
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-30-2020 1:30 PM 

Inside Perspectives on Ceramic Manufacturing: Visualizing Inside Perspectives on Ceramic Manufacturing: Visualizing 

Ancient Potting Practices through Micro-CT Scanning Ancient Potting Practices through Micro-CT Scanning 

Amy St. John, The University of Western Ontario 

Supervisor: Ferris, Neal, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Anthropology 

© Amy St. John 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
St. John, Amy, "Inside Perspectives on Ceramic Manufacturing: Visualizing Ancient Potting Practices 
through Micro-CT Scanning" (2020). Electronic Thesis and Dissertation Repository. 7502. 
https://ir.lib.uwo.ca/etd/7502 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7502?utm_source=ir.lib.uwo.ca%2Fetd%2F7502&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

Abstract 

Micro-computed tomography (CT) analysis offers a new perspective on archaeological 

ceramic manufacture, augmenting traditional studies that focus on decorative and 

morphological aspects of ceramic vessels. High resolution, three dimensional, micro-CT 

images reveal different ceramic forming methods by identifying the characteristic gestures 

and techniques, as well as idiosyncratic corrective measures used by potters to form vessel 

rims. These techniques or “tools of the trade” reflect potters’ engagement with tradition and 

innovation while working within a community of practice.  

This study adopted two research questions. First, what is the value and potential of micro-CT 

as a method of ceramic analysis in archaeology? Second, as a case study to illuminate the 

first question: what insights can be advanced about the craft of pottery manufacture from the 

ceramic assemblages of the Late Woodland Arkona Cluster archeological sites? To answer 

these questions I scanned sherds representing 67 vessels from the Arkona Cluster sites 

(located near Arkona, Ontario). These vessels come from a series of contemporaneous and/or 

sequentially occupied sites dating to between ca. 1000-1270 CE. They existed within a 

material borderland, generally located in space and time between what conventionally has 

been defined and labelled in archaeological culture history as the Western Basin and Ontario 

Iroquoian Late Woodland material culture traditions.  

Though accompanied by a steep learning curve, micro-CT analysis proved an effective 

method for accessing hidden steps in the ceramic production sequence used by potters at the 

Arkona Cluster. The ability to highlight, in three dimensions (3D), inclusions and void spaces 

in the ceramic fabric, allow scanned images to reveal aspects of ceramic preparation and 

manufacturing practices that could not be accessed using conventional analysis methods. The 

capacity to see these practices, and how they related to ceramic design, revealed that potters 

at the Arkona Cluster were engaging with and incorporating elements from multiple ceramic 

traditions, reflecting a distinct regional material expression. Through micro-CT analysis, the 

ceramics at the Arkona Cluster suggest idiosyncratic expressions of an artisan community 

sustaining tradition and innovation, which characterizes an archaeological material 

borderland at this specific time and place.      
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Lay Summary 

Micro-computed tomography (CT) analysis allows archaeologists to view the interior 

structures of pots, offering a new perspective on archaeological ceramic manufacture. High 

resolution, three dimensional, micro-CT images reveal different ceramic forming methods by 

identifying the characteristic gestures and techniques used by potters to form different parts 

of a vessel. These techniques or “tools of the trade” reflect potters’ engagement with tradition 

and innovation while working within their community.  

This study adopted two research questions. First, what is the value and potential of micro-CT 

as a method of ceramic analysis in archaeology? Second, as a case study to illuminate the 

first question: what can we learn about the craft of pottery manufacture from the ceramic 

assemblages of the Late Woodland Arkona Cluster archeological sites? To answer these 

questions I scanned sherds representing 67 vessels from the Arkona Cluster sites (located 

near Arkona, Ontario), dating to between ca. 1000-1270 CE. The materials, including 

ceramics, from these archaeological sites show influences from what have conventionally 

been defined in archaeological culture history as the Western Basin and Ontario Late 

Woodland material culture traditions.    

Though accompanied by a steep learning curve, micro-CT analysis proved an effective 

method for accessing hidden steps in ceramic production used by potters at the Arkona 

Cluster. The ability to highlight, in three dimensions (3D), inclusions and void spaces in the 

clay used to make pots allows scanned images to reveal aspects of ceramic preparation and 

manufacturing practices that could not be accessed using conventional methods. The results 

revealed that potters at the Arkona Cluster were engaging with and incorporating elements 

from multiple ceramic traditions into their work. Through micro-CT analysis, the ceramics at 

the Arkona Cluster reveal expressions of an artisan community sustaining tradition and 

innovation, within the context of a specific time and place.      
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Preface 

I remember quite clearly sitting at the grad club one evening in the second year of my PhD 

studies and chatting with a colleague about our research. He asked something along the lines 

of “so why are you interested in pottery?” At the time, I was in the midst of readings for one 

of my comprehensive exam papers dominated by ethnographic and ethnoarchaeological 

research on how and why people make pots. I somewhat jokingly replied, “Well, what I’m 

really interested in is not pottery but potters.”  He laughed and said, “Stick with that. That 

will serve you well.” From my material culture and technology-focused, archaeology 

background, in that crystalizing moment, I realized that I might be becoming a more rounded 

anthropologist and that my research would be all the more interesting for it. I had always 

loved the connection that past people’s belongings gives us to them, whether it be teeth 

marks on a pipe stem, initials carved in a bone utensil handle, retouch flakes taken off a stone 

tool, or fingerprints left in the wet clay of a pot, but now I was learning the theory and 

language to articulate this connection. So, as I wrote this dissertation, I tried to “stick with” 

the potters. While this is essentially a methodology based dissertation, exploring the use of an 

innovative new technology in archaeology, I hope the potters are not lost or forgotten, and 

the micro-CT technology is not only used for the sake of making pretty pictures, but because 

it can tell us something about the context in which these potters worked, interacted with each 

other and lived their lives.      
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Chapter 1  

1 Introduction 

This dissertation explores the analytical potential of non-invasive, micro-computed 

tomography (CT) scanning in archaeological ceramic studies. To explore this potential, I 

used a collection of ceramics from a cluster of Late Woodland archaeological sites within 

a material borderland in southwestern Ontario as a case study. Conventional research on 

ceramics, especially on Indigenous ceramics in Ontario, has been almost universally 

limited to superficial, macro-visual classification and description. Only rarely have 

researchers in Ontario used destructive, inherently two-dimensional thin section 

petrography to view the interior structures of ceramics (Braun 2012, 2015; Cheng 2012; 

Howie 2012; Michelaki et al. 2014; Striker 2018; Weglorz 2018). Describing decoration 

has been the primary focus of ceramic analysis, with a few notable exceptions (e.g., 

Braun 2012, 2015; Dorland 2018; Martelle 2002; Michelaki 2007; Striker 2018; Striker et 

al. 2018; Watts 2006, 2008). I hope that this dissertation adds another line of evidence to 

these approaches beyond trait list classifications and macro descriptions.  

I conducted my research at the Museum of Ontario Archaeology, where I had access to 

archaeological collections and the Western University operated Nikon XTH 225 ST 

micro-focus X-ray tomography system, and imaging software. Micro-CT scans provide 

high magnification, volumetric, digital, three-dimensional (3D) X-ray images of the 

interior and exterior of archaeological artifacts (Stock 1999, 2009). Recent studies (e.g. 

Bernadini et al. 2016; Kahl and Ramminger 2012; Kahl et al. 2012; Machado et al. 2013; 

Sobott et al. 2014; Tuniz et al. 2013) have shown micro-CT scanning to be an extremely 

promising method for determining how ceramic vessels were manufactured and for 

identifying variation within these techniques. However, these studies have been 

preliminary, based on sample sizes of only five to ten ceramic sherds. Some micro-CT 

and CT studies (Kozatsas et al. 2018; Sanger et al. 2013; Sanger 2016) have started to 

explore the research potential these techniques have for larger datasets. In this 

dissertation, I hope to advance the transformative opportunities micro-CT scanning 

provides for the analysis of ancient ceramics, determine the extent we can access patterns 
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in ceramic manufacture that are not obtainable through visual, macro-examination, and 

define some of the methodological protocols needed to establish micro-CT as an essential 

tool for ceramic research globally. 

Micro-CT scanning allows us to isolate micro features in clay such as temper, inclusions, 

voids, and micro-folds in 3D that enable the researcher to begin to understand the unique 

internal structures of the vessel and the process of manufacturing that created those 

internal structures. The 3D images generated are based on the density of the material 

scanned, depicted in greyscale (Stock 2009). The resulting scans mean that isolating air 

from clay, organics from clay and more dense minerals from clay is fairly easy to do; 

whereas isolating one type of clay from another, or minerals of similar densities from 

each other, is more difficult. Visualizing these features in 3D is unique to CT scanning. 

As such, micro-CT has great potential to augment traditional techniques when examining 

ceramic technology, especially when viewing complete, 3D representations of interior 

structures in clay. Throughout the course of this research, I had to tackle a steep learning 

curve, which resulted from viewing archaeological materials in an entirely new way: 

analyzing, thinking about and describing ceramic structures in 3D, across the X, Y and Z 

planes.  

This research examines the range of analytical applications that micro-CT scanning can 

provide to the field of ceramic analysis, and focuses explicitly on formation (or 

manufacturing techniques), and material selection. In terms of formation techniques, 

micro-CT analysis allows for the study and mapping of internal features. These features 

include voids or air pockets within or between pieces of clay that indicate where the 

potter folded, compressed or joined pieces of clay, including compression from tools used 

in both forming and decorating vessels. In terms of material selection, micro-CT scans 

depict both intentionally added temper material (i.e., mineral and/or organic matter added 

to pots to reduce breakage during firing) and natural inclusions (mineral and/or organic 

matter found in the clay matrix). Preliminary micro-CT studies at the Museum of Ontario 

Archaeology, on the scanner operated by Western University, and elsewhere, have shown 

promise for isolating temper from clay material and illustrating voids in vessel structures 

(Kahl and Ramminger 2012; Machado et al. 2013). This dissertation builds on these 
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preliminary studies. The ability of micro-CT scans to identify idiosyncratic artisan 

practices in ceramic manufacture through patterns in internal features also offers promise 

for a better understanding of what have long been recognized as critical, individualistic 

dimensions of pot making (Berg 2008, 201; Carr 1990, 1993; Middleton 2005; Rye 1977; 

Tite 1999); or in some cases the artistic endevours of multiple artisans (Crown 2007).  In 

this way, micro-CT analysis of formation techniques and material choices will show how 

these factors in making ceramic vessels changed over time and across and within artisan 

groups – changes that provide insight into the transfer of knowledge, skill, and 

enculturation of the next generation of potters within a community (Wendrich 2012).  

Micro-CT analysis is a relatively new and burgeoning field. Though primarily used in 

bioarchaeological applications (e.g., Friedman et al. 2012; Kaick and Delorme 2005; 

Morgan 2014; Nicklisch et al. 2012; Swanston et al. 2013), the use of micro-CT analysis 

holds promise for most classes of archeological materials (e.g., Bird et al. 2008; Ellis et 

al. 2019; Tuniz et al. 2013; Tuniz and Zanini 2014). Other material sciences have also 

begun using micro-CT technologies, notably in meteorite studies (Griffin et al. 2012; Hsu 

et al. 2008), and cultural heritage and museum studies (e.g., Able et al. 2011; Ball et al. 

2011; Casali 2006; Séguin 1990).  

It is within this context of rapidly growing micro-CT research that I situate this 

dissertation. I consider the strengths and limitations of using this technology and how it 

can help us to better understand the material lives of people in the past. I explore how 

notions of community and practice can be seen through the way people performed their 

craft within daily life, and how minute differences in the way things were done might tell 

us about artisan practices and how individuals and communities were creating, 

maintaining, and changing over time.  Micro-CT provides a real way to move away from 

static notions of ceramic style representing an ethnic group in a place and time, towards 

examining how artisans were practicing potting and actively interacting with both 

innovation and tradition in place and time.  
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1.1 Craft Production, Communities of Practice, and 
Technical Gestures 

Throughout this research, I have been aware that these pots were not created in isolation; 

they were made in a specific moment in time, by a group of people with interpersonal 

relationships. Functional and mechanical constraints are never severe enough to dictate 

the choices of potters, and we need to recognize that there is a human at every step of the 

production who is making a decision (Michelaki 2007:150). We need to move away from 

what Marcia-Anne Dobres calls the “disembodied hands” (2000:21) of technological 

studies that separate technology and the technician from their social context.  Material 

culture is influenced by the context of production, not just production techniques (Watts 

2006). 

Objects carry in them records of human decisions that are part of social identities, 

relationships and practices, and through micro-CT scans we can access some of these past 

practices and production decisions. A new wave of archaeologists focused on the 

examination of  craft production emerged in the 1990s (e.g. Bowser 2000; Costin 1991, 

1998, 2001; Dietler and Herbich 1994, 1998; Hardin and Mills 2000; Miller 2007; Minar 

and Crown 2001; Rowlands 1993; Sassaman 1998; Shimada 2007; Sillar 2000; Van der 

Leeuw 1993). These archaeologists noted that atomization of motor skills: posture, 

gestural movements, handedness, and muscle memory resist change as artisans work in 

regular ways to establish rhythms and ensure success (Dobres 2000; Hagstrum 1985; 

Michelaki 2008; Roddick and Hastorf 2010; Stark 1999). Change in craft production may 

result from new learning configurations, shifting social identities, and new connections 

between communities of practice (Roddick and Hastorf 2010). Social identities of 

artisans are not simple: aspects such as kinship, gender, age, and the contexts of craft 

production all come into play in establishing and maintaining social connections (Eckert 

2008; Sassaman 1998). These identities and boundaries can be fluid, oppose or 

complement one another, change over time, and can crosscut social and ethnic lines 

(Bowser and Patton 2008; Cunningham 2010; Dietler and Herbich 1994; Eckert 2008; 

MacEachern 1998).  
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Archaeologists use ceramics as a way to access the individual in the past and their 

communities.  Many archaeologists frame potter artisans within the notion of a 

“community of practice” or “community of potters” (e.g.; Bowser and Patton 2008; 

Cordell and Habicht-Mauche 2012; Crown 1999, 2007; Gosselain 1992; Huntley 2006; 

Peelo 2011; Michelaki 2008; Minar 2001; Minar and Crown 2001; Ortner 1999; 

Sassaman and Rudolphi 2001; Stark 2006; Van Keuren 2006; Wegner 1999). By 

community of potters I mean the social unit that produces pots from raw materials, or 

more simply those who share “a way of being in the world” (Peelo 2011:646). This 

community interacts with each other as artisans more often than with other communities 

of potters elsewhere, are distinct from non-potters by their shared craft, and produce 

similar but not identical products to each other (Arnold 2005:16).  

The concept of a community of practice draws on Lave and Wenger’s (1991) “situated 

learning” in which members of a community are created based on their participation in 

tasks (Joyce 2012). These communities, sometimes known as “pottery lineages” (Wray et 

al. 1991:291), are defined by a shared history of practice and regularities of production 

and use and learning, not necessarily by spatial or ethnic constraints (Eckert 2008; 

MacEachern 2008), and are people whose craft creates a shared history and common 

understanding of the production and use of their craft – their practice.  

Communities of practice can include not only learning, but procurement, manufacture, 

distribution, consumption and disposal of artifacts and resources (Roddick and Stahl 

2016). In this research I focus on a community involved in the manufacture of pots. 

Communities of practice are learning communities, but they are not homogenous or 

bounded (Gosselain 2016). Roddick (2016:126) describes them as the “process of 

community including the formation, reproduction and particular senses of community.” 

Different members of a potting community of practice can engage differently, often 

learning initial skills through peripheral participation, then increasing their engagement, 

sense of belonging and integration into a community as those skills develop (Roddick 

2016:126). These learned skills, or sets of practices, can be reproduced by successive 

generations of participants (Roddick and Stahl 2016).  
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These communities of practice can exist as distinct within a wider village or otherwise 

defined socio-cultural or geo-political community. Likewise, a community of practice can 

transcend multiple distinct, larger socio-cultural or political communities, connected 

through that shared practice. And notably, all the members of these communities of 

practice are still also at the same time members of those larger socio-cultural and geo-

political communities, as well as members of various other forms of identity groups (i.e., 

gendered and aged, by marital or socio-economic status, and family relations). In this 

way, multiple communities of practice can exist in a single village while a single 

community of practice can exist across multiple villages (Eckert 2008).  

Constellations of practice refer to “the articulation of distinct communities of practice 

that share a history, or members, or particular objects, or that engage in similar 

techniques or compete for the same resources.” (Roddick 2016:130). Constellations of 

practice allow archaeologists to compare different communities of practice and this 

approach recognizes that communities and constellations of practice can operate at 

differing geographic scales (Roddick and Stahl 2016). In this way, a community or 

constellation of practice is not necessarily a thing that archaeologists look for in the 

archaeological record, but provides a useful way examining the archaeological record 

more holistically.  

Approaches to the individual, pioneered by Hill and Gunn in their 1977 volume The 

Individual in Prehistory, laid down the framework for the sort of microscale analysis that 

I was able to undertake using micro-CT analysis. Attempts to recognize individuals 

shifted the focus of material culture analysis from typological and cultural historical 

concerns to the actions of artisans; traces of which can be seen in micro-CT scans. 

Through the ceramic scans I was able to study individual artisans or “analytical 

individuals,” meaning an individual or socially close individuals (Hawkins 2004:68). 

This scale of study can explore individual pots made by individual potters, and closely 

examine different teaching strategies (Crown 2007:677). Individual potters can be 

recognized through the individual mannerisms, material constraints, motor skills, 

abilities, and aesthetic criteria that artisans contribute to the ceramic vessel design and 

embodied as the outcome of artisan decisions (Creese 2012; Hill 1977, 1978; Longacre 
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1991; Van Keuren 1994). Variation in decorative patterns, errors and corrections, 

integration of motifs, symmetry of motif proportions and stylistic appropriateness can 

also help identify potters at the individual level (Crown 2007; Van Keuren 1994). 

Symmetry analysis (Washburn 1978), sequences of design elements (Hardin 1983), and 

other attributes also have been used to define the microstyles of individual potters 

(Martelle 2002; Hawkins 2004). While these studies emphasize exterior decorative 

motifs, and not all the steps involved in ceramic manufacture, they provide a way of 

accessing the individual potter, or at least analytical individuals. Crown (2007:684) also 

links consistency (in decoration) with production frequency and quantity to suggest one 

can recognize the work of a mature artisan. However, individual artisans are best 

understood as situated in a community of learners, practitioners, and a lineage of 

producers (Crown 2007:687). 

Other archaeological research studying artisan practices and craft production emerged 

alongside explorations of communities of practice. This includes research on cultural 

transmission, learning and apprenticeship, the examination of differing learning 

frameworks, as well as the archaeology of childhood (Bagwell 2002; Creese 2012; 

Crown 2001, 2002, 2007; Kamp 2001; Menon and Varma 2010; Miller 2012; Minar 

2001; Minar and Crown 2001; Smith 2003, 2005; Wallaeret-Pêtre 2001; Wendrich 2012). 

These various works began to address conformity and innovation in intergenerational 

pottery manufacture that had not been considered previously (Stark et al. 2008).    

Practice-based approaches allow archaeologists to conceptualize the fluidity of social 

contexts, and the relationships between material culture, making things, identities and 

social boundaries as “something people do” (Eckert 2008:3; Hegmon 1998; Stark 2006). 

While conventional approaches to ceramics remind us to closely examine decorative 

attributes and classification, they only further understandings of one step in the process of 

vessel manufacture. Vessel morphology and the motor performance gestures associated 

with ceramic formation are not as likely to be subject to discursive manipulation by 

artisans as decorative motifs are, because they are grounded in the unconscious and likely 

to change little through time and in response to tools or media (Creese 2012; Michelaki 

2007: 159; Martelle 2002:124; Watts 2006:195). Not only is there a difference between 
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forming methods but also within them, determined by the particular gestures and motor 

habits of a potter (Michelaki 2007:160). These subtle variations are something that can be 

seen more easily through micro-CT scans than through any other technique, as internal 

structures are telling of formation processes (Berg 2008; Carr 1990). Comprehensive 

approaches to ceramic analysis remind us that we need to think of pottery production as a 

practice which occurs in a particular context of people engaging with each other and 

materials (Dietler and Herbich 1998). Thus, archaeologists have thought of ceramic pots 

as a number of things over time: material culture, chronological and ethno-linguistic 

signifiers, social agents, and a craft product. 

Anthropology of techniques approaches have been adopted by many ethnoarchaeological 

studies (Degoy 2008; Gosselain 1992, 1994, 1998, 2000; Gosselain and Livingstone 

Smith 1995, 2005; Mahias 1993; Wallaert-Pêtre 2001; Wayessa 2011). Often 

incorporated in these are “technical gestures”, the “corporeal basis of bodily engagement 

with the material and social conditions of their productive activities” (De La Fuente 

2011:89). These technical gestures are embodied, mediated, meaningful and collective 

practices (Dobres 2000). De La Feunte (2011), based in part on the work of Gosselain 

and Livingstone Smith (2005), focused on technical identity, or a final expression of 

technical practices by ancient technicians (2011:90).  

Other archaeological work has meshed techniques and bodily gestures with material 

culture and linked this back to the French anthropological focus on identity through 

gestures (Knappet et al. 2010:593). In anthropological materiality research the gesture is 

often seen as the locus of engagement between mind and material (Knappet 2011).  The 

notion of “praxology” allows for the embodied mind and movements, gestures and 

material culture to be examined (Knappet et al. 2010:596). Roddick and Hastorf (2010) 

emphasize the importance of bodily practice in maintaining society and forming social 

identities to examine the discursive and non-discursive aspects of the tradition of potting 

and other social practices. They argue that potting is “a bodily practice, in which the 

subtle cultural choices in production are seen in changing paste recipes, firing patterns, 

and surface finishes.” (Roddick and Hastorf 2010:159). 
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Potter’s gestures or actions transform matter, and traces of these actions and interactions 

can be seen in the physical traces left in material. To access these actions archaeologists 

have examined ceramic manufacturing techniques (De La Feunte 2011) sometimes 

through experimental studies. These are essentially a study of pressures, or the physical 

actions or gestures applied to clay (Berg 2008; De La Feunte 2011; Forte 2019). Through 

this, it can be seen how artifacts preserve attributes related to the technique that created 

them (Dietler and Herbich 1998). 

These technical gestures left behind in the archaeological material are the result of the 

expertise or skill of a craftsperson, or lack thereof. Such expertise is not intrinsic but 

requires repeated practice and dedication of attention and time to a specific activity 

(Crown 2014; Forte 2019). Expertise of a craftsperson is expressed through the “correct 

sequence of steps and the ease of gesture reproduction” (Forte 2019:2). The craftsperson 

also has the ability to resolve and recognize the properties of raw materials they are 

working with while repeating the steps and gestures required (Bleed 2008; Forte 2009; 

Kuijpers 2017; Sennett 2008). The development of skill in potting (or other crafts) 

requires repeated practice of the steps required to manufacture a vessel. The repetition of 

intentional gestures, over time, produces a “habituated skill” (Forte 2019:4). The 

movements, pressure and efficacy of these repeated gestures can leave traces that can be 

tracked by closely examining the material record (Forte 2019). 

In The Craftsman Sennett posits “the craftsman represents the special human condition of 

being engaged” (2008:20). Sennett argues that when the craftsperson is fully engaged, the 

hand, brain and eye are working in coordination using an “intelligent hand” to grip, touch 

and grasp materials as the craft is practiced (2008:174). Repeating “hand skills” or 

gestures over and over establishes a rhythm in which the craftsperson practices (Sennett 

2008:175). When a craftsperson is able to perform actions again and again they have 

acquired a “technical skill, the rhythmic skill of a craftsman…” (Sennett 2008:177-8). 

Within this rhythmic skill, and with the repetition of bodily movements, the craftsperson 

has acquired a “repertoire of learned gestures” (Sennett 2008:178). In archaeological 

ceramic analysis we cannot watch these gestures in motion but strive to access the 
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craftsperson through their products, hoping to gain a glimpse into the link between the 

head of the potter and hand of the potter so artfully described by Sennett.  

When learning a skill, the repeated practice of steps involved is important. A craftsperson 

who has established a rhythm by repetition of these steps, and reached the higher stages 

of skill, practices within a constant interplay of “tacit knowledge and self-conscious 

awareness” (Sennett 2008:50). Artisans or craftspeople therefore make judgement calls 

while crafting based on tacit habits, learned through the repetition of gestures and 

coordination of the hand, brain and eye, and suppositions (Sennett 2008:50). This 

interplay sometimes results in what Sennett refers to as “adaptive irregularities” 

(2008:134), flourishes or additions used by craftspeople to cover, mask, or resolve an 

imperfection. Ingold explores similar notions when talking about “making” (2010, 2013), 

and how this involves the movement and continual response between material and maker, 

the goal of which is “not to give effect to a preconceived idea, novel or not, but to join 

with and follow the forces and flows of material that bring the form of the work into 

being.” (2010:97). It is only once the craftsperson is skilled in their craft that they can 

continually correct as they work, monitoring and responding to the task as it unfolds 

(Ingold 2006:76-7). In this way, the skilled maker or craftsperson “improvises” by 

following “the ways of the world”; a process of making that is rhythmic, itinerant and 

looping between maker and material (Ingold 2010:99). These instances of improvisation 

and adaptive irregularities are used by skilled craftspeople as they engage in the practice 

of making, and the traces left behind in the archaeological record hint at the presence and 

existence of the craftsperson(s) (Sennett 2008:135). In the case of this research the 

craftspeople were the potters at the Arkona Cluster.   

By using a communities of practice based approach, and micro-CT scanning, I observe 

the craft of ceramic making and attempt to move towards understanding the social 

practice of ceramic production.  I examine intergenerational transmissions, and social 

change as it might be visible in ceramic manufacture. I use archaeological ceramic 

collections to access the context of production, not just production techniques, and seek 

to determine what this can tell us about communities in the past. 
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1.2 Case Study: The Arkona Cluster 

As a case study, I scanned sherds representing 67 vessels from a tight, 3 km cluster of 

Late Woodland archaeological sites near Arkona, Ontario (about 40-50 km northwest of 

London). These vessels come from a series of contemporaneous and/or sequentially 

occupied sites dating to between ca. 1000-1270 CE. They existed within an 

archaeological borderland, generally located in space and time between what 

conventionally has been defined and labelled in archaeological culture history as the 

Western Basin and Ontario Iroquoian Late Woodland material culture traditions 

(Cunningham 2001; Watts 2006; St. John and Ferris 2019; see also Murphy and Ferris 

1990). The material record of the Arkona sites, which is the resultant materiality of those 

communities living their everyday lives, challenges conventional archaeological type and 

trait classifications through variations evident in, among other dimensions of the 

archaeological record, ceramic manufacture and use of ceramic decorative styles. The 

communities and artisans from these sites were actively negotiating tradition and 

innovation in their material expression, and in doing so, left behind an archaeological 

record that underscores, for that time and space, a place between archaeological 

classifications.  

Studies of borderlands in anthropology and archaeology examine areas where boundaries 

include not only physical, but social, cultural and political boundaries (Diener and Hagan 

2012); boundaries that people “create and re-create” (Alvarez 1995:457). The actual lines 

are an “abstraction” (Donnan and Wilson 2010:8), while the reality consists of the border 

zones or lands where interaction takes place and where continual negotiation between 

boundedness and fluidity of people, goods, capital and information is practiced (Diener 

and Hagan 2012:9). 

Borderlands are “places in between” (Parker 2006:77) where and “cultures and identities 

are constructed and negotiated” (Wendl and Rösier 1999:2); places where cultural 

innovations create and transform each other to from novel and unique social constructs 

(Lightfoot and Martinez 1995:472).  Archaeological approaches have worked to redefine 

borderlands as spaces where people engage the material world under very specific 

geopolitical circumstances (Ylimaunu et al. 2014: 245) and where “two or more groups 
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come into contact with each other, where people of different cultural backgrounds occupy 

the same territory and where space between them grows intimate” (Naum 2010:101). 

They are ambivalent and shifting landscapes that can contract into thin borders or expand 

into their own regions, and tent to be multicultural (Cusick 2000:48, Naum 2010:102).  

Because of their ambiguous and frequently contested and renegotiated nature, identities 

on borderlands tend to be shifting, multiple, and locally constructed; nationality, 

ethnicity, class, gender, religion, sexuality and other factors are constructed differently at 

the border than elsewhere (Alvarez 1995:452; Cusick 2000; Mullin 2011c:103; Naum 

2012:68; Newman 2006; Wilson and Donnan 1998:13). Individuals use aspects of 

common history, place, ancestry, occupation, ritual practices, gender, or symbols to 

identify themselves and most will maintain “overlapping, multiple nested identities” that 

may shift from one context to the next (Janusek 2002:36-37). Border areas are well 

documented to be areas for the creation of new identities and for the blending of 

languages, traditions, and peoples; in other words “hybridity” (Naum 2012). Social 

identities in borderlands are constantly in flux because the borderlands themselves are 

subject to ever changing conditions (Cusick 2000:46). By placing material culture within 

a borderlands context and acknowledging its situated and shifting nature, we can attempt 

to avoid and challenge interpretations of material culture linked one-to-one to ethnic 

identities and try to see variation in material as the result of the daily lives of individuals 

and communities. 

These borderlands at Arkona provide a complex environment where old notions of 

“culture” as neatly bounded ethnic groups can be thrown out and people can be seen 

living in continuous social networks that transcend boundaries (Cunningham 2001:2). 

Because of the uncertainty surrounding the relationship between Western Basin and 

Ontario Late Woodland Traditions, researchers in this region have been able to 

problematize the notion of “peoples” represented ceramically by a suite of decorative 

attributes (St. John and Ferris 2019; Watts 1999:37). Negotiations and choices available 

to individuals living on or to either side of the imagined border might be notably 

different. Research on this borderland explores a place of tradition and transition, and 

engagement between individuals, families and communities. It is by adopting an 



13 

 

approach that recognizes the fluidity of borders and the arbitrary nature of lines on the 

ground that the interactions at Arkona can begin to be understood.  

The implications of this archaeology for a understanding of materiality and identity 

beyond archaeological classifications is a core focus of the SSHRC funded research 

undertaken on this cluster of sites directed by my supervisor, Dr. Neal Ferris, over the last 

decade (e.g., Armstrong 2013; Cunningham 1999, 2001; Ferris 2012, 2013, 2018; 

Foreman 2011; Gostick 2017; McCartney 2018; Morris 2015; Spence and George 2017; 

Suko 2016; Watts 2006). To date, at least nine Indigenous locales have been documented 

from this cluster of Late Woodland sites (Archaeologix Inc.1998, 2005, 2012; Golder 

Associates 2006, 2012). 

 The data from these sites reflects a hybridity and a “continually revising settlement, 

subsistence, and material tradition” (Ferris 2013:4). This complex archaeological setting 

allows for the exploration of the material tradition of ceramic craft, in order to understand 

embodied practices, human lives and continuity and change in the past (Roddick and 

Hastorf 2010). Research on the Late Woodland borderland area in Arkona explores a 

place of tradition and transition, of heightened innovation of expression and lifeways, and 

engagement with communities both within and beyond the Arkona (Ferris 2013). 

Petrographic analysis comparing clay in pots found at Arkona to the local landscape 

would need to be completed to confirm if potters were harvesting their clay locally 

(Braun 2015; Ionico 2018; Michelaki et al. 2015; Striker et al. 2018). However, Late 

Woodland pots in Ontario are generally assumed to be made with clay from local 

sources. This local context is also assumed to have had an important role in encouraging 

or constraining practice and design choices made by potters (Watts 2006). In other words, 

the materials available to potters in their local contexts played a role in how they 

constructed pots. More generally, ceramic material assemblages from this period of the 

Late Woodland in Ontario consists of vessels that are grit-tempered coarse earthenwares, 

ranging from 4-15 litres in volume, with vertical to everted rims. They can be collared or 

not, and they have constricted necks, pronounced shoulders and globular bodies. They 

can be decorated on the interior, lip and exterior above the shoulder either on cord 
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roughened or smoothed surfaces (Watts 2006:8). Decoration typically consists of 

stamping or incision in a series of horizontal bands, extending down from the top of the 

rim and through the bottom of the neck. Some vessels with more elongated necks are 

known to have multiple decorative zones, with neck designs often distinct from rim 

designs (Murphy and Ferris 1990; Watts 2006:9). 

Conventional classifications and typologies can limit the understanding of how Late 

Woodland ceramics were manufactured. Essentially, what those studies have 

accomplished is that we know what Late Woodland ceramics look like from across this 

region and over time. This emphasis on description offers very little about how pots were 

made. More than two decades ago Howie-Langs (1998:8) stated “Almost nothing is 

currently known about the organization of Iroquoian ceramic production,” and this body 

of knowledge has grown only marginally since. Generally, in Ontario, archaeologists 

disassociate pottery from its producers and the social, technological and symbolic 

contexts of which they were a part, as Martelle (2002:10) noted. Emphasizing vessel 

manufacture shifts the focus of research from broad patterning and description to the 

learning, practices, and flexibility embodied in the technological decision making of 

potters (Martelle 2002; Michelaki 2007). While normative interpretations of decorative 

classification have been questioned as a reliable reflection of social boundaries or 

identity, the exploration of production techniques helps situate group and individual 

potters and their potting traditions (Cunningham 2001; Martelle 2002; Schumacher 

2013). Using micro-CT analysis, I was more interested in different and similar practices, 

and the social boundaries these might represent, rather than where these might fall on 

either side of an imagined line between artifact typologies and traditions. Keeping in 

mind the borderland context of the Arkona Cluster, I tried to focus on micro traditions, 

artisan practices, knowledge transmission and generally how potters were making 

decisions across these sites.  

By examining pottery manufacture, and not just macro descriptions of sherds, we can 

explore identities on archaeological borderlands in new ways (St. John and Ferris 2019). 

The variation in manufacturing techniques and micro traditions visible within and across 

assemblages of ceramics may be explained by the context in which they were produced, 
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and through production, provide insight into material expression of community and social 

identity (e.g. Alvarez 1995:452; Cusick 2000; Gupta and Ferguson 1992; Janusek 2002; 

Jones 1997; Lightfoot and Martinez 1995:478-480; Mullin 2011a, 2011b, 2011c; Naum 

2012:68; Newman 2006; Parker 2006; Wilson and Donnan 1998:13; Ylimaunu et al. 

2014:248).  

1.3 Analysis of Variables Relating to Ceramic Manufacture, 
Material Choices and Finishing 

In the research conducted for this dissertation, much of my attention was focused on the 

strength of CT scans in examining how the potter was manipulating clay with their hands 

and other tools. A micro-CT scan is an excellent tool for exploring micro traditions or 

structural “fingerprints” (Sanger 2016) within the ceramics, which relate to production 

techniques and decisions that potters were making. Micro-CT scans can access many 

variables that relate to manufacturing, clay mixing and decorative choices made by 

potters. Visualizing these features and variables tied to the process of ceramic making in 

3D is unique to CT scanning. Image analysis highlights micro scale similarities and 

differences in ceramic production techniques and idiosyncratic artisan practices. Image 

analysis in this dissertation was completed using VGStudioMAX 2.2 software, and a 

demo version of VGStudio MAX 3.0. This imaging software allowed me to record and 

analyze ceramic variables from volumetric data in 3D, sliced along X, Y and Z planes. 

This dissertation also evaluates the potential of micro-CT alongside other micro ceramic 

analysis techniques, notably destructive petrographic thin sectioning. As micro-CT scans 

provide a complete visualization of the internal features in 3D across the entirety of a 

ceramic sherd instead of a limited 2D slice at a fixed location along the sherd provided by 

thin section techniques, micro-CT analyses have the potential to augment thin section 

studies with a more holistic understanding of vessel manufacture. 3D petrography is also 

an emerging field in the earth sciences, especially in the field of meteorite analysis 

(Griffin et al. 2012; Hsu et al. 2008; Johns et al. 1993), where researchers are working 

with unique, irreplaceable materials, like those we study in archaeology. 
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1.4 Chapter Summaries 

Chapter 2 outlines what is known of Late Woodland ceramic manufacture in southern 

Ontario. This chapter explores work on archaeological ceramics in Ontario and especially 

what we know about ceramics for the early Late Woodland. Past work on ceramics in 

Ontario that have used different techniques and frameworks to interpret ceramics such as 

attribute analysis, chaîne opératoire approaches, petrography and microstylistic analysis 

are outlined. As well, I will review conventional cultural-historical constructions of the 

Western Basin and Ontario Iroquoian Traditions and ceramics, and the implications that 

work has had in understanding the Arkona Cluster of sites this study focuses on. 

Chapter 3 provides a summary of different approaches archaeologists have used for 

ceramic analysis. This chapter sets up background for later discussion on how micro-CT 

studies can contribute to the existing field of ceramic material sciences.  

Chapter 4 provides background and history on the use of X-rays in archaeology, and how 

CT and micro-CT has been used in archaeology, with a focus on ceramic analysis.  

Chapter 5 outlines the micro-CT methods and protocols used in this study for scanning 

the Arkona ceramics. This chapter explains sample selection, how I conducted the scans, 

why I selected particular scanner settings and how I collected the data. It will conclude 

with what these protocols will allow me to explore and what their limits are.  

Chapter 6 provides the results of image analysis. This chapter is divided into three main 

sections: elements of ceramic manufacture that can be examined with micro-CT images, 

variables relating to ceramic fabric recipes that can be examined with micro-CT images, 

and finishing and decorative elements that can be examined from micro-CT images. 

Comparisons between thin section and micro-CT data are also presented here.    

Chapter 7 reviews how micro-CT analysis adds to our understanding of archaeological 

ceramic manufacture and how micro-CT interplays with other commonly used ceramic 

analysis techniques. I also consider what micro-CT scans can tell us about the craft of 

ceramic manufacture and potter community of practice at the Arkona Cluster. This 

chapter finishes by considering directions for further work including the potential for 3D 
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petrography. More broadly, I consider the implications and limitations of micro-CT as a 

technique for archaeological ceramic analysis on a global scale.   
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Chapter 2  

2 Late Woodland Ceramic Manufacture in Southern 
Ontario and at the Arkona Cluster  

The research on Late Woodland ceramics in Southern Ontario is shifting from studying 

ceramics to studying all aspects of ceramics in daily life. This broadening of focus 

includes an emphasis on ceramic manufacture, as researchers begin to apply new 

analytical techniques and theoretical approaches. In the past, archaeologists used a 

culture-historical approach to ceramics (e.g. Fitting 1965; MacNeish 1952; Ritchie and 

MacNeish 1949; Stothers and Pratt 1981; Wright 1966, 1967, 1980) allowing us to orient 

ceramics and sites in time and space and within tenuous ethno-linguistic boundaries. 

Some more recent studies (e.g., Braun 2012, 2015; Cunningham 2001; Howie 2012; 

Mather 2015; Martelle 2002; Michelaki 2007; Parry 2019; Suko 2017a;Watts 2008), have 

begun to examine the technical properties, techniques, and social organization 

surrounding the craft production of Late Woodland ceramics. These researchers 

recognize the individuals and communities who were making ceramics and the complex 

negotiation of the material and decision-making that went into the production of vessels. 

There have been several studies that focus on the role of women as potters (e.g., Kapches 

2013; Latta 1999; Martelle 2002), though outright Feminist and Indigenous perspectives 

are mostly absent in Ontario ceramic research studies. Overall, the discussion of 

archaeological ceramics in Ontario has tended to focus on ceramics as things to describe 

and classify. Peter Ramsden’s (1996:105) oft-cited lament about Huron-Wendat 

archaeology can, in some ways, be applied more generally to Ontario Late Woodland 

archaeology: there has been a reliance on the ethnohistoric record that has, at times, 

restricted novel interpretations and the application of contemporary theory. We can still 

see this in the study of Late Woodland ceramics: the methods of production have been 

assumed, rather than explored, and the discipline has sustained cultural-historical debates 

about types and attributes for a long time (e.g. Emerson 1954, 1968; Englebrecht 1980; 

MacNeish 1952; Ritchie and MacNeish 1949; Smith 1990; Wright 1966, 1980). Studies 

that focus on practices of production allow researchers to think about the craft, 
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craftsperson, and the community those artisans interact within (Michelaki 2007). 

Likewise, studies that situate ceramics and broader lifeways within more nuanced, 

localized community formations engaging with material culture (Ferris 1999; Watts 

2006) all invite a broader range of perspectives and interpretive frameworks applied to 

this material record. I hope to engage with and contribute to this growing body of 

research. 

The case study in this dissertation will engage with and add to ongoing research by using 

an innovative means of accessing and “seeing” ceramic manufacture, knowledge and skill 

transmission in the assemblages from a series of the Late Woodland sites. These sites 

were situated in a part of southern Ontario that archaeologically was thought to fall 

within a material borderland between distinct archaeological traditions. Given this 

archaeological context, can micro-CT analysis of ceramics offer an innovative way to see 

beyond descriptive ceramic types and cultural-historical classifications, in order to access 

the craft and artisans making pottery in this time and place? 

2.1 Defining Western Basin and Ontario Late Woodland 
Archaeological Traditions 

The broad material expressions of commonality archaeologists classify and organize into 

defined suites of material traits are often known as “traditions” (Emerson 1954; Ferris 

1999:6). Throughout this dissertation I will use “Ontario Late Woodland Tradition” to 

describe the material record associated with a material expression and group of traits that 

in past archaeological literature has been referred to as the “Ontario Iroquoian Tradition” 

(Wright 1966). While the Ontario Iroquoian Tradition reflects the connection that 

researchers have made between historical Iroquoian-speaking groups and past 

populations, I agree with Ferris (1999:18) and Schumacher (2013:7-8) in their 

discussions on how the term “Iroquoian” is a problematic label when assigned to Late 

Woodland peoples and how the societies of the 12
th
 and 13

th
 centuries may not have been 

“Iroquoian” in the way that later, historical groups were.  

I also use the term “Western Basin Tradition” throughout this dissertation. This is not a 

reference to a group of ethnolinguistic Western Basin “People”, but to an archaeological 
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construct characterized by a suite of regionally similar material and settlement-

subsistence expressions found in southwestern Ontario and extending around the western 

end of Lake Erie (Murphy and Ferris 1990). Conventionally, Late Woodland archaeology 

to the east of the Arkona Cluster through southern Ontario has been assumed to be the 

material expression of ancestral Iroquoian-speaking peoples first encountered by 

Europeans in the late sixteenth-early seventeenth centuries in that region. Archaeologists 

assume the Late Woodland archaeology in southwestern Ontario is the material 

expression of people who were ancestral to historically and ethnographically identified 

Algonquian-speaking or Anishinaabe peoples. These logics arise from twentieth-century 

archaeological conventions around social classification that fit these ethno-linguistic 

rubrics (e.g., Murphy and Ferris 1990; Wright 1966) 

I am not comfortable saying these material traditions represent two distinct groups of 

people from two different language groups, especially  across the broader region of 

southern Ontario where fluid ethnic identities and blending of languages may have been 

the norm. Language is only one aspect of ethnic identity, and ethnicity is self-defined 

(Jones 1997) and very difficult to push back beyond historic records, or even to define 

with historic records. As such, I have been careful to use Western Basin Tradition and 

Ontario Late Woodland Tradition throughout, emphasizing the material record, which 

archaeologists use to read lifeways and artisan craft, which offer insight into ancient 

peoples, however they may have thought of themselves as social groups in the past.  

2.2 Background on Western Basin and Ontario Late 
Woodland Traditions 

A complete history of the archaeology and taxonomy concerning and surrounding various 

groups of people associated with the early Late Woodland has been discussed at length 

elsewhere (e.g. Ferris 1999; Ferris and Spence 1995; Fitting 1965; Murphy and Ferris 

1990; Stothers 1975, 1999; Stothers and Bechtel 2000; Stothers and Graves 1983; Watts 

2006; Williamson 1990; Williamson and Robertson 1994; Wright 1966). It is not my 

purpose to re-examine the cultural syntheses of this region, but to examine how pottery 

manufacturing practices may have been interpreted in the context of these diverse cultural 

settings.  
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The differences between Ontario Late Woodland and Western Basin Traditions, once 

thought to be characterized by a clear boundary between village-dwelling agriculturalist 

“Iroquoians” and semi-sedentary hunting and gathering “Algonquian” ways of living, 

have become less and less clear as archaeological evidence accumulates and is re-

examined from more nuanced viewpoints that try to escape dichotomizations between 

hunter-gatherer and agricultural ways of life (St. John and Ferris 2019) 

The Western Basin Tradition was originally divided into temporal phases, labelled the 

Rivière au Vase (ca. CE 600-800 or 900), Younge (ca. CE 800 or 900-1200), Springwells 

(ca. CE 1200-1400) and Wolf (ca. CE 1400-1500 or 1600) phases (Murphy and Ferris 

1990:194). The differences between these phases are blurred, but traditionally they are 

distinguished by changes in ceramic styles and settlement subsistence (Murphy and Ferris 

1990). The earlier phases of the Western Basin Tradition are marked by the use of a 

diversity of site locales across a mobile landscape. Archaeological evidence suggests a 

diversified subsistence regime that leveraged increasing agricultural yields alongside 

harvesting seasonally abundant resources, in particular lacustrine and riverine foods 

(Lennox 1982; Kenyon et al. 1988; Murphy and Ferris 1990; Dewar et al. 2010; 

Armstrong 2013; Crawford 2014; Foreman 2011; Watts et al. 2011; Morris 2015). 

Increasing sedentism by the thirteenth century is seen in warm weather site locale shifts 

(Kenyon 1988; Lennox and Dodd 1991) and evidence of more substantial settlements, 

including bounded settlement patterns and presence of middens alongside smaller, 

seasonally based campsites (Fox 1982; Cunningham 1999; Watts 2008; Suko 2017a; 

Ferris 2018). Settlement patterns are marked by numbers of large, often deep pits, 

believed to represent storage or cache pits (Murphy and Ferris 1990). These storage pits 

are often the only features on a site, and are occasionally overlapping, suggesting 

multiple occupations (Gostick 2017). 

The Ontario Late Woodland Tradition from the late 10
th 

century through the 14
th
 century 

witnessed noteworthy change, including more village-based lifestyles, greater emphasis 

on maize horticulture and changes in ceramic technology and style (Curtis 2004:44; 

Warrick 2000; Watts 2006; Williamson 1990). It is through this period that 

archaeologists suggest archaeological patterns reflect the emergence of “classic” 
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ancestral Iroquoian expression (Smith 1900; Ferris and Spence 1995). Ontario Late 

Woodland Tradition settlement patterns also consisted of satellite communities, hamlets, 

agricultural cabins, and fishing and hunting camps (Lennox 1995).  

Shifts in food procurement and production conventionally have been noted as a key 

element in understanding how these archaeological traditions differed (Armstrong 2013). 

People living on Western Basin Tradition sites were seen as being less reliant on 

cultigens, but this may not have been the case. There is growing evidence for a 

comparable level of maize consumption to that of their Ontario Late Woodland Tradition 

neighbours (Armstrong 2013; Booth 2015; Dewar et al. 2010; Morris 2015; Watts et al. 

2011). These findings trigger questions about regional interaction, the role of food 

production and ceramic use, and how this relates to mobility and typical paradigmatic 

assumptions about how cultures change with agricultural production (Armstrong 

2013:20). Foreman’s (2011) zooarchaeological analysis of faunal remains indicated that 

Western Basin Tradition lifeways reflect a more diverse, mobile subsistence strategy than 

the more sedentary pattern to the east. However, people on Ontario Late Woodland 

Tradition sites also harvested a wide range of naturally occurring resources to diversify 

their agricultural economy, focusing on those close to their settlements (Williamson 

1990)
1
.  

2.3 Ceramics in the Ontario Late Woodland 

Archaeologists know what early Late Woodland ceramics look like, but very little has 

been said about how they were made and used.  The ceramic material assemblage of the 

early Late Woodland in Ontario consists of pots that are generally grit-tempered coarse 

earthenwares, ranging from 4-15 litres in volume, with vertical to everted rims. Their 

rims can be collared (thickened band of clay) or not, and they have constricted necks, 

pronounced shoulders and globular bodies. They can be decorated on the interior, lip and 

                                                

1
 Given that that grain processing and clay processing share similar skill sets (Martelle 2002:370-371; 

Michelaki 2007:156), it might be an interesting avenue of investigation to compare clay mixing and 

preparation, to explore whether the ceramic material belonging to the Ontario Late Woodland Tradition is 

mixed differently than the ceramic material with Western Basin Tradition traits. 
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exterior above the shoulder either on cord roughened or smoothed surfaces (Watts 

2006:8). Decoration typically consists of stamping or incision in a series of horizontal 

bands (Murphy and Ferris 1990; Watts 2006:9).  

Western Basin Tradition ceramics are well described in both Murphy and Ferris (1990) 

and Watts (2006). Ceramics from the eleventh to thirteenth centuries of the Western 

Basin Tradition exhibit a lot of experimentation resulting in different vessel forms, sizes 

and decoration. The vessels are generally 4-10 litres and elongated (Murphy and Ferris 

1990:199-201). Rims often have castellations or incipient collars or “thickened” rims 

fashioned by folding or rolling clay from the lip and pressing it to the exterior before 

firing (Murphy and Ferris 1990:202-203; Watts 2006:88;). There may be single or 

multiple horizontal bands of vertical or oblique impressions on the exterior of the 

smoothed rim and lip fashioned with cord wrapped stick, dentate or linear stamping. 

Punctates or incised lines are often used as delimiters between decorative zones. The 

bodies are still cord roughened, but there may be a move from cord wrapped paddle to 

twined fabric on the paddle (Watts 2006:89).  Diagnostic of the period through the 

eleventh and thirteenth centuries is elaborate and intricate decoration on a smoothed 

surface along elongated necks consisting of alternating open and filled triangle or 

diamond shapes (Watts 2006:88; Murphy and Ferris 1990:205). These vessels also have 

“bag shaped” bodies (Murphy and Ferris 1990:207). “Juvenile” or “learner” and 

miniature vessels are well made and frequently found in assemblages (Murphy and Ferris 

1990:207).  

Ontario Late Woodland Tradition ceramics are usually studied using attribute based 

approaches based on macro-analysis of exterior features (e.g. Howie-Langs 1998; Smith 

1983; Timmins 1997b; Williamson 1985; Williamson and Powis 1998). They exhibit a 

high degree of similarity between assemblages in attributes including rim form, tool 

technique and design motif (Williamson 1985). By the twelfth century CE Ontario Late 

Woodland ceramics shift to rim and lip designs that consist of multiple rows of linear 

stamped oblique or incised horizontal lines (Watts 2006:92; Williamson 1985:287). 

There is some variation within these decorative techniques between regions and 

combinations of linear stamping, dentate stamping, crescent stamping and super-imposed 
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linear stamped obliques all appear as common treatments (Watts 2006:92-93). Many of 

these trends continue for the next few centuries but decline after the mid-fourteenth 

century CE (Watts 2006:93). Vessel necks are generally short, and can be plain, 

decorated with bands of linear-stamped obliques, incised horizontal lines, or plaits of 

stamped obliques and often exhibit interior punctuation and exterior bossing on the neck 

(Watts 2006:93). Vessel bodies are cord-roughened below the shoulder and typically 

smoothed over on the neck and rim (Watts 2006:93), and have a globular shape and 

rounded bottoms (Williamson 1990:298). Rims are usually vertical to everted and often 

have castellations (Watts 2006:93), while vessels can be collarless or have incipient 

collaring (Williamson 1990:298).  

That there has generally been very little said about the manufacture of ceramic vessels 

may in part be due to the fact that hard archaeological evidence for production is 

generally absent from the pre-contact archaeological record in southern Ontario. 

Multipurpose spaces within settlements and non-permanent manufacturing facilities make 

ceramic production in the archaeological record rather elusive (Allen 1992:144; Chilton 

1998:143; Martelle 2002:49).  Firing locations may have been located outside of village 

palisades or at peripheries of sites; areas that are rarely excavated in southern Ontario 

(Martelle 2002:368). Allen (2010) makes a tenuous case for evidence of pottery 

production within a longhouse structure from the mid to late 1500s in Haudenosaunee 

territory in New York State (based on high percentages of ceramic sherds and one piece 

of unfired, tempered, and shaped clay in features in one area of the longhouse), so it is 

perhaps the norm that evidence of these areas remains unrecognized rather than 

unexcavated. Some evidence of production has been uncovered in the form of small 

masses of clay and tempered clay (Martelle 2002; Pearce 1982; Timmins 1997a, 1997b; 

Wright 1974; Wright 1979), suspected “wasters” (Martelle 2002:380), and suspected 

production and firing sites (Kapches 1994; Lennox 2000). Most of the tools used for 

pottery making were probably expedient, used for other activities and were also organic, 

making them difficult to recognize within or absent from artifact collections 

(Cunningham 2001; Martelle 2002; Michelaki 2007). Often, the evidence cited for 

pottery production occurring on Late Woodland sites in Ontario is the presence of so-

called “juvenile” or “learner” vessels, which potentially indicate that potting was likely 
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being taught at the location (Martelle 2002; Mather 2015), though this does not account 

for the possibility that these small vessels moved with people. 

Because there is such scarce archaeological data relating to ceramic production, 

archaeologists have often turned to historical sources. Studies of Late Woodland ceramics 

often rely on the scanty ethnohistoric record, though it tends to say very little concerning 

pottery or pottery making (Martelle 2002:6; Michelaki 2007:157). Mann (2014:273) went 

so far as to say there are “virtually no ethnohistorical accounts of pottery manufacture 

among Great Lakes Native societies”. In reality, only a few brief descriptions have been 

documented (Martelle 2002:6-7; 2004:26), and Martelle’s summary is often cited by 

archaeologists (e.g. Mann 2014; Striker et al. 2018). These accounts are also summarized 

in detail by Elizabeth Tooker (1964) and include Boucher in CE 1664 (translation in 

Kapches 1994:93), Sagard in CE 1632 (Sagard 1939; translation in Wrong 1968:109), 

and Lafitau’s descriptions (cited in Waugh 1916:54). Sagard’s is the most detailed 

account, describing vessel forming using a paddle and anvil technique (Martelle 2002: 6-

9).While there is a lack of ethnohistoric and archaeological evidence related to pottery 

manufacture, this has not stopped archaeologists from suggesting techniques that the 

potters in the Ontario Late Woodland used. Some archaeologists note the introduction of 

the paddle and anvil technique in the Middle Woodland (Spence et al. 1990:148), and 

many archaeologists describe a shift from coiling techniques to paddle and anvil 

techniques at or around the beginning of the Late Woodland (Spence et al. 1990:144, Fox 

1990:172; Murphy and Ferris 1990:195). This assumed shift from coiling to paddle and 

anvil is based on the appearance of thinner vessel walls through this transition, and the 

presence of paddle impressions on the bodies of vessels. Murphy and Ferris (1990:195), 

in their description of Western Basin Tradition ceramics, state that “thin vessels appear to 

be a result of replacing coiling techniques with paddle and anvil methods of manufacture, 

although Wayne wares of the Riviere au Vase Phase may often display coil breaks in the 

rim or neck area”. Archaeologists have suggested a shift from coiling to paddle and anvil 

techniques as a key difference between Middle and Late Woodland pots, but this 

suggestion ignores the fact that both of these techniques can be used on the same pot. 

Speaking of one method “replacing” another in this time period is problematic (Mather 

2015:55). Furthermore, certainly paddle and anvil techniques can help potters achieve 
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thinner vessel walls, but implying that thin walls cannot be achieved simply by joining 

and pressing coils together indicates these archaeologists have not spent much time 

watching skilled potters work.  

Undoubtedly, some Early Ontario Late Woodland Tradition pottery was made through 

the paddle and anvil technique (Stothers 1977). Ferris and Spence (1995:106) noted that 

later pots were formed through modelling, and walls were thinned using paddle and anvil 

techniques. Williamson (1990:298) describes the paddle and anvil process in some detail 

when describing Early Ontario Woodland Tradition ceramic production. However, other 

than noting paddle impressions on vessel surfaces, Williamson does not point to 

archaeological evidence to substantiate that description. In fact, when paddle and anvil 

technique is mentioned, much of the focus in the Late Woodland is not on the gestures or 

techniques involved in making these pots, but on the differences between paddle 

impressions: whether they be “cord-malleated” (Wright 1966:30; Williamson 1990:298), 

“fabric impressed” (Wright 1966:29-30), “ribbed” (Dodd et al. 1990:330; Murphy and 

Ferris 1990:216; Williamson 1990:298), “checkstamped” (Williamson 1990:298), or 

“smoothed over” (Williamson 1990:298). It is understandable that this has been an area 

of attention, since paddle impressions are readily visible on the exterior of pots, while the 

techniques and gestures of paddle use are more intangible. However, paddle impressions 

may indicate the ways in which the paddle was being used, and it is notable that this 

method of manufacture was shared widely between communities in the Late Woodland.  

Ramsden (1990:365) describes Huron-Wendat vessels as appearing to be “…molded by 

the ‘paddle-and-anvil’ method, although a few instances of coil breaks exist. The pattern 

of breakage of vessels suggests that in many cases the body and neck were molded in one 

piece, and the flaring rim was fashioned separately and smoothed onto the neck”. While 

somewhat vague, here at least the “pattern of breakage” is cited as evidence for vessel 

manufacture. Although it is difficult to determine manufacturing techniques for most 

Woodland pot sherds (Mather 2015:55), there are some traits archaeologists can look for. 

These are summarized nicely in Mather’s (2015:43) thesis which cites Rye (1981) and 

Webb (1994). Coiling can be recognized by evidence of unsmoothed coils or coil breaks 

or the variation in wall thickness (Webb 1994). Pinch pots may show grooves related to 
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fingerprints (Rye 1981:70) and molding can be recognized by impressions or reliefs of 

the mold on the interior surface and pressing on the exterior (Rye 1981:81). Paddle and 

anvil techniques can result in laminar fractures (a stepped breakage pattern), which may 

result from pressure and compression of the clay fabric, the presence of star shaped 

cracks that form around large mineral inclusions, or anvil impressions on the interior of 

the vessel (Rye 1981:85). Aside from noting coil breaks, these features are rarely noted or 

reported upon in any detail (Mather 2015 is the exception). 

The manufacturing techniques used by Late Woodland potters have been assumed in 

Ontario archaeology, rather than demonstrated.  Generalizing one manufacturing method 

to the entire Late Woodland is problematic, given that communities of practice were 

smaller than the distribution of these broad traits, and it is likely potting was an activity 

practiced at a community scale by individual artisans each with slightly differing ways of 

doing things. While there may have been a constellation of practice (Gosselain 2016) 

across the lower Great Lakes in the Late Woodland period, the community of practice in 

which potters were sharing knowledge and learning was more local.   

Some archaeologists have suggested the causes for local variation in ceramic 

manufacture are the contexts in which these pots were manufactured. Chilton (1998) 

suggested that the degree of variability in ceramic manufacturing techniques was linked 

to degree of rigid social organization in examination of Algonquian and Iroquoian 

ceramics in the Northeast. Through a more nuanced approach, Watts (2006) also 

suggested that the regularity and results of ceramic production were influenced by the 

more permanent setting of potting production at Ontario Late Woodland Tradition 

villages compared to Western Basin Tradition settings that included fewer potters and 

more task scheduling around seasonal mobility. While there is little evidence for their 

methods of manufacture, the ceramics made at Western Basin Tradition sites and Ontario 

Late Woodland Tradition sites would have been manufactured in differing settings, as 

seen in the settlement trends. However pots were made, their manufacture was likely 

strongly influenced by the social environment in which they were being manufactured.   
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I am not the first to criticize the widespread assumptions about pottery making based on 

scanty evidence (Michelaki 2007; Latta 1991), but they also continue to be perpetrated in 

current literature. Archaeologists studying Woodland pottery in Ontario tend to give 

detailed descriptions of decorative and morphological attributes, while the process of 

manufacture remains largely assumed. As an extension of these assumptions, the 

variation in the craft of potting over time and space and what this variation might mean, 

is a neglected area of study.   

2.4 Accessing Manufacturing Techniques: the Application of 
Chaîne opératoire, Petrography and Microstyles to Late 
Woodland Ontario Ceramics 

Seeing “time and space” as the only viable interpretive use of ceramic variation has 

discouraged analysis of the manufacture and use of Late Woodland ceramics in Ontario 

(Martelle 2002:198; Michelaki 2007). Although it was noted decades ago as an 

interesting avenue for study (Latta 1980:159), it is only recently that researchers have 

begun to consider the choices available to potters in the operational sequence or chaîne 

opératoire (proposed by Leroi-Gourhan 1943, 1945, 1964, 1965; see discussion in De La 

Fuente 2011; Dobres 2000; Edmonds 1990; Lemonnier 1992; Ross et al. 2018; Schlanger 

1994) of pottery production in the Late Woodland. This type of study examines all of the 

steps that go into making a pot.  

French Anthropology of Technology approaches were developed independently in the 

1960s and 1970s with their roots in Leroi-Gourhan’s works on the notion of gestures, and 

the idea that technology is a “dialogue” between material and maker (1943, 1945, 1964, 

1965). However, these chaîne opératoire and technological sequence approaches only 

really emerged in Anglo-archaeology at a later date with the 1993 translation of Leroi-

Gourhan’s ideas and English language proponents such as Lemmonier (1986, 1992, 

1993) and others (e.g. Audouze 2002; Berg 2011; Edmonds 1990; Garcea 2005; 

Schlanger 1998; Van der Leeuw 1993, 1994) who advocated for chaîne opératoire 

approaches. Chaîne opératoire approaches focus on production sequences and the steps 

that go into the production of technology and material culture. Chaînes opératoires bring 

together raw materials, tools, learning, knowledge and representation systems, and a 
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variety of agents together to define the context within which people work, and also how 

day to day practices are given meaning and shaped (Gosselain 2018).  In this way, these 

approaches provide a valuable method of examining all of the steps of pottery production 

and also provide a framework or theoretical perspective in which to examine formation 

techniques.  

Rye (1981:16-26) outlines the steps involved in the production sequence. Potters (or 

assistants) must first obtain materials. They then prepare materials, which usually 

involves removing coarse matter (including rocks and plant particles). This process of 

preparation is accomplished by drying and pounding clay, sieving wet clay or allowing 

wet clay to settle into its fine and coarse fractions. Next, the clay body (the blend of 

materials used for forming pottery; synonymous with “paste” or “fabric” when fired) is 

prepared. This stage of preparation involves blending additives (including temper) into 

the clay body, usually by hand or foot kneading. Once blended, the body must be brought 

to a workable consistency for forming vessels while reducing air pockets in the clay. This 

step can include drying, wedging or kneading. 

Vessel forming operations are next. The potter judges the workability of the clay and then 

uses one of many techniques to form the vessel, including throwing, beating, coiling, slab 

building and moulding. In some forming techniques operations can be undertaken at 

different stages of plasticity, which can include primary forming completed on soft clay, 

while refinements, such as the application of paddle and anvil or attachments of handles, 

occurs as the vessel dries. Lastly, decorative elements are often applied at a “leather 

hard” stage when the vessel will “break rather than deform under pressure but can still be 

cut with a knife or fine wire” (Rye 1981:21).  Once the vessel is formed, it must be dried 

slowly enough that it does not develop cracks. Potters become aware of appropriate 

drying rates for their materials and climates and pass this knowledge down to others. 

Sometimes surface treatments such as painting or adding a slip can occur at on the dry 

pots, but we rarely see this in Woodland ceramics. 

Once completely dry, the pots are fired to temperatures high enough in order for clay-

mineral crystals to break down (anywhere between about 500 and 700 degrees Celsius). 
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When heated to these temperatures clays develop the characteristic hardness, porosity and 

stability of pottery. Potters control the rate of heating, the maximum temperature and the 

atmosphere during the firing process. Firing can consist of open firing or kiln methods.  

Attempting to study all of these steps in pottery production switches the focus from broad 

descriptive patterning of sherds to the study of the practice and flexibility that is available 

in technological decision making by potters (Mather 2015; Martelle 2002; Michelaki 

2007; Woolsey 2018) and the dialogue between materials, tools, potters and the potting 

context (Gosselain 2018; Leroi-Gourhan 1993). While decoration alone has been 

questioned as a reliable reflection of social boundaries or identity, the combination of all 

production techniques is more likely to reliably identify individual potters, potting 

traditions, and communities (Cunningham 2001; Martelle 2002; Schumacher 2013).  

There are a number of Ontario studies that have incorporated materials sciences and 

design theory approaches, often in combination with more social theory-oriented 

approaches (Michelaki 2007; Mather 2015; Martelle 2002, 2004; Schumacher 2013) to 

explore what a ceramic vessel does, and its use life, rather than just what it is as a 

collection of sherds. These studies examine one or several of the following patterns: 

sooting, encrustations, use alteration, orifice size and shapes, and carbonization patterns 

to determine function. Experimental archaeological work reproducing Late Woodland 

pottery, although informally done (e.g. Erika Johannsen, personal communication 2016; 

George 2004), is rarely formally published (see Sideroff 1980 as an exception). This 

exploration of the craft of Woodland ceramic making is mostly the domain of modern 

ceramic artisans; examples include the natural clay pottery courses run at the Museum of 

Ontario Archaeology in collaboration with FUSION: The Ontario Clay and Glass 

Association (Museum of Ontario Archaeology 2020), and the work of Wyandot artist 

Richard Zane Smith (Zane Smith et al. 2017).  

Recent Ontario ceramic studies have also examined local clay properties and their 

importance in the sequence of ceramic manufacture, sometimes through petrographic 

analyses (e.g. Braun 2012; Cameron 2011; Curtis 2014; Howie-Langs 1998; Mather 

2015; Martelle 2002; Striker et al. 2018). Others have studied local and non-local clay 
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sources through petrography and their distribution within sites, to examine differing 

social processes such as coalescence (Howie 2012; Striker 2018; Cheng 2012). Howie’s 

(2012) petrographic study of ceramics from the Mantle site determined that ceramics 

were made in highly variable ways, were produced both locally and non-locally, and 

juvenile vessels were fired, formed and sometimes tempered differently than adult 

vessels. Howie (2012:37) attributed this abundance of non-local fabrics and variability 

within the local production sequence to groups of people from different locations moving 

to this site, experimenting with local materials and being exposed to differing traditions 

(see also Striker 2018). Petrographic techniques allow for not only geographical 

recognition of source materials (although determining provenance in Ontario is difficult 

because of its glacial till geology), but also technological choices related to raw materials, 

fabric recipes, and vessel firing and forming (Howie 2012; Braun 2012; Cheng 2012; 

Striker et al. 2018).  

Cheng’s 2012 research focused on Wendat pottery from the Damiani Late Woodland 

Ontario Tradition site, looking at vessel production sequences and adopting a chaîne 

opératoire approach using petrography, chemical composition with SEM and 

microstructure analyses. Cheng’s work aimed to fill the gap in Ontario ceramic research 

surrounding ceramic manufacture by exploring angularity and orientation of inclusions 

and air pockets. Based on observations of poorly mixed clay in well-formed pots and 

“juvenile” vessels, Cheng suggests that forming was probably taught before clay mixing 

and the application of decoration due to the lack of variation in production among 

juvenile vessels (all pinch pots). The lack of variation in forming techniques in Cheng’s 

study indicates that perhaps children were being taught how to properly form a pot  

before being taught how to prepare fabrics, (2012:54-55).   

Holterman (2007) examined ceramics from the Fonger site, a late sixteenth-early 

seventeenth century Ontario Late Woodland Tradition village, within a chaîne opératoire 

perspective. Holterman explored the choices potters made throughout the various stages 

of the manufacturing process and used a combination of raw materials survey and 

experimental approaches, along with macroscopic analysis, petrography, X-ray 

diffraction analysis, and re-firing tests. The author found that the way things were done 
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was more of a reflection of social guidelines informing potters on how pots should be 

made than how pots needed to function. Slight differences in temper recipes also 

suggested the possible presence of two closely related yet separate groups of potters on 

the site (Holterman 2007:178).  

 Braun (2010, 2012, 2015), examined ceramics from middle and late Ontario Tradition 

sites, taking particular note of the choices made in manufacture. Based on an examination 

of manufacture, use, and discard, Braun (2010:81) divided the ceramics into four types, 

not the more typically used means of relying on decorative attributes. Braun’s work has 

also focused on technological practices and how these can provide new insights into Late 

Woodland materiality and ritual. These various studies Braun undertook have focused on 

the social practices of production and distinct artisan communities within sites.   

Some researchers in Ontario have examined vessel manufacture and microstyles (or 

micro-variation in the application of decoration) as a way to recognize artisanal skill, 

individual potters, and groups of potters (Gromoff 2000; Hawkins 2004; Martelle 2002; 

Watts 2006, 2008; Woolsey 2018). Microstyles are patterned behavior in individual, 

family and community manufacturing practices and traditions that are manifested through 

patterned combinations of features on ceramic vessels (Martelle 2002:256). Martelle 

examined vessel function, population relocation, ethnicity, and the organization of 

ceramic production, by adopting a multivariate approach that included the study of 

microstyles. Martelle (2002:39) used microstyles as a unit of analysis to examine 

individual potters, and closely interacting potters. Martelle focused on the “range of 

choices” available to potters when constructing pots such as materials, tools and 

techniques, as well as vessel form and decoration (Martelle 2004:26). These microstyles 

identified characteristic tendencies in motor habits and learned behaviours that were 

grounded in the specific contexts of learning and in unconscious kinesthetic actions in 

ceramic manufacture, such as differentiating tool use among individuals (Martelle 

2002:38; see also Gromoff 2000; Schumacher 2013:40). Martelle’s research was 

grounded in ethnographic and ethnoarchaeological literature that explored technical 

decision-making in traditional pottery manufacture and use, and the social contexts in 

which these took place, moving away from the overly simplistic view of ceramic making 
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as simply one of women’s many duties (Martelle 2002:6). Martelle’s use of microstyles 

to describe the patterning and variability that results from habitual decision making in 

production has helped to shift the analytical focus on Late Woodland ceramics from 

describing decoration, to how things were actually done (Martelle 2002:14). Martelle 

(2002:20) used this more holistic perspective to examine raw materials, tools, the 

environment, potters, consumers, and the social, economic and ideological factors that 

surround pottery production.    

2.5 Who Was Making Ceramics in Ontario? Examining the 
Individual and Community 

While recognizing the individual in the ancient archaeological record emerged in the 

1970s (e.g., Hill and Gunn 1977), this type of analysis has been only slowly integrated 

into Ontario Late Woodland ceramic studies. These studies shift the focus and scale of 

research from recognizing patterns of similar traits in ceramics and identifying “cultures”, 

to examining the minute differences between individual vessels. Echoing works that have 

already explored the steps in manufacturing ceramics within their social context, research 

that examines the individual and community in ceramic manufacture is able to advance 

ceramic studies in Ontario beyond space and time classifications. Potting itself, when not 

practiced at an industrial scale, can be a social event which involves the transmission of 

knowledge from artisan to artisan. Outcomes of potting reflect norms and conventions 

followed and challenged by individual potters. Thus ceramic vessels are as much 

produced within the social constraints unique to each potter or group of potters, as they 

are mechanically the output of abstracted stages of manufacture. The steps in production 

that are learned communally may lead to identification within resultant archaeological 

assemblages of not only the individual but also the social group the individual 

participated within (Schumacher 2013).  

2.5.1 Accessing Individual Potters and Communities of Potters 
Through Their Craft 

When we look at potting as an artisan craft, no two potters will have used the exact same 

tools or gestures, decisions, and adjustments made in the process of making a vessel, nor 
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will one potter always use repeated techniques. Several researchers have undertaken 

studies that aim to recognize individuals and social groups or communities of potters 

(Allen 1988:95-96; Braun 2015; Martelle 2002:12, Michelaki 2007; Schumacher 2013; 

Striker et al. 2018; Suko 2017a; Watts 2008). Functional and mechanical constraints are 

never severe enough to dictate the choices of potters. We need to recognize that there is a 

human, or sometimes several humans, at every step of production making a decision 

(Michelaki 2007:150).  

Michelaki’s 2007 study illustrates how we can begin to access potters by approaching 

Late Woodland ceramics through research grounded in ethnoarchaeological studies, 

social theory and the social nature of technology. Michelaki effectively uses shell 

tempered pottery that appears on late 16
th
 and 17

th
 century sites to shift the focus from 

broad trait patterning to the practice and flexibility in technological decision making and 

the lives of potters. Michelaki examined the choice of Late Woodland potters to adopt 

shell temper, keeping in mind the need for materials not only to be functionally viable but 

to fit into the “symbolically appropriate options” for potters (2007:149-150),   

emphasizing that a purely functional approach to ceramics is often limiting since 

ceramics are part of a “socio-technical web” in which each individual grows up and 

learns in an environment with ideas about which resources, tools and techniques are 

appropriate. Michelaki’s is one of several studies that encourage archaeologists to think 

about potters and not just pots (e.g. Braun 2015; Martelle 2002; Watts 2006; Holterman 

2007).  

2.5.2 Accessing Aspects of Potters’ Identity: Gender, Age and 
Craft Specialization 

There is a general tendency in Ontario archaeology to assume that pots are equated with 

women and that women produced vessels for mostly their own family’s use throughout 

the Late Woodland (Latta 1991). In the later Late Woodland, pottery was sometimes 

constructed by women who played a large role in the matrilocal, matrilineal Iroquoian 

societies recorded in ethnohistoric records (e.g., Heidenreich 1971; Trigger 1976; see also 

Brown 1970). 
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This general assumption cannot be extended uncritically into the more ancient past of the 

Late Woodland in Ontario. Nonetheless, there exists a strong tendency in Late Woodland 

archaeological research on ceramics that ideologically and physically women were tied to 

the household, food distribution, hospitality, and cooperation which includes being likely 

producers of “domestic crafts” such as ceramics (Allen 1988:108; Allen and Zubrow 

1989; Englebrecht 1974; Martelle 1999, 2002:340-344; Smith 2005; Striker et al. 2018). 

In work on Huron-Wendat ceramics, Martelle (1999, 2002) examines the ways that 

gender and craft production and technological systems interplay in terms of labour 

organization. Martelle rejects the assumptions about simplicity, domesticity, and labour 

intensity of ceramic manufacture that relegated it to “housework” (2002:27) and 

acknowledges that these vessels were sophisticated technological achievements. In other 

words, regardless of gender tendencies, the craft of making pots required the training and 

experience of artisanal skill, and the scheduling of work within the broader rhythms of 

daily life.   

Beyond gender, the labour of making vessels could also have been shared by age and 

skill (Martelle 2002:419). Smith’s (2003, 2005) research on decorative trends suggested 

networks existed between three generations of potters: children, mothers, and 

grandmothers, all of whom were participating in making pots at Ontario Late Woodland 

sites in the 13
th
-16

th
 centuries. Latta (1991:376) noted that potters could exhibit a lot of 

freedom in interpreting traditional concepts; daughters do not necessarily learn potting 

from their mothers, potters can make a range of different pots, and also exchange and 

borrow ideas over their life as an artisan. Certainly, some women were potters, but not all 

women were potters, and not all pots were necessarily made by women. While some 

iteration of shared practice among family members may have been the case, it is still 

important to note that a site assemblage encompasses a cacophony of practices, levels of 

learning, skills, and multiple divergent, fluid social interactions contributing to the 

eventual material assemblage. 

Indeed, while adult women were probably often potters, children were also likely active 

participants in ceramic manufacture in Late Woodland communities (Birch and 

Williamson 2013:128; Howie 2012; Mather 2015; Martelle 2002; Pearce 1978; Smith 
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2003, 2005; Speirs 2019; Timmins 1997a). A whole range of small vessels ranging from 

roughly made specimens to well-made “miniature” vessels are found on Woodland sites 

in Ontario. These vessels can range from unfired, untempered or undecorated pinch pots 

or slightly formed hollowware objects to well-formed, tempered, and decorated vessels in 

miniature size. Conventionally, some or all of this part of a ceramic assemblage tends to 

be thought of as “juvenile” ceramics, reflecting an assumption that they encompassed 

children learning, playing, or emulating adult making. 

