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Abstract 

The hippocampal subfields are defined by their unique cytoarchitectures, which many recent 

studies have tried to map to human in-vivo MRI because of their promise to further our 

understanding of hippocampal function, or its dysfunction in disease. However, recent 

anatomical literature has highlighted broad inter-individual variability in hippocampal 

morphology and subfield locations, much of which can be attributed to different folding 

configurations within hippocampal (or archicortical) tissue. Inspired in part by analogous 

surface-based neocortical analysis methods, the current thesis aimed to develop a 

standardized coordinate framework, or surface-based method, that respects the topology of 

all hippocampal folding configurations. I developed such a coordinate framework in Chapter 

2, which was initialized by detailed manual segmentations of hippocampal grey matter and 

high myelin laminae which are visible in 7-Tesla MRI and which separate different 

hippocampal folds. This framework was leveraged to i) computationally unfold the 

hippocampus which provided implicit topological inter-individual alignment, ii) delineate 

subfields with high reliability and validity, and iii) extract novel structural features of 

hippocampal grey matter. In Chapter 3, I applied this coordinate framework to the open 

source BigBrain 3D histology dataset. With this framework, I computationally extracted 

morphological and laminar features and showed that they are sufficient to derive 

hippocampal subfields in a data-driven manner. This underscores the sensitivity of these 

computational measures and the validity of the applied subfield definitions. Finally, the 

unfolding coordinate framework developed in Chapter 2 and extended in Chapter 3 requires 

manual detection of different tissue classes that separate folds in hippocampal grey matter. 

This is costly in the time and the expertise required. Thus, in Chapter 4, I applied state-of-

the-art deep learning methods in the open source Human Connectome Project MRI dataset to 

automate this process. This allowed for scalable application of the methods described in 

Chapters 2, 3, and 4 to similar new datasets, with support for extensions to suit data of 

different modalities or resolutions. Overall, the projects presented here provide multifaceted 

evidence for the strengths of a surface-based approach to hippocampal analysis as developed 

in this thesis, and these methods are readily deployable in new neuroimaging work.  
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Summary for Lay Audience 

One way that scientists have studied the human hippocampus is through Magnetic Resonance 

Imaging (MRI). While non-invasive, MRI has limitations in resolution and contrast and so 

the current thesis aims to gain as much information as possible from such images. Given only 

a blurry image of the hippocampus, we can get a rough idea of its overall shape and 

properties, which are often estimated in current research and clinical examinations. From 

existing literature, we know that the hippocampus is composed of a thin, folded sheet of 

tissue. Thus, there may only be a few possible folding patterns that could produce a given 

coarse hippocampal shape and image. The current thesis tries to reconstruct possible folding 

patterns of the hippocampus from MRI or other images. 

Once we understand how a given hippocampus is folded, it becomes easier to learn more 

about its structure. For example, we can measure its thickness and other properties, or we can 

more easily divide it into contiguous subfields. For easier visualization, we can also 

computationally ‘unfold’ this structure and plot its properties, such as thickness, across its 

full 3D extent in just one flattened plane of view. Doing this type of unfolding also allows us 

to align different hippocampi despite differences in their original, 3D folded shapes. This can 

be used to align many hippocampi and look for subtle statistical differences between 

subgroups.  

A computational approach to understand hippocampal folding is presented in Chapter 2 of 

this thesis, but this still relies on some manual input. In Chapter 3 we extend these methods 

to a unique 3D histological dataset and show that our computational unfolding approach 

alone can be used to detect hippocampal subfields, instead of more traditional detection by 

trained neuroanatomists. In Chapter 4 we fully automate the application of this computational 

unfolding to new MRI data using deep learning instead of manual delineation of tissues 

separating different folds of the hippocampus. Altogether, these methods could help us 
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identify which properties of the hippocampus are correlated with performance on tasks, like 

episodic memory tests, and which properties are correlated with, or diagnostic of, 

neurological diseases.  
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Chapter 1  

1 General Introduction 

1.1 Motivation 

1.1.1 General interest in the hippocampus 

On an evolutionary scale, the archicortex (specifically, the subcomponent now known as 

the hippocampus) lies at an information processing junction. Prior to its phylogenetic 

development, the nervous system followed a relatively rigid mapping of stimulus sets to 

response patterns. This was predominantly encoded in genetics and manifested through 

the ontological development of the nervous system. After the advent of the hippocampus 

