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Abstract 

Three research projects are presented in this manuscript. Projects one and two describe 

two waveform relaxation algorithms (WR) with longitudinal partitioning for the time-

domain analysis of transmission line circuits. Project three presents theoretical results 

about the convergence of WR for chains of general circuits.   

The first WR algorithm uses an assignment-partition procedure that relies on inserting 

external series combinations of positive and negative resistances into the circuit to control 

the speed of convergence of the algorithm. The convergence of the subsequent WR 

method is examined, and fast convergence is cast as a generic optimization problem in 

the frequency-domain. An automatic suboptimal numerical solution of the min-max 

problem is presented and a procedure to construct its objective function is suggested. 

Numerical examples illustrate the parallelizability and good scaling of the WR algorithm 

and point out to the limitation of resistive coupling.    

In the second WR algorithm, resistances from the previous insertion are replaced with 

strictly dissipative impedances to address the slow convergence of standard resistive 

coupling of the first algorithm for low-loss highly reactive circuits. The pertinence and 

feasibility of impedance coupling are demonstrated and the properties of the subsequent 

WR method are studied. A new coupling strategy proposes judicious approximations of 

the optimal convergence conditions for faster speed of convergence. The proposed 

strategy avoids the difficult problem of optimisation and uses coarse macromodeling of 

the transmission line to construct approximations with delay under circuit form. 

Numerical examples confirm a superior speed of convergence and further runtime saving. 

Finally, new results concerning the nilpotent WR algorithm are presented for chains of 

circuits when dissipative impedance coupling is used. It is shown that optimal local 

convergence is necessary to achieve the optimal WR algorithm. However, the converse is 

not correct: the WR algorithm with null local convergences factors can be nilpotent yet 

not optimal or even be non-nilpotent at all. The second analysis concerns resistive 

coupling. It is demonstrated that WR always converges for chains circuits. More 



 

precisely, it is shown that WR will converge independently of the length of the chain 

when this late is made of identical symmetric circuits.  
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Summary for Lay Audience 

The continuous demand for faster data processing in electronic systems requires stricter 

verification of their integrity. The interconnections which are responsible of transporting 

data between different parts of these systems are sensitive to the speed of operation. A 

high operating speed gives birth to physical phenomena which degrade data and causes 

errors. It is essential to address these issues in the early stages of the design cycle. To this 

end, simulation tools used in the design cycle must be reliable and fast. Indeed, a reliable 

simulation which takes a lot of time can be impractical for some design cycles. The 

computational core of conventional simulation tools uses the so-called direct methods to 

solve the mathematical models of such systems.  These methods however can become 

time consuming and memory intensive for large design problems. Another class of 

computational methods namely relaxation methods, divide large simulation problems into 

smaller ones and solve them repetitively at the same time until solution is reached. If the 

number of cycles is decreased, then it is possible to reduce drastically the simulation 

time. This following thesis presents a research effort intended to accelerate these 

relaxation methods. 
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Chapter 1  

1 Introduction 

The current chapter takes the reader for a quick overview of the main methods and 

numerical techniques for the solution of the initial value problem through sections 1.1 to 

1.3. Those who are familiar with this topic or decide to skip these introductory sections, 

can start reading section 1.4 and 1.5. Section 1.4 summarizes the state-of-the art in using 

waveform relaxation methods for the analysis of transmission line circuits. Section 1.5 

describes the contribution of the present work and positions it vis-a-vis published results 

in the literature.   

1.1 Initial Value Problem 

Many interesting applications can be modeled as an initial value problem (IVP), eg., 

 𝑭(𝒙′(𝑡), 𝒙(𝑡), 𝑡) = 𝟎 

(1.1) 

𝒙(0) = 𝒙𝟎 

where 𝒙(𝑡) ∈ ℝ𝑛 and 𝐹: ℝ2𝑛+1 ⟶ 𝑅𝑛. Here, (1.1) can describe an IVP for an ordinary 

differential equation (ODE) system or for a differential algebraic equation (DAE) system. 

It is assumed that function 𝑭 is such that solution 𝒙 exists and is unique on a simulation 

interval of interest, say, 𝑡 ∈ [0, 𝑇], and that the initial condition is consistent for the DAE 

case. 

In general, an analytic solution to (1.1) cannot be found, so the problem must be solved 

numerically. With the typical approach, (1.1) is first discretized in time with an 

integration method. Since DAE and stiff ODE systems require the use of implicit 

integration schemes, the time discretization will generate a sequence of nonlinear 

algebraic problems which are solved with an iterative method, usually a modified 

Newton method. The sequence of linear algebraic systems generated at each iteration of 

the non-linear solution are then solved with Gaussian elimination. The above process is 
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the “implicit-integration, Newton, direct method” canon and forms the basis for most 

general-purpose codes for solving large-scale IVP’s [1]. 

The standard approach has two computational bottlenecks (which bottleneck will 

dominate depends on the problem): 

Function evaluation − computation of 𝑭(. ) and the associated Jacobian 𝑱𝑭(. ). The cost 

of evaluating 𝑱𝑭 grows with the problem size and with the degree of coupling. For 

densely coupled problems, evaluating 𝑱𝑭 can be as low as 𝑂(𝑛). 

Linear system solution − solving the linear system at each iteration of the nonlinear 

solution process. The complexity of direct elimination methods for solving systems of 

equations is polynomial in 𝑛, typically from 𝑂(𝑛1.5) for sparse problems to 𝑂(𝑛3) for 

dense problems. 

When using the standard Newton method, the function evaluation and the linear system 

solution are performed at each iteration of each nonlinear system at each timestep. 

However, certain modified Newton methods recalculate the Jacobian only at certain 

intervals (eg., every third Newton iteration) [2], thereby reducing the work required, 

although not the complexity, by a constant factor. 

Efforts to improve the computational efficiency for numerically solving IVP’s focus on 

improving the efficiency of the function evaluation and the linear system solution. These 

efforts fall into two general (overlapping) categories: algorithmic improvement and 

hardware improvement. For example, one could use an iterative method for the linear 

system solution or implement the solver on a vector or parallel processing machine. For 

some problems, such an approach might be highly effective, but for other problems, such 

an approach might be a disaster. It seems that general-purpose codes for solving IVP’s 

must follow the “implicit-integration, Newton, direct method” canon because such codes 

are written to be able to reliably handle the largest possible class of problems. However, 

this formula can be quite limiting for specific problems that can benefit from the 

application of more specialized algorithms. 
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1.2 A Circuit Simulation Problem 

The nodal analysis formulation of the circuit transient simulation problem is described 

by 

𝑑

𝑑𝑡
𝑞(𝑣(𝑡), 𝑡) + 𝑖(𝑣(𝑡), 𝑡) = 0 

(1.2) 

𝑣(0) = 𝑣0 

where 𝑣(𝑡), 𝑞(𝑣(𝑡), 𝑡), 𝑖(𝑣(𝑡), 𝑡) ∈ ℝ𝑛 are the vectors of node voltages, sums of node 

charges, and the sums of node resistive currents, respectively, and 𝑛 is the total number 

of nodes in the circuits. 

Numerical techniques for solving (1.2) are very well developed−for all practical 

purposes, the general circuit simulation problem has been solved [3],[4]. Programs like 

SPICE [5] and ASTAP [6]–which follow the ”implicit-integration, Newton, direct 

method” approach to solving (1.2) – are capable of simulating virtually any circuit, given 

enough time. Unfortunately, for some of circuits, “enough time” might be a burden for 

simulation that leads to longer circuit design cycles.        

1.3 Review of Numerical Techniques for Initial-Value 
Problems 

 There exists a myriad of approaches for solving initial value problems−a non-exhaustive 

taxonomy is presented in Figure 1.1. To solve the IVP, the system is first decomposed in 

time (for point-wise solution methods) or space (for waveform methods). The point-wise 

solution is computed with the application of an integration method, possibly followed by 

a nonlinear algebraic solution step. The waveform methods treat the nonlinear IVP as a 

nonlinear problem on a function space. 

In this chapter, techniques for solving initial-value problems are reviewed. Although the 

techniques are applied in top-down fashion (eg., integration, nonlinear solution, linear 

solution), these techniques are presented in somewhat of a bottom-up order since the 

“top” algorithms generally build upon the “bottom” algorithms. Figure 1.1 presents a 
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roadmap that keeps different algorithms in their proper context within the frame of 

solving IVP’s. 

 

Figure 1.1: A (non-exhaustive) taxonomy of methods for solving IVP’s [39]. 

1.3.1 Linear Solution Methods 

In this section, methods are reviewed for solving the 𝑛-dimensional linear system of 

equations 

𝑨𝒙 = 𝒃 (1.3) 

where 𝒙, 𝒃 ∈ ℝ𝑛 and 𝑨: ℝ𝑛 → ℝ𝑛 and is assumed to be non-singular. 
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 Direct Methods 

The classical direct method for solving linear systems is Gaussian elimination, typically 

implemented with LU factorization techniques. This algorithm decomposes the 

matrix 𝐴 into lower and upper triangular factors 𝐿 and 𝑈 , respectively, such that 𝑨 = 𝑳𝑼. 

The solution 𝒙 to (1.3) is computed by a forward elimination process followed by a 

backward substitution. A discussion of direct methods can be found in most linear 

algebra or numerical methods texts, see [7],[8] for dense matrix problems and [9],[10] for 

sparse matrix problems. 

The main advantage of direct methods is reliability. With exact arithmetic, the solution 𝒙 

can be computed exactly in a fixed number of steps. However, direct methods have two 

major disadvantages: computational complexity and storage. The complexity of direct 

elimination methods for solving linear systems of equations is polynomial in 𝑛, typically 

form 𝑂(𝑛1.5) for sparse problems to 𝑂(𝑛3) for dense problems. For direct methods, the 

matrix itself must be stored in memory. This might not be particularly disadvantageous 

for the matrix itself, if the matrix is sparse. However, direct methods also require storage 

for the fill-in elements, ie. matrix zero locations which become non-zero as the 

elimination process proceeds. Most iterative methods for solving linear systems only 

require that the matrix itself be stored, so the fill-in storage, which can be quite 

substantial, is not needed. Moreover, certain nonlinear solution methods such as the so-

called “matrix-free methods” do not require an explicit representation of the matrix at all. 

Relaxation and conjugate direction iterative methods for linear systems are presented in 

Sections 1.3.1.2 and 1.3.1.3. Matrix-free methods are discussed in Section 1.3.2.4. 

 Relaxation Methods 

Linear relaxation methods seek to solve (1.3) by first decomposing the problem in 

space (i.e., pointwise) and then solving the decomposed problem in an iterative loop. The 

simplest relaxation method is the Richardson iteration [11].[12] which solves (1.3) by 

solving the following equation 

𝒙(𝑘+1) = 𝒙(𝑘) + 𝒃 − 𝑨𝒙(𝑘) (1.4) 
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and the Gauss-Jacobi (GJ) and the Gauss-Seidel (GS) algorithms as 

𝑫𝒙(𝑘+1) = 𝒃 − (𝑳 + 𝑼)𝒙(𝑘) (1.5) 

and 

(𝑳 + 𝑫)𝒙(𝑘+1) = 𝒃 − 𝑼𝒙(𝑘) (1.6) 

This shows that that GJ and GS algorithms are in fact the Richardson iteration of the 

system (1.3) preconditioned with 𝑫−1 and  (𝑳 + 𝑼)−1 respectively. Matrices 𝑳, 𝑼 and 𝑫 

are the strictly lower triangular, strictly upper triangular, and diagonal of the matrix 𝑨.  

In general, splitting of 𝑨 can be described by letting 𝑨 = 𝑴 − 𝑵, so a generic relaxation 

method can be written as: 

𝒙(𝑘+1) = 𝑴−1𝑁𝒙(𝑘) + 𝑴−1𝒃 (1.7) 

the error equation for the relaxation method is then given by: 

𝒆(𝑘+1) = 𝑴−1𝑁𝒆(𝑘) = (𝑴−1𝑵)𝑘+1𝒆(0)  (1.8) 

Where 𝒆(𝑘) = 𝒙(𝑘) − 𝒙∗  represents the error at the 𝑘𝑡ℎ iteration and 𝒙∗ the exact solution 

of (1.3). The asymptotic convergence rate of linear relaxation is determined by the 

spectral radius of matrix 𝑴−1𝑵. In order to guarantee convergence of the method for 

arbitrary 𝒆(0) , the spectral radius of 𝑴−1𝑵 must be strictly less than unity [12]. 

 Conjugate Direction Methods 

The Richardson iteration produces updates of the form 

𝒙(𝑘+1) = 𝒙(0) + 𝑞𝑅
(𝑘)(𝑨)𝒓(0) (1.9) 

where 𝑞𝑅
(𝑘)(𝑨) is a polynomial of order 𝑘 given recursively by 

𝑞𝑅
(𝑘)(𝑨) = 𝑰 + (𝑰 − 𝑨)𝒒𝑅

(𝑘−1)(𝑨) (1.10) 
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with 𝒒𝑅
(0)

= 𝑰 and where 𝒓(0) = 𝒃 − 𝑨𝒙(0) is the initial residual. Considering the 

Richardson iteration as a polynomial highlights the weakness of the method; the 

Richardson iteration always generates the same sequence of polynomials, regardless of 

the problem to which the method is applied. One implication of this is that, generically, 

the iteration will not terminate in a finite number of iterations. However, by the Cayley-

Hamilton theorem, there exists an 𝑛𝑡ℎ order polynomial which is exactly 𝑨−1, but in 

general, the polynomial of order 𝑛 generated by the Richardson iteration will not 

correspond to Cayley-Hamilton polynomial. One way of considering conjugate direction 

methods is that they are methods which at each iteration, generate an optimal polynomial 

for calculating 𝒙(𝑘+1) (optimal in the sense that 𝒙(𝑘+1) minimizes a pre-defined cost 

function).  

As an example, consider the conjugate gradient (CG) method [13] used to solve (1.3) for 

the case of symmetric and positive-definite 𝑨. This method again generates 𝒙(𝑘+1) with 

polynomials of 𝑨:  

𝒙(𝑘+1) = 𝒙(0) + 𝒒𝐶𝐺
(𝑘)(𝑨)𝒓(0)    (1.11) 

but does so by seeking to minimize the cost functional   

Φ(𝒙) = 〈𝒙, 𝒃 −
1

2
𝑨𝒙〉 (1.12) 

where 〈. , . 〉 is the standard Euclidean inner product on ℝ𝑛. The relation 𝒙(𝑘) = 𝒙(0) +

𝒒𝐶𝐺
(𝑘−1)(𝑨)𝒓(0) implies that 𝒙(𝑘) ∈ 𝒙(0) + 𝕂(𝑘)(𝒓(0), 𝑨), where 𝕂(𝑘)(𝒓(0), 𝑨) is the 

𝑘 −dimensional Krylov space:  

𝕂(𝑘)(𝒓(0), 𝑨) = 𝑠𝑝𝑎𝑛{𝒓(0), 𝑨𝒓(0), … , 𝑨𝑘−1𝒓(0)} (1.13) 

The minimization of Φ can be accomplished for each iteration 𝑘 by enforcing the 

Galerkin condition that the gradient of Φ be zero on 𝕂(𝑘)(𝒓(0), 𝑨), i.e., 

〈𝛁Φ(𝒙(𝑘)), 𝒚〉 = 0    ∀𝒚 ∈ 𝕂(𝑘)(𝒓(0), 𝑨) (1.14) 
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It suffices to enforce the Galerkin condition on any basis of 𝕂(𝑘)(𝒓(0), 𝑨) that might be 

chosen. In particular, by choosing {𝑷(0), … , 𝑷(𝑚)}  as a basis for 𝕂(𝑚+1)(𝒓(0), 𝑨), such 

that  

〈𝑨𝑷(𝑖), 𝑷(𝑗)〉 = 0, 𝑖 ≠ 𝑗 (1.15) 

and using the update  

𝒙(𝑘+1) = 𝒙(𝑘) +
〈𝒓(𝑘), 𝒑(𝑘)〉

〈𝑨𝒑(𝑘), 𝒑(𝑘)〉
𝒑(𝑘) (1.16) 

The sequence (𝑥(𝑘))
𝑘≥1

can be generated iteratively so that 𝒙(𝑘+1) minimizes Φ on 

𝕂(𝑘)(𝒓(0), 𝑨) for each 𝑘 ∈ [0, 𝑚] [14]. Since the amount of work in the CG iteration is in 

the matrix-vector product, the CG algorithm requires only a modest increase in work per 

iteration when compared to Richardson-based iteration methods. However, the optimality 

of the CG algorithm provides a guarantee of finite termination (by Kayley-Hamilton) plus 

much better convergence properties prior to termination [15]. In fact, the convergence 

rate of the CG algorithm is bounded by: 

‖𝒆(𝑘)‖
𝐴

≤ 2 (
√𝜅(𝑨) − 1

√𝜅(𝑨) + 1
)

𝑘

‖𝒆(0)‖
𝐴

 (1.17) 

where ‖𝒆‖𝑨 = 〈𝑨𝒆, 𝒆〉
1

2  is the 𝐴-norm of 𝒆, and 𝜅(𝑨) is the condition number of the 

matrix 𝑨. In practice, the bounds given in (1.17) are not necessarily sharp, particularly 

when 𝑨 has clustered eigenvalues. 

For non-symmetric matrices, the CG algorithm cannot be directly applied. Krylov space 

methods which are appropriate for non-symmetric systems include CG applied to the 

normal equations (CGNR) [13], generalized conjugate residual algorithm (GCR) [16], the 

generalized minimum residual algorithm (GMRES) [17], and the conjugate gradient 

squared algorithm (CGS) [18]. These methods are quite powerful and are widely used, 

but none completely preserves the elegance of the original CG algorithm, see [19] for a 



9 

 

 

discussion of necessary and sufficient conditions for the existence of a conjugate gradient 

method. 

The CGNR algorithm solves (1.3) for non-symmetric 𝑨 by applying CG to the equivalent 

symmetric system  

𝑨𝑻𝑨𝒙 = 𝑨𝑇𝒃, (1.18) 

where the superscript T denotes the algebraic transposition. However, convergence of 

CGNR can be drastically slower that convergence of CG, convergence of CG is bounded 

by (1.17), so convergence of CGNR is bounded by  

‖𝒆(𝑘)‖
𝐴′𝐴

≤ 2 (
√𝜅(𝑨𝒕𝑨) − 1

√𝜅(𝑨𝒕𝑨) + 1
)

𝑘

‖𝒆(0)‖
𝐴𝑡𝐴

= 2 (
𝜅(𝑨) − 1

𝜅(𝑨) + 1
)

𝑘

‖𝒆(0)‖
𝐴𝑡𝐴

 (1.19) 

For large 𝜅(𝑨), the convergence of CG is essentially a function of √𝜅(𝑨), whereas 

convergence of CGNR is essentially a function of 𝜅(𝑨). 

The GCR and GMRES algorithms are theoretically equivalent algorithms which seek to 

minimize ‖𝒓‖2 at each iteration. To do this, the basis of the Krylov space must be formed 

explicitly with an orthogonalization scheme at each iteration so that the work at each 

iteration grows linearly with the iteration number. The CGS algorithm [18] uses low-

order recurrence relation at each iteration and abandons guaranteed minimization 

properties altogether. This is a theoretical drawback, but in practice, CGS seems to work 

quite reliably.  

1.3.2 Nonlinear Solution Methods 

In this section, some methods are discussed for solving systems of nonlinear equations  

𝑭(𝒙) = 𝟎, (1.20) 

where 𝒙 ∈ ℝ𝑛 and 𝑭: ℝ𝑛 → ℝ𝑛. 
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 Newton’s Method 

The most popular method for solving (1.20) is undoubtedly Newton’s method, where 

the 𝑛 −dimensional linear system of equations 

 𝑱𝑭(𝒙𝒎)𝒙𝒎+𝟏 = 𝑱𝑭(𝒙𝒎)𝒙𝒎 − 𝑭(𝒙𝒎) (1.21) 

is solved for 𝒙𝒎+𝟏 in an iterative loop. Here, 𝑱𝑭.is the Jacobian of 𝑭. Newton’s method 

converges quadratically, provided the initial guess, 𝒙𝟎, is sufficiently close to the exact 

solution [14]. The standard Newton method has some drawbacks. First, a linear system 

solution is required at each iteration. This can be expensive in terms of computation and 

storage, especially if a direct factorization method is used. Second, global convergence 

can be problematic if the initial guess is not close enough to the exact solution. 

Alternative nonlinear solution methods seek to improve the computation, storage, and /or 

the convergence properties of the standard Newton method. 

 Nonlinear Relaxation      

As an alternative to the standard Newton method, (1.20) can be decomposed into 

smaller sub-problems, each of which is solved independently in an iterative loop, using 

fixed values form previous iterations for the variables from other sub-problems. Two 

common decompositions produce the Jacobi-Newton and Seidel-Newton algorithms [14]. 

These methods can be seen as generalizations of the corresponding linear Gauss-Jacobi 

and Gauss-Seidel relaxation methods. The Jacobi-Newton algorithm solves (1.20) by 

solving equations  

𝑓𝑖(𝑥1
𝑚, … , 𝑥𝑖−1

𝑚 , 𝑥𝑖
𝑚+1, 𝑥𝑖+1

𝑚 , … , 𝑥𝑛
𝑚) = 0 (1.22) 

for 𝑥𝑖
𝑚+1, usually with a scalar form of Newton’s method. Similarly, the Seidel-Newton 

algorithm solves (1.20) by solving equations 

𝑓𝑖(𝑥1
𝑚+1, … , 𝑥𝑖−1

𝑚+1, 𝑥𝑖
𝑚+1, 𝑥𝑖+1

𝑚 , … , 𝑥𝑛
𝑚) = 0 (1.23) 

for 𝑥𝑖
𝑚+1. The essential difference between Jacobi-Newton and Seidel-Newton is that, 

when computing 𝑥𝑖
𝑚+1 Seidel-Newton uses the values of 𝑥𝑗

𝑚+1 for the 𝑗𝑡ℎ subsystem if it 
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has been already computed, otherwise 𝑥𝑗
𝑚 is used. In some sense, Seidel-Newton uses the 

most recently computed information that is available. The class of nonlinear solution 

algorithms to which Jacobi-Newton and Seidel-Newton belong are referred to as 

relaxation-Newton algorithms. Each iteration of a relaxation-Newton method requires 

solving a scalar nonlinear problem to determine 𝑥𝑖
𝑚+1 −usually with a scalar form of 

Newton’s method. Even if the scalar nonlinear solution is iterated until convergence, the 

outer loop will generally not converge to  𝑥. This suggests that in the early 

iterations,  𝑥𝑖
𝑚+1 does not need to be determined very precisely. The 𝑛-step relaxation-

Newton methods take a predetermined fixed number, 𝑛, of scalar Newton iterations− 

often as few as one [14]. 

 Inexact Newton Methods 

The class of nonlinear solution methods known as inexact Newton methods are 

obtained by combining Newton’s method with a linear solution method that only solves 

the linear system approximately. As in [20], the linear system that is solved with an 

inexact Newton method can be specified as  

𝑱𝑭(𝒙𝑚)𝚫𝒙𝑚 = −𝑭(𝒙𝑚) + 𝒓𝑚 

(1.24) 𝒙𝑚+1 = 𝒙𝑚 + 𝚫𝒙𝑚 

where 𝒓𝑚 is the residual and represents the difference between 𝑱𝑭(𝒙𝑚)𝚫𝒙𝑚 and 𝑭(𝒙𝑚).       

One common context in which inexact Newton methods arise is when an iterative linear 

solver is used to solve (1.21). In this case, the linear system is only solved approximately 

within the convergence criterion of the iteration method. Here, methods combining 

Newton with linear relaxation are referred to as Newton–relaxation methods, methods 

combining Newton with conjugate direction method are referred to as Newton-Krylov 

methods. 

A typical Newton-relaxation or Newton-Krylov method uses the ratio of the linear 

residual 𝒓𝒌 at iteration 𝑘 to the initial linear residual 𝒓𝟎. As discussed in [20], choosing a 

fixed convergence criterion 𝜖 ∈ ]0,1[ for all 𝑚 will result in linear convergence of the 
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nonlinear iteration. However, by scheduling a sequence{𝜖0, 𝜖1, … } so that 𝜖𝑚 ∈ ]0, 1[ for 

all 𝑚 and 𝜖𝑚 → 0 as 𝑚 → ∞, the nonlinear iteration will converge superlinearly. 

 Matrix-Free Methods 

One modification that can be made to Newton-relaxation or Newton-Krylov methods is 

to dispense with the explicit formation of the Jacobian. The iterative linear solvers require 

only the result of a matrix-vector product, not the matrix itself. Since the matrix for the 

linear system in question is the Jacobian of nonlinear function 𝑭, an approximate matrix-

vector product can be calculated according to 

𝑱𝑭(𝒙)𝒑 =
𝜕𝑭(𝒙)

𝜕𝒙
𝒑 ≈

1

𝜎
[𝑭(𝒙 + 𝜎𝒑) − 𝑭(𝒙)] (1.25) 

where 𝜎 is a small scalar parameter. The use of matrix-free Newton-Krylov methods 

within the context of solving stiff systems of ODE’s was first studied by Gear and Saad 

in [21] and subsequently studied by Brown and Hindmarch [22],[23] and Chan and 

Jackson [24]. Matrix-free Newton-Krylov methods with global convergence properties 

are examined in [25]  

1.3.3 Integration Methods 

In conventional time-domain electrical simulation, superior numerical accuracy is 

commonly looked for through the employment of multistep backward-differentiation-

formulas (BDF) techniques (also referred to as Gear’s methods) [26]. These methods use 

past points information to achieve approximation order ranging from 2 to 6. In recent 

work [27], certain implicit RK methods were shown to be more reliable than BDF in the 

simulation of important classes of circuits, such as oscillators, filters and strongly 

nonlinear switching circuits for which accuracy and reliability are key. Despite these 

results it seems that BDF are still the dominant integration methods adopted by general 

purpose circuit simulator like SPICE.  

Many IVP’ admit an explicit representation as  

𝑑

𝑑𝑡
𝒙(𝑡) = 𝑭(𝒙(𝑡), 𝑡) (1.26) 
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𝒙(0) = 𝒙𝟎 

where 𝒙(𝑡) ∈ ℝ𝑛 and𝑭 ∶  ℝ𝑛+1 →  ℝ𝑛. A 𝑘 −linear multistep integration formula applied 

to solving (1.23) is expressed by: 

∑ 𝛼𝑖𝒙(𝜏𝑚+1−𝑖) = ℎ𝑚 ∑ 𝛽𝑖𝑭(𝒙(𝜏𝑚+1−𝑖), 𝜏𝑚+1−𝑖)

𝑘

𝑖=0

𝑘

𝑖=0

 (1.27) 

where ℎ𝑚 = 𝜏𝑚+1 − 𝜏𝑚 is the discretization timestep, 𝑥(𝜏𝑚) is the estimated value of the 

solution at 𝑡 = 𝜏𝑚, 𝑭(𝒙(𝑡), 𝑡) represents the dynamics of the equation at the given 

timepoint using the estimated value. The parameters 𝛼𝑖 and 𝛽𝑖 are chosen for accuracy 

within stability limits and 𝑘 is the order of the formula [26],[28]. For problems such as 

(1.26), explicit methods, when 𝛽0 = 0, present a significant advantage over implicit 

counterpart, 𝛽0 ≠ 0, because there is no need to perform a nonlinear system solution 

which results in a substantial reduction in computation as well as storage. Unfortunately, 

explicit methods work well only for non-stiff problems, ie when system eigenvalues do 

not differ by orders of magnitude. For stiff problems, most problems in electrical 

engineering are of stiff nature, explicit methods present stability issues that jeopardize 

their reliability and implicit methods are a preferred alternative. The stability of implicit 

methods allows for substantially larger timesteps, resulting in lower overall 

computational work for the simulation. 

It is worth noting that explicit methods lose their advantage when the differential portion 

of the IVP is itself implicit, eg., the circuit transient  simulation problem      

𝑑

𝑑𝑡
𝒒(𝒗(𝑡), 𝑡) + 𝒊(𝒗(𝑡), 𝑡) = 𝟎 

(1.28) 

𝒗(0) = 𝒗𝟎 

A linear multistep integration formula applied to solving (1.28) is expressed by 
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∑ 𝛼𝑖𝒒(𝒗(𝜏𝑚+1−𝑖)) = ℎ𝑚 ∑ 𝛽𝑖𝒊(𝒗(𝜏𝑚+1−𝑖), 𝜏𝑚+1−𝑖)

𝑘

𝑖=0

𝑘

𝑖=0

 (1.29) 

This expression is implicit in 𝒗(𝜏𝑚+1) even if an explicit integration method is used. A 

nonlinear step is still required, but the stability inherent to implicit integration methods is 

not retained. Implicit integration methods are therefore recommended when handling stiff 

problems  

1.3.4 Waveform Methods 

The discussion in the previous sections concentrated on different methods that could 

replace the three components of the “implicit-integration, Newton, direct method” 

approach. Another means of obtaining a computational advantage in solving (1.1) is the 

adoption of a different level of abstraction, to be more precise extending the already 

introduced recipes to a new space, a function space. Application of alternative 

decompositions to the nonlinear and linear system solution steps produces nonlinear and 

linear relaxation algorithms. If this type of decomposition is applied at the ODE level, 

waveform methods are obtained. The operator formulation of the IVP can be written as 

𝓕𝒙 = 𝟎 (1.30) 

where 𝒙 belongs to some function space and 𝓕 is a nonlinear differential operator, as an 

example   

𝓕 =
𝑑

𝑑𝑡
+ 𝑭 (1.31) 

where 𝒙 ∈ 𝑪1(𝒙𝟎, [0, 𝑇], ℝ𝒏 ), 𝓕: 𝑪1(𝒙𝟎, [0, 𝑇], ℝ𝒏 ) → 𝑪1(𝒙𝟎, [0, 𝑇], ℝ𝒏 ) and the 

function space 𝑪1(𝒙𝟎, [0, 𝑇], ℝ𝒏 ) is defined as 

𝑪1(𝒙𝟎, [0, 𝑇], ℝ𝒏 ) = {𝒇 ∈ 𝑪1([0, 𝑇], ℝ𝒏 )|𝒇(0) = 𝒙𝟎 } (1.32) 
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Given the operator formulation of the IVP in (1.30), abstract forms of the methods 

described in section 1.3.2 can be applied to yield various nonlinear waveform methods. 

These methods are reviewed in the following sections. 

 Waveform Newton Methods 

As indicated by its name, it is an abstracted form of Newton’s method applied to (1.30). 

This method is discussed in [29] and applied to the circuit simulation problem in 

[30],[31]. The waveform Newton method is expressed as 

𝓙𝓕(𝒙𝑚)𝚫𝒙𝑚 = −𝓕(𝒙𝑚) 

(1.33) 

𝒙𝑚+1 = 𝒙𝑚 + 𝚫𝒙𝑚 

 where 𝓙𝓕 is the Frechet derivative of 𝓕 defined by 

𝓙𝓕𝒙(𝑡) =
𝑑

𝑑𝑡
𝒙(𝑡) + 𝑱𝑭(𝒙(𝑡), 𝑡) (1.34) 

Using (1.31) and (1.34), the waveform Newton method can be expressed as 

(
𝑑

𝑑𝑡
+ 𝑱𝑭(𝒙𝑚(𝑡), 𝑡)) 𝚫𝒙𝑚 = −

𝑑

𝑑𝑡
𝒙𝑚(𝑡) − 𝑭(𝒙𝑚(𝑡), 𝑡) 

(1.35) 

𝒙𝑚+1(0) = 𝒙𝟎 

Expression (1.35) yields a linear IVP as follows 

(
𝑑

𝑑𝑡
+ 𝑱𝑭(𝒙𝑚)) 𝒙𝑚+1 = 𝑱𝑭(𝒙𝑚)𝒙𝑚 − 𝑭(𝒙𝑚) 

(1.36) 

𝒙𝑚+1(0) = 𝒙𝟎 

This linear IVP can be solved with a variety of methods, as can be seen in Figure 1.1. For 

instance, the problem can be immediately discretized and a linear solver can be used to 

solve the resulting sequence of matrix problems or as in [30], this 𝑛 −dimensional linear 

IVP discretized with 𝑙 timepoints can be treated as one 𝑛𝑙 × 𝑛𝑙 problem instead of a 
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sequence of 𝑙 separate 𝑛 × 𝑛 systems. Alternatively, the linear IVP can be solved 

iteratively with a linear waveform relaxation method or a conjugate direction waveform 

method. In this case, the problem is discretized within the main loop. A discussion of the 

convergence properties of the waveform Newton method can be found in [30]. 

