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Abstract

The Ranque-Hilsch vortex tube (RHVT) is a simple mechanical device with no moving

parts capable of separating a supply of compressed fluid into hot and cold streams through

a process called temperature separation. The overall aim is to develop models which can be

used to assess the temperature separation mechanisms in the RHVT, leading to a better overall

understanding of the underlying physics. The introductory chapter contains a thermodynamic

analysis and introduction to the flow physics, alongside three miniature literature reviews and

critiques identifying research gaps.

The body of the thesis contains three articles. The first article studies the flow of a per-

fect, inviscid gas through a duct, which rotates about an axis perpendicular to the direction of

the duct. The analysis shows that gas flowing towards the center of rotation will cool while

delivering energy to increase or maintain the angular momentum of the entire system. The

study further generalizes the results to a duct with an arbitrarily varying cross-sectional area

and arbitrary path through 3D space, yielding similar results.

In the second article, a new technique for obtaining exact solutions to the Navier-Stokes

equations is developed, and many new solutions are presented; most notably, a new solution

describing a flow strongly resembling flow inside the RHVT.

The third article contains three computational fluid dynamics studies of the RHVT; (1) test-

ing the influence of different hydrodynamic boundary condition types and boundary condition

locations on temperature separation, (2) examining the influence of four different turbulence

models on temperature separation and energy transfer modes, and (3) examining the influence

of the axisymmetric assumption using a novel method for computing the fluid injection angle.

It was found that the assumptions made elsewhere in the literature are validated, although us-

ing mass-flow boundary conditions is preferred where possible, the choice of turbulence model

strongly influences the temperature separation and the flow structure. The results herein indi-

cate shear work transfer is the dominant energy transfer mechanism in the RHVT.

Keywords: Ranque-Hilsch vortex tube, vortex tube, energy separation, temperature

separation, Navier-Stokes exact solutions, computational fluid dynamics, flow structure,

vortex
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Summary for Lay Audience

The Ranque-Hilsch Vortex Tube (RHVT) is a device that behaves in an unexpected way:

if a source of compressed air (such as an air hose used to pressurize tires at a gas station) is

attached to the inlet of this tube, the air going through it will swirl and form a vortex. The

air exits the tube from two openings: cold air from the center of the vortex exhausts through a

small hole at one end, and hot air exhausts from a circular gap at the other end of the tube. This

process is called temperature separation. Many researchers have proposed theories explaining

why temperature separation happens, but there is no consensus yet. This thesis contains three

articles which help predict the flow patterns and temperatures inside the RHVT, which are used

to test the popular temperature separation theories.

In the first article, a different, simpler problem is studied: a source of compressed air is

attached to one end of a small tube, while the opposite end of the tube rotates about an axis.

The analysis reveals the air moving down the tube towards the axis cools along the way, and

the energy lost from cooling contributes to spinning the tube faster about its axis of rotation.

In the second article, the mathematical equations that describe fluid motion are solved using

a new technique, and in one case, the flow pattern is similar to the flow inside the RHVT.

Finally, the last article describes three studies using computer simulations to model the air

flow inside the RHVT. It was found that simulation results matched experimental results well

when the amount of air going into and out of the tube was fixed, and that 2D simulation results

are accurate when the angle of the flow entering the tube is determined using the results of a

3D simulation. In this last work, evidence is found to support the hypothesis that the cooling

happens inside the RHVT because of friction between layers of air spinning at different speeds.
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Chapter 1

Introduction

Few devices have generated as much intrigue as the Ranque-Hilsch Vortex Tube (RHVT). A

device that requires nothing more than a supply of room-temperature compressed air, producing

cold air from one end while exhausting hot air from the other might seem a laughable idea to

an astute student of thermodynamics, who might use the Clausius statement1 to argue that the

device violates the second law of thermodynamics, and could not exist. And yet the RHVT

is that device [2]. In addition to numerous laboratory experiments validating Ranque’s nearly-

century-old claims, it has been shown that the RHVT is not in violation of the second law

of thermodynamics [3]. Somehow, a complete understanding of the phenomenon occurring

inside the RHVT, called temperature separation, remains elusive. At the same time, several

niche applications for the device have been found; including the cooling of electrical cabinets

[4] and natural gas processing [5] among several others [6]. In this thesis I attempt to shed light

on this underlying mechanism using a combination of analytical and computational techniques.

1Heat can never pass from a colder to a warmer body without some other change, connected therewith, occur-

ring at the same time. [1]

1
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Figure 1.1: A schematic of a typical counter-flow Ranque-Hilsch Vortex Tube with four inlet

nozzles. An end view is shown on the left and a cut-away of the tube is shown on the right.

The filled triangle is the hot exit plug.

Figure 1.1 depicts a simple schematic of a RHVT (a name that is often shortened to ’Vortex

Tube’ or VT). A compressed fluid is supplied to the inlet channels, directing it in the circum-

ferential direction. This configuration creates a strong vortex which extends along the length

of the tube. The small hole near the inlet exhausts cold fluid, and is referred to as the cold exit,

or cold outlet. Conversely, fluid leaving the annular opening at the opposite end of the tube is

hot, and the opening is called the hot exit, or hot outlet.

Occasionally, researchers have studied the similar co-flow or parallel-flow vortex tube. The

structure is similar to the schematic depicted in figure 1.1, except the hot exit plug has a con-

centric hole drilled which serves as the cold exit and the original cold exit is blocked. Only a

handful of researchers have studied this device, including Comassar [7] and Lay [8], however

Eiamsa-Ard and Promvonge [9] have noted in their review that temperature separation is much

less pronounced than the counter-flow VT.

This chapter contains the necessary background information to understand the scientific

contributions of chapters 2, 3, and 4. First, a ’black-box’ analysis of the RHVT will be carried

out using only a thermodynamic treatment of the tube, then the basic flow structure of the tube

will be discussed in conjunction with the simplified models of Ranque-Hilsch flow presented

in the literature, followed by a review of the prevalent temperature separation theories.

While the work in this thesis might first appear to be disparate, several different method-

ologies are used and the overall aim is to answer two central questions:

• What are the dominant mechanism(s) of temperature or energy separation in the RHVT?
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• What are the necessary and sufficient conditions for temperature separation to occur?

1.1 Definitions of Temperature Separation and Energy Sep-

aration

In this thesis cold and hot exit temperature separation are formally defined as:

∆T0,c = T0,i − T0,c (1.1)

∆T0,h = T0,h − T0,i (1.2)

where the subscripts i, c, and h denote quantities at the inlet(s), cold, and hot boundaries, re-

spectively. The symbol T0 denotes a total temperature, which is the sum of the thermodynamic

(static) temperature T , and another component capturing the local kinetic energy of the flow.

This term is formally defined below for a perfect gas. Cold and hot exit energy separations

have definitions similar to temperature separation:

∆Ec = ṁc
(
h0,i − h0,c

)
(1.3)

∆Eh = ṁh
(
h0,h − h0,i

)
(1.4)

where h0 is the total enthalpy. These are the metrics which are most frequently used in evaluat-

ing the performance of the RHVT. Occasionally, papers will speak in terms of total temperature

separation, defined as Th−Tc [10]. This characterization will be avoided in this thesis as it cre-

ates confusion when discussing the total temperature, and it has limited usefulness. In general,

the term vortex tube performance refers to the magnitude of the cold exit energy separation,

as the most common applications of the VT seek to harness the cold exit stream for cooling

purposes.
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1.2 A Black-Box Analysis of the Ranque-Hilsch Vortex Tube

In order to obtain an initial sense of the operation of the RHVT and explore possible energy

separation mechanisms, it is useful to write shell-balances of mass, energy, and entropy; treat-

ing the RHVT as a black-box. The RHVT shown in figure 1.1 has four inlets (although any

number is possible), an annular exit, and an axial exit at the opposite end. Typically, the in-

let properties are the same across the inlet channels, and in the following analysis they are

treated as a single inlet. In this section, the exit flows are assumed to be well-mixed, having

uniform properties. The following mathematical derivation is common to many papers such as

O’Connell [11], but the commentary is original. A natural starting point is the conservation of

mass, which dictates that the in- and out-flow mass flow rates must balance.

ṁi = ṁc + ṁh (1.5)

Frequently, results are presented as a function of the cold mass fraction, or mass flow split,

which is the ratio of the mass flow rate leaving the cold exit to the inlet mass flow rate λ =

ṁc/ṁi. In experiments, the cold mass fraction has been manipulated by varying the position of

the hot exit plug shown in figure 1.1 to change the hot exit area, adjusting valves downstream of

either exit, or by adjusting the inlet pressure. In CFD studies, the outlet pressures are specified

or a mass flow rate is fixed at one exit.

The energy balance is given by

ṁi

(
hi +

v2
i

2

)
= ṁc

(
hc +

v2
c

2

)
+ ṁh

(
hh +

v2
h

2

)
(
hi +

v2
i

2

)
= λ

(
hc +

v2
c

2

)
+ (1 − λ)

(
hh +

v2
h

2

)
(1.6)

where no work is exchanged with the surroundings, gravitational potential effects are neglected,

and equation 1.5 has been used. The vortex tube walls are also assumed to be adiabatic, an as-

sumption which must be justified using experimental observations. Thakare and Parekh [12]

have run experiments using a commercial vortex tube whose outer wall was exposed to the

laboratory environment, and then repeated the study with the same VT wrapped in glass wool
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insulation. They found a significant increase in temperature separation when the tube was in-

sulated. Promvonge and Eiamsa-ard [10] have also studied the effects of insulating the RHVT

and found similar results. Ramakrishna et al. [13] tested the influence of changing the VT ma-

terial, using PVC, Perspex®, mild steel, and copper tubes of the same dimensions. They found

that the materials having low thermal conductivity (i.e. PVC and Perspex) yielded increased

temperature separation. In addition, Ramakrishna et al. applied a layer of wax (low thermal

conductivity) to the copper tube, and ran the tests again, finding temperature separations that

matched very closely with the results of the PVC tube (without wax). This result suggests that

axial conduction along the length of the tube does not influence temperature separation either.

Given the evidence, I conclude that heat exchange with the environment degrades temperature

separation, and is not necessary for temperature separation to occur.

We can also introduce the total enthalpy definition (h0 = h + v2/2) and reduce equation 1.6

to

λ =
h0h − h0i

h0h − h0c
(1.7)

As indicated by O’Connell [11], equation 1.7 can serve as a check to validate the consistency of

experimental measurements; for example, the mass flow split, λ, observed in an experiment can

be verified by using known temperatures at the exits to solve the right-hand-side of the equation.

However, recall the total enthalpy depends on the mass-flow-averaged kinetic energies at each

of the exits (v2/2), which in turn depend on the local densities and relative mass flow rates.

An iterative solution is still possible, but some uncertainty is introduced due to local flow

measurements which will be discussed in greater detail in chapter 4. Practically, equation 1.7

is best used for verification when the flow is slowed adiabaticly downstream of the vortex tube

exits, until the experimenter is confident that the dynamic component may be neglected at the

measurement station.

The entropy budget is

Ṡ gen = ṁc (sc − si) + ṁh (sh − si)

sgen = λ (sc − si) + (1 − λ) (sh − si) (1.8)
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Under the perfect gas assumptions and their well-known change in entropy relations [1],

Silverman [3] has reduced equation 1.8 to the inequality:

xλ
(
1 − λx
1 − λ

)1−λ

≥

(
pi

pc

) 1−γ
γ

; x =
T0c

T0i
(1.9)

where γ is the ratio of specific heats. Silverman uses Hilsch’s vortex tube study [2] as an

example, demonstrating that the reported measurements satisfy the inequality.

In addition to the shell balances, others have rendered the problem dimensionless using

Buckingham-π theorem, including Stephan [14] and Baghdad et al. [15]. The process will be

started here to illustrate the considerable barriers to progress in this particular problem. The

first step in non-dimensionalization is to list the pertinent physical parameters; this has been

done in table 1.1. There are 15 independent variables in total, with 4 primary dimensions,

which suggests a maximum of 11 dimensionless π-groups are required to relate a dependent

parameter (e.g. Tc or T0,c) to the known quantities:

π0 = f (π1, π2, . . . , π11) (1.10)

where π0 is a ratio involving Tc or T0,c. Whether or not equation 1.10 is considered explic-

itly, the parameters of the vortex tube, and their influence on temperature separation can be

investigated experimentally. In completing this task, it should become clear which parameters

are critical to temperature separation in Ranque-Hilsch flow, and whether they can be treated

independently or not. Then, the empirically determined form of f can be compared with the

theories of sections 1.3.1 and 1.3.3 to see which ones are accurate.

1.2.1 Review of Parametric Studies

A large portion of the literature on the RHVT focuses on characterizing the VT performance

as a function of critical input parameters. In this section the influences of VT parameters are

reviewed; enough to outline the general trends. Several review papers have collected many

more parametric studies than have been mentioned here [16, 17, 18, 19, 20].

Hilsch’s study [2] is a natural starting point. In his experiments, four different cold exit

diameters dc ∈ {1.4, 1.8.2.2, 2.6}mm were tested, finding Tc is minimized when λ ≈ 0.2 and
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Table 1.1: The independent VT parameters affecting temperature separation. The primary

dimensions are length L, mass M, time T, and temperature θ

Variable Symbol Dimensions

Geometric Parameters length L L

diameter D L

number of nozzles N 1

inlet area Ai L2

cold exit diameter dc L

plug diameter at hot exit dh L

hot exit cone angle α 1

Operating Parameters inlet pressure pi ML-1T-2

cold exit pressure pc ML-1T-2

hot exit presssure ph ML-1T-2

inlet static temperature Ti ML-1T-2

inlet mass flow rate ṁi MT-1

Fluid Properties molecular viscosity µ ML-1T-1

thermal conductivity k MLT-3θ-1

specific heat at constant pressure cp L2T-2θ-1

heat capacity ratio γ = cp/cv 1

dc = 1.4 mm, while the latter three cold exit sizes produce more favourable cooling across the

range of λ. The results are shown in in figure 1.2. In addition, Hilsch varied the inlet pressure,

and found a positive correlation with VT performance.

Kırmacı [21] carried out an experimental study on a VT having L/D = 15 with N ∈

{2, 3, . . . , 6} and pi in the range 150 kPa–700 kPa and held λ = 0.5 fixed. The overall tem-

perature difference Th − Tc was observed to increase with increasing inlet pressure, while in-

creasing the number of nozzles degraded temperature separation, while the overall temperature

difference degraded with increasing the number of nozzles.

Skye et al. [22] conducted a series of experiments using a single-nozzle commercial vortex
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Figure 1.2: Summary of Hilsch’s experiments showing performance variation with cold exit

diameter and inlet pressure, where pi is the pressure near the hot exit inside the VT [2]

tube with the dimensions L = 10.6 cm D = 1.14 cm (L/D = 9.29), and dc = 0.62 cm. In

addition, they compared their results with steady, axisymmetric CFD simulations run using

FLUENT software, yielding the plot shown in figure 1.3. In axisymmetric CFD simulations,

the inlet flow is given both circumfrential and radial components to mimic experimental setups

involving a large number of evenly spaced inlet nozzles.

In the experiments of Dincer et al. [23] (L/D = 26.6), the inlet pressure and hot exit

plug position have independently varied to separate the influences of the inlet pressure and

cold exit mass fraction. The inlet pressure was varied from 200 kPa to 420 kPa in increments

of 20 kPa, where the hot end plug position was changed to vary the cold mass fraction at each

inlet pressure over the range 0 < λ ≤ 1. They observed a modest, decaying, positive correlation

between inlet pressure and net temperature separation.

Eiamasa-ard [24] and Li et al. [25] have conducted a similar experimental studies where

the inlet pressure and cold mass flow rate were independently varied. They found a similar

trends to Dincer et al.

Saidi and Valipour [26] have conducted a series of experiments studying, among other

parameters, the effects of changing L/D from 20 to 78, in 5 increments. They showed the cold

temperature separation at a cold mass fraction λ = 0.55 increases with L/D, until L/D ≈ 55.5,
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Figure 1.3: Comparison of experimental and CFD results from Skye et al. [22]

after which only modest increases in temperature separation are observed. In addition, they

varied the cold orifice diameter to tube diameter ratio (dc/D) from 0.16 to 0.62 in 5 increments

and found a strong positive correlation between the diameter ratio and temperature separation

up to dc/D = 0.5, after which the temperature separation decreases.

Aydın and Baki [27] conducted an experimental study wherein the dimensions of the vortex

tube were independently varied. To study the effects of vortex tube length variation, dimensions

D = 18 mm, di = 5 mm, and L =250, 350, 550 and 750 mm were selected. The resulting plot

shown in figure 1.4a reveals an interesting relationship between tube length and temperature

separation at both exits: by and large only modest changes in the temperature separation were

observed between the tube lengths of L =250, 550 and 750mm, but for the intermediate length

L = 350 mm, the temperature separation rises appreciably at both exits. Interestingly, the peak

in cold exit temperature separation occurs at λ = 0.2 for all lengths except L = 250 mm. A

similar plot feature can be seen with the variation inlet nozzle diameter. It is curious that Aydın

and Baki did not discuss these oddities.

Eiamsa-ard [24] conducted a series of experiments to explore the effects of a ’snail-shaped’

entrance shroud with 1, 2, 3, and 4 nozzles pointing towards the tube, and compared this with

a tangential inlet configuration with 4 nozzles. Comparing the snail-shaped nozzles, increas-

ing the number of nozzles increase performance, and all snail geometries out-performed the
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(a) Varying tube length (b) Varying cold exit diameter

Figure 1.4: Temperature separation variation with geometric parameters from Ref. [27]

tangential-nozzle configuration.

1.2.2 Critical Review of Parametric Studies

Generally, parametric studies effectively characterize vortex tube behaviour over a range of

parameters. Some general conclusions can be drawn:

• Temperature separation increases with inlet pressure as shown in many studies including

[2, 28]. Importantly, Parker and Straatman [29] have shown in their experiments that

temperature separation over a range of mass fractions is invariant with respect to the

pressure ratio.

• Cold exit temperature separation is generally minimized in the vicinity of λ ≈ 0.2.

Unfortunately, the literature also disagrees on several points. First, the available studies ex-

amining the influence of the length L, and the length-to-diameter ratio L/D offer no consensus.

The review papers in the field offer limited guidance; Eiamsa-ard and Promvonge [17] con-

cludes the optimum ratio is L/D ≈ 20, while Yilmaz et al. [18] acknowledges the disharmony

in the literature, simply reporting that L should be ”many times” larger than D, but the effects

on performance are limited beyond L/D > 45. Thakare et al. [19] offered a similarly vague

statement. There is similar disagreement on the influence of dc/D.
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In general, progress on this front has been hampered by several interrelated problems. First,

there are a large number of independent parameters affecting temperature separation; parame-

ters describing the nozzle geometry and hot exit plug geometry can be added to the list of 15

given in table 1.1. Such a large design-space takes a long time to explore. In addition, there

are more options for possible dimensionless π-groups (e.g. is it more pertinent to consider the

Reynolds number, Euler number, or Mach number?). Researchers disagree on which groups

are important. Moreover, there has been no ”standard” VT adopted by the community: two

researchers may study L/D effects and come to different conclusions, but comparison between

the studies is made impossible because D,N, Ai, Pi, . . . are all different between the studies.

These issues are made all the more complicated by the interaction of different physical

phenomena at different scales, which is best illustrated when discussing the influence of N.

Results of some studies claim increasing the number of nozzles degrades performance [21, 30],

while other studies claim the opposite [31, 10], and Dincer et al. [28] studied vortex tubes with

2, 4, and 6 nozzles and found 4 nozzles gave the best performance. Even without considering

the overall effects on the flow field, the consequences of varying N can be difficult to anticipate.

The situation might be complicated by several factors:

• while the upstream pressure was held constant (except for Ref. [31] where the mass flow

rate has been fixed), the total mass flow rate through the VT increases as a consequence

of providing additional channels, causing the vortex to strengthen.

• At the same time the flow rate through each channel should diminish somewhat, and the

flow profile across the channels is subject to change.

• Furthermore, the compressibility of the flow causes the static temperature to drop as

it passes through the nozzles; at the nozzle exit, heat transfer plays a significant role

(demonstrated in chapter 4) in the local energy transfer, which depends on the local

static temperature gradients.

• Each of the above items can be further complicated by the presence of shocks in the

vicinity of the nozzles, which are seldom discussed in the literature.

Each of these factors might be significant, but a simple parametric study will not provide these
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details. Indeed, Refs. [30, 28] only provide passing comments with respect to the first and

second items in the above list.

When studying the functional dependence in parametric form, it is very tempting to as-

sume that the influence of each of the parameters in equation 1.10 can be separated, either by

summation, or by multiplicative factors:

π0 =

M∑
i=1

fi(πi) or π0 =

M∏
i=1

fi(πi) (1.11)

where M is the totatl number of parameters. This assumption has been stated explicitly in

Refs. [32, 15] with very limited accuracy, and implicitly assumed in other works. Given the

shortcomings and complexities mentioned above, it seems unlikely that such simplifications

can be made while still offering accurate predictions of temperature separation over a range of

parameters.

The criticisms stated here stem from the assumption that the overall goal of these studies

is to inform and challenge the theories surrounding Ranque-Hilsch flow and temperature sep-

aration. However, it is important to acknowledge that many of these studies also endeavor to

aid VT designers in finding the best performing designs, while a complete understanding of

temperature separation is not a primary goal.

Nevertheless, this thesis endeavors to identify the mechanisms of temperature separation in

the RHVT, and no more progress can be made without considering the physics at play within

the tube; the black box must be opened.

1.3 Fluid Mechanics of the Ranque-Hilsch Vortex Tube

While RHVTs are possible under the laws of thermodynamics, the mechanism(s) responsi-

ble for temperature separation must lurk in the altogether more complicated realm of fluid

mechanics. Here are the governing equations of fluid mechanics, namely, the compressible

Navier-Stokes equations:
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∂ρ

∂t
+ ∇ · (ρu) = 0 (1.12)

ρ

(
∂u
∂t

+ (u · ∇) u
)

= −∇p + µ∇2u +
1
3
µ∇ (∇ · u) (1.13)

where ρ is the density, u is the velocity, t is time, p is thermodynamic the pressure, and µ is the

viscosity. The solution to these equations will yield the flow structure inside the RHVT, which

strongly affects the flow of energy inside the domain. Unfortunately, the non-linear and second

derivative terms complicate the solution process, requiring the use of simplified models, or

numerical methods to obtain adequate solutions. These will be addressed below.

While the energy shell balance written above is useful for parametric studies and veri-

fication checks, the energy balance for an infinitesimal control volume within the RHVT is

required to analyze the internal energy separation mechanisms:

ρ


∂ξ

∂t︸︷︷︸
unsteady

term

+ u · ∇ξ︸︷︷︸
advection

term

 = −p (∇ · u)︸      ︷︷      ︸
compressibility

term

− ∇ · q︸︷︷︸
heat flux

term

+ Φ︸︷︷︸
viscous

term

(1.14)

where ξ(T ) is the internal energy, q is the local heat flux due to conduction heat transfer,

and Φ is the heat increase due to viscous dissipation within the flow field. As it has already

been demonstrated, heat flux at the walls of the RHVT does not contribute to the temperature

separation mechanisms, so boundary effects may be neglected for this analysis. However, the

influence of heat transfer inside the domain cannot be ruled out.

With this knowledge in mind, each of the terms in equation 1.14 can be assessed as a

potential motivator for energy separation. The unsteady term, the advection term, and the

heat flux term (through application of Fourier’s law) are all proportional to temporal or spatial

variations in the temperature field, serving only to redistribute thermal energy throughout the

domain. Since the RHVT does not rely on any initial energy gradients inside the tube, only

the compressibility and viscous dissipation terms can initiate variations in the temperature field

where none exist. This conclusion has an important corollary; since incompressible fluids have

a constant density (barring material gradients, which seem difficult to attain in Ranque-Hilsch

flow), ∇ · u = 0 by equation 1.12, and the compressibility term vanishes. Therefore, viscous
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dissipation is the only source of internal energy within incompressible flows. Moreover, since

Φ must always be positive [33], the thermal energy must increase. This analysis explains the

results obtained by Balmer [34], who found significant ’temperature separation’ when water

(incompressible) was used as a working fluid within a commercial RHVT, which was designed

for use with air. Across the range of parameters studied, Balmer found the hot exit temperature

exceeded the cold exit temperature, while the temperature of both exits significantly exceeded

the inlet temperature. Given the exit temperatures differed substantially, there was still an

energy separation mechanism at play, however no cooling effect is possible.

1.3.1 Review of Flow Structures in the RHVT

Figure 1.5 shows the fascinating flow pattern inside the RHVT. The offset of the inlets from

the tube axis produces a strong vortex inside the tube. While part of the incoming fluid swirls

as expected and proceeds to the hot exit, the remainder flows part way down the tube, be-

fore reversing towards the cold exit. Temperature, velocity, pressure, and density changes are

observed throughout the domain.

Figure 1.5: Streamlines from a CFD simulation moving to the hot and cold exit taken from

Ref. [35]

Researchers often discuss processes occurring within the hot and cold streams; fluid parcels

within the domain which eventually leave via the hot exit belong to the hot stream, and parcels

eventually exiting via the cold exit belong to the cold stream.
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While figure 1.5 captures the generally agreed upon flow structure inside the RHVT, there

are still some details under debate. For example, the effect of turbulence on the flow structure

is unclear. Also, some researchers have noted the presence of recirculation zones in the fluid,

and claim they are integral to the temperature separation process.

Recently, Guo et al. [36] have thoroughly reviewed all studies of the RHVT in which in-

ternal flow properties have been collected, including intrusive and non-intrusive measurements

of experimental data, and data from numerical calculations. A selection of these works will be

highlighted in the next two subsections.

