
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-10-2020 10:30 AM

Efficient Hardware Architectures For Public-key Cryptosystems Efficient Hardware Architectures For Public-key Cryptosystems

Mohammadamin Saburruhmonfared, The University of Western Ontario

Supervisor: Arash Reyhani-masoleh, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Mohammadamin Saburruhmonfared 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Electrical and Electronics Commons, and the VLSI and Circuits, Embedded and Hardware

Systems Commons

Recommended Citation Recommended Citation
Saburruhmonfared, Mohammadamin, "Efficient Hardware Architectures For Public-key Cryptosystems"
(2020). Electronic Thesis and Dissertation Repository. 7526.
https://ir.lib.uwo.ca/etd/7526

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ir.lib.uwo.ca%2Fetd%2F7526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F7526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F7526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7526?utm_source=ir.lib.uwo.ca%2Fetd%2F7526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Finite field arithmetic plays an essential role in public-key cryptography as all the underlying

operations are performed in these fields. The finite fields are either prime fields or binary fields.

Binary field elements can mainly be represented on a polynomial basis or a normal basis (NB).

NB representation offers a simple squaring operation, especially in hardware. However, mul-

tiplication is typically complex, and a particular subset of NB called Gaussian Normal Basis

(GNB) features an efficient multiplication operation used in this work. The first part of this the-

sis has focused on improving finite field arithmetic architectures over GNB. Among different

arithmetic operations, multiplication, inversion and exponentiation operations are computa-

tionally the most time-demanding field operations used in public-key cryptosystems. In this

thesis, we design several new efficient hardware architectures for binary exponentiation using

GNB multipliers. Our designs are also supported with novel countermeasures against side-

channel analysis (SCA) and fault attacks that require minimal implementation overhead. Then,

We have proposed a new finite field square-multiply architecture over GNB, which performs

concurrent squaring and multiplication without any delay. Besides, we present three new in-

version architectures to improve the performance of the inversion’s implementation. First, an

improved architecture for the classic inversion scheme using a single multiplier is proposed.

Then, we propose two new inversion architectures to improve the efficiency and speed of in-

version operation using the interleaved connection of two GNB multipliers to perform the two

multiplication operations simultaneously to reduce the number of required iterations. We have

conducted ASIC based implementations of the different schemes using the 65nm CMOS tech-

nology libraries. In the final part of this thesis, we introduce a new architecture for computing

the point multiplication on Koblitz Curves by utilizing the proposed inversion architecture as

our design’s computation core. The proposed architectures are implemented on FPGA. Our

evaluation shows that the newly proposed architectures improve the efficiency of existing hard-

ware architectures for computing point multiplications on Koblitz Curves by 17%.

Keywords: Public-key Cryptography, Finite fields, Gaussian Normal Basis, Exponentiation,

Inversion, Side-Channel Analysis, Koblitz Curves, ASIC, FPGA.

i

Summary for Lay Audience

Cryptography plays a crucial role in establishing confidential communications between mo-

bile terminals and back-end servers. As a result, the lightweight implementation of public-key

cryptographic protocols on resource-constrained systems is a long-term challenge. Cryptogra-

phy can be categorized into two main groups, symmetric key and public-key. In symmetric-key

cryptography, the secret key must be known only to the sender and receiver to secure the pro-

cess, and it is challenging for the two parties to exchange the secret key. Public-key cryptog-

raphy resolves the key distribution problem using two mathematically related keys, the private

key and the public key. Elliptic curve cryptography (ECC) is an efficient method used for the

implemataion of public-key cryptosystems for resource-constrained embedded devices. Point

multiplication is the most time-demanding operation in ECC, which is calculated using finite

field arithmetic operations. The finite fields are either prime fields or binary fields. Binary

field elements can mainly be represented on a polynomial basis or a normal basis (NB). NB

representation offers a simple squaring operation, especially in hardware. However, multiplica-

tion is typically complex, and a particular subset of NB called Gaussian Normal Basis (GNB)

features an efficient multiplication operation used in this work. In the first part of this thesis,

we have mostly focused on improving field arithmetic architectures. We have proposed fully

secure and efficient exponentiation architectures using GNB. We have then proposed a new

architecture that performs concurrent squaring and multiplication without any delay. We have

also proposed three new efficient inversion architectures using GNB multipliers to improve the

performance of the inversion’s implementation. We have conducted ASIC based implementa-

tions of the different schemes using the 65nm CMOS technology libraries. In the final part of

this thesis, we introduce a new architecture for computing the point multiplication on Koblitz

Curves by utilizing the proposed inversion architecture as our design’s computation core. The

proposed architectures are implemented on FPGA. The newly proposed architectures improve

the efficiency of existing hardware architectures for computing point multiplications on Koblitz

Curves.

Keywords: Symmetric key Cryptography, Public-key Cryptography, Finite fields, Gaussian

Normal Basis, Exponentiation, Inversion, Koblitz Curves, ASIC, FPGA.

ii

Co-Authorship Statement

This thesis includes two journal and one conference papers that have been previously published

or submitted. The publications listed as follows:

Chapter 3:

* Monfared, Amin, Mostafa Taha and Arash Reyhani-Masoleh, “Secure And Efficient Expo-

nentiation Architectures Using Gaussian Normal Bases”, Minor revision is submitted to Trans-

actions on Computer-Aided Design of Integrated Circuits.

My contribution to this work included designing the study, designing architectures, performing

security analysis, testing and verifying the architectures, preparing the implementation results,

and writing the manuscript. All authors reviewed and edited the manuscript. The work was

supervised by Dr. Reyhani-Masoleh.

Chapter 4:

* Monfared, Amin, Hayssam El-Razouk, and Arash Reyhani-Masoleh. ”A new multiplicative

inverse architecture in normal basis using novel concurrent serial squaring and multiplication.”

2017 IEEE 24th Symposium on Computer Arithmetic. IEEE, 2017.

My contribution to this work included designing the study, designing architectures, perform-

ing analysis, test and verification of the architectures, preparing the implementation results,

and writing the manuscript. All authors reviewed and edited the manuscript. The work was

supervised by Dr. Reyhani-Masoleh.

* Reyhani-Masoleh, Arash, Hayssam El-Razouk, and Amin Monfared. ”New Multiplicative

Inverse Architectures Using Gaussian Normal Basis.” IEEE Transactions on Computers 68.7

(2018): 991-1006

My contribution to this work included performing analysis, test and verification of the archi-

tectures, preparing the implementation results, and writing part of the manuscript.

iii

Acknowlegements

I would like to express my gratitude to Prof. Arash Reyhani-Masoleh for his invaluable guid-

ance and constant support throughout my Ph.D. studies at Western University. His profound

knowledge was a great source of help to me.

Secondly, I would like to acknowledge my committee members, Dr. Amir Youssef, Dr. Marc

Moreno Maza, Dr. Aleksander Essex, and Dr. Anestis Dounavis, for their constructive com-

ments on my thesis.

I would also like to take this opportunity to thank my wife, Sima, my parents and my sisters for

their unconditional love, moral support, patience and wisdom. Last but not least, I would like

to mention my son, Parsa, my greatest aspiration to stay strong and lively during these years.

iv

Contents

Abstract i

Summary for Lay Audience ii

Co-Authorship Statement iii

Acknowlegements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiv

1 Introduction 1

1.1 Thesis Outline . 4

2 Mathematical Preliminaries 7

2.1 Finite Fields . 7

2.1.1 Groups . 7

2.1.2 Rings . 8

2.1.3 Fields . 9

2.2 Gaussian Normal Basis . 9

2.3 Arithmetic Operation using GNB . 10

2.3.1 Field Addition in GNB . 10

2.3.2 Field Squaring in GNB . 10

2.3.3 Field Multiplication in GNB . 11

v

2.3.4 Digit-level GNB Multipliers . 12

2.3.5 Field Inversion . 14

2.3.6 Field Exponentiation . 15

3 Secure Exponentiation Architectures Using Gaussian Normal Basis 17

3.1 Introduction . 17

3.2 Side-Channel Analysis on Exponentiation Architectures 18

3.3 Exponentiation with precomputation using the DL-PIPO Multiplier 20

3.3.1 The DL-PIPO MSD Exponentiator . 21

3.3.2 The DL-PIPO LSD Exponentiator . 22

3.4 Exponentiation with precomputation using the DL-HD Multiplier 26

3.4.1 The DL-HD MSD Exponentiator . 27

3.4.2 The DL-HD LSD Exponentiator . 28

3.4.3 Correction on Single-Exponentiation Architecture presented [1] 29

3.5 Security Analysis . 33

3.5.1 Simple Power Analysis . 35

3.5.2 Security Analysis against Fault Attack 37

3.5.3 Differential Power Analysis . 38

3.6 Secure Architectures . 39

3.6.1 Security against SPA Attacks . 39

3.6.2 Security Against DPA Attacks . 43

3.6.3 One-Pass Masking . 44

3.6.4 Masking by Secret blinding . 44

3.7 Complexity Comparison and Implementation 45

3.7.1 Complexity Comparison . 45

3.7.2 ASIC Implementation . 47

3.8 Conclusions . 49

4 Inversion Architectures Using Gaussian Normal Basis 53

4.1 Introduction . 53

4.2 Review on Inversion Architectures . 54

vi

4.3 Inversion Schemes using Single Multiplier . 55

Itoh–Tsujii Inversion Algorithm . 55

4.3.1 Improved Inversion Algorithms . 57

4.3.2 Improved Inversion Architecture using a Single Multiplier 60

4.4 Fast Inversion Schemes using Interleaved multiplications 63

4.4.1 Proposed Combined Digit-Level Square and Multiply 64

4.4.2 Formulations . 66

4.4.3 Space and Time Complexities . 71

4.5 Proposed Interleaved Architecture for GF (2m) Inversion 72

4.6 ASIC Implementation Results . 76

4.7 Conclusions . 78

5 Efficient Interleaved Inversion Architectures Using Gaussian Normal Basis 84

5.1 Introduction . 84

5.2 Inversion Schemes using Two Multiplications 85

5.3 A New Efficient Interleaved Inversion Schemes using Double Multiplications . 87

5.4 Proposed New Exponentiation Architecture For Computing A(1+2e)(1+2 f) 88

5.5 New Efficient Architecture for inversion over GF(2m) 92

5.5.1 Modified IT Algorithm . 94

5.5.2 Operational Example for GF(2233) . 96

5.6 ASIC Implementation Results . 101

5.7 Conclusions . 103

6 Efficient Architectures For Point Multiplication on Koblitz Curves 110

6.1 Introduction . 110

6.2 Point Multiplication on Koblitz Curves . 113

6.3 Implementation of Point Addition on Koblitz Curves 114

6.4 Proposed Crypto-processor for Point Multiplication on Koblitz Curves 120

6.4.1 Field Arithmetic Unit . 120

6.4.2 Control Unit and Register File . 122

6.4.3 Complexity Analysis . 123

vii

6.5 FPGA Implementation . 124

6.6 Conclusion . 126

7 Summary 127

7.1 Thesis Contributions . 127

7.2 Future Work . 129

Bibliography 130

viii

List of Figures

1.1 ECC Design Hierarchy. 3

3.1 The proposed DL-PIPO MSD exponentiation architecture (k = 4). 23

3.2 The proposed DL-PIPO LSD exponentiation architecture (k = 4). 26

3.3 The proposed DL-HD MSD exponentiation architecture (k = 4). 31

3.4 The proposed DL-PIPO LSD exponentiation architecture (k = 4). 31

4.1 The inversion architecture using DL-PIPO multiplier. 61

4.2 The classical-interleaved structure for GF
(
2163

)
inversion in the GNB repre-

sentation using interleaved digit-level parallel-in serial-out (DL-PISO) multi-

plier and the MSD DL-FSISM. 66

4.3 (a) Architecture of the proposed MSD DL-FSISM scheme for computations of

AB2en
, 1 ≤ n ≤ v. (b) Architecture of δ j. (c) Architecture of� en and� en . . 69

4.4 Classical-Interleaved architecture for GF (2m) inversion in the GNB represen-

tation based on the new MSD DL-FSISM. 73

5.1 (a) Architecture of the proposed Digit-level GNB exponentiator architecture .

(b) Architecture of PIPO Squaring. (c) Architecture of SISO Squaring. 91

5.2 The new architecture inversion in the GNB representation. 93

5.3 Data flow graph for the GF
(
2233

)
inversion using the Modified ITA [2] using

DL-PISO [3] GNB multiplier and DL-FSIPO[4] GNB multiplier. 98

6.1 The scheduling for performing point multiplication on Koblitz Curves over (a)

GF(2163), (b) GF(2233). 117

6.2 Data flow graph for (a) computational of λ, (b) the point addition on Koblitz

curves. 119

ix

6.3 The proposed Low-complexity crypto-processors for point multiplication on

Koblitz Curves . 122

x

List of Tables

1.1 NIST Recommended Key Sizes and Security Comparison [5, 6]. 2

2.1 Theoretical time complexity of digit-level GNB multipliers. 13

2.2 Theoretical area complexity of digit-level GNB multipliers. 13

2.3 Space and time complexity estimation for DL-PISO multiplier [7] based on

65nm CMOS technology libraries for the five recommended NIST fields for

ECDSA. 14

3.1 Iteration complexity of one exponentiation at different levels of precomputation

k using single multiplier. 21

3.2 Overhead complexity of exponentiation at different levels of precomputation k

using single multiplier. 21

3.3 Contents stored in the registers of DL-PIPO MSD (Fig. 3.1). 25

3.4 Contents stored in the registers of DL-PIPO LSD (Fig. 3.2). 25

3.5 Iteration complexity of one exponentiation at different levels of precomputation

k using double multiplier. 27

3.6 Overhead complexity of exponentiation at different levels of precomputation k

using double multiplier. 28

3.7 Contents stored in the registers of DL-HD MSD (Fig. 3.3). 30

3.8 Contents stored in the registers of DL-HD LSD (Fig. 3.4). 30

3.9 All the possible power signatures of register Y in the DL-HD MSD architecture. 35

3.10 All the possible power signatures of register Y in the DL-HD LSD architecture. 37

3.11 Thoretical area and time complexities of exponentiation in GNB 48

3.12 ASIC synthesis results for GNB exponenitiator over GF(2386). 50

3.13 ASIC synthesis results for GNB exponenitiator over GF(2509). 51

xi

3.14 ASIC synthesis results for GNB exponenitiator over GF(21026). 52

4.1 Total number of iterations in different inversion schemes for the five recom-

mended NIST fields over GF(2m) using single multiplier. 56

4.2 Parameters used in the classical inversion architecture in Fig. 4.1 for the five

recommended NIST fields for ECDSA in type T GNB over GF(2m). 62

4.3 Complexities of the classical GNB inversion architectures. 63

4.4 Space and time complexities of the proposed MSD DL-FSISM architecture in

Fig. 4.3. 71

4.5 Parameters used in the proposed interleaved inversion architecture in Fig. 4.4

for the five recommended NIST fields for ECDSA in type T GNB over GF(2m). 75

4.6 ASIC implementation result for the different GF
(
2163

)
inverters. 79

4.7 ASIC implementation result for the different GF
(
2233

)
inverters. 80

4.8 ASIC implementation result for the different GF
(
2283

)
inverters. 81

4.9 ASIC implementation result for the different GF
(
2409

)
inverters. 82

4.10 ASIC implementation result for the different GF
(
2571

)
inverters. 83

5.1 Total number of iterations in different inversion schemes for the five recom-

mended NIST fields for ECDSA in type T GNB over GF(2m) using double

multipliers. 86

5.2 Theoretical time complexity of DL-FSIPO multipliers and DL-FSISM proces-

sor in GNB . 88

5.3 Theoretical area complexity of DL-FSIPO multipliers and DL-FSISM proces-

sor in GNB . 88

5.4 ASIC’s post-synthesis readings using standard 65nm CMOS libraries for the

DL-FSIPO multiplier [4] and DL-FSISM processor [8] GF
(
2233

)
. 89

5.5 Decompositions given by the IT and Modified IT for the NIST Fields. 97

5.6 Parameters used in the proposed interleaved inversion architecture in Fig.4.4

for the five recommended NIST fields for ECDSA in type T GNB over GF(2m). 102

5.7 ASIC implementation result for the different GF
(
2163

)
inverters. 104

5.8 ASIC implementation result for the different GF
(
2233

)
inverters. 105

xii

5.9 ASIC implementation result for the different GF
(
2283

)
inverters. 106

5.10 ASIC implementation result for the different GF
(
2409

)
inverters. 107

5.11 ASIC implementation result for the different GF
(
2571

)
inverters. 108

6.1 Total number of iterations in different inversion schemes for the five recom-

mended NIST fields for ECDSA. 113

6.2 Cost of point addition on binary Kolbiz curve. 114

6.3 Parameters of crypto-processor for field sizes GF(2163) and GF(2233). 122

6.4 The complexity comparison of point multiplication on Koblitz curves over

GF(2163) . 123

6.5 FPGA implementation results of parallel point multiplication on Koblitz curves

using finite field multipliers. 125

xiii

List of Abbreviations

NB Normal Basis

GNB Gaussian Normal Basis

SCA Side-Channel Analysis

ECC Curve Cryptography

AES Advanced Encryption Standard

DES Data Encryption Standard

RSA Rivest–Shamir–Adleman

HW Hamming weight

ECDLP Elliptic Curve Discrete Logarithm Problem

SSL Secure Socket Layer

IoT Internet of Things

WSN Wireless Sensor Networks

NIST National Institute of Standards and Technology

PA Point Addition

PB Point Doubling

MSD Most Significant Digit

LSD least Significant Digit

SPA Simple power analysis

DL Digit level

xiv

ECDSA Elliptic Curve Digital Signature Algorithm

FSISM Fully-Serial-In-Square-Multiply

PISO Parallel-In Serial-Out

FSIPO Fully Serial-In Parallel-Out

PIPO Parallel-In Parallel-Out

HD Hybrid Double

SIPO Serial-In Parallel-Out

ASIC Application-Specific Integrated Circuit

DPA Differential Power Analysis

FPGA Field-Programmable Gate Array

CPD Critical Path Delay

SI Serial-In

PI Parallel-In

ITA Itoh-Tsujii Algorithm

FA Fault Attacks

DFA Differential Fault Analysis

TITA Ternary Itoh-Tsujii Algorithm

FSM Finite State Machine

FAU The Field Arithmetic Unit

xv

Chapter 1

Introduction

The market of embedded systems is rapidly growing under the high demand for mobility, avail-

ability, and interconnectivity. In these systems, cryptography plays a crucial role in establish-

ing confidential communications between mobile terminals and back-end servers. As a result,

lightweight implementation of public-key cryptographic protocols on resource-constrained sys-

tems, as well as high-performance computation in the back-end servers, are both long-term

challenges. Cryptography can be categorized into two main groups, symmetric key and public-

key.

In symmetric-key cryptography, the same secret key is used by both sender and receiver. So the

secret key must be known only to the sender and receiver to secure the process; otherwise, both

data authentication and data confidentially are threatened. Based on this method, two parties

must met and agree on the common key. The famous symmetric-key algorithms are the Triple

Data Encryption Standard (3DES), Advanced Encryption Standard (AES) , CAST-256, RC6 ,

and IDEA.

Public-key cryptography was introduced by Whitfield Diffie and Martin Hellman to resolve

the key distribution problem [9] in 1976. In this method, two mathematically related keys,

the private key and public key are used. The public key is shared among all users, while the

private key is used just by one party. Some advantages of public-key cryptography are identity

authentication, key-exchange, message integrity verification and digital signature [10, 11].

1

Chapter 1. Introduction 2

RSA is the most widely used public-key cryptosystem, which works based on modular arith-

metic over large integers. RSA is not infeasible for resource-constrained platforms such as

the Internet of Things (IoT), RFID tags and Wireless Sensor Networks (WSN). Koblitz [12]

and Miller [13] introduced ECC in 1985 independently, which establishes the same level of

security compared to the RSA, using shorter key sizes. Table 1.1 compares the security level

different Cryptosystem Families. As seen from Table 1.1, 224-bit ECC provide the same level

of security compared to 2048-bit RSA crypto-system.

Table 1.1: NIST Recommended Key Sizes and Security Comparison [5, 6].

Security Level RSA & Diffie-Hellman Key Size Elliptic Curve Key Size

(bits) (bits) (bits)

112 2048 224

128 3072 256

192 7680 384

256 15360 512

Using the shorter key made ECC an efficient method for implementing public-key cryptog-

raphy for resource-constrained environments with limited silicon area, available memory and

bandwidth. National Institute of Standards and Technology (NIST) standard in [5] presents

several elliptic curves over both binary and prime fields. The security of ECC is evaluated

based on the difficulty of solving the elliptic curve discrete logarithm problem (ECDLP). NIST

standardized binary generic curves over the binary fields with a size of {163, 233, 283, 409, 571}

[5]. It should be noted that the minimum security level for ECC is updated to 224-bits by NIST

for digital signature in 2018 [6].

The Figure 1.1 demonstrates the design hierarchy of elliptic curve cryptosystem which can be

broken down into four levels. The top-level include the protocols and standards like Elliptic

curve Diffie-Hellman (ECDH) for the key-exchange protocol and Elliptic Curve digital signa-

ture algorithm (ECDSA) for authentication. Point multiplication is the most time-demanding

operation in ECC. In this operation, we have kP = P + P + · · ·+ P, where k is a positive integer,

and P is a point on the curve. A straightforward way for point multiplication can be computed

by k times, adding point P by itself using Point Addition (PA) and Point Doubling (PD) oper-

Chapter 1. Introduction 3

Figure 1.1: ECC Design Hierarchy.

ations. Computation of both PA and PD are calculated using finite field arithmetic operations,

as illustrated at the bottom layer of the hierarchy.

Elliptic curves over finite fields can be represented using either prime fields GF(p) or binary

fields GF(2m) [14]. These fields can be chosen based on platforms, applications and available

resources. Prime fields provide better performance for software implementations, while binary

fields are interesting fields for hardware implementation as the binary field addition does not in-

volve any carry propagation. Binary field elements can mainly be represented on a polynomial

basis or an NB. NB representation offers a very simple squaring implementation for hardware

architectures using cyclic shifts. However, multiplication is typically complex, and a particu-

lar subset of NB called GNB features more uncomplicated and more efficient multiplication,

which is adopted in this thesis.

In this thesis, we have mostly focused on improving field arithmetic architectures. We have pro-

posed fully secure and efficient exponentiation architectures using GNB multipliers for three

field sizes.The presented architectures can be used for public-key cryptosystems, including the

Diffie-Helman protocol for key exchange and the ElGamal algorithm for digital signatures.

Then, we have proposed a new digit-level fully serial-in parallel-out square-multiply architec-

ture which performs concurrent squaring and multiplication without any delay. In addition,

we have proposed three new inversion architectures using GNB multipliers for All NIST rec-

Chapter 1. Introduction 4

ommended field sizes. Then by utilizing the presented architectures, we have proposed new

efficient architectures for computing point multiplications on the Koblitz curve for two NIST

recommended fields size. Our newly proposed architectures improve the efficiency of exist-

ing hardware architectures for computing point multiplications on the Koblitz curve by 17%

over both mentioned field sizes. The proposed architectures can be used for designing low-

complexity and efficient crypto-processors for resource-constrained applications.

1.1 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides a brief review of the mathe-

matical preliminaries used in this thesis, such as the basics of finite fields, binary fields, gaus-

sian normal basis. Then, we shortly explain basic arithmetic operations over gaussian normal

basis in this chapter. In Chapter 3, we propose two new hardware architectures (Most Sig-

nificant Digit (MSD)-first and least Significant Digit (LSD)-first) for performing binary expo-

nentiation with precomputation using the Digit level Parallel-In Parallel-Out (DL-PIPO) [3]

multiplier and evaluate their complexities in terms of computational time and hardware area.

The results demonstrate significant improvement in latency, but the area overhead is still a bur-

den. We improve the precomputation stage to work with the Digit Level Hybrid Double (DL-

HD) [15] multiplier. We propose two exponentiation architectures using the DL-HD multiplier

working in MSD-first and LSD-first. The proposed architectures improve both the latency and

the area overhead. We analyze our proposed architectures’ security against Simple power anal-

ysis (SPA) attacks, quantifying how much LSD-first is better than MSD-first. We also show

that the LSD-first architectures are still not fully secure against SPA attacks. Then, we propose

two novel modifications to the DL-PIPO LSD, and the DL-HD LSD using unsigned exponent

recoding so that the two architectures become fully secure against SPA attacks. We also dis-

cuss different methods that could be used to protect the architectures against Differential power

analysis (DPA) attacks. Finally, in order to validate the feasibility of the proposed architec-

tures, we implement all architectures on Application-Specific Integrated Circuit (ASIC) using

the standard STMicroelectronics 65nm CMOS technology libraries to calculate their area and

Chapter 1. Introduction 5

time requirements and investigate the throughput of the designed architectures for different

digit sizes.

In Chapter 4, we propose new low-latency architectures for the classic inversion algorithm.

The new architecture reduces the total latency of inversion computation through loading in-

puts register for the next multiplication iteration at the same time of accumulating the final

result in the output register. We propose a novel scheme of the combined square and multiply

operations at the digit-level referred to as most-significant-digit-first digit-level fully-serial-in-

square-multiply (MSD DL-FSISM). The proposed scheme computes AB2ei , 1 ≤ i ≤ v,where A,

B ∈ GF(2m) and ei is an integer ei < m. It is noted that, if input’s digits arrive serially, the multi-

plication of element A by the ei-th square of element B (that is B2ei) introduces some delay until

the ei-th bit of B is available. However, the proposed MSD DL-FSISM accomplishes this com-

posite operation of square and multiply concurrently without any delay. We proposed a new fast

field inversion architecture which we refer to as classical-interleaved. The proposed classical-

interleaved inversion architecture utilizes interleaved computations of two digit-level single

multiplications and squarings. The latter interleaved computations are constructed based on the

proposed MSD DL-FSISM. For the five recommended NIST fields, we obtain the correspond-

ing algorithms for GF(2m) field inversion using GNB, where m ∈ {163, 233, 283, 409, 571}. We

implement and compare the proposed inverse architectures, in ASIC implementations based on

the STMicroelectronics standard 65nm CMOS technology libraries.

In Chapter 5, We also propose a new digit-level architecture to compute specific GNB expo-

nentiation operation of A(1+2e)(1+2 f), 1 ≤ e, f < m, where A ∈ GF(2m). The new architecture

utilizes two different single low-complexity multipliers, namely Digit Level Parallel-In Serial-

Out (DL-PISO) [3] and Digit Level Fully Serial-In Parallel-Out (DL-FSIPO) [4], and two dif-

ferent blocks for performing the squaring operation. We present a new efficient architecture

for computing GNB inversion operation by utilizing the proposed exponentiator architecture.

We also present a new decomposition method to improve the latency of the new inversion ar-

chitecture. We evaluate the area and time complexities of the proposed architecture for NIST

recommended fields by listing the ASIC implementation results using standard STMicroelec-

tronics 65nm CMOS technology libraries. We compare the new inversion architectures with

Chapter 1. Introduction 6

the existing counterparts in the literature in terms of area, time, efficiency and throughput.

In Chapter 6, a new scheme for calculating the point multiplication is presented based on the

Affine coordinate system for two NIST recommended fields sizes over GF(2163) and GF(2233)

on Koblitz curves. The algorithms perform point addition using only one inversion architecture,

one adder and, one squaring block. We propose a new efficient architecture for computing point

multiplication on Koblitz curves. In our architectures, we utilize fast inversion architecture,

which is presented in Chapter 4. The area and time complexity of the proposed architectures

are evaluated on FPGA and compared with three existing work in the literature regarding area,

time and efficiency. Finally, in Chapter 7, we highlight the contributions of the thesis.

Chapter 2

Mathematical Preliminaries

In this chapter, we provide a brief review of the mathematical preliminaries used in this thesis,

such as the basics of finite fields, binary fields, gaussian normal basis. The comprehensive re-

views of these topics can be found in [16, 17, 11]. Then, we explain basic arithmetic operations

over GNB in this chapter and review the previous works in this area.

2.1 Finite Fields

The implementations of the finite field have been studied extensively because it has a vital role

in ECC. In the following, we describe the definition and the mathematical background relevant

to finite fields and its underlying arithmetic operation[16, 17, 11].

2.1.1 Groups

Definition: A group (G, ∗) contains a set G with a binary operation (∗) that satisfies the three

axioms as mentioned below[16, 17, 11]:

• Axiom 1: The group operation is associative, i.e. If a, b, c ∈ G, then the result of a ∗ (b ∗

c) ∈ G is equal to the result of (a ∗ b) ∗ c ∈ G.

• Axiom 2: There exists an identity element I ∈ G such that a ∗ I = I ∗ a = a for all a ∈ G.

7

Chapter 2. Mathematical Preliminaries 8

• Axiom 3: There exists an inverse element (b ∈ G) for each a ∈ G, such that b ∗ a =

a ∗ b = I.

A group G is abelian (or commutative) if,

• Axiom 4: If a, b ∈ G, then a ∗ b = b ∗ a.

Definition: The order of group, ord(G), is the number of elements in a group. The group is

called a finite group, if the order of the group is finite number.

Definition: The group G is cyclic if there is an element α ∈ G such that all the group’s elements

can be generated by applying the group operation repeatedly to an element α. The element α

is called a generator of the group.

Definition: Let G be a group and a ∈ G, The order of an element a ∈ G, t = ord(a), is the

smallest positive integer which at = I ∈ G where I is the group’s identity element.

2.1.2 Rings

Definition: A ring (R,+,×) contains a set R with two binary operation +(addition) and×(multiplication)

that satisfies the axioms as mentioned below[16, 17, 11]:

• Axiom 1: (R, +) is an abelian group under the addition + operation with identity denoted

0.

• Axiom 2: the binary operation × has a associative property, as for all a, b, c ∈ R, (a ×

b) × c = a × (b × c) .

• Axiom 3: There exist a multiplicative identity element (1), with 1 , 0, such that such

that a × 1 = 1 × a = a for all a ∈ R.

• Axiom 4: two binary operations (+,×) has a distributive property, as for all a, b, c ∈ R,

a × (b + c) = (a × b) + (a × c) and (b + c) × a = (b × a) + (c × a) .

If a ring satisfies (a × b = b × a) for all a, b ∈ R, it is called a commutative ring.

Definition: A ring’s element a is called a unit if there exist an element b ∈ R such that a×b = 1.

Chapter 2. Mathematical Preliminaries 9

2.1.3 Fields

A field F has the following properties in addition to the ring’s properties [16, 17, 11]:

• The both addition and multiplication operations are commutative for all elements in a

field F.

• Non-zero elements in a field F with multiplication operation has multiplicative inverse.

The set of real numbers (R) is a well-known example of a field with two binary operation

+(addition) and ×(multiplication).

A field F is said to be finite if it consists a finite number of elements. The order of field is the

number of elements in a field. The order (q) of a finite field (F) is either a prime number q or

a power of a prime number q = pm, when p is a prime number, and m is a positive integer.

The field is called a prime field if m = 1 and it is called an extension field if m > 1. The exten-

sion fields with p = 2, i.e., F2m or GF(2m) are called binary fields. The binary fields contains

2m different elements and can be represented as a vector space of dimension m containing 0

and 1.

The addition and squaring in GF(2m) are simple to perform specially in hardware, but the

implementation of multiplication operation is very complicated.

2.2 Gaussian Normal Basis

There are different kinds of basis to represent a field element, such as polynomial, normal, dual,

and redundant basis. Polynomial basis and normal basis are the most common ones, which have

been used in hardware and software applications and recommended by many standards such as

IEEE 1363 [14] and NIST [18].

It is shown that there exists a normal basis for the binary extension field GF(2m) all positive

integers m. The normal basis is constructed by finding a normal element β ∈ GF(2m), where β

is a root of an irreducible polynomial of degree m Then set N = {β, β2, . . . , β2m−1
} is a basis for

Chapter 2. Mathematical Preliminaries 10

GF(2m), and its elements are linearly independent. In this case, A ∈ GF(2m) can be represented

as A =
∑m−1

i=0 αiβ
2i

, where αi ∈ {0, 1}. As we mentioned, the multiplication in NB is typically

complex, and a particular subset of NB called GNB features more uncomplicated and more

efficient multiplication [19].

The GNB is a particular class of NB which offers efficient field multiplication [20], which

is included in the IEEE 1363 [14] and NIST [18] standards. let there exist a prime number

p = mT + 1 and gcd
(

mT
g ,m

)
= 1 where 2g ≡ 1 (mod p). Then, the normal basis over GF (2m)

is called the GNB of type T , T > 0 [21]. GNB is adopted in this thesis.

