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Abstract 

Biocontainment is an integral part of biomedical research that aims to protect the environment 

and human health by containing hazardous or invasive organisms in the laboratory. 

Containment systems often rely on elaborate genetic circuits; however, cells may escape 

containment by developing mutations that render the genetic circuits inviable or resistant to 

killing mechanisms. The aim of this thesis was to create a site-specific nuclease for 

biocontainment of plasmids in the mammalian gastrointestinal tract.  LAGLIDADG homing 

endonucleases would be good candidate nucleases for a biocontainment system as they are 

resistant to mutations in their coding sequence and their target sequence in comparison to other 

nucleases, such as Cas9. Screening mutagenic libraries of the I-OnuI nuclease yielded a single 

variant that displays thermosensitive properties in vivo that may prove useful for 

biocontainment purposes. Using thermosensitive LAGLIDADG homing endonucleases for 

this purpose may prove to be a new, more robust approach to biocontainment. 
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Summary for Lay Audience 

Biocontainment is an essential part of biomedical research that aims to protect the environment 

and human health by containing potentially hazardous organisms in the laboratory. Efforts to 

develop containment systems often rely on elaborate and expansive DNA circuits. The 

methods used previously also raise the concern that the cells may be able to escape 

containment, either through mutations that break the DNA circuits or by the evolution of 

resistance to killing mechanisms. Nucleases, which are enzymes that cut DNA, are attractive 

candidates for use as a containment mechanism. DNA cutting proteins that can target internal 

DNA sequences are called endonucleases (in comparison to exonucleases which target the 

ends). LAGLIDADG homing endonucleases are small, yet highly specific DNA cutting 

proteins that are resistant to mutations in their DNA sequence and the particular sequence they 

cut (in comparison to other DNA cutting proteins). As a result of their resilience and 

specificity, homing endonucleases from the LAGLIDADG family were chosen as the 

candidate enzymes for developing a biocontainment mechanism. Screening libraries of 

LAGLIDADG DNA cutting enzymes yielded a single type that displays temperature-sensitive 

properties when used in a bacterial cell. Temperature sensitivity is useful as a biocontainment 

mechanism as it means the bacterial cell can only survive in a specific temperature range. These 

properties may prove helpful for biocontainment purposes in that it could be used as a new, 

more straightforward, more robust approach to biocontainment. 

 



 

iv 

 

Acknowledgments 

I want to thank all members of the Edgell Lab and Karas Lab (past and present) for their support 

and companionship. Thomas Hamilton, Daniel Giguere, and Rachel Lacoursiere deserve 

special recognition for always providing me with assistance, guidance, and another point of 

view. I would also like to thank all my volunteers: Abdul Rahman, Peter Bartlett, Kendra 

Loedige, and Claire Linton. I would be remiss if I did not include and thank my current 4th-

year thesis student, Gary Foo, who has been the best student I could have asked for. Next, I 

would like to thank Dr. Eric Ball for his help and his Gibson assembly protocol. Also, I would 

like to thank my advisory committee members: Dr. Chris Brandl and Dr. David Heinrichs. 

Finally, I would like to thank my supervisors, Dr. David Edgell and Dr. Bogumil Karas, 

specifically for their knowledge, guidance, and mentorship.  

Dedication  

I want to dedicate this work to my favourite member of the Edgell Lab, Oliver Edgell. I am 

confident that someday you will get as much joy out of shredding this thesis as I got out of 

completing it. 



 

v 

 

Table of Contents 

Abstract .......................................................................................................................... ii 

Summary for Lay Audience .......................................................................................... iii 

Acknowledgments ......................................................................................................... iv 

Dedication ..................................................................................................................... iv 

List of Tables............................................................................................................... viii 

List of Figures ............................................................................................................... ix 

List of Appendices ........................................................................................................ xi 

Chapter 1 ........................................................................................................................ 1 

1 Introduction ............................................................................................................... 1 

1.1 Objective Statement ................................................................................................ 1 

1.2 Biocontainment ....................................................................................................... 1 

1.2.1 Historical Perspective ................................................................................. 1 

1.2.2 An Overview of the General Methods of Genetically Programmed 

Biocontainment ........................................................................................... 4 

1.3 LAGLIDADG Homing Endonucleases .................................................................. 8 

1.3.1 Example Application .................................................................................. 9 

Chapter 2 ...................................................................................................................... 11 

2 Materials and Methods ............................................................................................ 11 

2.1 Media .................................................................................................................... 11 

2.1.1 2xYT Media .............................................................................................. 11 

2.1.2 Modified M9 Media .................................................................................. 11 

2.2 Gibson Assembly .................................................................................................. 12 

2.2.1 5x Reaction Buffer .................................................................................... 12 

2.2.2 1.33x Reaction Mixture ............................................................................ 12 

2.2.3 Gibson Assembly Protocol ....................................................................... 12 



 

vi 

 

2.3 Libraries ................................................................................................................ 13 

2.3.1 LAGLIDADG Point Mutation Libraries .................................................. 13 

2.3.2 I-LtrI FLL_E Library ................................................................................ 13 

2.3.3 I-LtrI H1-IR Library ................................................................................. 13 

2.3.4 H1-IR-RND and FLL_E-RND Combination Library............................... 15 

2.4 Two-plasmid Screen ............................................................................................. 17 

2.4.1 Initial Dual Plasmid Screen ...................................................................... 19 

2.4.2 Confirmatory Dual Plasmid Screen .......................................................... 19 

2.4.3 Survival Rate Calculation ......................................................................... 20 

2.5 Repair of the pCcdB Origin .................................................................................. 20 

2.6 Protein Purification ............................................................................................... 20 

2.6.1 Second Purification of I-OnuI P14Q ......................................................... 21 

2.7 In Vitro Cleavage Assay ....................................................................................... 21 

2.8 Golden Mutagenesis.............................................................................................. 22 

2.9 Data Analysis ........................................................................................................ 23 

2.10 Protein Structure Models ...................................................................................... 23 

Chapter 3 ...................................................................................................................... 24 

3 Results ..................................................................................................................... 24 

3.1 Development of a Two-Plasmid Screen that Works at                                       

__25°C and 37°C .................................................................................................. 24 

3.1.1 Identification of a Problem with pCcdB ................................................... 24 

3.1.2 Insertion in the RNAII region of the ColE1 promoter within pCcdB....... 27 

3.2 Creating and Screening LHE Mutagenic Libraries ............................................... 29 

3.2.1 LHE Mutagenic Library Complexity and Features .................................. 29 

3.2.2 Identification of a Thermosensitive I-OnuI Variant ................................. 32 

3.3 Purification of I-OnuI WT, I-OnuI G177A, and I-OnuI P14Q. ............................ 37 



 

vii 

 

3.3.1 Nickel-nitrilotriacetic Acid Immobilized Metal Affinity Chromatography 

based Purification of I-OnuI WT, I-OnuI G177A, and I-OnuI P14Q. ...... 39 

3.3.2 Second Nickel-nitrilotriacetic Acid Immobilized Metal Affinity 

Chromatography based Purification of I-OnuI P14Q ............................... 43 

3.4 In Vitro Cleavage Assays Revealed No Temperature Dependence of I-OnuI P14Q 

Activity ................................................................................................................. 45 

3.5 A Silent Nucleotide Substitution in Codon 2 of I-OnuI Determines Temperature 

Sensitivity ............................................................................................................. 48 

Chapter 4 ...................................................................................................................... 51 

4 Discussion and Future Directions ........................................................................... 51 

4.1 Development of a Two-Plasmid Screen that Works at 25°C and 37°C ................ 51 

4.2 Creating and Screening LHE Mutagenic Libraries ............................................... 51 

4.3 Purification of I-OnuI WT, I-OnuI G177A, and I-OnuI P14Q. ............................ 52 

4.4 In Vitro Cleavage Assay with WT I-OnuI, P14Q, and G177A. ........................... 52 

4.5 Two Codon Assay ................................................................................................. 53 

4.6 Suggestions for further studies.............................................................................. 53 

4.7 Conclusion ............................................................................................................ 54 

References .................................................................................................................... 56 

Appendices ................................................................................................................... 63 



 

viii 

 

List of Tables  

Table 1. Library theoretical complexity based on CFUs after transformation of ligations 

mixtures................................................................................................................................... 30 

Table 3. Colonies screened in the initial and confirmatory screens. ...................................... 33 

Table 4. Survival rates of two I-OnuI hits in a confirmatory screen. ..................................... 34 

 



 

ix 

 

List of Figures  

Figure 1. A timeline illustrating the key historical events pertaining to biocontainment.. ....... 3 

Figure 2. Structure of I-LtrI (silver, PDB 3R7P) to DNA (yellow) in the presence of divalent 

cation cofactors (red spheres). ................................................................................................ 14 

Figure 3. Maps of the plasmids used in the two-plasmid screen. ........................................... 16 

Figure 4. Workflow of the two-plasmid screen used to identify thermosensitive LHE variants.