Experimentally and Numerically Observed Flow Structures

Although this thesis aims to model the RHVT, it would be remiss to ignore the literature on

experimentally observed flow structures in the RHVT alongside numerical ones. While internal

flow measurements and visualizations come with some unique challenges, careful experiments

can yield insightful data which can be used as a comparison for models of the RHVT.

In an early study by Lay [8] hypodermic probes and hot-wire anemometers were inserted

into a 2 in diameter, transparent co-flow RHVT at 6 different measurement stations. These

experiments showed total temperature and total pressure increasing with radius, while the axial

velocity close to the center-line reversed near the entrance (this anticipates the discovery of a

recirculation bubble at the tube axis, a feature of co-flow RHVTs which is now well known).

Finally, a decent visualization of the flow near the wall, very similar to figure 1.5, was obtained

by photographing the tube after milk was injected at the inlet.

Ahlborn and Groves [37] used a 1.6 mm Pitot probe to measure velocities inside a 25 mm

diameter vortex tube, and computed the mass fluxes at various locations. They noticed near the

axis of the vortex tube greater mass flow appeared to be moving towards the cold exit than was

measured downstream, leading them to the conclusion that an isolated, annular, recirculation

region persisted within the domain.

More recently, Zhang et al. [38] have conducted unsteady Reynolds-Averaged Navier-

Stokes (RANS) simulations using FLUENT Software, in which they have re-analyzed the vor-

tex tube studied experimentally by Dincer et al. [23], and numerically using steady-state RANS

models by Baghdad et al. [39]. Zhang et al. clearly demonstrated the presence of a precess-
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ing vortex core (PVC) within a four-nozzle RHVT. A snapshot of the rotating core is clearly

identifiable in figure 1.9. The time-averaged hot and cold temperature separations have slightly

better agreement with the experiments of Dincer et al. than the steady simulations of Baghdad

et al., especially at higher cold mass fractions.

Xue et al. [40] used 2D particle image velocimetry to visualize the flow at axial cross-

sections within a 30 mm co-flow VT with water. They confirmed experimentally the presence

of a precessing vortex core discovered by Zhang et al.

Shamsoddini et al. [31] conducted 3D, steady, RANS simulations using FLUENT and the

RNG k − ε model to study the VT of Aljuwayhel et al. [41] to determine the effects of increas-

ing the number of tangential nozzles. Nozzles were evenly spaced around the circumference,

and tangentially-oriented to the tube. Configurations with n = 2, 3, 4, 6, 8 nozzles were consid-

ered, and performance improved as the number of nozzles were increased. Perhaps the most

noteworthy outcome from Shamsoddini et al.’s work is shown in figure 1.6: the 3D simulation

including 8 nozzles is nearly identical to the results obtained from an equivalent axisymmetric

geometry. The axisymmetric results are also in close agreement with experiments conducted

by Aljuwayhel et al.

Figure 1.6: Comparison of a 3D simulation of a vortex tube with eight nozzles at the periphery

with an equivalent axisymmetric simulation, modified from Ref. [31]

2D Disc Approximations

A pair of 1948 reports by Kassner and Knoernschild [42] proposed a working theory of RHVT

operation one year after Hilsch’s re-discovery. While rudimentary, the report was the first to

analyze mathematically the processes occuring inside the RHVT, by assuming a strong circum-

ferential flow field that is very close to the Rankine vortex in nature. The report conveyed the
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idea that momentum can be transferred outward via shear in a rotating fluid, and concluded by

saying this must be the energy separation mechanism inside the RHVT, while making some

unclear statements about heat transfer.

Pengelley [43] considers a viscous, compressible, perfect gas with radial and circumferen-

tial motions in an annular region between two porous cylinders, in the absence of heat transfer.

Starting from the Navier-Stokes and energy equations, they assume the radial flow is small

when compared to the circumferential component, and solve the simplified equations. The

results show that there are circumstances wherein the stagnation temperature decreases signif-

icantly as it the fluid moves towards the center, while work is transferred to the outer wall.

Savino and Ragsdale [44] have carried out experiments on a device very similar to the de-

vice studied by Pengelley: in their case an outer shroud was supplied with air at high pressure,

this air was deflected in the circumferential direction by a ring of guide vanes as it moved

towards the low pressure axial exit. They observed a significant total temperature drop, and

while no direct comparisons were made, they commented that their results are in agreement

with Pengelly’s findings.

Allahverdyan and Fauve [45] have studied analytically a similar flow to Pengelly, except the

influence of large radial velocities and internal heat transfer has been taken into account. They

also argue that Pengelley did not accurately account for the heat transfer boundary condition,

so the model falls somewhat short of the goal of demonstrating that cooling of a swirling

compressible fluid is possible without energy input. Here the authors carefully demonstrate

that cooling is acheived not through the action of refrigeration (i.e. external work input), or

through heat transfer via the boundaries, but through the action of viscosity, and a net positive

work output is done by the fluid on the rotating porous boundaries. The results are in strong

agreement with the measurements of Savino and Ragsdale. An example of the results obtained

is shown in figure 1.7.

Polihronov and Straatman [46] considered an altogether different setup, studying the radially-

inward flow of a perfect gas through a straight duct rotating about an axis perpendicular to the

duct centerline. Treating the problem as one-dimensional, and applying the conservation of

energy, they demonstrated that the temperature between a pressurized supply tank at radius r

is reduced by ωr/cp, where ω is the angular velocity of the duct. They attribute the physics of
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Figure 1.7: Results obtained by Allahverdyan and Fauve [45], wherein T̂ is the dimensionless

static temperature, Û is the dimensionless stagnation enthalpy, and x is the dimensionless radial

distance between the rotating cylinders

this temperature drop to the conservation of momentum of the system as a whole; as the fluid

moves towards the center of rotation, it imparts some angular momentum to the walls of the

duct through which it moves.

Axisymmetric Approximations

Van Deemter [47] aimed to describe RHVT flow using an extended Bernoulli equation, but in

reality described the flow inside a uniflow VT.

Deissler and Perlmutter [48] described a similar setup to Pengelley, except the vortex is

divided into an outer annulus and an inner core. Linear variations in axial velocity uz are per-

mitted, but the remaining quantities including temperature, pressure, and other velocity com-

ponents, are independent of axial position (i.e. ∂
∂z = 0). A focus is placed on the influence of

turbulence by replacing µwith a constant eddy viscosity ρε in the momentum equations, whose

value is informed by experiments. The analysis resulted in a Rankine vortex-like tangential ve-

locity profile across the two flow regions. Predictions of hot and cold exit temperature separa-

tion compared poorly with the experimental data of Hilsch [2], although the authors claim this

is due to unexpected heat transfer in Hilsch’s experiments. In addition, an attempt was made

to quantify the different modes of energy transfer in a fully 3D model. It was found that two

modes, the so-called ’turbulent conduction due to temp gradients’ and ’turbulent conduction

due to pressure gradients’ were the largest magnitude energy transfer mechanisms, but, having
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opposite signs, they largely cancelled over the range of r. The remaining shear work transfer

then became the dominant mechanism.

Lewellen [49] endeavored to study the motion of an incompressible fluid entering a cylin-

drical container tangentially, spiraling towards the center, and exiting through an axial opening.

Lewellen argues that previous works by Deissler and Perlmutter [48] and Einstein and Li [50]

give the axial momentum equation ”no consideration”. Lewellen cast the governing equations

in terms of the stream function and circulation, and developed series expansion solutions in

this framework, and emphasized that existing exact solutions (such as those by Donaldson and

Sullivan [51]) cannot satisfy arbitrary boundary conditions, and thus have limited utility in

practice.

Linderstrøm-Lang [52] adopted the series expansion approach studied by Lewellen to de-

velop incompressible flow solutions of the RHVT. To do this, the tube is divided into four

regions: a main flow region, an inlet region, a small annular region containing the boundary

layer, and a region close to the hot exit which contains the stagnation point. It seems only flow

in the first region is solved. The laminar viscosity is again replaced by a constant eddy viscos-

ity. The temperature profile is computed from the decomposed energy equation discussed by

Reynolds [53] (see section 1.3.3) where the fluctuating terms are replaced by eddy viscosity

models developed by Kassner and Knoernschild [42] and Deissler and Perlmutter [48], and a

host of other approximations based on physical arguments. Moderate agreement with Hilsch’s

experimental data is observed.

1.3.2 Critical Review of Modelled Flow Structures

Temperature separation in the RHVT is dependent on the thermodynamics within the tube,

which is closely coupled to the momentum transport, and, consequently, the flow structure.

Therefore, viable theories on the nature of temperature separation should make some reference

to the flow structure. Unfortunately, the flow is compressible, highly turbulent, and fully 3D.

Much data on the flow structure and properties has been gathered in the years since Ranque’s

discovery. Each data set needs to be interrogated for quality, though in different ways depend-

ing on how it was collected.
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The comparison of Shamsoddini et al. [31] between the 2D and 3D simulations are encour-

aging, however the use of a 2D axisymmetric CFD model requires that the injection inlet angle

of the flow be approximated somehow. The only known method for doing this is detailed by

Skye et al. [22], who roughly approximated this angle based on the nozzle geometry in their

experiment. No known studies examine other methods for approximating this inlet angle, or

test the sensitivity of the results.

In many CFD studies [54, 31, 22, 39, 55] the computational domains are truncated at the

’immediate’ exits of the vortex tube shown in figure 1.1, but, in the experiments from which

these studies draw their comparisons, flow leaving these exits is commonly collected into

plenums and exhausted to a downstream location where the measurements are taken. Often,

these experimental works place probes in unfavourable locations [2], or do not specify where

the measurement station is and how the probe(s) are positioned to collect the data [28, 56].

This leads to some confusion about whether total or static quantities have been measured, and

which ones have been reported. As a result, comparisons with CFD results are tenuous for two

reasons: pressure boundary conditions might have been applied at a different position in the

CFD model than the measurement condition which can skew the calculation, and the temper-

atures at the boundaries extracted from the CFD results might not correspond to temperatures

measured at a single point in the experiment.

Two-dimensional representations of Ranque-Hilsch flow are inherently simpler than 3D

models, an their solutions easier to obtain. The work of Allahverdyan and Fauve [45] builds on

previous attempts, and provides the most complete analytical model of compressible, swirling

flow between porous cylinders. The obvious drawback is that it does not include any axial

variations, and thus temperature separation cannot be achieved in the exact manner that it

occurs in the RHVT.

While Deissler and Perlmutter [48] provided the first 3D model of RHVT, their model

considered only linear variations in the axial velocity, which is a poor approximation in light of

experimental findings [57, 58]. Their final solution also requires numerical methods to obtain.

Linderstøm-Lang [52] has addressed some of the shortcomings of Deissler and Perlmutter’s

model, however the process of solving the reduced equation set is cumbersome, and the final

product still only obtains a solution field for a region of the flow field upstream of the stagnation
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point in the flow. In addition, the details of all the approximations required to arrive at his

reduced model are relegated to three auxillary papers, which are unavailable. At the same

time, this study was, to the author’s knowledge, the last, and most detailed numerical study of

the RHVT before the advent of general CFD codes. In a way, this paper reveals the tension

between striving for an accurate characterization of all the physical processes occurring in

the RHVT (which is now doable), and the pursuit of simpler models which attempt to lay

bare the mechanisms at play, by ignoring the irrelevant complexities. The ideal model should

include enough of the relevant effects to satisfactorily predict temperature separation across a

wide range of model parameters, while also making the role of energy separation mechanisms

obvious.

1.3.3 Review of Temperature Separation Theories

With2 general understandings of vortex tube operation, and the flow structure within, ana-

lysts of the RHVT have postulated several theories explaining the temperature separation phe-

nomenon first observed by Ranque.

Pressure Gradient

Perfect gases undergoing isentropic expansion processes exhibit a temperature increase accord-

ing to the well known relations:

T2

T1
=

(
ρ2

ρ1

)γ−1

=

(
p2

p1

)(γ−1)/γ

, (1.15)

Clearly, a decreasing density between the two states results in an decrease in temperature.

Ranque [59] first attributed the temperature drop to adiabatic expansion.

Acoustic Streaming

The first researcher to comment on acoustic phenomena occurring within the RHVT was

Kurosaka [60], who identified an interesting link between acoustic intensity and total tem-

perature separation, visible in figure 1.8. Most notably, the drop-off in sound intensity coin-

2or without
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cides with a sudden increase in cold outlet temperature. This is the first substantial evidence

suggesting an acoustic phenomena occurring within the RHVT may be partly responsible for

temperature separation.

Figure 1.8: Measurement of acoustic intensity and cold exit temperature over a range of inlet

pressures. Data from Ref. [60], figure from Ref. [61].

Kuroda [62] also noticed the drop-off of temperature separation with sound intensity in his

experiments. Kuroda further identified several ’pure tone’ intensity spikes, which he attributed

to velocity fluctuations in the circumferential direction.

The precessing vortex core found in the numerical simulations of Zhang et al. [38, 6] and

their claims that the ”vibrating boundary layer” is responsible for temperature separation are in

the same vein as the work of Kurosaka and Kuroda; however their work stops short of drawing

this comparison.
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Figure 1.9: Instantaneous iso-surfaces of the axial velocity [38].

Turbulence

Other researchers claim that turbulence is responsible for energy separation. This theory was

first championed by Deissler and Perlmutter [48], who analytically studied the a simplified

set of turbulent energy equations including an approximated eddy diffusivity, to argue that

the turbulent shear work term in the energy equation was positive in the periphery of the VT,

thereby adding heat to the system, and negative near the tube axis; acting as a sink.

Alan J. Reynolds [53] also investigated the influence of turbulence in the RHVT. First,

Reynolds decomposition3 is performed on the total energy equation where the heat flux and

viscous terms are absent. This is followed by an order-of-magnitude analysis of the mean and

fluctuating terms, culminating in a description of the energy exchanges of a compressible lump

of fluid moving up and down the radial pressure gradient, wherein the energy exchanges are

related to the surviving terms of the decomposed energy equation. The author concludes by

arguing that heat transfer is the dominant energy mechanism in the core of the VT, while ’work

fluxes’ dominate the periphery.

Liew et al. [63] have adopted this theory, asserting that radial velocity fluctuations are

responsible for a heat exchange process which heats the outer region and cools the inner region.

While supporting this theory, they have focused their effort on developing a semi-empirical

relationship based on an approximation of the inner and outer core velocity profiles, along with

other approximations to yield an equation which accurately predicts the temperature separation.

Secondary Circulation

Some numerical studies have revealed the presence of re-circulation region(s) at various points

within the VT, exemplified by figure 1.10. Both Ahlborn and Groves [37, 64], and Xue and

3named after Osborne Reynolds, of course
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others [65, 66, 67]. They suggest multiple re-circulation zones exist, each one behaving as a

heat pump to move energy away from the core and towards the periphery.

Figure 1.10: Hypothesized multi-circulation streamline plot modified from Xue et al. [65]

While earlier papers have provided mediocre evidence for this theory, more recent papers

reporting the results of steady and unsteady, 3D, RANS and LES results have included stream-

line plots depicting multiple recirculation zones occuring within short vortex tubes [63, 68,

69, 70]. The re-circulation zones appear to be highly mobile; very sensitive to geometry and

boundary conditions.

Work Transfer

Other researchers still have contended that shear work is the mode by which kinetic energy is

transferred from the cold stream to the hot stream. The consequent reduction in angular kinetic

energy of the inner core reduces the centripetal acceleration and causes the core to narrow to-

wards the cold exit, cooling because of the contraction. The opposite effect is hypothesized for

the outer vortex; the increased kinetic energy results in an increase in centripetal acceleration,

and the outer core is compressed against the tube wall, resulting in a temperature increase.

Hilsch [2] first proposed this idea without evidence in his initial study of the vortex tube.

Since then, the hypothesis has been supported by numerous researchers. The analyses of Pen-

gelley [43] and Allahverdyn and Fauve [45] coupled with experiments of Savino and Ragsdale

[44] clearly show work transfer to be the dominant energy transfer mechanism in 2D planar

flows most similar to the RHVT. The alternative approach of Polihronov and Straatman [46]

demonstrates that cooling can be achieved through action on external surfaces.
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In addition, several authors conducting CFD studies on the RHVT have used their results

to compute the energy transfers between the cold and hot streams of fluid [41, 71, 72, 73, 74].

In each case work transfer was found to be the dominant form of energy transfer, with heat

transfer serving to degrade temperature separation.

1.3.4 Critical Review of Temperature Separation Theories

While many theories have been proposed, some of the earlier ones have fallen out of favour.

In the case of adiabatic expansion, the theory can be dismissed because the data obtained in

many cases (Gao [75] and Xue et al. [76]) have both shown that equation 1.15 over-predicts

the temperature drop significantly. While the temperature drop due to sudden expansion is

important, it does not explain the temperature rise occurring at the hot exit.

Acoustic streaming is a highly interesting theory that has been under-explored in the liter-

ature: it seems there have been no followup experimental studies since the original works by

Kurosaka [60] and Kuroda [62]. These observations have not been definitively linked to the

precessing vortex core discovered in the numerical simulations of Zhang et al. either.

There is some confusion as to whether the turbulence theory is synonymous with the work

transfer theory, as work transfer is greatly enhanced by the presence of turbulence, and the

supporting authors sometimes signal the importance of work transfer in their writing. Their

focus remains, however, on the importance of transport due to small turbulent fluctuations

across the radial pressure gradient. Naturally, the scale of these effects are too small for them

to be observed experimentally using currently available instruments, but a direct numerical

simulation of the full problem, harnessing the resources at a state-of-the-art high performance

computing center may be able to resolve these small scale activities. No known computational

study of this magnitude has been conducted on the RHVT, so there is not yet any direct evidence

to support this theory.

Perhaps the strongest evidence against theories of acoustic streaming, small scale turbu-

lent activity, or any other physics aside from classical thermodynamics and fluid mechanics is

this: numerical simulations using the general forms of the governing equations, generalized

turbulence models, perfect gas assumptions and standard properties, have repeatedly predicted
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experimentally measured values of temperature separation within a reasonable margin of error

[22, 41, 38, 15, 77, 78] (c.f. figure 1.3). Since these computational studies are capable of

predicting temperature separation without any unsteadiness, and without the use of specialized

turbulence models, it stands to reason that the energy separation mechanism must be contained

within the basic physics of these simulations. This does not preclude acoustic streaming or

exotic turbulent activity from playing a role in the temperature separation process, but it does

indicate that they are not the primary drivers of the effect.

Moreover, while stationary and mobile recirculation regions are often observed, at least

two authors have obtained simulation results wherein temperature separation is adequately

predicted, and no recirculation regions are present in the time-averaged flow structures [71, 22].

Work transfer is, in this author’s opinion, the most likely explanation of the temperature

separation phenomenon. It has been supported since the VTs re-discovery by Hilsch and ev-

idenced through the detailed analyses of Allahverdyn and Fauve [45]. The most persuasive

evidence is post-processing of the CFD results by Aljuwayhel et al. [41] wherein the authors

compute the energy transfer from the hot stream to the cold stream via three mechanisms: cir-

cumferential shear work, axial shear work, and heat transfer. The total energy transferred by

these three mechanisms was shown to balance with the total energy loss of the cold stream,

and the energy gain of the hot stream. Energy transfer from the cold stream to the hot stream

dominates the other two modes which transfer in the opposite direction, degrading the overall

energy separation.

Despite the overwhelming support of the work transfer theory, the majority of recent papers

published claim ’the mechanism responsible for temperature separation in the RHVT is still

unknown’, indicating the community is not satisfied with the available evidence.

Perhaps a more important task than convincing the VT community to rethink their stance is

to pursue accurate modelling of the RHVT, which is of more use to designers who want to be

able to predict the temperature separation of their designs. To this end, many of the numerical

models used to predict energy separation, although they do capture energy separation, are

somewhat unrealistic, containing boundary conditions that do not match the experiments to

which they correspond, and containing other approximations which have not yet been justified.
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1.4 Thesis Outline

In this thesis I endeavor to address some the literature gaps identified in the preceeding critical

reviews. Contained in the following chapters are three efforts to improve modelling of the

Ranque-Hilsch phenomenon and related flows, along with their bibliographic references:

• In chapter 2 the rotating duct problem introduced by Polihronov and Straatman [46] is

revisited. Starting from the general compressible Euler equations in a non-stationary

reference frame closed form expressions for velocity, temperature, density and pressure

along the duct are determined. These results are more general than those obtained by

Polihronov and Straatman, as the change of in-frame kinetic energy has been retained.

The improvement of the present results over Polihronov and Straatman’s is demonstrated

by comparison with the results of a CFD study. The new results are further generalized

to the case of a rotating duct with varying cross-sectional area, and again for a general

curved passage in three-dimensional space. The work required or derived from the rotat-

ing duct is also been computed. The choked flow condition within the passage of varying

cross-sectional area is identified, along with the constraints which must be placed on the

Mach, Rossby, and tip Mach numbers to avoid choked flow. Finally, a straightforward

technique to identify any locations where an ideal rotating flow in a constrained passage

will become sonic is presented.

• In 1966 Chang-Yi Wang [79] used the streamfunction in concert with the vorticity equa-

tions to develop a methodology for obtaining exact solutions to the incompressible Navier-

Stokes equations, now known as the extended Beltrami method. In Wang’s approach,

the vorticity is represented by the sum of a linear function of the streamfunction and an

assumed auxiliary function, such that the vorticity equation can be reduced to a quasi-

linear partial differential equation, and exact solutions are obtainable for many choices

of the auxiliary function. In chapter 3 a natural extension of Wang’s formulation to

three-dimensional flows in arbitrary orthogonal curvilinear co-ordinates has been de-

rived, wherein two auxiliary functions are formed at the outset, with the caveat that the

pressure and velocity components may vary in two spatial dimensions. As is the case

with two-dimensional extended Beltrami flows, exact solutions are only obtainable when
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the forms of the auxiliary functions are ’simple enough’ to render the governing equa-

tions solvable. To demonstrate the solutions which may be obtained using the extended

formulation, the well-known Kovasznay flow is generalized to a three-dimensional flow.

A unique solution in plane polar co-ordinates is found. An extension to the solution

to Burgers vortex has been derived, and discussed in the context of existing literature.

Finally, a new 3D swirling flow solution which is the angular analogue to Kovasznay

flow has been developed. The streamlines of this solution are very similar to the general

Ranque-Hilsch flow shown in figure 1.5.

• In chapter 4, the relative impacts that different boundary conditions have on the tem-

perature separation predictions of Computational Fluid Dynamics (CFD) models of the

RHVT are explored by comparing different permutations of fixed pressure and fixed

mass flow rate conditions imposed at the inlet, cold exit, and hot exit. Concurrently, the

impacts of including the exit plenums and inlet shroud in the computational models on

temperature separation are examined. A 3D CFD model is run using the k-ε, k-ω, k-ω

SST, and SAS SST turbulence models, and their relative impacts on energy separation

are discussed. Finally, the efficacy of the often-used axisymetric assumption when mod-

elling the RHVT computationally is tested, and a new method for computing the angle

of injection for axisymetric CFD studies has been validated. In all cases, circumferential

shear work is found to be the dominant mode of energy separation.
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[54] W. Fröhlingsdorf and H. Unger, “Numerical investigations of the compressible flow and

the energy separation in the Ranque-Hilsch vortex tube,” International Journal of Heat

and Mass Transfer, vol. 42, no. 3, pp. 415–422, 1998.

[55] H. A. Kandil and S. T. Abdelghany, “Computational investigation of different effects on

the performance of the Ranque-Hilsch vortex tube,” Energy, vol. 84, pp. 207–218, 2015.

[56] B. Ahlborn, J. U. Keller, R. Staudt, G. Treitz, and E. Rebhan, “Limits of temperature sep-

aration in a vortex tube,” Journal of Physics D: Applied Physics, vol. 27, no. 3, pp. 480–

488, 1994.

[57] Y. Xue, M. Arjomandi, and R. Kelso, “Experimental study of the flow structure in a

counter flow Ranque-Hilsch vortex tube,” International Journal of Heat and Mass Trans-

fer, vol. 55, no. 21-22, pp. 5853–5860, 2012.

[58] X. Guo, B. Zhang, L. Li, B. Liu, and T. Fu, “Experimental investigation of flow structure

and energy separation of Ranque–Hilsch vortex tube with LDV measurement,” Interna-

tional Journal of Refrigeration, vol. 101, no. May, pp. 106–116, 2019.

[59] G. J. Ranque, “Experiments on expansion in a vortex with simultaneous exhaust of hot

air and cold air,” J. Phys. Radium, vol. 4, no. 7, pp. 112–114, 1933.

[60] Kurosaka M, “Acoustic streaming in swirling flow and the Ranque-Hilsch (vortex-tube)

effect,” Journal of Fluid Mechanics, vol. 124, no. 1982, pp. 139–172, 1982.

[61] Y. Xue, M. Arjomandi, and R. Kelso, “A critical review of temperature separation in a

vortex tube,” Experimental Thermal and Fluid Science, vol. 46, no. 8, pp. 175–182, 2010.

[62] H. Kuroda, An Experimental Study of Swirling Flow in Pipes. PhD thesis, University of

Tennessee - Knoxville, 1983.

[63] R. Liew, J. C. H. Zeegers, J. G. M. Kuerten, and W. R. Michalek, “Maxwell’s demon in

the ranque-hilsch vortex tube,” Physical Review Letters, vol. 109, no. 5, pp. 3–6, 2012.

[64] B. Ahlborn, J. Camire, and J. U. Keller, “Low-pressure vortex tubes,” Journal of Physics

D: Applied Physics, vol. 29, no. 6, pp. 1469–1472, 1999.