2.3 Arithmetic Operation using GNB

2.3.1 Field Addition in GNB

Let A =
∑m−1

i=0 aiβ
2i

= (a0, . . . , am−1) and B =
∑m−1

i=0 biβ
2i

= (b0, . . . , bm−1) be fields elements

in GF(2m), the addition operation can be computed as C = A + B =
∑

aiβ
2i

+
∑

biβ
2i

=∑
(ai + bi)β2i

where ai + bi is computed by a bit-wise XOR of the bit vectors representing of A

and B.

2.3.2 Field Squaring in GNB

The squaring operation B = A2, where A, B ∈ GF(2m), can be calculated by right circular shift

of the vector representation of A, as B = A2 =
∑m−1

i=0 aiβ
2i+1

= (am−1, a0, . . . , am−2). Similarly,

C = A2n
=

∑m−1
i=0 aiβ

2i+n
= (am−n, . . . , am−1, a0, . . . , am−1−n) = A � n which is computed by right

circular shift of the vector representation of A by n positions. If all coordinate of element A are

available, the squaring operation is implemented with no additional cost.

Chapter 2. Mathematical Preliminaries 11

2.3.3 Field Multiplication in GNB

Let A and B be two fields elements in GF(2m); the multiplication product C = A×B is calculated

based on multiplication matrix R(m−1)×T [3]. Then, C in GF(2m) is calculated as below:

C = (A � (B� 1)) ⊕
∑m−1

i=0 (A � i) � S (i, B), (2.1)

where
S (i, B) = (B� R(i, 1)) ⊕ (B� R(i, 2)) ⊕ . . .

· · · ⊕ (B� R(i,T)), 1 ≤ i ≤ m − 1.
(2.2)

R(i, j), 1 ≤ i ≤ m− 1, denotes to the row j and column i of the matrix R(m−1)×T . And also � and

⊕ denote to the bit-wise AND and XOR operations, respectively.

Multiplication by the Normal Element β

Here, we present the formulation for accomplishing field multiplication of an arbitrary GF (2m)

element V = (v0, . . . , vm−1) represented in the Gaussian normal basis
{
β, . . . , β2m−1

}
of type T

by the normal element β = (1, 0, . . . , 0). By substituting for (a0, . . . , am−1) with (1, 0, . . . , 0) in

(2.6), and considering all values of l = 0, . . . ,m − 1, we obtain [3]

Pβ (V) = v1β +
∑m−1

i=1

(∑T
j=1 v((i+R[m−i, j]))

)
β2i
, (2.3)

which requires at most (m − 1) (T − 1) XOR gates, with a propagation delay of
⌈
log2 T

⌉
TX.

The following section gives a quick overview about formulation for digit-level recursive con-

struction of a GF (2m) element starting from its most significant digit (MSD).

Recursive MSD Construction of Field Elements in the GNB

This section presents an overview about the recursive MSD construction of field elements when

represented in the GNB [4]. In this scheme, the field element is constructed by reading its digits

one digit at a time, starting from the MSD down to the least significant digit (LSD), as given

by the following proposition[8].

[4] Given a digit size 0 < d < m, one can construct a field element A = (a0, . . . , am−1) ∈ GF (2m)

represented in the GNB, recursively, starting from the most significant digit Ak−1 (total of k =

Chapter 2. Mathematical Preliminaries 12

⌈
m
d

⌉
digits A0 through Ak−1), as follows:

A(i) = Ak−1−i +
(
A(i−1)

)2d

(2.4)

where i takes values from 0 to k − 1, A(−1) = 0, A = A(k−1), and Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

is

the (k − 1 − i)-th digit of A = (A0, . . . , Ak−1) with ad(k−1−i)+ j = 0 for d (k − 1 − i) + j ≥ m.

2.3.4 Digit-level GNB Multipliers

Multiplication in GNB is an active research field with many contributions in both bit-level

(BL) and digit-level (DL) architectures. In the digit-level architectures , one can choose the

digit size based on available resources. Hence, they are attractive in both resource constrained

environments (if one uses low digit sizes) and high performance applications (when high digit

sizes are chosen). The inputs (either one of the two inputs or both) to these multiplication

architectures can be processed bit-by-bit/ digit-by-digit (denoted as serial-in or SI), or both

inputs at once (denoted as parallel-in or PI). When both inputs are entered serially, we denote

it as fully serial-in or FSI to distinguish it from the traditional SI which is used for one serially

entered input. The output can be ready one bit/digit at a time (denoted as serial-out or SO) or

the entire output can be updated at every clock cycle (denoted as parallel-out or PO).

Bit-level architectures include BL-PISO [7], BL-SIPO [22], BL-FSIPO [23], and BL-PIPO [24,

25]. Digit-level architectures include DL-PISO [3, 26], DL-SIPO [27, 28], DL-FSIPO [29] and

DL-PIPO [3]. To perform double multiplication (multiplying three field elements), the output

of one DL-PISO multiplier is connected to the input of a DL-SIPO multiplier to form a Digit-

Level Hybrid-Double (DL-HD) multiplier which performs two multiplications with almost the

latency of one DL multiplier at the expense of double the area [28, 29].Table 2.2 and Table 2.1

review the theoretical time and area complexity of the digit-Level multipliers that are used in

this thesis.

As an example, Table 2.3 estimates time and space complexities for DL-PISO [7] for the five

recommended NIST fields for ECDSA based on 65nm CMOS technology libraries.

Chapter 2. Mathematical Preliminaries 13

Table 2.1: Theoretical time complexity of digit-level GNB multipliers.

CPD Latency

Architecture (ns) (Clk)

DL-PISO [7] TA +
[⌈

log2(T (m − 1) + 1)
⌉

+
⌈
log2 T

⌉]
TX

⌈
m
d

⌉
DL-PIPO [3] TA + (dlog2(d + 1)e + dlog2T e)TX

⌈
m
d

⌉
DL-SIPO [15] TA + (dlog2(d + 1)e + dlog2T e)TX

⌈
m
d

⌉
DL-FSIPO [4] TA +

[
1 +

⌈
log2(d + 1)

⌉
+

⌈
log2 T

⌉]
TX

⌈
m
d

⌉
DL-HD [15] TA + (dlog2T e + dlog2me)TX

⌈
m
d + 1

⌉
TA, TX and TM denote the propagation delay in a two input AND gate, a two input XOR gate

and a 2-to-1 multiplexer. d is the digit size and T is type of GNB over GF(2m).

Table 2.2: Theoretical area complexity of digit-level GNB multipliers.
Area

Architecture FF AND XOR 2-to-1 MUX

DL-PISO [7] 2m d(T (m − 1) + 1) d(T (m − 1)) 2m + 2d

DL-PIPO [3] 3m dm d(m−1)
2 (T − 1)dm 2m + 2d

DL-SIPO [15] 2m dm ≤ d(T − 1)[(m − 1) − d−1
2] + dm m + d

DL-FSIPO [4] 3m − 2d d(2m − d) ≤ d [2m − d + (T − 1) (m − 1)] 0

DL-HD [15] 4m + d 2md ≤ 2(d(m − 1) − d(d−1)
2)(T − 1) + 2dm − d 3m + 3d

d is the digit size and T is type of GNB over GF(2m).

Chapter 2. Mathematical Preliminaries 14

Table 2.3: Space and time complexity estimation for DL-PISO multiplier [7] based on 65nm

CMOS technology libraries for the five recommended NIST fields for ECDSA.

d = 2 d = 4 d = 8 d = 16

m/T CPD Area CPD Area CPD Area CPD Area

(ns) (µm2) (ns) (µm2) (ns) (µm2) (ns) (µm2)

163/4 0.58 27394 0.58 50745 0.58 97448 0.58 190855

233/2 0.42 12483 0.42 19188 0.42 32599 0.42 59420

283/6 0.56 31406 0.56 55795 0.56 104572 0.56 202125

409/4 0.53 33667 0.53 57192 0.53 104240 0.53 198338

571/10 0.66 96264 0.66 178368 0.66 342575 0.66 670989

d is the digit size and T is type of GNB over GF(2m).

2.3.5 Field Inversion

Among different arithmetic operations, the implementation of inversion operation is computa-

tionally most time-demanding field operation. Let A be a field element in GF(2m), inversion

operation for a given element A is to find an element A−1 such that A × A−1 = 1. Inversion

operation is considered an expensive operation, which is used in cryptography applications of

finite fields, and its efficient implementation is important. Inversion operation can be calcu-

lated using the Extended Euclidean Algorithm (EEA) and Fermat’s little theorem (FLT). An

inversion operation in GNB can be calculated based on FLT as A−1 = A2m−2 ∈ GF(2m), A , 0.

The traditional inversion algorithm proposed in [30] calculates the inversion using

A−1 = A2m−2 = A2(1+2+···+2m−2) = B(1+2+···+2m−2)

= B1 × B2 × · · · × B2m−2
, B = A2.

(2.5)

Performing inversion based on traditional algorithm [2] needs (m − 2) squaring and (m − 1)

multiplication operations. The Itoh-Tsujii algorithm (ITA) is proposed to reduce the com-

plexity of the inversion operation [31]. The Itoh-Tsujii Algorithm (ITA) works based on the

fact that the 1 + 2 + · · · + 2m−2 expression can be rewritten as multiplication of its (1 + 2t)

factors, when 1 ≤ t < m. The ITA reduces the complexity of the inversion operation to

Chapter 2. Mathematical Preliminaries 15

⌈
log2(m − 1)

⌉
+ H2(m − 1) − 1 single multiplications, where H2(m − 1) is the Hamming weight

of (m − 1) [31]. Many works tried to reduce the time complexity of the inversion operation,

see the example [2, 32, 33, 34, 35, 36, 37]. One of the first VLSI architectures for computing

inverses in GF(2m) is proposed in [30]. Their inversion architecture uses the pipeline structure

of the Massey-Omura multiplier [7] and implements an inversion of a GF(2m) field element

using m − 2 field multiplications and m − 1 cyclic shifts.

2.3.6 Field Exponentiation

One of the oldest algorithms for exponentiation in binary fields is the left-to-right square-and-

multiply [38], where squaring is performed in each iteration (with respect to each bit of the

exponent). Multiplication is performed only if the current exponent-bit is set. The exponent is

scanned starting from the most significant bit (MSB). Another variant is the right-to-left square-

and-multiply, where the exponent is scanned starting from the least significant bit (LSB) [38].

For an arbitrary A in finite field GF(2m) and an integer E, where (1 ≤ E ≤ 2m − 1). Clearly,

C = AE is in GF(2m). Representing E in its binary representation E = (em−1, . . . , e1, e0) such

that C = A
∑m−1

j=0 e j2 j
where e j = 0 or 1 , results in

AE =

m−1∏
j=0

(
A2 j)e j

=

m−1∏
j=0

U j, (2.6)

where U j =

A2 j

e j = 1

1 e j = 0

Given that, the Hamming weight of E (HW(E)) is the number of nonzero elements in the

binary representation of E, C = AE can be calculated using the square-and-multiply method

in HW(E) − 1 multiplications, since HW(E) ≤ m, at most m − 1 multiplications are required.

However, on average,
⌈

m
2

⌉
− 1 multiplications are needed for computing one exponentiation.

In 1988, the 2k-ary method over NB was proposed in [39]. The 2k-ary method works by

encoding the exponent in a higher base 2k, where k-bits of the exponent is read at each iteration

to select and multiply one of 2k precomputed values. The 2k-ary method can be realized with

the most significant digit (MSD)-first or the Least significant digit (LSD)-first, in the digit-level

Chapter 2. Mathematical Preliminaries 16

architectures, one can choose the digit size based on available resources. Suppose that we want

to compute (2.6) in GF(2m), we rewrite the exponent as E =
∑s−1

i=0 wi × 2ki, where s =
⌈

m
k

⌉
,

(0 ≤ wi ≤ 2k − 1) and wi = (20) × eki + (21) × eki+1 + · · · + (2k−1) × eki+k−1 , for (0 ≤ i ≤ s − 1).

We add zeros to the last (ks − m) bits of exponent, i.e., el = 0 for l > m − 1. Therefore,

AE =

s−1∏
i=0

(Awi)2ki
. (2.7)

Note that, all the 2k values of Aw should be ready beforehand. Given that, A0 = 1, and A1 is

the input value, all the other 2k − 2 values of Aw for (1 < w ≤ 2k − 1) should be precomputed.

Therefore, on average,
⌈

m
2k

⌉
− 1 multiplications needed for computing one exponentiation.

Chapter 3

Secure Exponentiation Architectures

Using Gaussian Normal Basis

3.1 Introduction

The market of embedded systems is rapidly growing under the high demand for mobility, avail-

ability, and interconnectivity. In these systems, cryptography plays a crucial role in establish-

ing confidential communications between mobile terminals and back-end servers. As a result,

lightweight implementation of public-key cryptographic protocols on resource-constrained sys-

tems, as well as high-performance computation in the back-end servers, are both long-term

challenges.

Exponentiation in finite fields is an essential operation used in many applications ranging from

error control coding to cryptographic computations, while representation in GNB offers low

complexity arithmetic, especially in hardware architectures. Exponentiation in binary fields is

typically achieved by a sequence of squaring and multiplication. Since squaring in NB is a

very simple to be implemented, research in this field has focused on improving multiplication

and the sequence (i.e., the algorithm).

Unfortunately, the square-and-multiply and 2k-ary algorithms cannot be directly used in em-

bedded systems due to the threat of Side-Channel Analysis (SCA) [40]. SCA works by har-

17

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 18

vesting information from execution time, power consumption, or other side-channel outputs to

recover the secret exponent. SCA can recover the secret information from a single trace using

Simple Power Analysis (SPA), or many traces collected at different messages using Differential

Power Analysis (DPA) [41]. Software realizations of the above algorithms are vulnerable to

time attacks as the total number of executed instructions depend on the secret exponent. Hard-

ware realizations are more vulnerable to power attacks as the power signature of only square

operation is significantly different from the signature of both square and multiply. Fault attacks

or Differential Fault Analysis (DFA) is an active attack, as the attacker inserts faults during

the operation of algorithms. Then, based on the correctness or the incorrectness of the final

result, he/she tries to extract information about the secret key [42]. SCA and fault attacks are

combined in [43, 44, 45, 46].

In this chapter, we propose several new secure architectures for exponentiation in finite fields

and we analyze security of our proposed architectures against SPA attacks. The proposed ar-

chitectures are a core operator in most public-key cryptosystems, including the Diffie-Helman

protocol for key exchange [47] and the ElGamal algorithm for digital signatures [48].

The organization of this chapter is as follows: In Section 3.2, Security Analysis on Exponenti-

ation Architecture is investigated. In Section 3.3 and 3.4, the exponentiation architectures with

precomputation using the DL-PIPO and DL-HD multiplier are proposed. The security analysis

on the proposed architectures, are conducted in Section 3.5. In Section 3.6, we proposed the

secure the exponentiation architecture against SPA. Section 3.7 presents the results of ASIC

implementations for the proposed architectures. Finally, we conclude this chapter in Section

3.8.

3.2 Side-Channel Analysis on Exponentiation Architectures

Power SCA attacks come in two types: Simple Power Analysis (SPA) and Differential Power

Analysis (DPA). SPA tries to recover secret information from a single trace of power consump-

tion, which could be recorded with high-resolution using an Oscilloscope. SPA works only if

the secret key has a significant impact on the leakage. On the other hand, DPA is more power-

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 19

ful and can combine information leakage across many power traces collected while processing

different input messages against one secret value. It works by selecting a sensitive intermedi-

ate variable that depends on a small part of the key as well as the public message. Then, an

attacker uses a power model to predict how the power consumption should change from one

message to the other using a key hypothesis.This chapter uses the Hamming Distance power

model which accurately mimics hardware designs [49]. The key hypothesis is confirmed or

rejected by comparing the modeled power traces to the actual ones.

One countermeasure against SPA attacks is to use square-and-multiply-always [50], which

performs a dummy multiplication when the exponent-bit equals to zero. However, this algo-

rithm has a considerable performance penalty and is still vulnerable to safe-error attacks [51],

where the adversary can find dummy multiplication by inserting faults that do not alter the

final output. The performance overhead was improved in newer versions of this countermea-

sure [52, 53, 54].

Another countermeasure is the Montgomery powering ladder [55], which has no dummy oper-

ations. They use two internal variables and switches the roles of these variables depending on

the exponent-bit. Although this method makes the effect of a zero exponent-bit less obvious,

more involved attacks that use pattern-matching-like analysis (see the doubling attack [56] and

the Big Mac attack [57]) can identify if the internal variables have been updated or not. Later,

an LSB-first variant of the Montgomery ladder was proposed in [58], which should be more

secure against pattern-matching attacks, as will be detailed later.

One other countermeasure works by expressing the exponent in two parts [59], and process

two bits at each iteration (one bit from each part), which reduces the probability of dummy op-

erations. A different approach works by recoding the exponent in order to completely remove

the zeros [60, 61, 62, 63, 64]. In this work, we secure the proposed hardware architectures

with unsigned exponent recoding following [64], which can be implemented with minimal im-

plementation overhead. We also, discuss different countermeasures that could be used against

DPA attacks, although our contribution can equally work with any DPA-countermeasure. coun-

termeasures against combined SPA and fault attacks are presented in [65, 66, 67].

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 20

3.3 Exponentiation with precomputation using the DL-PIPO

Multiplier

In this section, we propose a generic new exponentiation architectures using the DL-PIPO

multiplier for different levels of precomputation, i.e. different k in the 2k-ary. While doing so,

we evaluate their complexities in terms of area and delay in order to find the optimum level of

k that results in the lowest complexity.

In order to compute (2.3), the operations are performed in two phases.

1. Phase 1 (Precomputation):

• Compute the 2k−2 terms Aw, 1 < w ≤ 2k−1. As mentioned, the squaring operation

in GNB is implemented using cyclic shifts. So, if w is even, Aw is computed by a

cycle shift of the coordinates of A
w
2 . Otherwise, the multiplication of Aw = Aw−1×A

should be performed if w is odd. The number of multiplication operation needed to

perform this phase is equal to (2k−1 − 1). The multiplication results from this phase

must be stored in (2k−1 − 1) m-bit registers.

2. Phase 2 (Multiplication):

• Multiply the terms (Awi)2ki
together in sequential manner in order to calculate (2.3).

The number of multiplication operations needed to be performed in this phase is

equal to
⌈

m
k

⌉
.

The total number of multiplications required to compute one exponentiation (Iteration Com-

plexity) is equal to M1(k) =
⌈

m
k

⌉
+ (2k−1 − 1). Table 3.1 compares the iteration complexity of

one exponentiation at different k’s using a single multiplier and Table 3.2 shows the overhead

complexity of the exponentiation architecture at different levels of precomputation k, for the

three binary fields for fields size that is m ∈ {386, 509, 1026}.

Table 3.1 shows that for m = 386, by increasing the level of precomputation k from 1-bit

to 4-bits, the iteration complexity of one exponentiation decreases from 386 to 104. How-

ever, increasing k increases overhead complexity as extra m-bit registers are needed to store all

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 21

Table 3.1: Iteration complexity of one exponentiation at different levels of precomputation k

using single multiplier.

k

m 1 2 3 4 5 6

386 386 194 132 104 93 96

509 509 256 173 135 117 116

1026 1026 514 345 264 220 202

(2k−1−1) precomputed terms required in phase 1. Additionally, the exponentiation architecture

requires a 2k-to-1 multiplexer at the input of the multiplier, as shown later, in order to select

the proper term (out of 2k) in each iteration. Table 3.2 shows the overhead complexity of the

exponentiation architecture at different levels of precomputation k. As noticed from the table,

more registers are required to perform one exponentiation as k increases. In addition, the size

of multiplexer is the other factor that grows as k increases.

Table 3.2: Overhead complexity of exponentiation at different levels of precomputation k using

single multiplier.

k # of registers Size of MUX

1 1 2-to-1

2 2 4-to-1

3 4 8-to-1

4 8 16-to-1

5 16 32-to-1

6 32 64-to-1

3.3.1 The DL-PIPO MSD Exponentiator

The proposed architecture for exponentiation using precomputation with MSD-first using the

DL-PIPO single multiplier (denoted as DL-PIPO MSD) is shown in Fig. 3.1 and highlighted

in Algorithm 1.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 22

Here, one can rewrite (2) using Horner’s rule as:

Zi−1 = (Awi) × Z2k

i , i =

⌈m
k

⌉
, · · · , 1, 0, (3.1)

where Zdm
k e

= 1 and Z0 = AE.

We select k = 4 bits for having good time-complexity without sacrificing the hardware-

complexity. During the precomputation phase, multiplication operations are needed in order

to calculate Aw whenever w is odd and bigger than 1. For example for k = 4, 2k−1 − 1 = 7

multiplication operations are required to compute (A3, A5, A7, A9, A11, A13, A15) and seven m-bit

extra registers (denoted R2 to R8 in addition to R1 that is used to store the input A) are required

to store these terms. The remaining terms (A2, A4, A6, A8, A10, A12, A14) are obtained by cycle

shifts of (A, A, A3, A, A5, A3, A7), respectively.

Since k = 4 is chosen, the m-bits of the exponent E is represented in radix 2k = 16 as E =

(wdm
4 e−1, · · · ,w1,w0)16, where wi = (20) × eki + (21) × eki+1 + · · · + (2k−1) × eki+k−1. During

the multiplication phase, the architecture starts from the MSD of the exponent. As mentioned

earlier, we add zeros to the last 4 ×
⌈

m
k

⌉
− m most significant bits of the exponent , i.e. el = 0

for l > m − 1. At the beginning of each iteration four bits wi = (e4i+3, e4i+2, e4i+1, e4i) from the

exponent E are fed into the 16-to-1 multiplexer on left of the Fig. 3.1. The multiplexer selects

the appropriate input for the register X of the DL-PIPO multiplier from the list of precomputed

values (1, A, A2, A3, . . . , A15). Register Y of the multiplier is initialized to 1. Then, in each

iteration, its amount is updated by power 2k = 16, as required by (3.1). Raising Zi to the power

of 2k in (3.1) is accomplished by cyclic-shift-right the output Z in the iteration i (Zi) by k-bits.

3.3.2 The DL-PIPO LSD Exponentiator

The LSD-first architecture for exponentiation (denoted as DL-PIPO LSD) is shown in Fig. 3.2,

and highlighted in Algorithm 1. In the LSD case, (2) can be expressed as:

Zi+1 = (Awi)2ki
× Zi, i = 0, 1, · · · ,

⌈m
k

⌉
, (3.2)

where Z0 = 1 and Zdm
k e

= AE.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 23

Figure 3.1: The proposed DL-PIPO MSD exponentiation architecture (k = 4).

Initially, registers R1 to R8 are used to hold A along with the precomputed values for the first

term of (Aw0)20
in (3.2). Then, in each iteration of the multiplication phase, the value stored in

these registers is updated by power 2k = 16 of itself, as required by the first term, i.e. (Awi)2ki
in

the multiplication of (3.2). In Fig. 3.2, raising the content of each register to 16 is performed

by 4-bit cyclic shifts denoted by >> blocks presented in the left side of this figure. In each

iteration, the output of multiplexer selects (Awi)2ki
as needed in Step 4 of Algorithm 2.

On the other hand, as shown in Fig. 3.2, the output value stored in register Z is directly feed

back (with no cyclic-shifts) to the input register Y . This is corresponding to Step 5 of Algo-

rithm 2. The role of the multiplexer and the DL-PIPO multiplier have not changed from the

MSD version.

It is noted that one can derive the proposed architectures (Fig. 3.1 and Fig. 3.2) for all values

of k by using the number of registers and the size of MUX as presented in Table 3.2.

In order to better illustrate the presented architecture during the multiplication phase, we pro-

vide the contains of registers X, Y and Z of the DL-PIPO multiplier in Table 3.3 and Table 3.4

for both DL-PIPO MSD and DL-PIPO LSD of Fig. 3.1 and Fig. 3.2, respectively.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 24

Algorithm 1 The proposed algorithm for DL-PIPO MSD exponentiation using k = 4.

Input: A, E ∈ GF(2m)

Output: AE

1: Compute A3, A5, A7, A9, A11, A13, A15

2: Z = 1

3: for i from
⌈

m
4

⌉
− 1 downto 0 do

4: Y = Awi

5: X = Z24

6: Z = Y × X

7: end for

8: return Z

Algorithm 2 The proposed algorithm for DL-PIPO LSD exponentiation using k = 4.

Input: A, E ∈ GF(2m)

Output: AE

1: Compute A3, A5, A7, A9, A11, A13, A15

2: Z = 1

3: for i from 0 to
⌈

m
4

⌉
− 1 do

4: Y = (Awi)24i

5: X = Z

6: Z = Y × X

7: end for

8: return Z

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 25

Table 3.3: Contents stored in the registers of DL-PIPO MSD (Fig. 3.1).

DL-PIPO MSD

Iteration Reg Y Reg X Reg Z

1 Aws−1 1 Aws−1

2 Aws−2 (Aws−1)24
(Aws−1)24

Aws−2

··
·

··
·

··
·

··
·

s-1 Aw1 (Aws−1)24(s−2)
(Aws−2)24(s−3)

. . . (Aw2)24
(Aws−1)24(s−2)

(Aws−2)24(s−3)
. . . Aw1

s Aw0 (Aws−1)24(s−1)
(Aws−2)24(s−2)

. . . (Aw1)24
(Aws−1)24(s−1)

(Aws−2)24(s−2)
. . . (Aw1)24

Aw0

Table 3.4: Contents stored in the registers of DL-PIPO LSD (Fig. 3.2).

DL-PIPO LSD

Iteration Reg Y Reg X Reg Z

1 Aw0 1 Aw0

2 (Aw1)24
Aw0 (Aw1)24

Aw0

··
·

··
·

··
·

··
·

s-1 (Aws−2)24(s−2)
(Aws−3)24(s−3)

. . . (Aw1)24
Aw0 (Aws−2)24(s−2)

. . . (Aw1)24
Aw0

s (Aws−1)24(s−1)
(Aws−2)24(s−2)

. . . (Aw1)24
Aw0 (Aws−1)24(s−1)

(Aws−2)24(s−2)
. . . (Aw1)24

Aw0

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 26

Figure 3.2: The proposed DL-PIPO LSD exponentiation architecture (k = 4).

3.4 Exponentiation with precomputation using the DL-HD

Multiplier

As highlighted in the previous section, although the performance of exponentiation is improved

by increasing the level of precomputation k, the area complexity increases considerably. In this

section, we propose using double multiplier (DL-HD) in order to scale down the area overhead.

Double multipliers perform two multiplications simultaneously. Hence, we can reduce the

level of precomputation to k/2, while performing two steps of (2.3) in the same iteration.

Here, we express the exponent as E =
∑2s−1

i=0 ui × 2ki/2, for the same value of s =
⌈

m
k

⌉
, (0 ≤ ui ≤

2k/2 − 1) and k ≥ 2 is an even number. In this case, instead of precomputing all terms of Aw

with 1 ≤ w ≤ 2k − 1, we compute only Au with (1 ≤ u ≤ 2
k
2−1). Then, we rewrite (2) as:

AE =

s−1∏
i=0,1,2,...

(Au2i)2ki
× (Au2i+1)2k(i+1)/2

. (3.3)

Essentially, we use a double multiplier to let an exponentiation algorithm with precomputation

level of k/2 to complete one exponentiation in the same latency (with respect to the multipli-

cation phase) of a k-bits precomputation. However, we reduce the number of multiplication

operations that are required to complete the precomputation phase from 2k−1 − 1 to 2
k
2−1 − 1.

Hence, the iteration complexity become: M2(k) = (2
k
2−1 − 1) +

⌈
m
k

⌉
. The iteration complexity

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 27

of one exponentiation using double multiplier for different levels of precomputation k is high-

lighted in Table 3.5. Comparing Table 3.1 with Table 3.5 illustrates the effect of improving the

precomputation phase. For example, for k = 6 & m = 386 the required number of iterations is

reduced from 96 using single multiplier to only 68 iterations using double multiplier.

Table 3.5: Iteration complexity of one exponentiation at different levels of precomputation k

using double multiplier.

k

m 2 4 6

386 194 98 68

509 255 129 88

1026 514 258 174

It should be noted that the DL-HD employed here performs double multiplication with the al-

most same latency of a single multiplier at the expense of almost double the area. Also, using

a double multiplier significantly reduces hardware overhead needed for the registers (storing

the precomputed values) and the multiplexer (choosing the precomputed values). Instead of

requiring (2k−1 − 1) m-bit extra registers (in addition to one register to store the input value)

using a single multiplier, we need only (2
k
2−1 − 1) extra registers if we employ a double multi-

plier. That is, instead of requiring seven extra registers in the previous architecture (Fig. 3.2),

the architectures proposed in this section will use only one extra register. Moreover, the size

of multiplexer is reduced from 2k-to-1 to only 2
k
2−1-to-1. Overhead complexity for the regis-

ters and the multiplexer of the proposed exponentiation algorithm using double multiplier at

different levels of precomputation k is highlighted in Table 3.6.

3.4.1 The DL-HD MSD Exponentiator

The hardware architecture of the proposed exponentiation algorithm using the DL-HD multi-

plier is shown in Fig. 3.3 and highlighted in Algorithm 3. For clarity, we use the same precom-

putation level of 4 bits (k = 4) with MSD-first and denote our architecture as DL-HD MSD.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 28

Table 3.6: Overhead complexity of exponentiation at different levels of precomputation k using

double multiplier.

k # of registers Size of MUX

2 1 2-to-1

4 2 4-to-1

6 4 8-to-1

Hence, (3.3) can be rewritten as:

Zi−2 = (Aui) × (Aui+1)2k/2
× Z2k

i , i =

⌈m
k

⌉
, · · · , 4, 2, (3.4)

where Zdm
k e

= 1 and Z0 = AE.

During the precomputation phase (Step 1 of Algorithm 3), A3 is the only term of Au that needs

to be calculated and stored (instead of 7 terms in the DL-PIPO MSD case). As shown in

Fig. 3.3, we use only one multiplexer to derive both register Y with Aueven and register F with

Auodd . This is possible because, the DL-SIPO multiplier inside the DL-HD starts computing its

part one clock cycle later than the DL-PISO multiplier. Therefore, in the first clock cycle of

each iteration, we use the multiplexer to select the input of register Y . Then, in the next clock

cycle, we select the input of register F. Note that, register F is fed with power 2k/2 = 4 of the

input following (3.4). The output of each iteration is raised to power 2k = 16 (see Step 6 of

Algorithm 3) which is implemented by a 4-bit cyclic shifts block >> and feed-back to register

X, as shown in Fig. 3.3.

3.4.2 The DL-HD LSD Exponentiator

The LSD counterpart (DL-HD LSD) works by representing (3.3) as:

Zi+2 = (Aui)2k
× ((Aui+1)2k

)2k/2
× Zi, i = 0, 2, ...,

⌈m
k

⌉
− 2, (3.5)

where Z0 = 1 and Zdm
k e

= AE.

Similarly, the DL-HD LSD architecture with a precomputation level of k = 4 is presented in

Fig. 3.4, while the algorithm is highlighted in Algorithm 4.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 29

Algorithm 3 The proposed algorithm for DL-HD MSD exponentiation using k = 4.

Input: A, E ∈ GF(2m)

Output: AE

1: Compute A3

2: Z = 1

3: for i from
⌈

m
4

⌉
− 1 downto 0 do

4: Y = Au2i

5: F = Au2i+1

6: X = Z24

7: Z = Y × X × F

8: end for

9: return Z

One can simply derive the proposed architectures in Fig. 3.3 and Fig. 3.4 for even value of k

using the number of registers and the size of MUX as presented in Table 3.6.

For clarity and completeness, the value stored in the registers of DL-HD MSD and DL-HD LSD

is shown in Table 3.7 and Table 3.8.

3.4.3 Correction on Single-Exponentiation Architecture presented [1]

In this section, we provide comments on exponentiation architectures presented in [1]. An

algorithm and the corresponding architecture for performing single exponentiation in binary

finite field using double multiplier has been presented in [1]. They expressed the exponentiation

in terms of a double exponentiation by splitting the exponent into two halves. However, there

are some mistakes in the proposed exponentiation algorithm and architecture. In the following,

we provide a modification to their exponentiation algorithm and corresponding architecture in

order to perform accurate exponentiation operation.

Looking at the first f or loop of the original algorithm (Steps 2 to 2.4 of Algorithm 1 in the

paper), it is easily seen that Ri+1 is overwritten by Ri of the next iteration of i. As a result,

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 30

Algorithm 4 The proposed algorithm for DL-HD LSD exponentiation using k = 4.