................................................................................................................................................. 18 

Figure 5. Two-plasmid selection using pCcdB (G299A) illustrates a problem with the screen 

at 25°C. ................................................................................................................................... 25 

Figure 6. Two-plasmid selection using pCcdB (G229A) continues to display a problem with 

the screen at 25°C.. ................................................................................................................. 26 

Figure 7. Two-plasmid selection using pCcdB with an origin sequence devoid of an insertion 

that is -444T and ΔROM. ........................................................................................................ 28 

Figure 8. Two-plasmid selection using pCcdB with the corrected origin sequence identifies I-

OnuI P14Q as a hit. ................................................................................................................. 36 

Figure 9. Structure of I-OnuI (green, PDB 3QQY) to DNA (yellow) in the presence of a 

divalent cation cofactor (red sphere). ...................................................................................... 38 

Figure 10. Nickel-nitrilotriacetic acid immobilized metal affinity chromatography-based 

protein purification of (A) I-OnuI wild-type, (B) I-OnuI G177A, and (C) I-OnuI P14Q ...... 40 

Figure 11. SDS-PAGE visualization of size exclusion chromatography (SEC) fractionation of 

(A) I-OnuI wild-type identified 18 mL retention volume of I-OnuI, which was (B) sampled in 

subsequent SEC of I-OnuI wild-type, I-OnuI G177A, and I-OnuI P14Q. ............................. 42 

Figure 12. Second nickel-nitrilotriacetic acid IMAC based purification of I-OnuI P14Q. .... 44 

Figure 13. In vitro cleavage assay workflow (panel A) and sample gel (panel B). ................ 46 

file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808943
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808944
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808944
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808945
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808945
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808946
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808946
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808947
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808947
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808948
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808948
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808950
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808950
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808951
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808951
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808951
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808952


 

x 

 

Figure 14. In vitro cleavage assay using purified I-OnuI variants targeting pCcdB showed 

few differences between I-OnuI and P14Q at both temperatures ........................................... 47 

Figure 15. Two-plasmid selection showing that both mutations in I-OnuI P14Q (GGA2GGC, 

CCG14CAG) are required for its thermosensitive properties. ................................................ 49 

file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808954
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808954
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808955
file:///E:/Development%20of%20a%20Thermosensitive%20Endonuclease%20to%20act%20as%20a%20Plasmid%20Kill-switch.docx%23_Toc49808955


 

xi 

 

List of Appendices 

Appendix A: List of Primers ................................................................................................... 63 

Appendix B. I-OnuI WT plates used to generate figure 12. ................................................... 66 

Appendix C. I-OnuI P14Q plates used to generate figure 12. ................................................ 67 

Appendix D. I-OnuI G177A plates used to generate figure 12. ............................................. 68 

Appendix E. I-OnuI P14Q and I-OnuI WT also display few differences across temperatures 

when looking at the percentage of open circle and closed products over time during an in 

vitro cleavage assay.. .............................................................................................................. 69 

 

  

file:///C:/Users/Chris/Documents/grad%20school/Edgell%20Lab/Thesis/Chris-Thesis-11,%2061%20citations.docx%23_Toc49200392
file:///C:/Users/Chris/Documents/grad%20school/Edgell%20Lab/Thesis/Chris-Thesis-11,%2061%20citations.docx%23_Toc49200393
file:///C:/Users/Chris/Documents/grad%20school/Edgell%20Lab/Thesis/Chris-Thesis-11,%2061%20citations.docx%23_Toc49200394


1 

 

Chapter 1  

1 Introduction 

1.1 Objective Statement  

The goal of this thesis is to develop and test thermosensitive site-specific LAGLIDADG 

homing endonucleases that target specific sequences in synthetic plasmids and 

chromosomes for use as genetic kill switches. The existing systems are of limited utility 

across all potential applications that require genetically programmed means of 

biocontainment, and this will be expanded upon below. Employing LAGLIDADG homing 

endonucleases as the containment method will allow for a more robust and modular 

application of this biocontainment strategy as they are relatively small (approximately 1 kb 

in size or less), yet reliable in comparison to other nucleases. The use of temperature as a 

mediating factor controlling activity will circumvent the pitfalls associated with molecule-

based signals and allow the application of this method to be expanded to elements in which 

their very application requires mobility, such as conjugative plasmids.  

1.2 Biocontainment 

1.2.1 Historical Perspective 

Before 1951, there were no formal inquiries into the threat that biological laboratories may 

pose to their workers' health, let alone the surrounding communities or environment. The 

first survey of biological laboratories was done in the USA as a result of multiple case 

studies and reports around the world of lab workers acquiring infections from the materials 

to which they were exposed1. Thus, an attempt was made to gauge the risk involved with 

such work1. The first effort to formulate a protocol for dealing with biological agents was 

at a conference held in 1955 at Camp Detrick in Fredrick, Maryland2. At this conference, 

multiple health and safety directors, as well as scientists from military laboratories, met to 

share their knowledge of working with biological warfare agents to handle common safety 

problems collaboratively2. 

Although not formally founded until 1984, this would later become recognized as the first 

meeting of the American Biological Safety Association2. The American Biological Safety 
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Association promotes biosafety as an essential principle to reduce the likelihood of 

occupational illness using safety principles to minimize human exposure and the harmful 

impacts of research on the environment by the containment of biological agents to 

laboratories2. Employing the insight gained from the early American Biological Safety 

Association conferences, the director of health and safety at Camp Detrick, Arnold 

Wedum, published the first comprehensive biosafety guidelines in 19643.  

The beginning of the discussion concerning the biocontainment of modified organisms is 

marked by the 1975 Asilomar Conference, which was held due to concerns about how the 

recent advent of genetic engineering may affect the biosphere and human health if host 

species with non-native DNA were to escape into the environment4. This conference 

outlined four levels of risk, which track largely with the biosafety or containment levels 

used in laboratories today4. However, these four levels of containment would not become 

set in place for another 9 years by the American Biological Safety Association with the 

publication of the first edition of the "Biological Safety in Microbiology and Biomedical 

Laboratories" text4,5. At the Asilomar Conference, changes to laboratory procedures, such 

as adopting mechanical pipettes over mouth pipettes, were recommended4. Scientists 

attending the conference also theorized about adopting genetic means of containing 

engineered organisms such as host strains or vectors incapable of surviving outside the 

laboratory4. 
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Figure 1. A timeline illustrating the key historical events pertaining to 

biocontainment. Each box illustrated on the timeline is equal to a year, and double slashes 

indicate scale breaks. 
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1.2.2 An Overview of the General Methods of Genetically 
Programmed Biocontainment 

Modern systems for genetic containment are often elaborate and involve integrations or 

alterations to the host organism's genome6–8. Different strategies are combined to reduce 

the probability of host organism or vector escape6–8. An ideal design depends on the ability 

to control the system within the given context of use, prevent growth if the organism or 

vector were to escape that context, and allow for uninhibited growth within the intended 

context of application. In general, individual biocontainment strategies cluster into three 

distinct categories, as follows: addiction (which can be further broken down into 

auxotrophs and orthogonally designed systems), suicide systems, and kill switches. The 

efficacy of biocontainment systems is measured as escape frequency or colony-forming 

units that survived in non-permissive conditions per 10x (i.e., if 1 in 1000 escaped, this 

would be given as 1 in 103 or 1x10-3).  

1.2.2.1 Addiction 

Addiction based containment strategies attempt to contain the organism by generating 

strains that are unable to grow in the absence of a nutrient necessary for the replication of 

DNA or the production of proteins.  

1.2.2.1.1 Auxotrophy 

Auxotrophy, or the inability for the cell to manufacture critical nutrients, is the oldest 

method of biocontainment and is still employed today. In 1977, ΔdapD, Δasd, and ΔthyA 

Escherichia coli strain χ 1776 was developed9. This strain is incapable of growing in media 

deficient in diaminopimelic acid, lysine, threonine, methionine, thymine, or thymidine9.  

Some studies have presented their Lactococcus lactis ΔthyA auxotroph's escape rate as 

below a detectable limit10,11. However, one major problem with using auxotrophic strains 

for biocontainment is that the nutrients exist everywhere in the biosphere outside of the 

nutrient-deficient media, and the strain is therefore readily able to escape containment 

when presented with a medium as simple as sterile soil6. The problem of nutrient 

availability is especially true for thymine and thymidine auxotrophs6. Additionally, 

auxotrophic strains display growth deficiencies compared to their prototrophic 
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counterparts (strains capable of manufacturing all critical nutrients from other organic 

molecules), even in supplemented media9,12. On a positive note, this does make auxotrophs 

unlikely to take over the ecological niche of their wild-type counterparts since even 

prototrophic lab strains of E. coli do not seem to possess the capability to outcompete wild-

type strains. Overall, auxotrophic strains have limited value outside of avoiding the need 

for antibiotic-based selection in the lab13.  

1.2.2.1.2 Orthogonal Design 

Some auxotrophic strains and vectors have been created that require the supplementation 

of factors that are orthogonal to conventional biology to avoid the ecological prevalence of 

nutrients that can supplement traditional auxotrophs. The first example of an orthogonally 

designed addiction system comes from Rovner et al. (2013) where they reassigned all the 

TAG stop codons to TAA stop codons, introduced a new tRNA:aminoacyl-tRNA 

synthetase pair for the introduction p-acetyl phenylalanine at TAG (UAG) sites, and then 

added TAG codons to multiple essential genes in Methanocaldoccus jannaschii to create a 

strain that is dependent on a non-canonical amino acid14. Other examples of orthogonally 

designed strains include ones that make use of unnatural bases, expanded genetic codes, 

and ligand-dependent essential gene modifications15–18. These approaches often exhibit 

exceptionally low escape frequencies (generally around 10-11 to 10-12) and lack the growth 

deficiencies inherent to ordinary auxotrophs14,16.  

The first weakness of this approach is the possibly prohibitive cost of reagents used, 

although it is worth noting that this is not the case with the ligand-dependent essential gene 

modification approach18. Second, the reagents used in the orthogonal design process (and 

their resultant products) are potentially toxic to the environment, animals, or humans, 

thereby constricting the use of this approach to laboratories19. Third, this approach still 

involves the cumbersome creation of elaborate strains capable of using factors orthogonal 

to natural biology14,18. Finally, this approach does not allow for horizontal gene transfer, 

so it would not be a usable containment mechanism in any application dependent on 

horizontal gene transfer, such as the use of conjugative plasmids in a medical context for 

microbiome modulation20. Admittedly, the inability of orthogonal systems to undergo 
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horizontal gene transfers could potentially be an advantage of the system in some 

contexts20. 