(or its analogues in non-mammalian species) a new era of behavioural flexibility began to 

emerge. That is, many behaviours were shaped to a greater extent by the environment 

rather than genetically coded. Some of these behaviours and requisite cognitive 

operations that have been discussed in recent literature include context-dependent 

behavioural repertoires (Pravosudov and Roth, 2013), navigation (O’Keefe and Nadel, 

1978), episodic memory (Tulving and Markowitsch, 1998), transitive inference (Dusek 

and Eichenbaum, 1997), episodic future-thinking (Schacter, Benoit and Szpunar, 2017), 

and reorganization of sensory, semantic, or abstract concept representations along 

continuous ‘pseudo-spatial’ dimensions (Garvert, Dolan and Behrens, 2017). The 

hippocampus is also the evolutionary precursor to the more cytoarchitectionically 

complex neocortex, a structure whose expansion coincides with increased abilities in 

nearly all cognitive domains. Concurrently with expansion in the neocortex, hippocampal 

functions appear to be maintained, including its role in the acquisition of complex new 

behaviours and memories (Squire, 2009; Eichenbaum, 2013). Thus the operations carried 

out in the hippocampus are characterized by some unique properties not seen anywhere 

else in the brain; in particular these operations seem to include fast and flexible 

acquisition of spatial or non-spatial representations, which may later become 

consolidated throughout the neocortex (McClelland, McNaughton and O’Reilly, 1995).  
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The hippocampus is not only critical for a wide variety of functions, but it is also 

uniquely sensitive to a variety of diseases and, more generally, metabolic insults. Worth 

highlighting are hypoxia, focal epilepsy, Alzheimer’s disease, clinical depression, and 

schizophrenia, though many other conditions have also been shown to be associated with 

lack of hippocampal integrity more so than the integrity of the brain as a whole. Some 

broad factors that may contribute to hippocampus-specific tissue abnormalities in these 

disorders include: i) the high metabolism of the hippocampus relative to other brain 

structures, making metabolic insults potentially more damaging (Small et al., 2011), ii) 

the predominance of large, highly plastic pyramidal neurons from which new adaptive or 

maladaptive microcircuits can quickly emerge (Malenka and Bear, 2004), iii) the fact that 

the hippocampus is the primary site of human adult neurogenesis (Kozareva, Cryan and 

Nolan, 2019), and iv) the many neuromodulators affecting the hippocampus, including 

high levels of acetylcholine (Menschik and Finkel, 1998), serotonin (Gould, 1999), 

noradrenaline (Madison and Nicoll, 1982), and corticosterone (Diamond et al., 1992) 

compared to other brain structures. This provides many possible ways that hippocampal 

activity could become dysregulated when these neuromodulators are dysregulated. Many 

researchers have also proposed links between specific diseases and hippocampal 

subfields and functions, which will be reviewed in Chapter 1.3.  

1.1.2 Issues addressed in this thesis 

With these motivations in mind, the current thesis will explore a computational 

framework for studying the 3D anatomy of the hippocampus, which can be used in future 

work to improve our understanding of its relationship to function and disease. Briefly, 

this framework entails modelling hippocampal tissue as a folded cortical surface, which 

can improve our understanding of this structure over traditional methods that consider 

only its 3D volume or 2D area as a whole. The methods used will span 3D ex-vivo 

histology at a microscale (i.e. on the scale of cortical laminae and cell assemblies) to in-

vivo and ex-vivo neuroimaging using Magnetic Resonance Imaging (MRI) and the 

mesoscale (i.e. on the scale of gyri, sulci, and cortical columns including hundreds of 

neurons). The development of this coordinate framework, initially in 7-Tesla MRI data, is 

presented in Chapter 2. In Chapter 3 we apply this framework to 3D histology with 
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microscopic detail and show that features extracted using this framework are sufficient to 

derive the known hippocampal subfields. In Chapter 4 we fully automate the application 

of this framework and subfield segmentation to in-vivo MRI data using deep learning 

methods.  