BIBLIOGRAPHY 35

[65] Y. Xue, M. Arjomandi, and R. Kelso, “The working principle of a vortex tube,” Interna-

tional Journal of Refrigeration, vol. 36, no. 6, pp. 1730–1740, 2013.

[66] Y. Xue, M. Arjomandi, and R. Kelso, “Experimental study of the thermal separation in a

vortex tube,” Experimental Thermal and Fluid Science, vol. 46, pp. 175–182, 2013.

[67] Y. Xue, M. Arjomandi, and R. Kelso, “Energy analysis within a vortex tube,” Experimen-

tal Thermal and Fluid Science, vol. 52, pp. 139–145, 2014.

[68] H. R. Thakare and A. D. Parekh, “Computational analysis of energy separation in counter-

flow vortex tube,” Energy, vol. 85, pp. 62–77, 2015.

[69] S. E. Rafiee and M. M. Sadeghiazad, “Experimental study and 3D CFD analysis on the

optimization of throttle angle for a convergent vortex tube,” Journal of Marine Science

and Application, vol. 15, no. 4, pp. 388–404, 2016.

[70] V. Bianco, A. Khait, A. Noskov, and V. Alekhin, “A comparison of the application of

RSM and LES turbulence models in the numerical simulation of thermal and flow patterns

in a double-circuit Ranque-Hilsch vortex tube,” Applied Thermal Engineering, vol. 106,

pp. 1244–1256, 2016.

[71] U. Behera, P. J. Paul, S. Kasthurirengan, R. Karunanithi, S. N. Ram, K. Dinesh, and S. Ja-

cob, “CFD analysis and experimental investigations towards optimizing the parameters of

Ranque-Hilsch vortex tube,” International Journal of Heat and Mass Transfer, vol. 48,

no. 10, pp. 1961–1973, 2005.

[72] T. Dutta, K. P. Sinhamahapatra, and S. S. Bandyopadhyay, “CFD Analysis of Energy

Separation in Ranque-Hilsch Vortex Tube at Cryogenic Temperature,” Journal of Fluids,

vol. 2013, pp. 1–14, 2013.

[73] A. Dhillon and S. Bandyopadhyay, “CFD analysis of straight and flared vortex tube,” IOP

Conference Series: Materials Science and Engineering, vol. 101, no. 1, 2015.

[74] R. Shamsoddini and B. Abolpour, “A geometric model for a vortex tube based on numeri-

cal analysis to reduce the effect of nozzle number,” International Journal of Refrigeration,

vol. 94, pp. 49–58, 10 2018.



36 Chapter 1. Introduction

[75] C. M. Gao, K. J. Bosschaart, J. C. H. Zeegers, and A. T. A. M. De Waele, “Experimental

study on a simple Ranque-Hilsch vortex tube,” Cryogenics, vol. 45, no. 3, pp. 173–183,

2005.

[76] Y. Xue and M. Arjomandi, “The effect of vortex angle on the efficiency of the

Ranque–Hilsch vortex tube,” Experimental Thermal and Fluid Science, vol. 33, no. 1,

pp. 54–57, 2008.

[77] C. Morsbach, D. Schl, U. Doll, E. Burow, M. Beversdorff, G. Stockhausen, and C. Willert,

“The Flow Field Inside a Ranque-Hilsch Vortex Tube Part II : Turbulence Modelling and

Numerical Simulation Numerical Method and Test Case,” in International Symposium on

Turbulence and Shear Flow Phenomena, (Melbourne, Australia), pp. 1–6, 2015.

[78] U. Behera, P. J. Paul, K. Dinesh, and S. Jacob, “Numerical investigations on flow be-

haviour and energy separation in Ranque-Hilsch vortex tube,” International Journal of

Heat and Mass Transfer, vol. 51, no. 25-26, pp. 6077–6089, 2008.

[79] C.-Y. Wang, “On a Class of Exact Solutions of the Navier-Stokes Equations,” Journal of

Applied Mechanics, vol. 33, pp. 696–698, 9 1966.



Chapter 2

Compressible and Choked Flows in

Rotating Passages

37



Nomenclature

Roman Symbols

A Duct or passage cross-sectional area

a Independent parameter

A∗Ch = A ∗r /A∗t Critical cross-sectional area profile

A∗t = A/At Area to throat area ratio in a stationary passage

C,D, E Constants of integration

cp Isobaric heat capacity

cv Volumetric heat capacity

Ėst Transient energy storage in a control volume

h = ξ + p/ρ Specific enthalpy

i =
√
−1

î, ĵ, k̂ Unit vectors aligned with the x, y, and z axes, respectively

ṁ Mass flow rate

ṁCh Maximum (choked) mass flow rate

ṁCh, min Minimum choked mass flow rate; occurs at the location in a duct or passage which

will choke first if the mass flow rate is slowly increased.

38



39

p Thermodynamic pressure

p pressure

p∗ Parameterized position vector

Rs Specific ideal gas constant

T static temperature

T0 = T + u2

2cp
Total temperature

t Unit tangent vector to a parametric curve p∗

u Velocity

ū Flow speed along along a constrained path

x Position vector

X,Y,Z Components of position vector

x, y, z Cartesian co-ordinates

Greek Symbols

γ =
cp

cv
Ratio of specific heats

∇ Gradient operator

ξ specific internal energy

ρ fluid density

φ Arbitrary scalar or vector quantity

φ̄0 Stagnation quantity

Ω Angular velocity of rotating frame

Dimensionless Groups
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Ma2 =
u2

c
γRsTc

Global Mach number

MaS = u2√
γRsT2

Shroud Mach number

MaL = û
√
γRsT

Local Mach number

Mat = Ωc xc√
γRsT̄0

Tip Mach number

Ma∗t Modified tip Mach number ratio

Ro = uc
Ωc xc

Rossby number

Superscripts

∗ Non-dimensional quantity

Subscripts

1 Quantity at boundary nearest to the center of rotation

2 Quantity at boundary furthest from the center of rotation

c Characteristic dimension

in Quantity entering a control volume

out Quantity exiting a control volume

Other Symbols

′ Derivative of single-variable function

ˆ Quantity in non-stationary frame

Acronyms

1D One-dimensional

CFD Computational Fluid Dynamics

CFD Computational Fluid Dynamics
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RHVT Ranque-Hilsch Vortex Tube

RHVT Ranque-Hilsch Vortex Tube

RHS Right Hand Side

2.1 Introduction

In two recent publications Polihronov and Straatman [1, 2] have applied heuristic techniques to

examine the energetics of confined fluid flow in a rotating reference frame. These works were

completed in an effort to shed new light on the temperature separation phenomenon within the

Ranque-Hilshe Vortex Tube (RHVT), first discovered by Ranque [3]. Presently, the literature

contains no widely accepted explanation of the temperature separation phenomenon as noted in

a recent review by Thakare et al. [4], but a fundamental understanding of rotating compressible

flows appears to be a promising starting point.

Studies of rotating flows may be divided into two broad categories: flows through rotating

passages, and swirling flows. Both types of flows share similar features, but the latter comes

with increased complexity. We emphasize that the present work focuses on flows through ro-

tating passages, and will tackle swirling flows in future publications. Rotating incompressible

flows in confined passages have been studied extensively, both analytically and numerically.

An initial treatment of rotating flows has been provided by Greenspan [5], and later textbooks

have offered additional perspectives [6, 7, 8]. More recent work has focused on two and three-

dimensional flow within rotating passages. Tatro and Mollo-Christensen [9] have studied the

Ekman layers at low Rossby number flows experimentally, noting the presence of type I and

type II instabilities. Kristofferson and Andersson [10] have employed direct numerical simula-

tions to study turbulent boundary layer flows inside rotating passages, finding the variation in

mean velocity profiles with changes in Rossby number. Khesghi and Scriven [11] have used

the finite element method to study rotating flows when neither the Ekman nor the Rossby num-

bers may be neglected, and revealed the presence of an inviscid core flow near the axis of the

straight passage.

Outside of the publications by Polihronov and Straatman, rotating compressible flows in



42 Chapter 2. Compressible and Choked Flows in Rotating Passages

confined passages have received attention from a variety of research fields. Most notably, Sey-

mour Lieblein submitted a NACA Technical Note in 1952 [12] wherein he developed a set of

equations describing compressible flow in radial compressor blade passages, including a dis-

cussion of supersonic flow and the effects of losses. In later publications, it has become popular

to define the rothalpy of a compressible fluid undergoing radial motion, wherein the rothalpy

has been shown to be constant when the flow may be considered adiabatic and frictionless

[13, 14]. Bosman [15] later showed that, for ’all engineering intents and purposes’, the error

associated with the constant rothalpy assumption may be neglected. Discussions of rothalpy

now appear in graduate level fluid mechanics texts such as Refs. [7, 8].

The objective of the present work is to re-analyze the rotating duct problem studied by

Polihronov and Straatman, starting instead from the governing equations of fluid mechanics.

We will systematically obtain closed form mathematical expressions for the density, temper-

ature, pressure, and velocity profiles within rotating, one-dimensional, straight and curved

passages with constant and spatially varying cross-sectional areas, under the assumption that

the flow is compressible, adiabatic, and invscid. The motivation for this work is to gain in-

sight from the solutions about the mechanism responsible for the temperature separation phe-

nomenon in the RHVT.

2.2 Governing Equations

The conservation equations of mass, momentum, and energy have been appropriately trans-

formed into a general, non-inertial reference frame by Combrinck and Dala [16] by applying

the Galilean transformation technique to the stationary conservation equations as suggested by

Kageyama and Hyodo [17]. Here we work only with the steady forms of these equations. The

conservation of mass is

∇ · (ρû) = 0, (2.1)

where û is the velocity in the rotating and accelerating reference frame, ρ is the density,

and ∇ is the gradient operator. The inviscid, steady, conservation of momentum equation in a

non-accelerating rotating frame in the absence of body forces is
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(û · ∇) û = −
∇p
ρ

+ 2û ×Ω︸  ︷︷  ︸
Coriolis

acceleration

− (x̂ ×Ω) ×Ω︸            ︷︷            ︸
centrifugal

acceleration

, (2.2)

where p is the thermodynamic pressure, Ω is the angular velocity of the frame (which can

be unsteady in general), and x̂ is the position vector. x̂ is defined relative to the origin of a co-

ordinate system about which rotation occurs. When heat conduction and external heat sources

may be neglected, the conservation of internal energy is

ρû · ∇ξ = −p (∇ · û) , (2.3)

where ξ is the specific internal energy. Notice only the velocity vector û and the position

vector x̂ have been assigned theˆsymbol. This emphasizes that these quantities are transformed

versions of their stationary frame counterparts. All other quantities under consideration are

scalars, which are not affected by the transformation into the rotating frame, so the distinction

between scalar quantities in the rotating frame and their counterparts in the stationary frame is

not made. The inviscid and non-heat-conducting assumptions are made for two reasons: the

solutions are simplified considerably, and (as it will be seen below) it is plainly shown that

steady cooling is possible in the absence of viscous forces and internal heat transfer.

2.2.1 Auxillary equations

All fluids analyzed in this work are characterized by the ideal gas equation of state:

p = ρRsT, (2.4)

where Rs is the specific gas constant, and T is the static, absolute temperature.

We will further assume the heat capacities are constant, so that the internal energy and

enthalpy may be respectively written as

ε = cvT, (2.5)

h = cpT, (2.6)
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where cv is the volumetric heat capacity and cp is the isobaric heat capacity. Fluids which

obey the ideal gas law and have constant heat capacities are called perfect gases [18].

2.2.2 Nondimensionalization

To further generalize our results we have presented much of our analyses and solutions in terms

of non-dimensional quantities. We use the following scaled variables to non-dimensionalize the

governing and auxillary equations:

x̂∗ =
x̂
xc

û∗ =
û
uc

p∗ =
p

ρcxcucΩc
Ω∗ =

Ω

Ωc
T ∗ =

T
Tc

ρ∗ =
ρ

ρc
∇
∗ = xc∇

Assuming the fluid is a perfect gas, the mass, momentum, and energy equations become

∇
∗
· (ρ∗û∗) = 0, (2.7)

Ro (û∗ · ∇∗) û∗ = −
∇∗p∗

ρ∗
+ 2û∗ ×Ω∗ −

1
Ro

(x̂∗ ×Ω∗) ×Ω∗, (2.8)

ρ∗Roû∗ · ∇∗T ∗ = −γ(γ − 1)Ma2 p∗ (∇∗ · û∗) , (2.9)

where the relevant dimensionless groups are defined in table 2.1.

Table 2.1: Relevant dimensionless groups

Ro =
uc

Ωcxc
Rossby number

Ma2 =
u2

c

γRsTc
Mach number

γ =
cp

cv
heat capacity ratio

Using the same scaled variables the ideal gas equation 2.4 becomes

p∗ =
Ro
γMa2ρ

∗T ∗. (2.10)
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2.3 Rotating Duct

This section derives the general solution for compressible flow inside a rotating duct under the

following assumptions:

1. constant thermophysical properties,

2. steady rotation about the z-axis: Ω = ωk̂,

3. steady flow,

4. subsonic flow,

5. unidirectional flow along the x̂-axis such that û = ûî,

6. inviscid,

7. adiabatic, and

8. negligible heat conduction.

Based on these assumptions we have neglected any influences listed by Lyman [14] which

may change the rothalpy inside the duct. A schematic of the duct under consideration is shown

in Fig. 2.1.

Ωc

uc,Tc, ρc
x1

x2

O

y

x

Figure 2.1: Schematic of the constant cross-section duct, rotating with a constant angular ve-

locity about the origin O. Here the flow is shown moving from the outer position 2 to the inner

position 1, however our analysis is independent of the flow direction. Furthermore, while we

have chosen characteristic quantities at position 2, the choice is arbitrary, as long as they are

all at the same location.
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2.3.1 Constant cross-section

If the cross-sectional area of the duct is constant, the steady, non-dimensional conservation

equations of mass, momentum, and energy reduce to

û∗
dρ∗

dx̂∗
+ ρ∗

dû∗

dx̂∗
= 0, (2.11)

Ro û∗
dû∗

dx̂∗
= −

1
ρ∗

dp∗

dx̂∗
+

x̂∗

Ro
, (2.12)

0 = −2û∗ +
1

Fr2

f̂ ∗

ρ∗
, (2.13)

Ro ρ∗û∗
dT ∗

dx̂∗
= −γ(γ − 1)Ma2 p∗

dû∗

dx̂∗
. (2.14)

Use of the ideal gas law allows equations 2.11 and 2.14 to be simplified and solved through

direct integration.

ρ∗ =
C
û∗
, (2.15)

T ∗ =
D

û∗γ−1 , (2.16)

where C and D are constants of integration. The pressure distribution is therefore given by

p∗ =
Ro
γMa2

CD
û∗γ

. (2.17)

Solving equation 2.12 requires substitution of 2.15 and 2.17 to obtain the differential equa-

tion

û∗
dû∗

dx̂∗
=

1
Ma2

D
û∗γ

dû∗

dx̂∗
+

x̂∗

Ro2 , (2.18)

whose solution is

û∗2

2
+

1
(γ − 1)Ma2

D
û∗γ−1 −

x̂∗2

2Ro2 = E. (2.19)

Equation 2.19 is an expression of Bernoulli’s theorem in a rotating framework. Inserting

the boundary conditions T ∗(−1) = 1, and û∗(−1) = 1 yields
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T ∗ =
1

û∗γ−1 , (2.20)

1
2

(
û∗2 − 1

)
+

1
(γ − 1)Ma2

(
1

û∗γ−1 − 1
)
−

1
2Ro2

(
x̂∗2 − 1

)
= 0. (2.21)

It is interesting to note that the velocity and temperature profiles are completely indepen-

dent of the pressure and density. Only the inlet temperature and velocity boundary conditions

influence the solution. Equation 2.21 may also be re-dimensionalized for better understanding

of each of the terms:

û2 − û2
c

2︸  ︷︷  ︸
linear

kinetic energy

+ cp (T − Tc)︸       ︷︷       ︸
enthalpy

−
ω2

(
x̂2 − x2

c

)
2︸         ︷︷         ︸

rotational
kinetic energy

= 0. (2.22)

When the Mach and Rossby numbers are very small, the linear kinetic energy term in

equation 2.21 may be neglected and the temperature profile reduces to

T ∗ = 1 −
(γ − 1)Ma2

2Ro2

(
1 − x̂∗2

)
. (2.23)

Re-dimensionalizing equation 2.23 and evaluating at x̂ = 0 yields the temperature distribu-

tion found by Polihronov and Straatman [1]:

Tc − T =
ω2x2

c

2cp
. (2.24)

This indicates their analysis has implicitly assumed the compressibility of the fluid is small,

and the rotational energy of the fluid is large.

We have performed several computational fluid dynamics (CFD) simulations of rotating

duct model using ANSYS-CFX © software [19] to demonstrate the accuracy of equations 2.16

and 2.19 over equation 2.23. A 1D mesh was generated for a straight square duct containing

103 evenly spaced grid points. Air was chosen as the working fluid, with a heat capacity ratio

γ = 1.4, and a free slip boundary condition was enforced at each of the duct walls. The

average residuals for the solution were converged within 10−4. The results are shown in Fig.

2.2. A maximum error of 0.03% was observed between equation 2.19 and the CFD velocity

profile, and a maximum error of 5× 10−4 % was observed between equation 2.16 and the CFD

temperature profile.
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Figure 2.2: Plots of non-dimensional velocity and temperature in a straight duct with Ma2 =

0.05 and γ = 1.4.

2.3.2 Arbitrary cross-sectional area

We will now generalize the above results to a duct of varying cross section A(x̂). Analyzing a

thin slice dx̂ of a straight duct aligned with the x̂ axis where the free-slip boundary condition is

applied at the duct walls leads to the following governing equations:

1
ρ

dρ
dx̂

+
1
A

dA
dx̂

+
1
û

dû
dx̂

= 0, (2.25)

û
dû
dx̂

= −
1
ρ

dp
dx̂

+ xω2, (2.26)

cv
dT
dx̂

= −
p
ρ

(
1
A

dA
dx̂

+
1
û

dû
dx̂

)
. (2.27)

Invoking the ideal gas equation 2.10, introducing the scaled cross-sectional area A∗(x̂∗) =

A(x̂)/Ac, and non-dimensionalizing 2.25 - 2.27 yields:
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1
ρ∗

dρ∗

dx̂∗
+

1
A∗

dA∗

dx̂∗
+

1
û∗

dû∗

dx̂∗
= 0, (2.28)

Roû∗
dû∗

dx̂∗
= −

1
ρ∗

dp∗

dx̂∗
+

x̂∗

Ro
, (2.29)

1
T ∗

dT ∗

dx̂∗
= − (γ − 1)

(
1
A∗

dA∗

dx̂∗
+

1
û∗

dû∗

dx̂∗

)
. (2.30)

Equations 2.28 and 2.30 may be solved by direct integration, and equation 2.10 may be

used to obtain an expression for the pressure distribution:

ρ∗ =
C

A∗û∗
, (2.31)

T ∗ =
D

(A∗û∗)γ−1 , (2.32)

p∗ =
Ro
γMa2

CD
(A∗û∗)γ

. (2.33)

Solving equation 2.29 requires the use of equations 2.31 and 2.33 to obtain

(
û∗ −

D
Ma2

1
(A∗û∗)γ−1 û∗

)
dû∗

dx̂∗
−

D
Ma2

1
(A∗û∗)γ−1 A∗

dA∗

dx̂∗
−

x̂∗

Ro2 = 0. (2.34)

Equation 2.34 may be solved using the method of exact differentials, yielding

û∗2

2
+

1
Ma2 (γ − 1)

D
(û∗A∗)γ−1 −

x̂∗2

2Ro2 = E. (2.35)

Three boundary conditions are required to evaluate constants C,D and E. If the duct area

is constant (i.e. A(x̂) = Ac) then A∗ = 1 and equations 2.31, 2.32, 2.33 and 2.35 reduce to the

solutions for a constant cross-section duct; equations 2.15, 2.16, 2.17 and 2.19 respectively. In

addition, we note that equation 2.35 is in complete agreement with equation 9 in Ref. [12].

To confirm this result, we have conducted several CFD simulations and compared the com-

puted profiles to equations 2.32 and 2.35. These simulations were similar to those described in

section 2.3.1 unless otherwise noted. The geometry under consideration is the straight square

duct depicted in Fig. 2.3 whose cross-sectional area is given by

A∗(x̂∗) = (3|x̂∗| + 4)2 . (2.36)
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Ωc

uc,Tc, ρc

O

y

x

Figure 2.3: Schematic of the varying cross-section duct, rotating with a constant angular ve-

locity Ωc about the origin O. The area as a function of the x̂ co-ordinate is given by equation

2.36.

A 1D mesh of constant grid spacing with 103 grid points was generated. The solution was

again computed using ANSYS CFX © [19]. Solutions were converged when the average resid-

uals were reduced below 10−4. The results have been plotted in Fig. 2.4. A maximum error

of 0.6% was observed between equation 2.35 and the CFD results while a maximum error of

0.004% was observed between equation 2.32 and the CFD results.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
x̂∗

0.2

0.4

0.6

0.8

1.0

û∗
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Figure 2.4: Plots of non-dimensional velocity and temperature of a duct with cross-sectional

area varying in accordance with 2.36 with Ma2 = 0.05 and γ = 1.4.



2.4. Rotating Passage 51

2.4 Rotating Passage

In this section we will further generalize the above results to an arbitrarily curved passage

defined by the parameterization

p(a) = X(a)î + Y(a)ĵ + Z(a)k̂. (2.37)

and the scaled path vector is given by p∗ = p/xc. The components of p may be any well-

behaved functions, producing, for example, the path shown in Fig. 2.5.

x

y

z

p (a)

t

Ω

Figure 2.5: An arbitrary path defined by p(a), rotating about Ω.

The following derivation requires that the axis of rotation contains the origin of the co-

ordinate system on which p∗ is defined. The unit tangent vector parallel to the path p is given

by

t =
p′(a)
‖p′(a)‖

=
p∗ ′(a)
‖p∗ ′(a)‖

. (2.38)

Similarly to the previous derivations, we will neglect the velocity variation across the duct,

and assume the velocity at each point is parallel to the unit tangent vector:

û∗

ū∗
= t, (2.39)

where ū∗ = ‖û∗‖.
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2.4.1 Constant cross-section

The following steps apply when the duct cross-sectional area is constant along the path. If we

have some quantity φ (p∗(a)), its total derivative is

dφ
da

=
∂φ

∂x
dx
da

+
∂φ

∂y
dy
da

+
∂φ

∂z
dz
da

= ∇φ · p∗ ′(a) =
(
p∗ ′(a) · ∇

)
φ. (2.40)

Furthermore, given that all quantities are defined only on the path p(a), any gradient (e.g.

∇φ) is parallel to the unit tangent vector:

∇φ = c
dφ
da

t, (2.41)

for some unknown value c. We will choose c = 1/‖p∗ ′(a)‖ to satisfy equation 2.40. Sub-

stituting equations 2.39 and 2.41 into the governing equations 2.7 and 2.9 yields (after some

manipulation)

1
ρ∗

dρ∗

da
+

1
ū∗

dū∗

da
= 0, (2.42)

1
T ∗

dT ∗

da
+

(γ − 1)
ū∗

dū∗

da
= 0. (2.43)(

ū∗ +
D

γMa2ū∗γ

)
Ro
‖p∗ ′‖

dū∗

da
t +

Ro
‖p∗ ′‖

ū∗2t′ = 2ū∗ (t ×Ω∗) +
1

Ro
[
p∗ − (p∗ ·Ω∗)Ω∗

]
. (2.44)

Solving 2.42 and 2.43 yields equations 2.15 and 2.16, respectively. The ideal gas law may

be expressed using equation 2.17.

To obtain a general solution for the velocity profile we will take the dot product of equation

2.44 with t. Since t and t′ are orthogonal, the second term on the left hand side must vanish.

Furthermore, the first term on the right hand side also evaluates to zero, since it contains a triple

scalar product with two parallel vectors. The remaining equation is given by

(
ū∗ +

D
γMa2ū∗γ

)
dū∗

da
=

g′(a)
Ro2 , (2.45)

where
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g′(a) = p∗ · p∗ ′ − (p∗ ·Ω∗)
(
p∗ ′ ·Ω∗

)
. (2.46)

Equation 2.45 may be solved using direct integration:

ū∗2

2
+

1
(γ − 1)Ma2

D
ū∗γ−1 −

g(a)
Ro2 = E. (2.47)

2.4.2 Arbitrary cross-sectional area

For a rotating passage of arbitrarily varying cross-sectional area A(a), and A∗(a) = A(a)/Ac we

must include A∗(a) in a manner similar to section 2.3.2. The density, temperature, and pressure

profiles are given by equations 2.31, 2.32, and 2.33, respectively. The velocity profile is given

by

ū∗2

2
+

1
(γ − 1)Ma2

D
(ū∗A∗)γ−1 −

g(a)
Ro2 = E. (2.48)

2.4.3 Radius as the parameter

In light of this result, we are interested to see if we can make any statements about the function

g(a). Consider the following arbitrary curve in a cylindrical co-ordinate system whose z-axis

is coincident with the axis of rotation:

θ = θ(r), (2.49)

z = ζ (r, θ(r)) . (2.50)

We will proceed with the parameterization r = a:

p∗ = a
[
cos(θ(a))î + sin(θ(a))ĵ

]
+ ζ (a, θ(a)) k̂. (2.51)

Invoking definition 2.46 reveals g′(a) = a whenever θ′(a) is well-behaved over the desired

range of a. Under these circumstances, equation 2.48 collapses to 2.35, and we conclude that

the flow speed ū∗ at any point in a constant cross-section rotating passage under isentropic
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conditions is a function of the radial position only.

