantify

myelin, one of the characteristic features of white matter. Secondary testing is conducted

through online cognitive testing and a depression assessment completed in a clinical interview

with a nurse. Both were completed as close to the date of the MRI scan as possible.

The objective of this thesis is to show and explain the di↵erences between and within

brains of patients with TTP using both qualitative MRI and MWI to quantify changes in brain

white matter. Even though the sample size is small and there are no controls at this point in

the longitudinal study, several interesting results are reported which help elucidate the poorly

understood long-term impact of thrombotic thrombocytopenic purpura. These include higher

scores of depression and widespread white matter damage.
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Chapter 1

Introduction

1.1 Thrombotic Thrombocytopenic Purpura

Thrombotic thrombocytopenic purpura (TTP), first described in a case study by Moschcowitz

in 1924 [1], is a rare, life-threatening blood disorder characterized by insu�cient activity in

a disintegrin-like and metalloprotease with thrombospondin type 1 repeats 13 (ADAMTS13).

This protein functions to prevent thrombosis, the process of blood clotting. Consequently,

TTP results in spontaneous thrombosis throughout the microvasculature. Thrombocytes and

fibrin strands obstruct blood flow, depriving downstream tissues of oxygen and other nutrients,

leading to tissue damage and death. The disorder is a form of thrombotic microangiopathy

(TMA), which is the manifestation of both microangiopathic haemolytic anaemia (MAHA),

the destruction of red blood cells; and thrombocytopenia, abnormally low levels of platelets.

TTP is a medical emergency and >90% of patients die without treatment within 30 days of

diagnosis [2]. This section describes the presentation, management, and outcomes of TTP.

1.1.1 Epidemiology

TTP typically a↵ects 5–10 people per million per year, however there is varying geographical

incidence of 1–13 cases per million per year [3]. Women are a↵ected approximately twice as

1



1.1. THROMBOTIC THROMBOCYTOPENIC PURPURA

often as men [4]. Figure 1.1 shows the types of TTP, of which there are two: congenital TTP

(also known as inherited TTP or Upshaw-Schulman syndrome) and immune-mediated TTP

(also known as acquired TTP); which is secondary or idiopathic. Congenital TTP accounts for

<5% of TTP cases [5] and it follows autosomal recessive inheritance for variant forms of the

ADAMTS13-encoding gene. Multiple mutations and polymorphisms are responsible for im-

paired activity and decreased secretion of ADAMTS13 [6]. In a 2012 study by Moatti-Cohen

et al. [7], 10 di↵erent mutations were seen in 10 patients. Congenital TTP onset varies from

infancy to the sixth decade of life [8]. Immune-mediated TTP accounts for >95% of TTP

cases [5] and occurs by autoantibody inhibition of ADAMTS13. These individuals have a

normal ADAMTS13-encoding gene and the median age of diagnosis is 42 years [9]. Within

cases of immune-mediated TTP, 30% are secondary and 70% are idiopathic [10]. Secondary

TTP may be attributed to bone marrow transplantation [3], cancer [3], the use of non-steroidal

anti-inflammatory drugs [11], pregnancy [7], human immunodeficiency virus (HIV) [4], or

autoimmune diseases such as systemic lupus erythematosus [12]. Idiopathic TTP occurs inde-

pendently from any explainable causes.

TTP

Congenital Immune-Mediated

Secondary Idiopathic

Figure 1.1: Types of TTP

1.1.2 Other Causes of Thrombotic Microangiopathy

The other quintessential presentation of TMA is haemolytic uremic syndrome (HUS). This dis-

ease primarily a↵ects children and is often caused by gastrointestinal infection from the toxin-

producing bacteria Escherichia coli O157:H7, [13, 14]. Another rare type of TMA is called

2



1.1. THROMBOTIC THROMBOCYTOPENIC PURPURA

atypical HUS (aHUS), which occurs due to genetic mutation a↵ecting the complement path-

way [15]. Occasionally it is caused by an inhibitor to one of the complement regulators [16].

Unlike TTP, HUS and aHUS are presented with normal to moderately reduced ADAMTS13 ac-

tivity [17]. Despite similar presentations of TMA, appropriate diagnosis is paramount because

treatments di↵er. Patients with aHUS are included in this study.

1.1.3 Pathophysiology

To illustrate the unique and constitutive role of the immune system, Varela [18] said “the im-

mune system is the body’s brain”. It provides protection against pathogens such as bacteria,

parasites, and viruses. There are cells specific to rid these pathogens, which act in di↵erent

stages depending on the severity of the threat. Autoimmune conditions occur when the body

targets something from itself for destruction as if it is a pathogen. Almost all cases of TTP are

immune-mediated and these cases are incurred by autoantibodies against ADAMTS13 [10, 19].

Immune-mediated TTP occurs from autoantibody inhibition of ADAMTS13 and congenital

TTP occurs from mutated ADAMTS13 proteins. However, both types involve a mechanism

with insu�cient activity in ADAMTS13. The protein belongs to the ADAMTS protease fam-

ily of enzymes which have key roles in inflammation, angiogenesis, and coagulation [20].

ADAMTS13, discovered in the late nineties [21, 22], is a constantly released protein nec-

essary for maintaining hemostasis because it limits platelet aggregation and microthrombi for-

mation. The protein-encoding exons are located on the long arm of chromosome 9 [23] and the

resulting protein contains 1427 amino acids [8]. Synthesis occurs primarily in the liver [24] and

there is evidence that it also takes place in endothelial cells [25]. Insu�cient ADAMTS13 ac-

tivity, due to mutated ADAMTS13 (congenital TTP) or autoantibody inhibition of ADAMTS13

(immune-mediated TTP), induces spontaneous clots throughout the microvasculature. These

thrombocytes consume platelets and reduce platelet circulation in the blood, giving rise to

thrombocytopenia. During an episode, the platelet count may be reduced by 70–90% [9]. The

spreading of thrombi can a↵ect the brain, kidneys, heart, and other major organs.
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Figure 1.21 outlines a general mechanism of thrombosis in TTP [26]. There are approxi-

mately seven hundred proteins involved in hemostasis [27] and this depiction focuses on the key

elements involved in TTP. One of the largest proteins in hemostasis is von Willebrand factor

(vWF) which is released from endothelial cells to play a vital role in coagulation. Monomers

of vWF spontaneously aggregate to form large multimers of up to 80+ monomers, known as

ultra-large vWF, which trap platelets. The smaller multimers are unable to trap platelets. A

protein on platelets called glycoprotein 1b is the binding site between the platelet and the vWF

multimer. ADAMTS13 functions to cleave long chains of vWF between tyrosine 1605 and me-

thionine 1606, in the A2 domain, to generate smaller multimers [26]. Without ADAMTS13,

the peptide bond between these amino acids is inaccessible due to coverage within the core

beta sheet. Insu�cient ADAMTS13 activity permits long chains of vWF to grow and capture

platelets. Blood clotting is an integral process for hemostasis in the presence of a vascular

injury where ADAMTS13 is temporarily inhibited, specifically at the site of injury. In TTP, it

is as if ADAMTS13 is perpetually inhibited and spontaneous, widespread clotting occurs.

Figure 1.2: General mechanism of TTP. Microvascular thrombosis (left) occurs in congenital
and immune-mediated TTP because large multimers of von Willebrand factor grow without
being cleaved by ADAMTS13 [26]. Under normal hemostasis (right), ADAMTS13 cleaves
von Willebrand factor and blood flow continues unimpeded [26].

1This original figure was produced using icons from BioRender.com.
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1.1.4 Symptoms

TTP is presented in a multitude of ways and symptoms are broad due to the underlying patho-

physiology influencing the circulatory, cardiovascular, and nervous systems. Impacts on the

gastrointestinal and musculoskeletal systems occur but they are less common. Symptoms

are initially non-specific, including fever or flu. However, they eventually become bleeding-

related, such as thrombocytopenia and purple rashes known as purpura, leading to renal failure

[28], stroke [29], and cardiac involvement such as heart attack [30, 31]. Non-specific symptoms

include pallor, jaundice, and fatigue. Symptoms are similar in patients of all ages [32].

The Classic Pentad

TTP has been identified by five predominant symptoms, known as the classic pentad: fever,

MAHA, renal failure, thrombocytopenia, and neurological findings. However, not all are re-

quired for the diagnosis and it is rare for patients to have all five symptoms [22]. Accordingly,

this classification may provide guidance towards a diagnosis, but is not conclusive and may

be misleading. Low ADAMTS13 with appropriate clinical presentation will help with clini-

cal diagnosis. It is more important to identify how each patient is uniquely presenting TTP,

addressing individual symptoms as they pertain to the kidneys, heart, or brain.

Neurological Impairment

Spontaneous, widespread thrombosis a↵ects blood flow to the brain; resulting in headaches,

confusion, and disturbed vision [33]. Additionally, brain scans may indicate swelling [28] and

seizures [34] may occur. The increased risk of stroke in patients with TTP is associated with

lower ADAMTS13 activity [29] and across all brain-related symptoms, memory is perhaps

most a↵ected [35]. Depression and cognitive deficits are present in two thirds of patients [36].

The timing for the onset of neurological impairment varies. These manifestations continue

long term and they are poorly understood.
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1.1.5 Diagnosis

TTP is a clinical diagnosis. Bruising and neurological symptoms may be the initial signs,

though due to the rarity of the disorder, and despite potential evidence from available blood

tests, the diagnosis of TTP may initially be overlooked. TTP masquerades as stroke [37, 38]

and may be misdiagnosed as another typical presentation of TMA, aHUS. The hallmark iden-

tifier of TTP is insu�cient ADAMTS13 activity. Consequently, blood tests and measurements

of ADAMTS13 activity are required to confirm the diagnosis.

Blood Tests

There are a variety of blood biomarkers that may be indicative of TTP. The presence of frag-

mented red blood cells, known as schistocytes, in a blood film indicates MAHA. Red blood

cells are sheared by the web of long monomers of vWF with platelets, depicted in microvascu-

lar thrombosis in Figure 1.2. Creatinine and urea in the blood are indicators of renal function

and they are elevated. Lactate dehydrogenase (LDH), an enzyme which turns glucose into

energy, is elevated. This indicates tissue breakdown. The concentration of haemoglobin the

blood, normally 125–170 g/L for males and 115–155 g/dL for females [41, 39], is decreased

[40]. Platelet count is normally 150–450⇥109 platelets/L [42] and thrombocytopenia is defined

by a count <150⇥109 platelets/L. Page et al. [40] reported median platelet counts during an

episode of 9⇥109 platelets/L in patients with no inhibitor (range 4–101), and 11⇥109 platelets/L

in patients with a strong inhibitor (range 5–63).

Although these results in blood tests are indicative of TTP, they are not conclusive to es-

tablish the diagnosis. TTP is the presentation of MAHA and thrombocytopenia, excluding

other diagnoses, with low levels of the vWF-cleaving protease, ADAMTS13. Consequently,

the hallmark identifier of ADAMTS13 must be evaluated, by measuring ADAMTS13 activity

and measuring the inhibitor, to conclude the diagnosis of TTP.
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Measuring ADAMTS13

TTP is diagnosed for activity of ADAMTS13 <10% of normal [43]. The assessment is depen-

dent on the assay, where ADAMTS13 activity ranges from 50–160% within healthy individuals

[44]. After low ADAMTS13 activity is detected, the presence of anti-ADAMTS13 autoanti-

bodies may be established. The presence of this inhibitor distinguishes immune-mediated TTP

from congenital TTP and states of endothelial cell dysfunction [8].

ADAMTS13 activity may be measured directly or indirectly. Direct activity is measured

by detecting vWF cleavage products. The approaches include gel electrophoresis followed by

a Western blot [44] and fluorescence resonance energy transfer (FRET) involving a chemically

modified A2 domain of vWF [45]. Indirect activity is measured by detecting the A2 domain of

vWF cleave products. The approaches include collagen binding assays and functional enzyme-

linked immunosorbent assays (ELISA) [46].

Anti-ADAMTS13 autoantibodies act in two processes. Neutralizing autoantibodies inhibit

ADAMTS13 activity by binding to the functional regions and non-neutralizing autoantibodies

accelerate the clearance of ADAMTS13. The measurement involves clearing ADAMTS13

and then detecting it with Western blot [47] or ELISA [48]. The autoantibody may be low or

undetectable in acute phase [48].

Denaturing reagents used in tests may a↵ect the activity measurements. Furthermore, these

tests are performed under static conditions and are not necessarily representative of in vivo

activity. It is important to measure ADAMTS13 and anti-ADAMTS13 autoantibodies prior

to intervention because treatments aim to restore hemostasis by introducing and maintaining

healthy levels of ADAMTS13.

1.1.6 Management

TTP is a medical emergency and >90% of patients die without treatment within 30 days of

diagnosis [2]. It is often presented acutely and it must be treated quickly because symptoms

worsen without appropriate intervention. The standard treatment for both types of TTP be-
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gins with plasma exchange therapy (PLEX) [49]. Novel approaches including the emerging

treatment of recombinant ADAMTS13 [50] show promising results for maintaining healthy

ADAMTS13 levels in congenital and acquired TTP. The timing of treatment varies between

patients and facilities. Similarly, the timing of follow-up appointments vary. If patients feel

unwell between scheduled follow-ups, they are directed to get a blood test. Low ADAMTS13

levels are predictive of relapse.

TTP and aHUS involve thrombocytopenia; renal failure; and neurological complications

including confusion, seizures, or stroke [51]. However, they di↵er in mechanism, as outlined

in subsection 1.1.2 and subsection 1.1.3, and these life-threaning conditions require di↵erent

interventions. The common treatment for aHUS is a drug called eculizumab [51]. Relapses in

aHUS are common and careful monitoring is required.