While some of these ceramics can be thought of more properly as “learner” vessels, and 

some were certainly made by children, some vessels might more rightly be thought of as 

miniature vessels. These vessels ranged in size from a few centimetres to 15-20 cm in 

height and held a limited volume of content. Some of the “larger” of these miniature 

vessels may have served as person-sized food containers or otherwise met individual 

needs (e.g., Murphy and Ferris 1990). Miniature vessels may have also more socially 

have functioned in storytelling, represented some symbolic significance, or been used to 

store seeds, medicine, pigments, or had other functions (Martelle 2004:28). Of the studies 

that have examined ceramic production or manufacture in the Late Woodland, a high 

proportion have focused on “juvenile” or learner vessels, considering how these sherds 

suggest learning was passed on through manufacture (Retter 2001, Smith 2003, 2005, 

Timmins 1997a). These studies focus on a particular part of the learning process and 

transfer of knowledge, but have generally been cursory overviews. They do not examine 

the manufacturing process itself in detail or aim to recognize manufacturing techniques 

that may be specific to certain communities or individuals, or across entire ceramic 

assemblages.  

Children are undeniably important when examining change or innovation, and tradition in 

potting techniques and have been the focus in much of the ceramic manufacture research 

in Ontario. Retter (2001:76) briefly examined differences between manufacturing 

techniques and made distinctions between older and younger juvenile producers. Retter 

also discussed how forming techniques seemed to be of primary importance when 

learning to make pots, while applying decoration came later, suggesting that decoration 

was not as critical as form for the non-cohesive Western Basin tradition materials 
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examined (Retter 2001:99). Smith (2003, 2005) briefly examined motor skills and 

consistency of wall construction but primarily studied decoration in learner vessels. 

Smith (2006:72) also suggested that because so many learner pots are undecorated, 

forming may have been learned prior to learning decorating or finishing skills.    

It has been assumed, in part, because of long-held beliefs regarding the absence of craft 

specialization in egalitarian societies that Late Woodland ceramics were made by non-

specialists at the household level (Howie-Langs 1998: 11; Martelle 1999, 2002:41-44). A 

few studies have come to this conclusion based on the heterogeneity of ceramics within 

village assemblages and within longhouse collections from those villages, and citing the 

presence of learner vessel sherds as evidence that many individuals learned to make 

pottery (Allen 1988, 1992; Warrick 1984). Others (Martelle 1999, 2002; Cameron 

2011:39-42) suggest craft specialization was present at least in some places and at some 

times, such as on contact period Huron-Wendat village sites. It is certainly worth 

reiterating that just because women were potters this does not mean that all women were. 

Only some women might be potting based on social position, ideological structures 

(taboos, rituals), technical aptitude and level of skill, or because of seasonal subsistence 

constraints that required the division of labour at certain times of year (Allen and Zubrow 

1989; Cheng 2012; Martelle 1999, 2002).  It is highly efficient to have a single potter or 

single potting group provisioning a community or larger household as it ensures quality 

and consistency; potting requires specialized knowledge and practice (Martelle 1999). 

Martelle argues that because pottery quality declines after European contact and endemic 

disease that potting skill and knowledge, at least in the contact period, was likely held by 

a few specialists who may not have passed it down.  Ionico, when examining ceramic 

communities of practice in early 17
th
 century Neutral Iroquoian assemblages, similarly 

suggested that socio-demographic turbulence lead to “an increasing movement away 

from regimentations in communities of practice” (2018:167) and heighted variability 

within production chains.  

2.6 Archaeology of and on the Arkona Cluster 

Conventional material analyses between sites identified as either Western Basin Tradition 

or Ontario Late Woodland Tradition have argued that there is a regional and temporal 
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shift in the boundaries of these two material traditions in Southwestern Ontario 

throughout the Late Woodland Period. For example, Murphy and Ferris (1990) note a 

westward expansion of Ontario Late Woodland Tradition-like materials across 

southwestern Ontario from around 900 CE up to the 16
th
 century. Around ca. 1100-1300 

CE, this boundary or transition appears west of modern day London (Figure 2.1), with 

distinct Western Basin Tradition materials noted as far east as the Dymock site, near 

Glencoe Ontario and the Montoya site, near Strathroy Ontario (Foreman 2011; Fox 1982; 

Retter 2001), while Ontario Late Woodland Tradition materials are noted as far west as 

the Caradoc Sand Plain (Watts 2006; Williamson 1980). 

 

Figure 2.1: Archaeological Late Woodland site clusters across southwestern-most 

Ontario, ca. 1100 through the 1300s CE, encompassing Western Basin Tradition material 

expression. The extent of the transition or material borderland is depicted very broadly. 

To the east are extensive clusters of archaeological sites more commonly associated with 

Ontario Late Woodland Tradition material expression (Neal Ferris, modified with 

approval).  
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Sites consist of mostly smaller, seasonally-occupied locales to the west and village and 

“hamlet-like” settlements to the east. This pattern shifts westward through the 14
th
 

century, as noted by, among others, David Riddell (1998). In the ca. 1100-1300 CE 

period, a cluster of sites that geographically fall within the material transition between 

these two archaeological traditions have been documented in the Arkona, Ontario area 

(Ferris 2018). While there is some indication of a local settlement in the area by 1000 CE 

(Cunningham 2001), there remains a notable absence of sites in this area after 1300. 

While preliminary analysis of the material culture from the Arkona Cluster has been 

attributed to the Western Basin Tradition due to ceramic styles and mortuary patterns, 

some Arkona Cluster sites also exhibited settlement patterning and ceramic attributes 

more typically associated with Ontario Late Woodland groups to the east (Ferris 2018; 

Spence and George 2018; St. John and Ferris 2019; see also Archaeologix Inc. 1998, 

2005, Golder 2012a, 2012b). A total of 10 archaeological sites were subject to Stage 

4CRM archaeological mitigation strategies between 1998 and 2008, seven of which 

contributed ceramic vessels for my micro-CT analysis. The sites include a range of 

different settlement patterns, including sites consisting of small clusters of storage pit 

features, and sites with more complex settlement patterns including houses and palisades 

(Figure 2.2).  

A brief overview of the variable settlement patterns found at the Arkona sites sampled for 

micro-CT analysis follows. 

At the Van Bree site (AgHk-32), there was an incomplete house structure, along with 

westerly, central and easterly pit feature clusters (Archaeologix 1998:47; Cunningham 

2001). 

At Bingo Pit Location 3 (AgHk-40) two house structures were inferred based on limited 

post mould and pit patterning, and presence of hearths (Archaeologix 2005). 
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Figure 2.2: Arkona site cluster, southwestern Ontario. This map depicts the cluster of 

Late Woodland sites excavated in the Arkona area. Inset are settlement plans for the two 

larger sites excavated from this cluster. Originally published in Ferris 2018, from 

Christopher Watts; used with permission. 

 

The Figura site (AgHk-52) excavations revealed a 0.5 hectare, single palisade village 

with five small houses and an associated midden (Golder 2012a:53; Gostick 2017). 

Exploration of the pit features on the site revealed that few of them were overlapping, 

suggesting that the site was occupied for a relatively short period of time and not 

repeatedly (Gostick 2017:104). The settlement pattern at Figura, with a palisade and 

several houses, was one that was not previously thought to be typical of Younge Phase 

Western Basin Tradition sites (Murphy and Ferris 1991:244). 
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The Inland West Location 3 site (AgHk-54), which was located immediately to the south 

of the Figura site, consisted of a number of features arranged in three clusters (Golder 

2012a:79). At least one of the feature clusters was interpreted as evidence of a longhouse 

structure present on the site (Suko 2017a). 

Inland West Location 9 (AgHk-58) was partially excavated. Excavations revealed a 

possible single row of palisade encompassing a range of feature clusters and limited 

structural remains (Golder 2012a), that may suggest a village-like settlement pattern. 

Excavations at Inland West Location 6 (AgHk-56) revealed only 3 features and no 

substantial settlement pattern (Golder 2012a). 

Located in close proximity to Bingo Pit Locations 3 and 5, about 1.5 km from Figura and 

the other Inland West sites, the Bingo Pit village (AgHk-42) was dramatically different 

from other sites excavated at Arkona (see Figure 2.2). Excavations revealed a triple 

palisaded village, with four house structures surrounding a central plaza area that was 

marked by heavily overlapping pit clusters (Golder 2012b). The feature overlapping 

suggests intensive use of the area, through a suite of radiocarbon dates for the site  also 

suggests the period of occupation of the site was relatively brief and occurred near the 

end of the Arkona Cluster occupation (Neal Ferris, personal communication 2019; also 

see Figure 2.3). There were also 13 burials on this site, which were reinterred by the 

Kettle and Stony Point First Nation (Spence and George 2017).  

While radiocarbon dates from the Van Bree site suggest initial Late Woodland settlement 

of the Arkona area occurred in the eleventh-century CE (Cunningham 2001), the wide 

suite of radiocarbon dates from most of the sites used in this study point to a late twelfth-

century through late thirteenth-century period of overlapping or sequential site 

occupations (Figure 2.3). Two radiocarbon dates from Van Bree provided calibrated 

dates of 1029 and 1038 CE (Cunningham 2001). The seven Bingo site dates suggest it 

was occupied sometime between 1220-1260 CE, and for Figura the greatest probability 

for the six dates falls between 1210-1230 CE (Neal Ferris personal communication 

2020). One date from Location 3 yielded an AMS date of 800 ±30 BP, calibrated to a 

range of 1200-1270 CE (Suko 2017b:239). The remainder of the dates from the other 
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sites also fall into the Bingo range, but with the Bingo site falling at the more recent end 

of the sequence. Over the approximately 270 years of occupation at the Arkona Cluster 

there were probably somewhere between ten to 14 generations of potters at work (Weiss 

1979). However, all the sites excluding Van Bree fall into a roughly 50-70 year time 

period from the early to mid-13
th

 century, meaning most of  the pots in the cluster were 

produced by between three to five generations of potters. These unique settlement 

patterns, extensive collections of artifacts, and their location on a material borderland 

between Western Basin and Ontario Late Woodland Traditions have led to the Arkona 

Cluster becoming the focus of a growing group of researchers examining Arkona 

settlement patterns and material expressions (Ferris 2018).  

 

Figure 2.3: Ferris (personal communication 2019), reports that, to date, 19 dates (17 

AMS, 2 conventional) were run on carbonized botanicals from six of the Arkona Cluster 

sites. A preliminary sorting of those dates using Sheffield University’s BCal program 

(https://bcal.shef.ac.uk/) suggested a relative chronological ordering of those sites. Given 

the variable number of dates obtained for each site, this ordering is tentative. Note: IA or 

“Inland Aggregate” is referred to as “Inland West” throughout this study.  

ca. 1260 

ca. 1020 

https://bcal.shef.ac.uk/
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 Research by Gostick (2017) on the Figura site explored the features and spatial 

patterning of features documented from this site. That research found that the 

characteristics of these pit features, when considered in context, can help to both reveal 

individual moments of daily life in a community and relate to spatial patterning over the 

entire life of a site. Another study on the ceramic and stone smoking pipes by McCartney 

(2018) from the Arkona Cluster explored how these pipes acted as a material expression 

of different communities of practice on this borderland. Further, pipe use, manufacture 

and discard varied from site to site at the Arkona Cluster, suggesting multiple distinct 

communities of practice were making pipes within this cluster of sites (McCartney 

2018:104). Other studies have focused on floral and faunal patterns across the cluster, or 

as part of broader Late Woodland studies for southwestern Ontario (Armstrong 2013; 

Foreman 2011; Morris 2015). 

Ceramics have been one of the main foci for researchers examining both differences 

between Western Basin and Ontario Late Woodland Traditions more widely (Murphy 

and Ferris 1990), and at the Arkona Cluster. Cunningham (1999, 2001) conducted an 

intra-site analysis of the Van Bree site ceramics, arguing that the assemblage included 

both Western Basin and Ontario Late Woodland vessels. This research relied on cross-

mends (fitting pieces of ceramic together found from differing contexts) and feature 

clusters to suggest these ceramics were produced by potters expressing these two distinct 

ceramic Traditions (Cunningham 2001:3). Cunningham (2001:3) proposed that 

decorative variety did not correspond necessarily with ethnicity, but rather reflected 

processes such as the scale, frequency, and social context of ceramic production. Results 

indicated  that when production is taking place on a “cultural borderland,” the recognition 

that “others do things differently” results in normal practices being recognized as 

something culturally unique, though both groups in this case were influenced by each 

other and ethnicity does not appear to have been highly structured, typical of a borderland 

situation (Cunningham 2001:13). 

More recently, Watts’ (2006, 2008) study focused on ceramics from sites both east and 

west of the Arkona area, and also included the ceramics from the Van Bree site. Watts 

found distinct practices related to vessel production and shape, which indicated that 
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potters from all sites tended to work from an intuitive understanding of “proper” design 

(2006:195-196). Watts also noted that decorative practices and symmetry for the Western 

Basin Tradition were not as firmly adhered to as he found within Ontario Late Woodland 

Tradition pottery (ibid). Watts (2006:7-8) suggested that Ontario Late Woodland 

Tradition potters expressed a fairly “well-knit” design repertoire; a unified design scheme 

and core elements of both form and decoration, which was internalized by potters at a 

pan-regional level. Potters producing Western Basin Tradition pots used more diversity in 

their pottery in terms of its morphology, decoration and patterns of symmetry that may 

reflect a community identity (Watts 2006:7-8). Murphy and Ferris (1990:201) also noted 

that “a wide range of vessel forms, sizes and decorative motifs” are present on Western 

Basin Tradition ceramics.  

Watts examined how the qualities of form and decoration in pottery can be seen to have 

channeled artisanal practices that were enacted on a day-to-day basis, which contributed 

to either a continuance or alteration of structure (2006:3). Watts employed a 

phenomenological approach, emphasizing that it is through physical engagement of the 

human body with things that we come to know the world, focusing on the processes that 

go into making a pot and are scheduled across daily living (Watts 2006:5-6). Watts’ 

(2006:37) solution to examining material culture amongst conflicting definitions of 

“style” in archaeology was to conceive of artifacts as embedded co-habitants in networks 

of social thoughts and actions, not just as signs of behavior or holders of meaning;   

parting from the notion that craft traditions are equal to “ethnic” or cultural norms (62-

63). 

Watts’ (2006, 2008) work has greatly influenced subsequent studies undertaken by 

researchers exploring the ceramics of the Arkona Cluster (e.g. Suko 2017a). Suko’s 

research focused on Location 3 of the Inland West sites investigated by the consultant 

archaeologists. Suko’s analysis of the ceramics from that site also found potters engaging 

with both westerly and easterly ceramic practices, notably that potters applied Ontario 

Late Woodland Tradition elements within a Western Basin Tradition potter’s sensibility.  
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Overall, previous research has suggested the presence of fixed, semi-permanent or 

permanent settlements thought to be typical of Early Ontario Late Woodland Tradition 

settlements (Williamson 1990:318-319), and the more informal, short term settlements 

typical of Western Basin Tradition settlements (Murphy and Ferris 1990:261) may have 

been partly responsible for the heterogeneity in ceramic attributes between and within 

Western Basin Tradition sites, and the relative design homogeneity of Ontario Late 

Woodland Tradition ceramics (Retter 2001; Watts 2006). It may be the case that potters 

working within the Ontario Late Woodland Tradition shared knowledge and passed down 

a more delimited set of ceramic attributes through a day-to-day production within a 

longhouse-oriented setting of permanence and stability (Watts 2006:100). Potters making 

pots that fall within the Western Basin Tradition may have differently made ceramics at 

regular intervals and at certain times of the year, but probably at a smaller scale and 

without a fixed social context; allowing for more experimentation and lessening the 

durability of designs (Cunningham 2001:14; Watts 2006:101). People producing Western 

Basin Tradition materials were probably loosely allied groups that gathered irregularly 

(Murphy and Ferris 1990:270). All of these patterns emerge in ceramic products as they 

are examined by the archaeologist, and these patterns can lead to a greater understanding 

of the social contexts of production (Watts 2006:209).  

Archaeologists working in the Arkona Cluster have shown that a borderlands perspective 

is extremely useful for interpreting the complexity of material remains that cannot be 

easily slotted into either Western Basin or Ontario Late Woodland Traditions (St. John 

and Ferris 2019). Work on the Arkona Cluster of sites highlights the problems of tying 

material differences to normative constructs and cultural-historical typologies that have 

assumed ethno-linguistic affiliations. Research indicates that pottery design elements 

were the result of the unique positioning of the potters in their communities and had more 

to do with the circumstances of potting as part of their daily lives, and the communities of 

practice in which they belonged, than the ethnicity of the potters.  

If we think of the activity of potting as an ongoing interaction between potter and 

materials, as Watts and Suko suggest we do in our approach to the Arkona assemblages 

(Suko 2017a:25; Watts 2009), then this interaction can be best understood by studying 
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material traces that are left by this dynamic interaction and social process. This material 

borderland cluster of sites serves as an excellent example of how material culture, in 

particular ceramic material, has been instrumental in examining the materiality of 

ceramic making in place and time. Negotiations and choices made by individual artisans 

or communities of artisans living and practicing within a specific time and place, would 

have had to have “made sense” to individuals and communities (St. John and Ferris 

2019). Recognizing the fluidity of borders and the arbitrary nature of lines drawn around 

archaeological material traditions, as the archaeology of the  Arkona Cluster requires of 

us, may allow us to explore identities and cultural norms that may have been developed, 

maintained, and revised through practice, not inscribed on, or proscribed by, the material 

(Jones 1997; St. John and Ferris 2019).  

2.7 Summary 

Understanding communities of potters and individuals (analytical or otherwise) who were 

making ceramic vessels in the early Late Woodland period in southern Ontario is 

advancing away from normative tendencies of classifying and typing objects. Micro-CT 

analysis has the potential to enable us to look at potters and potting, including primary 

formation techniques, in a way that has not been done before. This method gives us a 

unique perspective on the types of ceramic features that can help to explore manufacture 

without the necessity of destructive thin sectioning (Cheng 2012; Braun 2012, 2015; 

Howie 2012). Morphology and the motor performance gestures associated with ceramic 

formation are not as likely to be subject to the kinds of discursive manipulation 

decorative motifs are, because they are grounded in the unconscious and are more slow to 

change over a few generations of potters (Creese 2012; Michelaki 2007: 159; Martelle 

2002:124; Watts 2006:195). There are differences between forming methods but also 

within them, determined by the particular gestures and motor habits of a potter 

(Michelaki 2007:160). This subtle variation is something that may be seen more readily 

through micro-CT scans than through any other technique, since internal structures are 

telling of formation processes (Berg 2008; Carr 1990). Researchers in Ontario have 

begun to examine Woodland ceramic formation methods, but they focus on 
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microstylistics, or aspects such as form, decorative techniques and external attributes 

such as symmetry, not the interior architecture of ceramics. 

This micro-CT analysis is the first study in Ontario to examine not just the macroscopic 

properties of ancient vessel manufacture, but the interior of pottery with the intent of 

recognizing how these vessels were formed, and the choices potters made in that process 

of production. Production studies have brought about a new way to look at style and 

ceramic material expression, and can change the way we think about ceramics, 

considering the activity of pottery making, not just the attributes of pottery, in the Ontario 

Late Woodland. 

This shift in focus applies specifically to ceramics in the early Late Woodland. Ceramic 

manufacture and decorative concepts were shared broadly across regions. These practices 

were also constantly being modified, redefined, and understood locally by individual 

potters (Curtis 2014:188). Broad ceramic innovations were not isolated to one small 

group, but tended to be circulated throughout southern Ontario and the Great Lakes 

through this time and across intense interregional interaction (e.g., Jamieson 1999; 

Nassaney and Sassaman 1995). These innovations became incorporated into or left out of 

local production through the “agency of communities of potters” (Curtis 2014:188). 

The ceramics from the Arkona Cluster are an ideal test case for exploring the strengths of 

micro-CT for providing new insight into potters and pottery making from archaeological 

ceramics. These ceramics are also ideally situated to explore the implications of assumed 

differences between Ontario Late Woodland and Western Basin Tradition ceramic 

expression. Using micro-CT analysis to research the ceramic production methods—how 

the clay was mixed, manipulated, and formed into vessels by potters—in this Arkona 

borderland can speak to past research that has emphasized a blending of practices and 

knowledge traditions here (St. John and Ferris 2018). The insights from micro-CT 

analysis of these ceramics will reveal a community of local artisans intentionally 

engaging with and manipulating ceramic expression from these two traditions (Suko 

2017a). By furthering research on this cluster of borderland sites I contribute to moving 

archaeology in Ontario away from equating ceramics with “ethnic” groups and cultural-
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historical norms, and towards an understanding that accounts for fluidity, variations in 

expression, communities of practice, and contributes to a larger discussion around what 

“material traditions” mean (St. John and Ferris 2019).   
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Chapter 3  

3 Archaeological Approaches to Ceramic Vessel 
Manufacture 

As long as archaeologists have been investigating ceramics, they have struggled to 

recognize how pots were made. Focus on ceramic manufacture has been limited by the 

techniques available to, and the practices of, archaeologists, because most traces of 

earlier stages of manufacture are either wiped away or covered over with decorative 

elements in the finishing stages of vessel making. As such, the focus of most ceramic 

analysis to date has been on the visible exterior attributes of ceramics and how they might 

allow for temporal, spatial and cultural associations.  By allowing us access to interior 

elements of ceramics, micro-CT studies can supplement limited understanding of how 

pots were made in the past in Ontario. This chapter offers a summary of the different 

approaches archaeologists have used for accessing ceramic manufacture, including 

macroscopic examination, petrography, other archaeometric approaches, and X-

radiography.  

3.1 Macroscopic Examination 

Macroscopic visual examination, which allows archaeologists to classify and compare  

assemblages has long been the default means of exploring archaeological ceramics. These 

techniques ae used to access everything from exterior decorative attributes, the 

morphology of the vessel or vessel parts, to attributes of manufacture visible on exterior 

surfaces of ceramic sherds (e.g., Courty and Roux 1995; Livingstone Smith et al. 2005; 

Rice 1987, Rye 1981). Some archaeologists have started to use technologies such as 3D 

scanning (Karasik and Smilansky 2008; Koutsoudis et al. 2009) as a method of ceramic 

analysis, as a replacement for time-consuming illustration procedures, and as a way to 

disseminate information.  

I will not delve into notions of ceramic “style” here,  as it has been discussed at length 

elsewhere (e.g.,  Conkey and Hastorf 1990; Hegmon 1995). Archaeologists have 

traditionally turned to stylistic elements of pottery to locate cultural meanings and 
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distinctions of style, especially technological style (Dietler and Herbich 1989; Hegmon 

1998; Hodder 1982, 1985, 1990; Plog 1980; Sackett 1977, 1986; Sassaman 1998; 

Sideroff 2005:41-42). Ceramic style has been explored as a way of transmitting 

information (Wobst 1977), or emblematic messages (Wiessner 1983, 1990). Lechtman 

(1977), and others (e.g. Braun 2010, 2012, 2015) have since began to study technical 

practices as not just survival and adaptation strategies, but as symbolically meaningful, 

developing notions of technological style. These practices were not just environmental 

but cultural choices that actively involved artisans and arose as the result of interaction 

between communities (Deetz 1965; Hill 1970; Longacre 1970).  

Traditionally, in regional contexts like Ontario, pre-contact ceramic analysis has used 

visual examination to record different variables related to the form, function and stylistic 

characteristics of the pottery (e.g., MacNeish 1952; Ramsden 1977; Wright 1966). For 

much of the twentieth-century, archaeologists took a normative approach to ceramic 

studies, creating types that were assumed or asserted to be equated with social groups and 

cultures (e.g., MacNeish 1952; Ritchie and MacNeish 1949; Wright 1966, 1967). 

Archaeologists also described traits of ceramics and developed typologies and types 

based on ceramic styles and used these for chronology building. These early typologies 

allowed archaeologists to situate ceramics and sites in time and space, but said little if 

anything about the people and potters who were using and making pottery (Chilton 

1998). 

Most visual ceramic analyses in Ontario have fallen into two categories: qualitative 

typology or attribute-based systems of analysis and classification. While not all attribute 

analyses are used in this way, inventories of types and attributes have been used to as a 

material proxy for signaling “ethnicity” and linguistic affiliation both in the past 

(MacNeish 1952; Ritchie and MacNeish 1949; Wright 1966, 1967), and continue to be 

used this way in Ontario archaeology (e.g., Cunningham 2001; Hart 2012; Hart and 

Engelbrecht 2012:345; Hart et al. 2016; Hart et al. 2017). These normative frameworks 

are sustained in Late Woodland research even when these constructs arguing ceramic 

decoration as signaling ethnicity conflicts with Indigenous-led research and 

understandings of the past (Gaudreau and Lesage 2016). In archaeological consulting 
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reports in Ontario, where ceramic decoration is one of the main factors used to determine 

affiliation for Woodland sites, MacNeish and Ritchie’s ceramic types from the 1950s still 

hold sway.  

Some attribute-based approaches are more sophisticated than others. As an example, 

Watts (2006) used the following attribute variables for data: which part of the pot is 

represented in the sherd examined, the profile of the sherd, castellation form, lip form, 

upper rim form, lip thickness, collar height, basal collar thickness, surface modification, 

decorative completeness, inferred tool used to make the decoration, decoration technique, 

motif, and symmetry of the decoration.  This extensive study  described each of these 

attributes and the percentages for each across the site assemblage studied, then ran a 

correspondence analysis between assemblages (Watts 2006:229), to offer observations 

about the similarities and differences of these visibly observed ceramic traits between site 

collections. Many attribute approaches, and most type-based approaches, stop at this 

point and use this data to affiliate archaeological sites with archaeological traditions in 

time and space, or more problematically to determine the ethnicity or linguistic affiliation 

of the pots.  

However, Watts (2006:3) went further and examined how qualities of form and 

decoration in pottery can be seen to channel artisanal practices enacted on a day-to-day 

basis, and which contribute to either a continuance or alteration of structure. He 

employed a phenomenological approach, emphasizing that it is through the physical 

engagement of the human body with things that we come to know the world (Watts 

2006:5-6). In this way, this research departs from the notion that craft traditions are equal 

to “ethnic” or cultural norms, (Watts 2006:62-63), which is so widespread in Ontario 

ceramic analysis.  

Many archaeologists conducting visual examinations will look for evidence of the 

method of manufacture, and various stages of forming or finishing at a vessel- or sherd- 

level of analysis within assemblages. This evidence can include visible coil breaks and 

cracks where rims were folded over, or evidence of paddle and anvil manufacture, 

through secondary forming techniques can obscure these on the exterior of vessels (e.g., 
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Mather 2015; Martelle 2002; Rye 1981). Macroscopic analysis, while valuable for 

describing morphological and decorative attributes on the exterior surfaces of pots, is 

typically only able to minimally comment on the manufacturing techniques and the 

overall production process followed by potters.   

While visual examination is a vital, excellent starting point for ceramic analysis, my 

research is not focused on placing ceramic assemblages in time and space, or determining 

cultural affiliations without considering how potters were making pots. Analytical 

techniques from micro-CT scans that focus on how potters were interacting with their 

materials and each other in a community of practice is much more the primary aim of this 

research.  

3.2 Petrography 

By the late twentieth-century, micro-analyses and material science approaches to ceramic 

studies have come to augment and further advance research from macro visual analysis. 

In particular, petrography has long been recognized as a valuable, micro-analytical way 

to study archaeological materials (Worley 2009), and many archaeologists are engaged in 

ceramic petrography today. Primarily research is based on the analysis of 2D thin 

sections taken from ceramic sherds. Petrography requires destructive methods to obtain a 

useable thin-section (Bishop et al. 1982; Freestone 1995; Neff 1992; Bishop et al. 1982; 

Reedy 1994, 2008; Rice 1987). In particular, to create a thin-section, a sliver of pottery is 

cut from a larger sherd or vessel, encased in epoxy, and ground so that the specimen is 

flat. It is then mounted on a glass slide and polished so that it can be viewed under a 

microscope between two polarizing filters. Different minerals have different light 

polarizing properties and can be identified in this way (Rice 1987:379-381). Ceramic 

petrography is mostly undertaken on coarse low-fired utilitarian wares from 

archaeological assemblages. It is not as commonly used in North America as in Europe. 

Still, a recent interest in technology, craft traditions, identity and knowledge transmission 

has created an increase in the application of this form of analysis in North American 

contexts (Quinn 2013; Reedy 2008).   

http://en.wikipedia.org/wiki/Microscope_slide
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While Stoltman (1989, 1991) and Braun (2012), in earlier work, used a point-counting 

technique derived from geology to describe vessel clay matrices, inclusions, and voids 

visible in prepared thin sections, most petrographers tend to rely on a descriptive 

technique derived from both sedimentary petrography and soil morphology developed by 

Whitbread (1995; see for example Howie 2012; Quinn 2013; Quinn and Burton 2009; 

Teconi et al. 2013; Whitbread and Mari 2014), or an approach that combines elements of 

both methods (Braun 2015).    

Petrographic studies can answer a number of questions relating to ceramics. The main 

aims are compositional characterization and classification, interpretation of provenance, 

and reconstruction of ceramic technology (Quinn 2013:4-5; Reedy 2008; Riederer 2004). 

Primarily though, it has been used to examine provenance: to source the material origins 

of  clay, temper and natural inclusions in ceramic fabrics, in order to determine networks 

of exchange (e.g. Dickson et al. 2013; Maritan et al. 2009; Michelaki et al. 2012; Teconi 

et al. 2013; Thompson et al. 2008; Whitbread and Mari 2014). 

Some researchers have taken a more holistic approach to their findings, using ceramic 

petrography to also examine raw material processing, the intentional addition of temper, 

vessel forming techniques, and the degree of firing as choices made by artisans related to 

pottery production (e.g. Cheng 2012; Braun 2012, 2015; Day et al. 1999; Druc and Gwyn 

1998; Howie 2012; Pentedeka and Dimoula 2009; Quinn 2013; Quinn and Burton 2009; 

Thér 2015; van Doosselaere et al. 2014; Whitbread et al. 2007; Whitbread and Mari 

2014). Several studies use petrographic data to examine possible firing temperatures 

based on the vitrosity of ceramics or the minerals present (Quinn and Burton 2009; 

Teconi et al. 2013). Some petrographic studies (Braun 2015; Ixer and Vince 2009; Jorge 

2009) attempt to account for decisions made by potters in early stages of production, such 

as the choice to select easily recognizable mineral types or the use of fire-cracked rocks 

as temper. All of these technological choices seen through petrography reflect traditions 

of pottery making, suggesting that, “potting may say as much about the society as pots” 

(Kreiter et al. 2009:101).  
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Petrographers usually take one thin section per sample, although Quinn (2013:21-23) 

notes that more sections are better for interpreting forming or manufacturing techniques, 

and vertical sections are necessary, if petrographers want information for formation 

techniques as well as provenance data (Quinn 2013:23). Quinn and Burton (2009) 

examined micro-structural evidence for technological processes through the orientation 

of voids and inclusions with some success. Though one of the biggest proponents of 

examining forming and manufacture using thin sections, Quinn also notes that it is rare 

for thin sections to really show an alignment of inclusions (Quinn 2013:83). 

3.3 Other Archaeometric Techniques 

A diverse array of other archaeometric techniques can be used in conjunction with CT, 

X-radiography, petrography, and macroscopic examination. These include neutron 

activation analysis, X-ray diffraction, X-ray fluorescence, atomic absorption 

spectroscopy, Mossbauer spectroscopy, inductively coupled plasma mass spectrometry, 

and others. In materials science, such techniques fall into the category of characterization 

studies (Bronitsky 1986). They can inform us about the makeup of ceramic materials but 

do not typically add understanding to forming techniques. Archaeologists have been 

using these techniques since the pioneering work of Shepard (1995 [1956]; also see 

Matson 1952 for a review of earlier studies). These archaeometric techniques have been 

reviewed in detail elsewhere (e.g. Bishop et al. 1982; Goffer 1980; Harbottle 1982; 

Kilikoglou et al. 2002; Neff 1992; Peacock 1970; Wilson 1978). Of particular note are 

applications of backscattered scanning electron microscopy (SEM) in ceramic studies 

(e.g. Freestone and Middleton 1987; Froh 2004; Tite and Maniatis 1975; Tite et al. 1982). 

SEM is used in mineralogical investigations of archaeological problems, including the 

characterization and provenance of geological raw materials, as well as formation and 

post-depositional processes. 

3.4 X-radiography of Archaeological Ceramics 

X-radiation is a type of electromagnetic radiation that penetrates objects in reverse 

proportion to their atomic density. The energy is then captured as a greyscale image on a 

monitor or film in 2D (Berg 2011:57). Since its discovery in 1895 (Röntgen 1896), X-
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radiography has been used successfully to examine archaeological objects (see Lang and 

Middleton 2005 for a summary, and also Casali 2006; Morigi et al. 2010; Pantos 2005). 

X-radiography has been used for ceramic analysis by several archaeologists starting in 

the first half of the 20
th

 century (Digby 1948; Titterington 1933; see also Berg 2009; 

Carmichael 1990; 1998; Glanzman and Flemming 1986; Laneri 2011; Magrill and 

Middleton 2001, 2004; Maniatis et al. 1984; Nenk and Walker 1991; Vandiver 1987). 

Notable here were the contributions in the 1990s of Carr and colleagues who conducted 

studies using radiographic methods that advanced the field and revealed the utility of 

radiography for determining vessel formation techniques and the potential for 

petrographic studies (Carr 1990, 1993; Carr and Komorowski 1995; Carr and Riddick 

1990). 

X-radiography has been used for the characterization of clay fabrics for composition and 

provenance studies and for identifying sherd to vessel matches (Adan-Bayewitz and 

Wieder 1992; Berg 2008, 2011; Blakely et al. 1992; Braun 1982; Carr 1990, 1993; 

Ellingson et al. 1998; Foster 1985; Maniatis et al. 1984; Middleton 2005; Rye 1977, 

1981). There has also been extensive work seeking to identify primary forming 

techniques used in vessel construction (Berg 2008, 2009; Pierret et al. 1996; Rye 1977; 

Tite 1999), attachments of handles, spouts or straps (Digby 1948; Foster 1983; Leonard 

et al. 1993), and identification of repairs and breaks (Middleton 2005). X-radiography 

analyses were found to be unable to effectively identify more subtle secondary forming 

techniques and surface treatments on vessel exteriors (Berg 2011:57). The one exception 

might be the paddle and anvil technique that obliterates primary forming technique traces 

but leaves its own distinctive pattern of inclusions (Rye 1981).  

X-radiography can be easily used to identify the basic formation process of ceramic 

vessels. Tite (1999) suggested radiography could be used to explore formation techniques 

through void and inclusion orientation and to reveal joins between coils and slabs used to 

make a pot. Berg (2008) determined, using an experimental data set, that X-radiography 

could accurately determine the primary forming technique and in some cases secondary 

forming techniques, and that surface treatments had no effect on the X-radiographic 

visibility of the primary forming technique. The success of X-radiographic attempts to 
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identify temper visibility was mixed, however: the voids left by organic temper proved to 

be visible, but some minerals with similar radiodensities to clay, like sand and quartz, 

proved difficult to see (Berg 2008). Carr (1990) also outlined the potential of X-

radiography as a way to study hidden features (joins, voids and the size, type, density and 

orientation of inclusions) within ceramic materials, while Berg (2011) demonstrated the 

value of the technique to offer minute details such as coil height or hidden drying and 

firing cracks. Rye (1977) and others (Pierret and Moran 1996) have looked at X-rays to 

determine if the orientation of inclusions are related to the initial forming technique and 

found that even rather poor-quality images could provide information on of how vessels 

were formed based on void and inclusion orientation.  

Pinching, ring and coil-building, slab-building, drawing, moulding and wheel-throwing 

through elongated void and temper orientations were established by Rye (1977, 1981) 

and further discussed by Berg (2008). Carr (1993) used radiographs to reveal the internal 

traits that differed from vessel to vessel including: temper fractional volume, temper size, 

temper distribution, temper material, void spaces and fracture systems, and noted that 

different minerals exhibit a wide range of specific gravities and lightness compared to 

clay.  

Still other studies have suggested that X-radiography could be used to identify the 

mineralogy of temper and inclusions using traits similar to those used in petrography. For 

example, Carr and Komorowski (1995) conducted blind tests using X-radiographic 

techniques to identify minerals in a collection of 726 sherds of Ohio Woodland pottery. 

They found that people familiar with petrography could identify minerals from X-

radiographs at a 75-85% success rate. This study outlined the advantages of radiography 

over thin sectioning: crystal faces are visualized, more sherds can be tested because the 

analysis is non-destructive, and as such, interpretations can be made from a more 

representative sample. Other research suggests that, while size, morphology, number and 

angularity of crystal faces might point to specific types of inclusions, similar 

radiodensities and morphologies in temper (such as those of chert, quartz and sandstone) 

may prevent more precise identification than classing into felsic, mafic and opaque 

minerals (Berg 2011:57). Inclusions must be greater than 0.5mm in size to potentially be 
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identified, and as such mixed clays and grog, if they have differing densities, as well as 

organic inclusions such as straw, wood, insects, shell, and seeds, are recognizable (Berg 

2011; Day et al. 2006; Foster 1985). Middleton (2005) also pointed out the potential for 

interpreting radiographic densities of different particles to gain insight into their 

mineralogical identity.  

More recently, Alan Greene (2013) and colleagues (Greene et al. 2017) used X-

radiography to examine ceramics and developed protocols for both established and new 

archaeometric methods. They incorporated qualitative data (related to production 

methods) as well as quantitative data such as the size and density of inclusions and voids. 

Green and Hartley (2009) employed post-processing tools that take advantage of the 

metric matrix qualities of digital imagery. By using statistical manipulation and applying 

algorithmic filters, Green et al. (2017) were able to identify features and matrix patterns 

in greyscale that were imperceptible to the human eye. They were able to identify four 

types of ceramic sub-structures, including inclusions and voids. They recorded the shape, 

size and radiodensity of these structures using a custom software routine written in 

Interactive Data Language entitled “Sherd Image Viewer and Analysis.” While they 

found digital radiography data useful for basic understandings of ceramic manufacture, 

they acknowledge that it compresses the full sample into a 2D view, which conflates 

overlapping sub-structures and gives little sense of the depth of these features. They 

encourage future research into 3D techniques such as CT scanning, but advocated for the 

pre-screening of ceramics with inexpensive and fast X-ray techniques before CT analysis 

is undertaken. 

3.5 Summary 

Most analysis on Ontario Late Woodland ceramics (with a few exceptions, e.g., Cheng 

2012, Howie 2012, Braun 2012, 2015; Striker et al. 2018), and ceramics in general have 

been limited to examining macro exterior attributes. That approach to the analysis of 

ceramics served conventional archaeological classificatory and typological needs of 

practice through much of the twentieth century. More recently, the advent of material 

science studies on vessel manufacture, as well as on more nuanced theoretical 

frameworks for thinking about the craft of and artisans involved in manufacturing 
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vessels, have invited researchers to think differently about the place of vessels and 

ceramics in the material lifeways of communities and makers. Many of these techniques 

have been successful in exploring the materials that were used to make ceramics, as well 

as determining if ceramics were made locally or not.  

Most recently, X-radiographic analyses of ceramics have come to offer additional 

advantages to researchers. It is non-destructive. It can visualize larger sections of the 

sherd or vessel than other conventional microscopic methods and, as a result, provides 

more information on the orientation of voids and inclusions in the clay fabric and overall 

structure of the clay body (Laneri 2011). X-radiographic analyses can be completed 

relatively cheaply and quickly (Berg 2011:57; Greene et al. 2017). However, X-

radiography is best considered a complementary tool rather than a replacement for 

petrography and chemical analyses. In the examination of the characterization of fabrics, 

thin section analysis is considered better than traditional radiographs because of the 

greater magnification and the recognizable optical properties of minerals that are lost 

when represented in greyscale. Visual examination, petrography, X-radiography, and 

other material science techniques have added to our understanding of ceramic 

manufacture over time, but in Ontario archaeology there are still more assumptions than 

certainties. Micro-CT analysis has the potential to further advance our understandings of 

ceramics by building from these material science advancements.   
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Chapter 4  

4 The Use of Computed Tomography (CT) and Micro-
Computed Tomography in Archaeological Ceramic 
Analysis 

This chapter provides a summary of how computed tomography and micro-computed 

tomography have been used as research tools to advance a material science in 

archaeology, with a focus on ceramic analysis. Micro-CT and CT studies related to 

archaeological ceramics are reviewed based on their focus on either the manufacturing 

techniques used to build ceramics or the mineralogy of inclusions and temper. These two 

areas are the main contributions of micro-CT and CT ceramic analysis to date.  

4.1 Micro-CT and CT Analysis in Archaeology 

Though primarily used in bioarchaeological applications (e.g. Friedman et al. 2012; 

Kaick and Delorme 2005; Lieverse et al. 2017; Longato et al. 2015; Mays et al. 2014; 

McErlain et al. 2004; Morgan 2014; Nicklisch et al. 2012; Smith et al. 2016; Swanston et 

al. 2013; Wade et al. 2011; Xing et al. 2016), the use of micro-CT and CT analysis holds 

promise for most classes of archeological materials and is a rapidly growing field (e.g. 

Barron et al. 2017; Baum et al. 2017; Bettuzzi et al. 2015; Bertini et al. 2014; Bird et al. 

2008; Bradfield et al. 2016; Conlogue et al. 2010; Conlogue et al. 2020; Ellis et al. 2019; 

Makovicky et al. 2015; Miles et al. 2016; Morigi et al. 2010; Stelzner & Million 2015; 

Stelzner et al. 2016; Suda et al. 2017; Tuniz et al. 2013; Tuniz and Zanini 2014; Tourigny 

et al. 2016; VanLoon et al. 2019; Van der Linden et al. 2010). The range of applications 

in archaeology has quickly grown over the last decade and I offer here only a survey of 

the range of archaeology-related research that has emerged in recent years through CT 

and micro-CT imaging applications. 

Indeed, CT and micro-CT technology have a wide application across a diverse range of 

digital imaging science fields of research and industrial applications, and long history of 

development (see for example Boyd 2009; Hoffman and deBeer 2012; Hsieh 2009; 

Morgan 2014; Ritman 2004; Rudolph et al. 2012; Stock 1999, 2009). Other material 
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sciences fields have also begun using micro-CT and CT technologies, notably in 

meteorite studies (e.g. Griffin et al 2012; Hsu et al. 2008), and cultural heritage and 

museum studies (e.g. Able et al. 2011; Ball et al. 2011; Casali 2006; Séguin 1990).  For 

the purpose of this dissertation, I will focus more on the outcome and potentials of micro-

CT in archaeology generally, and in ceramic analysis, in particular, and how this 

application compares to other methods. 

Micro-CT is a non-invasive, high-resolution imaging technique (Boyd 2009:3; Conlogue 

et al. 2020; Stock 2009). The fundamental components of any CT system include an X-

ray source, the object stage, and the detector (Boyd 2009; Ritman 2004). The system used 

for this research is operated by Western University. It operates as an in vitro system, 

where the object is placed on a rotating stage, rather than in vivo where the source and 

detector are rotated (like most systems used in hospitals) (Boyd 2009:5; Hoffman & 

deBeer 2012; Figure 4.1).   

 

Figure 4.1: Components of in vitro micro-CT scanner system (after Stock 1999).  

 

Micro-CT technology provides high resolution digital X-ray 3D images of the interior 

and exterior of archaeological artifacts through non-destructive volume data collection of 

CT scans that can be sliced in any direction (Conlogue et al. 2020; Stock 2009). A flat-

panel detector eliminates the need for acquiring data slice by slice, thus allowing the 
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acquisition of fully volumetric images (Pan et al. 2008). Stock (2009) emphasizes the 

importance of collecting volumetric data using a filtered back projection algorithm, as 

opposed to single slices/projection images. The volumetric data is made up of voxels, 

which are 3D pixels (Conlogue et al. 2020). Micro-CT is generally defined as “an X-ray 

unit with a small focal spot paired with a high-resolution detector that can produce a 

volumetric scan with voxel sizes in the 1 µm to 50 µm range” (Conlogue et al. 2020:165). 

In this chapter I use “micro-CT” to refer specifically to studies using micro-CT units and 

“CT” to refer to studies using clinical systems. The digital images provided by both CT 

and micro-CT applications illustrate features inside the object, positioned in 3D, and 

provide information on internal structure and density (Boyd 2009; Landis and Keane 

2010).  

4.2 Micro-CT and CT of Archaeological Ceramics  

To date there has been limited application of CT and particularly micro-CT analysis of 

ceramics recovered from archaeological contexts. Studies undertaken include primarily 

preliminary projects, scanning small samples of three to ten ceramic sherds (e.g., Kahl & 

Ramminger 2012; Kahl et al. 2012; Machado et al. 2013; Machado et al. 2017; Sanger et 

al. 2013; Sobott et al. 2014), as well as a few larger scale studies of between 30-55 sherds 

(Kosastas et al. 2018; Sanger 2016; 2017). While most studies to date have been focused 

on manufacturing techniques (Kahl and Ramminger 2012; Kosastas et al. 2018; Machado 

et al. 2013; Sanger et al. 2013), some also explore inclusions in clay (Kahl and 

Ramminger 2012; Kahl et al. 2012; Machado et al. 2017; Sanger et al. 2013; Sobott et al. 

2014) and potentially determining provenance for the inclusions in clay. These studies 

have all recorded different variables and present findings in different ways, both 

qualitatively and quantitatively, as a result of the differing aims and technologies used in 

this research. Indeed, an initial hope for this research consisted of trying to establish a 

methodology for large scale ceramic scanning, and to determine which variables should 

be recorded and how best to analyze these in 3D. 

Studies that use clinical CT scanners for ceramic analysis are closely related to micro-CT 

studies in terms of techniques used and research foci. It is not surprising that these 

archaeological studies using CT and micro-CT are relatively recent, since CT scanning 
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was invented by Hounsfield in the 1970s (Bates et al. 2012; Hounsfield 1973; Kalender 

2006), and micro-CT scanning did not first emerge until the 1980s (Flannery et al. 1987). 

Most authors define micro-CT as CT that has results with at least 50-100μm of spatial 

resolution (Stock 2009:1), but others make the cut off for micro as “better than 1μm” 

(Landis and Keane 2010), or from 20μm-1μm (Ritman 2004:185). Though not as high in 

resolution as micro-CT or as widely used in ceramic studies as X-radiography, there have 

been studies that have used CT with success. Notably, CT scanning has been used to 

access bone fragments contained within ceramic cremation urns (Anderson and Fell 

1995; Harvig et al. 2012; Minozzi 2010), and to examine ceramic museum objects or 

pottery sherds (e.g. Applebaum and Applebaum 2005; Jacobson et al. 2011; Vandiver et 

al. 1991), or to characterize ceramic groups based on their attenuation values using dual 

energy CT scanning (McKenzie-Clark and Magnussen 2014).  

From this brief overview of micro-CT and CT studies, the potential of 3D imaging in 

ceramic analysis becomes evident. Multiple authors have emphasized the ability of CT 

scanning to provide valuable information non-destructively about formation techniques in 

ceramic materials without the overlap of structures seen in traditional radiography or the 

necessary destructive slicing of petrography (Applebaum and Applebaum 2005; Sobott et 

al. 2014). In sum, in the limited micro-CT and CT literature related to ceramics analysis 

all emphasize the value of seeing the whole exterior and interior of an archaeological 

object. Below I provide more detailed information across the range of studies that 

focused directly on archaeologically derived ceramics. 

4.2.1 CT Studies that Focus on Manufacture 

One of the largest CT ceramic studies published to date was conducted by Matthew 

Sanger (2016, 2017) on Late Archaic ceramics from the American Southeast. The study 

used radiography and computed tomography to explore these earliest ceramics from the 

region to see if insights into manufacture could aid in understanding past communities. 

Sanger (2016: 588) examined what he referred to as “micro techniques” and 

technological “fingerprints” to explore diversity in potting. Sanger also scanned 

experimental vessels and ceramic tiles in order to discover what different techniques look 

like within radiographic imaging. Sanger selected 316 archaeological sherds for analysis, 
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however only 55 3D models were created. The other 261 examples were 2D modelled 

and viewed in 3D in real-time, while in the machine. Sanger’s (2016:592) work focused 

on determining the directionality of aplastics and voids as well as characterizing 

disjunctures and layering on both vertical and horizontal axis. Voids in Sanger’s 

(2016:595-6) sample were determined to have been left by vegetal temper and were 

easily characterized in image analysis. Use of radiographic techniques also showed the 

non-random distribution of formation techniques from the two archaeological sites 

sampled, potentially indicating differing potting communities. Further work led Sanger 

(2017:103) to argue that the formation, techno-functional and decorative attributes of 

vessels possibly correlated between formation techniques and decorative elements, which 

he sorted into four distinct groups. These groups appear non-randomly at the two sites 

Sanger (2017) sampled, suggesting differing communities of potters and social groups 

represented by differing ways of making pots.  

An earlier study led by Sanger (Sanger et al. 2013:830) examined a sample of 10 fibre 

tempered ceramics to identify possible manufacturing techniques. That work used ImageJ 

software to identify the qualitative traits in ceramic vessel interiors, including the 

presence and alignment of voids, the spatial arrangement of fabric and temper, and the 

recognition of the constituent components of the fabric. They also undertook 

quantification of inclusions in terms of volume, shape, diversity and distribution (Sanger 

et al 2013:831). They also examined the possibility of void angularity as a determinant of 

vessel construction techniques and identified layers of clay. Similarly, in a preliminary 

study, four samples of ceramics from the Macacú Archeological Site, located in Itaboraí, 

Rio de Janeiro, were analyzed by Machado and colleagues (2013). They examined the 

manufacturing techniques of these archaeological ceramic pieces as interpreted by the 

direction of pores or voids. 

Sobott and colleagues (2014) scanned three macroscopically different ceramic sherds 

from varying archaeological contexts, and compared micro-CT to X-ray 

diffractomometry and energy dispersive X-ray fluorescence spectroscopy as methods to 

use for examining porosity. They found that it was difficult to obtain accurate 

percentages of matrix and porosity density in micro-CT analysis but noted that the 
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strength of micro-CT lay in the presentation of 3D images indicating the orientation of 

pores and not necessarily quantification of voids and inclusions.   

Kahl and Ramminger (2012) used high resolution X-ray micro-CT to scan five ceramic 

fragments from an Endmesolithic-Neolithic site in Northern Germany. This proof of 

concept study outlined how micro-CT scanning could be used for quantification and 

shape analysis of ceramic vessel fabric components that could allow for quantitative and 

qualitative analysis of different temper materials and voids, to study vessel forming 

techniques. They suggested that the distribution analysis of heavy minerals in the clay 

matrix may allow for the identification of clay sources without destructive techniques. 

They were also able to determine the nature of organic temper by the shape of the voids 

left in the ceramic. They compared the results of 2D slices and 3D images in determining 

percentages of temper in a sherd, and illustrated the impact of sampling position in thin 

section selection.  

More recently, Kosastas and colleagues (Kosastas et al. 2018) used micro-CT analyses to 

examine primary forming techniques in a Middle Neolithic pottery assemblage from the 

archaeological site of Sesklo in Greece. They used micro-CT to allow for the detection 

and measurement of coils, slabs and other construction units and joins, as well as the 

orientation of voids and inclusions. Beyond just primary forming techniques, they 

recognized the potential for micro-CT to identify “even the most individualized craft 

behaviors” (Kosastas et al. 2018:104). They analyzed a sample of 33 potsherds from 

House A of Sesko B, in which five vessel shapes were represented. This study began to 

establish protocols for describing ceramic fabric’s features (morphology of the 

construction units, morphology of joins, and orientation of voids and inclusions) and how 

these relate to ceramic forming operations (Kostasas et al. 2018:104). By looking at the 

morphology of the construction units (slabs, coils etc.) and the morphology of the joins 

(noting differences between undulate and smooth joins and whether those were smooth or 

rough) between construction units, they were able to tease out different steps in the 

chaîne opératoire of ceramic making (Kostasas et al. 2018:107-108). They also examined 

the orientation of voids and inclusions, and found that these could vary between regions 

of a vessel, responding to quite localized pressure potters exerted while potting (Kostasas 
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et al. 2018: 109-110). They observed coiling, slab-building and moulding, and variations 

within these categories, and were able to illustrate how these were differentially used on 

different vessel forms and across different regions of the vessels (2018:110-111). 

Techniques varied within vessels, and even within one region of a vessel. They found a 

“technological pluralism” in the ceramics, indicating a “plethora of potters” formed 

technically distinct pots (Kostasas et al. 2018:115).  

4.2.2 CT Studies that Focus on Minerology and 3D Petrography 

As discussed in Chapter 3, X-radiography analyses of archaeological ceramics, amongst a 

range of other applications, have been employed in attempts to image, identify and source 

mineralogy of temper inclusions in vessel fabrics (e.g., Carr and Komorowski 1995;  

McKenzie‐Clark and Magnussen 2013; Middleton 2005:82-83). While micro-CT 

scanning has the potential to be used for this kind of analysis, preliminary studies have 

concentrated on vegetative fibre temper and only mentioned the potential to recognize 

mineral temper in passing  (Kahl and Ramminger 2012; Latini et al. 2013; Sanger et al. 

2013; Sanger 2017).  

Several authors note that the use of 2D images, including petrographs, of vessel fabric 

interiors to classify the size, shape, distribution and frequency of inclusions in ceramics is 

limited, because of the sampling bias inherent by only looking at one slice of a sherd 

(Adan-Bayewitz and Wieder 1992; Applebaum and Applebaum 2005; Jacboson et al. 

2011).  Traditional X-radiography confounds wall thickness and density in ceramic 

sherds by collapsing 3D structures into a 2D image (Pierret et al. 1996). Kahl and 

Ramminger’s (2012:2212) research illustrated the advantages of 3D over 2D images in 

determining the percentages of temper in a sherd.  Moreover, a CT scan versus a 

radiograph offers greater access to otherwise obscured data; since CT scans provide 

images of the crystal faces of temper or inclusions (Sanger et al. 2013:837). Further 

advantages micro-CT scanning offers include the use of software to provide filtering, and 

the ability to select images on any plane (Applebaum and Applebaum 2005). However, 

magnification of x25, x40, x100 and up to x400 for small inclusions can be used in thin 

section petrography (Quinn 2013),  geometric magnification on the images resulting from 

micro-CT scans of ceramics are generally not as high as thin section magnification 



66 

 

Using micro-CT, researchers are able to non-destructively gain information on internal 

structure: the proportions, spatial distribution and relative orientation of components 

(Griffin et al. 2012). These factors are essential in the study of archaeological ceramics, 

and the non-invasive nature of micro-CT allows for examination of specimens that have 

previously been off-limits in many scientific fields. More broadly, micro-CT is also being 

used to scan geological samples at the University of Texas High Resolution X-ray CT 

Facility (UTCT 2013). This research has the potential to contribute to an understanding 

of 3D ceramic petrology because they are scanning materials that are often included in 

ceramics as temper or inclusions. At high or low energies, different minerals have 

different attenuation coefficients and can be differentiated through setting adjustments. 

For example, quartz and orthoclase feldspar are similar in mass density and have similar 

attenuation coefficients at high (around and above 125kV) energy while at low energy the 

high Z-potassium in the orthoclase causes them to attenuate differently (UTCT 2013). 

The XCOM photon cross-section database managed by NIST (National Institute of 

Standards and Technology) provides attenuation coefficients that may be used as a 

starting point for determining these values (Berger et al. 2011). Knowing these 

attenuation values for different minerals may aid in identifying the mineralogy of temper 

and inclusions within ceramic sherds as revealed through micro-CT scanning. With such 

dual-energy techniques, we may be able to differentiate between a greater number of 

minerals (Friedman et al. 2012; McKenzie-Clark and Magnussen 2014). And, as noted 

previously, micro-CT has already proven useful for visualizing and even identifying plant 

species used by potters based on voids left by vegetative fibre temper, and also the 

presence of human hair in ceramic sherds (Kahl and Ramminger 2012; Sanger et al. 

2013).  

The potential and limitations of applying micro-CT-based analyses to ceramic 

petrography are not yet fully understood. It has not been used as a complementary 

approach to archaeological ceramic petrographic analysis and it only just beginning to be 

used in other fields. We may be able to answer some of the same questions as those posed 

through destructive 2D petrography, but research needs to include ground truthing the 

information gained from 3D scans with 2D petrography (Linda Howie, personal 

communication 2013; Phil McCausland, personal communication 2013). I do not think 
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micro-CT analysis will be able to examine clay mixing in the same way as ceramic 

petrography since most of the identification of different clays is based on colour and 

reflective properties (Quinn 2013), and most types of clay have a similar density to one 

another. Micro-CT analysis is likely more suited to examining voids and inclusions, 

rather than the clay matrix itself, since micro-CT presents density differences in 

greyscale. It is also possible that many inclusions typical of Ontario ceramics may have 

densities that are too close to be separated based on greyscale values, although dual-

energy techniques may address this problem in the future.  

There is promise for 3D petrography in the field of soil science where micro CT has been 

used to study bulk radio densities, aggregate densities and the spatial variability of soil 

structures (Tiana et al. 2008; Winstone et al. 2019). Studies of soil structure, examining 

the nature, shape and arrangement of dominant mineral grains in soil (Tiana et al. 2008) 

may inform 3D petrographic studies of ceramics in the future. Various studies in soil 

science have used different methods: scanning at low energy levels (Carlson et al. 2003; 

Ruiz de Argandoña et al. 2003), combining scans from varying energy levels (Van Geet 

et al. 2000; Ketcham 2005) or simply examining the attenuation levels of given minerals 

at different energy levels (Heck and Elliot 2006), to differentiate and identify mineral 

grains in soils. However, no standard methods or guidelines have been developed (Tiana 

et al. 2008).  

Temper choices can be seen as a technological trend in pottery production and can be 

linked to functional differences in pottery (Carr 1990); although there is not always a link 

between temper type and vessel type (Dickson et al. 2013). Braun (2012:1) argued 

temper size and mineralogy is also determined “through the negotiation of various 

constraints” including tradition, social organization, intended function and the availability 

of raw materials, and may also be related to access to resources (Roddick and Klarich 

2013) . Howie (2012) also used petrographic techniques to examine the choices that 

potters were making and linked these to local and non-local traditions. Indeed, temper 

additions to clay body is the additive of an ingredient within artisan production recipes, 

so it may be possible to determine through temper size and mineralogy, as revealed 
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through CT scans, what sort of choices potters were making in the early preparation stage 

of production. 

4.3 Summary 

Previous studies using micro-CT and CT to study archaeological ceramics have 

underscored the strength of these methods for revealing ceramic manufacturing 

techniques, and otherwise earlier stages in vessel production, and the potential for future 

work in mineral identification and 3D petrography. These studies use of CT and micro-

CT technologies to examine ceramics allows archaeologists to see elements of the 

manufacturing process that cannot be viewed through macroscopic exterior examinations 

and that could only previously be seen through destructive petrographic work. Almost all 

of these previous studies suggest that the real strength of micro-CT analysis is the ability 

to see the orientation and shape of voids and not in the quantification or identification of 

various components of the ceramic matrix. Void shape and structure relate to choices 

potters were making when they were manipulating clay to form a pot; choices that relate 

to the communities of practice artisans were participating in.  
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Chapter 5  

5 Micro-CT Methods and Protocols Adopted for Scanning 
the Arkona Collections 

In this chapter I will review the approach to scanning ceramic vessel sections and sherds 

from the Arkona Cluster of Late Woodland archaeological sites. This review will include 

reviewing the methodological protocols adopted for conducting the scans and how I 

collected the data. It will conclude with what these protocols will allow me to explore 

from the results of the scans, and what the limits to these protocols are for advancing a 

material science of interior vessel architecture, including the hardware, software, and 

object limitations encountered.  

5.1 Sample Selection 

All materials used in this study were available through the Museum of Ontario 

Archaeology and the Ministry of Heritage, Sport, Tourism and Culture Industries. In all, I 

conducted an analysis of 106 artifact specimen scans (Appendix A). This analysis 

included 67 vessel scans from seven Arkona Cluster sites (Table 5.1). The 67 vessel 

scans included 62 rim portions of vessels, which also included a limited or variable 

length of the lower neck sections present on those sherds. I also scanned five neck 

sections without completely intact rims (Table 5.2).  

The selection of ceramic sherds from the Arkona Cluster sites was an iterative process. 

At the beginning of the study, I did not know how long scanning, reconstruction and 

analysis would take per sherd so the sample number remained somewhat flexible. At the 

end of this project, my experiences suggested that it took, on average, roughly four hours 

to complete each scan and all subsequent analysis. 

Originally I imagined I would scan somewhere between 50-75 sherds, which at the time 

(I was selecting samples in 2014-2015) would have represented a larger number of 

ceramic scans than any existing micro-CT study. Usually budget would dictate the 
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number of scans undertaken for a study
2
, but access to the scanner was facilitated and 

funded for this study through Dr. Ferris’ SSHRC research grant related to studies on the 

Arkona Cluster of sites. 

Table 5.6: Arkona Cluster Vessels included in analysis. 

Borden Number and Site Name Number of Scans included in analysis  

AgHk-56 Inland West Loc. 6 1 

AgHk-40 Bingo Pit Loc. 3 5 

AgHk-54 Inland West Loc. 3 9 

AgHk-32 Van Bree 10 

AgHk-52 Figura  15 

AgHk-42 Bingo Pit Village Loc. 10 20 

AgHk-58 Inland West Loc. 9 7 

Total Arkona Vessels 67 

 

Table 5.7 Arkona vessel portions scanned and included in analysis. 

Part of Vessel scanned for Arkona Sample Frequency 

Rim 22 

Rim and neck 28 

Rim, neck and shoulder 10 

Neck 5 

Complete profile 2 

Total 67 

                                                

2
 Micro-CT scanner user fees for the machine operated by Western University in 2018 for a Western 

University Graduste Student: $50/hour, for a SA Research Associate/ Accredited Researher/ External 

Graduste Student: $150/hour and for a Non-Collaborator: $300/hour. (Sustainable Archaeology SA Ancient 

Images Laboratory Equipment User Agreement 2018). 
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I originally selected a group of 35 ceramic specimens containing both rim only and rim 

and neck sections of a vessel, scanned them, and then completed a preliminary analysis 

on the scans. This first sample group was selected based on my examination of the 

collection itself, first by pulling all rim sherds from their boxes and setting aside those 

that I felt were of a suitable size and that appeared to me were unlike one another. I also 

reviewed the consultant’s analysis in their reports sorting ceramic rims into distinct 

vessels (Archaeologix Inc. 1998; Golder 2012a, Golder 2012b). The aim of this 

preliminary selection process was to identify and ensure there was a representative 

sample of the morphological and decorative variety within the ceramic assemblages from 

the Arkona sites captured in the scans, in hopes of addressing questions related to 

communities of practice and the borderlands context of the Arkona cluster. Samples were 

also selected to ensure coverage from most of the sites in the cluster. While not directly 

proportional, I did take a larger number of specimens from sites that had larger 

collections.   

I then selected a second group of 32 rim sherd specimens based on further consultation of 

the decorative variability represented in the consultant report catalogues. These 

specimens were selected to give more insight into the original 35 specimens. I was 

aiming to fill gaps in terms of decorative variety that I had failed to achieve across the 

first group of specimens selected, endeavoring to select more specimens that had typical 

“Western Basin” decorative traits.  I also wanted to provide repetition and confirmation 

of my initial analysis, selecting specimens that had thicker rims or pseudo collars. In 

initial analysis different manufacturing gestures were recognized and I wanted to test if 

these techniques were repeated or not on similar looking rims. Though 67 may seem a 

random number, I felt at this point in the study that I had captured a substantial amount of 

the variability and representativeness in the sample of sherds scanned.    

The other scans I undertook included ten scans of additional sherds from Arkona vessels 

already scanned, three learner vessels from Arkona, five clay pipes from Arkona, and 

eight lumps of clay recovered from the Arkona sites (Table 5.3). These latter specimens 

were scanned with the intent to investigate local clay signatures and potential 

manufacturing evidence. 
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Table 5.8: Comparative scans included in analysis. 

Type of sample Number of Scans included in analysis 

Arkona Vessels 77 (including 10 duplicate vessel scans) 

Arkona Clay Pipes 5 

Arkona Clay lumps 8 

Inland West Pit Loc. 3  Miniature Vessels  3 

Comparative Ontario Late Woodland 
Tradition Vessels  6 

Comparative Western Basin Tradition 
Vessels 7 

Total scans in analysis: 106 

 

Additionally, I also scanned seven Western Basin Tradition “type” rims from Bruner-

Colasanti, Dymock, Cherry Lane and Robson Road, all sites beyond the Arkona Cluster. 

I also scanned six vessels from various other Ontario Late Woodland Tradition contexts 

(Table 5.4). These scans of ceramic vessels from elsewhere were intended to be more 

instructive than representative of variations in pot making, and of variations in sherds 

from other places and other times. In the end, these additional scans were not included in 

analysis, but  they were useful for confirming that micro-CT scanning could be a valuable 

tool for research beyond the Arkona vessels.  

An important dimension to the initial 35 scans was gaining experience and familiarity 

with the resultant data. These preliminary findings helped confirm the best steps, or 

refinements, to follow for additional scans. For example, the initial scans clearly 

demonstrated that the rim portion of vessels were a useful unit for analysis, since I was 

readily able to visually observe differences in construction methods in the analysis of the 

scans. I also was able to confirm that a sample size of minimally 10 cm x 10 cm in length 

and width gave voxel sizes of around 40-50 µm while still providing a large enough 

sample area to observe those construction methods. To some extent these initial 

impressions reinforced my preferences, encouraging me to select sherds based on size 
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and rim representation. However, I did scan many larger sherds, and two near-complete 

vessel sections in an attempt to view manufacturing methods across a larger extent of 

vessels. 

Table 5.9: Comparative Ontario Late Woodland Tradition and Western Basin Tradition 

specimens by site 

Site Name Number of Specimens 
scanned 

Lawson (OLWT) 2 

Praying Mantis (OLWT) 3 

McKeown (OLWT) 1 

Robson Road  (WBT ) 1 

Bruner-Colasanti (WBT)  2 

Dymock (WBT) 3 

Cherry Lane (WBT) 1 

 

At the conclusion of a specimen scan I ensured that the sherd was bagged separately 

within their original bags, with tags that noted they had been micro-CT scanned, the date 

of the scan, and the scan number of this study, which will alert future researchers to the 

existence of these scans. They were then returned to their original boxes.   

5.2 The Micro-CT Scanner Used for this Study 

The scanner used exclusively for this research is a Nikon XTH 225 ST micro-focus X-ray 

tomography system, which is a cone beam projection system with a four-megapixel 

Perkin Elmer XRD 1621 AN3 HS detector panel (Figure 5.1). As outlined in Section 4.1, 

it operates as an in vitro system, where the object is placed on a rotating stage (or 

turntable) between a stationary X-ray source and detector panel (Figure 5.2). 

Volumes are captured using a program called Inspect-X version 4.1(Metris X-Tek). They 

are then reconstructed using CT 3D PRO (Metris X-Tek) and visualized using VGStudio 
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Figure 5.1: The scanner at the Museum of Ontario Archaeology operated by Western 

University, showing the chamber from the exterior with the door closed and the two 

acquisition computer screens to the left. 

 

 

Figure 5.2 Left to right: the X-ray source, a ceramic vessel specimen mounted on the 

rotating stage and the detector panel inside the scanner chamber. 

 

MAX (Volume Graphics) version 2.2. This system can provide for geometric 

magnification of up to 150x between the object and the detector, and the resolution of 
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scans can be up to 3 micron voxels, although as mentioned above, achieving this 

resolution depends on the size and positioning of the sample, among other factors. Actual 

scan resolution for any given object is the result of several variables, including voxel size, 

focal spot size, noise, the contrast in the image, scattering, the movement of the object, 

the number of projections taken, and the reconstruction algorithms employed (Conlogue 

et al. 2020). 

As used for this research, the scanner was configured with a reflection target that has a 

maximum power of 225W, a maximum voltage of 225kVp, a maximum current of 

1000μA, an exposure range of 0.25-5.6 frames per second, and geometric magnification 

up to 160x (Hoffman and deBeer 2012; Morgan 2014). Most scans in this study had 

voxel sizes between 20-120 microns. The resulting images were used to take 

measurements, and identify the shape, size and densities of internal structures for each 

specimen scanned.    

5.3 Operational Approaches to Scanning 

This section outlines the steps involved in running a micro-CT scan of a ceramic 

specimen using the scanner at SA from placing the specimen in the scanner to the 

acquisition and reconstruction of projection images. This includes mounting, positioning 

and filtering a specimen, determining the best settings using Inspect-X software to use for 

each particular scan, and then reconstructing the projection images created by scanning 

using CT 3D Pro software.  The recording of variables is also discussed. Though not 

discussed in detail, before these steps can proceed, the operator must also adjust (to the 

home position) the manipulator table within the chamber of the machine and run auto 

conditioning to stabilize X-rays prior to running a shading correction or scan.   

Not all CT scans are perfect, in fact most are not, and many of the adjustments made 

during scanning were in an effort to reduce artifacts in the CT data. “Artifacts” can be 

broadly defined as any discrepancy between the reconstructed values in an image and the 

true attenuation coefficients of the object (Hsieh 2009:209). In effect, they are blemishes 

that prohibit analysis of the scan, and are usually categorized as noise, streaking, shading, 

rings and bands, motion and miscellaneous defects (Conlogue et al. 2020; Hsieh 
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2009:209; Nikon 2015:50; Stock 2009). Three artifacts I encountered frequently were 

random noise, ring artifacts, and beam hardening. Noise “appears as speckle in the slice 

images” and ring artifacts “appear as rings in the axial slice images” (Nikon 2015:50). 

Beam hardening artifacts are caused by the object differentially filtering the X-ray beam, 

leading to uneven exposure (Nikon 2015:41-43). To reduce the effects of artifacts in 

scans the operator can: increase the number of photons penetrating an object (by 

increasing exposure time, number of projections, frames to average or kV), run improved 

shading corrections, use software corrections (such as the minimize rings function), add 

filtering, or use corrections in reconstruction (Boas and Fleischmann 2012; Nikon 

2015:52). This section walks through the steps involved in the roughly hour-and-a-half to 

two-hour process of setting up, running, and reconstructing a micro-CT scan for analysis.   

5.3.1 Recording Protocols 

All variables (e.g. kV, µa, filters, mounting material, positioning notes) of all scans were 

recorded in both the paper scanning record forms that are kept for all scans conducted at 

the facility, and in an excel spreadsheet of all scans generated for this project (see 

Appendix B). All specimens were also photographed from several angles. I recorded 

values or notes for each of the categories listed in Table 5.5 in my spreadsheet. Most of 

these categories were taken from the standard scanning forms used for this lab, but some 

were added for my reference. Variables related to the archaeological site, unit or feature, 

vessel, or catalogue number and description of specimens helped place and sort the scan 

data by context. Recording voxel size was valuable in analysis, allowing me to make a 

quick assessment as to whether my results or lack of results for any given category were 

related to resolution. I tracked the duration of scanning and reconstruction in an attempt 

to track how long each scan was taking in terms of technician hours. Many of these 

variables will be discussed in more detail as I review the steps involved in scanning. 

Overall the summary data from these scanning variables helped me in establishing the 

protocols I suggest for scanning ceramics using the Nikon XTH 225 ST micro-focus X-

ray tomography system. 
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Table 10.5: Values recorded when scanning. Those with * are values duplicated in the 

equipment recording sheet. 

St. John Spreadsheet column heading Notes or example 

Sample ID or File name* StJohnCT001 

Will this scan be used for analysis? Many scans were conducted that failed 
altogether or were not of high enough quality to 
use in analysis; a yes/no in this column helped 
in sorting these for analysis 

Site Name Figura 

Borden Number AgHk-52 

Context within site Unit and/or Feature # 

Vessel number and Catalogue number Many had both, but often only one of these was 
available  

Specimen or Object Rim, neck, body, pipe etc. 

Observable Specimen Characteristics A quick visual analysis: notes on temper, 
decoration, residue, thickness, presence of coil 
breaks etc.  

Scan date* Day/month/year 

Duration of scan Time from opening the chamber to acquisition: 
affected by minimize rings function, 
duration/difficulty of positioning the sample, and 
setting KV and micro amp values, and 
complexity of shading corrections. Typically 15-
20 minutes for set up and 53 mins for scanning, 
though scan time was 1 hour 45 minutes when 
minimize rings function was used.  

Duration of reconstruction Time spent in CT pro reconstructing the scan. 
Typically 15-20 mins.  

Mounting method* Mounted in clamp with foam,  in box with foam 
peanuts, etc. 

Filter* Type and mm, e.g., 0.5 mm Cu  

Gain A detector parameter that influences level of 
noise in the resultant scan. A lower gain will 
produce less noise but result in a darker scan. 
Either 24dB or 30dB was used here. 

Target* All scans used the reflecting target. 
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KV* Unit of electromotive force, or X-ray beam 
energy. e.g. 130. It affects the penetration of 
material.   

µa/micro amps* Unit of electrical current, or X-ray beam current, 
e.g., 60. It affects the quantity of X-rays used.  

Exposure* Exposure time in milliseconds: set at either 1 or 
2 here. 

Number of projections* The number of projection images acquired- this 
was set using the “optimize” setting in Inspect-
X. It was set at 3142 for all scans.  

Frames/time* or frames per projection An exposure parameter in frames per 
projection: set at 1 or 2 here. 

Effective Pixel size In µm-; depended on sample size and 
positioning, and other factors. 

Operator name* Amy St. John 

Minimize rings* Yes or no: Used to correct ring artifacts 
sometimes produced by the scanner. 

Shading corrections Used to reduce noise in scans. I recorded the 
number of images and frames to average, 
typically 3 images/150 frames to average. 

Comments* Used to note errors in scans or particularly high 
quality scans.  

Scan successful? Yes or no or a qualified yes or no. 

 

5.3.2 Selecting Specimens 

As noted above, 106 specimens in total were scanned for this project. The choices made 

for what objects were to be scanned were largely informed by dimensions of the ceramic 

assemblage from the Arkona Cluster of sites, and interpretive questions related to 

understanding the ceramic craft tradition reflected in that assemblage. This included an 

attempt at capturing the decorative variability present in the collections, which might 

relate to  influences from both east and west of the Arkona cluster. I also attempted to 

select rims that both had and did not have incipient collars, and both rim sherds with and 

without castellations in an attempt to capture any differences in manufacturing techniques 
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these features might relate to. This meant, however, that the physical characteristics of 

individual ceramic pieces selected to be scanned, and the issues for mounting these 

specimens in the scanner, were only tackled through the experience of trying to scan each 

object. In other words, ease and quality of scanning and the resultant scan did not frame 

the initial selection of specimens I chose to scan. 

That specimen selection was initially based on archaeological interpretive priorities 

meant that there was a large variance in the size of specimens to be mounted into the 

scanner. For example, specimens scanned ranged from 5 cm in length to 40 cm in length. 

Most specimens also were not flat (i.e., interior/exterior curve of vessel shape), and 

typically weight was not evenly balanced across the specimen (e.g., variable thickness). 

This physical variability meant, simply, that it was not possible to just place a specimen 

loose on the rotating stage, since the specimen would be constantly shifting during the 

scan. Further, to readily separate the scanned object from the rotating stage during 

analysis it aids greatly if a medium is placed between the specimen and rotating stage that 

has a lower density material. So mounting strategies for the Arkona ceramics had to be 

devised that would both provide a fixed, stable position for each object by size and 

weight, and that would not interfere with my subsequent software analysis of the scan. 

5.3.3 Mounting Specimens 

Unfortunately, a dimension of available scanning protocols that does not often become 

part of published results (and is consequential to resulting output) is how to physically 

mount a specimen into the scanner. There are several priorities to mounting a specimen. 

First is to ensure the mounted specimen is secured and not susceptible to shifting as the 

stage rotates, since any movement will blur the resulting image. Second, the material 

used to hold the specimen in place needs to be low-density so that it can be easily 

distinguished from the specimen in subsequent digital analyses. 