Input: A, E ∈ GF(2m)

Output: AE

1: Compute A3

2: Z = 1

3: for i from 0 to
⌈

m
4

⌉
− 1 do

4: Y = (Au2i)24i

5: F = (Au2i+1)24i+2

6: X = Z

7: Z = Y × X × F

8: end for

9: return Z

Table 3.7: Contents stored in the registers of DL-HD MSD (Fig. 3.3).
DL-HD MSD

Iteration Reg Y Reg F Reg X Reg Z

1 Au2s−2 (Au2s−1)22
1 Aws−1

2 Au2s−4 (Au2s−3)22
(Aws−1)24

(Aws−1)24
Aws−2

··
·

··
·

··
·

··
·

··
·

s-1 Au2 (Au3)22
(Aws−1)24(s−2)

(Aws−2)24(s−3)
. . . (Aw2)24

(Aws−1)24(s−2)
(Aws−2)24(s−3)

. . . Aw1

s Au0 (Au1)22
(Aws−1)24(s−1)

(Aws−2)24(s−2)
. . . (Aw1)24

(Aws−1)24(s−1)
(Aws−2)24(s−2)

. . . (Aw1)24
Aw0

Table 3.8: Contents stored in the registers of DL-HD LSD (Fig. 3.4).
DL-HD LSD

Iteration Reg Y Reg F Reg X Reg Z

1 Au0 (Au1)22
1 Aw0

2 (Au2)24
(Au3)26

Aw0 (Aw1)24
Aw0

··
·

··
·

··
·

··
·

··
·

s-1 (Au2s−4)24s−8
(Au2s−3)24s−6

(Aws−3)24(s−3)
. . . (Aw1)24

Aw0 (Aws−2)24(s−2)
. . . (Aw1)24

Aw0

s (Au2s−2)24s−4
(Au2s−1)24s−2

(Aws−2)24(s−2)
. . . (Aw1)24

Aw0 (Aws−1)24(s−1)
(Aws−2)24(s−2)

. . . (Aw1)24
Aw0

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 31

Figure 3.3: The proposed DL-HD MSD exponentiation architecture (k = 4).

Figure 3.4: The proposed DL-PIPO LSD exponentiation architecture (k = 4).

either all four variables of Ri+1 should be removed from Steps 2.1 to 2.4 or two sets of kiqi and

ki+1qi+1 should be included in each iteration (Steps 2.1 to 2.4) of this f or loop. Also, in Step

2.4 , the i + 1 exponent of AB for Ri should be modified to i. Looking at the second f or loop of

the Algorithm, we notice two other mistakes: (i) the final value of j in Step 3 of this algorithm,

i.e., (dm
2 e−1)

2 will not be an integer if f
⌈

m
2

⌉
is even and hence it should be modified to

⌈
m−1

4

⌉
and

(ii) the subscripts for Ri and Ri+1 in Step 3.1 should be modified to j and j + 1 respectively. In

Algorithm 5, two different loops are used. Although it is technically correct, but it does not

match its corresponding architecture. This is because it requires storing all variables of Ri for

1 ≤ i ≤
⌈

m−1
4

⌉
in order to be used in Step 3.1 of the algorithm. Therefore, one can combine two

separate f or loops in one loop and have only two variables, denoted by F0 and F1 as shown in

the Modified Algorithm 5.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 32

Algorithm 5 Modified single-exponentiation algorithm

Input: A ∈ GF(2m) and P = (p0, p1, . . . , pm1), P > 1

Output: C = AP

1:initialize B = A2d
m
2 e and

1.1: K = k02 + k121 + . . . + kdm
2 e−12d

m
2 e−1,

where ki = pi

1.2: Q = q02 + q121 + . . . + qdm
2 e−12d

m
2 e−1,

where qi = pdm
2 e+i

1.3: if (k0q0 = 00)C0 = 1

1.4: if (k0q0 = 01)C0 = B

1.5: if (k0q0 = 10)C0 = A

1.6: if (k0q0 = 11)C0 = AB

2: for j from 1 to
⌈

m=1
4

⌉
do

2.1: i = 2 j − 1/∗ Generate F0 and f1 in parallel ∗/

2.2: if (kiqi = 00)F0 = 1

2.3: if (kiqi = 01)F0 = B

2.4: if (kiqi = 10)F0 = A

2.5: if (kiqi = 11)F0 = AB

2.6: if (ki+1qi = 00)F1 = 1

2.7: if (ki+1qi+1 = 01)F1 = B

2.8: if (ki+1qi+1 = 10)F1 = A

2.9: if (ki+1qi+1 = 11)F1 = AB

3: C j = C j−1 ∗ Fi ∗ Ri+1

endfor

3: For j from 1 to d
m−1

4 e−1
2

3.1: C j = C j−1 ∗ Ri ∗ Ri+1

endfor

3.2: C = C j

4: return C = AP

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 33

The exponentiation architecture computes AB based on the modified algorithm if proper control

signals be applied to the architecture. The DL-HD multiplier used in this architecture computes

Step 3 of Algorithm 2 which multiplies three field elements of C j1, F2i

1 , and F2i+1

1 . It is noted

that the register < Z > shown in the figure should be included inside (not outside) the DL-

HD multiplier. The two multiplexers in the left side of this figure are used for initialization

based on Steps 1.3 to 1.6 of modified Algorithm. The two multiplexers located above the

architecture generates F0 and F1 based on inputs kiqi and ki+1qi+1 according to Steps 2.2 and

2.9 of the modified algorithm. Then, the two blocks of successive squarers compute F2i

0 , and

F2i+1

0 , respectively, where F0 and F1 are the inputs of these two blocks.

It is stated in the paper that “the successive squarers are only rewiring as the field elements

are represented in normal basis”. Such a statement is not valid because the number of cyclic

shift operations, i.e., i and i + 1, are not fixed in each iteration and therefore different types of

cyclic shifts are required in each iteration. Also, since the input of the two blocks of successive

squarers (F0 and F1) vary in each iteration, F2i

0 , and F2i+1

1 cannot be obtained by successive

cyclic shift of their values from the previous iteration. The successive squarers should be

modified and replaced by two shifting blocks which have a controllable cyclic shift operations.

the shifting block can be implemented using (i) squarers and one i-to-1 Multiplexer in order to

select the proper term F2i
in each iteration.

3.5 Security Analysis

In this section, we study the four proposed architectures against both SPA and DPA attacks.

The power leakage of DL-PIPO MSD and DL-PIPO LSD as shown in Fig. 3.1 and Fig. 3.2

can be represented as:

L =

8∑
i=1

PRi + PX + PY + PZ, (3.6)

where Px is the power consumption for register x. In this equation, we ignore the power

consumption of the combinational logic, and focus on registers for having more impart on the

power consumption trace [49].

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 34

The power consumption of registers the eight Ri, 1 ≤ i ≤ 8, depends exclusively on the input

message A. Hence, these registers in both DL-PIPO MSD and DL-PIPO LSD do not leak any

information about the secret key. Changes in PX of the two architectures depend on k bits (= 4)

of the secret key, along with the input message. PY and PZ are identical, as one register holds

the exact same value of the other (in DL-PIPO LSD, Fig. 3.2) or just a rotated-shift version of

it (in DL-PIPO MSD, Fig. 3.1). Changes in each of these registers depend also on k bits (=4)

of the secret key along with the input message, hence leaking equivalent information to PX. In

short, PX represents the best attack point for SCA.

Similarly, the power leakage of DL-HD MSD and DL-HD LSD as shown in Fig. 3.3 and

Fig. 3.4 can be represented as:

L = PR1 + PR2 + PX + PY + PF + PZ. (3.7)

Registers R1 and R2 do not leak any information about the secret key as they are loaded initially

with A and A3, respectively. Changes in PY and PF depend on k/2 bits (=2) of the secret key,

each, along with the input message. Whatever information that could be leaked through PY

will be equivalent to the information leaked through PF , however the leakage will be against

a different set of secret bits. PZ and PX are identical, while changes in each of these registers

depend on k bits (=4) of the secret key along with the input message. For these architectures,

PY (or equivalently PF) is the best attack point for SCA.

In short, the four architectures proposed in the previous sections leak similar information to

side-channel analysis. The key hypothesis used to attack DL-PIPO MSD or DL-PIPO LSD

should have 4-bit length. Following the Hamming Distance power model where we model

the power consumption during the register update between two clock cycles, the 4-bit key

hypothesis will result in 256 possible cases. On the other hand, the key hypothesis used to

attack DL-HD MSD or DL-HD LSD is only 2-bit length. Hence, the analysis will study 16

different cases.

For a clearer analysis, the rest of this section focuses on DL-HD MSD and DL-HD LSD, while

the results can directly be generalized to the other two cases.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 35

Table 3.9: All the possible power signatures of register Y in the DL-HD MSD architecture.

e2i+k, e2i+1+k

00 01 10 11

1 A A2 A3

e 2
i,

e 2
i+

1

00 1 l1(0) l1(1) l1(1) l1(2)

01 A l1(1) l1(0) l1(3) l1(4)

10 A2 l1(1) l1(3) l1(0) l1(5)

11 A3 l1(2) l1(4) l1(5) l1(0)

3.5.1 Simple Power Analysis

Following the Hamming Distance model, PY can be represented as:

PY = HW(Yi ⊕ Yi+1), (3.8)

where Yi is a register update. PY can leak information that is exploitable by SPA (using only

one message) if the leakage at one key is distinguishable from the leakage at a different key.

DL-HD MSD, Fig 3.3

Following k = 4, register Y can hold a total of four different values (1, A, A2, A3) at key-bits

(00, 01, 10, 11) respectively. Hence, the observable register update can happen in 16 cases as

shown in Table. 3.9. Table entries are explained as follows:

• Whenever the key-bits do not change (00 → 00, 01 → 01, 10 → 10, 11 → 11), the

internal value of the register will not change, and PY will equal zero. We denote this null

power signature as l1(0).

• Hamming Distance is a commutative function (HW(y1 ⊕ y2) = HW(y2 ⊕ y1)). Hence,

Table. 3.9 is symmetrical.

• The Hamming Weight (HW) of A equals that for A2. Hence, HW(1 ⊕ A) = HW(1 ⊕ A2),

which we denote as l1(1).

• The rest of power signatures are denotes by l1(2) to l1(5).

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 36

First, l1(0) = 0, which is significantly observable in the power trace as there will not be any

power consumed during the register update. This reduces entropy of those 4 bits to 4/16 ∗

log2(4) + 12/16 ∗ log2(12) = 3.1887 bits, which brings down the security of the system to

3.1887/4 × m = 0.7972m bits. the 0.7972m bits represent the remaining uncertainty about

the secret key given that the adversary could distinguish l1(0) from the rest, which is a fair

assumption. In a more information theoretic terms, this represents H(K|L), where K represents

the secret key and L represents the leakage.

Moreover, the leakage signatures in Table 3.9 will show up several times in the processing of

any single message. This gives the attacker a non-negligible probability in distinguishing the

remaining power signatures (l1(i), i ∈ {1, 2, 3, 4, 5}) through means of pattern recognition (see

for example [68]). If this happens, the entropy of the four bits will be reduced to 2 ∗ 4/16 ∗

log2(4) + 4 ∗ 2/16 ∗ log2(2) = 1.5 bits. The first term represents the result of distinguishing

l1(0) and l1(1) (2 cases where we can identify 4 out of 16 signatures, with a remaining security

of log2(4) = 2 bits). The second term represents the result of distinguishing the other power

signatures. Hence, security of the system will be reduced to only 1.5/4 × m = 0.375m

To conclude, exponentiation using the DL-HD MSD shows very low security against SPA

attacks (either 0.7972m or 0.375m bits).

The main difference between MSD-first and LSD-first architectures is changing the location of

the circular shift from the feedback circuit to the input registers. Here, we are still focusing on

the effect of PY on security against SPA attacks.

Every time, before updating register Y , the input registers get circularly shifted by k bits (4 bits

in our example). This continuous change in the input registers removes much of the symmetry

found in the previous table (Table 3.9). The new table for power signatures in the LSD-first

architecture is shown in Table 3.10, while assuming an SPA attack against the first key-bits.

Here, the first row and column (whenever an input of ′1′ is involved) have not changed from

the previous case. However, all the other entries have changed to reflect the change in the input

registers.

Similarly, l2(0) = 0 is significantly distinguishable in the power trace, hence reducing the en-

tropy of every 4-bits to 1/16 ∗ log2(1) + 15/16 ∗ log2(15) = 3.6627 bits, which reduces the

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 37

Table 3.10: All the possible power signatures of register Y in the DL-HD LSD architecture.

e2i+k, e2i+1+k

00 01 10 11

1 A16 A32 A48

e 2
i,

e 2
i+

1

00 1 l2(0) l2(1) l2(1) l2(2)

01 A l2(1) l2(3) l2(4) l2(5)

10 A2 l2(1) l2(6) l2(7) l2(8)

11 A3 l2(2) l2(9) l2(10) l2(11)

system’s security to 3.6627/4 × m = 0.9157m bits. The first term represents l2(0), which hap-

pens only once. The second term represents the remaining uncertainty about the other 15 cases.

Here, LSD-first shows a significant improvement in security (3.6627m versus 3.1887m bits).

More importantly, the power signatures listed in Table 3.10 are never repeated while processing

the message, hence pattern recognition attacks will never work (see Big-Mac attack [57] and

doubling attack [56]). We acknowledge that, the adversary can still apply pattern recognition

between traces of different messages [68] however, such attack will be considered DPA not

SPA, and can be prevented using any DPA-countermeasure listed in Sec. 3.6.2.

To conclude, exponentiation using DL-HD LSD shows significantly high security against SPA

attacks. That is 0.9157m bits of security against 0.375m bits using DL-HD MSD. In the next

section, we will propose a new countermeasure that depends on unsigned exponent recoding,

which removes all the zeros from the exponent. Hence, the proposed countermeasure will have

an SCA-security of m bits, as highlighted later.

3.5.2 Security Analysis against Fault Attack

We analyze the security of the architecture against DFA. The values held in the register (X) of

DL-PIPO LSD (Fig. 3.2) and registers (X,Y) of DL-HD LSD (Fig. 3.4), depend on k bits of the

secret key. To extract the secret key, the fault can be induced on the dummy multiplication. So if

the final result is still correct, it shows that there was a dummy multiplication, and the exponent

bit value was 0000 among a total of sixteen different values based on key-bits. Entropy of those

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 38

4 bits is reduced to 1/16 ∗ log2(1) + 15/16 ∗ log2(15) = 3.6627 bits, and decreased the security

of the system to 3.6627/4 × m = 0.9157m bits.

We also evaluate the security of the architecture against the combination of a FA and SPA at-

tack. In our case, an attacker inserts a fault to bypass loading a message (A) into the exponen-

tiation algorithm [69]. So, the value of (A) maintained its initial value, which is typically zero.

Consequently, the exponentiation architecture performs different multiplication computations

based on the secret key (E). The DL-PIPO LSD (k = 4) performs the multiplication of (1×0) if

E = (0000) and the multiplication of (0×0) for the other cases. The power consumption pattern

of these two multiplication computations can be easily differed by a simple power trace. En-

tropy of those 4 bits is reduced to 1/16∗log2(1)+15/16∗log2(15) = 3.6627 bits and the security

to 3.6627/4×m = 0.9157m bits. The DL-HD LSD (k = 4) architecture performs two multipli-

cations simultaneously, the power consumption pattern of the architecture can be easily identi-

fied based on two, one, or none of the multipliers perform (1 × 0) multiplication. The entropy

of the four bits will be calculated as 1/16∗ log2(1) + 2/16∗ log2(2) + 13/16∗ log2(13) = 3.1316

and the security reduced to 3.1316/4 × m = 0.7829m bits.

3.5.3 Differential Power Analysis

Unfortunately, the proposed architectures are equally vulnerable to DPA attacks. A typical

DPA attack against the proposed architectures will work as follows. For consistency, we are

still focusing on recovering the first key-bits responsible for the update of the register Y . The

same attack can target other key-bits by focusing on the register F or other time instances in

the power trace.

1. The adversary collects a set of power traces that correspond to the processing of different

(typically random) messages.

2. Using a 4-bit key hypothesis, he computes the change in the value of register Y following

Table 3.10.

3. Converts the change in register Y into modelled power consumption using the Hamming

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 39

Distance model.

4. Compares the modelled power to the actual measured power searching for one key hy-

pothesis that results in the best match.

It should be noted that the secret key is chosen temporarily in many cryptography algorithms

[70]. It means every time the algorithm is executed, an ephemeral key is selected. So, the

attacker is not able to perform DPA on Digital Signature Algorithm (DSA) [70].

In the next section, we study different options that could be used to augment the proposed

architectures against SPA and DPA attacks.

3.6 Secure Architectures

In this section, we propose how the LSD-first architectures (Fig. 3.2 and Fig. 3.4) can make

use of the unsigned positive exponent encoding in order to become fully secure against SPA

attacks. Moreover, we discuss several methods by which, our architectures can be secured

against DPA attacks.

3.6.1 Security against SPA Attacks

The proposed architectures are secure against timing attacks, since the hardware realization

completes the algorithm after a fixed number of clock cycles following the same require-

ments of the square-and-multiply-always algorithms. However, the architectures are not secure

against power attacks since the no action demanded when the exponent is zero has a signifi-

cant impact on the power trace. Hence, out of the many SPA-countermeasures listed in the

introduction, we propose using the unsigned positive encoding, previously used in [64].

The concept is that, instead of expressing k bits of the exponent as an element in [0 : 2k − 1],

we express the exponent in only positive numbers [1 : 2k], so that we no longer have the

zero element. This requires recoding the exponent in order for the two representations to be

equivalent.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 40

Here, we can express the exponent E in any radix 2k as

E =

d(m−1)/ke∑
i=0

wi × 2ki,wi ∈ [0 : 2k − 1]. (3.9)

We consider an integer E1 =
∑d(m−1)/ke−1

i=0 2ki, setting all the coefficients (wi) to the smallest

allowable value of 1 except for the most significant coefficient which we set to 0. This makes

E1 strictly less than E. Then we compute E2 as E2 = E − E1. Thereafter, we use the exponent

E′ = E1+ E2, where the addition is done in a higher radix > 2k. Essentially, E′ equals E, while

its coefficients have a minimum value of 1 and a maximum value of 2k (instead of 2k − 1).

For example, let E = (389183)10. Assuming k = 4, following the DL-PIPO LSD architecture

(Fig. 3.2), the exponent can be represented as E = (5F03F)16. This representation will generate

side-channel leakage in the third iteration (in either MSD-first or LSD-first) due to the presence

of 0. Here, we define E1 = (01111)16 = (4369)10. Hence, E2 will be equivalent to E2 =

(5DF2E)16 = (384814)10. Therefore, the new exponent will be E′ = (5EG3F), where G

represents 16 and we removed the radix 16 for less confusion.

Considering the DL-HD LSD architecture (Fig. 3.4), the multiplexer is controlled by only

u = k/2 = 2 bits. Hence, the exponent will be E = (1133000333)4. This representation

will generate side-channel leakage in the middle iterations. Hence, we define E1 as E1 =

(0111111111)4 = (87381)10. Hence, E2 will be E2 = (1021223222)4 = (301802)10 and

E′ = (1132334333).

Although this encoding scheme solves the problem of zeros, there are still two problems in

using this encoding scheme in hardware architectures, as discussed below.

Mimic the effect of zero-padding

One problem in the new unsigned positive representation comes from the zero-padding. Typi-

cally, when the length of the exponent is less than m (the security parameter), zeros are padded

to the left of the exponent. However, under the unsigned positive representation we have no

definition for zero, and adding ones (the smallest element) will change the exponent value. In

order to solve this problem, we pre-process the exponent as follows.

Assuming that the length of the exponent in use is l bits, denote x as the number of zero-bits

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 41

padded to the left of the exponent in order to have a total length of m (or ks in 2k-ary schemes),

i.e. x = m − l. Before starting the encoding process, we shift the exponent left by x bits to

obtain 2xE. Then, after concluding the exponentiation by finding Z′ = A2xE, we cyclic-rotate

the result to the left by x bits to obtain Z′2−x, which brings back the original output. Essentially,

instead of computing Z = AE, we compute Z′ = A2x×E, where left-shifting the exponent by x

bits is interpreted as multiplication of the exponent by 2x. This is equivalent to Z′ = (AE)2x

.

Left-cyclic-shifting the result by x bits has the effect of Z′′ = (Z′)2−x
following the Gaussian

Normal Basis representation. Hence, Z′′ = AE = Z.

Enforce regular coding

Another problem with the unsigned positive encoding is that, the output-length of the encoder

is, in some cases, less than the input-length by one-digit. For example, let E = (69183)10 which

is equivalent to E = (10E3F)16. The unsigned positive recoded exponent should be E′ =

(GE3F). This length-reduction demands early termination of the exponentiation algorithm

since we no longer have zero digits, which in turn will generate side-channel timing leaks. This

problem happens whenever the exponent is less than E <
∑d(m−1)/ke

i=0 2ki, which is equivalent to

setting all the digits to 1. In other words, any exponent that is equal or less than (111...110)2k

will generate a non-regular encoded exponent.

In over to enforce a regular-length output, we multiply the exponent by 2, compensated by

computing the square-root of the final output, which is similar to the implementation trick in

the previous paragraph. In other words, instead of computing E = (69183)10 = (10E3F)16,

we compute 2E = (138366)10 = (21C7E)16, which will be equivalent to the unsigned positive

representation as the current representation has no-zeros already. This output has 5 digits

similar to the input.

Exponent encoder

Next, we modify the proposed architectures in order to incorporate this SPA-countermeasure.

We assume that pre-processing the exponent and post-processing the result in order to mimic

zero-padding is done by the driving software, and focus on updating the proposed architectures

and implementing the exponent recoding.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 42

The simplest realization of the exponentiation architectures using the new exponent recoding

E′ is to increase the size of the multiplexer by one. However, this will have a significant impact

on the implementation area.

Hence, in order to minimize the implementation overhead, we change the inputs to the mul-

tiplexers of Fig. 3.2 from [1 : A15] to [A : A16]. Similarly, we change the inputs to the mul-

tiplexers of Fig. 3.4 from [1 : A3] to [A : A4]. In fact, this update will not introduce any

implementation overhead as the new inputs (A16 and A4) are just cyclic-shifts of the original

input A.

With this in mind, each coefficient of the recoded exponent E′ should be reduced by one in

order to accommodate the change in the multiplexer inputs. Essentially, this is equivalent to

subtracting the original input exponent E by R, where R has an element of 1 in each digit:

R =
∑d(m−1)/ue

i=0 2ui, where u = k in the DL-PIPO architectures, while u = k/2 in the DL-HD

architectures. In other words, the exponent encoder will perform:

Eout = E − (111...11)2u , (3.10)

which can be very efficiently implemented with a u-bit binary subtractor with borrow.

It is worth mentioning that, the binary subtractor scans the exponent LSD-first, which is a

perfect match with the architectures to be secured (the DL-PIPO LSD, and the DL-HD LSD).

Note that, while enforcing regular coding, there is no need to increase the size of the exponent

register by one. In fact, the shifted-out bit in the studied case (E <
∑d(m−1)/ue

i=0 2ui) will always be

borrowed to bit before it. Hence, the binary subtractor will always generate the correct results.

Architecture of the SPA-secure scheme

The summary of changes that are required in order to secure our contributions against SPA

attacks are as follows:

• Shift-left the exponent by x bits so that the MSD is one.

• If the new exponent is less than (111...11)2u , shift-left the exponent by one and increment

x.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 43

• Change the multiplexer-inputs from [1 : A15] to [A : A16] and [1 : A3] to [A : A4] in the

DL-PIPO LSD (Fig. 3.2) and the DL-HD LSD (Fig. 3.4), respectively.

• Add a u-bit binary subtractor with borrow between the exponent bits and (1)2u with the

output connected normally to the multiplexer.

• At the end of computation, left-cyclic-rotate the result by x bits.

We denote the secured architectures as DL-PIPO LSD SPA-Secured and DL-HD LSD SPA-

Secured. Once the exponent becomes free from zero bits, binary exponentiation with LSD-first

will have SPA-security of m bits. As a result, there is no advantage to the adversary at the

analysis of any one power consumption trace.

3.6.2 Security Against DPA Attacks

In the literature, there are two different methods to prevent DPA attacks, masking and hid-

ing [49]. Masking depends on blinding internal computations using a random variable that

is generated on-board and discarded after each exponentiation. Hiding depends on reducing

the signal-to-noise ratio within the trace using either a redundant complementary processing

unit or a dedicated random noise generator. In the remainder of this section, we will focus on

masking countermeasure for having a more robust mathematical background [49].

Masking is typically be achieved by splitting the secret value into two parts (denoted as secret

blinding) using a random variable. Also, mathematics of finite field exponentiation enable

another class of masking that utilizes only a single pass. Here, randomization is added in a

special way that do not alter the final result. Next, we discuss each method, and how the

proposed architectures can be updated in order to become secure against DPA attacks as well.

A cautionary note here is that, masking can only work on top of a scheme that is secure against

SPA attacks. If the underlying scheme is vulnerable to SPA attacks, the added randomization

will be perceived as one additional secret that can be recovered using the same power trace.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 44

3.6.3 One-Pass Masking

One-Pass Masking can be achieved by exponent blinding, message blinding, or both as ex-

plained below.

Exponent Blinding: We replace the secret exponent E by Ê = E + r.Φ(N), where r is the

random variable and Φ(N) is the Euler’s totient function [71]. Here, AÊ = AE × Ar.Φ(N). The

second term is congruent to 1(mod N) if the message A and N are coprime following Euler’s

theorem. Hence, exponentiation to Ê will generate the exact same result as exponentiation to

E.

The proposed schemes can easily be protected using this method while using the underlying

multiplier (either single or double) to pre-compute the randomized exponent Ê.

Message Blinding: Similarly, we replace A by Â = A × rP, where P is the public exponent.

Raising the message Â to the same exponent E will result in ÂE = AE × rE.P = AE × r. After

completing the randomized exponentiation, the cryptographic engine should multiply the result

by the inverse (mod N) of r, which brings back the legitimate output.

The proposed schemes can also use this countermeasure. Raising the random value r to the

public exponent is only one extra exponentiation in the proposed schemes. However, inversion

of random value will require a slightly different architecture (see for example [33]).

Both: The two schemes can be used together in order to improve security.

3.6.4 Masking by Secret blinding

In this case, we replace AE by multiplying AE−r and Ar. Processing any of the two shares

does not reveal anything about the original secret E. The original output can be retrieved by

multiplying the two outputs.

One direct realization of this countermeasure is to recall the original proposal of the hybrid-

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 45

double multiplier where it was used to perform double exponentiation [28], i.e to compute

both AE−r and Ar in a pipelined fashion to generate the final output. However, this realization

is not secure against DPA attacks as the output is generated bit-by-bit removing the effect of

randomization r. In other words, the registers Y and F will be secure, but the register Z (in

Fig. 3.4) will leak information about the 4 input bits.

Another realization that is secure against DPA attacks is to initialize the value of register Z

to one while processing AE−r. Then, before processing Ar we set register Z to the output of

the previous operation. Hence, applying this countermeasure requires doubling the number of

clock cycles, with no hardware overhead.

3.7 Complexity Comparison and Implementation

Lightweight implementation of exponentiation in a finite field on resource-constrained systems,

as well as fast implementation on high-performance computation, are attractive for public-key

cryptosystems, including the Diffie-Helman protocol for key exchange [9] and the El-Gamal

algorithm for digital signatures [72]. The presented architectures in this paper can be used

in both applications, as the digit size in the proposed digit-level exponentiation architectures

can be chosen based on available resources. In the NIST lightweight Cryptography [73], the

proposed architecture can be used for implementing an identification scheme for RFID com-

munications [74].

In this section, we compare the time and the area complexities of the presented exponentia-

tion architectures along with their resistance against SPA-attacks to those of recent contribu-

tions [29, 75].

3.7.1 Complexity Comparison

As presented in Table 3.11, the area complexity of each exponentiation architecture consists of

one multiplier (its type is presented in this table), a number of m-bit registers (excluding the

ones needed in the multiplier) and a few m-bit multiplexers (MUXs). In this comparison, we

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 46

provide equivalent m-bit 2-to-1 MUXs for each exponentiation architecture because different

types of MUXs are used in each exponentiation architecture. One can implement a 4-to-1

MUX with 3 2-to-1 MUXs. Therefore, our proposed exponentiation architectures of Fig. 3.3

and Fig. 3.4 require 3 + 1 = 4 m-bit 2-to-1 MUXs. Similarly, Fig. 3.1 and Fig. 3.2 require

16 m-bit 2-to-1 MUXs. This is because a 16-to-1 MUX can be implemented using two 8-to-1

and a 2-to-1 MUXs. Also, 8-to-1 MUX is implemented with two 4-to-1 and a 2-to-1 MUXs.

The time complexity of the presented exponentiation architectures are compared in terms of

iteration complexity (the total number of sequential multiplication operations). These numbers

include a fixed number of multiplications (required for the precomputation) in addition to
⌈

m
k

⌉
multiplications (required for the exponentiation).

As shown in Table 3.11, the lowest latency (the least computation iteration) is achieved by the

DL-HD LSD architectures for k = 6, where the number of multiplication operations is only⌈
m
6

⌉
+ 3. Comparing the performance of these two architectures to the one proposed in [1],

which also uses a double multiplier, shows that the proposed architecture is about m
4 /

m
6 = 1.5

as fast as the one proposed in [1]. Moreover, the number of equivalent m-bit 2-to-1 MUXs

in the proposed structures is less than that of [1] (8 versus 10). More importantly, the archi-

tectures presented in this work for any values of k, whereas the one proposed in [1] is for

k = 4. It should be noted that the architecture in [1], used two blocks of successive squarers

implemented by two shifting blocks, that have controllable cyclic shift operations. One m-bit

multiplexers design each shifting block to select the proper term in each iteration. In addition,

the complexity analysis of the DL-PIPO architectures (the DL-PIPO LSD) shows that while

they use a single multiplier, it reduces the number of multiplication operations to
⌈

m
4

⌉
+7, which

is almost equal to the one using double multiplier presented in [1] and better than the one using

the triple multiplier proposed in [29]. It should be noticed that the area of triple and double

multiplier used in these architectures are roughly three times and two times the size of a single

multiplier used in the DL-PIPO architectures, respectively.

Concerning security against SPA-attacks, the recent related work of [29] and [1], referenced in

Table 3.11 use variants of MSD-first and LSD-first, respectively. Hence, their security against

SPA attacks ranges from low security (in [29]) and moderate security (in [1]). However, the

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 47

two contributions did not propose any fully secure architectures that are equivalent to the new

architectures proposed in Section 3.6.

3.7.2 ASIC Implementation

The feasibility of the proposed architectures is validated by synthesizing our proposed architec-

tures on ASIC platform. The proposed architectures are modeled for technology-independent

constructions in register transfer level (RTL). The ASIC platform is chosen based on avail-

able resources. We expected similar area and time requirements on FPGA platform as our

proposed architectures do not depend on the hardware platform (different FPGA families and

ASIC technologies). The ASIC post-synthesis reading results are obtained using Synopsys De-

sign Vision tool based on the standard STMicroelectronics 65nm CMOS technology libraries

under medium optimizations effort (i.e., default).

The area and time requirements of the architectures are reported for m ∈ {386, 509, 1026} for

different digit sizes (d) as well as the number of simultaneously processed bits (k) in Table 3.12,

Table 3.13 and Table 3.14, respectively. The areas are obtained for different digit sizes (d), and

the total time of operation is calculated by multiplying the latency (number of clock cycles) by

the critical path delay (CPD). The number of NAND gate equivalents (GE) is used to present

the area results. GE is calculated by dividing the total area by the area of a single NAND gate

which is equal to 2.08 µm2 based on 65nm CMOS technology libraries.

The implementation results for DL-HD architectures show the low dependency of overhead

complexity on k. Increasing k leads to a slight increase in the area while significantly improves

latency. As an example, for a digit size of 43 over GF(2386), by changing k from 4 to 6, the

relative number of area increases about slightly, while increasing k significantly improves the

latency of the architecture. The implementation results show that DL-PIPO LSD Exponentia-

tor computes exponentiation operations faster and consume considerably less power than other

architectures. The efficiency metric (Area × Time) is used for comparing the efficiency of im-

plementations. As shown from the implementation result, the DL-PIPO architectures improve

the efficiency of existing hardware architectures of existing hardware architectures by 58% ,

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 48

Ta
bl

e
3.