Congenital TTP

Autosomal recessive inheritance for mutated ADAMTS13 protein-encoding genes results in

ADAMTS13 proteins unable to cleave vWF multimers. Intervention aims to introduce func-

tioning ADAMTS13 from donor plasma to restore hemostasis through PLEX with plasma-

derived factor VIII containing normal ADAMTS13 [52]. Initial acute TTP episodes in con-

genital TTP patients are treated with plasma exchange where there is the added benefit of the

removal of ultra-large vWF multimers. However, these patients are prone to relapse and require

lifelong plasma infusion as maintenance therapy

Immune-Mediated TTP

Providing the blood with functioning ADAMTS13 may not work in immune-mediated TTP

as the only treatment. PLEX restores hemostasis however the patients continue to produce

ADAMTS13 autoantibodies. The added benefit of PLEX over plasma infusion is the removal

of ultra-large vWF multimers and autoantibodies present in the blood. If the patient does not

respond to PLEX or various drug interventions, the spleen may be surgically removed as a
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rescue therapy. However, this is a seldom used therapy due to management improvement in

the recent era. With the availability of rituximab, the relapsing rate has significantly reduced

[53]. Strokes from TTP can be successfully treated with thombolytic therapy, however it is not

a standard approach [54]. Treatment for immune-mediated TTP typically includes rituximab,

steroids, and PLEX.

Drugs suppress the immune system to slow ADAMTS13 autoantibodies. Glucocorticoids,

a class of corticosteroids, such as prednisolone [55] are used to reduce inflammatory activity.

Chemotherapy drugs such as cyclophosphamide [56], vincristine [57], and bortezomib [58]

may also be used. Immunosuppressants, such as rituximab [53] and cyclosporine A [59], are

preferred over chemothearpy drugs. Rixuximab is an anti-CD20 monoclonal antibody that

depletes B-lineage cells to prevent autoantibody activity and cyclosporine A is a calcineurin

inhibitor. Though cyclosporine A is an option, it is not used as much because its relapse rates

are higher than rituximab [60]. Caplacizumab, an anitbody to the A1 domain of vWF, has been

demonstrated to increase the platelet recovery much sooner and reduce the PLEX sessions

during acute episodes [61, 62].

1.1.7 Outcomes

Persistent low ADAMTS13 and/or detectable ADAMTS13 autoantibodies are associated with

higher rate of relapse. Relapses typically occur within 1–2 years after the initial episode,

though up to 30 years have been reported, and they occur in 30–50% of patients [63]. Careful

monitoring is required. Remission is typically defined by normalization of platelets, normal-

ization of LDH, and lack of clinical signs of microvascular injury for 30 days. The use of

glucocorticoids and rituximab has been the potential reason for a decrease in plasma exchange

therapy (PLEX) related major complications [64]. However, up to 20% of patients die despite

the best of treatment [10]. Quality of life is a↵ected following TTP as patients get tired more

easily and deal with persistent neurological complications that may be related to cognitive

decline and changes in the blood brain barrier.
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Cognitive Decline

Neurological complications are common throughout all cases of TTP, acute and chronic. These

include depression, confusion, headaches, and an increased risk of stroke and seizure. How-

ever, there is a dearth of research that focuses on brain imaging of such complications. A

magnetic resonance imaging (MRI) study from 1999 [33] reveals similar pathology to stroke.

This agrees with findings in case studies from 2006 [37] and 2019 [38]. However, despite

decades of improvement in management, TTP still masquerades as stroke, which can lead to

patient death. Preliminary work at our site investigated the central nervous system of patients

with TTP using computed tomography perfusion (CTP) imaging.

Blood Brain Barrier Permeability

A preliminary investigation using CTP evaluated cerebral blood flow (CBF) and blood brain

barrier permeability (BBB-P) using a 256-slice dynamic CT acquisition (GE Discovery RCT,

Chicago, USA) and an iodinated contrast agent [65]. The brain-time density curves were an-

alyzed with the Johnson-Wilson-Lee model to measure CBF and BBB-P [66]. Across 8 pa-

tients in hematological remission, CBF was measured with mean 50.19 ± 3.53 mL/100g/min.

This is comparable to CBF in healthy brains [67]. Interestingly, permeability surface area-

product, a measure of BBB-P, across these 8 patients was measured with mean 0.63 ± 0.25

mL/100g/min. A healthy brain does not permit the permeability of the contrast agent so a

value of 0 mL/100g/min is expected [68]. These findings suggest a compromised blood brain

barrier in TTP despite normal blood flow throughout the brain. The primary consequence of

a compromised BBB is neuroinflammation [69]. Research and clinical findings suggest that

vascular injury leads to stress on the circulatory system which compromises the BBB, leading

to neuroinflammation [70, 71]. In turn, neuroinflammation can lead to widespread changes

in the brain, including altered white matter integrity. This thesis focuses on the neurological

outcomes of this progression including the changes in tissue and cognition.
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1.1.8 Study Motivation

Management involving plasma exchange therapy and certain drugs improve the devastating

outcomes of TTP. However, neurological changes persist despite these treatments and there is

little research that documents how TTP a↵ects the brain. Preliminary work using CTP, demon-

strating a compromised blood brain barrier despite healthy cerebral blood flow, motivated a

comprehensive observational study using MRI in addition to the assessment of depression and

cognition. Importantly, MRI allows us to acquire a variety of image contrasts and quantitative

measures that relate to white matter integrity. These approaches aim to elucidate how TTP

a↵ects the brain in prolonged remission. The following section introduces MRI and how it

applies to this research project.

1.2 Magnetic Resonance Imaging

MRI was first documented in 1973 by Lauterbur [72] and the first image in a human was re-

ported in 1977 by Hinshaw et al. [73]. MRI has since become an indispensable and ubiquitous

tool in modern science and medicine. It is a widely available modality that is non-invasive and

does not require the use of contrast agents or ionizing radiation. MRI is a powerful tool for

imaging the brain, with a wide variety of tissue-dependent image contrasts and excellent spatial

resolution. In the scope of this research, MRI can provide valuable insight into the impact of

TTP on the brain.

1.2.1 Principles of MRI

The magnetic field, B0, runs through the bore of the scanner and parallel to the floor. A ra-

diofrequency (RF) field, B1, is applied perpendicular to the magnetic field and used to generate

signal in MRI. To understand how images are produced; the concepts of spin, signal, and pulse

sequence parameters must be discussed. We begin with some definitions and notation.
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Spin

Nuclei with spin-1
2 (or odd multiples of 1

2) are susceptible to a magnetic field due to their in-

herent paramagnetism or diamagnetism. Hydrogen nuclei (1H) are diamagnetic, spin-1
2 atoms

with one proton and one electron, which exist as 99.99% of hydrogen isotopes. They are tra-

ditionally chosen as the nuclei of excitation in MRI because of their abundance in the human

body. Hydrogen is predominantly found in water and fat where the body is about 60% wa-

ter and 25% fat. Hydrogen nuclei are like little bar magnets in that they possess a magnetic

moment (µ) (Equation 1.1) and the nuclei rotate about the axis of the dipole with quantized

angular momentum (Figure 1.3a). The magnetic moment is determined by the gyromagnetic

ratio (�) and Planck’s constant (~). The gyromagnetic ratio of the nuclei and external magnetic

field strength (B0), measured in Tesla (T), determine the angular precessional frequency (!),

known as the Larmor frequency, of the nuclei (Equation 1.2).

µ = � ⇥ ~
2

(1.1)

! = � ⇥ B0 (1.2)

(a) No external field (b) External field

Figure 1.3: Single proton with and without an external magnetic field
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The gyromagnetic ratio is unique to each species of nuclei and it is 42.58 MHz/T for hy-

drogen. Thus, the Larmor frequency of hydrogen at 3T is 127.74 MHz. This is the frequency

in which hydrodgen nuclei precess about B0 (Figure 1.3b).

In the absence of an external magnetic field, the dipoles point in random directions. The net

magnetization (M0), the vector sum of the magnetization of each nuclei, is zero. The magnet

of the MRI scanner introduces an external magnetic field. When hydrogen nuclei are in the

magnetic field, the net magnetization is in the direction of the MRI magnetic field B0. Nuclei

align parallel or antiparallel to B0 at nearly equal proportions, although the much larger thermal

energy of molecules ensures that most spins are randomly oriented. The slight preference for

parallel alignment, on the order of 10 parts per million at 3T, results in a small M0 in the

direction of B0. The magnetization vector precesses about the B0 axis at the Larmor frequency.

Signal

An RF excitation pulse applied at the Larmor frequency tips the magnetization vector into the

transverse plane, which is perpendicular to B0. When the RF pulse is turned o↵, there is a

return to the equilibrium of the magnetization vector to the direction of B0. A time changing

magnetic field induces a time changing electric field which generates a current, detected as the

signal in the receive coils. Magnetic field gradient pulses, applied during the application and

detection of RF pulses, encodes the signal with phase and frequency information that depends

on the spatial location of nuclei. After acquisition, the fast Fourier transform (FFT) produces

an image in Cartesian space from an image in k-space which is described by the frequency-

encoding and phase-encoding domains.

Pulse Sequence Parameters

In MRI, the combination and repetition of RF and gradient pulses to create an image is known

as a pulse sequence. Unlike other widely used medical imaging techniques, the signal in MRI

is arbitrary and depends on the pulse sequence parameters. Contrast in MRI is controlled by
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modifying pulse sequence parameters used to acquire an image. Repetition time (TR) is the

time between the first RF excitation pulses of a repeated pulse sequence, as multiple excitations

are typically required to spatially encode the signals used to form an image. The echo time (TE)

is the time between the first RF excitation pulse and the signal acquisition by the receive coil.

Flip angle (FA) is the angle from the z-axis that an RF pulse flips the magnetization vector.

With FA = 90°, the magnetization flips directly into the transverse plane. Three principle

characteristics of the magnetization vector are longitudinal relaxation time (T1), transverse

relaxation time (T2), and proton density (PD). In a spin echo image, TR and TE give a particular

weighting to the resulting images (Table 1.1). For example, an image with contrast that is

sensitive to underlying T1 relaxation time is called a T1-weighted image. Similarly, contrast in

T2-weighted images is sensitive to underlying T2 relaxation times and PD-weighted images to

proton densities. Despite their names, it is important to recognize that signal in T1-, T2-, and

PD-weighted images is always a mixture of the underlying tissue-dependent magnetization

vector characteristics.

Short TR Long TR
Short TE T1-weighted PD-weighted
Long TE Poor contrast T2-weighted

Table 1.1: Influence of acquisition parameters on the weighting of spin echo MRI. Long TR or
TE means 3–5 ⇥ T1 or T2 and short TR or TE means much less than the T1 or T2.

1.2.2 Relaxometry

In MRI, contrast from T1- and T2-weighted images is used to visualize di↵erences between

tissue and to assess anatomy and pathology. However, T1- and T2-weighted images are funda-

mentally qualitative and depend on the chosen pulse sequence parameters. A more quantitative

measure of tissue characteristics would be measurements of T1 and T2 relaxation times. If the

signal of a pulse sequence can be described as a function of TE, TR, and/or FA, then the un-

derlying relaxation times can often be determined by varying the acquisition parameters and

fitting to the signal equation. In this way, rather than T1- and T2-weighted images, T1 and T2
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relaxation time maps can be generated. T1 and T2 are influenced by water content, magneti-

zation exchange, and paramagnetic content such as iron [74]. Additionally, T1 is sensitive to

lipid, protein and macromolecule content as well as temperature and T2 is sensitive to pH and

tissue microstructure [74]. From the work of Stanisz, 2005 [74], Table 1.2 outlines T1 and T2

at 3T for white matter and grey matter, however, values may vary depending on the technique

and scanner manufacturer [75]. The field strength will also influence these time constants.

Tissue T1 T2

White Matter 1084 69
Grey Matter 1920 99

Table 1.2: Longitudinal and transverse relaxation time constants by tissue (ms) at 3T

Longitudinal Relaxation

Longitudinal relaxation is also known as spin-lattice relaxation. T1 is the time it takes for the

magnetization along the z-axis (Mz) to recover to approximately 63% (1 � 1/e) of M0 after a

90° RF pulse. The general signal equation for Mz as a function of M0, time, and T1 is described

by Equation 1.3. After the RF pulse, Mz returns to M0 as the nuclei realign with B0.

Mz = M0(1 � e�t/T1) (1.3)

Transverse Relaxation

Transverse relaxation is also known as spin-spin relaxation due to the interaction between nu-

clei. T2 is the time it takes for the magnetization in the xy-plane (Mxy) to decay to approximately

37% (1/e) of M0 after a 90° RF pulse. The general signal equation for Mxy as a function of M0,

time, and T2 is described by Equation 1.4. Mxy goes to zero as magnetization disperses in the

transverse plane.

Mxy = M0e�t/T2 (1.4)

15



1.2. MAGNETIC RESONANCE IMAGING

1.2.3 Myelin Imaging with MRI

Unlike most biological membranes, which have a high ratio of proteins to lipids, the dry mass

of myelin is 70–85% lipid and just 15–30% protein [76]. Myelin is the characteristic feature

of white matter and is integral for brain function. It is the fatty tissue that wraps around axons

of neurons throughout the nervous system to provide insulation of action potentials and help

propagate signals. In the central nervous system, myelination is performed by oligodendro-

cytes; and in the peripheral nervous system, it is performed by Schwann cells. There is little

myelination in grey matter. Brain function is a↵ected by changes in myelin composition, which

makes myelin an important biomarker. Along with T1 and T2, measurements of myelin content

may be useful for diagnosis and management of white matter disease.