A wide range of materials were experimented with to serve as a mounting medium, 

providing stability and relative invisibility in the resultant scans. Mounting material 

needed to be malleable but sturdy enough to hold relatively heavy objects like large 

ceramic vessel sections and sherds. There were no protocols for mounting but Dr. 
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Andrew Nelson (supervisor of the CT machine at Western) and various Nikon 

technicians suggested using foam containers or platforms to mount specimens because its 

low density makes it easy to isolate from most other materials.   

I experimented with various types of foam, including pool noodles (which I found 

generated too much rebound), various types of packing foam (which often contained too 

much glue), and floral foam (which created too much fine dust). In the end, the most 

effective material I found to use as a mounting material was expanded polystyrene foam 

(EPF). In particular, large cell white foam, typically used in the manufacture of objects 

such as picnic coolers, proved the most effective for providing stability and a low density. 

I also found that adding low density green or white packing peanuts around a specimen 

held in a white foam container provided more support for larger objects.   

After much trial and error, the standardized method I used for mounting ceramic 

specimens in the micro-CT unit chamber consisted of the following variations: 

1: Clamp and EPF: the most successful. For these mounts, I cut a slit a bit wider than the 

ceramic’s thickness in a piece of white EPF, wedging the ceramic into the slit and 

holding it in place,  adding small EPF packing peanuts, if needed. This entire piece of 

foam and ceramic was then firmly but not too tightly clamped into the clamp apparatus 

Nikon had provided for use with this micro-CT scanner. As seen in Figure 5.3, the clamp 

consisted of two rubber pads that could be tightened together using a simple rotating 

handle. This method seemed to hold things steady unless the ceramic was too top-heavy, 

in which case the specimen rocked while it rotated.  

2: Secondary Clamp and EPF: This system used a clamp meant to hold a cellphone (not 

provided by Nikon_ with pieces of EPF held between the specimen and the clamp. This 

whole apparatus was then placed within the Nikon provided clamp. This system worked 

well, but only for lighter and smaller specimens that could be suspended between two 

pieces of EPF by the strength of the smaller clamp (Figure 5.4).  
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3: Specimens placed in an EPF box with peanuts. Most large specimens were mounted 

this way by placing them in a small EPF box, which I then filled with packing peanuts 

and foam wedges, and then placed onto the scanner turntable (Figure 5.5).   

4: Using a stacked mount, with specimens wedged into the side of a piece of EPF. I used 

this method when scanning multiple small specimens together. Holes were cut into the 

EPF and specimens were wedged into a vertical alignment (see Figure 5.6). The EPF was 

then placed on the turntable and secured with double-sided tape.  

Additionally, some scans were mounted less successfully. These included placing a 

specimen in a shallow EPF box and using a section of a polyethylene foam noodle 

wedged in around the object. Unlike EPF material, the polyethylene material tended to 

rebound, disrupting the unit’s stability during scanning. As well, for smaller specimens I 

tried placing the item in an EPF cup and using peanuts for support. The high center of 

gravity and the small base of this mount meant the specimen was not very stable (Figure 

5.7). 

 

Figure 5.3: Combination clamp and EFP mount. 
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Figure 5.4: Secondary (cellphone) clamp with EPF. A water phantom is included in this 

scan. Water phantoms were used to run calibrated scans (see Section 6.2.4). They were 

created by placing distilled water in a clear plastic tube with caps on each end and 

mounted by creating a hole in the EPF next to the ceramic specimens.  

 

Figure 5.5: Ceramic mounted in EPF box surrounded by EPF peanuts. 
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Figure 5.6: A stacked mounting method used to scan multiple small specimens at once, 

in the case scanning multiple clay lumps. 

 

Figure 5.7: An example of a mounting method for small specimens that was not 

successful due to instability. 
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5.3.4 Positioning Specimens 

An additional consideration I had to account for was positioning the specimen in the 

chamber relative to the X-ray source and detector panel. Part of this included determining 

the distance between the X-ray source and the specimen. Intuitively, I assumed it would 

be best to zoom in as far as possible on the specimen (creating a scan that encompassed 

just the limits of the ceramic specimen). However, what I subsequently learned was that it 

is better, when setting up a scan, to avoid the top of the screen and bottom of the field of 

view when possible since there is more noise further from the center plane of the X-rays. 

Positioning relative to the left or right of the X-ray source and detector panel could be 

adjusted by manually moving the sample left or right on the rotating stage to center it, or 

by moving the stage itself to the left or right. Positioning was completed by looking at 

and adjusting the X-ray image on the image window of the Inspect-X interface, using a 

series of joysticks (see Figure 5.8). 

 

Figure 5.8: Inspect-X interface with the image window showing a specimen on the left 

screen. This live view screen and the joysticks at the lower right were used to move the 

specimen to an appropriate position before scanning. The right screen shows the control 

window where variables such as KV and micro amps are set.  
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When positioning a specimen, it was also important to place it to ensure the “longest path 

length.” In other words, to make sure the X-ray penetration would be through the thickest 

part of the specimen. This alignment ensures that when setting KV and micro amp values 

they are high enough to penetrate the thickest part of the specimen in its rotation (see 

Figures 5.9 and 5.10). My first batch of scans was not set up this way, and it was only 

through discussion with a Nikon technician that I learned to account for these 

characteristics of the machine in subsequent scans. 

Once the specimen was set in the desired position, I could then move on to the next steps 

in scanning.  

 

Figure 5.9: Illustrating “longest path length” set up in upper image. Ceramics should be 

positioned as pictured in the upper image, not the lower image. 
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Figure 5.10: Correct positioning to obtain “longest path length”, indicated by the white 

arrow at the ceramic sherd’s rim. 

 

5.3.5 Filtering 

One more step that can be completed prior to closing the Nikon XT 255 chamber is 

ensuring a physical filter is attached to the X-ray source, if filtering is required.  Physical 

filters mounted to the head of the projection target are made of metal and are used to 

filter out low-energy X-rays. The Nikon system came with a selection of filters of 

different metals and in different thicknesses. The choice of physical filters depends on the 

material scanned and the X-rays generated (Conlogue et al. 2020). For example, a metal 

coin could require more filtering than bone. In effect, the higher the atomic number of the 

filter material, the more low energy X-rays are filtered out, raising the mean energy level 

of the beam. Filtering the X-ray beam helps optimize exposure settings and reduces beam 

hardening artifacts in the final image (Nikon 2015). This filtering is important because it 

results in clearer images from which to conduct analysis.   

For this project I experimented with no filter, as well as copper filters of 1 mm, 0.5 mm, 

0.1 mm and 0.25 mm in thickness. While scans completed with no filter often gave good 

results, the best results, with the clearest images, were obtained using a thin copper filter 

of either 0.25 mm or 0.1 mm, which dampened some of the beam hardening. Filters of 



87 

 

greater thickness did not provide noticeably better results and required higher KV and/or 

micro amp inputs to obtain similar results (Figure 5.11).  

 

 

Figure 5.11: A filter of 0.5mm copper used in the top image and a filter of 0.1mm copper 

used in the lower image. Similar results were obtained, but the 0.5mm copper filter scan 

required settings of 205kV and 75µa and the 0.1mm copper filter scan settings of 175kV 

and 45µa. 
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5.3.6 Setting Scanning Parameters 

After mounting and positioning was completed, and chamber door closed, I turned to 

setting the scanning parameters for the individual scan, using the Inspect X 4.1 

operational software for the Nikon XT 225 scanner. A number of various X-ray settings 

could be adjusted, including the beam energy (kV), beam current (µa), power (W), 

shading corrections, frames to average, number of projections, exposure and gain. These 

variables can considerably affect the resultant quality of the scan and the researcher’s 

ability to analyze the data compiled for an individual specimen, and I found it took many 

scans before I was able to determine the preferred settings for scanning ceramic 

specimens.  

Several critical variables to account for during a scan were guided by an image histogram 

on the Inspect-X control window (Figure 5.12). This histogram detailed the grey values 

being read by the detector panel (Figure 5.13), which allows the operator to judge how 

light or dark the resulting scan will be, based on the variables selected for that particular 

scan. Filters, beam energy (kV), beam current (µa), and power (W) were all adjusted to 

manipulate the histogram. Power, in this study, was a function of the energy and current 

used in most cases, and not typically adjusted on its own. The resting grey value (when 

X-rays are off) of the Nikon XT 225 is usually at about 5000, which simply reflects 

background noise. Ideally, the operator aims to ensure a minimum 2x signal to 

background noise ratio, which means ideally getting the darkest areas of individual scans 

at a minimum grey value of 10000. At the high end of the histogram, the aim is to get the 

brightest areas of individual scans to a maximum grey value of up to 60000. As the grey 

value range of the detector is between 0-65000, the goal is to leave some of the range 

open at either end as a buffer. The minimum grey value of 10000 ensures penetration of 

the object, while the maximum of 600000 maximizes contrast without over saturating the 

image (Nikon 2015). Trying to obtain these detector values on the histogram in Inspect-X 

determined both beam energy and current for any given scan. Critically, these 

adjustments effectively ensured adequate X-ray penetration of the object without 

saturating the detector panel, thereby maximizing contrast and resolution in the resulting 

scans.  
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There are several other variables that can be accounted for before starting a scan. For 

example, shading corrections were another step in image acquisition used on all scans. 

Shading corrections are used to compensate for the drop-off of X-ray flux due to the 

inverse square law. Notably, as X-rays are generated out from a point source, X-rays that 

fall on the corners of the imaging device have had to travel further than those that fall on 

the middle of the imaging device (Nikon 2015:6). Shading corrections also account for 

small variations internally within the imaging device's pixel array (Nikon 2015:6). 

Mostly, shading corrections are a means of eliminating faults or defects in the imaging 

system by recognizing and eliminating them from the live CT scan. Longer shading 

corrections with an increased number of frames take longer to run, but eliminate more 

noise. After some experimentation with shading corrections, I determined that three 

corrections at 30 seconds per frame and 150 frames to average produced a good quality 

scan. 

 

 

Figure 5.12: Inspect-X control window with image histogram to the right. 
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Figure 5.13: Image histogram in Inspect X with Minimum and Maximum Grey Values 

within an appropriate range at the top right. Ideally these values would be 10000 and 

60000. 

 

One other variable an operator can adjust prior to scanning is gain. Gain also controls 

noise on the resulting scan, but causes the resulting image to be darker, unless the 

operator sets a longer exposure time at a higher power level. Higher gain amplifies the 

signal, which increases both the signal and results in more noise in scans (Nikon 2015). I 

usually did not adjust this variable: gain was typically set at 24dB. 

The operator can also choose the number of frames per projection to average and the 

number of projections per scan (the number of projection images taken). Frame averaging 
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takes more projections at the same angular position in an attempt to eliminate fluctuations 

in projections (Stolfi et al. 2018:163), and the more frames per projection increases the 

resolution of resulting images (Nikon 2015:48). By manipulating frames per projection 

the operator can maximize the signal to noise ratio, increasing resolution by eliminating 

noise. Exposure time in milliseconds is one way to regulate the quantity of X-rays used 

and the contrast of an image (Nikon 2015). The adjustment of these variables affects scan 

time length and quality. Given the large number of scans I undertook for this project, I 

attempted to keep scan time down per specimen. Generally, I tended to adjust these 

settings so that: a) frames per projection was either 1 or 2 frames; b) the exposure was 

either 1 or 2 milliseconds; and 3) the number of projections was set at 3142. The number 

of projections in this study was not chosen by myself but was always set using the 

“optimize projections” setting in Inspect-X, to ensure enough projections were being used 

(Nikon 2015:47-48). These settings which were used for scans, unless I was using the 

minimize rings function (see Section 5.5), resulted in a 53 minute scan time per 

specimen.  

5.3.7 Reconstruction 

Assembling and reconstructing the projection images acquired during the scan into fully 

volumetric data was undertaken using CT 3D Pro. It is only once volumes are 

reconstructed that analysis of particular interior and exterior attributes of a specimen can 

take place. For this project, the number of TIFF image files (the projection images) to be 

reconstructed for one specimen was 3142, and generally, reconstruction took 15 to 20 

minutes to complete after the scan.  

Reconstruction using CT 3D Pro is a simple process on the operator’s part. It involves 

ensuring there was no movement in the scan, choosing reconstruction corrections and 

selecting the volume of material to be reconstructed. Examining the first and last 

projection images (which are taken from the same angle) determines if there was 

movement of the specimen during the scan. If there was only a small amount of 

movement, I would proceed with reconstruction. But if there was a large variation 

between the first and last images, indicating significant movement of the specimen, the 

scan could not be reconstructed with any success. 
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Reconstruction correction entails adjusting a variety of digital filters and other image 

processing tools. For this project, only beam hardening correction and a median noise 

reduction filter were ever changed. Selecting the beam hardening and noise reduction 

corrections is a judgment call, but essentially the operator is looking for a reduction in 

noise in the image. Only infrequently did the use of the lowest correction settings for 

either noise or beam hardening assist in slightly cleaning up the reconstructions. Finally, 

the volume for reconstruction is simply a tool to select the specimen area to be 

reconstructed so that as much of the empty space around the object is eliminated from the 

final volume. This tool decreases the overall file size, making analysis slightly faster. 

5.4 Analysis of the Resulting Object Reconstruction 

The result of the scan process is a compilation of thousands of individual X-ray 

projection images into a three dimensional, fully volumetric reconstruction of the 

specimen. Since CT data uses X-rays to create this volume, variation in density is 

reflected in greyscale. The various features within a ceramic fabric, including the clay 

itself, inclusions (both intentional temper and natural), and voids (pockets of air within 

the clay), can all be isolated based on their grey values. The volume of the specimen can 

also be isolated from the surrounding air and mounting material based on grey values. A 

grey value in a CT reconstruction simply indicates the brightness of a voxel (3D pixel), 

which reflects the density of the material located within that voxel. This distinction is 

vital for analysis since differing grey values allows the operator to identify and quantify 

the internal architecture of the sherd, as well as the physical features of the exterior 

surfaces of the sherd.  

5.4.1 Analysis Software 

While there are a number of CT analytical software programs that can be used to analyze 

CT reconstructions, the one I used included VG Studio MAX 2.2 (VG), which allows the 

researcher to examine a large number of interior and exterior attributes as well as 

characteristics of material and volume in three dimensions across the entirety of the 

specimen. These analytical tools meant that I could use the software to explore ceramic 

manufacture, morphology and decoration. 
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The file sizes of reconstructions were extremely large, ranging from roughly 10GB to 

25GB in size. Greyscale was captured in 32bit, but to conduct analysis, I opened all my 

files in 16bit resolution, which allowed the computer to run significantly faster than 

opening images in 32bit. I also found that files opened in 16bit did not sacrifice image 

quality, as the human eye cannot see that many shades of grey. The basic VG workspace 

includes windows for visualizing the data and the tools for analyzing these data. Though 

it can be reconfigured depending on the needs of the researcher, the typical set up 

includes three 2D windows that show slices through the X, Y, and Z planes of a volume, 

and one 3D window (referred to as the “scene” in VG manuals), showing the volumetric 

rendering of the specimen (see Figure 5.14).  

 

Figure 5.14: VG workspace with analysis tools at the top and right of the screen and X, 

Y and Z plane 2D windows and 3D rendering window at the center of the screen. The red 

slice through the 3D rendering illustrates the location of the X plane slice. Surface 

determination and simple registration have both been completed on this volume. 

 

Before I could analyze the reconstruction, it was necessary to refine further the surface of 

the specimen from the air in the volume surrounding it. VG provides an automatic 

surface determination feature for this purpose, which allows for the creation of a region 
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of interest from the surface of the specimen. All ceramic specimens were also registered 

using the “simple registration” function in VG. Registering an object changes its position 

in the scene, which allowed the specimen to be aligned in an upright position (see Figure 

5.14). In effect, registration in this case provides a 3D orientation to the specimen so that 

I could work from orthogonal vertical (X plane), horizontal (Z plane) and “front on” (Y 

plane) cross-section views.  

5.4.2 Analytical Methods: Thresholding and Segmentation 

Many researchers (e.g. Sanger 2017; Kosaztos et al. 2018) use thresholding or 

segmentation based on attenuation coefficients (density) to digitally divide ceramics into 

their components, including inclusions, voids, and the clay matrix. Thresholding was 

completed in VG, which “creates a selection of voxels with gray values within the 

selected gray value interval” (Volume Graphics 2016:164). Thresholding uses voxel 

intensity histograms that allow for three-dimensional images to be segmented into 

different phases, which basically refers to a range of grey values. For example, in 

Specimen 008, inclusion grey values were set at a threshold of 39000-65535, and voids 

were 0-23000. For this research thresholding simply allowed my analysis to focus on 

distinct elements that make up a ceramic sherd. Segmentation of phases based on grey 

value thresholding allowed for the isolation of the clay matrix from different inclusions, 

as well as from void spaces, in the fabric (Landis and Keane 2010; Figure 5.15).  

Using VG, I was able to create three separate Regions Of Interest (ROIs) for inclusions, 

clay, and voids by thresholding the different densities of these materials from one 

another. To isolate voids within the ceramic from the surrounding air in the volume, I had 

to create an inverted ROI from the ceramic’s surface and subtract this from the ROI for 

voids (detailed steps can be found in Appendix C). Thresholding, in this case, was 

subjective, based on my best judgement call about what should be included in the ROI 

based on increasing or decreasing the threshold for grey values until most of the 

inclusions or voids were contained. 
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Figure 5.15: Using thresholding to segment out inclusions in VG. Note, because 

inclusions are higher in density than clay or voids, the higher end of the grey value 

histogram is selected. 

 

Void and inclusion volume percentages were quantified based on the thresholding I 

completed, which were then compared to the volume of the entire ceramic sherd. This 

step gave me a percentage of the total volume that inclusions represented, and a 

percentage of the total volume that voids represented. Void and inclusion counts were 

obtained by splitting inclusion and void ROIs into their individual components and 

recording that value. Both volume percentage and counts for voids and inclusions were 

recorded for the entire volume of each specimen.  

While entire volume measurements were useful, I also needed a method that allowed 

comparisons between scans of smaller rim sherds with larger vessel section scans, and 

that would eliminate variability caused by uneven sample sizes of specimens and the 

uneven distribution of voids and inclusions across a vessel (Figure 5.16). In visual 

examinations, it appeared as though there were typically more voids in the rim portion of 
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a vessel than the body or neck, and sometimes different techniques or clays were used on 

the upper portion of the vessels. Also, the surface of volumes tended to have more noise 

than the centers of volumes, making it difficult in some cases to threshold inclusions 

and/or voids. To solve this problem, I created a rectangular 2 cm
3
 prism ROI that was 

placed within each specimen. The prism was placed between 10-15 mm from the lip of 

the vessel and in the center of the specimen (Figure 5.17). Thresholding of voids and 

inclusions within this prism allowed for comparisons of volume percentages and counts 

between a consistent sample size and from the same position for each vessel scanned.  

 

Figure 5.16: A 2 cm
3
 prism was used to eliminate variability caused by uneven sample 

sizes and uneven distribution of voids and inclusions across a vessel. This method 

allowed for the comparison of very different specimens such as the rim sherd at the left 

and a near complete pot at the right. 

 

 

Figure 5.17: Placement of a 2 cm cubed prism. 
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Arguably the most important analytical insight from micro-CT volumes was the ability to 

conduct qualitative analysis of void structures. These void structures are a preserved 

record of where clay was manipulated and affected during manufacture, drying and 

firing, and where compression between and within pieces of clay are visible in both 3D 

images and by reviewing the thousands of individual X-ray slices recorded for the 

specimen (see example of a scroll through of slices here: 

https://youtu.be/Zpwy_tZSnHA). Three-dimensional renderings of voids often illustrated 

quite clearly where large voids were occurring across rim sherds in a way that 2D 

analysis simply could not present (Figures 5.18 and 5.19).  

 

Figure 5.18: A 3D rendering of voids in Specimen 050 showing large voids near the rim 

and castellation where layers of clay have been imperfectly joined. At right is the exterior 

3D rendering. 

 

My analysis of voids recorded angles of larger voids relative to either the walls of the 

vessel or the Y plane (see Figure 5.20), described their shape and orientation (random or 

aligned), and inferred construction methods that might be associated with them. This data 

is presented in Appendix D.  The most common shapes of voids in each sample was 

recorded based on categories found in petrographic literature, which in turn borrows from 

the characterization of voids in soil micromorphology (Quinn 2013:97-98). Quinn 

(2013:97) outlines four types of voids including vesicles (equant, spherical voids with 

smooth edges), planar voids and channel voids (both elongate with parallel walls; planer 

are usually straight and end in a point, while channels can be curved and have rounded 

ends), and vughs (irregularly shaped voids that are neither spherical nor have parallel 

https://youtu.be/Zpwy_tZSnHA
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sides which can be somewhat elongate or equant and can have smooth or irregular sides). 

Voids in micro-CT scans were sorted based on these categories in 2D slices, but I also 

noted when they formed larger structures in three dimensions.  

 

Figure 5.19: A 3D rendering of voids in Specimen 049, illustrating a band of large voids 

below the rim where the clay has been folded and voids near the lip where the clay has 

been added. 

 

 

Figure 5.20: Angle of voids relative to the plane through the Y axis. 
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Finally, image analysis in VG also allowed me to examine more traditional ceramic 

morphological attributes, like rim form, neck profile, rim diameter and thickness of 

vessel walls. Some decorative attributes were also recorded following Watts (2006), 

using a simplified version of his decorative variability. Decorative and morphological 

variables are presented in Appendix E. Digital slices through the ceramic also allowed for 

an examination of features not normally visible, such as the depth and directionality of 

punctates, but generally most attributes present on the exterior surfaces of vessel sherds 

could also be seen through basic visual examination of the sherd.  

It should also be mentioned that I was able to briefly employ a trial version of VG 

version 3.0, which included analytical modules not accessible through the VG version 2.2 

I had available for most of this study. Through this trial version, I was able to explore the 

potential of porosity and inclusion modules, which allowed me to create threshold 

templates for voids and inclusions. These templates were based on typical grey values 

used for thresholding voids and inclusions, defined by the user, that could be applied and 

then adjusted as needed. As well, these modules provided not only total volume and 

quantities of both voids and inclusions, but also individual volumes for each inclusion 

and each void. In this way, these modules provided for grain-size distributions of 

inclusions, allowing for a qualitative categorization of inclusions from the finest natural 

inclusion to the largest temper inclusion. VG Studio MAX 3.0 also has a module that 

examines fibre orientation, but when used on these particular ceramics, the void 

structures were not fibre-like enough. 

5.5 Methodological Challenges 

As with any technique, micro-CT scanning has limitations and inherent problems that 

researchers must account for in their research. Notably, CT imaging can generate artifacts 

on the resulting reconstruction, impeding analysis (Boas and Fleischmann 2012). Indeed, 

complete avoidance of artifacts is impossible, but mechanical issues can accentuate the 

number and impact of artifacts on the quality of the resultant scans. For example, I had to 

contend with serious ring artifacts in many scans for a period of a few months (Figure 

5.21), caused by undetected bad pixels in the detector (Conlogue et al. 2020). Minimizing 

these ring artifacts required running scans with the “minimize rings artifacts” software 



100 

 

feature turned on in Inspect-X, which resulted in longer scans (130 or 105 minutes versus 

the usual 53 minutes). I used this feature to minimize rings since it was listed in the 

Inspect-X manual as the solution to ring artifacts. Overall, 22 of the 101 scans used in the 

final analysis in this study were run using the minimize rings feature, and no noticeable 

difference in scan quality was noted between these scans and the shorter ones without 

rings. Test scans running longer shading corrections, with more frames to average, was 

also used to combat ring artifacts in scans with some success, but also resulted in longer 

overall time spent on scans (Figure 5.22). Longer shading corrections did result in cleaner 

images and was one way to combat noise in scans.  

Determining the settings to be used for any given scan depended on the mechanical state 

of the machine on any given day and within the machine’s maintenance schedule. For 

example, at the end of a filament’s life, I would acquire fairly dark images using 160kV 

and 65µa. But once the filament was replaced, images would be quite bright using 145-

150kV and 60µa (Figure 5.23). 

 

 

Figure 5.21: Scan of Specimen 010 from December 2014 with ring artifacts visible in 

slices through the Y and Z planes. 
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Figure 5.22: Testing shading corrections to eliminate rings. The image at the left had 

shading corrections set at five images, 250 frames to average, and the ring artifact is still 

prominent. The image at the right had shading corrections set at five images and 350 

frames to average, and the ring artifact is still visible, but quite faint. 

 

 

Figure 5.23: At left: Specimen 086 scanned at 165 kV and 65 µa. At right:  Specimen 

087 scanned at 150 kV and 60 µa. All other settings were the same, but the filament blew 

after scanning Specimen 086. These images illustrate how more beam energy and current 

were needed near the end of a filament life. 

 

Early on in the scanning of specimens for this research, there was a slight misalignment 

with the tilt axis of the manipulator in the machine that controls the rotating stage, 

meaning that the position of samples was not perfect and leading to blurriness and double 

edges in scans. This issue is likely why some of my early scans are not as clear and crisp 
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as they could have been. I also consistently had to deal with turntable rotation errors, 

since, the turntable would occasionally over-rotate, and sometimes it dropped frames, i.e., 

not all images were taken. At one point during the life of this research, the turntable 

would go about 40 degrees into a scan and then just start spinning and stop in a new, 

random spot. These errors with the machine created the need for longer scan times, and 

lots of instances of scans that had to be re-done. While I ended up conducting analysis on 

106 scans, my total number of scans, including failed scans and test scans run that 

experimented with different settings in attempts to fix errors, was in fact 152. In other 

words, there were 46 scans that were tests that failed mid-scan, or were completed but 

gave results that were unusable.  

I also discovered that specimen size affected the resolution and quality of the resultant 

scan greatly. Because the Nikon XT 255 uses cone-beam projection, the smaller the 

sample, the greater the geometric magnification can be, maximizing resolution. Thus very 

large vessel sections had to be scanned at a lower resolution than I could obtain for 

smaller rim sherds, and as a result the effective pixel size in scans used in this analysis 

varied from 21 to 120 µm, with an average pixel size of 72 µm. The only way to have 

made all scans the same resolution would have been to scan the largest specimen first and 

match that position and other settings for all subsequent scans, or to only scan portions of 

larger specimens. However, I chose to obtain the best resolution possible for each 

specimen. This decision may have made my scans less comparable objectively, but it 

meant that at least in the smaller samples, it was easier to visualize and isolate the smaller 

and less dense inclusions in the specimens.  As well, as a key aim of this study was to 

examine the overall manufacturing method reflected in a vessel section, I was more 

interested in scanning the entirety of these larger specimens, in order to see 

manufacturing methods across a larger section of the vessel. For answering questions 

related to ceramic composition, smaller samples scanned at higher, consistent resolutions 

would have been more appropriate.   

I also found thresholding was not a perfect method for isolating one material from 

another. Sometimes I missed some voids because the very edge of the ceramic was a 

similar density to some of the interior voids, so I had to set the threshold higher. As well, 
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some of the lower density inclusions were too close to the density of clay to be isolated 

effectively. As a result, it always proved to be a bit of a judgement call where to choose 

the cut off for density. In general, I attempted to consistently include slightly fewer voids 

or inclusions rather than include material that was being misidentified as voids or 

inclusions. This practice meant that my percentages of voids and inclusions for 

specimens were generally slightly lower than reality, though it is worth noting that an 

average sherd generated 100,000’s of inclusions and voids overall. Also worth noting is 

that, because the scans were not all done at the same settings, and were not all calibrated, 

and because there was so much variation between the ceramic specimens themselves, I 

could not just rely on the same threshold values for each specimen, but had to adjust 

them. Furthermore, as the resolution of micro-CT is finite, it is not always possible to 

determine with complete certainty where one material inclusion of clay texture ends, and 

the next begins (Wade at al. 2011:315). In future studies I would consider creating a 

cutoff point based on the voxel size for each scan and eliminate void and inclusion 

volumes smaller than that, considering them noise. Nonetheless, despite these limitations, 

various characteristics of internal ceramic architecture were documented across scans and 

were comparable. 

Though improving rapidly, most software available for examining micro-CT images is 

designed for either medical or industrial applications. For example, the fibre module in 

VG was designed to pick up man-made fibres, not void structures in ceramics. Even in 

the porosity and inclusion module I had limited access to, the automatic algorithm tended 

to miss many voids, and the manual states it is not effective on multi-component and 

complex materials – which is what archaeological ceramics are (Volume Graphics 

2016:439). Newer software such as Dragonfly, by Object Research Systems, offers deep 

learning options for segmentation that may represent the future of this type of analysis 

(Object Research Systems 2020).   

Finally, sample selection of specimens was influenced by catalogue errors, to some 

degree. One box of large vessel fragments from the Figura site was mislabeled in the 

Museum box listing so these vessels were not included in my sample. Further 

complicating sample selection was the fact that some rim sherds listed and pictured in the 
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reports were nowhere to be found in the collection; six banker’s boxes of ceramics 

containing mostly rim sherds were found by the licensee’s employer only after the 

completion of my analysis. Thus, to some extent the sample of specimens that makes up 

this study was based on the Arkona Cluster ceramics available to me at the time. I also 

learned that I should have attempted to select for unmended sherds (i.e., avoided vessel 

sections where multiple sherds have been glued together), as breaks in the ceramic that 

had been glued back together were impossible to isolate from voids created by 

manufacturing processes in my analysis, resulting in skewed void percentages in those 

cases.  

5.6 Discussion 

CT scanning is mostly science, but also a little bit arts and crafts. Each specimen required 

differing settings and was undertaken under slightly different conditions involving 

ingenuity, workarounds, and judgement calls. However, part of this project was 

concerned with determining the protocols for scanning ceramics through the micro-CT 

scanner. While issues with the technology, software and my research priorities preclude 

any universal standards being offered here, my experience did define preferred settings to 

be considered when scanning this material. Ideal beam energy (kV) and beam current 

(µa) settings generally ranged from about 130-140kV and µa of between 67-70, though 

this tended to be based on filament life at the time of any individual scan. In addition, a 

0.25 mm or 0.1 mm Cu filter was preferred because it filtered out low energy X-rays 

without the need for a huge increase in kV. When the scanner was working properly, I 

used a 53 minute scan, which represented 3142 individual projections. For the purposes 

of this analysis, these scans were clear enough to see everything needed. Some of the 

scans in this analysis were completed using a longer setting to eliminate ring artifacts 

plaguing the machine for some time in fall 2015 and winter 2016. A timeline of the 

scanning and analysis process for this research is presented in Appendix F. However, the 

resulting scans were not of a higher quality than the shorter scans. While only offering 

my perspective as someone who has run a lot of scans, and not that of a trained CT 

technician, it is my hope that the overview of the methods used in this research and the 
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flexible protocols developed here through trial and error will be of use for future  ceramic 

studies.  
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Chapter 6 

6 Results  

This chapter presents the qualitative and quantitative data obtained from micro-CT scans 

relevant to my interpretations of this dataset. With these results, I make conclusions about 

how decisions potters were making during several steps in the chaîne opératoire, 

including clay preparation, vessel forming and vessel finishing. Results from micro-CT 

scans suggest connections between the potters in the Arkona Cluster, indicating a shared 

community of practice at these sites. There are many types of data that can be recorded 

from micro-CT images, but here the focus is on dimensions of ceramic artifacts that can 

be seen in a unique way through this innovative technique. Presented here are compiled 

results, not separate data from each scan undertaken, though I provide in Appendices D 

and E a range of information on individual scans.  

Results from a series of experimental clay slabs are presented first in this chapter, as an 

example of the types of results that can be obtained, and to test the validity of results 

obtained from scans of archaeological samples. Results from the archaeological scans 

presented in this chapter are organized relating to multiple stages in the chaîne 

opératoire, or operational sequence of ceramic making (i.e., De La Fuente 2011; Dobres 

2000; Edmonds 1990; Lemonnier 1992). Results will be presented according to these 

stages of manufacture, focusing specifically on the clay fabric preparation, vessel 

forming, and, to a limited extent, vessel finishing. Note that both earlier and later stages 

along the chaîne opératoire, including clay harvesting, and vessel acquisition, use and 

disposal, are not explored in this chapter. Many finishing attributes that are visible 

through micro-CT scans, such as shallow exterior decoration or vessel surface treatment, 

are not presented in detail here, as they can be explored just as effectively using 

traditional ceramic analysis methods. They are explored here as they relate to other 

attributes that are only analyzable through micro-CT analysis. Examining these steps in 

the chaîne opératoire through micro-CT analysis provides a new way to explore the craft 

of ceramic making and  provides information on this craft from actual archaeological 

ceramic material. These results provide a starting point for the examination of 

generational transmissions, and social change as it might be visible in ceramic 
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manufacture. The qualitative and quantitative data presented here permit ceramic 

researchers to begin to access the context of production and determine what this can tell 

us about communities of practice at Arkona. 

For the purposes of discussion in this chapter, I will be referring to the internal 

architectural features of ceramics as oriented along one or more of the object’s X, Y, or Z 

axis. To orient the reader to these axes, I am assuming a vessel sherd orientation where 

the top or lip of a vessel fragment is north (up), and lower down the vessel is south 

(down). See Figure 6.1 for the orientation of the axes for a hypothetical vessel fragment, 

in order to orient references to these alignments (see also section 5.4.1). 

 

Figure 6.1: Figure illustrating slices through a ceramic along the Z, X and Y planes with 

vessel lip oriented upwards.  

 

6.1 Test Scans with Experimental Clay Slabs 

In order to better understand ceramic vessel scan results, I separately created 12 clay 

slabs and one small pinch pot using store-bought clay meant for wood firing, and temper 

collected in the Arkona area. The intent was to scan these prepared objects to provide a 
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general sense of how “visible” my preparation of clay paste and manipulation of clay was 

in resulting scans of these slabs. These were not an exhaustive or particularly 

scientifically created sample, just an experimental exercise to explore how different ways 

of manipulating clay might appear in micro-CT scans. Some of the techniques and 

gestures used in this experiment, such as joining coils together and folding rims over 

were informed by the initial macroanalysis and micro-CT analysis of early test scans in 

an attempt to recognize techniques that appeared to be visible at Arkona.   

I weighed the amount of clay and temper that I then mixed as a preparation to get a 

percentage temper by overall slab weight before firing. All clay preparations were then 

wedged/kneaded before forming. These slabs dried for ten days then were fired in an 

open hearth. Either because of my lack of ceramic experience or my material selection, 

all of the slabs exploded or cracked during firing. There were only seven that had large 

enough pieces left after firing that could be scanned. Due to a variety of factors, the 

scanning and analysis happened over two years later. I undertook the analysis blind to see 

if various forming methods could be detected without prior expectations. The results of 

the specimens that could be scanned are presented below. 

6.1.1 Experimental Clay Slab Results 

Specimen 072 Experimental Slab 7: made with 200g clay and 10.8g granitic temper 

(G2) from Rock Glen
3
 (5.4% temper). This slab included an applied strip of clay attached 

at the rim, created with a flattened coil. The interior was smoothed, not scraped. 

Scan Results (Figure 6.2): 4.3% inclusion volume, 0.5% void volume. Voids were 

primarily planar with some small vesicles, and some vughs around inclusions (see 

Section 5.4.2 for a discussion of void terminology). Voids ran parallel to the vessel wall, 

except at 20-22 mm from the lip of the vessel where there were horizontal voids. This 

horizontal void is readily visible, and correlates with the attached strip of clay creating 

the rim.  

                                                

3
 Rock Glen is a Conservation Area immediately to the north of the Arkona Cluster of sites, located along 

the Ausable River.  
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Specimen 074 Experimental Slab 9: made with 200g clay and 12.8g sand temper (6.4% 

temper). This object was created using two separate slabs that were flattened out by hand, 

then cut to shape and joined. The “rim” was created by applying a flattened coil to the top 

of the joined slab.  

Scan Results (Figure 6.3): 4.8% inclusion volume, 0.4% void volume. Voids were 

primarily planar with some small vesicles. Voids ran parallel to vessel wall, except at 

approximately 20 mm from the lip of the vessel where there were horizontal voids. I was 

able to note some parallel voids between 7-10 mm from the lip, while at the lip I noted 

some voids at 22-25 degrees from the y plane (for void angle recording see Section 

5.4.2). The patterns I noted in the scan suggested to me Slab 9 might include clay added 

to the exterior of the vessel, and that the whole rim might have been added. 

 

Figure 6.2: Specimen 072 with an arrow highlighting the horizontal void where the rim 

was added.  
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Figure 6.3: Specimen 074. Left: the arrow highlights the horizontal void running across 

where the rim was applied in this 3D representation of the voids in the specimen. Right: 

This is a 2D slice through the X plane, where a coil join (lower arrow), and a parallel 

(upper arrow) void can be seen.  

Specimen 076 Experimental Slab 2: made with 200g clay and 9.9g quartzite temper 

(4.9% temper). This slab was created using six coils joined together, and then a paddle 

and anvil method (the anvil being a flat palm sized rock) was used to press the coils 

together and pound the resulting slab thinner.  

Scan Results (Figure 6.4): 2.8% inclusion volume, 0.7% void volume. Voids are 

primarily planar with some vesicles. Rather than parallel to vessel walls, most voids run 

horizontal with large voids at 15, 28, and 45 mm from lip. These voids suggested to me 

that the specimen was a coiled vessel, with three joins visible. 

Specimen 077 Experimental Slab 12: This slab was made with leftover clay from the 

other slab specimens I created, and contains a mix of all tempers. I formed the leftover 

clay together into a slab, which was then drawn upwards and thinned using the same 

paddle and anvil method I employed previously. It was then smoothed with a wooden 

tool, and I wiped the interior and exterior with a cloth. A castellation was pulled upwards 

by hand. After two hours of drying, this slab was decorated using a number of incising 

and impressing decorative treatments.  
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Figure 6.4: Specimen 076 with horizontal voids indicative of coil joins in slices through 

the X and Y planes.   

 

Scan Results (Figure 6.5): There was not much of this slab left to analyze, with only one 

edge of the vessel surviving firing. It had 5.1% inclusion volume, 0.4% void volume. 

Voids are primarily planar with some vesicles. Voids are parallel to the vessel walls. At 

22 mm from the lip, there is a large void that meets the interior wall at a 59-60 degree 

angle. In reviewing the scan, I noted that this void goes all the way to the lip, which 

suggested to me that the rim may have been added. While this observation is not 

reflective of how the slab was actually made, the fact that the scanned section of the slab 

was so small may have limited my ability to interpret the result. 

Specimen 078 Experimental Slab 13: this small vessel was tempered with a small 

amount of granitic temper (G1) obtained near Rock Glen, but not weighed against the 

amount of clay used. This specimen was a small pot formed from a lump of clay that was 

pinched and then drawn upwards. I folded the rim of the vessel and created castellations 

by folding. After two hours of drying, it was decorated using a pointed wooden tool using 

right-handed motions.  
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Figure 6.5: Specimen 077 2D slice through the X plane with a large void near the lip.  

 

Scan Results (Figure 6.6): 3.7% inclusion volume, 0.6% void volume. Voids are 

primarily planar with some large vesicles. Voids are mostly parallel to the vessel walls 

with some very fine horizontal voids at about 28 mm from the lip. I noted that there were 

no obvious construction methods suggested by the scan, but perhaps the large vesicles 

reflected compression from pinch pot manufacture. I also thought I could see the folds in 

both the 3D and 2D images.  

Specimen 095 and Specimen104 Experimental Slabs 3 and 4: These specimens were 

made with 200 g clay and 10.8 g limestone/fossil based temper (5.4% temper), and 

represent both halves of a pinch pot/bowl that was cut in half. The Slab 3 (Specimen 095) 
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half was subjected to paddle and anvil forming, while Slab 4 (Specimen 104) was scraped 

smooth on the interior with a shell and had a rim applied. 

 

 

Figure 6.6: Specimen 078 2D slice through the X plane, illustrating large voids near the 

rim of the vessel.  

Scan Results (Figures 6.7 and 6.8): Slab 3 (Specimen 095) - 5.1% inclusion volume, 

0.9% void volume. Slab 4 (Specimen 104) - 5.4% inclusion volume, 0.5% void volume. 

Voids for both specimens were primarily planar with some vughs. Most voids were 

parallel, but there were some perpendicular to the walls close to the rim in Slab 3, while 

in Slab 4 the largest voids were non-parallel, and at 52-54 degrees from the y plane 

smaller voids were parallel to the vessel walls. I noted that it looked like the rim was 

added on, and maybe there was a fold visible lower down. 
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Figure 6.7: Specimen 095/Slab 3. Large voids are visible in 2D slices along the X plane. 

In the slice to the right, illustrates perpendicular void is seen near the rim. 

 

 

Figure 6.8: Specimen 104/Slab 4 with large perpendicular voids visible in the 2D slice 

through the X plane.  
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6.1.2 Summary of Test Scanning Experimental Slabs 

Overall, my limited expertise in clay manipulation meant that these slabs were not well 

made enough to provide detailed insights into most clay preparation, forming, and 

finishing attributes in the micro-CT scans. Nonetheless, these experimental slabs did 

reflect major forming characteristics, notably joining and folding of clay, and a sense of 

void alignment related to the general drawing and thinning of clay that occurred during 

forming. Certainly, these samples reinforce the insights others have offered (Kahl and 

Ramminger 2102; Sanger 2013, 2017) that coils and joins in clay can be readily seen in 

micro-CT scans. Temper inclusions were visible in both 3D and 2D, but I was not able to 

detect the role these inclusions played in augmenting or interfering with void patterns. 

Volume percentages for inclusions ended up being generally lower than their weight 

percentages. This discrepancy makes sense since some of the granitic, quartzite and sand 

tempers might weigh more than clay by volume. Ultimately, while these slabs were not 

used directly in interpretation of the archaeological samples, the exercise did give me a 

general idea of some of the manufacturing techniques that might be visible in the 

archaeological samples scanned, and what might be more difficult to discern. Future 

material craft studies, such as tracking artisan vessel manufacture through each stage of 

production with a skilled artisan using a number of material variables, and scanning clay 

objects at each stage, does have the potential to further advance our understanding of 

vessel interior architecture revealed by micro-CT scans. 

6.2 Analyzing Clay Fabric Preparation using Micro-CT 

A range of internal ceramic fabric attributes could be identified and quantified through 

micro-CT scans as they relate to the clay used in pottery, and notably on the conversion 

of that clay body into a clay fabric for making ceramic vessels. These attributes provide 

information on the natural make-up of the clay and its inclusions, as well as the amount 

and characteristics of the tempering material that was added to the clay by the potter. 

After collecting clay, this adding of aplastic material into the sorted and prepared clay 

source is one of the first steps in the process of manufacturing a pot (Rye 1981). The ratio 

of temper to clay, and textural analysis are important aspects of in archaeological ceramic 

analysis because clay “recipes” are often learned, taught and passed down from one 
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potter to another and the choices potters make about the amount and type of temper they 

use are related to social factors (Braun 2015). Similarities in the way potters were 

preparing their clay at Arkona may indicate belonging in a community.  

It should be pointed out that micro-CT scan data related to clay fabric recipes and internal 

structure of ceramic vessels complement data that is typically obtained through 

petrographic thin sections of ceramic vessel specimens. However, there are distinct 

differences between these two types of data generated and their resulting analyses. These 

distinctions will be noted when discussing particular attributes of fabric preparation 

below. 

6.2.1 Comparing Total Volumes to 2 cm3 Prisms  

One notable distinction between petrographic thin sections and a complete 3D scan of a 

ceramic sherd or vessel section is the scale of raw data obtained in each scan of 

inclusions and void spaces, and the tremendous variability of that data from specimen to 

specimen, based on the size difference of individual sherds. As noted previously, I was 

interested in exploring evidence of vessel formation, so I wanted scans that encompassed 

the entire sherd, but this proved a challenge to then adequately compare ratios of 

inclusions, for example, between specimens, and at different resolutions. 

Given this challenge, I undertook to explore whether an arbitrary portion of each 

specimen scan could be analyzed to provide meaningful, comparative results across all 

vessels. This approach would allow me to adequately compare inclusions and other 

internal features, regardless of whether I was dealing with a small rim sherd or a much 

larger section of a vessel that included the rim, neck and shoulder. Note that I generally 

have relied on overall internal feature volume percentages for inclusions and voids, rather 

than frequency counts, given the size variation between sherds.  

To obtain an arbitrary comparator, I established a 2 cm
3
 rectangular prism for 67 of the 

Arkona specimen scans, located at a set place below the lip of the sherd (see Section 

5.4.2), to allow comparisons between rim sections of sherds that are different sizes and 

sherds that encompass rims only, with sherds that encompass additional portions of a 
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vessel (i.e., neck, shoulder, body). When positioning prisms on five neck sherds, which 

did not have an intact lip, I used a best estimate of where the lip would have terminated 

based on the remaining profile of the vessel wall.  

With only two independent variables for each prism/whole specimen, it was difficult to 

assess how effectively prisms can serve as proxies for an entire scanned specimen. I first 

thought to run a chi-square test to test inclusion and void volume percentages, and to 

determine the degree to which the prism-derived percentages are a close match to whole 

specimen percentages for each of these attributes. But chi square tests on void and prism 

volume percentages for individual sherds would be of very limited utility, since all I 

could compare would be two expected numbers against two actual numbers: void 

percentages and inclusion percentages between the full sherd and its arbitrary prism. As 

such, I would be working with only one degree of freedom for each p value. Moreover, 

the two percentages for each sherd reflect separate things: inclusion percent variation, for 

example, may be entirely independent or even anti-dependent of void percent variation. 

Given these constraints, I felt running chi square tests would be of no utility in this 

context.  

As an alternative approach, I simply grouped prism-derived percentages by their variation 

to the percentages obtained for their associated specimen (Table 6.1). For whole sherds, 

the range of variation noted for inclusion volume percentages was between 1.9% and 

19.9%; a relatively broad range. This scale of variation is also reflected in the prism 

findings, with only 34.3% proving to be either equal to or within 1% of their whole 

specimen counterparts when it came to inclusions volumes. At a 2% variation, 52.2% of 

all prisms were found to be within their full sherd volumes, increasing to 67.2% at a 3% 

variation or less. That still leaves 32.9% of prism inclusion volumes falling at a more 

than 3% variation difference from their whole specimen counterparts. 

For void volumes, whole sherd variation was much mess extreme, with the range of 

variation across whole sherds scanned for this study ranging from 0.4% - 5.4%. Likewise, 

the void variation in prism-derived values was also relatively narrow, with 74.6% of all 

prism-derived values being equal to or within 1% of their whole specimen, and fully  
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Table 6.1: A Comparison of Prism Inclusion and Void Volume Percentages to whole 

specimens (WS). Individual Prism volume percentages are compared with their 

individual whole specimen volume percentages to tabulate the percentage difference. 

 

 

89.6% of all prisms fell within 2% of whole specimen values. The difference in 

variability between these two internal attributes underscore that these do indeed represent 

independent variables. 

I did not originally intend for prisms to serve as one to one proxies for whole specimen 

volumes. The intention was simply to allow comparison of the rim portion of a specimen 

to other rim portions of scanned specimens in an attempt to eliminate variability caused 

by morphological variation. For example, by varying size and extent of intact vessel rims, 

necks, shoulders, and bodies across the specimens scanned. Furthermore, I hoped the 
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prisms could equalize differences in scan quality by eliminating noise that occurred at the 

surface of some of the scanned specimens. This noise had made segmenting voids and 

inclusions from specimen surfaces more difficult than from specimen centres. That being 

said, overall prisms generally turned out to be relatively representative of the whole 

specimens they were located within.  

The range of prism inclusion volume percentage variation to whole specimens suggest 

the confidence of prisms as proxies for this attribute is limited, given a third of prisms 

were more than 3% variable to whole sherd percentages. Only 6% of prism void volume 

percentages varied beyond 3% of whole sherd percentages, suggesting perhaps that this 

attribute is more effectively represented in prisms.  

An important factor to consider is whether the differences noted between the prism and 

whole specimen volumes were positive or negative; i.e., was there more or less void and 

inclusion volumes being captured in the prisms vs the whole specimen? As it turns out, 

42 of 67 prisms (62.7%) had a void volume that was equal to or greater than their whole 

specimens and 46 of 67 prisms (68.7%) had an inclusion volume that was equal to or 

greater than their whole specimen counterparts. This suggests that either there were 

higher inclusion volumes in rims than other portions of vessels, or that the elimination of 

noise at the edges of scans might have made an important difference in the ability to 

isolate inclusion volumes.  

All inclusion volume percentages that had a 5% or higher difference (13 in all) between 

the prism and whole specimen-derived values were instances where inclusion volume 

percentages in the prisms were higher than those in the whole specimens. Of those, seven 

of the 13 vessels were rim sherds, five were rim and neck sherds, and one was a rim, neck 

and shoulder sherd. Given that inclusion variation between prisms and whole sherds 

included rim-only specimens, difference in vessel sections does not appear to be the 

source of variation between prisms and whole specimens for inclusions. Ease of 

segmentation of inclusions in the centre of the volume might have been a factor. 

The four prisms where void volumes fell above 3% difference included two rim and neck 

sherds, a neck and shoulder sherd, and one rim, neck, shoulder and body portion of the 
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vessel, but notably no stand-alone rim sherds. The prism-derived void volumes for all 

stand-alone rim sherd specimens fell within 2% of their whole specimen volumes. In the 

case of void volume inclusions, then, notable prism variation from complete sherd 

volumes might well be due to specimens that include elements of the vessel beyond the 

rim. This makes sense given that the rim portion of vessels is where the largest void 

structures were recorded, suggesting these prisms may provide some utility, however 

minor, in eliminating void volume discrepancies between rim-only specimens and 

specimens that encompass other portions of the vessel.  These results allow me to make a 

case that prisms placed in the same location in each sample can offer some broad proxy 

comparisons for specimen scans, though cautiously, since rim portion values are not 

always the same as total sample volumes. 

In the end, the prisms helped eliminate variation between sections of a particular vessel, 

or noise within the edges of particular scans. As such, the use of prisms does offer a 

means of comparing specimens, eliminating wider noise and variation across the sample 

of sherds, to create values that are more easily comparable between vessels. Moreover, as 

an object lesson, these prisms also provide 3D insight into a similar, arbitrary limitation 

that thin section analysis grapples with when understanding internal vessel fabric 

variables. As such, I will provide a comparison of overall specimen and prism patterns in 

the discussion below, recognizing that the prisms are a distinct analytical tool for 

examining frequencies of inclusions and voids in particular, rather than serving as a direct 

proxy for the vessel specimens overall.  

6.2.2 Inclusion Volumes in Clay Fabric 

Woodland ceramics throughout the Northeast are made of clay fabrics that have been 

prepared by potters prior to vessel forming. Clay preparation includes the addition of 

temper into the clay, typically stone grit (Watts 2006). Natural inclusions in the clay and 

tempering materials are the focus of many material science studies that consider material 

and frequencies to explore ceramic provenance, petrographic signatures for identifying 

distinct clay sources, technological improvements of the clay body, and dimensions of 

distinct craft tradition and enculturation reflected in particular fabric recipes by temper 

type, size and frequency (e.g. Braun 2015; Reedy 2008; Quinn 2013). 
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Textural analysis of inclusions is one of the main aspects of petrographic studies of 

ceramic fabrics. These analyses are based on the 2D surface of a thin section cut exposing 

the internal fabric of a particular ceramic specimen. In data collection to determine grain-

size distributions, diameters of inclusions are recorded, most commonly based on a point-

counting technique (Quinn 2013:109). Measurements or counts of 100-300 inclusions per 

thin section are normally considered a statistically significant sample in petrography to 

provide an accurate and detailed picture of the texture or composition of a sample fabric. 

Usually, the total number of inclusions is also measured per thin section where possible 

(Quinn 2013:109). Some petrographers have also used inclusion surface area as a proxy 

for volume, in order to develop a sense of 3D volume, which is considered more accurate 

than inclusion counts, but still not perfect (Braun 2015:57). As Braun notes, potters 

would not have been counting out temper inclusions. Instead, they would have been 

mixing temper and clay by feel until a perceived consistency was reached. If this was the 

case, measures of volume and mass, rather than counts of inclusions, are probably more 

in tune with the practices of potters.  

Given the limitations of a thin section face to fully represent the textural dimension of 

recipes, further insights into ceramic fabrics could be gained through micro-CT scans. 

These scans have the potential to provide a 3D profile of all inclusions, allowing for 

complete frequency and volume measurements across a scanned specimen, and not 

extrapolated from a limited 2D surface.  

The scale of the inclusions that can be recorded differs between micro-CT and 

petrographic results, however, depending on the resolution and goals of the micro-CT 

scan. For example, the volume data obtained from the VG inclusion and porosity module 

sorts the smallest inclusions into either 0.00 mm
3
 or 0.01 mm

3 
particle size categories, 

whereas petrographic analyses typically measures and counts surface particles visible in a 

2D thin section that have a visible planar diameter of 0.01 mm or greater in size 

(anything less than 0.01 mm is assumed to be part of the ceramic matrix; Quinn 2013:42). 

If I convert that 2D diameter measurement of 0.01 mm into a 3D volume, such particles 

would have a far smaller volume than 0.01 mm
3
. Thus, the inclusions on the small end of 

the petrographic spectrum are more accurately measured than those in micro-CT scans, at 



122 

 

least when using VG software. In effect, volumes less than 0.01 mm
3 
recorded in micro-

CT scans are all lumped into a single 0.00 mm
3
 category. In other words, micro-CT 

scans, measuring the presence and size of 3D particles, generate frequency and volume 

percent data that are not directly comparable to petrographic findings. While micro-CT 

identifies tens of thousands of individual inclusions in a single sherd that may measure as 

small as 0.01 mm in cross section, all those inclusions smaller than that volume are only 

counted. Further methodological differences between micro-CT and petrography are 

discussed in Section 6.6. 

My first effort in approaching the quantification of inclusions was to generate a gross 

volume percentage of inclusions for each specimen and for each 2 cm
3
 prism. To do so, I 

could not easily separate intentionally added temper from naturally occurring inclusions 

in the clay; thus, these volume percentage frequencies included anything in the sample 

that was not clay or air. Sorting temper from natural inclusions can be a difficult task 

even when examining only a small sample of a specimen and is based on a number of 

identifying factors (Quinn 2013) that were not accessible for all the scans, because some 

specimens contained very large numbers of inclusions. For example, across 53 specimen 

scans run though the VG porosity and inclusion module, numbers of inclusions recorded 

ranged from 9411 to 200479. Of these 53 examples, 57% contained less than 50,000 

inclusions, 32% included 50,000-100,000 inclusions, and 11% included more than 

100,000 inclusions. While I will explore questions involving temper versus natural 

inclusions when discussing grain-size distributions and textural analysis below, for 

determining inclusion volume percentages across all sherds I could not tease out 

intentionality for any given set of inclusions. 

Despite being unable to discriminate between natural and introduced inclusions in scans, 

I could still generate an overall percent of inclusions in specimens generally, and from 2 

cm
3
 prisms.  I separated inclusion percentages into 5% increments to summarize results, 

rounding when needed (e.g., a result of 10.79087 % would fall within the 10-15% 

category, while a value of 10.01087% would fall within the 5-10% category). These 

frequency percent categories align with those that tend to be used when presenting 

petrographic findings of inclusion volume percentages (e.g. Quinn 2013:82). The 
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difference between the two analytical approaches is that inclusion volume percentages 

are calculated by visual estimation or computer generated results based on the 2D area of 

inclusions (e.g. Braun 2015) from a thin section, while they are calculated by their actual, 

3D volume from a micro-CT scan.  

 Inclusion volume percentages within a specimen clustered fairly tightly across the 

Arkona sample. For whole sherds, 51 of 67 or 77% of vessel scans fell within the two 

categories that make up the 5-15% inclusion volume (Figure 6.9, Table 6.2). In the 

rectangle prism percentages grouped similarly, with 53 of 67 or 79% of Arkona vessels 

falling in the 5-15% inclusion volume range (Figure 6.10, Table 6.3).  In other words, 

including both naturally occurring inclusions and added temper, the clay fabric contained 

10%, plus or minus 5%, of non-clay material. This concentration of inclusion volume in 

specimens suggests that the combination of natural and introduced inclusions in Arkona 

Cluster vessels did not deviate greatly. This observation may suggest most vessels 

manufactured for use at these sites were made from generally similar clay sources by 

artisans adhering to a generally consistent paste preparation recipe. This regularity of 

practice that is indicated by these similarities in inclusion volume percentages throughout 

the Arkona Cluster suggests that these potters were working within a community of 

practice that was sharing knowledge about how clay should be prepared.  

It is worth noting a slight increase in inclusion volumes in the 2 cm
3
 prisms. Given that 

they derive solely from rim portions of a vessel, this may reflect a slight tendency for 

larger volume inclusions to be less abundant in the typically thinner sections of a vessel 

below the rim. Alternately, this higher volume percentage could simply be a result of 

more effective inclusion thresholding in prisms, due to the elimination of surface noise. 

There was no patterning of inclusion volume percentages noted for different sites or in 

conjunction other attributes. Further interpretive implications of these findings are 

considered in Chapter 7. 

The deviation of some specimens from the 5-15% inclusion volume appears to have more 

to do with limitations in image analysis and user error than actual material differences 

within specimens. While a few specimens (see Specimens 102 and 040 in Appendix A), 
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appear to have fewer inclusions, most specimens with less than 5% inclusion volume are 

either scans with a lot of noise that impeded the ability to threshold inclusions (see 

Specimens 096 and 100 in Appendix A), or specimens that have lower density inclusions 

(see Specimen 062 in Appendix A) that were more difficult to threshold from the clay 

matrix. Both noise in scans, and lower density inclusions made it more difficult to isolate 

inclusions in these specimens, resulting in lower volumes. The vessels with higher than 

15% inclusion volume typically have larger/coarser inclusions, making them easier to 

pick up in the scans (see Specimens 079 and 021 in Appendix A), or have particularly 

high-density inclusions which made them easier to threshold (see Specimen 009 in 

Appendix A).  
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Figure 6.9: Graph for inclusion volume percentages for Arkona vessels whole sherds, 

n=67. 

  

Table 6.2: Percentage of inclusion within whole specimens for Arkona vessels. 

% Inclusions  Number of Vessels % of Vessels 

0-5 % 12 18 

5-10 % 37 55 

10-15 % 15 22 

15-20 % 3 4 

Total 67 100 
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Figure 6.10: Graph for inclusion volume percentages from Arkona Vessels 2 cm
3
 

rectangular prism, n=67. 

 

Table 6.3: Percentage of inclusions within 2 cm
3
 prisms for Arkona vessels 

% Inclusions  Number of Vessels % of Vessels 

0-5% 6 9 

5-10% 32 48 

10-15% 21 31 

15-20% 5 7 

>20% 3 4 

Total 67 100 

 

6.2.3 Sampled Scans for Textural Analysis and Grain-size 
Distributions 

Working with the very large data sets of inclusion counts and volumes generated from the 

micro-CT scans was a challenge for conducting detailed textual analyses of specimens, 

and a full grain-size analysis on all 67 Arkona vessel scans represented a far greater time 

investment than could be afforded to this one dimension of the current study. As such, I 

opted to examine a sample of specimen scans in order to explore what analysis could be 

conducted from these very large datasets. The sample size I chose to work from was a 
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little more than 10% of Arkona vessel scans (i.e., n = 7). The sample included scans from 

five of the seven Arkona sites that made up the larger collections (Table 6.4), including 

two samples from each of AgHk-42 and AgHk-52. I also ensured that I selected vessels 

exhibiting variation in exterior and manufacturing attributes. I then conducted textural 

analysis, grain-size distributions, and measures of sphericity for this sample using the VG 

3.0 porosity and inclusion module. 

Table 6.4: Scans used for textural analysis and grain-size distributions. 

 Specimen 
number 

Site Total number of 
inclusions identified in 
scan  

Voxel Size (µm) 

024 AgHk-52 Figura 47566 62.17 

038 AgHk-42 Bingo Pit Village 
Loc. 10 

34906 47.90 

042 AgHk-42 Bingo Pit Village 
Loc. 10 

29343 44.30 

050 AgHk-40 Bingo Pit Loc. 3 51413 64.22 

061 AgHk-32 Van Bree 47301 72.57 

070 AgHk-52 Figura 47011 74.83 

011 AgHk-54 Inland West Loc. 
3 

9411 113.01 

 

6.2.3.1 Textural Analysis 

As illustrated in Table 6.4, the spreadsheets generated for the sample specimens included 

anywhere from around 10000 to 50000 data points; each generating a volume 

measurement. As such, these datasets needed to be sorted into categories of volume size 

to begin to see patterns and make interpretations.  The resulting information I had to work 

with was vastly different from petrographic studies where textural analysis data points 

(gathered using point-counting, line counting, area counting or ribbon counting) of 100-

300 data points are often considered a statistically significant sample (Quinn 2013:109). 

More data may be gathered from thin sections when digital image analysis is used (e.g., 
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Braun 2015; Quinn 2013:111), but the counts are entirely of a different order than the 

volume data in a micro-CT scan. The challenge for this study, then, was to explore the 

inclusion volume datasets I could generate to see how textural analysis of vessel fabrics 

have the potential to complement or interrogate conventional thin section analyses.  

 It became clear immediately from the sample specimen data that most of the inclusions 

the VGStudio MAX inclusion and porosity module registered fell into extremely low 

volume categories. The software sorts data by volume categories of 0.00, 0.01, 0.02 mm
3
, 

and so on. In all the specimens examined, the vast majority of inclusions fell into the 

0.00, 0.01 and 0.02 mm
3
 volume categories. It was difficult to graphically represent the 

raw data for all specimens, since percentages of inclusions that fell into differing volume 

categories was variable, as seen in the following discussion.  

 

Specimens 070 & 024: 83% of inclusions for these specimens were less than or equal to 

0.03 mm
3
, while 90% of inclusions were less than or equal to 0.07 mm

3
.  

 

Specimen 038: 83% of inclusions were less than or equal to 0.02 mm
3
, while 90% of 

inclusions were less than or equal to 0.06 mm
3
.  

 

Specimen 042: 85% of inclusions were less than or equal to 0.02 mm
3
, while 90% of 

inclusions were less than or equal to 0.04 mm
3
.  

.   

Specimen 050: 81% of inclusions were less than or equal to 0.06 mm
3
, while 90% of 

inclusions were less than or equal to 0.14 mm
3
.  

 

Specimen 061: 81% of inclusions were less than or equal to 0.07 mm
3
, while 90% of 

inclusions were less than or equal to 0.18 mm
3
.  

 

Specimen 011: 80% of inclusions were less than or equal to 0.53 mm
3
, while 90% of 

inclusions were less than or equal to 1.82 mm
3
.   
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To attempt to understand inclusion volume size frequencies from the perspective of what 

the potter might have been seeing and feeling and how they might have been interacting 

with materials, I found it useful to group this data using geological categories. Also 

informative was looking up the size of something like a grain of table salt, which is about 

0.03 mm
3
, to visualize exactly what these volumes physically represent, in terms of size. 

In petrography, typically clay particles and all other material less than 10 µm (0.01 mm) 

in diameter are referred to as part of the “matrix” of the clay (Quinn 2013:42) since they 

are too small to be studied in detail given the optical resolution of microscopes used for 

thin section analyses (e.g., Rice 1987; Smith 2008). When converted to 3D volumes, 

particles with a diameter of 0.01 mm would normally have a volume smaller than 0.01 

mm
3
 (e.g., a sphere with a diameter of 10 µm would have a volume of 523.6 µm

3
 or 

5.236e-7 mm
3
). In other words, typical thin section analyses examine these smaller 

inclusions in more detail than micro-CT scans at the resolution I was able to obtain for 

this study. Given this distinction, a significant percentage of inclusions identified using 

the porosity and inclusion module that fall into the 0.00 mm
3
 category could be either 

particles that would be included in petrographic analysis, or may be part of the clay 

matrix, or at least would be considered so in petrographic analyses.  

 

It is worth noting that I was simply working with the data that the porosity and inclusion 

module provided at face value, as a first attempt at micro-CT textural analysis of ceramic 

fabrics. There are problems that emerged that were not corrected for in this preliminary 

analysis but should accounted for in future research, including the incorporation of a cut 

off point for inclusions that fall below the voxel size for a given scan, as these likely 

cannot be effectively recognized by the software. In the sampled scans here, voxel sizes 

ranged from 44.33 µm to 74.83 µm (Table 6.4), with the exception of Specimen 011 

which has a lower resolution and higher voxel size of 113.01 µm. I believe working 

through this analysis again with scans of higher resolution would prove a valuable 

exercise, but was beyond the scope of this research.  

As petrographic and geological data is presented in 2D measurements, either the diameter 

or radius of the inclusion, often using the Udden-Wentworth scale (Krumbein 1934; 

Udden 1914; Wentworth 1922), I converted these diameter measurements to mm
3
 to 
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adequately compare geological categories with the 3D volumes obtained in the micro-CT 

data. I arbitrarily used a sphere as the standard measure of volume when converting the 

2D categories into 3D volume of grain types. This choice is not a perfect system, as not 

all inclusions are spherical, and the diameter measurements obtained in petrography are 

themselves somewhat arbitrary because a mineral sliced on different planes will generate 

different diameter measurements. Nonetheless, because geology and petrography can 

only generate measurements of diameter to classify inclusions, making an arbitrary 

assumption of volume shape provided me with a standard means of converting geological 

categories to 3D. Thus, while an arbitrary exercise, this conversion at least provided me 

with a means of understanding and exploring vast amounts of volume data in a way that 

was translatable to other ceramic textural studies, and in a way that allowed me to think 

about potting practice and potters’ recipes. There are a growing number of geological and 

soil sciences studies that rely on CT and micro-CT methods to present geological data in 

3D (Tiana et al. 2008), which should be consulted for future work in this area. 

Table 6.5 provides a classification scheme used to categorize inclusion volume. Because 

of the way that the software presented volume data, a large portion of the inclusions that 

the software picked up fell into a “lumped” 0.00 mm
3 
category (i.e., below 0.01 mm

3
). 

This lack of distinction between volumes below 0.01 mm
3
 meant I could not sort volume 

data for inclusions identified in the micro-CT scans to align them within the Udden-

Wentworth based categories of very fine, fine and medium sand, because all of the 

inclusions in the 0.00mm
3
 category could fall into any of these three categories. Rather 

than somehow force the micro-CT volume data to fit these distinct categories, for this 

study I placed all inclusions with a volume less than 0.01 mm
3
 into a class named “very 

fine/fine sand” which, in reality, may include some particles from 0.008-0.01mm
3
 that 

might otherwise belong in the medium sand category. The volume measurement category 

for medium sand encompasses values of 0.01 mm
3
 through 0.06 mm

3
, while the coarse 

sand volume values encompass 0.07 mm
3
 through 0.52 mm

3
. 
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Table 6.5: 3D Volume Categories based on 2D Udden-Wentworth (U-W) Classification 

Scale and Modified Categories based on Micro-CT Data Constraints  

U-W Categories 2D 
diameter  

3D volume calculated 
from  2D diameters 

Adjusted Volume 
Categories 

Volume 
categories for 
micro-CT 
Data 

Very fine sand 62.5-
125µm 

0.000128-0.00102 
mm

3
 

0.000128-
0.00999mm

3
 

Very fine/Fine 
sand 

Fine sand 125-250µm 0.00102-0.008mm
3
 

Medium sand 0.25-
0.5mm 

0.008-0.0654mm
3
 0.01-0654mm

3
 Medium sand 

Coarse sand 0.5-1mm 0.0654-0.524mm
3
 0.0654-

0.524mm
3
 

Coarse sand 

Very coarse 
sand 

1-2mm 0.524-4.19mm
3
 0.524-4.19mm

3
 Very coarse 

sand 

Very fine gravel 2-4mm 4.19mm-33.51mm
3
 4.19mm-

33.51mm
3
 

Very fine 
gravel 

Fine gravel 4-8mm 33.51-268.08mm
3
 33.51-

268.08mm
3
 

Fine gravel 

 

. I should also note that I found the very fine gravel category, while encompassing 

volumes sizes for inclusions between 4.19-33.51 mm
3
, problematic as a useful category 

for the micro-CT data. The vast majority of the inclusions that fit in the category fell in 

the lower end of this group, and very few had volume sizes above 6.00 mm
3
 (see Figure 

6.11). While I considered creating sub-categories to better reflect the micro-CT data 

obtained across my sample of seven sherds, in the end, because there were so few 

inclusions in this category at all, and because they were likely all intentional inclusions, I 

did not break down the category. Lastly, I should also note that Specimen 011 did not 

conform to the other scans, since the smallest inclusions below 0.00 mm
3
 appear to have 

been missed (i.e., not counted), and so values only started to be recorded at 0.01 mm
3
. 

 Overall, medium sand is the largest volume category for the four scans with complete 

inclusion volumes (Specimens 024, 050, 061, 070), ranging between 48% and 64% of all 

inclusions by volume. For two specimens (038, 042) the largest category is the very 
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fine/fine sand category, at around 60%. In all six cases, these two volume categories are 

the most abundant, combining to range from just below 80% of all inclusions to around 

90% (see Figure 6.11). 

Specimen 011 is the only vessel where the coarse sand and above categories constitute 

more than 50% of all inclusions. This difference is likely due to scan resolution, which 

was affected by the large size of this specimen (see Specimen 011 in Appendix A). The 

software appears to have not picked up smaller inclusions at this resolution. Specimen 

011 comes from AgHk-54 Inland West Location 3 (Suko 2017a), which, by radiocarbon 

dating falls between the later stages of the Figura site occupation and the Bingo site 

occupation (Neal Ferris, personal communication 2018). It has a typical rim shape and 

decoration for the Arkona Cluster, with stamped bands of linear, left obliques, interior 

punctates and external bosses, so both temporally and stylistically the vessel fits within 

the heart of the Arkona Cluster period of settlement and ceramic craft practiced among its 

potters. So there is nothing remarkable about the vessel to otherwise suggest the inclusion 

frequency discrepancy is anything other than an artifact of scanning resolution. That 

being said, I should note that the ratio of coarse and very coarse sand to medium sand for 

Specimen 011 is more substantial than seen for the other samples. As well, when 

examining the fabric visually, there appears to be more large inclusions present (see as an 

example Figure 6.12). As a contrast, Specimen 038 has more small inclusions visible and 

coarse inclusions make up a lower percentage of the inclusions in this vessel (see Figure 

6.13). At this point, however, only scanning at a similar resolution would resolve whether 

this discrepancy is real or a product of variable scanning resolutions. 

While these geology-derived volume categories for inclusions are broad, they do 

underscore that the majority of inclusions are extremely small. Inclusions within the very 

fine/fine sand and medium sand categories in particular likely encompass a spectrum of 

particles that may be part of the clay matrix, a spectrum of accidental inclusions 

incorporated into the clay matrix during preparation stages, and perhaps the smaller end 

of the spectrum of intentionally added tempering material. Thus, it is challenging to say 

from the micro-CT data, at this lower end of the spectrum, what percent of these 

inclusions might reflect differences in clay sources or clay preparation techniques across  
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Figure 6.11: Graphs indicating the percentage of inclusions that fall into each volume 

category for each specimen.  

 

the seven samples. Nonetheless, it is also readily evident that these volume categories do 

vary between vessels, which begins to suggest the possibility of some degree of 

variability in preparation and fabric recipes. I will explore this notion further in Chapter 

7.  

Ceramic fabric texture (coarse or fine) is a straightforward way for archaeologists to 

describe ceramics based on the frequency and size of inclusions in the fabric. These 

distinctions in fabric texture allow us to access the recipes potters were using and what 

steps they were taking in clay preparation.  Quinn (2013:44) notes for petrographic 

studies of clay fabrics that fine-grained ceramics have an inclusion modal grain-size of 

0.0625-0.125 mm or less, and coarse-grained ceramics have a modal grain-size of 0.5-1.0 

mm, though these measurements are based on diameter. When compared to my 

conversion of these 2D measurements into volume using the Udden-Wentworth scale 

(Table 6.5; see also Quinn 2013:44), Quinn’s “coarse-grained ceramics” would  

encompass the coarse sand category, while the medium sand category (with diameters of 

0.25-0.5 mm) falls between fine grained and coarse grained ceramic categories, though 

closer to the coarse grained end of that spectrum. The very fine/fine sand category (with 
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Figure 6.12: Image of inclusions in Specimen 011. 

 

Figure 6.13: Image of inclusions in Specimen 038. 
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diameters of 0.0625-0.25 mm), fits into the fine-grained ceramic category. In this study, 

since micro-CT scan analyses do not distinguish inclusion volumes below 0.00 mm
3
, it is 

difficult to determine what percent of inclusions would fall into Quinn’s “fine-grained 

ceramic” category.  

If I were to apply Quinn’s classification scheme based solely on a direct application of 

2D categories into 3D, all of the ceramics in the Arkona collections would have a modal 

grain-size that place them into a coarse-grained ceramics category. Certainly, the coarse 

sand and larger categories of inclusions would have been noticeable by potters, and these 

inclusions likely represent intentional temper additives, rather than natural inclusions in 

the clay fabric, since such large inclusions likely would have been sieved or picked out of 

the clay during preparation, otherwise (Rye 1981:17). I would also suggest that at least 

some of the smaller, medium sand category of inclusions were also visible to the potter, 

intentionally selected for or otherwise representing finer material generated while 

crushing temper in preparation for its addition into the clay. It is also likely that some 

percent of the medium sand inclusions are accidental additions into the clay from the 

potting environment or during the processing of the clay. In other words, there is a 

spectrum or gradient to inclusion volumes that defy easy categorization from 2D diameter 

measurements into 3D volume distribution, suggesting that micro-CT data on inclusion 

volumes and grain-size distributions needs to be thought about distinctly from 2D 

interpretive frameworks. 

6.2.3.2 Grain-size Distributions  

Grain-size distributions provide an opportunity to consider inclusion volumes obtained 

from the micro-CT data directly.  Notably, given the abundance of very small inclusions 

recorded for these ceramics, grain-size distributions do not reflect the bimodal 

distribution petrographers tend to point to (e.g., Quinn 2013:103-105) as distinguishing 

intentionally added temper from natural inclusions. Rather, the bulk of grain-size 

distributions in my sample generally fall below 0.1 mm
3
, followed by a steep drop off in 

frequencies. For example: in Specimen 024, 43571 of 47566 inclusions, or 91.6%, fell 

within the 0.00-0.09 mm
3
 range (see Figure 6.14). This pattern is similar for all the seven 

specimens sampled (Figure 6.15).   
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Figure 6.14: Total distribution of inclusions by volume for Specimen 024.  

 

 

Figure 6.15: Total distribution of inclusions by volume for all other specimens sampled. 

Y axis for all represents the percent of total inclusions. The X axis represents volume of 

inclusions in mm
3
. All specimens exhibit a sharp drop as inclusion volume increases. 

  

This steep drop off may suggest that the bimodal pattern sometimes seen in petrographic 

analysis is masked by the micro-CT data not distinguishing volumes below 0.01 mm
3
, 

and by the sheer number of inclusions that fall into the lowest volume categories in 

micro-CT results. If the differences between intentional temper and natural inclusions 

falls somewhere in the volume range below 0.01 mm
3
 (e.g. if some of the “medium sand” 
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category was intentional temper and some of it was natural inclusions) the micro-CT data 

obtained from the VGStudio MAX porosity module would mask that bimodal 

distribution; petrography is currently better suited to determining the intentionality of 

inclusions.    

Though not a perfect comparator for the Arkona Cluster samples, Braun’s (2015:77) 

findings suggest that grain-size distributions are problematic using traditional point-

counting techniques. The issue is that over 80% of grains in the Ontario Tradition Late 

Woodland ceramics he analyzed measured below 60µm (which would fall into the 0.00 

mm
3
 category), and only a few dozen grains per slice measured above the 125 µm mark 

(Braun 2015:78). Braun used digital imagery to measure the area of inclusions and to 

obtain grain-size distributions, and plotted these using a logarithmic scale on the x axis, 

following geologic conventions that account for the abundance of smaller grains in 

samples (Braun 2015:56). Although micro-CT scans can examine a far greater number of 

inclusions than can be examined in a thin section, current software limitations prevented 

grain-size distributions from being a valuable method for determining which of those 

inclusions were intentional. Future work with higher resolution scans and advanced 

image analysis software that allows for volume analysis of high frequencies of very small 

particles will be needed to explore grain-size distributions for that part of the inclusion 

spectrum in clay fabrics.  