As background to this exploration, I will overview hippocampal anatomy, ontogeny, and 

its division into subfields. To further motivate this line of investigation, and its 

applications, I will examine several examples of prominent theories on the links between 

hippocampal subfields, function, and implication in disease. Finally, I will overview 

current methods for imaging and analyzing the hippocampus, including acquisition 

methods in MRI and extant segmentation methods.  

1.2 Hippocampal Anatomy 

1.2.1 Ontogeny 

The brain lies at the topological anterior of the embryonic neural tube - a cylindrically 

organized set of neuronal precursors. Extensions from this neural tube innervate the 

different body segments, including major organs and appendages where neural pathways 

terminate in sensory or motor afferents or efferents (Sperber, 1995). A similar 

topologically ordered organizing principle holds true in the brain, where a huge 

expansion in the number of neurons is seen, causing the neural tube to ‘bubble’ outwards. 

This ‘bubbling’ provides 2D topological organization to what might otherwise appear to 

be a chaotic arrangement of tissue and neurons. Though the details of this organization 

are still debated (see Puelles et al., 2019), the archicortex and specifically the dentate 

gyrus subfield of the hippocampus mark a segment of the true terminus to the 

topologically continuous cortex of the brain, as illustrated in Figure 1A.  
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Figure 1. Topological structure in the hippocampus. A) Illustrates the topological 

development of the neocortex (beige and purple), archicortex (predominantly 

hippocampus) (pink, spanned by the green and red arrows) and the remainder of 

the allocortex as a flattened but continuous cortical sheath. B) Illustrates the inward 

‘roll’ of the hippocampus of mammals forming the hippocampal sulcus. C) 

Illustrates the position and shape of the adult human hippocampus, including 

digitations and anterior-posterior curvature. In each panel the anterior-posterior 

(human) or rostral-caudal (rodent or other mammals) dimension of the 

hippocampus is illustrated by the red arrows, proximal-distal dimension in green 

arrow, and in panel B) the thickness or inner-outer dimension of the hippocampus is 

illustrated by the blue arrow. 

 In mammals, the hippocampus rolls medially upon itself during development, 

creating the hippocampal sulcus (Nieuwenhuys, Voogd and van Huijzen, 1981; 

Duvernoy, Cattin and Risold, 2013). Simultaneously, the distal-most edge detaches from 

the rest of the archicortex and forms a distinct structure known as the dentate gyrus (DG), 

which wraps itself around the edge of the hippocampus forming two interlocking ‘U’ 

shapes (see Figure 1B) along its long-axis. In humans, the entire hippocampus migrates 

into the medial temporal lobes, rotating it from the dorsal-ventral positioning observed in 

rodents to an anterior-posterior orientation in humans. The trajectory of this migration 

can be traced along the indusium griseum, which extends from the hippocampus along 

the cingulum, sitting below the cingulate cortex which is where the hippocampus is found 
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in rodents. In different mammalian species the hippocampus can be found somewhere in 

between this track, depending on how distinct that species’ temporal lobe is from the rest 

of the brain.  

In humans, the morphology of the hippocampus is further complicated by folding along 

its anterior-posterior axis (Figure 1C). This complex folding is most pronounced in the 

anterior portion, which curves medially, then posteriorly, and then superiorly (Ding and 

Van Hoesen, 2015). This section is often referred to as the uncus of the hippocampus, and 

the component of the uncus that curls superiorly is known as the vertical component. I 

will generally refer to this gross folding as the long-axis curvature of the hippocampus. 

Further folding occurs along the rest of the hippocampus, which is sometimes referred to 

as digitation, dentation, or gyrification (I will use the term digitation) (Ding and Van 

Hoesen, 2015; Chang et al., 2018). The hippocampus is also often further divided into 

head, body, and tail along its longitudinal axis, but these terms do not mark clearly 

defined structural distinctions (though functional and connectivity differences are also 

described in section 1.3.2). Note that none of these terms refer to cytoarchitectonically 

distinct tissue. Instead, they are used colloquially to divide the hippocampus from 

anterior to posterior, and borders are typically defined heuristically (as in the dashed lines 

in Figure 1C). 