 Waveform Relaxation Methods  

As with the linear and nonlinear relaxation methods, the nonlinear IVP can be 

decomposed in space and solved iteratively. The Jacobi waveform relaxation algorithm 

solves (1.1) by solving the scalar IVP’s 

𝑑

𝑑𝑡
𝑥𝑖

𝑘+1(𝑡) + 𝑓𝑖(𝑥1
𝑘(𝑡), … , 𝑥𝑖−1

𝑘 (𝑡), 𝑥𝑖
𝑘+1(𝑡), 𝑥𝑖+1

𝑘 (𝑡), … , 𝑥𝑛
𝑘(𝑡), 𝑡) = 0 

(1.37) 

𝑥𝑖
𝑘+1(0) = 𝑥𝑖,0 

for each 𝑥𝑖
𝑘+1(𝑡) with a scalar integration scheme. The historical basis for the waveform 

relaxation methods is the Picard–Lindelöf iteration, used to demonstrate existence and 

uniqueness of solutions to IVP’s [31]. Waveform relaxation, or dynamic iteration, has 

been very successful for simulating VLSI circuits [33][34]. Convergence theory for the 

linear time-invariant case is studied in [35] for ODE systems and in [36] for DAE 

systems. It is worth noticing that the convergence study of [35] and [36] has been carried 

out with the assumption that IVP’s are solved exactly in other words the effect of time 

discretization is ignored, which is of course an idealization since WR is primarily meant 

to be a numerical method. The study of the convergence of the discretized WR algorithm, 

viewed as a nonstationary algorithm, was demonstrated in [34]. The implementation of 

this algorithm for systems in normal form and in the context of linear multistep methods 

was shown to converge provided the size of the timestep was kept small and linear 

interpolation was used to exchange information between subsystems [34], the multirate 

discretized WR algorithm was therefore shown to converge when linear interpolation 

operator is used, However experiments showed that other types of interpolations also lead 

to convergence of WR though the convergence theorem was not successfully extended to 

include other interpolation operators.  
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 Inexact Waveform Newton Relaxation 

One can continue to maintain the analogy between nonlinear solution methods and 

waveform methods and construct the class of inexact waveform Newton methods. These 

methods would result from the combination of the waveform Newton method and an 

iterative linear waveform method. The combination of waveform Newton with a linear 

waveform method is sometimes known as waveform Newton relaxation (WNR) and is 

discussed in [37]. The combination of waveform Newton with a linear conjugate 

direction method is presented in [38] and developed more fully in [39]. 

 Acceleration of Waveform Relaxation Methods 

The convergence rate of standard waveform relaxation can be slow for many problems 

of interest. As with the relaxation-based approaches for linear algebra, eg. Jacobi, 

application of appropriate acceleration is necessary to make the waveform approach 

practical. Such approaches include the shifted Picard iteration [40], multigrid [41].[42], 

successive overrelaxation (SOR) [41], Chebyshev acceleration [43], convolution SOR 

[44], 𝕃2 Krylov subspace methods [39], and adaptive window size selection [45]. Many 

of these waveform acceleration techniques are analogous to acceleration methods for 

iteratively solving linear systems of equations. However, in most cases the generalization 

of these approaches to waveform relaxation does not accelerate convergence to the same 

degree as their linear algebra counterparts [35]. An analysis of why linear acceleration of 

waveform relaxation can, in general, be expected to be limited is given in [46]. Two 

acceleration methods for waveform relaxation that do, in fact, provide the same degree of 

acceleration as their analogous linear algebra methods are the convolution SOR 

developed in [44],[47] and convolution Krylov subspace methods developed in [48]. The 

stated methods for the acceleration of WR, apply on normal form ODEs. Unfortunately, 

in the context of circuit simulation, modified nodal analysis (MNA) equation formulation 

does not generally generate ODE systems in the normal form, one exception to this rule is 

Resistor-and-Grounded-Capacitor (RGC) networks [34].  
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1.4 Waveform Relaxation Analysis of Transmission Line 
Circuits 

Parallel processing techniques based on waveform relaxation (WR) have emerged as 

valid methods to speed up transient analysis of large systems. An essential part of WR 

methods [33],[49] consists in splitting or partitioning these structures into smaller 

subcircuits or subsystems. WR methods iteratively solve each part independently from 

the others over the entire simulation interval by updating the coupling effects to approach 

the system response. The advantage of WR resides in the fact that every subsystem can 

be solved with its largest time step or with a different integration method or even solution 

method. This way the stiffness of the whole problem is overcome, and cost effectiveness 

can be reached. The state of the art of WR circuit computing can be found in [50].  

Circuit partitioning is performed based on some pertinent properties for maximum 

efficiency of the WR algorithm. For example, directionality was used to subdivide metal 

oxide semiconductor (MOS) transistor circuits [51]-[55]. In multi-conductor transmission 

line (MTL) and fully coupled high-speed channels problems, weak electromagnetic 

coupling between conductors was exploited to subdivide such structures into individual 

transmission lines. 

Since the pioneering work of F. Chang [56]-[58] on the application of WR to 

interconnect circuits, WR methods have been extensively used to analyze this class of 

circuits with essentially two partitioning schemes; transverse and longitudinal [59]-[84]. 

Transverse partitioning applies exclusively on MTL structures by breaking them down 

into a collection of single lines through the relaxation of the electromagnetic field 

coupling between lines [59]-[62]. Longitudinal partitioning (LP) applies on general 

circuits and divides them along the signal path with node splitting in general [63]-[84]. 

Waveform relaxation with transverse partitioning is naturally parallelizable for the 

Gauss-Jacobi iteration (GJ) and is convergent when coupling between lines is weak [61]. 

Waveform relaxation with longitudinal partitioning (WR-LP) on the other hand is 

inherently serial and naturally uses a Gauss-Seidel (GS) relaxation. It also produces 

tightly coupled subsystems for which classical WR generally takes excessive number of 
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iterations to converge. A situation which becomes aggravated when the number of serial 

subsystems is large [63]-[84].  

In the analysis of VLSI MTL systems, R. Wang and O. Wing [63],[64] presented an 

overlapped partition for their bi-level WR-LP algorithm. Their objective was to ensure 

the algorithm always converges and to have control over its speed of convergence. They 

inserted a neutral series connection of three resistances (−𝑅𝑜), 2𝑅𝑜, and (−𝑅𝑜), 𝑅𝑜 > 0, 

between every channel or TL and its terminations. Their intuitive approach was based on 

a careful study of the conventional WR methods which shows that there are usually 

overlaps between parts corresponding to the assignment-partition process of waveform 

relaxation. R. Wang and O. Wing [63],[64] took resistance 𝑅𝑜 equal to the DC 

characteristic impedance of the interconnect to improve the speed of convergence of WR 

[63],[64]. Later, W. Beyene [65] used same insertion {−𝑅𝑜, 2𝑅𝑜 , −𝑅𝑜} in his WR-LP for 

the simulation of interconnect-dominated nonlinear networks. S. Grivet-Talocia et al. 

[66]-[73] set resistance 𝑅𝑜 at the channel’s reference impedance to eliminate signal 

reflections and reduce the number of iterations. Despite the seriality of these WR-LP 

algorithms, their application to the fully coupled channel with non-linear terminations led 

to efficient solutions compared to direct methods [63]-[73]. These WR methods 

essentially focused on drastically reducing the cost of the GS iteration. First, they target 

fully coupled systems in order to take advantage of the high complexity of the 

corresponding dense problems, Second, they all divide the whole system into two levels; 

a step which reduces the seriality of GS iteration to a minimum. Third, they replace the 

standard SPICE transmission line macromodels and SPICE transistor models by tailored 

delay rational macromodels and behavioral models [66]-[73] and pole residue models 

with FFT/IFFT [65]. Unlike SPICE, such tailored analysis methods scale well with the 

number of coupled links. These sophisticated methods cannot be used in sparse circuit 

problems like single TL circuits where coupling between lines is ignored. In this case, an 

efficient WR-LP method must focus primarily on lowering the number of iterations to 

converge. 
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Before we move on to describe another class of waveform relaxation methods, we 

conclude with the following two important points regarding resistive coupling in WR 

methods  

• First, resistive coupling provides a simple way yet general to decompose transmission 

line circuits, it allows to keep the distributive nature of lines and hence works for any 

time-domain line macromodel. The speed of the WR method however depends on the 

values of its coupling resistances. M. Kabir and C. Christoffersen [82],[83] expressed 

the need for a way that systematically computes the best values for the reference 

resistances, or relaxation resistances that will yield the fastest speed of convergence. 

A problem which was not addressed in all the WR-LP algorithms discussed so far.  

• Second, V. Loggia, S. Grivet-Talocia and H. Hu [70] confirmed a well-known 

experimental observation; resistive coupling works well for lossy problems with 

small to moderate reactive behavior but is slow to converge and even diverges when 

the losses start to decrease and when the circuit exhibits a high reactance. An 

inefficiency which restricts the use of this general coupling scheme. 

To improve WR convergence, different overlap-type circuit techniques were 

proposed and summarized in [53]. Other techniques introduced additional circuit 

elements to suppress local feedback and enhance convergence [85],[86]. The quest to 

reduce the number of WR iterations effectively started in the PDE research community 

where F. Nataf, F. Rogier and E. de Sturler [87] were first to derive optimal interface 

conditions for domain decomposition methods. Later. M. Gander, L. Halpern, and F. 

Nataf [88]-[91] presented different versions for these optimal conditions in their work on 

overlapping and non-overlapping Schwarz waveform relaxation for time dependent 

problems. It was M. Gander, M. Al Khaleel, and A. Ruehli [74]-[79] who brought the 

idea of optimal WR convergence to circuit problems. Their work led to the emergence of 

a class of WR methods which involved an optimization step and hence was called 

optimized WR (oWR). These methods are suitable for strongly coupled serial circuits. 

Gander et al. [74]-[79] showed that faster and more uniform convergence can be reached 

while keeping the partitioning effort simple if an appropriate combination of current and 
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voltage waveforms are exchanged between subcircuits instead of just a current or a 

voltage, as in classical WR. The exchange of these combinations is implemented in the 

so-called transmission conditions (TC) equations of the waveform relaxation algorithm. 

Gander et al. [75],[84] showed that optimal convergence for general circuits uses 

nonlocal operators in the TC equations and therefore is expensive. To bypass this 

obstacle, they calculated constant and first degree polynomial approximations of the 

optimal conditions specifically for RC ladder circuit [75],[80],[81], for one lumped 

RLCG line type circuit [74],[76]-[78], and for the PEEC circuit [79]. We conclude our 

brief overview of optimized WR methods with the following important observations. 

• The derivation of low-order approximations in [74]-[81] relies on extensive analysis 

and it applies to very similar/identical parts, a requirement difficult to fulfill in general. 

The approach concerns circuits for which the derivation of a closed form formula of 

the convergence factor with respect to complex frequency is feasible. This approach 

however becomes challenging when high-order approximations are sought. It leads to 

more complicated expressions of the convergence factors even for simple circuits like 

RC ladder RLCG line circuits or more general RGC circuits.  

• Even for simple circuits like RC and RLCG ladders, the adoption of rational and 

rational-with-delay approximations of the aptimal convergence conditions requires the 

use of nonlocal operators in the TC equations. This would jeopardize the cost 

effciency of the oWR methods when they are applied to these circuits.  

• The analysis used for RC and RLCG circuits cannot be applied to general TL circuits 

like MTLs, TL trees, interconnect dominated networks or high-speed channels where 

lines must keep their distributive nature and are usually represented by delay-

extraction macromodels. In addition, the granularity of the partitioning used in these 

methods [74]-[78],[80],[81] will lead to a very large number of subcircuits whose 

solution requires implementation of WR algorithms with complex ordering and 

scheduling mechanisms.  
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1.5 Contribution of the present research thesis  

In Chapter 2, the aim is to address the problem of determining the best coupling 

resistances that will yield the fastest speed of convergence for the WR method. First, we 

allow every two relaxation resistances to take different values at the interface between 

any two adjacent subcircuits. This will prove more efficient to decouple subcircuits with 

different input impedances. Every insertion {−𝑅𝑜, 2𝑅𝑜 , −𝑅𝑜}, 𝑅𝑜 > 0 is replaced with 

{−𝑅1, 𝑅1 + 𝑅2, −𝑅2}, 𝑅1, 𝑅2 > 0. For a given circuit partition, we state that the fastest 

possible global speed convergence is approached when all local convergence factors have 

low values, precisely less than one, over the frequency interval of interest and are 

uniform. This is the same experimental condition which Gander et al. [74]-[79] observed 

in their analysis of RC and RLCG circuits. Fast convergence is cast as a generic min-max 

optimization problem which is solved in the suboptimal sense. The reason is that the 

optimization problem cannot be solved directly as explained in Chapter 2. However, the 

steps that lead to this suboptimal solution are well defined, which allows to automate the 

solution algorithm to handle any TL architecture. To assess the efficiency of the min-max 

solution, a parallel WR algorithm with basic scheduling [53] is implemented. Simulation 

results confirm that: 1) Faster local convergence is generally observed when coupling 

resistances take different values especially for neighboring sub-systems with different 

input impedances, 2) The WR solution of arborescent TL circuits (trees) results in CPU 

run time savings when compared to SPICE-like solvers. It is important to keep in mind 

that transmission lines are represented in the time-domain with the same standard 

macromodeling algorithms implemented on SPICE and SPICE-like simulators. 

In Chapter 3, the aim is to address the slow convergence/divergence of resistive 

coupling-based WR algorithm for low-loss and highly reactive transmission line circuits. 

We consider a more general coupling scheme; we replace coupling resistances with 

strictly dissipative impedances. Every insertion {−𝑅1, 𝑅1 + 𝑅2, −𝑅2}, 𝑅1, 𝑅2 > 0, is 

replaced by a neutral series connection of three impedances {−𝜁1, 𝜁Σ, −𝜁2}. Coupling 

impedances 𝜁1 and 𝜁1 are strictly positive-real complex functions of complex frequency 

𝑠, ℜ(𝑠) ≥ 0, and 𝜁Σ represents the created circuit overlap. We demonstrate the relevance 

of the proposed generalization, and we address its feasibility. We assert the consistency 
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of the subsequent WR algorithm. We also examine its convergence for any linear time 

invariant system, and we define the conditions for optimal convergence. Finally, we 

propose a coupling strategy for the WR analysis of single TL circuits. Every two adjacent 

subcircuits in the decomposed TL circuit, are decoupled with customized rational-with-

delay impedance and resistance. Every rational-with-delay impedance approximates the 

input impedance of its corresponding subcircuit or part to approach the local optimal 

convergence condition. The approximation step avoids the expensive optimization and 

uses a coarse DEPACT [102] macromodeling of the transmission line to build the 

rational-with-delay function directly in circuit form. Numerical examples confirm that 

dissipative coupling further enhances the speed of convergence of the WR. It addresses 

the weakness of resistive coupling and produces a fast WR solution for low-loss highly 

reactive TL circuits.    

The focus in chapters 2 and 3 is on system interfacing schemes that enhance the speed 

of convergence of WR and decrease its computational cost. The solution of the resulting 

subcircuits uses conventional stepping methods and standard transmission line 

macromodels.  

Chapter 4 presents two theoretical studies about the application of WR to chains of 

circuits. The first analysis concerns the nilpotent WR algorithm when its partition-

assignment step uses strictly dissipative impedance coupling. The second analysis 

concerns the convergence of WR when its partition-assignment step uses resistive 

coupling. In the first study, we show that a nilpotent WR operator must have null local 

convergence factors. However, the way these local factors are zeroed affects the degree 

of nilpotency of the WR operator and can even destroy it. The second study demonstrates 

the global convergence of the resistive coupling based WR when the cascaded circuits in 

the chain are symmetric and identical. We show that WR converges independently of the 

chain length. 
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Chapter 2  

2 Resistive Coupling-based Waveform Relaxation 
Algorithm for Analysis of Interconnect Circuits 

A parallel waveform relaxation algorithm is presented for efficient transient analysis of 

large distributed interconnect networks. The proposed algorithm partitions interconnect 

circuits using a Norton interface derived from positive and negative resistors. A 

theoretical framework is provided to study the convergence properties of the proposed 

algorithm. From this discussion, a procedure emerges for an effective selection of the 

relaxation resistances’ values. Numerical examples illustrate the parallelizability and 

good scaling of the proposed method with respect to the size of the network and the 

number of central processing units.   

2.1 Proposed WR Algorithm 

2.1.1 Development of partitioning interface   

Consider a linear time-invariant system 𝑁 with the following property; there exists a 

node 𝑋 in 𝑁 where it can be divided into two disjoint subsystems 𝑁1 and 𝑁2 with no 

feedback loop (Figure 2.1(a)). A series combination of three resistances −𝑅1, (𝑅1 + 𝑅2) 

and −𝑅2, 𝑅1, 𝑅2 > 0, is inserted at node 𝑋. Since these resistances add up to zero, their 

presence does not change the solution of system 𝑁 (Fig. 2.1(b)). Resistance (𝑅1 + 𝑅2) is 

used to create an overlap partitioning of system 𝑁 into two parts where each one contains 

subsystem 𝑁1 or 𝑁2 (Fig. 2.1(c)). Neighboring subsystems 𝑁1 or 𝑁2 are decoupled via a 

Norton interface (Fig. 2.1(d)) similar to the one used in [79]. Transient responses of 

system 𝑁 on an interval [0, 𝑇], 𝑇 refers to the duration of analysis, are obtained through 

the application of a classical WR algorithm on the two-subsystem partition of 𝑁. 

Subsystems 𝑁1 and 𝑁2 are solved separately on [0, 𝑇] and WR iterations are carried out 

using a GJ or GS relaxation with the following transmission conditions (TC) [79]. 
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𝑖1(𝑡)(𝑘) = −𝑖2(𝑡)(𝑘−1) and 𝑖2(𝑡)(𝑘) = −𝑖1(𝑡)(𝑘−𝛿) (2.1) 

𝑡 ∈ [0, 𝑇], 𝑘 represents the iteration count, and 𝛿 is a parameter which takes value 1 for 

GJ relaxation and value 0 for the GS case. A more convenient way to perform WR 

iterations is through successive updates of the current sources 𝑤1 𝑅2⁄  and 𝑤2 𝑅1⁄  at the 

Norton interface between 𝑁1 and 𝑁2 (Figure 2.1(d)). An equivalent form of TC (2.1) is 

obtained if currents 𝑖2
(𝑘−1)

, 𝑖1
(𝑘)

, 𝑖1
(𝑘−𝛿)

 and 𝑖2
(𝑘)

 are replaced with the their expressions 

given in 

 

Figure 2.1: Partitioning of system 𝑵. (a) Localization of splitting node 𝑿. (b) 

Insertion of a series connection of three resistances −𝑹𝟏, (𝑹𝟏 + 𝑹𝟐) and −𝑹𝟐 at 

node 𝑿. (c) Creation of an overlap partitioning for 𝑵 into 𝑵𝟏 and 𝑵𝟐 (d) 

Resulting two-subsystem partition of 𝑵 with corresponding Norton interface. 
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𝑖2
(𝑘−1) = (𝑤2

(𝑘−1) − 𝑣2
(𝑘−1)) 𝑅1⁄ ,  

𝑖1
(𝑘) = (𝑤1

(𝑘) − 𝑤2
(𝑘−1)) (𝑅1 + 𝑅2)⁄ ,  

𝑖1
(𝑘−𝛿) = (𝑤1

(𝑘−𝛿)  − 𝑣1
(𝑘−𝛿)) 𝑅2⁄ ,  (2.2) 

𝑖2
(𝑘) = (𝑤2

(𝑘) − 𝑤1
(𝑘−𝛿)) (𝑅1 + 𝑅2)⁄   

Equations (2.2) are directly derived from Figure 2.1©. The following equivalent TC is 

adopted  

𝑤1
(𝑘) = 𝑣2

(𝑘−1)(1 + 𝑅2 𝑅1⁄ ) − 𝑤2
(𝑘−1)(𝑅2 𝑅1⁄ ) 

(2.3) 

𝑤2
(𝑘) = 𝑣1

(𝑘−𝛿)(1 + 𝑅1 𝑅2⁄ ) − 𝑤1
(𝑘−𝛿)(𝑅1 𝑅2⁄ ) 

Tables 2.1 and 2.2 present the main steps in the application of WR algorithm on the 

two−subsystem partition of 𝑁, see Figure 2.1(d), with a GJ then a GS relaxation. The 

proposed Norton interface in Figure 2.1(d) can be used to partition a system into multiple 

subsystems. It suffices to identify all pairs of non-overlapping subsystems that are in an 

open loop serial connection. The next section discusses local convergence properties of 

the proposed WR algorithm.  

Table 2.1: Pseudocode. WR algorithm for a two-subsystem partition. GJ relaxation 

1. Generate initial guess 𝑤1
(0) and 𝑤2

(0) 

2. Set iteration count 𝑘 = 0 

3. Set maximum tolerance 𝜀 

4. Repeat 

5. Solve 𝑁1 using 𝑤1
(𝑘) and get 𝑣1

(𝑘) 

6. Solve 𝑁2 using 𝑤2
(𝑘) and get 𝑣2

(𝑘) 

7. Compute 𝑤1
(𝑘+1) and 𝑤2

(𝑘+1) using TC (3) 

8. Compute error 

9. Set 𝑘 = 𝑘 + 1 
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10. Until error ≤ 𝜀 

 

 

 

Table 2.2: Pseudocode. WR algorithm for a two-subsystem partition. GS relaxation 

1. Generate initial guess 𝑤1
(0) 

2. Set iteration count 𝑘 = 0 

3. Set maximum tolerance 𝜀 

4. Repeat 

5. Solve 𝑁1 using 𝑤1
(𝑘) and get 𝑣1

(𝑘) 

6. Compute 𝑤2
(𝑘) using TC (3) 

7. Solve 𝑁2 using 𝑤2
(𝑘) and get 𝑣2

(𝑘) 

8. Compute 𝑤1
(𝑘+1) using TC (3) 

9. Compute error 

10. Set 𝑘 = 𝑘 + 1 

11. Until error ≤ 𝜀 

  

2.1.2 Local convergence analysis of WR algorithm 

 The application of Kirchhoff’s current law at nodes a and b, see Figure 2.1(d), results in 

the following two equations  

𝑤1 𝑅2⁄ = 𝑣1 𝑅2⁄ + 𝑖1, 𝑤2 𝑅1⁄ = 𝑣2 𝑅1⁄ + 𝑖2 (2.4) 

In the Laplace domain, linear subsystems 𝑁1 and 𝑁2 are replaced with their Thevenin 

generators (𝑉𝑁1
(𝑠), 𝑍1(𝑠)) and (𝑉𝑁2

(𝑠), 𝑍2(𝑠)). 𝑉𝑁1
 and 𝑉𝑁2

 are the Thevenin source 

terms while 𝑍1 and 𝑍2 represent the Thevenin impedances, they are also the input 

impedances of 𝑁1 and 𝑁2 seen at node 𝑋 in Figure 2.1(a). 𝑠 = 𝜎 + 𝑗𝜔 denotes the 

complex frequency and 𝑗2 = −1. Let 𝑣1, 𝑣2, �̂�1, �̂�2, 𝑖1̂, and 𝑖̂2 be the Laplace transform 

variables of 𝑣1, 𝑣2, 𝑤1, 𝑤2, 𝑖1 and 𝑖2 respectively. Replacing 𝑖1̂ = (𝑉𝑁1
− 𝑣1) 𝑍1⁄  and 

𝑖̂2 = (𝑉𝑁2
− 𝑣2) 𝑍2⁄  in (2.4) results in  
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�̂�1 = 𝑣1(1 + 𝑅2 𝑍1⁄ ) − 𝑉𝑁1
(1 + 𝑅2 𝑍1⁄ ) (2.5) 

�̂�2 = 𝑣2(1 + 𝑅1 𝑍2⁄ ) − 𝑉𝑁2
(1 + 𝑅1 𝑍2⁄ ) (2.6) 

To study the convergence of WR algorithm, the source terms 𝑉𝑁1
 and 𝑉𝑁2

 in (2.5) and 

(2.6) are set to zero. This amounts to considering only the homogenous ordinary 

differential equation systems of 𝑁1 and 𝑁2 obtained from the modified nodal analysis 

equation formulation in the time domain. Taking the 𝑘-iterates of �̂�1 and �̂�2 in (2.5) and 

(2.6) after setting 𝑉𝑁1
= 𝑉𝑁2

= 0, and replacing 𝑣1
(𝑘)

 and 𝑣2
(𝑘)

 by their expressions from 

TC equations (2.3) results in the following two recursive expressions for the relaxation 

variables 

�̂�1
(𝑘)

= �̂�2
(𝑘−1) (𝑍2 − 𝑅2) (𝑍2 + 𝑅1)⁄  (2.7) 

�̂�2
(𝑘)

= �̂�1
(𝑘−𝛿) (𝑍1 − 𝑅1) (𝑍1 + 𝑅2)⁄  (2.8) 

A relation for �̂�1
(𝑘)

 and �̂�2
(𝑘)

 over two WR iterations in the GJ relaxation, and over one 

WR iteration in the GS case, is obtained  

[�̂�1 �̂�2](𝑘+1) = 𝜌[�̂�1 �̂�1](𝑘−𝛿) (2.9) 

where 𝜌 is the WR local convergence rate at the interface between 𝑁1 and 𝑁2, defined as  

𝜌 = [(𝑍1 − 𝑅1)(𝑍2 − 𝑅2)] [(𝑍1 + 𝑅2)(𝑍2 + 𝑅1)]⁄  (2.10) 

By induction, it is found that [�̂�1 �̂�2](2𝑘) = 𝜌𝑘[�̂�1 �̂�2](0) and [�̂�1 �̂�2](2𝑘+1) =

𝜌𝑘[�̂�1 �̂�2](1) for the GJ relaxation, and [�̂�1 �̂�2](𝑘) = 𝜌𝑘[�̂�1 �̂�2](0) for the GS case. 

Convergence occurs when |𝜌(𝑍1, 𝑍2, 𝑅1, 𝑅2)| < 1 for ℜ(𝑠) > 0, and for fast 

convergence, the magnitude of 𝜌 must be much smaller then one, |𝜌(𝑍1, 𝑍2, 𝑅1, 𝑅2)| ≪ 1. 

In partitions of 𝑀 subsystems, 𝑀 > 2, let 𝐼 refer to the set of all Norton interfaces 

(𝑙, 𝑚) between subsystems 𝑁𝑙 and 𝑁𝑚, 𝑙, 𝑚 ∈ [1, 𝑀]. Every interface (𝑙, 𝑚) consists of 

two current sources (𝑤𝑙
𝑙,𝑚 𝑅𝑚

𝑙,𝑚, 𝑅𝑚
𝑙,𝑚 ⁄ ) and (𝑤𝑚

𝑙,𝑚 𝑅𝑙
𝑙,𝑚, 𝑅𝑙

𝑙,𝑚 ⁄ ) connected to 𝑁𝑙 and 𝑁𝑚 
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respectively. 𝑤𝑙
𝑙,𝑚

 and 𝑤𝑚
𝑙,𝑚

 are the relaxation variables of WR algorithm while 𝑅𝑙
𝑙,𝑚

 and 

𝑅𝑚
𝑙,𝑚

 represent the relaxation or decoupling resistances. At every interface (𝑙, 𝑚), WR 

uses same TCs as in the two−subsystem partition. If the electromagnetic coupling 

between TLs is weak and can be neglected, then local convergence rate 𝜌𝑙,𝑚 of WR 

algorithm at interface (𝑙, 𝑚) is defined as 

𝜌𝑙,𝑚 =
(𝑍𝑙

𝑙,𝑚 − 𝑅𝑙
𝑙,𝑚)(𝑍𝑚

𝑙,𝑚 − 𝑅𝑚
𝑙,𝑚)

(𝑍𝑙
𝑙,𝑚 + 𝑅𝑚

𝑙,𝑚)(𝑍𝑚
𝑙,𝑚 + 𝑅𝑙

𝑙,𝑚)
 (2.11) 

𝑍𝑙
𝑙,𝑚

 and 𝑍𝑚
𝑙,𝑚

 are the input impedances of 𝑁𝑙 and 𝑁𝑚 respectively. A general form of the 

recursive equation (2.9), applicable to a 𝑀 −subsystem partition, is produced  

�̂�(𝑘+1) = 𝐏�̂�(𝑘−𝛿) (2.12) 

where vector  �̂� = [�̂�1
1,2 �̂�2

1,2  ⋯ �̂�𝑙
𝑙,𝑚 �̂�𝑚

𝑙,𝑚 ⋯ ]
𝑇

∈ ℂ2card(𝐼)×1 contains all relaxation 

variables of WR for the partition, and 𝐏 = diag(𝜌1,2, 𝜌1,2, ⋯ , 𝜌𝑙,𝑚, 𝜌𝑙,𝑚, ⋯ ) ∈

ℂ2card(𝐼)×2card(𝐼) is a diagonal matrix with local convergence coefficients at its diagonal 

entries, card(I) is the number of interfaces present in the partition, and T refers to the non-

conjugate transpose operator. WR algorithm applied on a 𝑀 −subsystem partition, 

converges if the corresponding matrix 𝐏 is convergent whenever 𝑠 ∈ ℂ and ℜ(𝑠) ≥ 0. 

Next, an efficient method to calculate the decoupling resistances at each interface is 

presented, first in the elementary case of two subsystems then for the more general case 

of 𝑀 subsystems. 

2.1.3 Two-subsystem problem 

To achieve fast convergence, classical WR algorithm uses two adjustable parameters; 

the decoupling resistances 𝑅1 and 𝑅2, to make its local convergence rate |𝜌| in (2.10) 

small and uniform with respect to frequency. Such values for 𝑅1 and 𝑅2 represent the 

solution to the following optimization problem 

min
𝑅1,𝑅2>0

( max
ℜ(𝑠)≥0

|𝜌(𝑍1(𝑠), 𝑍2(𝑠), 𝑅1, 𝑅2)|) (2.13) 
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Impedances 𝑍1(𝑠) and 𝑍2(𝑠) are positive real functions of complex frequency 𝑠, ℜ(𝑠) ≥

0. Subsystems 𝑁1 and 𝑁2 are passive when Thevenin sources 𝑉𝑁1
 and 𝑉𝑁2

 are set to zero. 

A property which prevents 𝜌 from having any poles in the right half-plane and makes it 

analytic. |𝜌| possesses a maximum on the boundary at 𝜎 = 0 by the maximum principle 

for analytic functions [92]. |𝜌(𝑗𝜔)| is also an even function of angular frequency 𝜔. With 

these arguments, the optimization problem (13) simplifies to  

min
𝑅1,𝑅2>0

( max
0≤𝜔≤𝜔max

|𝜌(𝑍1(𝑗𝜔), 𝑍2(𝑗𝜔), 𝑅1, 𝑅2)|) (2.14) 

where 𝜔 is truncated at the largest practically relevant frequency value 𝜔max for the 

problem. In this work, 𝜔max is equal to the bandwidth of the primary input signal. 𝜔max 

can be made input-independent if 𝜔 is truncated at a much higher value taken at the 

maximum frequency supported by the time discretization [74]-[80].  

A direct solution of (2.14) is problem dependent and presents the following difficulties; 

an analytical solution necessitates an in-depth study of the variation of function |𝜌|. A 

task which becomes quickly tedious and impractical especially for partitions of more than 

two subsystems. On the other hand, a numerical solution of (2.14) requires a priori 

knowledge of the frequency points where |𝜌| is large, and therefore needs insight into the 

variation of |𝜌|. A practical approach for automating the numerical solution of (2.14) 

would be to provide optimization instances without having to study the variations of the 

objective function |𝜌|. This approach leads to a suboptimal solution of (2.14).  