2.5 Work

One parameter of particular interest is the work derived from a radial turbine (or the work

required to drive a radial compressor). In a straight duct, the work is most easily found by

writing an energy balance over a control volume enveloping a section of the passage between

two points:

Ẇ − Q̇ = Ėst + ṁ2

(
h2 +

u2
2

2

)
− ṁ1

(
h1 +

u2
1

2

)
. (2.52)

Because the flow is adiabatic and steady we may neglect the heat transfer Q̇ and transient

energy storage Ėst respectively. Furthermore we recognize that ṁ1 = ṁ2 = ṁ and insert

equation 2.6. With these simplifications, we have

Ẇ = ṁ
(
cp (T2 − T1) +

1
2

(
u2

2 − u2
1

))
. (2.53)

In a straight, radial duct such as the one shown in Fig. 2.1 or the duct shown in Fig. 2.3

we recognize that the velocity in the stationary frame is the vector sum of the in-frame velocity

and the local tangential velocity of the duct u(x̂) =
√

û2 + ω2 x̂2:

Ẇ = ṁ

cpT2 +

(√
û2

2 + ω2 x̂2
2

)2

2
− cpT1 −

(√
û2

1 + ω2 x̂2
1

)2

2


= ṁ

cp (T2 − T1) +
û2

2 − û2
1

2
+
ω2

(
x̂2

2 − x̂2
1

)
2


= ṁω2

(
x̂2

2 − x̂2
1

)
(2.54)

Ẇ∗ =

(
x̂∗22 − x̂∗21

)
Ro2 . (2.55)

where Ẇ∗ = Ẇ/ṁû2
c and equation 2.22 has been used. Equation 2.54 might be rewritten

in terms of a duct tip speed c = ωx̂2, so that where x̂1 = 0, the work transferred to/from the
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passage is given by

Ẇ = ṁc2. (2.56)

Equation 2.56 is the rate form of the angular rocket propulsion equation developed by

Polihronov and Straatman [2].

In a curved passage we must express the velocity in the stationary frame as u(a) = ‖ūt +Ω × p‖.

Substituting this expression into equation 2.53 gives

Ẇ = ṁ
(
cp (T2 − T1) +

1
2

(
‖ū2t2 +Ω × p2‖

2
− ‖ū1t1 +Ω × p1‖

2
))
. (2.57)

This equation cannot be reduced any further without knowing the form of p∗.

2.6 Choked Flow Limitations

Several assumptions have been employed to arrive at the density, temperature, pressure, and

velocity profiles of the above sections. These profiles are therefore only valid for particular

combinations of Rossby and Mach numbers. While each of the assumptions listed at the be-

ginning of section 2.3 merit their own discussion, in this work we will restrict our analysis to

the sonic limit. If the flow transitions from subsonic to supersonic at any point in a rotating pas-

sage, there will inevitably be a shock at some point downstream as it again becomes subsonic.

Shocks are highly irreversible and therefore undesirable in many applications, therefore it is of

great interest to prevent the flow from transitioning in the first place. The next two subsections

identify the conditions under which the flow transitions in rotating passages, and develop the

appropriate constraints on the selection of Ro and Ma.

2.6.1 Sonic limitation in the shroud

Previously the adiabatic duct has been experimentally validated through injecting air tangen-

tially into a circular passage surrounding a rotating disk and allowing the air to expand through
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radial passages in the disk [20]. In this configuration the Mach number of the flow through the

shroud, MaS, should be less than 1:

MaS < 1
u2

√
γRsT2

< 1

ω2 x̂2
√
γRsT2

< 1

Ma2

Ro2 < 1

Ma2 < Ro2. (2.58)

2.6.2 Stagnation properties

In addition, we must ensure the flow does not transition within the passage itself, a state char-

acterized by the presence of choked flow within the passage. To properly define this constraint

we must first define several quantities before the topic can be addressed.

First, recall the total enthalpy in the stationary frame is defined as the total energy of a

flowing stream per unit mass [21]:

h0 = h +
u2

2
. (2.59)

If the fluid is assumed to be a perfect gas, the total temperature is found by invoking

equation 2.6

T0 = T +
u2

2cp

= T +
û2 + ω2r̂2

2cp
. (2.60)

Equation 2.60 is similar to equation (17-4) in the thermodynamics text by Cengel and Boles

[21], with the inclusion of the rotational energy per unit mass. This quantity is useful in sta-
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tionary flows because it is constant over isentropic processes.

In contrast, the total temperature in the rotating frame may be defined as:

T̂0 = T +
û2

2cp
(2.61)

To see if either of these parameters are constant in the rotating duct problem we insert the

temperature profile (Eq. 2.32) into the velocity profile (Eq. 2.48) and re-dimensionalize:

û2

2cp
+ T −

ω2r̂2

2cp
= T̄0.

Rearranging the above equation gives

T̄0 = T +
û2 − ω2r̂2

2cp
. (2.62)

We have called T̄0 the stagnation temperature, as this is the temperature which is attained

if the fluid is brought to rest isentropically (while exchanging some energy with the walls of

the passage). We have also replaced the parameter a with the co-ordinate r̂, to emphasize that

this quantity is the radial distance from the axis of rotation. Upon comparing equations 2.60 -

2.62 it’s clear that neither the total temperature in the stationary frame nor the total temperature

in the relative frame are constant along the passage, while the stagnation temperature, T̄0, is.

Readers familiar with turbomachinery analysis will recognize the quantity T̄0cp as the rothalpy

[7]. Notice that the total temperature and stagnation temperature are not equal in general; i.e.

T̂0 , T̄0.

The isentropic gas equations may be used to find relationships between stagnation and static

pressure and density:

p̄0

p
=

(
T̄0

T

)γ/(γ−1)

, (2.63)

ρ̄0

ρ
=

(
T̄0

T

)1/(γ−1)

. (2.64)
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Furthermore, we can use equation 2.62 to define the ratio of stagnation to static temperature

in terms of dimensionless numbers:

T̄0

T
= 1 +

û2 − ω2r̂2

2cpT
,

T̄0

T
=

1 +
γ−1

2 Ma2
L

1 +
γ−1

2

(
r̂
r̂c

)2
Ma2

t

, (2.65)

where MaL is a local Mach number and Mat = ωxc/
√
γRsT̄0 is the tip Mach number. Equa-

tion 2.65 reduces to its stationary counterpart (equation 17-18 in Ref. [21]) when ω = 0.

In addition, we evaluate equation 2.48 at the location r̂∗ = 1 to devise two useful relation-

ships between Ma, Ro, γ, and Mat:

1
2

+
1

(γ − 1) Ma2 −
1

2Ro2 =
1

(γ − 1) Ma2
t Ro2 , (2.66)

Ma2

Ro2Ma2
t

=
T̄0

Tc
=

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

. (2.67)

2.6.3 Choked flow

Using the above definitions, the choked flow condition may be identified. The mass flow rate

at any location in a radial passage is given by

ṁ = ρAû = pA
√

γ

RT
MaL. (2.68)

Using property ratios 2.65 and 2.63 and simplifying yields

ṁ = p̄0A
√

γ

RT̄0
MaL

1 +
γ−1

2

(
r̂
r̂c

)2
Ma2

t

1 +
γ−1

2 Ma2
L


(γ+1)/[2(γ−1)]

. (2.69)

We can also define the maximum possible mass flow rate for any given duct, by differenti-

ating equation 2.69 with respect to MaL and setting the result equal to 0, which yields MaL = 1.

Inserting this restriction into equation 2.69 yields the critical, or choked mass flow:
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ṁCh = p̄0A
√

γ

RT̄0

 2
γ + 1

1 +
γ − 1

2

(
r̂
r̂c

)2

Ma2
t

(γ+1)/[2(γ−1)]
. (2.70)

We can nondimensionalize with ṁCh = ṁ∗ChρcAcûc:

ṁ∗Ch =
ρ̄0

ρc

√
T̄0

Tc

A∗

Ma

[
2

γ + 1

(
1 +

γ − 1
2

r̂∗2Ma2
t

)](γ+1)/[2(γ−1)]
. (2.71)

Using equations 2.64 and 2.65, the property ratios in the above equation may be cast in

terms of the global Mach number and tip Mach number:

ṁ∗Ch =
A∗

Ma

 2
γ + 1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

(
1 +

γ − 1
2

r̂∗2Ma2
t

)(γ+1)/[2(γ−1)]
. (2.72)

Equation 2.72 represents the maximum possible mass flow rate at any radial location. No-

tice ṁ∗Ch varies with the radial co-ordinate r̂∗. If, at any location, ṁ∗Ch > 1, the flow will be

choked in the passage.

While expression 2.72 is useful, we desire a simpler test to determine whether the flow is

choked. Regardless of the area profile the critical mass flow rate in the passage is dictated by

the location of minimum choked flow, that is, where equation 2.72 is minimized. We begin by

differentiating with respect to r̂∗:

dṁ∗Ch

dr̂∗
= A∗B

γ + 1
2

[
1 +

γ − 1
2

r̂∗2Ma2
t

](γ+1)/[2(γ−1)]−1

r̂∗Ma2
t +

+
dA∗

dr̂∗
B

[
1 +

γ − 1
2

r̂∗2Ma2
t

](γ+1)/[2(γ−1)]
.

(2.73)

Where we have defined the parameter B for compactness:

B =
1

Ma

 2
γ + 1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

(γ+1)/[2(γ−1)]
.

Setting equation 2.73 equal to 0 yields

1
A∗

dA∗

dr̂∗
= −

γ + 1
2

r̂∗Ma2
t

1 +
γ−1

2 r̂∗2Ma2
t

. (2.74)
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Constant cross-section duct

For the case when A∗ = 1, the above equation suggests the only extrema is at r̂∗ = 0. By

differentiating 2.73 again and inserting r̂ = 0 gives

d2ṁ∗Ch

dr̂∗2
= A∗B

γ + 1
2

Ma2
t .

Since each of the terms in the above equation are positive, the concavity of 2.72 is positive

at r̂∗ = 0, confirming that r̂∗ = 0 is a minima. Since it is the only extrema, it must be the global

minimum, and therefore the location which determines the minimum choked mass flow rate

for the duct of constant cross-section. Inserting r̂∗ = 0 into equation 2.72 yields

ṁ∗Ch, min =
1

Ma

 2
γ + 1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

(γ+1)/[2(γ−1)]
. (2.75)

Therefore, in order to ensure the flow is not choked, we require

ṁ∗ < ṁ∗Ch, min,

1 <
1

Ma

 2
γ + 1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

(γ+1)/[2(γ−1)]
,

1 <
1

Ma

[
2

γ + 1
Ma2

Ro2Ma2
t

](γ+1)/[2(γ−1)]
,

2
γ + 1

Ma4/(γ+1) > Ro2Ma2
t . (2.76)

Combining equations 2.76 and 2.66 and re-arranging results in a cumbersome inequality in

terms of Ma and Ro, which has been plotted in Fig. 2.6.

Rotating slice

If the duct area varies with the equation A∗ = r̂∗, r̂∗ > 0 (a rotating slice), equation 2.74 reduces

to r̂∗ = i/γMat. Since there are no real solutions, there are no extrema on equation 2.72, and

the critical section for choked flow may be determined by comparing the choked mass flow

rates at the inner and outer radii: r̂∗ = r̂∗1, r̂
∗
2 where r̂∗1 < r̂∗2. Clearly, ṁ∗Ch(r̂∗1) < ṁ∗Ch(r̂∗2), and the

maximum mass flow rate is
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Figure 2.6: Restrictions on Rossby and Mach numbers dictated by the choked flow constraint

for a straight, constant cross-section duct which crosses (or terminates at) the axis of rotation.

All equations were evaluated with γ = 1.4.

ṁ∗Ch, min =
r̂∗1

Ma

 2
γ + 1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

(
1 +

γ − 1
2

r̂∗21 Ma2
t

)(γ+1)/[2(γ−1)]
. (2.77)

Critical duct

If equation 2.72 is evaluated such that the flow is choked everywhere (ṁ∗Ch = 1), we can

formulate the critical cross-sectional area profile:

A∗Ch = Ma

γ + 1
2

1

1 +
γ−1

2 Ma2

1 +
γ−1

2 Ma2
t

1 +
γ−1

2 r̂∗2Ma2
t

(γ+1)/[2(γ−1)]
, (2.78)

=
Ma∗t (Mat, r̂∗, γ)

A∗t (Ma, γ)
.

Where we have recognized the appearance of the area ratio A/At, which has been defined

for stationary ducts:
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A∗t =
A
At

=
1

Ma

[
2

γ + 1

(
1 +

γ − 1
2

Ma2
)](γ+1)/[2(γ−1)]

. (2.79)

We have also introduced a modified tip Mach number,

Ma∗t =

 1 +
γ−1

2 Ma2
t

1 +
γ−1

2 r̂∗2Ma2
t

(γ+1)/[2(γ−1)]
. (2.80)

Equation 2.79 has been tabulated for many values of Ma and γ in many engineering texts

such as Ref. [21]. The scale of the profile is determined by A∗t , while the profile shape is

determined by Ma∗t , which has been plotted in Fig. 2.7. When Ma = 1, A∗Ch = Ma∗t and the

curves represent the minimum area required to avoid the choked flow condition. When Ma < 1,

these curves are scaled by 1/A∗t . Notice the required area decreases with increasing r̂∗. We now

propose an alternative method to determine whether the flow is choked in a known duct: plot

the profiles A∗(r̂∗) and A∗Ch(r̂∗) on the same axes. If A∗ < A∗Ch at any point, the flow will be

choked.
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Figure 2.7: Plots of equation 2.80 for a range of Ma∗t (tip Mach numbers) with γ = 1.4.
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2.7 Conclusion

In this work we have developed expressions for density, temperature, pressure, and velocity

profiles within arbitrarily curved ducts with arbitrarily varying cross-sectional area profiles

under isentropic, compressible flow conditions where the fluid may be considered a perfect

gas. These profiles are given by equations 2.31, 2.32, 2.33, and 2.35 respectively. We have

verified our results through comparison with equivalent CFD simulations. These derivations

verify the assumption that is frequently made in turbomachinery texts: rothalpy is conserved

along curved passages when the five requirements indictated by Lyman et al. [14] are met.

In addition, we have characterized the choked flow condition for compressible flow within

straight ducts, clearly indicating the constraints on the choice of dimensionless groups Ma, Ro,

Mat, and γ required to avoid the choked flow condition. We have characterized the variation

in the critical cross-sectional area and shown how it can be used to quickly evaluate whether

or not flow will choke in a rotating duct of known geometry. During this process we have

identified the importance of the stagnation temperature, which may be much more pertinent

than the often-used total temperature for studies involving rotating compressible flows.
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Chapter 3

Exact Solutions to the Three-Dimensional

Navier–Stokes Equations Using the

Extended Beltrami Method

3.1 Introduction

The Navier-Stokes equations describe mathematically the motions of a fluid where pressure

forces and viscous forces are significant. When the flow may be considered incompressible

and isothermal, the governing equations may be written in dimensionless form:

∇ · u = 0, (3.1)

∂u
∂t

+ (u · ∇) u = −∇p +
1

Re
∇2u, (3.2)

where u is the velocity, t is time, ∇ is the gradient operator, p is the thermodynamic pres-

sure, and the Reynolds number is defined as Re = ucxc/ν. The parameters uc and xc are charac-

teristic velocity and length scales, respectively, and ν is the kinematic viscosity. Equation 3.2

introduces significant complexity in solving fluid flow problems, as the second term (known

as the advection term) renders the equation non-linear, while the fourth term, (representing the

contribution of viscous forces) contains derivatives of the second order. No general solution to

the system 3.1-3.2 has been found, nor is there a single solution technique which can be used

66
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to obtain all the solutions found in the literature. Many fluid flow problems encountered in en-

gineering contain complicated geometries and boundary conditions, which can be intractable

without the aid of numerical methods. Nevertheless, exact solutions, wherever they can be ob-

tained, can give important insights into the relationships between solution parameters, provide

closed-form expressions of base flows as starting points for linear and non-linear stability anal-

yses, and serve as benchmark solutions for testing computer codes. Fluid dynamics textbooks

such as Ref. [1] contain many elementary solutions to the Navier-Stokes equations, but are not

exhaustive. Readers are directed to the reviews of Wang [2, 3] and the book by Drazin and

Riley [4] for a comprehensive summary of the exact solutions found in the literature.

An exact solution to the Navier-Stokes equations is a solution

Exact solutions are most commonly obtained by one of three general approaches: analy-

sis of unidirectional or essentially unidirectional flows, similarity solutions, and Beltrami and

Beltrami-related flows. Since the approach described in the present work extends a Beltrami-

related solution technique, only similar solution techniques will be reviewed here.

Taking the curl of the vector equation 3.2 gives the vorticity equation

∂ω

∂t
+ ∇ × (ω × u) =

1
Re
∇2ω (3.3)

where ω = ∇ × u is the vorticity. Flows in which the vorticity is 0 everywhere are called

irrotational [1]. If the flow is assumed to be planar, and cross-flow is absent, two of the vorticity

components are zero, and only one equation survives. Several researchers have addressed

this general case, by guessing various functional forms of the streamfunction, and solving the

vorticity equation, including Polyanin and Aristov [5], Polyanin and Zhurov [6], and Kumar

and Kumar [7]. These solutions often include complicated unsteady terms, which are difficult

to visualize.

3.1.1 Beltrami Flows

In a Beltrami flow, the vorticity is parallel to the streamlines everywhere and the cross product

ω × u vanishes. This condition is primarily useful for solving flow problems with negligible
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viscous forces (i.e. ν → 0), where the flow is still rotational. In this case it can be shown

(see section 3.6 of Ref. [1]) that the Bernoulli function remains constant throughout the flow

domain.

3.1.2 Generalized Beltrami Flows

When the alternative condition ∇ × (ω × u) = 0 holds, the flow is called a generalized Bel-

trami flow. Most often, this approach has been adopted to study 2D planar and 2D axissymetric

flows without cross-flow or swirl, respectively. In these cases, two of the vorticity components

vanish, and the solution is constrained by the definition of the third component of vorticity, the

generalized Beltrami flow condition, and the remaining terms in equation 3.3. For the special

case when the vorticity is constant, the three equations reduce to a single Poisson type equation

in terms of the streamfunction. Working in Cartesian co-ordinates, Tsien [8] developed two so-

lutions describing the influence of a line source and a line vortex on a shear flow, respectively.

Wang [9] presented a solution representing ”shear flow over convection cells”, and another so-

lution [3] describing the oblique impingement of two jets. In cylindrical co-ordinates a similar

simplification yields a Poisson-like partial differential equation in terms of the streamfunction.

Specific solutions include Hill’s spherical vortex [10] and augmentations thereof: O’Brien’s

ellipsoidal vortex [11], Wang’s toroidal vortex [9], and the solutions given by Fujimoto et

al.[12]. Recently, Joseph [13] has shown that there is a general family of solutions in terms of

generalized hypergeometric series which contain, in addition to Hill’s, Wang’s and Fujimoto

et al.’s solutions as special cases, ’figure 8’ and butterfly vortices, for different choices of the

coefficients. Berker [14] gives a homogeneous solution in terms of Bessel functions and expo-

nential functions. Terrill [15], apparently independantly, developed a solution describing the

axissymmetric motion of fluid in a porous pipe which is an expression of Berker’s solution.

Saccomandi studied steady and unsteady pseudo-plane flows wherein only the third com-

ponent of the advection term is required to vanish [16, 17] in a Cartesian co-ordinate system

(i.e. ∇ × (ω × u) · k̂ = 0, where k̂ is the unit vector pointing in the z-direction). In these

works pseudo-plane flows are those in which the motion is restricted to the x-y plane, but the

streamfunction retains dependence on the z co-ordinate.
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Weinbaum and O’Brien [18] have collected and expanded the set of known solutions to the

Navier-Stokes equations under the generalized Beltrami condition where out-of-plane velocity

components (called cross-flow for Cartesian systems, and swirl in axisymmetric cylindrical co-

ordinate systems) are significant, with the stipulation that the streamfunction and out-of-plane

velocity components vary only with in-plane co-ordinates, and time.

3.1.3 Extended Beltrami Flows

Wang [19] presented another solution technique, wherein the third component of vorticity is

expressed as a function of the streamfunction plus an auxiliary function of assumed form. The

rationale for this choice as well as existing solutions obtainable using this method will be dis-

cussed in section 3.3.

Our initial motivation for undertaking the present work was to develop an exact solution

that resembles Ranque-Hilsch flow, however we quickly realized that our derivation (described

in section 3.6.2) was based on a more general extension of the extended Beltrami method,

which has not yet been detailed in the literature. In the present work we aim to systematically

reduce the governing equations according to the assumptions of the extended Beltrami method,

while keeping the formulation co-ordinate system independent.

In section 3.2, we develop the streamfunction-vorticity equation set in general orthogonal

curvilinear co-ordinates, laying the groundwork for section 3.3 where the extended Beltrami

method surmised by Wang is extended to three dimensional flows. In section 3.4 we show our

formulation reduces to that of Wang for 2D planar flows, and revisit some familiar solutions.

In section 3.5 we briefly demonstrate that all planar solutions of section 3.4 support a non-

uniform out-of-plane velocity distribution, which is easily obtainable from the planar solution.

In section 3.6 we study axisymmetric flows with swirl; we revisit Burgers vortex and related

flows, and develop a new solution, which can be considered the angular analogue of Kovasznay

flow. We summarize our contributions in section 3.7.
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3.2 Governing Equations

In the present section the governing equations 3.2 and 3.3 will be further developed in prepa-

ration for deriving the working equations in section 3.3. We first write the continuity equation

3.1 in terms of a general orthogonal curvilinear co-ordinate system (x1, x2, x3), wherein velocity

and pressure are independent of the the third co-ordinate, x3:

∂

∂x1
(h2h3u1) +

∂

∂x2
(h3h1u2) = 0 (3.4)

Furthermore, the velocity can be represented in terms of a pair of streamfunctions, ψ and γ

[1]:

u = ∇ × (ψ∇γ) + u3ê3 (3.5)

where the first term on the right hand side of equation 3.5 is a vector lying in the x1-x2

surface and the final term is a vector pointing in the x3 direction. Inserting equation 3.5 into

equation 3.4, we find γ = x3, and the velocity may be expressed as

u =
1
h3

(∇ψ) × ê3 + u3ê3 =
1

h2h3

∂ψ

∂x2
ê1 −

1
h1h3

∂ψ

∂x1
ê2 + u3ê3 (3.6)

where hi = hi(x1, x2), ei, i ∈ {1, 2, 3} are the corresponding scale factors and unit vectors,

respectively. Note the present analysis excludes co-ordinate systems in which any of the scale

factors vary with the third co-ordinate, x3, such as conical, confocal ellipsoidal, and confocal

paraboloidal co-ordinate systems. The vorticity may also be expressed in terms of the stream-

function:

ω = ∇ × u =
1

h2h3

∂(h3u3)
∂x2

ê1 −
1

h1h3

∂(h3u3)
∂x1

ê2 −
1

h1h2

[
∂

∂x1

(
h2

h1h3

∂ψ

∂x1

)
+

∂

∂x2

(
h1

h2h3

∂ψ

∂x2

)]
ê3

(3.7)

As it will be seen later, it is useful to define the pseudo-vorticity; a modified definition of

the third component of the vorticity vector [19]:

ξ =
ω3

h3
=
−1

h1h2h3

[
∂

∂x1

(
h2

h1h3

∂ψ

∂x1

)
+

∂

∂x2

(
h1

h2h3

∂ψ

∂x2

)]
= −

D2(ψ)
V

(3.8)
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where V = h1h2h3. The cross-flow velocity may be written as σ = h3u3. Using these

definitions, the u3-momentum and ω3-vorticity equations may be expressed as:

V
∂σ

∂t
+ K(σ, ψ) =

h2
3D2(σ)

Re
(3.9)

V
∂ξ

∂t
+ K(ξ, ψ) − K

(
σ

h2
3

, σ

)
=

D2
(
h2

3ξ
)

Re
(3.10)

where K(a, b) = ∂a
∂x1

∂b
∂x2
− ∂b

∂x1

∂a
∂x2

is the Jacobian. Equations 3.9 and 3.10 have been derived

in the Appendix. While the pressure p may be determined through the first two components

of equation 3.2, the first two equations in 3.3 are superfluous in the present formulation [20].

Thus, solutions to the system of equations 3.8-3.10 are also solutions to the Navier-Stokes

equations. These equations are the point of departure for Polyanin [21] and Polyanin and

Zhurov [6], who have assumed various forms of the streamfunction ψ in the absence of cross-

flow (σ = 0), and arrived at a variety of solutions for 2D planar flows. Lewellen [22] has

developed the same equations for the case of axisymmetric cylindrical co-ordinates, and de-

rived an asymptotic series solution to describe vortex motion wherein a specific dimensionless

parameter is considered small. Granger [23] has adopted Lewellen’s formulation, and derived

approximate solutions using a power series formulation.

3.3 Wang’s Approach

Wang [19, 2] surmised the solution techniques of earlier researchers including Kovasznay [24],

Taylor [25], Kelvin, and others, suggesting that, in the absence of flow normal to the ψ-plane,

the pseudo-vorticity of any axisymmetric or 2D flow could be represented as:

ξ = g(ψ) + χ(x1, x2, t) = −
D2(ψ)

V
(3.11)

where g(ψ) and χ(x1, x2) are known functions. Wang rationalizes this choice by observ-

ing that when equation 3.11 is inserted into equation 3.10 (with σ = 0) the advection terms

involving g are self-cancelling. Furthermore, under this formulation the viscous term in equa-

tion 3.10 contains D2
(
h2

3ξ
)
, which in turn may be replaced using equation 3.11 twice. When
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g(ψ) ∝ ψ equation 3.10 reduces to a first order quasi-linear partial differential equation, which

is readily solvable for many choices of χ. The aim of the present work is to develop similar re-

lations to yield solutions for cases where the cross-flow σ may vary with x1, x2. While Wang’s

original work developed equation 3.10, including the out-of-plane velocity component, the

Navier-Stokes equations were not explicitly considered and only solutions to 2D planar flows

were derived. To the best of our knowledge, no exact solutions extending Wang’s approach to

three dimensions exist in the open literature.