1.2.2.2 Suicide Systems 

Another method of genetically encoded biocontainment involves the use of single genes 

that can result in cell death12,21,22. These may be used in a toxin-antitoxin context in an 

attempt to prevent horizontal gene transfer, or in combination with a repressor-based 

addiction strategy. This strategy was first proposed in 1987, involving hok under the control 

of the trp promoter12,21. In the absence of tryptophan, Hok is expressed, causing membrane 

depolarization and cell death12,21.  

The negative aspect of this style of biocontainment strategy, notwithstanding any 

drawbacks to the addiction-like strategies employed to control gene expression (e.g. pLac), 

is that suicide genes are prone to deactivating mutations and therefore are generally 

ineffective12,21. As such, the suicide system strategy's rate of escape is generally in the     10-

3  to 10-5 range7,12,23. Moreover, this strategy does not prevent the release of DNA to the 

environment when used in combination with an addiction strategy. The viability of the cell 

itself is targeted, not the DNA. This is problematic as DNA can persist in media such as 

soil, and the potential danger of release generally does not come from laboratory strains 

themselves, but the non-native or extrachromosomal DNA they may be carrying13,24. 

Finally, when used in an antitoxin-toxin sense to prevent horizontal gene transfer, even if 

an effective mechanism is devised, this containment method would not be viable for the 

containment of conjugative plasmid applications20,25.  

1.2.2.3 Kill-Switches 

Kill-switch biocontainment mechanisms target the integrity of the genetic information 

carried, as opposed to the cell's integrity through other meansI. Kill-switches can be broken 

 

I
 In the literature the terms suicide systems and kill-switches are used interchangeably. This may be due to the use of the 

term as it pertains to physical kill-switches (or emergency stops) in industry. However, given the parallels between 

synthetic biology and computer science, moving forward it should be used in a sense that aligns with the use of the term 

in software development, a program which prevents unwanted use and dissemination by rendering pirated software 

unusable. In this sense, the suicide system would be an emergency stop as it pertains to hardware (the cell), and the kill-

switch would refer to a mechanism of preventing the unwanted spread of software (DNA). 
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down into three categories: non-specific nucleases, restriction enzymes, and highly 

targeted nucleases with long recognition sequences7,26,27. Like suicide systems, this method 

can be used to contain an organism or to prevent the escape of extrachromosomal elements, 

albeit, using this method has a significant advantage in the later context if combined with 

more specific nucleases to create a self-targeting system. The first published use of this 

containment strategy consisted of the non-specific nuclease nuc under the control of 

lambda pL promoter in E. coli TGE900, which carried a thermosensitive lambda cI857 

repressor26. At 42°C, the lambda repressor becomes unstable, and Nuc is expressed, which 

results in the destruction of any genetic information, including chromosomal DNA, causing 

cell death26. This strategy has since been improved upon by using genetic circuits to control 

expression that do not rely on high temperatures and use more specific nucleases, such as 

EcoRI or CRISPR7,27. Depending on the method chosen, the reported escape frequencies 

range from  10-5 (Nuc and EcoRI) down to below a detectable limit ("Deadman" and 

"Passcode")7,26,27.  

Again, such a system's downsides will mirror those of the addiction-like molecule 

dependent systems that are relied upon to control gene expression. As such, if a naturally 

occurring molecule is used to control expression, this will result in aberrant activity in non-

permissive conditions selecting for mutations over time, which will inevitably lead to 

increased escape frequencies7. This approach's attractiveness is that if highly targeted 

nucleases with long target sites are used, the genomic DNA could be left intact while 

allowing the biocontainment system to target extrachromosomal elements exclusively. 

1.2.2.3.1 Thermosensitivity: Leaving Addiction Behind 

To overcome the drawbacks of activity controlled by an addiction strategy and retain the 

desirable feature of highly-targeted cleavage, one could potentially use a thermosensitive 

version of Cas9 to create a self-targeting kill-switch28. Thermosensitive Cas9 could prove 

an ideal strategy to prevent the escape of non-chromosomal genetic material (even 

conjugative plasmids) in the context of industrial, laboratory and medical applications of 

microbes.  

Unfortunately, guide RNA expression levels have been shown to drop drastically when the 

temperature decreases to 30°C29.  This raises the concern that a further drop to room 
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temperature may allow for a construct to escape containment. Additionally, the cas9 

sequence is relatively large (approximately 4 kb in length), reducing its attractiveness as a 

candidate nuclease to use as a plasmid-based kill-switch.  A type II restriction enzyme 

would be smaller, and one example, AbaSI, exists with no activity at 37°C and performs 

optimally at 25°C30. Unfortunately, its target sequence is relatively frequent 

(CNNNNNNNNNNNNNNNNNNNNG), and its activity is methylation-dependent30. 

Likewise, a temperature-sensitive variant of BamHI exists, but it is only active in the 30-

60°C range (which is inside of the biologically relevant range) and also suffers from a short 

target sequence (GGATCC)31.  Other thermosensitive type II restriction enzymes could be 

developed for such a purpose. However, this strategy would be quite prone to escape by 

single base-pair mutations in the target, as type II restriction enzymes are not tolerant to 

deviations in their target sequence32. The development of an ideal thermosensitive nuclease 

kill-switch system necessitates looking beyond nucleases currently employed as kill-

switches.  

1.3 LAGLIDADG Homing Endonucleases 

LAGLIDADG homing endonucleases (LHEs) are a family of selfish genetic elements 

found as free-standing genes or encoded in introns as group I introns and inteins33,34. LHEs 

are primarily found in Archaea or the organellular genomes of fungal and algal species35. 

They function as either homodimers or two-domain monomers, and their name is derived 

from the conserved residues found between the core alpha helices33,34,36,37. The side chains 

of these residues interact with the opposing alpha-helix to form the domain interface33,34,36.  

They make an attractive candidate for the development of thermosensitivity-based kill-

switches due to their inherent properties. Their long 22 bp recognition sequences make 

them precise despite retaining activity in the face of some variation in the target 

sequence33,35,38–41. This family of homing endonucleases is also resistant to point mutations 

within their coding sequence42. Additionally, these proteins display strong binding 

affinities33. LAGLIDADG homing endonuclease gene variants exist that are approximately 

1 kb in length or less, such as I-OnuI, I-LtrI, and I-HjeMI43,44. These variants are derived 

from the ascomycetes Ophiostoma novo-ulmi, Leptographium truncatum, and Hypocrea 
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jecorinaII, respectively43,44. A selfish genetic element of fungal origin would be under a 

stabilizing selection to ensure activity around the organism's growth temperature. Given 

that all three of these LAGLIDADG homing endonucleases originate from Ascomyota 

involved in plant rot-diseases, they are likely active at temperatures of 30°C or lower43,45.  

While these variants are ideal candidates for use as kill-switches, they are active at 37°C 

(the preferred temperature of E. coli and other species in human gastrointestinal 

microbiomes), as well38,44,46. Therefore, some development is required before they can be 

feasibly used as thermosensitive kill-switches in a laboratory or medical setting.  

1.3.1 Example Application 

An instance where a thermosensitive kill-switch would be an essential component for 

containment is the conjugative cas9 plasmid developed by Hamilton et al. (2019)25. The 

system Hamilton et al. (2019) are developing is a promising prospective approach to 

dealing with bacterial gastrointestinal infections because it spreads exponentially between 

bacteria in liquid culture and can efficiently target the chromosomes of Salmonella 

enterica via Cas9 nuclease variants leading to cell death25. Due to the programmability of 

the guide RNAs directing the Cas9 protein's sequence-specific targeting, a conjugative 

cas9 system will also work well for targeting other species20,47.  

 

However, the same aspects that make this system an attractive prospect for use as an 

antibiotic (exponential transfer and efficient bactericidal activity) cause concern from a 

biocontainment perspective. Escape of a conjugative plasmid carrying a cas9 construct 

from a patient's body could have wide-ranging effects from the target bacterial species 

being removed from other people's microbiome, at least, to a population bottleneck in the 

target bacterial species, at worst. Whether the large scale spread of a conjugative plasmid 

with cas9 targeting an infectious bacterial species is desirable or not is best debated 

 

II It would be more correct to refer to the source organism as Trichoderma reesei, as H. jecorina is an anamorph of T. 

reesei68. Note, this means I-HjeMI should be renamed to I-TreI to follow homing endonuclease naming conventions69. 

However, for the purpose of this thesis, I-HjeMI will be referred to as such, to avoid confusion when referring to the 

pertaining literature.  
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elsewhereIII. However, it does showcase a great example of where a thermosensitive 

nuclease-based kill-switch would be necessary to prevent escape from a narrow 

application-specific perspective. Containing Hamilton et al.'s (2019) system to the human 

gut (37°C) would alleviate the ecological and ethical concerns that an application of such 

a system on an individual would raise, thus bringing their system closer to an application 

in the medical market where novel approaches to treating bacterial infections are in 

strong demand25,48–50. 

 

III Such a debate will likely be akin to the on-going discussions concerning the potential applications of gene drives to 

eradicate or control infectious disease spreading insect and rodent species70. 
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Chapter 2  

2 Materials and Methods 

2.1 Media 

2.1.1 2xYT Media 

To make 2xYT media, 16 g of carbohydrate-free tryptone, 10 g of yeast extract, and 5 g of 

NaCl were added to 400 mL of ddH2O in a 1 L graduated cylinder and stirred until 

dissolved. The volume was adjusted to 1 L with dd H2O, and 15 g of agar A were added 

for solid media. The media was autoclaved at 120°C for 20 minutes.  

2.1.2 Modified M9 Media 

2.1.2.1 10x M9 Salt Solution 

To make 10x M9 salt solution media, 70 g of Na2HPO4•7H2O, 30 g of KH2PO4, 10 g of 

NH4Cl, and 5 g of NaCl were added to 400 mL of ddH2O in a 1 L graduated cylinder and 

stirred until dissolved. The volume was adjusted to 1 L with dd H2O.  The media was 

autoclaved at 120°C for 20 minutes. 