In this work, the proposed suboptimal solution is obtained by solving a nearby min-

max problem to (2.14). The new objective function; the magnitude of a function 𝑟 which 

will be defined next, has the following characteristics: 𝑟 takes all values of 𝜌 on any 

interval [0, 𝜔max], max|𝑟| ≥ max|𝜌|, and most importantly function 𝑟 possesses a priori 

known maxima. The values of input impedances 𝑍1 and  𝑍2 at these a priori known 

extremum points are used as instances for the replacing optimization problem of (2.14). 

Let Γ1 and Γ2 be the sets of values of impedances 𝑍1 and  𝑍2 for all points 𝜔 in 

[0, 𝜔max]. Sets Γ1 and Γ2  are bounded in ℂ for lossy circuits. In other words, frequency 

points 𝜔1
min, 𝜔1

max, 𝜔2
min, and 𝜔2

max are found in [0, 𝜔max] where |𝑍1(𝑗𝜔1
min)| ≤ |𝑍1| ≤
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|𝑍1(𝑗𝜔1
max)| and |𝑍2(𝑗𝜔2

min)| ≤ |𝑍2| ≤ |𝑍2(𝑗𝜔2
max)|. The extremum values are referred 

to as 𝑍1(𝑗𝜔1
min) = 𝑍1

min and 𝑍1(𝑗𝜔1
max) = 𝑍1

max for impedance 𝑍1. Same thing holds for 

𝑍2. If impedances 𝑍1 and 𝑍2 are allowed to take their values in Γ1 and Γ2 independently 

of each other, then a larger set 𝐷 of points (𝑍1, 𝑍2) is constructed. The following function 

𝑟 is defined on set 𝐷 by 𝑟(𝑍1, 𝑍2) =  𝜌(𝑍1, 𝑍2). Function 𝑟 is the analytic continuation of 

𝜌 on 𝐷. It has a maximum amplitude max|𝑟| ≥ max|𝜌|, and its maximum is on the 

boundary of 𝐷 by the maximum modulus principle on bounded domains [92]. It can be 

shown that the maximum is on ℜ(𝑍1) = ℜ(𝑍2) = 0 at (𝑍1
max, 𝑍2

min) when 𝑅1 < 𝑅2 and 

on ℜ(𝑍1) = ℜ(𝑍2) = 0 at (𝑍1
min, 𝑍2

max) when 𝑅1 > 𝑅2. Finally, |𝑟| reaches a maximum 

amplitude of |𝑟| = 1 on all points of 𝐷 where ℜ(𝑍1) = ℜ(𝑍2) = 0 for 𝑅1 = 𝑅2. Based 

on these observations, a suboptimal solution of problem (2.14) is proposed by solving the 

following min-max problem 

min
𝑅1,𝑅2>0

( max
(𝑍1,𝑍2)∈P

|𝑟(𝑍1, 𝑍2, 𝑅1, 𝑅2)|) (2.15) 

The objective function |𝑟| is evaluated at the following set P of four points 

{(𝑍1
max, 𝑍2

min), (𝑍1
min, 𝑍2

max), (𝑍1
max, 𝑍2

max), (𝑍1
min, 𝑍2

min)} (2.16) 

where 𝑍1
max, 𝑍1

min, 𝑍2
max and 𝑍2

min are taken with the smallest real part. The replacing 

optimization problem (2.15) aims to minimize max|𝑟| by balancing its values on set 𝑃. 

This ensures that max|𝜌| stays within the same range of values as max|𝑟|. The 

computation of instances (2.16) will be addressed in 2.1.5. Section 2.1.4 extends the 

present result to multi−subsystem partitions. 

2.1.4 Multi−subsystem problem 

To achieve fast convergence for circuit partitions of 𝑀 subsystems, the WR algorithm 

uses its 2card(𝐼) adjustable parameters; all pairs (𝑅𝑙
𝑙,𝑚, 𝑅𝑚

𝑙,𝑚) of decoupling resistances, 

to make all its local convergence rates |𝜌𝑙,𝑚| in (2.11) small and fairly uniform with 

respect to frequency. This requirement is formulated in the following min-max problem 
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min
𝑹>𝟎

(max  all 
ℜ(𝑠)≥0
(𝑙,𝑚)∈𝐼

|𝜌𝑙,𝑚(𝑍𝑙
𝑙,𝑚(𝑠, 𝑹), 𝑍𝑚

𝑙,𝑚(𝑠, 𝑹), 𝑹)|) (2.17) 

where 𝑹 = [𝑅1
1,2 𝑅2

1,2 ⋯ 𝑅𝑙
𝑙,𝑚 𝑅𝑚

𝑙,𝑚 ⋯ ]
𝑡𝑟

∈ (ℝ+)2card(𝐼)×1
 is the vector of all decoupling 

resistances in the partition. As in the case of two−subsystem partitions, the positive 

definiteness of all input impedances 𝑍𝑙
𝑙,𝑚

 and 𝑍𝑚
𝑙,𝑚

, and the analyticity of all 𝜌𝑙,𝑚 restrict 

the optimization of coefficients |𝜌𝑙,𝑚| to a bounded frequency interval. Problem (2.17) 

reduces to 

min
𝑹>𝟎

( max all
0≤𝜔≤𝜔max

(𝑙,𝑚)∈𝐼

|𝜌𝑙,𝑚(𝑍𝑙
𝑙,𝑚(𝑗𝜔, 𝑹), 𝑍𝑚

𝑙,𝑚(𝑗𝜔, 𝑹), 𝑹)|) (2.18) 

The multi−subsystem problem is a collection of interdependent two−subsystem 

problems. At every interface (𝑙, 𝑚), input impedance 𝑍𝑙
𝑙,𝑚

 or 𝑍𝑚
𝑙,𝑚

 or both depend on the 

decoupling resistances from other interfaces involving subsystems 𝑁𝑙 or 𝑁𝑚. The result 

obtained for the two-subsystem case generalizes naturally to the multi−subsystem 

problem. Despite this fact, it cannot be used to reach a suboptimal solution to problem 

(2.18) since it is not possible to obtain set P (2.16) for all interfaces. In a 

multi−subsystem partition, any two neighboring subsystems 𝑁𝑙 and 𝑁𝑚 are either part of 

a chain connection (Figure 2.2) or a branch (Figure 2.3). In a chain, 𝑁𝑙 possesses two 

input impedances−upstream and downstream. Same thing holds for 𝑁𝑚 if neither 𝑁𝑙 nor 

𝑁𝑚 are located at any extremity of the partition. The downstream impedance of 𝑁𝑙 is 

expressed by  

𝑍𝑙
𝑙,𝑚 = (𝑍11𝑍22 − 𝑍12

2 + 𝑍22𝑅series) (𝑍11 + 𝑅series)⁄  (2.19) 

in terms of the Z-parameter triplet (𝑍11, 𝑍12, 𝑍22)𝑙 of 𝑁𝑙 where ℜ(𝑍11), ℜ(𝑍22) > 0, and 

a series relaxation resistance 𝑅series connected to 𝑁𝑙 on its upstream side, see Figure 

2.2(c). 
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Similarly, the upstream impedance of 𝑁𝑙 is expressed using (2.19) after permuting 𝑍11 

and 𝑍22 and letting 𝑅series represent the series relaxation resistance connected to 𝑁𝑙, this 

time on its downstream side (Figure 2.2(b)). Same approach leads to defining the 

upstream impedance 𝑍𝑚
𝑙,𝑚

 of 𝑁𝑚 as well as its downstream one. Now, if the neighboring 

subsystems 𝑁𝑙 and 𝑁𝑚 are involved in a branch, impedance 𝑍𝑙
𝑙,𝑚

 is not given by (2.19) 

alone. This is due to the presence of a shunt resistance 𝑅shunt which lumps all the 

relaxation resistances from other branch connections present on the downstream side of 

𝑁𝑙 and involving 𝑁𝑙 with subsystems other than 𝑁𝑚 in Figure 2.3(a). In this case, 

impedance 𝑍𝑙
𝑙,𝑚

 of 𝑁𝑙 at interface (𝑙, 𝑚) is the parallel combination of its downstream 

input impedance from the chain connection configuration, given by (2.19), and resistance 

𝑅shunt, see Figure 2.3(b). Same considerations apply to the upstream impedance of 𝑁𝑚. 

The following two key observations are made. First, distributed circuits have input 

impedances whose values vary considerably with respect to frequency in general, ranging 

from small values, in the sense of the amplitude, to very large values. This is due mainly 

to the dominant reactive nature of interconnects. Quantitatively speaking, the presence of 

a series decoupling resistance 𝑅series  at one side of a subsystem clamps the minimum  

 

Figure 2.2: (a) Cascade connection. (b) Upstream input impedance of 𝑵𝒍 at 

interface (𝒌, 𝒍). (c) Downstream input impedance of 𝑵𝒍 at interface (𝒍, 𝒎). 
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value of its input impedance seen from the other side. The maximum value of this later is 

also clipped if a shunt decoupling resistance 𝑅shunt is present. Second, local convergence 

rate |𝜌𝑙,𝑚|, attains large values when ratios ℜ(𝑍𝑙
𝑙,𝑚) |𝑍𝑙

𝑙,𝑚|⁄  and ℜ(𝑍𝑚
𝑙,𝑚) |𝑍𝑚

𝑙,𝑚|⁄  are small 

positive numbers. It is worth noticing that the proposed set P (2.16) satisfies these 

algebraic conditions. Based on these observations, the criterion for selecting the points of 

set P can be relaxed. Instead of targeting points where the input impedances are 

extremum, the new optimization instances produce sufficiently small and sufficiently 

large impedances with small real parts for the chain connection configuration. The new 

optimization instances are totally expressed in terms of 𝑍 −parameters of 𝑁𝑙 and 𝑁𝑚 if 

both subsystems have unknown impedances or partially if only one of them does. As in 

section 2.1.3, the number of these instances at every interface is constant, independently 

of the problem.  

Let Γ11, Γ12 and Γ22 be the sets of values of 𝑍 −parameters 𝑍11(𝑗𝜔), 𝑍12(𝑗𝜔) and 

𝑍22(𝑗𝜔) of subsystem 𝑁𝑙 for all points 𝜔 in [0, 𝜔max] respectively. For lossy circuits, Γ11, 

 

Figure 2.3: (a) Branch connection. (b) Input impedance of 𝑵𝒍 at interface (𝒍, 𝒎𝒉). 

: 
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Γ12 and Γ22 are bounded in ℂ. In other words, frequency points 𝜔11
min, 𝜔11

max are found in 

[0, 𝜔max] where |𝑍11(𝑗𝜔11
min)| ≤ |𝑍11| ≤ |𝑍11(𝑗𝜔11

max)|. The extremum values are 

referred to as 𝑍11(𝑗𝜔11
min) = 𝑍11

min and 𝑍11(𝑗𝜔11
max) = 𝑍11

max for 𝑍11.  Same thing holds for 

𝑍12 and 𝑍22. If 𝑍 −parameters 𝑍11, 𝑍12 and 𝑍22 are allowed to take their values in Γ11, 

Γ12 and Γ22 independently of each other, then a larger set 𝐷′ of points (𝑍11, 𝑍12, 𝑍22) is 

constructed. The following function �̃�𝑙
𝑙,𝑚

 is defined on set 𝐷′ by �̂�𝑙
𝑙,𝑚(𝑍11, 𝑍12, 𝑍22) =

 𝑍𝑙
𝑙,𝑚(𝑍11, 𝑍12, 𝑍22), given in (19). �̂�𝑙

𝑙,𝑚
 is analytic on 𝐷′, it takes all values of impedance 

𝑍𝑙
𝑙,𝑚

. Moreover, 𝑍𝑙
𝑙,𝑚

 takes the same set of values on the boundary 𝜕𝐷′ of 𝐷′ as in the 

whole set 𝐷′ [93]. With this property, |�̂�𝑙
𝑙,𝑚| and ℜ(�̂�𝑙

𝑙,𝑚) are investigated on the 

boundary 𝜕𝐷′ only. Numerical experiments show that points (𝑍11
max, 𝑍12

max, 𝑍22
max) and 

(𝑍11
min, 𝑍12

min, 𝑍22
min) lead in general to small and large values of |�̂�𝑙

𝑙,𝑚| with small values 

for ratio ℜ(�̂�𝑙
𝑙,𝑚) |�̂�𝑙

𝑙,𝑚|⁄ .  

As in the case of a two-subsystem partition, a suboptimal solution to (2.18) is proposed 

by solving a nearby optimization problem. The new objective function is constructed as 

follows: At every interface (𝑙, 𝑚) between subsystems 𝑁𝑙 and 𝑁𝑚, a function �̃�𝑙,𝑚 is 

defined by �̃�𝑙,𝑚(�̃�𝑙
𝑙,𝑚, �̃�𝑚

𝑙,𝑚) = 𝜌(�̃�𝑙
𝑙,𝑚, �̃�𝑚

𝑙,𝑚) where �̃�𝑙
𝑙,𝑚

 is given as 

Case1: �̃�𝑙
𝑙,𝑚(𝑍11, 𝑍12, 𝑍22) = 𝑍𝑙

𝑙,𝑚(𝑍11, 𝑍12, 𝑍22) with 𝑍 −parameters 𝑍11, 𝑍12, and 𝑍22 of 

𝑁𝑚 taken as independent variables if 𝑍𝑙
𝑙,𝑚

 depends on the decoupling resistances from the 

neighboring interfaces.  

Case2: �̃�𝑙
𝑙,𝑚 = 𝑍𝑙

𝑙,𝑚
 if input impedance 𝑍𝑙

𝑙,𝑚
 does not depend on any decoupling 

resistance, and therefore its numerical value is known a priori.  

Same arguments apply to �̃�𝑚
𝑙,𝑚

 considering 𝑍𝑚
𝑙,𝑚

. Given these considerations, any function 

�̃�𝑙,𝑚 takes all values of coefficient 𝜌𝑙,𝑚, its maximum value satisfies the inequality 

max|�̃�𝑙,𝑚| ≥ max|𝜌𝑙,𝑚|, and �̃�𝑙,𝑚 is the analytic continuation of 𝜌𝑙,𝑚. The suboptimal 

solution to (2.18) is obtained by solving the following nearby problem. 

min
𝑹>𝟎

( max
(𝑥,𝑦)∈P𝑙,𝑚 or Q𝑙,𝑚

(𝑘,𝑙)∈𝐼

all |�̃�𝑙,𝑚(�̃�𝑙
𝑙,𝑚(𝑥, 𝑹), �̃�𝑚

𝑙,𝑚(𝑦, 𝑹), 𝑹)|)  (2.20) 
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P𝑙,𝑚 and Q𝑙,𝑚 represent the sets of instances at every interface (𝑙, 𝑚). They are given by 

P𝑙,𝑚 = {((𝑍𝑙(or 𝑚)
𝑙,𝑚 )

max
, (𝑍11

max, 𝑍12
max, 𝑍22

max)𝑚(or 𝑙)),  

              ((𝑍𝑙(or 𝑚)
𝑙,𝑚 )

max
, (𝑍11

min, 𝑍12
min, 𝑍22

min)
𝑚(or 𝑙)

),  

              ((𝑍𝑙(or 𝑚)
𝑙,𝑚 )

min
, (𝑍11

max, 𝑍12
max, 𝑍22

max)𝑚(or 𝑙)),  

              ((𝑍𝑙(or 𝑚)
𝑙,𝑚 )

min
, (𝑍11

min, 𝑍12
min, 𝑍22

min)
𝑚(or 𝑙)

)} (2.21) 

when subsystem 𝑁𝑙(or 𝑁𝑚) has a known input impedance and 

Q𝑙,𝑚 = {((𝑍11
max, 𝑍12

max, 𝑍22
max)𝑙, (𝑍11

max, 𝑍12
max, 𝑍22

max)𝑚),  

              ((𝑍11
max, 𝑍12

max, 𝑍22
max)𝑙, (𝑍11

min, 𝑍12
min, 𝑍22

min)𝑚),  

              ((𝑍11
min, 𝑍12

min, 𝑍22
min)𝑙, (𝑍11

max, 𝑍12
max, 𝑍22

max)𝑚),  

              ((𝑍11
min, 𝑍12

min, 𝑍22
min)𝑙, (𝑍11

min, 𝑍12
min, 𝑍22

min)𝑚)} (2.22) 

when both subsystems have unknown input impedances. The minimization of all 

max|�̃�𝑙,𝑚| on points (2.21),(2.22) by balancing these values on the entire partition, aims 

to maintain all max|𝜌𝑙,𝑚| within the same range of all max|�̃�𝑙,𝑚|.  

2.1.5 Construction of the optimization problem    

Coefficient |𝜌𝑘,𝑙| at interface (𝑘, 𝑙) is given by  

|𝜌𝑘,𝑙|
2

=
|𝑍𝑘

𝑘,𝑙|
2

− 2ℜ(𝑍𝑘
𝑘,𝑙)𝑅𝑘

𝑘,𝑙 + (𝑅𝑘
𝑘,𝑙)

2

|𝑍𝑘
𝑘,𝑙|

2
+ 2ℜ(𝑍𝑘

𝑘,𝑙)𝑅𝑙
𝑘,𝑙 + (𝑅𝑙

𝑘,𝑙)
2  

|𝑍𝑙
𝑘,𝑙|

2
− 2ℜ(𝑍𝑙

𝑘,𝑙)𝑅𝑙
𝑘,𝑙 + (𝑅𝑙

𝑘,𝑙)
2

|𝑍𝑙
𝑘,𝑙|

2
+ 2ℜ(𝑍𝑙

𝑘,𝑙)𝑅𝑘
𝑘,𝑙 + (𝑅𝑘

𝑘,𝑙)
2 (2.23) 

The objective function |�̃�𝑘,𝑙| can be constructed with an automated procedure 

implemented with Matlab [105] or any other scripting language. Real part and magnitude 
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of �̃�𝑘
𝑘,𝑙

 and �̃�𝑙
𝑘,𝑙

 are calculated in terms of the 𝑍-parameters of subsystems 𝑁𝑘 and 𝑁𝑙 and 

the neighboring relaxation resistances. This dependency is defined here for two 

configurations; chain and branch connections. 

 Chain connection 

The cascade connection of three subsystems 𝑁𝑘, 𝑁𝑙, and 𝑁𝑚 and is presented in Figure 

2.2(a). 𝑍𝑙
𝑘,𝑙

 and 𝑍𝑙
𝑙,𝑚

 are input impedances of 𝑁𝑙 at interfaces (𝑘, 𝑙) and (𝑙, 𝑚). Real part 

and magnitude of the upstream input impedance 𝑍𝑙
𝑘,𝑙

, see Figure 2.2(b), are given by 

2ℜ(𝑍𝑙
𝑘,𝑙) =

𝑎0 + 𝑎1𝑅series + 𝑎2𝑅series
2

𝑐0 + 𝑐1𝑅series + 𝑅series
2  

(2.24) 
|𝑍𝑙

𝑘,𝑙|
2

=
𝑏0 + 𝑏1𝑅series + 𝑏2𝑅series

2

𝑐0 + 𝑐1𝑅series + 𝑅series
2  

Coefficients 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑐0, and 𝑐1 for the upstream case, are expressed in 

terms of (𝑍11, 𝑍12, 𝑍22) as 

𝑎0 = 2|𝑍22|2ℜ(𝑍11) − 2ℜ(𝑍12
2 𝑍22

̅̅ ̅̅ ) 

(2.25) 

𝑎1 = 4ℜ(𝑍11)ℜ(𝑍22) − 2ℜ(𝑍12
2) 

𝑎2 = 2ℜ(𝑍11) 

𝑏0 = |𝑍11𝑍22 − 𝑍12
2|

2
 

𝑏1 = 2ℜ ((𝑍11𝑍22 − 𝑍12
2)𝑍11

̅̅ ̅̅ ) 

𝑏2 = |𝑍11|2 

𝑐0 = |𝑍22|2 

𝑐1 = 2ℜ(𝑍22) 

and 𝑅series = 𝑅𝑚
𝑙,𝑚

. Real part and magnitude of the downstream input impedance 𝑍𝑙
𝑙,𝑚

, 

see Figure 2.2(c) are also computed using (2.24) after permuting 𝑍11 and 𝑍22 in equations 

(2.25) and letting 𝑅series = 𝑅𝑘
𝑘,𝑙

 in (2.24). 
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 Branch 

In Figure 2.3(a), subsystem 𝑁𝑙 branches to n subsystems 𝑁𝑚1
, 𝑁𝑚2

,.., 𝑁𝑚𝑛
. Input 

impedance 𝑍𝑙
𝑙,𝑚ℎ of 𝑁𝑙 at (𝑙, 𝑚ℎ), ℎ ∈ [1, 𝑛], is the parallel combination of �̂�𝑙

𝑙,𝑚ℎ (2.19) 

with resistance 𝑅shunt. This later is the parallel combination of all decoupling resistances 

𝑅𝑚𝑖

𝑙,𝑚𝑖, 𝑖 ∈ [1, 𝑛] and 𝑖 ≠ ℎ, see Figure. 2.3. Real part and magnitude of �̂�𝑙
𝑙,𝑚ℎ are 

determined using relations (2.24),(2.25) after permuting 𝑍11 and 𝑍22 in (2.25) and taking 

𝑅series = 𝑅𝑘
𝑘,𝑙

 in (2.24). Next, real part and magnitude of 𝑍𝑙
𝑙,𝑚ℎ are calculated using 

2ℜ(𝑍𝑙
𝑙,𝑚ℎ) =

2𝑒1𝑅shunt + 𝑒2𝑅shunt
2

𝑒1 + 𝑒2𝑅shunt + 𝑅shunt
2 

(2.26) 
|𝑍𝑙

𝑙,𝑚ℎ|
2

=
𝑒1𝑅shunt

2

𝑒1 + 𝑒2𝑅shunt + 𝑅shunt
2 

where 𝑒1 = |�̂�𝑙
𝑙,𝑚ℎ|

2
 and 𝑒2 = 2ℜ(�̂�𝑙

𝑙,𝑚ℎ). Real part and magnitude of 𝑍𝑙
𝑘,𝑙

 in Figure 

2.3(a) are computed using (2.24),(2.25) with 𝑅series equal to the parallel combination of 

all resistances from the branch in (2.24).  

The objective function |�̃�𝑘,𝑙| is constructed at every interface (𝑘, 𝑙) between two adjacent 

subnetworks 𝑁𝑘 and 𝑁𝑙. It generates a four by one vector. Table 2.3 summarizes the steps 

needed to construct the companion objective function of a partition.  

 Optimization instances 

Every subsystem 𝑁𝑘 is analyzed in the frequency domain. The stamp, a 𝑌 −parameters 

2×2 matrix, of single transmission lines in the TEM mode are used in the formulation of 

the modified nodal analysis equations [94]. The resulting system is solved in SPICE on a 

set of discrete frequency points on the interval [0, 𝜔max]. In example 1 of section 2.3, it is 

shown that instances (2.16) and (2.21),(2.22) do not need to be precisely calculated since 

they do not significantly affect the optimization results if key frequencies are spotted. 
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Table 2.3: Formulation of the objective function. 

Input:- Adjacency matrix for 𝑀 −subsystem partition of 𝑁. 

           - Max and min. amplitude input impedances or max and min. amplitude 𝑍-

parameters of subnetworks. 

Output: Source file of |�̃�(𝑹)| 

1. Procedure    objective_function_generator 

2. If 𝑀 = 2 Then 

3. Construct |𝑟1,2| on set P (2.16) 

4. Else 

5. For every interface (𝑘, 𝑙) Do 

6. If 𝑁𝑘or 𝑁𝑙 is of known input impedance Then 

7. Construct |�̃�𝑘,𝑙| on set  P𝑘,𝑙 (2.21)  

8.  Else 

9. Construct |�̃�𝑘,𝑙| on set  Q𝑘,𝑙 (2.22) 

10. EndIf 

11. EndFor 

12. EndIf 

13. Return (source file of |�̃�(𝑹)|) 

14. EndProcedure. 

 

Remarks 

1) Careful examination of subsystems can give an idea on the location of key 

frequencies and help reduce the number of points. For example, in interconnect 

dominated circuits with capacitive loads, the input impedance values of maximum 

and minimum amplitude occur at DC and at high frequencies, respectively. A 

small number of frequency points is sufficient to capture these values. 

2) The applicability of WR is subject to satisfying the convergence conditions 

(|𝜌𝑘,𝑙| < 1), which can be verified by frequency sampling between 0 and 𝜔max, 

once the decoupling resistance are calculated. Numerical experiments showed that 
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for lossy TL circuits, the optimization leads to very low values for all 

coefficients |�̃�𝑘,𝑙|, and the larger values of all |𝜌𝑘,𝑙| will remain low (|𝜌𝑘,𝑙| ≪ 1).  

3)  As the losses in the circuits decrease, coefficients |𝜌𝑘,𝑙|  approaches one and the 

proposed method requires increased number of iterations to converge. It is 

important to note that all resistive decoupling based WR methods are inefficient 

for highly reactive low loss circuits [70].  

2.1.6 LP-WR   

For cascaded chain and tree circuits composed of two-conductor transmission lines and 

lumped circuit elements, every TL is treated as an indivisible part and is allocated to only 

one subcircuit. The number of subcircuits is equal to the number of TLs in the circuit. 

Every subcircuit can be solved independently with its own largest time step generally 

determined by its distributed part. Figure 2.4(a) shows two transmission lines tl1 and tl2 

connected in series, a Norton interface can be inserted at points p1, p2 or any internal 

node of lumped circuit T1. In the case of a branch connection of three TLs tl1, tl2 and tl3,  

see Figure 2.4(b), two Norton interfaces are inserted. First one decouples tl1 and tl2 at 

points p1, p2 or any internal node of lumped circuit T1 and second one decouples tl1 and 

tl3 at 𝑞1, 𝑞2 or any internal node of T2. 

Logic signal flow [53] is used to order subcircuits for transient analysis by grouping 

them into enumerated levels. Level 1 groups all subcircuits that are directly connected to 

sources. The set of their adjacent subcircuits forms level 2 and so on until all subcircuits 

 

Figure 2.4: Potential locations for partitioning. (a) Series. (b) Branch. 
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are grouped. Subcircuits of same level are not adjacent and are solved concurrently on a 

parallel machine. A basic schedule [53] is used for the application of WR. Levels are 

scheduled for analysis alternatively in the forward and backward directions. Starting with 

level one for the direct sweep and level with the highest index for the backward sweep. 

The iterative process continues until all relative errors fall below a set tolerance 𝜀. Global 

error at round 𝑛 −one round corresponds to one forward sweep followed by one 

backward sweep, or at iteration 𝑛 (the two−subsystem case), is computed by 

error = max
(𝑘,𝑙)∈𝐼

𝑚∈{𝑘,𝑙}

(
‖(𝑤𝑚

𝑘,𝑙)
(𝑛)

− (𝑤𝑚
𝑘,𝑙)

(𝑛−1)
‖

2

‖(𝑤𝑚
𝑘,𝑙)

(𝑛)
‖

2

) (2.27) 

Table 2.4 summarizes the main steps of the proposed parallel GS WR algorithm 

Table 2.4: Summary of steps for the proposed parallel GS-WR algorithm. 

Step 1: 1) Partition circuit into enumerated sub−circuits. 

 

2) Group these subcircuits into levels.  

3) Define 𝜀 =the tolerance error for the convergence of waveform relaxation 

iterations. 

Step 2: Set all relaxation sources 𝑤(𝑡) to zero DC. 

Step 3: Set the number of rounds 𝑟 = 1 

Step 4: Set the queue of work tasks to be executed, ordering levels in forward and 

backward directions. 

Step 5: FOR every level DO the following in parallel using p processors 

1) Simulate all current subcircuits for the entire time interval of interest. 

2) Update all upstream (downstream) relaxation sources 𝑤(𝑡)using (2.3) in 

the forward (backward) direction.  

Step 6: At the end of every round, compute error using (2.27) 

Step 7: IF error ≤ 𝜀, exit ELSE GO TO step 4 
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 Computational cost analysis 

To simplify the analysis, the system is partitioned into 𝑀 balanced subcircuits that are 

grouped in 𝑚 levels, where 𝑚 < 𝑀. Balanced subcircuits exhibit the same computational 

cost for time-domain analysis. The cost of solving the original circuit is 𝜙o = O(𝛽𝛼𝑀𝛼), 

where 𝛽 denotes the size of one subcircuit and 𝛼 typically varies from 1.1 to 2.4 

depending on the sparsity of circuit matrices [95]. Let 𝑛1, 𝑛2,…, 𝑛𝑚 denote the numbers 

of subcircuits present in levels 1, 2,…, 𝑚 respectively, 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑚 = 𝑀. 

Typically, the number of subcircuits increases as the level index gets higher due to 

branching (Figure 2.3(b)). WR algorithm is run on a 𝑝-processor machine, it takes 𝑟 

rounds to converge. If overhead due to memory latencies, waveform interpolations and 

relaxation variables updates is ignored; last point is justified since the cost of updating 

one relaxation source uses a first order polynomial expression, see (2.3), plus one 

waveform interpolation. The computational cost 𝜙WR of waveform relaxation is 

approximated by 

𝜙WR = 𝑟 (⌈𝑛1 𝑝⁄ ⌉ + 2 ∑ ⌈𝑛𝑘 𝑝⁄ ⌉

𝑘=𝑚−1

𝑘=2

+ ⌈𝑛𝑚 𝑝⁄ ⌉) Ο(𝛽𝛼) (2.28) 

where ⌈. ⌉ is the ceiling operator. To get an idea of the CPU time efficiency of WR 

algorithm, cost ratio 𝜙o 𝜙WR⁄  is considered. It is given by 

Ο(𝑀𝛼) (𝑟 (⌈𝑛1 𝑝⁄ ⌉ + 2 ∑ ⌈𝑛𝑘 𝑝⁄ ⌉

𝑘=𝑚−1

𝑘=2

+ ⌈𝑛𝑚 𝑝⁄ ⌉))⁄  (2.29) 

WR performance (2.29) depends on the size of the problem, the number of subsystems, 

the adjacency pattern (the distribution of subcircuits among levels), the number of 

rounds, and the number of processors. Ideally, the cost of solving a 𝑀 −subsystem 

partition with 𝑚 levels can be brought down to 2𝑟(𝑚 − 1)Ο(𝛽𝛼) with a number of 

processors 𝑝 = max(𝑛𝑘), 𝑘 ∈ [1, 𝑚]. In other words, the cost 𝜙WR cannot be less than 

that of 𝑚 serial subcircuits. The efficiency limit value is Ο(𝑀𝛼) 2𝑟(𝑚 − 1)⁄ . In practice 

however the number of subcircuits 𝑛𝑘 > 𝑝 for some levels 𝑘, 𝑘 ∈ [1, 𝑚]. In regular 
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partitions where the numbers of subcircuits per level 𝑛1, 𝑛2,…, 𝑛𝑚 are multiple of same 

number except may be the early levels, WR has a CPU performance of (𝑝 𝑟⁄ )Ο(𝑀𝛼−1) 

when the number of processors is a perfect divisor of all numbers 𝑛1, 𝑛2,…, 𝑛𝑚 with the 

exception of those less than 𝑝. In such cases there is no CPU idling within levels for all 

levels 𝑘 where 𝑛𝑘 > 𝑝. For non-regular partitions, WR performance is diminished due to 

idling and a more aggressive scheduling is needed. 

2.2 Numerical Examples 

Five examples are presented to validate the accuracy and efficiency of the proposed 

WR method. Examples one and two treat the two−subsystem case. The pertinence of 

solution (2.15) is demonstrated and its sensitivity with respect to the number of frequency 

points used to capture instances (2.16) is examined. Next, the multi−subsystem case is 

treated in examples three, four and five. Starting with a chain connection in example 

three where the pertinence of solution (2.20) is again demonstrated. Examples four and 

five apply LP-WR to TL tree structures. This class of circuits leads to partitions with 

multiple subcircuits per level. Performance and scalability of WR with respect to the 

number of CPUs and the size of the partition are presented. The objective function’s 

source file is generated and solved in MATLAB [105]. 