Myelin-Associated Diseases

The total volume of brain white matter increases until the middle of the fifth decade of life [77]

and accelerated rates of atrophy occur beginning in the eighth decade of life [78]. Otherwise,

changes in myelin are gradual. Accordingly, beyond the natural cycles of myelination and

demyelination, persistent changes through one of the following three processes are indicative

of disease.

Demyelination is the most common of the three processes. It is the loss of myelin and it is

seen in dementia, mild cognitive impairment, multiple sclerosis (MS), and stroke. The break-

down of myelin varies with density of the beta amyloid peptide in dementia and mild cognitive

impairmment [79]. MS involves demyelination among the pathological processes of chronic

inflammation, edema, gliosis, oligodendrocyte loss, and axonal loss. Hypermyelination is the

gain of myelin and this may include mis-myelinating diseases such as traumatic brain injury

(TBI) and concussion [80]. Dysmyelination is the rarest of the three processes and these condi-

tions are called leukodystrophies, such as metachromatic leukodystrophy [81], which involves

a genetic predisposition.

It is not known how myelin changes in the brains of patients with TTP or if myelination
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follows one of these three processes. Given the evidence of cognitive decline and compromised

BBB, it is reasonable to predict that increased neuroinflammation may lead to demyelination

and white matter disease in patients with TTP. Myelin water imaging (MWI) using MRI pro-

vides the opportunity to address these questions. The following subsection describes the theory

of MWI before applying ideas from MRI throughout this section to the research project.

Myelin Water Imaging

Conventional MRI is not specific to myelin. The primary measurement in myelin water imag-

ing is the myelin water fraction (MWF), which is the ratio of signal of protons in myelin water

divided by sum of total signal from all protons in water throughout the voxel. In the brain,

water is found in four primary compartments: cerebrospinal fluid (CSF), intracellular water,

extracellular water, and the lipid bilayer. Even within a 1 mm isotropic voxel there may be

di↵erent water compartments contributing to di↵erent behaviour of proton relaxation and the

MWF teases out the contribution of myelin within the voxel. The compartments are illustrated

in a hypothetical sub-voxel cross section in Figure 1.4 based on transmission electron mi-

croscopy from MacKay and Laule, 2016 [82]. Layers of myelin wrap around a single neuron,

contributing nearly half of the radius of the full white matter neuronal cell.

MWI is an extension of relaxometry in that it utilizes the information from T1 and T2 indi-

vidually or together to quantify myelin. There are four predominant approaches for MWI. The

gold standard is multi-echo T2 relaxation [83]. This relies on a multiple spin echo sequence

consisting of a 90-degree RF pulse followed by a series of 180-degree RF pulses, with signal

measured at the interleaved echo times (typically measured over 32 echoes). The resulting T2

decay curve is the sum of exponential decays of di↵erent compartments. The T2 of myelin

water is assumed to be 10–40 ms and for intracellular and extracellular water it is assumed to

be 40–200 ms. The T2 components of myelin water and intracellular/extracellular water are fit

to a multi-compartment version of the signal equation describing transverse relaxation in the

previous subsection. Although accurate, scan times are typically long. The second approach
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Figure 1.4: Four compartments of water in a hypothetical sub-voxel cross section

uses a gradient echo decay curve measurement of the T2* decay curve. It is a similar approach

to the first, however the T2* decay curves are steeper [84]. The third approach focuses on T1

acquisitions between components of T1 of myelin assumed to be 150–200 ms and of intracellu-

lar/extracellular water assumed to be 1–1.5 s [85]. The final approach is the use of fast gradient

echo incorporating information from both T1 and T2. This includes gradient and spin echo

(GRASE), short transverse relaxation time component (ViSTa) [86, 87], and multi-component

driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) [88]. mcDESPOT has

been shown to be a direct and specific method for measuring myelin [79], and was chosen

to measure the T1, T2, and MWF in patients with TTP. Confounding factors in MWI include

myelin debris and magnetization transfer. The magnetization in the tissue from spatially en-

coded RF excitation pulses does not necessarily remain in the targeted voxel, altering signal
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detection in other voxels; and myelin debris in the extracellular space falsely increases the

MWF estimate. Despite these potential confounds, MWF agrees with histologic myelin veri-

fied by Luxol fast blue (LBF) [89], making MWI a promising tool to better understand myelin

integrity in patients with TTP.

1.3 Objectives

The central aim of this thesis is to report on how neurological changes persist despite treatment

and prolonged remission in thrombotic microangiopathy. Patients with either TTP or aHUS

are studied in this research project due to the rarity of each condition and to the similarities

in the poorly understood neurological changes both conditions present. MRI is a non-invasive

imaging modality with a wide variety of sequences for varying contrasts and measurements.

Assessments of depression and cognition can be evaluated on the same day as the MRI scan.

The central aim is evaluated using the following three objectives:

1. Assess depression; cognition; and both qualitative and quantitative MRI findings

2. Compare the di↵erences in these assessments between TTP and aHUS

3. Correlate the findings within patients between all measurements

1.4 Thesis Overview

Chapter 1 has introduced TTP and motivated a pilot study to observe the impact of TTP on

the brain. Chapter 2 outlines the methodology: namely the assessments for depression and

cognition; and the approaches in MRI, both qualitative and quantitative. Due to the rarity and

similarities of the presentations of thrombotic microangiopathy, both patients with TTP and

patients with aHUS are included in this study. Chapter 3 presents the respective results for each
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methodology with separate sections addressing depression scores; cognitive scores; findings in

qualitative MRI across five sequences; and measurements in quantitative MRI in longitudinal

relaxation time (T1), transverse relaxation time (T2), and myelin water fraction. Additionally,

there is a section focusing on the agreement between the results from each approach. Chapter

4 discusses the key findings of this thesis and describes the next steps for this research.
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Chapter 2

Methods

2.1 Study Design

This is a multi-centre cohort observational study at London Health Sciences Centre (LHSC)

including patients and healthy controls from: LHSC, London; University Health Network,

Toronto; and St. Michael’s Hospital, Toronto. The study was approved by the Western Univer-

sity Research Ethics Board (project ID: 108273). The work presented in this thesis focuses on

findings in a small group of patients; predominantly from Southwestern Ontario; in relation to

assessments of depression, cognitive testing, and a comprehensive MRI protocol.

Participants

A total of 13 patients (mean age 45.5 years; 5 male, 8 female) were recruited following their

visit to the clinic: 9 have been diagnosed with thrombotic thrombocytopenic purpura (TTP) and

4 have been diagnosed with atypical haemolytic uremic syndrome (aHUS) (Table 2.1). Though

treatment and pathology di↵ers between these two microvascular conditions, neurocognitive

outcomes are similar and are poorly understood. Patients with TTP or aHUS are typically seen

by the same teams of healthcare professionals, which made it possible to recruit patients with

either diagnosis.
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Patient Age Sex Diagnosis Time
1 35 F TTP 3 months
2 32 F TTP 3 months
3 20 F aHUS 10 months
4 58 M TTP 3 years
5 60 M TTP 15 years
6 51 F TTP 9 months
7 64 M TTP 6 months
8 23 F TTP 10 months
9 73 M aHUS 2 years

10 43 F aHUS 2 years
11 48 F TTP 17 years
12 28 F TTP 4 months
13 47 M aHUS 2 months

Table 2.1: Age (years), sex, diagnosis, and time by patient. Time (months or years) indicates
the duration between the date of diagnosis and the date of the first MRI scan.

Participants were included based on the following criteria: adults over 18 years of age,

diagnosis of idiopathic TTP or aHUS, plasma exchange treatment with or without other thera-

pies, currently in remission, and meet all diagnostic criteria for idiopathic TTP or aHUS. Re-

mission is defined by normalization of platelets and LDH with no clinical signs or symptoms

of microvascular injury for more than 30 days. The diagnostic criteria for immune-mediated

TTP is: thrombocytopenia, under 150⇥109 platelets/L; MAHA, evidenced by schistocytes on

blood film; elevated LDH, 1.25 ⇥ upper limit of normal (approximately 190 units/L); and no

other explainable causes. Participants were excluded based on the following criteria: diagno-

sis of HUS or disseminated intravascular coagulation; an abnormal internal normalized ratio

at the time of presentation; malignant hypertension at the time of presentation; on following

drugs within 90 days of presentation: ticlopidine, clopidogrel, mitomycin C, gemcitabine, cy-

closporine A, or quinine; history of hematopoietic stem cell transplantation; history and/or

diagnosis of vasculitis, systemic lupus erythematosus, scleroderma, rheumatoid arthritis, an-

tiphospholipid antibody syndrome, or HIV/AIDS; history of solid-organ malignancy within

5 years of presentation such as lung, breast, gastric, colon, pancreatic, prostate, or liver; or

pregnant.
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2.1. STUDY DESIGN

Image analysis development was completed in three healthy volunteers (mean age 23 years,

3 male) between December 2018 and August 2019. The methodology was applied to the pa-

tient data while the results from the volunteers were excluded from the analysis. Patients were

scanned between September 2019 and February 2020. The COVID-19 pandemic delayed the

recruitment of controls and additional patients. Consequently, this thesis focuses on neurocog-

nitive outcomes in patients with TTP or aHUS at the first timepoint in the longitudinal study.

Protocol

Figure 2.11 depicts the timeline of the study. At each timepoint patients complete: a clinical

interview to evaluate depression, cognitive testing, and a comprehensive MRI scan. Detailed

methodology for each of these aspects is described in the following sections. Statistical tests

were evaluated using GraphPad Prism 8.4.3 (La Jolla, California, USA) considering a type

I error rate of ↵ = 0.05. Computed tomography perfusion and echocardiography were also

acquired on the same day as the MRI scan, but these results are not considered in this thesis.

Figure 2.1: Protocol timeline

1This original figure was produced using icons from BioRender.com.
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2.2 Depression Scoring

The standard rating scale for depression is the Hamilton Rating Scale, however the Montgomery-

Åsberg Depression Rating Scale (MADRS) is more sensitive to changes from treatment [90].

A score of depression using the MADRS was assessed in a clinical interview within one week

of the MRI scan. Ten assessments, each ranked on a scale from 0–6, comprise the MADRS, for

a maximum potential score of 60. The ten assessments are: apparent sadness, reported sadness,

inner tension, reduced sleep, reduced appetite, concentration di�culty, lassitude, inability to

feel, pessimistic thoughts, and suicidal thoughts. This assessment incorporates answers from

the perspectives of both the patient and the nurse. Typical thresholds for scores are: normal

(0–6), mild depression (7–19), moderate depression (20–34), and severe depression (>34) [91].

Statistics

Welch’s two-tailed t-tests were conducted to evaluate di↵erences in depression score between

male and female, and between patients with TTP and aHUS. Throughout the data analysis in

this thesis, Welch’s t-test was used where applicable over Student’s t-test due to its robustness

where fewer assumptions are made about the data. Furthermore, if the data meet the criterion

for Student’s t-test, Welch’s t-test provides the same test statistic and P value [92]. A one-

way Brown-Forsythe ANOVA was conducted on the mean score, over the ten assessments,

between patients. Dunnett’s T3 multiple comparisons test was conducted if P < 0.05. A one-

way Brown-Forsythe ANOVA was conducted on mean score, over the 13 patients, between the

ten assessments. Dunnett’s T3 multiple comparisons test was conducted if P < 0.05. A chi-

square test was conducted to evaluate the di↵erences between the number of non-zero scores by

assessment. Multiple comparisons test by Fisher’s exact test was conducted using a Bonferroni

correction if P < 0.05. Spearman’s rank correlation was evaluated between depression score

and other quantitative metrics.
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2.3 Cognitive Testing

Cambridge Brain Sciences (CBS) [93] is a battery of 12 online cognitive tests to assess cogni-

tion across three domains: reasoning, memory, and verbal [94]. Respectively, these domains

assess the user’s cognitive abilities to problem solve, utilize short term memory, and understand

language. The twelve tests are called: digit span, spatial span, grammatical reasoning, poly-

gons, odd one out, rotations, spatial search, paired associates, feature match, double trouble,

monkey ladder, and spatial planning. There are levels increasing in di�culty in each assess-

ment: if the user is correct they move up a level, and if they are incorrect they move down

a level. The user has three strikes before moving to next test. Users typically complete the

testing in 40–60 minutes. Scores by test are compared to the database of >10,000 participants

[93] to generate a percentile based on an age- and sex-matched healthy control comparison.

Statistics

Welch’s two-tailed t-tests were conducted to evaluate di↵erences in cumulative mean cognitive

percentiles between male and female, and between patients with TTP and aHUS. A Student’s

t-test was conducted between the mean cognitive percentile of patients with the age-matched

healthy population from the CBS database (mean 50 ± 34.1%). One-way ANOVA tests were

conducted to evaluate di↵erences between cognitive percentiles between patients, tests, and

categories of tests. Tukey’s multiple comparison test was conducted if P < 0.05. Spearman’s

rank correlation was evaluated between cognitive percentile and other quantitative metrics.