To begin, ξ and σ are first expressed in terms of ψ and t such that the advection terms are

reduced to 0. Beginning with the advection terms of equations 3.9 and 3.10, the reasoning of

Leprovost et al. [26] has been followed, while generalizing the derivation for unsteady flows

in an arbitrariry orthogonal curvilinear co-ordinate system:

K(σ, ψ) = 0 (3.12)

K(ξ, ψ) − K
(
σ

h2
3

, σ

)
= 0 (3.13)

Equation 3.12 is satisfied when σ = F(ψ, t). Then, using the identity

K
(
σ

h2
3

, F
)

= K
(
σ

h2
3

∂F
∂ψ

, ψ

)
(3.14)

equation 3.13 may be rewritten:

K
(
ξ −

F
h2

3

∂F
∂ψ

, ψ

)
= 0 (3.15)

which suggests ξ − (F/h2
3) ∂F/∂ψ = G(ψ, t). The desired forms of the cross-flow velocity

and pseudo-vorticity are

σ = F(ψ, t) (3.16)

ξ =
F
h2

3

∂F
∂ψ

+ G(ψ, t) (3.17)

Together with equation 3.8, these are the Bragg-Hawethorne or Squire-Long equations pre-

sented for a general curvilinear orthogonal co-ordinate system [27, 28]. In their present state,
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application of equations 3.16 and 3.17 to the system 3.9 and 3.10 would leave only the un-

steady and viscous terms, and generalized Beltrami flows can be obtained by solving the re-

duced equation set. Instead we follow Wang’s approach [19], and add auxiliary functions to σ

and ξ:

σ = F(ψ, t) + Φ(x1, x2, t) (3.18)

ξ =
F
h2

3

∂F
∂ψ

+ G(ψ, t) + X(x1, x2, t) = −
D2(ψ)

V
(3.19)

Substituting the above forms into equations 3.9 and 3.10 and simplifying yields

V
∂F
∂t

+ V
∂Φ

∂t
+ K(Φ, ψ) =

h2
3

Re

{
∂F
∂ψ

D2(ψ) +
∂2F
∂ψ2ψ

2 + D2(Φ)
}

(3.20)

V
h2

3

(
∂F
∂t
∂F
∂ψ

+ F
∂2F
∂ψ∂t

)
+ V

∂G
∂t

+ V
∂X
∂t

+ K(X, ψ) +
2
h3

3

[
(F + Φ) K (h3,Φ) + Φ

∂F
∂ψ

K (h3, ψ)
]

=

=
1

Re


(∂F
∂ψ

)2

+ F
∂2F
∂ψ2 + h2

3
∂G
∂ψ

 D2(ψ) +
∂

∂ψ

(∂F
∂ψ

)2

+ F
∂2F
∂ψ2 + h2

3
∂G
∂ψ

ψ2

 +

+
1

Re

{
D2

(
h2

3

)
G + D2

(
h2

3X
)

+ 4
∂G
∂ψ

[
h2

h1

∂h3

∂x1

∂ψ

∂x1
+

h1

h2

∂h3

∂x2

∂ψ

∂x2

]}
(3.21)

where

ψ2 =
h2

h1h3

(
∂ψ

∂x1

)2

+
h1

h2h3

(
∂ψ

∂x2

)2

(3.22)

Equations 3.20 and 3.21 are cumbersome and unlikely to yield solutions while the non-

linear ψ2 terms are present. To eliminate these terms we set F,G ∝ ψ. Additionally, from

hereon-in we narrow our focus to steady solutions, dropping the dependence on t, so equations

3.18 and 3.19 are reduced to

F(ψ) = dFψ (3.23)

G(ψ) = dGψ (3.24)
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and the auxiliary functions are relabeled: Φ(x1, x2) = φ(x1, x2) and X(x1, x2) = χ(x1, x2).

With these simplifications, the pseudo-vorticity reduces to:

ξ =
d2

F

h2
3

ψ + dGψ + χ = −
D2(ψ)

V
(3.25)

and equations 3.20 and 3.21 become:

K(φ, ψ) =
1

Re

{
h2

3D2(φ) − VdF

(
d2

Fψ + dGh2
3ψ + h2

3χ
)}

(3.26)

K(χ, ψ) +
2
h3

3

[
(dFψ + φ) K (h3, φ) + φdF K (h3, ψ)

]
=

=
1

Re

{
−V

(
d2

F + dGh2
3

) (d2
F

h2
3

ψ + dGψ + χ

)
+ dGD2

(
h2

3

)
ψ + D2

(
h2

3χ
)

+ 4dG

[
h2

h1

∂h3

∂x1

∂ψ

∂x1
+

h1

h2

∂h3

∂x2

∂ψ

∂x2

]}
(3.27)

In principle, equations 3.25-3.27 may be used to find almost any 3D flow in an orthogonal

co-ordinate system, provided the flow is independent of one of the co-ordinates and the scale

factors of the chosen co-ordinate system are independent of the same co-ordinate. In practice,

the value of the present formulation is limited by the number of auxiliary functions which are

’simple enough’ to generate exact solutions. In the following subsections both existing and new

solutions will be found, using linear and quadratic auxiliary functions. Further assumptions are

required to reach general solutions, and these will be explored in the following sections.

3.4 2D planar flows

In the absence of an out-of-plane velocity component (i.e. σ = dF = φ = 0), equation 3.26

is automatically satisfied. In planar co-ordinate systems h3 = 1. With these simplifications,

equations 3.27 and 3.25 reduce to:

K(χ, ψ) =
1

Re

{
D2(χ) − dGV (dGψ + χ)

}
(3.28)

ξ = dGψ + χ = −
D2(ψ)

V
(3.29)



3.4. 2D planar flows 75

These equations have been solved in the Cartesian co-ordinate system by many authors to

find solutions describing several well-known flows.

3.4.1 Cartesian co-ordinate system

In Cartesian co-ordinates (x, y, z), the scale factors become h1 = h2 = h3 = V = 1. Given the

restrictions χ = χ(y) and D2(χ) = 0, χ = cy, and equation 3.28 has the solution

ψ = η(y) exp(βx) −
cy
dG

(3.30)

where η(y) is an unknown function and β = d2
G/ (cRe). Inserting equation 3.30 into 3.29

yields a single constraint equation:

η′′ +
(
dG + β2

)
η = 0 (3.31)

The solution is:

η(y) = cs sin
( √

dG + β2y
)

+ cc cos
( √

dG + β2y
)

(3.32)

Choosing the forms of the coefficients
√

dG + β2 = λ, cs = A/λ, cc = 0, c = −dG, dG =

−Reβ gives the classical Kovasznay flow [24]

ψ = y −
A
λ

sin(λy) exp(βx) (3.33)

β = −
1
2

[ √
Re2 + 4λ2 − Re

]
where A and λ are arbitrary constants. A representative flow is shown in figure 3.1.

If the same coefficients are chosen as the Kovasznay solution except cs = −Ai/λ, cc =

−A/λ, and
√

dG + β2 = −iλ, Lin and Tobak’s solution may be obtained [29]:

ψ = y −
A
λ

exp(λy + βx) (3.34)

β =
1
2

[ √
Re2 − 4λ2 + Re

]
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Figure 3.1: Kovasznay flow with Re = 40, A = 1, λ = 2π and dF = 1. The streamlines are

those of the in-plane velocity field; contours are of the out-of-plane velocity component.
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Figure 3.2: Wang’s flow (equation 3.35) at Re = 13, A = 1, λ = 2π and dF = 1. The streamlines

are those of the in-plane velocity field; contours are of the out-of-plane velocity component.

Wang’s solution appears when the coefficients of Lin and Tobak’s solution are selected,

with the exception cc = 0 [19]

ψ = y −
A
λ

sinh(λy) exp(βx) (3.35)

β =
1
2

[ √
Re2 − 4λ2 + Re

]
This flow is shown in figure 3.2.

Aside from the above solutions many other solutions have been obtained using the extended

Beltrami method, working in Cartesian co-ordinates. Early solutions have been reviewed by

Wang [2, 3] and Drazin and Riley [4]. More recently Chandna and Oku-Ukpong [30] have
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obtained solutions by assuming polynomial forms of χ(x, y), which were later generalized by

Islam et al. [31]. Hui [32], has retained the unsteady terms in their fomulation and arrived at a

variety of solutions exponentially dependent on time. Jamil [33] assumed χ = −U exp(ax + by)

and found solutions depending only on ax + by, indicating the flow is unidirectional.

3.4.2 Plane polar co-ordinates

Working in polar co-ordinates (r, θ, z) we have h1 = 1 and h2 = r. If we assume χ = −a(dGr2 +

4), a general solution for ψ may be found using equation 3.28:

ψ = ar2 + η(r) exp
(

dGθ

2aRe

)
(3.36)

where η(r) is an unknown function. Inserting equation 3.36 into equation 3.29 yields

η′′ +
η′

r
+ dG

(
1 +

d3
G

4a2Re2r2

)
η = 0 (3.37)

whose solution is

η(r) = cη1J idG
aRe

( √
dGr

)
+ cη2Y idG

aRe

( √
dGr

)
(3.38)

where Jn(x) and Yn(x) are Bessel functions of order n of the first and second kinds, respec-

tively. Note that the orders of each of the Bessel functions in equation 3.38 are imaginary. To

eliminate the imaginary parts, we will leverage the identity Im{Jiv(x)} ≈ tanh(πv/2) Re{Yiv(x)}

for small x [34], by choosing cη2 = −cη1 tanh(πdG/(2aRe))i. Noting that Re{Jiv(x)} ∝ Im{Yiv(x)},

the final solution may be written as:

ψ = ar2 + cη Re
{
J idG

aRe

( √
dGr

)}
exp

(
dGθ

2aRe

)
(3.39)

Since the exponential term containing θ cannot be made cyclic without introducing further

imaginary components, equation 3.39 has limited utility since it may only be applied across a

finite range of θ, where suitable boundary conditions must be applied at the domain boundaries

(upper and lower bounds of θ).
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3.5 3D Flows in Extruded Co-ordinate systems

We now shift the focus to 3D fluid motions in extruded co-ordinate systems (h3 = 1), where

equations 3.26 and 3.27 reduce to

K(φ, ψ) =
1

Re

{
∇2φ − dFV (dHψ + χ)

}
(3.40)

K(χ, ψ) =
1

Re

{
∇2χ − dHV (dHψ + χ)

}
(3.41)

while the vorticity definition 3.25 becomes

ξ = dHψ + χ = −
D2(ψ)

V
(3.42)

where dH = d2
F + dG. One can immediately recognize that solutions to the 2D planar

equations of section 3.4 are also solutions to equations 3.41 and 3.42, where dG is relabelled dH

and the cross-flow, u3, may be constructed from the solution to equation 3.40. In all cases, the

function φ = dFχ/dH is admissible, such that equations 3.40 and 3.41 are linearly dependant.

As an example, Kovasznay’s flow (equation 3.33) supports a cross flow

uz = σ = dFψ + φ = −
dF A
λ

sin(λy) exp(βx) (3.43)

The cross-flow variation is shown in the colour contours in figure 3.1. A similar cross-flow

solution may be constructed for Wang’s solution (equation 3.35) and the cross-flow component

has been included in figure 3.2.

3.6 Swirling Flow in Cylindrical Co-ordinates

In cylindrical co-ordinates (z, r, θ), the scale coefficients are h1 = h2 = 1 and h3 = r. Note the

present co-ordinate system is a permutation of the plane polar co-ordinate system in section

3.4.2; in that section, we studied motions in the r-θ plane where no axial variation is permitted.

Here we study flows which vary in the meridional (z-r) plane, but are invariant with respect to

θ. Equations 3.25, 3.26 and 3.27 become:
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ξ =
d2

F

r2 ψ + dGψ + χ = −
D2(ψ)

r
(3.44)

K(φ, ψ) =
1

Re

{
r2D2(φ) − rdF

(
d2

Fψ + dGr2ψ + r2χ
)}

(3.45)

K(χ, ψ) −
2
r3

[
(dFψ + φ)

∂φ

∂z
+ dFφ

∂ψ

∂z

]
=

=
1

Re

{
−r

(
d2

F + dGr2
) (d2

F

r2 ψ + dGψ + χ

)
+ D2

(
r2χ

)
+ 4dG

∂ψ

∂r

} (3.46)

3.6.1 Vanishing centrifugal term

The second term in equation 3.46 is the centrifugal acceleration term; it represents the influence

of angular momentum variation along the z axis on the motion in the meridional plane. In this

subsection we will discuss a family of solutions which have a vanishing centrifugal term. To

facilitate this, we begin with the assumptions dF = 0 and φ = φ(r). Equation 3.45 reduces to

−
dφ
dr
∂ψ

∂z
=

r2D2(φ)
Re

(3.47)

Since ψ is the only z-dependent term in equation 3.47, we must also have

ψ = zΨ(r) + δ(r) (3.48)

to obtain non-trivial solutions. Inserting this corollary into equation 3.44 yields

χ =
z
r3

(
−dGr3Ψ − r

d2Ψ

dr2 +
dΨ

dr

)
+

1
r3

(
−dGr3δ − r

d2δ

dr2 +
dδ
dr

)
(3.49)

Furthermore, χ may be broken into two terms to accommodate equation 3.49:

χ = zX(r) + Y(r) (3.50)

Equation 3.49 can be broken into two equations to balance the coefficients of the z terms:

X(r) =
1
r3

(
−dGr3Ψ − r

d2Ψ

dr2 +
dΨ

dr

)
(3.51)

Y(r) =
1
r3

(
−dGr3δ − r

d2δ

dr2 +
dδ
dr

)
(3.52)
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Using these reduced forms, equation 3.46 can be simplified with the help of Maple™ soft-

ware [35]:

ζΨ′′′ + Ψ′′ +
Re
2

(
ΨΨ′′ − Ψ′2

)
= C (3.53)

ζδ′′′ + δ′′ +
Re
2

(
Ψδ′′ − Ψ′δ′

)
= D (3.54)

ζ =
kRe r2

2

where ′ denotes differentiation with respect to ζ. Equations 3.53 and 3.54 are a system

of ordinary differential equations in ζ, and qualify as a family of exact solutions under the

criteria described in the introduction. Terrill and Thomas [36] have studied the case where

δ = Ψ numerically with a constant suction/injection velocity at ζ = 1, finding four solution

branches. While Terrill and Thomas considered only Re and C as free parameters, the general

case also requires choosing D, along with six additional parameters to fully define the boundary

conditions. We will not describe this rich set of solutions here, but analyze one special case,

appearing when we assume the function

Ψ =
2

Re
ζ (3.55)

which satisfies equation 3.53. Using this result, solving equation 3.54 (using Maple™

software) yields:

δ = c1 + c2

(
ζ2

2
+ ζ

)
− Dζ +

c3

2
(
ζ
[
ζ + 2

]
E1(ζ) −

[
ζ + 1

]
exp(−ζ)

)
(3.56)

where E1(x) = −
∫ ∞
−x

exp(t)/t dt is the exponential integral. We can set c1 = 0 and D = c2,

without loss of generality. Furthermore, equation 3.47 is used to evaluate φ and the solution is

ψ =
2

Re
ζz +

c2

2
ζ2 +

c3

2
(
ζ
[
ζ + 2

]
E1(ζ) −

[
ζ + 1

]
exp(−ζ)

)
(3.57)

uθ =
φ

r
=

Γ

2πr
(
1 − exp(−ζ)

)
(3.58)

When δ = 0, the well-known Burgers vortex [37] is recovered. If we instead retain c2 and

set c3 = 0, Berker’s solution is obtained [14], which describes two opposing streams with a
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stagnation point at the origin. We find that Berker’s solution supports the same circumferential

velocity profile as Burgers vortex, as shown by the present analysis. Interestingly, the parameter

dG does not appear in the final solution, and has no bearing on the velocity field.

Other researchers have developed generalizations of the Burgers vortex. Sullivan [38] dis-

covered that the ansatz Ψ = 2ζ/Re + A
(
1 − exp(βζ)

)
produces a solution describing a two-cell

vortex (which the present formulation also admits) wherein the flow within a bounding radius

recirculates along the z-axis while flow outside the bounding radius re-circulates away from the

axis. Bellamy-Knights [39] have generalized Sullivan’s solution to include unsteady motions

of the bounding surface. More recently Craik [40] has thoroughly explored all solutions of

the type Ψ = Ar2 + B log r where A and B are constants or functions of time. When B = 0,

many unsteady generalizations of Burgers vortex may be found. The solution described by

equations 3.57 and 3.58 with c3 , 0 is an extension to Burger’s solution which has not yet been

considered, however the axial velocity becomes singular at r = 0, due to the presence of E1(ζ).

Consequently, it appears to have little practical use.

3.6.2 Swirling Kovasznay flow

Another solution may be found by assuming the auxiliary functions vary only with r; φ = φ(r)

and χ = χ(r). With these guesses, solving equation 3.45 returns:

ψ = η(r) exp(β(r)z) + κ(r) (3.59)

β(r) =
dFr

Re φ′
(
dGr2 + d2

F

)
(3.60)

κ(r) =
φ′′ − φ′

r − dFr2χ

dF

(
d2

F + dGr2
) (3.61)

where η(r) is an unknown function, and ′ denotes differentiation with respect to r. Inserting

equation 3.59 into equation 3.44 yields

(
dGr2 + d2

F

) (
η exp(βz) + κ

)
+r2χ =

(
zη
β′

r
+
η′

r
− z2η

(
β′

)2
− zηβ′′ − 2zη′β′ − β2η − η′′

)
exp(βz)−κ′′+

κ′

r
(3.62)



82 Chapter 3. Exact Solutions to the Navier-Stokes equations

Since equation 3.62 contains no unknown functions of z, the coefficients of the terms con-

taining z must sum to 0:

exp(βz) : η′′ −
η′

r
+

(
dGr2 + d2

F + β2
)
η = 0 (3.63)

z exp(βz) : 2η′β′ + ηβ′′ −
η

r
β′ = 0 (3.64)

z2 exp(βz) : η
(
β′

)2
= 0 (3.65)

z0 : κ′′ −
κ′

r
+

(
dGr2 + d2

F

)
κ + r2χ = 0 (3.66)

Equation 3.65 is only satisfied when η = 0 or β = const. Taking the latter solution, equation

3.64 is immediately satisfied, and φ may be found using 3.60:

φ =
dFr2

4Re β

(
dGr2 + 2d2

F

)
(3.67)

where an integration constant has been set to 0 to avoid singular solutions of uθ at r = 0.

Equation 3.66 may be solved using equations 3.61 and 3.67:

χ =
(
dGr2 + d2

F

) (cχ1

r2 + cχ2

)
+

d3
Gr6 + d6

F − 8d2
FdG

4dGReβr2 (3.68)

Substituting the above results into equation 3.44 yields (after much simplification)

(
4Recχ2βd2

Gr4 − 3d2
Fd2

Gr4 − 4Recχ1βd2
FdG − d6

F + 8d2
FdG

)
η + d2

Gr3η′ = 0 (3.69)

Equations 3.63 and 3.69 are incompatible, and one must be eliminated to yield an admis-

sible solution. A non-trivial solution arises when dG = 0 and cχ1 =
(
8 − d4

F/dG

)
/ (4Reβ), so

equation 3.69 is satisfied. Then equation 3.63 may be solved:

η = cη1rJ1 (λr) + cη2rY1 (λr) (3.70)

where λ =

√
d2

F + β2, and Jn and Yn are nth-order Bessel functions of the first and second

kinds, respectively. Choosing cη2 = 0 eliminates the singularity at the axis produced by Y1 (0).

The final solution reads:
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Figure 3.3: The swirling flow solution given by equations 3.71 and 3.72 with Reθ = 50, λ = j0,

Ω = 1, and c = 1 where j0 is the first root of J1(x). The streamlines are those of the merid-

ional plane velocity field, and the colour contours correspond to the circumferential velocity

distribution.

ψ = c
[
r2 −

2
λ

rJ1 (λr) exp(βz)
]

(3.71)

σ = Ωr2 −
2cdFr
λ

J1 (λr) exp(βz) (3.72)

β =
d3

F

2Reθ
dF = −

√
3

√
2
9

b −
3

√
32
b

b = Re2
θ

(
9λ2 +

√
3
(
16Re2

θ + 27λ4
))

where setting cη1 = 2c/λ shifts the stagnation point to the origin, and c = −cχ2. The

Reynolds number has been replaced by Reθ = Re Ω∗, and Ω = Ω∗ − cdF . A representative flow

is shown in figure 3.3 and two 3D streamlines showing the recirculating and non-recirculating

motions of the particles near the axis are visible in figure 3.4. These streamlines bear a strong

resemblance to streamlines produced from computational fluid dynamics simulation results

(see, for example figures 14 and 15 in Ref. [41]), although the present flow is incompressible

whereas the flow inside the Ranque-Hilsch vortex tube is highly compressible. To the best of

our knowledge, the solution described by equations 3.71 and 3.72 is new, although it may be
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Figure 3.4: 3D streamlines of the solution given by equations 3.71 and 3.72 with Reθ = 50, λ =

j0, Ω = 40, and c = 1 where j0 is the first root of J1(x). The orange streamline (ψ = −0.01872)

recirculates back along the axis, while the purple streamline (ψ = 0.313919) proceeds along

the axis.

considered a generalization of the solution presented by Fatsis et. al [42]. The solution set may

be viewed as the cylindrical analogue of Kovasznay’s solution, as both flows are cellular, have

a uniform base flow, and contain strong recirculation regions. The clear difference is that the

above solution collapses to a uniform flow along the axis when the swirl vanishes, whereas the

Kovasznay solution has no such dependence on the out-of-plane velocity. Since the sign of the

Bessel function alternates between cells the sign of uθ may become negative in the initial even

numbered cells (assuming the cells are numbered sequentially statring with the innermost cell)

depending on whether the first or second term in equation 3.72 dominates, meaning the bulk of

the fluid in these cells can rotate in an opposite sense to its neighbours about the z-axis.

As shown in Figure 3.5 increasing Reθ causes the recirculating regions to become increas-

ingly slender; a behaviour also exhibited by Kovasznay flow. Furthermore the swirl magni-

tudes near the origin decrease with increasing Reθ. Finally, the adjustment of the swirl factor

Ω changes the magnitude of the ’background’ rigid body swirl, and the circumferential veloc-

ity is increased with increasing radius, however it has no influence on the streamlines in the

meridional plane.

While the counter-rotating annular cells visible in figure 3.3 are certainly interesting, the

flow within the innermost cell is the most readily applicable to the study of various fluid ma-

chinery. First, the present solution might be applied to the study of cyclonic separators, which
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Figure 3.5: Plots are described by the caption to figure 3.3 except Reθ = 5, 10, 20, 50 for each

row, and Ω = 1, 5 for each column.
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are frequently analyzed using exact techniques, however viscous effects have often been ne-

glected in the search for exact solutions (cf. Bloor and Ingham [43]). In a related application,

Maicke et al. [44] have numerically solved the axisymmetric Euler equations to study com-

pressible flows in a bi-directional vortex, where swirling fluid is injected near the periphery

of a tube and is withdrawn near the axis at the same axial location. An important finding of

Maicke et al. is that, for high swirl flows, compressibility appears to have little influence on

the solution field. The present incompressible solution may be readily applied to their prob-

lem when Reθ is small. Finally, the present solution bears strong similarities to axisymmetric

Ranque-Hilsch flow. Most importantly, it includes the effect of viscous forces, which has been

shown to be the dominant energy transfer mechanism across the stagnation streamline [45, 46].

3.7 Summary and Discussion

In the present work the extended Beltrami approach first presented by Wang [19] has been

reviewed and extended. We have shown that our general formulation (equations 3.25 - 3.27)

can be used to analyze viscous three-dimensional flows in planar and revolved co-ordinate

systems. Specifically, we are able to recover all known 2D planar solutions, and have discov-

ered that each one supports an out-of-plane velocity distribution which is closely related to the

streamfunction solution. Furthermore, we have analyzed the equations of motion in cylindri-

cal co-ordinates with a vanishing centrifugal term, finding a new generalization of Burger’s

vortex. Finally, we have discovered a new swirling flow solution describing flow resembling

Kovasznay flow, and also bears strong similarities to Ranque-Hilsch flow.

Comparing the planar results of sections 3.4 and 3.5 with the axisymmetric flows of sec-

tion 3.6, we find that the planar solutions can be separated into the in-plane and out-of-plane

motions, where the in-plane velocities are unaffected by the out of plane motion. This is be-

cause the centrifugal term, given by K(σ/h2
3, σ) vanishes for planar flows, and only a one-way

coupling exists between the vorticity and out-of-plane momentum equations. In contrast, the

centrifugal term does not vanish, in general, for axisymmetric flows because h3 , 1. If the

swirl velocity is independent of z, however, the equations describe an important sub-class of

flows in which the meridional plane motion is independent of the swirl, some of which are
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described in section 3.6.1. In contrast, the swirling flow solution given by equations 3.71 and

3.72 appears to be the first of its kind, in that it is a 3D axisymmetric Navier-Stokes solution

with a non-vanishing centrifugal term.