2.1.2.2 Selective M9 Solid Media  

To make selective M9 solid media, 8 g of carbohydrate-free tryptone was added to 280 mL 

of ddH2O in a 1 L graduate cylinder and stirred until dissolved. Then, 100 mL of 10x M9 

salt solution and 20 mL of 50% glycerol were added to the graduated cylinder.  The volume 

was adjusted to 0.996 L with ddH2O, and 15 g of agar A were added. A magnetic stir bar 

was added to the media before autoclaving. The media was then autoclaved at 120°C for 

20 minutes.  

After autoclaving, 1.0 mL of sterile 1.0M CaCl2, 1.0 mL of sterile 1.0M MgSO4, 1.0 mL of 

100 mg/mL carbenicillin suspended in 50% EtOH, 1.0 mL of sterile 20% arabinose, 400 

µL of sterile 1.0% Thiamine, and 400 µL of sterile 1.0M IPTG were slowly dripped in 

media cooled to 65°C and immediately poured into plates.  
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2.1.2.3 Non-selective M9 Solid Media 

To make non-selective M9 solid media, 8 g of carbohydrate-free tryptone was added to  

280 mL of ddH2O in a 1 L graduate cylinder and stirred until dissolved. Then, 100 mL of 

10x M9 salt solution and 20 mL of 50% glycerol were added to the graduated cylinder.  

The volume was adjusted to 0.996 L with ddH2O, and 15 g of agar A were added. A 

magnetic stir bar was added to the media and was autoclaved at 120°C for 20 minutes.  

After autoclaving, 1.0 mL of sterile 1.0M CaCl2, 1.0 mL of sterile 1.0M MgSO4, 1.0 mL of 

100 mg/mL carbenicillin suspended in 50% EtOH, 1.0 mL of sterile 20% glucose, and 400 

µL of sterile 1.0% thiamine were slowly dripped in media cooled to 65°C and immediately 

poured into plates.  

2.2 Gibson Assembly 

2.2.1 5x Reaction Buffer 

To make 5x reaction buffer, 0.2 g of PEG 8000, 0.5 mL of 1M Tris (pH 7.5), and 25 µL of 

2 M MgCl2 were rotated in a 1.5 mL Eppendorf tube for 2 hours to dissolve. Then 50 µL 

of 1 M DTT, 100 µL of dNTP mix (100 mM dGTP, 100 mM dATP, 100 mM dTTP, 100 

mM dCTP), and 100 µL of 50 mM NAD were added. The volume was adjusted to 1 mL 

with ddH2O. The 5x reaction buffer was stored at -20°C.  

2.2.2 1.33x Reaction Mixture 

To make 1.33x reaction mixture, 26.7 µL of 5x reaction buffer, 0.4 µL of T5 exonuclease 

(1.48 mg/mL), 4.8 µL Taq ligase (0.28 mg/mL), 0.7 µL of Pfu polymerase (2.5 U/µL), and 

67.3 µL of ddH2O were added to a 0.5 mL Eppendorf tube and mixed by pipetting  The 

1.33x reaction mixture was stored at -20°C. 

2.2.3 Gibson Assembly Protocol 

To begin the Gibson assembly, 2 µL of insert and 3 µL of vector were placed into a 0.2 mL 

PCR tube. The insert and vector must have approximately 40 base pairs of homology at 

their ends. Then, 15 µL of chilled 1.33x reaction mixture was added to the 0.2 mL PCR 

tube and mixed via pipetting. The 0.2 mL PCR tube was immediately transferred to a 
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thermocycler set to 50°C and incubated for 1 hour. Finally, 10 µL of the Gibson assembly 

reaction was transformed into 200 µL of CaCl2 competent E. coli cells. 

2.3 Libraries 

2.3.1 LAGLIDADG Point Mutation Libraries  

Mutagenized libraries of the LAGLIDAG homing endonucleases I-OnuI, I-LtrI and I-

HjeMI, were created using the GeneMorph II EZClone Domain Mutagenesis Kitgene51. 

Directions were followed to obtain a high mutation frequency (9-16 mutations/kb). 

Mutagenized products were digested using NcoI and NotI, and ligated into NcoI/NotI 

digested pEndo using  3:1, 5:1, and 7:1 vector to insert ratios following the NEB: Protocol 

with T4 DNA Ligase (NEB catalogue #M0202)52. These were transformed into NEB5α 

cells, and 100 µL of the recovery mixtures were plated. Theoretical complexity was 

calculated by subtracting the number of colonies on no insert control plate from that on the 

ratio plates, and then multiplying that number by the amount of 100 µL aliquots remaining 

in the recovery mixture, and added to the sum of each library generated for that variant.  

2.3.2 I-LtrI FLL_E Library 

This I-LtrI library is randomized at positions 27, 58, and 66 and consists of 8000 possible 

combinations, and was identified as a coding network46. The library was ordered as a gene 

block from IDT and cloned into pEndo by Dr. McMurrough (unpublished data). F27 is in 

the N-terminal helix, I58 is in the second helix, and W66 is located at the edge of the N-

terminal beta-sheet. All three positions are facing a hydrophobic pocket of the domain's 

core and are predicted to be involved in intra-domain stability, making this library a 

potential source of thermosensitive mutants. The FLL_E library has a complexity of 8,000 

variants 

2.3.3 I-LtrI H1-IR Library 
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Figure 2. Structure of I-LtrI (silver, PDB 3R7P) to DNA (yellow) in the presence of 

divalent cation cofactors (red spheres). A) Plain view of I-LtrI's structure. B) I-LtrI's 

structure rotated 90° clockwise and zoomed in for emphasis to show the residues that were 

randomized in the H1-IR library. The following residues have their side chains displayed 

and are highlighted for contrast: S20 is coloured pink, W22 is coloured light blue, T23 is 

coloured purple, and T64 is coloured lime green.   
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This I-LtrI library is randomized to all 20 amino acids at positions 20, 22, 23 and 64, and 

was likewise ordered as a gene block from IDT and cloned into pEndo by Dr. McMurrough 

(unpublished data).  Positions 20, 22, and 23 are located within the N-terminal alpha-helix 

of the protein and are near the interface between the two domains of I-LtrI. Position 64 is 

located in the second alpha-helix and is a conserved residue according to an alignment done 

by Baxter et al. (2012)39. These positions should play a role in inter-domain stability and 

intra-domain stability, similarly making this library a potential source of thermosensitive 

mutants. This library contains 160,000 variants. 

2.3.4 H1-IR-RND and FLL_E-RND Combination Library  

The point mutation library of I-LtrI library was combined by co-culturing with the I-LtrI 

H1-IR and FLL_E libraries to create a combined library that was passaged through the dual 

plasmid-selection screens.  
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.  Figure 3. Maps of the plasmids used in the two-plasmid screen. A) pEndo (5.0 kb) 

construct containing required components for arabinose inducible LAGLIDADG homing 

endonuclease expression. This plasmid also contains the AmpR selectable marker for 

ampicillin resistance. B) pCcdB (4.5 kb) construct with the necessary components to act 

as an IPTG inducible CcdB based negative selection for the two-plasmid screen. This 

plasmid contains the KanR selectable marker for kanamycin resistance, as well as the 

LAGLIDADG homing endonuclease cut sites. Finally this plasmid also contains a CEN-

ARS-His element from propagation in yeast. Diagrams are not to scale 
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2.4 Two-plasmid Screen 

Thermosensitive variants are identified using an E.coli two-plasmid selection system 

where one plasmid (pEndo) expresses the LHE libraries (Fig1A). The pCcdB plasmid 

contains ccdB that binds to DNA gyrase to inhibit DNA replication53. This selection is, 

therefore, bacteriostatic. pCcdB also includes the sequence of the recognition sites for the 

endonuclease expressed from pEndo. Cells survive the selection if the endonuclease 

cleaves its target on pCcdB, linearizing the plasmid and promoting its degradation. This 

two-plasmid screen is an adaption of the version previously used by McMurrough et al. 

(2014); for the original version of this screen, see Chen & Zhao (2005)46,54. 
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Figure 4. Workflow of the two-plasmid screen used to identify thermosensitive LHE 

variants. M9 selective plates contain 100 µg/ml carbenicillin, 0.2% arabinose, and 0.4 

mM IPTG. M9 non-selective plates contain 100 µg/ml carbenicillin, and 0.2% glucose. 
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2.4.1 Initial Dual Plasmid Screen 

50 μL of calcium chloride competent Nova XGF' E. coli cells harbouring pCcdB with 

appropriate target sites were transformed with 50 ng of the library by a standard 45 second 

42°C heat shock protocol. The mixture was recovered for 1 hour at 37°C in 1 mL of 2xYT, 

and 100 µL of the mixture was plated on 2xYT plates containing 100 µg/ml ampicillin and 

50 µg/ml kanamycin and incubated overnight at 37°C. The wild-type positive control was 

plated on a 2xYT plate containing only 100 µg/ml ampicillin to obtain colonies (the 

positive control won't grow on double selection). E. coli transformants were screened by 

picking colonies from the 2xYT plate onto two selective M9 minimal media plates 

followed by incubation of one plate at 37°C and the second plate at 25°C. A fresh pipette 

tip was used to pick each colony. Putative thermosensitive endonuclease variants will 

promote E. coli growth at 25°C, but not at 37°C.  

2.4.2 Confirmatory Dual Plasmid Screen 

Putative clones were picked, grown overnight at 37°C in 2xYT media with ampicillin (100 

µg/ml), as well as 0.2% glucose, and were re-screened to confirm temperature dependence. 