A custom circuit simulator is implemented in MATLAB on a dual quad-core Xeon-Phi 

2630 (1.6Ghz) machine with 64GB RAM. In all examples, maximum truncation 

frequency 𝜔max corresponds to the inverse rise/fall time of the input signal [104]. TLs are 

macromodeled using DEPACT algorithm [102] to preserve passivity in the time domain. 

GS-WR iterative analysis is started with all relaxations sources set to a zero DC 

waveform. Convergence is obtained within a maximum tolerance 𝜀 ≤ 10−3, see eq. 

(2.27). HSPICE [106] simulation results are provided to illustrate the correctness of WR 

results. 

2.2.1 Example One-Proof of concept 

The effect of the proposed solution on local convergence rate is examined for the simple 

circuit of Figure 2.5(a) The per-unit-length parameters (PUL)−Line1(Line2): 𝑅 =

69(217)Ω/m, 𝐿 = 278(293)nH/m, 𝐶 = 159(151)pF/m, 𝐺 = 18.00(18.00)nS/m and 
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length = 1.0(6.0)cm. The input signal is a 1V trapezoidal voltage pulse with 0.05ns 

rise/fall time and 2.10ns pulse width. The circuit is split into two parts at node P (Figure 

2.5(b)). 

Input impedances of the two subnetworks are evaluated on 1024 equidistant frequency 

points on [0,20GHz]. Solving (15) yields 𝑅1 = 28.74Ω and 𝑅2 = 41.73Ω. It is found that 

max|𝑟| ≅ 0.573 at the four instances, while max|𝜌| ≅ 0.687 (Figure 2.6).  

 

Figure 2.6: Magnitude of convergence coefficient 𝝆. Example One. 

 

 

 

 

Figure 2.5: Circuit of Example One. (a) Original circuit. (b) Partitioned 

circuit−capacitive load (c) Partitioned circuit−resistive load. 
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Transient analysis is performed up to 4.5ns. WR takes six iterations to converge. Voltage 

waveforms at the farend of line 1, near end of line 2 and the farend of line 2 for iterations 

one, three and five are presented in Figures 2.7, 2.8 and 2.9.  

 

Figure 2.7: Iteration waveform. (a) Far-end line 1. Example One.  
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Figure 2.8: Iteration waveform. (a) Near-end line 1. Example One. 
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Figure 2.9: Iteration waveform. (a) Far-end line 2. Example One. 

 



48 

 

 

Next a sweep is realized by varying the decoupling resistances from 1Ω to 100Ω in 

steps of 0.5Ω. At every point (𝑅1, 𝑅2), WR is performed for seven iterations, the 

resulting relative error is recorded. The sensitivity of the suboptimal solution with respect 

to the value of instances (16) is examined. For this, 16, 32, 128, 256 and 512 equidistant 

frequency points on [0,20GHz] are used to determine instances (2.16) and the 

optimization problem (2.15) is solved for each case. The solutions are found to be close 

to the island with the lowest error in Figure 2.10.  

 

Figure 2.10: Logarithm of error after seven WR iterations. Example One (b). 
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The reason is that values 𝑍1
max and 𝑍2

max are located at DC and are captured by all 

frequency discretization. This occurrence happens each time a subsystem is terminated 

with a capacitive load and few frequency points can be used as long as DC is included. 

Finally, the position of the error islands with respect to the diagonal line 𝑅1 = 𝑅2 (Figure 

2.10) shows that faster convergence is achieved by taking 𝑅1 and 𝑅2 independent 

especially for adjacent subcircuits with different input impedances.  

 

Figure 2.11: Logarithm of error after seven WR iterations. Example One (c). 
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A second partitioning is performed on the circuit of Figure 2.5(a) this time with a 

10Ω −load resistance at the far-end (Figure 2.5(c)). The exact values of instances (2.16) 

are located at frequency points inside [0,20GHz]. The same sets of frequency points are 

used to capture instances (2.16). For every value, problem (2.15) is solved. Solutions are 

found inside the same island of error value 10−5 (Figure 2.11). It is possible to obtain 

good values for the relaxation resistances quickly without having to precisely determine 

the extremum values of the input impedances. 

2.2.2 Example Two-Low loss distributed circuit-perfect dielectric. 

 The circuit of Figure 2.5(a) is reconsidered with a 1pF −load capacitance and two low 

loss lines with the following PUL−Line1(Line2): 𝑅 = 15(11)Ω/m, 𝐿 = 28(50)nH/m, 

𝐶 = 100(170)pF/m, 𝐺 = 0(0)S/m and length = 1.0(2.0)cm. This circuit is split into 

two parts, see Figure 2.5(b). The right-hand side subcircuit does not provide a DC path to 

ground and has infinite input impedance at DC. The objective function |𝑟| of problem 

(2.15) is reformulated as follow: |𝑟(𝑅1, 𝑅2)| = 𝜌|𝑅1, 𝑅2| at the instances (𝑍1
min, 𝑍2

min) 

and (𝑍1
max, 𝑍2

min), and |𝑟(𝑅1, 𝑅2)| = |(𝑍1 − 𝑅1) (𝑍1 + 𝑅2)⁄ | at the instances 

(𝑍1
min, ∞) and (𝑍1

max, ∞) The solution of (15) yields 𝑅1 ≅ 20.26Ω and 𝑅2 ≅ 45.53Ω. 

It is found that max|𝑟| ≅ 0.642 and max|𝜌| ≅ 0.901 on the interval [0,20GHz] (Figure 

2.12. WR requires fourteen iterations to converge, against six in Example One. For low 

 

Figure 2.12: Magnitude of convergence coefficient |𝝆|. Example Two. 
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loss circuits |𝜌| gets closer to one, which increases the number of iterations to converge 

and reduces the performance of the WR algorithm. 

 

2.2.3 Example Three-Chain connection.  

This example examines the relevance of the proposed method for multi−subsystem 

partitions. A chain of twenty-one cascaded blocks Bi, 1 ≤ 𝑖 ≤ 21, is proposed (Figure 

2.13). Every block Bi is composed of a TL and a 0.1pF −grounded capacitor. Blocks Bi 

with indices 𝑖 of same parity are identical. PUL are 𝑅 = 15(10)Ω/m, 𝐿 =

0.28(0.29)μH/m, 𝐶 = 160(1550)pF/m, 𝐺 = 18(25)nS/m, and length = 1.0(2.0)cm 

when index 𝑖 is odd(even). A 1V −trapezoidal pulse source of 0.1ns − rise/fall time and 

2.0ns −pulse width with a 10Ω −internal resistance is connected to block B1 at node a1. 

A 1.0pF −load capacitor is connected to B21 at node b21. Every block Bi stands as a 

subcircuit, this leads to twenty-one subcircuits grouped in twenty-one levels. B1 being in 

level 1 and B21 in level 21. The 𝑍 −parameters of subcircuits Bi, 2 ≤ 𝑖 ≤ 20 and the 

input impedances of B1 and B21 are evaluated at 512 and 256 equidistant frequency points 

on [0,10GHz] respectively. The objective function |�̃�| is constructed on instances 

 

 

 

Figure 2.13: Circuit of Example Three. 
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(2.21),(2.22). The optimization problem (2.20) is solved on 4×20 points and local 

convergence coefficients are shown in Figure 2.14. In this example, all max|𝜌𝑘,𝑙(𝑗𝜔)| are 

slightly higher than their corresponding max|�̃�𝑘,𝑙| in Figure 2.15.  

 

 

Figure 2.14: Magnitude of local convergence coefficients 𝝆𝒌,𝒍. Example Three. 

 

 

 

Figure 2.15: Maximum values of |�̃�𝒌,𝒍|vs |𝝆𝒌,𝒍|. Example Three. 
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WR takes twelve rounds to converge. Figures 2.16, 2.17 and 2.18 show sample transient 

responses at nodes b11, a12 and b21. Note that the iterate waveforms of nodes b11 and a12 

are similar to each other due the a low |𝜌11,12| on [0,10GHz].  

 

Figure 2.16: Iteration waveforms, Node b11. Example Three. 
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Figure 2.17: Iteration waveforms. Node a12. Example Three. 
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Figure 2.18: Iteration waveforms. Node b21. Example Three. 
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To assess the pertinence of solution (2.25), all decoupling resistances are swept together 

from 1Ω to 200Ω in steps of 1Ω. At each point, WR algorithm is executed until 

convergence. WR needs at least fifteen rounds to converge when all decoupling 

resistances are equal to 14Ω, see Figure 2.19. 

 

2.2.4 Example Four Tree structure-scalability with respect to 
number of CPUs. 

In this example, a thirty-three TL circuit (Figure 2.20) is considered. PUL parameters, 

line lengths and the description of the lumped elements are also provided on Figure 2.20. 

The input signal is a 1V −trapezoidal pulse of 0.1ns −rise/fall time and 2.1ns −pulse 

width. This circuit is partitioned into thirty-three subcircuits labeled L1 to L33 and 

grouped in five levels (Figure 2.20).  

The optimization problem is performed on 4×32 points. The values of all |𝜌𝑘,𝑙| are shown 

in Figure 2.21. For this example, max all |�̃�𝑘,𝑙| ≅ 0.144, while max all |𝜌𝑘,𝑙| ≅ 0.254. 

Each subcircuit is solved on interval [0, 𝑇], 𝑇 = 10ns. WR converges in four rounds.  

 

 

 

 

Figure 2.19: Number of rounds to converge. Sweep on the diagonal. Example 

Three. 
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Figure 2.20: Circuit of Example Four. 
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Figure 2.21: Local convergence coefficients |𝝆𝒌,𝒍|. Example Four. 
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The iterate waveforms at nodes A, B and C for round one, two and four are shown in 

Figures 2.22, 2.23 and 2.24. 

 

Figure 2.22: Iteration waveform. Node A. Example Four. 
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Figure 2.23: Iteration waveform. Node B. Example Four. 
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Figure 2.24: Iteration waveform. Node C. Example Four. 
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Next, the performance of the proposed waveform relaxation algorithm is examined. The 

CPU time to solve the optimization problem is 2.0s. The number of CPUs used to run the 

proposed method is increased from one to eight CPUs and the corresponding times are 

compared against full-circuit analysis in Table 2.5.  

For this circuit, a speedup of 4.3 is obtained with eight CPUs without the optimization 

overhead. The speedup decreases to 3.2 with the optimization overhead. The performance 

scalability with respect to the number of CPUs is compared against the estimated values 

of (2.29) in Figure 2.25. 

It was previously mentioned that due to the fact that instances (2.16) and (2.21),(2.22) 

are approximately located with a discrete frequency sampling, there exist frequency 

points where |𝜌| or |𝜌𝑘,𝑙| is higher than the maximum value of its corresponding |𝑟| or 

|�̃�𝑘,𝑙| as depicted in Figure 2.26(a). To investigate the effect of these points on the WR 

rate of convergence, the optimization problem (2.20) is repeatedly solved on a larger set 

of instances. The instances at frequency points where the generated coefficients 𝜌𝑘,𝑙 

Table 2.5: Performance of proposed algorithm. Example Four. 

# 

CPU 

WR time 

(s) 

Full 

analysis 

time (s) 

Optimization 

cost (s) 

WR 

speed up 
Method speed up 

 

1 29.4 

25.0 2.0 

0.85 0.82 

2 17.0 1.47 1.31 

4 10.2 2.43 2.05 

6 8.7 2.87 2.58 

8 5.8 4.31 3.20 
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satisfy max|𝜌𝑘,𝑙| > 𝑚𝑎𝑥|�̃�𝑘,𝑙| are added to regular instances in (2.21),(2.22) and the 

optimization is performed again. This procedure is repeated twice. Adding these 

instances reduced the points where max|𝜌𝑘,𝑙| > 𝑚𝑎𝑥|�̃�𝑘,𝑙| and led to more uniform |𝜌𝑘,𝑙| 

on [0,10GHz] as depicted in Figure 2.26(b). Overall, the additional instances did not 

significantly decrease the range of values of |𝜌𝑘,𝑙| in Figure 2.27. The WR algorithm is 

run with the new set of relaxation resistances. The error at the end of each round is 

compared with the one yielded by the regular solution in Figure 2.28. Adding new 

instances did not improve the overall rate of convergence. In this example, the original 

optimization resulted in a slightly faster convergence rate due to the lower values of |𝜌𝑘,𝑙| 

near DC. 

 

 

 

 

 

 

 

Figure 2.25: Speedup. Example Four. 
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interface 

(a) 

 

Interface 

(b) 

Figure 2.26: 𝐦𝐚𝐱|�̃�𝒌,𝒍| vs. 𝐦𝐚𝐱|𝝆𝒌,𝒍|. (a) 128 points. (b) 164 points. Example Four. 
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Figure 2.27: Local convergence coefficients |𝝆𝒌,𝒍| after adding instances (164 points).  Example Four. 
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2.2.5 Example Five-Tree structure-scalability with respect to the 
partition size. 

In this example, the scalability of the proposed algorithm is investigated. The circuit of 

Figure 2.29 is considered. All building blocks B are composed of one fan-out of two TLs 

line1 and line2, both terminated with a 0.1pF −capacitor to ground. PUL parameters 

are−line1(line2) 𝑅 = 60(45)Ω/m, 𝐿 = 3.4(4.7)μH/m, 𝐶 = 130(110)pF/m, 𝐺 =

6.0(6.0)μS/m, and length = 11.0(12.0)cm. A 1V −trapezoidal pulse source of 0.1ns 

rise/fall time and 2.0ns pulse width with a 10Ω internal resistance, is connected to node 

a0. Blocks B at the level with the highest index 𝐾 are terminated with 0.9pF −capacitors 

to ground. Every TL together with its far-end capacitor forms a subcircuit. Eight CPUs 

are used to execute this example. Blocks B are used to build three circuits with = 5, 6, 

and 7 levels, resulting in a total 31, 63, and 127 TLs, respectively. The CPU cost to 

solve the optimization problem for the three circuits is provided in Table 2.6. The three 

networks are solved on interval [0, 𝑇], where 𝑇 = 12ns. For all three circuits, 

convergence is achieved within four rounds. Iteration waveforms at the far-end 

terminations of line 127 (node A) for the 127-TL circuit are shown in Figure 2.30. The 

 

Figure 2.28: Error evolution. Example Four. 

 



67 

 

 

corresponding CPU run times are compared against full-circuit analysis in Table 2.6 with 

the resulting speedup ranging from 3.5 to 5.1 without the optimization overhead and 

from 2.4 to 3.2 with the optimization overhead. 

  

Table 2.6: Scaling with respect to the number of transmission lines. Example Five. 

# lines 
 

WR CPU 

time (s) 

Full 

analysis 

time (s) 

Optimization 

cost 

WR speedup 
 

Method speedup 

31 4.11 14.46 2.00 3.5 2.4 

63 7.09 29.78 4.09 4.2 2.7 

127 11.91 61.04 7.40 5.1 3.2 

 

 

Figure 2.29: Circuit of Example Five. 
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Figure 2.30: Iteration waveform. Node A. Example Five. 
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2.3 Conclusion  

In this chapter, a new resistive coupling-based LP-WR algorithm is presented for the 

analysis of transmission line dominated circuits. The proposed longitudinal partitioning 

scheme subdivides these circuits and leads to multi-level partitions. The adjacent 

subcircuits are decoupled with a Norton interface. The decoupling resistances of every 

Norton interface are determined for improved WR local convergence rates. A step-by-

step method is provided to construct the companion optimization problem for any given 

partition, and the decoupling resistances are determined by a suboptimal solution to this 

problem. Numerical examples illustrate that the parallel LP-WR algorithms outperforms 

SPICE in the analysis of lossy TL trees. For highly reactive low loss or lossless circuits, 

LP-WR is slow or fail to converge. Future work will include extending this algorithm to 

multi-conductor transmission lines with nonlinear loads.  
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Chapter 3  

3 Using Strictly Dissipative Impedance Coupling in the 
Waveform Relaxation Method for the Analysis of 
Interconnect Circuits 

Strictly dissipative impedance coupling is introduced in the waveform relaxation 

algorithm with longitudinal partitioning to address the slow convergence of standard 

resistive coupling in the analysis of low-loss highly reactive circuits. The pertinence, 

feasibility, and consistency of the proposed WR algorithm are demonstrated. Its 

convergence is examined for any passive linear time-invariant (LTI) system. Rational-

with-delay impedances are presented to decouple general transmission line circuits. The 

proposed coupling strategy uses coarse macromodeling of the transmission lines to 

construct the coupling impedances directly as passive distributed auxiliary circuits. 

Numerical examples show a superior speed of convergence and further runtime savings.  

3.1 Strictly dissipative impedance coupling 

Standard resistive coupling is extended to strictly dissipative impedance coupling. 

Insertion {−𝑅1, 𝑅1 + 𝑅2, −𝑅2}, 𝑅1, 𝑅2 > 0 in Figure 2.1(b) is replaced by a neutral 

series connection of three impedances {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)}. Coupling impedances 

 

Figure 3.1: Parts 𝑵𝟏 and 𝑵𝟐 are connected directly. 

 

Figure 3.2: Parts 𝑵𝟏 and 𝑵𝟐 are connected via a strictly dissipative element 𝒁𝒐.   
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𝜁1(𝑠) and 𝜁2(𝑠) are strictly positive-real functions for all 𝑠 ∈ ℂ and ℜ(𝑠) ≥ 0 [96]. They 

are driving-point impedances of lossy passive circuits whereas 𝜁Σ represents the driving-

point impedance of the created circuit overlap. The strict positive realness condition must 

be imposed to ensure the subsequent WR is consistent and to make the overall system 

stable by construction as discussed in section 3.3.3.  

As with resistive coupling [63],[64],[97], the proposed WR also applies on general 

circuits. It decouples any two parts 𝑁1 and 𝑁2 in a decomposed circuit when these are 

directly connected (Figure 3.1), and creates an overlap 𝜁Σ(𝑠) = 𝜁1(𝑠) + 𝜁2(𝑠) to 

guarantee the neutrality of insertion {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)}. If there is an element 𝑍𝑜(𝑠) 

in the decomposed system that connects 𝑁1 to 𝑁2 (Figure 3.2), then 𝑍𝑜(𝑠) can be 

included in overlap 𝜁Σ(𝑠) provided it too is strictly dissipative as discussed in 3.2.1, 

making 𝜁Σ(𝑠) = 𝜁1(𝑠) + 𝜁2(𝑠) + 𝑍𝑜(𝑠).   

Despite the presence of opposite impedances (−𝜁1(𝑠)) and (−𝜁2(𝑠)), instability is not 

introduced since total insertions (𝜁Σ(𝑠) − 𝜁1(𝑠)) and (𝜁Σ(𝑠) − 𝜁2(𝑠)) to both the left and 

right parts are still positive-real impedances, see Figure 3.3.  

Insertions {−𝑅1, 𝑅1 + 𝑅2, −𝑅2} and {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)} create overlaps (𝑅1 + 𝑅2) 

and 𝜁Σ(𝑠) between 𝑁1 and 𝑁2. As a result, the subsequent WR iterations are carried out 

through successive updates of same nodal voltage waveforms 𝑢2(𝑡) and 𝑤−2(𝑡) 

implemented as voltage sources in Figure 3.3. 

 

Figure 3.3: Dissipative coupling of parts 𝑵𝟏 and 𝑵𝟐. Node c is put to Ground. 



72 

 

 

𝑢2
(𝑘+1)(𝑡) = 𝑤−1

(𝑘)(𝑡) (3.1) 

𝑤−2
(𝑘+1)(𝑡) = 𝑢1

(𝑘+𝜐)(𝑡) (3.2) 

Integer 𝑘 refers to the iteration count and parameter 𝜈 = 1 for Gauss-Seidel (GS) 

relaxation and 𝜈 = 0 for Gauss-Jacobi (GJ) one. The effect of replacing resistances by 

impedances on WR is explained in section 3.2.1 to justify the pertinence of the proposed 

generalization. 

A Norton interface was presented in Figure 2.1(d) to divide a circuit into several parts. It 

consists of positive coupling resistances 𝑅1 and 𝑅2 from insertion {−𝑅1, 𝑅1 + 𝑅2, −𝑅2}, 

and uses an all-voltages relationship to update the two relaxation sources 𝑢2 and 𝑤−2 of 

the WR in the time-domain, see eq. (2.3).  

𝑢2
(𝑘+1)(𝑡) = 𝑤0

(𝑘)(𝑡) (1 + 𝑅2 𝑅1⁄ ) − 𝑤−2
(𝑘)(𝑡) 𝑅2 𝑅1⁄  (3.3) 

𝑤−2
(𝑘+1) = 𝑢0

(𝑘)(𝑡) (1 + 𝑅1 𝑅2⁄ ) − 𝑢2
(𝑘)(𝑡) 𝑅1 𝑅2⁄  (3.4) 

A similar Norton interface is readily built for {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)}. It too consists of 

only 𝜁1(𝑠) and 𝜁2(𝑠) and updates its relaxation sources 𝑢2(𝑡) and 𝑤−2(𝑡) using relations 

𝑢2
(𝑘+1)(𝑡) = 𝑤0

(𝑘)(𝑡) ∗ (ℒ−1 (
𝜁Σ

𝜁Σ − 𝜁2
)) (𝑡) − 𝑤−2

(𝑘)(𝑡) ∗ (ℒ−1 (
𝜁2

𝜁Σ − 𝜁2
)) (𝑡) 

(3.5) 

𝑤−2
(𝑘+1)(𝑡) = 𝑢0

(𝑘+𝜈)(𝑡) ∗ (ℒ−1 (
𝜁Σ

𝜁Σ − 𝜁1
)) (𝑡) − 𝑢2

(𝑘+𝜈)(𝑡) ∗ (ℒ−1 (
𝜁1

𝜁Σ − 𝜁1
)) (𝑡) 

 (3.6) 

where ℒ−1 is the inverse Laplace transform and ∗ refers to the convolution integral. 

When every insertion {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)} is implemented as a Norton interface, the 

WR solution is obtained by solving enlarged subcircuits (including the realization of 



73 

 

 

𝜁1(𝑠) and 𝜁2(𝑠)) in addition to resorting to nonlocal operators in time in the update of the 

relaxation sources whenever 𝜁1(𝑠) or 𝜁2(𝑠) is a rational or a rational-with-delay complex 

function of the complex frequency 𝑠 according to (3.5) and (3.6). The expensive update 

must be executed outside a classic circuit simulator environment in general before every 

part is scheduled next for analysis. Such serial overhead renders the WR solution 

inefficient for sparse problems like single line circuits where coupling between lines is 

ignored. To avoid the expensive update, every insertion {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)} must be 

realized as in Figure 3.3. If the one-time cost of these circuit realizations is low, then it is 

possible to cluster the method’s overhead in the repetitive time-domain analysis of the 

enlarged parts. A parallel execution of the algorithm can naturally absorb the repetitive 

overhead and results in possible runtime saving if it achieves a right balance between fast 

convergence and the cost of the iteration. 

The rest of the chapter is organized as follows: First the relevance of dissipative 

impedance coupling is demonstrated in 3.2.1, and its feasibility is addressed in section 

3.2.2. Second, the consistency of the subsequent WR algorithm is shown and its 

convergence is examined for any passive LTI system in section 3.2.3. Third, the proposed 

coupling strategy is presented for the analysis of single transmission line circuits in 

section 3.2.4. Finally, numerical examples illustrate the efficiency of the proposed 

impedance coupling and compare its performance against resistive coupling [31] for 

general single line circuits and against the optimized WR for RLCG type circuits [36]-

[39] in section 3.3.  

3.2 Proposed WR algorithm 

3.2.1 Relevance of strictly dissipative impedance coupling 

First consider the system of Figure 3.1. The objective is to determine what action does 

insertion  {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)} exert on the voltage waveforms 𝑢0(𝑡) and 𝑤0(𝑡) and 

on currents 𝑖1(𝑡) and 𝑖2(𝑡) at the split node between parts 𝑁1 and 𝑁2 in Figure 3.4. 

Let �̃�0(𝑠), �̃�1(𝑠), �̃�2(𝑠), �̃�−2(𝑠), �̃�−1(𝑠), �̃�0(𝑠), 𝑖1̃(𝑠) and 𝑖̃2(𝑠) be the Laplace 

transforms of voltage waveforms 𝑢0(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝑤−2(𝑡), 𝑤−1(𝑡), 𝑤0(𝑡) and 
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currents 𝑖1(𝑡), 𝑖2(𝑡) in Figure 3.3. The application of Kirchhoff’s voltage law (KVL) 

results in the following equations for the four node voltages involved in the exchange 

(1),(2)  

�̃�1(𝑠) = �̃�0(𝑠) + 𝜁1(𝑠) 𝑖1̃(𝑠)  (3.7)   �̃�−1(𝑠) = �̃�0(𝑠) − 𝜁2(𝑠) �̃�2(𝑠)  (3.9) 

�̃�2(𝑠) = �̃�0(𝑠) − 𝜁2(𝑠) 𝑖1̃(𝑠)  (3.8)   �̃�−2(𝑠) = �̃�0(𝑠) + 𝜁1(𝑠) 𝑖̃2(𝑠)  (3.10) 

Using (3.7)-(3.10), equations (3.1) and (3.2) are written as 

𝑢0
(𝑘+1)(𝑡) − (ℒ−1(𝜁2))(𝑡) ∗ 𝑖1

(𝑘+1)
(𝑡) = 𝑤0

(𝑘)(𝑡) − (ℒ−1(𝜁2))(𝑡) ∗ 𝑖2
(𝑘)(𝑡) 

(3.11) 

𝑤0
(𝑘+1)(𝑡) + (ℒ−1(𝜁1))(𝑡) ∗ 𝑖2

(𝑘+1)
(𝑡) = 𝑢0

(𝑘+𝜐)(𝑡) + (ℒ−1(𝜁1))(𝑡) ∗ 𝑖1
(𝑘+𝜐)(𝑡) 

(3.12) 

 

Figure 3.4: Circuit partitioning. No circuit overlap. 

 

 

Figure 3.5: Circuit partitioning. Overlap 𝒁𝒐 is strictly dissipative. Node c 

is put to Ground. 

 



75 

 

 

in the time domain. Next, let us see how equations (3.11) and (3.12) are altered when 

element 𝑍𝑜(𝑠) connects 𝑁1 to 𝑁2 in the decomposed system of Figure 3.2, and is used as 

a natural circuit overlap in the partitioning of Figure 3.5. To keep 𝑍𝑜(𝑠) visible on both 

sides of the insertion, the coupling of Figure 3.3 is described in an equivalent manner in 

Figure 3.6 for 𝜁Σ(𝑠) = 𝜁1(𝑠) + 𝜁2(𝑠) + 𝑍𝑜(𝑠). In the frequency-domain, nodal voltages 

𝑢0(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡) on the side of 𝑁1 and 𝑤−1(𝑡), 𝑤−2(𝑡) and 𝑤−3(𝑡) on the 

side of 𝑁2 can be expressed by the following KVL equations 

�̃�2(𝑠) = �̃�0(𝑠) +
𝜁2(𝑠)

𝑍𝑜(𝑠)
(�̃�0(𝑠) − �̃�−1(𝑠)) (3.13) 

�̃�−1(𝑠) = �̃�1(𝑠) +
𝜁2(𝑠)

𝑍𝑜(𝑠)
(�̃�1(𝑠) − �̃�0(𝑠)) (3.14) 

�̃�−2(𝑠) = �̃�0(𝑠) +
𝜁1(𝑠)

𝑍𝑜(𝑠)
(�̃�0(𝑠) − �̃�1(𝑠)) (3.15) 

�̃�1(𝑠) = �̃�−1(𝑠) +
𝜁1(𝑠)

𝑍𝑜(𝑠)
(�̃�−1(𝑠) − �̃�0(𝑠)) (3.16) 

currents 𝑖1̃(𝑠) = (�̃�−1(𝑠) − �̃�0(𝑠)) 𝑍𝑜(𝑠)⁄ , and 𝑖̃2(𝑠) = (�̃�0(𝑠) − �̃�1(𝑠)) 𝑍𝑜(𝑠)⁄  on both 

sides are finite, which requires 𝑍𝑜(𝑠) to be strictly dissipative. Now, voltage exchange 

(3.1),(3.2) can be put as  

 

Figure 3.6: Decoupled parts 𝑵𝟏 and 𝑵𝟐. 𝒁𝒐 is visible. Node c is put to Ground.   
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𝑢0
(𝑘+1)(𝑡) + (ℒ−1 (

𝜁2

𝑍𝑜
)) (𝑡) ∗ (𝑢0

(𝑘+1)(𝑡) − 𝑢−1
(𝑘+1)(𝑡)) = 

                                𝑤1
(𝑘)(𝑡) + (ℒ−1 (

𝜁2

𝑍𝑜
)) (𝑡) ∗ (𝑤1

(𝑘)(𝑡) − 𝑤0
(𝑘)(𝑡)) 

(3.17) 

𝑤0
(𝑘+1)(𝑡) + (ℒ−1 (

𝜁1

𝑍𝑜
)) (𝑡) ∗ (𝑤0

(𝑘+1)(𝑡) − 𝑤1
(𝑘+1)(𝑡)) = 

𝑢−1
(𝑘+𝜈)(𝑡) + (ℒ−1 (

𝜁1

𝑍𝑜
)) (𝑡) ∗ (𝑢−1

(𝑘+𝜈)(𝑡) − 𝑢0
(𝑘+𝜈)(𝑡)) 

(3.18) 

in the time domain. Equations (3.11),(3.12) and (3.17),(3.18) show that dissipative 

impedance coupling exchanges a combination of currents and nodal voltages at the teared 

nodes at both ends of insertion {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)}. Each combination represents a 

sum of a voltage waveform and a convoluted waveform representing the electric current. 

The weight coefficients in these sums are convolution integral transforms whose kernels 

are the inverse Laplace transforms of 𝜁1(𝑠), 𝜁2(𝑠), 𝜁1(𝑠) 𝑍𝑜(𝑠)⁄  and 𝜁2(𝑠) 𝑍𝑜(𝑠)⁄ . 

Replacing resistances by impedances amounts to replacing a simple multiplication by a 

constant positive value in the weight coefficients by integral operators. Equations 

(3.11),(3.12) and (3.17),(3.18) are examples of the general transmission coupling 

conditions introduced in the work of Gander et al. on the optimized WR applied to circuit 

problems [74, eq. (2.9)] [74, eq. (2.5)]. A careful choice of these coupling impedances or 

kernels will enhance the convergence of WR over resistive coupling.    

3.2.2 Feasibility 

Opposite impedances (−𝜁1(𝑠)) and (−𝜁2(𝑠)) must have a time-domain realization to 

directly implement insertion {−𝜁1(𝑠), 𝜁Σ(𝑠), −𝜁2(𝑠)}. It can be demonstrated that if the 

one-port circuit 𝑀 is a realization of 𝜁, composed of lumped resistances 𝑅, lumped 

inductances 𝐿, lumped capacitances 𝐶 and lossless elements (𝑍𝑐, 𝜏) with a delay then, the 

replacement in 𝑀 of every 𝑅 by (−𝑅), of every 𝐿 by (−𝐿), of every 𝐶 by (−𝐶), and of 
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every (𝑍𝑐, 𝜏) by (−𝑍𝑐, 𝜏),  results in a realization for (−𝜁). Here, 𝑍𝑐 and 𝜏 represent the 

characteristic impedance and delay of a lossless transmission line or line segment [98]. 

Now that it has been established that dissipative impedance coupling WR is a general 

algorithm, its consistency and optimal convergence are examined. 

3.2.3 Properties of impedance coupling based WR 

 Consistency  

If the proposed WR algorithm converges, then it is essential to know whether the WR 

solution is indeed the correct system solution. A requirement which is satisfied according 

to the following lemma. 

Lemma 3.1 (consistency). If a dissipative impedance coupling-based WR algorithm 

converges, then it always converges to the correct system solution.  