Appendix

Here we aim to develop the third components of the momentum and vorticity equations 3.2

and 3.3, respectively, in terms of σ = h3u3 and ξ = ω3/h3. Beginning with equation 3.2, the

transient term may be written as

∂u
∂t

=
1

h2h3

∂2ψ

∂x2∂t
ê1 −

1
h1h3

∂2ψ

∂x1∂t
ê2 +

∂u3

∂t
ê3 (3.73)

The advection term is given by

(u · ∇) u = ∇

(u · u
2

)
+ ω × u =

= ∇

(u · u
2

)
+

1
h1

[
ξ
∂ψ

∂x1
−
σ

h2
3

∂σ

∂x1

]
ê1 +

1
h2

[
ξ
∂ψ

∂x2
−
σ

h2
3

∂σ

∂x2

]
ê2+

+
1

h1h2h2
3

(
∂σ

∂x1

∂ψ

∂x2
−
∂σ

∂x2

∂ψ

∂x1

)
ê3 =

= ∇

(u · u
2

)
+

1
h1

[
ξ
∂ψ

∂x1
−
σ

h2
3

∂σ

∂x1

]
ê1 +

1
h2

[
ξ
∂ψ

∂x2
−
σ

h2
3

∂σ

∂x2

]
ê2 +

K(σ, ψ)
h3V

ê3

(3.74)

The pressure term is written as

−∇p = −
1
h1

∂p
∂x1

ê1 −
1
h2

∂p
∂x2

ê2 (3.75)

The viscous term may be written as

∇2u
Re

= −
∇ × ω

Re
=

1
Re V

(
−h1

∂ (h3ω3)
∂x2

ê1 + h2
∂ (h3ω3)
∂x1

ê2 + h3

[
∂ (h1ω1)
∂x2

−
∂ (h2ω2)
∂x1

]
ê3

)
=

= −
h1

Re V

∂
(
h2

3ξ
)

∂x2
ê1 +

h2

Re V

∂
(
h2

3ξ
)

∂x1
ê2 +

h3

Re V
D2(σ)ê3

(3.76)
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Re-assembling the ê3 components of equations 3.73-3.76 and multiplying through by h3V

yields equation 3.9. The vorticity equation terms are similarly developed here. The transient

term is the time derivative of equation 3.7

∂ω

∂t
=

1
h2h3

∂2σ

∂x2∂t
ê1 −

1
h1h3

∂2σ

∂x1∂t
ê1 + h3

∂ξ

∂t
ê3 (3.77)

Taking the curl of 3.74 gives the vorticity equation advection term:

∇ × (ω × u) =

=
h1

V

[
∂

∂x2

(
K(σ, ψ)

V

)]
ê1 −

h2

V

[
∂

∂x1

(
K(σ, ψ)

V

)]
ê2+

+
h3

V

[
∂

∂x1

(
ξ
∂ψ

∂x2
−
σ

h2
3

∂σ

∂x2

)
−

∂

∂x2

(
ξ
∂ψ

∂x1
−
σ

h2
3

∂σ

∂x1

)]
ê3 =

=
h1

V

[
∂

∂x2

(
K(σ, ψ)

V

)]
ê1 −

h2

V

[
∂

∂x1

(
K(σ, ψ)

V

)]
ê2 +

h3

V

[
K(ξ, ψ) − K

(
σ

h2
3

, σ

)]
ê3

(3.78)

Since, the curl of term 3.75 is 0, the pressure does not appear in the vorticity equation.

Finally, taking the curl of 3.76 gives the viscous terms

−
∇ × (∇ × ω)

Re
=

=
h1

Re V

[
∂

∂x2

(
h2

3

V
D2(σ)

)]
ê1 −

h2

Re V

[
∂

∂x1

(
h2

3

V
D2(σ)

)]
ê2+

+
h3

Re V

 ∂

∂x1

 h2

h1h3

∂
(
h2

3ξ
)

∂x1

 +
∂

∂x2

 h1

h2h3

∂
(
h2

3ξ
)

∂x2


 ê3 =

=
h1

Re V

[
∂

∂x2

(
h2

3

V
D2(σ)

)]
ê1 −

h2

Re V

[
∂

∂x1

(
h2

3

V
D2(σ)

)]
ê2 +

h3

Re V
D2

(
h2

3ξ
)

ê3

(3.79)

Reassembling the ê3 components of 3.77 - 3.79 and multiplying through by V/h3 yields

equation 3.10. While the ê1 and ê2 terms may also be assembled into equations, both of these

are linearly dependant on equation 3.9, and are therefore superfluous.
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Chapter 4

The Impact of Boundary Condition and

Model Parameters on CFD Simulations of

the Ranque-Hilsch Vortex Tube

4.1 Introduction

The Ranque-Hilsch vortex tube (RHVT) is a simple mechanical device with no moving parts

capable of separating a supply of compressed fluid into hot and cold streams through a process

called temperature separation. A representative schematic of the RHVT is shown in Fig. 4.1.

Presently, the RHVT is being used in a variety of industrial applications, many of which harness

the cold stream for cooling where a refrigeration system would be impractical, such as cooling

of electrical cabinets [1]. The RHVT is also capable of separating mixtures of gases into their

components [2]. A recent review has detailed other current and prospective applications of the

RHVT [3].

Despite the large number of scientific studies documenting the temperature separation ef-

fect, there is no consensus on the mechanism responsible for temperature separation in the

RHVT [4, 5]. Recently, Computational Fluid Dynamics (CFD) software has been employed to

model the flow inside the RHVT, and predict temperature separation.

Throughout this work, we emphasize the importance of the hydrodynamic boundary con-

94



4.1. Introduction 95

pin,Tin

pcold,Tcold

phot,Thot

L

dc

D

Figure 4.1: A schematic of a typical counter-flow Ranque-Hilsch vortex tube with four inlet

nozzles, an annular hot exit created by a conical plug, and an axial cold exit

ditions (BCs) applied to CFD models of the RHVT. Here, we introduce a notation to concisely

refer to each BC combination; we follow the template 〈inlet BC〉-〈cold outlet BC〉-〈hot outlet

BC〉. We use P to denote a pressure BC, M to denote a mass flow BC, and V to denote a veloc-

ity BC. For example the M-P-M configuration indicates the inlet mass flow, cold exit pressure,

and hot exit mass flow have been fixed.

Early on, Fröhlingsdorf and Unger [6] simulated vortex tube flow using an axisymetric

model and a V-P-P configuration, comparing both circumferential velocity profiles and mea-

surements of temperature separation with the measurements of Bruun [7]. Using a regularly

spaced orthogonal grid Fröhlingsdorf and Unger obtained excellent agreement with Bruun, but

only after implementing a specialized turbulence model developed by Keyes [8], assigning the

same turbulent eddy viscosity for the entire flow domain, and adjusting the turbulent Prandtl

number to 10 times its typical magnitude.

Aljuwayhel et al. [9] conducted experiments and simulations on a VT of aspect ratio 10,

using ANSYS Fluent with a 2D axisymetric model in the P-P-P configuration, comparing

the k-ε and RNG k-ε turbulence models. Both turbulence models were capable of predicting

temperature separation, matching hot and cold exit experimental measurements of tempera-

ture separation within 2 K. Aljuwayhel et al. also post-processed the results to identify the

streamline separating the hot and cold exits, computed the total energies transferred across the

streamline, and found that shear, also known as work transfer, from the cold stream to the hot

stream was the dominant form of energy transfer. Shamsoddini and Nezhad [10] have also

studied the vortex tube of Aljuwayhel et al. using a 3D model, ANSYS Fluent and the M-
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P-P configuration, showing that increasing the number of nozzles in the vortex tube increases

temperature separation, finding strong agreement with experimentally observed temperature

separation.

Skye et al. [11] have performed experiments using a commercial vortex tube (the Exair®

708 slpm), and have reported detailed measurements of the internal dimensions of the vortex

tube (VT) in order to simulate the flow using an axisymetric CFD model using a M-P-M BC

configuration and the k-ε turbulence model. While the CFD results accurately reflected the

trends seen in the experimental results, the CFD model under-predicted the cold and hot exit

temperature separations by approximately 16 K and 4 K, respectively. Furthermore, the CFD

model over-predicted the average pressure at the hot outlet by 20 kPa. Possible reasons for

these discrepancies were not discussed.

Other researchers have performed their own CFD studies of the same VT studied by Skye

et al., including Kandil and Abdelghany [12, 13], who also used Fluent to perform axisymetric

CFD simulations with a M-P-P configuration, using the k-ε turbulence model (among other

models). The outlet pressures were weighted such that the pressure profiles were allowed to

vary across the outlets, but the averages were maintained at specified values. It is unclear

whether the CFD model was checked to see if the same outlet pressures produced the same

mass flow splits observed by Skye et al. Regardless, excellent agreement with the experimental

results of Skye et al. was achieved in the cold mass fraction range 0.35 < λ < 0.8.

Notably, Skye et. al [11], Kandil et. al [12], and Dyck and Straatman [14] have observed

entrainment of flow into their axisymetric CFD domains near the axis of the cold exit, and it

is unclear from these studies whether the presence of this recirculation region is caused by an

inaccuracy in the numerical models, or whether it is physically accurate.

Thakare and Parekh [4] also studied the vortex tube of Skye et al., using the same com-

putational setup as Kandil and Abdelghany, except that they have applied an atmospheric BC

to the cold exit, rather than the experimentally observed boundary pressures reported by Skye

et al. Later, Thakare and Parekh [15] also performed experimental studies of the Exair® 708

slpm VT, and varied the inlet pressure, but only measured pressures at the inlet and cold out-

let. In the same work using a similar CFD model to Skye et al., Thakare and Parekh used a

M-P-M BC configuration, but did not indicate how the pressure at the hot exit was determined.
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They additionally tested the influence of insulating the RHVT, discovering that the presence of

insulation increased the observed temperature separation.

Rafiee and Sadeghiazad [16] also studied the Exair® 708 slpm VT using Fluent, using a

3D model with 6 inlet channels and the M-P-P configuration, to test the influence of different

turbulence models, finding the Reynolds Stress Model (RSM) yielded the most accurate results,

agreeing well with the experiments of Skye et al. Rafiee and Sadeghiazad also advocated for the

use of Pressure-Far-Field BCs, demonstrating that accurate results can be obtained simply by

adjusting the cold outlet area. It is unclear how the Pressure-Far-Field BCs were implemented,

or if they are consistent with the experiments conducted by Skye et al.

A set of experiments has been carried out by Dincer et al. [17, 18], who studied a VT

of aspect ratio 14.78 and obtained a large amount of data. Their experimental setup included

instrumentation for the temperature at all boundaries and static pressure instrumentation at the

inlet. They plotted temperature separation against the cold mass fraction, showing the variation

with the hot plug position, inlet pressure and d/D ratio. The reports of Dincer et al. do not

include concomitant information needed to replicate the experiment, such as outlet pressures

or the total mass flow rate.

Nevertheless, several authors have attempted to replicate the results of Dincer et al. using

CFD; Baghdad, Ouadha and others [19, 20] used ANSYS Fluent to simulate the flow through

a 1/4 model of the VT with a P-P-M configuration (the mass fraction leaving the hot exit

was fixed, while the total mass flow rate was unconstrained). They obtained good agreement

with experimental results using the RSM turbulence model, showing the influence of variable

thermo-physical properties to be negligible, and evaluating the exergy efficiency of the VT. In

a later work Baghdad et al. [21] used a similar model to investigate the effects of non-adiabatic

wall BCs in the vortex tube using a P-P-P configuration and the k-ε turbulence model, wherein

the cold outlet pressure was set to atmospheric, and the hot exit pressure was adjusted to obtain

the desired cold mass fraction. They found the model was sensitive to the thermal BC at

the wall: CFD cases assuming a constant heat transfer coefficient at the tube wall based on

the correlation developed by Churchill and Chu under-predicted temperature separation, while

CFD cases assuming adiabatic wall conditions over-predicted temperature separation.

Zhang et al. [22] simulated the VT studied by Dincer et al. using a 3D model in AN-
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SYS Fluent with a P-P-P configuration to investigate the precessing vortex core: an unsteady,

screw-like flow structure which rotates about the tube axis. The predicted temperature separa-

tion agreed within 3 K of the experimental results. They interpreted the precessing core as a

vibrating boundary layer, and claimed it is the primary energy transfer mechanism.

Other researchers have conducted a substantial number of experiments on VTs, with in-

tentions of examining and improving the energy separation phenomenon. Celik et al. [23]

conducted detailed experiments on a commercially available VT, with an experimental setup

that included instrumentation at all three boundaries for measuring the temperature, pressure

and mass flow rate. Celik et al.’s experiments analyzed the effect of the aspect ratio (L/D)

and the ratio between the cold orifice and tube diameters (dc/D). However, the reported data

does not detail the exact temperature, pressure, and mass flow rate at all three boundaries for

a specific data point. Kumar et al. [24] performed further experiments on a VT, focusing on

the effect of insulating the tube. The experimental setup included instrumentation for pressure,

temperature, mass flow rate, and relative humidity at the inlet and cold outlet, while at the hot

outlet, there was only instrumentation for the temperature. Kırmacı [25] conducted VT exper-

iments comparing the effects of using different working fluids and varying the number of inlet

nozzles on the temperature separation between the outlets for a cold mass fraction of 0.5. The

experimental setup allowed for measuring the pressure at all three boundaries; however, the

experimental setup does not include measurements of the temperature and mass flow rate at

the hot and cold outlets. Furthermore, Kırmacı does not report the specific temperatures and

pressures at the outlets.

Many researchers have proposed theories on the mechanism of temperature or energy sep-

aration, and these theories have been collected in recent review papers [26, 4]. Ahlborn and

Groves [27, 28] observed re-circulation regions within the VT, and suggested that each of these

regions works as a heat pump, to receiving heat at low pressure from the cold stream and deliv-

ering heat to the hot stream at a higher pressure. Reynolds [29] has theorized that turbulence is

responsible for energy separation using a simplified model of a compressible lump of fluid ex-

changing energy as oscillates radially. Other researchers including Hilsch [30] have argued that

energy separation occurs because energy is transferred radially outward due to viscous shearing

from the high-angular-velocity inner layers to the more sluggish outward moving layers.
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A common theme amongst many experimental studies of the RHVT is a lack of specific

information on the measurement stations, including the positions and orientations of the mea-

surement probes and the local geometry of the domain. A brief hand calculation is useful

in demonstrating the potential sensitivity of probe placement. In compressible flows, such as

those observed in the RHVT, it is useful to work with total thermodynamic properties, such as

the total temperature

T0 = Ts +
V2

2cp
(4.1)

where Ts is the static temperature, V is the local velocity, and cp is the heat capacity of the gas.

Consider air flowing at a constant mass flow rate of 3.5 g s−1 through the cold exit tube of a

RHVT with a radius of 2.5 mm at an absolute pressure of 110 kPa and static temperature of

280 K. Under these conditions, usage of the ideal gas law and the continuity equation indicates

the average axial flow speed is 147 m s−1, and the magnitude of the dynamic component of

temperature is V2/(2cp) = 6.2 K. Moreover, for this simple calculation we have assumed that

the flow is purely in the axial direction, while the velocities in the RHVT often have significant

circumferential velocity components. If a temperature probe is mounted near the wall of the

cold exit tube, the circumferential velocity component will be large, introducing additional un-

certainty into the temperature measurement. Alternatively, if the probe extends to the tube axis

where the circumferential velocity component vanishes, the probe leads and any supporting

structure will partially block the flow, and other errors will be incurred. Despite the marked

difference between these static and total temperatures, we have found no works in the literature

which clearly indicate whether the static, total, or intermediate temperatures have been mea-

sured at the inlet and outlet locations. To further complicate the situation, it is unclear whether

a temperature probe inserted into the flow stream will measure the static temperature, total

temperature or some intermediate value. Eckert and Drake [31] have introduced the concept of

a recovery temperature to model the true temperature measured by a temperature probe:

Tr = Ts + r
V2

2cp
(4.2)

where r is a recovery factor in the range 0 ≤ r ≤ 1. In fast moving flows, the boundary

layer around the temperature probe may be thin, and the probe might measure a quantity closer
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to the static temperature, but the same cannot be said for slower flows and thicker boundary

layers. Though a thorough discussion of measurement techniques and local fluid dynamics

is beyond the scope of this work, it suffices to say the recovery factor r must be determined

experimentally for the range of expected operating conditions.

The total temperature separation at the cold and hot exits are given by

Ts,c = Tin − Tcold (4.3)

Ts,h = Thot − Tin (4.4)

In this work, we aim to evaluate the influence of BCs when modelling the RHVT using CFD

software. In section 4.2 we detail the experimental setup and procedure, specifically designed

to enable accurate comparisons with CFD results. Section 4.3 describes the general features

common to all CFD models used in this work, and section 4.4 contains a grid independence

study to ensure our results are accurate solutions to the governing equations. In the subsequent

sections we investigate the accuracy of CFD results in three studies:

1. Evaluate the impact of BC locations and type. Three different VT domains have been

used in the CFD model: one domain has boundaries at the exits of the vortex tube (sim-

ilar to the boundary locations in previous numerical studies), a second domain includes

the outlet plenums in the experiment (such that the boundary locations are at the same

position as the measurement stations in the experiments), and a third domain includes

both the outlet plenums and the inlet shroud. By comparing the CFD results from these

domains, we evaluate the error associated with truncating the domain at the vortex tube

exit locations. We will further assess the relative impact of using different combinations

of mass flow and pressure BCs.

2. Evaluate the impact of the different turbulence models. Several studies have reviewed the

impact of various turbulence models on the energy separation within the RHVT, often

concluding that one model is superior because the predicted temperature separations

are closest to the experimentally measured results. Here we perform a similar study

using the k-ε, k-ω, k-ω Shear Stress Transport (k-ω SST), and Scale-Adaptive Simulation
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Shear Stress Transport (SAS SST) turbulence models, specifically analyzing how these

turbulence models affect the flow structure in the RHVT and the local variations in energy

transfer across the stagnation streamline.

3. Evaluate the impact of the axisymetric assumption. In many studies an axisymetric

model of the VT has been employed to simplify the domain, and reduce the compu-

tational cost of the simulations. In these cases, the nozzle ring (or vortex generator) must

be replaced by a prescribed injection angle to generate the vortex, and the angle of this

injection is often roughly computed based on the angle of the inlet channels. We will

show the impact of two different choices for the injection angle, and compare to 3D sim-

ulations and experimental data. We will also show the influence of of the nozzles on the

local energy separation by comparing the 2D axisymmetric results with results obtained

from a 3D axisymmetric domain with axisymmetric BCs and a similar domain with the

inlet nozzles modelled.

In each of these studies, we have chosen to replicate a specific set of experimental data col-

lected by Parker and Straatman [32] wherein the upstream inlet gauge pressure was regulated

to 275.79 kPa. This data set was chosen because it was replicated twice experimentally; once

using the setup using an aluminum VT, and a second time using a Delrin VT. In all cases the

results were virtually the same.

To ensure the results are reproducible, we have granted access to digital files containing the

3D models from which the physical vortex tube was fabricated, the computational grids used,

the scripting files used to generate the grids, and the simulation setup files.

4.2 Experimental Apparatus

The computational models studied in this paper are based on the VT designed and fabricated

for experiments by Parker and Straatman [32]. Fig. 4.2 shows a detailed illustration of the

vortex tube, including the inlet shroud and outlet plenums. Sensor blocks were installed up-

stream of the inlet shroud and downstream of each outlet plenum where the static pressure and

recovery temperature was measured. Fig. 4.3 shows the position of the temperature and pres-
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sure measurements taken in the sensor blocks in relation to the vortex tube. Table 4.1 provides

the values for geometric parameters. The total mass flow was measured upstream of the inlet

sensor block using a laminar mass flow meter, while the outlet mass flow rates were measured

using rotameters, installed downstream of the sensor blocks. Hence, the temperature, pressure

and mass flow rates were known upstream of the VT entrance, and just downstream of both

the hot and cold exits. The temperature and static pressure were also measured inside of the

outlet plenums. The purpose of the plenums is this: while the flow properties at the ’immediate

exits’ (c.f. the VT exits in Fig. 4.1) of the VT may vary significantly over their cross-sections

due to the strong swirl velocity, the flow properties at the downstream sensor blocks are nearly

uniform over the pipe radius, such that the measured properties can be reasonably assumed to

be the bulk properties of the flow. In each sensor block, the pressure sensor was inserted into

a recessed hole, such that the sensor did not protrude into the tube, while the hemi-spherical

head (radius 2 mm) of the temperature probe protruded into the 5 mm diameter tube by approx-

imately 1.5 mm. The probe was seated in a hole drilled into Delrin sensor blocks resulting in

the leads being insulated from the metal pipes. Parker and Straatman [32] have estimated the

recovery factor of these sensors, and all reported temperatures have been adjusted using these

factors.

Each of the experimental runs were carried out by holding the pressure at the inlet and the

cold outlet constant and varying the hot outlet pressure to change the cold mass fraction. By

controlling the cold mass fraction in this manner, the plug located at the hot outlet does not

move, resulting in a constant geometry. The recovery temperature, static pressure, and mass

flow rates were measured at the three sensor blocks for the case with an inlet pressure of 353

kPa. To eliminate any transient effects in the temperature measurements, the measurements

were recorded 10 minutes after the vortex tube ac hived steady state at each mass flow fraction.

The vortex tube, inlet pipe and vortex generator were machined from aluminum, where as the

outlet pipes were machined from stainless steel and the remainder of the vortex tube setup was

machined from Delrin.
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Figure 4.2: Sectioned drawing of the Ranque-Hilsch vortex tube used in this research, showing

the relevant dimensions (given in table 4.1), including the hot and cold plenums

D 
IP 

CP 

HP 
L 

IP 

CP 
D 

L 

L 

D 
HP 

Figure 4.3: Perspective drawing of the Ranque-Hilsch vortex tube used in this research; the

visible tube ends correspond to the sensor block and measurement locations, and dimensions

are given in table 4.1
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L 313.06 [mm]

D 12.52 [mm]

Aspect Ratio 25

NW 1.50 [mm]

NH 1.50 [mm]

Number of Nozzles 4

DO 5.00 [mm]

LO 22.00 [mm]

DP 5.00 [mm]

θP 60 [°]

LPO 2.00 [mm]

DIPL 19.45 [mm]

LIPL 8.50 [mm]

DCPL 35.00 [mm]

LCPL 25.00 [mm]

DHPL 19.45 [mm]

LHPL 8.18 [mm]

DIP 9.92 [mm]

LIP 96.65 [mm]

DCP 5.00 [mm]

LCP 76.70 [mm]

DHP 5.00 [mm]

LHP 76.70 [mm]

Table 4.1: Relevant geometric properties of the Ranque-Hilsch vortex tube used in this re-

search, as defined in Figs. 4.2 and 4.3
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4.3 CFD Model setup

In the following sections, several different CFD models are described and evaluated; their com-

mon features are recorded here for conciseness. In all cases, air is used as the working fluid,

which is modelled using the ideal gas equation of state with constant heat capacities. The

vortex generated within the tube creates a strong radial pressure gradient, and the ideal gas

model is required to model the highly compressible flow, and predict temperature separation.

The relevant properties are dynamic viscosity µ = 1.831 × 10−5 kg m−1 s−1, thermal conduc-

tivity k = 2.61 × 10−2 W m−1 K−1 and heat capacity cp = 1004.4 J kg−1 K−1. ANSYS® CFX,

Releases 19.0, 19.1, and 19.2 were used to solve the governing equations of mass, momentum,

and energy, which are provided in the CFX Solver Theory Guide [33]. Importantly, the viscous

dissipation term has been switched on for all simulations reported in this study. The SAS SST

turbulence model was selected for this problem, as it behaves like the classical two-equation

models (such as the k-ε or k-ω models) in regions where the flow is steady, but has the capa-

bility to capture large-scale turbulent structures like Large Eddy Simulations, while adopting

Reynolds-Averaged Navier-Stokes (RANS) formulation in regions of steady flow [34]. High

resolution advection schemes were used for all transport variables, and the second order back-

ward Euler time-stepping scheme was used.

At the inlet, the total temperature was set based on the experimental value, and the turbu-

lence intensity was set to 5%. The enthalpy and turbulent transport quantities at the outlets are

obtained implicitly from the solution. No-slip and adiabatic conditions were applied to all solid

boundaries, including the VT walls, and the plenum interior surfaces. Automatic (enhanced)

wall treatments [33] were used to capture the influence of turbulent boundary layers.

The computational grids were generated using two softwares: the blockMesh tool available

from the OpenFOAM library [35] was used to produce the structured grid throughout the VT

and exit plenums, while the ANSYS Meshing tool® [36] was used to produce a hexahedral-

dominant mesh for the inlet tube and shroud.

Ranque-Hilsch flow contains a strong vortex with relatively high angular velocities, which

naturally extend through the immediate exits into the downstream geometry, until it decays or

is halted by some other means. This strong vortex naturally forms a significant radial pressure
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gradient, which might not be accurately characterized by the constant pressure or mass flow

BCs that are imposed at the boundaries of many CFD studies of the RHVT. Therefore, in cases

where the downstream geometry has been truncated to the exits (shown in model A of Fig.

4.5), a radial equilibrium BC has been applied [33] to allow a more natural variation of the

boundary pressure profile in the presence of strong swirl.

4.4 Grid Independence

A grid independence study was conducted to verify that the present results are accurate solu-

tions to the governing equations of mass, momentum, and energy. Model B (shown in Fig.

4.5) was selected for the grid convergence study. As it will be seen, the M-P-M BC config-

uration produces the best agreement with experimental results, and has therefore been used

in this study. The experimental trial we have selected to simulate has an inlet mass flow rate

ṁi = 6.076 g s−1, an inlet total temperature Ti,total = 297 K, an absolute cold exit static pressure

is Pc = 101 kPa and a hot exit mass flow rate is ṁh = 2.51 g s−1.