Plasmid DNA was isolated, and 50 ng was transformed into 50 µL of calcium chloride 

competent Nova XGF' pCcdB E. coli cells. Following a 1-hour recovery at 37°C, the 

culture volume was split in half. In one culture the endonuclease on pEndo was induced 

using 0.2% arabinose while under ampicillin selection (100 µg/ml) at 25°C for 2.5 hours, 

and 37°C for 1.5 hours, respectively. The other culture contained 0.2% glucose to repress 

expression. After induction, 100 µL of each mixture was plated on selective M9 plates, and 

a non-selective plate. The two plates corresponding to the 37°C culture incubated at 37°C 

for 16 hours, and the two plates corresponding to the 25°C culture incubated at 25°C for 

48 hours. 
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2.4.3 Survival Rate Calculation 

The survival rate was calculated for each temperature taking the ratio of the number of 

colony-forming units on the selective plate by the number of colony-forming units on the 

non-selective plate, multiplied by a hundred to obtain a percentage of survival for that 

temperature. 

2.5 Repair of the pCcdB Origin 

The pUC origin of replication from pMSP3535 (Addgene catalogue #46886) was amplified 

using primers that gave the insert 40 bp of overlap to that of pCcdB to create an origin that 

was reported to be capable of maintaining the same copy number at 25°C and 37°C55. The 

ColE1 origin of pCcdB was removed using an AattII (NEB catalogue #R0117S) and SacII 

(NEB catalogue #R0157S) double digest in NEB Cutsmart buffer for 1 hour at 37°C. These 

two fragments were then used for Gibson Assembly, as demonstrated in section 2.2. 

2.6 Protein Purification  

I-OnuI wild-type and I-OnuI G177A were previously cloned into pPROEX HTa 

(Invitrogen and Life Technologies) via its unique NcoI and NotI sites by Dr. 

McMurrough38. I-OnuI P14Q was cloned into pPROEX HTa using the same method. The 

three 6x-histidine-tagged I-OnuI variants were transformed individually into ER2566 cells 

(New England Biolabs). A 25 mL starter culture of each were grown overnight at 37°C to 

saturation in LB containing ampicillin (100 µg/ml) and 0.2% glucose. These starter cultures 

were then used to each inoculate 975 mLs of LB containing ampicillin (100 µg/ml) and 

grown to an OD600 of 0.6 at 37°C. Once an OD600 of 0.6 was reached, 1 mL of 1M IPTG 

(final concentration 1mM IPTG) was added to each of the cultures, followed by 16 hours 

of incubation at 16°C.  The cells were then harvested via centrifugation at 6,000xg, 4°C 

for 15 minutes. The resultant pellets were resuspended (40 mL/g) in binding buffer (50 

mM Tris⋅HCl, pH 8.0, 500 mM NaCl, 1 mM imidazole, and 10% glycerol), as well as 

supplemented with EDTA-free Protease Inhibitor Cocktail (Roche, 1 tablet per 50mL) and 

PMSF Protease Inhibitor (Thermo Scientific, final concentration: 0.4 mM.) The 

resuspended cell pellets were then lysed using an EmulsiFlex-C3 high-pressure 

homogenizer. The lysed cell solutions were then ultra-centrifuged at 29,000xg, 4°C for 30 
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minutes. The supernatants were loaded onto Ni2+-NTA resin. The resin was washed with 

wash buffer (50 mM Tris⋅HCl, pH 8.0, 500 mM NaCl, 35 mM imidazole, and 10% 

glycerol), and the bound protein was eluted in 6x1 mL fractions using elution buffer (50 

mM Tris⋅HCl, pH 8.0, 500 mM NaCl, 500 mM imidazole, and 10% glycerol.) The 6 

fractions for each I-OnuI variant were pooled, dialyzed in dialysis buffer (50 mM Tris⋅HCl, 

pH 8.0, 250 mM NaCl, 30 mM imidazole, and 10% glycerol), and the N-terminal 

6xhistidine tags were concomitantly cleaved using TEV protease (1:25 TEV to I-OnuI 

molar ratio.) This was done first for 1 hour at 25°C, followed by 16 hours at 4°C. The 

cleaved I-OnuI products in dialysis solution were then dialyzed into binding buffer (50 mM 

Tris⋅HCl, pH 8.0, 500 mM NaCl, 1 mM imidazole, and 10% glycerol) for 4 hours at 4°C. 

The resultant cleaved I-OnuI products with TEV were then loaded onto Ni2+-NTA resin, 

and their flow-through's were collected and dialyzed into storage buffer (50 mM Tris⋅HCl, 

pH 8.0, 25 mM NaCl, 1 mM DTT, and 10% glycerol) for 16 hours at 4°C. Following 

dialysis into storage buffer, size-exclusion chromatography using an AKTA Superdex 200 

Increase 10/300 GL column (GE product ID 28-9909-44) was performed at a flow rate of 

0.2 mL/minute, and 1 mL fractions were collected. These final fractions were then stored 

at -80°C.  

2.6.1 Second Purification of I-OnuI P14Q 

I-OnuI P14Q was purified a second time as above with some minor changes. The wash 

solution used contained 50 mM Tris⋅HCl, pH 8.0, 2 M NaCl, 35 mM imidazole, and 10% 

glycerol. Also, 6 x 2 mL fractions were collected. Finally, size exclusion was not performed 

following Ni2+-NTA immobilized metal affinity chromatography (IMAC). 

2.7 In Vitro Cleavage Assay 

I-OnuI WT, G177A, and P14Q variants were diluted to 4 µM (10x) working concentrations 

using storage buffer. A 4x reaction mixture (200 mM Tris⋅HCL (pH 8.0), 400 mM NaCl, 

40 mM MgCl2, 4 mM DTT) was mixed with the appropriate volume of pCcdB and sterile 

double deionized H2O to bring the reaction mixture to 1.11x and the concentration of 

pCcdB to 11.1 nM. Aliquots of the reaction mixture with pCcdB and the 10x protein 

samples were then incubated separately at 25°C and 37°C for 5 minutes. This assay was 

performed in parallel at 25°C and 37°C at final concentrations of 10 nM of pCcdB, and 
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400 nM of either I-OnuI WT (fraction 20), I-OnuI G177A (fraction 48), and I-OnuI P14Q 

(fraction 72) for the first 3 replicates. The 4th replicate was performed the same way except 

that the final fraction from the second purification of I-OnuI P14Q was used. The final 

composition of the reaction mixture was 50 mM Tris⋅HCL (pH 8.0), 100 mM NaCl, 10 

mM MgCl2, 1 mM DTT. The assay was stopped at 5 time points using a 2x stop solution 

(200 mM EDTA, 30% glycerol, 0.2% SDS, and bromophenol blue) and incubated at 50°C 

for 5 minutes.  

Reactions performed at 25°C were stopped at 0 minutes, 15 minutes, 30 minutes, 60 

minutes, and 120 minutes. Reactions performed at 37°C were stopped at 0 minutes, 5 

minutes, 15 minutes, 30 minutes, and 60 minutes. The percent coiled, open circle, and 

linear products were measured based on the corresponding band intensity of a 1% agarose 

as determined using the BioRad Image Lab Software v6.0.1.  

2.8 Golden Mutagenesis  

The three I-OnuI mutants (GGA2, CCG14CAG), (GGA2GGC, CAG14), and (GGC2, 

CAG14CCG) were created sequentially from WT I-OnuI (GGA2, CCG14) via golden 

mutagenesis. This was done using PCR to insert the mutation and a type IIS restriction 

enzyme site into the region where the desired mutation is to be created in a circular vector. 

(The primers used can be found in Appendix A.) Following PCR, 300 ng of the resultant 

linear DNA piece is added to a solution containing 2 µL of T4 DNA ligase buffer (NEB 

catalogue #M0202), 1 µL of T4 DNA ligase (NEB catalogue #M0202), 2 µL of 1 µg/µL 

BSA, 1 µL of BsmBI (NEB catalogue #R0580) in a fresh PCR tube on ice. This mixture is 

then filled to a total volume of 15 µL using sddH2O and mixed via gentle pipetting. The 

PCR tube containing all the above components was transferred to a thermocycler. The 

thermocycler protocol used was 37°C for 2 minutes, followed by 20°C for 5 minutes. These 

two steps were repeated 40 times and finished with a heat deactivation at 80°C for 20 

minutes. Finally, 2.2 µL of the golden mutagenesis reaction was transformed into 50 µL of 

CaCl2 competent cells via a standard heat shock transformation protocol. This is a modified 

protocol of the one described by Püllmann et al56. 
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2.9 Data Analysis  

All graphs and charts presented were generated in R studio. Means and sample standard 

deviations (represented by the error bars) shown on the in vitro cleavage charts were 

calculated in Excel. R studio's base functions were used for performing one-way ANOVA 

and Tukey post hoc tests, and the data used for these tests was the raw data (not the mean 

or standard deviations calculated in Excel). In all cases, the α value chosen was 0.05.  

2.10  Protein Structure Models 

The protein structure models presented in this study were generated using PyMol to 

render the individual Protein Data Bank (PDB) files specified in each figure legend.  
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Chapter 3 

3 Results 

3.1 Development of a Two-Plasmid Screen that Works at                                       
__25°C and 37°C  

3.1.1 Identification of a Problem with pCcdB 

To identify thermosensitive LAGLIDADG homing endonucleases, a two-plasmid based 

survival assay based on the bacteriostatic properties of CcdB was selected based on 

previous applications to LAGLIDADG homing endonucleases38,46. To test the 

functionality of this assay at 25°C and 37°C pEndo I-Ltr and pCcdB in control experiments 

anticipating that I-LtrI WT should function at both 25°C and 37°C. As shown in Figure 5, 

I-Ltr WT survived at both temperatures. However, the negative controls (I-LtrI G185Aand 

the empty vector) could survive on selective media at 25°C but not at 37°C (Fig. 5). This 

meant that thermosensitive variants could not be distinguished from background growth. 