Proof.  Transmission condition equations (3.11) and (3.12) can be written in the 

frequency domain under the following form  

[�̃�0(𝑠) − �̃�0(𝑠)] − 𝜁2(𝑠)[𝑖1̃(𝑠) − 𝑖̃2(𝑠)] = 0 

(3.19) [�̃�0(𝑠) − �̃�0(𝑠)] + 𝜁1(𝑠)[𝑖1̃(𝑠) − 𝑖̃2(𝑠)] = 0 

The WR algorithm converges to the correct system response if and only if the 

homogeneous system (3.19) of the two equations with respect to unknowns [�̃�0(𝑠) −

�̃�0(𝑠)]  and [𝑖1̃(𝑠) − 𝑖̃2(𝑠)] accepts the zero solution. That is its determinant 𝜁Σ(𝑠) ≔

𝜁1(𝑠) + 𝜁2(𝑠) ≠ 0 for all ℜ(𝑠) ≥ 0. A condition which is satisfied since ℜ(𝜁Σ(𝑠)) > 0 

for all ℜ(𝑠) ≥ 0. Now, let us consider transmission conditions equations (3.17) and 

(3.18). They can be put under the following form in the frequency domain 

(1 +
𝜁2(𝑠)

𝑍𝑜(𝑠)
) [�̃�0(𝑠) − �̃�1(𝑠)] −

𝜁2(𝑠)

𝑍𝑜(𝑠)
[�̃�−1(𝑠) − �̃�0(𝑠)] = 0 

(3.20) 
−

𝜁1(𝑠)

𝑍𝑜(𝑠)
[�̃�0(𝑠) − �̃�1(𝑠)] + (1 +

𝜁1(𝑠)

𝑍𝑜(𝑠)
) [�̃�−1(𝑠) − �̃�0(𝑠)] = 0 

Again, the WR method converges to the correct system response if and only if the 

homogeneous system (3.20) of the two equations with respect to unknowns [�̃�0(𝑠) −
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�̃�1(𝑠)]  and [�̃�−1(𝑠) − �̃�0(𝑠)] accepts the zero solution. That is its determinant 𝜁Σ(𝑠) ≔

𝜁1(𝑠) + 𝜁2(𝑠) + 𝑍𝑜(𝑠) ≠ 0 for all ℜ(𝑠) ≥ 0. A condition which is satisfied since 

ℜ(𝜁Σ(𝑠)) > 0 for all ℜ(𝑠) ≥ 0.                                                                                        ∎                                                                                                            

It is worth mentioning that condition 𝜁Σ(𝑠) ≠ 0 for eqs. (3.17) and (3.18), represents 

consistency condition 𝛽−1(𝑠) ≠ 𝛼−1(𝑠) + 1 [75, (2.10)] after taking 𝛼(𝑠) =

𝑍𝑜(𝑠) 𝜁2(𝑠)⁄  and 𝛽(𝑠) = −𝑍𝑜(𝑠) 𝜁1(𝑠)⁄  for the case where strictly dissipative element 𝑍𝑜 

connects 𝑁1 and 𝑁2. Second, same condition 𝜁Σ(𝑠) ≠ 0 this time for eqs. (3.11) and 

(3.12), corresponds to consistency condition 𝛼(𝑠) ≠ 𝛽(𝑠) [74, Sec. 2.2] after taking 

𝛼−1(𝑠) = −𝜁2(𝑠) and 𝛽−1(𝑠) = 𝜁1(𝑠) for the case where these parts are directly 

connected.                                               

Note that the strict positive-realness condition imposed on 𝜁1(𝑠) and 𝜁2(𝑠) is stronger 

than the consistency condition derived in the oWR [74],[75]. This is to also guarantee 

realizability and stability of the expanded system [99]. The next section studies the 

convergence of the WR algorithm.                                                                                                                                 

 Convergence 

Convergence is examined here for any passive LTI circuit [96] using GJ relaxation. 

Similar analysis is carried out for the GS case. It is supposed that source signals are 

continuously zero for 𝑡 < 0. Their time-domain waveforms are represented by piecewise 

continuous functions on any closed interval along the positive real line. They are 

absolutely and square absolutely integrable functions. In LTI passive circuits, input 

signals of 𝐿1 type ensure the existence of the Laplace integral for any current or voltage 

waveform on region ℜ(𝑠) ≥ 0. The 𝐿2 type characterizes a signal of finite energy in time 

and represents a key assumption that helps describe the convergence condition in the 

sense of a weighted Lebesgue 𝐿2norm in the time-domain. Let 𝑍𝑖𝑛1(𝑠) and 𝑍𝑖𝑛2(𝑠) be the 

input impedances of 𝑁1 and 𝑁2 taken both between nodes a and c when the two parts are 

directly connected (Figure 3.4), or between nodes a and c for 𝑁1 and b and c for 𝑁2 in the 

presence of element 𝑍𝑜(𝑠) (Figure 3.5). The condition of convergence is given by the 

next theorem 
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Theorem 3.2. (condition of convergence). The dissipative impedance coupling-based WR 

admits a convergence factor 𝜌(𝑠) defined as 

𝜌(𝑠) =
(𝑍𝑖𝑛1(𝑠) − 𝜁1(𝑠))(𝑍𝑖𝑛2(𝑠) − 𝜁2(𝑠))

(𝑍𝑖𝑛1(𝑠) − 𝜁1(𝑠) + 𝜁Σ(𝑠))(𝑍𝑖𝑛2(𝑠) − 𝜁2(𝑠) + 𝜁Σ(𝑠))
 (3.21) 

It converges for all time 𝑡 ≥ 0 if and only if |𝜌(𝑠)| < 1 for all 𝑠 ∈ ℂ and ℜ(𝑠) ≥ 0.  

Proof. In the time-domain, modified nodal analysis (MNA) formulation of circuit 

equations leads in general to systems of linear differential algebraic equations (DAE) or 

delay differential algebraic equations (DDAE) with discrete constant delays and constant 

coefficients. Let 𝒙(𝑡) be the vector of all current and voltage variables in the MNA 

equations. If 𝜺𝒙
(𝑘)(𝑡) represents the difference between the exact solution 𝐱(𝑡) and its 

𝑘𝑡ℎ iterate 𝒙(𝑘)(𝑡) at iteration 𝑘: 𝜺𝒙
(𝑘)(𝑡) = 𝐱(𝑡) − 𝒙(𝑘)(𝑡) then, error 𝜺𝒙

(𝑘)(𝑡) is a 

solution of the subsequent homogeneous linear DAE or DDAE with homogeneous initial 

conditions. The Laplace transform �̃��̃�
(𝑘)(𝑠) = �̃�(𝑠) − �̃�(𝑘)(𝑠) of error 𝜺𝒙

(𝑘)(𝑡), satisfies 

the frequency-domain formulation of the homogeneous system obtained after replacing 

subcircuits 𝑁1 and 𝑁2 with their input impedances 𝑍𝑖𝑛1(𝑠) and 𝑍𝑖𝑛2(𝑠) in Figure  3.7.  

First, recursive equations (3.1) and (3.2) are expressed in terms of the iteration errors 

𝜀𝑢1
(𝑡), 𝜀𝑢2

(𝑡), 𝜀𝑤−1
(𝑡) and 𝜀𝑤−2

(𝑡) in voltages 𝑢1(𝑡), 𝑢2(𝑡), 𝑤−1(𝑡) and 𝑤−2(𝑡) as 

follows  

𝜀�̃̃�2

(𝑘+1)(𝑠) = 𝜀�̃̃�−1

(𝑘)(𝑠) (3.22) 

 

Figure 3.5: Convergence analysis circuit. 
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𝜀�̃̃�−2

(𝑘+1)(𝑠) = 𝜀�̃̃�1

(𝑘+𝜐)(𝑠) (3.23) 

in the frequency domain. Next, replacing 𝜀�̃̃�1
(𝑠) and 𝜀�̃̃�−1

(𝑠) by their expressions 

𝜀�̃̃�1
(𝑠) = 𝜌1 2⁄ (𝑠) 𝜀�̃̃�2

(𝑠) (3.24) 

𝜀�̃̃�−1
(𝑠) = 𝜌2 1⁄ (𝑠) 𝜀�̃̃�−2

(𝑠) (3.25) 

𝜌1 2⁄ (𝑠) = (𝑍𝑖𝑛1(𝑠) − 𝜁1(𝑠)) (𝑍𝑖𝑛1(𝑠) − 𝜁1(𝑠) + 𝜁Σ(𝑠))⁄  (3.26) 

𝜌2 1⁄ (𝑠) = (𝑍𝑖𝑛2(𝑠) − 𝜁2(𝑠)) (𝑍𝑖𝑛2(𝑠) − 𝜁2(𝑠) + 𝜁Σ(𝑠))⁄  (3.27) 

obtained with voltage divider formula in (3.22) and (3.23) at iteration (𝑘 + 2) leads to  

𝜀�̃̃�2

(𝑘+2)(𝑠) = 𝜌2 1⁄ (𝑠)𝜀�̃̃�1

(𝑘)(𝑠) and 𝜀�̃̃�−2

(𝑘+2)(𝑠) = 𝜌1 2⁄ (𝑠)𝜀�̃̃�−1

(𝑘)(𝑠). Applying eqs. 

(3.24) and (3.25) a second time leads to 𝜀�̃̃�2

(𝑘+2)(𝑠) = 𝜌1 2⁄ (𝑠) 𝜌2 1⁄ (𝑠) 𝜀�̃̃�1

(𝑘)(𝑠) and 

𝜀�̃̃�−2

(𝑘+2)(𝑠) = 𝜌1 2⁄ (𝑠) 𝜌2 1⁄ (𝑠) 𝜀�̃̃�−1

(𝑘)(𝑠), and to the following general expressions  

𝜀�̃̃�2

(2𝑘)(𝑠) = (𝜌1 2⁄ (𝑠) 𝜌2 1⁄ (𝑠))
𝑘

𝜀�̃̃�2

(0)(𝑠) (3.28) 

𝜀�̃̃�−2

(2𝑘)(𝑠) = (𝜌1 2⁄ (𝑠) 𝜌2 1⁄ (𝑠))
𝑘

𝜀�̃̃�−2

(0)(𝑠) (3.29) 

Error sequences (𝜀�̃̃�2

(2𝑘))
𝑘∈ℕ

 (𝜀�̃̃�−2

(2𝑘))
𝑘∈ℕ

 converge to zero if and only if |𝜌1 2⁄ 𝜌2 1⁄ | <

1 for all 𝑠 ∈ ℂ and ℜ(𝑠) ≥ 0. Coefficient 𝜌(𝑠) = 𝜌1 2⁄ (𝑠) 𝜌2 1⁄ (𝑠) represents the 

convergence factor of the proposed WR algorithm. 

Next, the implication of condition |𝜌(𝑠)| < 1 for 𝑠 ∈ ℂ and ℜ(𝑠) ≥ 0,  must be sought 

for what concerns time-domain errors. Since a LTI system that is passive is also causal 

[100] and because all signals are continuously zero for 𝑡 < 0, unilateral Laplace 

transform 𝜀�̃̃�2
(𝑠) of 𝜀𝑢2

(𝑡) and Fourier transform �̂�𝑢2
(𝑖𝜔) of function 𝐸𝑢2

(𝑡) =

𝑒−𝜎𝑡𝜀𝑢2
(𝑡) are related by: 
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𝜀�̃̃�2
(𝜎 + 𝑖𝜔) = �̂�𝑢2

(𝑖𝜔) 

(3.30) 𝑠 = 𝜎 + 𝑖𝜔, 𝜎 ≥ 0, 𝜔 ∈ ℝ, and 𝑖2 = −1 

A similar relation is also derived for error 𝜀𝑤−2
(𝑡). Replacing 𝜀�̃̃�2

(2𝑘)(𝑠) and 𝜀�̃̃�2

(0)(𝑠) in 

(3.28) by their corresponding Fourier transforms in (3.30), then taking the square of their 

absolute values leads to  

|�̂�𝑢2

(2𝑘)
(𝑖𝜔)|

2

≤ (sup
𝜎≥0
𝜔∈ℝ

|𝜌(𝜎 + 𝑖𝜔)|)

2𝑘

|�̂�𝑢2

(0)
(𝑖𝜔)|

2

 (3.31) 

Rate 𝜌(𝑠) in (3.21) is analytic on region 𝜎 ≥ 0 by the properties of strictly positive-real 

functions [92],[96]. Hence, its modulus |𝜌(𝑠)| possesses a maximum by the maximum 

principal of complex analytic functions [92] and inequality (3.31) is therefore justified. 

Next, integrating both sides in inequality (3.31) on the real line leads to       

∫ |�̂�𝑢2

(2𝑘)
(𝑖𝜔)|

2

𝑑𝜔
+∞

−∞

≤ (sup
𝜎≥0
𝜔∈ℝ

|𝜌(𝜎 + 𝑖𝜔)|)

2𝑘

∫ |�̂�𝑢2

(0)
(𝑖𝜔)|

2+∞

−∞

𝑑𝜔 (3.32) 

since 𝜀𝑢2
∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ). Finally, The application of Parseval formula [101] results in 

the following interpretation of (3.32) in the time-domain 

‖𝑒−𝜎𝑡𝜀𝑢2

(2𝑘)
(𝑡)‖

𝐿2
≤ (sup

𝜔∈ℝ
|𝜌(𝜎 + 𝑖𝜔)|)

𝑘

‖𝑒−𝜎𝑡𝜀𝑢2

(0)
(𝑡)‖

𝐿2
 (3.33) 

Condition |𝜌(𝑠)| < 1 ensures WR converge for all time 𝑡 ≥ 0 in the sense of a weighted 

‖𝑒−𝜎𝑡. ‖𝐿2 norm when 𝜎 > 0 and in the sense of 𝐿2 norm when 𝜎 = 0. ∎      

Next, the optimal impedances 𝜁1(𝑠) and 𝜁2(𝑠) are derived from the expression of the 

local convergence rate 𝜌(𝑠) in (3.21).  
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Theorem 3.3. (optimal convergence for two subsystems). Dissipative coupling WR 

algorithm converges in two iterations if 𝜁1(𝑠) = 𝑍𝑖𝑛1(𝑠) or 𝜁2(𝑠) = 𝑍𝑖𝑛2(𝑠) 

independently of initial waveforms. 

Proof.  It suffices to notice that 𝜁1(𝑠) = 𝑍𝑖𝑛1(𝑠) or 𝜁2(𝑠) = 𝑍𝑖𝑛2(𝑠) makes 𝜌(𝑠) vanish 

and results in 𝜀�̃̃�2

(2)(𝑠) = 𝜀�̃̃�2

(3)(𝑠) = 𝜀�̃̃�2

(4)(𝑠) = ⋯ = 0. Convergence occurs after two 

iterations.                                                                                                                            ∎                                                                                            

  Transmission condition equations (3.11),(3.12) and (3.17),(3.18) are optimal when 

𝜁1(𝑠) = 𝑍𝑖𝑛1(𝑠) and 𝜁2(𝑠) = 𝑍𝑖𝑛2(𝑠) for a two-subsystem partition.  According to [75, 

Thm. 4.1], WR method converges in exactly 𝑁 GJ iterations for 𝑁 cascaded sub-systems 

when all its transmission conditions are optimal. The following theorem presents a circuit 

interpretation of such optimal result.  

Theorem 3.4. (optimal convergence for 𝑁 cascaded subsystems). Dissipative impedance 

coupling-based WR algorithm converges in 𝑁 GJ iterations for 𝑁 cascaded parts, if every 

two consecutive parts 𝑃𝑙 and 𝑃𝑙+1, 1 ≤ 𝑙 ≤ 𝑁 − 1 are decoupled with 𝜁𝑙(𝑠) and 𝜁𝑙+1(𝑠) 

taken exactly equal to their input impedances at the interface between them.      

Rate 𝜌(𝑠) in (3.21) is an analytic complex function of frequency 𝑠 [92],[96]. It attains its 

maximum on the boundary of its domain of definition ℜ(𝑠) = 𝜎 ≥ 0 according to the 

maximum principle [92]. The results of Theorems 3.3 and 3.4 allow an informed choice 

on the type of approximations to consider for a given circuit partition. Any approximation 

𝜁(𝑠) must be of lower order than 𝑍(𝑠) to expect a cost-efficient WR algorithm. In 

transmission line circuits, the interconnect dominated subcircuit behaves as a low pass 

filter due to the dielectric shunt distributive capacitance of its lines. When 𝜎 → ∞ or 𝜔 →

∞ ie |𝑠| → ∞, the interconnect becomes a resistance after the reactive part of its input 

impedance 𝑍(𝑠) dies out. Any valid approximation 𝜁(𝑠) is expected to produce a similar 

low-pass filter behavior or at least stay constant, which makes |𝜌(𝑠)| < 1. The presence 

of overlap 𝑍𝑜 between two interconnect parts in the circuit will further lower the limit 

value of |𝜌(𝑠)| at high frequencies (3.21). For 𝜎 = 0 and 𝜔 → 0, the input impedance 

𝑍(𝑠) of an interconnect dominated subcircuit increases rapidly due its reactive part. A 
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valid approximation 𝜁(𝑠) must also have the same behavior or at least stay constant. 

Since the order of 𝜁(𝑠) is less than the order of 𝑍(𝑠), kernel 𝜁(𝑠) is not expected to 

increase as quickly as 𝑍(𝑠), which will increase |𝜌(𝑠)| and makes it close to one. The 

analytic function 𝜌(𝑠) attains its maximum values on the part 𝜎 = 0 of the boundary of 

its domain of definition. Condition (3.33) is considered for 𝐿2 norm, and convergence 

analysis is performed in Fourier domain. Moreover, 𝜌(𝑖𝜔) in (3.21) satisfies |𝜌(𝑖𝜔)| =

|𝜌(−𝑖𝜔)| for all 𝜔 ∈ ℝ [96, Chap. 1]. The time-domain condition of convergence (3.33) 

can be simplified to 

‖𝜀𝑢2

(2𝑘)(𝑡)‖
𝐿2 ≤ (sup

𝜔≥0
|𝜌(𝑖𝜔)|)

𝑘

‖𝜀𝑢2

(0)(𝑡)‖
𝐿2 (3.34) 

The proof of Theorem 3.2 concerns a continuous WR algorithm where exact solution 

𝐱(𝑡) is known. In practice, 𝐱(𝑡) is apriori unavailable to compute errors 𝜀𝑢2

(𝑘)(𝑡) and 

𝜀𝑤−2

(𝑘)(𝑡) after every iteration 𝑘. To monitor convergence, the relaxation algorithm 

instead calculates differences 𝑒𝑢2

(𝑘+1)(𝑡) = 𝑢2
(𝑘+1)(𝑡) − 𝑢2

(𝑘)(𝑡) and 𝑒𝑤−2

(𝑘+1)(𝑡) =

𝑤−2
(𝑘+1)(𝑡) − 𝑤−2

(𝑘)(𝑡), 𝑘 ∈ ℕ, from the last two iterates of its external variables 𝑢2(𝑡) 

and 𝑤−2(𝑡) at the end of every iteration (𝑘 + 1). Similarly, it is found that errors 𝑒𝑢2
(𝑡) 

and 𝑒𝑤−2
(𝑡) satisfy same recurrent relations �̃�𝑢2

(𝑘+2)(𝑠) = 𝜌(𝑠) �̃�𝑢2

(𝑘)(𝑠) and 

�̃�𝑤−2

(𝑘+2)(𝑠) = 𝜌(𝑠) �̃�𝑤−2

(𝑘)(𝑠) in the frequency-domain and also show convergence for 

the same condition |𝜌(𝑖𝜔)| < 1, 𝜔 ≥ 0. The practical WR iteratively approaches the 

solution on discrete time instants. The Euclidian norm naturally replaces the 𝐿2 norm.  

However, any other norm can also be used in the discretized WR since the solution space 

is of finite dimension where all norms are equivalent.  

Next, a coupling strategy is presented for the WR analysis of transmission line circuits. 

The assignment-partitioning step of the proposed method concerns the one-node overlap 

case (Figure 3.1). Coupling impedances 𝜁1(𝑖𝜔) and 𝜁2(𝑖𝜔) in every neutral insertion 

{−𝜁1(𝑖𝜔), 𝜁Σ(𝑖𝜔), −𝜁2(𝑖𝜔)}, which represent the operators’ kernels in the companion 

transmission condition equations (3.11),(3.12) are constant and rational-with-delay 

functions in the frequency-domain. 
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3.2.4 Coupling strategy  

The partitioning scheme described in section 2.1.6 of this thesis or in [97, Sec. II.F], is 

used to locate potential nodes where insertions {−𝜁1(𝑖𝜔), 𝜁Σ(𝑖𝜔), −𝜁2(𝑖𝜔)} are added in 

the circuit. Every subcircuit contains one transmission line. Every added insertion 

(−𝜁𝑘
𝑘,𝑙(𝑖𝜔), 𝜁Σ

𝑘,𝑙(𝑖𝜔), −𝜁𝑙
𝑘,𝑙(𝑖𝜔)) at a split node between subcircuit 𝑁𝑘 and a neighbor 𝑁𝑙, 

appends 𝑁𝑘 with two series impedances (−𝜁𝑘
𝑘,𝑙(𝑖𝜔)) and 𝜁Σ

𝑘,𝑙(𝑖𝜔) whose equivalent 

impedance 𝜁𝑙
𝑘,𝑙(𝑖𝜔) = −𝜁𝑘

𝑘,𝑙(𝑖𝜔) + 𝜁Σ
𝑘,𝑙(𝑖𝜔). Every input impedance 𝑍𝑘

𝑘,𝑙(𝑖𝜔) of the 

enlarged subcircuit of 𝑁𝑘 is taken at the split node between 𝑁𝑘 and its neighbor 𝑁𝑙. An 

efficient rational-with-delay approximation 𝜁𝑘
𝑘,𝑙(𝑖𝜔) of the optimal kernel  𝑍𝑘

𝑘,𝑙(𝑖𝜔) must 

capture the system delay of the enlarged subcircuit 𝑁𝑘. To avoid this complication, 

𝜁𝑘
𝑘,𝑙(𝑖𝜔) is set to capture the delay of the transmission line in 𝑁𝑙 only by taking all 

𝜁
𝑙′
𝑘,𝑙′

(𝑖𝜔),  𝑙′ ≠ 𝑙, from other insertions (−𝜁𝑘
𝑘,𝑙′

(𝑖𝜔), 𝜁Σ
𝑘,𝑙′

(𝑖𝜔), −𝜁
𝑙′
𝑘,𝑙′

(𝑖𝜔)) as resistances 

of apriori adhoc known values. The objective is to simplify the approximation procedure, 

lower the number of rational-with-delay approximations, and keep the size of the 

enlarged parts minimum. The following points emanate from this discussion, they help 

decide whether a coupling impedance should be simply a constant or a rational-with-

delay function. 

1. Every two adjacent subcircuits are decoupled with a resistance and a rational-with-

delay impedance. 

2. Coupling impedances associated with the same subcircuit must be of same kind; all 

resistances or all rational-with-delay impedances. 

The next point sets the values of the coupling resistances. 

3. Every coupling resistance takes the value min {√𝑅 𝐺⁄ , √𝐿 𝐶⁄  , 𝑍𝑖𝑛(𝑗0) } where 𝑅, 𝐿, 

𝐶, 𝐺 are the PUL parameters of the line in its associated subcircuit and 𝑍𝑖𝑛(𝑗0) is its 

input impedance at DC whenever available. 
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Once every two added serial impedances (−𝜁𝑘
𝑘,𝑙′

(𝑖𝜔)) and 𝜁Σ
𝑘,𝑙′

(𝑖𝜔), 𝑙′ ≠ 𝑙,  are replaced 

with their equivalent 𝜁
𝑙′
𝑘,𝑙′

(𝑖𝜔) = −𝜁𝑘
𝑘,𝑙′

(𝑖𝜔) + 𝜁Σ
𝑘,𝑙(𝑖𝜔) in the appended subcircuit of 𝑁𝑘, 

the resulting subcircuit possesses a well-defined structure: a serial connection of one 

single transmission line and two lumped and passive RLC circuits, one at each end. This 

circuit will represent a realization of the rational-with-delay approximation 𝜁𝑘
𝑘,𝑙(𝑖𝜔) of 

𝑍𝑘
𝑘,𝑙(𝑖𝜔) after its unique transmission line is represented in the time-domain with a very 

coarse DEPACT macromodel [102],[103]. The main reason of using a coarse 

macromodel is not to capture the losses in the line but to capture a major part of its delay 

by means of the delay-extraction step of the DEPACT. An approach which gets more 

relevant when lines are long and low loss. The duplication of the passive lumped RLC 

circuits helps get approximation 𝜁𝑘
𝑘,𝑙(𝑖𝜔) very close to 𝑍𝑘

𝑘,𝑙(𝑖𝜔) at very low frequencies. 

The following analysis elaborates on this idea. 

Using the exact transverse description of a single line [94], input impedance 𝑍𝑘
𝑘,𝑙(𝑖𝜔) of 

the enlarged subcircuit 𝑁𝑘 is estimated by   

𝑍𝑘
𝑘,𝑙(𝑖𝜔) = 𝑉𝑍(𝑖𝜔) 𝐼𝑍(𝑖𝜔)⁄  (3.35) 

[
𝑉𝑍(𝑖𝜔)

𝐼𝑍(𝑖𝜔)
] = (𝒂(𝑖𝜔) e𝑨+𝑖𝜔𝑩 𝒃(𝑖𝜔)) [

1
0

] 

(3.36) 

𝑨 = [
0 −𝑅

−𝐺 0
] 𝑑,  𝑩 = [

0 −𝐿
−𝐶 0

] 𝑑 

where 𝒂(𝑖𝜔) ∈ ℂ2×2 is the chain parameter matrix of the RLC circuit located on the side 

where 𝑍(𝑖𝜔) is measured. The second RLC circuit at the other end possesses a chain 

parameter matrix 𝒃(𝑖𝜔) ∈ ℂ2×2. Term  e𝑨+𝑖𝜔𝑩 is the matrix exponential stamp of the 

single line, and 𝑅, 𝐿, 𝐶, 𝐺 and 𝑑 are its per unit length (PUL) parameters and physical 

length respectively [94]. The approximating impedance 𝜁𝑘
𝑘,𝑙(𝑖𝜔)is expressed as follows 

𝜁𝑘
𝑘,𝑙(𝑖𝜔) = 𝑉𝜁(𝑖𝜔) 𝐼𝜁(𝑖𝜔)⁄  (3.37) 
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[
𝑉𝜁(𝑖𝜔)

𝐼𝜁(𝑖𝜔)
] = (𝒂(𝑖𝜔) (∏ 𝑒

𝑨
2𝑚𝑒𝑖𝜔

𝑩
𝑚𝑒

𝑨
2𝑚

𝑚

𝑟=1

)  𝒃(𝑖𝜔)) [
1
0

] (3.38) 

By forcing 𝐼𝑍 = 𝐼𝜁 = 1𝐴 in (3.36) and (3.38), difference (𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)) satisfies  

‖𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)‖ < ‖𝒂 (e𝑨+𝑗𝜔𝑩 − ∏ 𝑒
𝑨

2𝑚 𝑒𝑗𝜔
𝑩
𝑚 𝑒

𝑨
2𝑚

𝑚

𝑟=1

) 𝒃‖ (3.39) 

for 𝜔 ≥ 0 in any sub-multiplicative norm. Difference (e𝑨+𝑖𝜔𝑩 − ∏ 𝑒
𝑨

2𝑚 𝑒𝑖𝜔
𝑩

𝑚 𝑒
𝑨

2𝑚𝑚
𝑟=1 ) 

represents the macromodeling error [102]. It converges to zero when 𝑚 → ∞. In the 

search of the minimal order 𝑚, impedance mismatch |(𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)) 𝑍𝑘
𝑘,𝑙(𝑖𝜔)⁄ | is 

computed iteratively and is used as an estimate for rate |𝜌(𝑖𝜔)|. Order m is taken at the 

smallest value that yields |(𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)) 𝑍𝑘
𝑘,𝑙⁄ (𝑖𝜔)| < 1 for 0 ≤ 𝜔 ≤ 𝜔𝑚𝑎𝑥 

according to the pseudocode of Figure 3.6. Value 𝜔𝑚𝑎𝑥 is the largest practically relevant 

frequency for TL problems [104]. 

Input: -Frequency sampling J of  [0, 𝑓𝑚𝑎𝑥]. 
-Matrices 𝒂 and 𝒃 

-p.u.l parameters and length of TL of 𝑁𝑘 

Output: DEPACT coarse model order 𝑚 

Procedure Coarse_Model_Order 

1. Begin 

2. calculate 𝑍𝑘
𝑘,𝑙(𝑖𝜔) using (21),(22)   

3. initialize 𝑚 = 0 

4. Repeat 

5. take 𝑚 = 𝑚 + 1 

6. calculate 𝜁𝑘
𝑘,𝑙(𝑖𝜔) using (23),(24) 

7. calculate |(𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)) 𝑍𝑘
𝑘,𝑙(𝑖𝜔)⁄ | 

8. Until |(𝑍𝑘
𝑘,𝑙(𝑖𝜔) − 𝜁𝑘

𝑘,𝑙(𝑖𝜔)) 𝑍𝑘
𝑘,𝑙(𝑖𝜔)⁄ | < 1 on J 

9. Return 𝑚 

10. End  

Figure 3.6: Computation of order 𝒎 of coarse DEPACT model. 
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Note that directives 1 and 2 do not produce a unique assignment for a given multi-

subcircuit partition. They serve mainly to ensure all rational-with-delay approximations 

are constructed only for subcircuits where transmission lines are their only passive circuit 

elements with delay. Finally, the main steps in the application of the proposed method are 

summarized in Figure 3.7. 

3.2.5 Computational cost analysis 

The study concerns an arborescent TL circuit which contains n transmission lines. It is 

partitioned into n subcircuits grouped in m levels, m < n. Every level 𝑘, 𝑘 = 1. 2, … , m 

contains 𝑛𝑘 non-adjacent subcircuits where 𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛m because of branching. A 

1. Apply the partitioning scheme, see section 2.1.6, on a TL circuit 𝑁 and obtain the 

set of 𝑀 subcircuits 𝑁𝑘, 1 ≤ 𝑘 ≤ 𝑀. 

2. Use directives 1 and 2 to set a type for every WR parameter in the partition. 

3. Use directive 3 to attribute a value to all coupling resistances. 

4. Construct all realizations of rational- with-delay approximations and their 

opposites.    

5. Augment all subcircuits. 

6. Group subcircuits into levels. 

7. Set all relaxation sources to zero DC. 

8. Set the number of rounds 𝑟 = 1 

9. Set the queue of work tasks to be executed, ordering levels in forward and 

backward directions. 

10. FOR every level DO the following in parallel using p processors 

10.1. Simulate all current sub-circuits for the entire time interval of interest. 

10.2. Update all upstream (downstream) relaxation sources 𝑤(𝑡)using (4) in the 

forward (backward) direction. 

11. At the end of every round, compute error using [32, eq. (27)] 

12. IF error ≤ tolerance, exit ELSE GO TO step 9. 

Figure 3.7: Main steps in the application of the WR-LP algorithm. 
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cost analysis of a WR solution is challenging in the general case. To simplify the 

analysis, it is assumed that: 1) All subcircuits exhibit the same computational cost for 

time-domain analysis, which results in a balanced partition. 2) Every subcircuit in level 

𝑘 = 1,2, … , m − 1 branches out to 𝑞𝑘 subcircuits in level 𝑘 + 1, which necessitates 𝑛𝑘+1 

be a multiple of 𝑛𝑘. 3) For every level, the allocated coupling impedances to its 

subcircuits are either all resistances or all rational-with-delay functions built around 

DEPACT models of same order. The resulting enlarged subcircuits that belong to the 

same level have the same computational cost. This will eliminate any threads overlap due 

to differences in the cost analysis between these subcircuits. For a fixed number  𝑝 of 

available processors, assumptions 1), 2) and 3) describe in fact a partition which yields a 

minimum-cost solution per level and per round. 