2.4 MRI Overview

A 3T MRI (Siemens Biograph mMR, Munich, Germany) was used with a 32-channel head-

only receive coil to scan patients at St. Joseph’s Hospital in London. The total acquisition time

was 65 minutes and the breakdown of the imaging timeline is outlined in Figure 2.2. Including

the setup time, where it is ensured that the patient feels comfortable, they are lying down in
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2.4. MRI OVERVIEW

the supine position for approximately 75 minutes. Details of the sequences are described in

further detail in following sections. A continuous scan is paramount to reduce motion di↵er-

ences between sequences in the image analysis. Patients were given the opportunity to use a

restroom prior to the scan and using the intercom, a technologist checked in with the patient

every 5–10 minutes. All 13 patients completed the full MRI scan and all but one patient com-

pleted the scan without any pauses. Due to the lack of previous imaging in TTP and aHUS,

and the similarities between these diseases and stroke; an MRI protocol to image stroke [95]

was used as the foundation to select the sequences for the study. This protocol was enhanced

to include three novel quantitative MRI techniques: myelin water imaging (MWI) using multi-

component driven equilibrium single pulse observation of T1 and T2 (mcDESPOT); di↵usion

tensor imaging (DTI) using two-dimensional echo planar multi-directional di↵usion weighted

imaging (EP2D MDDW); and arterial spin labeling (ASL) using two-dimensional echo pla-

nar pseudo-continuous ASL (EP2D PCASL). MWI is used to quantity white matter myelin

content by measuring the MWF, DTI is used to quantify the integrity of white matter by mea-

suring the directionality and magnitude of water di↵usion in tissue microstructure, and ASL is

used to quantify cerebral blood flow. The results presented here pertain to those from the five

qualitative sequences and MWI. Results from DTI and ASL are not presented, however they

are mentioned in the discussion. No contrast agents were used and the images do not di↵er

between sleeping and awake states. All images are presented throughout this thesis following

standard radiology convention. Representative images, in the same planes of imaging, from

the same healthy volunteer are shown throughout this chapter.

Figure 2.2: MRI acquisition timeline
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2.5 Qualitative MRI

A single neuroradiologist was blinded to whether the dataset under review was of a patient

or volunteer. They only knew the age of the individual. The five qualitative sequences were

viewed on RadiAnt Viewer (Poznań, Poland) 1–2 times for each patient in the following order

of sequences: T1-weighted, di↵usion-weighted, angiography, susceptibility-weighted, and T2-

weighted. The respective names for these sequences on Siemens scanners are: MPRAGE,

RESOLVE, TOF MRA, SWI, and T2FLAIR. Sequence-specific parameters and representative

images are described in the following five subsections. Signal intensity is relative and window

level and window width are adjusted accordingly throughout the methods and results.

2.5.1 T1-Weighted Imaging

A magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence was ac-

quired in the sagittal plane with TR = 2000 ms, TE = 4.18 ms, FA = 9°, TI = 900 ms, band-

width = 150 Hz/pixel, and 1 mm isotropic voxel resolution. The field of view (FOV) includes

the whole brain with 176 slices over 176 ⇥ 256 mm ⇥ 256 mm. MPRAGE is a T1-weighted

acquisition to assess general anatomy such as the detection of atrophy [96] and it is acquired

in approximately 6 minutes. Representative images by plane are depicted in Figure 2.3.

(a) Sagittal (b) Axial (c) Coronal

Figure 2.3: Representative T1-weighted images of a healthy volunteer
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2.5.2 Di↵usion-Weighted Imaging

A readout segmentation of long variable echo trains (RESOLVE) sequence was acquired in the

axial plane with TR = 5000 ms, TE = 72 and 122 ms, bandwidth = 620 Hz/pixel, and 1.0 mm

⇥ 1.0 mm ⇥ 4.0 mm voxel resolution. Apparent di↵usion coe�cient (ADC) and trace image

volumes are produced from 4 di↵usion directions and 2 di↵usion weightings at b-values of 0

and 1000 s/mm2. ADC represents the mean di↵usivity in mm2/s and trace represents the sum of

the di↵usion-weighted images. RESOLVE ADC maps and and di↵usion-weighted images are

used to assess acute pathological changes [97] and it is acquired in approximately 3 minutes.

In imaging stroke, di↵usion-weighted imaging is important in identifying ischemic lesions,

which show decreased ADC and elevated trace in acute ischemic tissue, and elevated ADC and

decreased trace in chronic ischemic tissue [95]. Representative images for ADC and trace are

depicted in Figure 2.4.

(a) Apparent Di↵usion Coe�cient (b) Trace

Figure 2.4: Representative ADC map (a) and trace-weighted image (b) in the axial plane of a
healthy volunteer

2.5.3 Magnetic Resonance Angiography

Time-of-flight magnetic resonance angiography (TOF MRA) was acquired in the axial plane

with TR = 22 ms, TE = 3.6 ms, FA = 18°, bandwidth = 186 Hz/pixel, an acceleration factor
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of 2, and 0.4 mm ⇥ 0.4 mm ⇥ 0.8 mm voxel resolution. The FOV includes the mid-neck to the

Sylvian fissures with 40 slices. The TOF MRA acquisition is used to assess vasculature without

the use of a contrast agent [98] and it is acquired in approximately 5 minutes. Representative

images by plane are depicted in Figure 2.5.

(a) Sagittal

(b) Coronal (c) Axial (d) MIP

Figure 2.5: Representative angiography images of a healthy volunteer. Blood accumulates
phase as it flows perpendicular to the imaging plane into the brain, resulting in brightness in
the vasculature. The maximum intensity projection (MIP) (d) illustrates the vasculature in 3D.

2.5.4 T2-Weighted Imaging

A T2-weighted fluid-attenuated inversion recovery (T2FLAIR) sequence was acquired in the

sagittal plane with TR = 5000 ms, TE = 386 ms, FA = 120°, TI = 1800 ms, bandwidth =

751 Hz/pixel, an acceleration factor of 2, and 1 mm isotropic voxel resolution. The FOV

includes the whole brain with 192 slices over 192 mm ⇥ 256 mm ⇥ 256 mm. The T2FLAIR

acquisition reveals acute and chronic pathology such as in white matter hyperintensities [99],

and it is acquired in approximately 3 minutes. The Fazekas system [100] was used for assessing

periventricular hyperintensity and deep white matter hyperintensity. Representative images by

plane are depicted in Figure 2.6.
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(a) Sagittal (b) Axial (c) Coronal

Figure 2.6: Representative T2-weighted images of a healthy volunteer

2.5.5 Susceptibility-Weighted Imaging

Susceptibility-weighted images (SWI) were acquired in the axial plane with TR = 27 ms, TE

= 20 ms, FA = 15°, bandwidth = 120 Hz/pixel, an acceleration factor of 2, and 0.9 mm ⇥

0.9 mm ⇥ 2.8 mm voxel resolution. The FOV includes the whole brain with 56 slices over

230 mm ⇥ 173 mm ⇥ 173 mm. SWI is a T2*-weighted acquisition used to visualize regions

of abnormal susceptibility such as in microbleeds [101] and it is acquired in approximately 3

minutes. Representative images are depicted in Figure 2.7.

(a) Single Slice (b) mIP

Figure 2.7: Representative susceptibility-weighted images in the axial plane of a healthy vol-
unteer. Minimum intensity projection (mIP) (b) is produced to visualize the trajectory of low
intensities over several slices.
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2.6 Quantitative MRI

Myelin water imaging was conducted using multi-component driven equilibrium single pulse

observation of T1 and T2 (mcDESPOT) [88]. This involves driven equilibrium single pulse ob-

servation of T1 (DESPOT1) and driven equilibrium single pulse observation of T2 (DESPOT2).

Voxels in DESPOT space are approximately 1.6 mm ⇥ 2.2 mm ⇥ 2.2 mm in a FOV of 190 mm

⇥ 190 mm ⇥ 215 mm over 80 slices. The sequences are used to generate quantitative maps

for T1, T2, and MWF; which are all in DESPOT space. A flowchart summarizing how these

quantitative maps are produced is depicted in Figure 2.8 and representative maps of T1, T2, and

MWF are respectively shown in Figure 2.12, Figure 2.14, and Figure 2.15.

Figure 2.8: Quantitative image processing. Each square represents one volume in DESPOT
space. DESPOT images are shown in Figure 2.11 and Figure 2.13. Brain mask, B1 map, and
o↵-resonance map are shown in Figure 2.9, Figure 2.10, and Figure 2.13. Outputs of T1 map,
T2 map, and MWF map are shown in Figure 2.12, Figure 2.14, and Figure 2.15.

Preprocessing steps include: converting the images from DICOM to NIfTI format; extract-

ing the brain from surrounding tissue; masking the brain to isolate brain-only voxels; convert-
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ing the image volumes to the the same imaging space; and resampling the images to the same

voxel resolution. DICOM volumes were converted to 4D NIfTI by dcm2nii on MRIcron [102]

and volumes not in DESPOT space (such as the MPRAGE and B1 map) were resampled using

the BRAINS tool on 3D Slicer 4.10.2 [103]. Processing steps included the production of the

three quantitative maps using Quantitative Imaging Tools (QUIT) [104] 2.0.1 for Linux. Post-

processing steps focused on the statistics of the respective measurements by tissue and subre-

gion. Masks of white matter, grey matter, and CSF were applied to the resulting quantitative

maps to produce measurements by tissue. Regions of interest outlined by the neuroradiologist,

from the qualitative MRI sequences, were identified within a predetermined list of subregions.

Brain Mask

Brain masks (Figure 2.9), to decrease image processing time, were obtained from the first vol-

ume of DESPOT1 (Figure 2.11) using the robust brain extraction tool (BET) [105] on FSL 5.0

[106]. The same brain mask was applied to each avenue of image processing. Additional masks

for white matter, grey matter, and CSF were obtained from the T1-weighted image (MPRAGE)

using the FMRIB’s automated segmentation tool (FAST) on FSL [107]. The tissue-specific

masks were applied to the resulting quantitative maps.

(a) Sagittal (b) Axial (c) Coronal

Figure 2.9: Brain mask of a healthy volunteer
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B1 Map

Although B+1 corresponds to the transmit field coil and B�1 corresponds to the receive field coil;

for simplicity in documentation, B1 signifies the B+1 transmit field map throughout this thesis.

Due to inhomogeneities in the magnetic field, the flip angles resulting from the transmit coil

are not homogeneous throughout the brain and a B1 map sequence is acquired to correct this

inhomogeneity. Two volumes with di↵erent repetition times and a flip angle of 8 degrees are

acquired in 30 seconds. The ratio of these two images indicates the fraction of one required to

correct B1 inhomogeneities in other acquisitions, notably DESPOT1 and DESPOT2 [104] . A

value lower than one indicates that the voxel is receiving a lower flip angle than intended while

a value higher than one indicates the voxel is receiving a higher flip angle than intended. A

representative B1 map is shown in Figure 2.10. The same B1 map was applied to each avenue

of image processing.

(a) Sagittal (b) Axial (c) Coronal

Figure 2.10: B1 map of a healthy volunteer

2.6.1 T1 Mapping

Image processing for T1 mapping is outlined in blue in Figure 2.8. DESPOT1 uses a spoiled-

gradient echo sequence (SPGR) acquired in the sagittal plane with TR = 6.9 ms, TE = 2.9 ms,

and bandwidth = 350 Hz/pixel. Eight SPGR volumes (Figure 2.11) are acquired at varying

flip angles: 2.67, 3.56, 4.44, 5.33, 6.22, 8, 11.55, and 16 degrees. The SPGR images acquired
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for DESPOT1 are T1-weighted and they are acquired in approximately 6 minutes. The eight

SPGR volumes, brain mask, and B1 produce a T1 map (Figure 2.12) in under one minute using

the non-linear least squares algorithm on QUIT [104]. T1 is calculated for each voxel using the

relative signal as a function of flip angle (↵) over the eight volumes [108]. Equation 2.3 and

Equation 2.4 display these signal equations to obtain the T1 within each voxel.

S S PGR =
Mo(1 � E1) sin(↵)

1 � E1 cos(↵)
(2.1)

E1 = exp(�TR/T1) (2.2)

(a) Sagittal (b) Axial (c) Coronal

Figure 2.11: Slices from the first SPGR volume, for T1 mapping, of a healthy volunteer

(a) Sagittal (b) Axial (c) Coronal

Figure 2.12: T1 map of a healthy volunteer
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2.6.2 T2 Mapping

Image processing for T2 mapping is outlined in red in Figure 2.8. DESPOT2 uses a balanced

steady-state free precession (bSSFP) sequence acquired in the sagittal plane with TR = 6.0 ms

and TE = 2.9 ms. Eight bSSFP volumes are acquired at varying flip angles: 10, 13.33, 16.67,

20, 23.33, 30, 40.33, and 60 degrees. However, unlike SPGR images, a banding artifact occurs

in bSSFP images, as seen in the first two rows of Figure 2.13. This is resolved by acquiring

two sets of bSSFP volumes; one at a phase increment of 180 degrees and the other at a phase

increment of 0 degrees. This variation between the two bSSFP acquisitions produces banding

artifacts that are spatially o↵set. It is corrected analytically with at least two flip angles and at

least two phase o↵sets [109] as the di↵erence between the two phase o↵sets amounts to an o↵-

resonance map. The full model for DESPOT2 (DESPOT2-FM) corrects the banding artifact

using the o↵-resonance map between imaging volumes at varying phase increments [110]. The

bSSFP images acquired for DESPOT2 are T1- and T2-weighted. The two sets are acquired

in approximately 12 minutes. The sixteen bSSFP volumes, brain mask, B1 map, and T1 map

produce a T2 map (Figure 2.14) and an o↵-resonance map (Figure 2.13) in one to two minutes

using QUIT [104]. T2 is calculated for each voxel using the relative signal as a function of

flip angle (↵) of the eight volumes [108] in the banding-corrected images. Equation 2.3 and

Equation 2.4 display the signal equations to obtain the T2 within each voxel.

S bS S FP =
Mo(1 � E1) sin(↵)

1 � E1E2 � (E1 � E2) cos(↵)
(2.3)

E2 = exp(�TR/T2) (2.4)
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Figure 2.13: Slices from bSSFP acquisitions, at each phase increment and resulting o↵-
resonance map, of a healthy volunteer

(a) Sagittal (b) Axial (c) Coronal

Figure 2.14: T2 map of a healthy volunteer
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2.6.3 Myelin Water Fraction Mapping

Image processing for MWF mapping is outlined in purple in Figure 2.8. The technique of

mcDESPOT was chosen because it is widely used in human studies, artifact resistant, avail-

able on the Siemens scanner, and clinically feasible with a total acquisition of 18 minutes

(Figure 2.2). Myelin water imaging by mcDESPOT provides a sensitive measure of white

matter integrity through combining data from the T1- and T2-weighted volumes acquired for

DESPOT1 and DESPOT2 [88].