Such high numbers of small inclusions also made it difficult to appreciate inclusion 

distributions at the higher end of the grain-size spectrum for the samples examined here. 

To do so, I grouped inclusions into volume categories of 0.10 frequency groupings. When 

grouped, it became clear that the frequency of inclusions drops off drastically below 1 

mm
3
. Indeed, most of the samples tested drop off to less than one percent of the total 

number of inclusions measuring between 0.02 and 0.49 mm
3
, with Specimen 011 being 

the exception (see Table 6.6). The relationship between voxel size and grain size may 

have been a factor here, with the larger voxel size in Specimen 011 affecting the 

software’s ability to measure smaller grain sizes.  
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I eliminated the lower end of the grain-size distributions (below 0.50 mm
3
), to provide 

better clarity where this decrease in inclusions happens, while retaining overall volume 

percent. By examining 0.50 mm
3
 to 6 mm

3
, the graphs in Figure 6.16 are focusing on part 

of the coarse sand category, defined above, through to the very fine gravel category. 

While these graphs illustrate where inclusion frequencies decrease significantly, it is 

worth noting that they represent a small portion of the inclusions, as indicated by the 

small percentage values on the Y axes.  Additionally, the graphs illustrate that inclusions 

level off to minimal levels (lower than 0.05 percent of all inclusions) between the 1.30 

mm
3
 and 2.5 mm

3
 categories. 

 

Table 6.6: Frequencies of inclusions drop to less than 1% of the total within the volume 

range indicated for the specimens examined.  

Specimen Number Volume range in which inclusions start to represent less than 1% of 
total  

011 0.90-0.99 mm
3
 

024 0.3-0.39 mm
3
 

038 0.30-0.39 mm
3
 

042 0.20-0.29 mm
3
 

050 0.40-0.49 mm
3
 

061 0.40-0.49 mm
3
 

070 0.30-0.39 mm
3
 

 

 The point at which grain-sizes drop off in frequency is within the coarse sand range, 

suggesting that perhaps the ideal temper size that potters were adding was smaller than or 

within this coarse sand category. It also may be possible that a very modest bimodal 

pattern is visible in some of the charts. Notably, in Specimen 042 it is clear the steep and 

relatively even drop of frequencies is interrupted between 0.70-0.79 mm
3
 units. Similar, 

very slight deviations, well below any disruption to the overall curves for each sample, 

can also be detected. But these blips are at such a discrete and small scale that they do not  
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Figure 6.16: Distribution of inclusions from 0.05 to 6 mm
3
 in specimens 011, 024, 038, 

042, 050, 061 and 070. Note the Y axis is different for Specimen 011.  

 

logically offer a distinction between natural and introduced inclusions. More 

speculatively, the pattern of drop off likely captures the upper spectrum and limit of what 

potters might have preferred, in terms of temper size range. Further interpretations of 

these findings are explored in Chapter 7.  

6.2.3.3 Sphericity 

Sphericity is a three-dimensional morphological measure of how closely the shape of an 

object approaches that of a mathematically perfect sphere (Wadell 1932). The manual for 

VGStudio MAX 3.0 (2016: 478) defines it as “a measure for the ratio between the surface 

of a sphere with the same volume as the defect and the surface of the defect”.  Sphericity 

values range from 0 (non-spherical) to 1 (perfect sphere). For example: the value of a 

tetrahedron is 0.671, the value of a cube is 0.806, and a dodecahedron (a 12 sided 

polyhedron) is 0.910 (Krumbien 1941; Wadell 1932). Sphericity is a value the porosity 

and inclusion module in VGStudio MAX 3.0 provided, and so is considered here for the 

seven specimens sampled. Sphericity has the potential to be a useful measurement when 

examining ceramic manufacture and potters’ choices since the shape of temper can be a 
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result of potters actions, like crushing rocks for temper, and the shape of temper and 

inclusions in clay affect the workability of clay and the mechanical properties of resulting 

pots (Müller et al. 2010). 

When I began exploring sphericity values provided by VGStudio MAX, I was hoping 

that these values could allow me to eliminate some of the smaller volumes as natural 

inclusions in the clay, and not intentional temper, because I anticipated smaller inclusions 

would be more spherical, while prepared temper would be noticeably less spherical. But 

in geological terms, the value of sphericity is a morphological reflection of elongation, 

and typically in geology sphericity of particles is augmented by a measure of roundness, 

which more properly measures convexities and concavities on the particle (e.g., Wadell 

1932; see also Ulusoy 2019; Zheng and Hryciw 2015). In other words, while sphericity 

can offer some insight into the properties of inclusions, it does not, on its own, offer a 

geological particle classification or provide a sense of how angular or rounded inclusions 

are, which presumably is a characteristic of tempering materials. Moreover, most 

sedimentary particles fall within the sphericity range between 0.3 to 0.9 (Powers 1953), 

and most of the inclusions in my samples fell into a 0.2 to 0.7  range of sphericity, 

confirming that the majority of inclusions align with expectations of sedimentary 

particles. 

Inclusions do not sort perfectly based on volume and sphericity, but as a general rule: the 

larger the inclusions, the less spherical they are in this sample. Broad categories based on 

combining grain-size categories developed in section 6.2.3.1 were used to visualize 

trends in sphericity (see Table 6.7), though I excluded Specimen 011 (Table 6.8) from 

comparison given that percentages were skewed by the lack of the smallest volume 

inclusions recorded in that scan. Individual specimen tables underscore that, as inclusions 

increase in volume, a higher percentage are less spherical (see Tables 6.8-6.14). Notably, 

in all samples, between 83% and 98% of the smallest inclusions (medium, fine and very 

fine sand) had a sphericity value of 0.5 or higher. Those percentages steadily decrease 

through larger inclusion volume categories, so that 60%-94% of very coarse sand volume 

category inclusions score below a 0.5 sphericity value, while 96%-99% of gravel-sized 

inclusions score below a 0.5 sphericity value. The greatest variation between sherds 
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occurs within the coarse sand volume category, with Specimens 024 (51%/49%) and 042 

(54%/46%) exhibiting close to an equal split of inclusions with less than and greater than 

a 0.5 sphericity value. Specimen 070 (73%/27%) had a significant percent of coarse sand 

sized inclusions scoring less than 0.5, while Specimens 038 (36%/64%), 050 (20%/80%), 

and 061 (30%/70%) had significant percentages of coarse sand sized inclusions scoring 

over 0.5. 

Table 6.7: Categories used to sort inclusions by sphericity. 

Category Volume range in mm
3 

Medium, fine and very fine sand 0.00-0.06 

Coarse sand 0.07-0.52 

Very coarse sand 0.53-4.19 

Gravel 4.20 and above 

 

Table 6.8: Specimen 011 sphericity values for inclusion by volume categories.  

sphericity value 
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very 
coarse sand % of gravel 

0-0.09 0 0 0 0 

0.1-0.19 0 0 0 0 

0.2-0.29 0 0 0.1 2.2 

0.3-0.39 0 0.4 4.3 24.3 

0.4-0.49 0.7 7.6 28.1 46.5 

0.5-0.59 19.6 49.6 58.6 26.7 

0.6-0.69 67.6 42.2 8.8 0.2 

0.7-0.79 11.1 0.2 0 0 

0.8-0.89 1 0 0 0 
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Table 6.9: Specimen 024 sphericity values for inclusion by volume categories. 

sphericity value  
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0.1 0 

0.1-0.19 0 0.4 2.6 9.9 

0.2-0.29 0.1 4.4 10.9 30.8 

0.3-0.39 1.7 13.2 29 40.7 

0.4-0.49 9.9 33.5 41.9 17.6 

0.5-0.59 39.7 42.9 14.9 1.1 

0.6-0.69 44 5.7 0.6 0 

0.7-0.79 4.3 0 0 0 

0.8-0.89 0.3 0 0 0 

 

Table 6.10: Specimen 038 sphericity values for inclusion by volume categories. 

sphericity value 
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0 1 

0.1-0.19 0 0.3 4.8 16.3 

0.2-0.29 0.1 5.2 14 30.9 

0.3-0.39 1.3 9 21.3 31.5 

0.4-0.49 6.5 22 37.9 20.2 

0.5-0.59 30.2 53.8 22 0.6 

0.6-0.69 54.9 9.6 0 0 

0.7-0.79 6.6 0 0 0 

0.8-0.89 0.4 0 0 0 
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Table 6.11: Specimen 042 sphericity values for inclusion by volume categories. 

sphericity value  
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0 0 

0.1-0.19 0 0.5 0.7 6.5 

0.2-0.29 0.1 2.4 10.8 37.4 

0.3-0.39 0.9 14.3 34.6 38.3 

0.4-0.49 6.3 36.9 42.4 16.8 

0.5-0.59 32.9 42.8 11.5 0.9 

0.6-0.69 53.6 3.2 0 0 

0.7-0.79 5.8 0 0 0 

0.8-0.89 0.3 0 0 0 

 

Table 6.12: Specimen 050 sphericity values for inclusion by volume categories. 

Sphericity value  
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0 0 

0.1-0.19 0 0 0.1 0.9 

0.2-0.29 0 0.1 0.9 10.9 

0.3-0.39 0.1 1.5 14.3 48.3 

0.4-0.49 2.2 18.5 44.5 36.3 

0.5-0.59 20.3 52.1 39.3 3.6 

0.6-0.69 66.7 27.8 0.9 0 

0.7-0.79 9.8 0 0 0 

0.8-0.89 0.8 0 0 0 
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Table 6.13: Specimen 061 sphericity values for inclusion by volume categories. 

Sphericity value  
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0 0.3 

0.1-0.19 0 0 0.7 8.8 

0.2-0.29 0 1 6 29.3 

0.3-0.39 0.6 6 20.3 42.3 

0.4-0.49 5.5 23.3 42.4 17.7 

0.5-0.59 30.2 51.9 30.5 1.6 

0.6-0.69 56.8 17.8 0.2 0 

0.7-0.79 6.5 0 0 0 

0.8-0.89 0.5 0 0 0 

 

Table 6.14: Specimen 070 sphericity values for inclusion by volume categories. 

Sphericity value 
% of medium, fine 
and very fine sand 

% of coarse 
sand 

% of very coarse 
sand % of gravel 

0-0.09 0 0 0 0 

0.1-0.19 0 0.1 10.5 64.3 

0.2-0.29 0 12 41.7 28.6 

0.3-0.39 2.6 34.1 26.4 0 

0.4-0.49 14.5 26.9 15.4 4.8 

0.5-0.59 41.8 21.9 5.9 2.4 

0.6-0.69 36.9 4.9 0.2 0 

0.7-0.79 3.9 0 0 0 

0.8-0.89 0.3 0 0 0 
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While an imperfect measurement of the spherical and smooth shape of inclusions, these 

results suggest that larger inclusions, which are likely predominantly temper additions, 

are at least less spherical. Moreover, the significant sphericity variation between six of 

the specimens within the coarse sand category of inclusion volume, likely points to where 

the spectrum of natural inclusions transition with temper additions in clay fabrics. 

Likewise, though tentative, the stark variation seen in this volume category (ranging from 

20% to 73% of coarse sand inclusion volumes scoring below 0.5 sphericity), may also 

hint at variable fabric recipes or temper preparation practices.  

The porosity and inclusion module from VGStudio MAX 3.0 also included graphical 

reports on sphericity, further illustrating that, as the diameter of the inclusion increases 

(on the y axis), sphericity decreases, meaning that inclusions with larger diameters are 

less shaped like a sphere (Figure 6.17).   

 

Figure 6.17: Diameter and sphericity graph output from the porosity and inclusion 

module of Specimens 011, 024, 038, 042, 050, 061 and 070. The diameter of inclusions 

appears on the Y axis, while the sphericity value appears on the X axis.  
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Without the ability to also calculate roundness, the VGStudio MAX calculation of 

sphericity only hints at possible further interpretive insights CT scan data could provide 

for inclusions, since presumably temper material that has been crushed will have more 

angular and irregular surface shape than natural inclusions in the clay matrix. Minimally, 

and in the absence of a petrographic bimodal curve to fall back on, it does seem 

reasonable to assume from this sample of vessels that the transition in clay fabrics from 

natural to intentional inclusions occurs in the transition through medium and coarse sand 

volume categories. This trend would also suggest that the intentional temper introduced 

into clay was a much smaller additive volume than is represented by the totality of 

inclusions actually present in the clay, allowing us to think about clay fabric recipes 

beyond their geological and functional characteristics and as the potter’s understanding of 

working to achieve a “right” mix. 

The fact that temper additives in these ceramics are mostly stone grit that had to be 

intentionally crushed to generate particles small enough to work into the clay grit also 

suggests a reason why larger inclusions generally lack sphere-like shape. Specifically, 

Howie’s initial petrographic study of Arkona vessels noted a high presence of crystal 

minerals like quartz and feldspar in the clay pastes she examined (Linda Howie, personal 

communication 2018). She also felt that these materials were coming primarily from 

crushed fire-cracked rock. This heat altered material would have generated a great deal of 

coarse tempering material that was highly angular, and likely not spherical in shape. 

Further considerations of inclusions are discussed in Chapter 7. 

6.2.4 Calibrated Scans  

While not a standard step in the scanning protocols I followed, calibrating scans offers 

the ability to distinguish inclusions qualitatively. As such, I wanted to explore the 

potential of calibrated scans in analyzing fabric inclusions. Radiodensity values or 

attenuation coefficients are also known as Hounsfield Units (HU) (Hsieh 2009; Stock 

2009). The HU scale is a linear transformation of the original linear attenuation 

coefficient measurement into one in which the radiodensity of distilled water at standard 

pressure and temperature (STP) is defined as zero HU, while the radiodensity of air at 

STP is defined as -1000 HU (Stock 2009). Attenuation scales are arbitrarily defined, and 

http://en.wikipedia.org/wiki/Radiodensity
http://en.wikipedia.org/wiki/Radiodensity
http://en.wikipedia.org/wiki/Distilled_water
http://en.wikipedia.org/wiki/Distilled_water
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
http://en.wikipedia.org/wiki/Air
http://en.wikipedia.org/wiki/Air
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although HU is standard for medical applications and most published studies still use HU, 

industrial CT systems are sometimes calibrated so that air has a value of 0, water of 1000, 

and aluminum of 2700 (Johns 1993; UTCT 2013).  However, geological materials, and 

ceramics which include these geological materials, have a large chemical variability and 

are scanned under a wide range of conditions, thus precluding any close correspondence 

to density in most cases (UTCT 2013). 

A micro-CT scanner has been used to scan geological samples at the University of Texas 

High Resolution X-ray CT Facility (UTCT 2013). This research has the potential to 

contribute to the understanding of 3D ceramic petrology because they are scanning 

materials that are often included in ceramics as temper or as mineral inclusions. The 

UTCT (2013) suggests that the best way to gain insight into scanning a geological sample 

is “…to plot the linear attenuation coefficients of the component materials over the range 

of the available X-ray spectrum.” Mass attenuation coefficients can be obtained from the 

XCOM photon cross section database managed by the NIST (National Institute of 

Standards and Technology; Berger et al. 2011). For example, I can enter the chemical 

formula for quartz as SiO2 and the energy level of the scan to obtain a total attenuation 

value. The attenuation value represents the number of atoms encountered by the X-ray 

beam. Mass attenuation coefficients are a material's property. They are a strong function 

of the atomic number of the absorber Z, as well as the X-ray wavelength λ (the inverse of 

energy; Stock 2009:13). Knowing these attenuation values for different minerals may aid 

in identifying the mineralogy of temper and inclusions in micro-CT scans of ceramics.  

Different minerals exhibit a wide range of specific gravities and vary in lightness 

compared to clay. For example, through radiographs Carr (1993) was able to achieve a 

better sorting of sherds than through visual sorting. Research on mineral imaging at 

UTCT supports the possibility that different minerals can be differentiated through CT 

imagery (UTCT 2013). For example, quartz and orthoclase are similar in mass density 

and have similar attenuation coefficients at high (around and above 125kV) energy, while 

at low energy the high Z-potassium in the orthoclase causes them to attenuate differently 

(UTCT 2013). In this way, dual-energy techniques may be able to identify minerals 

(McKenzie Clark and Magnussen 2014). 

http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html
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The XCOM program provides attenuation coefficients that may be used as a starting 

point for determining mineral-specific values (Berger et al. 2011). In addition, other 

studies have proposed the potential for radiographic techniques in petrography. Carr and 

Komorowski (1995) conducted blind tests using x-radiographic techniques to identify 

minerals in a collection of 726 sherds of Ohio Woodland pottery and found that experts 

familiar with petrography can identify minerals from x-radiographs at a 75-85% success 

rate. Middleton (2005) also pointed out the possibility of interpreting radiographic 

densities of different particles to gain insight into their mineralogical identity.  

To explore the potential of mineral identification based on density using micro-CT, I 

conducted calibrated scans on two separate specimens from the Arkona assemblage. 

These were scanned with a known phantom (i.e., water) to generate density values for 

each sherd to be calibrated against a known density. I then calibrated the scans using the 

calibration tab in the CT Pro 3D reconstruction software, assigning an industrial HU 

value of 1000 to the interior of the water in the scan. Once the calibrated scans were 

opened in VG, I was able to isolate inclusions as well as give a range, minimum, 

maximum, and mean density value for inclusions in the fabric (Table 6.15). I could also 

isolate any particular inclusion, and use the minimum and maximum density values 

within that specific inclusion to isolate all other inclusions of the same density range. 

Table 6.15: Some basic density measurements in industrial HU (where water should 

=1000 and air should equal=0) for calibrated scans.  

Specimen Mean density 

of water 

Mean 

density 

of air 

Mean 

density of 

inclusions 

Minimum 

density of 

inclusions 

Maximum 

density of 

inclusions 

057 (same 

as 048) 

991.74 150.13 5772.51 

 

4799.95 

 

9490.26 

 

059 (same 

as 042) 

1044.83 

 

2.79 6333.14 

 

5099.86 

 

9442.44 
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The results of this limited exercise indicate there is the possibility to group and examine 

inclusions in a way that is distinct from simple volume and shape frequencies. A 

classification of inclusions by shared density ranges thus has the potential to further 

distinguish intentional additives from existing clay inclusions or even accidental additives 

by clustered density range frequencies. More significantly, the correlation of documented 

densities to known mineral densities could begin to isolate and identify particular 

minerals in the clay fabric.  

6.3 Analyzing Ceramic Manufacture using Micro-CT 

Manufacturing attributes that can be explored in the micro-CT scans relate to how the 

potter formed the mixed and prepared clay into a pot. These attributes relate to primary 

and secondary formation practices, and provide insight into how the potter manipulated 

the clay with their hands and other tools, and before undertaking finishing work on the 

vessel. Also visible in the micro-CT scans are voids, created through the manipulation of 

the clay and subsequent drying and firing of the vessel. I explored void percentages, 

shape, distribution and orientation. 

6.3.1 Voids 

Voids are formed in the clay through manipulation and joining of pieces of clay, clay 

shrinking during the drying process, and organic material burning out in the firing 

process and leaving behind pockets of air (Rye 1977; Sanger 2017).  In the micro-CT 

scans voids appear in a variety of shapes including irregular vughs, elongated forms that 

appear planar when sliced in 2D, as well as more spherical vesicles (Figure 6.18). This 

range of voids can all be visualized and followed throughout the structure of the ceramic 

in 3D (Figure 6.19). When displayed in greyscale, they appear black because of the low 

density of air. Notably, these by-products of clay manipulation, through the vessel 

production processes, are accessible in both 2D and 3D in the micro-CT scan data (Figure 

6.20), while they only appear as 2D blank space within thin section faces. As such, voids 

at least have the potential to offer unique insight into manufacture through micro-CT scan 

analysis, since the ability to follow void structures in 3D throughout scanned vessel 

section can only be completed through CT analysis Throughout the following discussion 
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of voids, 2D slices of rim sections in all figures will be oriented with the exterior surface 

of the vessel on the left and the interior surface of the vessel on the right.  

 

Figure 6.18: Different types of voids visible in 2D slices. A: Elongated voids formed as a 

result of folding and pressing layers of clay together in Specimen 105. B: Some rounded 

vesicles in the upper portion of Specimen 026, above a deep punctate. C: Irregular vughs 

formed as a result of pressure applied and clay drying around the large inclusion near the 

rim of Specimen 106. 

 

 

Figure 6.19: Voids in Specimen 105 visualized in 3D to highlight the large flat void 

structures that appear along the rim, caused by pressing/folding two pieces of clay 

together.  
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Figure 6.20: Specimen 006 with voids highlighted in both a 2D slice and 3D volume that 

show where clay was applied to the vessel. The red plane in the 3D image represents the 

location of the 2D slice along the X plane. The orange areas in the 2D view are 

inclusions.  

 

Although they appear as blank space, and are characterized as air or the absence of 

material, voids contain information about ceramic technology and affect the physical 

properties of vessels such as its weight, thermal conductivity and permeability (Quinn 
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2013:61).  Voids can be formed during firing as organic matter burns out of the clay 

fabric, and these sometimes maintain the shape of or some of the charred material itself 

(Quinn 2013:97; Sanger et al. 2013). Bloating pores can be found in highly fired ceramics 

(above 1200ºC) or those used in high temperature industries (Quinn 2013:67), but the 

Arkona ceramics were not likely exposed to such high temperatures. Void spaces in the 

clay can also represent trapped air created during the folding and kneading of clay by 

potters (Quinn 2013:61). The paddle and anvil forming technique also forms elongated 

voids in the clay fabric by compacting and thinning clay vessel walls (Braun 2015:144), 

and this tight packing of clay can also result in cracks around larger mineral grains (Rye 

1977). Voids can also be formed during the drying stage of potting, as the clay shrinks 

and loses absorbed water (Quinn 2013:61), and the orientation of these voids is 

influenced by the type and direction of force applied by the potter during the forming 

stage (Weglorz 2018).  Voids can also be the result of coil joins in forming, and often 

relic coils can be seen in thin section (Quinn 2013:176) and in micro-CT scans. Forces 

applied during various forming methods can orient both inclusions and voids in the fabric 

of vessels and indicate what forming methods might have been used (e.g. Carr 1990; 

Berg 2008; Sanger et al. 2103; Quinn 2013:176; see Figure 6.21).  

It is important to note that void spaces in ceramics are not always related to 

manufacturing processes, but can also form subsequent to the firing process. Physical 

shock, heating and cooling, and freeze-thaw weathering can result in the formation of 

cracks in vessels (Quinn 2013:67). While it may be difficult to differentiate between 

elongated voids related to forming and cracks or micro-cracks in some 2D petrographic 

sections, or in a single image from a micro-CT scan, the ability to follow these voids 

through the ceramic’s structure in 3D from micro-CT data can clearly confirm the non-

random patterns of voids that are related to forming. So, while some of the small voids 

included in volume percentages in this analysis may be related to cracks, the qualitative 

analysis of voids related to forming is readily apparent in micro-CT analysis. The large 

voids related to forming allow us to access the pressure applied to clay by potters and the 

gestures they used to form pots.  
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Figure 6.21: Examples of how void and inclusion orientations are affected by forming 

techniques (Adapted from Carr 1990:17 and Sanger et al. 2013:836). 

 

6.3.1.1 Clay Lumps and Void Creation 

As an exercise in exploring what local clay sources might have been composed of, I 

scanned eight lumps of clay present in the Arkona collections, with the intention of 

sending them for thin section analysis. While that study was not completed, the scans of 

the clay lumps confirmed they were clearly manipulated by humans (I was able to 

identify a fingerprint in at least one of the samples; see Figure 6.22), and proved valuable 

for illustrating void spaces created through human manipulation of clay. The lumps 

ranged in size from approximately 2-4 cm in length, were oval to flat and angular in 

shape (see Figure 6.23), and came from a range of feature contexts from AgHk-42 (five 

specimens), AgHk-52 (two specimens), and AgHk-54 (one specimen). Lumps of fired or 

sunbaked clay on Late Woodland sites from this part of the world are typically  
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Figure 6.22: A fingerprint can be seen on the exterior of Specimen 139b in this 3D 

rendering. 

 

 

Figure 6.23: Lumps of clay. Inclusions and poorly mixed clay in the cross section of 

Specimen 140. The blue plane on the 3D image (top) shows the location of the 2D slice 

in the lower image.  



158 

 

interpreted as either clay wastings from the manufacture of clay objects, or fragments of 

unfired daub used as part of the material covering residences or other structures (e.g., 

Murphy and Ferris 1990). Daub fragments exhibit exterior impressions of thatch, bark, or 

other plant matter used to make up the structural cover. However, in the samples I 

scanned, none showed exterior impressions, which suggests to me these objects were 

wastings from clay object manufacture (see Figure 6.23). 

Some of the objects clearly exhibit folding or rolling, evident by long, curvilinear void 

spaces and fold gaps in the formation of the lumps, and compression of clay in the 

direction of folding and rolling (Figure 6.24). These patterns are a clear reflection of the 

interaction between clay and craft producers, and affirm the future potential of exploring 

this feature within the Arkona vessels more generally. 

 

Figure 6.24: Cross-sections of Specimen 139a. Rolling or folding of the clay is visible by 

the central large void structure that was created when the piece was rolled or folded 

together, and in the curving patterns of smaller surrounding void structures.  
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There is very little direct evidence for the manufacture worksites of clay objects in the 

archaeological record of the Late Woodland in Ontario. Multipurpose and non-permanent 

manufacturing locales make pottery production in the archaeological record rather elusive 

(Allen 1992:144; Chilton 1998:143; Martelle 2002:49).  Most of the tools used for 

pottery making were probably expedient, used for other activities and were also organic 

making them difficult to recognize within, or absent from artifact collections 

(Cunningham 2001; Martelle 2002; Michelaki 2007). Firing locations may have been 

located outside of village palisades or at peripheries of sites; areas rarely excavated in 

Southern Ontario (Martelle 2002:368). Some evidence of production has been uncovered 

in various contexts in the form of these small masses of clay or clay lumps and tempered 

clay (Martelle 2002; Pearce 1982; Timmins 1997a, 1997b; Wright 1974; Wright 1979), 

suspected “wasters” (Martelle 2002:380), and suspected production and firing sites 

(Kapches 1994; Lennox 2000). Given this ephemeral dimension to potters’ worksites, 

these clay lumps from the Arkona Cluster, and their clear evidence of manipulation in the 

micro-CT data, are one of the only traces of the potter clay interaction left in the 

archaeological record aside from pots themselves.  

6.3.1.2 Void Volumes  

Individual void spaces in specimens appear on all scans in abundance, with imaging 

software identifying between 25646 (Specimen 053) and 836852 (Specimen 009) void 

spaces across individual sherd scans. These void counts have more to do with the size of 

the specimen (i.e., larger specimens contain more voids) than with the techniques used by 

potters, so these counts simply give a sense of how plentiful voids are in individual 

sherds. The abundance of voids in ceramic fabrics indicate the extent a vessel wall was 

worked and compressed, and how small pockets of air were worked out of the clay 

(Striker 2018:158). 

Voids are entirely inaccessible in ceramic analyses without micro-scale methods. In 

petrographic analyses, the percentage of pores or voids within a ceramic sample is 

referred to as the specimen’s porosity. Quinn notes that porosity can vary widely but is 

“normally <30% in earthenware” (Quinn 2013:65). This norm suggests there is a large 

range of expected void volume percentages in ceramics that serve similar functions. A 
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vessel with lower void volume within the expected range may have been worked more 

intensively before drying and firing. Additionally, larger temper inclusions in ceramic 

fabric can create a fabric with more voids, which may allow for a more efficient heat 

transfer to the vessel’s contents through convection (Braun 2015:155). So while the 

general assumption in ceramic analyses is that large voids are not desirable because they 

can create cracks or faults in drying and firing, higher porosity might be beneficial for 

vessels used in cooking (Braun 2010; 2015). 

Though there are not many studies of Indigenous Ontario ceramics that suggest what 

“typical” void volume percentages might be, there are a few studies that address this 

variable. Striker’s (2018:159) microscopic investigation of ceramics from Ancestral 

Wendat communities describes channel voids as “few, moderate or abundant”, with most 

of the vessels she analyzed falling into a “few” or “moderate” category. Braun’s (2015) 

petrographic study of fourteenth-century Late Woodland ceramics indicated that pots had 

between 5-15% void percentages, with many falling into the 9-11% range. Weglorz’s 

(2018) petrographic study of fifteenth-century Ancestral Wendat castellations estimated 

void percentages, finding they ranged between 3-13%.  

For my analysis of micro-CT scans, the measure of void volume percentage represents 

the total volume in a given specimen made up of void space. It thus represents a measure 

of the vessel’s (or more accurately the sherd’s) porosity. Overall, void volume 

percentages per specimen, both in the entire sherd and within 2 cm
3
 prisms, were 

comparatively low for the Arkona sherds scanned. Most sherds (89.4%) fell between 1-

4% void space as a portion of the overall total volume of the sherd, and 92.3% of all 

sherds were below 4% void volume (Table 6.16). For rectangular prisms, void volume 

percentages were slightly more variable, with only 64.2% of prisms generating between 

1-4% void volume and 82.1% below 4% void volume.  Notably, 17.9% of prisms were 

made up of less than 1% void volume, while 25.4% were made up of 3-4% void volume 

and 18% were above 4% void volume (Table 6.17). 

This higher variability in void percentages within the prism may be related to the 

relatively small area of prisms that either encompass more or less voids than elsewhere  
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Table 6.16: Void volume percentages for whole specimens.  

% Void Volume Whole 
Specimen Frequency  % 

< 1 % 2 2.9 

1-2 % 29 43.2 

2-3 % 24 35.8 

3-4 % 7 10.4 

4-5 % 4 5.9 

5-6 % 1 1.5 

6-7 % 0 0 

Total 67 99.7 

 

Table 6.17: Void volume percentages for 2 cm
3
 prisms.  

% Void Volume 2cm
3 
Prism Frequency % 

< 1 % 12 17.9 

1-2 % 13 19.4 

2-3 % 13 19.4 

3-4 % 17 25.4 

4-5 % 5 7.5 

5-6 % 4 6.0 

6-7 % 3 4.5 

Total 67 100.1 

 

along a rim, resulting in low percentages if the prism happens to be placed outside of the 

largest void structures. But this variation may also be because prisms are located in the 

rim portion of the scan. Higher frequencies of void volumes within rim sections of 

vessels may reflect some of the greater manipulation of clay that occurs here, with the 
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adding and folding of clay in this area leading to larger volumes of void space (Figure 

6.25). In the 2 cm
3
 prisms, 18% of specimens have void volume percentages above 4%, 

but within the whole specimens only 7.4% of specimens have void volume percentages 

above 4%. 

 

Figure 6.25: Large voids are typically found in the upper portion of the rim and become 

smaller and less frequent in the neck and body of vessels. Larger voids are visible within 

the center of the rim pictured within the box but are smaller as they move down the neck 

(Specimen Ferris Vessel 36). This pattern was observed on many Arkona vessels (see 

Appendix A).  

 

Regardless of the variation, overall the range of void volume percentages across the 

scanned Arkona vessels was generally lower than the percentages seen in other 

petrographic studies on Ontario ceramics (Braun 2015; Weglorz 2018). While these 

differences may be an artifact of differing potting practices, it is more likely that they are 
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an indication that 2D petrographic analysis and micro-CT are not measuring void volume 

in the same way, making these results difficult to directly compare. These differences 

also indicate the importance of the sampling position, and this is explored further in 

Section 6.6. 

Across the different sites of the Arkona Cluster (Figure 6.26), the distribution of void 

volumes were evenly spread (e.g. not all the higher void volume percentages or lower 

volume percentages were found at one site).  Further analysis of void volume percentages 

yielded no real patterned associations, across either sites context, or other potentially 

linked variables, such as vessel wall thickness or rim manufacturing methods. For 

example, 54% of vessels with a wall thickness of 10 mm and thicker had less than 2% 

void volume, while 48% of vessels with a wall thickness of less than 10 mm had less than 

2% void volume.   

 

Figure 6.26: Void volume percentages tables for all Arkona sites for the whole sherd 

specimens. These illustrate that void volume percentages did not vary by site. 

 

6.3.1.3 Void Shape, Distribution and Orientation 

In 3D scan data, voids exhibit different shapes, orientations, and distributions (i.e., where 

they are concentrated across the specimen). I recorded the primary (most common) and 
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secondary (second most common) void shapes visible in each of the specimens. This 

exercise was simply done by visual estimation while scrolling through 2D slices of 

scanned specimens, as the imaging software had no functionality to sort voids by shape 

(although some newer software can do this). All but two sherds (Specimens 021 and 024) 

had planar voids, created through the manipulation of clay fabrics, as the primary void 

shape when viewed in 2D slices. Less common were voids that could be characterized as 

vughs, and these were found mostly around inclusions. Vughs represented the secondary 

void shape in 63 of the 67 Arkona Cluster vessels. Two Arkona vessels (Specimens 021 

and 024) had vughs as the primary void shape recorded. However, these two specimens 

had planar voids as their secondary void shape, indicating that all Arkona vessels 

exhibited planar voids. Two other sherds (Specimens 051 and 060) had vesicles as their 

secondary void shape, though they also contained vughs around inclusions as a tertiary 

void shape. Vesicles can be formed from the release of gasses during a firing as the clay 

matrix vitrifies (Quinn 2013:97), but the specimens with vesicles I examined for this 

study do not appear to be fired differently from other Arkona specimens.  

My observations on voids were more qualitative than quantitative, looking for patterns or 

deviations from general trends across the scans. This method was necessary because the 

image analysis software did not provide information on the orientation, distribution, 

individual volumes or shapes of voids. I recorded the distribution of voids (as either 

uniform or non-uniform), and their primary orientation (parallel or not, relative to vessel 

walls). I also noted any secondary orientations, such as where particularly large voids, 

indicative of joining (Rye 1981:62), were located, and their angles relative to vessel walls 

(see Figure 6.27). Full observations of voids for each specimen are presented in 

Appendix D. Most vessels exhibited void distributions that were non-uniform, with larger 

voids tending to cluster the rim of the vessel and in the center of the vessel walls. It is 

worth noting that six vessels were more uniform in void distribution, and all of these 

were vessels that had no obvious rim formation techniques visible (identified as a “plain” 

rim forming technique). These vessels lacked large central voids present in many other 

vessels where rims were formed by folding or the adding of a strip of clay. 
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In visual observation, almost all voids were oriented parallel to vessel walls, except in 

folded rims where there were sometimes horizontal voids near the lip of the vessel. Also, 

in folded rims and rims with added clay, angled voids could be noted where the folded or 

added pieces of clay met the vessel walls (Figure 6.27).  

 

Figure 6.27: Example of a vessel (Specimen 100) with voids running parallel to vessel 

walls, but angled where the added section joins near the rim of the vessel. The void 

measured runs at a 49 degree angle then curves to run perpendicular to the vessel walls as 

it meets the interior wall.  

 

These distinctive void alignments in rim sherds offer a way of accessing the gestures, 

movements and strategies potters used to form the rims of pots. These void structures, 

and evidence of compression between and within pieces of clay that were manipulated 

through the process of forming the rim, become visible in both the 3D images of voids 

and in the thousands of 2D slices micro-CT scans provide (see Figure 6.28). Video fly-
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throughs of specimen scans readily convey this manipulation (see 

https://youtu.be/pkoKRN1Z9T0).  

 

Figure 6.28: Void structures visible in successive slices through the Specimen 050 rim 

sherd, and in 3D void representation (illustrated in the second 3D image from the left).  

 

6.3.2 Rim Forming Techniques 

In the Arkona sample of 67 vessels from seven sites, the way that potters formed the 

upper rim and lip of a vessel was reflected clearly in the micro-CT scans. Given both the 

critical role the rim/lip plays in defining the form of the vessel, and the focus on the rim 

in the application of decoration during finishing, it is not surprising to see extensive 

evidence of clay manipulation focused by potters on this part of the vessel. I initially 

sorted these techniques into six rim forming categories, along with an unidentified 

designation (see Table 6.18). Note that while I scanned five neck sherds, one (Specimen 

066 from AgHk-42) included most of the rim and part of the lip, with only an added clay 

portion of the upper rim exfoliated off. As such, several rim attributes could be identified 

for this specimen as such is included in the totals. 

 

 

 

https://youtu.be/pkoKRN1Z9T0
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Table 6.18: Initial rim construction technique types used for Arkona vessel analysis. 

Rim Construction Technique Number of Vessels % 

Folded to exterior 27 40.3 

Folded to exterior with added clay 13 19.4 

Added clay at exterior/applique 9 13.4 

Plain 8 11.9 

Added clay to exterior and lip 5 7.5 

Added clay at interior 1 1.5 

Unidentified (no upper rim present) 4 6.0 

Total 67 100 

 

Rims Formed by Folding Clay to the Exterior: There are 27 examples (40.3%) of this rim 

formation method out of the 67 vessels examined. These are identified by large vertical 

voids where the potter had not fully compressed the clay at the fold, along with horizontal 

voids near the lip (Figure 6.29). In 3D renderings, these large vertical voids are visible as 

planar void structures near the lip of the vessel, but do not extend all the way up to the 

lip. The rim formation method is created by the potter choosing to fold the upper edge of 

the clay out and pressing the fold onto the exterior of the vessel. This action forms an 

upper rim that is thicker than below the fold. The finished rim thus sometimes exhibits a 

pseudo or “incipient” collar (see also Murphy and Ferris 1990).  

Rims Formed by Folding and Adding Clay: There are 13 (19.4%) vessels of the 67 

scanned that were formed using this technique. This method is distinguished from the 

exterior folded method by evidence of added clay placed on top of the fold. The same 

void pattern is evident for these specimens as is seen for folded rims, but the pattern 

appears lower down from the vessel lip. While not always located adjacent to 

castellations (this technique was observed in Specimens 043, 066 and 117 which are 

sherds that do not contain castellations: see Figure 6.30), when castellations are present in 

examples, there is typically more clay added around the castellation. The added clay is 
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then feathered out across the top of the rim away from the castellation (see Figure 6.31). 

Usually, the added clay appears to be the same composition as the base clay, but in one 

specimen (050), the clay appears to come from a different recipe (see Figure 6.31). This 

difference in clay fabric is speculative and based on my visual examination. But to my 

eye Specimen 050 exhibits a difference in density conveyed in the greyscale of the scan 

between the clay body that appears above and below the fold, suggesting the added clay 

is of a different, lower density than the main clay body of the vessel.  

 

Figure 6.29: Void structures in folded rims. A: Folded rim in Specimen 023. Voids are 

outlined based on density. Note the large vertical void running parallel to vessel walls 

does not touch the lip of the vessel. Small horizontal voids near the lip, indicated by the 

arrow, are due to folding clay towards the exterior. B: Specimen 106 3D rendering of 

void structures. Note that large voids stop below the lip of the vessel (within upper 

bracket). Large, flat or planar voids run the length of the sherd where the folded layer of 

clay was not fully compressed onto the base layer (within lower bracket).    
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Figure 6.30: Specimen 043. No castellation is present, but there is clay added 

consistently along the lip of the vessel above a fold. The large vertical void indicated by 

the bracket is from clay layers not being fully compressed while folding, and the 

horizontal void indicated by the arrow is the joining where the extra clay was added to 

the lip of the vessel.  

 

Rims Formed by Adding Clay to the Exterior: There are 9 (13.4%) vessels formed using 

this technique, which entails applying a strip of clay onto the exterior of the vessel. In 

scans this method is identified by a vertical void structure that meets the lip. In 3D 

renderings of voids, large planar or flat void structures can be seen extending up to the lip 

of the vessel (Figure 6.32).  
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Figure 6.31: A rim (Specimen 050) that has been folded and then clay added on top. The 

scanned cross section at the left is through the castellation on the vessel. There is more 

clay added to create the castellation in this case. The joining void where clay has been 

added is indicated by arrows. Note also the difference in density in the clay above and 

below the fold; the clay above the fold appears as darker, indicating it has a lower density 

than clay below the fold.  

 

Plain Rims or Rims Formed Without Folding or Adding Clay: There are 8 (11.9%) 

vessels that fit this description. This category includes specimens with rims that end 

abruptly, possibly cut off to form the lip. They are identified by even void distribution 

throughout the rim section, and no additional forming techniques applied (Figure 6.33). 
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Figure 6.32: Rims formed by adding clay to the exterior. A: A 2D slice of Specimen 008 

with voids highlighted. Note the large vertical void meeting the lip of the vessel at the 

arrow. This slice cuts through an interior punctate. B: A 3D rendering of voids in 

Specimen 052. Large voids within the area indicated by the bracket extend to the lip of 

the vessel.   

 

 

Figure 6.33: A vessel with no visible added or folded clay (Specimen 109). There are 

small planar voids parallel to vessel walls throughout and some vughs around inclusions, 

but lacking are the characteristic large vertical voids visible for rims that are folded or 

have added clay. This slice cuts through an exterior punctate.  
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Rims Formed by Adding Clay to the Exterior and Lip:  Five (7.5%) of the 67 vessels 

scanned exhibited rims formed by a strip of clay, creating the entire top of the rim 

exterior as well as the vessel lip. These examples are similar to those that exhibit added 

clay, except instead of the interior void meeting the lip, the void created by the addition 

of clay extends to the interior of the rim below the lip (Figure 6.34).  

 

Figure 6.34: Added clay to the exterior and lip in Specimen 100. Note that the void 

meets the interior wall of the vessel lip at the arrow, rather than the center of the lip.  

 

Rims Formed by Adding Clay to the Interior: One vessel (1.5%) exhibited added clay on 

the interior of the vessel wall, visible by a vertical void structure that meets the vessel 

wall at the interior (Figure 6.35).   
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Figure 6.35: Two 2D slices of Specimen 091, illustrating added clay at the interior of the 

vessel. Note how the void meets the interior vessel wall at the arrows.  

 

Unidentified Rim Forms: There were also four vessels (6.0%) in the scanned specimens 

where no manufacturing technique could be identified. All four of these specimens (005, 

067, 053 and 071) were neck sherds where the uppermost portion of the vessel was not 

present, making identification of the rim forming technique impossible.  
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To try to gain further insight into rim formation practices, I also scanned ten additional 

sherds from the same vessels to explore how rim formation may have varied across the 

same pot. These extra scans are distinct and not included in the broader analysis 

conducted for this study. Table 6.19 identifies which vessels had additional sherds 

scanned. In six of the ten examples where I examined an additional rim sherd, the rim 

formation technique identified was the same for both sherds. In three instances, I had 

initially identified a folded rim in one sherd and a folded rim with added clay in the other 

of the matching sherds. The last example was identified as having clay added to the 

exterior, while the second sherd exhibited added clay to the exterior and lip. In all, 40% 

of these additional sherds suggest potters deploy variable forming methods, or slight 

adjustments when making the rim across a single vessel, notably adding clay to ensure 

the form is correct and consistent across the orifice. 

The results of the additional sherd scans also suggest that rim forming categories can be 

distilled down to the presence or absence of basic techniques (Table 6.20). In this way, it 

becomes clear that folding was the most common technique used by potters across the 

Arkona Cluster sites. When considering just those scanned specimens where the method 

of rim forming could be identified, rims exhibiting the folding method, either exclusively 

(42.9%) or in combination with folded and added clay rims (20.6%), make up 64% of the 

sample. Vessels exhibiting the addition of clay, either exclusively (23.8%), or in 

combination with folding (20.6%), make up 42% of the formed rims. Only eight rims 

(12.7%) lacked the application of either of those techniques. In other words, 87% of all 

identified rim formation methods included the potter folding or adding clay, or doing 

both to finish the rim. Moreover, the additional sherd scans suggest it is not possible to 

rule out that adding clay, which can occur on only part of a rim, was not a method used 

on the folded rims beyond the sherds I scanned. 

There are fairly even distributions of these techniques across the sampled vessels from 

the various Arkona sites. No one site has all folded rims or all applied rims (Table 6.21). 

While samples scanned from each site are too limited to draw any clear conclusions, in 

general I can note that folding as a stand-alone method or in combination with adding 
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Table 6.19: Each row represents two separate rim sherds from the same vessel. The pairs 

were scanned separately, underwent analysis separately and were then compared.   

Pairing Specimen 

number 

Rim 

Manufacturing 

Method 

Specimen 

number 

Rim 

Manufacturing 

Method 

Do the rims 

match? 

1 008 Added clay at 

exterior 

055 Added clay at 

exterior 

Yes 

2 050 Folded to 

exterior with 

added clay 

097 Folded to 

exterior with 

added clay 

Yes 

3 044 Folded to 

exterior 

101 Folded to 

exterior 

Yes 

4 020 Folded to 

exterior 

070 Folded to 

exterior 

Yes 

5 118 Folded to 

exterior 

119 Folded to 

exterior 

Yes 

6 105 Folded to 

exterior  

106 Folded to 

exterior 

Yes 

7 064 Folded to 

exterior 

098 Folded to 

exterior with 

added clay 

No 

 

8 049 Folded to 

exterior 

102 Folded to 

exterior with 

added clay 

No 

9 096 Folded to 

exterior 

090 Folded to 

exterior with 

added clay 

No 

10 051 Added clay at 

exterior 

100 Added clay at 

exterior and lip 

No 
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Table 6.20: Rim construction for Arkona vessels with wider categories. Note: 

Unidentified sherds are not tabulated here 

Rim Construction Method Number of Vessels % 

Folded Rims 27 42.9 

Rims with added clay 15 23.8 

Rims with fold and added clay 13 20.6 

Plain 8 12.7 

Total 63 100 

 

clay ranges from 50% to 80% for each scanned site assemblage. Adding clay, alone or in 

combination with folding, ranges from 22% to 80%, and is never more frequent than 

folding. Plain rims are absent, or no more than 22% of a site assemblage. The absence of 

rims with added clay at AgHk-54 might suggest the potters at this site preferred folding 

techniques, but the sample size is too small for this to be anything but allusive. The two 

highest frequencies of plain rims come from AgHk-54 and AgHk-52 (Inland West 

Location 3 and Figura), which are immediately adjacent to each other, though again, 

numbers are too limited to draw any further conclusions.  

Table 6.21: Rim technique by site for Arkona vessels. Note: Unidentified sherds are not 

tabulated here, including the one rim scanned from AgHk-56. 

Rim Construction 
Technique 

AgHk-40 AgHk-54 AgHk-32 AgHk-52 AgHk-42 AgHk-58 

Folded Rims 1 (20%) 5 (56%) 4 (40%) 6 (43%) 8 (44%) 3 (43%) 

Rims with added 
clay 

1 (20%) 0 4 (40%) 4 (29%) 5 (28%) 1 (14%) 

Rims with fold and 
added clay 

3 (60%) 2 (22%) 2 (20%) 1 (7%) 3 (17%) 2 (29%) 

Plain 0 2 (22%) 0 3 (21%) 2 (11%) 1 (14%) 

Total 5 9 10 14 18 7 
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6.3.3 Adaptive Irregularities and Improvisation  

Micro-CT scans allow us to visually document the hidden steps in clay manipulation and 

vessel formation and how materials and producers interacted. One distinct advantage of 

this method, then, is that we can see instances of when potters needed to adapt to the 

situation at hand, and  improvise while making ceramics. While artisans and craftspeople 

work in regular rhythms established through practice there is also space in craft for 

incidents of improvisation and  adaptive irregularities in the craft as the materials and 

person (or persons) interact (Ingold 2010:99; Sennett 2008:134).  As skilled craftspeople 

work they undertake a process of ongoing movement that is at once “itinerant, 

improvisatory and rhythmic” (Ingold 2010:91), and “making” becomes not imposing a 

form on materials, but an engagement with force and material wherein forms are 

generated (Ingold 2010, 2013). In some cases the resistance of materials - moments of 

breakage, or limitations of malleability - drive the potter to improvise within their 

established gestures and rhythms.     

I want to emphasize that my impression of the finished product of the vessels I scanned is 

that they are very accomplished and made by skilled artisans. However, interacting with 

these materials and bending these to a generated result that is either ideal or “good 

enough” is something that is only learned over time and with experience, and can always 

suffer from distractions or working in a less than ideal setting (Crown 2014; Dobres 

2000; Gosselain 1998; Hagstrum 1985; Ingold 2010; Roddick and Hastorf 2010). Well-

crafted vessels can and do occasionally exhibit evidence of improvisation and adaptation. 

In addition, being able to identify instances of improvisation is a difficult, judgemental 

conclusion to reach; in effect distinguishing between what intentional conscious 

construction practices “should” look like, and what irregularities and adaptations in these 

practices look like. In my analysis of vessel scans, I relied on a deductive reasoning that 

assumed if a pot with fewer joins or added clay (that can create cracks in the fabric) is 

functionally less likely to fail in firing or during use, there is at least some incentive to 

avoid adaptive steps that create more joins. Therefore, a vessel exhibiting more spot joins 

or locations of added clay would be suggestive of adaptive irregularities in rim formation 
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being taken despite the risk of failure, representing the dialogue between the potter and 

material in creating a vessel form.  

Since the focus of my research was on rim sherds, rim and castellation incidents of 

improvisation were the main examples that I was able to note from vessel scans. 

Castellations are raised projections that extend upwards from the rim of a ceramic vessel 

(Curtis 2004:45), which are formed along with the rim of the vessel. Of the 31 rim sherds 

exhibiting castellations in this study, eight specimens were formed through the adding of 

clay, and three with more pronounced clay folding at the castellation than elsewhere on 

the rim. As I was mostly working with single shreds from a vessel, it was difficult to say 

whether a void pattern represented an adaptive irregularity, the material asserting its 

agency, or part of the potter’s original rhythms and gestures across the vessel. There is, 

after all, a lot of leeway for individual production methods to be reflected in these 

ceramic materials to arrive at a similar end product. As discussed previously, one way I 

tried to get to a sense of regular versus irregular gestures was by scanning additional rim 

sherds from vessels already scanned. Inconsistencies across those sherds may indicate 

adaptive irregularities. The differences noted in four of the ten duplicate scans pointed 

towards what might be inconsistencies. Using these duplicate scans as a starting point, I 

then looked for these idiosyncratic joins and additions in all specimen scans.  

Examples of what I perceived to be improvisation in rim forming included clay joined or 

added to rims in several ways. The following figures illustrate the variations in rim 

manufacture observed. The most common improvisation noted was the addition of clay 

on top of a folded rim. As noted earlier, there are vessel rims with added clay on top of 

folds, but the norm across the scanned collection is just a single addition of clay, or a 

fold, not clay added on top of that fold. In all, there are 13 rim sherds that exhibited an 

addition of clay on top of a fold. The extra clay on top of the fold was added around or 

was thickest at the castellated part of the rim in eight of the 13 examples (see Figures 

6.36, 6.37 and 6.38) and there was added clay in locations that were not underneath 

castellations in five examples (See Figure 6.39). In addition, there were six examples 

(Specimens 022, 039, 042, 065, 068 and 069) in which I noted the addition of clay. These 

differed from the folded and added clay rims because these specimens exhibited smaller,  
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Figure 6.36: Specimen 050 (left) and Specimen 097 (right), from the same vessel. While 

there is clay added on top of the fold in both pieces, extra clay is added to form the 

castellation in Sample 050 on the left. Arrows indicate where the top of the fold is 

located. 

 

 

Figure 6.37: Specimen 098 (left and center) and Specimen 064 (right), both from the 

same vessel.  Specimen 098 has clay on top of the fold. A void join can be seen at the 

white arrow. The location of this slice is illustrated by the white line. Specimen 064 had 

no clay noted on top of the fold. 
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Figure 6.38: Specimen 113 (left) has a folded rim with clay on top, which is thicker at 

the castellation. The arrow points to the void at the top of the fold. It appears to be a 

small coil used to create the castellation in this case. For Specimen 069 (right), the entire 

rim at this location on the vessel is added. The arrow points to the void where this rim 

piece was joined. These two specimens are not from the same vessel.  

 

more ephemeral additions. The clay additions were only noted in some but not all 2D 

slices for the specimen. In some cases, there were pieces of clay or coils used to form the 

entire upper rim in a small portion of the vessel orifice (Figure 6.38). It may have been 

that there was not enough clay to form the rim of the pot in this section. There are also 

examples where very small pieces of clay have been tacked on to the rim, in what appears 

to be an effort to raise that part of the rim to form the castellation (Figure 6.40), or may 

have just been used to level out an uneven or slightly cracked rim or lip surface where 

necessary (Figure 6.41). In speaking with a modern potter while hand building coiled 

pots, when a small crack appeared in the lip of the pot as the clay dried, he suggested the 

use of a small patch of clay along the lip to fix this flaw (Chris Snedden, personal 

communication 2020). Specimen 039, (Figure 6.41) indeed exhibits a small piece of clay 

added to the front and lip of a vessel with a thickened rim or incipient collar. This vessel 

had a larger piece of clay added to form the bulk of its rim, but in this one place had an 

additional patch of clay on top of that.  
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Figure 6.39: For Specimen 049, added clay is noted to the right of the castellation.  The 

left line on the 3D rendering illustrates the location of the 2D slice to the left and the right 

line illustrates the location of the 2D slice on the right. The joining void for the added 

clay is indicated by the arrow. The slice at the right intersects a large boss/internal 

punctate, which can be seen in the profile.  
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Figure 6.40: Specimen 100 (upper 2 images) and Specimen 051 (lower 2 images) are 

part of the same vessel. In Specimen 100, one small portion of the vessel has a bit of clay 

added, probably to make a castellation (location of the 2D slice is illustrated by the line). 

The void joining this added bit of clay is indicated by the arrow. In Specimen 051 there is 

no extra addition of clay.  
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Figure 6.41: Specimen 068 (left) illustrating a small piece of clay added on the rim. The 

arrow points to the void where this clay was joined. Specimen 039 (right) illustrates a 

small piece of clay added on to the front of the thickened rim at the exterior of the vessel. 

The arrow points to the void where this added clay was joined. These two specimens are 

not from the same vessel.  

  

All together these specimens make up 19 examples in which clay was added as an 

adaptive irregularity onto the rim shape (for full information about each specimen, please 

refer to Appendix E), and it is possible that more of these small additions might be found 

upon further examination of specimen scans, as many of these features were discovered 

in my fourth or fifth time examining the specimens. But at 19 examples of 63 vessel rim 

sections scanned, that represents 30% of all vessels scanned.  So just under a third of all 

vessels examined here exhibited adjustments or instances of improvisation in the forming 
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of the rim, suggesting the need to tweak rim forms and adjust and adapt during the 

making of rims was a relatively common practice potters used when making their vessels. 

These instances of improvisation or adaptive irregularities are found on scanned rims 

from all Arkona sites where rim sherds were scanned (Table 6.22). While these sampled 

specimens do not represent complete assemblages from each site, some general 

observations can be offered here. Sherds scanned from these six sites each included at 

least 20% of vessels with corrective incidents. Both the Bingo Village site  (AgHk-42), 

and Bingo Pit Location 3 (AgHk-40), located close to each other and northwest of the 

other cluster sites examined, yielded higher percentages of sherds with adaptive 

irregularities than for the rest of the cluster (10 of 23 sherds total, or 43%; versus 9 of 40 

sherds total, or 22%). This difference might be hinting at distinct practices, or range of 

potter skills within communities across the cluster. However, the limited sample sizes 

used for this study preclude this observation from being more than a suggestion at 

present.  

Table 6.22: Adaptive irregularities by site.  

Site 

Total 
specimen 
scans at site 
(minus neck 
sherd scans) 

Frequency of 
adaptive 
irregularities 

% of vessels at 
each site with 
adaptive 
irregularities 

% of all adaptive 
irregularities 

AgHk-32 10 2 20.0% 10.5% 

AgHk-40 5 3 60.0% 15.8% 

AgHk-42 18 7 38.9% 36.8% 

AgHk-52 14 3 21.4% 15.8% 

AgHk-54 9 2 22.2% 10.5% 

AgHk-58 7 2 28.6% 10.5% 

Total 63 19 30.2% 100 
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As noted, these alterations or improvisations appear entirely on the rim portion of vessels. 

Where my specimen scans included lower elements (e.g., neck, shoulder, body), I did not 

see any evidence of additions of clay or other irregularities. This focus on  the rim portion 

of vessels is further discussed in Chapter 7. 

6.3.4 Morphological Attributes Related to Forming  

The morphological attributes typically examined in archaeology are those readily visible 

during the analysis of vessel sherds. Morphologically, and at a generalized level, ceramic 

vessels during the early Late Woodland associated with Wrights’s (1966) Ontario 

Iroquoian Tradition tend to exhibit vertical to everted rims, can be collared or not, and 

have constricted necks, pronounced shoulders and globular bodies (Watts 2006:8). 

Western Basin Tradition vessels of this time period exhibit a lot of regional variation. 

There is a high degree of experimentation resulting in different vessel forms and 

finishings. Vessels often have castellations and incipient collars or “thickened” rims 

fashioned (Watts 2006:88; Murphy and Ferris 1990:202-203). Vessels have rounded, or 

“bag shaped,” bodies (Murphy and Ferris 1990:207).   

Generally, the morphology of pots can help define the extent that potters at the Arkona 

Cluster of sites were working to achieve an ideal pot form, by exploring how rigid or 

variable those attributes were across the vessels examined. While this can be done using 

traditional archaeological measurements, micro-CT scans offer a unique way to record 

and visualize morphological shape, because of the ease of non-invasively slicing vessel 

profiles that otherwise could only achieved through archaeological illustration. 

 The vessel morphological attributes noted tend to reflect the broader temporal and 

regional contexts potters worked within. For example, basic attributes from the Arkona 

sample included a predominance of lips that are flat, rim profiles that are concave, and 

necks that are short and curve out at the shoulder (see Figures 6.42 and 6.43 and Table 

6.23). Note that total counts for each attribute varied, since not all sherds exhibited all 

three attributes. Likewise, I removed indeterminate specimens when calculating 

percentages. The frequencies of these attributes are generally consistent with ceramic 

assemblages from the 13
th
 century in southern Ontario, which typically also exhibit a 
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smaller percent of secondary forms for each of these attributes (Murphy and Ferris 1990; 

Watts 2006). 

 

Figure 6.42: Frequencies of lip form for Arkona vessels. 

 

 

Figure 6.43: Frequencies of upper rim profiles for Arkona vessels.  
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Notably, the Arkona assemblages suggest that flat lips (unaltered by decorative 

furrowing) and concave or straight rim profiles and short necks represent relatively rigid 

vessel form morphological traits, though the use of elongated necks is a secondary 

attribute of choice for some artisans. Upper rim profile and lip form (Figure 6.44) were 

defined after categories used by Watts (2006:253-254), with the addition of furrowed or 

splayed lips as defined by Mather (2015:114). Lip form was fairly easily differentiated, 

since rounded lips stand out from flat lips in the collection. Upper rim profile varied 

more, especially within the concave rim category. While upper rim profiles classed as 

“straight” were fairly straight, those in the convex category were all close to straight as 

well, while the concave category ranged between those that were quite out-flaring or 

curved and those that were close to straight with only a slight curve. This variability 

suggests that there was some flexibility in the degree of concavity of the upper rim 

profile for potters, or variable forming intents across rim design. Neck shape was the 

most subjective of these variables to define. Neck shape curvature appeared to vary 

across a spectrum based on the curvature from the base of the rim into or through the 

length of the neck (Figure 6.45). Neck shape was also difficult to determine for sherds 

where only a small portion of the neck was present, and the angle of the rim had to be 

used to make an estimate. This attribute was defined from both 2D slices and from the 

curvature exhibited in the 3D rendering of sherds. 

 

 

Figure 6.44: Examples of upper rim profiles and lip forms. Left to right: concave upper 

rim with rounded lip (Specimen 029), concave upper rim with flat lip (Specimen 048), 

straight upper rim with flat lip (Specimen 025), and convex upper rim with furrowed lip 

(Specimen 062). 
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Figure 6.45: A range of neck profiles from Arkona. Images are not all at the same scale. 

Left to right: Specimen 041, 096, 091 and 066. The two at the left were classified as 

“short” neck profiles and the two at the right as “elongated” neck profiles.  

 

While most sites in the Arkona Cluster followed the general trends of the total 

assemblage for lip, rim and neck profile or shapes, there were some exceptions to these 

patterns worth noting (Table 6.23). Rounded lip forms are more common in the AgHk-52 

sample than elsewhere, making up 29% of the lip forms, suggesting there was more 

flexibility in lip form at this site than others. AgHk-54 varies notably from the other sites 

in terms of both a high percentage of short necks (89%) and 100% concave upper rim 

profiles. These two traits may relate to construction as the short neck curves into a 

concave upper rim profile, although there are also several elongated necks that exhibit a 

concave upper rim profile. Potters in the community at AgHk-54 might have preferred 

the shorter neck profile; an analysis of the whole assemblage beyond this scanned sample 

would reveal whether this is true. In contrast, potters at AgHk-32 used diverse upper rim 

profiles, and this was the only site that exhibited straight rather than concave rim profiles 

as the most common type. Neck profile at AgHk-32 was also evenly split between 

elongated and short necks, whereas at every other site short necks dominated the samples.  
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Table 6.23: Morphological variables frequencies and percentages for Arkona specimens: 

totals and sorted by site.  

Site Lip Rim Profile Neck shape 

 Flat Furrowed Rounded Concave Straight Convex Short Elongated 

AgHk-32 

Van Bree 

8  

(80%) 

2 

 (20%) 

0 3  

(30%) 

6  

(60%) 

1  

(10%) 

4  

(50%) 

4  

(50%) 

AgHk-40 

Bingo Pit 

Loc. 3 

3  

(60%) 

2  

(40%) 

0 3  

(60%) 

2  

(40%) 

0 5  

(100%) 

0 

AgHk-42 

Bingo Pit 

Village Loc. 

10 

13  

(76%) 

2  

(12%) 

2  

(12%) 

14  

(74%) 

5  

(26%) 

0 12 

(75%) 

4  

(25%) 

AgHk-52 

Figura 

8  

(57%) 

2  

(14%) 

4  

(29%) 

10  

(67%) 

4  

(27%) 

1  

(6%) 

12  

(80%) 

3  

(20%) 

AgHk-54 

Inland West 

Loc. 3 

7  

(78%) 

1  

(11%) 

1  

(11%) 

9  

(100%) 

0 0 8  

(89%) 

1  

(11%) 

AgHk-56 

Inland West 

Loc. 6 

n/a n/a n/a n/a n/a n/a 0 1  

(100%) 

AgHk-58 

Inland West 

Loc. 9 

5  

(72%) 

1  

(14%) 

1  

(14%) 

5  

(71%) 

2  

(29%) 

0 4  

(80%) 

1 

(20%) 

Total 44  

(71%) 

10  

(16%) 

8  

(13%) 

44  

(68%) 

19  

(29%) 

2  

(3%) 

45  

(76%) 

14  

(24%) 
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Since AgHk-32 is the earliest site in the Arkona cluster, it is possible this difference is 

temporal and vessels with straight upper rim profiles and elongated necks became less 

common over time. Again, complete assemblage analyses would reveal if this pattern 

represents a real trend or is just a result of my sampling strategy. 

I also explored these morphological attributes as they relate to rim manufacturing 

techniques (Table 6.24). While generally the morphological variables are found 

throughout all of the rim manufacturing techniques, there are more flat rims in the folded 

clay rims and more furrowed lips on rims with added clay than in other categories. Rims 

with added clay also have more of a mixed rim profile distribution, while the other rim 

formation categories lean more heavily towards concave rims. Perhaps the addition of 

clay to the exterior of a rim changed shape towards more of a straight or convex profile, 

as the potter supported the rim from the interior while applying the clay in a manner that 

the folding motion did not require. All rim manufacturing techniques also seem to have 

similar high percentages of short neck shapes, though both folded rim types have a 

slightly lower percentage of elongated necks than the added clay or plain rim types do. 

Potters may have been technically conceptualizing the rim and the neck as different zones 

when constructing the vessel.  

Another measure of morphological variability is lip thickness. I measured lip thickness at 

the lip of the vessel using the digital caliper in the imaging software. I was only able to 

record this on vessels with an intact lip, meaning I did not take this measurement for the 

five neck sherds I scanned. Lip thickness was highly variable, with no single 

predominant, or ideal, thickness standing out (Figure 6.46). Overall, 76% of the 

assemblage ranges in lip thickness between 7 to 12.9 mm, a range that almost doubles in 

thickness. This variation is not surprising, given the predominance of folding or adding 

clay, or both, to upper rims, and suggests there was a great deal of leeway in dealing with 

the thickened lip as a result of those methods.  
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Table 6.24: Morphological variables for Arkona specimens sorted by rim manufacture. 

Indeterminate values are not included in counts. Unidentified rim forms are not included 

in counts.  

Rim  Lip Rim Profile Neck shape 

 Flat Furrowed Rounded Concave Straight Convex Short Elongated 

Folded 22  

(81%) 

2  

(7%) 

3  

(11%) 

21  

(78%) 

6  

(22%) 

0 20  

(83%) 

4  

(17%) 

Added 

clay 

8  

(53%) 

5  

(33%) 

2  

(13%) 

7  

(47%)  

6  

(40%) 

2  

(13%) 

10  

(77%) 

3  

(23%) 

Folded 

and 

added 

clay 

9  

(75%) 

2  

(17%) 

1  

(8%) 

8  

(62%) 

5  

(38%) 

0 9  

(82%) 

2 

(18%) 

Plain 5  

(63%) 

1  

(13%) 

2  

(25%) 

6  

(75%) 

2  

(25%) 

0 6  

(75%) 

2 

(25%) 

 

 

Figure 6.46: Bar graph illustrating the distribution of lip thickness of Arkona specimens. 

Indeterminate values were not included.  
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Since thickness measurements taken at various points along a vessel profile are a 

standard variable recorded in ceramic analysis,  I also measured wall/rim thickness, taken 

at either 5 cm down from the lip, or at 4 cm, when sherds were too short to get to 5 cm. 

For neck sherds where the lip of the vessel was missing, I estimated and measured 4-5 cm 

from where it appeared as though the lip would have been. Overall thickness 

measurements cluster around 9-11mm, and drop off significantly in the 12-13mm 

thickness categories, indicating that vessel walls are generally a bit thinner than at the rim 

(see Figure 6.47). However, when the difference between lip thickness and wall thickness 

was calculated (lip value-wall value), 23 specimens (37%) were thicker below the lip 

than at the lip, 3 specimens (5%) were equal, and 36 specimens (58%) were thinner 

below the lip than at the lip. The difference between the lip thickness and wall thickness 

was less than 5.3 mm for all specimens, with the exception of one thin-walled vessel 

(Specimen 011) where there was a difference of 7.5 mm from lip to wall. Most vessels 

(88%) had a difference of less than 4 mm between the lip and wall/rim thickness. 

Whether the lip or the wall/rim of a specimen was thicker did not appear to relate to 

different sites (see Appendix D for this data). I suspect it is the case that this 

measurement was not taken far enough down the rim to capture thinning that may have 

been happening into the neck of the vessel, but because some rim sherds were only 4 or 5 

cm in length it was taken at this location for consistency. It is also possible that more 

measurements per specimen might have revealed variation in thickness in more detail.    

Whether variation in thickness related to forming techniques used was not immediately 

clear. I grouped lip thickness measurements into 2 mm categories (expanding the largest 

category to include one vessel that fell above 15 mm), and within all four rim 

manufacturing techniques, lip thickness values ranged between 7-12.9 mm (Table 6.25). 

In the plain rims, there is a slightly higher percentage (25%) that fell into lower lip 

thickness categories, and there were no plain rims 13 mm or thicker, suggesting the lack 

of added or folded clay might have resulted in thinner lips. Interestingly, the rims with a 

fold and added clay, are the most evenly spread across thickness categories. Potters may 

have been maintaining wall and lip thickness regularity using these secondary techniques 

of adding or folding clay when they felt it necessary after the initial forming of the upper 

portion of the vessel was complete.  
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Figure 6.47: Wall/lower rim thickness in Arkona vessels.  

 

Table 6.25: Lip thickness of Arkona specimens by rim manufacturing technique. 

Indeterminate values not included.   

Lip thickness by 
rim manufacture 

3-
4.9mm 

5-
6.9mm 

7-
8.9mm 

9-
10.9mm 

11-
12.9mm 

13-
15.9mm total 

Folded 1 (4%) 1 (4%) 
5 
(19%) 6 (22%) 12(44%) 2 (7%) 27 

Added clay 0 
2 
(13%) 

5 
(33%) 5 (33%) 2 (13%) 1 (8%) 15 

Fold and added 
clay 1 (7%)  

2 
(17%) 

2 
(17%) 2 (17%) 2 (17%) 3 (25%) 12 

Plain 0 
2 
(25%) 0 4 (50%) 2 (25%) 0 8 

 

Finally, orifice diameter was a measurement that I was able to record for some vessels 

during the time I had access to a trial version of the coordinate measurement module for 

VGStudio MAX 2.2. The coordinate measurement module allowed me to obtain an 

orifice radius easily. I used a slice through the X plane close to the lip of the vessel to 

place points along the edge of the rim (Figure 6.48). The coordinate measurement module 
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calculated a radius for the circle created from these points, from which I was able to 

calculate the diameter (2 x radius; Figure 6.49).  

 

 

Figure 6.48: Placing points along the wall in a slice through the orifice of Specimen 132.  

 

 

Figure 6.49: VGStudio MAX software calculated the radius measurement from the 

points placed along the orifice of Specimen 132 seen here in a slice through the Y axis 

and a 3D rendering. Radius here reads 63.76 mm.   
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Recording orifice measurements this way is a less subjective method for taking rim 

diameter than using traditional rim diameter charts (Rice 1987:238). Digitally placing 

points along the curvature of the slice through the Y plane seemed less of a judgement 

call than my previous experiences with sliding a ceramic rim along a rim diameter chart 

to estimate a best fit. I was only able to take this measurement for 24 Arkona specimens. 

In terms of results, orifice diameters for the 24 specimens ranged between 11 and 43 cm, 

with nine specimens under 20 cm in diameter, nine specimens falling between 20 and 30 

cm in diameter and six specimens above 30 cm in diameter (see Appendix D). There was 

no apparent relation between different Arkona sites or rim manufacturing methods and 

orifice diameter, indicating that potters at all Arkona cluster sites were creating vessels 

with similar size variability, perhaps a result of participating in a shared community of 

practice. Variation in orifice diameter did, not surprisingly, roughly align with lip 

thickness, suggesting that vessels with larger openings had thicker lips (Figure 6.50). 

Potters were generally using thicker lips and walls to create larger vessels. There also 

appears to be a potential relationship between upper rim profile and orifice diameter. 

While only 29% of all upper rim profiles in the entire sample were straight, of the rims 

with orifice diameters of more than 30 cm, five out of six specimens (83%), fell into the 

straight upper rim profile category. While this is a small sample to make conclusions 

from, potters may have been working towards a more upright rim profile when they were 

constructing the larger vessels at the Arkona Cluster.   

 

Figure 6.50: A plot of the 24 specimens sorted by orifice diameter and lip thickness. The 

plot roughly follows an upward trend, suggesting a relationship between the size of the 

orifice of a vessel and the thickness of that vessel’s lip, n=24.  
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6.3.5 Castellations 

Castellations are intentional upward projections along the top of the vessel rim and are 

common on Late Woodland pottery (Williamson 1990:298). They can appear as a single, 

distinct rise at one location of the rim, as two or four castellations at opposing halves or 

quadrants of a pot orifice, or appearing continuously, in a crenellated fashion across the 

entire rim (Murphy and Ferris 1990). This variability in the use of castellations means 

determining the presence or absence of castellations is partly affected by whether the rim 

section analyzed has a castellation. I noted whether or not one or more castellations were 

present on a rim section, to begin to get a sense of how many castellations might exist in 

the assemblages. Of the 62 sherds scanned where the presence or absence of castellations 

could be determined (those with intact lips), 31 (50%) had castellations. Of those, 24 had 

one castellation, and seven had more than one. Castellations can be shaped differently in 

the Late Woodland, including pointed, squared and rounded forms. Of the 31 specimens 

with castellations in this study, castellation forms included 71% pointed, and 29% 

rounded (Table 6.26). 

There may be a correlation between the gesture of folding  rims, and the production of 

castellations (Table 6.26). Folded rims, in isolation (45%), or combined with added clay 

(32%), represent 77% of all castellated vessels. Rims made with added clay only 

contributed 13% to castellated rims (or 45% when folded and added clay are added), 

while plain rims added 10%. Furthermore, 62% of all rims formed exclusively by folding 

or with a fold and added clay were castellated and 83% of rims with folding and added 

clay were castellated. This correlation of castellations with folding may suggest folding 

was the preferred method used to create castellations on these vessels, especially when 

combined with added clay. This correlation between folding, and adding clay on top of 

folds and the presence of castellations also suggests the design and implementation of 

castellated rims was a complex series of steps the artisan had to learn through the use of 

repeated gestural movements, when shaping vessel rims, differing from the smaller 

improvisations seen elsewhere on vessel rims.  
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Table 6.26: Castellations by rim manufacturing method.  

Rim 
manufacture 
method 

Pointed 
castellations 

Rounded 
castellations 

Frequency  and 
% of total 
castellations 

% castellated within 
manufacture 
method 

Folded 10 4 14 (45%) 14/27 (52%) 

Added clay 4 0 4 (13%) 4/15 (27%) 

Fold and added 
clay 

7 3 10 (32%) 10/12 (83%) 

Plain 1 2 3 (10%) 3/8 (38%) 

Total 22  9 31 (100%) 31/62 (50%) 

 

6.4 Analyzing Ceramic Finishing Attributes Using Micro-
CT 

The final stage in Late Woodland vessel production is finishing the object; typically after 

the item has been allowed to partially dry. Finishing consists of any trimming, surface 

treatments, or application of decoration before firing. These attributes, especially 

decoration on rims and necks, are a principal preoccupation of conventional ceramic 

analyses, and tend to inform regional ceramic typologies. For this study, I was more 

interested in comparing rim manufacturing and rim finishing practices, in particular 

exterior decorative methods, to see if there are any correlations between what choices the 

potter was making while forming and then decorating the rim. I was not interested in 

using these decorative attributes to classify ceramics or define “ethnicity” or “cultures,” 

since I am more interested in exploring manufacturing techniques as knowledge 

transmission, learning and communities of practice (Gosselain 1998; Hagstrum 1985; 

Michelaki 2008; Roddick and Hastorf 2010; Wendrich 2012).  

Because of the long history in archaeology, especially in Ontario, of linking the 

decorative elements on rims and necks of vessels to archaeological “cultures” or 

traditions, I examined the decorative elements involved in finishing with the particular 

goal of determining whether there was a correlation with rim forming techniques. If these 

decorative elements such as the motif and techniques used to decorate rims really relate 
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to “cultures” then one would expect there to be some correlation between the way pots 

were decorated and the way they were formed, which in this case is represented by rim 

forming techniques. The goal here was not to conduct a detailed decorative analysis but 

to examine if finishing methods used by potters had any relation to how they were 

forming the rims and necks of pots. Applying decorative techniques is one of the many 

steps in the manufacturing of pots and there are particular gestures and motions that go 

along with these finishing steps that might relate to earlier stages in manufacture.  More 

detailed decorative analysis, for example, one that explores the relationships between 

different decorative techniques and motifs used on these Arkona vessels, was not the 

desired outcome, as it had been in other attribute-based studies of Arkona ceramics 

(Cunningham 2001; Suko 2017a; Watts 2006).  