1.2.2 Subfields 

The archicortical tissue of the hippocampus is further differentiated during its 

development into cytoarchitectonically distinct subfields (Nieuwenhuys, Voogd and van 

Huijzen, 1981; Duvernoy, Cattin and Risold, 2013). The DG lies at the distal edge, 

followed by cornu ammonis (CA) fields 4 to 1 and the subicular complex (Sub). Sub is 

sometimes further divided into pre/prosubiculum, subiculum proper, perisubiculum, and 

parasubiculum (Ding, 2013; Ding and Van Hoesen, 2015). Parasubiculum is continuous 

with the neocortex, specifically the entorhinal cortex and, more posteriorly, 

parahippocampal cortex. These subdivisions are what researchers most commonly mean 

by the ‘hippocampal subfields’, but there is not currently universal agreement on the 

labels or precise boundaries for these subregions in either the neuroimaging or in the 

histology literatures (Yushkevich, Amaral, et al., 2015). There is an ongoing effort to 
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generate an internationally harmonized set of labels and boundary definitions to improve 

reproducibility and reduce confusion in the neuroimaging literature (Wisse et al., 2017; 

Olsen et al., 2019).  

The definition of these subfields was originally based on histological features and, 

particularly, the laminar organization of neurons. In brief, the neocortex contains six 

unique laminae, typically referred to as layers I to VI. The hippocampus is simpler in 

structure, and ranges between three laminae in the DG to something closely resembling 

the full six neocortical laminae in the most proximal regions of the subiculum (e.g. 

parasubiculum) (see Figure 2A and Ding (2013) for more details). It should also be noted 

that white matter structures like the alveus, or stratum radiatum, lacunosum, and 

moleculaire (collectively SRLM, also sometimes referred to as the ‘dark band’ in MRI) 

are often considered to be laminae of the hippocampus despite primarily containing axons 

and dendrites and few or no neurons. Thus, the number of laminae within the 

hippocampus can vary by subfield and by the nomenclature that is applied.  

1.2.3 Subfield connectivity 

Each subfield also has a unique connectivity profile, which is summarized in Figure 2B. 

Briefly, hippocampal connectivity with the neocortex consists of a highly recurrent 

circuit with primary inputs and primary outputs in the entorhinal cortex (specifically in 

the superficial and deep entorhinal cortical layers, respectively). This can be seen in the 

indirect (also known as the trisynaptic) pathway, and additionally in the direct (or 

monosynaptic) pathway which follows a similar trajectory but bypasses some subfields. 

Hippocampus and entorhinal cortex are often considered the apex of the ventral visual 

stream, a view that is sometimes referred to as the representational-hierarchical 

perspective (Murray, Bussey and Saksida, 2007). This is in part because of connections 

from the entorhinal cortex to lower order visual eras like perirhinal, parahippocampal, 

and lateral occipital cortex. However, additional connections also exist between the 

entorhinal cortex and the amygdala, prefrontal cortex, and nucleus accumbens. To some 

extent, the regions of the entorhinal cortex projecting to different brain structures may 

maintain differential connectivity with CA1 and subiculum subfields, the output regions 
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of the hippocampus. Thus, these sets of hippocampal and entorhinal connections may 

even make up distinct or partially overlapping functional subsystems, as described by 

Aggleton (2012). Not shown in this Figure 2 is a secondary output that projects to the 

anterior thalamic nuclei, mammillary bodies, and retrosplenial cortex via the white matter 

structures alveus, fimbria, fornix, and hippocampal commissure. Several other additional 

connections also exist, including afferents from numerous neuromodulators (see 

Duvernoy, Cattin and Risold, 2013).  

 

Figure 2. Subfield laminar structure and connectivity. A) Shows a simplified 

illustration of the laminar distribution of neurons within the different subfields of 

the hippocampus (DG in red, CA fields in green, subicular complex in blue). B) 

Illustration of the direct (dashed line) and indirect (solid line) pathways within the 

hippocampus. The dotted line in CA3 illustrates its high number of recurrent 

collaterals. 