The cost of solving the original circuit is 𝜙o = O(𝛽𝛼n𝛼), where 𝛽 denotes the size of 

one subcircuit and 𝛼 typically varies from 1.1 to 2.4 depending on the sparsity of circuit 

matrices [109]. If overhead due to memory latencies and sources update, is ignored; last 

point is justified since it is a basic exchange of nodal voltages, then the computational 

cost 𝜙WR of a WR solution is approximated by 

𝜙WR = r 𝜑 O(𝛽𝛼) (3.40) 

𝜑 = ∑ 𝑎𝑘⌈𝑛𝑘 𝑝⁄ ⌉
m

𝑘=1
O((1 + 𝑏𝑘 Δ𝛽 𝛽⁄ )𝛼) 

𝑎1 = 𝑎m = 1, and 𝑎𝑘 = 2 otherwise.  

 

where ⌈. ⌉ is the ceiling operator, r is the number of rounds. and Δ𝛽 represents the 

increase in the size 𝛽 of a subcircuit caused by appending it with the realization of one 

rational-with-delay approximation. Coefficients 𝑏𝑘 in (3.40) represent the increase in size 

𝛽 of subcircuits caused by the impedance coupling scheme. They are functions of fan-

outs 𝑞𝑘. They also depend on the parities of number m and the enumeration 𝑘 of the level 

whose subcircuits received rational-with-delay impedances, as reported in Table 3.1. 

Note that all subcircuits in levels 𝑘 = 2, . . , m − 1 are solved twice per round, once in 

every direction, hence 𝑎𝑘 = 2. Whereas subcircuits in levels 1 and m are solved once, 
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which amounts to 𝑎1 = 𝑎m = 1. To get an idea of the CPU time efficiency of the WR 

algorithm, cost ratio is considered 

𝜙o 𝜙WR⁄ = Ο(n𝛼) (r𝜑)⁄  (3.41) 

Ideally, the cost of solving a n-subsystem partition with m levels can be brought down to 

r ∑ 𝑎𝑘𝑂((𝛽 + 𝑏𝑘Δ𝛽)𝛼)m
𝑘=1  with a number of processors 𝑝 = max(𝑛𝑘), 𝑘 ∈ [1, m]. In 

other words, the cost 𝜙WR cannot be less than that of m cascaded subcircuits of sizes 

(𝛽 + 𝑏𝑘Δ𝛽), 1 ≤ 𝑘 ≤ m and of same complexity 𝛼.  The WR efficiency has a maximum 

theoretical value 𝑂(n𝛼) (r ∑ 𝑎𝑘𝑂((1 + 𝑏𝑘 Δ𝛽 𝛽⁄ )𝛼)m
𝑘=1 )⁄ .  

3.2.6 Concluding remarks 

Several relevant points regarding the theory and implementation of the proposed 

algorithm are worth noting. 

1) When optimization is used to determine the best approximations of the optimal 

parameters, the set of constraints of the corresponding min-max problem represents 

Table 3.1: Coefficients.  Computational cost analysis 

 m  is even m is odd 

 A B A B 

𝑏1 = 2𝑞1 𝑞1 2𝑞1 𝑞1 

𝑏2𝑘′ = 1 + 𝑞2𝑘′  2(1 + 𝑞2𝑘′) 1 + 𝑞2𝑘′ 2(1 + 𝑞2𝑘′) 

𝑏2𝑘+1 =   2(1 + 𝑞2𝑘′+1)  1 + 𝑞2𝑘′+1 2(1 + 𝑞2𝑘′+1) 1 + 𝑞2𝑘′+1 

𝑏𝑚 = 1 2 2 1 

A (or B): Allocate rational-with-delay approximations to all subcircuits in odd (or 

even) numbered levels. 
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the conditions which ensure the positive realness of the approximating functions 

themselves. 

2) The pseudocode of Figure 3.6 can be implemented in Matlab [105] or any other high-

level language. The iterative process involves direct 2x2 matrix operations and 

concerns low values of order 𝑚. The cost of the search is very low and does not have 

a significant impact on the efficiency of the method. 

3) Main steps 4, 5 and 6 in the application of WR (Figure 3.7) can be automated using a 

DEPACT parameters generator with a circuit netlist generator to obtain the complete 

netlist of every extended subcircuit, or directly using a DEPACT matrices generator 

with selector matrices to construct the system matrices of every extended subcircuit 

4) Numerical experiments showed that condition |(𝑍(𝑖𝜔) − 𝜁(𝑖𝜔)) 𝑍⁄ (𝑖𝜔)| < 1 on 

[0, 𝜔𝑚𝑎𝑥] is conservative in the sense that the mismatch can exceed one on the high-

frequency end of [0, 𝜔𝑚𝑎𝑥] and still yields local rate |𝜌(𝑖𝜔)| < 1. The applicability 

of WR is subject to satisfying the convergence condition |𝜌(𝑖𝜔)| < 1 which can be 

verified on a frequency sampling of [0, 𝜔𝑚𝑎𝑥]. If the condition is violated at some 

frequency points, then order 𝑚 can be increased. 

3.3 Numerical Examples 

Four transverse-electromagnetic-mode type TL circuits are produced and simulated 

using a custom circuit simulator which is implemented in MATLAB on a dual quad-core 

Xeon-Phi 2630 (1.6Ghz) machine with 64GB RAM. The first example shows the very 

fast convergence of impedance coupling for a two-line circuit. The second example 

illustrates the convergence scalability with the simulation window length for a cascade 

connection of transmission lines. In the third example, the solution of an arborescent TL 

circuit on a parallel machine shows further runtime saving. The fourth example compares 

impedance coupling with the optimized explicit result derived for RLCG type line [77]. 

In examples one, two and three, a comparison with resistive coupling [97] is also 

produced.  In all examples, maximum truncation frequency 𝑓max corresponds to the 

inverse rise/fall time of the input signal [104]. In examples one, two and three, TLs are 

represented with DEPACT model [102],[103]. All relaxations sources are set initially to a 

zero DC waveform unless stated otherwise. Convergence is obtained within a maximum 
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tolerance 𝜀 ≤ 10−3, see eq. (2.27). HSPICE [106] simulation waveforms are also 

provided to illustrate the correctness of WR results. 

3.3.1 Example One-Proof of Concept 

The circuit of Figure 3.8 is considered. It is driven by a 1Vpeak trapezoidal voltage 

pulse of 0.05ns rise/fall time and 2.10ns width through a 3Ω-resistance. The maximum 

practical frequency relevant to this problem is 𝑓𝑚𝑎𝑥 = 1 0.05ns⁄ = 20Ghz. Every line in 

Figure 3.8 is represented with six sets of PUL parameters in Table II for the lossy and 

.1nH3.0 

.1pF

1.0 

.1pF

1
.0

p
F

.1nHline 1 line 2

P

N1 N2  

Figure 3.8: Circuit of Example One. 

 

 

 

Table 3.2: P.U.L parameters. Example One. 

 Low loss case Lossy case 

 Line1 Line2 Line 1 Line 2 

R[Ω/m] 2 5 10 12 

L[H/m] 5 × 10−a 3 × 10−a 5 × 10−a 3 × 10−a 

C[F/m] 60 × 10−b 10 × 10−b 60 × 10−b 10 × 10−b 

G[S/m] 10−9 10−9 5 × 10−8 5 × 10−8 

Length [m] 10−2 4 × 10−2 8 × 10−2 7 × 10−2 

𝑎 ∈ {6,7} and 𝑏 ∈ {10,11,12} 
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low-loss cases, which makes it to a total of twelve combinations. Every combination is 

referred to by the word low-loss or lossy followed by value (𝑎, 𝑏) where (𝑎, 𝑏) ∈

{6,7} × {10,11,12}. The circuit is split at node P into two parts 𝑁1 and 𝑁2. To implement 

the resistive coupling WR[97] (chapter 2), the min-max problem (eq. (2.15)) is solved on 

its four instances (eq. (2.16)) for every combination, and coupling resistances 𝑅1 and 𝑅2 

are calculated. In low-loss (7,12) for example, 𝑅1 = 100Ω and 𝑅2 = 103Ω at objective 

function r = 0.925 on the four instances. To implement the proposed algorithm, parts 𝑁1 

and 𝑁2 are decoupled with impedance 𝜁1(𝑖𝜔) and resistance 𝜁2 in arrangement Z-R, then 

with resistance 𝜁1 and impedance 𝜁2(𝑖𝜔) in arrangement R-Z. Figure 3.10 presents the 

resulting two-subcircuit partition for arrangement R-Z of combination low-loss (7,12). 

Coupling impedance 𝜁1 = √5.0x10−7 (6𝑥10−11)⁄  = 91.3Ω and the circuit realization of 

𝜁2(𝑖𝜔) and its opposite (−𝜁2(𝑖𝜔)) are shown in Figure 3.10 for order 𝑚 = 1 after 

inspecting mismatch |(𝑍(𝑖𝜔) − 𝜁(𝑖𝜔)) 𝑍(𝑖𝜔)⁄ |, see Figure 3.9. The sparsity pattern of 

the MNA matrices of 𝑁2 and its enlarged subcircuit in Figure 3.11, show the effect of 

adding insertion (−𝜁1, 𝜁1 + 𝜁2) to 𝑁1 and (−𝜁2, 𝜁1 + 𝜁2) to 𝑁2 in the proposed method 

compared to no node addition in the resistive coupling scheme [97]. The total MNA 

space size of the partition increases from 21 in the resistive coupling method [97] to 40 

in the R-Z arrangement of the proposed method. To perform the analysis in the two 

methods, the relaxation source of 𝑁1 is initialized with twenty DC waveforms. Their 

amplitudes are taken from a set of eighteen random values in interval ]0,1[ plus values 0 

and 1. For every initial guess, the two-subcircuit partitions are solved on [0, 𝑇], 𝑇 =

50ns. In the case low-loss (7,12),  the resistive coupling based WR [97] takes at least 72 

iterations to converge at a cost of 169.53s. The proposed algorithm on the other hand, 

takes at most 2 iterations at a cost of 2.78s for its Z-R arrangement, and at most 4 

iterations at a cost of 5.21s for its R-Z arrangement.  

The above-mentioned steps are repeated for the remaining combinations and for both 

methods: resistive coupling based WR [97] vs proposed, and same data is collected and 

reported in Table III. In all combinations, it is found that a coarse DEPACT macromodel 

of order 𝑚 = 1 leads to a mismatch of magnitude less than one on [0, 𝑓𝑚𝑎𝑥]. In low-loss 

cases, the proposed method takes at most 2 to 4 iterations to converge against 11 to 72 



93 

 

 

iterations at least for [97]. In lossy cases, it is 2 to 4 iterations again against 4 to 45 

iterations. Figure 3.12 and Figure 3.13 show the error decay as a function of the iteration 

in the limit cases: lossy(6,10) and low-loss (7,12) which correspond to the smallest and 

largest cost savings respectively. To contrast the speeds of convergence in the highly 

reactive case low-loss (7,12), convergence rates are reported on Figure 3.14. The superior 

convergence of the proposed method makes its iteration waveform approaches the 

solution in the early iterations as illustrated in Figure 3.15 compared to the iteration 

waveforms of the resistive coupling based WR in Figure 3.16. 

 

(a) 

 

(b) 

Figure 3.9: Impedance mismatch for low-loss (𝟕, 𝟏𝟐). (a) Z-R disposition (b) R-Z 

disposition. Example One. 
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Figure 3.10: Augmented subcircuits �̅�𝟏 and �̅�𝟐 of 𝑵𝟏 and 𝑵𝟐. Low-loss (𝟕, 𝟏𝟐). 

Arrangement R-Z. Example One. 
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𝑁1 𝑁2 

  

Enlarged 𝑁1 Enlarged 𝑁2 

                                            

Figure 3.11:  Sparsity pattern of MNA matrices. Low-loss (𝟕, 𝟏𝟐). Top: Resistive 

coupling [97]. Bottom: Proposed R-Z. Example O. 
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Table 3.3: Performance of proposed algorithm. Example One. 

    

  b  

  10 11 12 10 11 12  

 

 

Nbr. 

Iter. 

MNA 

Mat. 

Sze. 

Cost 

(s) 

Nbr. 

Iter. 

MNA 

Mat. 

Sze. 

Cost 

(s) 

Nbr. 

Iter. 

MNA 

Mat. 

Sze. 

Cost 

 (s) 

Nbr. 

Iter. 

MNA 

Mat. 

 Sze. 

Cost 

(s) 

Nbr. 

Iter. 

MNA 

Mat. 

Sze. 

Cost 

(s) 

Nbr. 

Iter. 

 MNA 

Mat. 

 Sze. 

Cost 

(s) 

 

a 

6 

11 55 7.31 27 29 21.28 70 19 61.85 4 509 17.52 8 163 12.90 21 71 17.63 [97] 

2 77 1.78 2 51 2.46 2 41 2.78 3 531 14.44 3 185 6.78 3 93 3.98 Z-R 

3 74 3.29 3 48 3.51 4 38 5.21 3 528 14.24 4 182 8.63 4 90 5.32 R-Z 

7 

12 71 10.96 29 33 35.07 72 21 169.53 7 467 82.09 16 157 24.60 42 59 65.07 [97] 

02 93 2.37 2 55 3.51 2 43 6.14 3 489 38.27 3 179 5.81 3 81 7.11 Z-R 

4 90 4.61 3 52 5.80 4 40 12.11 4 486 51.10 4 176 7.76 4 78 9.40 R-Z 

  
Low-loss Lossy 

 

 

 Number of WR iterations to converge (Nbr. Iter.), MNA matrix size (MNA Mat. Sze.), CPU runtime of transient analysis 

in seconds (Cost). 
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Figure 3.12: Error decay. Lossy (𝟔, 𝟏𝟎). Example One. 
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Figure 3.13: Error decay. Low-loss (𝟕, 𝟏𝟐). Example One. 
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Figure 3.14: Rate of convergence. Low-loss (𝟕, 𝟏𝟐). Top: Resistive coupling [97]. 

Middle: Proposed Z-R. Bottom: __ R-Z. Example One. 
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Figure 3.15: Farend iteration waveform. Low-loss (𝟕, 𝟏𝟐).  (b) Proposed (R-Z). Iteration one. Example One. 
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Figure 3.16: Farend iteration waveform. Low-loss (𝟕, 𝟏𝟐). (a)  Resistive coupling [97]. Left: Iteration one. Middle: 

iteration twenty. Right: Iteration forty. Example One. 
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3.3.2 Example Two-Chain connection.  

To illustrate the convergence behavior of the proposed method in the challenging case 

of a damped oscillatory alternating response, a cascade connection of ten blocks Bi, 1 ≤

𝑖 ≤ 10, is examined in Figure 3.17. Each block 𝐵𝑖 represents a subcircuit and consists of 

one single line terminated with a grounded capacitor. The value of the capacitor is 0.1pF 

for blocks 𝐵𝑖,  1 ≤ 𝑖 ≤ 9, and 1.0pF for block B10. A 1Vpeak trapezoidal pulse source of 

0.05ns-rise/fall time and 1.0ns-width drives the chain through a 10Ω-internal resistance. 

PUL parameters are 𝑅 = 5.0(2.0) Ω m⁄ , 𝐿 = 0.25(0.7) 𝜇 H m⁄ , 𝐶 = 7.0(60.0) p F m⁄ , 

𝐺 = 10.0( 1.0) nS m⁄  and length 𝑙 = 10.0(3.0) cm for odd (even) block indices. In 

arrangement A, rational-with-delay impedances are constructed for blocks 𝐵𝑖, 𝑖 ∈

{1,3,5,7,9}, and use a coarse model of order 𝑚 = 2, see Figure 3.18(a). In arrangement 

B, rational-with-delay impedances are constructed for blocks 𝐵𝑖, 𝑖 ∈ {2,4,6,8,10}, and 

use order 𝑚 = 1 for their coarse models, see Figure 3.18(b).  

The total MNA size of the partition is 361 in arrangement A and 307 in arrangement 

B, compared to 190 in the resistive coupling [97]. The two algorithms solve the two 

partitions on intervals [0, 𝑇] where 𝑇 = 10ns, 15ns, 20ns, 25ns and 30ns. The resulting 

numbers of rounds to converge and their costs are reported on Table 3.4. In comparison 

with resistive coupling WR [97], the proposed method achieves a speed-up which 

increases from almost 4 × for 𝑇 = 10ns to more than 5 × for 𝑇 = 30ns in arrangement 

A and from 2 × for 𝑇 = 10ns to 2.7 × for 𝑇 = 30ns in arrangement B. 

 cL= 0.1pF, 1 i 9   

 cL= 1.0pF, i=10   

10.0 

 B1  B2  Bi B09 B10

 Bi

tl 

cL

 

Figure 3.17: Circuit of Example Two. 
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The proposed method scales better with length 𝑇 of the simulation window than the 

resistive coupling based WR [97]. To contrast the difference in performance between the 

algorithms, Figure 3.19 shows the global error as a function of the round for 𝑇 = 30ns, 

and Figures 3.20-3.22 illustrate the improvement in the magnitude of local convergence 

factors. 

Table 3.4: Performance of proposed algorithm. Example Two. 

Duration 𝑇 (ns)   

10 15 20 25 30 
 

Nbr. 

Rds. 

Tran. 

Cost 

Nbr. 

Rds. 

Tran. 

Cost 

Nbr. 

Rds. 

Tran. 

Cost 

Nbr. 

Rds. 

Tran. 

Cost 

Nbr. 

Rds. 

Tran. 

Cost 

 

265 775.1 412 1157.4 560 1541.9 708 1911.3 857 2795.1 [97] 

15 78.8 22 116.6 29 158.2 35 197.4 42 285.1 A 

13 63.1 19 93.8 24 125.9 30 157.8 35 219.7 B 

Number of rounds to converge (Nbr. Rds.), CPU runtime of transient analysis 

in Seconds (Tran. Cost). 
 

                      

                                    (a)                                                         (b)  

Figure 3.18: Sparsity pattern of MNA matrices. Interior odd numbered 

subcircuit. Left: in arrangement A. Right: in arrangement B. Example Two. 
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Figure 3.19: Global error. 𝑻 = 𝟑𝟎𝐧𝐬. Example Two. 

 

 

 

 

 

Figure 3.20: Local convergence factors. Resistive coupling based WR [97]. Example 

Two. 
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Figure 3.21: Local convergence factors-II. Proposed, arrangment A. Example 

Two. 

 

 

 

 

Figure 3.22: Local convergence factors-I. Proposed, arrangment A. Example 

Two. 
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The difference in convergence is also illustrated by the iteration waveforms in Figures 

3.23-3.26. To show clearly the extent of the achieved convergence along the iteration 

waveforms, a zoom in was performed by clipping the parts of the waveforms outside 

interval [−3, +3] at round 10 for both methods in Figure 3.25 and in round 17 for the 

resistive coupling WR [97] alone in Figure 3.26(Left). Saving in the number of rounds 

offsets the increase in the cost of the round and makes impedance coupling run up to 3 × 

and 2 × faster for arrangements A and B respectively. 
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Figure 3.23: Farend. Left: Resistive coupling [97]. Right: Proposed (B). Round 1. Example Two. 
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Figure 3.24: Resistive coupling [97]. Right: Proposed (B). Round 2. Example Two. 
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Figure 3.25: Farend. Left: Resistive coupling [97]. Right: Proposed (B). Round 10. Example Two. 
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Figure 3.26: Farend. Left: Resistive coupling [97]. Right: Proposed (B). Round 17. Example Two. 
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3.3.3 Example Three-Tree structure.  

In this example, the circuit in Figure 3.27 is considered. The input is a 1𝑉peak 

trapezoidal pulse of 0.05ns rise/fall time and 2.0ns width, fed through a 1Ω-resistance. 

The MNA formulation lead to system matrices of size 757 × 757. The sparsity pattern of 

the MNA matrix in this problem, is shown in Figure 3.28. To implement the WR 

solution, the circuit is partitioned into thirty-three subcircuits labeled L1 to L33 and 

grouped into five ordered levels for analysis (Figure 3.27). Level I have the highest 

precedence and its subcircuits are scheduled first for analysis. Level V gets the lowest 

precedence and its subcircuits are solved last. Subcircuits in same level are solved in 

parallel. First, resistive coupling is considered, and the companion min-max problem is 

solved on 32 × 4 instances to determine the 32 × 2 relaxation resistances, see eqs. 2.20-

2.22. The total MNA space size of the partition is 789 when resistive coupling is used. 

Figure 3.29(top) shows the sparsity pattern of the MNA matrices of subcircuits L1 and 

L6. Impedance coupling is considered next, and rational-with-delay functions are 

constructed for all subcircuits in levels I, III and V. All approximations use coarse models 

of order one, which leads to an average increase  Δ𝛽 𝛽⁄   between 1 6⁄  and 1 4⁄  (section 

3.2.5). The total MNA space size of the partition becomes 1433. The sparsity pattern of 

the MNA matrices of augmented subcircuits L1 and L6, is shown in Figure 3.29(bottom). 

Finally, Figure 3.30 represents the circuit of the augmented subsystem L6.  

The resistive coupling WR [97] and the proposed algorithms solve the circuit on 

interval [0, 𝑇], 𝑇 = 30ns. The number of rounds to converge and theirs cost are reported 

in Table 3.5. Impedance coupling takes 05 rounds to converge against 20 for resistive 

coupling [97]. The iteration waveform at node A in Figures 3.31-3.33 and the evolution 

of the global error in Figure 3.34 contrast the difference in performance. Eight CPUs are 

available to execute the parallel WR algorithms. Impedance coupling achieves a 

maximum speedup of 4.5 compared to 2.18 in the resistive coupling WR [97] when the 

cost of solving the min-max problem is included (Table 3.4). The performance scalability 

with respect to the number of CPUs is compared against the maximum theoretical value 

(26),(27) at the limit values Δ𝛽 𝛽⁄ = 1 4⁄  and Δ𝛽 𝛽⁄ = 1 6⁄  in Figure 3.35. Even though 
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impedance coupling lead to practically double the size of the partition, a very fast 

convergence enables its serial execution to run faster than full-circuit analysis in this 

example. 

 

Figure 3.27: Circuit of Example Three. 
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Figure 3.28: Sparsity pattern of MNA matrix of entire circuit. Example Three. 

 

L1 L6 

  

L1. Augmented L6. Augmented 

           

Figure 3.29: Sparsity pattern of MNA matrices of subcircuits L1 and L6. Top: 

Resistive coupling [97]. Bottom: Proposed. Example Three. 
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Figure 3.30: Augmented subcircuit L6. Example Three. 
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Table 3.5: Performance of proposed algorithm. Example Three. 

 Time (s) speedup 

# 

CPU 

WR 

[97] 
Proposed 

Full circuit 

analysis 

Min-max 

problem [97] 

WR Trasient 

analysis [97] 

WR Transient 

analysis+optimization [97] 
Proposed 

1 24.10 13.65 

17.22 1.62 

0.71 0.67 1.26 

2 14.60 9.12 1.18 1.06 1.89 

4 8.36 5.32 2.06 1.72 3.24 

6 7.19 4.65 2.39 1.95 3.70 

8 6.27 3.81 2.75 2.18 4.52 
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Figure 3.31: Iteration waveform. Left: Resistive coupling [97]. Right: Impedance coupling. Round 1. Example Three. 
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Figure 3.32: Iteration waveform. Left: Resistive coupling [97]. Right: Impedance coupling. Round 2. Example Three. 
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Figure 3.33: Iteration waveform. Left: Resistive coupling [97]. Right: Impedance coupling. Round 4. Example Three. 
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Figure 3.34: Global error, simulation time 𝑻 = 𝟑𝟎𝐧𝐬. Example Three. 
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3.3.4 Example Four-RLCG single line problem [77].  

The objective is to compare the proposed approximation against the suboptimal constant 

approximation of the resistive coupling-based WR, see chapter 2 or [97], and against the 

asymptotically optimized constant parameters of the non overlapping optimized WR 

algorithm oWR [77] for a single RLCG line problem. The lossy and slightly reactive 

example in [77] is considered here. The circuit represents a single transmission line 

driven by a voltage source and loaded with an impedance. The voltage source possesses a 

50Ω-internal resistance and produces a 1𝑉peak trapezoidal pulse of 𝑡𝑟 = 0.1 ns-rise/fall 

time. The width of the input pulse represents 40% of the simulation time 𝑇. The line 

parameters are 𝑅 = 50 Ω m⁄ , 𝐿 = 495 nH m⁄ , 𝐶 = 63 pF m⁄ , 𝐺 = 0 S m⁄  [77, (III.29)] 

and length 𝑑 = 0.15 m. The load is either a 50Ω-resistor or a 1.0pF-capacitor. Using the 

well-known rule of thumb [110, pp. 203], the line is represented with ⌈20𝑑 √𝐿𝐶 (𝑡𝑟)⁄ ⌉ =

168 sections in the time-domain, and is split half, which amounts for 84 RLCG sections 

in both parts. First, the asymptotically optimized constants 𝛼𝑚
∗ = 6.51 × 10−3 [77, 

(III.38)] and 𝛼𝑙
∗ = −3.408 × 10−5 𝑇−1 3⁄  [77, (III.31)]. Second, the solution of the min-

max problem is computed, see eq. 2.15 and 2.16 or [97, eqs. (15),(16)]. The resulting  

 

Figure 3.35: Speedup: Theoretical vs actual. Example Three. 
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coupling resistances are (88.66Ω, 88.66Ω) with objective function  𝑟 = 0.071 at the four 

instances in the 50Ω-load case, and (88.50Ω, 90.55Ω) with 𝑟 = 0.265 for the 1.0pF-load 

one. The costs of these two min-max solutions are 14ms and 17ms respectively and are 

Table 3.7: Cost and performance. Load: 𝟓𝟎𝛀. Example Four. 

  WR[77] 

WR [97] 

Proposed 

  
𝛼𝑚 𝛼𝑙 R-Z Z-R 

 
 Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

𝑇  

(ns) 

100 6 3.63 6 3.67 4 2.49 3 1.79 3 1.84 

500 6 18.37 8 24.77 4 12.25 3 8.95 2 6.14 

100 6 36.05 10 61.85 4 24.36 3 18.05 2 12.41 

5000 6 178.02 15 449.49 4 119.81 3 90.21 2 62.00 

 

Table 3.6: Cost and performance. Load: 𝟏𝐩𝐅. Example Four. 

  WR[77] 

WR [97] 

Proposed 

  
𝛼𝑚 𝛼𝑙 R-Z Z-R 

 
 Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

Nbr. 

Iter. 

Cost 

(s) 

𝑇  

(ns) 

100 11 6.67 10 6.17 7 4.31 4 2.35 3 1.82 

500 11 33.40 17 52.29 7 21.04 4 12.02 3 8.86 

100 11 67.45 22 133.18 7 42.62 4 23.89 3 17.98 

5000 11 369.39 36 1101.70 7 211.08 4 119.70 2 61.45 
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neglected as they represent less than 1% of the total cost. Note that the coupling 

resistances [97] are close to the characteristic impedance √495x10−9 63x10−12⁄ =

88.64Ω of the lossless transmission line, a value which was chosen in [63],[64] to speed 

up the convergence of WR. Third, a rational-with-delay approximation is constructed for 

one part in the circuit, it uses a coarse model of order one for the half-line. Whereas a 

resistance of value 88.64Ω is allocated to the other part. The MNA space size of both 

subcircuits in [97] and [77] is 253, which makes it to a total size of 506. In both 

dispositions Z-R and R-Z of the proposed coupling, the MNA space size is 258 for one 

subcircuit and 261 for the other one, which makes to a total size of 519. The WR 

solutions are computed on 𝑇 = 100ns, 500ns, 1000ns and 5000ns, and the 

corresponding numbers of iterations and costs are reported on Tables 3.6 and 3.7.  

The proposed method produces the fastest solution for the four simulation windows. 

Disposition Z-R generates the best times in the proposed WR method. It is compared 

against the resistive coupling-based WR[97], and against oWR[77] for parameter 𝛼𝑚
∗ . It 

 

Figure 3.36: 25 Error decay. 𝑻 = 𝟓𝟎𝟎𝟎𝐧𝐬. Load 𝟓𝟎𝛀. Example Four. 
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is 2x to 3x faster than oWR[77] and 1.4x to 2x faster than WR[97] for 50Ω-load. When 

the load is a 1pF-capacitor, the proposed algorithm runs 3.7x to 6x faster than [77], and 

2.3x to 3.4x faster than [97]. Figure 3.36 contrasts the errors’ speed of decay in the first 

six iterations, and attests of the superior convergence of the proposed method. It is worth 

mentioning that comparing the proposed WR method with [97] and [77] is in fact a 

comparison of TC equations of different classes. The delay based TCs of the proposed 

method against the constant parameters in [97] and [77]. 

3.4 Conclusion  

A general dissipative impedance coupling scheme for the WR algorithm with 

longitudinal partitioning, was presented in this chapter. It demonstrated that replacing 

resistances by impedances in the well-known resistive coupling scheme leads to faster 

convergence of the subsequent WR-LP algorithm. However, such improvement came at 

the price of increasing the cost of the iteration. Therefore, cost would be more adequate 

to assess the efficiency of the proposed coupling impedance scheme. 

The present work also proposed a flexible coupling strategy for the WR analysis of 

single transmission line circuits. Customized rational-with-delay impedance and 

resistance were proposed to decouple every two adjacent subcircuits, and a step-by-step 

procedure was presented to apply the proposed coupling to arborescent TL partitions. 

Numerical examples demonstrated the flexibility of this easy-to-apply coupling strategy 

and illustrated its performance especially when circuits are low-loss and highly reactive. 
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Chapter 4  

4 Some Convergence Results on Waveform Relaxation 
for Chains of Circuits  

A nilpotent WR operator converges in a finite number of steps, and thus is equivalent to 

a direct solver. Even though a nilpotent WR algorithm can be inefficient eg., the optimal 

WR algorithm, judicious approximations of its nilpotency conditions can produce cost 

effective methods such as the resistive and the hybrid rational-with-delay 

impedance/resistance coupling-based WR algorithms (chapters 2 and 3). In the present 

chapter, the conditions that lead to a nilpotent dissipative coupling-based WR algorithm 

are examined for chains of general linear time-invariant circuits. Iteration matrices are 

derived for GJ and GS relaxations, and their nilpotency is examined in the Fourier space 

for positive real frequencies, 𝜔 ≥ 0 (section 3.2.3.2)   

In the present chapter, the convergence of WR for chains of identical symmetric 

circuits is also studied when resistive coupling is applied. It is asserted that WR should 

converge independently of the number N of cascaded parts in a chain by proving that the 

spectral radius of its GJ and GS iteration matrices is bounded by a function that does not 

depend on length N. This case stands out from the usual convergence degradation of WR 

for increasingly long chains [107].      

4.1 Nilpotency of Strictly Dissipative Impedance Coupling 
based Waveform Relaxation Algorithm 

Consider a circuit that can be decomposed into a cascade of N, N ≥ 3, reciprocal 

passive parts as illustrated in Figure 4.1. Each part Pn, 1 ≤ n ≤ N, is represented by its 𝑍-

parameters 𝑍11
𝐧(𝑖𝜔), 𝑍12

𝐧(𝑖𝜔), 𝑍21
𝐧(𝑖𝜔) and 𝑍22

𝐧(𝑖𝜔) with 𝑍12
𝐧 = 𝑍21

𝐧, 𝜔 ≥ 0 and 

𝑖2 = 1. For the sake of generality, a Thevenin generator is connected at each end of the 

chain; (VTL, ZTL) at the left side and (VTR, ZTR) at the right side.    

Every two consecutive parts Pn and Pn+1, 1 ≤ n ≤ N − 1 are decoupled with insertion 

{−𝜁n,n+1
n , 𝜁n,n+1

n + 𝜁n,n+1
n+1 , −𝜁n,n+1

n+1 } which is implemented as a Thévenin generator. Total 
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insertions on the sides of Pn and Pn+1 are 𝜁n,n+1
n+1  and 𝜁n,n+1

n  respectively while the WR 

external variables 𝑤n,n+1
n  and 𝑤n,n+1

n+1  are represented with voltage sources in Figure 4.2. 