To determine grid independence, four grids were generated, and a time-step size of 1.6 × 10−5 s

was selected for the simulations. Starting from the coarsest grid, finer grids were generated by

multiplying the number of nodes along each edge by a global factor without adjusting the mesh

controls such that the mesh structure is maintained. In each case convergence was achieved

when the root-mean-square residuals for mass, momentum, energy and turbulence equations

remained under 5 × 10−6 while the mean values of the quantities of interest did not change

within 1% for a period of 1000 or more time-steps. Values reported in the remainder of this

work have been time-averaged over at least 0.016 s to average out the small step-to-step vari-

ations such that an accurate comparison can be made with the experimental data. As seen in

table 4.2, grid-independence was achieved when at least 523054 grid cells were used. Mesh 3

(shown in Fig. 4.4, containing 1434680 elements) has been chosen to represent model A for

the remainder of this work.
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Mesh Label Cell Count Tc [K] Th [K]

Experiment - 284.6 312.9

Mesh 1 295842 286.5 312.3

Mesh 2 523054 286.5 312.0

Mesh 3 1434680 285.9 313.0

Mesh 4 2735832 286 313.3

Table 4.2: Grid convergence of CFD calculations of the Ranque-Hilsch vortex tube with a cold

mass fraction of 0.5869 based on total temperatures measured and computed at the hot and

cold exits.
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(a) Inlet mesh detail (b) Hot exit detail

(c) Cut-away view of the mesh along

the θ = 0 plane, around the hot plug

(d) Close-up of the o-grid structure

containing the tube axis at the cold

plenum

Figure 4.4: Selected views of the computational mesh used in CFD calculations of the RHVT,

containing 1434680 cells

4.5 Energy Transfer Analysis

Previous researchers have used the solution fields from CFD studies to evaluate the energy

transfer from the cold stream to the hot stream using the following technique. In a time-

averaged CFD solution a streamsurface separates the hot and cold fluid streams, which we call

the stagnation streamsurface. Similarly, axisymetric CFD calculations contain a stagnation

streamline separating the hot and cold streams. Logically, the energy transferred across the

stagnation streamsurface is equal to the energy gained or lost by the hot and cold fluid streams,

respectively. Aljuwayhel et al. [9] were the first to compute the energy transfer due to heat
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conduction, circumferential shear work, and axial shear work using the formulas

∂Q̇
∂s

= −2πkeffr
∂T
∂n

(4.5)

∂Ẇθ

∂s
= −2πµeffrvθr

∂

∂n

(vθ
r

)
(4.6)

∂Ẇz

∂s
= −2πµeffvzr

∂vz

∂n
(4.7)

where s is a streamline co-ordinate, n is the normal vector pointing towards the hot stream,

µeff = µeddy + µ is the effective viscosity, keff = cpµeddy/Prt + k is the effective thermal conduc-

tivity, and Prt = 0.9 is the turbulent Prandtl number.

In the CFD results analyzed in this work, the stagnation streamsurface always intersects

the hot exit cone, and we identify streamlines on this surface using the following technique.

First a line is drawn on a given θ-plane from the leading edge of the hot exit cone to the rear of

the hot exit cone (where the working section of the vortex tube meets the hot plenum). Post-

processing software is then used to identify the point of minimum absolute axial velocity on

this line. A stagnation streamline is traced backward to the inlet from this point. A discrete

representation of the stagnation streamline can then be written to file, alongside all the relevant

quantities and gradients required to compute the energy transfers. The data file may be post-

processed using Python to compute equations 4.5 - 4.7 and their integrals to find the local and

total energy transfers across the stagnation streamline, respectively. Unfortunately, a complete

representation of the streamsurface cannot be obtained; only single streamlines can be traced,

which leaves the normal vectors along the 3D streamline undefined. We remedy the problem by

assuming that the stagnation streamsurface is axisymmetric, and therefore the normal vectors

contain no component in the circumferential direction, which closes the problem.

4.6 Impact of CFD Model Boundary Types and Boundary

Locations

The RHVT has a single inlet (upstream of the vortex generator) and two distinct outlets; while

the total mass flow rate through the outlets must balance with the inlet, the cold mass fraction
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is dictated by the fluid dynamics within the tube. When modelling the RHVT using CFD,

the mass flow rate and pressures cannot be enforced simultaneously at the inlet or outlets,

therefore the analyst must choose whether to apply a pressure BC or a mass flow BC at each of

the boundaries.

A CB

Actual
Measurement
Locations

Actual
Measurement
Locations

Figure 4.5: Diagrams showing the different CFD domain extents of models A, B, and C of the

Ranque-Hilsch vortex tube. Note that these diagrams are for illustrative purposes only, and

their geometric proportions do not correspond to their true dimensions shown in figures 4.2

and 4.3

Three different RHVT models were studied in the present work, as shown in Fig. 4.5.

Model A represents a typical 3D domain of the RHVT, with four tangential inlets, and the exit

boundaries located at the entrance to the hot and cold plenums. Model B is similar, but the

outlet plenums are included in the CFD domain. Importantly, the exit boundaries of model

B and C correspond exactly to the location of the sensor blocks in the experiment. Model C

includes both plenums and the inlet shroud. As it will be seen, models B and C predict nearly

the same values at the VT exits when the inlet mass flow is considered, but only model C allows

for an accurate prediction of the inlet pressure.

Here, we remind the reader of our notation to concisely refer to each BC combination;

the template 〈inlet BC〉-〈cold outlet BC〉-〈hot outlet BC〉 describes the BCs used in a RHVT
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simulation. We use P to denote a pressure BC, and M to denote a mass flow BC. For example

the M-P-M configuration indicates the inlet mass flow, cold exit pressure, and hot exit mass

flow have been fixed.

In this study we investigate the differences between the M-P-M, M-M-P, M-P-P, and P-P-P

BC configurations on models A, B, and C in Fig. 4.5. Ideally, each of these BC combina-

tions should yield the same solution field, but in practice the influence of model inaccuracies

(discussed below), cause uncontrolled quantities to drift from their experimental values. For

example, in the M-M-P configuration, the cold exit pressure is uncontrolled, and, as it will be

seen, does not match the experimental value at the end of a grid and time-step independence

calculation. In each case the SAS SST turbulence model has been used.

In many experiments the outlet quantities of the VT are measured at locations downstream

of the outlets. Yet many CFD studies based on these experiments used models similar to model

A, and have applied pressure or mass flow BCs from the experiment to those locations. In

doing this, they have neglected the influence of the downstream flow passage on the results.

Here we aim to test that assumption by comparing models A, B, and C. In model A, pressure

BCs have been applied using the radial equilibrium BC [33], such that the predicted pressure

profile along the boundary is better suited to a swirling flow at the exit. We will specifically

highlight the difference between applying pressure BCs measured in the sensor blocks in model

A1, and a more realistic approximation of the pressure BCs in model A2, where the hot exit

pressure is assumed to be equal to the pressure recorded at the plenum wall, and the cold exit

pressure is computed as pc A2 = pc pl exp−(pc pl CFD B−pc tube CFD B), where pc pl is the static pressure

measured inside the plenum, and pc tube CFD B is the pressure observed at the cold exit boundary

location of model A2 inside model B. In models B and C, uniform static pressure BCs have

been applied at the outlets.

We have not investigated P-M-P or P-P-M configurations, as it makes little sense to control

the mass flow at one of the outlet boundaries while the total mass flow rate would be uncon-

strained. The P-M-M configuration is unstable in CFX, and it has not been used in a CFD

model of the RHVT to our knowledge, so we have not tested it here.
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4.6.1 Discussion of Model Influences

Figure 4.6: 3D helical streamlines passing through the RHVT; lighter streamline proceeds to

the hot exit, and the darker streamline proceeds to the cold exit

Fig. 4.6 is a representative flow field within the RHVT, showing the common reverse flow

structure; air entering the tube swirls about the tube axis while moving along its axis, eventually

leaving the annular hot exit or retreating to the cold exit.

In all simulations reported in this work, the flow recirculation region crossing the cold exit

boundary seen in refs. [11, 12, 14] have not been observed. We attribute this to the accuracy

of the radial equilibrium BC; the aforementioned studies applied unrealistic uniform static

pressure boundary conditions.

281.50 284.99 288.48 291.97 295.46 298.95 302.44 305.93 309.42 312.91 316.40
Total Temperature [K]

(a) Model A1

(b) Model A2

(c) Model B

(d) Model C

Figure 4.7: Total temperature contours of the working section of the Ranque-Hilsch vortex

tube for a cold mass fraction of 0.5869 and different model approximations

Fig. 4.7 shows temperature contour plots for models A1, A2, B, and C. The similarity

between these plots shows the temperature distribution inside the vortex tube is largely similar.
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(a) Model A1 (b) Model A2 (c) Model B (d) Model C

Figure 4.8: Cold exit tube absolute pressure contours in the Ranque-Hilsch vortex tube reported

where the cold exit pressure has been specified, located at the cold exit of model A, and the

corresponding locations within models B and C

The pressure contours shown in Fig. 4.8 show that there is a significant difference between

model A1 and the other models, since the pressure of the downstream sensor block has been

applied at the VT cold exit. Furthermore, the strong radial pressure gradients in models B and

C confirm that a uniform static BC applied at the cold exit is not adequate.

Table 4.3: Influence of BC configurations for model A1. Greyed cells are fixed to experimental

boundary values.

Inlet Cold Outlet Hot Outlet

Configuration ṁi [g s−1] pi [kPa] λ pc [kPa] Tc [K] ph [kPa] Th [K]

Experiment 6.076 355.4 0.5869 100.7 284.6 177.2 312.9

M-P-M 6.076 311.7 0.5869 100.7 286.6 137.9 317.0

M-M-P 6.076 329.3 0.5869 139.2 289.8 177.2 312.5

M-P-P 6.076 328.8 0.3314 100.7 296.9 177.2 331.5

P-P-P 7.194 355.4 0.3467 100.7 278.2 177.2 310.3
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Table 4.4: Influence of BC configurations on Model A2. Greyed cells are fixed to boundary

values.

Inlet Cold Outlet Hot Outlet

Configuration ṁi [g s−1] pi [kPa] λ pc [kPa] Tc [K] ph [kPa] Th [K]

Experiment 6.076 355.4 0.5869 129.3 284.6 188.3 312.9

M-P-M 6.076 321.7 0.5869 129.3 288.1 161.6 315.0

M-M-P 6.076 334.9 0.5869 151.8 290.5 188.3 311.5

M-P-P 6.076 334.4 0.9024 129.3 296.2 188.3 326.9

P-P-P 9.000 355.4 0.5800 129.3 285.0 188.3 318.8

Table 4.5: Influence of BC configurations for model B. Greyed cells are fixed to experimental

boundary values.

Inlet Cold Outlet Hot Outlet

Configuration ṁi [g s−1] pi [kPa] λ pc [kPa] Tc [K] ph [kPa] Th [K]

Experiment 6.076 355.4 0.5869 100.7 284.6 177.2 312.9

M-P-M 6.076 324.6 0.5869 100.7 287.9 149.2 315.0

M-M-P 6.076 337.4 0.5869 136.8 290.2 177.2 313.0

M-P-P 6.076 334.8 0.7298 100.7 292.0 177.2 319.7

P-P-P 6.643 355.4 0.6747 100.7 290.0 177.2 318.4
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Inlet Cold Outlet Hot Outlet

Configuration ṁi [g s−1] pi [kPa] λ pc [kPa] Tc [K] ph [kPa] Th [K]

Experiment 6.076 355.4 0.5869 100.7 284.6 177.2 312.9

M-P-M 6.076 393.7 0.5869 100.7 287.8 150.2 316.4

M-M-P 6.076 403.0 0.5869 134.8 290.1 177.2 312.2

M-P-P 6.076 401.0 0.7224 100.7 291.4 177.2 318.8

P-P-P 5.464 355.4 0.7976 100.7 293.9 177.2 319.9

Table 4.6: Influence of BC configurations for model C. Greyed cells are fixed to experimental

boundary values.

The simulation results for models A1, A2, B, and C are given in tables 4.3, 4.4, 4.5, and 4.6

respectively. For the M-P-M and M-M-P BC configurations, similar outlet temperatures have

been predicted for models A1, A2, B, and C, while the inlet pressure in model C is elevated

due to the pressure drop through the shroud. When comparing the M-P-M to M-M-P results,

small variations in the inlet pressure can be observed.

While temperature separation is reasonably predicted by all BC configurations, the M-

P-P and P-P-P BC configurations fail to predict the correct mass flow split, even while the

appropriate outlet pressures have been fixed. Furthermore, we observe that the M-P-M and

M-M-P cases differ because when the pressure is enforced at one exit, it remains unconstrained

at the opposite exit and inlet.

Overall, it is clear that the presence of the inlet shroud (contrasting models B and C) only

impacts the predictions of the upstream pressure, validating the implicit assumption from pre-

vious papers that four uniform property inlets is a sufficient inlet condition for modelling the

RHVT.

4.6.2 Sources of Discrepancy

The results in tables 4.3, 4.4, 4.5, and 4.6 give important insight into the use of CFD to model

Ranque-Hilsch flow. Clearly, no combination of BC configuration and domain model is ca-

pable of predicting all measured experimental quantities. Since geometric and grid resolution
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errors are minimal, the only possible sources of error are are material property approximations,

modeling simplifications, inaccurate BCs, or experimental uncertainties.

In our CFD study we have assumed a perfect gas model, with constant viscosity and ther-

mal conductivity. Dutta et al. [37] has challenged this assumption, by comparing the results of

a NIST real gas model with the ideal gas model, showing that the real gas model for air offers

only a slight improvement over the ideal gas model at temperatures near atmospheric temper-

ature, wherein constant specific heats were used. Liu et al. [38] have assumed a variable heat

capacity as a polynomial function of temperature, and found good agreement with experimen-

tal data, although no comparison was made to an equivalent simulation without variable heat

capacity. Ouadha et al. [20] have studied numerically the effects of comparing a simulation

using constant thermophysical properties to properties modelled as a polynomial function of

temperature. They found that both constant and variable properties are capable of predicting

the bulk temperature separation, but the internal flow field is significantly different between the

two cases.

Some modelling approximations are also present; chief among which is turbulence model.

The RHVT has been simulated using a variety of turbulence models, and several papers have

compared their relative accuracy. Dutta et al. [39] used an axisymetric CFD model to evalu-

ate several RANS models, and conclude that the k-ε model is the most accurate, despite its’

simplicity. Baghdad et al. [19] used a 1/4 VT model to compare several RANS two-equation

models and the Reynolds Stress Model (RSM). All of the models over-predicted temperature

separation, but the RSM model yielded the most accurate predictions. Meanwhile, Liu and Liu

[38] have used a 3D VT model, comparing several two-equation models with the RSM, and

concluded that the RSM model is the most accurate. Niknam et al. [40] also used a 3D VT

model to compare the relative performance of several two-equation turbulence models, against

the Spalart and Allmaras model and a three-equation model developed by Walters and Cokljat

[41] using a root-mean-square error approach. The three-equation model was the most accu-

rate, yielding the lowest root-mean-square error of any of the models. Niknam et al. attributes

the increased accuracy of the three equation model to its ability to capture viscous heating

inside the VT. In contrast to previous authors, the k-ε model was the least accurate overall.

Chýlek et al. [42] also compared several RANS models against the RSM model using a 3D
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domain. They also found that the standard k-ε model yielded the most accurate results. The

literature offers no consensus on which models are best suited to model the RHVT, and there

is little discussion as to why some models outperform others. We explore the influences of

different turbulence models in section 4.7.

Additionally, we have assumed that Stokes’ hypothesis is valid. This has been assumed

in all computational studies we are aware of, however it’s omission is suspect; both Cramer

[43] and Emmanuel [44] agree that the bulk viscosity becomes relevant when acoustic effects

are present within the flow. At the same time Kurosaka [45] found a strong link between the

strength of an acoustic signal and the magnitude of temperature separation, indicating that CFD

simulations should consider acoustic effects and the significance of the bulk viscosity.

While several CFD studies including Bianco et al. [46], Zhang et al. [22], and Farouk

and Farouk [47] have observed large-scale unsteady flow structures in the RHVT, the solution

fields in this report were always observed to be steady, which suggests that acoustic effects do

not drive temperature separation, if they participate at all.

4.7 Turbulence Modelling

In this section, we focus on comparing the impact of four different turbulence models on the

local and total energy separation inside the RHVT: k-ε, k-ω, k-ω SST, and SAS SST. The full

details of these models including transport equations and model coefficients are given in the

CFX theory guide [33]. Here we analyze the circumferential velocity, axial velocity, static

temperature, and turbulent eddy viscosity solution fields of CFD simulations of model B, the

M-P-M BC configuration, and using the experimental input data with a cold mass fraction of

0.5869. For this study we used a mesh containing 3026688 elements to produce results capable

of resolving the local energy transfers near the inlet of the VT.
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238.80 247.53 256.26 264.99 273.72 282.45 291.18 299.91 308.64 317.37 326.10
Static Temperature [K]

(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.9: Static temperature profile comparisons for different turbulence models used to

simulate the Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869
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(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.10: Circumferential velocity profile comparisons for different turbulence models used

to simulate the Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869
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(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.11: Angular velocity profile comparisons for different turbulence models used to

simulate the Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869
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(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.12: Axial velocity profile comparisons for different turbulence models used to simu-

late the Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869
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(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.13: Eddy Viscosity profile comparisons for different turbulence models used to simu-

late the Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869



4.7. TurbulenceModelling 123

(a) k-ε turbulence model

(b) k-ω turbulence model

(c) k-ω SST turbulence model

(d) SAS SST turbulence model

Figure 4.14: Streamline comparisons for different turbulence models used to simulate the

Ranque-Hilsch vortex tube for a cold mass fraction of 0.5869. Blue streamlines leave the

cold exit, and red streamlines leave the hot exit

Table 4.7: Hot and cold exit temperatures, and energy transfers across the stagnation stream-

lines, extracted from the results of 3D CFD simulations of the Ranque-Hilsch Vortex Tube

using different turbulence models.

Model Tc [K] Th [K] Q̇ [W] Ẇθ [W] Ẇz [W] Ėtot [W]

Experiment 284.6 312.9 - - - -

k-ε 276.5 316.1 -53.09 148.96 -27.03 68.84

k-ω 277.0 326.0 -49.88 146.66 -26.33 70.44

k-ω SST 279.0 322.2 -61.15 150.72 -25.35 64.22

SAS SST 285.6 313.2 -43.60 122.40 -24.84 53.96

Each of the quantities of interest are displayed in Figs. 4.9-4.13, and the streamlines are

shown in Fig. 4.14. With the exception of the turbulent eddy viscosity, all other quantities of

interest show minimal dependence on the turbulence model, including the flow structure. In

contrast, each turbulence model produces a unique distribution of the turbulent eddy viscosity,

which, together with the other quantities, substantially impacts the location of the stagnation

point. A detailed discussion of the formulation of each turbulence model and it’s impact on the
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eddy viscosity distribution is beyond the scope of this work, but we emphasize here that the

temperature separation exhibits a strong dependence on the model selected, as shown in table

4.7. The models, which are listed in descending order according to their overall temperature

separation, have a negative correlations with the length of their recirculation regions shown in

Fig. 4.14, and their maximum eddy viscosities seen in Fig. 4.13. These facts together suggest

the presence of a mechanism which elongates the recirculation region in the presence of a lower

eddy viscosities, thereby increasing the interfacial surface area between the hot and cold fluid

streams, and by extension, the overall energy separation.

Figure 4.15: Representative 3D stagnation streamlines of the k-ε (dotted), k-ω (dashed), k-ω

SST (dash-dotted), and SAS SST (solid) simulations which have been ’unwound’ from the

tube axis. The tube aspect ratio (L/D) has been decreased by a factor of 4 to emphasize the

differences in streamline position.
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Figure 4.16: Plot of local energy transfers across the streamlines shown in figure 4.15 for the

k-ε (dotted), k-ω (dashed), k-ω SST (dash-dotted), and SAS SST (solid) turbulence models.

The horizontal axis on each plot has been truncated to 45% of the characteristic streamline

length to emphasize the variations observed near the inlet. All energy transfers continue to

decay towards the hot exit cone.

Fig. 4.15 shows the differing stagnation streamlines produced by the different turbulence

models, while Fig. 4.16 shows the local energy transfers across the same streamlines. While

the streamlines differ significantly towards the rear of the tube, they follow very similar tra-

jectories near the inlet — where the greatest magnitudes in energy separation are observed.

Since the velocity and temperature distributions yielded by each of the models are similar, the

differences in energy transfer must be attributed to the differences in turbulent eddy viscos-

ity. The flow near the inlet of the vortex tube is not symmetric about the tube axis due to the

presence of four distinct inlet nozzles, and consequently drives the local oscillatory patterns

in the energy transfer plots. Oscillations aside, the shear work transfer clearly dominates the

other two modes of energy transfer in each of the models, and is mainly responsible for the en-

ergy separation. In addition, the models with the regions of higher eddy viscosity also contain

greater maxima in their shear work transfer curves, suggesting more turbulent flows exhibit
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higher energy separation. Note that an infinite number of stagnation streamlines exist in the

stagnation streamsurface, however they all trace similar paths through the domain, and their

energy transfer profiles are largely similar to the representative streamlines and their energy

transfers shown in figures 4.15 and 4.16.

While these distributions are certainly interesting in their own right, their conflicting an-

swers are not encouraging for analysts. For example, those studying gas separation in the

vortex tube may be highly interested in where the regions of highest mixing will occur. A

similar computational study using the same turbulence models will almost certainly return four

completely different answers.

4.8 Axisymetric Approximation

Many CFD studies also assume that the vortex tube domain may be approximated as axisymet-

ric, such that a 2D model can be used to save computational resources. In these CFD studies,

the inlet is modelled as a boundary patch on the outer radius of the tube near the cold exit,

and the swirl inside the tube is generated by setting an appreciable circumferential velocity

component at the inlet, and the inlet velocity vector forms an angle φ with respect to the radial

unit vector. Skye et al. [11] have estimated this inlet angle from the geometry of the vortex

generator. In this method, a ray in the axial plane is drawn from the midpoint of the nozzle en-

trance along the nozzle direction, as illustrated in Fig. 4.17a. The intersections of this ray with

the tube and the perpendicular radius form a right-angled triangle with the tube center. The

injection angle φ is adjacent to the side parallel to the ray. Several other researchers [9, 48, 49]

appear to have followed the same procedure to find the inlet angle, but the description is not as

detailed. Other publications contain no reference for how this angle has been computed. In 3D

simulations of the vortex tube, such as those detailed in section 4.6, the solution fields often

become axisymetric at roughly z = L/10, while the flow close to the inlets exhibits strong cir-

cumferential variations. In this section we show two different approximations of the inlet angle

φ for axisymmetric domains, and analyze the overall accuracy of the axisymmetric assumption

by comparing the results to equivalent 3D CFD calculations.
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a

b
φ

(a) Inlet angle estimation of Skye et al. com-

putes the inlet angle geometrically using

the triangle formed from the intersection of

a line extending from the midpoint of the

channel width along the channel length and

a perpendicular radius

ρudA
φ

(b) A momentum-based inlet angle estima-

tion uses the results from a converged 3D

simulation of the Ranque-Hilsch vortex tube

to evaluate equation 4.8 to ensure the result-

ing inlet angle of the 2D simulation cap-

tures the influence of local velocity devia-

tions within the inlet channels.

Figure 4.17: Schematics showing graphically the calculation of the fluid injection angles used

for 2D axisymetric CFD simulations of the Ranque-Hilsch vortex tube in this study

As an alternative to Skye et al.’s method for computing the inlet angle, we propose another

method for computing the inlet angle to the axisymetric domain. Consider a differential area

element dA on the cylindrical surface defined by r = D/2 and 0 < z < NH (c.f. Fig. 4.2).

The momentum flux through this element is ρu (illustrated in Fig. 4.17b) where ρ is the local

fluid density and u is the local velocity. Using these definitions a momentum-weighted average

cosine of the injection angle may be computed using the formula

cos(φ) =

∫
A
ρu · θ̂ dA∫

A
ρ‖u‖ dA

=

∫
A
ρuθ dA∫

A
ρ‖u‖ dA

(4.8)

where θ̂ is a unit vector in the circumferential direction. Equation 4.8 may only be computed

from the solution fields of a 3D CFD computation which includes the inlet channels (e.g. Model

A). Using the method of Skye et al., the injection angle for the VT studied in this work is found

to be 61.7°. Processing the results of the M-P-M simulations of models B and C given in

section 4.6 using equation 4.8, we compute the momentum-averaged inlet angles to be 69.5°

and 68.0°, respectively.

In this section we will compare axisymmetric CFD results using both the momentum-
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weighted inlet angle and Skye’s inlet angle against results from model A, model B, and a

modified version of model A, called a ’Ribbon Inlet’, wherein the inlets have been trimmed,

and the width of the inlet boundary shown in Fig. 4.18 is computed such that the equivalent

circumferential area of the tube occupied by the inlet nozzles at the tube radius in Fig. 4.2 is

preserved; yielding a width of 0.686 mm.

The axisymetric domain is shown in Fig. 4.18, and has a wedge angle of 1°. Axisymetric

meshes were generated using OpenFOAM’s blockMesh tool [35]. A grid convergence study

was conducted, and the results are shown in table 4.8. The mesh used for the axisymetric sim-

ulations contains 19327 elements, and is depicted in Fig. 4.19. Similar to the previous section,

where 3D simulations have been run for comparison, we have used a mesh containing 3026688

elements to produce results capable of resolving the local energy transfers near the inlet of the

VT. For each of the following simulations, we have used the M-P-M BC configuration, where

the cold exit static pressure boundary condition has been set to the experimentally measured

value at the sensor block downstream of the cold exit.