11
:T

ho
re

tic
al

ar
ea

an
d

tim
e

co
m

pl
ex

iti
es

of
ex

po
ne

nt
ia

tio
n

in
G

N
B

A
re

a
Ti

m
e

SP
A

-S
ec

ur
ity

A
rc

hi
te

ct
ur

e
k

Ty
pe

of
M

ul
tip

lie
r

#
of

m
-b

it
R

eg
#

of
m

-b
it

2-
to

-1
M

U
X

#
of

m
ul

tip
lic

at
io

n

[2
9]

(M
SD

)
3

Tr
ip

le
1

4
⌈ m 3

⌉
L

ow

[7
5]

(L
SD

)
4

D
ou

bl
e

2
10

⌈ m
−

1
4

⌉ +
1

M
od

er
at

e

D
L

-P
IP

O
M

SD
(F

ig
.3

.1
)

4
Si

ng
le

8
16

⌈ m 4

⌉ +
7

L
ow

D
L

-P
IP

O
L

SD
(F

ig
.3

.2
)

4
Si

ng
le

8
16

⌈ m 4

⌉ +
7

M
od

er
at

e

D
L

-P
IP

O
L

SD
SP

A
-S

ec
ur

ed
4

Si
ng

le
8

16
⌈ m 4

⌉ +
7

Fu
ll

D
L

-H
D

M
SD

(F
ig

.3
.3

)†
4

D
ou

bl
e

2
4

⌈ m 4

⌉ +
1

L
ow

6
D

ou
bl

e
4

8
⌈ m 6

⌉ +
3

L
ow

D
L

-H
D

L
SD

(F
ig

.3
.4

)†
4

D
ou

bl
e

2
4

⌈ m 4

⌉ +
1

M
od

er
at

e

6
D

ou
bl

e
4

8
⌈ m 6

⌉ +
3

M
od

er
at

e

D
L

-H
D

L
SD

SP
A

-S
ec

ur
ed

4
D

ou
bl

e
2

4
⌈ m 4

⌉ +
1

Fu
ll

6
D

ou
bl

e
4

8
⌈ m 6

⌉ +
3

Fu
ll

†
T

he
ex

po
ne

nt
ia

tio
n

ar
ch

ite
ct

ur
es

pr
es

en
te

d
fo

rk
=

4,
ho

w
ev

er
th

ey
ca

n
be

ex
te

nd
ed

fo
re

ve
n

va
lu

es
of

k.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 49

64% and 61% over fields size GF(2386) ,GF(2509) ,GF(21026), respectively.

3.8 Conclusions

In this chapter, we have proposed four new architectures using GNB multipliers for three field

sizes. One architecture used a single multiplier, and two architectures used a double multiplier.

We have studied the time and area complexities of the proposed architectures and their secu-

rity against Side-channel and fault attacks. We have also protected our contributions against

simple power analysis attacks by proposing a novel scheme an unsigned positive recording of

the exponent. The architectures are implemented on ASIC using the 65nm CMOS technology

libraries. The proposed DL-PIPO architectures improve the efficiency of existing hardware ar-

chitectures of existing hardware architectures by 58% , 64% and 61% over fields size GF(2386)

,GF(2509) ,GF(21026), respectively, and are fully secure against SPA and fault attacks.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 50

Ta
bl

e
3.

12
:A

SI
C

sy
nt

he
si

s
re

su
lts

fo
rG

N
B

ex
po

ne
ni

tia
to

ro
ve

rG
F

(2
38

6).
D

ig
it

C
PD

L
at

en
cy

To
ta

lT
im

e
A

re
a

E
ffi

ci
en

tly
Po

w
er
†

E
ne

rg
y

A
rc

hi
te

ct
ur

e
k

Si
ze

(n
s)

(c
lk

)
(µ

s)
(µ

m
2)

(K
G

E
)

(µ
sm

2)
(m

W
)

(µ
J)

Fi
g.

3.
2

4

43
0.

34
93

6
0.

32
21

09
56

10
1

0.
03

22
8

10

SP
A

-S
ec

ur
ed

56
0.

39
72

8
0.

28
25

58
00

12
3

0.
03

28
3

16

(L
SD

)
78

0.
46

52
0

0.
24

33
16

89
15

9
0.

03
37

5
29

4

43
0.

59
98

0
0.

58
38

46
27

18
5

0.
10

44
3

19

56
0.

68
78

4
0.

53
48

90
23

23
5

0.
12

57
6

32

Fi
g.

3.
4

78
0.

82
58

8
0.

48
66

24
86

31
9

0.
15

80
6

63

SP
A

-S
ec

ur
ed

6

43
0.

6
68

0
0.

41
39

70
72

19
1

0.
07

45
9

20

(L
SD

)
56

0.
68

54
4

0.
37

50
14

67
24

1
0.

08
59

2
33

78
0.

83
40

8
0.

34
67

49
31

32
4

0.
10

82
0

64

4

43
0.

59
88

2
0.

52
39

32
26

18
9

0.
09

45
3

19

56
0.

68
68

6
0.

47
49

86
34

24
0

0.
11

59
0

33

M
od

ifi
ed

[1
](

L
SD

)†
†

56
0.

89
78

4
0.

7
52

48
78

25
2

0.
17

62
2

35

78
1.

02
58

8
0.

6
69

83
41

33
6

0.
20

85
4

67

3

43
0.

58
12

90
0.

75
55

36
09

26
6

0.
19

66
0

28

[2
9]

(M
SD

)
56

0.
66

10
32

0.
68

81
87

96
39

4
0.

26
10

17
57

78
0.

81
77

4
0.

63
10

42
71

6
50

1
0.

31
13

25
10

3
†

T
he

po
w

er
co

ns
um

pt
io

n
w

er
e

ev
al

ua
te

d
un

de
rf

re
qu

en
cy

of
66

6M
H

z
.

†
†

T
he

A
lg

or
ith

m
5

pr
es

en
te

d
in

A
pp

en
di

x
is

im
pl

em
en

te
d.

T
hi

s
al

go
ri

th
m

is
m

od
ifi

ed
fr

om
th

e
or

ig
in

al
on

e
[1

]a
s

th
e

or
ig

in
al

al
go

ri
th

m
pr

es
en

te
d

in
[1

]i
s

no
tp

er
fo

rm
in

g
an

ac
cu

ra
te

ex
po

ne
nt

ia
tio

n.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 51

Ta
bl

e
3.

13
:A

SI
C

sy
nt

he
si

s
re

su
lts

fo
rG

N
B

ex
po

ne
ni

tia
to

ro
ve

rG
F

(2
50

9).
D

ig
it

C
PD

L
at

en
cy

To
ta

lT
im

e
A

re
a

E
ffi

ci
en

tly
Po

w
er
†

E
ne

rg
y

A
rc

hi
te

ct
ur

e
k

Si
ze

(n
s)

(c
lk

)
(µ

s)
(µ

m
2)

(K
G

E
)

(µ
sm

2)
(m

W
)

(µ
J)

Fi
g.

3.
2

4

51
0.

38
13

50
0.

51
31

46
06

15
1

0.
07

35
4

18

SP
A

-S
ec

ur
ed

64
0.

45
10

80
0.

49
37

37
51

18
0

0.
08

43
0

28

(L
SD

)
85

0.
53

81
0

0.
43

46
92

90
22

6
0.

09
55

2
47

4

51
0.

66
14

19
0.

94
59

53
77

28
6

0.
28

71
5

36

64
0.

8
11

61
0.

93
73

38
28

35
3

0.
32

90
1

58

Fi
g.

3.
4

85
0.

96
90

3
0.

87
95

45
10

45
9

0.
39

12
03

10
2

SP
A

-S
ec

ur
ed

6

51
0.

67
96

8
0.

65
61

17
86

29
4

0.
19

73
7

38

(L
SD

)
64

0.
8

79
2

0.
63

75
02

39
36

1
0.

22
92

4
59

85
0.

96
61

6
0.

59
97

09
21

46
7

0.
27

12
26

10
4

4

51
0.

66
12

90
0.

85
60

75
70

29
2

0.
24

73
1

37

64
0.

8
10

32
0.

83
74

73
67

35
9

0.
29

91
8

59

M
od

ifi
ed

[1
](

L
SD

)†
†

64
1.

01
11

52
1.

16
78

76
32

37
9

0.
44

97
5

62

85
1.

17
89

6
1.

05
10

06
16

9
48

4
0.

50
12

75
10

8

3

51
0.

66
18

70
1.

23
82

56
16

39
7

0.
48

10
26

52

[2
9]

(M
SD

)
64

0.
78

15
30

1.
19

11
96

34
5

57
5

0.
68

15
41

99

85
0.

98
11

90
1.

17
14

75
28

4
70

9
0.

82
19

41
16

5
†

T
he

po
w

er
co

ns
um

pt
io

n
w

er
e

ev
al

ua
te

d
un

de
rf

re
qu

en
cy

of
66

6M
H

z
.

†
†

T
he

A
lg

or
ith

m
5

pr
es

en
te

d
in

A
pp

en
di

x
is

im
pl

em
en

te
d.

T
hi

s
al

go
ri

th
m

is
m

od
ifi

ed
fr

om
th

e
or

ig
in

al
on

e
[1

]a
s

th
e

or
ig

in
al

al
go

ri
th

m
pr

es
en

te
d

in
[1

]i
s

no
tp

er
fo

rm
in

g
an

ac
cu

ra
te

ex
po

ne
nt

ia
tio

n.

Chapter 3. Secure Exponentiation Architectures Using Gaussian Normal Basis 52

Ta
bl

e
3.

14
:A

SI
C

sy
nt

he
si

s
re

su
lts

fo
rG

N
B

ex
po

ne
ni

tia
to

ro
ve

rG
F

(2
10

26
).

D
ig

it
C

PD
L

at
en

cy
To

ta
lT

im
e

A
re

a
E

ffi
ci

en
tly

Po
w

er
†

E
ne

rg
y

A
rc

hi
te

ct
ur

e
k

Si
ze

(n
s)

(c
lk

)
(µ

s)
(µ

m
2)

(K
G

E
)

(µ
sm

2)
(m

W
)

(µ
J)

Fi
g.

3.
2

4

69
0.

46
39

60
1.

82
79

86
41

38
4

0.
69

98
9

68

SP
A

-S
ec

ur
ed

79
0.

54
34

32
1.

85
89

02
63

42
8

0.
79

11
14

88

(L
SD

)
94

0.
63

29
04

1.
83

10
27

69
5

49
4

0.
90

13
04

12
3

4

69
0.

8
41

28
3.

3
16

05
05

3
77

2
2.

54
21

31
14

7

79
0.

95
36

12
3.

43
18

23
09

5
87

6
3.

01
24

49
19

3

Fi
g.

3.
4

94
1.

13
30

96
3.

5
21

48
59

6
10

33
3.

61
29

36
27

6

SP
A

-S
ec

ur
ed

6

69
0.

81
27

84
2.

25
16

38
13

1
78

8
1.

77
21

80
15

0

(L
SD

)
79

0.
97

24
36

2.
36

18
56

17
3

89
2

2.
10

24
99

19
7

94
1.

13
20

88
2.

36
21

81
67

5
10

49
2.

47
29

86
28

1

4

69
0.

8
38

70
3.

1
16

33
56

5
78

5
2.

43
21

71
15

0

79
0.

95
33

54
3.

19
18

53
72

3
89

1
2.

83
24

95
19

7

M
od

ifi
ed

[1
](

L
SD

)†
†

79
0.

66
36

12
2.

38
19

56
76

2
94

1
2.

24
26

50
20

9

94
0.

74
30

96
2.

29
22

64
87

9
10

89
2.

49
31

12
29

3

3

69
0.

66
54

72
3.

61
20

95
86

0
10

08
3.

63
28

58
19

7

[2
9]

(M
SD

)
79

0.
78

47
88

3.
73

28
49

65
4

13
70

5.
11

40
06

31
6

94
0.

98
41

04
4.

02
32

30
71

4
15

53
6.

24
45

98
43

2
†

T
he

po
w

er
co

ns
um

pt
io

n
w

er
e

ev
al

ua
te

d
un

de
rf

re
qu

en
cy

of
66

6M
H

z
.

†
†

T
he

A
lg

or
ith

m
5

pr
es

en
te

d
in

A
pp

en
di

x
is

im
pl

em
en

te
d.

T
hi

s
al

go
ri

th
m

is
m

od
ifi

ed
fr

om
th

e
or

ig
in

al
on

e
[1

]a
s

th
e

or
ig

in
al

al
go

ri
th

m
pr

es
en

te
d

in
[1

]i
s

no
tp

er
fo

rm
in

g
an

ac
cu

ra
te

ex
po

ne
nt

ia
tio

n.

Chapter 4

Inversion Architectures Using Gaussian

Normal Basis

4.1 Introduction

Finite field arithmetic operations are core elements for achieving communications and infor-

mation security in digital systems. Out of the different arithmetic operations, GF (2m) inversion

is one of the most expensive [2, 23] , and is used by many symmetric key cryptography algo-

rithms and asymmetric key cryptography algorithms [76, 77]. As a result, the performance of

hosting digital systems depend on the performance of such underlying arithmetic processors.

In this chapter, we focus on improving the performance of field inversion.

The organization of this chapter is as follows: In Section 4.2, a review on inversion algorithms

and architectures. A security analysis on exponentiation architecture has been conducted. In

Section 4.3, a inversion schemes using single multiplier is analyzed and the improved inversion

architecture is proposed. In Section 4.4, we focus on designing high performance and efficient

inversion schemes using interleaved multiplications. In Section 4.5, a Fast inversion schemes

using interleaved multiplications is proposed. In Section 4.6, we present Interleaved Archi-

tecture for GF(2m) Inversion. Section 4.7 obtains the results of ASIC implementations for the

proposed architecture. Finally, we conclude this chapter in Section 4.8.

53

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 54

4.2 Review on Inversion Architectures

In 1989, Feng proposed an inversion algorithm for the general NB representation based on a

bit-level fully-serial-in-parallel-out NB multiplier. For any field element A ∈ GF (2m), Feng’s

inverter computes the inverse based on Fermat’s Little Theorem, after NF = q + p single

multiplications, where
∑q

i=0 mi2i =
(
mqmq−1 · · ·m0

)
is the binary expansion of m − 1 (base 2),

mi ∈ {0, 1} for all 0 ≤ i < q and mq = 1, and p is the number of ones in
(
mq−1 · · ·m0

)
. Therefore,

Feng’s algorithm exhibits same latency as ITA for the five fields that are recommended by the

National institute of standards and technology (NIST) [5].

In 2013, the authors of [36] presented new methods for decomposing 2m−1 − 1 based on a

hybrid scheme of addition chains, with 2 or more additions in each chain-element. The au-

thors of [36] presented a modified version of the decomposition algorithm proposed by [36],

known as the Ternary ITA (TIT) algorithm, which is based on constructing an addition chain

with maximum occurrences of elements with two additions. The authors of [36] constructed

a field inverter based on the TIT using the digit-level hybrid-double (HD) Gaussian normal

basis (GNB) multiplier presented in [28] and showed that their field inverter computes inverses

over NIST recommended fields faster. In [78], the modified Ternary-ITA (MTITA) is proposed

which requires the same number of HD multiplications required in the TIT-HD scheme. In

addition, [78] presents a parallel ITA algorithm for the GNB which reduces the latency of

GF (2m) inversion through concurrent processing of addition chains by two serial field mul-

tipliers. In [79], a parallel ITA scheme is proposed for the Polynomial basis representation

(PB) which achieves competitive performance compared to the GNB one in [78]. The scheme

in [79] uses almost same hardware as the original ITA, while it reduces the number of clock

cycles by overlapping the squaring operations. Recently, the author of [80] proposed an ef-

ficient addition chains for the five fields recommended by NIST based on hybrid, binary and

ternary, decomposition. The latter hybrid addition chains have been applied to a new GNB

inversion architecture that uses hybrid-double multiplications [28], and demonstrated superior

performance compared to the parallel GNB ITA scheme in [78].

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 55

4.3 Inversion Schemes using Single Multiplier

There are many papers consider the inversions using NB. Let A be a field element over binary

extended field GF(2m). For any non-zero element, A,0, the inversion of A, i.e., B = A−1 ∈

GF(2m), is a unique field element such that A × B = 1 ∈ GF(2m) and can be computed using

the Fermat’s little theorem as A−1 = A2m−2. In [30], Wang et. al. proposed an inversions

algorithm and the corresponding architecture in NB. Their inversion scheme requires (m − 2)

multiplications and (m−1) squaring operations over GF(2m) in which the squaring implemented

in cyclic shifts over GF(2). In [2], Itoh and Tsujii proposed a fast algorithm which reduces the

number of single multiplications to N1 =
⌊
log2(m − 1)

⌋
+ H(m − 1) − 1, where H(m − 1) is

the Hamming weight in the binary expansion of m − 1. Table 4.1 lists the total number of

iterations in different inversion schemes for the five recommended NIST fields for ECDSA in

type T GNB over GF(2m) using single multiplier.

Itoh–Tsujii Inversion Algorithm

In this section, we consider the NIST recommended fields for the purpose of illustrating the

presented inversion schemes. Among other NIST recommended curves for ECDSA, we used

the ITA algorithm for m = 163, and m = 233, and m = 283.

For type 2 GNB inversion over GF(2233), one can compute A−1 = A2233−2 = (A2)2232−1 and hence

the inversion can be performed if one decomposes 2232−1. This decomposition can be obtained

using the ITA [2] as

2232 − 1 = (1 + 2)(1 + 22)(1 + 24)[1 + 28(1 + 28)(1 + 216)

(1 + 232(1 + 232)(1 + 264(1 + 264))].
(4.1)

Similarly for inversion over GF(2163) and GF(2283), The IT decomposition algorithm can sim-

plify 2162 − 1 and 2282 − 1 as:

2162 − 1 = (1 + 2)(1 + 22(1 + 22)(1 + 24)(1 + 28)(1 + 216)

(1 + 232(1 + 232)(1 + 264)].
(4.2)

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 56

Ta
bl

e
4.

1:
To

ta
l

nu
m

be
r

of
ite

ra
tio

ns
in

di
ff

er
en

t
in

ve
rs

io
n

sc
he

m
es

fo
r

th
e

fiv
e

re
co

m
m

en
de

d
N

IS
T

fie
ld

s
ov

er
G

F
(2

m
)

us
in

g
si

ng
le

m
ul

tip
lie

r.

A
rc

hi
te

ct
ur

e
A

lg
or

ith
m

M
ul

tip
lie

r
N

um
be

ro
fi

te
ra

tio
ns

ty
pe

G
en

er
ic

m
L

at
en

cy

16
3

23
3

28
3

40
9

57
1

(c
yc

le
s)

[2
3]

Fe
ng

[2
3]

1×
B

L
-F

SI
PO

[2
3]

N
F

9
10

11
11

13
m

N
F

+
1

[3
3]

IT
A

[2
]

1×
D

L
-P

IP
O

[3
]

N
IT

9
10

11
11

13
N

IT
(⌈ m d

⌉ +
1)

+
2

[3
3]

,[
32

]
O

pt
.a

dd
iti

on
ch

ai
n

[3
2]

1×
D

L
-P

IP
O

[3
]

N
1

9
10

11
10

12
N

1(
⌈ m d

⌉ +
1)

+
2

N
1

=
⌊ lo

g 2
(m
−

1)
⌋ +

H
2(

m
−

1)
−

1.
N

F
=

q
+

p,
w

he
re

∑ q i=
0

m
i2

i
=

(m
qm

q−
1
··
·m

0) is
th

e
bi

na
ry

ex
pa

ns
io

n
of

m
−

1
an

d
p

is
th

e
nu

m
be

r

of
on

es
in

(m
q−

1
··
·m

0) .
a

N
o

cl
oc

ks
ha

ve
be

en
co

un
te

d
fo

rt
he

re
gi

st
er

s
in

iti
al

iz
at

io
n.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 57

2282 − 1 = (1 + 2)(1 + 22(1 + 22)[1 + 28(1 + 28)(1 + 216

(1 + 216)(1 + 232)(1 + 264)(1 + 2128))].
(4.3)

Therefore, the corresponding ITA [2] for the inversion computation over GF(2163), GF(2233)

and GF(2233) is shown in Alg.6, Alg.7 and Alg.8, respectively. For an example, as seen in this

Alg.6, ten multiplications as presented in Steps 2 to 11 are required for the inversion using the

ITA over GF(2233).

Algorithm 6 Inversion algorithm over GF(2233) [2].

Input: A ∈ GF(2233) and A , 0

Output: B = A−1

1: B← A � 1 7: B, E ← B × (B� 32)

2: B← B × (B� 1) 8: B← B × (B� 64)

3: B← B × (B� 2) 9: B← E × (B� 64)

4: B,C ← B × (B� 4) 10: B← D × (B� 32)

5: B← B × (B� 8) 11: B← C × (B� 8)

6: B, D← B × (B� 16)

Algorithm 7 Inversion algorithm over GF(2163) [2].

Input: A ∈ GF(2163) and A , 0

Output: B = A−1

1: B← A � 1 6: B, D← B × (B� 16)

2: B, C ← B × (B� 1) 7: B← B × (B� 32)

3: B← B × (B� 2) 8: B← B × (B� 64)

4: B← B × (B� 4) 9: B← D × (B� 32)

5: B← B × (B� 8) 10: B← C × (B� 2)

4.3.1 Improved Inversion Algorithms

In [81], Takagi et. al. proposed an algorithm (denoted by the TYT algorithm) which may

reduce the number of multiplications for the inversion when m − 1 is decomposed as m − 1 =

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 58

Algorithm 8 Inversion algorithm over GF(2283) [2].

Input: A ∈ GF(2283) and A , 0

Output: B = A−1

1: B← A � 1 7: B← B × (B� 32)

2: B, C ← B × (B� 1) 8: B← B × (B� 64)

3: B← B × (B� 2) 9: B← B × (B� 128)

4: B, D← B × (B� 4) 10: B← E × (B� 16)

5: B, E ← B × (B� 8) 11: B← D × (B� 8)

6: B← B × (B� 16) 12: B← C × (B� 2)

∏k
j=1 s j +h and s1 is not decomposed. Then, the number of required multiplications is obtained

by
∑k

j=1(
⌊
log2(s j)

⌋
+ H(s j)−2 + h). Also, another algorithm (denoted by the Change algorithm)

has been explained in this chapter. As we could not find the original reference, we refer to [81]

in this chapter for the Chang algorithm. Chang et al. improved ITA and showed that the number

of multiplications might be further reduced if m − 1 is a composite number and represented as

m − 1 = s × t. Then, one can obtain [81]

2m − 2 = (2s+1 − 2)((2s)t−1 + (2s)t−2 + · · · + (2s)1 + (2s)0).

and so

A−1 = (A2s+1−2)(2s)t−1+(2s)t−2+···+(2s)1+(2s)0
. (4.4)

To find A−1,we first calculate A2s+1−2 which can be performed using the ITA by replacing m−1to

s.

We have applied the IT, YTY, and Chang’s algorithms for the five NIST recommended fields

for ECDSA. We have found lower number of multiplications for m = 409 and m = 571 if we

use Takagi’s or Chang’s algorithms. In the following, we provide the results that we obtained

from the Change’s algorithm. These will be used for the classical inversion architecture using

single PIPO multiplier that we have designed and implemented in this work.

For m = 409, we have m−1 = 408 = 24×17. Let s = (17) = (10001)2 and t = (24) = (11000)2.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 59

Therefore, by using s = 17 in place of m − 1 in the ITA, we get

217 − 1 = ((1 + 2)(1 + 22)(1 + 24)(1 + 28)2 + 1)

and then

C =
(
A2(217−1)) = (A2)((1+2)(1+22)(1+24)(1+28)2+1). (4.5)

The last exponent in (4.4) with s = 17 and t = 24, i.e., (217)23 + (217)21 + · · · + (217)1 + (217)0,

can be written as

(1 + 217)(1 + 217×2)(1 + 217×4)(1 + 217×8(1 + 217×8))

= (1 + 217)(1 + 234)(1 + 268)(1 + 2136(1 + 2136)).

Then, the inversion of A can be calculated by

A−1 =
(
A2(217−1)

)(217)23+(217)21+···+(217)1+(217)0

= C(1+217)(1+234)(1+268)(1+2136(1+2136),
(4.6)

where C is defined in (4.5).

Algorithm 9 Inversion algorithm over GF(2409) [81].

Input: A ∈ GF(2409) and A , 0

Output: B = A−1

1: B← A � 1 7: B← B × (B� 17)

2: B← B × (B� 1) 8: B← B × (B� 34)

3: B← B × (B� 2) 9: B← B × (B� 68)

4: B← B × (B� 4) 10: B← B × (B� 136)

5: B← B × (B� 8) 11: B← B × (B� 136)

6: B← (A � 1) × (B� 1)

For m = 571, we have m − 1 = 570 = 10 × 57. Let s = (10)10 = (1010)2 and t = (57)10 =

(111001)2. Therefore, by using s in place of m − 1 in Itoh-Tsuji algorithm, we get:

210 − 1 = (1 + 2) (1 + 22(1 + 22)(1 + 24)),

and similarly

D =
(
A2(210−1)) = (A2)(1+2)(1+22(1+22)(1+24)). (4.7)

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 60

Using (4.4), one can find

A−1 = D(210)57+(210)56+···+(210)1+(210)0

and (210)57 + (210)56 + · · · + (210)1 + (210)0 is simplified to

(((1 + 210×16)210×16 + 1)(1 + 210×8)210×8 + 1)

×
(
1 + 210×4

) (
1 + 210×2

) (
1 + 210

)
210 + 1

= (((1 + 2160)2160 + 1)(1 + 280)280 + 1)

×
(
1 + 240

) (
1 + 220

) (
1 + 210

)
210 + 1

and so
A−1 =

D(((1+2160)2160+1)(1+280)280+1)(1+240)(1+210×2)(1+210)210+1.
(4.8)

The algorithms to implement (4.8) and D in (4.7) is shown in Alg. 10 .

Algorithm 10 Inversion algorithm over GF(2571) [81].

Input: A ∈ GF(2571) and A , 0

Output: B = A−1

1: B← A � 1 8: R, E ← B × (B� 40)

2: B, C ← B × (B� 1) 9: B, F ← B × (B� 80)

3: B← B × (B� 2) 10: B← B × (B� 160)

4: B← B × (B� 4) 11: B← F × (B� 160)

5: B, D← C × (B� 2) 12: B← E × (B� 80)

6: B← B × (B� 10) 13: B← D × (B� 10)

7: B← B × (B� 20)

4.3.2 Improved Inversion Architecture using a Single Multiplier

The performance of a given inversion architecture is highly dependent on its underlying mul-

tiplier. There exist different GNB multipliers in the literature. In this chapter, we use digit-

level multipliers in which the digit size d can be chosen based on the available resources, i.e.,

1 ≤ d < m. In order to achieve a fast inversion, we reduce both its CPD and its latency. To

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 61

Figure 4.1: The inversion architecture using DL-PIPO multiplier.

reduce the inversion CPD, we use the DL-PIPO multiplier proposed in [3]. We slightly modify

the architectures of the DL-PIPO multipliers by connecting the input of the Out register of the

multiplier to the input registers , as the multipliers are able to save one cycle per each iteration

of multiplication.

The inversion architecture in Fig. 4.1 reduces the latency of the original ones presented in [33]

by one clock cycle per each multiplication iteration. The parameters presented in Figure 4.1

is obtained using the algorithms presented in Chapter 4.3.2. These parameters with the corre-

sponding GF(2m) field inversion. These parameters for the five recommended NIST fields for

elliptic curve digital signature algorithm (ECDSA) in type T GNB over GF(2m) are presented

in Table 6.3.

In Fig. 4.1, the inversion computation takes N1 iterations to perform the operation. Initially,

the In1 and In2 input registers of the DL-PIPO multipier in this figure are initialized with the

coordinates of field elements of A2 = A � 1 (from A to In1 of the DL-PIPO multiplier through

MUX 0) and (A � 1) � f1 (from A to In2 of the DL-PIPO multiplier through MUX 1 and

MUX 2), respectively. At the same time, the Out register of the DL-PIPO is cleared. Then,

the DL-PIPO multiplier performs the multiplication operation in
⌈

m
d

⌉
clock cycles. As shown

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 62

Table 4.2: Parameters used in the classical inversion architecture in Fig. 4.1 for the five

recommended NIST fields for ECDSA in type T GNB over GF(2m).

Field Size Type Algorithm N1 u f1, f2, · · · fu Q Reg.

163 4 Alg.7 9 7
1, 2, 4, 8, 16,

32, 64
2 C,D

233 2 Alg.6 10 7
1, 2, 4, 8, 16,

32, 64
3

C,D,

E

283 6 Alg.8 11 8
1, 2, 4, 8, 16,

32, 64, 128
3

C,D,

E

409 4 Alg.9 10 8
1, 2, 4, 8, 17,

34, 68, 136
1 C

571 10 Alg.10 12 8
1, 2, 4, 10, 20,

40, 80, 160
4

C,D,

E, F

Q denotes number of registers in Fig. 4.1.

in Fig. 4.1, the inputs of MUX 0 and MUX 1 are connected to the input of the Out register

of the DL-PIPO multiplier. By connecting the input of the Out register of the multiplier to

the In1 and In2 input registers, we save one cycle per each iteration of multiplication. This

is because the initialization of the In1 and In2 registers would happen at the final cycle of

the multiplication operation. At the same clock cycle, the Out register of the multiplier is

cleared to start the next multiplication operation. It is noted that such a saving is found at

the expense of increasing the critical path delay (CPD). As a result, the latency of the entire

inversion operation will be L1 = N1

⌈
m
d

⌉
+1, and after L1 clock cycles the Out register of the DL-

PIPO multiplier contains A−1 ∈ GF(2m). The CPD of the inversion architecture is calculated

by adding the CPD of the DL-PIPO multiplier with the delays of MUX1 and MUX2, i.e.,

TM1 + TM2 = TM + dlog2 ueTM =
(
1 + dlog2 ue

)
TM, where TM denotes the propagation delay in

a 2-to-1 multiplexer.

The time and space complexities of our classical inversion architecture and the one presented

in [33] and [32] are summarized in Table 4.3. The inversion architecture presented in [33] uses

the ITA which has N1 = 11 and N1 = 13 iterations for m = 409 and m = 571, respectively.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 63

Table 4.3: Complexities of the classical GNB inversion architectures.

Area Time

Inversion # XOR # AND # reg MUXes
CPD

Latency

Arch. (2-input) (2-input) (m-bit) (m-bit) (# of cycles)

[33], [32] d T (m−1)+m+1
2 dm 3 + V C + 5 TPIPO N1(

⌈
m
d

⌉
+ 1) + 2

Fig. 4.1 d T (m−1)+m+1
2 dm 3 + Q u + 5

TPIPO+
N1

⌈
m
d

⌉
+ 1(

1 + dlog2 ue
)

TM

Note: Q and V denote number of registers in ITA-PIPO of Fig. 4.1 and [33].

u and C denote number of squarings in ITA-PIPO of Fig. 4.1 and [33].

However, these number of iterations are reduced in [32] to N1 = 10 and N1 = 12 for m = 409

and m = 571, respectively. It is noted the values of N1 for the five NIST fields for ECDSA that

we have derived in the previous sections would match the same optimum addition chain values

obtained in [32]. As seen from this table, our classical inversion has the same area with lower

latency and slightly higher CPD.

4.4 Fast Inversion Schemes using Interleaved multiplications

Alg. 11 shows our classical-interleaved inversion algorithm in GF(2233). This algorithm is ob-

tained by combining two consecutive steps for two multiplications in Alg. 6 into one step with

two interleaved multiplications (presented in two columns) in Alg. 11. The multiplications in

Steps 2.1 to 6.1 (the first column) of Algorithm 11 generate a digit of the first multiplication.

Then, this digit enters to the second multiplication to both inputs in Steps 2.2, 3.2, and 4.2 to

perform the second multiplication concurrently (with one clock cycle delay). In Steps 5.2 and

6.2, two different inputs are entered to perform the multiplication operation. In order to per-

form the second multiplication, we propose a new architecture which is explained in the next

section. Without designing this architecture, the two multiplications presented in two columns

of each step cannot be computed concurrently while they are entered serially.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 64

Algorithm 11 Classical-interleaved inversion in GF(2233).
Input: A ∈ GF(2233) and A , 0

Output: B = A−1

1. B← A � 1
2.1 R← B × (B� 1), 2.2 B← R × (R � 2)

3.1 R, C ← B × (B� 4) 3.2 B← R × (R � 8)

4.1 R, D← B × (B� 16) 4.2 B← R × (R � 32)

5.1 R← B × (B� 64) 5.2 B← B × (R � 64)

6.1 R← D × (B� 32) 6.2 B← C × (R � 8)
7. return B

Algorithm 12 Classical-interleaved inversion in GF(2163).
Input: A ∈ GF(2163) and A , 0

Output: R = A−1

1. B← A � 1
2.1 R C ← B × (B� 1) 2.2 B← R × (R � 2)

3.1 R← B × (B� 4) 3.2 B← R × (R � 8)

4.1 R, D← B × (B� 16) 4.2 B← R × (R � 32)

5.1 R← B × (B� 64) 5.2 B← D × (B� 32)

6.1 R← C × (B� 2)
7. return R

4.4.1 Proposed Combined Digit-Level Square and Multiply

Fig. 4.2 shows the classical-interleaved DFG for the GF
(
2163

)
inversion in the GNB repre-

sentation based on Alg. 12 which utilizes an interleaved computations of a single DL-PISO

multiplier serially connected to a novel module which is proposed in this section.