The enumeration of parts and thereafter relaxation sources starts for left to right. Part P1 

is connected to primary input (VTL, ZTL) and PN to primary input (VTR, ZTR). It is also 

natural to enumerate parts along the opposite direction. In both cases, the enumeration 

intuitively maps the signal flow in this bidirectional circuit [53]. In fact, for the GJ and 

GS relaxations, all possible orders are equivalent since they produce similar iteration 

matrices, which in addition of having same spectral radius also possess same 1-norm and 

∞-norm. Mapping the signal flow leads to the natural order of the relaxation sources in 

the 2(N − 1) × 1 vector 

𝒘𝟏 = (𝑤1,2
2 , 𝑤1,2

1 , 𝑤2,3
3 , 𝑤2,3

2 , . . , 𝑤𝑛−1,𝑛
𝑛 , 𝑤𝑛−1,𝑛

𝑛−1 , . . , 𝑤𝑁−1,𝑁
𝑁 , 𝑤𝑁−1,𝑁

𝑁−1  )
𝑇
 (4.1) 

for the GJ relaxation, and in the 2(N − 1) × 1 vector

 

Figure 4.1: (I) Cascade connection of 𝐍 parts 𝐏𝐧, 𝟏 ≤ 𝐧 ≤ 𝐍. (II) Frequency–

domain representation of part 𝐏𝐧.   
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Figure 4.2: Dissipative coupling of the chain. 

 

 

 

 

 

Figure 4.3: WR converge analysis circuit. The homogeneous problem. 
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𝒘𝟐 = (𝑤1,2
1 , 𝑤2,3

3 , 𝑤3,4
3 , 𝑤4,5

5 , 𝑤5,6
5 , . . , 𝑤1,2

2 , 𝑤2,3
2 , 𝑤3,4

4 , 𝑤4,5
4 , 𝑤5,6

6 , 𝑤6,7
6 , . . )

𝑻
 (4.2) 

for the GS relaxation. The evolution of the error in vectors 𝒘𝟏 and 𝒘𝟐, as a function of 

the iteration count 𝑘, 𝑘 ∈ ℕ, is examined. Let 𝑒1,2
1 (𝑘)

, en−1,n
n (𝑘)

, 𝑒n,n+1
n (𝑘)

 and 𝑒N−1,N
N (𝑘)

 be 

the differences between relaxation waveforms w1,2
1 (𝑘)

, wn−1,n
n (𝑘)

, wn,n+1
n (𝑘)

 and 

wN−1,N
N (𝑘)

, 2 ≤ n ≤ N − 1, calculated at iteration 𝑘 and their final values. The error 

vectors at iteration 𝑘 are  

𝒆𝟏
(𝑘) = ((𝑒1,2

2 , 𝑒1,2
1 , 𝑒2,3

3 , 𝑒2,3
2 , . . , 𝑒𝑛−1,𝑛

𝑛 , 𝑒𝑛−1,𝑛
𝑛−1 , . . , 𝑒𝑁−1,𝑁

𝑁 , 𝑒𝑁−1,𝑁
𝑁−1  )

(𝑘)
)

𝑇

 (4.3) 

in 𝒘𝟏
(𝑘), and  

𝒆𝟐
(𝑘) = ((𝑒1,2

1 , 𝑒2,3
3 , 𝑒3,4

3 , 𝑒4,5
5 , 𝑒5,6

5 . . , 𝑒1,2
2 , 𝑒2,3

2 , 𝑒3,4
4 , 𝑒4,5

4 , 𝑒5,6
6 , 𝑒6,7

6 , . . )
(𝑘)

)
𝑇

 (4.4) 

in 𝒘𝟐
(𝑘). Since the system is linear, errors 𝒆𝟏 and 𝒆𝟐 satisfy the subsequent homogeneous 

problem for the zero solution in the circuit of Figure 4.3.  

First, we produce the WR iteration matrix 𝑱N for GJ relaxation over one iteration. Vector 

𝒆𝟏
(𝒌) , 𝑘 ≥ 0, satisfies the following recurrent relation 

𝒆1
(𝑘+1) = 𝑱N 𝒆1

(𝑘) (4.5) 
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where 𝑱N ∈ ℂ2(N−1)×2(N−1) is given by 

 

𝑱N = 

 
0 𝑎1

+ 0 0       
 

 
𝑎2

− 0 0 𝑏2
−       

 

 
𝑏2

+ 0 0 𝑎2
+ 0 0     

 

 
0 0 𝑎3

− 0 0 𝑏3
−     

 

 
  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

 

 
  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

 

 
    𝑏N−2

+  0 0 𝑎N−2
+  0 0 

 

 
    0 0 𝑎N−1

−  0 0 𝑏N−1
−  

 

 
      𝑏N−1

+  0 0 𝑎N−1
+  

 

 
      0 0 𝑎N

− 0 
 

 

(4.6) 

 

and 

𝑎1
+ =

Z1,2
1 − 𝜁1,2

1

Z1,2
1 + 𝜁1,2

2  

(4.7) 

𝑎2
− =

Z1,2
2 − 𝜁1,2

2

Z1,2
2 + 𝜁1,2

1  

𝑏2
− =

(ζ1,2
1 + 𝜁1,2

2 )𝑍12
𝟐

(Z2,3
2 + 𝜁2,3

3 )(𝑍11
𝟐 + 𝜁1,2

1 )
 

𝑎2
+ =

Z2,3
2 − 𝜁2,3

2

Z2,3
2 + 𝜁2,3

3  

𝑏2
+ =

(ζ2,3
2 + 𝜁2,3

3 )𝑍12
𝟐

(Z1,2
2 + 𝜁1,2

1 )(𝑍22
𝟐 + 𝜁2,3

3 )
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⋮
⋮
 

𝑎n
− =

Zn−1,n
n − 𝜁n−1,n

n

Zn−1,n
n + 𝜁n−1,n

n−1  

𝑏n
− =

(𝜁n−1,n
n−1 + 𝜁n−1,n

n )𝑍12
𝐧

(Zn,n+1
n + 𝜁n,n+1

n+1 )(𝑍11
𝐧 + 𝜁n−1,n

n−1 )
 

𝑎n
+ =

Zn,n+1
n − 𝜁n,n+1

n

Zn,n+1
n + 𝜁n,n+1

n+1  

𝑏n
+ =

(𝜁n,n+1
n + 𝜁n,n+1

n+1 )𝑍12
𝐧

(Zn−1,n
n + 𝜁n−1,n

n−1 )(𝑍22
𝐧 + 𝜁n,n+1

n+1 )
 

⋮
⋮
 

𝑎N−1
− =

ZN−2,N−1
N−1 − 𝜁N−2,N−1

N−1

ZN−2,N−1
N−1 + 𝜁N−2,N−1

N−2
 

𝑏N−1
− =

(𝜁N−2,N−1
N−2 + 𝜁N−2,N−1

N−1 )𝑍12
𝐍−𝟏

(ZN−1,N
N−1 + 𝜁N−1,N

N )(𝑍11
𝐍−𝟏 + 𝜁N−2,N−1

N−2 )
 

𝑎N−1
+ =

ZN−1,N
N−1 − 𝜁N−1,N

N−1

ZN−1,N
N−1 + 𝜁N−1,N

N
 

𝑏N−1
+ =

(𝜁N−1,N
N−1 + 𝜁N−1,N

N )𝑍12
𝐍−𝟏

(ZN−2,N−1
N−1 + 𝜁N−2,N−1

N−2 )(𝑍22
𝐍−𝟏 + 𝜁N−1,N

N )
 

𝑎N
− =

ZN−1,N
N − 𝜁N−1,N

N

ZN−1,N
N + 𝜁N−1,N

N−1
 

Zn−1,n
n  and Zn,n+1

n , 2 ≤ n ≤ N − 1, represent the input impedances of interior part Pn at its 

interfaces with its neighbors Pn−1 and Pn+1, whereas Z1,2
1  and ZN−1,N

N  are the input 

impedances of parts P1 and PN at the extremities.  
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Products 𝑎n
+(𝑖𝜔)𝑎n+1

− (𝑖𝜔), 1 ≤ n ≤ N − 1, represent local convergence rates of the WR 

at the interface between any two consecutive parts Pn and Pn+1.  A detailed derivation of 

matrix 𝑱N is found in section 4.3.1. 

A recursive relationship is obtained for every local error (𝑒𝑛−1,𝑛
𝑛 , 𝑒𝑛−1,𝑛

𝑛−1 ) at the interface 

between Pn−1 and Pn  over two GJ iterations by taking   

𝒆1
(𝑘+2) = (𝑱N)2 𝒆1

(𝑘) (4.8) 

where matrix (𝑱N)2 is the GJ iteration matrix over two iterations. Its expression is given 

in equation (4.9).  
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(4.9) 

𝑎1
+𝑎2

− 0 0 𝑎1
+𝑏2

− 0 0         

0 𝑎1
+𝑎2

− 𝑏2
−𝑎3

− 0 0 𝑏2
−𝑏3

−         

0 𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 0 0 𝑎2
+𝑏3

− 0 0       

𝑏2
+𝑎3

− 0 0 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 0 0 𝑏3
−𝑏4

−       

𝑏2
+𝑏3

+ 0 0 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 0 0 𝑎3
+𝑏4

− 0 0     

0 0 𝑏3
+𝑎4

− 0 0 𝑎3
+𝑎4

− 𝑏4
−𝑎5

− 0 0 𝑏4
−𝑏5

−     

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱   

    𝑏N−4
+ 𝑏N−3

+  0 0 𝑎N−4
+ 𝑏N−3

+  𝑎N−3
+ 𝑎N−2

−  0 0 𝑎N−3
+ 𝑏N−2

−  0 0 

    0 0 𝑏N−3
+ 𝑎N−2

−  0 0 𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  0 0 𝑏N−2
− 𝑏N−1

−  

      𝑏N−3
+ 𝑏N−2

+  0 0 𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  0 0 𝑎N−2
+ 𝑏N−1

−  

      0 0 𝑏N−2
+ 𝑎N−1

−  0 0 𝑎N−2
+ 𝑎N−1

−  𝑏N−1
− 𝑎N

− 0 

        𝑏N−2
+ 𝑏N−1

+  0 0 𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− 0 

        0 0 𝑏N−1
+ 𝑎N

− 0 0 𝑎N−1
+ 𝑎N

− 

(4.9) 
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Next, the iteration matrix 𝑺N for the GS relaxation over one iteration, is produced. 

Vector 𝒆𝟐
(𝒌) , 𝑘 ≥ 0, satisfies the following recurrent relation over one iteration 

𝒆2
(𝑘+1) = 𝑺N 𝒆2

(𝑘) (4.10) 

𝑺N = [
𝑨 𝟎
𝟎 𝑩

] (4.11) 

where 𝑨 and 𝑩 are two (N − 1) × (N − 1) block matrices defined by 

𝑨 = 

(4.12) 

 

and 

 

 

 

𝑎1
+𝑎2

− 𝑏2
+𝑎3

− 𝑏2
−𝑏3

− 0 0 0    

𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 𝑎2
+𝑏3

− 0 0 0    

0 𝑏3
+𝑎4

− 𝑎3
+𝑎4

− 𝑏4
−𝑎5

− 𝑏4
−𝑏5

− 0    

0 𝑏3
+𝑏4

+ 𝑎3
+𝑏4

+ 𝑎4
+𝑎5

− 𝑎4
+𝑏5

− 0    

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

    0 𝑏N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  𝑏N−2
− 𝑏N−1

−  

    0 𝑏N−3
+ 𝑏N−2

+  𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑏N−1

−  

      0 𝑏N−1
+ 𝑎N

− 𝑎N−1
+ 𝑎N

− 
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𝑩 = 

 

 

 

 

 

 

 

 

(4.13) 

for N even, and 

𝑨 = 

 

 

 

 

 

 

 

(4.14) 

𝑎1
+𝑎2

− 𝑏2
−𝑎3

− 𝑏2
−𝑏3

− 0 0 0   

𝑎1
+𝑏2

+ 𝑎2
+𝑎3

− 𝑎2
+𝑏3

− 0 0 0   

0 𝑏3
+𝑎4

− 𝑎3
+𝑎4

− 𝑏4
−𝑎5

− 𝑏4
−𝑏5

− 0   

0 𝑏3
+𝑏4

+ 𝑎3
+𝑏4

+ 𝑎4
+𝑎5

− 𝑎4
+𝑏5

− 0   

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 

    0 𝑏N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑎N−1

−  𝑏N−1
− 𝑎N

− 

    0 𝑏N−2
+ 𝑏N−1

+  𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− 

 

𝑎1
+𝑎2

− 𝑎1
+𝑏2

− 0 0 0 0    

𝑏2
+𝑎3

− 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 𝑏3
−𝑏4

− 0 0    

𝑏2
+𝑏3

+ 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 𝑎3
+𝑏4

− 0 0    

0 0 𝑏4
+𝑎5

− 𝑎4
+𝑎5

− 𝑏5
−𝑎6

− 𝑏5
−𝑏6

−    

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

    𝑏N−4
+ 𝑏N−3

+  𝑎N−4
+ 𝑏N−3

+  𝑎N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑏N−2

−  0 

    0 0 𝑏N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑎N−1

−  𝑏N−1
+ 𝑎N

− 

      𝑏N−2
+ 𝑏N−1

+  𝑎N−2
+ 𝑏N−1

+  𝑎N−1
+ 𝑎N

− 
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and 

𝑩 = 

 

 

 

 

 

 

 

 (4.15) 

for N odd. A detailed derivation of matrix 𝑺N can be found in section 4.3.2. 

Next, some results about the nilpotent WR algorithm are presented. The proof of these 

results is provided in section 4.4. 

Proposition 4.1 Necessary condition of nilpotency. A nilpotent WR algorithm has null 

local convergence factors. 

Proof. If complex matrix (𝑱N)𝟐 is nilpotent, then its trace ∑ 𝑎𝑗
+(𝑖𝜔) 𝑎𝑗+1

− (𝑖𝜔)N−1
𝑗=1 = 0 at 

every frequency point 𝜔 ≥ 0 [108]. A requirement which is fulfilled when 𝑎𝑗
+𝑎𝑗+1

− = 0 

for all 1 ≤ 𝑗 ≤ N − 1. Any nilpotent WR must have zero local convergence rates for GJ 

and GS relaxations.                                                                                                             ∎                                                                                                          

The search for nilpotent WR algorithms is restricted to the case where all local 

convergence rates are zero. 

𝑎1
+𝑎2

− 𝑎1
+𝑏2

− 0 0 0 0   

𝑏2
+𝑎3

− 𝑎2
+𝑎3

− 𝑏3
−𝑎4

− 𝑏3
−𝑏4

− 0 0   

𝑏2
+𝑏3

+ 𝑎2
+𝑏3

+ 𝑎3
+𝑎4

− 𝑎3
+𝑏4

− 0 0   

 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱  

   0 𝑏N−3
+ 𝑎N−2

−  𝑎N−3
+ 𝑎N−2

−  𝑏N−2
− 𝑎N−1

−  𝑏N−2
− 𝑏N−1

−  

   0 𝑏N−3
+ 𝑏N−2

+  𝑎N−3
+ 𝑏N−2

+  𝑎N−2
+ 𝑎N−1

−  𝑎N−2
+ 𝑏N−1

−  

    0 0 𝑏N−1
+ 𝑎N

− 𝑎N−1
+ 𝑎N

− 

 



135 

 

 

Proposition 4.2 Optimal WR for 𝑁 ≥ 3. If all coefficients 𝑎n
+(𝑖𝜔) = 𝑎n+1

− (𝑖𝜔) = 0, 1 ≤

n ≤ N − 1, on 𝜔 ≥ 0, then the WR algorithm converges exactly in N iterations for the GJ 

relaxation and in ([
N

2
] + 1) iterations for the GS relaxation, independently of any initial 

guess. 

Proof. Reasoning by induction is used here. The GJ iteration matrix 𝑱N defined over one 

iteration in (4.6), satisfies (𝑱3)𝟐 = 𝟎 when 𝑎1
+ = 𝑎2

− = 𝑎2
+ = 𝑎3

− = 0. When all 

coefficients 𝑎1
+ = 𝑎2

− = 𝑎2
+ = 𝑎3

− = ⋯ = 0 for any number N ≥ 3, it is possible to 

express the 2N × 2N matrix 𝑱N+1 as 

 

 

  

𝑱N 

0 0  

  ⋮ ⋮  

  ⋮ ⋮  

𝑱N+1 =  0 0  

  0 𝑏𝑁
−  

  0 … … 0 𝑏𝑁
+ 0 0  

  0 … … 0 0 0 0  
 

(4.16) 

 

and demonstrate that its 𝑚th power, 𝑚 ∈ ℕ and 𝑚 ≥ 1, satisfies 
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(𝑱N)𝑚 

0 

𝐁N,𝑚 

 

    

  ⋮  

(𝑱N+1)𝑚 =    

    0  

  𝐁N,𝑚
𝑇 0 0  

  0             …                 0 0 0  
 

(4.17) 

The 2(N − 1) × 1 vector 𝐁N,𝑚 is given as  

𝐁N,𝑚 = 𝑏N
−(𝐉N)𝑚−1𝐮2(N−1) (4.18) 

where 𝒖j is the jth vector in the canonical basis of ℝ2(N−1) with its jth coordinate equal to 

one. According to (4.17),(4.18), if 𝑱N is nilpotent of index (N − 1), then 𝑱N+1 is also 

nilpotent with index N. If there exists an integer N0 such that 𝑱N0
 were nilpotent of index 

less than (N0 − 1), then this would have meant that 𝑱3 must be zero according to 

(4.17),(4.18) when counting backward; a result which is not correct. This concludes our 

demonstration that the GJ iteration matrix 𝑱N, defined over one iteration, is nilpotent with 

index (N − 1). 

Now, it is easy to see that matrix (𝑱N)𝟐 is also nilpotent with index [
N

2
], where [. ] 

represents the integer part of a real number. Since (𝑱N)𝟐 and 𝑺N are similar, then the GS 

iteration matrix is also nilpotent with same index [
N

2
].    

At the end of iteration (N − 1) in the GJ relaxation, all relaxation sources reach together 

theirs final zero value for the first time. Still, another iteration is needed to solve the 

system\circuit and bring all its variables to the zero solution of the homogeneous problem 
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with homogeneous initial conditions. The subsequent WR algorithm therefore converges 

in N GJ iterations. Same reasoning shows that WR takes ([
N

2
] + 1) iterations to converge 

when GS relaxation is adopted. This result is optimal in the sense that faster convergence 

is not possible.                                                                                                                    ∎ 

The result of proposition 4.2 is optimal in the sense that faster convergence is not 

possible. Another way of making WR converge in a finite number of iterations yet not 

minimum, is introduced in the next proposition 

Proposition 4.3 Zeroing all local convergence factors 𝑎n
+(𝑖𝜔)𝑎n+1

− (𝑖𝜔) along (+) 

direction only or along (-) direction only. If all coefficients 𝑎n
+(𝑖𝜔) = 0 or if all 

𝑎n+1
− (𝑖𝜔) = 0, 1 ≤ n ≤ N − 1 on 𝜔 ≥ 0, then the WR algorithm converges exactly in 

(2N − 1) iterations for the GJ relaxation and in N iterations for the GS relaxation, 

independently of any initial guess. 

Proof. Reasoning by induction is used here. Let us consider the case where only 

coefficients 𝑎2
− = 𝑎3

− = 𝑎4
− = ⋯ = 𝑎N

− = 0. A similar approach can be used for the other 

case where only 𝑎1
+ = 𝑎2

+ = 𝑎3
+ = ⋯ = 𝑎N−1

+ = 0. 

First, we verify that (𝑱3)4 = 𝟎 when 𝑎2
− = 𝑎3

− = 0. When 𝑎2
− = 𝑎3

− = 𝑎4
− = ⋯ = 𝑎N

− =

𝑎N+1
− = 0, it can be demonstrated that the first 2(𝑁 − 1)th powers (𝑱N+1)𝑚, 1 ≤ 𝑚 ≤

2(𝑁 − 1), of matrix 𝑱N+1 satisfy 
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(𝑱N)𝑚 

0 

𝐁N,𝑚 

 

    

  ⋮  

(𝑱N+1)𝑚 =    

    0  

  𝐁N,𝑚
𝑇 0 𝑐𝑚  

  0             …                 0 0 0  
 

(4.19) 

1 ≤ 𝑚 ≤ 2(𝑁 − 1). 

Element 𝑐𝑚 at the (2N − 1, 2N) entry of matrix product (𝑱N+1)𝑚 is given by 

𝑐2𝑚′+1 = 𝑎N−1−𝑚′
+  ∏ (𝑏𝑙

+𝑏𝑙
−)

N−1

l=N−𝑚′

 when 𝑚 = 2𝑚′ + 1 
 

and   (4.20) 

𝑐2𝑚′ = 0 when 𝑚 = 2𝑚′  

According to equations (4.19) and (4.20), matrix product (𝑱N+1)2N = 𝟎 if (𝑱N)2(N−1) =

𝟎. The GJ iteration matrix 𝑱N is therefore nilpotent with index 2(N − 1) when all its 

coefficients 𝑎2
− = 𝑎3

− = 𝑎4
− = ⋯ = 𝑎N

− = 0. Using the same reasoning as in property 4.2, 

we find that the GS iteration matrix 𝑺N is also nilpotent with index (N − 1).  The 

subsequent WR algorithm therefore converges in (2N − 1) GJ iterations or in N GS 

iterations.                                                                                                                            ∎ 

The next result concerns a non-nilpotent WR with null convergence factors. 
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Proposition 4.4 Zeroing all local convergence factors along one alternate direction   

a) If 𝑎2
− = 𝑎2

+ = 𝑎4
− = 𝑎4

+ = ⋯ = 𝑎2k
− = 𝑎2k

+ = ⋯ = 0 while 𝑎1
+, 𝑎3

−, 𝑎3
+, 𝑎5

−,…, 

𝑎2k+1
− , 𝑎2k+1

+  are not equal to zero, then the WR is not nilpotent for any chain of at 

least three subcircuits.     

a) If 𝑎1
+ = 𝑎3

− = 𝑎3
+ = 𝑎5

− = 𝑎5
+ = ⋯ = 𝑎2k+1

− = 𝑎2k+1
+ = ⋯ = 0 while 𝑎2

−, 𝑎2
+, 𝑎4

−, 

𝑎4
+,…, 𝑎2k

− , 𝑎2k
+  …..are not equal to zero, then the WR is not nilpotent for any 

chain of at least four subcircuits.     

Proof. This property is demonstrated by observation. A proof for part a) is presented. A 

similar approach is used for part b). Let us start with matrix 𝑱3 when 𝑎2
− = 𝑎2

+ = 𝑎4
− = 0 

𝑱3 = 

 0 𝑎1
+ 0 0  

                                                                            (4.21) 

 0 0 0 𝑏2
−  

 𝑏2
+ 0 0 0  

 0 0 𝑎3
− 0  

The column vectors of 𝑱3 are linearly independent in general. Matrix 𝑱3 is nonsingular 

and cannot be nilpotent. Now, let us look at 𝑱4 

𝑱4 = 

 0 𝑎1
+ 0 0 0 0  

(4.22) 

 0 0 0 𝑏2
− 0 0  

 𝑏2
+ 0 0 0 0 0  

 0 0 𝑎3
− 0 0 𝑏3

−  

 0 0 𝑏3
− 0 0 𝑎3

+  

  0 0 0 0 0 0  
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If P𝑱𝟑
(𝑋) and P𝑱𝟒

(𝑋) denote the characteristic polynomials of matrices 𝑱𝟑 and 𝑱𝟒, then 

P𝑱𝟒
(𝑋) = 𝑋2 P𝑱𝟑

(𝑋).  Hence, matrix  𝑱4 is not nilpotent since it has non-zero eigenvalues. 

In fact, it can be shown that any two characteristic polynomials P𝑱𝟐𝒎+𝟏
(𝑋) and P𝑱𝟐𝒎+𝟐

(𝑋) 

of matrices 𝑱𝟐𝒎+𝟏 and 𝑱𝟐𝒎+𝟐, 𝑚 ≥ 1, are related by P𝑱𝟐𝒎+𝟐
(𝑋) = 𝑋2 P𝑱𝟐𝒎+𝟏

(𝑋). Matrix 

𝑱𝟐𝒎+𝟏 (𝑚 ≥ 1) is nonsingular in general since 𝑎𝑙
−𝑎𝑙

+ − 𝑏𝑙
−𝑏𝑙

− ≠ 0, 𝑙 ≥ 2, on 𝜔 ≥ 0. 

Matrix 𝑱𝟐𝒎+𝟏 is consequently not nilpotent. Therefore, matrix 𝑱𝟐𝒎+𝟐 has non-zero 

eigenvalues and therefore cannot be nilpotent too.                                                           ∎                                                                                                                                                                                                                                     

  To achieve nilpotency, setting all local convergence factors to zero is necessary yet not 

sufficient. The way in which local convergence factors are set to zero affects the degree 

of nilpotency (propositions 4.2 and 4.3) and can even destroy it (proposition 4.4). 

WR converges exactly in three GJ iterations and in two GS iterations for N = 3 if 𝑎1
+ =

𝑎2
− = 𝑎2

+ = 𝑎3
− = 0 according to proposition 4.2. It turns out that such condition is too 

strong for N = 3. The following proposition presents a relaxed optimality requirement for 

this outlier case. Its demonstration is straightforward.       

Proposition 4.5 Optimal WR for N = 3. If 𝑎1
+ = 𝑎3

− = 0, then WR converges in three 

iterations for GJ relaxation and in two iterations for GS relaxation.   

Finally, it is brought to the reader’s attention that propositions 4.1, 4.3, 4.4 and 4.5 

present new results. The optimal result for the GJ relaxation in proposition 4.2 has been 

first demonstrated by Gander et al. [75] for circuit problems using optimal transmission 

coupling conditions. In this work, this result is again found using a different approach 

where the iteration matrix is constructed and its nilpotency is demonstrated in section 4.4.  

However, the optimal result part of the GS relaxation in proposition 4.2 is novel.  

The next analysis concerns the resistive coupling based WR algorithm and its 

convergence for chains made of identical and symmetric parts.  
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4.2 Convergence of Resistive Coupling-based Waveform 
Relaxation for Chains of Identical Symmetric Parts 

The analysis concerns a chain of N identical symmetric parts at the exception may be of 

the two parts at the extremities. Each part is represented in the frequency-domain by its 

𝑍-parameters 𝑍11(𝑖𝜔), 𝑍12(𝑖𝜔), 𝑍21(𝑖𝜔) and 𝑍22(𝑖𝜔) with 𝑍12 = 𝑍21, 𝑍11 = 𝑍22, 𝜔 ≥

0, and 𝑖2 = −1. Insertion {−𝑅, 2𝑅, −𝑅} is used to decouple every two consecutive parts 

and is realized as a Thévenin source in Figure 4.4. To keep the enlarged parts symmetric 

and identical, all relaxation resistances are set at same value in the partition of Figure 4.4.  

This way, all interior parts have equal left-side and right-side input impedances. The 

homogenous problem of Figure 4.5 is studied next. After taking 𝜁n,n+1
n = 𝜁n,n+1

n+1 = 𝑅 for 

1 ≤ n ≤ N − 1 and Zn−1,n
n = Zn,n+1

n = Z for 2 ≤ n ≤ N − 1 in equations set (4.7), the 

iteration matrices 𝑱N
′  and 𝑺N

′  for the GJ and GS relaxations over one iteration, can be 

deduced from (4.6) and (4.11)   
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Figure 4.4: Resistive coupling of a chain of identical symmetric parts. 

 

 

 

 

Figure 4.5: WR converge analysis circuit. The homogeneous problem.  
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where 

𝑎 = 𝑎2
− = 𝑎2

+ = ⋯ = 𝑎𝑁−1
− = 𝑎𝑁−1

+ =
Z − 𝑅

Z + 𝑅
 (4.24) 

𝑏 = 𝑏2
− = 𝑏2

+ = ⋯ = 𝑏𝑁−1
− = 𝑏𝑁−1

+ =
2𝑅𝑍12

(Z + 𝑅)(𝑍11 + 𝑅)
 (4.25) 

and  

𝑎1
+ =

Z1,2
1 − 𝑅

Z1,2
1 + 𝑅

 
(4.26) 

𝑎N
− =

ZN−1,N
N − 𝑅

ZN−1,N
N + 𝑅

 
(4.26) 

In the same way, the GJ iteration matrix (𝑱𝟏
′ )2 defined over two iterations, is expressed as 

follows 

 

    𝑱N
′ = 

 0 𝑎1
+ 0 0        

 𝑎 0 0 𝑏        

 𝑏 0 0 𝑎 0 0      

 0 0 𝑎 0 0 𝑏      

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

     𝑏 0 0 𝑎 0 0  

     0 0 𝑎 0 0 𝑏  

       𝑏 0 0 𝑎  

       0 0 𝑎N
− 0  

 

(4.23) 
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(𝑱N
′ )2 = 

 𝑎1
+𝑎 0 0 𝑎1

+ 𝑏 0 0          

(4.27) 

 0 𝑎1
+𝑎 𝑎𝑏 0 0 𝑏2          

 0 𝑎1
+𝑏 𝑎2 0 0 𝑎𝑏 0 0        

 𝑎𝑏 0 0 𝑎2 𝑎𝑏 0 0 𝑏2        

 𝑏2 0 0 𝑎𝑏 𝑎2 0 0 𝑎𝑏 0 0      

 0 0 𝑎𝑏 0 0 𝑎2 𝑎𝑏 0 0 𝑏2      

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱    

     𝑏2 0 0 𝑎𝑏 𝑎2 0 0 𝑎𝑏 0 0  

     0 0 𝑎𝑏 0 0 𝑎2 𝑎𝑏 0 0 𝑏2  

       𝑏2 0 0 𝑎𝑏 𝑎2 0 0 𝑎𝑏  

       0 0 𝑎𝑏 0 0 𝑎2 𝑎N
−𝑏 0  

         𝑏2 0 0 𝑎𝑏 𝑎N
−𝑎 0  

         0 0 𝑎N
−𝑏 0 0 𝑎N

−𝑎  
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Note that:  

‖(𝑱N
′ )2‖1 = ‖(𝑱N

′ )2‖∞ = max{𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6, 𝜎7} (4.28) 

at every frequency point  𝜔 ≥ 0, where  

𝜎1 = |𝑎1
+|(|𝑎| + |𝑏|) 

(4.29) 

𝜎2 = |𝑏|(|𝑎| + |𝑏|) + |𝑎||𝑎1
+|   

𝜎3 = |𝑎|(|𝑎| + |𝑏|) + |𝑏||𝑎1
+| 

𝜎4 = (|𝑎| + |𝑏|)2 

𝜎5 = |𝑎|(|𝑎| + |𝑏|) + |𝑏||𝑎N
−| 

𝜎6 = |𝑏|(|𝑎| + |𝑏|) + |𝑎||𝑎N
−| 

𝜎7 = |𝑎N
−|(|𝑎| + |𝑏|) 

Both 1-norm and ∞-norm take a value which is independent of the size N of the chain at every 

frequency point 𝜔 ≥ 0 for N ≥ 5. In the following illustrative example, we examine the 

convergence behavior of WR for the conventional lumped RLCG T model which is realized in 

the circuit environment with chains made of identical symmetric parts or sections.    