The estimation of MWF involves a complicated model with assumptions which may bias

the MWF measurement [111]. This motivates consistency in methodology when drawing com-

parisons between studies that use mcDESPOT. The three compartment model was used, which

consists of myelin water, intracellular and extracellular water, and CSF [112]. Exchange be-

tween compartments was also included in the model. Parameter estimates in each voxel were

obtained using a stochastic region contraction approach with four iterations [113]. These steps

follow the recommended guidelines in the literature [111] and were used for the MWF fitting

throughout the analysis, giving internally consistent datasets.

The signal equations for mcDESPOT assume fast and slow relaxing compartments repre-

senting myelin and intracellular/extracellular water compartments, respectively. Equation 2.5,

Equation 2.6, and Equation 2.7 represent the multi-compartment signal equation for the SPGR

sequence (DESPOT1). Parameters include a factor proportional to the longitudinal magnetiza-

tion (⇢), volume fractions of fast and slow relaxing compartments ( fF and fS ), exchange rates

between fast and slow relaxing compartments (kFS and kS F), and T1 relaxation times of the fast

and slow relaxing compartments (T1,F and T1,S ).

MS S
S PGR = MS PGR(I � eAS PGRTR) sin(↵) ⇥ (1 � eAS PGRTR cos(↵))�1 (2.5)

MS PGR = ⇢


fF fS

�r
(2.6)
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AS PGR =

2
6666666664
� 1

T1,F�kFS
kS F

kFS � 1
T1,S
� kS F

3
7777777775

(2.7)

Equation 2.8, Equation 2.9, and Equation 2.10 represent the multi-compartment signal

equation for the bSSFP sequence (DESPOT2). Additional parameters include a rotation matrix

describing the RF pulse (R(↵)), a 6⇥6 identity matrix (I), o↵-resonance e↵ects of the fast and

slow relaxing compartments (�!F and �!S ), and T2 for the fast and slow relaxing compart-

ments (T2,F and T2,S ). In this formulation, the MWF is equivalent to the volume fraction of the

fast relaxing compartment.

MS S
bS S FP = (eAbS S FPTR � I)A�1

bS S FPC ⇥ [I � eAbS S FPTRR(↵)]�1 (2.8)

AbS S FP =

2
666666666666666666666666666666666666666666664

� 1
T2,F
� kFS kS F �!F 0 0 0

kFS � 1
T2,S
� kS F 0 �!S 0 0

��!F 0 � 1
T2,F
� kFS kS F 0 0

0 ��!S kFS � 1
T2,S
� kS F 0 0

0 0 0 0 � 1
T1,F
� kFS kS F

0 0 0 0 kFS � 1
T1,S
� kS F

3
777777777777777777777777777777777777777777775

(2.9)

C = ⇢

0 0 0 0 fF

T1,F

fS
T1,S

�
(2.10)

The eight volumes of DESPOT1, sixteen volumes of DESPOT2, brain mask, B1 map, and

o↵-resonance map produce the MWF map (Figure 2.15) using QUIT [104]. However, unlike

the fast image processing for quantitative maps of T1 and T2, the MWF map is produced in

four to five hours. Pipeline development was evaluated using a single slice of the brain in

approximately ten minutes.
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(a) Sagittal (b) Axial (c) Coronal

Figure 2.15: Myelin water fraction map of a healthy volunteer

2.7 Qualitative MRI Analysis

No abnormalities were detected in the volunteer brain presented throughout this chapter. Ab-

normalities in the brains of the 13 patients were documented during the neuroradiologist view-

ing with a focus on documenting atrophy, infarcts, points of abnormal susceptibility, and white

matter hyperintensities; as guided by the limited literature on brain imaging in TMA, described

in subsection 1.1.7. Findings in T2FLAIR were used to select the regions of interest for sub-

region analysis with quantitative MRI measurements. Regions of white matter hyperintensity

were labeled as ipsilateral, contralateral, or bilateral. Otherwise, regions remained as left or

right for control comparisons. There is no objective way to rank the severity of brain health

based on the neuroradiologist reads for comparison to quantitative rankings. To mitigate bias

in comparing qualitative findings with quantitative measurements, a binary classification for

neuroradiologist findings was considered: few to no findings, or many findings.

Statistics

Chi-square tests were conducted to compare the number of white matter hyperintensities in

regions of interest; left versus right side, and unilateral versus bilateral. Two-tailed t-tests were

evaluated between quantitative measurements; depression score, cognitive score, and quantita-

tive white matter measurements; based on the binary classification of the neurologist findings.
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2.8 Quantitative MRI Analysis

FSL was used to upper threshold quantitative maps: T1 to 15,000 ms, T2 to 10,000 ms, and

MWF to 1. These T1 and T2 thresholds were beyond three standard deviations of the mean

T1 and T2 in their respective quantitative maps. Additionally, a MWF >1 is meaningless and

voxels with values >1 were eliminated. Thresholding removed only 10–100 voxels out of more

than 100,000 in the brain. Values above the respective thresholds were zeroed. Statistics of

mean, standard deviation, and volume by tissue in T1, T2, and MWF were obtained in non-zero

voxels using FSL.

Regions of Interest

The qualitative findings in T2FLAIR guided the subregion quantitative analysis. Regions of

interest, the lesions outlined by the neuroradiologist in T2FLAIR sequences, were identified by

overlaying the T2FLAIR on white matter parcellation from FreeSurfer [114]. The registration

to the FreeSurfer brain space was done using the MPRAGE dataset because it is higher spatial

resolution than the DESPOT1 dataset. Subsequently, the registered MPRAGE volume was

brought into DESPOT space.

A total of 28 subregions, 13 left-right and 2 non left-right, were chosen based on a literature

search for where brain white matter hyperintensities most often occur in vascular-related dis-

eases due to a gap in brain imaging literature specific to TMA. These white matter subregions

(column 1 of Table 2.2) were in the cerebellum [115], thalamus [115, 116], caudate [115, 116],

pallidum [115], hippocampus [117], centrum semiovale [116], frontal lobe [115, 118, 116],

and brain stem [115]. Additional subregions in the other three lobes and corpus callosum were

added for completeness of white matter regions throughout the brain. Segmentation of subre-

gions was completed in 3D Slicer using thresholds for the values specified by the FreeSurfer

parcellation lookup table (column 2 of Table 2.2). Small island voxels fewer than five were

removed. Using the resulting segmentation file, segment statistics on 3D Slicer were applied
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to each quantitative map for mean, standard deviation, and volume within subreregion. Mea-

surements of T1, T2, and MWF in ipsilateral and contralateral subregions for regions of interest

outlined by the neuroradiologist were normalized to the respective subregion mean across all

13 patients to account for variability between subregions.

Subregion Label
Cerebellum WM 6, 49

Thalamus 10, 49
Caudate 11, 50
Pallidum 13, 52

Hippocampus 17, 53
Centrum semiovale 5001, 5002

Caudal middle frontal WM 3003, 4003
Lateral orbitofrontal WM 3012, 4012

Precentral frontal WM 3024, 4024
Rostral middle frontal WM 3027, 4027

Lateral occipital WM 3011, 4011
Superior temporal WM 3030, 4030

Supramarginal parietal WM 3031, 4031
Corpus callosum 251–255

Brain stem 16

Table 2.2: Subregions from FreeSurfer parcellation with label by lookup table (left, right)

Statistics

Welch’s two-tailed t-test was conducted on MRI measurements of T1, T2, and MWF between

male and female, and between patients with TTP and aHUS. A one-way ANOVA test was

conducted for left-right comparisons within the 13 left-right subregions in T1, T2, and MWF.

Tukey’s multiple comparison test was conducted for subregions P < 0.05. Welch’s two-tailed

t-test was conducted for ipsilateral-contralateral comparisons of MRI measurements. Welch’s

one-tailed t-tests were conducted for ipsilateral-contralateral comparisons within increases and

decreases of MRI measurements in regions of interest. The chi-square test was conducted for

ipsilateral versus contralateral counts in increases and decreases for each of T1, T2, and MWF.

All unilateral subregions were applied to T1 and T2 comparisons, while unilateral subregions
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omitting mostly grey matter regions were applied to MWF comparisons. Pearson correlations

were evaluated for T1, T2, and MWF within grey matter and white matter while Spearman

correlations were evaluated for all ten measurements: T1, T2, and MWF in white matter and

grey matter; depression score; cognitive percentile; age; and time with diagnosis. Lastly, a

Friedman test for mean ranking across each of the ten measurements by patient was evaluated

to investigate agreement between the quantitative measurements. Table 2.3 demonstrates the

directionality for the ranks of each measurement.

Measurement Value Ranking
MADRS Depression score High! low

CBS Cognitive percentile Low! high
T1 WM T1 white matter (ms) High! low
T2 WM T2 white matter (ms) High! low

MWF WM MWF white matter Low! high
T1 GM T1 grey matter (ms) High! low
T2 GM T2 grey matter (ms) High! low

MWF GM MWF grey matter Low! high
Time Diagnosis date to scan High! low
Age Age at scan High! low

Table 2.3: Ten measurements with corresponding directionality of rank
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Chapter 3

Results

3.1 Depression Scores

All 13 patients completed the Montgomery-Åsberg Depression Rating Scale (MADRS), which

was administered in a clinical interview by a nurse.

Scores by Patient

Figure 3.1 shows the total depression score for each patient by MADRS. Considering the mean

and standard deviation of scores over the 10 assessments, a one-way ANOVA using the Brown-

Forsythe test shows a significant di↵erence between scores of the patients (P < 0.0001). The

Brown-Forsythe test was used because the data is not Gaussian and skewed to the left. Dun-

nett’s T3 multiple comparisons test indicates 5 significant pairwise di↵erences. These are

between the scores of patients of the two highest scores (patients 2 and 10) with 5 patients of

the seven lowest scores (patients 1, 4, 5, 6, and 12). Figure 3.2 shows depression scores by

sex and diagnosis. There are no significant di↵erences between the scores of male and female

patients (P = 0.0784) or between patients with TTP and patients with aHUS (P = 0.4602).

Following the thresholds by scores [91] for normal, mild depression, moderate depression, and

severe depression, Table 3.1 shows the number of patients that fall under each category.
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3.1. DEPRESSION SCORES

Figure 3.1: Depression scores by patient on the Montgomery-Åsberg Depression Rating Scale.
Dashed lines represent thresholds for mild and moderate depression. The range of possible
scores is 0–60.

(a) Sex (b) Diagnosis

Figure 3.2: Depression scores ± standard deviation by sex and diagnosis. Dashed lines repre-
sent thresholds for mild and moderate depression. The range of possible scores is 0–60
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Score Classification Count
0–6 Normal 7

7–19 Mild depression 5
20–34 Moderate depression 1
>34 Severe depression 0

Table 3.1: Patients by type of depression. Count represents number of patients within corre-
sponding range of scores. Normal indicates symptoms of depression are absent.

Scores by Assessment

Table 3.2 shows the average score by assessment ranked from highest to lowest; from highest

indication of depression to lowest indication of depression. There is a significant di↵erence in

response by assessment through one-way ANOVA using the Brown-Forsythe test (P < 0.0001).

Dunnett’s T3 multiple comparisons test indicates significant di↵erences in concentration di�-

culties and: reduced appetite (P = 0.0088), inability to feel (P = 0.0088), pessimistic thoughts

(P = 0.0049), and suicidal thoughts (P = 0.0029). Furthermore, a chi-square test for the number

of non-zero scores per assessment shows significance (P = 0.0059). However, multiple com-

parisons by Fisher’s exact test using a Bonferroni correction does not indicate any significant

pairwise di↵erences.

Rank Assessment Score Count
1 Concentration Di�culties 2.3 ± 1.3 11
2 Inner Tension 1.3 ± 1.3 8
3 Lassitude 1.2 ± 1.1 9
4 Reduced Sleep 1.0 ± 1.4 6
5 Apparent Sadness 0.8 ± 1.3 5
5 Reported Sadness 0.8 ± 1.1 6
7 Reduced Appetite 0.4 ± 0.8 3
7 Inability to Feel 0.4 ± 0.8 3
9 Pessimistic Thoughts 0.3 ± 0.6 3

10 Suicidal Thoughts 0.2 ± 0.4 3

Table 3.2: Mean depression score ± standard deviation by assessment, ranked highest to lowest.
Count represents the number of participants with a score greater than zero. The range of
possible scores for each assessment is 0–6.
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3.2 Cognitive Scores

All 13 patients completed the cognitive assessment through the online platform, Cambridge

Brain Sciences (CBS). The average number of valid scores over the 12-test battery was 11 out

of 12, with three patients with 7–10 valid scores and ten patients with 11 or 12 valid scores.

The online platform indicates whether a score is valid or invalid based on the user’s interaction

with the test. Invalid scores are considered meaningless as the patient may have misunderstood

the task and these scores are omitted from the analysis. Cognitive scores are represented by

percentiles which have been age- and sex-matched to a healthy control population of >10,000

participants.

Scores by Patient

Cognitive scores by patient are shown in Figure 3.3. The average score was 50.2 ± 19.8%

across the 13 patients. There is no significant di↵erence from the age- and sex-matched control

population in the CBS database (P = 0.9301). The mean score of each patient is within one

standard deviation of the age- and sex-matched population mean. A one-way ANOVA between

the mean scores of each patient indicates significance (P < 0.0001). Tukey’s multiple compar-

isons test indicates 19 significant pairwise di↵erences between the scores of patients of the six

highest scores and patients of the four lowest scores. Figure 3.4 shows cognitive percentiles by

sex and diagnosis. There is a significant di↵erence between the cognitive scores of male and

female patients (P = 0.0207), but not between patients with TTP and patients with aHUS (P =

0.7683).
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Figure 3.3: Cognitive percentiles ± standard error. Dashed line represents the 50th percentile.