This new novel scheme performs combined square and multiply operations at the digit-level

when the field elements are represented in the GNB. The new combined squaring and multi-

plication scheme is referred to as most-significant-digit-first digit-level fully-serial-in-square-

multiply (MSD DL-FSISM). The novelty of the new MSD DL-FSISM scheme is in its capa-

bility of generating the result of multiplying the first input by the e-th square (i.e., (·)2e
) of the

second input in parallel after
⌈

m
d

⌉
clock cycles, for a digit size of d-bits, while it reads its two

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 65

Algorithm 13 Classical-interleaved inversion in GF(2283).
Input: A ∈ GF(2283) and A , 0

Output: R = A−1

1. B← A � 1
2.1 R, C ← B × (B� 1) 2.2 B← R × (R � 2)

3.1 R, D← B × (B� 4) 3.2 B, E ← R × (R � 8)

4.1 R← B × (B� 16) 4.2 B← R × (R � 32)

5.1 R← B × (B� 64) 5.2 B← R × (R � 128)

6.1 R← E × (B� 16) 6.2 B← D × (R � 8)

7.1 R← C × (B� 2)
8. return R

Algorithm 14 Classical-interleaved inversion in GF(2409).
Input: A ∈ GF(2409) and A , 0

Output: B = A−1

1. B← A � 1
2.1 R← B × (B� 1) 2.2 B← R × (R � 2)

3.1 R← B × (B� 4) 3.2 B← R × (R � 8)

4.1 R← (A � 1) × (B� 1) 4.2 B← R × (R � 17)

5.1 R← B × (B� 34) 5.2 B← R × (R � 68)

6.1 R← B × (B� 136) 6.2 B← B × (R � 136)
7. return B

inputs digit-by-digit concurrently starting from the most-significant-digit. It is noted that, in

such a case where multiplication inputs arrive serially, the multiplication of element A by the

e-th square of element B (that is B2e
) requires some waiting delay until the e-th bit of B is

available. However, the new proposed MSD DL-FSISM scheme accomplishes the composite

operation of e-th squaring and multiplication concurrently without introducing any delay. As

seen from Fig. 4.2, the DL-FSISM scheme is required in order to perform the computations in

the DFG in this figure.

This section starts by introducing necessary formulations for constructing the proposed com-

bined digit-level square and multiply operation. Then, the corresponding proposed architecture

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 66

Algorithm 15 Classical-interleaved inversion in GF(2571).
Input: A ∈ GF(2571) and A , 0

Output: B = A−1

1. B← A � 1
2.1 R, C ← B × (B� 1) 2.2 B← R × (R � 2)

3.1 R← B × (B� 4) 3.2 B, D← C × (R � 2)

4.1 R← B × (B� 10) 4.2 B← R × (R � 20)

5.1 R, E ← B × (B� 40) 5.2 B, F ← R × (R � 80)

6.1 R← B × (B� 160) 6.2 B← F × (R � 160)

7.1 R← E × (B� 80) 7.2 B← D × (R � 10)
8. return B

Figure 4.2: The classical-interleaved structure for GF
(
2163

)
inversion in the GNB represen-

tation using interleaved digit-level parallel-in serial-out (DL-PISO) multiplier and the MSD

DL-FSISM.

is detailed. The section ends by deriving the theoretical space and time complexities, in addi-

tion to reporting Application specific integrated circuit (ASIC) based implementation results

for the proposed MSD DL-FSISM.

4.4.2 Formulations

This section derives the required formulations for constructing the combined digit-level square

and multiply operation based on the GNB representation. First, a recursive construction of the

e-th square of an element B ∈ GF (2m) is given by the following proposition.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 67

Proposition 4.4.1 Let the field element B ∈ GF (2m) be represented in the GNB by the k =
⌈

m
d

⌉
digits

B = (B0, . . . , Bk−1) ,

where d is the number of bits in any (k − 1 − i)-th digit

Bk−1−i =

d−1∑
j=0

bd(k−1−i)+ jβ
2 j
, 0 ≤ i < k,

and bd(k−1−i)+ j = 0 for d (k − 1 − i) + j ≥ m. Then, for an integer e, the e-th square of B, that

is B2e
, is computed recursively using the digits of B over k iterations starting from the most

significant digit Bk−1, as follows:(
B(i)

)2e

= (Bk−1−i)2e
+

(
B(i−1)

)2d+e

(4.9)

where i takes values from 0 to k − 1, B2e
=

(
B(k−1)

)2e

, and B(−1) = 0.

Proof One can easily obtain (4.9) by applying an e-th square to both sides of (2.4) after chang-

ing A to B in (2.4).

Using Propositions 2.3.3 and 4.4.1, the e-th squaring of B (that is B2e
) followed by multiplica-

tion with A is combined into a single digit-level operation to compute F = AB2e
as follows.

Lemma 4.4.2 Let A and B be two GF (2m) elements that are represented in the GNB
{
β, β2 . . . , β2m−1

}
.

Let F represents the result of multiplying A by B2e
(F = AB2e

). By using (2.4) and (4.9) for

constructing A and B2e
, respectively, let us define Fi = A(i)

(
B(i)

)2e

, accordingly. Then, by pro-

ceeding from i = 0 to k − 1, the multiplication result F = Fk−1 = A(k−1)
(
B(k−1)

)2e

is obtained

using the following recurrence relation

Fi = (Fi−1)2d
+

d−1∑
j=0

δ j

(
ad(k−1−i)+ j,

(
B(i)

)2e)
+

 d−1∑
j=0

δ j

(
bd(k−1−i)+ j,

(
A(i−1)

)2d−e)
2e

. (4.10)

where for an arbitrary bit u and an arbitrary GF (2m) element V =
∑m−1

l=0 vlβ
2l

we have

δ j (u,V) = uVβ2 j
=

m−1∑

l=0

uvlβ
2l

2− j

β

2 j

. (4.11)

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 68

Proof By substituting for A(i) and
(
B(i)

)2e

using (2.4) and (4.9), respectively, in Fi = A(i)
(
B(i)

)2e

one gets

Fi = (
Ak−1−i +

(
A(i−1)

)2d) (
(Bk−1−i)2e

+
(
B(i−1)

)2d+e)
=Ak−1−i

(
B(i)

)2e

+
(
A(i−1)

)2d

(Bk−1−i)2e
+(

A(i−1)
)2d (

B(i−1)
)2d+e

,

and by substituting for Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

in Ak−1−i

(
B(i)

)2e

, and for Bk−1−i =
∑d−1

j=0 bd(k−1−i)+ jβ
2 j

in
(
A(i−1)

)2d

(Bk−1−i)2e
, then

Fi = (
A(i−1)

(
B(i−1)

)2e)2d

+

d−1∑
j=0

ad(k−1−i)+ j

(
B(i)

)2e

β2 j
+

 d−1∑
j=0

bd(k−1−i)+ j

(
A(i−1)

)2d−e

β2 j

2e

,

which yields

Fi = (Fi−1)2d
+

∑d−1
j=0

((
ad(k−1−i)+ j

(
B(i)

)2e)2− j

β

)2 j

+

 d−1∑
j=0

(bd(k−1−i)+ j

(
A(i−1)

)2d−e)2− j

β

2 j
2e

.

As it can be seen from (4.10), multiplying A by B2e
in GF (2m) using the GNB representation

is a recursive process that includes a number of bit-wise AND operations, field additions,

multiplications with the normal element β, and cyclic shifts for computations of raising a field

element to the powers of 2−e, 2e, 2− j, 2 j, and 2d.

Therefore, by iterating over (4.10) starting at i = 0 and proceeding up to i = k − 1 (k clock

cycles), the final result of the multiplication F = Fk−1 = A(k−1)
(
B(k−1)

)2e

is obtained by using

inputs Ak−1−i and Bk−1−i, in addition to A(i−1), B(i−1), and Ei−1 for computing A(i) and B(i), and Fi

according to (2.4) and (4.10), respectively.

Fig. 4.3 presents the proposed architecture of the new MSD DL-FSISM scheme of combined

digit-level square and multiply in the GNB.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 69

d

<Z>

d

mm

�
m

m-d

m

G
m

m

1
in1

in2B
k 1�

B
0

B

k 1�
A

i� k 1�
A

0
A

B
(i)

»en

ad(k-1-i)+d-1

d-1

m
d en

m
en

n

B
(i)

A
(i-1)

G

m

1
in1

in2

ad(k-1-i)+0

0

�

m

G
m

m

1
in1

in2
((A

(i-1)
»d)«en)

bd(k-1-i)+d-1

d-1

G

m

1
in1

in2

bd(k-1-i)+0

0

�
m

en
m

n

m
d

d

d

d

m-d

n

k 1� � i

FdB

Out

(a)

m

1

in2

in1

mm
j

m m
j

1

1

1

1

1

1

(b)

m

e1

en

m

m

n

ev

m

m
X X

2
-en

(c)

m

e1

en

m

m

n

ev

m

m
X X

2
en

Figure 4.3: (a) Architecture of the proposed MSD DL-FSISM scheme for computations of

AB2en
, 1 ≤ n ≤ v. (b) Architecture of δ j. (c) Architecture of� en and� en

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 70

In this figure, k =
⌈

m
d

⌉
denotes the total number of clock cycles required for computing the final

combined square and multiply result, where d-bits is the bit-width of an input (a digit). Also,

i denotes the current i-th clock cycle of computations, where 0 ≤ i < k. Operators � j and

� j shown in Fig. 4.3 , respectively, represent left and right j-bits cyclic shifts, for 0 < j < d.

Similarly,� d in Fig. 4.3 represents a right cyclic shift of d-bits. Also, the operators� en in

Fig. 4.3.c and� en in Fig. 4.3.d , respectively, represent the left and right en-bits, 1 ≤ n ≤ v,

cyclic shifts. In the latter two operators, the subscript n is a selector of integer value, which

is fixed throughout a given computation, and en is a positive integer selected based on n from

a predefined set of v squaring powers E = {e1, . . . , en, . . . , ev}. Notice that, the latter selection

mechanism has been introduced to enable squaring with different exponents. In fact, the pro-

posed architecture in Fig. 4.3 computes AB2en for 1 ≤ n ≤ v. This is useful for applications

such as field inversion where a number of multiply-then-square iterations with different square

powers is required. Moreover, operator β in Fig. 4.3.b represents the multiplication by the

normal element β.

The architecture in Fig. 4.3 is constructed based on (2.4) and (4.10). Initially, the (m − d)-bits

shift registers 〈X〉 and 〈Y〉, and the m-bits accumulator register 〈Z〉, are cleared (i.e., initialized

with A(−1) = 0, B(−1) = 0, and A(−1)
(
B(−1)

)2en

= 0, respectively). Then, at each i-th itera-

tion of the following k iterations, 〈X〉, 〈Y〉, and 〈Z〉, update their states from A(i−1), B(i−1), and

A(i−1)
(
B(i−1)

)2en

to A(i), B(i), and A(i)
(
B(i)

)2en

, respectively, as follows. The two GF (2m) input

elements A and B are entered concurrently to registers 〈X〉 and 〈Y〉, respectively, one digit per

a clock cycle, following a most significant digit first order starting with the (k − 1)-th digits

(according to (2.4)). At the i-th iteration, 〈X〉 and 〈Y〉 perform a d-bits right shift (not cyclic)

each and, the (k − 1 − i)-th digits of A and B are written to the least significant d-bits of 〈X〉

and 〈Y〉, respectively. At the same time, register 〈Z〉 accumulates the result of the field addition

Fi = (Fi−1)2d
+

d−1∑
j=0

δ j

(
ad(k−1−i)+ j,

(
B(i)

)2e)
+

 d−1∑
j=0

δ j

(
bd(k−1−i)+ j,

(
A(i−1)

)2d−e)
2e

,

where δ′js are generated as shown in Fig. 4.3. According to (4.10), this results in writing

A(i)
(
B(i)

)2en

to 〈Z〉. Then, after k clock cycles, i.e. i = k − 1, we obtain 〈Z〉 = A(k−1)
(
B(k−1)

)2en

=

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 71

Table 4.4: Space and time complexities of the proposed MSD DL-FSISM architecture in Fig.

4.3.
FF AND XOR 2-to-1 MUX

3m − 2d 2dm ≤ 2d [m + (T − 1) (m − 1)] 3 (v − 1) m

Propagation Delay Latency

TA +
[
2 +

⌈
log2 d

⌉
+

⌈
log2 T

⌉]
TX + 2

⌈
log2 v

⌉
TM

⌈
m
d

⌉
v is total number of squaring powers.

AB2en . Since the least significant digit of
(
B(i−1)

)2d

is simply 0d (a digit with d zero bits) for

all 0 ≤ i < k , then, the proposed architecture implements Bk−1−i +
(
B(i−1)

)2d

in (4.10) by

concatenating the d-bits of Bk−1−i to the least significant digit of
(
B(i−1)

)2d

(represented by the

small thick vertical line in Fig. 4.3..

The following section studies the space and time complexities of the proposed MSD DL-

FSISM architecture in Fig. 4.3.

4.4.3 Space and Time Complexities

The area complexity of the proposed MSD DL-FSISM architecture of the combined digit-level

square and multiply is listed in Table 4.4. This includes the count of logic gates, 1-bit Flip

Flops (FF), and 1-bit 2-to-1 multiplexers. From Fig. 4.3, one can see that each δ j module,

0 ≤ j < d, consists of m two input AND gates, and therefore, the total number of two input

AND gates in the 2d modules of δ j in Fig. 4.3 is 2dm. The total number of two input XOR

gates in the three field adders in Fig. 4.3. (two GF (2m) adders which add d field elements each,

and another field adder of 3 inputs) is (2 (d − 1) + 2) m = 2dm. In addition, each δ j module

has ≤ (T − 1) (m − 1) XORs which are contributed by the multiplication by β. Therefore, the

total number of XORs in the proposed architecture in Fig. 4.3 is ≤ 2d [m + (T − 1) (m − 1)].

In addition, while register 〈Z〉 has m FFs, only m − d FFs are required for each of registers 〈X〉

and 〈Y〉, since the (k − 1)-th digits that are removed from these two registers are always zeros

throughout the computations. Hence, the total number of FFs is 2 (m − d) + m = 3m− 2d. One

can also see that there is a total of 3 m-bits v-to-1 multiplexers in the proposed architecture

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 72

of Fig. 4.3, where v represents the number of supported squaring power options. Each m-bits

v-to-1 multiplexer requires (v − 1) m 1-bit 2-to-1 multiplexers. Then, the total number of 1-bit

2-to-1 multiplexers in the architecture of Fig. 4.3 is 3 (v − 1) m.

On the other hand, Table 4.4 also reports the time complexity of the proposed MSD FSISM

architecture of the combined digit-level square and multiply operation. In this table, T is the

GNB type. The complexity in this table is given in terms of the propagation delay of the

corresponding levels of two inputs XOR gates (TX), two inputs AND gates (TA), and 1-bit 2-

to-1 multiplexers (TM), through the critical path. As it is shown in Fig. 4.3., the critical path

of the proposed architecture passes through one � en operator, one δ j (i) module, a d inputs

field adder, one � en operator, and a 3 inputs field adder. The propagation delay through the

� en operator (or the� en operator) is equivalent to the propagation delay through an m-bits

v-to-1 multiplexer, as can be seen from Fig. 4.3. The propagation delay through an m-bits

v-to-1 multiplexer is given by
⌈
log2 v

⌉
TM, where TM denotes the propagation delay through

1-bit 2-to-1 multiplexer. The propagation delay through a δ j module is TA +
⌈
log2 (T)

⌉
TX,

where
⌈
log2 (T)

⌉
TX is the propagation delay through the multiplication by β. Therefore, by

adding the delay through the d inputs and 3 inputs GF (2m) adders, that is
(
2 +

⌈
log2 d

⌉)
TX, the

total propagation delay of the proposed DL-FSISM becomes TA +
[
2 +

⌈
log2 d

⌉
+

⌈
log2 T

⌉]
TX +

2
⌈
log2 v

⌉
TM.

The following section presents the new proposed architecture for GF (2m) inversion in GNB

representation based on utilizing the new MSD DL-FSISM scheme.

4.5 Proposed Interleaved Architecture for GF (2m) Inversion

This section presents a new architecture for field inversion, constructed based on the DL-

FSISM module in Fig. 4.3. The section first presents the proposed architecture, then it gives

space and time complexity readings based on ASIC implementations. The proposed architec-

ture performs the inversion computation based on Classical-Interleaved inversion algorithms

in GNB presented in Section 4.4.

The new inversion architecture is shown in Fig. 4.4. The architecture in this figure, called

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 73

» e 1

MSD

DL-PISOIn1

In2
Out

MSD

DL-FSISM
In3

In4

FdB
m

m

m
0

s0

m

m
3

s3

d

Register File

(w m-bit registers)

m

m

m m
1 s1

m

» e v

m

m

2 s2

m

Sel

» 1
m

A

n

m 4

s4

m

d

m m d

» d

d

m
1

Out
m

A-1

Figure 4.4: Classical-Interleaved architecture for GF (2m) inversion in the GNB representation

based on the new MSD DL-FSISM.

Classical-Interleaved, implements the proposed classical-interleaved inversion algorithms (see

Section 4.4) through utilizing interleaved computations of MSD digit-level parallel-in serial-

out (MSD DL-PISO) multiplier and the DL-FSISM, instead of the classical method of using

single multiplications. The interleaved computations are accomplished through serially con-

necting a DL-PISO GNB multiplier to the new MSD DL-FSISM architecture (see Fig. 4.3).

The latter connection between the output of the DL-PISO and the input(s) of the DL-FSISM is

realized through a d-bits register, in order to shorten the critical path of the overall interleaved

module.

For the case of m = 233, interleaving two single multiplications (and squarings) leads to a total

of only 5 iterations to complete the inversion. The number of squaring powers in this flow

diagram which are applied to the input of the DL-PISO is v
′

=
∣∣∣E′ ∣∣∣ = 5 given by the set E

′

={
e
′

1, e
′

2, e
′

3, e
′

4, e
′

5

}
= {1, 4, 16, 32, 64}. On the other hand, the squaring operations that appear at

the input of the DL-FSISM in Fig. 4.2 are accomplished internally, as it is described in Section

4.4.1. The total number of squaring powers in Fig. 4.4 that are processed internally by the DL-

FSISM is v = |E| = 4, where the set of squaring powers is E = {e1, e2, e3, e4} = {2, 8, 32, 64}.

For a given iteration in Fig. 4.4, the Sel input selects the corresponding squaring power from

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 74

E. For example, if Sel=0, then, E (0) = 2 is selected for performing the squaring operation

(·)22
(or simply the right cyclic shift� 2). Furthermore, since only two intermediate values of

C and D (see Alg. 11) need to be stored throughout all the inversion iterations of Figure 4.4,

then, w = 2 for the case of GF
(
2233

)
in Fig. 4.4. It is also noted that, the register file only

stores outputs from the DL-PISO for m = 233. Hence, the other input of the register file that is

coming from the output of the DL-FSISM is not required for m = 233.

Initially, A � 1 is passed to In1 of the DL-PISO through setting s0 = 1. At the same time, In2

of the DL-PISO multiplier is connected to (A � 1) � 1 through setting s1 = s2 = 0. While In4

of the DL-FSISM module is always connected to the output of the DL-PISO (after the d-bits

register), In3 is connected to the output of the DL-PISO through setting s3 = 1. At the same

time, n = 0 is applied at the Sel input in order to configure the DL-FSISM module to accom-

plish the squaring of power E (0) = 2 (that is applying � 2 to In4. Using this configuration

in the first inversion’s iteration, one accomplishes the two leftmost multiplications/squarings

operations that are shown in Fig. 4.2, i.e., Steps 2.1 and 2.2 of Alg. 11.

During the second iteration of the flow diagram in Fig. 4.2 (Steps 3.1 and 3.2 of Alg. 11), the

result from the output of the DL-FSISM is applied to In1 of the DL-PISO by setting s0 = 0.

Also, the same output from the DL-FSISM is cyclically shifted by � 4 and applied to In2 of

the DL-PISO through setting s1 = 2 and s2 = 1 (for s2 = 1, E
′ (1) = 4 is selected by MUX

2). Moreover, by setting s3 = 1 and n = 1, then, the output from the DL-PISO will be applied

to In3 and In4 of the DL-FSISM module, while the squaring of power 8 will be applied to

the input at In4 (i.e., E (1) = 8). Notice that, during this iteration (Step 3.1 of Alg. 11), the

DL-PISO output is stored as the C element in the register file since it needs to be used in the

last iteration of the flow diagram of Fig. 4.2, i.e., using C in Step 6.1 of Alg. 11.

The processing continues through the third (Steps 4.1 and 4.2 of Algorithm 11), fourth (Steps

5.1 and 5.2 of Algorithm 11), and fifth (Steps 6.1 and 6.2 of Algorithm 11) inversion iterations

until the final inverse of the initial input is generated, according to Fig. 4.2. It is noted that,

during the fourth iteration, In3 of the DL-FSISM module is connected to the result coming

from its output. This is done through setting s3 = 0 and s4 = 1. Notice that, after MUX 4 loads

the m-bits register at its output with values coming from either the register file or the output of

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 75

Table 4.5: Parameters used in the proposed interleaved inversion architecture in Fig. 4.4 for

the five recommended NIST fields for ECDSA in type T GNB over GF(2m).

m/T Algorithm
⌈

N1
2

⌉
v E = {e1, e2, . . . , ev}

a v′ E
′

=
{
e′1, e

′
2, . . . , e

′
v′

}b
w Reg.

163/4 Alg. 12 5 3 {2, 8, 32} 5 {1, 2, 4, 16, 64} 2 C,D

233/2 Alg. 11 5 4 {2, 8, 32, 64} 4 {1, 4, 16, 32, 64} 2 C,D

283/6 Alg. 13 6 4 {2, 8, 32, 128} 4 {2, 4, 16, 64} 3 C,D, E

409/4 Alg. 14 5 5 {2, 8, 17, 68, 136} 4 {1, 4, 34, 136} 0 none

571/10 Alg. 15 6 5 {2, 10, 20, 80, 160} 5 {4, 10, 40, 80, 160} 4 C,D, E, F

The numbers in E and E′ are obtained from numbers in front of R � in all steps x.2 and x.1 of

the corresponding algorithm, respectively.

the DL-FSISM module, s4 is set to 0. This is done in order to apply cyclic shifts of d-bits to

the register at the output of MUX 4, and hence, feed one digit to In3 at a time, starting from

the MSD. Also, during the last (fifth) inversion iteration, In1 and In3 of the DL-PISO and the

DL-FSISM, respectively, read their input values from the register file. Then, for this purpose,

s0 is assigned a value of 2, while s3 is set to 0 and s4 is set to 2 (during the first clock cycle of

this iteration, then s4 = 0 is used). First, the operand going to In1 is loaded, followed by the

operand that is going to In3. This order of loading In1 and In3 from the register file takes into

account the fact that the first output digit coming from the DL-PISO becomes available after

one clock cycle from loading the DL-PISO inputs.

Table 4.5 shows the parameters used in the proposed Classical-Interleaved inversion architec-

ture (Figure 4.4) using the corresponding algorithm for the five recommended NIST fields for

elliptic curve digital signature algorithm (ECDSA) in type T GNB over GF(2m).

In the general case, if the number of single multiplication iterations in the PIPO-based ITA is

odd, then, the last iteration in the corresponding Classical-Interleaved version of Fig. 4.4 will

require that In3 of the DL-FSISM module reads an input of 1 ∈ GF (2m). This is implemented

through setting s3 = 0 and s4 = 3 in Figure 4.4.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 76

4.6 ASIC Implementation Results

In this section, the space and time complexities of the two proposed architectures presented in

Figures 4.1 and Figures 4.4 , are compared against existing counterparts, namely, [2, 32]. Com-

parisons are conducted for the NIST GF
(
2163

)
, GF

(
2233

)
, GF

(
2283

)
, GF

(
2409

)
, and GF

(
2571

)
fields, based on ASIC post synthesis readings reported by the Synopsys Design Compiler Tool

utilizing the standard STMicroelectronics 65nm CMOS technology libraries under default set-

tings. It is also noted that, the functionality of the proposed architecture have been verified

through simulations using the ModelSim CAD Tool.

Tables 5.7, 5.8, 5.9, 5.10, and 5.11, respectively, list time and space complexities of the different

GF
(
2163

)
, GF

(
2233

)
, GF

(
2283

)
, GF

(
2409

)
, and GF

(
2571

)
inverters for different digit sizes. The

total time of inversion is calculated by multiplying the latency (number of clock cycles) by the

critical path delay (CPD). We also use Throughput and Efficiency as metrics to compare the

results. Throughput is calculated by (m/latency)× f and we set f to the maximum speed for all

implementations, i.e., f = 1
CPD. Also, the Efficiency is calculated by dividing the Throughput

over the Area which is equal to Efficiency=m/(Area × Time).

Speed

As seen from Tables 5.7, 5.8, 5.9, 5.10, and 5.11, the CPD of the original [2] is the low-

est, followed by the proposed Classical architecture (Figure 4.1). This is because a DL-PIPO

multiplier is the fastest compared to other two multipliers of DL-PISO and DL-FSISM. The

proposed Classical-Interleaved architecture has the longest CPD.

Latency

Latency denotes the number of clock cycles taken to finish computing an inverse. For the

GF (2m) field, the latency of [2], the proposed Classical in Fig. 4.1, [32], and the proposed

Classic-Interleaved architecture, are calculated as shown in Table 6.1. Tables 5.7, 5.8, 5.9,

5.10, and 5.11 show that the proposed Classical and Classical-Interleaved architectures have

reduced the latency compared to [32] and [2], respectively, for a given digit size. The Classical-

Interleaved architecture shows the lowest latency.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 77

Time

As mentioned earlier, time of operation is another metric in these tables which is calculated

by multiplication of CPD and Latency. As it is shown in Tables 5.7, 5.8, 5.9, 5.10, and 5.11,

our proposed Interleaved architecture performs an inversion operation faster than other archi-

tectures (d ≥ 11 for m = 163, d ≥ 2 for m = 233, d ≥ 22 for m = 283, d ≥ 2 for m = 409, and

d ≥ 2 for m = 571). Similarly, the new Classic design reports comparable, or even smaller (for

m = 163, 233, 409), time compared to [2] and [32].

Throughput

As shown in Tables 5.7, 5.8, 5.9, 5.10, and 5.11, our proposed Interleaved architecture provides

better throughput rates than other architectures (d ≥ 11 for = 163 and d ≥ 2 for m = 233,

d ≥ 22 for m = 283, d ≥ 4 for m = 409, and d ≥ 2 for m = 571). Similarly, the new Classic

design reports better output throughput compared to [2] (d ≥ 11 for m = 163, d ≥ 30 for

m = 233, d ≥ 11 for m = 283, d ≥ 4 for m = 409, and d ≥ 41 for m = 571).

The proposed architectures improve the throughput of existing hardware architectures by 15%

, 24%, 7% , 50% and 19% over fields size GF(2163) ,GF(2233) ,GF(2283), GF(2409) , and

GF(2571), respectively.

Area

It should be noted that the number of NAND gate equivalents (GE) used for implementing our

Classical design is the same as for [2]. On the other hand, our proposed Interleaved inverter

requires 25% to 30% more GE than the the optimal 3-chain scheme proposed in [32], and about

two times the proposed and the original ITA [2].

Efficiency

In term of Efficiency, our proposed Classical architecture outperforms the original ITA archi-

tecture for the digit sizes greater than or equal to 11, 30, 11, 4, and 22 (for m = 163, m = 233,

m = 283, m = 409, and m = 571, respectively). On the other hand, the proposed Interleaved

achieves superior efficiency compared to [32] for m = 233 and m = 409. However, the archi-

tecture proposed in [32] is more efficient than our proposed Interleaved scheme for m = 163

and m = 283. As mentioned, our Interleaved architecture has one unused multiplication than

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 78

the one proposed in [32] for m = 163 and m = 283. Therefore, our scheme is more efficient

than the one proposed in [32] if these inversions are used for the elliptic curve computations.

4.7 Conclusions

In this chapter, we have introduced a novel scheme for concurrent computing of composite

square-and-multiply operation at the digit-level. In addition, we have proposed two new GNB

field inversion architectures. The proposed interleaved inversion architecture utilizes the new

composite square-and-multiply digit-level operator and follows a novel scheme of interleaved

computations of two digit-level multiplications and squarings. The new classical inverter and

the new classical-interleaved inverter reduce the latency compared to other schemes. We have

conducted ASIC based implementations of the different inversion schemes and shown that

the proposed classical and interleaved inverters outperform the original ITA and Ternary Itoh-

Tsujii / optimal 3-chain algorithms in terms of its higher throughput and improved hardware

efficiency for a number of digit sizes. The proposed architectures improve the throughput of

existing hardware architectures of existing hardware architectures by 15% , 24%, 7% , 50%

and 19% over fields size GF(2163) ,GF(2233) ,GF(2283), GF(2409) , and GF(2571), respectively.

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 79

Table 4.6: ASIC implementation result for the different GF
(
2163

)
inverters.

Arch.
Area CPD Latency Time

Max. freq.

Thru. Effici.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE)

[2]

4

14479 0.5 380 190 858 59.3

Fig. 4.1 14479 0.54 370 200 816 56.4

[32] 21049 0.73 217 158 1029 48.9

Fig. 4.4 31740 0.86 211 181 898 28.3

[2]

11

21232 0.89 146 130 1254 59.1

Fig. 4.1 21232 0.95 136 129 1262 59.4

[32] 42964 1.19 87 104 1574 36.6

Fig. 4.4 62048 1.26 81 102 1597 25.7

[2]

21

33132 1.33 83 110 1477 44.6

Fig. 4.1 33132 1.39 73 101 1606 48.5

[32] 73656 1.72 52 89 1822 24.7

Fig. 4.4 103453 1.81 46 83 1958 18.9

[2]

33

46991 1.8 56 101 1617 34.4

Fig. 4.1 46991 1.91 46 88 1855 39.5

[32] 110561 2.39 37 88 1843 16.7

Fig. 4.4 148883 2.51 31 78 2095 14.1

[2]

41

57250 2.08 47 98 1667 29.1

Fig. 4.1 57250 2.15 37 80 2049 35.8

[32] 136078 2.81 32 90 1813 13.3

Fig. 4.4 174164 2.94 26 76 2132 12.2

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 80

Table 4.7: ASIC implementation result for the different GF
(
2233

)
inverters.

Arch.
Area CPD Latency Time

Max. freq.

Thru. Effici.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE)

[2]

4

18,421 0.4 602 241 968 52.5

Fig. 4.1 18,421 0.43 591 254 917 49.8

[32] 29,153 0.67 429 287 811 27.8

Fig. 4.4 34,893 0.75 301 226 1032 29.6

[2]

8

23,128 0.49 312 153 1524 65.9

Fig. 4.1 23,128 0.52 301 157 1489 64.4

[32] 39,177 0.7 226 158 1473 37.6

Fig. 4.4 49,468 0.75 156 126 1844 37.3

[2]

16

31,357 0.8 162 130 1798 57.3

Fig. 4.1 31,357 0.9 151 136 1714 54.7

[32] 64,362 1.16 121 140 1660 25.8

Fig. 4.4 83,108 1.26 81 102 2283 27.5

[2]

30

49,192 1.15 92 106 2202 44.8

Fig. 4.1 49,192 1.24 81 100 2320 47.2

[32] 105,814 1.78 72 128 1818 17.2

Fig. 4.4 138,483 1.87 46 86 2709 19.6

[2]

59

82,626 1.73 52 90 2590 31.3

Fig. 4.1 82,626 1.76 41 72 3229 39.1

[32] 190,747 3.03 44 133 1748 9.2

Fig. 4.4 245,247 3.12 26 81 2872 11.7

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 81

Table 4.8: ASIC implementation result for the different GF
(
2283

)
inverters.

Arch.
Area CPD Latency Time

Max. freq.

Thru. Effici.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE)

[2]

4

30,015 0.66 792 523 541 18

Fig. 4.1 30,015 0.69 782 540 524 17.5

[32] 61,834 1.03 438 451 627 10.1

Fig. 4.4 69,625 1.07 433 463 611 8.8

[2]

7

41,202 1.01 462 467 606 14.7

Fig. 4.1 41,202 1.05 452 475 596 14.5

[32] 97,099 1.57 258 405 699 7.2

Fig. 4.4 110,504 1.6 253 405 699 6.3

[2]

11

64,106 1.19 297 353 801 12.5

Fig. 4.1 64,106 1.23 287 353 802 12.5

[32] 163,661 1.9 168 319 887 5.4

Fig. 4.4 168,994 1.97 163 321 881 5.2

[2]

22

105,988 1.79 154 276 1027 9.7

Fig. 4.1 105,988 1.85 144 266 1062 10

[32] 263,884 2.63 90 237 1196 4.5

Fig. 4.4 304,794 2.69 85 229 1238 4.1

[2]

41

188,042 2.95 88 260 1090 5.8

Fig. 4.1 188,042 3.04 78 237 1193 6.3

[32] 519,960 4.01 54 217 1307 2.5

Fig. 4.4 547,964 4.11 49 201 1405 2.6

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 82

Table 4.9: ASIC implementation result for the different GF
(
2409

)
inverters.