Mesh Label Cell Count Tc [K] Th [K]

Experiment - 284.6 312.9

Mesh 1 5220 287.1 316.6

Mesh 2 9352 287.1 316.3

Mesh 3 19327 287.1 316.6

Mesh 4 42566 287.3 316.3

Table 4.8: Grid convergence of CFD calculations of the axisymetric model of the RHVT based

on total temperatures measured and computed at the hot and cold exits.
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ṁin,Tin
φ

pcold

ṁhot

Figure 4.18: An axisymetric model of the Ranque-Hilsch vortex tube used in CFD calculations

with a single inlet, cold and hot exits. Periodic boundary conditions are applied on opposite

faces of the wedge shown in the left image. Labelled quantities are the boundary conditions

applied in the present study

Figure 4.19: Axisymetric mesh of the Ranque-Hilsch vortex tube containing 19327 elements
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Figure 4.20: Plots showing the variation in cold and hot temperature separation as a function

of cold mass fraction of experimental and CFD results obtained from a Ranque-Hilsch vortex

tube

Fig. 4.20 plots the total temperature separation at both exits against the cold mass fraction.

All of the computational models correctly capture the general trends of the data; increasing the

cold mass fraction is accompanied by a decrease in the cold exit temperature separation, and an

increase in hot exit temperature separation. While the cold exit temperature separation shows
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nearly linear trends, the difference in slope is distinct. This difference could be attributed to any

of the discrepancies discussed in section 4.6.2. Notably, the results of models A and B are very

similar, confirming that a truncated vortex tube model is likely sufficient for studying energy

separation. Furthermore, while no flow reversal has been observed in any of the simulations in

this work, it is possible flow reversal could occur when λ < 0.2, which has not been captured

in the experimental data set.

Turning to the axisymetric results, it is clear that simulations using the geometric injection

angle definition of Skye et al. under-predict the experimental temperature separation. When

contrasted with the results using the momentum-weighted inlet angle, we can conclude that

the geometric prediction is too small; when the flow in the nozzles reaches the vortex tube

radius, the existing vortex deflects the flow in the nozzles in the circumferential direction,

which increases the swirl velocity beyond what would be expected if the flow were to proceed

parallel to the nozzle until it had ’fully entered’ the domain. The momentum-weighted inlet

angle can be considered a viable alternative to the geometric inlet angle.

In addition, the close agreement between the results of the axisymmetric domain using the

momentum-weighted inlet angle and the ribbon inlet model suggest that the flow is hydrody-

namically stable, or at least that any evolution in the flow field caused by any circumferential

disturbances do not substantially impact the energy separation process. Furthermore, the rib-

bon inlet model and model A predict similar results, indicating that the flow asymmetries in the

vicinity of the inlet produced by the nozzles does not affect the overall temperature separation.
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Figure 4.21: Energy transfer to the hot stream along a streamline via different modes in the

Ranque-Hilsch vortex tube with a cold mass fraction of 0.5869. The horizontal axis on each

plot has been truncated to 45% of the characteristic streamline length to emphasize the varia-

tions observed near the inlet. All energy transfers continue to decay towards the hot exit cone.
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Figure 4.22: Net energy exchanges from each mode of energy transfer have been computed by

integrating equations 4.5 - 4.6 along the stagnation streamline. The heat transfer (dotted lines),

circumferential shear work transfer (dashed lines), axial shear work transfer (dash-dotted lines),

and net energy transfer (solid lines), are plotted as a function of cold mass fraction.

Fig. 4.21 shows the local energy transfers across the stagnation surfaces for a single cold

mass fraction, while Fig. 4.22 shows the variation of total energy transfers with cold mass

fraction.

In general, the energy transfers across the stagnation streamline reach their largest magni-

tudes near the inlet, and decay towards the stagnation point on the surface of the hot exit plug.

Circumferential work transfer is the dominant energy transfer mode, while heat transfers in the

opposite direction, degrading temperature separation. The energy transfers computed in Fig.

4.21 are similar to those found by other researchers who have evaluated energy transfers from

axisymmetric solutions [9, 50, 51, 52].
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4.9 Summary

In this work, we performed several CFD studies to test the efficacy of various boundary con-

dition assumptions of CFD models of the Ranque-Hilsch vortex tube. The vortex tube domain

requires three distinct boundaries: an inlet, a cold exit, and a hot exit. Several combinations

of pressure and mass-flow constrained boundary conditions are possible. We have computed

CFD simulations using the M-P-M, M-M-P, M-P-P, and P-P-P BC configurations, and found

that these configurations predict markedly different temperature separations. Moreover, the

M-P-P and P-P-P configurations yielded incorrect predictions of the mass flow split.

In addition to the different combinations of boundary condition combinations, we studied

the influence of the exit plenums, which are frequently used in experiments to collect the flow

exiting the RHVT, before their properties are measured downstream. We used three vortex tube

models: a simple model with nozzle inlets and boundaries which exclude the plenums from the

domain, a model which includes the plenums in the CFD domain such that the exit boundary

conditions correspond to the physical measurement locations in the experiment, and a model

which includes both the exit plenums and an inlet shroud inside the CFD domain. Considering

the M-P-M and M-M-P BC configurations, we found that the presence of the exit plenums

and inlet shroud has a very minimal impact on temperature separation. When the inlet shroud

was excluded, the predicted inlet pressures were 21 kPa to 44 kPa lower than the expected inlet

pressures, while simulations including the shroud over-predicted the inlet pressure by about

50 kPa.

Next, we studied the influence of four turbulence models on RHVT flow: k-ε, k-ω, k-ω

SST, and SAS SST. The SAS SST model was the most accurate, predicting the cold exit tem-

perature separation within 2 K. While the velocity and temperature fields were largely similar,

each turbulence model yielded a unique eddy viscosity distribution, and a different stagnation

streamline. Consequently, the local energy transfers across the stagnation streamline take on

unique profiles, and the aggregate difference is reflected in the overall temperature separation.

It was also noted that the axial position of the stagnation point in the flow correlated negatively

with the average eddy viscosity in the domain, suggesting that recirculation regions elongate in

response to reduced circumferential shear, thereby providing a larger area for energy to transfer
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between the streams, and (at least partially) recovering some energy separation.

Furthermore, we have studied the axisymetric approximation by conducting a series of

CFD simulations on axisymetric domains and comparing with 3D simulation and experimental

results. We propose a new method to compute the injection angle for a axisymetric VT do-

mains, based on a momentum-weighted average of the flow angle computed from the results of

a preliminary 3D simulation. We found that the axisymetric simulations using the momentum-

weighted injection angle over-predicted the 3D CFD simulation results for a range of cold mass

fractions, while simulations using the injection angle definition proposed by Skye significantly

under-predicted temperature separation. We therefore recommend the momentum-weighted

computation of the injection angle whenever preliminary CFD results are available.

Finally, we take this opportunity to recognize the progress made in the collective under-

standing of the RHVT in recent years, afforded by the wide availability of reliable CFD codes,

and access to increased computational power. The simulation results presented in this work,

alongside many others in the reference list below, were run using widely-available, generic

CFD codes with common two-equation (or variant thereof) turbulence models, and standard

material properties. In the vast majority of cases, the temperature separations predicted using

these methods agree, within reasonable experimental and computational uncertainties, with the

observations of comparable experiments. Furthermore, multiple independent CFD studies fol-

lowing the work of Aljuwayhel [9], have accounted for all the mechanisms of energy transfer

across the critical stagnation streamsurface, demonstrating that circumferential shear work is

the dominant energy transfer mechanism from the cold to hot fluid streams inside the RHVT.

Given the robustness of these studies, we claim the dominant energy transfer mechanisms in the

RHVT are known, and statements to the contrary, as have been made in recent review papers,

are no longer appropriate.
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[6] W. Fröhlingsdorf and H. Unger, “Numerical investigations of the compressible flow and

the energy separation in the Ranque-Hilsch vortex tube,” International Journal of Heat

and Mass Transfer, vol. 42, no. 3, pp. 415–422, 1998.

[7] H. H. Bruun, “Experimental Investigation of the Energy Separation in Vortex Tubes,”

Journal of Mechanical Engineering Science, vol. 11, pp. 567–582, 12 1969.

[8] J. J. Keyes Jr, “An experimental study of gas dynamics in high velocity vortex flow,” in

Proceedings of the Heat Transfer and Fluid Mechanics Institute., pp. 31–46, 1960.

[9] N. F. Aljuwayhel, G. F. Nellis, and S. A. Klein, “Parametric and internal study of the

vortex tube using a CFD model,” International Journal of Refrigeration, vol. 28, no. 3,

pp. 442–450, 2005.

[10] R. Shamsoddini and A. H. Nezhad, “Numerical analysis of the effects of nozzles number

on the flow and power of cooling of a vortex tube,” International Journal of Refrigeration,

vol. 33, no. 4, pp. 774–782, 2010.



136 Chapter 4. Impact of BCs on CFD simulations of the RHVT

[11] H. M. Skye, G. F. Nellis, and S. A. Klein, “Comparison of CFD analysis to empirical

data in a commercial vortex tube,” International Journal of Refrigeration, vol. 29, no. 1,

pp. 71–80, 2006.

[12] H. A. Kandil and S. T. Abdelghany, “Computational investigation of different effects on

the performance of the Ranque-Hilsch vortex tube,” Energy, vol. 84, pp. 207–218, 2015.

[13] S. T. Abdelghany and H. A. Kandil, “Effect of Geometrical Parameters on the Coeffi-

cient of Performance of the Ranque-Hilsch Vortex Tube,” Open Access Library Journal,

vol. 05, no. 02, pp. 1–17, 2018.

[14] N. J. Dyck and A. G. Straatman, “Energy Transfer Mechanisms in the Ranque-Hilsch Vor-

tex Tube,” in 2018 Canadian Society for Mechanical Engineering (CSME) International

Congress, (Toronto), 2018.

[15] H. R. Thakare and A. D. Parekh, “Experimental investigation & CFD analysis of

Ranque—Hilsch vortex tube,” Energy, vol. 133, pp. 284–298, 2017.

[16] S. E. Rafiee and M. B. M. Sadeghiazad, “Three-dimensional computational prediction of

vortex separation phenomenon inside the Ranque-Hilsch vortex tube,” Aviation, vol. 20,

no. 1, pp. 21–31, 2016.

[17] K. Dincer, S. Baskaya, and B. Z. Uysal, “Experimental investigation of the effects of

length to diameter ratio and nozzle number on the performance of counter flow Ranque-

Hilsch vortex tubes,” Heat and Mass Transfer, vol. 44, no. 3, pp. 367–373, 2008.

[18] K. Dincer, S. Baskaya, B. Z. Uysal, and I. Ucgul, “Experimental investigation of the

performance of a Ranque-Hilsch vortex tube with regard to a plug located at the hot

outlet,” International Journal of Refrigeration, vol. 32, no. 1, pp. 87–94, 2009.

[19] M. Baghdad, A. Ouadha, O. Imine, and Y. Addad, “Numerical study of energy separation

in a vortex tube with different RANS models,” International Journal of Thermal Sciences,

vol. 50, pp. 2377–2385, 12 2011.



BIBLIOGRAPHY 137

[20] A. Ouadha, M. Baghdad, and Y. Addad, “Effects of variable thermophysical properties

on flow and energy separation in a vortex tube,” International Journal of Refrigeration,

vol. 36, no. 8, pp. 2426–2437, 2013.

[21] M. Baghdad, A. Ouadha, and Y. Addad, “Effects of kinetic energy and conductive solid

walls on the flow and energy separation within a vortex tube,” International Journal of

Ambient Energy, pp. 1–17, 11 2018.

[22] B. Zhang, X. Guo, and Z. Yang, “Analysis on the fluid flow in vortex tube with vortex

periodical oscillation characteristics,” International Journal of Heat and Mass Transfer,

vol. 103, pp. 1166–1175, 2016.

[23] A. Celik, M. Yilmaz, M. Kaya, and S. Karagoz, “The experimental investigation and

thermodynamic analysis of vortex tubes,” Heat and Mass Transfer, vol. 53, no. 2, pp. 395–

405, 2016.

[24] A. Kumar, Vivekanand, and S. Subudhi, “Cooling and dehumidification using vortex

tube,” Applied Thermal Engineering, vol. 122, pp. 181–193, 2017.

[25] V. Kırmacı, “Exergy analysis and performance of a counter flow Ranque-Hilsch vortex

tube having various nozzle numbers at different inlet pressures of oxygen and air,” Inter-

national Journal of Refrigeration, vol. 32, no. 7, pp. 1626–1633, 2009.

[26] Y. Xue, M. Arjomandi, and R. Kelso, “A critical review of temperature separation in a

vortex tube,” Experimental Thermal and Fluid Science, vol. 46, no. 8, pp. 175–182, 2010.

[27] B. Ahlborn and S. Groves, “Secondary flow in a vortex tube,” Fluid Dynamics Research,

vol. 21, pp. 73–86, 1997.

[28] B. Ahlborn, J. Camire, and J. U. Keller, “Low-pressure vortex tubes,” Journal of Physics

D: Applied Physics, vol. 29, no. 6, pp. 1469–1472, 1999.

[29] A. J. Reynolds, “A note on vortex-tube flows,” Journal of Fluid Mechanics, vol. 14,

pp. 18–20, 9 1962.



138 Chapter 4. Impact of BCs on CFD simulations of the RHVT

[30] R. Hilsch, “The use of the expansion of gases in a centrifugal field as cooling process,”

Review of Scientific Instruments, vol. 18, no. 2, pp. 108–113, 1947.

[31] E. R. G. Eckert and R. M. J. Drake, Analysis of Heat and Mass Transfer. McGraw-Hill,

1st ed., 1972.

[32] M. J. Parker and A. G. Straatman, “Experimental Study on the Impact of Pressure Ratio

on Temperature Drop in a Ranque-Hilsch Vortex Tube,” In Preparation, 2020.

[33] ANSYS Inc., “CFX Theory Guide,” 2019.

[34] F. Menter and Y. Egorov, “A Scale Adaptive Simulation Model using Two-Equation Mod-

els,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, (Reston, Virigina), American

Institute of Aeronautics and Astronautics, 1 2005.

[35] OpenFOAMGroup, “blockMesh,” 2000.

[36] ANSYS Inc., “Meshing User’s Guide,” 2019.

[37] T. Dutta, K. Sinhamahapatra, and S. Bandyopadhyay, “Numerical investigation of gas

species and energy separation in the Ranque–Hilsch vortex tube using real gas model,”

International Journal of Refrigeration, vol. 34, pp. 2118–2128, 12 2011.

[38] X. Liu and Z. Liu, “Investigation of the energy separation effect and flow mechanism

inside a vortex tube,” Applied Thermal Engineering, vol. 67, no. 1-2, pp. 494–506, 2014.

[39] T. Dutta, K. P. Sinhamahapatra, and S. S. Bandyopdhyay, “Comparison of different tur-

bulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube,”

International Journal of Refrigeration, vol. 33, no. 4, pp. 783–792, 2010.

[40] P. H. Niknam, H. R. Mortaheb, and B. Mokhtarani, “Numerical investigation of a

Ranque–Hilsch vortex tube using a three-equation turbulence model,” Chemical Engi-

neering Communications, vol. 204, p. 327–336, 2017.

[41] D. K. Walters and D. Cokljat, “A Three-Equation Eddy-Viscosity Model for Reynolds-

Averaged Navier–Stokes Simulations of Transitional Flow,” Journal of Fluids Engineer-

ing, vol. 130, 12 2008.



BIBLIOGRAPHY 139
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Chapter 5

Summary

The Ranque-Hilsch Vortex Tube (RHVT) has been the subject of intense scientific study since

1947. Despite the large number of papers published covering parametric and analytic studies,

the true nature of the temperature separation phenomenon has not been satisfactorily exposed.

The works in this thesis collectively represent an effort to understand and model Ranque-Hilsch

flow, by generalizing a simplified model of operation, introducing a new solution whose flow

structure resembles Ranque-Hilsch flow, and offering some clarification on various Computa-

tional Fluid Dynamics (CFD) modelling approximations of the RHVT.

5.1 Summary and Contributions

The contributions in this thesis are spread across three manuscripts.

5.1.1 The Rotating Duct Problem

In chapter 4, the rotating duct studied by Polihronov and Straatman [1] was revisited, with

the express intention of generalizing the solution to include the effects of the in-frame radial

momentum. This led to a different set of expressions describing the velocity, static tempera-

ture, and pressure profiles within the duct, which were shown to be an improvement over the

predictions made by Polihronov and Straatman when compared to CFD results over a range of

parameters. Next, the analysis was further generalized to include ducts whose cross-sectional
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area varied along the duct length, and whose path may be arbitrary. Finally, the choked flow

condition was discussed, and it was demonstrated that this condition is a natural generalization

of the choked flow condition in stationary ducts. This work includes three novel contributions.

• The generalized results including the influence of the in-plane radial momentum are a

clear improvement on the results of Polihronov and Straatman, while still confirming

that the general trends in temperature reduction are similar.

• While the analysis of the flow through a straight, constant cross-section duct was found to

be largely the same as Lieblein’s [2], the generalizations to ducts whose cross-sectional

area varies along their length, and whose path can be arbitrary in three dimensions, is

new. Importantly, it was demonstrated that the flow speed along the duct path (and con-

sequently the temperature, density, and pressure), are functions of the radius only. This

knowledge could simplify the design of turbomachines involving compressible, radial

flows.

• Finally, the choked flow limitations in rotating compressible flows are discussed here for

the first time. Knowledge of these conditions should also prove useful to designers of

turbomachinery.

While these contributions are valuable, the work ultimately contains less convincing argu-

ments for the work transfer theory than those put forward by Allahverdyan and Fauve [3], who

showed viscous shear is the dominant energy transfer mechanism in a spiralling, compress-

ible flow. However, the rotating duct analysis (and consequently the extensions of the present

work), find purchase in describing of a new device, described in section 5.2.1.

5.1.2 Exact Solutions of the Navier-Stokes Equations

In chapter 3, the original method for finding exact solutions to the Navier-Stokes equations

presented by Wang [4] has been extended to find solutions in three dimensions. New solutions

include 3D generalizations of well known Navier-Stokes solutions including Kovasznay flow

[5], as well as new generalizations of the Burger’s vortex, and a novel swirling flow solution.
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5.1.3 Numerical Analysis of the RHVT

In chapter 4, three CFD studies were carried out with the intention of assessing common as-

sumptions about RHVT which are often implicit in other computational studies in the literature.

First, the influences of different boundary locations were tested. Three different models

were used in the computations: one model where the hot and cold boundaries are placed at

the ’immediate’ exits and the inlet nozzles are the entrance of the domain, a second model

where the CFD domain includes the downstream hot and cold plenums, and a third model

where both the plenums and the inlet shroud upstream of the vortex generator are included.

In addition, different combinations of mass, and pressure boundary conditions were tested at

different exits. It was found that temperature separation changes significantly with different

boundary conditions, and that boundary condition configurations which have a fixed inlet mass

flow are the most reliable. Furthermore, the influence of the shroud is not relevant when the

inlet mass flow is fixed, as only the upstream pressure is changed as a result.

Next, the influence of different turbulence models was tested. The SAS SST model pro-

duced the most accurate results. Curiously, the eddy viscosity distributions were markedly

different across turbulence models, with the k-ε containing the highest values, and the SAS

SST containing the lowest. While the flow structure remained similar across the turbulence

models, the position of the stagnation point changed substantially, with the k-ε model contain-

ing the shortest stagnation streamlines, while the stagnation streamlines in the SAS SST model

extended all the way to the hot exit cone.

Finally, the influence of the axisymmetric approximation was studied by comparing ax-

isymmmetric CFD results to 3D CFD results. A new momentum-based method for computing

the required injection angle for axisymmetric computations was proposed. It was found that

the axisymmetric approximation is adequate for predicting temperature separation, and that

the momentum-based method of determining the injection angle is comparable to the original

geometric method.

This manuscript contains many small discoveries to improve computational modelling of

the RHVT:

• The truncated VT model where with boundaries at the ’immediate exits’ and inlet nozzles
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shown in figure 1.1 has been validated, and the mass flow inlet, with a single mass flow

outlet boundary condition fixed is recommended to fix the resulting cold mass fraction.

• The influence of turbulence model on the internal flow structure has been revealed, and a

trend showing longer stagnation streamlines correlating with smaller eddy viscosities has

been documented for the first time, suggesting a natural lengthening of the recirculation

region to accomodate energy transfer in these cases.

• A new method for computing the injection inlet angle is proposed and shown to be com-

parable to the earlier geometric method when 3D CFD results are available.

• Analyzing the energy transfer modes in many of these cases has shown again that circum-

ferential shear work transfer is the dominant energy transfer mechanism in the RHVT.

5.2 Future Work

5.2.1 The Rotating Duct Problem

Polihronov and Straatman [1] originally studied the model of compressible fluid moving through

a rotating duct to provide an analogue to the work transfer mechanism in the RHVT. During

their initial investigation, however, it became clear that the example studied could provide

a more efficient means of cooling than the RHVT. The advantage is clear; while the energy

transferred via circumferential shear work in the RHVT ultimately increases the temperature

of the hot stream, the fluid in the rotating duct transfers its energy to the walls of the duct,

working to increase or maintain the angular momentum of the system. In reality, a rotating

duct with a pressure tank affixed to the outer radius would be imbalanced, and the process

would be transient as the cooling would decay as the pressure tank discharges. A much better

design has been conceived by Polihronov and Straatman [6], wherein a circular shroud around

the edge of a spinning disk is charged with supply air. The air moves down radial holes in the

disc (spaced evenly around the circumference to balance the device naturally), and exhausts

at the axis. The energy transferred to the disk is either sapped by parasitic forces, or can be

harnessed for useful work such as aiding the compression of the upstream flow. This device
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was invented very recently and there many potential applications to explore, including coolers

for electrical cabinets, snow making, and even power generation.

5.2.2 Exact Solutions of the Navier-Stokes Equations

An obvious starting point for future work is the final analytical solution developed in chapter

3. The streamlines bear a strong resemblance to the Ranque-Hilsch flow seen in chapter 1, and

the streamfunction has other valuable properties which are not present together in any other

known solution:

• the flow field is fully 3D in cylindrical coordinates,

• it captures the axial stagnation point,

• viscosity effects are included,

• and it is continuous everywhere and there are no divisions between different flow regions.

While these flow characteristics are desirable, there are still some shortcomings which need to

be addressed before it can be applied to predict temperature separation:

• The flow field is incompressible; as discussed in chapter 1, compressibility is a neces-

sary condition for cooling in the RHVT. Linderstrøm-Lang [7] noted that the omission

of density changes does not introduce significant errors in flow structure of an inherently

compressible flow. Maicke et al. [8] arrived at a similar conclusion in their study of

swirling, recirculating flows. So while the solution flow structure may be a fair approx-

imation of Ranque-Hilsch flows, the volume dilation term, ∇ · u, is still 0, and another

approximation is necessary to include the influence of compressiblity in the energy equa-

tion (c.f. equation 1.14).

• There is little control over the boundary conditions; the solution only contains 2 free

parameters, which may not be enough to characterize the range of parameters influencing

Ranque-Hilsch flow. There is little hope in finding a solution which captures the complex

variations produced by the asymmetry of the inlet nozzles. Lewellen [9] argued such
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swirling flows would always have trouble matching boundary conditions to realistic flow

problems.

• Like the simplified flow structure models developed by other researchers, the solution

is derived assuming a constant viscosity. Thus, the best approximation to be made is to

assign an equivalent turbulent eddy viscosity to the entire domain. This appears prob-

lematic considering the wild variations in eddy viscosity observed in section 4.7. On the

other hand, Fröhlingsdorf and Unger [10] obtained surprisingly good agreement with the

internal flow measurements of Bruun [11] using a constant viscosity in their numerical

simulations, so there could be scenarios where this approach is viable.

Beyond applications to the RHVT, there is potential to extract additional interesting solu-

tions:

• In this work only steady solutions were considered. The extension to unsteady flows

should be straightforward, and will yield interesting results.

• Other co-ordinate systems, including spherical, toroidal, and prolate spheroidal co-ordinate

systems have not been thoroughly explored for solutions and may yield solutions which

describe physically interesting flows.

• Kerr and Dold [12] analyzed a multi-cellular stagnation point flow in cartesian co-ordinates

using a method similar to Wang’s [4]. It may be possible to adapt the present technique

to obtain solutions similar to Kerr and Dold’s in cylindrical or spherical co-ordinate sys-

tems using a variation of the present technique. Such a solution may help to describe the

axisymmetric vortex breakdown phenomenon.

5.2.3 Numerical Analysis of the RHVT

One key area where numerical studies will prove useful is in the investigation of Behera et al.’s

claim [13]; suggesting that energy separation is maximized when the tube is just long enough

to contain the stagnation point. It seems natural that energy separation would remain constant

if the length of the tube is extended past the naturally occuring location of the stagnation point,

but this needs to be validated numerically, and (ideally) experimentally.
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A well-thought-out direct numerical simulation of the full RHVT would certainly provide

valuable insight into the energy separation mechanisms at play. Aside from the organizational

and monetary barriers associated with conducting such a simulation, the core problem is in the

ability to accurately estimate the size of the smallest eddys a priori such that the grid may be

appropriately sized. While a sound understanding of the turbulence in compressible flows will

certainly help, the process may still be iterative, and other problems may arise from the storage

and processing of such a large amount of data.
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