4.2.1 Illustrative Example        

Consider the following PUL parameters: 𝑅 = 25 Ω m⁄ , 𝐿 = 0.6 μH m⁄ , 𝐶 = 121 pF m⁄ , and 

𝐺 = 20 GS m⁄  for a line segment of length (0.1 300⁄ ) m. This segment is used to build a straight 

line whose length goes from (0.1 300⁄ )m to 0.1 m by steps of (0.1 300⁄ )m. Every segment is 

represented in the time-domain by one lumped RLCG T section [94] with the following circuit 

elements 𝑅0 = 4.16mΩ, 𝐿0 = 66.67pH, 𝐶0 = 40.33fF and 𝐺0 = 6.66 pS. Note that the 0.1 m 

long transmission line is modeled by at least 279 sections. This shows that our segmentation 

properly models the constructed transmission line at every step. A voltage pulse source of 1Vpeak 

and 0.05ns rise/fall time drives the circuit through a 10Ω-resistance while a 1.0pF load is 
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connected at the farend of our constructed line. Relaxation resistances are set at a value R =

20Ω. The GJ iteration matrix (𝑱′N)2 is numerically calculated at every frequency point of the 211 

equidistant points on the frequency interval 0 ≤ 𝑓 ≤ 20GHz [104] for chains of lengths 3, 5, 10, 

50, 100, 150, 200, 250 and 300 line segments\T sections. The 1-norm and spectral norm are 

reported on Figures 4.6 and 4.7. The spectral radius is numerically computed on the same 

frequency sampling and is reported on Figures 4.8-4.10. The numerical results suggest that the 

spectral norm takes values less than one. They also show that 1-norm and ∞-norm can be greater 

than one. The fact that spectral radii 𝜌(𝜔) of matrices (𝑱′N)2  are less than one on the frequency 

sampling confirms the observed convergence of WR for chains of circuits when resistive 

coupling is implemented. Norm inequality 𝜌 ≤ ‖(𝑱′
N)

2
‖

2
≤ √‖(𝑱′

N)
2

‖
1

‖(𝑱′
N)

2
‖

∞
= 

‖(𝑱′N)2‖1 however fails to produce an upperbound of ‖(𝑱′
N)

2
‖

2
 and therefore of 𝜌, which has 

values less than one. Hence, it cannot be used to demonstrate the WR convergence for this class 

of circuit problems despite the fact the 1-norm and ∞-norm can be readily computed, see (4. 28) 

and (4.29). 

 

Figure 4.6: Norms ‖(𝑱′𝐍)𝟐‖
𝟏
. 𝐍 ∈ {𝟑, 𝟓, 𝟏𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟏𝟓𝟎, 𝟐𝟎𝟎, 𝟐𝟓𝟎, 𝟑𝟎𝟎}. Illustrative 

example. 
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Figure 4.7: Spectral norms ‖(𝑱′𝐍)𝟐‖
𝟐
, 𝐍 ∈ {𝟑, 𝟓, 𝟏𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟏𝟓𝟎, 𝟐𝟎𝟎, 𝟐𝟓𝟎, 𝟑𝟎𝟎}. 

Illustrative example. 

 

 

 

 

 

Figure 4.8: Spectral radii  𝝆((𝑱′𝐍)𝟐), 𝐍 = 𝟑, 𝟓, 𝟏𝟎. Illustrative example. 



148 

 

 

 

 

Figure 4.9: Spectral radii 𝝆((𝑱′𝐍)𝟐), 𝐍 = 𝟓𝟎, 𝟏𝟎𝟎, 𝟏𝟓𝟎. Illustrative example. 

 

 

 

Figure 4.10: Spectral radii 𝝆((𝑱′𝐍)𝟐), 𝐍 = 𝟐𝟎𝟎, 𝟐𝟓𝟎, 𝟑𝟎𝟎. Illustrative example. 
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To demonstrate the WR convergence, a valid upperbound, ie of value less than one, is 

produced for the spectral radius of the GJ and GS iteration matrices. The proposed upperbound 

does not depend on the number N of serial parts. It shows that WR converges independently of 

the chain length N.   

First, a preliminary result is introduced in the following lemma 

Lemma 4.1. Coefficients 𝑎(𝑖𝜔, 𝑅) and 𝑏(𝑖𝜔, 𝑅) defined in equations (4.17) and (4.18), satisfy  

|𝑎(𝑖𝜔, 𝑅)|2 + |𝑏(𝑖𝜔, 𝑅)|2 + 2 |ℜ (𝑎(𝑖𝜔, 𝑅)�̅�(𝑖𝜔, 𝑅))| < 1 (4.30) 

for all angular frequency 𝜔 ≥ 0 and coupling resistances 𝑅 > 0. 

Proof. We are going to demonstrate that coefficients  𝑎 = 𝑎(𝑖𝜔, 𝑅) and 𝑏 = 𝑏(𝑖𝜔, 𝑅) given in 

eq. (4.17) and in eq. (4.18) respectively, satisfy |𝑎 − 𝑏| < 1 and |𝑎 + 𝑏| < 1. The reason is that 

|𝑎|2 + |𝑏|2 + 2|ℜ(𝑎�̅�)| = max(|𝑎 − 𝑏|2, |𝑎 + 𝑏|2) since |𝑎 − 𝑏|2 = |𝑎|2 + |𝑏|2 − 2ℜ(𝑎�̅�) and 

|𝑎 + 𝑏|2 = |𝑎|2 + |𝑏|2 + 2ℜ(𝑎�̅�). 

First, we use the following parameter change; 

𝑍𝑎 = 𝑍11 − 𝑍12 𝑍𝑏 = 𝑍11 + 𝑍12 (4.31) 

Input impedance Z and coefficients 𝑎 and 𝑏 are expressed in terms of 𝑍𝑎 and 𝑍𝑏 by 

Z =
2𝑍𝑎𝑍𝑏 + (𝑍𝑎 + 𝑍𝑏)𝑅

𝑍𝑎 + 𝑍𝑏 + 2𝑅
 (4.32) 

𝑎 =
𝑍𝑎𝑍𝑏 − 𝑅2

𝑍𝑎𝑍𝑏 + (𝑍𝑎 + 𝑍𝑏)𝑅 + 𝑅2
 (4.33) 

𝑏 =
(𝑍𝑏 − 𝑍𝑎)𝑅

𝑍𝑎𝑍𝑏 + (𝑍𝑎 + 𝑍𝑏)𝑅 + 𝑅2
 (4.34) 

Next, we compute |𝑎 + 𝑏|2 = P(𝑅) Q(𝑅)⁄   
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P(𝑅) = |𝑍𝑎|2|𝑍𝑏|2 + 2[|𝑍𝑏|2ℜ(𝑍𝑎) + |𝑍𝑎|2ℜ(𝑍𝑏)]𝑅 +  (|𝑍𝑎|2+|𝑍𝑏|2 − 4ℜ(𝑍𝑎)ℜ(𝑍𝑏))𝑅2

+ 2(ℜ(𝑍𝑎) − ℜ(𝑍𝑏))𝑅3 + 𝑅4 

(4.35) 

and 

Q(𝑅) = |𝑍𝑎|2|𝑍𝑏|2 + 2(|𝑍𝑎|2ℜ(𝑍𝑏) + |𝑍𝑏|2ℜ(𝑍𝑎))𝑅 + 2(|𝑍𝑎|2+|𝑍𝑏|2 + 4ℜ(𝑍𝑎)ℜ(𝑍𝑏))𝑅2

+ (ℜ(𝑍𝑎) + ℜ(𝑍𝑏))𝑅3 + 𝑅4 

(4.36) 

we view P and Q as two polynomials of unknown 𝑅. Since P and Q have same degree four and 

since 𝑅 > 0, then we can compare them by inspecting their coefficients. We use the fact that 

lattice impedances 𝑍𝑎 and 𝑍𝑎, defined in (4.31), satisfy ℜ(𝑍𝑎(𝑖𝜔)) > 0 and ℜ(𝑍𝑏(𝑖𝜔)) > 0 for 

all 𝜔 ≥ 0 in a dissipative circuit, see [96, Sec. 1.6]. We find that P(𝑅) < Q(𝑅) and hence |𝑎 +

𝑏|2 < 1 for 𝜔 ∈ ℝ and 𝑅 > 0.   

We follow same steps to show that |𝑎 − 𝑏|2 < 1.  Let |𝑎 − 𝑏|2 = S(𝑅) Q(𝑅)⁄ . We only need to 

compute numerator S(𝑅) since denominator Q(𝑅) is already derived in 4.36.   

S(𝑅) = |𝑍𝑎|2|𝑍𝑏|2 + 2[|𝑍𝑎|2ℜ(𝑍𝑏) − |𝑍𝑏|2ℜ(𝑍𝑎)]𝑅 +  (|𝑍𝑎|2+|𝑍𝑏|2 − 4ℜ(𝑍𝑎)ℜ(𝑍𝑏))𝑅2

+ 2(ℜ(𝑍𝑎) − ℜ(𝑍𝑏))𝑅3 + 𝑅4 

(4.37) 

A comparison of the coefficients of polynomials S(𝑅) and Q(𝑅) shows that S(𝑅) < Q(𝑅).      ∎                                                   

Next, the proposed upperbound is presented in the following theorem 
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Theorem 4.2. Spectral radius 𝜌(𝜔, 𝑅) of matrices (𝑱′N)2 and 𝑺′N for sizes  N ≥ 5, has the bound 

𝜌(𝜔, 𝑅) ≤ max (|𝑎lt(𝑖𝜔, 𝑅)|2, |𝑎(𝑖𝜔, 𝑅)|2 + |𝑏(𝑖𝜔, 𝑅)|2

+ 2 |ℜ (𝑎(𝑖𝜔, 𝑅)�̅�(𝑖𝜔, 𝑅))| , |𝑎rt(𝑖𝜔, 𝑅)|2) < 1 

(4.38) 

at any frequency point 𝜔 ≥0 and for any coupling resistance 𝑅 > 0.   

Proof. We consider the GJ iteration  (𝑱N
′ )2, defined over two iterations in (4.27). The spectral 

radius 𝜌((𝑱N
′ )2) of matrix (𝑱N

′ )2 satisfies the following inequality 

𝜌((𝑱N
′ )2) ≤ ‖(𝑱N

′ )2‖2 ≤ (𝑱N
′ )2 = 𝜌((𝑱N

′ )∗𝑱N
′ ) = 𝜌(𝑱N

′ (𝑱N
′ )∗) (4.39) 

where (𝑱N
′ )∗ is the Hermitian transpose of matrix 𝑱N

′  in (4.23). The positive definite matrix 

𝑱N
′ (𝑱N

′ )∗ is given by 

(4.40) 

Matrix 𝑱N
′ (𝑱N

′ )∗ possesses the following eigenvalues |𝑎1
+|2, |𝑎|2 + |𝑏|2 − 2ℜ(𝑎�̅�), |𝑎|2 + |𝑏|2 +

2ℜ(𝑎�̅�) and |𝑎N
−|2 counted with multiplicity. At every frequency point 𝜔, the spectral radius 

𝜌𝑜(𝜔) of matrix 𝑱N
′ (𝑱N

′ )∗ satisfies 𝜌𝑜(𝜔, 𝑅) = max(|𝑎1
+(𝑖𝜔, 𝑅)|2, |𝑎(𝑖𝜔, 𝑅)|2 + |𝑏(𝑖𝜔, 𝑅)|2 +

2|ℜ(𝑎(𝑖𝜔, 𝑅)𝑏(𝑖𝜔, 𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)|, |𝑎N
−(𝑖𝜔, 𝑅)|2). Using the result of Lemma 4.1, we have the bound 

𝜌((𝑱N
′ )2) ≤ 𝜌𝑜 < 1.                                                                                                                        ∎                                                                                                        

𝑱N
′ (𝑱N

′ )∗ = 

 |𝑎1
+|2         

  |𝑎|2 + |𝑏|2 2ℜ(𝑎�̅�)       

  2ℜ(𝑎�̅�) |𝑎|2 + |𝑏|2       

    ⋱ ⋱     

    ⋱ ⋱     

      |𝑎|2 + |𝑏|2 2ℜ(𝑎�̅�)   

      2ℜ(𝑎�̅�) |𝑎|2 + |𝑏|2   

        |𝑎N
−|2  
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Spectral radius 𝜌 is bounded by a positive function 𝜌𝑜 of variable (𝜔, 𝑅) that does not depend 

on size N, N ≥ 5, and whose value is always less than one. The WR always converges 

independently of the number N of parts in the chain.     

The following section provides a detailed derivation for the iteration matrices of the WR 

algorithm in both GJ and GS relaxations. 

4.3 Construction of iteration matrices 

 A detailed derivation of the expressions of matrices (𝑱N)2 and 𝑺N  in (4.6)-(4.9) and (4.11)-

(4.15). is provided here. 

First let us calculate the input impedance of all parts at the artificial interfaces in Figure 4.11.  

𝑍1,2
1 = 𝑍22

𝟏 −
(𝑍12

𝟏)
2

𝑍11
𝟏 + 𝑍TL

 for part 1 at the left-hand extremity,  
 

𝑍N−1,N
N = 𝑍11

𝐍 −
(𝑍12

𝐍)
2

𝑍22
𝐍 + 𝑍TL

 for part N at the right-hand extremity, 
(4.41) 

 

Figure 4.11: Frequency-domain representation of decoupled parts. (I) Left end. (II) Right 

end. Interior (III). 
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For any interior part Pn, we have    

𝑍n−1,n
n = 𝑍11

𝐧 −
(𝑍12

𝐧)2

𝑍22
𝐧 + 𝜁n,n+1

n+1  and  
 

𝑍n,n+1
n = 𝑍22

𝐧 −
(𝑍12

𝐧)2

𝑍11
𝐧 + 𝜁n−1,n

n−1  2 ≤ n ≤ N − 1 
 

Next, the expression of node voltages 𝑢1,2
1 , 𝑢1,2

2 , …, 𝑢n−1,n
𝑛 , 𝑢n,n+1

𝑛 ,…, 𝑢N−1,N
N  in Figure 4.11 

must be determined. These expressions will be used in the update of the relaxation sources 

𝑢1,2
1 =

𝑍1.2
1

𝑍1.2
1 + 𝜁1.2

1 𝑒1,2
1  

 

for part 1, and  

𝑢n−1,n
n =

𝑍n−1.n
n

𝑍n−1.n
n + 𝜁n−1.n

n−1 𝑒n−1,n
n +

𝑍12
𝐧 𝜁n−1.n

n−1

(𝑍11
𝐧 + 𝜁n−1.n

n−1 )(𝑍n.n+1
n + 𝜁n.n+1

n )
𝑒n,n+1

n  
 

𝑢n,n+1
n =

𝑍12
𝐧 𝜁n.n+1

n+1

(𝑍22
𝐧 + 𝜁n.n+1

n+1 )(𝑍n−1.n
n + 𝜁n−1.n

n−1 )
𝑒n−1,n

n +
𝑍n.n+1

n

𝑍n.n+1
n + 𝜁n.n+1

n+1 𝑒n,n+1
n  

(4.42) 

for any interior part n of the chain, 2 ≤ n ≤ N − 1. Finally,  

𝑢N−1,N
N =

𝑍N−1.N
N

𝑍N−1.N
N + 𝑍N−1.N

N−1
𝑒N−1,N

N  
 

for part N.  

4.3.1 Gauss-Jacobi iteration matrix 

Sources update is performed as follows  

𝑒1,2
1 (𝑘+1)

= (1 +
𝜁1.2

2

𝜁1,2
1 ) 𝑢1,2

2 (𝑘)
−

𝜁1,2
2

𝜁1,2
1 𝑒1,2

2 (𝑘)
 

 

     ⋮  
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𝑒n−1,n
n (𝑘+1)

= (1 +
𝜁n−1.n

n−1

𝜁n−1,n
n ) 𝑢n−1,n

n−1 (𝑘)
−

𝜁n−1.n
n−1

𝜁n−1,n
n 𝑒n−1,n

n−1 (𝑘)
 

 

𝑒n,n+1
n (𝑘+1)

= (1 +
𝜁n.n+1

n+1

𝜁n,n+1
n ) 𝑢n,n+1

n+1 (𝑘)
−

𝜁n.n+1
n+1

𝜁n,n+1
n 𝑒n,n+1

n+1 (𝑘)
 

(4.43) 

(2 ≤ n ≤ N − 1)  

𝑒N−1,N
N (𝑘+1)

= (1 +
𝜁N−1,N

N−1

𝜁N−1,N
N

) 𝑢N−1,N
N−1 (𝑘)

−
𝜁N−1,N

N−1

𝜁N−1,N
N

𝑒N−1,N
N−1 (𝑘)

 
 

expressions of 𝑢1,2
1 , 𝑢1,2

2 , …, 𝑢n−1,n
𝑛 , 𝑢n,n+1

𝑛 ,…, 𝑢N−1,N
N  in (4.42) at iteration 𝑘 are substituted in 

the equations set (4.43) 

𝑒1,2
1 (𝑘+1)

= 𝑎2
−𝑒1,2

2 (𝑘)
+ 𝑏2

−𝑒2,3
2 (𝑘)

  

𝑒1,2
2 (𝑘+1)

= 𝑎1
+𝑒1,2

1 (𝑘)
  

         ⋮  

𝑒n−1,n
n−1 (𝑘+1)

= 𝑎n
−𝑒n−1,n

n (𝑘)
+𝑏n

−𝑒n,n+1
n (𝑘)

 (4.44) 

𝑒n−1,n
n (𝑘+1)

= 𝑏n−1
+ 𝑒n−2,n−1

n−1 (𝑘)
+  𝑎n−1

+ 𝑒n−1,n
n−1 (𝑘)

  

(3 ≤ n ≤ N − 1)  

         ⋮  

𝑒N−1,N
N−1 (𝑘+1)

= 𝑎N
−𝑒N−1,N

N (𝑘)
  

𝑒N−1,N
N (𝑘+1)

= 𝑏N
+𝑒N−2,N−1

N−1 (𝑘)
+ 𝑎N−1

+ 𝑒N−1,N
N−1 (𝑘)

  

where coefficients 𝑎1
+, 𝑎2

−, 𝑎2
+, 𝑎2

−,…, 𝑎N−1
+ , 𝑎N−1

− , and 𝑎N
− are defined in equations set (4.7). The 

vector form representation of equations (4.44) with respect to vector 𝒆𝟏 =
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(𝑒1,2
2 , 𝑒1,2

1 , 𝑒2,3
3 , 𝑒2,3

2 , . . , 𝑒𝑛−1,𝑛
𝑛 , 𝑒𝑛−1,𝑛

𝑛−1 , . . , 𝑒𝑁−1,𝑁
𝑁 , 𝑒𝑁−1,𝑁

𝑁−1  )
𝑇
 defined in (4.3), produces the GJ 

iteration matrix 𝑱N defined over one iteration in (4.6).  

Taking equations set (4.44) at iteration (𝑘 + 2), it is possible to obtain an update over two 

iterations 

𝑒1,2
1 (𝑘+2)

= 𝑎1
+𝑎2

−𝑒1,2
1 (𝑘)

+ 𝑏2
−𝑎3

−𝑒2,3
3 (𝑘)

+ 𝑏2
−𝑏3

−𝑒3,4
3 (𝑘)

  

𝑒1,2
2 (𝑘+2)

= 𝑎1
+𝑎2

−𝑒1,2
2 (𝑘)

+ 𝑎1
+𝑏2

−𝑒2,3
2 (𝑘)

  

𝑒2,3
2 (𝑘+2)

= 𝑏2
+𝑎3

−𝑒1,2
2 (𝑘)

+ 𝑎2
+𝑎3

−𝑒2,3
2 (𝑘)

+ 𝑏3
−𝑎4

−𝑒3,4
4 (𝑘)

+ 𝑏3
−𝑏4

−𝑒4,5
4 (𝑘)

  

𝑒2,3
3 (𝑘+2)

= 𝑎1
−𝑏2

+𝑒1,2
1 (𝑘)

+ 𝑎2
+𝑎3

−𝑒2,3
3 (𝑘)

+ 𝑎2
+𝑏3

−𝑒3,4
3 (𝑘)

  

         ⋮  

𝑒n−1,n
n−1 (𝑘+2)

= 𝑎n
−𝑏n−1

+ 𝑒n−2,n−1
n−1 (𝑘)

+  𝑎n−1
+ 𝑎n

−𝑒n−1,n
n−1 (𝑘)

+ 𝑎n
−𝑏n

+𝑒n−1,n
n (𝑘)

+ 𝑏n
−𝑎n

+𝑒n,n+1
n (𝑘)

 
(4.45) 

𝑒n−1,n
n (𝑘+2)

= 𝑏n−2
− 𝑏n−1

+ 𝑒n−3,n−2
n−2 (𝑘)

+  𝑏n−1
+ 𝑎n−2

+ 𝑒n−2,n−1
n−2 (𝑘)

+ 𝑎n−1
+ 𝑎n

−𝑒n−1,n
n (𝑘)

+ 𝑎n−1
+ 𝑏n

−𝑒n,n+1
n (𝑘)

 
 

(3 ≤ n ≤ N − 2)  

         ⋮  

𝑒N−2,N−1
N−2 (𝑘+2)

= 𝑏N−2
+ 𝑎N−1

− 𝑒N−3,N−2
N−2 (𝑘)

+ 𝑎N−2
+ 𝑎N−1

− 𝑒N−2,N−1
N−2 (𝑘)

+ 𝑏N−1
− 𝑎N

−𝑒N−1,N
N (𝑘+2)

  

𝑒N−2,N−1
N−1 (𝑘+2)

= 𝑏N−3
+ 𝑏N−2

+ 𝑒N−4,N−3
N−3 + 𝑎N−3

+ 𝑏N−2
+ 𝑒N−3,N−2

N−3 + 𝑎N−2
+ 𝑎N−1

− 𝑒N−2,N−1
N−1

+ 𝑎N−2
+ 𝑏N−1

− 𝑒N−1,N
N−1  
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𝑒N−1,N
N−1 (𝑘+2)

= 𝑏N−1
+ 𝑎N

−𝑒N−2,N−1
N−1 (𝑘)

+ 𝑎N−1
+ 𝑎N

−𝑒N−1,N
N−1 (𝑘)

  

𝑒N−1,N
N (𝑘+2)

= 𝑏N−2
+ 𝑏N−1

+ 𝑒N−3,N−2
N−2 (𝑘)

+ 𝑎N−2
+ 𝑏N−1

+ 𝑒N−2,N−1
N−2 (𝑘)

+ 𝑎N−1
+ 𝑎N

−𝑒N−1,N
N (𝑘)

  

In vector form representation, equations set (4.45) yields GJ iteration (𝑱N)2 defined over two 

iterations in (4.9).  

Next, we derive iteration matrix 𝑺N for the GS relaxation by considering error vector 𝒆𝟐 (4.4)  

4.3.2 Gauss-Seidel iteration matrix 

One GS iteration is executed in two phases. First, all relaxation sources 𝑒1,2
1 ,..,𝑒2n,2n+1

2n+1 , 

𝑒2n+1,2n+2
2n+1 , n ≥ 1, connected to odd numbered parts are initialized and these parts are solved. 

Then, the solution of the odd numbered parts is used to update all relaxation sources 𝑒2n−1,2n
2n , 

𝑒2n,2n+1
2n , n ≥ 1 connected to even numbered parts which are then solved. In the next iteration all 

sources connected to odd numbered parts are first updated using the solution of the even set from 

previous iteration and then the odd set is solved again. The even set is solved next after all its 

sources are updated. The GS iteration is sustained thought this two-times update mechanism as 

opposed to the one-time mechanism in the GJ relaxation. Hence, it is natural to consider error 

vector 𝒆𝟐 = (𝑒1,2
1 , 𝑒2,3

3 , 𝑒3,4
3 , 𝑒4,5

5 , 𝑒5,6
5 . . , 𝑒1,2

2 , 𝑒2,3
2 , 𝑒3,4

4 , 𝑒4,5
4 , 𝑒5,6

6 , 𝑒6,7
6 , . . )

𝑇
 in (4.4). Relaxation 

sources are updated according to the following equations  

𝑒1,2
1 (𝑘+1)

= (1 +
𝜁1.2

2

𝜁1,2
1 ) 𝑢1,2

2 (𝑘)
−

𝜁1,2
2

𝜁1,2
1 𝑒1,2

2 (𝑘)
  

     ⋮  

𝑒2n,2n+1
2n+1 (𝑘+1)

= (1 +
𝜁2n.2n+1

2n

𝜁2n.2n+1
2n+1 ) 𝑢2n,2n+1

2n (𝑘)
−

𝜁2n.2n+1
2n

𝜁2n.2n+1
2n+1 𝑒2n,2n+1

2n (𝑘)
  

𝑒2n+1,2n+2
2n+1 (𝑘+1)

= (1 +
𝜁2n+1.2n+2

2n+2

𝜁2n+1.2n+2
2n+1 ) 𝑢2n+1,2n+2

2n+2 (𝑘)
−

𝜁2n+1.2n+2
2n+2

𝜁2n+1.2n+2
2n+1 𝑒2n+1,2n+2

2n+2 (𝑘)
  

for odd numbered parts, and   
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𝑒2n−1,2n
2n (𝑘)

= (1 +
𝜁2n−1.2n

2n−1

𝜁2n−1.2n
2n ) 𝑢2n−1,2n

2n−1 (𝑘)
−

𝜁2n−1.2n
2n−1

𝜁2n−1.2n
2n 𝑒2n−1,2n

2n−1 (𝑘)
 (4.46) 

𝑒2n,2n+1
2n (𝑘)

= (1 +
𝜁2n.2n+1

2n+1

𝜁2n.2n+1
2n ) 𝑢2n,2n+1

2n+1 (𝑘)
−

𝜁2n.2n+1
2n+1

𝜁2n.2n+1
2n 𝑒2n,2n+1

2n+1 (𝑘)
  

n ≥ 1  

For even numbered parts. Equations (4.46) are represented in vector form by  

𝒆even
(𝒌) = 𝑴′𝒆odd

(𝒌) (4.47) 

𝒆odd
(𝒌+𝟏) = 𝑴𝒆even

(𝒌) (4.48) 

𝑘 ∈ ℕ  

with respect to (N − 1) × 1 vectors 𝒆odd = (𝑒1,2
1 , 𝑒2,3

3 , 𝑒2,3
3 , 𝑒4,5

5 , 𝑒5,6
5 , . . )

𝑻
 and 𝒆even =

(𝑒1,2
2 , 𝑒2,3

2 , 𝑒3,4
4 , 𝑒4,5

4 , . . )
𝑻
.  (N − 1) × (N − 1) matrices 𝑴 and 𝑴′ are given by  

 

𝑴 = 

 𝑎2
− 𝑏2

−         

 𝑏2
+ 𝑎2

+         

   𝑎4
− 𝑏4

−       

   𝑎4
+ 𝑏4

+       

     ⋱ ⋱     

     ⋱ ⋱     

       𝑎N−2
−  𝑏N−2

−    

       𝑏N−2
+  𝑎N−2

+    

         𝑎N
−  

 

(4.49) 
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and 

𝑴′ = 

 𝑎1
+          

  𝑎3
− 𝑏3

−        

  𝑏3
+ 𝑎3

+        

    𝑎5
− 𝑏5

−      

    𝑎5
+ 𝑏5

+      

      ⋱ ⋱    

      ⋱ ⋱    

        𝑎N−1
−  𝑏N−1

−   

        𝑏N−1
+  𝑎N−1

+   

 

(4.50) 

when N is even, and 

 

𝑴 = 

 𝑎2
− 𝑏2

−        

 𝑏2
+ 𝑎2

+        

   𝑎4
− 𝑏4

−      

   𝑏4
+ 𝑎4

+      

     ⋱ ⋱    

     ⋱ ⋱    

       𝑎N−1
−  𝑏N−1

−   

       𝑎N−1
+  𝑏N−1

+   

 

(4.51) 

  

 and 
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𝑴′ = 

 𝑎1
+         

  𝑎3
− 𝑏3

−       

  𝑏3
+ 𝑎3

+       

    ⋱ ⋱     

    ⋱ ⋱     

      𝑎N−1
−  𝑏N−1

−    

      𝑏N−1
+  𝑎N−1

+    

        𝑎N
−  

 

(4.52) 

 

when N is odd. Equations (4.31) and (4.32) lead to recursive relations over one GS iteration 

𝒆odd
(𝑘+1) = 𝑴𝑴′𝒆odd

(𝑘) (4.53) 

𝒆even
(𝑘+1) = 𝑴′𝑴𝒆even

(𝑘)
 (4.54) 

𝑘 ∈ ℕ  

Matrix products 𝑴𝑴′ = 𝑨 and 𝑴′𝑴 = 𝑩 introduced earlier in (4.10)-(4.15). It can be easily 

demonstrated that matrices (𝑱N)2 and 𝑺N are similar. The similarity matrix 𝑷 is the permutation 

defined by 𝑷𝒆𝟏 = 𝒆𝟐.  Matrices (𝑱N)2 and 𝑺N have same spectral radius, 1-norm and ∞-norm. 

To study the convergence behavior of WR relaxation, the focus was on the GJ case only since it 

is possible to directly deduce similar results in the GS case with the following fact in mind: 

(𝑱N)2 is defined over two iterations whereas 𝑺N is over one iteration only.   

4.4 Conclusion 

The nilpotency of WR algorithm has been examined for chains of circuits when strictly 

dissipative impedance coupling is adopted. It was shown that optimal local convergence is a 

necessary condition yet not sufficient for global convergence. The direction along which local 
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convergence factors are zeroed, affects the degree of nilpotency and can even produce a non-

nilpotent algorithm. 

A upperbound estimate was presented for the GJ and GS iteration matrices of the resistive 

coupling-based waveform relaxation algorithm when it is applied to chains of identical 

symmetric circuits. It showed that convergence is guaranteed for any number of cascaded 

circuits.  
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Chapter 5 

5 Conclusion 

The contribution of the present thesis is recapitulated, and prospective directions are suggested 

for future research.     

5.1 Summary  

The focus of the present thesis was on enhancing the speed of convergence of WR algorithm 

with longitudinal partitioning. Although the proposed algorithms were intended for the solution 

of general transmission line circuits, their underlying theoretical results apply to any circuit with 

a linear time-invariant representation. 

In chapter 2, an enhanced resistive coupling scheme was presented. Fast convergence was cast 

as an optimization problem and an automatic solution in the suboptimal sense was provided. 

Numerical examples illustrated the pertinence of the enhanced resistive coupling and 

documented the possibility of runtime savings for the analysis of arborescent transmission line 

circuits.  

In chapter 3, a more general coupling scheme was presented and studied. To approximate the 

optimal convergence conditions of the subsequent algorithm, the presented coupling strategy 

avoided the difficult problem of optimization and proposed an approximation which captures the 

delay of the optimal condition. The coupling strategy used coarse macromodeling of the 

transmission line to construct these high-order approximations directly in circuit form. 

Numerical examples attested the superior convergence produced by this general coupling. 

 In chapter 4, new theoretical results were presented. The first part of these results concerns the 

nilpotent waveform relaxation algorithm for chains of general circuits when dissipative 

impedance coupling is used. The aim of this study was to identify under what conditions a 

nilpotent algorithm is reached. This way, it is possible to construct judicious approximations of 

the nilpotency conditions which can produce cost-efficient algorithms at suboptimal speeds of 

convergence. The second part demonstrated the global convergence of waveform relaxation for 

chains of identical symmetric circuits when resistive coupling is applied.    
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5.2 Future work 

5.2.1 Towards multi-conductor transmission line circuits 

The present work can be extended to general multi-conductor transmission line circuits and to 

power distribution networks. Every neutral series insertion {−𝑅1, 𝑅1 + 𝑅2, −𝑅2} made of 

resistances, is replaced with {−𝑹𝟏, 𝑹𝟏 + 𝑹𝟐, −𝑹𝟐} where 𝑹𝟏 and 𝑹𝟐 are matrices whose 

elements represent coupling resistances. This insertion decouples two adjacent parts which 

contain multi-conductor transmission lines. In the same way resistive coupling can be 

generalized to impedance coupling where every neutral series insertion {−𝜁1, 𝜁Σ, −𝜁2} made of 

impedances is replaced with {−𝜻𝟏, 𝜻𝚺, −𝜻𝟐} where 𝜻𝟏 and 𝜻𝟐 are matrices whose entries 

represent impedances.  

5.2.2 In the presence of nonlinear loads 

The present work focused on the application of resistive and impedance coupling to linear 

circuits where partitioning yields multiple subcircuits or parts. If the circuit contain nonlinear 

parts that are sandwiched between interconnects, then a multi-subsystem partitioning is required 

to apply a WR analysis. To reach fast convergence, it is possible to apply the presented results on 

the linear interconnect circuit to lower the local convergence rate. Of, course the analysis will 

include the Newton iteration or another suitable method to deal with nonlinear part which can be 

a line driver, receiver, or source.   
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