Arch.
Area CPD Latency Time

Max. freq.

Thru. Effici.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE)

[2]

4

36,765 0.51 1146 584 700 19

Fig. 4.1 36,765 0.54 1031 557 735 20

[32] 61,079 0.78 737 575 711 11.6

Fig. 4.4 63,543 0.82 521 427 957 15.1

[2]

10

51,155 0.76 464 353 1160 22.7

Fig. 4.1 51,155 0.8 411 329 1244 24.3

[32] 108,961 1.21 303 367 1116 10.2

Fig. 4.4 112,990 1.3 211 274 1491 13.2

[2]

18

75,234 1.07 266 285 1437 19.1

Fig. 4.1 75,234 1.15 231 266 1540 20.5

[32] 172,662 1.67 177 296 1384 8

Fig. 4.4 181,291 1.75 121 212 1932 10.7

[2]

23

91,245 1.33 211 281 1457 16

Fig. 4.1 91,245 1.38 181 250 1637 17.9

[32] 210,775 1.95 142 277 1477 7

Fig. 4.4 240,052 2.08 96 200 2048 8.5

[2]

52

174,474 2.39 101 241 1694 9.7

Fig. 4.1 174,474 2.47 81 200 2044 11.7

[32] 436,975 3.68 72 265 1544 3.5

Fig. 4.4 480,891 3.82 46 176 2328 4.8

Chapter 4. Inversion Architectures Using Gaussian Normal Basis 83

Table 4.10: ASIC implementation result for the different GF
(
2571

)
inverters.

Arch.
Area CPD Latency Time

Max. freq.

Thru. Effici.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE)

[2]

4

85,813 0.73 1728 1261 453 5.3

Fig. 4.1 85,813 0.76 1717 1305 438 5.1

[32] 173,926 1.14 1015 1157 493 2.8

Fig. 4.4 224,800 1.21 865 1047 546 2.4

[2]

7

111,165 1.28 996 1275 448 4

Fig. 4.1 111,165 1.32 985 1300 439 3.9

[32] 259,282 1.69 588 994 575 2.2

Fig. 4.4 331,173 1.81 499 903 632 1.9

[2]

11

137,657 1.76 636 1119 510 3.7

Fig. 4.1 137,657 1.82 625 1138 502 3.6

[32] 347,142 2.71 378 1024 557 1.6

Fig. 4.4 401,156 2.89 319 922 619 1.5

[2]

22

236,207 2.32 324 752 760 3.2

Fig. 4.1 236,207 2.41 313 754 757 3.2

[32] 646,042 3.51 196 688 830 1.3

Fig. 4.4 749,408 3.69 163 601 949 1.3

[2]

41

389,988 3.29 180 592 964 2.5

Fig. 4.1 389,988 3.35 169 566 1009 2.6

[32] 1,115,699 4.76 112 533 1071 1

Fig. 4.4 1,249,582 4.92 91 448 1275 1

Chapter 5

Efficient Interleaved Inversion

Architectures Using Gaussian Normal

Basis

5.1 Introduction

The interleaved architecture for computing the inversion operation based on ITA is presented

in Chapter 4. The interleaved architecture is accomplished using a serial connection of two

digit-level multipliers. The computation core of this architecture consists of one squarer block,

one single multiplier and one single squarer-multiplier. The fully-serial-in square-multiply

processor (DL-FSISM) is proposed and used in Chapter 4, which is a complex architecture

and it is able to compute both square and multiply operations on serial inputs simultaneously

without having any additional delay. In this chapter, we propose a new efficient architecture

for computing GNB inversion operation utilizing two low-complexity single multipliers.

In this chapter, we propose a new efficient architecture for computing GNB inversion operation

utilizing two low-complexity single multipliers. The organization of this chapter is as follows:

In Section 5.2, A review on inversion schemes using double multiplications In Section 5.3,

A novel idea for efficient implementation of inversion double multiplications is presented. In

84

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 85

Section 5.4, we present new exponentiation architecture which is utilized as core of inversion

architecture in Section 5.5. In Section 5.6, we obtain the results of ASIC implementations for

the proposed architecture. Finally, we conclude this chapter in Section 5.7.

5.2 Inversion Schemes using Two Multiplications

Recently, a number of inversion schemes which use two multipliers have been proposed. In

[33], the authors proposed a new algorithm, denoted by Ternary Itoh-Tsujii (TIT), for inver-

sions over binary fields. Based on the TIT algorithm and using the hybrid-double (HD) mul-

tiplier proposed in [28], they design an inversion architecture which is referred to as TIT-HD

in this work. It is noted that a HD multiplier consists of two single multiplers are connected in

series, i.e., the serial output of the parallel-in serial-out (PISO) multiplier is connected to serial

input of the serial-in parallel-out (SIPO) multiplier. The number of HD multiplications for the

TIT-HD scheme is N2 =
⌊
log3(m − 1)

⌋
+ H3(m−1)+c−1, where H3(m−1) is the ternary Ham-

ming weight, the number of nonzeros in the ternary expansion of m − 1 and c = 0 if the most

significant ternary digit is one, otherwise c = 1. In [31], the modified Ternary-ITA (MTITA)

is proposed in which the ternary representation of m − 1 is used, i.e., m − 1 = (mq2−1 · · ·m0)3,

mi ∈ {0, 1, 2} for 0 ≤ i ≤ q2 − 1. It requires N2 =
⌈
log3(m − 1)

⌉
+ H3(m − 1) − 2 HD mul-

tiplications, which is the same as the number of HD multiplications required in the TIT-HD

scheme. Using the TIT/MTIT algorithm, the number of HD multiplications (N2) required for

the inversion is reduced as compared to the number of single multiplications (N1) needed for

the traditional Itoh-Tsujii (IT) algorithm [2].

An optimal 3-chain algorithm is proposed in [32] to further reduce the number of double mul-

tiplications, i.e., N4, required for the inversion over GF(2m). As seen from Table 5.1, it requires

N4 = 7 double multiplications. Very recently, new addition chains for inversion architectures

over the NIST recommended fields using the HD multiplier are presented in [35]. The number

of iterations in [35] (N3) are higher than those presented in [32].

Comparing the classical inversion algorithm for m = 233 presented in [23] with the one using

double multiplications for each iteration in [33] , one can see that the number of iterations in

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 86

Ta
bl

e
5.

1:
To

ta
ln

um
be

r
of

ite
ra

tio
ns

in
di

ff
er

en
ti

nv
er

si
on

sc
he

m
es

fo
r

th
e

fiv
e

re
co

m
m

en
de

d
N

IS
T

fie
ld

s
fo

r
E

C
D

SA
in

ty
pe

T
G

N
B

ov
er

G
F

(2
m

)u
si

ng
do

ub
le

m
ul

tip
lie

rs
.

A
rc

hi
te

ct
ur

e
A

lg
or

ith
m

M
ul

tip
lie

r
N

um
be

ro
fi

te
ra

tio
ns

ty
pe

G
en

er
ic

m
L

at
en

cy

16
3

23
3

28
3

40
9

57
1

(c
yc

le
s)

[3
3]

Te
rn

ar
y-

IT
A

(T
IT

A
)

1×
H

D
[2

8]
N

2
5

9
8

7
8

N
2

(⌈ m d

⌉ +
2) +

2

[3
1]

M
od

ifi
ed

T
IT

A
1×

H
D

[2
8]

N
2

5
9

8
7

8
N

2

(⌈ m d

⌉ +
2) +

1

Pa
ra

lle
l-

IT
A

2×
D

L
-P

IP
O

[3
]

N
′ 2

8
7

8
8

9
N
′ 2

(⌈ m d

⌉ +
2) +

1

[3
5]

-
1×

H
D

N
3

5
7

7
7

8
N

3

(⌈ m d

⌉ +
1) a

[3
2]

O
pt

im
al

-3
C

ha
in

1×
H

D
[2

8]
N

4
5

7
6

7
7

N
4

(⌈ m d

⌉ +
2) +

2

(F
ig

4.
4)

C
la

ss
ic

al
-I

nt
er

le
av

ed
1×

D
L

-P
IS

O
[3

]a
nd

⌈ N
1 2

⌉
5

5
6

5
6

⌈ N
1 2

⌉(⌈ m d

⌉ +
1) +

1
[8

,3
4]

(A
lg

or
ith

m
s

11
to

15
)

1×
D

L
-F

SI
SM

(F
ig

.4
.3

)
N

1
=

⌊ lo
g 2

(m
−

1)
⌋ +

H
2(

m
−

1)
−

1
an

d
N

2
=

⌊ lo
g 3

(m
−

1)
⌋ +

H
3(

m
−

1)
+

c−
1

w
he

re
H

2(
m
−

1)
an

d
H

3(
m
−

1)
ar

e
th

e
H

am
m

in
g

w
ei

gh
ts

in
th

e
bi

na
ry

an
d

te
rn

ar
y

ex
pa

ns
io

ns
of

m
−

1,
re

sp
ec

tiv
el

y.
N

F
=

q
+

p,
w

he
re

∑ q i=
0

m
i2

i
=

(m
qm

q−
1
··
·m

0) is
th

e
bi

na
ry

ex
pa

ns
io

n
of

m
−

1
an

d
p

is
th

e
nu

m
be

ro
fo

ne
s

in
(m

q−
1
··
·m

0) .
a

N
o

cl
oc

ks
ha

ve
be

en
co

un
te

d
fo

rt
he

re
gi

st
er

s
in

iti
al

iz
at

io
n.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 87

[33] , i.e., N4 = 7, is more than half of iterations in [23], i.e., N1
2 = 5. Our main objective in this

chapter is to provide interleaved algorithms and then design the corresponding architecture to

perform the inversion operation. In the next Section, we focus on implementation an efficient

Inversion Schemes using Interleaved multiplications.

5.3 A New Efficient Interleaved Inversion Schemes using Dou-

ble Multiplications

The interleaved architecture for computing the inversion operation based on ITA is presented

in Section 4. The interleaved architecture is accomplished using a serial connection of two

digit-level multipliers. The computation core of this architecture consists of one squarer block,

one single multiplier and one single squarer-multiplier, which is able to compute an specific

exponentiation operation of E = B(1+2t1)(1+2t2), 1 ≤ t1, t2 < m, which leads to the executing two

steps of ITA in just one computational step. As a result, the architecture is able to compute

the inversion operation in
⌈
(log2(m − 1) + H2(m − 1) − 1)/2

⌉
iterations. The single squarer-

multiplier compute A × B2e
, where A, B ∈ GF(2m) and e is and integer 0 6 e < m, and receives

both inputs A and B serially. As the the input B arrive serially, at least the e-th bits of the input

B are required to start the operation which leads to add waiting delays to the architecture. The

fully-serial-in square-multiply processor (DL-FSISM) was proposed and used in section 4.4.

The DL-FSISM processor is a complex architecture which is able to compute both square and

multiply operations on serial inputs simultaneously without having any additional delay.

In this section, the time and area complexities of the DL-FSISM processor used are com-

pared to those of DL-FSIPO multiplier, which is utilized inside our new proposed architecture

(Fig. 5.2). Table 5.4 lists the ASIC implementations results for both the DL-FSIPO multi-

plier and DL-FSISM processor for the NIST field GF(2233). The ASIC implementation results

obtained using the Synopsys Design Compiler tool when using the default settings with the

STMicroelectronics’ standard 65nm CMOS technology libraries.

As shown in Table 5.4, the DL-FSIPO multiplier needs considerably less area resource and can

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 88

Table 5.2: Theoretical time complexity of DL-FSIPO multipliers and DL-FSISM processor in

GNB
CPD Latency

Architecture (ns) (Clk)

DL-FSIPO [4] TA +
[
1 +

⌈
log2(d + 1)

⌉
+

⌈
log2 T

⌉]
TX

⌈
m
d

⌉
DL-FSISM [8] TA +

[
2 +

⌈
log2 d

⌉
+

⌈
log2 T

⌉]
TX + 2

⌈
log2 v

⌉
TM

⌈
m
d

⌉
TA, TX and TM denote the propagation delay in a two input AND gate,a two input XOR gate

and a 2-to-1 multiplexer. v is total number of squaring powers and d is the digit size.

Table 5.3: Theoretical area complexity of DL-FSIPO multipliers and DL-FSISM processor in

GNB
Area

Architecture FF AND XOR 2-to-1 MUX

DL-FSIPO [4] 3m − 2d d(2m − d) ≤ d [2m − d + (T − 1) (m − 1)] 0

DL-FSISM [8] 3m − 2d 2dm ≤ 2d [m + (T − 1) (m − 1)] 3 (v − 1) m

operate with higher throughput and better efficiently in compared to the DL-FSISM processor.

However, it should be considered that the new architecture increases the latency of inversion

operation by adding some waiting delay needed for computing squaring operation on serial

inputs. The proposed exponentiation architecture needs in total of
⌈

m
d

⌉
+

⌈
e
d

⌉
to calculate the

final result. In the next section, we present a new decomposition algorithm for computations

of a fast inversion over GF(2m) in order to minimize the added waiting delay.

5.4 Proposed New Exponentiation Architecture For Com-

puting A(1+2e)(1+2 f)

In this section, we present a new digit-level architecture to compute an specific exponentiation

operation of E = A(1+2e)(1+2 f), 1 ≤ e, f < m, where A ∈ GF(2m). The exponentiation result

over GF(2m) is obtained by multiplying a field element A with three squaring versions of itself,

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 89

Table 5.4: ASIC’s post-synthesis readings using standard 65nm CMOS libraries for the DL-

FSIPO multiplier [4] and DL-FSISM processor [8] GF
(
2233

)
.

!

Arch.

Digit
Area

Maximum
Latency

Maximum Frequency

Size Frequency Throughput Efficiency

(d) (GE) (MHz) (cycles) (Mbps) (Kbps
GE)

[4]
2

6,550 3,078 117 6,130 935

[8] 12,662 1,563 117 3,113 246

[4]
4

10,453 2,377 59 9,389 898

[8] 17,820 1,408 59 5,560 312

[4]
8

18,181 2,034 30 15,800 869

[8] 28,234 1,220 30 9,475 336

[4]
16

33,325 1,691 15 26,275 788

[8] 48,869 943 15 14,648 300

[4]
30

58,826 1,430 8 41,657 708

[8] 84,376 781 8 22,747 270

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 90

i.e., A × A2e
× A2 f

× A2e+ f
, 1 ≤ e, f < m, in one iteration. The calculation of A(1+2e)(1+2 f) can

be used as a computation core for a sequential inversion architecture which is presented in the

next section. In [4], a triple multiplication architecture is proposed. This architecture computes

the multiplication of four field elements and is made by connection of three independent single

multipliers. In this section, we propose a new architecture which consists of only two digit-

level single multipliers to compute multiplication result of A × A2e
× A2 f

× A2e+ f
= A(1+2e)(1+2 f),

1 ≤ e, f < m in one iteration after dm
d e + d e

d e clock cycles.

The new architecture for computing the result of A(1+2e)(1+2 f), 1 ≤ e, f < m is shown in Fig. 5.1.

The architecture is made by serially connecting of two digit-level multipliers (DL-PISO [3]

and DL-FSIPO [4]), and utilizing the Serial-in Serial-out (SISO) and the Parallel-in Parallel-

out (PIPO) squaring blocks.

The DL-PISO and DL-FSIPO multipliers, which are used in the architecture, are both a digit-

level single multiplier.The DL-PISO multiplier receives the inputs in parallel and generates a

digit of output in serial. The DL-FSIPO multiplier receives its inputs serially digit-by-digit and

calculates the final result as a parallel output. The DL-PISO and DL-FSIPO multipliers are

discussed in Chapter 2.

In the new exponentiation architecture, we utilize two different kinds of squaring blocks.

Fig. 5.1.b illustrates the Parallel-in Parallel-out (PIPO) squaring block which is responsible

of computing the squaring operation A2 f
for the set of exponents f ∈ { f1, f2, . . . , fv} on parallel

input. Because all coordinates of the input to the PIPO squaring block are available in paral-

lel, this block computes squaring operation by circular shifting of the coordinates of its input.

Performing circular shiftings is implemented using cyclic shifts in hardware implementation.

Another squaring block, namely Serial-in Serial-out (SISO) squaring block in Fig. 5.1. This

architecture computes squaring operation on its serial input. This block receives its input (C)

serially and generates C2e
. Fig. 5.1.c shows the internal architecture of the SISO squaring

block which buffers digits of its serial inputs. For performing squaring operation C2e
on serial

inputs, the SISO-squaring needs to buffer e + d coordinates of its input to start computing the

exponentiation of C2e
for the set of exponents e ∈ {e1, e2, . . . , ev} on the serial input. As the

SISO squaring block receives d coordinate of its inputs in each clock cycle, the added waiting

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 91

(a)

(b)

(c)

Figure 5.1: (a) Architecture of the proposed Digit-level GNB exponentiator architecture . (b)

Architecture of PIPO Squaring. (c) Architecture of SISO Squaring.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 92

delay (xi) is equal to
⌈

ei
d

⌉
for each iteration i and it varies depending on the value of ei.

The inputs of the LSD-first DL-PISO multiplier in Fig. 5.1 are loaded with the coordinates of

A and A2 f
at the start of each operation. The squaring operation of A2 f

is computed by the

PIPO squaring block with no computation delay. The DL-PISO multiplier starts generating the

digit-size output for the calculation of C = A×A2 f
from the first clock cycle and continues until⌈

m
d

⌉
th clock cycle. The SISO squaring block receives the digits of the result of C = A×A2 f

and

starts buffering them in reg A as shown in Fig. 5.1.c. The SISO squaring block waits until it

receives e+d coordinates of data. Then, the SISO squaring block starts generating two value C

and C2e
and transfers it to the LSD-first DL-FSIPO multiplier. The DL-FSIPO multiplier starts

computing the output E = C×C2e
once it receives digits of data from the SISO squaring block.

Then, the DL-FSIPO multiplier calculates the final result of C × C2e
as a parallel output after⌈

m
d

⌉
clock cycle. The result of the computation is saved in reg E. Therefore, one can calculate

E as below:

C = A × A2 f
= A(1+2 f)

E = C ×C2e
= C(1+2e) = A(1+2 f)(1+2e).

(5.1)

As calculated in (5.1), the new proposed architecture computes the exponentiation result of

E = A(1+2 f)(1+2e) using two single multipliers with lower time and area complexities as com-

pared to the ones presented in [8]. The main difference between our proposed architecture

and the inversion proposed in [8] is the second multiplier. Here, we use the DL-FSIPO multi-

plier [4] whereas DL-FSISM processor. Table 5.2 and Table 5.3 summarize the time and area

complexity of the DL-FSISM processor, respectively.

5.5 New Efficient Architecture for inversion over GF(2m)

In this section, we propose a new efficient architecture for computing GNB inversion operation

utilizing the computation core we proposed in Section 5.4. Then, we analyze the time and area

complexities of the inversion architecture by obtaining the ASIC implementation results of the

proposed architecture and comparing with other works in the literature.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 93

As shown in Fig. 5.2, the new architecture is accomplished by the serial connection of two

different digit level single multipliers, namely DL-PISO and DL-FSIPO multipliers. The se-

rial connection of these two multipliers is made through the SISO squaring block. The SISO

squaring block is responsible for performing the squaring operation on the serial input. The

input of SISO squaring block is connected to the output of the DL-PISO multiplier and derives

the serial inputs of the DL-FSIPO multiplier.

Figure 5.2: The new architecture inversion in the GNB representation.

The final result of each iteration operation is saved in the output register (Z) of the DL-FSIPO

multiplier. The m-bit Fdb signal is connected to the input of register (Z) in the DL-FSIPO

multiplier so that the final result during each sequential iteration is obtained from the input

of register (Z), one clock cycle earlier and is transferred to the next sequential iteration. The

PIPO squaring block in this architecture computes the squaring operation on its parallel input

and derives the first input of the DL-PISO multiplier. The multiplexers in this architecture

are responsible for transferring the selected data to the inputs. The latency of each sequential

iteration is equal to ti = dm
d e+d

ei
d e. Thus, the total latency of the new GNB inversion architecture

is equal to T = n × dm
d e +

∑n
i=1 d

ei
d e + 1, where n is the number of required iterations.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 94

5.5.1 Modified IT Algorithm

In this section, We modify the ITA decomposition formulation to reduce the waiting delay

cause by The SISO squaring block. As shown in (4.3), the ITA simplifies an expression of

2m−1 − 1 = 1 + 2 + · · · + 2m−2 by decomposing 1 + 2 ji factors. The set of { j0, . . . , j9} =

{1, 2, 4, 8, 16, 32, 64, 64, 32, 8} contains squaring operations that are preformed by squaring

blocks used in the ITA presented in Algorithm 7. The architecture we purposed in Fig. 5.2

is able to compute two consecutive steps of Algorithm 7 in each computational step. The cor-

responding modified ITA for the inversion operation over GF(2233) is shown in Algorithm 23 in

which two steps of Algorithm 1 are preformed concurrently as shown in each step of Alg. 23.

In this algorithm �p denotes the PIPO squaring operation and �s denotes the SISO squaring

operation.

Algorithm 16 Interleaved inversion in GF(2233) based on ITA.
Input: A ∈ GF(2233) and A , 0

Output: R = A−1

1. B← A �p 1

2 R← B × (B�p 1) B← R × (R �s 2)

3 R, C ← B × (B�p 4) B← R × (R �s 8)

4 R, D← B × (B�p 16) B, E ← R × (R �s 32)

5 R← B × (B�p 64) E ← R × (R �s 64)

6 R← B × (D �p 32) B← C × (R �s 8)
7. return R

Based on Algorithm 23, the PIPO squaring block performs the squaring based on elements of

f ∈ { f0, . . . , f4} = {1, 4, 16, 64, 32} and the elements of e ∈ {e0, . . . , e4} = {2, 8, 32, 64, 8} are

used by the SISO squaring block. We modify the ITA decomposition formulation to reduce the

added delay by reducing the numbers of ei because these numbers add waiting delays to the

operation for each iteration. Such delays are required for squaring operations in serial input.

The new decomposition algorithm works based on the fact that the expression 2233−1 − 1 =

1 + 2 + · · · + 2231, can be factored in two different ways as follows:

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 95

1 + 2 + · · · + 2231 =
(1 + 21) × (1 + (22)1 + (22)2 + · · · + (22)114 + (22)115).

(1 + 2116) × (1 + 21 + 22 + · · · + 2114 + 2115).

(5.2)

If the expression 1 + 2 + · · · + 2231 is decomposed based on the first decomposition of (5.2), it

extracts the 1 + 21 factor from the expression which has the smallest possible exponent, while

the remaining terms are the successive powers of 22. if the mentioned expression is simplified

based on the second choice of (5.2), it decomposes the 1 + 2116 factor from the expression,

while 116 is the biggest possible exponent. This can be extracted from the expression and the

remaining terms of expression appear as the successive powers of 21.

The SISO squaring block to compute exponentiation operation of C2e
i , adds the waiting delay

(
⌈

ei
d

⌉
) to the system, while the value of fi does not have any effect on the latency of the sys-

tem. In the new algorithm, we minimize the value of exponents e ∈ {e0, . . . , ei}, so that C2e
is

computed by the SISO squaring block with the least overhead complexity. In the new decom-

position method, we extract factors with the smallest exponents for the set e ∈ {e0, . . . , ei} and

factors with the biggest exponents for the set f ∈ { f0, . . . , f4}.

The new algorithm operates for GF(2233) as follows: At the First step of decomposition, as

the first factor of decomposition algorithm needs to be performed by the PIPO squaring block

of the architecture, the algorithm decompose factor 1 + 2 f1 while f1 is the biggest possible

exponent. So 1 + 21 + · · · + 2(231) = (1 + 2116)(1 + 21 + · · · + 2115). Next, we continue with

decomposing of (1 + 21 + · · · + 2115). As the second factor is performed by the SISO squaring

block of the architecture, the algorithm decomposes the factor 1 + 2e1 while e1 is the smallest

possible exponent, i.e., 1 + 21 + · · · + 2115 = (1 + 21)(1 + (22)1 + · · · + (22)57). The algorithm is

continued by extracting 1 + 2 f2 = (1 + 258) from the expression, as (1 + (22)1 + · · · + (22)57) =

(1 + (22)29)(1 + (22)1 + · · ·+ (22)30)). In the 4th step of the decomposition algorithm, the fourth

factor is used for the SISO squaring block. Thus, we extract the smallest possible exponent

from the remaining expression, as (1 + (22)1 + · · ·+ (22)30) = (1 + 22 ×
(
1 + (22)1 + · · ·+ (22)29

)
).

If the decomposition algorithm is continued, we obtain the following result:

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 96

2232 − 1 = 1 + 2 + · · · + 2231 =

(1 + 2116) × (1 + 21) × (1 + 258) × (1 + 22 × (1 + 22)×

(1 + 228) × (1 + 24 × (1 + 24) × (1 + 28 × (1 + 28)))

(5.3)

The decompositions returned for inversion over NIST fields by the IT and Modified IT algo-

rithm are in Table 5.5. The corresponding algorithm are shown in Alg. 17, Alg. 18, Alg. 19,

Alg. 20 and 21. The corresponding algorithm based on (5.3) for the inversion computation

over GF(2233) is shown in Alg. 11. As shown in Alg. 11, it takes five iterations to compute

the inversion operation. The data flow graph shown in Fig. 5.3 is derived from Alg. 11. It

presents the inversion diagram for GF(2233). As shown in the diagram, the inversion operation

is computed in five sequential iterations based on steps 2 to 6 in Alg. 11. Each sequential

iteration is done using the DL-PISO and DL-FSIPO multipliers, as well as the PIPO and SISO

squaring blocks.

Algorithm 17 Interleaved inversion in GF(2233) based on Modified IT algorithm.
Input: A ∈ GF(2233) and A , 0

Output: R = A−1

1. B← A �p 1

2 R← B × (B�p 116) B← R × (R �s 1)

3 R, C ← B × (B�p 58) B← R × (R �s 2)

4 R, D← B × (B�p 28) B← R × (R �s 4)

5 R← B × (B�p 8) B← R × (R �s 8)

6 R← B × (D �p 4) B← C × (R �s 2)
7. return R

5.5.2 Operational Example for GF(2233)

In this section, the new architecture is illustrated for the NIST recommended field GF(2233).

The new GNB inversion architecture for GF(2233) works based on Alg. 11 whose data flow

graph is presented in Fig. 5.3. As shown in Alg. 11 and Fig. 5.2, two multiplications and

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 97

Ta
bl

e
5.

5:
D

ec
om

po
si

tio
ns

gi
ve

n
by

th
e

IT
an

d
M

od
ifi

ed
IT

fo
rt

he
N

IS
T

Fi
el

ds
.

m
T

IT
D

ec
om

po
si

tio
ns

16
3

4
(1

+
21)×

(1
+

21
×

(1
+

22)×
(1

+
24)×

(1
+

28)×
(1

+
216

)×
(1

+
232
×

(1
+

232
)×

(1
+

264
))

)

23
3

2
(1

+
21)×

(1
+

22)×
(1

+
24)×

(1
+

28
×

(1
+

28)×
(1

+
216

)×
(1

+
232
×

(1
+

232
)×

(1
+

264
×

(1
+

264
))

)

28
3

6
(1

+
21)×

(1
+

21
×

(1
+

22)×
(1

+
24)×

(1
+

28
×

(1
+

28)×
(1

+
216
×

(1
+

216
)×

(1
+

232
)×

(1
+

264
×

(1
+

212
8))

)

40
9

4
(1

+
21)×

(1
+

22)×
(1

+
24)×

(1
+

28
×

(1
+

28)×
(1

+
216
×

(1
+

216
)×

(1
+

232
)×

(1
+

264
)×

(1
+

212
8
×

(1
+

212
8))

)

57
1

10
(1

+
21)×

(1
+

22
×

(1
+

22)×
(1

+
24)×

(1
+

28
×

(1
+

28)×
(1

+
216
×

(1
+

216
)×

(1
+

232
×

(1
+

232
)×

(1
+

264
)×

(1
+

212
8
×

(1
+

225
6))

))
)

m
T

M
od

ifi
ed

IT
D

ec
om

po
si

tio
ns

16
3

4
(1

+
281

)×
(2

80
+

1
×

(1
+

21)×
(1

+
240

)×
(1

+
22)×

(1
+

220
)×

(1
+

24
×

(1
+

24)×
(1

+
28))

23
3

2
(1

+
211

6)×
(1

+
21)×

(1
+

258
)×

(1
+

22
×

(1
+

22)×
(1

+
228

)×
(1

+
24
×

(1
+

24)×
(1

+
28
×

(1
+

28))
)

28
3

6
(1

+
214

1)×
(1

+
21
×

(1
+

21)×
(1

+
270

)×
(2

68
+

1
×

(1
+

22)×
(1

+
24
×

(1
+

232
)×

(1
+

24)×
(2

16
+

1
×

(1
+

28))
)

40
9

4
(1

+
220

4)×
(1

+
21)×

(1
+

210
2)×

(2
10

0
+

1
×

(1
+

22)×
(1

+
24
×

(1
+

248
)×

(1
+

24)×
(1

+
224

)×
(1

+
28
×

(1
+

28))
)

57
1

10
(1

+
228

5)×
(2

28
4

+
1
×

(1
+

21)×
(1

+
214

2)×
(1

+
22
×

(1
+

22)×
(2

13
6

+
1
×

(1
+

268
)×

(1
+

24
×

(1
+

24)×
(1

+
232

)×
(2

16
+

1
×

(1
+

28))
))

)

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 98

Fi
gu

re
5.

3:
D

at
a

flo
w

gr
ap

h
fo

rt
he

G
F

(223
3) in

ve
rs

io
n

us
in

g
th

e
M

od
ifi

ed
IT

A
[2

]u
si

ng
D

L
-P

IS
O

[3
]G

N
B

m
ul

tip
lie

ra
nd

D
L

-F
SI

PO
[4

]

G
N

B
m

ul
tip

lie
r.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormal Basis 99

Algorithm 18 Interleaved inversion in GF(2163) based on Modified IT algorithm.
Input: A ∈ GF(2163) and A , 0

Output: R = A−1

1. B← A �p 1

2 R, C ← B × (B�p 81) B← R × (R �s 1)

3 R← B × (B�p 40) B← R × (R �s 2)

4 R, D← B × (B�p 20) B← R × (R �s 4)

5 R← B × (B�p 8) B← D × (R �s 4)

6 R← B × (C �p 4)
7. return R

Algorithm 19 Interleaved inversion in GF(2283) based on Modified IT algorithm.
Input: A ∈ GF(2283) and A , 0

Output: R = A−1

1. B← A � 1
2.1 R, C ← B × (B� 141) 2.2 B← R × (R � 1)

3.1 R, D← B × (B� 70) 3.2 B, E ← R × (R � 2)

4.1 R← B × (B� 32) 4.2 B← R × (R � 4)

5.1 R← B × (B� 8) 5.2 B← R × (R � 8)

6.1 R← E × (B� 16) 6.2 B← D × (R � 1)

7.1 R← B × (C � 68)
7. return R

two squaring should are performed in each step. The first squaring (denoted by �p and im-

plemented by PIPO squaring block) is performed on parallel input whereas the second one

(denoted by �s and implemented by SISO squaring block) computes squaring operation on

the serial input.

The PIPO and SISO squaring blocks are utilized for GF(2233) based on Alg. 11. The elements

of first set of exponents f ∈ { f0, f1, f2, f3, f4} = {116, 58, 28, 8, 4} are obtained from numbers for

squaring operation�p in the left part of Steps 2 to 6 in Alg. 11 and the corresponding squaring

operations are computed by the PIPO squaring block. The SISO squaring block computes the

second set of squaring operations e ∈ {e0, e1, e2, e3, e4} = {1, 2, 4, 8, 2} on serial input based on

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 100

Algorithm 20 Interleaved inversion in GF(2409) based on Modified IT algorithm.
Input: A ∈ GF(2409) and A , 0

Output: R = A−1

1. B← A � 1
2.1 R← B × (B� 204) 2.2 B← R × (R � 1)

3.1 R, C ← B × (B� 102) 3.2 B, D← R × (R � 2)

4.1 R← B × (B� 48) 4.2 B← R × (R � 4)

5.1 R, E ← B × (B� 24) 5.2 B← R × (R � 8)

6.1 R← (E � 8) × B 6.2 B← D × (R � 2)

7.1 R← (C � 284) × B
8. return R

right side numbers of each step for the�s squaring operation in Alg. 11. The set of exponents

e are selected to be small numbers in order to minimize the waiting delay required by the SISO

squaring block.