Sequencing of the CcdB regions of pCcdB revealed a G→A transition at position 229, 

resulting in a glycine to glutamate substitution mutation. Isolation of a clone of pCcdB 

without the G229A mutation did not resolve the issue of I-LtrI G185A and the empty vector 

surviving at 25°C (Fig. 6). 
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 Figure 5. Two-plasmid selection using pCcdB (G299A) illustrates a problem with 

the screen at 25°C. Two-plasmid selection was performed using Nova XGF’ E. coli cells 

carrying pEndo I-LtrI WT, G185A, or an empty pEndo backbone at 37°C (red triangles) 

and 25°C (blue inverted triangles). Each point represents an independent experiment.   
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 Figure 6. Two-plasmid selection using pCcdB (G229A) continues to display a 

problem with the screen at 25°C. Two-plasmid selection was performed using pCcdB 

Nova XGF’ E. coli cells carrying pEndo I-LtrI WT, G185A, or an empty pEndo 

backbone at 37°C (red triangles) and 25°C (blue inverted triangles). Each point in a 

column represents an independent experiment. 
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3.1.2 Insertion in the RNAII region of the ColE1 promoter within 
pCcdB  

Following the isolation of a version of pCcdB without point mutation in the ccdB gene, 

sequencing revealed a 24 base pair insertion into the RNAII region of the ColE1 origin of 

pCcdB. Removing the origin containing the 24 base pair insertion and replacing it with a 

pUC origin resolved the problem of the negative control having a non-zero survival rate at 

25°C. Replacing the origin resulted in approximately 100% survival of the wild-type and 

approximately 0% survival of the slow (I-LtrI G185A) enzymes at both temperatures (Fig. 

7). The replacement origin was intended to be a pBR322ΔROM origin, which has been 

noted to be stable by Kobayashi et al., the key -444 base pair was a thymidine, not cytosine, 

resulting in a pUC origin55. The unintended base-pair difference resulted from an error in 

the reported sequence for pMSP3535 used to create the replacement origin of replication 

and not a mutation during Gibson Assembly. 
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  Figure 7. Two-plasmid selection using pCcdB with a pUC origin sequence devoid of 

an insertion.  Two-plasmid selection was performed using pCcdB Nova XGF’ E. coli 

cells carrying pEndo I-LtrI WT or G185A at 37°C (red triangles) and 25°C (blue inverted 

triangles). Each point in a column represents an independent experiment. 
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3.2 Creating and Screening LHE Mutagenic Libraries 

3.2.1 LHE Mutagenic Library Complexity and Features  

Libraries were created using mutagenic PCR to introduce random mutations in the I-OnuI, 

I-LtrI, and I-HjeMI coding sequences. The resultant libraries had theoretical complexities 

in the range of approximately 21,000-53,000 variants (Table 1). Four clones sequenced 

from each library displayed relatively balanced rates of transitions to transversions, except 

for the I-OnuI clones that have approximately twice as many transitions (Table 2). Most 

mutations result in non-synonymous mutations and low rates of non-sense mutations 

(Table 2). The I-LtrI library was combined with the I-LtrI FLL_E library and I-LtrI H1-IR 

library to create a library with a theoretical complexity of approximately 189,000.  

 

  



30 

 

 

 

 

 

 

 

 

Table 1. Library theoretical complexity based on CFUs after transformation of 

ligation mixtures.  Library complexity was calculated as described in section 2.3.1. 

Group Complexity  

l-OnuI randomized  21,088 

I-LtrI randomized 52,759 

l-HjeMI randomized 26,448 
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Table 2. Sanger sequencing of 4 clones from each library.  

Group Transversion:Transition Synonymous 

Non-

synonymous 

Non-

sense 

l-OnuI randomized 0.55:1 23.5% 76.5% 0% 

I-LtrI randomized 1.09:1 12% 84% 4% 

l-HjeMI randomized 1.08:1 19.2% 69.3% 11.5% 
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3.2.2 Identification of a Thermosensitive I-OnuI Variant  

A total of 2,600 colonies were passaged through the initial screen; however, this only 

resulted in 2 potential hits from the I-OnuI library to later be passaged through the 

confirmatory screen (Table 3). These resulted in one low quality hit, and one high quality 

hit that warranted sub-cloning and further investigation (Table 4). Despite considerable 

effort, the I-LtrI and I-HjeMI libraries did not yield any potential hits. To screen for 

thermosensitive variants, I-OnuI, I-LtrI, and I-HjeMI libraries were independently 

transformed into E. coli harbouring pCcdB (fixed origin) and colonies were screened at 

25°C and 37°C (Table 3). This initial screen of 608 independent I-OnuI library 

transformants resulted in 12 potential hits. Screening of 1308 and 684 independent colonies 

from the I-LtrI and I-HjeMI libraries resulted in no potential hits.  

 

The 12 preliminary I-OnuI hits were screened again by isolating pEndo from each clone 

and transforming into naive E. coli pCcdB (fixed origin). This secondary screen revealed 

that 2 of 12 clones showed thermosensitive growth (Table 4). Sequencing of these clones 

revealed one with a P14Q substitution and the other with S42Y, F116S, and K150T 

substitutions (Table 4). The I-OnuI P14Q displayed better temperature dependence, with 

0% survival at 37°C and 100% survival at 25°C, and was thereby selected for further study.  
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Table 2. Colonies screened in the initial and confirmatory screens.  

Group Colonies Screened Potential Hits Confirmed hits 

I-OnuI randomized 608 12 2 

I-LtrI combined library 1308 0 0 

I-HjeMI randomized 684 0 0 
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Table 3. Survival rates of two I-OnuI hits in a confirmatory screen. This table is 

displaying data from 3 independent replicates. Note: Higher than 100% survival rates result 

from fewer colonies surviving on the non-selective M9 plates. This effect is likely partially 

due to leaky CcdB expression or the extra metabolic stress of carrying two plasmids. Also, 

the LHE would be repressed on these plates, and therefore less able to remove them 

compared to the selective condition.  

Group 
Survival % 

25°C   37°C 

Wild-type I-OnuI 108.7 82.3 

I-OnuI P14Q 101.8 0 

I-OnuI S42Y, F116S, K150T 29.2 0 

Empty Vector 0 0 
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3.2.2.1 I-OnuI P14Q Appears to be a Thermosensitive Ideal 
Candidate In Vivo Based on the Two-Plasmid Screen.  

I-OnuI P14Q proved to be an exciting prospect, displaying ideal properties (Fig. 8). This 

I-OnuI variant displays 0% survival at 37°C and approximately 100% survival at 25°C. I-

OnuI P14Q behaved the same as the wild-type I-OnuI enzyme at 25°C (p=0.325, Fig. 8B), 

and the same as G177A slow mutant or empty vector at 37°C (p=0.999, Fig 8A). As a 

result, I-OnuI P14Q was prepared for further investigation in vitro. 
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  Figure 8. Two-plasmid selection using pCcdB with the corrected origin sequence 

identifies I-OnuI P14Q as a hit. Two-plasmid selection was performed using pEndo 

Nova XGF’ E. coli cells carrying pEndo I-OnuI WT (N=8),  P14Q (N=8), G177A (N=3), 

and the empty vector (N=5) at 37°C (panel A, red triangles). and 25°C (panel B, blue 

inverted triangles.) Significant differences (p<0.05, Tukey’s post hoc test) between I-OnuI 

variant’s percent survival are indicated by (*, **). Each point in a column represents an 

independent experiment 
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3.3 Purification of I-OnuI WT, I-OnuI G177A, and I-OnuI 
P14Q. 

The I-OnuI P14Q mutation is located at the top of the first α-helix that forms the enzyme's 

structured core (Fig 9). Therefore, it was anticipated that the P14Q mutation would result 

in temperature-sensitive activity in vitro due to misfolding. The P14Q variant was sub-

cloned from pEndo into a bacterial expression vector to test this supposition. The protein 

was purified using metal affinity and size-exclusion chromatography. The I-OnuI WT and 

G185A variants were also purified for comparative cleavage assays  
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Figure 9. Structure of I-OnuI (green, PDB 3QQY) to DNA (yellow) in the presence 

of a divalent cation cofactor (red sphere). Residue P14's side chain is displayed and 

coloured magenta for emphasis. 

 

  



39 

 

3.3.1 Nickel-nitrilotriacetic Acid Immobilized Metal Affinity 
Chromatography based Purification of I-OnuI WT, I-OnuI 
G177A, and I-OnuI P14Q.  

Following the identification of a putative thermosensitive I-OnuI variant, in vitro cleavage 

assays were performed. The coding sequence of the P14Q variant of I-OnuI was moved 

into a vector with a 6x his tag and purified. The 6x his tagged P14Q variant of I-OnuI was 

expected to be 38 kDa, and TEV was expected to be 27 kDa. The final product for each 

variant (35 kDa) was not considered pure enough for downstream work, and therefore 

another subsequent purification by size-exclusion chromatography was performed (Fig. 

10). 
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 Figure 10. Nickel-nitrilotriacetic acid immobilized metal affinity chromatography-

based protein purification of (A) I-OnuI wild-type, (B) I-OnuI G177A, and (C) I-

OnuI P14Q. I-OnuI wild-type, I-OnuI G177A, and I-OnuI P14Q proteins were purified 

as per methods section 2.6 Protein Purification. Protein species were resolved on SDS-

PAGE and visualized with Coomassie blue. A BLUelf pre-stained protein ladder was 

used (FroggaBio catalogue #PM808-0500G). The expected molecular weights of 6xhis + 

I-OnuI, I-OnuI, TEV, and 6xhis are 38 kDa, 35 kDa, 27 kDa and 3 kDa respectively. 