 The visible decorative attributes that archaeologists typically focus on to access the craft 

of ceramic manufacture, such as the tools and consistency in the implementation of 

decorative elements, are not any more visible in micro-CT scans than they are through 

visual examination. Certainly, it is possible to see tool application and directionality of 

tool use in scans, but not any more than can be seen from visual examination of the 

exterior of the vessel. It is possible to highlight features on the surface of a micro-CT 3D 

model through the digital control of light, but for finishing features I found examining the 

physical ceramic sherd under magnification and light more effective. Additionally, as I 

was collecting decorative data from the scans, I noted that it was hard to tell which way 

the clay was pressed in those images. One exception, however, was in examining the 

punctates present on many of the Arkona vessels. Because of the depth of application of 

this decorative feature, micro-CT slices provided information on the depth, directionality 

and shape of punctates that was easier to access than from visual examination. So, while 

many of the attributes are just as easily measured and compared by visually examining 

them, there are some, like the depth of punctates, and the placement and orientation of 

some tool applications, that can be more accurately explored and are easier to compare in 

scans of sherds.  

While I have collected detailed attribute data related to decorative elements (following 

Watts 2006), I simplified the attribute categories to facilitate a comparison of decoration 
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application to rim manufacturing techniques. Simplified finishing attributes are presented 

in Appendix E.  These simplified categories included the presence of interior decoration 

on the rim, the presence of lip decoration, the main technique used for exterior rim 

decoration, the main motif used for exterior rim decoration, the presence of neck 

decoration, neck decorative motif, the presence of punctates on the rim, and the distance 

of punctates from the rim. For some finishing attributes, such as the presence of interior 

and lip decoration, and the main technique used for exterior rim bands, no real sense of a 

distinct pattern in relation to vessel forming was observed, because these particular 

attributes were present on the vast majority of specimens or varied little between 

specimens.  As such, they are not discussed below. For detailed information on these and 

other decorative attributes recorded, see Appendix E. 

6.4.1 Exterior Decoration 

The exteriors of vessels were decorated with bands or rows of applied decoration, usually 

stamped, creating a motif of one or more bands of decoration around the vessel. These 

bands of decoration were recorded following the technique used by Watts (2006:122), 

and then simplified to ease comparisons to rim manufacturing techniques. While not all 

vessels were complete enough for all decorative bands to be recorded, where much of the 

rim and upper neck could be recorded (N=43), one (2%) consisted of a single band, three 

(7%) consisted of two bands, 13 (30%) consisted of three bands, 12 (28%) consisted of 

four bands, and 14 consisted of five or more bands (33%). Figures 6.51-6.54 illustrate 

various band motifs and applications. 

Decorative elements were typically applied on an angle, or obliquely, within most bands.  

I recorded orientation as to the right, left, or alternating as the three predominant 

orientations (88% in total) on Arkona ceramics (see Table 6.27). The remaining 12% of 

decorative orientations included horizontal, vertical and a combined oblique and 

horizontal application.  
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Figure 6.51: Specimen 008 exhibiting, in bands, from top to bottom: stamped linear right 

oblique, linear horizontal incisions with row of bosses, incised linear left obliques, linear 

horizontal, and linear right obliques, and incised linear horizontals. The main motif is 

horizontals, and the main technique is incising.  

 

 

Figure 6.52: Specimen 114 exhibiting, in bands, from top to bottom: stamped linear left 

oblique, bossed horizontal over linear left oblique, stamped linear left oblique, and 

incised linear left oblique over linear right oblique. The main technique is stamping, and 

main motif is left obliques. 
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Figure 6.53: Specimen 039 exhibiting, in bands, from top to bottom: stamped linear right 

oblique, stamped linear left oblique, stamped punctates, stamped linear right obliques, 

stamped linear right obliques, although these are almost vertical. The main technique is 

stamping, and the main motif is right obliques.  

 

Figure 6.54: Specimen 132 exhibiting, in bands, from top to bottom: stamped linear right 

oblique, stamped linear right oblique, stamped linear left oblique, stamped linear right 

oblique, stamped linear left, stamped linear right, stamped linear horizontals. The main 

technique is stamped, and the main motif is alternating obliques.  
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These applications do not sort neatly by rim manufacture categories (Table 6.27), though 

it is worth noting that alternating obliques are found on 69% of rims that are folded with 

added clay, while right obliques make of the largest percentages of both the added clay 

(40%) and folded rims (37%). This result could suggest artisans preferred thicker rims for 

alternating applications, or that artisans who preferred alternating obliques found 

themselves having to add clay to repair rim deformation more frequently, or it could be 

coincidental. 

Table 6.27: Exterior band main decorative application totals sorted by rim construction 

method.  

Rim construction 
method 

alternating 
obliques 

right 
obliques 

left 
obliques other 

total 
number of 
vessels  

Folded 9 (33%) 

10 

(37%) 

6  

(22%) 

2 

(8%) 27 

Added clay 

4 

(27%) 

6 

(40%) 

3 

(20%) 

2 

(13%) 15 

Fold and added 
clay 

9 

(69%) 

3 

(23%) 

1 

(8%) 0 13 

Plain 

1 

(12.5%) 

4 

(50%) 

1 

(12.5%) 

2 

(25%) 8 

Unidentified 

1 

(25%) 

1 

(25%) 0 

2 

(50%) 4 

Total 

24  

(36%) 

24  

(36%) 

11  

(16%) 

8  

(12%) 

67  

(100%) 

 

I also examined how these frequencies were distributed across sites (Table 6.28). There 

might be a slight preference for alternating obliques (56%) at AgHk-54, and a preference 

for right obliques (55%) at AgHk-42, though these tendencies are slight. This tendency 

suggests there might have been some preferences among artisans at these sites at play, 
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but overall the distribution of the application of these motifs does not cluster by site, 

indicating the community of potters within the entire Arkona Cluster, over 270 years and 

within the 3 km radius of these sites,  used broadly similar decorative applications on the 

exteriors of ceramics.  

Table 6.28: Main exterior decorative motif by site.  

Site 

alternating 

obliques 

right 

obliques 

left 

obliques other 

total 

number of 

vessels 

AgHk-32 Van 

Bree 

3 (30%) 4 (40%) 0 3 (30%) 10 

AgHk-40 

Bingo Pit Loc. 3 

1 (20%) 1 (20%) 2 (40%) 1 (20%) 5 

AgHk-42 

Bingo Pit 

Village Loc. 10 

4 (20%) 11 (55%) 4 (20%) 1 (5%) 20 

AgHk-52 

Figura 

5 (33%) 7 (47%) 2 (13%) 1 (7%) 15 

AgHk-54 

Inland West 

Loc. 3 

5 (56%) 1 (11%) 2 (22%) 1 (11%) 9 

AgHk-56 

Inland West 

Loc. 6 

1 (100%) 0 0 0 1 

AgHk-58 

Inland West 

Loc. 9 

5 (71%) 0 1(14%) 1 (14%) 7 

Total 24 (36%) 24 (36%) 11 (16%) 8 (12%) 67 (100%) 
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6.4.2 Neck Decoration 

Neck portions of vessels were typically smoothed prior to decoration being applied, 

although the occasional vessel from the Arkona Cluster reflects a partially smoothed or 

cord-marked surface beneath the applied decoration (Neal Ferris, personal 

communication 2020), but none were noted in this study. Some of the vessels I examined 

(18 or 27% of this study’s assemblage) lacked any meaningful section of neck and thus 

were omitted from the neck attribute analysis. Of the 49 vessels that had neck sections, 

43 (88%) were decorated. The remaining six vessels were plain, which either represent an 

artisan decorative choice or were plain for that portion of the neck I had access to, since 

some decorative neck motifs include open space on the neck. 

Though exterior bands were recorded for both the rim and neck as one in Section 6.4.1, 

the neck portion of these vessels was also examined separately. While in some cases the 

motif elements used to decorate the upper rim continued down on to the neck (Figure 

6.55), more often the decorative elements were quite different, switching from the 

common oblique bands to horizontal lines, horizontal combinations of elements, or 

elaborate triangle or diamond patterns on the neck (Figures 6.56 and 6.57). This distinct 

design of neck decorative application and motif suggests that potters thought of the rim 

and neck sections of the vessel as connected but separate sections. The freedom of 

decoration and variability found in the neck sections at Arkona shows that perhaps the 

finishing of the neck of vessels was not as structured as the decoration on rim sections.  

There was a range of neck motifs in the assemblage. When selecting the sample for this 

study, I was particularly interested in making sure I scanned vessels exhibiting a 

“triangle/diamond” motif on extended necks, since this is a hallmark of early Late 

Woodland Western Basin Tradition ceramic assemblages. Indeed, this is why I included 

the five vessels lacking complete rims in the study. However, despite this emphasis, the 

triangle/diamond motif only made up 43% of all necks in the scanned specimens I 

examined, or 49% of all decorated necks if the plain necks are taken out of the sample 

(see totals in Table 6.29). “Triangle” motifs included those that were filled and open 

diamond or triangle patterns (Figure 6.56), as well as three examples that included figures 

within the triangle or diamond shaped zones (see Specimens 065, 066 and 068 Appendix 
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A). Other motifs included obliques (consisting of bands of angled decoration), 

horizontals (consisting of bands of horizontal lines and/or stamped elements) and line 

plaits (consisting of sequential combinations of horizontal or vertical units of decoration) 

(Figures 6.55, 6.57 and 6.58).  

There was no clear correlation between rim construction method and neck motif, which 

simply indicates these two attributes were not directly related. There was more of a 

correlation between neck form and motif, however, with triangle motifs appearing more 

frequently on elongated neck forms (Table 6.30). Not surprisingly, since there are more 

short than elongated neck forms in the sample, most motifs appear more frequently on 

short necks. However, the triangle motifs appear on elongated necks 55% of the time, 

indicating potters creating vessels with elongated necks may have seen that neck form as 

an element of the vessel that needed to be filled with complex decorative motifs, which 

large triangular and diamond motifs accomplished. Alternately, potters could have been 

creating longer necks with these large scale decorative elements in mind, creating a sort 

of canvas upon which these triangles would fit. 

 

Figure 6.55: Specimen 115 exhibiting bands of oblique decoration on the neck.  
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Figure 6.56: Left to right: Specimens 028, 053 and 054, all exhibiting variations of open, 

partially filled and filled triangle and diamond neck motifs. 

  

 

Figure 6.57: Specimen 046 exhibiting horizontal neck decoration.  
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Figure 6.58: Specimen 111 with plaits on the neck below three bands of oblique 

applications.  

Table 6.29: Neck motif sorted by rim construction method 

Rim Construction 
Method 

triangle 
motifs 

horizonta
l motifs 

oblique 
motifs 

plait 
motifs plain Total  

Folded 6 (33%)  3 (17%) 5 (28%) 1 (5%) 3 (17%) 18  

Added clay 5 (38%) 5 (38%) 0 1 (8%) 2 (16%) 13 

Fold and added clay 3 (38%) 2 (25%) 2 (25%) 1 (12%) 0 8 

Plain 3 (50%) 2 (33%) 0 0 1 (17%) 6 

Unidentified 4 (100%) 0 0 0 0 4 

Total 21 (43%) 

12  

(24%) 7(14%) 

3  

(6%) 

6 

(12%)  49 

 

I also examined neck motif by site (Table 6.31), but only slight differences emerged. Of 

the sites with larger samples, there were more triangle motifs present at AgHk-32 (Van 

Bree) than AgHk-42, 52 or 54, indicating perhaps the frequency of this neck motif was 
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more common earlier in the Arkona Cluster. Both the samples from AgHk-42 (Bingo 

Village) and AgHk-54 have oblique motifs appearing on necks while they are notably 

absent at AgHk-52 (Figura), perhaps suggesting the former two sites are more closely 

linked to one another than to Figura, either temporally or with more closely overlapping 

communities of potters. Despite these slight differences, the various neck motifs used by 

potters at Arkona appear to have been shared throughout the cluster. 

Table 6.30: Neck motif sorted by neck form. Indeterminate neck forms were not 

included in counts.   

Neck form Triangle 

motifs 

Horizontal 

motifs 

Oblique 

motifs 

Plait 

motifs 

Plain Total 

Short 9 (45%) 10 (91%) 5 (71%) 3 (100%) 6 (100%) 33  

Elongated 11 (55%) 1 (9%) 2 (29%) 0 0 14 

Total 20 11 7 3 6 47 

Table 6.31: Neck motif sorted by site. Percentages indicate the portion each motif makes 

up within a site.  

Site Triangle 
motifs 

Horizontal 
motifs 

Oblique 
motifs 

Plait 
motifs 

Plain total 

AgHk-32 Van 

Bree 
4 (57%) 1 (14%) 1 (14%) 0 1 (14%) 7 

AgHk-40 Bingo 

Pit Loc. 3 
2 (67%) 1 (33%) 0 0 0 3 

AgHk-42 Bingo 

Pit Village Loc. 10 
6 (40%) 4 (27%) 2 (13%) 1 (7%) 2 (13%) 15 

AgHk-52 Figura 5 (42%) 4 (33%) 0 1 (8%) 2 (17%) 12 

AgHk-54 Inland 

West Loc. 3 
2 (25%) 2 (25%) 3 (38%) 0 1 (12%) 8 

AgHk-56 Inland 

West Loc. 6 
1 (100%) 0 0 0 0 1 

AgHk-58 Inland 

West Loc. 9 
1 (33%) 0 1 (33%) 1 (33%) 0 3 

Total 21 12 7 3 6 49 
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In terms of decorative technique, incising was far more common, occurring on 63% of 

necks, either in combination with stamping or in isolation (Table 6.32). The techniques 

were fairly evenly spread across rim construction methods (Table 6.33) with slightly 

higher frequencies of stamped necks that have rims formed through folding, and a higher 

frequency of incised decoration on necks that have rims that do not have folds or added 

clay. I also examined neck decoration technique by site and found that both incising and 

stamping were used on necks from all sites, although at AgHk-54 there is a higher portion 

of stamped neck applications with five out of seven (71%) vessels exhibiting stamping as 

the main technique on the neck. There was some correlation between the technique used 

in neck decoration and the form of the neck. Incising was used more frequently on 

elongated necks while stamping was used more on short necks (Table 6.34). Furthermore, 

when neck technique and motif are compared (Table 6.35) it becomes clear that triangle 

motifs are predominately created using incising or a combination of incising and 

stamping, while horizontal motifs can be created using either technique, and oblique and 

plait motifs are created using stamps in all but one case. This pattern fits with the notion 

that elongated necks might have been thought of as a different zone on the vessel from 

the rim, and that potters were comfortable switching to a different technique between 

rims and necks.  

Table 6.32: Decorative techniques used on the necks of vessels. 

Neck Main Technique Frequency % 

Incised 19 44 

Stamped 16 37 

Combination 8 19 

Total 43 100 
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Table 6.33: Neck main technique sorted by rim construction method 

Rim construction 
method Incised Stamped Combination 

 

Total 

Folded 6 (40%) 7 (47%) 2 (13%) 15 

Added clay 6 (55%) 4 (36%) 1 (9%) 11 

Fold and added clay 1(13%) 4 (50%) 3 (37%) 8 

No fold or added clay 3 (60%) 1(20%) 1 (20%) 5 

Unidentified 3(75%) 0 1 (25%) 4 

Total 19 16 8 43 

 

Table 6.34: Neck main technique sorted by neck shape. Indeterminate neck shape values 

were omitted. 

Neck shape Incised Stamped combination Total 

Short 8 (30%) 14 (52%) 5 (18%) 27 

Elongated 9 (64%) 2 (14%) 3 (21%) 14 

Total 17 16 8 41 

 

Table 6.35: Neck motif sorted by neck technique.   

Neck 
technique 

Triangle 
motifs 

Horizontal 
motifs 

Oblique 
motifs 

Plait motifs Total 

Incised 13 (69%) 5 (26%) 1 (5%) 0 19 

Stamped 1 (6%) 6 (38%) 6 (38%) 3 (18%) 16 

Combined 7 (88%) 1 (12%) 0 0 8 

Total 21 12 7 3 43 
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6.4.3 Punctates and Bosses 

A variable that the micro-CT scans are particularly well suited to explore is the use of 

punctates, which are fairly deep stamps or punctures into the wall of the vessel, usually 

appearing as a single row across the exterior or the interior of the vessel within or 

immediately below the upper rim. Usually, the opposite side of the punctate also exhibits 

bossing, which is a rounded rise in the vessel wall (Mather 2015:111). Punctates are a 

common decorative element on ceramics broadly during this time period across 

southwestern Ontario, and are present on 52 (78%) of the 67 Arkona vessels examined 

for this study. Twenty-one (40%) of these vessels exhibited interior wall punctates, while 

31 (60%) of these vessels exhibited exterior wall punctates.  

The micro-CT scans were particularly useful in exploring the directionality of punctates 

based on an examination of slices along the Z axis. These slices were generally aligned 

through the middle of the punctate, and directionality was measured as straight, right, or 

left from the middle of the punctate (Figure 6.59). Of the 52 specimens examined, I found 

that 36.5% of punctates were straight, 38.5% were pointed to the left, and 25% were 

pointed to the right (Table 6.36). Though some punctates within a specimen were slightly 

more or less angled than others, and some of them were only slightly angled left or right, 

I did not observe differing punctate directionality within any given specimen or vessel; 

both right and left punctates were never observed together. 

Angularity of punctates could be suggestive of which hand an artisan held the stylus 

making the punctate (i.e., left hand for right-angled punctates; right hand for left-angled 

punctates). This suggestion assumes the potter moved the vessel while applying the 

punctates rather than reached around from a fixed position, and assumes the vessel was 

upright while being decorated (which the presence of fingerprints on interior bosses 

supports). It is also worth noting that almost half (48%) of the interior-applied punctates 

are straight, while only 29% of exterior-applied punctates are straight. This difference 

may imply a more careful application of punctates in the interior, perhaps due to the 

relative awkwardness of reaching in to do so, compared to the relative ease of applying 

punctates to the exterior of the vessel.  
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Figure 6.59: Punctate directionality. A: Left interior directionality. Debris or dirt seen at 

the interior of punctates in this example is left over from site context. B: Left exterior 

directionality. C: Right exterior directionality. D: Right interior directionality. 

I measured the maximum depth of punctates and the shape of the tool used; both of which 

are easily visible in CT scan slices on the Z plane. Slicing through this decorative element 

gave a fuller picture of its shape and depth than simply looking at punctates straight on 

from the exterior of the punctate. I was able to use the caliper tool in VGStudio MAX to 

measure the depth from the exterior of the vessel to the deepest part of the punctate 

(Figure 6.60). Because this is not a commonly recorded decorative attribute, I originally 

chose to just eyeball an “average punctate” for each specimen and took the depth for that 

one punctate. The punctates measured vary in depth from 2 mm to 13 mm, although 82% 

of punctates fall between 3-9 mm in depth (Table 6.37). These depths clearly distinguish 
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Table 6.36: Punctate directionality for Arkona vessels 

Punctate Directionality Frequency 

Straight interior 10 (19%) 

Straight exterior 9 (17%) 

Straight total 19 (36.5%) 

Left interior 7 (13%) 

Left exterior 13 (25%) 

Left total (right handed) 20 (38.5%) 

Right interior 4 (8%) 

Right exterior 9 (17%) 

Right total (left handed) 13 (25%) 

Total 52 

 

punctates from the application of incising or stamped decoration on vessel surfaces, 

which are far shallower on average – generally less than 2 mm deep. Upon further 

reflection, recording depth for a single punctate did not allow me to account for 

variability in depth across punctates within a specimen. So while not as useful a 

measurement as recorded currently, a more thorough documentation of depth could allow 

for an exploration of variation in the application of artisan decorative techniques across a 

single vessel. In turn, recording the regularity of punctate placement and depth could 

provide insight in to the ingrained hand motions used by craftspeople, and how skilled 

craftspeople do not count out steps in craft, like applying punctates, but establish a 

rhythm of application using their trained eye  (Sennett 2008:176).  

The tools used to make punctates vary. To record punctate tool form, I followed Watts’ 

(2006:121 Figure 5) tool variables to divide the pointed instruments into round, elliptical, 

polygonal or annular by examining the 3D image of the exterior of the ceramic, and the 

front-on slice through the Y plane (Figure 6.61). I further examined slices through 

punctates in both the X and Z planes to determine the shape of the tip of the instrument.  
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Figure 6.60: Using the digital caliper to measure punctate depth. 

 

These observations were sorted into rounded, blunt, pointed and bifurcated categories 

(Table 6.38, Figure 6.62). When the tool appeared bifurcated in only the X or Y plane, 

and not both, I recorded both tooltip shapes (Figure 6.63). Elliptical tools are the most 

common tool shape making up 66% of the sample. The remainder of the sample 

consisted of round (24%), and polygonal (8%). Tooltip categories included bifurcated 

(32%), rounded (25%) pointed (25%), and blunt (16%). While a preference for elliptical 

and rounded tools is clear, the tip shape of the tool is more evenly split suggesting, not 

surprisingly, that the resulting shape of the punctate, as viewed from the exterior of the 

ceramic, was more important than the type of tool used to create it. Based on variation in 

the size and shape of the punctates left by tools, I did not note the repeated use of the 

same tool on more than one specimen. The lack of repeated tool use suggests tools used 

to create punctates may have been expedient, and that they were not shared between 

artisans.   
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Table 6.37: Punctate depth for Arkona vessels 

Punctate 
Max Depth 

Number of 
specimens %  

2-3mm 2 4 

3-4mm 4 8 

4-5mm 7 13 

5-6mm 7 13 

6-7mm 10 19 

7-8mm 9 17 

8-9mm 6 12 

9-10mm 2 4 

10-11mm 2 4 

11-12mm 1 2 

12-13mm 2 4 

Total 52 100 

 

 

Figure 6.61: a round punctate in Specimen 038 viewed in a slice through the Y plane. 
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Figure 6.62: Tooltip shape in slices through the X plane. Top left: pointed (Specimen 

041), top right: bifurcated (Specimen 016), lower left: rounded (Specimen 096) and lower 

right: blunt (Specimen 054). Not to scale. 

 

 

Figure 6.63: Specimen 040 - a round tool with a tip that appears blunt in the slice 

through the Z plane and bifurcated in the slice through the X plane.  
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Table 6.38: Punctate shape/tool type for Arkona vessels. 

Punctate shape 
Number of 
vessels % 

Elliptical, rounded 12 23 

Elliptical, blunt 3 6 

Elliptical, blunt bifurcated 4 8 

Elliptical, pointed 10 19 

Elliptical, bifurcated 5 10 

Polygonal, blunt 2 4 

Polygonal, pointed 2 24 

Round, blunt 3 6 

Round, blunt and bifurcated 6 12 

Round, rounded  1 2 

Round, rounded and bifurcated 1 2 

Round, pointed tip 1 2 

Other 2 4 

Total 52 100 

 

I measured the distance from the lip of the vessel to the punctate as one decorative 

variable to explore if these deep decorative elements line up with rim manufacturing 

techniques (Figure 6.65). The majority (63%) of punctate rows tended to cluster tightly 

together in terms of distance from lip, situated between 25-39 mm below the lip (Table 

6.39, Figure 6.64). More generally, 85% of all punctate rows fell within 15 and 44 mm of 

lip, which underscores that punctates are an upper vessel technique, though needing to be 

below the lip enough to not alter the rim or lip form. This prevalence of application 

placement may be simply a stylistic design choice.  However, I wonder if punctate 

placement may also assist in pushing or compressing layers of clay together, such as the 

layers created when folding or applying clay to form the rims. I did check to see if there 
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might be a higher frequency of punctates on the folded rims and rims with added clay, 

but there was a consistent use of punctates across all rim forming techniques. Punctates 

are prevalent in the Arkona Cluster, appearing on 52 of the 67 specimens sampled, and 

appear on between 75-80% of all vessels regardless of rim forming technique (Table 

6.40) Considering 93% of the sample had stamping used as the main exterior rim 

decorative technique, these punctates could be simply be a form of decorative stamping, 

because that was the decorative tradition present at Arkona.  However, considering most 

of the sample was made up of specimens that had additions of clay, folded over clay, or 

both in their rim sections, the appearance of punctates on most of the collection does not 

preclude them from also, or as needed, serving a functional utility to compress these 

layers of clay together.   

 

Figure 6.64: Distribution of punctate distances from lip.  
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Table 6.39: Punctate distances from lip. Note the total here is 49 and not 52, because I 

could not take this measurement on neck sherds that had punctates, where the lip was not 

intact.  

Punctate distance from lip Frequency % 

10-14mm 1 2 

15-19mm 4 8 

20-24mm 3 6 

25-29mm 9 18 

30-34mm 15 31 

35-39mm 7 14 

40-44mm 4 8 

45-49mm 2 4 

50-54mm 1 2 

55-59mm 0 0 

60-64mm 1 2 

65-69mm 0 0 

70-74mm 1 2 

75-79mm 0 0 

80-84mm 1 2 

Total 49 100 

 

Table 6.40: Punctate presence in correlation with rim construction method.  

Rim construction method 
Punctates 
present 

Total number of 
vessels % 

Folded 21 27 78 

Added clay 12 15 80 

Fold and added clay 10 13 77 

Plain 6 8 75 
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Figure 6.65: Specimen 016. Measuring the distance from the lip of a vessel to the 

punctate (Specimen 016). Note also the displacement of clay opposite the exterior 

punctate, creating interior bossing.  

 

Punctates appear on between 70-100% of the vessels scanned for each site, with the 

larger samples from AgHk-42 (Bingo Village) and AgHk-42 (Figura) exhibiting the 

lowest percentages of punctates present (Table 6.41). While exterior and interior 

punctates are present at all sites with more than one specimen, generally, exterior 

punctates are more common, except in the sample specimens from AgHk-32 (Van Bree) 

and AgHk-54 (Inland West Loc. 3).  

Forty-one (79%) of the 52 Arkona vessels with punctates also exhibited bosses on the 

vessel wall opposite from the punctate. In micro-CT scans (see Figure 6.65, 6.66 and 

6.67), bosses appear as a displacement of the vessel’s fabric caused by the creation of the 

punctate. Of the 21 interior punctated vessels, 18 (86%) exhibit bosses on the exterior 

wall, while 23 (74%) of the 31 exterior punctated vessels exhibit bosses on the interior 
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(Table 6.41). All sites with more than one punctated vessel exhibited both interior and 

exterior bosses. While the presence of bosses, especially exterior bosses, have been used 

as an indicator of temporal or material cultural difference (see Dodd et al 1990; Murphy 

and Ferris 1990; Williamson 1990; Wright 1966), in the Arkona Cluster, bosses on 

vessels seem to be the result of the widespread use of deeply impressed punctates as 

decorative features on both the exterior and interior walls of these vessels. Whether 

because this was a traditional technique passed down from potter to potter, or as an 

effective method of pushing layers of clay together, punctates and bosses are a visible 

example of potters’ interactions with clay when forming and finishing a vessel. The 

application of pressure deep enough to create punctates with bosses on the opposite wall 

breaks up large void structures in the interior of vessels, interrupting these potential 

breaking points caused by adding clay or folding over clay in the rim forming process 

(Figures 6.66 and 6.67). This application, in turn, thus potentially strengthened the rims 

of these pots.   

Table 6.41: Punctates and bosses present by site.  

Site Exterior 
punctates 

Interior 
punctates 

Interior 
bosses 

Exterior 
bosses  

% of sample 
with 
punctates 

AgHk-32 Van Bree 3 5 3 3  8/10 (80%) 

AgHk-40 Bingo Pit 

Loc. 3 
3 2 3 2 5/5 (100%) 

AgHk-42 Bingo Pit 

Village Loc. 10 
10 4 7 4 14/20 (70%) 

AgHk-52 Figura 7 4 6 3 11/15 (73%) 

AgHk-54 Inland 

West Loc. 3 
3 4 1 4 7/9 (78%) 

AgHk-56 Inland 

West Loc. 6 
1 0 1 0 1/1 (100%) 

AgHk-58 Inland 

West Loc. 9 
4 2 2 1 6/7 (86%) 

Total 31 21 23 18 52/67 (78%) 
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Figure 6.66: The large vertical void structure in Specimen 008 caused by adding clay to 

the rim is broken up by an interior punctate. The potter applied pressure or compression 

to create this feature. The small bump opposite the punctate is an exterior boss.  

 

 

Figure 6.67: The large vertical void structure in Specimen 038, highlighted by arrows at 

the left, is pushed outwards and broken up by the pressure of an interior punctate at the 

right. The small bump opposite the punctate is an exterior boss. 
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Fingerprints found on bosses in the Arkona collection speak to the care that went into the 

application of punctates. Potters had to support the vessel wall opposite of the punctuate 

as they applied pressure to create these deep punctures, and this pressure left visible 

traces of this interaction between the potter and the clay (Figure 6.68). I noted 

fingerprints on 12 (16%) of the Arkona specimens included in the study, (Specimens 008, 

063, 070, 101, 105, 119, 016, 011, 020, 038, 044 and 048). There might be more 

fingerprints present on the specimens scanned, as this was not a feature I was recording 

methodically. Also, I was only examining sherds and not vessels, so this feature is almost 

certainly underrepresented. Of the fingerprints identified, all were noted on bosses 

opposite punctates; six on exterior bosses and five on interior bosses. This suggests that 

potters were manipulating the vessel in such a way that they were supporting their 

punctates regardless of whether they were working from the interior or exterior of the 

pot, and suggests that pots were decorated right side up as it would be easier to reach into 

a pot to leave fingerprints on the interior. These fingerprints speak to the movements 

involved in the placement of punctates, the manipulation of the rim section of the pot and 

clay by the potter and the care, or lack of care, that went into erasing such smudges or 

small blemishes caused by decorative finishing gestures. Future work with fingerprints at 

Arkona could potentially compare prints to identify repeated work of individual potters. 

 

Figure 6.68: Fingerprint on Specimen 048 on an interior boss, seen both in a micro-CT 

scan (center image) and photograph (enlarged circle), found opposite deep exterior 

punctate (top left insert). 
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6.5 Other Clay Objects 

A small sample of clay objects separate from the 67 vessels were scanned and underwent 

some limited analysis. These objects include clay pipes and small miniature or learner 

vessels from Arkona, as well as ceramic vessels from seven other Late Woodland sites in 

southern Ontario. The purpose of scanning these objects was to further explore the 

potential of micro-CT analyses on multiple types of ceramic materials and to explore how 

these materials might differ from the pots at Arkona. These samples were not large 

enough to offer substantial findings concerning the manufacture of clay pipes or learner 

pots at Arkona. However, micro-CT scans of these Arkona objects did illuminate 

individual artisan techniques and the process that went into making these clay objects. 

These preliminary results, then, offer much promise for future work. The results from the 

southern Ontario ceramic sample failed to offer further insights into micro-CT 

applications examining Ontario ceramics, and did not provide additional insight into 

Indigenous potting across Ontario, and thus will not be discussed further The Ontario 

sample was too small (one or two pots from each site) and the contexts were too varied to 

make meaningful inferences about ceramic manufacture. Refer to Appendices B and D 

for some basic information about those scans.  

6.5.1 Arkona Cluster Clay Pipe Manufacture 

I was able to scan five pipes from the Arkona Cluster sites to try and develop a 

preliminary understanding of clay pipe fabrics and craft, and the degree to which that 

differs from vessel manufacture. The five pipes scanned included four from AgHk-42, 

and one from AgHk-52. They were selected at random, with little knowledge about the 

pipe assemblage at Arkona, in a preliminary attempt at examining ceramic materials 

other than pots. The pipes from Arkona were more fully examined by McCartney (2018). 

I was able to compare descriptions of their exteriors in McCartney’s work to what I was 

exploring in the interior of these specimens. Images of all pipe specimens scanned appear 

in Appendix A.   

Pipes scanned included Specimen 086 (catalogue number 1103), “an obtuse angled pipe 

with a single row of punctates near the lip of the bowl, and a cluster of smaller punctates 
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that face the smoker” (McCartney 2018:77). In the scans it appears there were two 

attempts at creating the borehole. There also may be a slab of clay at the base of the pipe 

that was connected to the bowl (Figure 6.69). Inclusions account for 7% of the volume of 

this specimen.  

 

Figure 6.69: Specimen 086 illustrating two possible attempts at creating the borehole, the 

first of which (lower) was mostly sealed when pressure was applied while creating the 

second (upper). Arrows illustrate the void where there might be a join in the clay near the 

base of the pipe, reflecting the possible addition of clay.  

 

The second pipe scanned (Specimen 087, catalogue number 9749) is described as a 

“plain, right-angled pipe with a wide, flat ventral surface and a rectangular stem cross 

section” (McCartney 2018:77). The scan revealed up to five attempts at creating the 

borehole, with what might be a slab of clay at the base of the stem portion of the pipe. It 

also looks like there might be a second layer of clay added at the interior of the pipe bowl 

used to patch or smooth the construction and a potential join between the upper stem and 

the bowl (Figures 6.70 and 6.71). I note that this pipe looks similar to learner vessels in 

terms of its void structures because they are irregular and vary in direction, possibly 

made by pinching, moulding motions similar to a pinch pot technique. 
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Figure 6.70: Five attempts at creating the borehole in Specimen 087 are each marked 

with an arrow. The fourth arrow down represents the borehole that the artisan decided to 

leave open for use. Some debris can be seen in this hole that was open. This debris is 

likely from either use or deposition.  

 

 

Figure 6.71: Sequential slices through the Y plane of Specimen 087. Arrows in image A 

highlight voids in areas where the clay in the bowl was joined together or patched. Scars 

from several attempts at creating the borehole are visible, although not all five are visible 

at once since they fall in different places along the plane. The top three boreholes never 

puncture the interior of the pipe bowl. The lowest borehole intersects with the fourth and 

final attempt, as seen in image F. In image C and D, it is visible where the implement 

overshot and went into the opposite side of the bowl. Debris can be seen in the lowest 

two holes, as the fourth down remained connected to the bowl as the functioning or 

“successful” borehole, and it intersected the lowest borehole in its creation. 
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Specimen 088 (Catalogue number 1682) is only the stem portion of a pipe, and while it 

has voids that may be joins between pieces of clay, I could not determine the method of 

manufacture (Figure 6.72). It did not exhibit any failed attempts at borehole construction.  

 

 

Figure 6.72: A slice along the pipe stem of Specimen 088. Fabric appears to be tempered 

based on the presence of angular inclusions.   

 

Specimen 103 (catalogue 13129) consists of a pipe bowl. While McCartney (2018:76), 

described this specimen as a “separate stem bowl, which consists of the pipe bowl with a 

large borehole drilled at the base for inserting a reed stem,” the micro-CT scan indicates 

this bowl was actually a more conventional elbow-shaped pipe, with the bowl broken off 

from the stem at the elbow. In scans, there is one large void where the exterior of the 

bowl and base of the bowl might have been joined to the elbow and base of the pipe 

(Figure 6.73). Inclusions account for 2% of fabric volume in this specimen. 

The final pipe scanned is from AgHk-52 and is Specimen 089 (catalogue 1257). 

McCartney (2018:56) notes that it is different from other pipes in the Arkona assemblage: 

“It is an obtuse angled pipe that bends on a curved line, rather than the sharper elbow of 

other obtuse angled pipes. It features a dramatic outflare bowl that bears a strong 
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resemblance to a trumpet flower, and its stem is decorated with an incised line that coils 

around.” In the micro-CT scan there are visibly fewer voids in this specimen than the 

other pipes scanned, suggesting a differing method of manufacture or drying (Figure 

6.74). There is one small void across the out flaring bowl, but this is from mending done 

by archaeologists and may or may not represent a join where the artisan merged pieces of 

clay.  

 

Figure 6.73: Specimen 103 exhibited one large void at the elbow of the pipe that may be 

where pieces of clay were joined in manufacture. Inclusions are highlighted in orange and 

account for only 2% of the total fabric volume. 

 

The fabric for all the clay pipes looks different from the fabric I was familiar with for the 

“standard” Arkona vessels. The clay pipes all have inclusion percentages of less than 

10%, and three of the five examples scanned have less than 5% inclusion volumes (Table 

6.42). This range in volume percentages differs from the vessels in the Arkona sample, 

where 91% fell above 5% inclusion volumes. Specimens 088 (Figure 6.72) and 086 

(Figure 6.69) appear to be tempered, and exhibit fabrics that seem more similar to the 

fabrics of ceramic vessels in the sample. Specimens 087 (Figure 6.70), 089 (Figure 6.74) 

and 103 (Figure 6.73) have noticeably fewer inclusions, and lack of angular inclusion 

fragments, which suggests these fabrics were either tempered differently from pots or 
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were not tempered at all. The preparation of fabrics for making clay pipes thus appears to 

be a separate process from the preparation of fabrics for making clay pots in the Arkona 

Cluster, at least some of the time.   

 

 

Figure 6.74: Specimen 089 exhibited fewer voids than other pipes. The void joining two 

pieces of clay on the bowl of the pipe at the top left of the image is the result of 

archaeologists mending this pipe bowl.   

There was a lot of variation in void volume percentages for the five pipes I scanned 

(Table 6.43). In microcosm this variation encompasses the range of void percent volumes 

seen across Arkona vessels. But void volume percentages for these pipes in part appear to 

be caused by errors and efforts to construct a borehole along the stem, and in joining the 

bowl. Notably, it appears as though stem boreholes were created using a pointed tool 

forced through the stem, after the stem and bowl had been formed. This practice appears 

to have caused errors, since two of the five pipes exhibit repeated efforts to create that 

borehole.  Creating boreholes may have also caused damage at the join of the bowl to the 

stem, which may account for instances of clay being added to repair this damage. The 

micro-CT scans readily reflect the agency of the clay and its material properties coming 

into play within the artisan’s craft, especially given the choice to create a borehole after 

forming the stem. 
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Table 6.42: Volume percentages of inclusions in clay pipes  

% Inclusions Number of Pipes 

0-5% 3 

5-10% 2 

10-15% 0 

15-20% 0 

>20% 0 

Total 5 

.  

Table 6.43: Void volume percentages in Arkona clay pipes.  

% Voids Number of Pipes 

<1% 0 

1-2% 2 

2-3% 1 

3-4% 1 

4-5% 0 

5-6% 0 

6-7% 1 

Total 5 

 

In other studies, pipe fabrics are consistently distinct from pottery vessels during the Late 

Woodland by generally having smaller temper/inclusion volume frequencies (e.g., Braun 

2012), so the Arkona examples are consistent with that more general pattern. Further 

research into the experiential qualities of the use of smoking pipes compared to cooking 
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in vessels and degree of variability in the forming and finishing of this distinct ceramic 

object class, all require further consideration. However, the preliminary micro-CT results 

presented here offer a real promise of gaining new insights into this craft. Insights on 

pipes are further discussed in Section 7.2.5.    

6.5.2 Arkona Cluster Learner Vessels 

I scanned three learner vessels from Arkona sites, all three of which were from AgHk-54 

(Specimens 012, 013 and 014). I conducted these scans to explore the potential for future 

micro-CT work on learner vessels in Ontario and elsewhere. The three learner vessels I 

scanned from Arkona have lower inclusion volume percentages than are typical of the 

full-size vessels (between 5-15%), with all of the learner vessels falling between 1-3% 

inclusion volumes. Voids volume percentages for the learner vessels ranged between 2-

4%, which is typical of full-size vessels at Arkona.   

In Specimen 012, I noted large voids throughout the vessel, suggesting it might be a 

pinch pot, but with some added clay at the rim (Figure 6.75). This vessel had only a 1.8% 

inclusion volume, suggesting it might not have been made from tempered clay. The 

exterior of the rim had one band of stamped linear right obliques, a common element 

found in the Arkona Cluster sample.  

Specimen 013 scans appeared to show a rim that was folded to the interior or had clay 

added to the interior to form the rim. This vessel had 2.2% inclusion volume, and the 

inclusions present appear as relatively large and low density when compared with full-

size vessels. I also noted that there was a large amount of void spaces that appeared to be 

created by an organic temper  added to the fabric of the clay, either intentionally or 

unintentionally during manufacture (Figure 6.76). Alternately this fibrous material could 

have been in the clay when harvested and then not sieved or processed out, which would 

align with the presence of large inclusions. Exterior decoration includes a band of 

roughly incised triangles, a band of incised linear horizontals and a band of what appears 

to be stamped right oblique designs. This decorative motif may be an attempt to replicate 

the open diamond or triangle designs seen on the neck of many Arkona vessels. 
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Figure 6.75: Specimen 012 exhibiting large voids throughout the rim, with pieces of clay 

potentially added to the front and top of the rim to form it. The fabric has few inclusions 

and lacks large angular inclusions.  

 

 

Figure 6.76: Specimen 013 with void structures highlighted in 3D, showing many fibre 

or hair-like structures.  
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In Specimen 014, I noted that voids suggested it might be a pinch pot, but I was unclear 

about construction techniques. This specimen had the highest inclusion volume 

percentage of the learner vessels at 3.1%, but the fabric still did not appear similar to that 

of any of the full-size vessels (Figure 6.77). Decoration on the exterior was made up of 

one band of linear, mostly like incised vertical lines. This pattern appears similar to the 

decoration I observed on Specimen 012, but without the oblique angle. 

 

Figure 6.77: Specimen 014 with void structures suggesting pressure applied from both 

the interior and exterior of the vessel, perhaps indicating a pinch pot. The fabric has few 

inclusions and lacks large angular inclusions.  

 

As suggested elsewhere (Howie 2012; Retter 2001; Smith 2005), manufacturing might be 

one of the first steps learned when making pots, while preparing clay fabric recipes and 

learning to decorate and finish pots was learned later. These three vessels from Arkona 

have evidence of some of the folding and adding clay techniques that are used on full size 

vessels, but the clay fabrics have fewer inclusions, and in the case of Specimen 013, 
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unique organic material mixed through the clay. All three lacked the typical angular, 

granitic-looking inclusions of the larger vessels that suggest intentional tempering.   

Learning potters had a sense that their pots should be decorated in some way at the 

exterior of the rim, and used decorative elements and applications seen on the more 

general vessels. This decorative practice suggests these learner pots were created by 

potters who were participating in the larger Arkona potting community, and learning to 

decorate and finish pots at the same time they were learning to form vessels.   

Presumably, for the less finished, learner vessels, a lack of temper could also suggest a 

lack of concern for a successful firing or for any subsequent functional use of the object. 

Indeed, if the focus of making learner vessels was to practice forming and perhaps 

finishing, inclusion volume percentages may suggest a means of distinguishing between 

ceramic objects made just for the intent of making, and smaller vessels made with some 

post manufacture functional intent in mind, since both learner and miniature vessel forms 

are found on Late Woodland sites (e.g., Murphy and Ferris 1990; see also Braun 2010). 

6.6 Petrography versus Micro-CT Comparison  

As I worked through the data acquired from CT scans, especially the data related to clay 

fabric preparation, it became increasingly clear that simply using metrics from 

petrography to explore the 3D data was problematic, and that these are two 

complementary but very different techniques. To investigate my suspicion that these two 

methodologies offer compatible, not comparable datasets, I conducted a brief comparison 

of petrographic thin section representativeness with micro-CT volumes. This type of 

comparison was also conducted by Kahl and Ramminger (2012:2212). They effectively 

compared the results of 2D slices and 3D images in determining percentages of temper in 

a sherd, and demonstrated that the sampling position for thin section selection had a 

significant impact on these results. As my inquiry was exploratory, and the process of 

creating several regions of interest was time-consuming, I only conducted this analysis on 

one specimen.   
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For this comparison, I used data from one sherd that is typical of the collection 

(Specimen 048). I used thresholding to isolate inclusions and voids in the 3D volume to 

obtain void and inclusion volume percentages for the entire specimen. I then created five 

regions of interest as vertical slices of the entire sherd positioned at 10 mm intervals 

(Figure 6.78). I extracted these slices, which represent an entire 2D section through the X 

plane of the specimens (Figure 6.79), and then used the same density thresholds to 

determine inclusion and void volume percentages within the total vertical 2D slice 

(Figure 6.79). These are referred to throughout this discussion as Slices 1-5. These are 

useful for comparing 2D to 3D data, but did not accurately reflect the amount of data 

contained in a typical petrographic thin section since they are larger than a typical thin 

section.   

To create “faux” thin sections, I then positioned a 15 x 50 mm 2D rectangle within each 

of these five vertical slices (Figure 6.79). This size was used as an approximation of 

typical thin section area based on images of thin sections (Quinn 2013), and my 

discussion with an expert in petrographic analysis of Iroquoian pottery (Gregory Braun, 

personal communication 2019). I positioned these in the vertical slices along the X axis 

as close to the lip of the vessel as possible, to mimic a thin section position that cut the 

rim of a vessel, since this is the typical section that petrographers use to examine vessel 

manufacture and fabric.  These are referred to throughout discussion as Sections 1-5 

(Figure 6.80).  

 

Figure 6.78: 2D slice positions at 10 mm intervals. Slices are at -30 mm, -20 mm, -10 

mm, 0 mm and 10 mm along the X axis.  
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Figure 6.79: Left: Slice 4 at 0 mm on X axis. This image represents the 2D slice along 

the X plane. In this image, inclusions are thresholded. Center: Slice 4 with voids 

thresholded. Right:  Section 4, highlighting the placement near the lip of the vessel of a 

15 x 50 mm rectangle to mimic thin section size.  

 

 

Figure 6.80: Sections 1-5 from left to right. All sections are 15 x 50 mm. Note the visible 

variability in inclusion and void volume percentages, and the abundance of inclusions 

that were sliced through in Section 3. Only Section 5 captures a large void created by 

folding the rim in manufacture.  

 

The result of this exercise was that the 2D measurements tend to overestimate inclusion 

volume, and slightly underestimate void volume, compared to the 3D volume results 

(Table 6.44). While I am not entirely certain why this is the case, I suspect the 3D shape 

of both voids and inclusions comes into play. While the voids in these ceramics tend to 

be long, planar structures, the inclusions tend to be more spherical. If voids are sliced 

along their narrow side, as they usually are in a section oriented vertically along the X 
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axis of the rim section, a 2D area measurement will underestimate the actual volume of 

that void. Conversely, 3D volumes of inclusions may be overestimated slightly from their 

2D area, especially when their volumes are small and if they are sliced near to their 

center point. For example, a sphere with a radius of 1 mm has a volume of 4.19 mm
3
, 

while a circle with a radius of 1 mm has an area of 3.14 mm
2
. This difference in volume 

by shape means that one circular slice through that sphere has an area that only accounts 

for 75% of the inclusion’s actual volume. As such, that slice of the inclusion visible 

within a 2D plane only makes up a portion of the actual volume measured in 3D. This 

distinction also suggests the location and direction in which voids and inclusions are 

sliced has an effect on the viability of area as a proxy for volume, as used in petrography, 

and actual 3D volume obtainable through micro-CT data.  

Table 6.44: Inclusion and void volume percentages in the 3D volume, 2D slices and 15 x 

50 mm sections.  

Sample 
% inclusion 
volume  

%void 
volume 

3D volume 11.98 1.57 

Slice 1 at -30mm 13.13 0.78 

Slice 2 at -20mm 12.45 0.87 

Slice 3 at -10mm 15.20 0.96 

Slice 4 at 0mm 13.75 2.18 

Slice 5 at 10mm 11.86 1.08 

Average for slices 13.28 1.18 

Section 1 at -30mm 13.42 0.80 

Section 2 at -20mm 13.57 0.42 

Section 3 at -10mm 15.92 1.26 

Section 4 at 0mm 14.92 1.09 

Section 5 at 10mm 12.26 1.21 

Average for sections 14.02 0.96 
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We can also see the influence slice placement has, for example, in the high percentage of 

inclusions in Slice and Section 3 (Table 6.44 and Figure 6.78), where the slice happened 

to cut through more inclusions than was typical for the sherd overall. In Late Woodland 

coarse earthenware, clay is not always perfectly mixed, resulting in pockets of clay with 

more or less inclusions (Braun 2015). Typically in thin section analysis, to limit damage 

to the specimen, only one section is taken per sample. While a limited exercise here, my 

findings suggest that working in tandem with petrography, micro-CT analysis might be 

able to “correct” for position variation caused by thin section placement. A 3D sample 

could help suggest the need for further thin sections if numbers are significantly different. 

However, more work on comparing the data obtained from actual thin sections to micro-

CT scans would need to be done, as the data obtained from the two methods currently 

operates at differing resolutions. While the “faux” sections used here use the same 

method to pick up inclusions and voids through thresholding as is used in the 3D volume, 

inclusion and void volumes in thin sections are measured in different ways and any 

perceived differences may be because of the resolution or methodology used.   

Sometimes void structures are visible in petrographic sections of rims, but CT scans give 

a fuller picture of manufacturing techniques across the entire vessel (or whichever portion 

of the vessel has been scanned). From any one of these sections, it would be difficult to 

determine the method of manufacture for this rim section. But the micro-CT data allows 

the researcher to scroll through thousands of sections and stitch together the voids into 

their larger, continuous structures illuminating manufacturing techniques in ways that 

thin sections simply cannot access. While Section 5 of the example examined here 

captured the large void present in Specimen 048 representing the folding of this rim, the 

other sections do not illustrate that structure as well (Figure 6.80). Overall, there is more 

work to be done in illuminating how petrographic and micro-CT data and analysis can be 

used in complementary ways to advance novel insights into the craft and practice of 

pottery making.  

6.7 Cautionary Tales 

There is no question in my mind that issues with the scanning system, the propriety 

software available to analyze the scans, and my own learning curve undertaking this 
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study posed serious challenges and imposed limitations on what I could accomplish. The 

process of becoming both technician and researcher - setting up scans, reconstructing 

them and especially conducting image analysis - took the better part of two years to learn 

before I was comfortable and competent in both roles, a timeline which was further 

extended by delays while the micro-CT machine was broken, which were generally 

weeks or months in duration, not days (see timeline in Appendix F).Without prior X-ray 

imaging or 3D image analysis training, I found myself learning how to operate the micro-

CT system, and use the image analysis software, as I undertook my research, while at the 

same time attempting to become enough of an expert in Late Woodland ceramics that I 

could interpret the resulting data. This learning curve was steep, and I was discovering 

what the micro-CT system and imaging software could and could not accomplish on the 

fly. As such, choices made early on in the life of this research project, such as obtaining 

complete scans of entire vessel sections to access large void structures associated with 

manufacturing methods, meant issues such as adequate resolution for examining 

inclusions could not be adjusted for later on during the analysis of the scans.  

In terms of cautionary tales related to proprietary software, much of the variety and 

quality of data that can be collected from micro-CT scans is influenced by the type of 

software that is being used to conduct analysis on those scans. With unlimited access – 

and adequate training - this could have led to a very different study. I did not undertake 

an exhaustive exploration of the software available to use in the analysis of micro-CT 

scans.  I completed most of my analysis with VGStudio MAX 2.2 (VG), which was the 

analytical software selected for the Western University system, so I can only speak to my 

experience with that program. I also initially tried Object Research Systems Visual 

(ORS), which was primarily designed for medical imaging, near the beginning of my 

analysis. However, I chose to focus most of my time on VG simply because learning two 

software programs, each with steep learning curves, proved too daunting to accomplish 

while also trying to complete scanning and that analysis. As well, I felt that VG, which is 

more focused on industrial/non-medical analysis, had the potential to meet more of the 

analytical needs I might require. 
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Both ORS and VG are proprietary and require licensing to access the basic software. As 

well, VG underwent a major upgrade during the time of this study. And, as we learned 

over the course of this project, VG also requires additional licencing for each of the many 

add-on modules available for the software, several of which are particularly suited to the 

analytical queries I wanted to pose of the scans. However, the cost of the modules is 

prohibitive (i.e., in the tens of thousands of dollars), so in the end I had to be content with 

working from a 30 day trial of VG 3.0 with access to all of the modules for a limited part 

of my analysis. During that 30 day window I was able to explore the potential of the fibre 

orientation analysis (useful for ceramics that had fibre temper, but not for the Arkona 

collections); a coordinate measurement add-on (useful for “best fit” digital mending 

procedures and rim diameter measurements); and a porosity and inclusion module (which 

I would argue is an ideal tool for all ceramic analysis because it easily isolates, counts, 

and gives both total and individual volumes for voids and inclusions). Access to the 

porosity and inclusion module provided data on volume, sphericity, quantity and other 

variables that were not obtainable through VG 2.2. Given the 30 day trial period, much of 

that time was used in simply familiarizing myself with the new modules and grabbing 

what data I could. In the end, my analysis based on the full potential of this complete 

software suite was limited and could only hint at directions for future research.  

In the porosity and inclusion module, I used thresholding from templates that I created 

for both voids and inclusions, but there was also an option of running the VGDefX 

algorithm for both voids and inclusions, which automatically picked these features out of 

the fabric. The algorithm created nicer images than the threshold-only option, but took 

considerably longer in terms of computing time, and tended to miss many of the larger 

voids in the clay. Notably, the manual for this module stated that the porosity and 

inclusion algorithm was not designed for complex, multicomponent materials (Volume 

Graphics 2016), which presumably characterizes low fired ceramics exactly. Given more 

time with the module, I may have been able to work out how to make that algorithm work 

for these ceramics; in other words, I could have taught the software to provide what I 

needed. Time and budget limitations meant this was not possible.  
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I also experimented with ImageJ, which is a widely used, open-source freeware option 

often used by researchers undertaking analysis of ceramic fabrics (Braun 2015; Greene et 

al. 2017; Sanger 2016). When I experimented with ImageJ I found it quite useful for 

exploring individual 2D slices, but it was quite limited for examining entire 3D volumes. 

These limitations to the software could be in part because of the limited time I could 

invest in learning the program.  

Dragonfly is an image analysis program by Object Research Systems designed for 

scientific and industrial data that was released after I had completed the bulk of my data 

analysis. Licensing is required for commercial use, but “non-commercial licenses are 

granted free-of-charge to qualified researchers and academics for a period of one year” 

(Object Research Systems 2020). As such, I was able to complete analysis on a couple of 

scans using this software, to explore the potential of this program in ceramic analysis. It 

certainly offers some of the capabilities of the VG 3.0 porosity and inclusion module, 

such as the ability to sort inclusions and voids by volume, shape and other variables. It 

has a different workflow to isolate voids and inclusions than laid out in VG 2.2. But the 

workflow is still based on the basic principles of creating regions of interest (ROIs) based 

on density or thresholding (called segmentation based on a range in Dragonfly), and then 

filling these ROIs to include voids, and subtracting them from one another to isolate 

portions of the clay fabric. These individual ROIs for inclusions and voids can then be 

split into their components using the analysis tools in Dragonfly. While I found the 

imaging in the version of Dragonfly I used less impressive than VG, the ability to run 

volume analysis on voids and inclusions would be enough reason to use it for future 

research even before considering the potential additional benefits new versions of this 

software might provide in colour imaging and segmenting. However, like VG, Dragonfly 

does have a learning curve that should start to be scaled before scanning and undertaking 

scan analysis.  
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Chapter 7 

7 Interpretations and Conclusions  

I set out to leverage the unique insights provided by the micro-CT scanner at the Museum 

of Ontario Archaeology offered to explore the craft and practice of ceramic making from 

the Arkona Cluster of thirteenth-century CE archaeological sites. In effect, I adopted two 

research questions: first, what is the value of micro-CT as a method of ceramic analysis 

in archaeology, and second, what insights can be advanced about the craft of pottery 

manufacture from the ceramic assemblages of the Arkona Cluster?  Implicit in this 

research framing is that the second question on ceramic craft is only possible because of 

what I believe is the relative success achieved in addressing the first question. I thus 

explore both questions below before summarizing the value of the study in its entirety 

and suggesting directions for future research.  

7.1 Micro-CT Scanning in Ontario Archaeological Ceramic 
Analysis 

This section will discuss the benefits and limitations of using micro-CT analysis on 

archaeological ceramics, with a focus on the value it can add to studies of Ontario 

ceramics. The advantages of using micro-CT and the challenges posed by steep learning 

curves that go along with scanning and image analysis are addressed. The ability to 

answer research questions related to ceramic manufacture provides a shift in focus from 

ceramic typological analyses to a more complete understanding of potting practice.   

7.1.1 Accessing Internal Features in Three Dimensions 

As previously stated, most studies focused on Ontario ceramics (with a few exceptions: 

e.g., Cheng 2012; Howie 2012; Braun 2012, 2015) emphasize macro examination of 

exterior surface attributes of vessel sherds. This approach emphasizes the final stage of 

vessel production – or finishing – in analysis, beyond generally noting the presence and 

type (i.e., grit vs shell, etc.) of temper visible in fragmented edges. Using micro-CT 

technology, I was able to explore the interior structures of ceramics from Ontario; 

something that cannot be done otherwise without destructive analysis. This study 
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represents the first time a researcher working on Ontario ceramics was able to visualize 

the internal features across a ceramic sherd.  

Moreover, CT scanning is the only way to obtain 3D data related to the complete 

qualitative and quantitative attributes of ceramic fabrics for an entire sherd or vessel 

section. The volume and 3D architecture of these internal features are inaccessible 

otherwise, since traditional radiography confounds wall thickness and density in ceramic 

sherds by collapsing 3D structures into a 2D image (Pierret et. al. 1996). Also, a CT scan 

offers greater access to otherwise obscured data; in CT scans, crystal faces of inclusions 

and the shapes of voids are visible (Sanger et al. 2013:837). Other unique features within 

ceramic fabrics, such as the addition of hair or other types of elongated temper (e.g., 

Moody 2018), are also visible, as seen in learner vessel Specimen 013. While two 

dimensional data can be useful for identifying temper density, specific minerology, void 

distributions, firing practices and manufacturing techniques, the potters making these pots 

were not thinking in two dimensions when they were mixing their clay fabrics. Potters 

were more likely thinking about the components of these ceramics in terms of their 3D 

form and volume in their attempts to create a clay fabric that “felt” right to ensure success 

(Braun 2015).  

 The benefits of 3D analysis become immediately apparent when we begin to think about 

how the potter was interacting with these materials. The ability to isolate and quantify 

inclusions and voids in ceramic fabrics from micro-CT scan data was illustrated in this 

study by the ability to compare total inclusion and void volume percentages across all of 

the specimens used in this study. Further, preliminary results gained from working with 

micro-CT data on individual inclusion volumes generated by imaging software suggests a 

promising potential for micro-CT to conduct textural analysis, including grain-size 

distributions and inclusion shape analysis. This information on the volume percentage of 

inclusions in clay, and the ability to study the 3D shape and size of inclusions could not 

be accessed without micro-CT scanning. Throughout my analysis, as I tried to make 

sense of the data, it became clear that the larger sample size of inclusions in clay fabric 

accessible through micro-CT, and the use of 3D volumes, rather than 2D areas, 

differentiates insights into clay fabric obtained through micro-CT from those obtained 
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through petrographic analysis. This difference is no better or worse, just underscores how 

micro-CT data complements established petrographic findings, and opens new 

opportunities for inquiry in the material science of ceramic making.    

Micro-CT gives us a “big picture” and comprehensive view of ceramic manufacture, both 

in terms of datasets, and in terms of encompassing the entirety of possible insights 

accessible from vessel sherds and sections. Micro-CT scans access a much larger area of 

the ceramic than other techniques used for examining interior structures, yet still provides 

resolution enough to see micro folds and joins in clay. In this manner, micro-CT scanning 

has proven extremely useful for identifying primary manufacturing techniques and even 

variation within these techniques. Primary formation techniques are typically masked by 

secondary formation and finishing techniques when vessels are examined from the 

exterior. However, within the internal architecture of a vessel these techniques are not 

completely erased by later surface treatments, and so are visible in the alignment or 

orientation of inclusions and temper, and especially void spaces present in the ceramic 

fabric (Berg 2007:1178, 2008; Carr 1990, 1993:17; Kahl and Ramminger 2012; 

Middleton 2005; Rye 1977; Sanger et al. 2013; Sanger 2017). Likewise, the locations 

where bodies of clay have been joined together are also visible as joining voids and 

compression sites in ceramic fabric (Applebaum and Applebaum: 2005). This insight 

makes micro-CT scans useful for determining the method of attachment for appendages 

and how coil or slab made ceramics were formed. In Ontario, possible formation 

techniques include coiling, paddle and anvil manufacture and press moulding, among 

others (Ellis and Ferris 1990; Ferris and Spence 1995; Garland and Beld 1999; Jackson 

1986; Spence et al. 1990). Coiled vessels in other studies show a horizontal, parallel 

pattern of voids and inclusions with a circular pattern at the base. Moulded and paddled 

vessels show inclusions aligned parallel to the walls of the vessel and voids which are 

flattened and show up as circles. The vughs I noted in all scans around large inclusions 

were likely evidence of the pressure applied during manufacture, such as from paddle and 

anvil application (see also Rye 1977). In this study, large joins between clay were 

immediately apparent in the micro-CT scans as voids in the ceramic fabric. Recognizing 

these planar and channel voids allowed for the identification of four major types of rim 

formation techniques that were used at these sites, including folded rims and rims with 
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applied clay. While these large voids are occasionally visible in macro-analysis on 

broken edges of sherds, they cannot be followed throughout the vessels and studied in 

any detail by looking at the exterior of a specimen. Furthermore, the positioning of 

petrographic slices leave it up to chance whether these large voids will be revealed or 

recognized as related to fabric manipulation in the formation of rims. In my own limited 

comparison of 2D slices to 3D sections, I was only able to spot the large void caused by 

folding the rim in one of five faux thin sections created. 

Smaller joins in clay, visible as voids in the micro-CT scans, also allowed exploration of 

corrective measures used by potters. These bits of clay added to the rims of pots, 

sometimes above folds in the rim, sometimes to enhance castellations and sometimes on 

the lip to level or fix it in some way, would not be visible without micro-CT scanning. 

These smaller, more ephemeral joins cannot be seen from the exterior of vessels. And the 

chance that a petrographic thin section would cut through one, and have the context to 

interpret it as a smaller idiosyncratic void, is low. Only by examining the void structures 

in 3D and by scrolling through thousands of 2D slices across that compiled 3D model can 

these interior features be recognized for what they are. Micro-CT allows us to access a 

larger scale view of the interior and exterior features of ceramics than existing methods, 

which contributes to a greater understanding of the choices potters made when engaging 

with materials and the push back of the materials on the potters. The engaged 

craftsperson (Sennett 2008) can be seen in traces left behind from the gestured they used. 

Voids structures, viewed through micro-CT analysis, show the hand and bodily 

movements that potters were using as they were making pots. In this way, these scans 

provided a new way to think about human-material interactions at Arkona. 

Furthermore, while finishing techniques are visible on vessel exteriors, the ability of 

micro-CT scans to cut through decorative elements non-invasively revealed directionality 

of deeper elements such as punctates, and the interplay between finishing techniques and 

manufacturing or forming techniques in ways that could not be seen otherwise. Micro-CT 

3D sections of punctates and bosses allowed for them to be examined as an element of 

the manufacturing process and not only as a decorative element. Punctates and bosses 

also provide insight into the movements and gestures of potters, as they represent the 
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result of a repeated hand motions, and the pressures applied by potters are they 

established regular rhythms in the craft of potting (Forte 2019).  The fingerprints left on 

bosses are quite literally the traces left from gestures used by potters as they interacted, 

moved with, and responded to the material while practicing their craft.  

Micro-CT scans of other clay objects, including clay lumps, learner vessels and clay 

pipes, also show great promise for the application of this technique to larger and more 

varied collections of ceramic objects. The differences in manufacturing techniques that 

could be seen in void structures, and the differences in inclusion volumes found in these 

varied classes of objects using micro-CT scans allowed me to think about differing craft 

communities and learning this craft. The potential for recognizing idiosyncratic building 

methods, unique clay fabrics and error-correcting in both clay pipes and learner vessels 

was demonstrated even by the limited scanning of a few objects from each of these 

categories in this study.  

Sanger et al. (2013) suggested that CT scanning has the potential to recognize not only 

differing manufacturing techniques but diversity within these techniques. By examining 

the patterning in voids they were able to recognize coiling techniques versus slab 

techniques but could not definitively recognize differences between slab and molded 

techniques. An examination of larger portions of vessels or even complete vessels may be 

necessary to differentiate these two techniques. In the present study, a variety of rim 

formation techniques and slight differences within them were identified. Berg (2011) 

used X-radiography with a 60-80% success rate for identifying primary formation 

techniques. I think this study had shown that micro-CT scan analysis can improve on this 

analysis, because vessel wall thickness is not the issue it was for Berg, and we have a 

much more detailed view of inclusions and voids to examine. Primary formation 

processes are important in investigating material culture practices and learning pools; a 

concept that will allow further CT research to examine the transmission of ideas and 

learning and apprenticeship through the archaeological record (Carr 1990). Through 

micro-CT scans we can attempt to reconstruct the communities of practice in which 

potters were learning and participating. Members within a communities of practice will 

use similar techniques and gestures and pass down these skills or sets of practices to 
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subsequent generations (Roddick 2016). In micro-CT scans we can access traces left by 

these techniques and gestures used to form pots, allowing us to being to make 

connections between the materials left behind, craftspeople and their communities of 

practice.  

Previous studies (e.g., Berg 2008; Greene et al. 2017) were able to identify primary 

forming techniques using X-radiography, and Sanger and colleagues (2013, 2017), and 

Sanger (2016), were able to identify variation within these techniques from CT data. But 

this current study (see also Kozastas et al. 2018), suggests that micro-CT analyses can 

take these interpretations further, exploring in more detail the precise gestures potters 

used to create ceramic vessels. I was able to use the presence not only of large void 

structures to examine primary manufacturing techniques, but also the smaller 

idiosyncratic manipulation of clay, to explore the technological gestures of potting, and 

the engagement between materials and artisans in Arkona. These void structures 

represent the repeated hand motions of potters: the gripping, touching, grasping and 

releasing (Sennett 2008) of potters hands on the clay. These motions allow us to explore 

the skill and craft of potting and how the engaged potter interacted and responded to 

materials and their environment, continually responding and improvising as they 

practiced their craft (Ingold 2010). Because of CT technology, we can move away from 

assumptions about how ceramics were made, based on archaeological supposition and 

ethnographic analogy, and examine the preserved gestures and motions that potters 

actually left in the fabrics and internal architecture of the ceramic vessels they made. My 

study was limited to one set of archaeological sites from a discrete region of southern 

Ontario extending over a relatively short period time. Additional micro-CT studies thus 

can build and expand these practices broadly across regions and across deep time. This 

ability to recognize potters’ gestures and techniques in archaeological material thus adds 

great interpretive insight to ceramic materials regarding potting communities across the 

past (and potentially into the present), and how tradition and innovation were worked into 

the manufacturing of pots.  
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7.1.2 Petrography and Micro-CT 

Several authors note that the use of 2D images, including petrographs, to classify the size, 

shape, distribution and frequency of inclusions in ceramics is limited, because of the 

sampling bias inherent by only looking at one slice of a sherd (Adan-Bayewitz and 

Wieder 1992; Applebaum and Applebaum 2005; Jacboson et al. 2011).  Images in 3D 

give a complete picture and are thus have the potential to be of much greater value 

characterizing inclusions in ceramic fabrics. Kahl and Ramminger (2012:2212) illustrated 

the advantages of 3D imaging in determining the percentages of temper in a sherd. Using 

imaging software, I was able to isolate and determine the volume percentage of 

inclusions for all vessels non-invasively, meaning I was able to generate a more robust 

representation of inclusions in a sherd than can be accessed by thin section. But also the 

resolution I was able to work at meant I could not discretely separate inclusions below a 

0.01 mm
3
 volume size, something that is possible to distinguish from thin section 

analyses (e.g., Braun 2015). This research suggests the potential of micro-CT scanning to 

access complementary and different dimensions of inclusion patterns in ceramic fabrics 

from what petrographers can access. Future research, including use of higher resolution 

scans and calibrated scans, could further push micro-CT analysis towards generating 

complementary and comparable datasets to petrographic findings, possibly even offer a 

means of determining the mineralogy of inclusions (e.g., Carr and Komorowski 1995; 

McKenzie-Clark and Magnussen 2014; Middleton 2005). If so, understanding the 

limitations and potential of both petrographic and micro-CT methodologies will be vital 

to advance the material science of ceramics further.  

The influence of sample location in petrographic thin sections matters a lot. When only 

sampling a small area of ceramics - artisan made objects and often unevenly mixed - the 

area sampled could be an outlier within that ceramic. I illustrated that this is the case in 

the limited comparison of 2D vs 3D imaging of a sherd conducted, where inclusion 

volume was overestimated, and void volume was underestimated, and variably so, 

depending on slice placement. Micro-CT examines the entire specimen, and accesses 

volume rather than diameter or surface area, both of which are very dependent upon 

which direction the void or inclusions were sliced. I also found that comparing 3D 
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volume data to categories created for 2D samples from petrography and geology was a 

complicated exercise, illustrating that 3D data recorded from CT scans is truly a different 

thing altogether than established petrographic interpretive data.  

Further advantages of micro-CT include the use of software to provide filtering (although 

this can also be done with digitized images of thin sections), and the ability to select 

images on any plane (e.g., Applebaum and Applebaum 2005). Magnification of x25, x40, 

x100 or up to x400 for small inclusions can be used in thin section petrography (Quinn 

2013), and we can achieve comparable geometric magnification up to 150x with the 

micro-CT scanner used in this study, depending on the sample size.  

The potentials and limitations of micro-CT analyses on ceramic fabric identification are 

not yet fully understood. It has not been used in archaeological ceramic petrographic 

analysis. We may be able to answer some of the same questions as those posed in 

destructive 2D petrography, but research may need to include ground truthing the 

information gained from 3D scans with 2D petrography, since petrography is a well-

established technique in the field of ceramic analysis and micro-CT is a relatively new 

method in the field. I am not sure micro-CT analysis can examine clay mixing in the 

same way as ceramic petrography. For example, identification of different clays is based 

on colour and reflective properties (Quinn 2013), and most clay materials have a similar 

density to one another. Though it is worth noting that, in one case (Specimen 050), two 

clay fabrics in the sherd did appear to be of different densities. This might suggest that 

refining scanning techniques may be able to tease out clay differences in the future. But 

generally, micro-CT is more suited to examining voids and inclusions, rather than the 

clay itself, since micro-CT separates out density and presents it in greyscale. Isolating 

these elements in sherds of differing densities is easy using micro-CT, so studying the 

ratios of the components that make up a ceramic fabric is something that can be quickly 

achieved from micro-CT data. Isolating different inclusions from one another or isolating 

different types of clay from one another becomes more difficult if these materials are all 

of a similar density, which tended to be the case in the Arkona sample.   
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Temper choices have been a major focus of ceramic petrography. Temper types and 

varieties can be seen as a technological trend in pottery production and can be linked to 

functional differences in pottery (Carr 1990). However, there is not always a link 

between temper type and vessel type (Dickson et al. 2013). Braun (2012:1) noted that 

temper size and mineralogy is determined “through the negotiation of various 

constraints,” including tradition, social organization, intended function, and the 

availability and workability of raw materials. Raw materials including temper can be 

linked to engagement with the landscape (Michelaki et al. 2015). Day et al. (1999) 

emphasized that petrography is important not just for sourcing ceramics but for 

examining the choices potters made. And Howie (2012) used petrographic techniques to 

examine the choices that potters were making and then linked these to local and non-local 

traditions.   

The minerology of inclusions could not be examined in this study, but inclusion volumes 

could. Inclusion volumes included both the total volume of inclusions for each specimen, 

and the individual volumes of each inclusion in the specimen (for the seven sherds where 

I focused on this additional level of analysis). Conducting grain-size distributions and 

textural analysis of these samples led to some insights about the size of temper that may 

have been used by potters. Using volume categories in grain-size distributions, I was able 

to estimate that the largest of these categories (coarse sand and larger) were likely 

intentional and that the medium sand category was likely at least in part made up of 

intentionally added temper. However, these designations are tenuous at best, and even in 

petrography where the resolution is higher and mineral identification is completed, the 

intentionality of inclusions is based on some degree of guesswork. I was also able to note 

slight differences between distributions in specimens. The differences noted were subtle, 

especially when we cannot say with certainty which of the inclusions were natural, 

accidental, or intentional. But these vast datasets of inclusions begin to allow us to tease 

out potters’ choices across the spectrum of inclusion volumes and size categories, such as 

the use of more temper, larger temper, and other differences across the specimens 

examined. By using this detailed information on inclusion volumes, obtainable through 

micro-CT, I can access clay fabric recipes used by potters in a way that is different than 

that achieved by existing techniques. 
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While grain-size distributions from micro-CT data were somewhat obscured by the 

massive amounts of very small inclusions included, they did suggest that inclusions 

dropped off in frequency in the very coarse sand category. This pattern suggests, however 

tenuously,  that potters, for the most part, avoided keeping anything larger in their fabric, 

while adding some or all of the medium and coarse sand sized particles into that fabric as 

temper. However, this could also be the result of the depositional environment of the clay 

sources (Quinn 2013). While my findings did not provide neat bimodal distributions of 

inclusions, with natural inclusions on one peak and temper on the other (as are sometimes 

noted in petrographic studies), it did reveal what might have been intentional tempering 

materials through the steep drop off in volume that I was able to document. Sphericity, a 

3D measure that cannot be fully obtained from existing software used for this study, also 

holds promise for exploring clay fabric recipes, if it can be combined with other measures 

such as roundness. 

While much of the early work examining clay fabrics in micro-CT studies will be based 

on exploring metrics that have already been established in petrography (e.g., grain-size 

distributions, textural analysis, inclusion, void volumes), micro-CT analysis is becoming 

a distinct field and field of analysis in the suite of archeological sciences techniques used 

to examine ceramic objects.   

7.1.3 Advantages and Disadvantages of Micro-CT 

Analysis revealed that micro-CT is an extremely robust technique for examining ceramic 

manufacture, but the technique is not without limitations. The three dimensional nature of 

data is a benefit but also requires the development of new methods of data analysis. 

7.1.3.1 Advantages of 3D Data  

There are problems with traditional X-radiographs when examining ceramics (or other 

3D structures). Thickness and density are confounded in X-rays when 3D objects are 

made into 2D images (Pierret et al. 1996). Kahl and Ramminger (2012) resolved some 

2D issues by digitizing their images and using equations to derive porosity and thickness 

across the sherd. However, these issues are not a problem with CT scanning (Pierret et al. 

1996). Representations of 3D objects provides quantitative information such as volume, 
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size, shape, distribution, and connectivity of the void and inclusions can be obtained for 

the entire 3D volume of the samples (Machado et al. 2013; Sobott et al. 2014). Obtaining 

total inclusion volume percentages for the clay fabrics of the specimens could be easily 

achieved through thresholding based on density. These inclusion volume percentages 

typically ranged from 5-15% of the total fabric volume. Void volumes, on the other hand, 

were typically less than 4% in the specimens examined, and the upper rim portion of 

vessels had slightly higher void volume percentages than were found in the sherds 

overall. Micro-CT allowed for the visualization of voids quickly in the X, Y and Z 

planes, and it quickly became apparent that planar voids, followed by vughs around 

inclusions, were the most common types of voids. The ability to follow these large voids 

through a specimen is unique to CT analysis and proved useful in determining the shape 

and orientation of voids. This ability led to important conclusions about how potters were 

forming vessels and vessel rims.  

7.1.3.2 Software and Data Representation 

Another advantage of micro-CT (and other 3D imaging) is that the researcher can 

manipulate the volumetric data obtained through various software programs including, 

but not limited to, ImageJ (Ferreira and Rasband 2012), VGStudio MAX (Hoffman & 

deBeer 2012; Volume Graphics GmbH 2013), ORS visual (Object Research Systems), 

Dragonfly (ORS 2020), and 3D slicer (Fedorov et al. 2012). Data representation can be 

simple slices or complex three-, four- or five-dimensional representations of volumetric 

data either in grayscale or colour (Stock 2009:137-138).  

Data representation is an important part of research on ceramics, and micro-CT produces 

fantastic representations of data. Videos or animations, and images, both in colour and 

greyscale, can be used to highlight different features obtained through 3D scans. Movies 

or animations are useful to represent 3D data, because more than one feature at a time can 

be represented, or different features can be represented successively (Volume Graphics 

GmbH 2013). Animations are also a wonderful tool for displaying results to academics, 

the general public, stakeholders and descendant groups (see for example: 

https://youtu.be/f0F0UQ-csTI , and https://youtu.be/-COjbsnP76U). 

https://youtu.be/f0F0UQ-csTI
https://youtu.be/-COjbsnP76U
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The ability to highlight relevant ceramic features in an animation makes the results of CT 

scans engaging. I found it was much easier and less time consuming to explore scan data 

within the VG interface than it was to animate the scans. However, the ability to present 

my analysis in an animation or video was a powerful tool to convey the concepts and data 

I was examining. A video that highlights the features contained in the ceramic (such as 

void structures and inclusion distributions; see https://youtu.be/qp5Z7qLqMAo and 

https://youtu.be/QOg4h35-vm8) is infinitely more accessible than a 3D reconstruction 

file that needs imaging software and a lot of computing power to open. I also found that 

sequential still images of various slices through a single specimen and 3D renderings of 

void structures proved to be effective tools in presenting the results of my analysis in this 

study. 