The architecture in Fig. 5.2 uses three different kinds of m-bit registers inside the register

file. The registers R1 and R2 are Serial-Input-Serial-Output (SISO) and Serial-Input-Parallel-

Output (SIPO) registers, respectively. They receive their digit-size serial input directly from

the DL-PISO multiplier. The register R3 is Parallel-Input-Parallel-Output (PIPO) register and

gets its data from DL-FSIPO multiplier and generates the parallel output.

The control unit produces the control signals for the components in the architecture. In the first

iteration, the Mux1, Mux2, and PIPO squaring are set to preload B and B�p 116 to the input of

the DL-PISO multiplier. This multiplier starts generating the output from the 1st clock cycle of

iteration and continues until the d 233
d e-th clock cycle. The SISO squaring block starts buffering

its input as soon as it receives the data. Based on the data flow graph presented in Fig. 5.3, in

the first iteration, the SISO squaring block generates both C and C �s 1 which are required for

the R × R �s 1 in Step 2 of Alg. 11. The SISO squaring block adds d 1
d e = 1 waiting delay to

compute the squaring operation C21
. The DL-FSIPO multiplier receives its inputs by one clock

cycle delay from the 3rd clock cycle and computes the multiplication result of E = C × C21
.

Note that each multiplier requires d 233
d e clock cycles for the multiplication operation. Both

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 101

Algorithm 21 Interleaved inversion in GF(2571) based on Modified IT algorithm.
Input: A ∈ GF(2571) and A , 0

Output: R = A−1

1. B← A � 1
2.1 R, C ← B × (B� 285) 2.2 B← R × (R � 1)

3.1 R, D← B × (B� 142) 3.2 B, E ← R × (R � 2)

4.1 R, F ← B × (B� 136) 4.2 B← R × (R � 4)

5.1 R← B × (B� 68) 5.2 B← R × (R � 8)

5.1 R← B × (B� 16) 5.2 B← R × (R � 4)

6.1 R← B × (E � 136) 6.2 B← D × (R � 1)

7.1 R← B × (C � 284)
7. return R

multipliers require d 233
d e + d 1

d e = d 233
d e + 1 clock cycles for the first iteration. The signal Fdb

transfers the result of E one clock cycle earlier to the next iteration. The total latency of the first

iteration is equal to x1 = d 233
d e + d 1

d e, including the parallel load of input registers X and Y for

starting the next iteration. The process continues until 5-th iteration (as shown in Step 2 to 6 of

Alg. 11) until the final result of inversion operation is generated. As a result, the total latency

of our architecture for GF(2233) is equal to T = 5 × d233
d + 1e + 1 + d 1

d e + d
2
d e + d

4
d e + d

8
d e + d

2
d e.

5.6 ASIC Implementation Results

In this section, the area and time complexities of our proposed architecture in Fig. 5.2 are

evaluated for the recommended fields in the NIST standard. Tables 5.7, Tables 5.8, Tables

5.9, Tables 5.10, Tables 5.11 has listed the ASIC post-synthesis readings for the proposed ar-

chitecture in Fig. 5.2, as well as two existing counterparts using two multipliers. The ASIC

results reported by the Synopsys Design Compiler Tool utilizing the standard STMicroelec-

tronics 65nm CMOS technology libraries. It is also noted that we have implemented all the

architectures using VHDL code, and the functionality of the architectures have been tested and

verified using the ModelSim CAD Tool.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 102

Table 5.6: Parameters used in the proposed interleaved inversion architecture in Fig.4.4 for the

five recommended NIST fields for ECDSA in type T GNB over GF(2m).

m/T Algorithm
⌈

NF
2

⌉
v E = {e1, e2, . . . , ev}

a v′ F =∈ { f0, f1, . . . , fv′} w Reg.

163/4 Alg. 12 5 3 {1, 2, 4} 5 {81, 40, 20, 8, 4} 2 C,D

233/2 Alg. 11 5 4 {1, 2, 4, 8} 5 {116, 58, 28, 8, 4} 2 C,D

283/6 Alg. 13 6 4 {1, 2, 4, 8} 6 {141, 70, 32, 8, 16, 68} 3 C,D, E

409/4 Alg. 14 6 4 {1, 2, 4, 8} 6 {204, 102, 48, 24, 8, 284} 0 none

571/10 Alg. 15 7 4 {1, 2, 4, 8} 5 {4, 10, 40, 80, 160} 4 C,D, E, F

The numbers in E and F are obtained from numbers in front of R � in all steps x.2 and all

steps x.1 of the corresponding algorithm, respectively.

The performance and efficiency of these architectures have been analyzed using the different

metrics as listed below:

• GE: The number of NAND gate equivalents is calculated by dividing the area by the size

of one NAND gate in 65nm CMOS technology libraries.

• CPD: Critical Path Delay (CPD) which is the maximum path delay and it is obtained

directly from the Synopsys Design Compiler Tool.

• Maximum frequency: the maximum working frequency of the architecture which is cal-

culated from the CPD of the architecture by Max f req. = 1
CPD .

• Latency: Latency is the number of clock cycles required for the computation of the final

result.

• Time: The total time of inversion operation is computed by dividing the latency of the

architecture by the frequency of the architecture.

• Throughput: Throughput is obtained by calculating the following expression m
latency × f

when m is the size of the fields. The f is the working frequency of the architecture.

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 103

• Efficiency: The efficiency metric is calculated by dividing the Throughput over area (GE).

The values in Table 5.7, Table 5.8, Table 5.9, Table 5.10, Table 5.11 are evaluated based on two

different working clock frequencies, maximum possible frequency and 100MHz. The maxi-

mum clock frequency of each architecture is equal to MaxFreq. = 1
CPD for each architecture.

Also when the frequency of all architectures is set on the constant rate which is chosen to be

Freq. = 100MHZ in this evaluation.

As an example for GF(2233), as shown in Table 5.8, when all architectures work on their maxi-

mum frequencies, our proposed design in Fig. 5.2 computes inversion operation faster than the

other works for the digit sizes (d) smaller than 16. In contrast, the architecture is presented in

Fig. 4.4, preforms faster for (d = 30), at the expense of more area-resource in comparison to

others. Consequently, the efficiency of the new architecture(Fig. 5.2) is better than other archi-

tectures for all digit sizes. When the architectures are set on the constant frequency (100MHz),

the throughput and efficiency of all architectures are dropped as we are working with lower

clock frequency. As it can be observed, the purposed design in Fig. 5.2 compute the inversion

operation slightly faster than other work. The architecture we proposed achieves the best effi-

ciency result, as it outperforms the other works in term of efficiency of for all sizes of the digit

when the frequency all architectures are set on one constant rate. The proposed architectures

improve the efficiency of existing hardware architectures of existing hardware architectures by

4% , 13% over fields size GF(2163) , and GF(2233) respectively.

5.7 Conclusions

In this paper, we have proposed a new digit-level architecture to compute an specific expo-

nentiation operation of A(1+2e)(1+2 f), 1 ≤ e, f < m, using connection of two single and low-

complexity multipliers (DL-PISO and DL-FSIPO). Then, we utilize this architecture to present

a new efficient GNB inversion architecture. We also present a new decomposition algorithm for

inversion operation. We have conducted ASIC based implementations of the different inversion

schemes. We show that our new architecture computes inversion operation faster with better

efficiency and higher throughput comparing to inversion schemes proposed in [32, 8, 34]. The

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 104

Table 5.7: ASIC implementation result for the different GF
(
2163

)
inverters.

Arch.
Area CPD Latency

Maximum Frequency Frequency = 100 MHz

Time Thro. Effi. Time Thro. Effi.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE) (ns) (Mbps) (Kbps

GE)

[32]

4

21049 0.73 217 158 1029 48.9 2164 75.1 3.6

Fig. 4.4 31740 0.86 211 181 898 28.3 2105 77.2 2.4

Fig. 5.2 22124 0.55 215 118 1378 62.2 2150 75.8 3.4

[32]

11

42964 1.19 87 104 1574 36.6 874 187.3 4.4

Fig. 4.4 62048 1.26 81 102 1597 25.7 810 201.2 3.2

Fig. 5.2 44015 1.2 85 102 1598 36.3 850 191.7 4.3

[32]

21

73656 1.72 52 89 1822 24.7 517 313.4 4.2

Fig. 4.4 103453 1.81 46 83 1958 18.9 459 354.4 3.4

Fig. 5.2 75902 1.75 50 87 1862 24.5 500 326 4.4

[32]

33

110561 2.39 37 88 1843 16.7 368 440.5 4.0

Fig. 4.4 148883 2.51 31 78 2095 14.1 311 525.8 3.5

Fig. 5.2 112996 2.43 35 85 1916 16.9 350 465.7 4.1

[32]

41

136078 2.81 32 90 1813 13.3 320 509.5 3.7

Fig. 4.4 174164 2.94 26 76 2132 12.2 259 626.8 3.6

Fig. 5.2 141568 2.82 30 84 1926 13.6 300 543.3 3.8

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 105

Table 5.8: ASIC implementation result for the different GF
(
2233

)
inverters.

Arch.
Area CPD Latency

Maximum Frequency Frequency = 100 MHz

Time Thro. Effi. Time Thro. Effi.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE) (ns) (Mbps) (Kbps

GE)

[32]

4

29,153 0.67 429 287 811 27.8 4284 54.3 1.9

Fig. 4.4 34,893 0.75 301 226 1032 29.6 3013 77.4 2.2

Fig. 5.2 30002 0.66 307 202 1149 38.2 3070 75.8 2.5

[32]

8

39,177 0.7 226 158 1473 37.6 2257 103.1 2.6

Fig. 4.4 49,468 0.75 156 126 1844 37.3 1680 138.3 2.8

Fig. 5.2 40599 0.71 161 114 2038 50.1 1610 144.7 3.5

[32]

16

64,362 1.16 121 140 1660 25.8 1207 192.6 3.0

Fig. 4.4 83,108 1.26 81 102 2283 27.5 810 287.7 3.5

Fig. 5.2 66120 1.18 86 101 2296 34.7 860 270.9 4

[32]

30

105,814 1.78 72 128 1818 17.2 719 323.6 3.1

Fig. 4.4 138,483 1.87 46 86 2709 19.6 460 506.6 3.7

Fig. 5.2 107271 1.8 51 91 2538 23.6 510 456.8 4.2

[32]

59

190,747 3.03 44 133 1748 9.2 439 529.6 2.8

Fig. 4.4 245,247 3.12 26 81 2872 11.7 260 896.1 3.7

Fig. 5.2 192691 3.3 31 102 2277 11.8 310 751.6 3.9

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 106

Table 5.9: ASIC implementation result for the different GF
(
2283

)
inverters.

Arch.
Area CPD Latency

Maximum Frequency Frequency = 100 MHz

Time Thro. Effi. Time Thro. Effi.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE) (ns) (Mbps) (Kbps

GE)

[32]

4

61,834 1.03 438 451 627 10.1 4379 64.6 1.0

Fig. 4.4 69,625 1.07 433 463 611 8.8 4327 65.4 0.9

Fig. 5.2 62035 1.02 439 447 632 10.1 4390 64.4 1.1

[32]

7

97,099 1.57 258 405 699 7.2 2580 109.7 1.1

Fig. 4.4 110,504 1.6 253 405 699 6.3 2531 111.8 1.0

Fig. 5.2 98611 1.89 259 489 578 5.8 2590 109.2 1.1

[32]

11

163,661 1.9 168 319 887 5.4 1679 168.5 1.0

Fig. 4.4 168,994 1.97 163 321 881 5.2 1629 173.6 1.0

Fig. 5.2 166352 1.93 168 324 872 5.2 1680 168.4 1

[32]

22

263,884 2.63 90 237 1196 4.5 901 314.5 1.2

Fig. 4.4 304,794 2.69 85 229 1238 4.1 851 333.0 1.1

Fig. 5.2 267894 2.63 90 236 1195 4.4 900 314.4 1.1

[32]

41

519,960 4.01 54 217 1307 2.5 541 524.1 1.0

Fig. 4.4 547,964 4.11 49 201 1405 2.6 489 577.5 1.1

Fig. 5.2 523589 4.01 54 216 1306 2.4 540 524 1

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 107

Table 5.10: ASIC implementation result for the different GF
(
2409

)
inverters.

Arch.
Area CPD Latency

Maximum Frequency Frequency = 100 MHz

Time Thro. Effi. Time Thro. Effi.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE) (ns) (Mbps) (Kbps

GE)

[32]

4

61,079 0.78 737 575 711 11.6 7372 55.5 0.9

Fig. 4.4 63,543 0.82 521 427 957 15.1 5207 78.5 1.2

Fig. 5.2 62968 0.8 631 504 810 12.8 6310 64.8 1

[32]

10

108,961 1.21 303 367 1116 10.2 3033 135.0 1.2

Fig. 4.4 112,990 1.3 211 274 1491 13.2 2108 193.8 1.7

Fig. 5.2 109936 1.21 258 312 1310 11.9 2580 158.5 1.4

[32]

18

172,662 1.67 177 296 1384 8 1772 231.1 1.3

Fig. 4.4 181,291 1.75 121 212 1932 10.7 1211 338.1 1.9

Fig. 5.2 174521 1.67 150 250 1632 9.3 1500 272.6 1.5

[32]

23

210,775 1.95 142 277 1477 7 1421 288.0 1.4

Fig. 4.4 240,052 2.08 96 200 2048 8.5 962 426.0 1.8

Fig. 5.2 211325 1.96 120 235 1738 8.2 1200 340.8 1.6

[32]

52

436,975 3.68 72 265 1544 3.5 720 568.2 1.3

Fig. 4.4 480,891 3.82 46 176 2328 4.8 461 889.3 1.8

Fig. 5.2 440158 3.7 60 222 1842 4.1 600 681.6 1.5

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 108

Table 5.11: ASIC implementation result for the different GF
(
2571

)
inverters.

Arch.
Area CPD Latency

Maximum Frequency Frequency = 100 MHz

Time Thro. Effi. Time Thro. Effi.

d (GE) (ns) (cycles) (ns) (Mbps) (Kbps
GE) (ns) (Mbps) (Kbps

GE)

[32]

4

173,926 1.14 1015 1157 493 2.8 10149 56.2 0.3

Fig. 4.4 224,800 1.21 865 1047 546 2.4 8653 66.1 0.3

Fig. 5.2 177325 1.16 1016 1178 484 2.7 10160 56.2 0.4

[32]

7

259,282 1.69 588 994 575 2.2 5882 97.2 0.4

Fig. 4.4 331,173 1.81 499 903 632 1.9 4989 114.4 0.3

Fig. 5.2 261002 1.7 589 1001 570 2.1 5890 96.9 0.3

[32]

11

347,142 2.71 378 1024 557 1.6 3779 150.9 0.4

Fig. 4.4 401,156 2.89 319 922 619 1.5 3190 178.9 0.4

Fig. 5.2 351897 2.71 378 1024 557 1.5 3780 151 0.4

[32]

22

646,042 3.51 196 688 830 1.3 1960 291.3 0.5

Fig. 4.4 749,408 3.69 163 601 949 1.3 1629 350.2 0.5

Fig. 5.2 651002 3.53 196 691 825 1.2 1960 291.3 0.4

[32]

41

1,115,699 4.76 112 533 1071 1 1120 509.8 0.5

Fig. 4.4 1,249,582 4.92 91 448 1275 1 911 627.3 0.5

Fig. 5.2 1125256 4.79 112 536 1064 0.9 1120 509.8 0.4

Chapter 5. Efficient Interleaved InversionArchitecturesUsingGaussianNormalBasis 109

proposed architectures improve the efficiency of existing hardware architectures of existing

hardware architectures by 4% , 13% over fields size GF(2163) , and GF(2233) respectively.

Chapter 6

Efficient Architectures For Point

Multiplication on Koblitz Curves

6.1 Introduction

Elliptic Curve Cryptography (ECC) offers the same security level compared to other crypto-

graphic systems with smaller key sizes [82]. This characteristic leads to better performance in

terms of speed and memory usage for computing encryption and decryption algorithms. There

are many schemes based on elliptic curves such as keys exchange algorithm [83, 84], encryp-

tion/decryption algorithm [85, 86, 87], and digital signature [88, 89]. ECC schemes’ security

is based on resolving an underlying mathematical problem called the Elliptic Curve Discrete

Logarithm Problem (ECDLP) [90, 91], which is very hard to solve. The ECC has been included

in many standards, such as IEEE [92] and NIST [5]. Several elliptic curves are used in ECC,

namely Weierstrass, Hessian, Edwards, and Koblitz curves [90]. Koblitz curves are introduced

in [93] a particular class of elliptic curves, which offers a considerably faster implementation

for multiplication than the generic curves.

There are some research has focused on the efficient computation of point multiplication on

binary elliptic curves [94, 95, 96]. The most standard binary elliptic curves is called Binary

Weierstrass Curves (BWCs) and the curve is defined by following equation:

110

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 111

y2 + xy = x3 + ax2 + 1 (6.1)

where a, b ∈ Fm
2 and b , 0

The point multiplication operation is the most essential and time-demanding operation in ECC.

There is a growing need for hardware implementation of the ECC, as hardware-based archi-

tectures provides better performance and better power efficiency and performs better in terms

of protecting secret keys [97, 98]. The point multiplication is computed using a series of point

additions and point doublings computation. Finite fields arithmetic has an essential role in

ECC as all the low-level operations are carried out in these fields. GNB is a particular class

of finite fields that provide efficient arithmetic operations used. NIST recommended standard

binary generic curves for the binary fields’ size of {163, 233, 283, 409, 571}. Koblitz curves [5]

are a family of curves that offer significantly faster point multiplication operation than generic

curves. On Koblitz curves, the point multiplication can be only computed by point additions,

as an efficiently computable Frobenius endomorphism [99] replace point doublings.

The performance of the elliptic curve application is depended on the curve and point coordinate

system. There are some coordinate systems for representing points on elliptic curves, such as

Affine, Projective and Mixed coordinates. Many studies use mixed and projective coordinate,

as they replace the complicated inversion operations by performing the least complected mul-

tiplication operation. However, it should be considered, calculating the point addition based

on mixed coordinates adds the area overhead to the registers bank and control units of the ar-

chitecture, which leads to reduce the efficiency of the system. More importantly, an inversion

operation is still needed for returning (x, y, z) coordinates to (x, y) at the final phase of ECC

computations. The formulation for point addition and point doubling on BWCs based on the

affine coordinate are presented in the following.

• Point Addition:

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the BWCs with P1 , P2 Then

the addition of points P1, P2 is the point P3 denoted by P3 = P2 + P1, is calculated as

follows:

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 112

λ = (y2 + y1)/(x2 + x1)

x3 = λ2 + λ + x2 + x1 + a

y3 = λ(x3 + x1) + x3 + y1

(6.2)

Based on the presented formulation in Eq.(6.7), the cost of the operation is I +2M +1S +

9A, where I, M, S and A are the cost of inversion, multiplication, squaring and addition,

respectively.

• Point Doubling:

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the BWCs with P1 = P2, Then we

have P3 = 2 × P1 , is calculated as follows:

λ = x1 + y1/x1

x3 = λ2 + λ + x2 + x1 + a

y3 = λ(x3 + x1) + x3 + y1

(6.3)

The point doubling is computed by 1I + 2M + 1S on Weierstrass curves, where I, M, S and

A are the cost of inversion, multiplication, squaring and addition, respectively. Inversion is

considered a time-consuming operation in GNB, and its efficient implementation is essential.

New inversion architectures are proposed in Chapter 4, which improves the computational

of the inversion operation. Table 6.1 illustrates the timing complexity of different inversion

schemes for the five recommended NIST field. As shown in the table, the classical-interleaved

scheme presented in Chapter 4, requires the lowest number of iterations comparing to other

works.

The mentioned interleaved architecture [8, 34] works based on ITA and is accomplished using

a serial connection of two digit-level multipliers. As observed from the table, the architecture

computes the inversion operation in just five iterations for field size m ∈ {163, 233}.

In this chapter, we propose an efficient architecture for computing point multiplication on

Koblitz curves by utilizing the interleaved inversion architecture presented in Fig.4.4 over

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 113

Table 6.1: Total number of iterations in different inversion schemes for the five recommended

NIST fields for ECDSA.

Architecture Algorithm
Multiplier Number of iterations

Type 163 233 283 409 571

[31] ITA Single 9 10 11 11 13

[32] Opt. addition chain Single 9 10 11 10 12

[32] Optimal-3 Chain Double 5 7 6 7 7

Fig.4.4 Classical-Interleaved Double 5 5 6 5 6

GF(2163) and GF(2233). This chapter is organized as follows. In Section 6.2, we study point

multiplication algorithms on Koblitz Curves. We present an efficient method for implementa-

tion of point addition on Koblitz curves in Section 6.3. In Section 6.4, the architecture for Point

Multiplication on Koblitz Curves is proposed. Section 6.4 presents the FPGA implementation

results for the proposed architecture. Finally, we conclude this chapter in Section 6.5.

6.2 Point Multiplication on Koblitz Curves

Koblitz curves are recommended by NIST [5] and defined by the following equation:

EK = y2 + xy = x3 + ax2 + 1 (6.4)

where x, y ∈ GF(2m) and a ∈ {0, 1}.

Let P1(x1, y1), P2(x2, y2) ∈ E be two points on the curve, the group operation (x3, y3) = (x2, y2)+

(x1, y1) is called point addition when P2 , P1 and it is considered point doubling when P2 = P1.

The straightforward method to compute point multiplications is to use the binary algorithm,

which is a series of point additions and point doublings. Koblitz curves offer very efficient

point multiplications, as multiplication operation on Koblitz curves can be calculated without

using point doubling operations.

The computationally costly point doublings can be replaced by cheap frobenius endomor-

phisms on koblitz curves [100]. It can be also shown that (x4, y4) + 2(x, y) = µ(x2, y2) for

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 114

Table 6.2: Cost of point addition on binary Kolbiz curve.

Type of Coordinate Cost of Point Addition

Affine I + 2M + 1S + 9A

Projective 13M + 4S + 9A

Mixed 8M + 5S + 9A

I, M, S , A denote the inversion, multiplication, squaring and addition.

all P ∈ Ek(GF(2m)) when µ = (−1)1−a. let τ = (µ +
√
−7)/2 is the characteristic polynomial of

the frobenius endomorphism, frobenius map τ is an endomorphism that calculated by squaring

a point P = (x, y) to the power two (φ(P) = (x2, y2)). Then, the scalar k can be represented in

τ-adic non-adjacent from τNAF [100].

k =
∑l−1

i=0 kiτ
i for ki ∈ {0, 1,−1} (6.5)

The point multiplication on Koblitz curves can be calculated using Eq.(6.6),

Q = kP =
∑l−1

i=0 kiφ
i(P) when φi(P) = (x2i

, y2i
) (6.6)

In GNB, the calculation of φi(P) = (x2i
, y2i

) is implemented using cyclic shifts in hardware

implementation as it is performed by the right circular shift of the vector representation of P

by i positions. The Frobenius-and-add-or-subtract method for computing point multiplications

is presented in Alg. 22. The algorithm is similar to the right to left point multiplication algo-

rithms, except that point doublings are replaced by frobenius endomorphisms. The frobenius

endomorphisms reduce the latency of point multiplication algorithm too only (m
3 − 1) needed

addition/subtraction on average [100].

6.3 Implementation of Point Addition on Koblitz Curves

Table 6.2 compares the cost point addition based on these different coordinates. As can be seen

from Table 6.2, one inversion operation, is required for performing point addition using Affine

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 115

Algorithm 22 The “Frobenious-and-add-or-subtarct” algorithm for Point multiplication on

Koblitz Curves [100]
Input: a point P = (x, y)∈Ek(GF(2m)) and integer k =

∑
kiτ

i when ki∈{0,−1, 1}

Output: Q = kP

Phase 1: Initialization

1.1: if kl−1 = −1 then Q← (x, y + x)

1.2: elsif kl−1 = 1 then Q← (x, y)

1.3: end if

Phase 2: Computation

2.1: for i from l − 2 downto 0 do

2.2: Q← φ(Q) = (x2, y2)

2.3: if ki = −l then Q = Q − P

2.4: elsif ki = l then Q = Q + P

2.5: end if

2.6: end for

3: Return Q = kP

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 116

coordinate. In affine coordinate, the point addition, (x3, y3) = (x2, y2) + (x1, y1), is calculated as

follows:

λ = (y2 + y1)/(x2 + x1)

x3 = λ2 + λ + x2 + x1 + a

y3 = λ(x3 + x1) + x3 + y1

(6.7)

The formulation for computing the points addition operation based on the Affine coordinate is

presented in Eq.(6.7). The equation contains three sup-sequential steps, as each step’s result is

required and used for calculation of the next step. The first step of calculating Eq.(6.7) is to

calculate the amount of λ = 1
(x2+x1) × (y2 + y1). The computation of λ is done by one inversion,

one multiplication and, two additional operations.

It is an efficient way to use parallel multipliers to implement the point multiplication on Koblitz

curves, which speed up the point multiplication implementation on ECC [101, 102]. In [102],

the authors try to designed ECC processors on Koblitz curves using four field multipliers. They

also modified Point Addition formulas in order to use four parallel field multipliers in the data-

flow. They reduced the number of the required clock cycles for calculating Point Addition

and improve the speed of the point multiplication. In the following, we implement the point

multiplication using two field multipliers that are serially connected.

The implementation of inversion operation is computationally the most time-demanding field

operation among different arithmetic operations. Table 6.1 lists the number of required iter-

ations for various schemes to compute one inversion operation. As seen from Table 6.1, the

interleaved connection of the DL-PISO multiplier and DL-PSISM processor offers the fastest

architecture for the computation of the inversion operation [34]. The interleaved scheme for

the inversion operation over GF(2m) is presented in Fig. 4.4. In each step of these algorithms,

two multiplication operations are performed concurrently. As mentioned in Table 6.2, the cal-

culation of A−1 over GF(2163) and GF(2233) require 5 multiplication iterations.

As seen in Alg.7, the second multiplication in the final step of inversion computation over

GF(2163) has not been used. So, this idle multiplication can be used for computing the multi-

plication result of the inversion result of 1
(x2+x1) and (y2 + y1) to compute the result of λ =

y2+y1
x2+x1

.

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 117

(a)

(b)

Figure 6.1: The scheduling for performing point multiplication on Koblitz Curves over (a)

GF(2163), (b) GF(2233).

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 118

The timing schedule for performing point multiplication on Koblitz Curves over GF(2163) is

illustrated in Fig.6.2.a. As there is no idle multiplication for computational of inversion over

GF(2233), one additional step needed for computing the multiplication result of the inversion

result of 1
(x2+x1) and (y2+y1). The timing schedule for performing point multiplication on Koblitz

Curves over GF(2233) is illustrated in Fig.6.2 .b.

For a better illustration, the data flow graphs for computational of λ = 1
(x2+x1) × (y2 + y1)

over GF(2163) is presented in Fig. 6.2.a. The data flow graphs for point addition on Koblitz

curves using the interleaved connection of a DL-PISO GNB multiplier and DL-FSISM GNB

processor over GF(2163) is presented in Fig. 6.2.b. The diagrams are optimized to compute the

point addition with the lowest area overhead. The graphs also illustrate the required operations

in each step. Based on Fig. 6.2.b, we need one inversion, one addition and one squaring block

for implementing point addition on Koblitz Curves over GF(2163).

In the beginning of the operation, the addition result of (x1+x2) is fed to the DL-PISO multiplier

to calculate the inversion operation of (x2 + x1)−1. As seen in Fig. 6.2.b, in the sixth step for

GF(2163), the first multiplier (DL-PISO) of the architecture computes the inversion result of

(x2 + x1)−1. Thus, the addition result of y2 + y1 is entered to the input of DL-FSISM multiplier

in the this step to calculate λ =
y2+y1
x2+x1

. Total latency for computing of λ is equal to T = 5M + 6

clock cycles for GF(2163), where M is a latency of a single multiplication operation.

The value of λ is used to compute the value of x3 = λ2 + λ + x2 + x1 + a (see Eq. (6.7)). The

result of x2 + x1 + a can be precalculated, the second formulation in (Eq. 6.7) is computed

using only needs two addition operations to calculate x3. One more multiplication operation

is needed to calculate y3 = λ × (x3 + x1) based on (Eq. 6.7), where the value of λ is already

calculated. The second multiplication happens when the inversion architecture is idle, so the

mentioned operation is done using the DL-PISO multiplier of inversion architecture.

As mentioned in Alg. 22, the point multiplication is computed by performing a series of point

addition operations. The algorithm and register sharing for point addition on EK(GF(2163))

and EK(GF(2233)) are shown in Alg. 23 and Alg. 24, respectively. The algorithms compute

the point addition using the interleaved connection of the DL-PISO multiplier and DL-PSISM

processor. In these algorithms,�p denotes the squaring operations performed by the squaring

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 119

(a
)

(b
)

Fi
gu

re
6.

2:
D

at
a

flo
w

gr
ap

h
fo

r(
a)

co
m

pu
ta

tio
na

lo
fλ

,(
b)

th
e

po
in

ta
dd

iti
on

on
K

ob
lit

z
cu

rv
es

.

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 120

block and�s denotes the squaring operations are done by DL-FSISM processor.

Algorithm 23 The algorithm and Register sharing for point addition on EK(GF(2163)).
Input: P1 = (x1, y1) and P2 = (x2, y2) ∈ EK(GF(2163))

Output: P3 = (x3, y3)

1. R2 ← x1 + x2

2. R1, R3 ← (R2 �p 1) × (R2 �p 2) R2 ← R1 × (R1 �s 2)

3. R1 ← R2 × (R2 �p 4) R2 ← R1 × (R1 �s 8)

4. R1, R4 ← R2 × (R2 �p 16) R2 ← R1 × (R1 �s 32)

5. R1 ← R2 × (R2 �p 64) R2 ← R4 × (R1 �s 32) R4 ← x1 + x2

6. R1 ← R3 × (R2 �p 2) R2 ← y1 + y2 λ← R2 × R1

7. R1 ← λ �p 1 R3 ← R0 + a

8. R1 ← R1 + λ

9. x3 ← R1 + R3

10. R1 ← x3 + x1

11. R3 ← R1 × R2

12. y3 ← R3 + y1

13. return (x3, y3)

6.4 Proposed Crypto-processor for Point Multiplication on

Koblitz Curves

In this section, we propose a new architecture for computing point multiplication on Koblitz

Curve. The proposed architecture is presented in Fig. 6.3, which comprises three main units,

including field arithmetic unit, register file and control unit.

6.4.1 Field Arithmetic Unit

The field arithmetic unit (FAU) of the Crypto-processor performs the required field arithmetic

operations to calculate the point multiplication. The point multiplication is calculated by a

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 121

Algorithm 24 The algorithm and Register sharing for point addition on EK(GF(2233)).
Input: P1 = (x1, y1) and P2 = (x2, y2) ∈ EK(GF(2233))

Output: P3 = (x3, y3)

1. R2 ← x1 + x2

2. R1 ← (R2 �p 1) × (R2 �p 2) R2 ← R1 × (R1 �s 2)

3. R1, R3 ← R2 × (R2 �p 4) R2 ← R1 × (R1 �s 8)

4. R1, R1 ← R2 × (R2 �p 16) R2 ← R1 × (R1 �s 32)

5. R1 ← R2 × (R2 �p 64) R2 ← R2 × (R1 �s 64)

6. R1 ← R4 × (R2 �p 32) R2 ← R3 × (R1 �s 8) R4 ← x1 + x2

7. λ← R2 × R1

8. R1 ← λ �p 1 R3 ← R0 + a

9. R1 ← R1 + λ

10. x3 ← R1 + R3

11. R1 ← x3 + x1

12. R3 ← R1 × R2

13. y3 ← R3 + y1

14. return (x3, y3)

series of point addition. As mentioned in Alg. 23 and Alg. 24, in each step of these algorithms,

two multiplications are performed concurrently using an interleaved connection of the DL-

PISO multiplier and DL-PSISM processor.

The interleaved connection of the mentioned components is described in Chapter 4. The DL-

PISO multiplier’s output and the inputs of the DL-FSISM unit are connected using a d-bits

register. One m-bit two inputs adder and one squaring block are also utilized in FAU. The total

computation time of the DL-PISO multiplier and DL-FSISM processor is equal to
⌈

m
d

⌉
+1 clock

cycles. In FAU, the GF(2m) adder is designed with m XOR gates to perform the addition and

requires only one clock cycle to store the results in the registers. The set of E = {e1, e2, . . . , eu}

contains squarings which are done by the DL-FSISM processor. These squaring operations are

performed in serial and shown by R1 �s ei in Alg. 23 and Alg. 24. Also, another squaring

block which is responsible for computing the squaring operation A2 f
for the set of exponents

F = { f1, f2, . . . , fv} on parallel input. Because all coordinates of the input to the squaring block

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 122

Figure 6.3: The proposed Low-complexity crypto-processors for point multiplication on

Koblitz Curves

are available in parallel, this block computes squaring operation by a circular shifting of the

coordinates of its input. Performing a circular shifting is implemented using cyclic shifts in

hardware implementation and shown by R2 �p fi in Alg. 23 and Alg. 24. The parameters for

E and F are shown in Table 6.3.