Abbreviations: TSE- total sample extract, IMAC- immobilized metal affinity 

chromatography, TEV- tobacco etch virus. 
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3.3.1.1 Size-Exclusion Chromatography based Purification of I-OnuI 
WT, I-OnuI G177A, and I-OnuI P14Q. 

Size-exclusion fractions from wild-type I-OnuI protein purification elucidated which 

subsequent fractions of I-OnuI G177A and I-OnuI P14Q would be worth retaining (Fig. 

11A). The fractions with the least contaminants based on banding patterns were retained 

for subsequent work (Fig. 11B). Fractions 18 and 19 were pooled, as were fractions 20 and 

21 based on their similar appearance (Fig 11B). This was also done for fractions: 46 and 

47.  
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Figure 11. SDS-PAGE visualization of size exclusion chromatography (SEC) 

fractionation of (A) I-OnuI wild-type identified 18 mL retention volume of I-OnuI, 

which was (B) sampled in subsequent SEC of I-OnuI wild-type, I-OnuI G177A, and 

I-OnuI P14Q. After affinity chromatography, SEC was used to further separate larger 

molecular weight species. Fractions were collected as per methods section 2.6 Protein 

Purification. Protein samples were injected sequentially after allowing 0.5 column 

volumes of buffer to ensure the previous sample had eluted completely. Fraction numbers 

are indicated by the letter F at the top of the gels. For clarity, I-OnuI WT fractions 

correspond in panels (A) and (B). Protein species were resolved on SDS-PAGE, 

visualized with Coomassie blue staining, and a BLUelf pre-stained protein ladder was 

used (FroggaBio catalogue #PM808-0500G). The expected molecular weight of I-OnuI is 

35 kDa. 
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3.3.2 Second Nickel-nitrilotriacetic Acid Immobilized Metal Affinity 
Chromatography based Purification of I-OnuI P14Q 

I-OnuI P14Q was purified a second time to have another independent sample of this mutant 

protein. Using a high salt wash during this purification appears to have helped get the 

protein pure enough that size-exclusion chromatography was not required (Fig.10, Fig. 12). 

There was also less precipitation noticed during dialysis of this purification of I-OnuI 

P14Q.   
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Figure 12. Second nickel-nitrilotriacetic acid IMAC based purification of I-OnuI 

P14Q. I-OnuI P14Q was purified as described in methods and was monitored by removing 

samples at the indicated points in the process. Protein species were resolved on SDS-

PAGE, visualized with Coomassie blue staining, and a PiNK PLUS pre-stained protein 

ladder was used (GeneDireX catalogue #PM005-0500). Abbreviations: TSE- total sample 

extract, IMAC- immobilized metal affinity chromatography, TEV- tobacco etch virus 
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3.4 In Vitro Cleavage Assays Revealed No Temperature 
Dependence of I-OnuI P14Q Activity 

After protein purification, wild-type I-OnuI and I-OnuI P14Q were assayed against their 

target, pCcdB, in vitro at 25°C and 37°C (Fig. 13). The cleavage reaction appears to 

proceed through a nicked intermediate before arriving at a linear product. The nicked 

intermediate is especially apparent for I-OnuI P14Q at time points under 30 minutes at 

25°C and 37°C, causing a lower percentage of linear products (Fig. 13B, Appendix E). In 

contrast to what would be expected based on the in vivo data, there was no statistical 

difference in the rate of cleavage between wild-type I-OnuI and I-OnuI P14Q at 37°C in 

vitro (p<0.05, Fig. 19A). Purified wild-type I-OnuI and I-OnuI P14Q display rates that are 

statistically different from the purified slow mutant (I-OnuI G177A)  at both temperatures 

but not significantly different from each other at 25°C or 37°C (p<0.05, Fig. 14). This 

suggests that the protein product of I-OnuI P14Q is not responsible for the thermosensitive 

properties it displays in vivo.  
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Figure 13. In vitro cleavage assay workflow (panel A) and sample gel (panel B). A) a 

cartoon representation of the in vitro cleavage assay workflow where pCcdB and an I-OnuI 

variant are mixed in a reaction solution and then stopped at various time points as described 

in the methods section. B) Sample in vitro cleavage assay agarose gels of I-OnuI WT and 

P14Q at 25°C and 37°C. These are 1% agarose gels, run at 60V until resolved, then stained 

in RedSafe Nucleic Acid Staining Solution (FroggaBio catalogue #21141), and destained 

in 1x TAE. 
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Figure 14. In vitro cleavage assay using purified I-OnuI variants targeting pCcdB 

showed few differences between I-OnuI and P14Q at both temperatures. In vitro 

cleavage assays were performed as described in methods using purified I-OnuI WT (N=4, 

black circles),  P14Q (N=4, blue circles), and G177A (N=4, orange circles) at 37°C (panel 

A). and 25°C (panel B). Means are represented by the points on the graph, and error bars 

correspond to +/- 1 standard deviation. Significant differences (p<0.05, Tukey’s post hoc 

test) between I-OnuI variant’s generated linear DNA percent are indicated by (*, **, ***). 
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3.5 A Silent Nucleotide Substitution in Codon 2 of I-OnuI 
Determines Temperature Sensitivity 

To further understand how I-OnuI P14Q displayed temperature sensitivity in the two-

plasmid assay but not in vitro, the nucleotide sequence of P14Q was examined. In addition 

to the C→A transition that changes codon 14 from proline to glutamine (CCG→CAG), an 

additional A→C transition was found in the third position of the second codon 

(GGA→GGC) that specifies glycine. This nucleotide substitution does not change the 

codon identity. All three possible mutations of these two codons were constructed to test 

the impact on I-OnuI P14Q temperature sensitivity (Table 5). 

The in vitro cleavage assay results indicated that the protein sequence is likely not what 

was causing the thermosensitive property of I-OnuI P14Q in vivo. All 3 permutations were 

explored in an in vivo survival assay to investigate whether it was one of the mutations 

themselves or their combination that was responsible for the thermosensitive property 

(Fig.15). The only variant that was significantly different from the wild-type at 37°C was 

the one identified initially using the two-plasmid assay that contained both mutations 

(p=0.000, GGA2GGC, CCG14CAG, Fig. 15A). This result shows that both point 

mutations are involved in the thermosensitive behaviour of I-OnuI P14Q. 
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Figure 15. Two-plasmid selection showing that both mutations in I-OnuI P14Q 

(GGA2GGC, CCG14CAG) are required for its thermosensitive properties. The two-

plasmid selection was performed using pEndo Nova XGF’ E. coli cells carrying pEndo I-

OnuI WT (N=3),  I-OnuI P14Q minus the silent mutation (CCG14CAG, N=3), the I-

OnuI P14Q variant originally identified (GGA2GGC, CCG14CAG, N=3), I-OnuI with 

only the silent mutation in codon 2 (GGA2GGC, N=3), and I-OnuI G177A (N=3) at 

37°C (panel A, red triangles) and 25°C (panel B, blue inverted triangles). Significant 

differences (p<0.05, Tukey’s post hoc test) between I-OnuI variant’s percent survival are 

indicated by  (*, **). Each point in a column represents an independent experiment. 
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Table 5. Changes in I-OnuI at codons 2 and 14 influence thermosensitivity in a 

survival assay. This table is displaying data from 3 independent replicates. Note: the first 

row corresponds to the wild-type enzyme. 

  

Codon 2 

 Mean Survival %  

Codon 14 25°C   37°C 

GGA CCG 98.8 98.8 

GGA CAG 99.1 99.7 

GGC CAG 95.8 1.2 

GGC CCG 99.7 99.2 
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Chapter 4 

4 Discussion and Future Directions  

4.1 Development of a Two-Plasmid Screen that Works at 
25°C and 37°C  

Elucidating why the two-plasmid screen behaved in a porous manner at 25°C proved 

difficult (Fig. 5, Fig. 6). Given that a G100E mutation in ccdB is a known inactivating 

mutation, it was a logical explanation57. When removing the mutation did not resolve the 

issue, the fact that the problem was temperature-dependent was considered. This led to the 

discovery of the insertion in the origin of pCcdB.  Specifically, a 24 base pair insertion into 

the RNAII region of pCcdB's ColEI1 origin of replication proved to be the cause of the 

two-plasmid screen's disruption at 25°C (Fig. 7). RNAII initiates the replication of the 

leading strand on ColE1 origins, and it is plausible that an insertion here might disrupt this 

process in various ways, including the temperature of melting (Tm), secondary structure, 

or binding affinity to downstream enzymes55,58,59.  

However, the way it disrupted the screen hints at the possibility of using origins of 

replication in the ColE1 family with mutations to the RNAII regions as a different means 

of thermosensitive biocontainment. Plasmid copy number is inherently thermosensitive, 

which could suggest that alterations in that region amplify that property55,59,60.  

4.2 Creating and Screening LHE Mutagenic Libraries 

Admittedly, the libraries could have had higher complexities, but the complexities 

generated have proved sufficient thus far (Table 1). The randomized libraries have a largely 

balanced transition to transversion rate based on the clones sequenced, allowing an 

unbiased sampling of the available protein space (Table 2). While the clones sampled from 

the I-OnuI library have approximately twice the rate of transitions as transversions; this is 

likely due to random error when compared to the other two libraries and the Stratagene 

manual51. 

After screening 2600 clones in the initial screen, only 12 candidates were found, and they 

were all I-OnuI variants (Table 3). This might be related to the I-OnuI library being smaller, 
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therefore making the variants easier to find, and some luck that the correct variant existed 

in the smaller library. Of those 12, only 2 proved to have a survival percent of 0 at 37°C 

(Table 4). Between those two candidate I-OnuI variants, the best one was selected for 

subcloning and further validation (Table 4). I-OnuI P14Q behaved superbly in the in vivo 

assay after being subcloned into a new pEndo backbone, providing precisely the parameters 

that one would hope for when creating a thermosensitive biocontainment LHE. It displayed 

0% survival at 37°C and approximately 100% survival at 25°C (Fig. 8). 