7.1.3.3 A Non-invasive Technique 

Using micro-CT, researchers can non-invasively gain information on internal structure: 

the proportions, spatial distribution and relative orientation of components (Griffin et al. 

2012). These factors are important in the study of archaeological ceramics, and the non-

invasive nature of micro-CT scanning allows for the examination of specimens that have 

previously been too fragile or too vital as heritage to be investigated in material science 

fields. However, while non-invasive, it is not fully understood what effect X-ray dosage 

has on ceramics, and it must be kept in mind that this process may interfere with 

thermoluminescence dating techniques (Tuniz and Zanini 2014; Huntley et al. 2016), 

which although destructive, are still widely used on archaeological ceramic materials 

around the world (e.g. Abboud et al. 2015; Anderson and Feathers 2019; Baria et al. 

2015; Cano et al. 2015; Farias et al. 2009; Herbert et al. 2002; Khasswneh et al. 2011; 

Mejia-Bernal et al. 2019) Thus I have referred to micro-CT as non-invasive but not 

necessarily nondestructive. 

 The non-invasive nature of  micro-CT scanning makes it a technique with great potential 

for community-based and collaborative research in North America, where Indigenous 

communities may prefer or consent to have only non- or minimally- invasive techniques 

conducted when it comes to archaeological research (e.g., Glencross et al 2017). 

Furthermore, in my experience, museum researcher access policies are more likely to 

https://youtu.be/qp5Z7qLqMAo
https://youtu.be/QOg4h35-vm8
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allow for non-invasive techniques (e.g., Tite 2002), permitting researchers potential 

access to a greater variety of archaeological collections than when using a destructive 

technique such as thin section petrography.   

7.1.3.4 Addressing Research Questions 

Micro-CT allows archaeologists to ask questions about pottery manufacture that could 

only previously be answered using destructive techniques, or that could not be answered 

at all. Of the steps involved in ceramic manufacture, primary forming techniques are very 

difficult to access using conventional methods, but become apparent in micro-CT 

analysis. In this research I asked what micro-CT scanning could tell us about several 

steps in the chaîne opératoire of ceramic manufacture (including fabric preparation, 

vessel forming and vessel finishing), the gestures and practices related to those steps, and 

in turn how these were learned, used and passed down within a community of practice. 

Other CT and micro-CT studies have asked similar research questions with varying 

degrees of success.  

Sanger’s (2017) success in identifying formation techniques was in part because of the 

use of fibre temper in the pottery, which appeared clearly on scans as burnt out void 

spaces and aligned according to manufacturing techniques because they were linear. Void 

spaces did not suggest use of fibre temper in the Arkona collection. The vugh voids 

around solid temper particles suggest a paddle and anvil manufacture, and the smaller 

planar voids seen in all vessels probably relate to this technique as well. Little else could 

be determined from the alignment of particles in the vessels in the Arkona sample, and 

most of my conclusions regarding ceramic manufacturing techniques were based on 

voids left from joining pieces of clay, rather than alignments of temper or inclusions (or 

by proxy the void spaces left from temper). Sanger (2017) also argued for correlations 

between manufacturing techniques and decorative elements on pottery, which he inferred 

to be the products of several communities of practice, while the pottery at Arkona did not 

show strong correlations between exterior decoration and interior structures. For future 

work, considering a collection of ceramics that have linear-shaped tempering materials 

(e.g. shell, fibre, or more elongate minerals) that might align in accordance with 

manufacturing techniques (see Figure 6.21), might enable more robust conclusions about 
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the techniques used by potters. However, the Arkona collections were still a valuable 

case study because of their unique position within a borderlands culture, and micro-CT 

scan data was able to add insight into the complex communities of practice at work there, 

as will be discussed in detail in Section 7.2.   

Recent studies, including that completed by Kozatsas and colleagues, use micro-CT data 

to answer questions not only related to primary manufacturing techniques, but also to 

discover and define unique “individualized craft behaviors” (Kozatsas et al. 2018:104), or 

the gestures and motions undertaken by potters’ hands and bodies while practicing their 

craft. They use micro-CT scan data to answer research questions about social 

stratification and evolving household units by sampling from one house over differing 

time periods (Kozatsas et al. 2018:105). Because they had a directed research question, 

and the resolution to identify individual techniques and variation within these techniques, 

they could identify both different production sequences within deposits that represented 

only a few generations, and those that remained the same over the course of several 

centuries (Kozatsas et al. 2018:117). Here micro-CT data allowed the authors to say 

something about how individual artisans were engaging with tradition and innovation and 

what it tells them about social structures: a perfect example of what micro-CT analysis 

can bring to the table. Similarly, in the Arkona Cluster sample I examined, I could 

identify individualized craft behaviours in the form of error-correcting and tendencies in 

finishing techniques. Using micro-CT scanned data, I could also identify craft gestures or 

behaviours that were used over the course of the several generations represented by the 

Arkona Cluster sites, such as folding and applying clay to rims, and mixing clay fabrics 

to meet certain inclusion volume requirements. The engagement of Arkona potters in 

tradition and innovation is discussed more in Section 7.2. 

The lesson to be learned from these examples is that selection of collections for scanning 

should be made with care, as the time and money involved in scanning and analysis 

means micro-CT scanning is not the best method for answering all research questions.  

For example, if the research questions have to do with the provenance of ceramics and 

relating them to the local or non-local landscape, petrography is currently the better 

technique. Or if the archaeologist is examining collections with the purpose of placing 
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them within temporal or spatial chronologies, basic visual classification of attributes and 

use of a suite of dating techniques might be a better use of research funds. However, 

research questions related to learning, practice, identity, tradition and innovation in 

potting all suggest micro-CT analysis is a strong source for information, and it is worth 

the time and effort that goes into the analysis. Since micro-CT can examine the interior 

structures of ceramics, including the nature of clay fabrics and the void structures that are 

left behind by gestures and movements used in forming and finishing pots, it is one of the 

strongest techniques for direct interpretations of these steps in potting practice. 

Undoubtedly micro-CT is one of the best techniques for understanding ceramic 

manufacturing and forming techniques in the past, allowing for interpretations about the 

transmission of potting knowledge and practice over space and time.  

Depending on how fine-grained the research question is, an X-radiography or a CT study 

may be able to answer simple coiling versus slab built primary manufacturing questions. 

However, micro-CT generates higher resolution images at a higher fidelity, allowing for 

the investigation of more nuanced questions about variation within techniques, artisan 

gestures, and idiosyncratic quirks, permitting more insight about artisans’ engagement 

with innovation and tradition. Nonetheless, that resolution comes at the cost of time and 

budget. Micro-CT analysis should be considered as part of an integrated program of 

ceramic analysis, including both macro and micro techniques. In this way, it can further 

improve our understanding of the process of vessel manufacture in the archaeological 

record. 

7.2 Ceramic Craft in the Arkona Cluster  

This section will explore what the results from micro-CT scans can tell archaeologists 

about the craft of ceramic manufacture and the artisans in the Arkona Cluster of sites. 

These insights include the choices potters in the Arkona Cluster were making concerning 

ceramic fabric recipes, rim manufacturing techniques, improvisation, and building 

ceramics while practicing the craft of potting to make vessels. The micro-CT scans 

allows for an exploration of how pots were made at and across sites in the cluster. It also 

briefly discusses how these manufacturing choices relate to decorative attributes on the 

exterior of pots, and the implications this has for how archaeologists need to change their 
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current thinking about Woodland ceramics in Ontario. This section will illustrate how 

these Arkona artisans were working within communities of potters, and what insights 

might be gleaned about ceramic making across this cluster of sites and material 

borderland.   

7.2.1 Preparing Clay at Arkona 

Potters make many choices while preparing clay to be used in the manufacture of pots. 

These choices encompass learning and tradition, contemporary innovative approaches to 

the craft, their degree of experience and life learning at the point of preparing a fabric, the 

agency of the materials they engage with, the contingencies of domestic spaces and 

landscape places, season, and balancing other tasks when obtaining and preparing clay 

fabrics (e.g., Michelaki et al 2015). The primary aim when making these choices is to 

achieve a level of workability and texture of the fabric that “feels right,” is “good 

enough,” or otherwise informs the potter through their preparation and handling that the 

fabric is ready for forming. The choices the potter makes range from clay sourcing, 

acceptable levels of clay lumps or accidental inclusions, and ratios of temper to clay and 

clay to moisture; all tested against expectations informed by learning and previous 

preparations (Rye 1981). Potters have a good idea of what the clay is supposed to feel 

like, and they may also have tested the fabric in a number of ways while mixing it. This 

material interaction between the potter, clay, and inclusions is thus a complex 

experiential negotiation and decision-making throughout the preparation stage that 

variously is captured in the resultant archaeological record of vessel sherds. 

The ability to access this decision making in sherds is limited when using macro 

examinations. At the same time, petrographic analyses can profile and characterize fabric 

makeup, and the range of fabrics present in a given assemblage. In particular, Braun 

(2015) has argued  accessing potter/material engagement and craft decision making can 

be best understood in terms of interior fabric volumes (clay, inclusions, voids), not 

counts, as volumes more readily speak to how potters were making these choices and 

evaluating the understood rightness of the fabric being prepared. If this is the case, then 

micro-CT analysis of vessel fragments in 3D allows us to further advance research on 
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inclusion and void volume percentages within the clay as expressions of potters’ choices 

to get fabrics right.  

Inclusion volume percentages for the vessels scanned ranged from 2-20%; however, 77% 

of those 67 specimens fell within a 5-15% inclusion volume, and more than half (55%) of 

the 67 specimens fell within a 5-10% inclusion volume. There was little variation 

between sites in the cluster. There are few comparable studies, but those that do exist 

from petrographic work (Braun 2010, 2015; Weglorz 2018) suggest a typical inclusion 

volume that is higher: in the 20-40% range. This difference may simply be a variance due 

to methodology, as seen in Section 6.6, or it is possible potters in the Arkona Cluster 

were using less temper than later Ontario late Woodland Tradition potters. There are, of 

course, other factors that could have accounted for this relatively low inclusion volume 

including the local landscape and the depositional context of the clay (Michelaki et al 

2015). The variation in the amount of inclusions generally noted across Ontario 

Indigenous ceramic assemblages range by 25-30% (Braun 2010, 2015; Weglorz 2018), 

while the Arkona inclusion percent range is only 18%. I would argue this pattern 

indicates Arkona potters worked to a similar recipe and had a clear goal in mind when 

adding temper to ensure success in vessel firing and use.  

Potters in Arkona were adding temper intentionally to clay, as exhibited in the discussion 

on textural analysis and grain-size distributions on the seven samples that underwent that 

type of analysis. All of the Arkona vessels sampled had medium sand-sized or smaller 

particles, and these categories collectively represent the vast majority of inclusions in the 

clay fabric. But the full range of inclusions observed in the micro-CT scans encompasses 

both unintentional (i.e., natural inclusions that remained after filtering clay, as well as 

accidental additions picked up from the working environment), and intentional additives 

(i.e., temper), which likely were created for the purpose by crushing rocks into fine 

particles to be added to the clay for workability. I suspect that finer particles visible in the 

scans were mostly natural inclusions simply not filtered out of the clay in the slaking and 

sieving preparation process. In other words, the smaller end of the spectra of inclusion 

volumes probably represent an overlapping of natural, accidental, and some intentionally 

added particles, all mostly beneath awareness and not a concern for artisans.  
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At the other end of these spectra of inclusion volumes by category were the larger 

inclusion volume categories, which make up only a small portion of all inclusions (below 

99% of all inclusions). Notably, these very steep drop offs in frequency almost all occur 

somewhere in the coarse sand category (Table 7.1). To me, this pattern suggests that the 

spectra of material potters selected for use as tempering additives ranged in size from the 

medium sand category into the very fine gravel category (Table 7.1) and makes up the 

bulk of the visible, non-clay material in fabrics. In addition, given the extremely limited 

frequencies of fine gravel-sized inclusions (samples level off to lower than 0.05% of all 

inclusions in the very coarse sand category between the 1.30 mm
3
 and 2.5 mm

3
), I 

suspect items at this largest end of the volume spectrum more generally represent 

accidental inclusions. These items likely were picked up in the work environment, or 

overlooked when the potter was preparing/selecting their preferred additives. If this is the 

case, these larger volume inclusions also points to where the limit of “tolerable” was in 

the mind of potters.  

In particular, though it was impossible to determine with certainty which inclusions were 

a natural part of clay fabrics or accidental pick-ups, and which were intentionally added 

temper, the textural analysis allows for an educated guess. I would further suggest that 

potters were mostly aiming to work with particles the size of coarse sand (0.0654-0.524 

mm
3
) and very coarse sand (0.524-4.19 mm3) as tempering materials. As well, given the 

likelihood that some or all of this temper was being prepared by crushing fire cracked 

rock to create temper particles of varying sizes (Linda Howie personal communication 

2017), it is reasonable to expect that some portion of this material  fell above and below 

the “typical” size preference for temper. The sphericity data for the seven sampled 

sherds, while not conclusive on its own, also supports the notion that the smallest 

inclusions are the most spherical, and most likely to be natural, while larger inclusions 

are less spherical, which might be result of crushing tempering materials. These notions 

align well with the arbitrary distinction that was used by Braun (2010:72), in which 

“inclusions below 0.5 mm were considered to be naturally occurring, and those above 0.5 

mm were considered to be added as temper.” In other words, while micro-CT scan data 

could not replicate distributions noted in petrographic studies, scan data does provide 
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novel and additional insight into the logics and ranges of choices potters were making 

while preparing clay fabrics to preferred recipes. 

Table 7.1. Table illustrating the volume categories used for micro-CT textural analysis. 

The “presumed source” column represents my attempt at accessing the intentionality of 

inclusions of various volume categories. *The scan of Specimen 011 failed to record 

frequencies of the smallest inclusions.   

2D 
diameter  

Adjusted 
Volume 
Categories 

Volume 
categories 
for micro-CT 
data 

Point where inclusion 
frequencies in 
specimens drop to 
below 1% of all 
inclusions 

Presumed source 

62.5-

125µm 

0.000128-

0.00999mm
3
 

Very 

fine/Fine 

sand 

 Natural 

125-

250µm 

 Natural 

0.25-

0.5mm 

0.01-0654mm
3
 Medium 

sand 

 Natural and/or 

Temper 

0.5-1mm 0.0654-

0.524mm
3
 

Coarse sand 0.2-0.29 mm
3
- 1 

0.3-0.39 mm
3
- 3 

0.4-0.49 mm
3
- 2 

 

Temper 

1-2mm 0.524-4.19mm
3
 Very coarse 

sand 

0.90-0.99 mm
3
- 1* Temper 

2-4mm 4.19mm-

33.51mm
3
 

Very fine 

gravel 

 Temper and/or 

Accidental 

4-8mm 33.51-

268.08mm
3
 

Fine gravel  Accidental  

 

As highlighted in Figure 6.11, medium sand is the largest volume category for five 

specimens (024, 050, 061, 070 and 011), while very fine/fine sand is the largest category 
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for two specimens (038, 042). It is worth noting that Specimens 038 and 042 both come 

from AgHk-42, the Bingo Pit village. With only seven specimens undergoing textural 

analysis, it is possible these results were simply a coincidence, but AgHk-42 is the last 

and largest site in the Arkona Cluster sequence, noted for a much more substantial 

settlement pattern and material culture than seen elsewhere in the cluster (Ferris 2018). 

This distinction might hint that potters at AgHk-42 might have been making a finer-

grained ceramic fabric than what was preferred at other sites in the cluster, and perhaps 

engaging in a slightly different potting community of practice. More analysis comparing 

samples from this site to others in the cluster is needed to see if this difference is an 

artifact of my sampling choices, temporal changes over the life of this craft within the 

Arkona Cluster, or suggestive of possible social innovations playing out across 

communities within this material borderland.  

The data on inclusion volume percentages, textural analysis of the ceramic fabric, and 

grain-sizes allowed me to access how the potters at Arkona might have  been preparing 

and engaging with the materials needed to make pots. It hints at a recipe potters 

understood and a tactile, distinct knowledge of what to expect when preparing clays for 

vessel formation. This knowledge was taught and experientially perfected over time, and 

reinforced as the expert understanding of clay material properties to achieve in 

preparation trans-generationally. 

7.2.2 Vessel Manufacture and Technological Gestures  

Void volume percentages obtained from micro-CT analysis were uniformly low in the 

Arkona specimens scanned, with 79% of the whole sherd specimens falling between 1-

3% void volume. Compared to petrographic analysis of later Ontario Late Woodland 

Tradition vessels (e.g. Braun 2015; Weglorz 2018) that have estimated void volumes up 

to 15%, the maximum void volume of 7% at Arkona is low. This discrepancy could be 

due to differences in methodology (micro-CT versus petrography See Section 6.6), the 

nature of the material (type of clay), as well as potters’ practice in time or space. This 

consistently low void percentage overall for Arkona vessels may represent the intensive 

working of clay, including techniques like paddle and anvil, to force most of the air space 

out of pot fabrics. Increased void volume can also result from air pockets forming around 
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large inclusions in the fabric, so it is possible the Arkona pottery has relatively low void 

volumes compared to later vessels in part due to the use of relatively small temper. More 

comparative studies from across Ontario would need to be conducted to see if this is the 

case. 

Despite there being a variety of vessel body and neck shapes present in the specimens 

sampled for this study, and in the Arkona assemblages as a whole (Cunningham 2001; 

Suko 2017a; Watts 2008), there was little variation in the void structures below the rim 

portion of vessels when neck and body sections were present in the specimens scanned. 

Planar voids parallel to vessel walls, and vughs around inclusions, were present in all 

vessel necks and bodies. There was, however, a difference within specimens between 

voids in the neck/body portions of specimens and rim portions. As an overall pattern, I 

noticed slightly higher void volumes in the rim area of the Arkona vessels, and slightly 

less void volume generally below rims. The paddle and anvil technique used to form the 

body of some vessels has been known to produce many small voids, both elongate and 

around inclusions (Braun 2015; Rye 1977) which were seen in the Arkona sample. 

However, the much larger joining voids formed by folding clay and adding clay to the 

rim portions of these vessels resulted in overall higher void percentages in of the rim 

portions of vessels scanned. Both these slightly higher void volumes within rims, as well 

as the notable frequencies of correctives visible on rims, likely speak to the increased 

attention potters gave to that portion of the vessel while forming vessels.  

When creating the rim portion of vessels, potters used a range of gestures to create 

similar vessel profiles within the Arkona Cluster. There was a relatively even distribution 

of rim forming techniques observed across samples from all sites in the cluster. There 

were only a few minor variations in rim forming techniques between sites, including 

slightly higher frequencies of plain rims at AgHk-52 and AgHk-54, and an absence of 

rims with just added clay at AgHk-54. These differences probably have more to do with 

my sampling than actual variation in potters’ techniques. As outlined in the results, 

folding rims was the most common rim formation technique used at all of the Arkona 

sites. Folded rims, alone or in combination with added clay, make up 64% of my sample, 

while rims with added clay or in combination with folding make 42%, and plain rims 
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make up 13%. In short, 87% of rims were, in one way or the other, thickened in the 

finishing of the vessel top. This method is consistent with the broader temporal pattern of 

a thicker rim or “pseudo collar” (Ferris and Murphy 1990) used across southwestern 

Ontario at this time. 

The potter’s aim to create castellations probably helped influence the use of these rim 

formation techniques in Arkona. I found a correlation between rims that used folding as a 

forming technique, especially when combined with added clay, and the presence of 

castellations. That suggests folding clay over towards the exterior of the rim was a part of 

the preferred method used to create castellations on these vessels. Even on specimens 

where castellations were not present on specimens, it is apparent that thickening rims by 

folding clay over at the lip or adding clay was a common technique within the Arkona 

Cluster of sites. Sometimes rim formation methods were visible by simple visual 

examination of the exterior or broken edge of sherds. However, more often, it was not 

possible to determine rim formation method by eye. These technological gestures and 

their frequency in the Arkona collection only became apparent when I could view vessel 

rim internal structures through micro-CT scans.  

That these rim manufacturing techniques are fairly evenly distributed across the sites 

examined suggest this was the  preferred set of practices followed by potters across the 

sites of this cluster and time, collectively sharing and perfecting methods taught by the 

previous generation. This resulted in a limited range of rim forming techniques in the 

vessels left behind. The repeated use of these technological gestures, folding rims and 

adding clay to rims, suggests a collective or trans-generational knowledge of ceramic 

vessel forming at work here. These rim forming techniques were commonly shared “tools 

of the trade” these potters relied on. 

 Some of these rim forming techniques used by the Arkona potters were more widely 

shared throughout the region in the twelfth and thirteenth centuries. Comparable micro-

CT data that examines rim forming techniques does not exist, but “incipient collars” or 

slight collar development is noted for both the thirteenth century Ontario Late Woodland 

(Williamson 1990:298) and the Western Basin Tradition (Murphy and Ferris 1990:203). 
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As well, other sites in southwestern Ontario and generally dating to this time period 

exhibit primarily vessels with incipient collars and collars of varying sizes showing up in 

in around 2-20% of site assemblages (e.g., Lennox 1982:36; Noble 1975:18; Timmins 

1997b:133). The trend towards collared vessels really emerges through the fourteenth 

century (e.g., Martelle 2002; Williamson 1990:298). Perhaps the thickened rims or 

incipient collars noted more broadly were created using similar techniques to that 

reflected in the micro-CT data from the Arkona Cluster, and temporally presages the 

development of formal rim collar formation later in time.   

Morphology of the rim, lip and neck in the Arkona sample also followed trends noted 

more broadly in twelfth and thirteenth century assemblages, with a predominance of lips 

that are flat, rim profiles that are concave, and necks that are short and curve out at the 

shoulder (e.g. Lennox 1982:37; Timmins 1997b:133; Williamson 1990:298), though 

variability in rim shape is also noted in some assemblages (Noble 1975:18; Wright 

1966:28). There were certainly some differences in neck and rim profiles noted within the 

Arkona Cluster, with more vessels with short necks and concave rim profiles at AgHk-

54, while there were more rims with straight profiles and elongated necks at AgHk-32. 

This may reflect a change in practice at Arkona over generations since AgHk-32 is the 

earliest site in the sampled cluster, and AgHk-54 is later. This change could reflect an 

increased influence on Arkona potters of ceramic trends to the east, where Ontario Late 

Woodland Tradition vessels exhibit shorter, more constricted neck profiles during this 

time (Watts 2006:91), distinct from the elongated neck profiles found to the west 

(Murphy and Ferris 1990:202). These shared morphological traits may represent the 

potters at Arkona engaging with more widely used practices, and in the future, more 

through comparisons between this community of practice and others might reveal 

constellations of practice across the lower Great Lakes in the Late Woodland. Based on 

the broader trends in vessel morphology, potters appear to share at least some gestures 

and practices with wider communities than those which existed within the Arkona 

Cluster.  Again, complete assemblage analysis would reveal if neck shape change over 

time at Arkona is an actual trend or just a result of my sampling strategy. 
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7.2.3 Vessel Finishing and Decorative Elements  

Micro-CT scans revealed that there were relatively few vessel forming practices followed 

by potters who were also employing generally similar fabric recipes, across the life of the 

Arkona Cluster of sites. However, finishing, especially the application of decorative 

techniques and composition of decorative motifs, are much more diverse and subject to 

variable execution (e.g., Cunningham 2001, Suko 2017a, Watts 2008). In a sense, the 

relative uniformity of fabric recipes and vessel forming practices may reflect a 

conservativism to fabric recipes and vessel forms in time and place, i.e., tradition, while 

finishing methods and decorative motifs may reflect an openness to artisan variation, i.e., 

innovation. 

Stamped obliques appeared most commonly on the exterior of the sampled Arkona 

vessels I scanned, accounting for 88% of exterior motifs, which is in line with larger 

trends across  southwestern Ontario ceramics in the twelfth and thirteenth centuries, 

where stamping and oblique designs predominate assemblages (e.g. Lennox 1982:39; 

Timmins 1997b:136; Williamson 1990:298). Generally, there was little correlation 

between rim manufacturing techniques and the type of rim decoration used by potters. 

Exterior decorative techniques varied slightly across sites within the cluster, with perhaps 

a slight preference for alternating obliques (56%) at AgHk-54, and a similar slight 

preference for right obliques at AgHk-42 (55%). Overall, the distribution of exterior 

decoration suggests potters across time and within the cluster were engaging with the 

widespread “variability in both motif and technique” that is a hallmark of early Late 

Woodland ceramics through the thirteenth century (e.g., Murphy and Ferris 1990:228; 

Williamson 1990:298). 

Decorative elements on the neck of the vessel were usually different than the rim motifs 

in the Arkona sample, switching from the common oblique elements on the rim to 

horizontal lines, horizontal combinations of elements, or elaborate triangle or diamond 

motifs on the neck. As opposed to overall exterior decoration, where incising made up 

only 6% of the main finishing technique used, on necks at Arkona incising was the main 

technique on 44% of necks, and was used in combination with stamping on 19% of 

necks.  As with the use of stamped obliques on vessel rims, both incising and stamping 
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decorative elements on necks was a common decorative practice more widely in 

southwestern Ontario, though variation is notable. For example, at the earlier Ontario 

Late Woodland Tradition Van Besien site, incising was predominately used on necks 

(Noble 1975:20), while the later Calvert site exhibits primarily stamped neck motifs, with 

only 21.2% incised and 5.1% combination of incised and stamped elements on necks 

(Timmins 1997b:137).  At the primarily twelfth to thirteenth century Western Basin 

Tradition Bruner-Colisanti site, incised and stamped techniques were used equally on 

necks (Lennox 1982:34). 

Neck motifs were also varied in the Arkona sample, with triangle shapes and horizontal 

neck motifs making up the largest percentages recorded. More generally, ceramic 

assemblages from southwestern Ontario are noted for a wide range of stamped horizontal, 

oblique and vertical decorative bands, and incised hatched and horizontal motifs (e.g., 

Lennox 1982:34; Noble 1975:18). Incising tends to occur more frequently in later 

assemblages (Williamson 1990:298). The variability in form and application of neck 

decoration suggests this form of expression, in particular, may have been where potters 

could exercise individual choice.  

There was some correlation between neck motifs and the shape of necks in the scanned 

Arkona sample. While elongated necks only account for 24% of the sample, triangle 

motifs appear on elongated necks 55% of the time. These “elongated” necks are a regular, 

though not exclusive, form found in Western Basin Tradition site assemblages through 

the eleventh to fourteenth centuries (e.g. Cunningham 1999:35; Murphy and Ferris 

1990:201; Lennox 1982:30; Watts 2006:87). These neck forms can serve as sites for 

elaborate incised or stamped decorative motifs, including the triangle and diamond motifs 

mostly dating between the eleventh to thirteenth centuries. These neck forms and 

distinctive motifs are not typically associated with Ontario Late Woodland Tradition 

sites. At Arkona, at least in the scanned sample, the association with elongated necks and 

complex neck motifs seems to be the case, suggesting that potters had these motifs in 

mind when creating longer necks. Lennox (1982:34) proposed that the limits of the length 

of a stamp versus the limitless length of a motif created by incising might account for the 

differences in neck motif, though stamped examples were noted from Arkona.  
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Within the scanned Arkona vessel sample, slightly more triangular motifs appeared in the 

vessels sampled from the Van Bree site (AgHk-32), the oldest site in the cluster, which 

also had a higher proportion of elongated necks than average. Triangular neck motifs and 

elongated necks may have become less common over time in the Arkona Cluster, which 

is a general trend noted through this period (Murphy and Ferris 1990). But this trend also 

indicates there were local potters imagining and creating vessels in the Arkona 

community in new ways between generations of potters, underscoring how tradition and 

innovation are negotiated in the doing and learning.  

Punctates are a finishing attribute that micro-CT scans provided additional insight on. 

Interior and exterior punctates, and the bosses created by punctates, are a frequent 

attribute present on vessels in southwestern Ontario from this period. Nonetheless, 

current literature suggests Ontario Late Woodland Tradition ceramics trend towards 

interior punctates and exterior bosses (Watts 2006:213; Williamson 1990:298), while 

Western Basin Tradition ceramics trend towards exterior punctates usually without 

interior bosses (Murphy and Ferris 1990:228; Watts 2006:88).  At the Calvert site, for 

example, 43% of vessels exhibited interior punctates, 37% exterior bosses, and only 8% 

exterior punctates with 7.5% interior bossing (Timmins 1997b: 133). Of the 67 Arkona 

vessels sampled for scanning, 31 (46.3%) had exterior punctates, of which 23 (34.3%) 

had interior bosses, while 21 (31.3%) vessels had interior punctates, of which 18 (26.9%) 

had exterior bosses. These percentages reflect a fairly even distribution of interior and 

exterior punctates and bosses opposite 75% punctates (opposite 74% of exterior 

punctates, and opposite 86% of interior punctates). These percentages might trend 

towards Western Basin Tradition practices because of the greater tendency towards 

exterior punctates, though these were frequently bossed, which was not “typical” of 

Western Basin Tradition trends through this time. The split at Arkona between interior 

and exterior punctates and the frequent presence of both interior and exterior bosses 

suggests a flexibility in punctate and boss application that may have been pulling from 

multiple decorative traditions (as suggested by Suko 2017a and Watts 2006). As with 

other applications, such as neck motif, punctates and bosses may have been a way in 

which Arkona potters engaged and innovated from distinct sets of ceramic practices they 

would have been aware of over their lives and across generations.  
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Punctates appeared on between 70-100% of the vessels scanned from each site. The 

lowest percentages were from the largest number of samples taken from AgHk-52 and 

AgHk-42. From the scanned sample used for this study, potters throughout the cluster 

were using both exterior and interior punctates, usually with bosses opposite them, as a 

finishing method.   

The directionality of punctates seen in micro-CT scans also allows for some observations 

about practice and the handedness of artisans at Arkona. While slight variation in 

application is notable within specimens, the majority of punctates on any given specimen 

were either straight, left angled or right angled. Left and right angled punctates were not 

found on the same vessel. I also observed some tendencies for artisans to apply straight 

punctates more often on the interior of vessels, while exterior punctates were more often 

angled in one direction or another. This observation allows me to access the gestures of 

potters, as it is suggestive of a more careful effort being used to reach into the pot to 

create interior punctates. These patterns of punctate directionality also could suggest 

artisan handedness. 

Research on handedness in pottery making (e.g. Sassaman and Rodolphi 2001; Uomini 

2009; Wallaert-Pêtre 2001) suggests that the identification of particular movements and 

tools preserved in clay is still in its infancy. Nonetheless, the directional categories I 

could record in this study clearly reflected the direction of the tool impression made by 

the potter. I also assume the potter was decorating the pot with the vessel orifice pointing 

upwards, at least for rim finishing, which is where punctates appear (almost all punctates 

were noted above necks, and interior punctates could have only been applied with the 

vessel oriented this way). In terms of handedness, then, right directionality likely relates 

to the potter using their left hand to make the punctate, while left directionality likely 

relates to the potter using their right hand to make the punctate. For punctates applied 

straight on it is not possible to determine handedness. Note that the presence of left and 

right directionality also suggests vessels were not rotated for every punctate applied and 

thus the potter had to reach to some degree to insert the tool. If that was the case, 

reaching also would explain variation in the degree of angle seen across a row of 

punctates for a single vessel (e.g., Figure 6.59 A); i.e., a sharper degree of directionally 
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hinting at a longer reach. I am also assuming that aligned handedness (i.e., left 

directionality by left hand or right directionality by right hand), which would have 

required the artisan to twist their wrist over, was not a preferred gesture. 

Based on the relatively small sample (52 vessels with punctates) from Arkona, I found a 

relatively high frequency of what I interpret as left-handed directionality in the 

application of punctates. Contemporary meta-analyses of handedness suggest anywhere 

from 9.3-18.1% of populations worldwide are left-handed, with the best overall estimate 

being 10.6% (Papadatou-Pastou et al. 2020). Also, it should be noted that handedness can 

be influenced by cultural factors, so these numbers should be taken with a grain of salt 

(Papadatou-Pastou et al. 2020). That being said, 25% of vessels punctated in this Arkona 

sample suggested left-handedness. Of the vessels scanned at AgHk-52 (Figura), that 

number is closer to 50% of punctates indicating left-handedness. Sassaman and Rodolphi 

(2001), examining potting communities in the American Southeast, noted that the long-

term, non-random distribution of left-handedness among potters is a trait impacted by 

maternal influence. If so, the relative higher frequency in the Arkona collection, and in 

particular at AgHk-52,  might indicate successive generations of potters learning from 

left-handed family members at these sites, or a limited number of potters, some of whom 

were left-handed, contributing to more of the vessel population at Figura and subsequent 

Arkona sites. With more micro-CT scanned assemblages from a wider variety of sites, 

the directionality of punctates has the real potential to further our understanding of the 

demographics of a community of potters at any one locale, or the multi-generational 

influence of potter families over the ceramic trends seen across a sequence of sites. 

7.2.4 Adaptive Irregularities and Improvisation at Arkona  

So far, in this summary, I have reviewed the systematic steps taken when producing 

ceramics, which implies that craft producers worked in a regular sequence, from 

preparation to finishing, every time they made something. This process captures both the 

underlying logics of production followed by artisans, and the technological sequence 

used throughout this research. Likewise, I would argue that the way people made pots 

was governed by a range of routines and rhythms that went along with this production 

sequence. Almost any ethnographic study on potters will underscore that there are 
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repeated, often unconscious or non-discursive steps in manipulating clay that craft 

producers use to ensure success (e.g., Deal 2011; Dietler and Herbich 1994; Gosselain 

2016; Gosselain and Livingstone-Smith 1995; Roddick 2016). Archaeologists studying 

craft production have repeatedly noted that motor skills, posture, and gestural movements 

resist change as artisans work in regular ways to establish rhythms (e.g., Dobres 2000; 

Forte 2019; Gosselain 1998; Hagstrum 1985; Michelaki 2008; Roddick and Hastorf 

2010; Stark 1999). Throughout this research, I have used these conceptual understandings 

of production to argue that communities of artisans, individuals, and the relationships 

between them can best be understood by focusing on these regular gestures and ways of 

doing things accessible through micro-CT scans. 

But the micro-CT scanned data for this research has also regularly revealed the material 

traces of a kind of artisan drift or improvisation in practice. The scans revealed occasions 

when potters, as they engaged in the practice of potting, used adaptive irregularities 

(Sennett 2008:134) to adjust to the conditions of potting, and respond the task at hand. 

These irregularities and improvisations are the skilled potter’s response to the push back 

of the material, as the ongoing interaction between maker and material unfolded.  For this 

section, I  focus on when regular rhythmic vessel production steps and gestures required 

improvisation on the part of the potter, sometimes with the use of gestures that were 

adaptive to the situation. Considering these instances of improvisation allows me to 

explore the notion that producers work in messy, complex, distracting, real-world 

environments. Moreover, it allows me to identify where artisans themselves recognized 

that some effort was required to negotiate and “follow the forces and flows of material” 

(Ingold 2010:97) to bring about the vessel form, rather than scrapping the effort entirely 

and starting over again. 

When we talk about the craft of making clay objects in a non-industrial, Indigenous 

residential setting, we are referring to an activity that is part of the day-to-day social lives 

of people who make clay vessels while interacting with their families, neighbours, and 

communities. These craft producers were not usually working in a pristine workshop set 

apart from the broader daily rhythms and activities of their settlement. Making pots also 

meant finding the opportunity, alone or with other potters, to prepare clay, and form and 
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finish vessels, while balancing, or not, the multitude of other priorities, tasks, concerns, 

and daily aspirations these individuals negotiated for themselves, their families, and their 

communities. Furthermore, the materials artisans worked with had their own properties 

and limitations, lending a material agency complimenting or constraining the potter’s 

efforts to manipulate the clay, temper, water, and the tools used in production. Place, 

time, and physical properties were thus an interaction between these materials and the 

craftsperson. Micro-CT scanning offers a new way to explore this process of interaction 

between materials and craft producers, allowing us some insight into the engagement and 

entanglements between them, the contexts these interactions were occurring within, and 

what happened when things did not work quite as planned.   

For example, the clay smoking pipes scanned for this study readily revealed irregularities. 

Borehole retries seen in the scans of pipe stems and bowls did not adjust the overall shape 

of the pipe, as they related to easy “fixes” or adaptations achieved by simply creating a 

second (or third, fourth, or fifth) borehole in the pipe. McCartney (2018:57) argues that 

half of a clay pipe recovered from AgHk-52 is an example of a “juvenile” or learner pipe, 

because it was not extensively fired, and in the longitudinal cross-section the “…initial 

stem borehole that was placed at a misdirected angle had to be corrected.” However, two 

of the five pipes I scanned showed this same pattern of misdirected boreholes. Neither of 

these specimens could be considered “juvenile” or novice pipes. This distinction in 

interpreting irregularities in gestures used in borehole placement underscores the strength 

micro-CT scan data can provide in contextualizing interpretive notions of “failure” or 

“not good enough” beyond the analyst’s eye. 

Turning to ceramic vessels, I was struck by the limited range in forming techniques 

present across all samples examined across the Arkona Cluster, and the relatively limited 

variation in vessel form. This limited range of material expression suggests that potters 

were repeating the steps and gestures required to form pots (Bleed 2008; Forte 2009; 

Kuijpers 2017; Sennett 2008), and that perhaps many of these pots were created by 

potters who were skilled at potting and had developed a “repertoire of learned gestures” 

(Sennett 2008:178). The effort that artisans clearly focused on getting rims “right”, 

through both repeated gestures and adaptive irregularities, underscores how, to the potter, 
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this part of the vessel was a focus of the formation stage. This is one of the most difficult 

parts of the pot to form, and in some contexts is viewed as “technical signature” of the 

potter (Roddick 2016:140). The extra attention paid to the rim portion of the vessel is 

visible not only in the extensive decoration found on the exterior of most rims, but also in 

the care potters took in achieving a rim shape that included castellations.  

The ongoing interaction and engagement between material and craftsperson sometimes 

called for improvisation. Notably, 13 rim sherd scans revealed the addition of clay on top 

of a fold. In addition, another six sherd scans exhibited evidence of last-minute adaptive 

irregularities in the form of smaller, more ephemeral added bits of clay on rims and lips. 

This total of 19 sherds exhibiting evidence of improvisation makes up 30% percent of 

specimens. Examples of these instances are found at all sites in the cluster with more than 

one vessel scanned, and are found slightly more often at both AgHk-42 and especially at 

AgHk-40 (Table 6.21). While the number of scanned samples may or may not be 

representative of whole vessel patterns or broader site assemblages, higher percentages of 

adaptive irregularities might indicate these measures were used more often at the later 

sites in the cluster. This pattern might suggest ceramic craft changed over time to 

incorporate more adaptive irregularities to achieve a finished pot, or that a broader 

number of potters who relied on improvisation more often made up the community of 

practice at these sites.  

I would argue the adaptive irregularities evident in the rim formation on ceramic vessels 

was completed not to improve pot functionality, but to achieve a more consistent shape to 

a vessel’s lip and rim form around the vessel orifice. These adjustments to rim form seem 

to suggest potters at Arkona were fully engaged with their hands, eyes and brains, using 

learned habitual gestures and making judgement calls while practicing their craft (Sennett 

2008), adjusting the emerging physical shape of vessel form when they perceived there 

was a need to. . This negotiation might not end with “perfection,” but instead with a 

physical form that was a result of the material interaction that the potter could deem was 

a “good enough” approximation of a pot based on parameters learned and passed down 

within their community of practice.  
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That adaptive irregularities appear throughout the cluster suggests there was a commonly 

shared conception of what rim form needed to embody. As well, the techniques to make 

rims both engaged with the conventions of what a rim form should look like that was 

predominant across the broader region during the eleventh through thirteenth centuries, 

and was internalized locally by potters working in the communities of the Arkona 

Cluster. In fact, that the earliest sites in the cluster tended to have lower percentages of 

adaptive measures, while some of the later sites had higher rates of these irregularities, 

suggest this conception of what a rim and lip should look like might have become more 

firmly defined over time at Arkona. This could also be a physical manifestation of the 

development of skill through repeated gestures at the later Arkona sites. These adaptive 

irregularities show that material is not simply manipulated, but negotiated, to create a 

form that both the material allows for and that the artisan deems acceptable. That potters 

adjusted their regular gestures when forming rims and lips shows the agency of the 

material and vessel in this process (Gosden 1999; Knappet and Malafouris 2008; Watts 

2006:2), and shifts the focus to the physical traces left by the techniques and gestures that 

potters were using to transform matter (Knappet et al. 2010; Watts 2006:44 ).  

Documenting these adaptive irregularities allows us to begin to access what potters’ 

thought was “good enough,” and their expectations for the emerging vessel form they 

were making. Presumably “not good enough” pots were scrapped, while others were 

found to be nearly “good enough” and needed relatively minor adjustments, while pots 

without irregularities or adjustments were “good enough” on their own. Though I do not 

know if un-scanned portions of the vessels examined for this study did or did not contain 

adaptive irregularities, the specimens I examined that did not show evidence of  these 

adaptations can be thought of as reflecting a rim form that did not need fixing. In other 

words, these unadjusted rim forms can be thought of as reflecting a mutually acceptable 

outcome in the negotiation between potter and material, within a given context of 

production (Ingold 2010; 2013; Watts 2006:44). Thus, identifying the adaptive 

irregularities visible by micro-CT scans offers a whole new way of exploring material 

artisan engagement and how ceramics can give insight into tradition and innovation at 

work in a community of practice.  
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Finally, I would also suggest that, given potters across the Arkona Cluster used these 

adaptive and improvisational gestures and techniques, they also are indicative of 

enculturation across the generations of potters who practiced their craft here. This 

tradition of improvisation in the “fixing” of rims and lips using particular gestures in 

these precise ways speaks to the fact that these potters not only taught the next generation 

of potters the regular repeated motions and gestures used to form rims, but also “tricks of 

the trade” to adjust that rim taking shape if it was drifting too far from the learning 

framework, during the practice of potting. There is a shared knowledge of negotiation 

conveyed by these adaptations, and within the constraints of the material, captured by 

smoothing or fixing lips, rims, and castellations by using repeated techniques. 

The potters at Arkona were concerned with how the rim portion of these vessels looked; 

they were using repeated gestures and improvisation while forming them and using 

techniques to add depth, shape, and distinct design expression onto this portion of the 

vessel. The human-clay interaction and entanglement played out in all stages of vessel 

construction at the rim, and is visible in the micro-CT results. These potters were giving 

clay fabrics agency, and were given agency by that clay in the rhythmic, itinerant 

continually changing relationship between maker and material (Ingold 2010:99).as they 

worked in their community of practice – in time, in place, and across generations - to 

create pots that made sense to them within the context of the Arkona Cluster.  

7.2.5 Different Makers  

Though based on extremely small samples (five clay pipes and three miniature or learner 

vessels), micro-CT scans provide for some preliminary observations on the differences 

between ceramic makers within the Arkona Cluster sites. While the full-size vessels 

sampled here suggest a cohesive community of practice, there are notable differences in 

production between those vessels and the small learner vessels and the pipes that were 

scanned that are worth considering here.  

Learner vessel scans exhibit several differences from the full-size vessels. For example, 

the three vessels scanned have a lower inclusion volume than recorded for full-size 

vessels, exhibiting between 1-3% inclusion volumes, while full-size vessels typically 
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have between 5-15% inclusion volumes. Moreover, the variation in inclusions for learner 

vessels included two vessels that likely lacked temper (Specimen 012 and 014), because 

the inclusions present were rounded and relatively small. The third learner vessel had 

large inclusions as well as a web of planar and tubular voids that appeared to be left from 

organic material (Specimen 013; see Figure 6.76), both of which might have been 

intentionally added or were simply present in the clay deposit used, and not sieved out. In 

Braun’s study of Iroquoian clay objects organic temper was found in small vessels, clay 

lumps and smoking pipes, but not in full sized pots (2015:116), suggesting the process of 

preparing clay for small pots versus large pots was different both at Arkona and 

elsewhere.   

These differences in inclusions suggest the forming may have not relied on prepared clay 

fabrics to create these smaller pots. It may also have been the case that the individuals 

making these pots were practicing forming or finishing gestures on the clay, either as a 

casual act, or more formally as a learning experience. If so, these individuals would not 

have needed, or not have had access to, formally prepared clay fabrics, or were making 

these pots at a time other than when large vessels were made.  

These small pots did not exhibit obvious visible forming techniques in the scans, though I 

do not have a good reference for what a pinch pot might look like in scans. All three pots 

did exhibit clay added, either to form rims (Specimen 012 and 014), or by folding over 

the rim to the interior so that the fold was added to the interior (Specimen 013). These 

were not the neat folds or added clay techniques that were a mark of most full-size 

vessels, but these miniature pot makers were clearly familiar with the dominant practices 

used for rim formation, and for correcting rim formation. The decorative elements on 

these miniature pots also suggest a familiarity with commonly used rim and neck 

decoration on the larger vessels, with bands of oblique and vertical design elements 

appearing on the rims and what appears to be an attempt at incised triangular motifs on 

Specimen 013 (see Appendix A for images of miniature vessel exteriors). I would argue 

this suggests the makers of these pots were practicing or learning the gestures and 

repertoire of vessel making, perhaps as novice or apprentice potters, watching, learning, 
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and doing, by participating in the craft of pottery making alongside the more established 

potters in the Arkona Cluster.  

In his petrographic work on ceramic objects from a fourteenth century Ontario Late 

Woodland Tradition village, Braun (2015) suggested pottery vessels were made by a 

smaller group of experienced craftspeople, using a restricted palette of materials and 

techniques. He also argued that smoking pipes were made by larger numbers of people of 

differing skill levels, using a wider range of materials. McCartney (2018:40) builds on 

Braun’s work, and that of Creese (2016), by suggesting clay pipe manufacture in the 

Arkona Cluster was “…idiosyncratic, utilizing a wide variety of base clays and tempers 

in addition to individualistic decorative choices.”  From the limited scans I completed, I 

can at least confirm that, within the Arkona Cluster, the smoking pipes scanned exhibited 

obvious differences from Arkona ceramic vessels, and perhaps at least some of the 

smoking pipes scanned were made by individuals who were not also making vessels.  

The clay pipes scanned had a variable inclusion volume range, with percentages between 

2.2% and 7.1%. The two pipes with higher inclusion volumes (Specimens 086 at 6.7%, 

and Specimen 088 at 7.1%) may be tempered, based on my visual examination of the 

fabric, while the other three (all with inclusion volume percentages of 2.2% or 2.3%) do 

not appear to be tempered. Though based on a small sample, this variation suggests either 

less of a concern for tempering properties within smoking pipe fabrics, or perhaps some 

pipe makers were not as versed in clay fabric recipes as vessel makers.  

Within the clay pipe collection from the Arkona Cluster of sites, there is a fair degree of 

variability in both manufacture and decoration (McCartney 2018:93). McCartney 

(2018:94) noted, “The Arkona Cluster pipe assemblages reveal a striking diversity of 

morphological and decorative attributes across sites, despite their geographic and 

temporal proximity.” He also noted differences in pipe assemblages and their deposition 

between sites (ibid), suggesting that these differences may indicate different sets of pipe 

makers at each locale (McCartney 2018:97-8). In the sample of scanned pipes I examined 

there was variability in manufacture, with joining voids visible between pieces of clay 

that were used to build the pipe stems and bowls, and the use of corrective boreholes in 
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two specimens. With a larger sample, further variability and patterning within the cluster 

and between sites might emerge. Certainly, the context for the use of smoking pipes 

differs from that of vessels, and that difference may also suggest smoking pipes were 

produced as a more individualistic practice (Braun 2015; McCartney 2018). 

Micro-CT scan data provides a new opportunity to examine the making of smoking pipes 

and explore distinct dimensions of that craft. At the very least, the variation of inclusion 

volumes across even a small sample does suggest clay mixing was not as important a 

dimension to pipe manufacture, or that they were made by a wider set of individuals. 

Knowledge transmission systems amongst makers for clay pipes and makers of pots were 

thus likely distinct across the Arkona Cluster.  

7.2.6 Toward a Community of Practice in the Arkona Cluster 

In this section I focus on “communities of practice” and “communities of potters.” These 

notions offer a way to think about potters and the communities they worked within to 

produce ceramics, and have been embraced by many archaeologists and ethno-

archaeologists (e.g.; Bowser and Patton 2008; Cordell and Habicht-Mauche 2012; Crown 

1999, 2007; Gosselain 1992; Huntley 2006; Peelo 2011; Michelaki 2008; Roddick and 

Stahl 2016; Sassaman and Rudolphi 2001; Stark 2006; Van Keuren 2006). The concept 

of a community of practice draws on Lave and Wenger’s (1991) “situated learning,” in 

which members of a community are created based on their participation in the same tasks 

(Joyce 2012; Wegner 1999). In the case of a community of potters, this community 

would be the social group that participates in the task of harvesting raw materials, 

preparing them, and making pots (Arnold 2005). A community interacts with each other 

distinctly from broader members of the settlements they are a part of, and are insulated 

from other communities of potters who produce similar but not identical products 

(Arnold 2005:16). These communities, are defined by a shared history of practice, 

learning frameworks and regularities of production and use but are not homogenous or 

bounded  (Eckert 2008; Gosselain 2016; Roddick 2016).  

When we are talking about the craft of ceramic making in an Indigenous, non-industrial, 

village-level setting we are talking about an activity that is part of the day-to-day social 
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lives of people interacting with their families, neighbours, and communities. Each potter 

likely began learning their craft at a young age, either from observing or direct contact 

with closely related potters within their community (Crown 2014), whether that 

community be a loosely knit extended family or a more structured, long-house setting. 

These open-hearth fired pots may have been communally fired with several group 

members producing pots at one time, or may have been fired in a one-off setting by an 

individual, depending on the context. At Arkona, the community of potters could 

potentially encompass pot makers who interact with other potters at a particular site, or 

generations of potters across the life of the cluster, or interact with pot makers beyond the 

cluster and across the region. This framework shifts ceramic focus onto the makers of 

pots, the choices they made, and their engagement with material tradition and innovation.   

It is important to stress that my study was focused on scanning a sample of vessels from 

the Arkona Cluster of sites. As such, these results are not representative of a complete 

analysis of all site ceramic assemblages. Nonetheless, the findings presented here clearly 

engage with and further research on the Arkona Cluster of sites and specifically on those 

ceramic assemblages, while offering new insights into this community of practice 

operating in an archaeological material borderland between the twelfth and thirteenth 

centuries CE. 

There were different ways of doing things within and across this cluster of sites, as is 

readily evident materially and in settlement form (Ferris 2018; St. John and Ferris 2019; 

Suko 2017a). The micro-CT scan data further contributes to exploring this range of 

expression. Findings noted vessels with lower or higher than average percentages of 

inclusions and differences in the range of rim forming techniques used. But general 

similarities in the ways pots were created also suggest potters across this cluster were 

familiar with and working within regional ceramic trends seen for this period, including 

variable ceramic traditions to the east and west. Moreover, fabric recipes, rim forming 

strategies, adaptive irregularities, and the likely role of small learner vessels in trans-

generational learning across the duration of this diversity of settlements also suggest 

potters were participating in a distinct community of practice. The nature of this 

community has been examined in previous ceramics-focused research on this cluster of 
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sites (Cunningham 2001; Watts 2006; Suko 2017a), and the micro-CT findings presented 

here offer additional insight.   

Cunningham’s 2001 analysis of ceramic decorative and morphological features from 

AgHk-32 (the Van Bree site), which is the earliest of the documented sites from the 

Arkona Cluster, was conducted before the full extent of this cluster was discovered and 

investigated. Cunningham concluded that the Van Bree ceramics were produced by two 

different potter traditions that spatially sorted out across the site between a “West” and 

“Central” cluster. He also suggested that these two vessel clusters reflected distinct 

ceramic traditions, as local culture history frameworks have framed these (i.e., Western 

Basin Tradition and Ontario Late Woodland Tradition), but were not highly structured. 

Micro-CT scans of Van Bree vessels tend to suggest a single potting community made 

these vessels, despite “tradition” variation in decorative attributes. Notably, of the ten 

vessels scanned, folded rims (4), added clay rims (4), and folded rims with added clay (2) 

were all present at Van Bree, and did not separate neatly between Cunningham’s spatial 

clusters. Likewise, vessels that had been identified by Cunningham as “Western Basin,” 

had rims constructed using different techniques. If there was a co-occupation of the site 

represented by spatial distribution of ceramic attributes as Cunningham suggested (1999, 

2001), we might expect the community of practice from one tradition to rely on one rim 

forming technique, while the other community of practice  rely on another; however 

micro-CT analysis revealed this was not the case.   

More recently, Suko’s (2017) analysis of a later site in the Arkona Cluster, AgHk-54 

(Inland West Location 3), suggested that the ceramic vessels from this site may reflect a 

single, localized pottery-making community. Suko (2017:263) interpreted the ceramics as 

reflecting a shared local identity and knowledge of craft, incorporating potting practices 

from the east and west to shape a local, pluralistic material “borderland” expression. In 

my study, nine vessels from this site were scanned. Vessels included five whose rims 

were made by folding, two by folding with added clay, and two that were plain. From this 

sample potters appear to have relied heavily on the folding technique, a method that 

remained popular throughout the duration of the Arkona Cluster. These findings further 

suggest that the potters at here were also connected to a trans-generational community of 
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practice that was larger than the spatial or temporal limits of the site, reflecting the shared 

local potting tradition of the Arkona Cluster.  

Watts (2006:195-196), based on a broader examination of ceramics from within and to 

the east and west of the Arkona sites, found that the two predominant archaeological 

ceramic traditions across that wider region embodied distinct sets of practices. He noted 

in particular that prevalent vessel shapes suggest both groups were governed by an 

intuitive understanding of “proper” vessel form designs, and that vessel forms were 

conservative to change. He also argued that decorative practices and symmetry were less 

structured or adhered to across assemblages from the material tradition to the west 

(“Western Basin Tradition”) than they were for the material tradition to the east (“Ontario 

Late Woodland Tradition”). In the examination of the Van Bree (AgHk-32) assemblage, 

in particular, Watts (2006:190) argued that there was no co-occupation at the site by 

discrete potting traditions, but rather a “syncretic social form” expressing a “ceramic 

hybridization,” with elements of both traditions being used by potters on some of the 

vessels.  

The morphological data presented in Chapter 6 suggests potters in the Arkona Cluster 

were producing vessels, and forming them, from a taught learning framework of 

acceptable forms: one with short necks (76% of all vessels where neck form could be 

determined), and one with elongated necks (24% of all vessels where neck form could be 

determined). Across these two forms the majority of the vessels sampled had flat lips, and 

concave or straight upper rim profiles. Decorative elements examined also suggested 

there were broad consistencies in practice (e.g., stamped obliques making up the majority 

of the rim motifs). But there was also clear variation in form and finishing. The neck 

portion of the vessels sampled reflected the use of both incising and stamping, and motifs 

were more varied than on rims. While oblique motifs made up 88% of the upper rim 

decoration, for example, the largest category of decoration on the neck, triangular motifs, 

only accounted for 43% of neck decoration. While these triangular motifs on some necks, 

and the slightly higher frequency of exterior punctates suggest a “Western Basin 

Tradition” influence at Arkona, the overall morphology of vessels, the prevalence of 

bosses, and the frequent use of stamped obliques on the rim portion of vessels also 
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suggests an “Ontario Late Woodland Tradition” influence.  These observations reflect the 

kind of pluralistic mélange of approaches previously noted for these sites (Suko 2017a; 

Watts 2006). Micro-CT data adds the observation that folded, added clay, plain rim forms 

were all used on both long-necked and short-necked vessels, and across the diversity of 

decorative motifs noted for these specimens.  

Some of the patterning seen in the Arkona vessels sampled could be due to temporal 

differences between the sites within the cluster (see Ferris 2018 and St. John and Ferris 

2019 for further temporal sequencing; see also Figure 2.3). As the trans-generational 

community of potters negotiated tradition and innovation through this material 

borderland over time, there are slight changes that could be seen both with and without 

micro-CT data. Though limited grain-size analysis hinted that potters might be using 

smaller temper at the last site in the cluster (AgHk-42, Bingo village), generally rim 

manufacturing techniques, inclusion and void volumes, and other attributes only seen 

through micro-CT were not markedly different between sites within the cluster. 

However, a number of the morphological and finishing attributes visible on the sampled 

specimens trended through time at Arkona. Overall, Van Bree (AgHk-32), which is the 

earliest site in the cluster, seems to have the most attributes that differentiated it from the 

other, later dated sites in the cluster, with higher percentages of both elongated necks and 

triangle neck motifs, and a higher percentage of interior punctates. Potters at AgHk-32 

used diverse upper rim profiles, and this was the only site that exhibited straight rather 

than concave rim profiles as the most common form (60%), which makes sense given 

that concave rim profiles tended to go hand in hand with short curved necks. The 

elongated necks and triangle motifs present at Van Bree suggest there may have been a 

stronger Western Basin Tradition influence within Arkona potting practices earlier on. 

However, the use of more interior punctates at Van Bree (and at AgHk-54) runs counter 

to this trend, since interior punctates are supposedly an Ontario Woodland Tradition trait 

at this time. Though playing with a mix of attributes from distinct potting traditions at 

Van Bree is consistent with the ceramic hybridization noted by Watts (2006), and the 

pluralistic material expression observed by Suko (2017). 
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Micro-CT data suggests exterior and neck decorative motifs and neck shape have very 

little correlation to the forming techniques used to create the rim of the vessel. However, 

neck motif and neck shape did correlate: 79% of elongated necks had triangle motifs 

while only 27% of short necks had triangle motifs. There was clearly a link in the potters’ 

minds at Arkona between the elongated neck form and the range of decoration that could 

be used to fill them. However, potters who were decorating necks with the “hallmark” 

(Murphy and Ferris 1990:205) Western Basin Tradition diamond or triangular neck 

motifs were forming the rims of these vessels in the same way potters decorating their 

necks with more typically Ontario Late Woodland motifs were. However, it is worth 

noting that in this study a relatively high portion of the elongated necks from Figura 

(AgHk-52) (1 out of 3) and Bingo (AgHk-42) (2 out of 4) were considered somewhat 

exceptional vessels, with glyphs drawn in the open panels of the triangles (see Specimens 

065, 066 and 068 in Appendix A; Archaeologix Inc. 2012; Ferris and Wilson 2010; 

Golder 2012b). While the elongated necks made up 50% of the vessels at Van Bree, 

perhaps at the later sites these vessels became a sort of specialized form that could be 

pulled out of a potter’s repertoire when they needed a larger canvas for a decorative 

expression of tradition.  

There were fewer notable differences between the remainder of the sites, although some 

slight variations were noted. One such example was AgHk-42 and AgHk-40 having a 

higher instance of adaptive irregularities applied to the rim. Other slight variations within 

the cluster were noted, such as rounded lip forms being more common in the AgHk-52 

sample than elsewhere. AgHk-54 differed slightly because of its high percentage of short 

necks (89%), 100% concave rim profiles, and lack of rims formed using added clay. 

Exterior decorative elements differed. Notably samples from AgHk-42 (Bingo Village) 

and AgHk-54 (Inland West Location 3) had oblique motifs appearing on necks while they 

were absent at AgHk-52 (Figura), perhaps suggesting the former two sites are more 

closely linked to one another than to Figura, either temporally or with a more closely 

overlapping community of potters.  

While not conclusive, the combination of the increase in adaptive irregularities at later 

sites, the decrease in the number of elongated neck shapes, and the fact that these 
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elongated necks at later sites were sometimes used for what archaeologists have classed 

as “exceptional” vessels, may collectively indicate a drift over time at Arkona to a more 

rigid idea of what a “typical” pot should look like. On the other hand, despite variation 

found in neck shape (particularly at AgHk-32), the flexibility of punctate and boss use, 

and neck decorative elements seen throughout the sample, and the methods of 

manufacturing rims, all remain the same across space and time. Folding rims was the 

most common method used, and applying clay to rims the second most common. The 

adherence to only one or two ways of forming rims, and the fact that these techniques are 

consistently in use for generations, suggest that this community of practice at Arkona 

shared a common tradition of pottery making. This tradition was informed by broader 

potting practices to the east and west, and those broader temporal and regional trends 

became incorporated elements practiced within this localized craft expression. 

Micro-CT analysis allows us to see decorative variation as just that, variation within the 

final finishing steps along the broader process of making. Perhaps finishing is the most 

ephemeral and variable step in this process by potter inclination, depending on adherence 

to tradition, innovation or playfulness. But it is also a stage in production that perhaps 

does not tell us as much as vessel forming does about how potters learned their craft and 

their community. While finishing elements reflect tradition, they are also clearly open to 

innovation and choice, and so tell us something different about potters and their 

community. It is only when we access all of the steps in this process of potting that we 

can begin to think more robustly about the communities of practice in which individual 

potters participated. Micro-CT data allows us to investigate the learning process and 

broaden the focus of pot making from an emphasis on finishing attributes.   

Primary forming techniques are only externally visible to the analyst’s eye if secondary 

forming techniques have not obscured them, so they have not been previously studied at 

the Arkona Cluster. The micro-CT analysis from this study has shown that over a few 

generations, Arkona potters used a range of shared practices between sites, but also that 

their practice shifted over time.    
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From the micro-CT data it was evident that differing sections of vessels revealed more or 

less about forming practices. For example, paddle and anvil use likely minimized void 

patterning and other manufacturing techniques lower down the body of vessels. More 

generally, ceramic vessel manufacturing techniques do vary between vessel sections and 

even within them (van der Leeuw 1993, 1994). Various manufacturing techniques are 

regularly combined in the construction of a single vessel (e.g., Kozatsas et al. 2018), 

which was readily evident here in rim forming gestures followed in creating castellations. 

Distinct construction zones of a vessel may or may not have been how the potter 

conceptualized pot form as they were making them, but it is clear from the micro-CT 

scans that rim forming did require secondary steps during manufacture, and thus was a 

useful focus to explore potter practice at Arkona. 

 Despite clear decorative variability and engagement with broader regional trends east 

and west, as well as use of variable neck forms, there is little evidence from the micro-CT 

analysis to suggest two distinct and separate potter communities of practice were at work 

at Arkona. Rather, and furthering Suko (2017:42) and Watts (2006) interpretations, these 

findings reflect a localized ceramic practice that incorporated manufacturing and design 

elements from multiple ceramic craft traditions. Given these findings, the Arkona 

ceramics appear to be the expression of a distinct artisan community that was sustaining 

tradition and innovation in practice, one that archaeologically captures a material 

borderland at that time and in that place. 

At Arkona, the community of practice, which I argue existed and persisted over the 270 

year life span of these sites was a multigenerational potting community that articulated 

and passed along a set of clay preparation and rim forming practices. Relatively stable 

ratios of inclusions to clay and the prevalence of rims which have been folded over, or 

which have had clay added to them, suggest a shared knowledge between potters at 

Arkona. The differences seen in the pots from Van Bree, suggest some of these practices 

may have shifted over time, and that potters at the other sites, who were practicing 

potting within the last half century of occupation at Arkona (from around 1200-1270 CE), 

were interacting with each other in a more immediate way.  It seems likely that the 

potters from sites that were more closely connected generationally may have been 



285 

 

participating in the craft of ceramic making at the same time, using shared techniques and 

practices. The regularity and context of practice would have impacted their potting habits, 

and the variation seen in the finishing of pots at Arkona may reflect the fluid borderland 

context in which they were being produced. Making pots was  a skill which was  learned 

locally and formed a local identity, and local identity tensions may have played out in the 

Arkona Cluster. However, potters were not potting in isolation but had connections both 

within and beyond the Arkona Cluster. Finishing attributes are reflective of larger 

constellations of practice that span the Woodland period in the lower Great Lakes. The 

consistency of learning frameworks over generations indicates a fairly tight community 

of practice at Arkona, while changes in this practice, like those seen between Van Bree 

and the later sites, may indicate some members in the community introduced new ways 

of doing things, possibly from further afield.  

Next steps could include research of this type at a larger analytical scale, looking at how 

pots were made beyond Arkona. A larger study could examine whether there are in fact 

constellations of practice throughout the Late Woodland. This is not a closed space but 

one where people were aware of larger trends in potting practice throughout time and 

space. Morphological attributes at Arkona tend to reflect the broader regional context in 

which these potters were working, as does the application of decorative elements such as 

stamped obliques and punctates. The thickened rim is a trait found beyond this cluster of 

sites; achieved through one set of learned gestures within the Arkona cluster one way, 

and achieved through a different learned practice elsewhere.  

 “Identity” across this Arkona Cluster and archaeological borderland was maintained 

through human practice, not inscribed on the pots. But the materiality of practice (ways 

of making pots) captured in those artifacts does indicate a belonging to community, and 

expression of a potter’s identity. Through micro-CT scans we gain further insight into 

how pottery-making knowledge and tradition was learned, remembered, and negotiated 

through the doing of potting in this setting. Further micro-CT research on ceramic 

practices from a broader region, similar to the scope of the study undertaken by Watts 

(2006), would more clearly document and trace the local trajectories of tradition and 
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innovation, and the boundaries of interaction between distinct communities of practice 

across southwestern Ontario, and through this period.   

7.3 Conclusions 

This section offers some conclusions regarding what I feel this research has achieved. It 

will explain what micro-CT adds to archaeological ceramic analysis and the greatest 

strengths I see for micro-CT-driven analyses of ceramics, including further discussion on 

how this method can be incorporated into a broader ceramic research strategy. It will 

cover my final evaluation of this method for ceramic analysis, including a discussion of 

what I would have changed in this research were I to go back and do it again. Potential 

directions for future work are also discussed. 

7.3.1 The Value of Micro-CT in Archaeological Ceramic Analysis  

The greatest strength of micro-CT-based analysis in archaeological ceramic research is 

that it gives the archaeologist the ability to explore, in 3D and non-invasively, potting 

communities and access to methods of vessel manufacture that cannot be accessed 

otherwise. By providing the archaeologist with a link to the gestures and individual 

artisan choices that were involved in ceramic manufacture, micro-CT data gives us a 

glimpse into the interactions, engagements and negotiations that occurred between 

materials and ceramic craftspeople in the past. What it really allows us to explore is the 

innovation of individual artisans working within a much larger tradition of ceramic 

making.  

Micro-CT scanning, in effect, allows us to access artisan and material agency beyond 

simple ceramic artifact descriptions. While conceptual frameworks emphasizing material 

agency and focusing on technology and gestures (e.g. Gosden 1999; Knappet and 

Malafouris 2008; Knappet at al. 2010; Watts 2006:2) are good in theory, accessing these 

gestures and material-human interactions in the artifacts left behind is difficult to achieve. 

These vestiges available to the archaeologist for study are fragments of a finished 

product, and the artisan’s various actions and correctives along the way to production are 

often covered up, smoothed over, or wiped away in finishing the vessel, or masked 

subsequently through the post-production use, destruction, and disposal of the object. I 
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would argue that micro-CT scanning offers a new and transformative way to access this 

process of interaction between materials and craft producers, allowing us some insight 

into the engagement and entanglements between them, and the contexts these interactions 

were occurring within.  

While undeniably an innovative method for ceramic analysis, whether conducting a 

micro-CT-based study is worth the effort depends on both the goals and budget for a 

research project. As with any technique, micro-CT has limitations and inherent problems 

that researchers must discover and correct for, where possible. As discussed previously, 

micro-CT scanning is a challenging method to employ, one with a steep learning curve to 

become familiar with the hardware and software, running a scan, conducting image 

analysis, and obtaining meaningful results. Ideally, to both master the technology and 

frame robust research designs, I would suggest having an experienced technician run the 

scans and be involved in the design of the research project to support the researcher and 

ensure that scans can best service research questions. My experiences suggest, at least, 

that inexperience substantially adds time to a project, and makes it difficult to anticipate 

what will or will not work beforehand. There are also issues with the upkeep of the 

machine itself, and the need for a technician rather than an archaeologist to troubleshoot 

when things go wrong.  

Once the scans were created, the next challenge was to translate these remarkable, high 

resolution, non-invasive images into meaningful, explicable data: both qualitative and 

quantitative. A large part of this dissertation work involved the process of researching 

and determining methods of 3D image analysis that would be useful for recognizing 

distinctive features related to production and manufacturing techniques and developing 

novel analytical protocols. As such, considering image analysis software that can best aid 

the needs of the research project is an important step in micro-CT research. This was a 

challenge for this project since micro-CT studies of low fired earthenwares was in its 

infancy when I began, and analytical software options were limited. From where I am 

now, had Dragonfly image analysis software been available at the beginning of this 

research, I would have relied heavily on it. After all, as the designer’s state, Dragonfly 

was “designed for researchers and engineers in the fields of material and life sciences, 
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geology, nanotechnology, and the environment” (Object Research Systems 2020; see: 

https://www.theobjects.com/dragonfly/index.html). I also would have been able to take a 

direct training workshop in the image analysis program that I was using, rather than 

trying to self-teach myself from limited manuals. Such training was not an option for VG 

(a European based company), but Dragonfly (based in Montreal Québec) provides both 

online workshops and in person training. However, this is an after the fact regret I only 

raise in retrospect: Dragonfly was released by ORS partway through my research (in 

September 2016: See Appendix F for my research timeline), after I had already become 

familiar with VG, and at the beginning of this project. When I started, I believed VG was 

the best option for the type of analysis I was conducting.  

Micro-CT analysis might also be prohibitively costly and as such, may best be used after 

initial radiography studies are undertaken (Middleton 2005; Greene et al. 2017). 

Certainly, conducting a lower-cost radiography study on a larger number of sherds might 

be a good method for deciding which ceramic specimens to scan in a micro-CT machine. 

However, some of the minute details visible in micro-CT scans would be missed in an 

initial X-ray screening. Sample selection is also important. Certain types of ceramics will 

be more applicable to micro-CT research. For example, low fired earthenwares made by 

hand or wheel will contain voids, inclusions and temper. But micro-CT scans may not 

provide interpretive value for more refined earthenwares or porcelains, or mass-produced 

ceramics. Because each technology has its own strengths and weaknesses, it is probable 

that micro-CT analysis will not replace visual examination, X-radiography or 

petrography, but will become a vital, complimentary technique used in the material 

science study of ceramic materials.  

A critical contribution of micro-CT research specifically, and micro studies generally, is 

that these techniques broaden the focus of ceramic analysis significantly away from 

solely classifying visible decorative attributes, which certainly has been the primary focus 

of Late Woodland analyses for the entire history of the discipline. Micro analyses allows 

researchers to more directly think about the potter and the choices they were making in 

the production of vessels and all stages of the chaîne opératoire of ceramic manufacture. 

Micro-CT data allows archaeologists to access the potter beyond decorative styles and 

https://www.theobjects.com/dragonfly/index.html
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traits, and contributes to a broader discourse on communities of practice, learning and 

knowledge transmission. 

There is no point of scanning ceramics just for the sake of making scans, but with a 

specific research question, a budget to complete the project, and a careful research design 

in mind, micro-CT analysis is an exciting and useful tool for ceramic analysis. By 

conducting a micro-CT analysis on the Arkona Cluster ceramics, I hope I have 

contributed to the research of pottery manufacture, and recognition of the individuals and 

communities who were making ceramics and the complex negotiations and decision 

making processes that potters put into the production of every vessel as a part of their 

daily lives.  

Research on micro-CT analysis of archaeological ceramics is also relevant to the 

increased use of digital imaging and 3D models in archaeology generally. Many 

anthropologists and cultural heritage institutions are using 3D models and digital 

collections as a means of disseminating knowledge (e.g. Able et al. 2011:878; Bruno et 

al. 2010; Evans and Daly 2006; Keene 1998; Lynch 2002; Waibel 2014). In fact, micro-

CT images from this dissertation were used in a Museum of Ontario Archaeology exhibit 

entitled: Earth and Fire: The Craft and Form of Ontario Earthenware Pottery Traditions 

(http://archaeologymuseum.ca/visit-us/exhibits/past-exhibits/), will feature in future 

museum exhibits, and has been featured in blog posts by the Museum of Ontario 

Archaeology (https://archaeologymuseum.ca/potters-in-the-past-micro-computed-

tomography-of-archaeological-ceramics/). 

Many recent studies have begun to assess digitization methods and attempts are being 

made to increase their efficiency for documenting archaeological collections. In Ontario 

(and elsewhere), boxes of artifacts are accumulating due to the increase in cultural 

resource management (CRM) work without value added studies being undertaken to 

further learning anything new from this record (Ferris and Cannon 2009). These 

collections (whether from CRM or museums) are inaccessible to researchers, students, 

and the public, especially with regards to Indigenous and descendant communities (e.g., 

Ferris and Welch 2014).  Micro-CT scans have the potential to make collections more 

http://archaeologymuseum.ca/visit-us/exhibits/past-exhibits/
https://archaeologymuseum.ca/potters-in-the-past-micro-computed-tomography-of-archaeological-ceramics/
https://archaeologymuseum.ca/potters-in-the-past-micro-computed-tomography-of-archaeological-ceramics/
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accessible, by providing a detailed high-resolution view of the exterior and interior of 

ceramics, and the identification of decoration, fingerprints, and morphological 

characteristics, without any unnecessary handling of fragile collections (Clark et al. 2001; 

Keene 1997:303; Lu and Pan 2010:213). In this way, the non-invasive nature of micro-

CT may allow for analysis of previously un-examined collections, especially those of a 

culturally sensitive nature. Likewise, micro-CT scanning has the potential to supplement 

traditional destructive techniques currently in use in ceramic studies. Furthermore, the 

digitization of archaeological material may allow for wider reaching dissemination of 

material and make these ceramics accessible to descendant communities and researchers 

outside of Ontario. 

7.3.2 Future Directions for Research 

Recent articles such as those by Kozatsas et al. (2018) and Sanger (2017) have 

highlighted the potential for micro-CT and CT methodologies to add to the field of 

ceramic analysis. These studies, much like this dissertation, both emphasize the 

remarkable ability of CT scans to highlight the steps in craft production that are hidden 

by subsequent actions in that production sequence. The ability to tease out individualized 

craft behaviours will be the greatest strength of micro-CT (Kozatsas et al. 2018). The 

focus to date has been primarily on the qualitative analysis of CT images to explore the 

correlations between ceramic fabric features and manufacturing techniques or forming 

operations (Kozatsas et al. 2018; Sanger 2017), rather than quantitative data. These recent 

studies, and this dissertation, are beginning to suggest protocols for scanning ceramics 

and for the description and quantification of the features that can best be identified in 

micro-CT images. This research is also starting to define and develop a language for how 

these features relate to the unique manipulations potters are putting on clay, adapted in 

part from previous archaeological and ethnographic work. Kozatsas et al. (2018) focused 

far more on the nature of the joins in clay than I did, which is something I would 

incorporate into future work.  

One of the areas of greatest promise that was not explored in any depth during this 

research is the development of a non-invasive, 3D petrography. Many archaeologists 

have recognized the potential for micro-CT to be used as a tool for exploring the recipes 
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of clay fabrics used to construct ceramic vessels. While this is an avenue of research that 

has not yet been undertaken using micro-CT technology, refinement of the scanning 

process and analysis might allow for mineral identification in the future. Dual energy 

techniques and the use of calibrated scans could aid in identifying minerals based on their 

density (Friedman et al. 2012; McKenzie-Clark and Magnussen 2014). Scanning smaller 

specimens at higher resolutions would be useful for recognizing individual mineral 

shapes and angularity, while providing larger sample sizes than manual petrographic 

techniques. Furthermore, micro-CT technology and image analysis software will continue 

to be refined over time and may allow greater potential for a 3D petrography, and notably 

for overcoming the limitations of singular, 2D petrographic profiles.  