(a) Sex (b) Diagnosis

Figure 3.4: Mean cognitive percentiles ± standard deviation by sex and diagnosis. Dashed line
represents the 50th percentile.
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Scores by Test and Category

Each of the 12 tests in the cognitive assessment falls into one of three categories: verbal,

reasoning, and memory. Table 3.3 shows the mean score by test across all patients and the

scores are ranked from lowest to highest; from highest level of cognitive impairment to lowest

level of cognitive impairment. A one-way ANOVA indicates no significant di↵erences between

mean scores by test (P = 0.9796). A one-way ANOVA between the three categories indicates

no significant di↵erences (P = 0.8958). The same conclusion is drawn regardless of which

category polygons is placed into.

Rank Test Percentile Category
1 Double Trouble 45.2 ± 28.0 Verbal
2 Odd One Out 47.3 ± 27.7 Reasoning
3 Polygons 49.1 ± 24.8 Reasoning/Memory
4 Rotations 49.1 ± 29.3 Memory
5 Digit Span 50.5 ± 32.4 Verbal
6 Spatial Span 51.2 ± 35.6 Memory
7 Paired Associates 53.8 ± 28.5 Memory
8 Feature Match 54.0 ± 32.5 Reasoning
9 Grammatical Reasoning 54.2 ± 38.0 Reasoning

10 Token Search 57.0 ± 27.3 Verbal
11 Monkey Ladder 60.0 ± 26.0 Reasoning
12 Spatial Planning 61.7 ± 28.1 Memory

Table 3.3: Mean cognitive percentiles ± standard deviation by test and corresponding category.
Percentiles ranked from highest to lowest level of cognitive impairment.

3.3 Qualitative MRI

3.3.1 Representative Findings

MPRAGE (T1-weighted), RESOLVE (di↵usion-weighted), TOF MRA (angiography), SWI

(susceptibility-weighted), and T2FLAIR (T2-weighted) were assessed in each patient by a

blinded neuroradiologist. Although no control data is presented in this thesis, there were

datasets from three healthy volunteers mixed in with the patient datasets which blinded the
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neuroradiologist to patient versus control. They only knew the age of the subject they were

viewing. Table 3.4 highlights the findings by qualitative sequence. Figure 3.5 depicts repre-

sentative findings by sequence in axial slices throughout patients with detected abnormalities.

Negative findings for each acquisition are comparable to the representative images presented

of the healthy volunteer throughout section 2.5.

Patient MPRAGE RESOLVE TOF MRA SWI T2FLAIR
1 - - - - Spots (3)
2 - - - - -
3 - - - - Spots (5)
4 - - Thrombus - Spot

5 Plaques (2),
infarct

Chronic
blood

products

Poor PICA
and AICA - Spots (10–15)

6 Spots (5) - - Point Infarct, spots
(15–20)

7 Atrophy - - - Infarcts (3)
8 - - - - -

9 Atrophy - - Points
(10+) Spots (25–30)

10 Infarcts (2) - - - Spots (5)

11 - -

1 mm
carotid cave,

tight
stenosis

Point Infarcts (2), spots
(5)

12 - - - - -

13 Atrophy - 1 mm
aneurysm - Spots (30–40)

Table 3.4: Summary of findings in qualitative MRI. MPRAGE: infarcts are chronic lacunar.
TOF MRA: anterior inferior cerebellar artery (AICA) and posterior inferior cerebellar artery
(PICA). SWI: points are punctate foci of abnormal susceptibility. T2FLAIR: spots are small
non-specific regions of white matter hyperintensity while infarcts (chronic lacunar) are larger
regions of white matter hyperintensity. Dash indicates no evidence of a finding. Patients with
aHUS are patients 3, 9, 10, and 13.
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Figure 3.5: Axial images of representative findings in qualitative MRI, with regions of interest
outlined in red boxes. (a)–(e) T2FLAIR: white matter hyperintensities were found throughout
the brain; both unilaterally and bilaterally. (f) RESOLVE Trace: chronic blood products. (g)
MPRAGE: atrophy in white matter. (h) SWI: point of abnormal susceptibility. (i) TOF MRA:
1 mm aneurysm.

3.3.2 Regions of Interest

Regions of interest were selected based only on findings in T2FLAIR. This was due to the na-

ture of white matter hyperintensities directly relating to the central hypotheses of white matter

damage in TTP and aHUS. Cumulatively, over the 10 patients with at least one abnormality

in T2FLAIR, there were 32 ROIs in white matter. A total of 28 subregions (Table 2.2) with

13 left-right subregions and 2 non left-right subregions (corpus callosum and brain stem) were

previously selected for subregion analysis. Using these 28 subregions, 87.5% (28/32) of ROIs

outlined by the neuroradiologist were included. Of these included 28 ROIs in subsequent anal-

ysis, 23 were unilateral (5 were bilateral) and 10 were on the left side (13 were on the right

side). Chi-square tests for di↵erences in counts between unilateral versus bilateral and left

versus right were significant (P = 0.0007) and non-significant (P = 0.5316), respectively.
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3.4 Quantitative MRI

Quantitative MRI measurements of T1, T2, and MWF were obtained after fitting to DESPOT1

and DESPOT2 datasets. Whole brain volumes were measured to be 1489 ± 170 cm3 after

brain extraction and automated segmentation with FSL. The T1, T2, and MWF in CSF was

obtained but not included in further analysis. Table 3.5 describes the volumes and quantitative

measurements by tissue; white matter, grey matter, and CSF.

White Matter Grey Matter CSF
Volume 674 ± 96 455 ± 56 360 ± 102

T1 1057 ± 63 1504 ± 80 2174 ± 295
T2 69 ± 17 179 ± 59 699 ± 192

MWF 0.211 ± 0.021 0.085 ± 0.018 0.091 ± 0.016

Table 3.5: Mean quantitative MRI measurements ± standard deviation by tissue. Volume is in
cm3, T1 and T2 are in ms, and myelin water fraction is unitless.

3.4.1 T1 Maps

Figure 3.6 shows the mean T1 in white matter and grey matter by sex and by diagnosis. There

were no significant di↵erences in mean T1 of white matter by sex (P = 0.9325) or diagnosis

(P = 0.3665), nor in mean T1 of grey matter by sex (P = 0.9067) or diagnosis (P = 0.2835).

Figure 3.7 shows the mean T1 in the 13 left-right subregions. T1 values for the non left-right

subregions, brain stem and corpus callosum, are respectively 1261 ± 41 ms and 1249 ± 224

ms. Of the 23 unilateral regions of interest outlined by the neuroradiologist, 11 regions had

increased T1 and 12 had decreased T1. By chi-square test, increased T1 versus decreased T1,

this is not significant (P = 0.8348). Figure 3.8 shows the ipsilateral-contralateral comparison

in these 11 regions of interest of increased T1. T1 values are normalized to the mean T1 in

the respective subregion across all 13 patients. The ipsilateral side is the unilateral region

for which a lesion was observed. Under the demyelination hypothesis, increased ipsilateral

T1 is expected. There is no significant di↵erence between the normalized T1 in ipsilateral to

contralateral.
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3.4. QUANTITATIVE MRI

(a) T1 white matter by sex (b) T1 white matter by diagnosis

(c) T1 grey matter by sex (d) T1 grey matter by diagnosis

Figure 3.6: Mean T1 ± standard deviation in white matter and grey matter by sex and diagnosis
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Figure 3.7: Mean T1 ± standard deviation by subregion: left and right. Two left-right subregion
comparisons were significantly di↵erent: hippocampus and superior temporal white matter.

Figure 3.8: Mean T1 ± standard deviation in lesions with increased ipsilateral T1

3.4.2 T2 Maps

Figure 3.9 shows the mean T2 in white matter and grey matter by sex and by diagnosis. There

were no significant di↵erences in mean T2 of white matter by sex (P = 0.1744) or diagnosis
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(P = 0.1909), nor in mean T2 of grey matter by sex (P = 0.1155) or diagnosis (P = 0.2502).

Figure 3.10 shows the mean T2 in the 13 left-right subregions. T2 values for the non left-right

subregions, brain stem and corpus callosum, are respectively 92 ± 14 ms and 139 ± 104 ms.

Of the 23 unilateral regions of interest, 12 regions had increased T2 and 11 had decreased T2.

By chi-square test, increased T2 versus decreased T2, this is not significant (P = 0.8348). T2

values are normalized to the mean T2 in the respective subregion across all 13 patients. Under

the demyelination hypothesis, increased ipsilateral T2 is expected. When considering the 12

regions of interest with increased T2, there is a significant increase (Figure 3.11).

(a) T2 white matter by sex (b) T2 white matter by diagnosis

(c) T2 grey matter by sex (d) T2 grey matter by diagnosis

Figure 3.9: Mean T2 ± standard deviation in white matter and grey matter by sex and diagnosis
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Figure 3.10: Mean T2 ± standard deviation by subregion: left and right. No subregions were
significantly di↵erent between left and right T2.

Figure 3.11: Mean T2 ± standard deviation in lesions with increased ipsilateral T2

3.4.3 Myelin Water Fraction Maps

Figure 3.12 shows the mean MWF in white matter and grey matter by sex and by diagnosis.

There were no significant di↵erences within white matter by sex (P = 0.9603) or diagnosis (P =
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0.3877), nor within of grey matter by sex (P = 0.3578) or diagnosis (P = 0.7737). Figure 3.14

shows the mean MWF in the 13 left-right subregions. MWF values for the non left-right

subregions, brain stem and corpus callosum, are respectively 0.158 ± 0.022 and 0.205 ± 0.041.

Of the 20 unilateral regions of interest, omitting 3 regions of mostly grey matter, 14 regions

had decreased MWF and 6 had increased MWF. By chi-square test, increase versus decrease

in regions of interest is not significant (P = 0.073). Figure 3.14 shows the significant di↵erence

in the ipsilateral-contralateral comparison in the unilateral lesions which had decreased MWF.

(a) MWF white matter by sex (b) MWF white matter by diagnosis

(c) MWF grey matter by sex (d) MWF grey matter by diagnosis

Figure 3.12: Mean myelin water fraction ± standard deviation in white matter and grey matter
by sex and diagnosis
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Figure 3.13: Mean myelin water fraction ± standard deviation by subregion: left and right.
Two left-right subregions were significantly di↵erent: cerebellum white matter and superior
temporal white matter.

Figure 3.14: Mean myelin water fraction ± standard deviation by region of interest with de-
creased ipsilateral myelin water fraction.
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3.5 Correlations Between Results

3.5.1 Quantitative MRI

Figure 3.15 summarizes the Pearson correlation values within and between; T1, T2, and MWF;

in white matter and grey matter. Figure 3.16 depicts the Pearson correlation graphs of T1,

T2, and MWF within white matter and within grey matter. These analyses were completed to

validate internal consistency between the quantitative maps coming from the same DESPOT

volumes. Table 2.3 summarizes the meaning of the shorthand notation for each measurement.

Figure 3.15: Pearson correlations within and between; T1, T2, and myelin water fraction; in
white matter and grey matter
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(a) T2 white matter versus T1 white matter (b) T2 grey matter versus T1 grey matter

(c) MWF white matter versus T1 white matter (d) MWF grey matter versus T1 grey matter

(e) MWF white matter versus T2 white matter (f) MWF grey matter versus T2 grey matter

Figure 3.16: Correlations in white matter and grey matter between T1, T2, and myelin water
fraction
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Quantitative MRI by Depression Score Threshold

A threshold of 7 on the Montgomery-Åsberg Depression Rating Scale yields 7 patients without

evidence for depression and 6 patients with mild or moderate depression (Table 3.1). Welch’s

two-tailed t-tests for T1, T2, and MWF in white matter indicate no significant di↵erences be-

tween patients above and below this depression score threshold.

Quantitative MRI by Cognitive Score Threshold

A threshold of 50 percent on the Cambridge Brain Sciences 12-test battery of tests yields 5

patients below and 8 patients above, based on their mean percentile (Figure 3.3). Welch’s two-

tailed t-tests for T1, T2, and MWF in white matter indicate no significant di↵erences between

patients above and below this threshold.

Measurements by Qualitative MRI Threshold

In accordance with Table 3.4, there are 6 patients with few to no findings (patients 1–4, 8, and

12) and 7 patients with many findings (patients 5–7, 9–11, and 13). A two-tailed t-test between

depression scores of these two groups is not significant (P = 0.6412). Similarly, a two-tailed t-

test between cognitive scores of these two groups is not significant (P = 0.2015). Furthermore,

in quantitative MRI within white matter, two-tailed t-tests for T1 (P = 0.2856), T2 (P = 0.0947),

and MWF (P = 0.2081) are not significant.

3.5.2 All Measurements

The Friedman test for agreement by ranking 1–13 across each measurement (Figure 3.17) was

used following the ranking outlined in Table 2.3. The Friedman test indicates a significant

di↵erence between rankings by patient considering the 10 measurements (P = 0.0006). This

indicates agreement between the rankings of measurement between patients. Figure 3.18 indi-

cates the correlation by Spearman correlations between these 10 measurements.
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Figure 3.17: Mean rank of 10 measurements ± standard error by patient

Figure 3.18: Spearman correlations between all 10 measurements
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Chapter 4

Discussion

4.1 Summary

Across sixteen comparisons to evaluate di↵erences in eight quantitative measurements by sex

and by diagnosis, there is just one significant di↵erence in measurements by sex and there are

no significant di↵erences in measurements by diagnosis. This gives confidence to consider

all 13 patients together, independent of their sex or diagnosis, to better understand how TMA

a↵ects their brain health, despite prolonged remission, at di↵erent ages and durations of living

with their vascular burden. Even though the sample size is small and there are no controls

at this point in the longitudinal observational study, several interesting results are reported

which help elucidate the poorly understood long-term impact of thrombotic thrombocytopenic

purpura and atypical haemolytic uremic syndrome on the brain. The key findings of this thesis

are highlighted in the following subsections.