4.3 Purification of I-OnuI WT, I-OnuI G177A, and I-OnuI 
P14Q. 

Purification of the wild-type I-OnuI enzyme proved to be difficult as it did not purify as 

well as the other two mutants during size exclusion chromatography (Fig 11). This may 

hint at the wild-type binding the DNA target more tightly than I-OnuI G177A and P14Q, 

although it is difficult to say without a controlled experiment with loading controls 

included. It is clear that the general problem in the first round of purifications was the lack 

of a high-salt wash to remove DNA, as I-OnuI is a DNA binding protein, and the addition 

of a high-salt wash removed a lot of contaminants (Fig 10., Fig. 11,  Fig 12)39,43,46.  

4.4 In Vitro Cleavage Assay with WT I-OnuI, P14Q, and 
G177A. 

The observation that the I-OnuI cleavage reaction appears to proceed through a nicked 

intermediate is in line with previous data on I-OnuI and other LHEs (Fig. 13B, Appendix 

E)38,61–67. A plausible explanation for I-OnuI P14Q's observed thermosensitivity in vivo 

would be the mutation in position 14, which destabilizes the N-terminal domain via the 

interfacial α-helix. Suppose the thermosensitive properties of I-OnuI P14Q were a result of 

changes in enzyme kinetics or folding at 37°C. In that case, these changes should be 

noticeable during an in vitro cleavage assay using the purified protein and its cognate 

target. In such a case, given the open circle intermediate transition to a final linear product, 

one would expect an accumulation of open circle product, and finally, less linear product. 

However, at both 25°C and 37°C, we fail to reject the null hypothesis that purified I-OnuI 

P14Q behaves differently than the wild-type enzyme (Fig. 13, Fig. 14). This would suggest 

that the thermosensitive property of I-OnuI is not a result of changes to the protein.  
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4.5 Two Codon Assay 

Following the in vitro cleavage assays, it became clear that there must be another cause for 

the thermosensitive properties I-OnuI P14Q displayed in vivo. After re-examining the 

coding sequence of P14Q, it became apparent that there was a silent mutation added to 

codon 2's 3rd position (GGA2GGC). This mutation was added via the primer DE1268 used 

to create the mutant libraries. Both the synonymous GGA2GGC mutation and the non-

synonymous P14Q mutation (CCG14CAG) were screened individually and compared to 

the mutant identified via the two-plasmid screen (GGA2GGC, CCG14CAG, Fig 15). 

Given that the in vitro cleavage assay showed that the protein itself was not responsible for 

the thermosensitivity of I-OnuI P14Q, it was unsurprising that both mutations were 

required for I-OnuI P14Q (GGA2GGC, CCG14CAG) to behave in a thermosensitive 

manner (Fig. 15, Table 5).  

4.6 Suggestions for further studies 

Future studies should attempt to elucidate the specific mechanism that gives I-OnuI P14Q 

its thermosensitive properties. To this end, the amount of transcript available to the cell at 

each temperature should be investigated using reverse transcriptase quantitative PCR. 

Additionally, an inquiry into the level of protein available using Western blot is required 

to compare them to the transcript levels between 25°C and 37°C. If the specific means by 

which thermosensitivity is conferred to I-OnuI P14Q becomes apparent after that, it should 

be possible to port this mechanism to I-LtrI and I-HjeMI. Next, it remains to be seen 

whether a thermosensitive LHE can be used in the context of other promoters or origins of 

replication. Furthermore, it is unclear whether thermosensitive LHEs can target the vector 

expressing them, and what the escape frequency would be under the context of self-

targeting.  

Finally, whether a self-targeting thermosensitive LHE could provide a useful means of 

containing a bacterial host to a living system remains to be seen as well. This final test 

could be done by gavaging mice with E. coli carrying a self-targeting (this would require 

moving the I-OnuI target sequence onto the same vector) version of pEndo-P14Q under 

control of a pBAD promoter grown up overnight in 2xYT and 0.2% glucose at 37°C. At 

various time points after gavaging, stool samples could be collected, serially diluted, and 
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quickly plated. Two types of plates would be needed: 100 µg/mL ampicillin and 0.2% 

arabinose, and 100 µg/mL ampicillin and 0.2% glucose. These plates would then be left 

at room temperature for 48 hours, and their survival rate could be calculated. This test 

would be similar to the one performed by Stirling et al. (2017)23. 

4.7 Conclusion 

Before this line of inquiry, most attempts at biocontainment have followed the same 

previously existing conventions, and instead of getting simpler and more modular, attempts 

at reducing escape rates were becoming increasingly complex. Most attempts at 

biocontainment share the same fundamental flaws of their predecessors. Additionally, 

these increases in complexity also increased the size of the biocontainment module. An 

ideal biocontainment method would be more straightforward and controlled by an inherent 

indicator of environmental escape, such as how a drop in temperature would indicate an 

escape from containment for many bacteria relevant to health and industry. A pertinent 

example application in the short-term for I-OnuI P14Q is a thermosensitive containment 

module on Hamilton et al.'s (2019) conjugative cas9 plasmid to eliminate bacterial 

infections in the gut25. Indeed, if this turns out to be a small temperature-sensitive module 

that is also reliable and resistant to inactivation, it would be an ideal candidate for many 

health-related and industrial applications of synthetic biology.  

A thermosensitive variant of a LAGALIDADG Homing Endonuclease (LHE) and its 

cognate target site would meet these requirements. This research has identified a strong 

candidate for temperature-based biocontainment to prevent escape from a 37°C incubator 

(or a living organism) to an environment at room temperatureIV. However, the exact 

mechanism responsible for I-OnuI P14Q's (GGA2GGC, CCG14CAG) thermosensitive 

property seen in an in vivo two-plasmid screen remains undetermined. The possible 

 

IV
 Important note: during the in vivo two-plasmid screen the LHE is targeting a bacteriostatic toxin-producing plasmid. 

So, 100% survival at 25°C in the two-plasmid screen would translate to 100% cleavage at 25°C when being used as a 

biocontainment mechanism. The same would be true for 0% survival in the two-plasmid screen at 37°C, where that would 

translate to 0% cleavage at 37°C when the LHE is employed as a biocontainment mechanism. 
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explanations include changes to the rate of transcription, changes in transcript stability, or 

changes in the translation rate.  It is a promising candidate that deserves further inquiry. 
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Appendices 

Appendix A: List of Primers  

Primer 

Name 

Sequence (5' to 3') Description 

DE 704 CCATAAGATTAGCGGATCCTACCTG Forward 

sequencing 

primer for the 

multicloning 

region of 

pEndo 

DE 705 CGGGAAGATGCGTGATCTGATCC Reverse 

sequencing 

primer for the 

multicloning 

region of 

pEndo 

DE 796 CACCGATATGGCCAGTGTG Sequencing 

primer for the 

end of CcdB, 

the I-OnuI 

target site, and 

the I-LtrI 

target site. 

DE 1268 TAAGAAGGAGATATACCCATGGGC Forward 

mutagenesis 

primer for the 

multicloning 

region of 

pEndo 

DE 1269 CCAATTCTGAGCGGCCGC Reverse 

mutagenesis 

primer for the 

multicloning 

region of 

pEndo 

DE 4282 CATTGGTAACTGTCAGACCA Sequencing 

primer for the 

origin of 

replication on 
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pCcdB and 

pMSP3535 

DE 4668 GCATTTCCGCGGAGACAGATCGCTGAGATAGG Forward 

gibson 

assembly 

primer the new 

origin of 

replication 

DE 4669 TTGCGCGACGTCAACCTGCATTAATGAATCGG Reverse gibson 

assembly 

primer the new 

origin of 

replication 

DE 5140 GGCGGCCGTCTCACCAGTGGATTCTCACCGGTT Forward 

primer for I-

OnuI 

(CCG14CAG) 

golden 

mutagenesis 

DE 5141 GGCGGCCGTCTCACTGGTTAATGGACTCGCGAC Reverse primer 

for I-OnuI 

(CCG14CAG) 

golden 

mutagenesis 

DE 5158 GGCGGCCGTCTCACCGGTGGATTCTCACCGGTT Forward 

primer for I-

OnuI 

(CAG14CCG) 

golden 

mutagenesis 

DE 5159 GGCGGCCGTCTCACGGGTTAATGGACTCGCGAC Reverse primer 

for I-OnuI 

(CAG14CCG) 

golden 

mutagenesis 

DE 5232 GGCGGCCGTCTCTGGGCTCCGCCTACATGTC Forward 

primer for I-

OnuI 

(GGA2GGC) 

golden 

mutagenesis 
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DE 5233 GGCGGCCGTCTCAGCCCATGGGTATATCTCCTTCT Reverse primer 

for I-OnuI 

(GGA2GGC) 

golden 

mutagenesis 
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Appendix B. I-OnuI WT plates used to generate figure 12. 
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Appendix C. I-OnuI P14Q plates used to generate figure 12. 
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Appendix D. I-OnuI G177A plates used to generate figure 12.  Note: the spots seen on 

37°C selective plate (replicate 3) are air bubbles, not colonies. 
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Appendix E. I-OnuI P14Q and I-OnuI WT also display few differences across 

temperatures when looking at the percentage of open circle and closed products over 

time during an in vitro cleavage assay. Panel A, B, C, and D correspond to the charts of 

open circle at 37°C, coiled at 37°C, open circle at 25°C, and coiled at 25°C, respectively. 

In vitro cleavage assays were performed as described in methods using purified I-OnuI WT 

(N=4, black circles),  P14Q (N=4, blue circles), and G177A (N=4, orange circles) at 37°C 

and 25°C. The points on the graph represent the mean. 
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