Thin section petrographic analysis undertaken by Dr. Linda Howie of HD Analytical 

Solutions on a sample of the Arkona sherds on behalf of Dr. Ferris, funded through his 

SSHRC research grant, was intended to further advance my comparative research. 

Unfortunately, that work was not completed in time to be included in this study. 

Nonetheless, preliminary, informal reporting (Howie, personal communication, 2017), 

noted the likelihood that Arkona potters regularly used fire-cracked rock as a temper 

source in vessels from across this cluster of sites. This observation is furthered by the 

shape and angularity of crushed rock, which should be different than uncrushed rock, and 

this could be seen in 3D volumes. Other more recent studies (e.g. Hawkins et al. 2019; St. 

John et al. 2019), underscore the capacity of the two techniques to be complementary. In 

these studies, micro-CT scans provides a big picture view of ceramic fabric preparations 

and information on rim manufacturing techniques, while petrography provides detailed 

information on ceramic fabric preparation and identifies the materials within that fabric.  

If, in the future, we are able to determine mineralogy of temper materials or inclusions in 

the clay, as Carr and Komorowski (1995), McKenzie‐Clark and Magnussen (2013) and 

Middleton (2005:82-83) all suggest, using micro-CT scanning will have several 

advantages over traditional thin sectioning, since it is non-invasive, and it can provide a 

more representative sample of the inclusions and voids in a sherd. Within the scope of 

this dissertation it was not feasible to use the micro-CT scans to determine what specific 

minerals made up the inclusion and temper portions of the ceramics. 
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With regards to the provenance of clay sources and mineral identification, micro-CT 

scans are not as useful as thin section petrography at this point in time (Lamontagne 

2018). When working with micro-CT data, we do not have the colour and reflective 

properties of minerals to work with, both of which are keys to petrographic analysis 

(Quinn 2013). Micro-CT scans, however, have proven useful for visualizing and even 

identifying plant species used by potters based on voids left by vegetative fibre temper 

(Kahl and Ramminger 2012; Sanger et. al. 2013), and exploring hair or fur temper in 

ceramics from the Canadian Arctic (Moody 2018). With future studies that focus on this 

aspect of ceramics, micro-CT analysis may be able to answer some of the same questions 

that current ceramic petrography does; but the reality is that micro-CT analyses see the 

internal architecture of ceramics in an entirely different way than petrography analyses 

do, pointing to future complementary strengths between these two approaches.  

In this research I conducted a small scale study on experimental clay slabs (see Chapter 

6), and others have conducted both radiography (Berg 2011) and CT studies (Sanger 

2016) using experimental vessels and slabs to determine how manufacturing traces are 

manifest in micro internal ceramic structures. Future work could include compiling these 

results and making them available in a manufacturing technique database including both 

experimental and ethnographic pots (e.g., work by Danielle Crecca and Andrew Roddick 

at McMaster’s Lab for Interdisciplinary Research on Archaeological Ceramics 

https://socialsciences.mcmaster.ca/lab-for-interdisciplinary-research-on-archaeological-

ceramics-lirac/current-research; and some preliminary micro-CT scans of vessels created 

by potter Richard Zane Smith 

https://www.facebook.com/groups/591089374391661/permalink/1243541102479815/). 

Such a database would be an extremely useful resource for archaeologists examining 

microstructures in archaeological ceramics since “the specific microstructures induced by 

different forming techniques is still debated and therefore, not a straightforward form of 

analysis” (Weglorz 2018:58). An experimental and ethnographic manufacturing 

technique database would allow for allow greater insights into low fired earthenware 

ceramics both locally and globally. 

https://socialsciences.mcmaster.ca/lab-for-interdisciplinary-research-on-archaeological-ceramics-lirac/current-research
https://socialsciences.mcmaster.ca/lab-for-interdisciplinary-research-on-archaeological-ceramics-lirac/current-research
https://www.facebook.com/groups/591089374391661/permalink/1243541102479815/
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While this case study of vessels from the Arkona Cluster provided insight into ceramic 

manufacture at one particular time and place in the Late Woodland, future research could 

explore Ontario Indigenous pottery manufacture over a greater geographic and temporal 

expanse. This research could include scanning more vessels from the sites included in the 

non-Arkona scans for this research, and from other Ontario Late Woodland contexts. 

With larger datasets of pottery and pottery manufacturing techniques in use throughout 

the Late Woodland, we could better understand how potters participated in larger 

technological and methodological trends through time and space, and how these were 

differently internalized within local communities of practice. Based on my limited scans 

of specimens from the Late Woodland I suspect potters were engaging with larger trends 

but also making sense of those trends internally - constructing pots and mixing clay in the 

ways that were based on how they learned to do so from those closest to them.  

When we place this research in the wider context of ceramic manufacture in Ontario and 

the Northeast, there is little existing comparative data. Recent collaborative work that I 

have participated in with the Huron-Wendat Nation featured micro-CT scanning of 74 

ceramic specimens as one part of a multi-method approach to uncovering ceramic 

communities of practice (Hawkins et al. 2019; St. John et al. 2019). This study was 

focused on a different time and place than the Arkona Cluster, specifically focusing on 

high collared pottery from pre-existing archaeological collections found across the lower 

Great Lakes, St. Lawrence Valley, and northern Ontario and Québec from the fifteenth 

and sixteenth centuries. The micro-CT analysis I conducted presented readily observed 

commonalities and differences between techniques used by these different populations of 

Late Woodland potters. I noted that rim forming through folding was not observed in any 

Huron-Wendat vessels. Further, the Huron-Wendat vessels exhibited a coiling or stacking 

technique in collar construction in 19 of 74 (26%) vessel specimens, which was not 

observed in any Arkona specimens. However, both communities of potters were using 

applied layers of clay in various ways to achieve a collared effect. In the Huron-Wendat 

sample, 55 of 74 (74%) rims were made using layered or applied clay, while at the 

Arkona Cluster 28 of 67 (42%) vessels had added clay to the rim portion of the vessel. 

Applying coils or layers of clay to form castellations seems to be a technique used by 

Huron-Wendat potters more widely (Weglorz 2018:57). 
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The observations from micro-CT scan data on rim manufacturing techniques underscore 

that Arkona potters and the Huron-Wendat potters were each part of distinct, closely knit 

communities of practice. At the same time, these potting communities from different 

times, places and ways of living were both engaged in the larger craft tradition of potting 

in the Northeast.  Future work employing micro-CT scanning on more Woodland 

ceramics from a greater spatial-temporal range might reveal more “tools of the trade,” 

and how broadly ones I have been able to document, like folding over rims and using 

applied layers of clay to create thickened rims, were shared across Woodland potting 

tradition. 

7.3.3  Final Thoughts 

As we build on these initial micro-CT ceramic studies and attempt to develop a 

methodological and theoretical program for the use of micro-CT in archaeological 

ceramic research we must keep both the potential and the limitations of this method in 

mind. There was a steep learning curve to the process. In hopes of decreasing that curve 

for future researchers there are a number of “best practices” I posit here for the micro-CT 

scanning of ceramics going forward, based on lessons I learned over the course of this 

research. Firstly, if the intent of the study is to closely examine the size, shape and 

amount of inclusions and voids in a ceramic fabric the specimens should be scanned at a 

constant voxel size to eliminate discrepancies and allow for consistent cut off points at to 

eliminate noise at the smallest end of the spectrum. If material characterization is the 

goal, calibrated scans of ceramics need to be perfected and dual energy techniques 

explored. Future work on material characterization should employ direct comparisons 

between micro-CT scans and petrographic thin sections of the same materials. In all 

research, whenever possible, depending on the condition of the machine, users should 

employ consistent beam energy (kV) and beam current (µa) settings (for the Nikon XTH 

225 ST system I suggest about 130-140kV and µa of between 67-70). When the 

characterization of forming techniques and voids is the goal, vessel sections that have 

been mended should be avoided, since segmenting actual voids in the fabric from voids 

between mended sherds is difficult. Finally, when selecting samples for scanning, a 

simple X-ray technique could be used before deciding which  samples to micro-CT scan. 
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Sanger’s (2017) method of visualizing many sherds on the live viewing screens, but only 

reconstructing a portion of those, could be easily replicated.   

There has been excellent research examining decorative and morphological features on 

the exteriors of pots, and how these reflect the communities and constellations of practice 

that potters are working within and research involving the compositional analysis of 

ceramics has furthered these undertandings. Research conducted using ethnographic 

analogy to contextualize communities of practice and ceramic production in the past has 

added greatly to archaeologists’s understandings of these communities. But I think what 

micro-CT adds is a far greater understanding of the community of practice producing 

pots in a given setting. It takes away the need to rely on analogy or assumptions about 

how potters were manipulating clay and lets the archaeologist directly see the resulting 

joins and void structures that are caused by the repeated hand motions and gestures of the 

potters. As archaeologists, we talk a lot about the embodied knowledge in communities 

of practice, but in reality this is hard for us to access. We can easily measure changes in 

vessel form or changes in decoration across time and space, and we can access 

production through geochemical analysis and petrography. Micro-CT, however, allows us 

to access the craftsperson’s gestures used to form pots and the ongoing improvisation 

inherent in the craft of potting through traces hidden within the vessel walls.  

Micro-CT scanning has the potential to reveal many aspects of the practice of pottery 

making not accessible or only differently accessible previously. With a greater database 

of scans we may be able to trace interactions between groups based on pot making, and 

potentially how communities sourced and prepared their temper and clay. We can trace 

potting traditions based on minute variations in potting techniques and shift the focus in 

ceramic analysis to include all of the steps involved in making a pot. Through micro-CT 

scans we can gain further insight into how pottery making knowledge was learned, 

taught, and remembered through the circumstances of potting over the course of 

generations. Most importantly, this innovative technology allows the archaeologist to 

interact with, and appreciate, the ancient potters of this place, and the ways they engaged 

in and negotiated with their craft and their materials, within the contexts of their daily 

lives.  
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Appendices 

Appendix A: Photographs and Micro-CT images of all 

Specimens 

The Appendix includes a photograph and X plane slices of all samples. Borden numbers 

of sites and rim manufacturing techniques are listed in the image captions.  In some cases 

an additional slice on the Z plane is included. Where excellent 3D images of void 

structures and/or inclusions could be obtained, they are also included. Voids are rendered 

in light blue or light green and inclusions are rendered in orange throughout.  

Arkona Vessels:  

 

 

StJohnCT004 AgHk-32 Folded.  
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StJohnCT005 AgHk-42 Unidentified 

 

 

 

StJohnCT006 AgHk-32 Added clay  
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StJohnCT008 (same vessel as StJohnCT055) AgHk-32 Added clay 
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StJohnCT055 (same vessel as StJohnCT008) AgHk-32 Added clay  
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StJohnCT009 AgHk-54 Plain 
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StJohnCT010 AgHk-54 Folded (Photo Golder Associates 2012a) 
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StJohnCT011 AgHk-54 Folded 

 

 

StJohnCT016 AgHk-54 Plain 
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StJohnCT020 (same vessel as StJohnCT070) AgHk-52 Folded 

 

 

 

StJohnCT070 (same vessel as StJohnCT020) AgHk-52 Folded 
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StJohnCT021 AgHk-52 Plain 

 

 

StJohnCT022 AgHk-52 Folded 
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StJohnCT023 AgHk-52 Folded 

 

 

StJohnCT024 AgHk-52 Added clay 
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StJohnCT025 AgHk-52 Folded 

 

 

StJohnCT026 AgHk-52 Plain 
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StJohnCT027 AgHk-52 Plain 

 

 

 

StJohnCT028/96 (same vessel as StJohn090) AgHk-52 Folded with added clay 
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StJohnCT090 (same vessel as StJohnCT028/96) AgHk-52 Folded with added clay 

 

 

StJohnCT029 AgHk-52 Folded 
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StJohnCT030/93 AgHk-42 Added clay 

 

 

StJohnCT031 AgHk-42 Folded 
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StJohnCT036 AgHk-42 Folded 
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StJohnCT038 AgHk-42 Folded with added clay 

 

 

StJohnCT039 AgHk-42 Added clay  
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StJohnCT040 AgHk-42 Folded 

 

StJohnCT041 AgHk-42 Folded 
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StJohnCT042 AgHk-42 Added clay 

 

 

StJohnCT043 AgHk-42 Folded with added clay  
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StJohnCT044 (same vessel as StJohnCT101) AgHk-42 Folded 

 

 

StJohnCT101 (same vessel as StJohnCT044) AgHk-42 Folded  
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StJohnCT045 AgHk-42 Folded 
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StJohnCT046 AgHk-42 Plain 

 

 

 

StJohnCT047 AgHk-42 Plain 
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StJohnCT048 AgHk-40 Folded with added clay 
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StJohnCT049 (same vessel as StJohnCT102) AgHk-40 Folded with added clay 

 

 

StJohnCT102 (same vessel as StJohnCT049) AgHk-40 Folded 
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StJohnCT050 (same vessel as StJohnCT097) AgHk-40 Folded with added clay 

 

 

StJohnCT097 (same vessel as StJohnCT050) AgHk-40 Folded with added clay 
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StJohnCT051 (same vessel as StJohnCT100) AgHk-40 Added clay  
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StJohnCT100 (same vessel as StJohn051) AgHk-40 Added clay 
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StJohnCT052 AgHk-52 Added clay 

 

 

StJohnCT053 AgHk-56 Unidentified  
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StJohnCT054 AgHk-32 Folded 

 

 

 

StJohnCT060 AgHk-42 Added clay 
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StJohnCT061 AgHk-32 Folded 

 

 

StJohnCT062 AgHk-32 Added clay 
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StJohnCT063 AgHk-40 Folded 

 

 

StJohnCT064 (same vessel as StJohnCT098) AgHk-32 Folded 

 

 

StJohnCT098 (same vessel as StJohnCT064) AgHk-32 Folded with added clay 
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StJohnCT065 AgHk-52 Added clay  
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StJohnCT066 AgHk-42 Folded with added clay 

 

 

StJohnCT067 AgHk-42 Unidentified 
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StJohnCT068 AgHk-42 Folded to exterior 

 

StJohnCT069 AgHk-42 Added clay 
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StJohnCT071 AgHk-52 Unidentified 

 

 

StJohnCT079 AgHk-32 Folded to exterior 
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StJohnCT085 AgHk-32 Folded to with added clay 
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StJohnCT091 AgHk-52 Added clay  

 

 

StJohnCT099 AgHk-42 Folded 
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StJohnCT105 (same vessel as StJohnCT106) AgHk-58 Folded 

 

 

 

 

StJohnCT106 (same vessel as StJohnCT105) AgHk-58 Folded 
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StJohnCT107 AgHk-58 Added clay 

 

 

StJohnCT109 AgHk-58 Plain 
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StJohnCT110 AgHk-58 Folded 
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StJohnCT111 AgHk-58 Folded with added clay 
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StJohnCT112 AgHk-58 Folded 

 

 

StJohnCT113 AgHk-58 Folded with added clay 
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StJohnCT114 AgHk-54 Folded 
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StJohnCT115 AgHk-54 Folded 

 

 

StJohnCT116 AgHk-54 Folded 
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StJohnCT117 AgHk-54 Folded with added clay 

 

 

StJohnCT118 (same vessel as StJohnCT119) AgHk-54 Folded 



388 

 

 

StJohnCT119 (same vessel as StJohnCT118) AgHk-54 Folded with added clay 

 

 

 

StJohnCT132 AgHk-52 Folded 
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Ferris Vessel 36 AgHk-32 Added clay (Photo from Archaeologix Inc. 1998)  

 

Arkona Learner Vessels 

 

StJohnCT012 AgHk-54  
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StJohnCT013 AgHk-54  

 

StJohnCT014 AgHk-54  
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Arkona Clay pipes 

 

StJohnCT086 AgHk-42 

 

 

StJohnCT087 AgHk-42 
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StJohnCT088 AgHk-42 

 

StJohnCT089 AgHk-52 

 

 

StJohnCT103 AgHk-42 
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Late Woodland Ceramic Vessels from southern Ontario  

 

StJohnCT120 Bruner-Colasanti  AaHq-8  

 

 

 

StJohnCT121 Dymock AeHj-2  
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StJohnCT125 Bruner-Colasanti AaHq-8  

 

 

StJohnCT128 Dymock AeHj-2  
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StJohnCT129 Dymock AeHj-2  

 

 

StJohnCT131 Cherry Lane AaHp-21  
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StJohnCT130 Robson Road AaHp-20  

 

 

StJohnCT080 Lawson AgHh-1  

 

 

StJohnCT081 Lawson AgHh-1  
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StJohnCT082 Praying Mantis AfHi-178  

 

 

StJohnCT083 Praying Mantis AfHi-178  

 

 

StJohnCT084 Praying Mantis AfHi-178  
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Iroquoian Vessel McKeown Site BeFv-1  
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Appendix B: Recording of specimen information and 

scanning parameters for all scans. 

Sample ID

Use for 

analysis

? Site Name

Borden # 

(where 

available)

Context within 

site (Feature, 

unit)

Vessel #, Catalogue # 

(if available)

StJohnCT001 no Inland West Pit Loc. 3 AgHk-54 F.7 V. 11, Cat. 187

StJohnCT002 no Inland West Pit Loc. 3 AgHk-54 F.38 JVE. 6, Cat. 522

StJohnCT003 no Inland West Pit Loc. 3 AgHk-54 F85 V. 33, Cat. 382

Incomplete1 no Inland West Pit Loc. 3 AgHk-54 F. 24 V. 1 Cat. 248

Incomplete2 no Inland West Pit Loc. 3 AgHk-54 F. 42 V. 23

Incomplete 3 no Inland West Pit Loc. 3 AgHk-54 F.42 V.23

StJohnCT004 yes VanBree AgHk-32 F. 27 V. 14, Cat. 208

StJohnCT005 yes Bingo Pit Village Loc. 10 AgHk-42 F. 117 V. 228, Cat. 3172

StJohnCT006 yes Van Bree AgHk-32 F.24 F.25 V. 49

StJohnCT007 no Van Bree AgHk-32 F. 58 V. 30

StJohnCT008 yes Van Bree AgHk-32 F. 71&73 V. 37, Cat. 323

StJohnCT009 yes Inland West Pit Loc. 3 AgHk-54 F. 24 V.1Cat. 248

StJohnCT010 yes Inland West Pit Loc. 3 AgHk-54 F. 25 V. 13 Cat. 592

StJohnCT011 yes Inland West Pit Loc. 3 AgHk-54 F. 24 V. 3 Cat. 246

StJohnCT012 yes Inland West Pit Loc. 3 AgHk-54 F. 38 JVE. 6, Cat. 522

StJohnCT013 yes Inland West Pit Loc. 3 AgHk-54 F. 31 JVE. 15, Cat. 513

StJohnCT014 yes Inland West Pit Loc. 3 AgHk-54 F. 26 JVE. 10, cat. 578

StJohnCT015 no Inland West Pit Loc. 3 AgHk-54 F. 42 V. 23

StJohnCT016 yes Inland West Pit Loc. 3 AgHk-54 F. 42 V. 23

StJohnCT017 no Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT018 no Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT019-1 no Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT019-2 no Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT019-3 no Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT020 yes Figura AgHk-52 F. 24 V. 223 /V. 80, Cat. 1841

StJohnCT021 yes Figura AgHk-52 F. 24 V. 229, Cat. 1838

StJohnCT022 yes Figura AgHk-52 F. 25 V. 84/230, Cat. 770

StJohnCT023 yes Figura Aghk-52 F. 6 V. 73/74, Cat. 1091

StJohnCT024 yes Figura AgHk-52 F. 117 V. 10, Cat. 938

StJohnCT025 yes Figura AgHk-52 F. 92 V. 164, Cat. 1220

StJohnCT026 yes Figura AgHk-52 F. 12 V. 4/V. 161/V. 9, Cat. 1426

StJohnCT027 yes Figura AgHk-52 F. 5 V. 134/ V. 13, Cat. 1052

StJohnCT028 yes Figura AgHK-52 F. 89 V. 49/V. 93, Cat. 256

StJohnCT029 yes Figura AgHk-52 F. 94 V. 92, Cat. 649

StJohnCT030 no Bingo Pit Village Loc. 10 AgHk-42 F. 461 Cat. 8571

StJohnCT031 yes Bingo Pit Village Loc. 10 AgHk-42 F. 99 V. 71, Cat. 8122

StJohnCT032 no Bingo Pit Village Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT033 no Bingo Pit Village Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT034 no Bingo Pit Village Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT035 no Bingo Pit Village Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721  
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Sample ID

Specimen Object (rim, 

body, base, pipe)

Observable Specimen characteristics (temper, 

decoration, residue, thickness, friable, coil 

breaks)

Date of scan 

DD/MM/YY

YY

Duration of scan (open 

chamber to aqusition 

computer)

StJohnCT001 Rim sherd medium amount of coarse temper, exterior bosses and other decoration ext. and int., med. thick 10/07/2014 1 hr 46 min

StJohnCT002 Rim sherd juv. Vessel. l ittle visable temper, minimal decoration at exterior of l ip, rougly made with large void spaces.11/07/2014 2 hrs 2 mins

StJohnCT003 Rim, neck, shoulder sherd Decorated exterior, lots of fine mica inclusions a fewer large inclusions, thick vessel walls. 11/07/2014 1 hour 30 mins

Incomplete1 Complete profile: approx less than half vesselSmall vessel, burnt residue at interior, exterior is decorated, fine mica throughout, medium amount of medium quartz inclusions visible, fairly thin vessel walls.  14/07/2014 1hr 20mins

Incomplete2 rim, neck sherd deep puntates on exterior and other decoration, Lots of very large quartz temper, some fine mica, medium thickness14/07/2014 40 mins

Incomplete 3 rim, neck sherd deep puntates on exterior and other decoration, Lots of very large quartz temper, some fine mica, medium thickness14/07/2014 1hr

StJohnCT004 rim sherd visible temper (quartz), incised decoration on rim and exterior,  02/12/2014 1hr:53 min scan

StJohnCT005 Neck sherd visible temper, inscrition on exterior is faint 02/12/2014 53min scan

StJohnCT006 Rim, neck, body sherd friable fabric, glued in several places, large temper: some black, exterior decoration05/12/2014 15mins set up 51 min scan

StJohnCT007 Rim, neck, body sherd large sherd, visible inclusions, puctates and extensize decoration, castellation05/12/2014 15mins set up 53 min scan

StJohnCT008 Rim, collar, neck Large sherd with castellation, and high collar (check this), exterior bosses, incised exterior, large visible inclusions08/12/2014 10mins set up 1:40 scan

StJohnCT009 Complete profile: approx less than half vesselSmall vessel, burnt residue at interior, exterior is decorated, fine mica throughout, medium amount of medium quartz inclusions visible, fairly thin vessel walls.  11/12/2014 15mins set up, 53 min scan

StJohnCT010 Rim, neck, shoulder sherd visible temper, exterior punctates, incised cross hatch décor, fine sand or mica in paste?12/12/2014 20mins set up, 53 min scan

StJohnCT011 Rim, neck, shoulder sherd visible temper, deep rectangular interior punctates, exterior bosses, castellation18/12/2014 15 mins set up, 53 min scan

StJohnCT012 Rim, neck juv. Vessel. l ittle visable temper, minimal decoration at exterior of l ip, rougly made with large void spaces.18/12/2014 10mins set up 53 min scan

StJohnCT013 Rim juv. Vessel white, coarse granitic temper, roughly drawn WB-like incised doecroation at rim. 16/01/2015 2 hours 10 mins 54 seconds

StJohnCT014 Rim sherd, juv. Smooth fabric with very small vertical incised lines at rimjuv. Vessel 20/01/2015 2 hours 10 mins 54 seconds

StJohnCT015 rim, neck sherd deep puntates on exterior and other decoration, Lots of very large quartz temper, some fine mica, medium thickness09/09/2015 15mins set up 53 min scan

StJohnCT016 rim, neck sherd deep puntates on exterior and other decoration, Lots of very large quartz temper, some fine mica, medium thickness09/09/2015 5mins set up 2 hour 10 min scan

StJohnCT017 Rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 23/11/2015 10 mins set up, 2 hour 10 minute scan

StJohnCT018 Rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 23/11/2015 failed scan

StJohnCT019-1 Rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 26/11/2015 failed scan

StJohnCT019-2 rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 26/11/2015 failed scan

StJohnCT019-3 rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 26/11/2015 53 mins

StJohnCT020 rim sherd Deep vertical punctates, with cord wrapped stick diagonal stamps at rim. 18/12/2015 2 hours 8 mins

StJohnCT021 rim sherd cord wrapped stick, visible mica, rolled over rim with almost/incipent castellation05/01/2016 2 hours 10mins 54 seconds

StJohnCT022 rim, neck sherd western basin tradition triangle pattern 05/01/2016 2 hours 10mins 54 seconds

StJohnCT023 rim, neck sherd visible mica, upright rim, chevron incise or cws 06/01/2016 2 hours 10mins 54 seconds

StJohnCT024 rim sherd incised deoration in chevron and straight l ine patterns. Thin rim, some mica and other large black temper visible08/01/2016 1hour 44mins 43 seconds

StJohnCT025 rim, neck sherd veritical profile, cord wrapped stick some incised or other decoration on neck, widely spaced punctates08/01/2016 1hour 44mins 43 seconds

StJohnCT026 rim sherd deep punchtates, denate? Stampes at rim 12/01/2016 2 hours 10mins 54 seconds

StJohnCT027 rim, neck sherd exterior bosses, castelleation, more upright profile, cws13/01/2016 1hour 44mins 43 seconds

StJohnCT028 rim, neck sherd western basin tradition triangle pattern, castellation, cws at rim13/01/2016 1hour 44mins 43 seconds

StJohnCT029 rim, neck sherd punctates, very flared/everted rim profile 13/01/2016 1hour 44mins 43 seconds

StJohnCT030 rim, neck sherd Deep exterior punctates, cws at rim 15/01/2016 1hour 44mins 43 seconds

StJohnCT031 rim folded rim? Incised lines 15/01/2016 1hour 44mins 43 seconds

StJohnCT032 rim exeterior bosses, incised lines 19/01/2016 53 mins

StJohnCT033 rim exterior bosses, incised lines 19/01/2016 2 hours 10 mins 54 seconds

StJohnCT034 rim exterior bosses, incised lines 19/01/2016 2 hours 10 mins 54 seconds

StJohnCT035 rim exterior bosses, incised lines 20/01/2016 1hour 44mins 43 seconds  
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Sample ID

Duration of 

reconstruction 

(in Ct Pro)

Mounting Method (loose, 

mounted, in box, foam, 

styrofoam etc.)

filter 

(type/mm) Gain 

target (reflective, 

rotating, etc)

StJohnCT001-Data lost20 mins foam 0.5 Cu n/a refl.

StJohnCT002-Data lost20mins foam 0.5Cu n/a refl.

StJohnCT003-Data lost in computer switch19mins light grey foam 0.5Cu n/a refl.

Incomplete1 20 mins inside white styrofaom box 0.25Cu n/a refl.

Incomplete2 20 mins foam 0.25Cu n/a refl.

Incomplete 3 20 mins foam 0.25Cu n/a refl.

StJohnCT004 10mins foam 1Cu 30dB refl. 

StJohnCT005 15mins foam 1Cu 30dB refl. 

StJohnCT006 15mins foam 1Cu 30dB refl.

StJohnCT007 10mins inside white styrofaom box 1Cu 30dB refl.

StJohnCT008 14mins inside white styrofaom box 0.5Cu 30dB refl.

StJohnCT009 12mins inside white styrofaom box 0.5Cu 30dB refl. 

StJohnCT010 15mins mounted in foam 0.5Cu 30dB refl. 

StJohnCT011 15mins inside white styrofaom box 0.5Cu 30dB refl. 

StJohnCT012 15mins foam pool noodle 0.5Cu 30dB refl. 

StJohnCT013 15mins foam .5Cu 30dB refl.

StJohnCT014 14mins foam none 24dB refl. 

StJohnCT015- failed13mins large cell white foam 0.25Cu 24db refl. 

StJohnCT016 15 mins large cell white foam 0.25Cu 24db refl. 

StJohnCT017 n/a large cell white foam none 24dB refl. 

StJohnCT018 n/a large cell white foam none 24dB refl. 

StJohnCT019-1 n/a large cell white foam none 24dB refl. 

StJohnCT019-2 n/a large cell white foam none 24dB refl. 

StJohnCT019-3 n/a large cell white foam none 24dB refl. 

StJohnCT020 15 mins large cell white foam none 24db refl. 

StJohnCT021 20mins large cell white foam none 24dB refl. 

StJohnCT022 15 mins large cell white foam none 24dB refl. 

StJohnCT023 same as calibrated 5613 mins large cell white foam none 24dB refl. 

StJohnCT024 15mins large cell white foam none 24dB refl. 

StJohnCT025 13mins large cell white foam none 24dB refl. 

StJohnCT026 12 mins large cell white foam 24db refl.

StJohnCT027 15 mins large cell white foam none 24db refl

StJohnCT028 15 mins large cell white foam .25Cu 24dB refl. 

StJohnCT029 20 mins large cell white foam .25Cu 24dB refl.

StJohnCT030 15 mins large cell white foam none 24bB refl. 

StJohnCT031 20 mins large cell white foam none 24db refl. 

StJohnCT032 20 mins large cell white foam none 24dB refl. 

StJohnCT033 22 mins large cell white foam none 24dB refl. 

StJohnCT034 15 mins large cell white foam 0.1mm Cu 24dB refl. 

StJohnCT035 15 mins large cell white foam 0.1mm Cu 24dB refl.  
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Sample ID Comments Scan Successful

StJohnCT001 First scan: lots of time doing shading corrections, how to set variables, playing with histogram etc. Reconstructed twice to see if I could fix it, 2nd reconstruction worked!Yes! On the second reconstruction it is clear… some artifacts but over all  it shows the punctate/bosse nicely and shows lots of large temper pieces. Data lost

StJohnCT002 cannot figure out shading corrections! Almost an hour spent on playing with shading corrections and Maybe:the interior of the ceramic is clear and shows many voids and manufacturing techniques data lost

StJohnCT003 pratice for mounting/scanning larger sherds yes data lost

Incomplete1 These settings made it easier to get watts under 8 and a wider spread on the histogram: not problems with shading correction. I hope to see the orientation of temper  throughout the whole vessel profile. Practice for scanning complete vessels.  no! AXIS ROTATION ERRORS TWICE

Incomplete2 Axis Rotation Error

Incomplete 3 Attempt after system restore

StJohnCT004 my first scan with new inspectX interface yes, 0.89 over rotate error

StJohnCT005 0.89 over rotate error Huge rings not very clear… not as nice a scan looking back as I thought it was. 

StJohnCT006 0.89 over rotate error stil l  rings. A nice contrast scan though

StJohnCT007 0.89 over rotate error yes but ring artifact is bad

StJohnCT008 0.77 over rotate error yes, And this is a way nicer image than the shorter scans… it might be worth the time to do more exposures in some?

StJohnCT009 30dB gain, 0.89 over rotate error yes, there is a ring artifact but not that noticable because it is in the empty space in the middle of the pot

StJohnCT010 30db gain, 0.89 over rotate error   fingerprints on bosses yes with rings

StJohnCT011 30dB gain, 0.89 over rotate error , yes   ring artifact is bad 

StJohnCT012 30dB gain, 0.89 over rotate error yes, really bad rings

StJohnCT013 used minimize rings yes

StJohnCT014 yes

StJohnCT015 testing not using minimize ring artifacts setting: did not work! Horrible artifact no huge ring- failed

StJohnCT016 Used ring artifact minimizing. Fingerprints on bosses yes

StJohnCT017 Rotation error! Not successful. Used ring artifact minimizing no

StJohnCT018 Not succesful Spinning table at 245 degrees same scan as above: trying to get it to work

StJohnCT019-1 Not successful Spinning table at a couple mins in: scans with Minimize rings are making the table go wonkysame scan as above: trying to get it to work

StJohnCT019-2 Not successful spinning table at 40 degrees into scan same scan as above: trying to get it to work

StJohnCT019-3 scan successful but there is a huge ring artifact same scan as above: trying to get it to work

StJohnCT020 Yes!!! Fingerprints interior punctate middle and edge

StJohnCT021 Yes!!! 

StJohnCT022 yes nice scan

StJohnCT023 yes same as calibrated 056

StJohnCT024 testing to see is 1 frames/projection will  make a difference and allow us to cut down time. yes: need to see if it makes a difference in resolution

StJohnCT025 same as above

StJohnCT026 yes

StJohnCT027 on the next one try a fi lter. Did longer shading correction: 200. not a great image in terms of focus… blurry. Tried noise reduction in reconstruction but didn't get a good result so selected no noise reduction. At this date the noise and beam hardening seemed to get a lot worse. 

StJohnCT028 Quite a bit of movement between sequential images.  Not a great scan, fairly blurry. Terrible scan! You can see the movement in recon in VG

StJohnCT029 better quality scan than 28… not sure why. The fi lter doesn't really seem to help with noise in the images. 

StJohnCT030 Dropped 10 images will  not reconstruct

StJohnCT031 

StJohnCT032 testing shading, corrections to see if they can eliminate ring artifacts Nope… stil l  ring artifacts

StJohnCT033 same scan as above but minimize rings on No ring artifacts, stil l  pretty bad beam hardening, better than the last scan though

StJohnCT034 same scan as above but with fi lter yes, possibly one of the best ones yet

StJohnCT035 same scan as above but with 1 frames/time yes, almost as good as the one above  
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Sample ID

Use for 

analysis

? Site Name

Borden # 

(where 

available)

Context within 

site (Feature, 

unit)

Vessel #, Catalogue # 

(if available)

StJohnCT036 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT037 no Bingo Pit Vil lage Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT038 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 132A V. 72, Cat. 2987

StJohnCT039 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 178 Cat. 10, 037

Amy-Andrew sherd test no Bingo Pit Vil lage Loc. 10 AgHk-42 F. 86 V. 122, Cat. 10721

StJohnCT040 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 56 V. 194, Cat. 3237

StJohnCT041 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 407 V. 120, Cat. 11070

StJohnCT042 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 589 V. 22, Cat. 9151

Nelson Jan 23 test scan no Bingo Pit Vil lage Loc. 10 AgHk-42 F. 589 V. 22, Cat. 9151

Nelson Jan 23 test 1 no Bingo Pit Vil lage Loc. 10 AgHk-42 F. 589 V. 22, Cat. 9151

StJohnCT043 yes Bingo Pit Vil lage Loc. 10 AgHk-42 Sq. Feature 301: not clear on the tagV. 93, Cat. 1651

StJohnCT044 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 302 B V. 41, Cat. 8172

StJohnCT045 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 74 V. 155, Cat. 9276

StJohnCT046 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 590 V. 148, Cat. 5306

StJohnCT047 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 323 Cat. 6749

StJohnCT048 yes Bingo Pit Loc. 3 AgHk-40 F. 37 V. 7, Cat. 247

StJohnCT049 yes Bingo Pit Loc. 3 AgHk-40 F. 32 V. 2, Cat. 224

StJohnCT050 -same V as 8 yes Bingo Pit Loc. 3 AgHk-40 F. 5 V. 12, Cat. 441

StJohnCT051 yes Bingo Pit Loc. 3 AgHk-40 F. 5 V. 1 Cat. 418

StJohnCT052 yes Figura AgHk-52 F. 100 V. 39, Cat. 531

StJohnCT053 yes Inland West Pit Loc. 6 AgHk-56 F. 3 Cat. 59, V. 2/3?

StJohnCT054 yes Van Bree AgHk-32 F. 58 V. 30

StJohnCT055 yes same vessel as 008Van Bree AgHk-32 F. 71 V. 37, Cat. 323

StJohnCT056 calibratedFigura AgHk-52 F. 6 V. 73/74, Cat. 1091

StJohnCT057 calibratedBingo Pit Loc. 3 AgHk-40 F. 37 V. 7, Cat. 247

StJohnCT058 calibratedBingo Pit Vil lage Loc. 10 AgHk-42 F. 589 V. 22, Cat. 9151

StJohnCT059 calibratedBingo Pit Vil lage Loc. 10 AgHk-42 F. 589 V. 22, Cat. 9151

StJohnCT060 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 301 Cat. 13090

StJohnCT061 yes Van Bree AgHk-32 F. 8 V. 6

StJohnCT062 yes Van Bree AgHk-32 F. 73, F. 71 V. 35, Cat. 391

StJohnCT063 yes Bingo Pit Loc. 3 AgHk-40 F. 1, cat 474 V. 4

StJohnCT064 yes Van Bree AgHk-32 F. 71 V. 48/3

StJohnCT065 yes Figura AgHk-52 F. 24 Cat. 1256

StJohnCT066 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 117 V. 228

StJohnCT067 yes Bingo Pit Vil lage Loc. 10 AghK-42 F. 283 V. 229, Cat. 7450

StJohnCT068 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 184 V. 64, Cat. 7031

StJohnCT069 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 291 V. 146, Cat. 2552

StJohnCT070 - same V as 020 yes Figura AgHk-52 F. 24 V. 80, V. 233, Cat. 1828

StJohnCT071 yes Figura AgHk-52 F. 92 V. 164

StJohnCT072 no Experimental n/a n/a V. 7

StJohnCT073 no Experimental no good n/a V. 3

StJohnCT074 no Experimental n/a n/a V. 9

StJohnCT075 no Experimental no good n/a V. 4

StJohnCT076 no Experimental n/a n/a V. 2

StJohnCT077 no Experimental n/a n/a V. 12

StJohnCT078 no Experimental n/a n/a V. 13

StJohnCT079 yes Van Bree AgHk-32 F. 30 V. 26

StJohnCT080 yes Lawson AgHh-1 Rim from display case in MuseumCat. L1535  
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Sample ID

Specimen Object (rim, 

body, base, pipe)

Observable Specimen characteristics (temper, 

decoration, residue, thickness, friable, coil 

breaks)

Date of scan 

DD/MM/YY

YY

Duration of scan (open 

chamber to aqusition 

computer)

StJohnCT036 rim exterior bosses, incised lines 20/01/2016 1hour 44mins 43 seconds

StJohnCT037 rim exterior bosses, incised lines 20/01/2016 53 mins

StJohnCT038 rim exterior bosses, incised decoration, castellation 20/01/2016 2hour 10 mins 54 sec. 

StJohnCT039 rim, neck sherd dentate, cws, pairs of punctates, incipent collar?  22/01/2016 2hour 10 mins 54 sec. 

Amy-Andrew sh rim above 21/01/2016 53 mins

StJohnCT040 rim, neck sherd csw, flared rim, deep circular punctates, one of which is intentionally dril led through: for mending or hanging? 22/01/2016 1hour 44mins 43 seconds

StJohnCT041 rim, neck sherd deep square punctates, incised wb type lines, diagonal l ines at rim, upright rim22/01/2016 1hour 44mins 43 seconds

StJohnCT042 rim sherd deep oblong punctate, large dentate l ike stamps at rim22/01/2016 1hour 44mins 43 seconds

Nelson Jan 23 rim deep oblong punctate, large dentate l ike stamps at rim23/01/2016 53min scan

Nelson Jan 23 1 rim deep oblong punctate, large dentate l ike stamps at rim23/01/2016 53min scan

StJohnCT043 rim small vessel, oval punctates at interior, bosses at exterior, some incised lines below rim and some fine tool used at rim.24/01/2016 53min scan

StJohnCT044 rim and neck castellation, not clear decoration, bosses, oval interior punctates, cord wrapped stick?  24/01/2016 53 min scan

StJohnCT045 rim very l ight coloured fabric, incised pattern and round "fish scale" l ike pattern at rim24/01/2016 2 hour 10 min 

StJohnCT046 rim and neck large sherd, cws and crescent shaped punctates at rim, incised horizontal l ines below26/01/2016 53min scan

StJohnCT047 rim and neck large sherd, incised cross hatch at rim, large pointy oblong punctates, typical WB diamonds at neck, white granitic temper, some slightly rounded26/01/2016 53 min scan

StJohnCT048 rim incised or stamped veritcal l ines at rim, deep pointed punctates, catellation26/01/2016 53 min

StJohnCT049 rim and neck large sherd with castellation, 4 diagonal rows of cws, bosses at exterior, rectangular punctates at interior. On Shoulder you can see the top of WB type incised diamond patterns. 26/01/2016 53 min

StJohnCT050 rim castellation, cws on diagonal, oval punctates 26/01/2016 53 min

StJohnCT051 rim and neck heavy vessel with incised? Diagonal l ines at rim and staped to create dent along the lip, unique stamped punctates in a fence-like design. 27/01/2016 53 mins

StJohnCT052 Rim sherd cws at rim, Glen meyer type neck short, with incised triangles at neck, sharp oval punctates08/03/2016 53 mins

StJohnCT053 Neck sherd Western Basin type, elongated neck with triangles incided, cws at rim09/03/2016 53 mins

StJohnCT054 rim and neck Western Basin type, elongated neck with elaborate decoration09/03/2016 53 mins

StJohnCT055 rim and neck Western Basin but not totally typical Cunningham classed it at WB, there are triangle patterns on the elongated neck09/03/2016 53 mins

StJohnCT056 see above see above 12/05/2016 53 mins

StJohnCT057 see above see above 12/05/2016 53 mins

StJohnCT058 see above see above 12/05/2016 53 mins

StJohnCT059 see above see above 12/05/2016 53 mins

StJohnCT060 complete pot 20/05/2016 4 hours, 21 mins

StJohnCT061 rim and neck Wbish 26/05/2016 53 mins

StJohnCT062 rim and neck Wbish 26/05/2016 53 mins

StJohnCT063 rim and neck 26/05/2016 53 mins

StJohnCT064 rim sherd 26/05/2016 53 mins

StJohnCT065 Rim, neck shoulder Glyph vessel: anthropomorphic decoration very typical WB shape: elongated neck30/05/2016 53 mins

StJohnCT066 Neck and shoulder, approching rimglyph vessel, typical Wb elongated nexk 30/05/2016 53 mins

StJohnCT067 Neck and shoulder, approching rimWbish 30/05/2016 53 mins

StJohnCT068 Rim, neck shoulder Small vessel, some incised patterns 30/05/2016 53 mins

StJohnCT069 Rim, neck, shoulder sherd Not WB, Glen Meyer 30/05/2016 53 mins

StJohnCT070 Rim, neck sherd Similar to 051, Castellation, deep punctates 30/05/2016 53min scan

StJohnCT071 Neck, shoulder, approching rimtriangles on neck 30/05/2016 53 min scan

StJohnCT072 Rim, neck n/a 11/08/2016 53 min scan

StJohnCT073 Rim, nexk n/a 12/08/2016 53 min scan

StJohnCT074 Rim, neck n/a 12/08/2016 53 min scan

StJohnCT075 rim, neck n/a 12/08/2016 53 min scan

StJohnCT076 rim n/a 15/08/2016 53 min scan 

StJohnCT077 rim n/a 15/08/2016 53 mins

StJohnCT078 rim, neck n/a 15/08/2016 53 mins

StJohnCT079 rim, neck n/a 15/08/2016 53 mins

StJohnCT080 Rim Neutral Iroquoian- high collared. Inclised rim decoration on exterior, 2 dril led holes.  16/08/2016 53 mins  
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Sample ID

Duration of 

reconstruction 

(in Ct Pro)

Mounting Method (loose, 

mounted, in box, foam, 

styrofoam etc.)

filter 

(type/mm) Gain 

target 

(reflective, 

rotating, etc)

StJohnCT036 14 mins clamp 0.5mm Cu 24dB refl. 

StJohnCT037 15 mins clamp none 24dB refl. 

StJohnCT038 15 mins foam 0.25Cu 24dB refl. 

StJohnCT039 16 mins clamp and foam 0.1Cu 24dB refl. 

Amy-Andrew sh 14 mins clamp 0.1Cu 24dB refl. 

StJohnCT040 15 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT041 15 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT042 15 mins clamp and small cell  foam 0.1Cu 24dB refl. 

Nelson Jan 23 15 mins clamp 0.1Cu 24dB refl. 

Nelson Jan 23 1 15 mins clamp 0.1Cu 24dB refl. 

StJohnCT043 15 mins clamp and small cell  foam 0.1Cu 24dB refl 

StJohnCT044 15 mins clamp and small cell  foam 0.1Cu 24dB refl.

StJohnCT045 15 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT046 14 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT047 15 mins foam 0.1Cu 24dB refl. 

StJohnCT048 16 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT049 13 mins foam 0.1Cu 24dB refl. 

StJohnCT050 13 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT051 13 mins clamp and small cell  foam 0.1Cu 24dB refl. 

StJohnCT052 13 mins clamp and small cell  foam 0.1Cu 24dB refl.

StJohnCT053 13 mins foam 0.1Cu 24dB refl

StJohnCT054 13 mins foam 0.1Cu 24dB refl. 

StJohnCT055 14 mins small cell  foam and clamp 0.1Cu 24dB refl. 

StJohnCT056 14 mins large cell  foam with black clampnone 24dB refl.

StJohnCT057 14 mins large cell  foam with black clampnone 24dB refl.

StJohnCT058 13 mins large cell  foam with black clampnone 24dB refl

StJohnCT059 14 mins large call  foam with black clampnone 24dB refl. 

StJohnCT060 14 mins pool noodle and museum wax1mm Cu 24dB refl.

StJohnCT061 13 mins foam and clamp 1mm Cu 24dB refl. 

StJohnCT062 14 mins foam and clamp 1mm Cu 24dB refl.

StJohnCT063 13 mins  foam and clamp 0.5mm Cu 24db refl. 

StJohnCT064 15 mins foam and black plastic clamp 1mm Cu 24db refl. 

StJohnCT065 17 mins foam box and green packing peanutso.5mm Cu 24dB refl. 

StJohnCT066 17 mins foam box and green packing peanuts0.5mm Cu 24dB refl. 

StJohnCT067 15 mins foam box and green packing peanuts0.5mm Cu 24dB refl.

StJohnCT068 15 mins foam and clamp 0.5mm Cu 24dB refl.

StJohnCT069 15 mins foam and green packing peanuts0.5mm Cu 24dB refl.

StJohnCT070 14 mins foam and clamp 0.5mm Cu 24db refl. 

StJohnCT071 14 mins foam box and green packing peanuts0.5mm Cu 24dB refl. 

StJohnCT072 14 mins foam and clamp 0.5mm Cu 24 refl. 

StJohnCT073 15 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT074 13 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT075 13 mins foam and clamp 0.5mm Cu 24db refl. 

StJohnCT076 13 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT077 15 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT078 13 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT079 13 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT080 13 mins foam and clamp 0.5mm Cu 24dB refl.  
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Sample ID KV

micro 

amps

Exposur

e 

(msecs)

# 

projecti

ons

Fram

es/ti

me

effective pixel 

size in micro 

meters

Operato

r

minimiz

e rings? Shading corrections

StJohnCT036 205 75 500 3142 1 49.83 AS yes 3 images, 128 frames to avg.

StJohnCT037 170 40 500 3142 2 49.83 AS no 5 images, 300 frames to avg. 

StJohnCT038 185 60 500 3142 2 47.90 AS yes 3 images, 128 frames to avg.

StJohnCT039 195 45 500 3142 2 68.43 AS yes 3 images, 128 frames to avg.

Amy-Andrew sh 195 45 500 3142 2 47.96 AN no 5 images, 350 frames to avg. 

StJohnCT040 195 45 500 3142 1 73.63 AS yes 3 images, 128 frames to avg.

StJohnCT041 195 45 500 3142 1 57.10 AS yes 3 images, 128 frames to avg.

StJohnCT042 195 45 500 3142 1 44.30 AS yes 3 images, 128 frames to avg.

Nelson Jan 23 195 45 500 3142 2 43.98 AN no 3 images, 500 frames to average

Nelson Jan 23 1 195 45 500 3142 2 42.35 AN no 3 images, 400 frames to avg.

StJohnCT043 195 45 500 3142 2 35.51 AS no 3 images, 500 frames to average

StJohnCT044 195 45 500 3142 2 54.72 AS no 3 images, 600 to avg.

StJohnCT045 195 40 500 3142 2 35.85 AS yes 3 images, 300 to avg. 

StJohnCT046 195 45 500 3142 2 81.70 AS no 3 images, 600 to avg.

StJohnCT047 200 45 500 3142 2 95.20 AS no 3 images, 600 to avg.

StJohnCT048 195 45 500 3142 2 56.12 AS no 3 images, 600 to avg.

StJohnCT049 195 45 500 3142 2 87.08 AS no 3 imgaes, 600 to avg. 

StJohnCT050 195 45 500 3142 2 64.22 AS no tried using shading correction from the last scan 3 images, 600 to avg. 

StJohnCT051 200 47 500 3142 2 64.89 AS no 3 images, 600 to avg.

StJohnCT052 154 35 1 3142 1 66.49 AS no 3 images, 128 frames to avg.

StJohnCT053 145 40 1 3142 1 114.71 AS no 3 images, 128 frames to avg.

StJohnCT054 145 35 1 3142 1 97.59 AS no 3 images, 128 frames to avg.

StJohnCT055 145 35 1 3142 1 71.12 AS no 3 images, 128 frames to avg.

StJohnCT056 100 55 1 3142 1 n/a AS no 3 images, 128 frames to avg.

StJohnCT057 100 55 1 3142 1 61.02 AS no 3 images, 128 frames to avg.

StJohnCT058 100 55 1 3142 1 n/a AS no 3 images, 128 frames to avg.

StJohnCT059 120 35 1 3141 1 54.13 AS no 3 images, 128 frames to avg.

StJohnCT060 165 92 1 3141 80.75 AS yes 3 images, 150 frames to avg.

StJohnCT061 170 95 1 3141 1 72.57 AS no 3 images, 150 frames to avg.

StJohnCT062 170 80 1 3141 1 69.20 AS no 3 images, 150 frames to avg.

StJohnCT063 175 42 1 3141 1 56.96 AS no 3 images, 150 frames to avg.

StJohnCT064 170 80 1 3141 1 37.20 AS no 3 images, 150 frames to avg.

StJohnCT065 160 60 1 3142 1 112.98 AS no 3 images, 150 frames to avg.

StJohnCT066 160 60 1 3141 1 112.98 AS no 3 images, 150 frames to avg.

StJohnCT067 160 55 1 3141 1 107.39 AS no 3 images, 150 frames to avg.

StJohnCT068 155 55 1 3141 1 68.93 AS no 3 images, 150 frames to avg.

StJohnCT069 160 55 1 3141 1 108.95 AS no 3 images, 150 frames to avg.

StJohnCT070 155 58 1 3141 1 74.83 AS no 3 images, 150 frames to avg.

StJohnCT071 160 55 1 3141 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT072 150 65 1 3142 1 54.81 AS no 3 images, 150 frames to avg.

StJohnCT073 150 65 1 3142 1 n/a AS no 3 images, 150 frames to avg.

StJohnCT074 150 65 1 3142 1 56.05 AS no 3 images, 150 frames to avg.

StJohnCT075 150 65 1 3141 1 81.24 AS no 3 images, 150 frames to avg.

StJohnCT076 150 65 1 3141 1 35.99 AS no 3 images, 150 frames to avg.

StJohnCT077 150 65 1 3141 1 43.13 AS no 3 images, 150 frames to avg.

StJohnCT078 150 65 1 3141 1 55.94 AS no 3 images, 150 frames to avg.

StJohnCT079 165 60 1 3141 1 50.23 AS no 3 images, 150 frames to avg.

StJohnCT080 165 60 1 3141 1 81.32 AS no 3 images, 150 frames to avg. 
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Sample ID Comments Scan Successful

StJohnCT036 same scan as above but with .5mm Cu fi lter…had to use much higher kV and amps  Also using the clamp to see if there is less movement. A bit less noise than the 0.1mm Cu fi lter, sti l l  some. Not really a perceptable difference. 

StJohnCT037 Same as scan 32, to see if even longer shading corrections eliminate rings. Stil l  rings. Maybe less than before?

StJohnCT038 Fingerprints exterior punctate left

StJohnCT039 long scan, normal shading. Testing clamping the foam into the clamp. pretty nice scan 

Amy-Andrew sh longer shading corrections. Was a fast scan and seemed to improve rings but not eliminate them 

StJohnCT040 trying foam in clamp mounting. Took cell  photo The scans with 2 frames/time are better in terms of noise

StJohnCT041 not really a great scan. 

StJohnCT042 same as calibrated 058 and 059

Nelson Jan 23 Andrew running tests with shading corrections to get rid of rings seemed to get rid of rings. Longer shading corrections might be the answer! 

Nelson Jan 23 1 same as above, this shading correction takes 10 mins maybe a hint of the ring core but not visible in the axial view

StJohnCT043 this shading correction takes 13 mins. We shall see if there are rings. maybe a hint of the ring core but not visible in the axial view. The foam really showed up in this scan…. Need more large cell  foam

StJohnCT044 this shading correctiont takes 15 mins. Fingerprints exterior Bosses at the left

StJohnCT045 going back to long scan… just because I am going to leave and go to the barn.  

StJohnCT046 had some trouble mounting this sherd… hopefully won't get too much movement. 

StJohnCT047 mounted in foam thing

StJohnCT048 Fingerprints on inside bosses! May want to run a higher resolution scan of this one later! Hilary is going to run a 3D scan. same as calibrated 57

StJohnCT049 mounted in foam thing

StJohnCT050 See if this turns out okay and if so may not need to do shading correction every time. 

StJohnCT051 similar vessels in terms of decoration at Figura

StJohnCT052 First scan since engineer. Autoconditioning stil l  a problem, seems to be taking less kv and micro amps to get penetration on histogram. Nice scan

StJohnCT053 neck to get typical WB type. 

StJohnCT054 In these last two, recommended to just do one frame to reduce noise, because you are not averaging out 2 frames but only correcting for the noise on one frame. 

StJohnCT055 last one of first sample set. I don't really see an improvement in noise so switch back to 500 and 2frames for the next batch? 

StJohnCT056 Calibrated scan: scanned with water phantom really nice quailty scan. Maybe lower kv is better. 

StJohnCT057 Calibrated scan: scanned with water phantom

StJohnCT058 Calibrated scan: water phantom: tried glitter tube phantom with distil led water to see if it is more accurate. 

StJohnCT059 Calibrated scan: scanned with glitter tube water phantom and with glitter tube full  of quartz from Linda Howie

StJohnCT060 2 frames per projection on aquision screen, trying for a nicer scan Museum wax is too close to ceramic. Do not use because it is hard to segment.

StJohnCT061 1 frames to average. 

StJohnCT062

StJohnCT063 fingerprints on exterior bosses

StJohnCT064

StJohnCT065

StJohnCT066

StJohnCT067

StJohnCT068

StJohnCT069

StJohnCT070 fingerprints see if it matches 51 in manufacture

StJohnCT071 too large a sample: might screw up shading corrections. Cropped out bottom with bad shading correction.

StJohnCT072

StJohnCT073 Lost this scan, rescanned as 095

StJohnCT074

StJohnCT075

StJohnCT076

StJohnCT077

StJohnCT078

StJohnCT079 really nice scan

StJohnCT080 this is not the greatest sample as there are lots of mends.  
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Sample ID

Use for 

analysis

? Site Name

Borden # 

(where 

available)

Context within 

site (Feature, 

unit)

Vessel #, Catalogue # 

(if available)

StJohnCT081 yes Lawson AgHh-1 From display case Cat. 27269, cat. 28004

StJohnCT082 yes Praying Mantis AfHi-178 MOA box 2047 Cat. 157 c and b 

StJohnCT083 yes Praying Mantis AfHi-178 MOA box 2052 Cat. 1404 and 1405

StJohnCT084 yes Praying Mantis AfHi-178 MOA box 2049 F. 2 Cat. 430-625 #625

StJohnCT085 yes Van Bree AgHk-32 F. 291 V. 23

StJohnCT086 yes Bingo Pit Vil lage Loc. 10 AgHk-42 sq 433 Cat. 1103

Incomplete 4 no Bingo Pit Vil lage Loc. 10 AgHk-42 F. 364 Cat. 9748

StJohnCT087 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 364 Cat. 9748

StJohnCT088 yes Bingo Pit Vil lage Loc. 10 AgHk-42 Square 241 Cat. 1682

StJohnCT089 yes Figura AgHk-52 F. 116 Cat. 1257

Incomplete 5 no Routledge AlGu-18? Midden crockery

StJohnCT090 -same V as 028 yes Figura AgHk-52 F. 94 V. 93, Cat. 285

StJohnCT091 yes Figura AgHk-52 F. 91 V. 57, Cat. 410

StJohnCT092 yes Routledge AlGu-18? Midden crockery

StJohnCT093-rescan of 030 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 461 Cat. 8571

StJohnCT094- rescan of 028 no Figura AgHK-52 F. 89 V. 49/V. 93, Cat. 256

StJohnCT095-rescan of 073 yes Experimental n/a n/a V. 3

StJohnCT096- rescan of 028 yes Figura AgHK-52 F. 89 V. 49/V. 93, Cat. 256

StJohnCT097- same V. as 050 yes Bingo Pit Loc. 3 AgHk-40 F. 5 V. 12, Cat. 466

StJohnCT098- same V. as 064 yes Van Bree AgHk-32 F. 71 V. 3, Cat. 498

StJohnCT099 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 99 V. 135, Cat. 11411

StJohnCT100 - same V. as 051 yes Bingo Pit Loc. 3 AgHk-40 F. 5 V. 1, Cat. 435

StJohnCT101 -same V. as 044 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 302 B V. 41, Cat. 9791

StJohnCT102 - same V. as 049 yes Bingo Pit Loc. 3 AgHk-40 F. 32 V. 2, Cat. 225

StJohnCT103 yes Bingo Pit Vil lage Loc. 10 AgHk-42 F. 140 L. 3 Cat. 13129

StJohnCT104 rescan of 075 yes Experimental n/a n/a V. 4

StJohnCT105 yes Inland West Pit Loc. 9 AgHk-58 F. 103 V. 42 -1

StJohnCT106 yes Inland West Pit Loc. 9 AgHk-58 F. 103 V. 42 -2 can't tell  catalogue number for each sherd

StJohnCT107 yes Inland West Pit Loc. 9 AgHk-58 F. 21 V. 80, Cat. 2348

StJohnCT108 no Inland West Pit Loc. 9 AgHk-58 F. 56 V. 33, Cat. 367

StJohnCT109-rescan of 108 yes Inland West Pit Loc. 9 AgHk-58 F. 56 V. 33, Cat. 367

StJohnCT110 yes Inland West Pit Loc. 9 AgHk-58 F. 364 V. 15

StJohnCT111 yes Inland West Pit Loc. 9 AgHk-58 F. 16 V. 8, Cat. 2074

StJohnCT112 yes Inland West Pit Loc. 9 AgHk-58 F. 38 V. 19

StJohnCT113 yes Inland West Pit Loc. 9 AgHk-58 F. 41 V. 88, Cat. 780

StJohnCT114 yes Inland West Pit Loc. 3 AgHk-54 F. 22 V. 14, Cat. 404

StJohnCT115 yes Inland West Pit Loc. 3 AgHk-54 F. 24 V. 2, Cat. 247

StJohnCT116 yes Inland West Pit Loc. 3 AgHk-54 F. 38 V. 29, Cat. 543

StJohnCT117 yes Inland West Pit Loc. 3 AgHk-54 F. 85 V. 33, Cat. 382

StJohnCT118 same V as 119 yes Inland West Pit Loc. 3 AgHk-54 F. 19 V. 25, Cat. 468

StJohnCT119 same V. as 118 yes Inland West Pit Loc. 3 AgHk-54 F. 19 V. 25, Cat. 464

StJohnCT120 yes Bruner-Colasanti AaHq-8 F. 189 unknown

StJohnCT121 yes Dymock AeHj-2 unknown unknown

StJohnCT122 no Bruner-Colasanti AaHq-8 F. 142 unknown

StJohnCT123 no Dymock AeHj-2 38? Maybe unknown

StJohnCT124 yes but not included in final summaryDymock AeHj-2 38? Maybe unknown

StJohnCT125 yes Bruner-Colasanti AaHq-8 F. 142 unknown  
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Sample ID

Specimen Object (rim, 

body, base, pipe)

Observable Specimen characteristics (temper, 

decoration, residue, thickness, friable, coil 

breaks)

Date of scan 

DD/MM/YY

YY

Duration of scan (open 

chamber to aqusition 

computer)

StJohnCT081 Rim, neck, shoulder sherd Neutral Iroquoian- Lawson incised. One line of incised diagonals at rim, small dentate l ine under. 16/08/2016 53 mins

StJohnCT082 Rim, neck GM two rows cws diagonals, neck roughly vertical incisions, interior punctates16/08/2016 53 mins

StJohnCT083 Rim, neck GM two rows diagonal incised at exterior of rim, interior punctates. 17/08/2016 53 mins

StJohnCT084 Rim, neck, body sherd GM 4 rows incised diagonals at exterior and interior, one opposite at interior. 17/08/2016 53 mins

StJohnCT085 Rim sherd GM cross hatch at rim, one incised diagonals below, castellation18/08/2016 53 mins

StJohnCT086 pipe bowl one row of dots around rim 18/08/2016 53 mins

Incomplete 4 pipe bowl undecorated, sits flat at base 18/08/2016 53 mins

StJohnCT087 pipe bowl undecorated, sits flat at base 25/08/2016 53 mins

StJohnCT088 pipe stem and mouthpiece undecorated, sits flat at base 25/08/2016 53 mins

StJohnCT089 flared pipe bowl incised concentric l ines 25/08/2016 53 mins

Incomplete 5 Rim of dish, milk pan? dirty, brown glaze 26/08/2106 53 mins

StJohnCT090 Rim and neck Wbish 31/08/2016 53 mins

StJohnCT091 rim and neck Wbish 31/08/2016 53 mins

StJohnCT092 Rim of dish, milk pan? dirty, brown glaze 31/08/2016 53 mins

StJohnCT093 rim, neck sherd Deep exterior punctates, cws at rim 05/12/2016 53 mins

StJohnCT094 rim, neck sherd western basin tradition triangle pattern, castellation, cws at rim05/12/2016 53 mins

StJohnCT095 Rim, neck 05/12/2016 53 min scan

StJohnCT096 rim, neck sherd western basin tradition triangle pattern, castellation, cws at rim05/12/2016 53 mins

StJohnCT097 rim  cws on diagonal, oval punctates 05/12/2016 53 min

StJohnCT098 Rim, neck, shoulder sherd punctates, obliques, see cunningham 07/12/2016 53 mins

StJohnCT099 Rim, neck shoulder cws, castellation 07/12/2016 53 mins

StJohnCT100 Rim, neck shoulder same as 051 but with castellation 07/12/2016 53 mins

StJohnCT101 Rim, neck, shoulder sherd same as V. 44 08/12/2016 53 mins

StJohnCT102 Rim, neck same as V. 49 but no casteallation 08/12/2016 53 mins

StJohnCT103 pipe bowl undecorated, smooth bowl 03/01/2017 53 mins

StJohnCT104 rim, neck 12/01/2017 53 min scan

StJohnCT105 Rim, neck two castellations, large rim sherd 12/01/2017 53 mins

StJohnCT106 Rim, neck, shoulder sherd castellated, punctates 12/01/2017 53 mins

StJohnCT107 Rim sherd Applied? Decoration, bumps out 12/01/2017 53 mins

StJohnCT108 Rim sherd triangles on neck/rim 12/01/2017 53 mins

StJohnCT109 Rim sherd triangles on neck/rim 13/01/2017 53 mins

StJohnCT110 Rim sherd trianlges incised on separate neck sherd, maybe fi l led with dots. 13/01/2017 53 mins

StJohnCT111 Rim, neck sherd stamped obliques 13/01/2017 53 mins

StJohnCT112 Rim sherd csw, castellation 13/01/2017 53 mins

StJohnCT113 Rim, neck sherd csw, castellation 13/01/2017 53 mins

StJohnCT114 Rim, neck sherd cws, appears to be incised triangles on neck 13/01/2017 53 mins

StJohnCT115 Rim, neck, shoulder castellations 13/01/2017 53 mins

StJohnCT116 Rim, neck, shoulder sherd Multiple castellations 18/01/2017 53 mins

StJohnCT117 Rim, neck, shoulder 18/01/2017 53 mins

StJohnCT118 Rim, neck, shoulder sherd castellations, large interior punctates 18/01/2017 53 mins

StJohnCT119 Rim, neck sherd castellations, large interior punctates 18/01/2017 53 mins

StJohnCT120 Rim, neck, shoulder sherd Classic WB with triangular neck motif 25/01/2017 53 mins

StJohnCT121 Rim, neck sherd deep punctates 25/01/2017 53 mins

StJohnCT122 Rim, neck sherd rolled rim 26/01/2017 53 mins

StJohnCT123 Full profile small vessel, interior punctates 26/01/2017 53 mins

StJohnCT124 Full profile small vessel, interior punctates 30/01/2017 53 mins

StJohnCT125 Rim, neck sherd rolled rim 30/01/2017 53 mins  
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Sample ID

Duration of 

reconstruction 

(in Ct Pro)

Mounting Method (loose, 

mounted, in box, foam, 

styrofoam etc.)

filter 

(type/mm) Gain 

target 

(reflective, 

rotating, etc)

StJohnCT081 14 mins foam box and green packing peanuts0.5mm Cu 24dB refl. 

StJohnCT082 14 mins foam and clamp 0.5mm Cu 24dB relf. 

StJohnCT083 15 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT084 13 mins foam box and green packing peanuts0.5mm Cu 24dB refl.

StJohnCT085 18 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT086 15 mins foam and clamp 0.5mm Cu 24dB refl. 

Incomplete 4 14 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT087 15 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT088 14 mins foam and clamp 0.5mm Cu 24dB refl.

StJohnCT089 17 mins foam and clamp 0.5mm Cu 24dB refl.

Incomplete 5 16 mins foam and clamo 0.5mm Cu 24dB relf. 

StJohnCT090 14 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT091 15 mins foam box and green packing peanuts0.5mm Cu 24dB refl.

StJohnCT092 16 mins foam and clamp 0.5mm Cu 24db refl. 

StJohnCT093 15 mins foam and clamp 0.5mm Cu 24bB refl. 

StJohnCT094 15 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT095 16 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT096 14 mins foam and clamp 0.5mm Cu 24dB refl. 

StJohnCT097 13 mins clamp and large cell  foam 0.5mm Cu 24dB refl. 

StJohnCT098 14 mins foam box and green packing peanuts, no platform0.5mm Cu 24dB refl.

StJohnCT099 14 mins foam box and green packing peanuts, no platform0.5mm Cu 24dB refl. 

StJohnCT100 13 mins foam box and green packing peanuts, no platform0.5mm Cu 24dB refl. 

StJohnCT101 15 mins foam box and green packing peanuts no platform0.5mm Cu 24dB refl. 

StJohnCT102 15 mins foam slot taped to table 0.5mm Cu 24dB refl.

StJohnCT103 15 mins foam and clamp 0.25mm Cu 24dB refl.

StJohnCT104 15 mins foam and clamp 0.5mm Cu 24db refl. 

StJohnCT105 15 mins foam box green peanuts 0.5mm Cu 24dB refl. 

StJohnCT106 14 mins foam box green peanuts 0.5mm Cu 24dB refl.

StJohnCT107 14 mins foam pool noodle on platform0.5mm Cu 24dB refl.

StJohnCT108 14 mins foam on platform 0.5mm Cu 24dB refl.

StJohnCT109 13 mins shallow foam box on platform0.5mm Cu 24dB refl.

StJohnCT110 15 mins in a foam cup with green peanuts securing, foam cup is secured to grey foam0.5mm Cu 24dB refl.

StJohnCT111 15 mins in a foam cup with green peanuts securing, foam cup is secured to grey foam0.5mm Cu 24dB refl.

StJohnCT112 13 mins in a foam cup with green peanuts securing, foam cup is secured to grey foam0.5mm Cu 24dB refl.

StJohnCT113 14 mins in a foam cup with green peanuts securing, foam cup is secured to grey foam0.5mm Cu 24dB refl.

StJohnCT114 14 mins in a foam cup with green peanuts securing, foam cup is secured to grey foam0.5mm Cu 24dB ref.

StJohnCT115 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT116 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT117 14 mins low foam box with grey and white foam surrounding0.5mm Cu 24dB refl.

StJohnCT118 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT119 14 mins low foam box with grey and white foam surrounding0.5mm Cu 24dB refl.

StJohnCT120 14 mins low foam box with grey and white foam surrounding0.5mm Cu 24dB refl.

StJohnCT121 15 mins low foam box with pool noodle and white foam0.5mm Cu 24db refl.

StJohnCT122 13 mins low foam box with pool noodle and white foam0.5mm Cu 24dB refl.

StJohnCT123 13 mins low foam box with pool noodle and white foam0.5mm Cu 24dB refl.

StJohnCT124 14 mins low foam box with white foam0.5mm Cu 24dB refl. 

StJohnCT125 14 mins low foam box with pool noodle and white foam0.5mm Cu 24dB refl.  
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Sample ID KV

micro 

amps

Exposur

e 

(msecs)

# 

projecti

ons

Fram

es/ti

me

effective pixel 

size in micro 

meters

Operato

r

minimiz

e rings? Shading corrections

StJohnCT081 160 60 1 3141 1 89.45 AS no 3 images, 150 frames to avg.

StJohnCT082 165 60 1 3141 1 67.41 AS no 3 images, 150 frames to avg.

StJohnCT083 160 65 1 3141 1 92.87 AS no 3 images, 150 frames to avg.

StJohnCT084 160 65 1 3142 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT085 165 60 1 3142 1 55.71 AS no 3 images, 150 frames to avg.

StJohnCT086 165 65 1 3142 1 42.99 AS no 3 images, 150 frames to avg.

Incomplete 4 160 65 1 3142 1 n/a AS no 3 images, 150 frames to avg.

StJohnCT087 150 60 1 3142 1 39.39 AS no 3 images, 150 frames to avg.

StJohnCT088 145 60 1 3142 1 39.39 AS no 3 images, 150 frames to avg.

StJohnCT089 150 60 1 3142 1 52.28 AS no 3 images, 150 frames to avg.

Incomplete 5 160 60 1 3142 1 n/a AS no 3 images, 150 frames to avg.

StJohnCT090 160 60 1 3142 1 53.85 AS no 3 images, 150 frames to avg.

StJohnCT091 160 60 1 3142 1 92.56 AS no 3 images, 150 frames to avg.

StJohnCT092 160 60 1 3142 1 63.18 AS no 3 images, 150 frames to avg.

StJohnCT093 160 60 1 3141 1 63.60 AS no 3 images, 150 frames to avg.

StJohnCT094 160 55 1 3141 1 n/a AS no 3 images, 150 frames to avg.

StJohnCT095 150 65 1 3141 1 43.10 AS no 3 images, 150 frames to avg.

StJohnCT096 160 55 1 3141 1 69.62 AS no 3 images, 150 frames to avg.

StJohnCT097 160 60 1 3141 1 54.79 AS no 3 images, 150 frames to avg.

StJohnCT098 160 60 1 3141 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT099 160 55 1 3141 1 95.78 AS no 3 images, 150 frames to avg.

StJohnCT100 160 55 1 3141 1 105.35 AS no 3 images, 150 frames to avg.

StJohnCT101 160 60 1 3141 1 87.67 AS no 3 images, 150 frames to avg.

StJohnCT102 160 58 1 3141 1 52.11 AS no 3 images, 150 frames to avg.

StJohnCT103 175 70 1 3141 1 36.19 AS no 3 images, 150 frames to avg.

StJohnCT104 160 60 1 3141 1 66.87 AS no 3 images, 150 frames to avg.

StJohnCT105 160 63 1 3141 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT106 165 60 1 3141 1 82.41 AS no 3 images, 150 frames to avg.

StJohnCT107 165 60 1 3141 1 32.91 AS no 3 images, 150 frames to avg.

StJohnCT108 170 55 1 3141 1 63.72 AS no 3 images, 150 frames to avg.

StJohnCT109 172 55 1 3141 1 65.31 AS no 3 images, 150 frames to avg.

StJohnCT110 170 53 1 3141 1 35.58 AS no 3 images, 150 frames to avg.

StJohnCT111 170 55 1 3141 1 39.46 AS no 3 images, 150 frames to avg.

StJohnCT112 170 55 1 3141 1 40.68 AS no 3 images, 150 frames to avg.

StJohnCT113 170 54 1 3141 1 40.68 AS no 3 images, 150 frames to avg.

StJohnCT114 170 55 1 3141 1 55.10 AS no 3 images, 150 frames to avg.

StJohnCT115 170 55 1 3141 1 112.63 AS no 3 images, 150 frames to avg.

StJohnCT116 170 55 1 3141 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT117 168 55 1 3141 1 75.79 AS no 3 images, 150 frames to avg.

StJohnCT118 170 55 1 3141 1 109.72 AS no 3 images, 150 frames to avg.

StJohnCT119 168 55 1 3141 1 83.29 AS no 3 images, 150 frames to avg.

StJohnCT120 170 55 1 3141 1 81.23 AS no 3 images, 150 frames to avg.

StJohnCT121 170 55 1 3141 1 73.05 AS no 3 images, 150 frames to avg.

StJohnCT122 170 57 1 3141 1 78.66 AS no 3 images, 150 frames to avg.

StJohnCT123 170 58 1 3141 1 75.07 AS no 3 images, 150 frames to avg.

StJohnCT124 175 55 1 3141 1 69.48 AS no 3 images, 150 frames to avg.

StJohnCT125 170 60 1 3141 1 78.43 AS no 3 images, 150 frames to avg. 
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Sample ID Comments Scan Successful

StJohnCT081

StJohnCT082

StJohnCT083

StJohnCT084 had to cut out the bottom of the pot to fit it in, might be overexposed. 

StJohnCT085 seems dark, hard to get the lower end of the histogram up above 7000 without blowing out the top end. 

StJohnCT086 compare pipe construction to pot construction

Incomplete 4 Scan Failed:  Blown Fil iment!

StJohnCT087 not great, there is some sort of noise at the top of the pipe bowl

StJohnCT088

StJohnCT089 see page 33 of the report

Incomplete 5 see what a wheel thrown vessel looks l ike

StJohnCT090 Already scanned part of this vessel! 

StJohnCT091 pretty good scan

StJohnCT092 see what a wheel thrown vessel looks l ike

StJohnCT093 This = 030 rescan, okay scan, not great. Stil l  some movement from first to last frame. A bit noisy but workable. 

StJohnCT094 rescan of 028- FAILED can't get centre of rotation to work.

StJohnCT095 rescan of 073-okay

StJohnCT096 rescan of 028

StJohnCT097 Attempt to see if the castellation with fold and added clay in scan 050 construction differs in a different part of the rim. okay, the inclusions are close to clay density

StJohnCT098 Trying to mount large samples, this is mounted horizontally with part of the rim and part of the shoulder cut out of the edges of the scan. See if this works? 

StJohnCT099 Multiple castellations seems to be less movement in scans when they are right on the turntable: is there movement in platform? 

StJohnCT100 

StJohnCT101 Compare the castellation construction on this one to the others fingerprints on bosses

StJohnCT102 Compare this one to 49 and see if castellation vs not casetellation built differntly. 

StJohnCT103 testing for ring artifacts

StJohnCT104 rescan of 075

StJohnCT105 Trying to see if the castellations are all  built in the same way. fingerprints

StJohnCT106 Trying to see if the castellations are all  built in the same way. 

StJohnCT107 Interested in how the raisded decoration was constructed. 

StJohnCT108 Not good mounting, it rocked from first to last image. 

StJohnCT109 Rescan of above tried shallow box mounting. This one was also 3D scanned by Nelson-Ask Hillary

StJohnCT110 This one was also 3D scanned by Nelson-Ask Hillary (might be different rim sherd)

StJohnCT111 This one was also 3D scanned by Nelson- Ask Hillary

StJohnCT112 Really nice scan This one was also 3D scanned by Nelson-Aks Hillary

StJohnCT113

StJohnCT114

StJohnCT115 

StJohnCT116 Large sherd, cut of one edge of the rim in the scan. Too big to move for shading correction, had to move it then put back, seems too dark?