1.3  Hippocampal function 

1.3.1 Subfield-related functions 

Subfields represent a research avenue to link stereotyped cytoarchitecture to functions 

that can be described computationally. That is, this line of research aims to 

mechanistically align intrahippocampal circuitry characteristic of each subfield to 
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functions observable through behavior and cognition, but it should still be noted that 

other theories have also garnered support based on observations or manipulations of the 

hippocampus as a whole rather than individual subfields. Many recent theories of 

hippocampal function build on the unique cytoarchitecture and connectivity of each of 

the hippocampal subfields, and this thesis will overview only a few examples. One 

example is an emerging literature on ‘pattern separation’ and ‘pattern completion’ in the 

hippocampus (Marr, 1971; Hunsaker and Kesner, 2013; Rolls, 2016). Pattern separation 

can be defined mathematically as the orthogonalization of overlapping inputs into distinct 

outputs. This can be achieved by having a relatively small number of neurons project to a 

relatively large number of neurons with few overlapping connections (also called 

expansion recoding) (Marr, 1971). In other words, two representations may share some 

overlapping neurons in a small region A, but they are unlikely to share overlapping 

neurons after projecting to larger region B. The DG is uniquely well suited to perform 

this operation, since it consists of many densely packed neurons and receives inputs from 

a relatively small population of neurons in the entorhinal cortex. The number of neurons 

in these two regions differs by several orders of magnitude (despite the fact that the DG is 

volumetrically smaller than the entorhinal cortex), and there are few lateral connections 

between neurons within the DG. This characterization also fits well with the dentate 

gyrus’ position in the indirect hippocampal pathway: pattern separated information about 

an ongoing event may be passed from the dentate gyrus to the CA fields, and 

modification to the synapses on the CA fields and from the CA fields onward might 

ultimately support the highly distinctive nature of episodic memory (Aimone, Deng and 

Gage, 2011; Hunsaker and Kesner, 2013; Kyle et al., 2015; Liu et al., 2016; Rolls, 2016; 

Rolls and Kesner, 2016; Leal and Yassa, 2018).  

The complementary function to pattern separation is pattern completion, the retrieval of a 

stored representation given only a partial or degraded cue. This type of computation has 

been extensively studied in-silico via computational modelling, and is often referred to as 

attractor dynamics within an auto-associator network (Knierim and Zhang, 2012), which 

has also received recent interest in machine learning (e.g. Bakiras et al., 2015; Chappell 

and Humphreys, 1994). Conceptually, the attractor substrate, or network, will recurrently 

modify its activity until it reaches some stable state. The stable state will depend on the 
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inputs from which the attractor network was initialized, as well as its previously 

structured internal connections. With small to moderate changes in the input signal, the 

attractor will still produce the same output (i.e. completing the pattern that was present at 

encoding). However, beyond some threshold of changes to the input, the auto associative 

attractor will begin to form other states and thus produce a very different output, which 

could correspond to another previously encoded stable state or a completely novel one. 

This operation has been ascribed to CA3, which has a high number of recurrent 

collaterals (Figure 2B) making it well suited to act as an auto associative attractor 

network.  

Pattern separation and pattern completion have received much investigation in recent 

studies (Liu et al., 2016), and may be involved in a wide array of functions beyond their 

roles in episodic memory. For example, hippocampal pattern separation and completion 

have been implicated in real-time navigation and perceptual discrimination. In 

navigation, selection of the correct memory of the layout of an environment among 

competing, highly similar memories may rely on both hippocampal pattern separation 

and completion (Kyle et al., 2015). In perception, hippocampal pattern completion may 

help guide predictions about a visual stimulus (Hindy, Ng and Turk-Browne, 2016) while 

pattern separation may facilitate discrimination of highly similar stimuli (Lee, Yeung and 

Barense, 2012). Pattern separation and completion represent one computational 

framework for understanding some functions of hippocampal subfields DG and CA3, but 

many other theories exist to describe functions of hippocampal subfields or of the 

hippocampus in its entirety (see Moscovitch et al., 2016).  

1.3.2 Hippocampal long-axis 

In addition to differences in hippocampal function based on subfield cytoarchitecture, 

differences in representational content have been proposed along the anterior-posterior 

(i.e., head-tail) axis of the hippocampus. There are many competing and complementary 

theories of anterior-posterior specialization of the hippocampus, so this thesis will simply 

summarize some of the predominant literature. The anterior hippocampus, antero-lateral 

entorhinal cortex, and perirhinal cortex are closely connected, and are associated with 

object-based holistic representations at the apex of the ventral visual stream. Conversely, 
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the posterior hippocampus, postero-medial entorhinal cortex, and parahippocampal cortex 

are also closely connected and are associated with spatial and perceptually detailed 

representations (Colombo et al., 1998; Poppenk et al., 2013; Strange et al., 2014; 