4.1.1 Depression

According to Statistics Canada [119], 5.4% of Canadians experienced a mood disorder in the

past 12 months with 4.7% being major depression. Furthermore, 11% of Canadians have met

the criteria for major depression at some point in their lifetime [119]. In this study, using the
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Montgomery-Åsberg Depression Rating Scale, nearly half of the participants (6/13) exhibited

depression scores indicating mild or moderate depression (Table 3.1). This is in stark contrast

to the incidence of depression in the Canadian population. When conducting a Fisher’s ex-

act test, considering a randomly selected group of 13 Canadians where 1 individual meets the

criteria for mild, moderate, or severe depression, there is no significant di↵erence for the inci-

dence of depression in these patients (P = 0.073), however a larger sample size may be more

conclusive. The Montgomery-Åsberg Depression Rating Scale is assessed from a clinical in-

terview with the patient and the total score is the sum over the ten assessments. Consequently,

the comparison of depression scores between patients may be limited by patient-specific sen-

sitivity to expressing or not expressing how they feel. There was a significant di↵erence in

the mean scores by assessment which indicates a tendency for TTP or aHUS to a↵ect the pa-

tients’ mental health in specific ways. Specifically, the assessment, concentration di�culties,

was the highest average score (2.3/6) and 84.6% of patients (11/13) reported non-zero scores

(Table 3.2). The mean response in this assessment corresponds to the “worsening of occasional

di�culties in collecting one’s thoughts” [90].

4.1.2 Cognition

Considering the group of patients as a whole, there is no evidence of cognitive impairment

in the 12-test battery by Cambridge Brain Sciences. There are 5 patients below the 50th per-

centile, but none of their mean percentiles lie outside one standard deviation of the age- and

sex-matched population mean in the control database (Figure 3.3). There were no significant

di↵erences between percentiles by test or by category of test. This indicates that cognitive

ability is no di↵erent among the three cognitive domains tested by Cambridge Brain Sciences.

Conclusions from this cognitive testing in the correlation between results may be limited by

the variation in time between the date of completing the assessment and the date of the MRI

scan. Although the majority of patients completed the assessment within one week of the scan,

there were three patients that completed the assessment beyond one month from the scan. The
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comparison of cognitive percentile by sex yielded the only significant di↵erence among the

sixteen comparisons by sex and by diagnosis in the study. Since the percentiles are corrected

for sex and age, it may be that cognition is more impaired in males than in females in patients

with either of the two vascular conditions. These findings agree with the common symptom of

confusion in both vascular conditions [36].

4.1.3 Qualitative MRI

Abnormalities in qualitative MRI were comparable in patients with TTP and patients with

aHUS (Table 3.4). White matter abnormalities were observed in 46.1% of patients (6/13) in

the MPRAGE acquisition (T1-weighted), with atrophy being the most common finding. Our

evidence of atrophy and lesions despite prolonged remission is in contrast to a study involving

MRI in patients with TTP by Meloni et al., 2001 [120] which reported that such abnormali-

ties are infrequent and often reversible. Only one abnormality was observed in the RESOLVE

acquisition (di↵usion-weighted), which was the presence of chronic blood products; and ab-

normalities in vasculature observed in TOF MRA, including a thrombus and an aneurysm,

were present in 30.1% of patients (4/13). Points of abnormal susceptibility were observed in

23.1% of patients (3/13) from SWI. Points of abnormal susceptibility may be microbleeds,

which were reported in an MRI study with patients with TTP by Noorbakhsh-Sabet and Zand,

2016 [121]. Lastly, 76.9% of patients (10/13) had at least one abnormality in T2FLAIR (T2-

weighted). Abnormalities were presented by WMH ranging from small non-specific dots to

larger infarcts. Our observations of WMH agree with an MRI case study from Sun et al., 2005

[122]. Qualitative findings presented in this thesis agree with prior investigations and add fur-

ther insight to how the brain is a↵ected. To our knowledge, there has not been a study before

this one that has investigated T1, T2, and MWF in the brains of individuals with TMA.

The anatomical regions of WMH detected in T2FLAIR defined the regions of interest for

subregions in subsequent analysis with quantitative MRI. The regions of interest within the

predetermined subregions provided a thorough perspective on WMH throughout the brain be-
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cause the majority of findings were considered (87.5%). These regions of interest were se-

lected based on where the white matter hyperintensity was present and there were 4 additional

regions of interest not considered in the analysis. These were the precuneus, postcentral pari-

etal lobe, pars triangularis, and putamen. Each of these regions were adjacent to the selected

regions of interest in the analysis. Though the subregions were automatically parcellated, the

identification of the subregion for each region of interest was manual. Furthermore, patient 5

was recently diagnosed with multiple sclerosis, so the conclusions drawn from this dataset are

unclear whether the findings are attributed to MS, TTP, or both. The measurements are still

considered in the overall comparisons, but findings from their brain are not considered for case

by case comparison.

4.1.4 T1, T2, and Myelin Water Fraction

Quantitative techniques are capable of detecting changes that may not be observable in a clin-

ical, qualitative MRI protocol. In this study, quantitative MRI to measure T1, T2, and MWF

was utilized to verify findings in qualitative MRI sequences and to compare trends within all

quantitative measurements including the scores of depression and cognition.

Three limitations must be addressed to the otherwise robust quantitative maps. Motion was

not accounted for. Measurements of T1, T2, and MWF are determined from data collected from

6–18 minutes of scanning time. Correcting for slight motion over these 18 minutes may im-

prove the findings from the resulting quantitative maps. Secondly, the quality of T2, and MWF

maps in patients 1 and 3 may be lower than those of other patients because two distinct phase

increments were not used in the DESPOT2 acquisition. The same phase increment was erro-

neously repeated. Thirdly, despite its abilities to detect changes in myelination, mcDESPOT

has been reported to overestimate MWF [111]. This motivates technique-specific comparisons

in findings in myelin water imaging.

The reported values of T1 and T2 relaxation times vary by sequence used and manufacturer

[75]. Nonetheless, this study demonstrated values of T1 and T2 in grey and white matter com-
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parable to literature [74, 123], as seen between Table 1.2 and Table 3.5. Furthermore these

values were consistent across participants in the study, using the same image analysis. With

regards to the measurement of MWF, there is greater variability based on the sequence and

analysis used [111] than there is with T1 and T2 due to the added complexity of fitting the

multi-component model. Other studies using mcDESPOT for determining MWF have demon-

strated comparable results [88]. In the model, exchange between intra- and extra-cellular water

is considered however magnetization transfer is not. Grey matter MWF may be high due to the

inability to model regions of inherently low myelin, like in CSF. Pearson correlations between

these three measurements in white matter and grey matter, though generally significant, are not

surprising due to the T1, T2, and MWF measurements coming from the same data. Interest-

ingly, MWF in white matter was most strongly correlated with T1 in the white matter (R2 =

0.9025, P < 0.001). T1 maps have also been proposed as a potential marker of myelin content

based on shorter T1 relaxation times in myelin water compared to axonal and extracellular wa-

ter [124]. Although potentially less specific to myelin than MWF, T1 maps have the advantage

of significantly shorter acquisitions times (6 minutes versus 18 minutes).

T1, T2, and MWF in white matter were compared between patients based on the thresholds

set in the qualitative MRI observations to evaluate agreement between qualitative findings and

changes throughout white matter. All three of these comparisons by threshold in qualitative

MRI were non-significant. With this sample size, there is no evidence that T2 and MWF in

white matter di↵er based on severity of qualitative MRI observations. However, T2 in white

matter shows some evidence of white matter changes based on the threshold (P = 0.0947).

This may be because the most profuse findings in qualitative MRI came from T2FLAIR, a

T2-weighted image. The Spearman correlation between ranks from the Friedman test incor-

porating all ten measurements as outlined in Table 2.3, considering this binary classification

in qualitative MRI observations, is significant with a moderate correlation (R2 = 0.4354, P =

0.0141). An increased sample size will better elucidate the relationships between observations

in qualitative MRI and quantitative MRI measurements throughout white matter.
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Tissue Segmentation

T1, T2, and MWF were calculated by tissue; white matter, grey matter, and CSF. Conservative

brain extractions and masks were produced using the first volume of DESPOT1 and tissue-

specific masks were generated using MPRAGE to produce masks for white matter, grey matter,

and CSF. Volumes of respective tissue (Table 3.5) somewhat agree with the literature [125]

however CSF volume is overestimated due to some skull and neck incorporated in the mask

beyond the fluid in the ventricles and subarachnoid space. White and grey matter masks from

MPRAGE are more accurate than those from DESPOT1 or DESPOT2 due to a higher voxel

resolution.

Subregion Segmentation

T1, T2, and MWF were calculated within the subregions outlined in Table 2.2. Consistency

between left-right of subregions and variability between subregions for these measurements

motivate the use of a well-established automatic segementation for subregion, such as the white

matter parcellation produced from FreeSurfer. In left-right comparisons of T1, T2, and MWF

by subregion, 87.2% (34/39) were not significantly di↵erent. In subregions that contained

white matter hyperintensities and increased T2, the increased T2 was significantly larger than

the contralateral ROI. Similary, in subregions that contained white matter hyperintensities and

decreased MWF, the decreased MWF was significantly smaller than the contralateral ROI.

This significant di↵erence using the contralateral region in individual patients as an internal

control suggests that both T2 and MWF are capable of distinguishing white matter degradation

in patients with TTP and aHUS. These are promising first results in anticipation of future

analysis that includes age-matched healthy controls.
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4.1.5 Correlations Between Results

The significant finding in the Friedman test indicates agreement between measurements based

on the demyelination hypothesis. Restated, white matter is damaged due to TTP or aHUS,

which increases T1 and T2, and decreases MWF. Additionally, the hypothesis is that these

e↵ects become worse with age and time living with the diagnosis despite prolonged remission.

Furthermore, elevated depression scores and decreased cognitive scores are expected to occur.

A total of ten measurements were included in this analysis and the corresponding ranking based

on the demyelination hypothesis are outlined in Table 2.3. By the Friedman test, cognitive

scores agree with the three MRI measurements in white matter (P = 0.0037). This is a greater

agreement than depression scores with only the three MRI measurements in white matter (P =

0.0152). The three MRI measurements agree with each other when considering those in white

matter and in grey matter (P = 0.0008). The best agreement between rankings, defined by the

lowest P value, was all ten measurements excluding time (P = 0.0001). This may indicate that

T1, T2, and MWF changes occur, but do not worsen over time.

Although there is agreement based on the demyelination hypothesis, there may be some

patients who respond di↵erently to TTP or aHUS. This is di�cult to tease out in a small sample,

however processes of dysmyelination and hypermyelination are also possible. Patient 4 is

a potential case study for one of these latter two processes because their cognitive score is

among the lowest (30%) while their MWF is the highest (0.25 in white matter). The strongest

imaging correlates with depression score, cognitive score, time, and age were respectively T1

in grey matter, MWF in white matter, T1 in white matter, and T2 in both grey matter and

white matter. In most cases, the strongest correlate with each measurement was an imaging

measurement. However, the strongest correlate with age was the cognitive score. Scores are

sex- and age-matched to the database of healthy controls so this correlation may indicate that

TTP and aHUS a↵ects cognition more in older patients. This finding may be because older

patients have lived with their diagnosis for longer, as summarized in Table 2.1. There are a few

caveats that must be addressed in the ranking of measurements. Changes in white and grey
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matter over lifetime are not linear as assumed by ranking. Rather, white matter peaks in fifth

decade of life and grey matter declines [77]. Myelination follows a similar trend to white matter

development, hence relaxation times and MWF may also be non-linear in nature. However, the

rankings under the demyelination hypothesis indicate some interesting relationships for future

investigation. The strongest correlation varying across imaging measurments motivates the use

of all six quantitative MRI measurements in understanding how the brain is a↵ected in TMA.

This demonstrates the value of a multi-parametric approach that includes T1, T2, and MWF.

4.2 Next Steps

4.2.1 Controls

The goal is to recruit 30 patients in total and to have age-matched healthy controls for direct

comparison using the same methodology. Healthy controls will be age-matched within two

years of patients and they will be recruited following the same exclusion criteria. As presented

in this thesis, the subregion analysis was limited to those regions of interest identified by the

neuroradiologist and there may be additional regions of interest detected in these quantitative

MRI approaches. Additional data in healthy controls will help elucidate natural left-right vari-

ations by subregion in quantitative MRI and may reveal additional abnormal subregions in

patients. Statistical evaluation will be conducted by Welch’s two-tailed t-tests between tissue-

and subregion-specific quantitative measurements between patients and controls.

4.2.2 Follow-Up Scans

As depicted in the protocol timeline in Figure 2.1, patients will receive follow-up scans, along

with repeated depression assessment and cognitive testing, at six and twelve months from their

first timepoint. Cognitive testing will be evaluated within the same week of the MRI scan

like the depression assessment. Though most patients completed their cognitive testing within

69



4.2. NEXT STEPS

a week, there were a few that took 1–2 months. To best compare findings from cognitive

testing and the MRI scans, it is important the brain is in the same state of health. This study

was limited by assuming the brain was in the same state of health between cognitive testing

and the MRI scan, despite up to two months of lag between. However, the full battery will

continue to be implemented due to the occasional invalid scores in tests seen in this group of

patients. If TTP or aHUS continues to worsen neurocognitive outcomes, di↵erent measures

of white matter, such as decreased MWF in regions of interest, may be observable at each

consecutive timepoint. Statistical evaluation will be conducted by repeated measures ANOVA

of measurements (including MADRS score; CBS percentile; and T1, T2, and MWF in white

matter and regions of interest).