StJohnCT117

StJohnCT118 Scanning this one and one other sherd of the same vessel to examine castellation construction

StJohnCT119 Scanning this one and one other sherd of the same vessel to examine castellation constructionFingerprints

StJohnCT120

StJohnCT121

StJohnCT122 Lots of mends but should be able to see the rim construction. under rotate error by 0.25 degrees short of 360

StJohnCT123 under rotate error by 0.25 degrees short of 360

StJohnCT124

StJohnCT125  
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Sample ID

Use for 

analysis

? Site Name

Borden # 

(where 

available)

Context within 

site (Feature, 

unit)

Vessel #, Catalogue # 

(if available)

StJohnCT126 no Dymock AeHj-2 F. 29 V. 2? 

StJohnCT127 no Dymock AeHj-2 F. 29 V. 2? 

StJohnCT128 yes Dymock AeHj-2 F. 29 V. 2? 

StJohnCT129 yes Dymock AeHj-2 F. 29 Different vessel than above. 

StJohnCT130 yes Robson Road AaHp-20 Area B unknown

StJohnCT131 yes Cherry Lane AaHp-21 unknown unknown

StJohnCT132 yes Figura AgHk-52 F. 32 V. 25, Cat. 93

StJohnCT133a no Figura AgHk-52 F. 24 Cat. 1806

StJohnCT133b no Inland West Pit Loc. 3 AgHk-54 F. 38 Cat. 521

StJohnCT133c no Figura AgHk-52 F. 23 Cat. 826

StJohnCT134a no Bingo Pit Village Loc. 10 AgHk-42 F. 290 Cat. 6950

StJohnCT134b no Bingo Pit Village Loc. 10 AgHk-42 F. B Cat. 9824

StJohnCT134c no Bingo Pit Village Loc. 10 AgHk-42 F. 527 Cat. 10945

StJohnCT135 no Inland West Pit Loc. 3 AgHk-54 F. 38 Cat. 521

StJohnCT136 no Figura AgHk-52 F. 24 Cat. 1806

StJohnCT137 no Figura AgHk-52 F. 24 Cat. 1806

StJohnCT138 no Bingo Pit Village Loc. 10 AgHk-42 F. 528 Cat. 2174

StJohnCT139a no Bingo Pit Village Loc. 10 AgHk-42 F. 527 Cat. 10945

StJohnCT139b no Inland West Loc. 3 AgHk-54 F. 38 Cat. 521

StJohnCT139c no Figura AgHk-52 F. 23 Cat. 826

StJohnCT140 no Bingo Pit Village Loc. 10 AgHk-42 F. 475 Cat. 6253
StJohnCT141a no Bingo Pit Village Loc. 10 AgHk-42 F. 290 Cat. 6950

StJohnCT141b no Bingo Pit Village Loc. 10 AgHk-42 F. B Cat. 9824

Ferris Vessel 36 yes Van Bree AgHk-32 unknown V. 36

iroquioan vessel yes McKeown Site BeFv-1 unknown unknown  

Sample ID

Specimen Object (rim, 

body, base, pipe)

Observable Specimen characteristics (temper, 

decoration, residue, thickness, friable, coil 

breaks)

Date of scan 

DD/MM/YY

YY

Duration of scan (open 

chamber to aqusition 

computer)

StJohnCT126 Rim, neck, shoulder sherd Classic WB with triangular neck motif 31/01/2017 53 mins

StJohnCT127 Rim, neck, shoulder sherd Classic WB with triangular neck motif 31/01/2017 53 mins

StJohnCT128 Rim, neck, shoulder sherd Classic WB with triangular neck motif 31/01/2017 53 mins

StJohnCT129 Rim, neck, shoulder sherd Classic WB with triangular neck motif 31/01/2017 53 mins

StJohnCT130 Rim, neck, shoulder sherd Earlier than most, Rivere au Vase Phase, cord wrapped stick, really ovoius paddle and anvil marks on interior of vessel. Thinner walls? 01/02/2017 53 mins

StJohnCT131 Rim, neck, shoulder sherd Classic WB with triangular neck motif 01/02/2017 53 mins

StJohnCT132 Rin, neck sherd -2 pieces obilqies and horizontals, small castellation 15/02/2017 53 mins

StJohnCT133a Lump of clay none 06/07/2017 53 mins

StJohnCT133b Lump of clay none 06/07/2017 53 mins

StJohnCT133c Lump of clay none 06/07/2017 53 mins

StJohnCT134a Lump of clay none 06/07/2017 53 mins

StJohnCT134b Lump of clay none 06/07/2017 53 mins

StJohnCT134c Lump of clay none 06/07/2017 53 mins

StJohnCT135 Lump of clay none 06/07/2017 53 mins

StJohnCT136 Lump of clay none 06/07/2017 53 mins

StJohnCT137 Lump of clay none 10/07/2017 53 mins

StJohnCT138 Lumps of clay none 10/10/2017 53 mins

StJohnCT139a Lump of clay none 11/07/2017 53 mins

StJohnCT139b Lump of clay none 11/07/2017 53 mins

StJohnCT139c Lump of clay none 11/07/2017 53 mins

StJohnCT140 Lumps of clay none 11/07/2017 53 mins
StJohnCT141a Lump of clay none 11/07/2017 53 mins

StJohnCT141b Lump of clay none 11/07/2017 53 mins

Ferris Vessel 36 rim and neck stamped obliques, deep punctates unknown

iroquioan vessel complete pot SLI unknown  
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Sample ID

Duration of 

reconstruction 

(in Ct Pro)

Mounting Method (loose, 

mounted, in box, foam, 

styrofoam etc.)

filter 

(type/mm) Gain 

target 

(reflective, 

rotating, etc)

StJohnCT126 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT127 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT128 14 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT129 15 mins Foam box with green peanuts 0.5mm Cu 24dB refl.

StJohnCT130 15 mins Foam box with green peanuts 0.5mm Cu 24dB refl. 

StJohnCT131 13 mins foam balanced 0.5mm Cu 24dB refl.

StJohnCT132 13 mins foam box with second sherd mounted above in pool noodle0.5mm Cu 24dB refl.

StJohnCT133a 15 mins Foam peanuts and cups stacked 3 highnone 24dB refl.

StJohnCT133b 14 mins Foam peanuts and cups stacked 3 highnone 24dB refl. 

StJohnCT133c 14 mins Foam peanuts and cups stacked 3 highnone 24dB refl.

StJohnCT134a 14 mins Foam peanut and cup stacked none 24dB refl.

StJohnCT134b 15 mins Foam peanuts and cups stacked 3 highnone 24dB refl.

StJohnCT134c 15 mins Foam peanut and cup stacked none 24dB refl. 

StJohnCT135 16 mins Foam in cup none 24dB wrong target

StJohnCT136 14 mins Foam in cup none 24dB wrong target

StJohnCT137 15 mins Foam in cup 0.5mm Cu 24dB refl.

StJohnCT138 15 mins Stack of cooler foam none 24dB refl.

StJohnCT139a 14 mins Stack of cooler foam none 24dB refl.

StJohnCT139b 13 mins Stack of cooler foam none 24dB refl.

StJohnCT139c 14 mins Stack of cooler foam none 24dB refl.

StJohnCT140 14 mins Wedged in side of cooler foamnone 24dB refl.
StJohnCT141a 13 mins Foam stack none 24dB refl. 

StJohnCT141b 14 mins Foam stack none 24dB refl. 

Ferris Vessel 36 unknown unknown none unknown refl. 

iroquioan vessel unknown unknown 0.25 Cu unknown refl.  
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Sample ID KV

micro 

amps

Exposur

e 

(msecs)

# 

projecti

ons

Fram

es/ti

me

effective pixel 

size in micro 

meters

Operato

r

minimiz

e rings? Shading corrections

StJohnCT126 170 58 1 3141 1 111.63 AS no 3 images, 150 frames to avg.

StJohnCT127 170 58 1 3141 1 111.63 AS no 3 images, 150 frames to avg.

StJohnCT128 170 58 1 3141 1 115.78 AS no 3 images, 150 frames to avg.

StJohnCT129 165 53 1 3141 1 118.50 AS no 3 images, 150 frames to avg.

StJohnCT130 170 60 1 3141 1 109.79 AS no 3 images, 150 frames to avg.

StJohnCT131 170 58 1 3141 1 119.73 AS no 3 images, 150 frames to avg.

StJohnCT132 170 55 1 3141 1 88.94 AS no 3 images, 150 frames to avg.

StJohnCT133a 175 75 1 3141 1 n/a AS no 3 images, 150 frames to avg.

StJohnCT133b 175 75 1 3141 1 n/a AS no 4 images, 150 frames to avg.

StJohnCT133c 175 75 1 3141 1 n/a AS no 5 images, 150 frames to avg.

StJohnCT134a 180 75 1 3141 1 n/a AS no 6 images, 150 frames to avg.

StJohnCT134b 180 75 1 3141 1 n/a AS no 7 images, 150 frames to avg.

StJohnCT134c 180 75 1 3141 1 n/a AS no 8 images, 150 frames to avg.

StJohnCT135 170 75 1 3141 1 n/a AS no 9 images, 150 frames to avg.

StJohnCT136 155 80 1 3141 1 n/a AS no 3 images, 150 frames to average

StJohnCT137 175 45 1 3141 1 15.20 AS no 3 images, 150 frames to average

StJohnCT138 115 40 1 3141 1 40.54 AS no 3 images, 150 frames to average

StJohnCT139a 100 55 1 3141 1 52.68 AS no 3 images, 150 frames to average

StJohnCT139b 100 55 1 3141 1 52.68 AS n 3 images, 150 frames to average

StJohnCT139c 100 55 1 3141 1 52.68 AS n 3 images, 150 frames to average

StJohnCT140 100 55 1 3141 1 69.82 AS no 3 images, 150 frames to average
StJohnCT141a 102 55 1 3141 1 69.82 AS no 3 images, 150 frames to average

StJohnCT141b 102 55 1 3141 1 69.82 AS no 3 images, 150 frames to average

Ferris Vessel 36 125 40 500 2882 2 47.26 unknownno unknown

iroquioan vessel 180 85 250 3142 1 80.52 unknownno unknown  

Sample ID Comments Scan Successful

StJohnCT126 rotate error: short 0.25 degrees of 360

StJohnCT127 rotate error: short 0.25 degrees of 360

StJohnCT128 no errors

StJohnCT129 not an amazing scan, rescan if time

StJohnCT130

StJohnCT131 Very large vessel, difficult to mount Pieces will  be cut out of scan so see if I can get a good reconstruction of some of the rim/neck. Bad shading correction so I might need to cut some of that out. 

StJohnCT132 Testing best fit module for mending. 

StJohnCT133a Not a good quality scan I think I'm getting movement in the tower of foam cups Three lumps of clay in one scan. 133a-c bottom to top

StJohnCT133b no good

StJohnCT133c no good

StJohnCT134a failed scan Three lumps of clay in one scan. 134a-c bottom to top

StJohnCT134b failed scan

StJohnCT134c failed scan

StJohnCT135 Okay but not great scan, ring artifact and a bit of movement. One lump of clay 

StJohnCT136 wrong target One lump of clay 

StJohnCT137 wrong target One lump of clay 

StJohnCT138 Reconstructed as one volume but could be reconstructed as 3 separate if needed. 3 lumps of clay all  from same sample. (They mend) Practice mounting several samples.  

StJohnCT139a 3 lumps of clay 139a-c bottom to top

StJohnCT139b same scan as above Fingerprints

StJohnCT139c same scan as above

StJohnCT140 Reconstructed all  as one voumbe but could go back and recon each separate 6 lumps of clay all  from same sample/cat. #
StJohnCT141a 2 lumps of clay 141 a and b from bottom to top

StJohnCT141b same scan as above

Ferris Vessel 36

iroquioan vessel  
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Appendix C: VGStudio Max 2.2 Workflow 

 

This appendix outlines the steps undertaken in VGStudio Max 2.2 to isolate and record 

inclusion and void volume percentages in ceramic materials.  

Steps in image analysis: 

-Complete surface determination: automatic on the volume 

-Complete simple registration: try to line the specimen with the rim upwards, to make 

viewing easier and placement of rectangular prism easier.  

-create a new ROI from the surface of the registered volume (left click on Volume, New, 

ROI from surface) 

-erode and dilate this new ROI to try to include all interior voids.  Complete a volume 

analysis and record volume variables, export the csv file.  

-Threshold out inclusions to create an ROI of inclusions: do volume analysis, record 

volume variable and export the csv file. Split inclusion ROI and record number of 

individual ROIs.   

-Threshold out voids to create an ROI of voids (detailed steps below). Record volume 

variable and export the csv file. Split void ROI and record the number of individual 

ROIs.  

-Record the qualitative variables, take angles of void orientations and other notes.  

-Images captured for each specimen: The front, back, side of volume exterior. Inclusions 

and voids in 3D, inclusions in 3D, voids in 3D. Clipping box with voids if they are 

noteworthy. Lots of images of 2D slices showing construction techniques.  

To isolate voids in VGStudio Max 2.2: 
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-Use erode/dilate function to make sure all your voids are included in your ROI (none of 

them have their own surface), and replace ROI. If the edge of your scan is close in 

density to the voids, use the erode function to cut into the edge of your object a bit and 

replace ROI. Remember yellow lines are a preview of the ROI you are creating, blue 

lines are the existing ROI.  

(erode/dilate, Invert ROI, Thresholding, and Sutract ROI, Spilt ROI functions can all be 

found on the left bar in VG 2.2. Many are also found by right clicking on the ROI in the 

scene tree)  

-Invert this first ROI to get an inverted ROI (your background air) 

-Threshold voids and background together (grey values of 0-whatever), create an ROI of 

void and background air. 

-Control and select both the background air/inverted ROI and the voids and background 

air ROI and subtract the background air ROI from the voids and background air ROI. 

-The resulting ROI should be just the voids.  

Notes:  

-You can use the erode/dilate function to add a bit to your void ROI then do a surface 

determination to get a cleaner image in 3D.  

-In volume rendering you can check the “swap inner and outer area” to get a nicer image 

of the void ROI.  
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Appendix D: Variables recorded in VGStudio MAX 2.2 image 

analysis 

Legend: 

Experimental 
slabs 

Pipes 

Learner 

Non-Arkona 

 

StJohnCT Sample #

total volume from 2.2 in 

mm3 eroded and dialated 

to include voids in micro 

total 

volume 

in cm3

threshold of 

inclu

volume 

of inclu 

2.2 mm3

number 

of inclu 

from 

% 

volume 

inclusion

4 34192.88 341.9288 43000-65535 3171.51 306574 9.275352

neck 5 18523.7 185.237 43000-65535 1052.78 45433 5.683422

6 75936.61 759.3661 39000-65535 11329.08 81916 14.91913

8 - sameV. As 55 123777.46 1237.775 39000-65535 12372.53 55651 9.995786

9 100713.17 1007.132 34000-65535 16638.81 88333 16.52099

10 - same V. as 115 47745.71 477.4571 40000-65535 7090.7 75226 14.85097

11 122613.54 1226.135 40000-65535 12308.08 22218 10.03811

12 7876.4 78.764 51000-65535 141.13 2089380 1.791808

13 2278.85 22.7885 40000-65535 49.51 306787 2.172587

14 2920.77 29.2077 50000-65535 89.62 29086 3.068369

16 13830.25 138.3025 53000-65535 1515.36 2175326 10.95685

20 70622.68 706.2268 49000-65535 1352.45 509878 1.915036

21 59535.92 595.3592 38000-65535 11771.73 1068236 19.77248

22 89707.2 897.072 38000-65535 10725.95 47606 11.95662

23 35847.78 358.4778 39000-65535 2862.88 299262 7.986213

24 43358.81 433.5881 37500-65535 2903.91 195201 6.697393

25 99445.71 994.4571 42000-65535 10041.21 254134 10.09718

26 75233.13 752.3313 45500-65535 5995.65 258564 7.969428

27 95270.69 952.7069 41000-65535 5206.7 280588 5.465165

28 82089.51 820.8951 51000-65535 2511.84 166289 3.059879

29 55906.22 559.0622 56000-65535 1080.6 1029654 1.93288

31 21702.32 217.0232 40000-65535 1394.24 552570 6.424382

32/36 37895.9 378.959 41000-65535 4140.02 40213 10.92472

38 42540.94 425.4094 38000-65535 4315.8 93363 10.14505

39 61073.9 610.739 42000-65525 5619.13 59310 9.200542

40 112973.96 1129.74 50000-65535 4225.19 114470 3.739968  
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from 
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Inclusion 
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on: 

inclusion 
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Void Shape: 

from 

petrography 

void shape: 

secondary

4 0-26000 430.73 57748 1.259707 uniform random planar lots of vughs around inclusions

5 0-27000 480.14 68869 2.592031 uniform random planar vughs around inclusion

6 0-19500 1292.48 47208 1.702051 uniform random planar vughs around inclusiosn

8 - sameV. As 55 0-23000 3040.27 52969 2.456239 uniform random planar vughs around inclusions

9 0-19000 4060.12 836852 4.031369 uniform random planar vughs around inclusions, some vesticles

10 - same V. as 115 0-24000 1162.19 88705 2.434124 uniform random planar vughs

11 0-25000 1936.68 41208 1.579499 uniform random planar vughs around inclusions

12 0-30000 302.19 240188 3.836651 uniform random planar none

13 0-23000 52.57 85524 2.306865 uniform random vesticles planar

14 0-35000 98.48 11911 3.371714 unifom random planar vughs around voids

16 0-25000 223.41 130563 1.615372 uniform random planar some large vughs

20 0-29000 1161.51 93526 1.64467 uniform random planar small vesticles

21 0-24000 2453.94 275256 4.121781 uniform random vughs small planar voids

22 0-23000 2296.77 69323 2.560296 uniform random planar vesicles around inclusions

23 0-23000 1057.92 104200 2.951145 uniform random planar vughs around inclusions

24 0-22000 893.47 96046 2.060642 uniform random vughs planar 

25 0-24000 961.62 37210 0.96698 uniform random planar vughs around inclusions

26 0-28500 2025 323438 2.691633 uniform random planar vughs and some vesicles

27 0-22000 1592.7 254592 1.671763 uniform random planar vughs around inclusions

28 0-34000 757.73 35706 0.923053 uniform random planar vughs around inclusions

29 0-29000 402.94 118563 0.720743 uniform random planar vughs around inclusiosn

31 0-23000 352.95 132555 1.626324 uniform random planar large vughs around inclusions

32/36 0-24000 1261.45 63318 3.328724 uniform random planar vughs

38 0-22000 878.78 63143 2.065728 uniform random planar vughs around inclusions

39 0-25000 2218.7 67465 3.632812 unifom random planar vughs

40 0-30000 1680.73 101783 1.487715 uniform random planar some vughs and vesticles 
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StJohnCT Sample #

Void 

distributi

on

void 

orientati

on, 

void 

secondar

y 

thickn

ess at 

rim

wall 

thickness

: 5cm 

Micro structures at rim? 

Inferred construction 

technique? 

4 non-uniform, larger voids at 6mm and 45-50mm down from lipparallel 15-20 degrees from exterior wall fold, also non-parallel at rim11.9 10.4 looks like a folded rim, that joins up lower down

5 non-uniform, one larger void near exteriorparallel none no rim 10 difficult to tell without the rim, but appears to be added on (or folded) to the exterior

6 non-uniform, large voids from lip to 45-50mm from lipparallel 20-25 degrees from exterior wall, where the added bit meets the wall8.2 8.6 added section at rim, another large void farther down, maybe second added section

8 - sameV. As 55 non-uniform, large voids 8-10mm from lip and 60mm from lipparallel, 90at 60mm down where exterior add on clay meets, 40-45 degrees9.2 9.4 really obvious added on piece on the exterior rim. Not folded but stuck on. 

9 uniform parallel random 6.8 3.8 no really obvious construction methods. Maybe just paddle and anvil up to the rim? 

10 - same V. as 115 non uniform, larger voids at around 12mm from rim, 60-70mm from rimparallel void at the top is at about 65-70 degrees from y plane10.1 7.9 large void under castellation, between 25 and 45 mm from lip. Folded rim, but really appears to be folded at the top to create the almost collar. Small crimp at the top, not really obvious horizontal voids at top

11 non uniform, larger voids near rim, one large void hits exterior at 20-25mm from lipwhere the void meets exterior wall, about 55 degrees from y plane, also large void between 75-95mm down12.7 5.2 appears to be a small folded section, especially under the castellation. Not a far down fold, just up around the rim. Large void at shoulder as well. 

12 non uniform, more large voids within 25mm of lipparallel horizontal, some around 44-55mm, 8.1 4.9 from 32mm from liplarge voids throughout, I think this is a pinch pot but there appears to be an added piece to create the rim. Might not be tempered, just inclusions. 

13 uniform, mostly one large void between 1-4mm from lipparallel random especially in 3D view5.2 4.8 from 24mmLooks like it might be folded to interior, or clay added to int to form rim. This is probably organic temper. Really interesting maybe hair added, maybe some other fiber. Probably a pinch pot? Why would there be fiber temper added to just this one? 

14 some larger voids 2-9mm from lipparallel 30-50 degrees from y but from interior4.3 5.0 from 22mm from lipSome pieces might be added, proabably a pinch pot 

16 fairly uniform, some larger voids about 20mm from lipparallel some curving around inclusions5.2 6.4 no obvoius folds, pretty even voids throughout, large inclusions 

20 non unifrom, larger voids around 55-80mm from lipparallel some betten 40-55 degrees near lip, and horizontal at rim12.1 11.5 not obvious, but it might be folded over. 

21 uniform random none 9.9 9.9 none visible

22 non-uniformparallel, 90at lip non parallel11.6 7.8 at rim, folds or possible coil added at rim. 

23 non-uniformparallel, 90at lip some non parallel12.3 10.5 at rim, folds or possible coil added at rim. 

24 non-uniformvughs random, planar parallelplanar, 70 degrees near rim5.5 6.2 about 60mm from lip possible a join. Looks like the whole exterior might be attached on at the neck. 

25 non-uniformparallel, 90at lip non parallel10.6 11.1 cut or fold at rim, there are voids that curve. 

26 uniform across sherdparallel but wavy planer, 90vughs around inclusions are random10.8 11.5 no obvoius folds or added clay

27 uniform parallel but wavy planer, 90parallel to deep punctates9.2 10.1 no obvoius folds or added clay

28 non-uniformparallel non-parallel at rim7.5 9.9 really noisy scan, maybe a fold at the rim, but it is not that clear. 

29 non-uniformparallel, 90at lip non parallel9.7 9.1 at rim, folds towards exterior, larger voids near rim

31 non-uniform more at rimparallel, 90at lip non parallel8.8 8.2 at rim, fold towards exterior to create incipeent collar. Nice voids showing where exterior clay meets interior. 

32/36 non-uniform, larger voids at 20mm and 60mm from lipparallel fold, non-parallel between 12-20 degrees from exterior12.2 10.3 Appears to be fold at rim, punctate might be used to push out large void. 

38 non uniform, largest voids between 5-35mm from lipparallel between 65 and 75 degrees13.3 10.8 folded towards exterior, there might be added clay at the castellation but it is not really obvious. 

39 non uniform, large voids between 10-20mm of lip and 55-75mmparallel parallell 7.7 9.1 might be folded, but I think there is added on section at the exterior of the rim/incipient collar

40 non uniform, large voids between 35-50mm from lip some beteern 14-16mm from lipparallel 9.7 10.9 large voids at punctate level, maybe folded or maybe just compressed, large voids right near lip 
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StJohnCT Sample #

total volume from 2.2 in 

mm3 eroded and dialated 

to include voids in micro 

total 

volume 
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volume 

of inclu 

2.2 mm3

number 

of inclu 
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% 

volume 

inclusion

41 55252.81 552.5281 39000-65535 2402.23 83785 4.347706

42 27380.39 273.8039 39000-65535 2473.83 46404 9.035043

43 10432.56 104.3256 41000-65535 678.28 1019892 6.501568

44 41323.02 413.2302 46000-65535 3292.87 886346 7.968609

45 16134.79 161.3479 41000-65535 1156.78 189906 7.169477

46 128911.09 1289.111 37000-65535 12881.18 114424 9.992298

47 170344.75 1703.448 48000-65535 11387.49 99703 6.684967

48 44570.5 445.705 41000-65535 3074.22 64364 6.897432

49 14370.37 143.7037 41000-65535 9640.3 195933 67.08456

50 69433.45 694.3345 39000-65535 7712.45 66165 11.10769

51 87721.6 877.216 40500-65535 6036.32 135668 6.881224

52 63011.54 630.1154 40000-65535 7153.86 43852 11.35325

53 neck 211770.97 2117.71 51000-655535 15308.74 79135 7.228913

54 188120.56 1881.206 50000-65535 17466.02 159635 9.284482

55 same V. as 008 44872.3 448.723 40000-65535 5625.49 29785 12.53667

Ferris Vessel 36 18499.97 184.9997 37000-65535 1137.13 397514 6.146659

iroquioan vessel (SLI) 349266.94 3492.669 41000-65535 4167.25 598415 1.193142

60 284230.09 2842.301 45000-65535 28792.49 177804 10.12999

61 92264.69 922.6469 41000-65535 7494.69 100561 8.123032

62 44776.6 447.766 48000-65535 1402.02 104862 3.131144

63 50301.43 503.0143 41000-65535 3309.81 171448 6.579952

64 19330.17 193.3017 32000-65535 1122.4 281632 5.806467

65 237749.05 2377.491 43000-65535 21603.09 102947 9.086509

66 251406.25 2514.063 43000-65535 12112.13 181947 4.817752

67 204993 2049.93 41500-65535 15671.25 107776 7.644773

68 31847.84 318.4784 44000-65535 2673.12 73590 8.393411

69 200078.64 2000.786 47000-65535 11893.37 667568 5.944348

71 236563 2365.63 44000-65535 14501.88 345047 6.13024

70 same V. as 020 102550.64 1025.506 49000-65535 2060.62 1359635 2.009368

72 20918.54 209.1854 48000-65535 908.13 17916 4.341269

74 21186.66 211.8666 43000-65535 1006.6 45233 4.751103

76 12701.3 127.013 52000-65535 350.75 119381 2.761528

77 8064.98 80.6498 41000-65535 410.48 191000 5.089659

78 34319.72 343.1972 39000-65535 1277.83 23188 3.723311

79 37183.95 371.8395 32000-65535 7394.34 486082 19.88584

80 57977.63 579.7763 43000-65535 5298.39 1299203 9.13868  
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41 0-21500 1510.61 90721 2.733997 uniform random planar vughs around inclusions

42 0-21500 588.54 43162 2.149495 uniform random planar vughs around inclusions

43 0-25000 229.7 179809 2.201761 non-uniform, slightly more in rimrandom planer, wide planarvughs

44 0-29000 905.05 188694 2.190184 uniform random planar vughs around inclusions

45 0-24000 758.61 75704 4.701704 uniform random planar vughs around inclusions

46 0-19500 3390.51 234390 2.630115 uniform random planar vughs around inclusions

47 0-29000 2182.45 35675 1.281196 uniform random planar vughs around inclusions

48 0-24000 978.96 82344 2.19643 uniform random planar large vughs at rim

49 0-26000 2411.85 139086 16.78349 uniform random planer vughs around inclusions

50 0-22000 3754.61 246410 5.407495 uniform random planar vughs

51 0-24000 1921.42 65032 2.190361 uniform random planar some vesicles

52 0-22000 1213.84 43127 1.926377 uniform random planar vughs 

53 neck 0-28000 2756.74 25646 1.301755 uniform random planar vughs around inclusions

54 0-31000 2703.54 39101 1.437132 uniform random planar vughs around inclusions

55 same V. as 008 0-23000 1324.83 42564 2.952445 uniform random planar vughs around inclusions

Ferris Vessel 36 0-23000 643.65 114735 3.479195 uniform randon planar vughs around inclusions

iroquioan vessel (SLI)0-23500 7402.95 97119 2.119568 non uniformrandom vesticles small planar voids

60 0-26000 4418.01 174771 1.554378 uniform random planar few vesicles

61 0-23000 1706.29 84042 1.849342 uniform random planar vughs, some really large, around inclusions

62 0-29000 793.33 58628 1.771751 uniform random planar vughs, around inclusions

63 0-25000 1835.25 176732 3.648505 uniform random planar vughs around inclusions

64 0-19000 606.07 132536 3.135358 uniform random planar vughs around inclusions

65 0-25000 5409.35 120390 2.275235 uniform random planar vughs around inclusions

66 0-22500 4617.79 162345 1.836784 uniform random planar vughs around inclusions

67 0-21000 2831.06 159596 1.381052 uniform random planar vughs around inclusions

68 0-28000 1529.99 180313 4.804062 uniform random planar vughs around inclusions

69 0-29000 2342.17 119750 1.170625 uniform random planar vughs around inclusions

71 0-24500 2787.73 143309 1.17843 uniform random planar vughs around inclusions

70 same V. as 020 0-26000 1109.34 142295 1.081748 uniform random planar small vughs

72 0-34000 105.4 23700 0.503859 uniform random planar small vesticles, some vughs around inclusions

74 0-27500 87.26 37418 0.411863 uniform random planar vesticles around voids

76 0-32000 85.87 33732 0.676073 uniform random planar vesticles

77 0-26000 35.71 17638 0.442779 uniform random planar vesticles

78 0-26000 201.59 36622 0.587388 uniform random planar large vesticles

79 0-22000 1157.4 116465 3.112633 uniform random planar vughs around inclusions

80 0-25000 482.02 66234 0.83139 uniform random planar small vesticles 
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Micro structures at rim? 

Inferred construction 

technique? 

41 non unifrom, larger voids around 3-35mm from lipparallel, 90horizontal near lip, where fold meets exterior between 42-48 degrees11.7 8.4 folded towards exterior to create rim, there are large voids where it meets the exterior at 18mm from lip, in some places appears to be lower around 28mm from lip 

42 fairly uniform, some larger voids within the top 20mmparallel horizontal void 16-19mm from lip12.7 8.8 think this might be added on rim there is a horizontal void that runs all the way across the wall. Might be a coil added on top. Large inclusion at rim obscures some of the formation 

43 non uniform, large vertical voids at 15-20mm, more at 30-45 from rimparallel horizontal, 3-5 degerees4.1 4.4 I think it is folded about 17mm from the rim, the fold is obscured around punctates, there is clay on top of the potential fold, there is a change in the directionality of voids.  that makes it look like the rim was added on. Also a pretty consistant vertical void through the rim, maybe created out of two pieces? maybe extra clay even in some places. several rows of veritcal voids. maybe a compressed coil added on as rim?  

44 non uniform, some larger voids between 10-20mm from lip, some large voids between 40-50mmparallel between 60-65 where void meets exterior7.2 6.3 seems to be folded in places. Very large void right up near the lip through the castellation. Not sure what is going on here. Mybe a bit of clay added on to create the castellation that is creating the large void underneath it. 

45 non uniform, large voids between 5-15mm and 25-45mm from lipparallel voids near lip at 60 degrees7.2 6.7 Folded, appears to meet the exterior below where I have in places. No really obvoius horizontal voids, but the vertical don't hit the lip. Mybe just paddle and anvil all the way to the top. 

46 uniform parallel some horizontal near lip10.7 10.3 Doesn't really appear to have a fold or the fold has been really well obscured

47 non uniform, some large between 60-70mm from lip and 120-160mm from lipparallel curved around punctates11.6 16.2 Not a really obvious rim construction. Maybe two layers at shoulder. Maybe slight fold or maybe just compressed at rim

48 non-uniform large voids near rim 8-10mm from lioparallel, 90at 8mm from rim, some non-parallel13.1 9.6 at rim, at the right edge, looks like an folded over rim. At the casetellation maybe a coil or bit of clay added on. 

49 non-uniform, larger voids between 35-50mm from lips, and 12-18mm parallel, 65-70 degrees from Y, the upper void8.3 10.5 appears to be a folded, larger void under the castellation. In one spot it looks like there was a bit of clay added to make up the rim above a fold. This is not at the castellation but to the right of it (front on). 

50 non-uniform, large voids between 30-60mm from lip, some at approx 10mm from lipparallel large voids at 20 degrees from exterior wall. n/a n/a under castellation added clay. The whole rim might be added on, or at least the castellation portion. It looks like there is a fold, and then another row of clay added on top of the fold. Might even be a different clay added on. 

51 non-uniform, larger voids at 55mm from lip and 90mmparallel, 90at lip some non-parallel:folding?15.6 10.3 definetly added on clay but it is unclear if it is folded or not. Large voids above, below, around punctates. I would say not folded but in one or two places it looks like it is. Maybe a bit is folded and then most if added on. 

52 non-uniform large void at rim looks like there is an added portionparallel, 90at about 40mm from lip goes to 40 degrees from exterior10.1 9.6 At rim it appears there is an added piece. Not folded but added. 

53 neck non-uniform, some large voids just around punctate levelparallel, 90none no lip 11.5 no noticeable fold, there are some large voids that may indicate material added on exterior. 

54 non-uniform large void at rim and at shoulder at about 5mm and 120mm from lipparallel, 90 at lip closer to 80 degrees from exterior wall. Vughs are random12.4 9.2 Huge micro fold at rim, punctate after. 

55 same V. as 008 non uniform, large void between lip and 40mm and another between about 65 and 70mmparallel, 90where it meets, around 25 degrees from exterior wall8.5 5.7 Added on section at rim: less obvious than castellated piece

Ferris Vessel 36 non unifom, large void between the lip, meets exterior at between 40-50mm from lipparallel where it meets exterior, abour 73-75 degrees7.2 3.8 Really obvious void structure, Added clay to the exterior. 

iroquioan vessel (SLI)non uniform, a few more larger ones in the rim section. parallel randomly throughout4.8 10.6 really dense material on exterior of rim and shoulder, maybe glaze of some sort. No real evidence of construction. This is VERY different than the Arkona vessels. 

60 uniform parallel, 90none 6.6 6 a small piece added at rim, but might be folded. 

61 non-uniform large voids below punctates, just below rim. parallel, at punctates forced out around them. They follow the orientation of the deep punctates8 7.6 really large planar void underneath punctates, maybe folded

62 uniform parallel, 90some random 9.9 5.6 large planar void down the entire center. Not obvious folding, maybe added on to the front of the the rim/neck.

63 non uniform, large void at 40-50mm from lip, horizontal voids 4-6mm from lipparallel horizontal at lip about 42-50 degrees in places, horizontal at other11.1 8.2 not really obvious, the horizontal void near the lip might indicate a fold, but it is not clear, might just be pressed down from the top.  

64 non uniform, large voids between 5-25mm from lipparallel at lip horizontal, near lip between 55-60 degrees11.9 10.4 appears to be folded to exterior. Void almost meets exterior at about 20mm from lip. 

65 non uniform, some larger voids around 30-60mm from lipparallel at lip some horizonta8.1 11.3 some horizontal voids near lip, but it really doesn't look like a fold. Maybe bits of clay or a small coil added on to form the lip in places where it was a bit low, and I'm getting horizontal voids where it wasn't compressed. Larger void under castellation.

66 non uniform, larger voids, where the rim meets the neck (punctate level) and at the shoulder (no lip to measure from)parallel some horizontal at base of rim, some between 35-55 degrees from y and exterior wall. n/a 13.3 (4mm from almost lip)Might be a fold and then added on rim. Hard to tell in neck sherd but I think it is folded and then clay is mushed onto the exterior and top to create the rim at varying heights. 

67 non uniform, larger voids at shoulder. parallel some voids across the sherd neck, between 53-43 degrees from Yn/a 9 No rim construction evidence, large void across neck but I think it might be an exterior crack. 

68 non uniform, more voids within 30mmm of lip and some large voids where walls change directionparallel some horizontal 3-4mm from lip, some horizontal at around 30 from lip, some voids 65-50 degrees from Y3.7 7 Not entirely sure what is going on with this one. In some places it looks folded, some places there might be a bit added on the top, some places might be a slab added on to create the rim. 

69 uniform parallel, 90at rim non-parallel, straight across 90 from exterior wall. 10.1 10.9 void across the rim, looks like the rim was added on. 

71 non-uniform, some  larger voids near base of rimparallel, 90some voids at base of rim at 55-60mm from Y, some horizontal voids across around punctate leveln/a 12.8 (4mm from top)Maybe added on rim piece but it is hard to tall without the rim. The 

70 same V. as 020 non-uniform, some between 3-15mm of lip and large voids at 80-100mmparallel, horizontal at about 45-50mm from lip14.8 10.9 Some of the horizontal voids near punctates might be from the pressure of punctates. The horizontal void at the top appears to only occur under the punctate, maybe they are just folding or adding here. The rest of the rim seems to be not folded or anything. 

72 non-uniformparallel horizontal at about 20-22mm from lip3.9 8.3 One very clear void where it looks like the rim was added on. 

74 non-uniformparallel horizontal at 20mm from lip7.6 8.8 (3mm from lip)Some parallel voids between 7-10mm from lip, at lip some voids at 22-25 degrees from y. Maybe clay added to the front. The whole rim might be added on. 

76 non-uniformhorizontal at 15, 28 and 45 mm from lipnone 3.1 10.4 looks like this a coiled vessel with three joins visible. 

77 non-uniform, more between lip and 25mm parallel at 22mm, meets interior at 59-60 degrees from interior wall. 5.1 4.8 void goes all the way to the lip, maybe added. 

78 non-uniformparallel at about 28mm very fine horizontal2.7 10.7 no really obvoius construction methods, maybe the large vesticles are from pinch pot. 

79 uniform parallel 30-40 from Y, where fold meets exterior7.7 7.4 one large low density inclusion. Maybe folded horizontal voids near lip but only in places. 

80 uniform parallel none 5.6 7 no real folds or added clay.  
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81 102990.98 1029.91 39000-65535 14802.66 236728 14.37277

82 58612.21 586.1221 42500-65535 5387.79 660588 9.192266

83 122731.58 1227.316 41000-65535 11881.79 398688 9.681119

84 482014.73 4820.147 48500-65535 39801.73 1376121 8.257368

85 44626.88 446.2688 43000-65535 1958.15 999494 4.387826

86 28559.54 285.5954 41500-65535 1900.78 861575 6.655499

87 22718.26 227.1826 40000-65535 530.03 338171 2.333057

88 12704.15 127.0415 36000-65535 906.46 271485 7.135149

89 25946.21 259.4621 41000-65535 558.25 561026 2.151567

90 same V. as 28 36706.23 367.0623 41500-65535 2935.51 333213 7.997307

91 141557.922 1415.579 40500-65535 14388.65 376112 10.1645

92 66951.34 669.5134 could not isolate inclusions and voids 0

93 -rescan of 030 66946.749 669.4675 41000-65535 6501.938 46172 9.712104

95 18416.07 184.1607 40000-65535 932.04 21460 5.061015

96 rescan of 28 84153.37 841.5337 48500-65535 2189.41 123522 2.60169

97 same V. as 050 50384.696 503.847 36000-65535 4803.287 94443 9.533226

98- same V. as 064 412110.12 4121.101 45000-65535 17599.33 476591 4.270541

99 159262.075 1592.621 33000-65535 7852.61 85586 4.930621

100 - same V. as 051 277377.98 2773.78 47500-65535 9386.36 74719 3.38396

101 -same V. as 044 84538.312 845.3831 45500-65535 6269.84 216193 7.416566

102 - same V. as 049 64125.45 641.2545 35000-65535 1990.44 819610 3.103978

103 15875.4 158.754 38000-65535 348.93 140082 2.197929

104 29115.134 291.1513 41000-65535 1559.839 50168 5.357485

105 -same V. as 106 160737.99 1607.38 47500-65535 14164.06 126720 8.811893

106 - same V. as 105 105485.8 1054.858 46500-65535 5865.87 424802 5.560815

107 11649.79 116.4979 32500-65535 776.67 292206 6.666815

109 88848.95 888.4895 39000-65535 5587.84 314828 6.289146

110 19830.21 198.3021 30000-65535 1644.46 68024 8.292701

111 16958.88 169.5888 38000-65535 865.96 358526 5.106233

112 35142.39 351.4239 39000-65535 2886.57 267416 8.213926

113 28893.79 288.9379 38500-65535 2232.48 489911 7.726505

114 59916.74 599.1674 37000-65535 3061.75 216341 5.110008

115 - same V. as 010 156295.701 1562.957 41000-65535 20524.02 97658 13.13153  
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StJohnCT Sample #

threshol

d of 

voids

volume 

of voids 

in mm3

quantity 

of voids 

from 

% 

volume 

voids

Inclusion 

Distributi

on: 

inclusion 

orientati

on, 

Void Shape: 

from 

petrography 

void shape: 

secondary

81 0-24000 3070.27 285733 2.981106 uniform random planar vughs and vesticles

82 0-26000 1248.46 251415 2.130034 uniform random planar vughs around inclusions

83 0-24500 6808.25 218468 5.547268 uniform random planar vughs

84 0-33000 7548.66 194517 1.566064 uniform random planar small vesticles

85 0-25000 1052.43 557605 2.358287 uniform random planar vughs around inclusions

86 0-26500 700.7 150678 2.453471 uniform random planar vughs around inclusions

87 0-26000 620.25 110808 2.730183 uniform random planar small vughs

88 0-20000 799.35 307452 6.292038 uniform random planar small vughs

89 0-22000 304.43 175836 1.173312 uniform random small vesticles

90 same V. as 28 0-26000 494.47 67152 1.347101 uniform random planar vughs around inclusion

91 0-22000 576.721 499227 0.40741 uniform random planar vughs around inclusion

92 0 uniform random vesticles none

93 -rescan of 030 0-24500 1922.566 101784 2.871784 uniform random planar vughs around inclusions

95 0-26000 165.01 23301 0.896011 uniform random planar vughs

96 rescan of 28 0-30000 1068.74 65856 1.269991 uniform random planar small vughs around inclusions

97 same V. as 050 0-20000 1072 108193 2.12763 uniform random planar vughs around inclusions

98- same V. as 064 0-25500 7464.12 261352 1.811196 uniform random planar vughs around inclusions

99 0-13000 1624.407 268428 1.019958 uniform random planar vughs around inclusions

100 - same V. as 051 0-24000 3339 52078 1.203773 uniform random planar some vesticles, some small vughs around inclusions

101 -same V. as 044 0-25000 873.284 49246 1.033004 uniform random planar vughs around inclusions

102 - same V. as 049 0-17000 962.9 515774 1.501588 uniform random planar vughs around inclusions, some very large

103 0-22000 221.71 31610 1.396563 uniform random planar vughs

104 0-25000 149.245 11646 0.512603 uniform random planar vughs

105 -same V. as 106 0-27000 2880.38 50830 1.791972 uniform random planar vughs arround inclusions

106 - same V. as 105 0-25000 1671.31 128341 1.584393 uniform random planar vughs

107 0-22000 299.49 74853 2.570776 uniform random planar vughs

109 0-18000 858.95 283425 0.966753 uniform random planar vughs around inclusions

110 0-15000 289.37 96558 1.459238 uniform random planar vughs

111 0-22000 354.06 83264 2.087756 uniform random planar some vesticles, some small vughs around inclusions

112 0-21000 709.54 117838 2.019043 uniform random planar some vughs

113 0-22000 613.63 95774 2.123744 uniform random planar vughs around inclusions, some large

114 0-24000 1148.59 82539 1.916977 uniform random planar small vughs and some vesticles

115 - same V. as 010 0-25000 4490.381 233336 2.873004 uniform random planar vughs  
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StJohnCT Sample #

Void 

distributi

on

void 

orientati

on, 

void 

secondar

y 

thickn

ess at 

rim

wall 

thickness

: 5cm 

Micro structures at rim? 

Inferred construction 

technique? 

81 some larger voids between 2.5 and 15mm from lipparallel near the lip at about 45 degrees and horizontal4.5 5.6 maybe added on clay at rim, horizontal void at 17mm down in some places, others it looks more folded. Leaning towards fold. 

82 uniform parallel between 45-50 degrees, 25mm from lip at exterior9.3 7.5 seems to be folded towards the rim, but might be added on in places there are not great folds at the lip. 

83 non uniform larger voids between 4-25mm of rimparallel between 58-64 degrees, at about 30mm from lip9.4 10 I think this is added on in places, especially as it nears the castellation. It looks like it is added on the top of the lip. It goes across the lip almost folded then down the exterior. 

84 non uniform, larger voids in rim to about 25mm from lip and larger voids at neck/shoulder join between 55-70mm from lipparallel some horizontal voids at rim, some at 51 degrees where fold meets exterior at 28-30mm from lip2.3 12.6 Some horizontal voids near lip, but it is hard to say if it is folded, looks like there is a bit of a fold at the rim. Seems to be larger voids where the vessel walls change direction

85 non-uniform, large void 5-15mm from lip, especially at castellationparallel, 90at lip, 20 degrees from exterior wall9.2 11.8 large planar void especially under castellation. It looks like it might be folded over. Or the castellation might be added. 

86 non uniform. Large voids where clay joinsn/a n/a More ceramic-like clay. I think the bowl was created as one piece and the top of the pipe is maybe a seperate piece that is much better joined. I think there are two attempts are bore hole.  All appears to be the same clay.  

87 non uniform, larger voids where clay joinsn/a n/a The bottom appears to be a slab? They may have tried to poke the bore through as many as 5 times! Using some sort of pointed stick or tool to poke bore. Consistant vertical voids on the stem, maybe two pieces joined but closer to the bowl large horizontal voids. Kind of like the juv. vessels in terms of void structure.   Fingerprints on exterior. temper seems finer in this one. 

88 non uniform more in the top halfn/a n/a 4mm diameter bore. Maybe a coil, lots of planar voids. 

89 uniform n/a n/a Way less voids than the other pipes. I think it might be made of a large coil. 

90 same V. as 28 non uniform, larger voids about 50-70mm from lipparallel 71-75 degrees, at 72mm from lip7.8 8.8 Not really clear, looks like there might be an added piece where the voids meet the exterior but no clear fold or voids up to the lip

91 non uniform, larger voids between 7-95mm from lipparallel 60 degrees from interior wall and y axis12.7 13.9 Added clay at the interior! This is different. There might even be two layers of added clay at the interior of the vessel. 

92 uniform 13.8 8.1 you can see the glaze on the interior, high density. Wheel thrown but I don't really see a clear alignment of voids/inclusions. 

93 -rescan of 030 non uniform to uniform, voids throughout but some larger voids at punctate level, between 20-40mm from lipparallel 10-20 degrees 28cm from lip10 10.1 larger than average temper,maybe an added piece at exterior of rim, but the temper makes the voids change directions unpredicatbly so it is hard to tell. There are some horizontal voids In places near the lip but not everywhere. 

95 non uniform, large void between lip and 10mm, large voids between 40-50mm from lipparallel 62-64 degrees from interior wall to y plane (see pic)3.4 6.3 looks like the rim is added on and maybe there is a fold lower down. 

96 rescan of 28 non uniform, larger voids between 30-50mm from lip, and 75-85mm from lip (at neck)parallel some 41mm from lip between 50-65 degrees6.3 9.4 I think it is folded, and the fold meeting the exterior is lower down right around the castellation. Not a really clear example though. This might have been smooted over more than some of the others

97 same V. as 050 non uniform, larger voids between 2-20mm of rimparallel some horizontal near rim, some at 50-55 degrees 6mm from lip9.9 10.8 it looks like this is folded in places and there is defintley clay (maybe a different clay) on the top of the fold in most places. Not as clear an added clay but there are some large voids, expecially to the right of the rim sherd that show where the two layers are not stuck together.

98- same V. as 064 fairly uniform, some larger voids 130-140mm from lip roughly where neck meets shoulder. parallel Some 8mm from the lip, between 40-36 degrees from y10.5 12.1 Horizontal voids near the lip, maybe a fold, almost looks like added clay on rim at castellation. 

99 non uniform, some large voids between 60-95mm from lip, and parallel some horizontal 4-5mm from lip11.4 8.2 Hard to tell what is going on here. Less obvious folds between castellations than on them. Looks like it is folded at least at at the castellations though. 

100 - same V. as 051 non uniform, largest voids around and above punctate level 40-70mm from lip. parallel horizontal 4-5mm from lip under punctate, between 45-55 degrees from y at 16mm from lip17 15.1 added clay on exterior. Maybe more inclusions in the added clay, especially at rim but this also might just be noise. Seems to be more high density inclusions at the exterior of vessel. In some places added to the lip and exterior. Most of the lip is built out of the exterior clay, and in some places it is smoothed on the interior. The exterior clay seems to be a higher density but might be noise in scan creating this effect.  

101 -same V. as 044 non uniform, some larger voidsbetwwen 16-30mm from rimparallel some at 35-40 degrees about 17-20mm from lip6.4 6.3 I think it's folded, maybe more folded at castellation, pretty consitant 30 degree to horizontal void around 20mm from lip where it meets the exterior. 

102 - same V. as 049 non uniform, larger voids 45-65mm from lip where neck meets shoulder roughlyparallel some horizontal 46mm from rim, some betwwen 53-60 degrees meeting ext at 30-32mm from lip7.2 14 maybe folded, but not very clear, all pretty small voids. If it is folded it is well compressed. 

103 non uniform, more voids at the base of the bowl than in the bowln/a n/a hard to tell what is going on here, maybe a join at the base of the bowl/start of stem where two pieces meet. 

104 non uniform, large void around 7-23mm from rimnon parallel, 52-54 degrees from yparallel 7.9 5.8 The rim appears to be added on totally joined

105 -same V. as 106 non uniform, large voids between lip and 50mm and some large ones at around 80mm from rim where the neck flares into shoulderparallel some between 60-66 degreee at 45-50mm from lip13.5 9.4 Appears to be folded, meeting the exterior wall at about 50mm from lip, below the punctates. Looks like it is folded both at castellations and not

106 - same V. as 105 non uniform, more between 4-50mm from lipparallel Some between 44-55 degrees, at around 50mm from rim10.4 7.4 Folded in places for sure, in some places the crack seems to go up to the lip but I think it is folded, including the castellation. 

107 fairly uniform throughout rim sherdparallel Some between 18-10 degrees, about 5mm from lip. Horizontal voids where clay is added on exterior7.2 7.2 at 4mm from lipI think there is a bit of an added coil to create the ridge near rim, can see at the base where it has been added on. Maybe even a different density of clay.  

109 uniform parallel some between 65-75 degrees from interior wall on Y. around 20mm from lip11.2 10.9 not really any obvoius construcion techniques. Neat drilled punctate. 

110 non uniform, some larger voids between 11-25mm of lip, large void between 30-50mm from lipparallel between 54-60 degrees at about 50mm from lip, between 30-25 degrees 35mm from lip10.1 6.5 horizontal voids near lip, appears to be folded, meeting the exterior around 50-60mm from lip, 

111 non uniform, large void between lip and 38mm parallel between 60-65 degrees at about 38-40mm from lip6.4 4.3 I think there is a fold and then clay added on top. Some sort of orgainic inclusion that is mostly burnt out? 

112 non uniform, large void starting about 25mm from lip, continues to bottom of rim sherd. parallel some horizontal throughout10.8 10.8 Punctates through large voids. 

113 non uniform, some larger voids between 10-20mm from lip, some starting at 30mm from lipparallel some between 45-55 degrees 20mm from lip, between 45-30 13-15mm from lip12.3 7.6 Might be a good one to animate slice view. Looks like it is folded all the way around and there is clay added on top of the fold to form the punctate. Castellation?

114 slightly non uniform, a few larger ones between 12-50mmm from rimparallel some between 35-50 degrees 35mm from lip14.9 12.8 I think it's folded, but not a huge obvious folds. 

115 - same V. as 010 non uniform, larger voids between 5-60mmparallel some at 40-42 degrees from Y at the interior. At 20mm from lip11.5 9 Looks like it is folded, but not that obvoius, no real punctate consrtruction 
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StJohnCT Sample #

total volume from 2.2 in 

mm3 eroded and dialated 

to include voids in micro 

total 

volume 

in cm3

threshold of 

inclu

volume 

of inclu 

2.2 mm3

number 

of inclu 

from 

% 

volume 

inclusion

116 343186.5 3431.865 33000-65535 22603.16 114148 6.586261

117 91713.19 917.1319 46000-65535 6111.29 117272 6.66348

118 - same V. as 119 120505.85 1205.059 41000-65535 5863.01 201443 4.865332

119 - same V. as 118 93000.75 930.0075 39000-65535 2891.55 292143 3.109168

120 113066.72 1130.667 47000-65535 3597.5 462238 3.18175

121 69577.75 695.7775 39000-65535 3790.65 177498 5.448078

124 94141.19 941.4119 40000-65535 3151.75 992635 3.347897

125 96407.6 964.076 35000-65535 9747.74 605184 10.11097

128 210331.17 2103.312 41000-65535 16275.56 202096 7.738064

129 193793.42 1937.934 46000-65535 9332.54 453115 4.815716

130 112287.62 1122.876 43000-65535 7832.13 184026 6.975061

131 302999.13 3029.991 47000-65535 9906.13 393789 3.269359

132 27468.9 274.689 45000-65535 1185.1 95858 4.314334  

StJohnCT Sample #

threshol

d of 

voids

volume 

of voids 

in mm3

quantity 

of voids 

from 

% 

volume 

voids

Inclusion 

Distributi

on: 

inclusion 

orientati

on, 

Void Shape: 

from 

petrography 

void shape: 

secondary

116 0-16000 4892.66 156244 1.425656 uniform random planar vughs

117 0-27000 876.98 31992 0.95622 uniform random planar small vughs and some vesticles

118 - same V. as 119 0-24000 2693.28 95459 2.234979 uniform random planar small vughs

119 - same V. as 118 0-18000 1066.12 86916 1.146356 uniform random planar some vughs and vesticles

120 0-21000 1418.81 197638 1.254843 uniform random planar, thin vughs around inclusions

121 0-18000 1745.21 136904 2.508287 uniform random planar, thin with some largesome vughs around inclusions

124 0-21000 1572.59 282149 1.670459 uniform random planar, very thinsome vesticles, some small vughs around inclusions

125 0-16000 1557.04 244048 1.615059 uniform random planar, thin vughs around inclusions

128 0-22000 3161.74 115662 1.50322 uniform random planar vughs around inclusions

129 0-30000 3970.61 116924 2.048888 uniform random planar vughs around inclusions

130 0-26500 3669.4 157594 3.267858 uniform random planar small and not many vughs

131 0-22000 1244.33 34939 0.410671 uniform random planar vughs

132 0-29000 740.02 55454 2.694029 uniform random planar small vughs around inclusions 
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StJohnCT Sample #

Void 

distributi

on

void 

orientati

on, 

void 

secondar

y 

thickn

ess at 

rim

wall 

thickness

: 5cm 

Micro structures at rim? 

Inferred construction 

technique? 

116 non uniform, more voids between lip and 60mm parallel some horizonta near lip, about 3mm 11.9 13.9 Looks folded, horizontal voids near lip. Not obvious castellation construction. 

117 non uniform, horizontal void between 5-8mm from lip, larger void where neck meets shoulder between 80-120mm from lipparallel horizontal near lip. 8.8 9.4 Can't really tell what is going on here. There is a fold but there is maybe a bit added on exterior. 

118 - same V. as 119 non uniform, about 70mm from lip where change in direction, shoulder beginning. Some around 15-22mm from lip. parallel some between 35-40 degrees from Y 25-30mm from lip10.4 11.2 Seems like a fold lower in some places. 

119 - same V. as 118 non uniform, larger voids starting at around 50mm from lip, some larger voids between 6-30mm from lip especially under castellationparallel some around 80 degrees, 30mm from lip9.7 10.4 larger void in some places, under castellation. I think they had to add clay above a large void to make up the pseudo-collar in one place. Might be folded…

120 non uniform, large void down the centre of the ceramic but slightly larger between 15-60mm from lipparallel some horiztonal near lip, but might be compression8.1 9 I think there is clay added to the exterior of the lip/collar to form it. Large void down the centre… not sure what this means

121 non uniform, large band of voids between 25-60mm from lipparallel some at about 80 degrees from Y, meeting exterior 62mm from lip4.8 6.6 Large inclusions overall, It looks like there is an added lip in places, along with clay added on the exterior. Added to exterior but only up to the lip in some places. This looks different than anything else

124 Fairly uniform, some slightly larger at soulder, between 45-65mm from lipparallel n/a 4.4 6.4 largest voids are mends not real. No real evidence of coiling at base, maybe just a pinch pot? Weird placement of punctates, higher than most. Maybe the rim/collar is formed by folding towards the exterior? Added clay on the interior of the lip/rim. 

125 fairly uniformparllel some fine at 90 to parallel7.3 10 largest voids are mends, Really hard to tell how that rolled lip is formed… some horizontal at lip so maybe rolled to the ext? Lip/faux collar is better defined further from castellation. 

128 non uniform, large voids where neck meets shoulder, about 95-115mm from rimparallel some at about 50-70 degrees, 25mm from lip12.7 12.2 Looks like a fold, meeting the exterior around 25-30mm from lip, No real difference under castellation. Maybe a less dense clay added on at rim, but this might just be noise from the scan. 

129 non uniform, large voids where neck meets shoulder, starting about 100mm from lip, larger voids between lip and 45mm of lipparallel some between 45-65 degrees, 18-20mm from lip18.2 10.2 Looks like a fold, but there might be a coil or bit of clay added on to create the almost-collar, I think there is a clay coil or slab added on to create the rim. 

130 non uniform, more voids around where the neck meets shoulder between about 70-100mm from lip, and more within 10mm of lipparallel some between 66-76 degrees, 18-20mm from lip7.5 6.6 might be a fold but looks like there is more of a added on bit to create the lip. Lots of small voids at the shoulder maybe not able to compress at this angle. 

131 non uniform, more voids between 6-50mm from lip, some larger voids where neck meets shoulder 125-170mm from lipparallel some between 65-75 degrees, at about 35mm from lip8.7 6.7 appears to be a fold at the rim. Not really clear.

132 non uniform, larger voids between 3-25mm from lipparallel horizontal just below lip (3-4mm), between 70-73 from Y at 20mm from lip5.1 5.7 Folded at rim, meeting the exterior farily high up. Also some larger voids at shoulder. Slightly larger voids under castellation.  
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Appendix E: Morphological and Finishing Attributes  

 

Rim type code: A: Plain B: Folded to exterior C: Folded with larger fold at castellation 

D: Added clay at exterior E: Folded to exterior with added clay F: Added clay at exterior 

and lip G: Unidentified H: Added clay at interior  

 

StJohn Sample # Site Rim Type

Rim type 

combined

Upper rim 

profile Lip shape Neck shape

Oriface 

diameter

4 AgHk-32 b folded straight flat n/a 353.56

5 AgHk-42 g unidentifiedconcave n/a n/a

6 AgHk-32 d added straight flat short 196.16

8 AgHk-32 d added straight flat short 231.34

9 AgHk-54 a no fold or addedconcave furrowed short 110.3

10 AgHk-54 c folded concave flat short 225.8

11 AgHk-54 c folded concave flat short 249.12

16 AgHk-54 a no fold or addedconcave flat short 133.44

20 AgHk-52 b folded concave furrowed short

21 AgHk-52 a no fold or addedconcave rounded short

22 AgHk-52 b folded concave flat short

23 AgHk-52 b folded concave flat short

24 AgHk-52 d added convex rounded short

25 AgHk-52 b folded straight flat short

26 AgHk-52 a no fold or addedstraight rounded short

27 AgHk-52 a no fold or addedconcave flat short

29 AgHk-52 b folded concave rounded short

31 AgHk-42 b folded concave flat short

38 AgHk-42 e folded and addedstraight flat n/a 194.04

39 AgHk-42 d added concave furrowed short 208.56

40 AgHk-42 b folded concave flat short 289.46

41 AgHk-42 b folded concave flat short 205.3

42 AgHk-42 f added straight rounded n/a 356.98

43 AgHk-42 e folded and addedconcave furrowed short 115.38

44 AgHk-42 b folded concave flat short 133.34

45 AgHk-42 b folded straight flat n/a 114.4  
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StJohn Sample #

Neck main 

technique 

(stamped, incised 

or combo)

neck deco 

yes/no/un

known

Simplified 

neck motif

Castellation 

indeterminate/

present/not 

present

Number of 

castellations 

present

Castellation 

shape

Int deco 

yes/no/un

known

lip deco 

yes/no/un

nown

4 u indeterminate n/a n/a y y

5 incised y triangles indeterminate n/a n/a u u

6 n plain indeterminate n/a n/a y y

8 incised y triangles present 1 pointed y n

9 combination y triangles not present n/a n/a y y

10 stamped y obliques present 1 pointed y y

11 n plain present 1 rounded y y

16 u indeterminate n/a n/a y y

20 stamped y plaits indeterminate n/a n/a y y

21 u present 1 rounded y y

22 combination y triangles indeterminate n/a n/a y y

23 u indeterminate n/a n/a y y

24 incised y horizontals indeterminate n/a n/a y y

25 incised? y horizontals indeterminate n/a n/a y y

26 n plain indeterminate n/a n/a y y

27 stamped y horizontals present 1 pointed y y

29 n plain indeterminate n/a n/a y n

31 u present 2 pointed n y

38 u present 1 pointed y y

39 stamped y horizontals indeterminate n/a n/a y y

40 u indeterminate n/a n/a y y

41 incised y obliques indeterminate n/a n/a y y

42 incised y horizontals indeterminate n/a n/a y y

43 combination y horizontals indeterminate n/a n/a y y

44 stamped y obliques present 1 pointed y y

45 u present 1 pointed y y  
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StJohn Sample #

# of ext. 

bands 

present 

Ext. bands main 

tecnique

Ext. bands main 

motif

Punctate 

yes/no

Punctate 

directionality

punctate 

distance 

from lip Possible error correcting? 

4 3 stamped right oblique n

5 1 incised horizontal y n/a

6 3 stamped right oblique y straight int 31.32

8 5 incised horizontal y left int 34.7

9 4 stamped oblique and horizontaln

10 4 stamped alternating obliques y straight ext 19.41

11 3 stamped left oblique y slight right int 30.75

16 5 stamped right oblique y slight left ext 34.8

20 3 stamped left oblique y right ext 33.3

21 4 stamped right oblique n

22 7 stamped right oblique y slight left int 39.92 yes- added to lip

23 3 stamped alternating obliques y slight right int 28.08

24 5 stamped alternating obliques n

25 4 stamped right oblique y slight right ext 51.54

26 3 stamped right oblique y left ext 37.96

27 5 stamped alternating obliques y straight  int 29.02

29 2 stamped right oblique y right ext 25.11

31 1 incised right oblique n

38 2 stamped right oblique y straight  int 41.1 yes- added at castellation

39 5 stamped right oblique y left ext 32.5 yes- added to front/collar

40 3 stamped right oblique y slight right ext 33.05

41 4 stamped alternating obliques y straight ext 27.79

42 3 stamped left oblique y straight ext 42.68 yes- added to rim

43 4 stamped alternating obliques y left int 17.95 yes- added to rim

44 5 stamped left oblique y slight left int 29.95

45 5 stamped right oblique n  
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StJohn Sample # Site Rim Type

Rim type 

combined

Upper rim 

profile Lip shape Neck shape

Oriface 

diameter

46 AgHk-42 a no fold or addedconcave flat short 432.08

47 AgHk-42 a no fold or addedconcave flat elongated 250.64

48 AgHk-40 e folded and addedconcave flat short 238.38

49 AgHk-40 e folded and addedconcave furrowed short 187.92

50 AgHk-40 e folded and addedstraight flat short 336.08

51 AgHk-40 d added straight furrowed short 404

52 AgHk-52 d added straight flat short 320.14

53 AgHk-56 g unidentifiedconcave n/a elongated

54 AgHk-32 b folded concave flat elongated

60 AgHk-42 d added concave flat short

61 AgHk-32 b folded concave flat elongated

62 AgHk-32 d added convex furrowed short

63 AgHk-40 b folded concave flat short

65 AgHk-52 f added concave flat elongated

66 AgHk-42 e folded and addedconcave n/a elongated

67 AgHk-42 g unidentifiedconcave n/a elongated

68 AgHk-42 b folded straight rounded elongated

69 AgHk-42 f added concave flat short

71 AgHk-52 g unidentifiedconcave n/a elongated

79 AgHk-32 b folded straight flat short

85 AgHk-32 e folded and addedstraight flat n/a

91 AgHk-52 h added concave flat elongated

98 AgHk-32 e folded and addedstraight flat elongated

99 AgHk-42 c folded concave flat short

105 AgHk-58 b folded concave flat short

107 AgHk-58 f added straight furrowed n/a

109 AgHk-58 a no fold or addedstraight flat elongated

110 AgHk-58 b folded concave rounded n/a

111 AgHk-58 e folded and addedconcave flat short

112 AgHk-58 b folded concave flat short

113 AgHk-58 e folded and addedconcave flat short

114 AgHk-54 b folded concave flat short

115 AgHk-54 b folded concave flat elongated

116 AgHk-54 b folded concave flat short

117 AgHk-54 e folded and addedconcave flat short

119 AgHk-54 e folded and addedconcave rounded short

132 AgHk-52 b folded concave flat short 127.52

36 -recan of 32 AgHk-42 b folded straight flat short

93 -rescan of 030 AgHk-42 d added concave flat short

96 rescan of 28 AgHk-52 e folded and addedstraight flat short

Ferris Vessel 36 AgHk-32 d added concave furrowed elongated  
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StJohn Sample #

Neck main 

technique 

(stamped, incised 

or combo)

neck deco 

yes/no/un

known

Simplified 

neck motif

Castellation 

indeterminate/

present/not 

present

Number of 

castellations 

present

Castellation 

shape

Int deco 

yes/no/un

known

lip deco 

yes/no/un

nown

46 incised? y horizontals indeterminate n/a n/a y y

47 incised y triangles indeterminate n/a n/a y y

48 u present 1 pointed y y

49 combination y triangles present 1 pointed y y

50 u present 1 rounded y y

51 stamped y horizontals indeterminate n/a n/a y y

52 u present 1 pointed y y

53 incised y triangles indeterminate n/a n/a y u

54 incised y triangles present 1 rounded y y

60 incised y triangles indeterminate n/a n/a y y

61 incised y triangles present 1 pointed y y

62 stamped y triangles indeterminate n/a n/a y y

63 incised y triangles indeterminate n/a n/a y y

65 combination y triangles present 2 pointed y n

66 incised y triangles indeterminate n/a n/a y u

67 incised y triangles indeterminate n/a n/a y u

68 combination y triangles indeterminate n/a n/a n y

69 stamped y plaits indeterminate n/a n/a y y

71 combination y triangles indeterminate n/a n/a y u

79 u present 1 pointed y y

85 u present 1 pointed y y

91 incised y triangles indeterminate n/a n/a y y

98 stamped y obliques present 3 pointed y y

99 n plain present 3 rounded y y

105 stamped y obliques present 2 pointed y y

107 u indeterminate n/a n/a y y

109 incised y triangles present 1 rounded y y

110 u indeterminate n/a n/a y y

111 stamped y plaits present 1 rounded y y

112 u present 1 rounded y y

113 u present 1 pointed y y

114 incised y triangles indeterminate n/a n/a y y

115 stamped y obliques present 2 pointed y y

116 stamped y horizontals present 2 pointed y y

117 stamped y horizontals indeterminate n/a n/a y y

119 stamped y obliques present 1 rounded y y

132 stamped y horizontals present 1 pointed y y

36 -recan of 32 u indeterminate n/a n/a y y

93 -rescan of 030 n plain present 1 pointed y y

96 rescan of 28 combination y triangles present 1 pointed y y

Ferris Vessel 36 incised y horizontals indeterminate n/a n/a y y  
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StJohn Sample #

# of ext. 

bands 

present 

Ext. bands main 

tecnique

Ext. bands main 

motif

Punctate 

yes/no

Punctate 

directionality

punctate 

distance 

from lip Possible error correcting? 

46 2 stamped right oblique y slight left ext 17.74

47 3 stamped left oblique y left ext 35.24

48 2 stamped left oblique y straight ext 36.09 yes- added at castellation

49 4 stamped right oblique y right int 34.06 yes - added to rim

50 3 stamped alternating obliques y left ext 19.11 yes - added at castellation 

51 5 stamped left oblique y right ext 62.57

52 3 stamped right oblique y left ext 74.53

53 5 stamped alternating obliques y right ext 32.32

54 4 incised alternating obliques y slight left ext 33.31

60 2 stamped right oblique n

61 3 stamped right oblique y slight right ext 31.75

62 5 stamped horizontal y slight left int 23.74

63 6 stamped oblique and horizontaly straight int 31.98

65 7 stamped left oblique y left ext 21.97 yes- added to lip

66 4 stamped alternating obliques y right ext approx. 25.75yes- added to rim

67 7 stamped  right oblique y straight ext approx. 14.05

68 3 stamped left oblique n yes- added to top of rim

69 3 stamped right oblique y slight left ext 25.19 yes- added to rim

71 5 stamped oblique and horizontaly slight right ext approx. 21.26

79 7 stamped oblique and horizontaly straight int 80.6

85 3 stamped right oblique n yes- added at castellation

91 3 stamped right oblique n

98 4 stamped alternating obliques y straight int 47.51 yes- added at castellation

99 1 stamped right oblique n

105 5 stamped alternating obliques y slight left ext 24.53

107 4 stamped alternating obliques y straight  int 34.12

109 4 stamped vertical y slight left ext 28.21

110 5 stamped alternating obliques y straight  ext 10.6

111 4 stamped alternating obliques n yes- added at castellation

112 3 stamped left oblique y slight left ext 35.79

113 4 stamped alternating obliques y right int 25.19 yes- added at castellation

114 4 stamped left oblique y straight  int 34.78

115 5 stamped alternating obliques y straight  ext 25.33

116 5 stamped alternating obliques y slight left int 42.08

117 4 stamped alternating obliques n yes- added to rim

119 4 stamped alternating obliques y straight  int 43.02 yes- added at castellation

132 7 stamped alternating obliques n

36 -recan of 32 3 stamped right oblique y straight  int 37.47

93 -rescan of 030 3 stamped  alternating obliques y straight  ext 37.99

96 rescan of 28 4 stamped alternating obliques y left int 47.24 yes- added at rim

Ferris Vessel 36 6 stamped alternating obliques y straight ext 30.12  
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duplicates

StJohn Sample # Site Rim Type

Rim type 

combined

Upper rim 

profile Lip shape Neck shape

Oriface 

diameter

55 same V. as 008 AgHk-32 d added

97 same V. as 050 AgHk-40 e folded and added

90 same V as 28/96 AgHk-52 e folded and added

102 - same V. as 049 AgHk-40 b folded

106 same V. as 105 AgHk-58 b folded

70 same vessel as 020 AgHk-52 b folded

101 -same V. as 044 AgHk-42 b folded

100 - same V. as 051 AgHk-40 f added

118 - same V. as 119 AgHk-54 b folded 287.26

64 same V. as 98 AgHk-32 b folded  

 

StJohn Sample #

Neck main 

technique 

(stamped, incised 

or combo)

neck deco 

yes/no/un

known

Simplified 

neck motif

Castellation 

indeterminate/

present/not 

present

Number of 

castellations 

present

Castellation 

shape

Int deco 

yes/no/un

known

lip deco 

yes/no/un

nown

55 same V. as 008 y indeterminate n/a n/a y n

97 same V. as 050 u indeterminate n/a n/a y y

90 same V as 28/96 y indeterminate n/a n/a y y

102 - same V. as 049 u indeterminate n/a n/a y y

106 same V. as 105 y present 1 pointed y y

70 same vessel as 020 y present 1 pointed y y

101 -same V. as 044 y present 1 pointed y y

100 - same V. as 051 y present 1 incipient pointedy y

118 - same V. as 119 y present 1 incipient pointedy y

64 same V. as 98 u indeterminate n/a n/a y y  

 

StJohn Sample #

# of ext. 

bands 

present 

Ext. bands main 

tecnique

Ext. bands main 

motif

Punctate 

yes/no

Punctate 

directionality

punctate 

distance 

from lip Possible error correcting? 

55 same V. as 008 5 incised horizontal y

97 same V. as 050 3 stamped alternating obliques y yes- added at castellation 

90 same V as 28/96 4 stamped alternating obliques y yes- added at rim

102 - same V. as 049 3 stamped right oblique y

106 same V. as 105 6 stamped alternating obliques y

70 same vessel as 020 3 stamped left oblique y

101 -same V. as 044 5 stamped left oblique y

100 - same V. as 051 5 stamped left oblique y

118 - same V. as 119 4 stamped alternating obliques y

64 same V. as 98 4 stamped alternating obliques y  
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Appendix F: Research Timeline 

 

This micro CT and image analysis timeline attempts to capture the impact of mechanical 

difficulties, and the steep learning curve involved in scanning and analyzing materials 

using a micro CT system.   

Date Research Progress 

September 2013 Completed  X-ray safety training requirement for 

Western 

July 2014  Completed first scans on my own. The data for 

these scans was subsequently lost when the hard 

drives for the reconstruction computers were 

switched.  

July 2014 Axis rotation errors in attempted scans  

Fall 2014  Working on comprehensive exams and research 

proposal 

December 2014  Some scans completed that ended up in analysis, 

but the machine was plagued by over rotation 

errors and huge ring artifacts 

January 2015 Running scans but with minimize rings function 

Winter Spring Summer 2015 Not scanning-Comprehensive exams and Mitacs/ASI 

internship 

September 2015 Running scans but with minimize ring function, still 

ring artifacts on scans 

October 2015 Nikon technicians working on the machine 
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Fall 2015 Created Experimental Clay Slabs 

November 2015 Huge ring artifacts in scans but when minimize rings 

function was turned on we were getting rotation 

errors with the stage 

Late November 2015 Working with Nikon technicians to try to fix rotation 

errors and other problems 

January 2016 Ran 34 scans this month, mostly run with minimize 

rings function but also experimenting with longer 

shading corrections to get rid of ring artifacts with 

some success. Some ongoing problems with auto-

conditioning the machine.  

February 2016 Nikon engineer at SA 

March 2016 Ran the last scans of the first sample set of 35 

specimens 

March 2016 Scanner is down for maintenance again. Trikon 

technicians are in for a few weeks 

March-April 2016 Initial analysis of scans in VG 2.2 – lots of time spent 

trying to figure out ways to segment voids 

April 2016  Nikon technicians are in for maintenance on cooler 

leak  

Late April 2016 Experimenting with ORS software to isolate voids 

May 2016 Running calibrated scans 

May 2016  Running successful scans of second sample of 

specimens 
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May-June 2016 Running analysis in 30 day trial version of VG 3.0 

May 2016 Nikon technician visit to do some VG training as 

well as maintenance 

June 2016 Analysis in VG 2.2 

August 2016 Beginning of August there are a lot of failed scans 

but by the end I was running mostly successful 

scans 

August 2016 Running analysis on rectangle prism ROIs 

August 2016 Ongoing auto-conditioning issues with the scanner 

Late August 2016- early September 2016 Some manipulator errors 

September 2016 Trikon technician in and out, waiting for a scanner 

part 

September 2016 Running analysis on rectangle prism ROIs 

September 2016 Dragonfly by ORS released 

October 2016 Running Analysis in VG 2.2 on first sample of 

specimens 

November 2016 Waiting on a scanner part for the machine  

November 2016 Running Analysis in VG 2.2 on specimens 

December 2016 Successful scanning and running rescans of 

previously failed scans 

December 2016 Running Analysis in VG 2.2 on specimens 

January 2017 Good scans at the beginning of the month, later 
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January some rotation errors 

January 2017 Scanning samples from the Ministry 

January 2017 Running Analysis in VG 2.2 on specimens 

February 2017 Ran three successful scans, completed the last of 

the Vessel specimen scans 

February-March 2017 Running Analysis in VG 2.2 on specimens and 

second 30 day trial version of VG 3.0 

April 2017 Image analysis in VG 2.2 

July 2017 Scanning lumps of clay, some trouble with 

movement in mounting methods.  

Finished scans and analysis. 

February-March 2018  Rotation errors (not for this project though) 

June 2018 Ongoing auto-conditioning errors (not for this 

project) 

Summer 2018 to Summer 2020 Machine running well with few errors 
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