Zeidman and Maguire, 2016; Plachti et al., 2019). Some of these theories further suggest 

that anterior hippocampus processes primarily transmodal or abstract representations, 

which may be linked to its stronger connectivity with inferior frontal cortex, whereas 

posterior hippocampus processes more visuo-spatial representations (Save and Poucet, 

2000; Possin, 2010). The bulk of the evidence for these theories comes from in-vivo and 

ex-vivo connectivity studies as well as neuroimaging studies aiming to passively quantify 

representational contents or manipulate tasks demands in one direction or the other while 

observing hippocampal activity. Congruently, recent work still under review has found 

continuously graded differences along the long-axis of the hippocampus in measures of 

connectivity with other widespread brain regions as well as stereotyped brain networks 

characteristic of rest (or default mode), visuospatial processing, and other high-order 

processes (Paquola et al., in submission). Through these studies, we get an overall picture 

of the apparent representational contents of the anterior and posterior hippocampus. 

However, it is important to note that many intermediate regions contain representational 

information from both and anterior and posterior connectivity networks, and it may even 

be that the mixing of these signals in some way contributes to the functions of the 

hippocampus and perhaps the richness of episodic memories it supports.  

1.3.3 Hippocampal subfields and disease 

Many neurological diseases and disorders affect the hippocampus, or even specific 

hippocampal subfields, preferentially over other brain structures. One salient example 

comes from medial-temporal lobe epilepsy (mTLE), where ex-vivo examination of 

hippocampal subfields has given rise to mTLE subtypes that are predictive of treatment 

outcomes (Blümcke et al., 2013; Blumcke et al., 2017). Specifically, Type 1 consists of 

neuronal loss primarily in CA1 and CA4, Type 2 consists of primarily CA1 neuronal loss, 

and Type 3 consists of primarily CA4 neuronal loss. Type 1 appears to show particularly 

good prognosis following resective surgery, and thus determining patients’ mTLE 

subtypes can have significant value for planning treatment. Though typically carried out 
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using ex-vivo or resected tissue, this subtyping framework is beginning to show clinical 

value using in-vivo neuroimaging (Steve et al., 2020).  

Clinical depression, or major depressive disorder (MDD), has also been tightly linked to 

decreases in whole hippocampal volume as well as decreased DG and CA subfield 

volumes (Maruszak and Thuret, 2014; Malykhin and Coupland, 2015). Several 

hypotheses exist to explain this link mechanistically involving glucocorticoid receptors 

which are particularly dense in the hippocampus (Na et al., 2014), neuroplasticity 

(Bianchi, Hagan and Heidbreder, 2005), and some studies have even linked MDD to 

reduced adult neurogenesis within the DG (Sahay and Hen, 2007). Recovery from 

depression following treatment with common antidepressant drugs (selective serotonin 

reuptake inhibitors) or, in intractable cases, following electroconvulsive therapy (ECT) 

has also been linked to increased hippocampal volumes (Nordanskog et al., 2010; 

Boldrini et al., 2013). Another context in which hippocampal volume increases have been 

reliably observed is following aerobic exercise over time periods as short as weeks (Firth 

et al., 2018). This topic has received much scientific interest and generated excitement in 

the media in recent years for the prospect of growing new neurons into adulthood which 

was previously thought to be impossible, but it should be noted that there are many 

possible causes of hippocampal volume increases, including synaptogenesis, 

neurogenesis, angiogenesis, or general inflammation. Nevertheless, this line of research is 

highly promising, especially using in-vivo neuroimaging methods or even behavioural 

testing targeted at hippocampal subfields (e.g. Clelland et al., 2009; Liu et al., 2016; Leal 

and Yassa, 2018). 