4.2.3 Di↵usion Tensor Imaging

Di↵usion tensor imaging (DTI) relies on the di↵usion of water molecules which behave dif-

ferently by tissue based on how constrained the molecules are to freely move. Since the brain

is mostly water, like the rest of the body, a strong understanding of tissue microstructure can

be obtained based on the behaviour of water. One of the measurements in DTI is fractional

anisotropy (FA), which is a unitless measurement (0–1) that indicates the directionality of wa-

ter di↵usion in tissue. Two extremes in the behaviour of water by tissue microstructure are

demonstrated in the water within cerebral spinal fluid and in the water contained within the

lipid bilayers of myelinated neurons. In CSF, such as in one of the four ventricles, water is not

constrained and thus di↵uses freely, resulting in a FA value approaching 0. Conversely, in the

axon, water is constrained to flow in one direction, along the neuron, resulting in an FA value

approaching 1.

Di↵usion-weighted images for DTI have been acquired (Figure 2.2), but not yet considered

to the extent of the other methodologies presented. There is not a significant linear correlation

between MWF and DTI measurements [126] which motivates including both MWI and DTI

in the study. Though both assess white matter microstructure, the measurements may vary
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because the MWF is not altered by fibre orientation like fractional FA: perpendicular fibres in

a given voxel may reduce FA, however the MWF will not change. The added value of DTI

over MWI is that it can be used to generate white matter tracts. Tractography reveals pathways

of white matter throughout the brain. Findings in RESOLVE (such as white matter regions

of high di↵usivity) and MPRAGE (such as regions of white matter atrophy) will be used to

guide tractography. White matter trajectories may be impeded and FA may be decreased due

to damaged white matter.

4.2.4 Arterial Spin Labeling

Arterial spin labeling (ASL) is another emerging quantitative MRI technique for clinical appli-

cations. It is commonly used to measure cerebral blood flow (CBF) (measured in ml/100g/min)

in patients with stroke, dementia, epilepsy, and other psychiatric diseases [127]. Unlike other

imaging modalities to evaluate CBF, no contrast agents or radiation are involved. Incoming

arterial blood to the brain is tagged prior to splitting into smaller arteries. The water in this

arterial blood is magnetically labelled by a 180-degree radiofrequency pulse. Phase is accu-

mulated as the blood flows and di↵uses throughout the brain. Faster flowing blood picks up

more phase, and after a period of time called the transit time an image called the tag image

is acquired where this tagged blood is now in the slice of interest. Another image called the

control image is acquired in the same slice but without the 180-degree radiofrequency pulse.

The control image is subtracted from the tag image and a CBF measurement can be calculated

based on the amount of phase accumulated in the vasculature [128, 129].

A pseudo-continuous ASL (pCASL) for ASL has been acquired, but not yet considered to

the extent of the other methodologies presented. The approach by pCASL provides higher

signal-to-noise than pulsed arterial spin labeling (PASL) [130]. In patients with TTP and

aHUS, who are in prolonged remission, significant di↵erences in whole-brain CBF are not

expected in comparison to healthy controls. However, there may be di↵erences in CBF within

subregions of the brain vasculature. Findings from TOF MRA (such as thrombi) and SWI (such
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as microbleeds) will be used to guide region of interest analysis in ASL to compare ipsilateral-

contralateral region-specific CBF. Additionally, future studies will compare ASL to findings in

computed tomography.

4.2.5 Computed Tomography Perfusion

CTP has been acquired, but not yet considered to the extent of the other methodologies pre-

sented. Unlike the acquisitions in the comprehensive MRI protocol, CT perfusion is capable

of measuring blood brain barrier permeability (BBB-P). Preliminary work [65] in a separate

cohort of patients with TTP demonstrated a compromised BBB-P despite prolonged remis-

sion. This unexpected finding will be retested. BBB-P will be compared between patients and

controls and it will be correlated with the established measurements including MWF in white

matter and region of interest.

4.2.6 Future Direction

There are many interesting avenues for future work that we intend to pursue. Beyond the

current scope of the study, the following four avenues could be investigated to enhance the

understanding of neurocognitive outcomes in TTP and aHUS. 1) Additional MRI techniques:

The existing MRI protocol could be expanded upon or modified to accommodate the follow-

ing considerations: neurite orientation dispersion and density imaging (NODDI), to model

axon density and dispersion in white matter [131]; and resting state functional MRI (fMRI),

to evaluate functional networks and their relationship to neurocognitive findings. 2) PET/MR:

Positron emission tomography (PET) is an imaging modality that can be added with no addi-

tional scanning time on systems that o↵er simultaneous PET/MR. Relevant radioactive tracers

would include 11C-UCB-J for synaptic density [132], 18F-FEPPA for inflammation [133], and

FDG for metabolism [134]. 3) Machine learning: A classifier could be established to evaluate

whether or not patients and controls can be accurately identified based on features selected

throughout the comprehensive MRI protocol. If the five strongest features are chosen, hypo-
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thetically there might be one feature from RESOLVE, two from T2FLAIR, one from the T1

map, and one from the MWF map. 4) Additional cognitive testing: The Montreal Cognitive

Assessment (MoCA) is easy to administer and it can detect mild cognitive impairment and

Alzheimer’s disease [135].

Treatment Guidance

With a greater sample size, the e↵ect of treatment on neurocognitive outcomes can be ob-

served. Treatment of TTP primarily involves plasma exchange therapy in conjunction with

various medications. Two novel medications of interest are recombinant ADAMTS13 [50] and

caplacizumab [61, 62]. However, studies have not utilized a comprehensive protocol focusing

on quantitative MRI, as presented in this thesis, and future work aims to replicate these findings

to strengthen treatment guidance.

4.3 Conclusion

Persistent neurocognitive changes, despite prolonged remission, are not unique to thrombotic

thrombocytopenic purpura and atypical haemolytic uremic syndrome. The protocol demon-

strated in this study has the potential to elucidate the poorly-understood neurocognitive out-

comes in other vascular and immunocompromised diseases; such as vasculitis and lupus. Each

aspect of this investigation has contributed to a deeper understanding of how these two devistat-

ing manifestations of thrombotic microangiopathy impact the brain. The comprehensive MRI

protocol can see things that cannot be detected in depression assessments, cognitive testing,

or even routine MRI scans. Findings in quantitative MRI may preclude the worsening of neu-

rocognitive outcomes measured by depression assessments, cognitive testing, and qualitative

MRI. Agreement between the neuroradiologist observations and quantitative measurements

strengthens our findings. These include higher incidence of depression, prevalence of white

matter hyperintensities from small non-specific dots to larger infarcts, and decreased myelin
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water fraction in regions of white matter hyperintensity. Patients with thrombotic thrombocy-

topenic purpura and atypical haemolytic uremic syndrome experience similar neurocognitive

outcomes despite being in remission. Upcoming follow-up scans and comparisons to healthy

controls aim to strengthen the findings presented in this thesis.
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mer Hovinga, Bernhard Lämmle, Deirdra R. Terrell, and James N. George. Cognitive

deficits after recovery from thrombotic thrombocytopenic purpura. Transfusion, 49(6):

1092–1101, Jun 2009. ISSN 00411132. doi: 10.1111/j.1537-2995.2009.02101.x. URL

https://www.ncbi.nlm.nih.gov/pubmed/19222817.

[35] Bowie Han, Evaren E. Page, Lauren M. Stewart, Cassandra C. Deford, James G. Scott,

Lauren H. Schwartz, Jedidiah J. Perdue, Deirdra R. Terrell, Sara K. Vesely, and James N.

George. Depression and cognitive impairment following recovery from thrombotic

thrombocytopenic purpura. American Journal of Hematology, 90(8):709–714, 2015.

ISSN 10968652. doi: 10.1002/ajh.24060. URL https://pubmed.ncbi.nlm.nih.

gov/25975932/.

[36] Antoine Froissart, Marc Bu↵et, Agnès Veyradier, Pascale Poullin, François Provôt,

Sandrine Malot, Michael Schwarzinger, Lionel Galicier, Philippe Vanhille, Jean Paul

Vernant, Dominique Bordessoule, Bertrand Guidet, Elie Azoulay, Eric Mariotte, Eric

Rondeau, Jean Paul Mira, Alain Wynckel, Karine Clabault, Gabriel Choukroun, Claire

Presne, Jacques Pourrat, Mohamed Hamidou, and Paul Coppo. E�cacy and safety

of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with

a suboptimal response to plasma exchange. Experience of the French Thrombotic Mi-

croangiopathies Reference Center. Critical Care Medicine, 40(1):104–111, 2012. ISSN

00903493. doi: 10.1097/CCM.0b013e31822e9d66. URL https://pubmed.ncbi.

nlm.nih.gov/21926591/.

[37] E. Aksay, S. Kiyan, M. Ersel, and O. Hudaverdi. Thrombotic thrombocytopenic purpura

81

https://www.ncbi.nlm.nih.gov/pubmed/10214762
https://www.ncbi.nlm.nih.gov/pubmed/10214762
https://www.ncbi.nlm.nih.gov/pubmed/19222817
https://pubmed.ncbi.nlm.nih.gov/25975932/
https://pubmed.ncbi.nlm.nih.gov/25975932/
https://pubmed.ncbi.nlm.nih.gov/21926591/
https://pubmed.ncbi.nlm.nih.gov/21926591/


REFERENCES

mimicking acute ischemic stroke. Emergency Medicine Journal, 23(9), 2006. ISSN

14720213. doi: 10.1136/emj.2006.036327. URL https://www.ncbi.nlm.nih.gov/

pubmed/16921072.

[38] Christopher James Doig, Louis Girard, and Deirdre Jenkins. Thrombotic thrombocy-

topenic purpura masquerading as a stroke in a young man. Canadian Medical Asso-

ciation Journal, 191(47):E1306–E1309, 2019. ISSN 0820-3946. doi: 10.1503/cmaj.

190981. URL https://www.ncbi.nlm.nih.gov/pubmed/31767706.

[39] Henny H Billett. Chapter 151 Hemoglobin and Hematocrit. Clinical Methods: The

History, Physical, and Laboratory Examinations. 3rd edition, (151):718–719, 1990. doi:

10.1055/s-2004-821156. URL https://pubmed.ncbi.nlm.nih.gov/21250102/.

[40] Evaren E. Page, Johanna A. Kremer Hovinga, Deirdra R. Terrell, Sara K. Vesely, and

James N. George. Thrombotic thrombocytopenic purpura: Diagnostic criteria, clinical

features, and long-term outcomes from 1995 through 2015. Blood Advances, 1(10):

590–600, Apr 2017. ISSN 24739537. doi: 10.1182/bloodadvances.2017005124. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728353/.

[41] Ernest Beutler and Jill Waalen. The definition of anemia: What is the lower limit of

normal of the blood hemoglobin concentration? Blood, 107(5):1747–1750, 2006. ISSN

00064971. doi: 10.1182/blood-2005-07-3046. URL https://pubmed.ncbi.nlm.

nih.gov/16189263/.

[42] C. Giles. The Platelet Count and Mean Platelet Volume. British Journal of Haematology,

48(1):31–37, 1981. ISSN 13652141. doi: 10.1111/j.1365-2141.1981.00031.x. URL

https://pubmed.ncbi.nlm.nih.gov/7248189/.

[43] Massimo Franchini and Pier Mannuccio Mannucci. Advantages and limits of

ADAMTS13 testing in thrombotic thrombocytopenic purpura. Blood Transfusion, 6

82

https://www.ncbi.nlm.nih.gov/pubmed/16921072
https://www.ncbi.nlm.nih.gov/pubmed/16921072
https://www.ncbi.nlm.nih.gov/pubmed/31767706
https://pubmed.ncbi.nlm.nih.gov/21250102/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728353/
https://pubmed.ncbi.nlm.nih.gov/16189263/
https://pubmed.ncbi.nlm.nih.gov/16189263/
https://pubmed.ncbi.nlm.nih.gov/7248189/


REFERENCES

(3):127–135, 2008. ISSN 17232007. doi: 10.2450/2008.0056-07. URL https:

//pubmed.ncbi.nlm.nih.gov/22244722/.

[44] Hiromichi Ishizashi, Hideo Yagi, Masanori Matsumoto, Kenji Soejima, Tomohiro Naka-

gaki, and Yoshihiro Fujimura. Quantitative Western blot analysis of plasma ADAMTS13

antigen in patients with Upshaw-Schulman syndrome. Thrombosis Research, 120

(3):381–386, 2007. ISSN 00493848. doi: 10.1016/j.thromres.2006.07.012. URL

https://pubmed.ncbi.nlm.nih.gov/17030346/.

[45] Koichi Kokame, Yuko Nobe, Yoshihiro Kokubo, Akira Okayama, and Toshiyuki Miyata.

FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. British Journal of

Haematology, 129(1):93–100, 2005. ISSN 00071048. doi: 10.1111/j.1365-2141.2005.

05420.x. URL https://pubmed.ncbi.nlm.nih.gov/15801961/.

[46] Manfred Rieger, Pier Mannuccio Mannucci, Johanna A. Kremer Hovinga, Andrea

Herzog, Gabi Gerstenbauer, Christian Konetschny, Klaus Zimmermann, Inge Schar-

rer, Flora Peyvandi, Miriam Galbusera, Giuseppe Remuzzi, Martina Böhm, Barbara
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