Table 6.3: Parameters of crypto-processor for field sizes GF(2163) and GF(2233).

m Digit Size e1, e2, . . . , eu f1, f2, · · · fv
Number of Number of

d-bit Reg. m-bit Reg.

163 {21, 33, 41, 55} {2, 8, 32} {1, 2, 4, 16, 64} 1 4

233 {8, 16, 30, 59} {2, 8, 32, 64} {1, 2, 4, 16, 32, 64} 1 4

6.4.2 Control Unit and Register File

The control unit of the architecture is a Finite State Machine (FSM), which schedules the

computation tasks by generating the appropriate signals. We used some multiplexer units in

order to connect the register file to the FAU. FSM controls the multiplexer units. The register

files of the architecture are used for the curve parameters, temporary values as well as input

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 123

and output of the architecture. The number of registers, namely R1,R2, . . . ,R j are used for

the temporary variables. These are either m-bit or d-bits registers. Table 6.3 summarizes the

detailed parameters of the crypto-processor for the two given field sizes m ∈ {163, 233}. We

construct the register file with using available flip-flops in slices. This reduces the routing

constraints, as flip-flops can be placed close to their operators.

6.4.3 Complexity Analysis

This section analyzes the complexity of our work with two previous works that are available

in the literature [101, 102] on Koblitz Curve. In Table 6.4, The total latency is calculated by

multiplying H(k), which is the Hamming weight of τ-NAF expansion of k to the latency of

point addition. As these two papers [101, 102] were implemented based on mixed coordinates.

It should be considered that they need to perform the coordinate conversion at the end of the

operation. So one inversion and two multiplication operations are also needed to return (x, y, z)

coordinates to (x, y) coordinates. Besides, it should be noted that, as we use affine coordinate,

our control unit and register file would be less complicated and smaller than what is needed for

the mixed coordinate [103].

Table 6.4: The complexity comparison of point multiplication on Koblitz curves over GF(2163)

Work Cordinate Total Latency
Number of Multipliers

Multipliers Utilization

[101] Mixed (H(k) − 1) × (4M + 13) + I + 2M 3 66.6%

[102] Mixed (H(k) − 1) × (3M + 13) + I + 2M 4 75%

Fig. 6.3 Affine (H(k) − 1) × (6M + 11) 2 91.6%

H(k) is the Hamming weight of τ-NAF expansion of k.

Table 6.4 also shows the number of multipliers used in each scheme as well as the utilization

percentage of multipliers on those works. As it is observed from Table 6.4, our proposed ar-

chitecture computes the point multiplication using a smaller number of multipliers with higher

utilization percentages.

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 124

6.5 FPGA Implementation

In order to validate the feasibility of the proposed architectures, we implement the proposed

architectures on FPGA to calculate their area and time requirements. The Stratix IV device

family is selected as the target FPGA to have a fair comparison to the counterpart scheme. We

have presented the FPGA implementation over GF(2m), m ∈ {163, 233}, for different digit sizes

(d) in Table 6.5.

This section evaluates the area and time complexities of the presented architectures along with

two existing counterparts in the literature [101, 102, 103]. The performance and efficiency of

these architectures have been analyzed using different metrics. The maximum working fre-

quency of the architecture is calculated from the Critical Path Delay (CPD) of the architecture

(Max f req. = 1
CPD), and latency is the number of clock cycles required for the computation

of the final result. The total time of inversion operation is computed by dividing the architec-

ture’s latency by the frequency of the architecture. The efficiency metric (A × T) is a metric

used for comparing the efficiency of systems. The FPGA implementation results listed in Ta-

ble 6.5 show that the area of the proposed crypto-processor grows with the digit size d, while

increasing the size of digit reduces the timing requirement for computing point multiplication.

As seen in Table 6.5, the efficiency of the architecture over GF(2233) are lower as compared to

the architectures that are implemented for GF(2163). However, it should be noted that GF(2233)

provides a higher security level than GF(2163). The minimum security level for ECC is updated

to 224-bits by NIST for Digital Signature [6]. As it is observed from Table 6.5, when all

architectures work on their maximum frequencies, the architecture presented in [102] performs

the point multiplication slightly faster on Koblitz curves for GF(2163). However, it should be

considered that our architecture required significantly fewer resources on FPGA compared to

[102].

The proposed architectures improve the other works in terms of the area multiply times metric

(A×T) for all digit sizes. Over GF(2163), our proposed architecture achieves the best efficiency

for computing the point multiplication on the koblitz curves for d = 33 as it gets the lowest

number of 0.15 which is 17% better than other works. Similarly over GF(2233), our proposed

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 125

Table 6.5: FPGA implementation results of parallel point multiplication on Koblitz curves

using finite field multipliers.

Work d Basis Device
Area Latency fMAX

Max Freq.

Time
A × T

(ALMs) (CC) (MHz) (µs)

FPGA Implementation results for GF(2163)

[103] 55 GNB Stratix IV 24,223 2238 226.6 9.88 0.24

[101] 33 NB Stratix II 22,416 4248 146.7 28.95 0.64

[102] 41 GNB Stratix II 23,084 1721 188.7 9.15 0.21

[102] 33 GNB Stratix II 18,964 1892 192.5 9.85 0.18

Fig. 6.3 55 GNB Stratix IV 24,359 1535 182.6 8.40 0.20

Fig. 6.3 41 GNB Stratix IV 20,089 1858 194.1 9.57 0.19

Fig. 6.3 33 GNB Stratix IV 15,366 2167 211.5 10.24 0.15

Fig. 6.3 21 GNB Stratix IV 12,741 3070 228.9 13.41 0.17

Fig. 6.3 11 GNB Stratix IV 8,384 5328 242.6 21.96 0.18

FPGA Implementation results for GF(2233)

[103] 59 GNB Stratix IV 32,941 8012 261.3 30.66 1.01

[101] 59 NB Stratix II 43,969 8532 127.3 67.02 2.94

[102] 30 GNB Stratix II 27,009 6993 200.9 34.80 0.94

Fig. 6.3 59 GNB Stratix IV 33,241 4418 178.4 24.76 0.82

Fig. 6.3 30 GNB Stratix IV 22,416 7708 219.5 35.11 0.78

Fig. 6.3 16 GNB Stratix IV 15,957 12972 231.1 56.13 0.89

Chapter 6. Efficient Architectures For PointMultiplication on Koblitz Curves 126

architectures improve the efficiency of existing hardware architectures by 17%.

When the architectures are set on the constant frequency (100MHz), all architectures’ effi-

ciency is dropped as we are working with lower clock frequency. As it can be observed from

the table, the proposed architecture achieves better efficiency for all digit sizes when all archi-

tectures’ frequency is set at a constant rate.

6.6 Conclusion

This chapter presents a new scheme for calculating the point multiplication based on the affine

coordinate formulation using only one inverter, one adder, and one squaring block. Then, we

have proposed new architectures for efficient computing of point multiplication on the Koblitz

curve for two NIST recommended fields sizes m ∈ {163, 233}. The architectures are designed

by using the new fast inversion architecture presented in Chapter 4. We have studied the time

and area complexities of the proposed architectures and compared them with three existing

counterparts in the literature [101, 102, 103]. Our new proposed architectures improve the

efficiency of existing hardware architectures by 17% over GF(2163) and GF(2233).

Chapter 7

Summary

7.1 Thesis Contributions

The contributions of this thesis are summarized as follows. At first, we shortly review public-

key cryptography and finite field arithmetic in Chapter 1. Then, a brief overview of the mathe-

matical preliminaries used in this thesis is covered in Chapter 2.

In Chapter 3, we have proposed two new exponentiation architectures (MSD-first and LSD-

first) using the DL-PIPO multiplier and two new exponentiation architectures (MSD-first and

LSD-first) using the DL-HD multiplier. The architecture’s complexities in terms of compu-

tational time and hardware area are evaluated. Security of the proposed architectures against

SPA and fault attacks quantifying how much LSD-first is better than MSD-first has been ana-

lyzed and show that the LSD-first architectures are still not fully secure against SPA and fault

attacks. Novel modifications to the DL-PIPO LSD, and the DL-HD LSD using unsigned ex-

ponent recoding has been proposed so that the two architectures become fully secure against

SPA and fault attacks. We also discuss different methods that could be used to protect the

architectures against DPA attacks. Finally, the ASIC implementation results using the 65nm

CMOS technology libraries of the all architectures are obtained and analyzed. It is shown that

the most efficient exponentiation architectures available in the literature and are fully secure

against SPA and fault attacks.

127

Chapter 7. Summary 128

In Chapter 4, we have propose new low-latency architectures for inversion using the digit-level

single multiplier. The proposed architecture reduce the number of required clock cycles for

computing inversion using single multiplier. Then, we have introduced a novel scheme for con-

current computing of composite square-and-multiply operation at the digit-level. In addition,

we propose new fast hardware architectures perform the two multiplication operations simul-

taneously to reduce the number of iterations. The inversion architectures are implemented for

all NIST recommended field sizes. The proposed fast inversion architecture required minimum

number of iterations for all NIST recommended fields. The architectures are implemented on

ASIC using the 65nm CMOS technology libraries. The evaluation results show that the new

architecture computes inversion operation faster and with higher throughput comparing to in-

version schemes proposed in the literature. The proposed architectures improve the throughput

of existing hardware architectures between 7% and 50% over different fields size.

In Chapter 5, we have proposed a new digit-level architecture to compute an specific expo-

nentiation operation of A(1+2e)(1+2 f), 1 ≤ e, f < m, using connection of two digit-level single

multipliers. Then, we utilize this architecture to present a new efficient inversion architecture.

We also present a new decomposition method to improve the latency of the new inversion ar-

chitecture. The architectures are implemented for all NIST recommended field sizes. The time

and area complexities of the proposed architectures are evaluated. We have conducted ASIC

based implementations of the different inversion schemes using the 65nm CMOS technology

libraries and shown that our newly proposed architectures improve the performance of inver-

sion’s hardware architectures in terms of efficiently 4% and 13% over GF(2163), and GF(2233),

respectively.

In Chapter 6, we have proposed new efficient architectures for point multiplication on Koblitz

curves using the Digit-level multipliers for two NIST recommended field sizes GF(2163) and

GF(2233). A new scheme for calculating point addition based on the affine coordinate system

is presented. The proposed architectures utilized the new fast inversion architecture presented

in Chapter 4 and needs only one inversion, one adder and, one squaring block. The area and

time complexity of the proposed architecture are evaluated. The proposed architectures and

three existing counterparts are implemented on FPGA (the Stratix IV device) over GF(2163)

Chapter 7. Summary 129

and GF(2233). The evaluation shows that our proposed architectures improve the efficiency of

operation compared to existing hardware architectures by 17% over GF(2163) and GF(2233).

7.2 Future Work

As future works, there are several areas that can be further explored.

• In Chapter 3, we proposed efficient hardware architectures for over GNB with novel

countermeasures against SCA. Lightweight implementation of exponentiation in a fi-

nite field on resource-constrained systems, and fast implementation on high-performance

computation can be explored, as the digit size in the proposed digit-level exponentiation

architectures can be chosen based on available resources. For future work, the presented

architectures can be used for public-key cryptosystems, including the Diffie-Helman pro-

tocol for key exchange and the ElGamal algorithm for digital signatures.

• In Chapter 4 and Chapter 5, we present new inversion architectures implemented using

interleaved connection of two digit-level GNB multipliers. As polynomial basis repre-

sentation also offer free squaring operation, one future work can be evaluating the possi-

bility of using polynomial basis representation. As the presented architectures compute

inversion operation sequentially, the pipeline implementation of the proposed architec-

tures can be investigated.

• In Chapter 6, we present a new efficient scheme for computing point multiplication on

Koblitz curves over GF(2163) and GF(2233). The proposed architecture can be extending

for other NIST recommended field’ sizes as well. One future work can be the evaluation

of the efficiency and performance of the scheme for other fields. Besides, the security

of our proposed Crypto-processor can be analyzing the architecture against side-channel

attacks like SPA attack and DPA attack. The proposed architectures can be used for

designing low-complexity and efficient crypto-processors for resource-constrained ap-

plications.

Bibliography

[1] Reza Azarderakhsh, Mehran Mozaffari-Kermani, and Kimmo Järvinen. Secure and

efficient architectures for single exponentiations in finite fields suitable for high-

performance cryptographic applications. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 34(3):332–340, 2015.

[2] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses

in gf (2m) using normal bases. Information and computation, 78(3):171–177, 1988.

[3] Arash Reyhani-Masoleh. Efficient Algorithms and Architectures for Field Multiplica-

tion Using Gaussian Normal Bases. Computers, IEEE Transactions on, 55(1):34–47,

2006.

[4] Hayssam El-Razouk and Arash Reyhani-Masoleh. New Architectures for Digit-Level

Single, Hybrid-Double, Hybrid-Triple Field Multiplications and Exponentiation Using

Gaussian Normal Bases. IEEE Transactions on Computers, pages 2495–2509, 2016.

[5] U.S. Department of Commerce/NIST. Digital Signature Standards (DSS). Federal In-

formation Processing Standards Publications, 2000.

[6] Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic algorithms

and key lengths. Technical report, National Institute of Standards and Technology, 2018.

[7] Jimmy K Omura and James L Massey. Computational Method and Apparatus for Finite

Field Arithmetic, May 6 1986. US Patent 4,587,627.

[8] Amin Monfared, Hayssam El-Razouk, and Arash Reyhani-Masoleh. A new multiplica-

tive inverse architecture in normal basis using novel concurrent serial squaring and mul-

130

BIBLIOGRAPHY 131

tiplication. In 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), pages

164–171. IEEE, 2017.

[9] Whitfield Diffie and Martin E Hellman. New Directions in Cryptography. Information

Theory, IEEE Transactions on, 22(6):644–654, 1976.

[10] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students and

practitioners. Springer Science & Business Media, 2009.

[11] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of Applied

Cryptography. CRC press, 1996.

[12] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–

209, 1987.

[13] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the theory and

application of cryptographic techniques, pages 417–426. Springer, 1985.

[14] IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-2000, pages

1–228, Aug 2000.

[15] Reza Azarderakhsh and Arash Reyhani-Masoleh. Low-complexity multiplier architec-

tures for single and hybrid-double multiplications in gaussian normal bases. IEEE Trans-

actions on Computers, 62(4):744–757, 2012.

[16] John W Harris and Horst Stöcker. Handbook of mathematics and computational science.

Springer Science & Business Media, 1998.

[17] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.

Cambridge university press, 1994.

[18] Public Key Cryptography Standard. PKCS# 1 v2. 1: RSA Cryptography Standard, 2002.

[19] Reza Azarderakhsh. High speed and low-complexity hardware architectures for elliptic

curve-based crypto-processors. 2011.

BIBLIOGRAPHY 132

[20] David W Ash, Ian F Blake, and Scott A Vanstone. Low Complexity Normal Bases.

Discrete Applied Mathematics, 25(3):191–210, 1989.

[21] Ian F Blake, XuHong Gao, Ronald C Mullin, Scott A Vanstone, and Tomik Yaghoobian.

Applications of finite fields. Springer, 1993.

[22] Thomas Beth and Dieter Gollmann. Algorithm Engineering for Public Key Algorithms.

IEEE Journal on selected areas in communications, 7(4):458–466, 1989.

[23] G-L Feng. A VLSI Architecture for Fast Inversion in GF(2m). IEEE Transactions on

Computers, 38(10):1383–1386, Oct 1989.

[24] Gordon B. Agnew, Ronald C. Mullin, IM Onyszchuk, and Scott A. Vanstone. An Imple-

mentation for a Fast Public-Key Cryptosystem. Journal of CRYPTOLOGY, 3(2):63–79,

1991.

[25] Soonhak Kwon, Kris Gaj, Chang Hoon Kim, and Chun Pyo Hong. Efficient Linear Array

for Multiplication in GF(2m) Using a Normal Basis for Elliptic Curve Cryptography. In

Cryptographic Hardware and Embedded Systems-CHES 2004, pages 76–91. Springer,

2004.

[26] Arash Reyhani-Masoleh and M Anwar Hasan. Efficient Digit-Serial Normal Basis Mul-

tipliers Over Binary Extension Fields. ACM Transactions on Embedded Computing

Systems (TECS), 3(3):575–592, 2004.

[27] Chiou-Yng Lee and Po-lun Chang. Digit-Serial Gaussian Normal Basis Multiplier Over

GF(2m) Using Toeplitz Matrix-Approach. In Computational Intelligence and Software

Engineering, 2009. CiSE 2009. International Conference on, pages 1–4. IEEE, 2009.

[28] Reza Azarderakhsh and Arash Reyhani-Masoleh. Low-Complexity Multiplier Architec-

tures for Single and Hybrid-Double Multiplications in Gaussian Normal Bases. Com-

puters, IEEE Transactions on, 62(4):744–757, 2013.

[29] Hayssam El-Razouk and Arash Reyhani-Masoleh. New Architectures for Digit-Level

Single, Hybrid-Double, Hybrid-Triple Field Multiplications and Exponentiation Using

Gaussian Normal Bases. IEEE Transactions on Computers, PP(99):1–1, 2015.

BIBLIOGRAPHY 133

[30] Charles C Wang, Howard M Shao, Leslie J Deutsch, Jim K Omura, Irving S Reed, et al.

VLSI Architectures for Computing Multiplications and Inverses in GF(2m). Computers,

IEEE Transactions on, 100(8):709–717, 1985.

[31] J. Hu, W. Guo, J. Wei, and R. C. C. Cheung. Fast and Generic Inversion Architectures

Over GF(2m) Using Modified Itoh-Tsujii Algorithms. IEEE Transactions on Circuits

and Systems II: Express Briefs, 62(4):367–371, April 2015.

[32] Kimmo Järvinen, Vassil Dimitrov, and Reza Azarderakhsh. A generalization of ad-

dition chains and fast inversions in binary fields. IEEE Transactions on Computers,

64(9):2421–2432, 2014.

[33] Reza Azarderakhsh, Kimmo Järvinen, and Vassil Dimitrov. Fast Inversion in GF(2m)

with Normal Basis Using Hybrid-Double Multipliers. IEEE Transactions on Computers,

63(4):1041–1047, April 2014.

[34] Arash Reyhani-Masoleh, Hayssam El-Razouk, and Amin Monfared. New multiplicative

inverse architectures using gaussian normal basis. IEEE Transactions on Computers,

68(7):991–1006, 2018.

[35] Bahram Rashidi. High-speed hardware implementation of gaussian normal basis inver-

sion algorithm over f2m. Microelectronics Journal, 63:138–147, 2017.

[36] Vassil Dimitrov and Kimmo Järvinen. Another look at inversions over binary fields. In

2013 IEEE 21st Symposium on Computer Arithmetic, pages 211–218. IEEE, 2013.

[37] Pravin Zode, Raghavendra B Deshmukh, and Abdus Samad. Fast architecture of mod-

ular inversion using itoh-tsujii algorithm. In International Symposium on VLSI Design

and Test, pages 48–55. Springer, 2017.

[38] Donald Knuth. The Art of Computer Programming: Semi-numerical Algorithms, vol-

ume Vol. 2, 1981.

[39] Gordon B Agnew, Ronald C Mullin, and Scott A Vanstone. Fast Exponentiation in

GF(2n). In Advances in CryptologyEUROCRYPT88, pages 251–255. Springer, 1988.

BIBLIOGRAPHY 134

[40] Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems, pages 104–113. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[41] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis, pages 388–

397. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[42] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of check-

ing cryptographic protocols for faults. In International conference on the theory and

applications of cryptographic techniques, pages 37–51. Springer, 1997.

[43] Thomas De Cnudde and Svetla Nikova. Securing the present block cipher against com-

bined side-channel analysis and fault attacks. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 25(12):3291–3301, 2017.

[44] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, Falk

Schellenberg, and Tobias Schneider. Impeccable circuits. IEEE Transactions on Com-

puters, 69(3):361–376, 2019.

[45] Jaya Dofe, Hoda Pahlevanzadeh, and Qiaoyan Yu. A comprehensive fpga-based as-

sessment on fault-resistant aes against correlation power analysis attack. Journal of

Electronic Testing, 32(5):611–624, 2016.

[46] Hoda Pahlevanzadeh, Jaya Dofe, and Qiaoyan Yu. Assessing cpa resistance of aes with

different fault tolerance mechanisms. In 2016 21st Asia and South Pacific Design Au-

tomation Conference (ASP-DAC), pages 661–666. IEEE, 2016.

[47] Varsha Kumari and Gourav Mitawa. Diffie–hellman key exchange protocols enhanced.

International Journal of Telecommunications & Emerging Technologies, 5(1):1–5, 2019.

[48] Fatma Mallouli, Aya Hellal, Nahla Sharief Saeed, and Fatimah Abdulraheem Alzahrani.

A survey on cryptography: Comparative study between rsa vs ecc algorithms, and rsa

vs el-gamal algorithms. In 2019 6th IEEE International Conference on Cyber Secu-

rity and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge

Computing and Scalable Cloud (EdgeCom), pages 173–176. IEEE, 2019.

BIBLIOGRAPHY 135

[49] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Re-

vealing the Secrets of Smart Cards, volume 31. Springer Science & Business Media,

2008.

[50] Jean-Sébastien Coron. Resistance Against Differential Power Analysis for Elliptic

Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems, pages 292–

302. Springer, 1999.

[51] Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be Enough Against

Fault-Based Cryptanalysis. Computers, IEEE Transactions on, 49(9):967–970, 2000.

[52] Marc Joye. Recovering Lost Efficiency of Exponentiation Algorithms on Smart Cards.

Electronics Letters, 38(19):1095–1097, Sep 2002.

[53] Benoı̂t Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-Cost Solutions for Pre-

venting Simple Side-Channel Analysis: Side-Channel Atomicity. Computers, IEEE

Transactions on, 53(6):760–768, 2004.

[54] Carlos Moreno and M Anwar Hasan. SPA-Resistant Binary Exponentiation with Opti-

mal Execution Time. Journal of Cryptographic Engineering, 1(2):87–99, 2011.

[55] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. In Cryptographic

Hardware and Embedded Systems-CHES 2002, pages 291–302. Springer, 2002.

[56] Pierre-Alain Fouque and Frederic Valette. The Doubling Attack–Why Upwards is Better

than Downwards. In Cryptographic Hardware and Embedded Systems-CHES 2003,

pages 269–280. Springer, 2003.

[57] Colin D Walter. Sliding Windows Succumbs to Big Mac Attack. In Cryptographic

Hardware and Embedded Systems–CHES 2001, pages 286–299. Springer, 2001.

[58] Marc Joye. Highly Regular Right-to-Left Algorithms for Scalar Multiplication. Cryp-

tographic Hardware and Embedded Systems-CHES 2007, pages 135–147, 2007.

BIBLIOGRAPHY 136

[59] Da-Zhi Sun, Jin-Peng Huai, Ji-Zhou Sun, and Zhen-Fu Cao. An Efficient Modular Ex-

ponentiation Algorithm Against Simple Power Analysis Attacks. Consumer Electronics,

IEEE Transactions on, 53(4):1718–1723, 2007.

[60] Bodo Möller. Securing Elliptic Curve Point Multiplication Against Side-Channel At-

tacks. In Information Security, pages 324–334. Springer, 2001.

[61] Katsuyuki Okeya and Tsuyoshi Takagi. A More Flexible Countermeasure against Side

Channel Attacks Using Window Method, pages 397–410. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003.

[62] Katsuyuki Okeya and Tsuyoshi Takagi. The Width-w NAF Method Provides Small

Memory and Fast Elliptic Scalar Multiplications Secure Against Side Channel Attacks.

In Topics in CryptologyCT-RSA 2003, pages 328–343. Springer, 2003.

[63] Camille Vuillaume and Katsuyuki Okeya. Flexible Exponentiation with Resistance to

Side Channel Attacks. In Applied Cryptography and Network Security, pages 268–283.

Springer, 2006.

[64] Marc Joye and Michael Tunstall. Exponent Recoding and Regular Exponentiation Al-

gorithms. In Progress in Cryptology–AFRICACRYPT 2009, pages 334–349. Springer,

2009.

[65] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti–towards combined hardware

countermeasures against side-channel and fault-injection attacks. In Annual Interna-

tional Cryptology Conference, pages 302–332. Springer, 2016.

[66] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne, and Israel

Koren. Can knowledge regarding the presence of countermeasures against fault attacks

simplify power attacks on cryptographic devices? In 2008 IEEE International Sympo-

sium on Defect and Fault Tolerance of VLSI Systems, pages 202–210. IEEE, 2008.

[67] Francesco Regazzoni, Thomas Eisenbarth, Johann Grobschadl, Luca Breveglieri, Paolo

Ienne, Israel Koren, and Christof Paar. Power attacks resistance of cryptographic s-boxes

BIBLIOGRAPHY 137

with added error detection circuits. In 22nd IEEE International Symposium on Defect

and Fault-Tolerance in VLSI Systems (DFT 2007), pages 508–516. IEEE, 2007.

[68] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Akhrouf

Samir. Comparative Power Analysis of Modular Exponentiation Algorithms. Com-

puters, IEEE Transactions on, 59(6):795–807, 2010.

[69] Frederic Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive and active

combined attacks: Combining fault attacks and side channel analysis. In Workshop on

Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pages 92–102. IEEE,

2007.

[70] Cameron F Kerry and Patrick D Gallagher. Digital signature standard (dss). FIPS PUB,

pages 186–4, 2013.

[71] Milton Abramowitz and Irene A (eds.) Stegun. Handbook of Mathematical Functions.

Applied mathematics series, 55:62, 1966.

[72] R Rivest and A Shamir. Data Encryption Standard (DES). Federal Information Process-

ing Standards Publications (FIPS PUBS) 46-3, 1999.

[73] Kerry McKay, Lawrence Bassham, Meltem Sönmez Turan, and Nicky Mouha. Report

on lightweight cryptography. Technical report, National Institute of Standards and Tech-

nology, 2016.

[74] D Wave. Information technology automatic identification and data capture techniques qr

code bar code symbology specification. International Organization for Standardization,

ISO/IEC, 18004, 2015.

[75] Reza Azarderakhsh, Mehran Mozaffari-Kermani, and Kimmo Järvinen. Secure and

Efficient Architectures for Single Exponentiations in Finite Fields Suitable for High-

Performance Cryptographic Applications. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 34(3):332–340, March 2015.

BIBLIOGRAPHY 138

[76] FIPS NIST. Fips 186-4–digital signature standard (dss). National Institute of Standards

and Technology, 2013.

[77] Neal Koblitz, Alfred Menezes, and Scott Vanstone. Guide to elliptic curve cryptography.

2004.

[78] Jingwei Hu, Wei Guo, Jizeng Wei, and Ray CC Cheung. Fast and generic inversion

architectures over \GF}(2̂m) using modified itoh–tsujii algorithms. IEEE Transactions

on Circuits and Systems II: Express Briefs, 62(4):367–371, 2015.

[79] Lijuan Li and Shuguo Li. Fast inversion in gf (2m) with polynomial basis using opti-

mal addition chains. In 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1–4. IEEE, 2017.

[80] Bahram Rashidi, Sayed Masoud Sayedi, and Reza Rezaeian Farashahi. Efficient and

low-complexity hardware architecture of gaussian normal basis multiplication over gf

(2 m) for elliptic curve cryptosystems. IET Circuits, Devices & Systems, 11(2):103–

112, 2017.

[81] Naofumi Takagi, Jun-ichi Yoshiki, and Kazuyoshi Takagi. A fast algorithm for multi-

plicative inversion in gf (2/sup m/) using normal basis. IEEE Transactions on Comput-

ers, 50(5):394–398, 2001.

[82] BK Alese, ED Philemon, and SO Falaki. Comparative analysis of public-key encryption

schemes. International Journal of Engineering and Technology, 2(9):1552–1568, 2012.

[83] Richard Schroeppel, Hilarie Orman, Sean O?Malley, and Oliver Spatscheck. Fast key

exchange with elliptic curve systems. In Annual International Cryptology Conference,

pages 43–56. Springer, 1995.

[84] Ahmad Abusukhon, Mohamad Talib, and Issa Ottoum. Secure network communication

based on text-to-image encryption. International Journal of Cyber-Security and Digital

Forensics (IJCSDF), 1(4):263–271, 2012.

BIBLIOGRAPHY 139

[85] GVS Raju and Rehan Akbani. Elliptic curve cryptosystem and its applications. In

SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems,

Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No.

03CH37483), volume 2, pages 1540–1543. IEEE, 2003.

[86] Ziad E Dawahdeh, Shahrul N Yaakob, and Rozmie Razif bin Othman. A new image

encryption technique combining elliptic curve cryptosystem with hill cipher. Journal of

King Saud University-Computer and Information Sciences, 30(3):349–355, 2018.

[87] Bibhudendra Acharya, Saroj Kumar Panigrahy, Sarat Kumar Patra, and Ganapati Panda.

Image encryption using advanced hill cipher algorithm. International Journal of Recent

Trends in Engineering, 1(1):663–667, 2009.

[88] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature

algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[89] Jinyuan LI and Xianghua MIAO. Analysis and improvement of forward-secure digital

signature scheme. Journal of Jilin University (Information Science Edition), (6):5, 2017.

[90] Darrel Hankerson and Alfred Menezes. Elliptic curve cryptography. Springer, 2011.

[91] Maki Inui and Tetsuya Izu. Current status on elliptic curve discrete logarithm problem.

In International Conference on Innovative Mobile and Internet Services in Ubiquitous

Computing, pages 537–539. Springer, 2018.

[92] IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography. Jan-

uary 2000.

[93] Neal Koblitz. Cm-curves with good cryptographic properties. In Annual international

cryptology conference, pages 279–287. Springer, 1991.

[94] Reza Azarderakhsh, Kimmo U Järvinen, and Mehran Mozaffari-Kermani. Efficient

algorithm and architecture for elliptic curve cryptography for extremely constrained

secure applications. IEEE Transactions on Circuits and Systems I: Regular Papers,

61(4):1144–1155, 2014.

BIBLIOGRAPHY 140

[95] Sujoy Sinha Roy, Kimmo Järvinen, and Ingrid Verbauwhede. Lightweight coprocessor

for koblitz curves: 283-bit ecc including scalar conversion with only 4300 gates. In

International workshop on cryptographic hardware and embedded systems, pages 102–

122. Springer, 2015.

[96] Ünal Kocabaş, Junfeng Fan, and Ingrid Verbauwhede. Implementation of binary ed-

wards curves for very-constrained devices. In ASAP 2010-21st IEEE International Con-

ference on Application-specific Systems, Architectures and Processors, pages 185–191.

IEEE, 2010.

[97] Bahram Rashidi. A survey on hardware implementations of elliptic curve cryptosystems.

arXiv preprint arXiv:1710.08336, 2017.

[98] Carlos Andres Lara-Nino, Arturo Diaz-Perez, and Miguel Morales-Sandoval. Elliptic

curve lightweight cryptography: A survey. IEEE Access, 6:72514–72550, 2018.

[99] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryp-

tography. Computing Reviews, 46(1):13, 2005.

[100] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryp-

tography. Springer Science & Business Media, 2006.

[101] Kimmo Jarvinen and Jorma Skytta. On parallelization of high-speed processors for

elliptic curve cryptography. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 16(9):1162–1175, 2008.

[102] Reza Azarderakhsh and Arash Reyhani-Masoleh. High-performance implementation of

point multiplication on koblitz curves. IEEE Transactions on Circuits and Systems II:

Express Briefs, 60(1):41–45, 2013.

[103] Paulo Realpe-Muñoz, Vladimir Trujillo-Olaya, and Jaime Velasco-Medina. Design of

elliptic curve cryptoprocessors over gf (2 163) on koblitz curves. In 2014 IEEE 5th Latin

American Symposium on Circuits and Systems, pages 1–4. IEEE, 2014.

BIBLIOGRAPHY 141

Curriculum Vitae

Name: Mohammadamin Saburruhmonfared

Post-Secondary University of Western Ontario

Education and London, ON, Canada

Degrees: 2015 - 2020 Ph.D.

Sharif University of Technology

Tehran, Iran

2006 –2009, M.Sc.

ferdowsi university of mashhad

Mashhad, Iran

2001 –2006, B.Sc.

Related Work Teaching / Research Assistant

University of Western Ontario, 2015 - 2020

Hardware Engineer

Bina Pardaz Co, 2012-2015

Lecturer /Laboratory Instructor

Azad University of Mashhad, 2011-2013

	Efficient Hardware Architectures For Public-key Cryptosystems
	Recommended Citation

	tmp.1608578365.pdf.d2CTP