1.4 Neuroimaging of the hippocampus 

1.4.1 Principles of MRI 

MRI is the dominant method for collecting in-vivo structural brain data since it is 

minimally invasive, has reasonable spatial resolution (on the order of millimeters), and 

can achieve different types of contrast to visualize different tissue properties. However, 

MRI does have limitations in the quality of images that can be collected. This can be 

explained by some of the basic principles of MRI. Protons with magnetic moments 
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(mostly hydrogen) align their spins to a constant primary magnetic field (B0), and an 

electromagnetic radio-frequency pulse (RF pulse) is applied, which disrupts proton 

alignment to B0. As protons relaxate to their initial alignment to B0, they emit their own 

echo RF pulses. This realignment can additionally be measured as decay in magnetization 

in the axis transverse to B0 (T2-weighted imaging), or, conversely, return of 

magnetization longitudinal to B0 (T1-weighted imaging). The period between consecutive 

RF pulses (or repetition time, TR) and the time between a RF pulse and the response 

signal measurement (or echo time, TE) can be parameterized in order to highlight 

differences between common tissues such as fat (high in T1-weighted imaging) or water 

(high in T2-weighted imaging). Cerebrospinal fluid is primarily water, white matter is 

composed of heavily myelinated axons with high fat content, and grey matter consists of 

a mix (where cell bodies and interstitial fluids tend to have more water while axonal or 

dendritic structures tend to contain more fat in the form of cell membranes). Other related 

MRI acquisitions leverage features such as the distortion of B0 caused by deoxygenated 

iron in blood (the basic principle of T2* or functional MRI), or the movement of water 

molecules between the time of their perturbation and return to spin alignment with B0 

(the basic principle of diffusion weighted MRI or dMRI) (Mitchell and Mark Cohen, 

2004).  

MRI signals can be localized in 3D by introducing additive gradients to B0 in the x, y, or 

z directions, which is overviewed by Hashemi et al. (2010). Briefly, protons have a given 

precession frequency following the Larmor equation: f = γ * B, meaning that they will 

only optimally interact with RF pulses at a certain frequency that varies with magnetic 

field strength, B. Thus, introducing a gradient in B allows us to select slices that can be 

optimally excited by RF pulses with the corresponding frequency. This is typically 

referred to as the z or slice direction. By briefly introducing a B gradient pulse in the y-

direction after an RF pulse, we can then cause a phase shift in the subsequent precession 

of excited protons. Finally, at the time of the RF echo we can introduce a gradient pulse 

in the x-direction which will modify the frequency of precession. Altogether, the 

carefully timed introduction of gradients in the z, y, and x directions can be used to relate 

proton relaxation to a given slice, phase, and frequency. Phase and frequency are referred 

to as K-space and can readily related to x and y via the Fourier transform, outputting data 
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that is binned into discrete 2D pixels which can then be stacked in 3D. Alternatively, with 

more sophisticated gradient pulse designs, data can be acquired in 3D K-space and 

Fourier transformed to a 3D image, but I will not cover such methods in this thesis.  

There is a trade-off between the volume of a given voxel (or resolution) and the amount 

of signal that can be reliably detected against noise from other sources (the signal-to-

noise ratio or SNR). This can be ameliorated by introducing a stronger primary magnetic 

field, B0, or by acquiring more signals over time. In-vivo scan times are generally limited 

by how long a person can remain still (10 mins is the general upper bound, though 

multiple scans may be combined). Magnetic field strengths are limited by hardware, with 

recent innovations including stronger field strengths (Ladd et al., 2018). Thus, holding 

hardware constant, there is a general trade-off between resolution, SNR, and scan time. 

Note that resolution scales to the third exponent with scan time (for example, going from 

1mm3 to 0.5mm3 would require 23=8 times longer to cover the same volume). 

Additionally, these smaller voxels will now contain ⅛ the original number of protons, 

and thus roughly ⅛ the SNR. Averaging data can recover up to the square root of this 

SNR, and so to go from 1mm3 to 0.5mm3 with equivalent SNR would require 82=64 

times more scan time in total. Many clever heuristics and optimizations have also been 

developed to accelerate acquisition or conversely improve resolution or contrast, such as 

motion tracking, parallel 2D slice acquisition, efficient or sparse k-space sampling, super-

resolution sampling, and many others (see Tsao and Kozerke, 2012; Ye, 2019; and, 

specifically in the hippocampus, Winterburn et al., 2013). Future work will likely yield 

further improvements in the image SNR, resolution, and scan time trade-off seen in MRI. 

1.4.2 MRI of the hippocampus 

The hippocampus can easily be seen in its entirety in MRI, but the laminar and 

cytoarchitectonic features that define its subfields are not readily available with the 

sensitivity of human in-vivo MRI. Nonetheless, recent advances in MR acquisition 

methods and the advent of higher magnetic field strength scanners (e.g. 7-Tesla MRI) 

have greatly improved available image features. In the 1990s and early 2000s, focused 

structural scans could seldom be acquired below 1mm3, and there were often no 

discernable features within the hippocampus and so it would be given one single 
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volumetric label (e.g. Filipek et al., 1994; Frazier et al., 2005; and many others). 

Concurrently, mounting histological evidence further implicated subfield-level pathology 

in many diseases. This was and still is most typically examined in coronal slices through 

the hippocampal body, where the arrangement of subfields is simplest since such slices 

are often roughly perpendicular to the anterior-posterior curvature of the hippocampus 

(see Figure 3). For these reasons, and in keeping with coronal histological reference 

materials, initial protocols for estimating the subfields in MRI were optimized for high 

in-plane coronal resolution with relatively thick slices, typically on the order of 

0.4x0.4x2.0mm3 (Mueller et al., 2008; Yushkevich, Amaral, et al., 2015; Berron et al., 

2017; and many others). Scans of this nature have been the primary focus of international 

harmonization efforts to standardize such protocols (Wisse et al., 2017; Olsen et al., 

2019). 

Isotropic voxel acquisitions have also been used in some protocols (Wisse et al., 2012; 

Winterburn et al., 2013), which is advantageous in regions of the hippocampus that show 

more complex folding, or curve in directions that are not coronal, such as the 

hippocampal head and tail. This is especially critical as these regions show the most 

complex anterior-posterior curvature and digitations, though such features are sometimes 

present in the hippocampal body as well. Anisotropic acquisition methods as described 

above may cause blurring between digitations, even in the hippocampal body where 

anterior-posterior curvature is close to coronal oblique. Indeed, the prevalence of 

anisotropic acquisition protocols may have obfuscated the broad inter-individual 

variability seen in digitations in the hippocampal body. It should be noted that efficient 

3D acquisition methods, as discussed above, often require full brain coverage to eliminate 

aliasing, which could be an advantage for whole-brain studies but a limitation for studies 

interested specifically in the hippocampus. 

Another common practice in neuroimaging of the hippocampus is using T2-weighted 

(T2w) acquisition methods, which shows generally inverted contrast to the more common 

T1w imaging. T2w imaging is particularly advantageous for detecting the SRLM (e.g. 

Mueller et al., 2008) because of its high myelin content. In principle the SRLM could 

also be seen in T1w images, however, most researchers have still found T2w to be clearer 
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for visualizing this structure, possibly because of a contribution from blood vessels inside 

the hippocampal sulcus which appear similarly dark in T2w images and have less of a 

contribution in T1w images (see discussion from Kerchner et al., 2012). Thus, it should 

be noted that the structure generally referred to as high myelin SRLM based on T2w 

imaging may also contain additional structures like blood vessels. For these reasons, MRI 

data used in the projects presented in this thesis will consist of isotropic (or nearly 

isotropic) T2w data.  

1.4.3 Manual subfield delineation 

 One critical intra-hippocampal image feature that is available with sub-millimetric 

scanning is the high myelin SRLM described above (Kerchner et al., 2010). The SRLM 

strata surround the hippocampal sulcus which separates the innermost subfield DG from 

the other subfields curled around it. This feature has been an anchor point in all of the in-

vivo subfield segmentation protocols referenced here or summarized in (Yushkevich, 

Amaral, et al., 2015). Other subfields are often defined manually relative to this structure. 

Here is an example of how a manual subfield segmentation protocol might apply subfield 

boundaries relative to this structure: the SRLM may make up the superior boundary of 

subfield CA1, whereas the lateral boundary may be defined perpendicular to the midpoint 

between a line connecting the most lateral part of the SRLM and the most medial part of 

the opening of the hippocampal sulcus (Berron et al., 2017). However, it should be noted 

that over 20 protocols are currently in use across different labs, and can vary in the 

precise borders, landmarks, labels, and anterior-posterior coverage of the hippocampus 

(Yushkevich, Amaral, et al., 2015). This has generated confusion and conflicting 

accounts in the literature, which has been a major driving force for international efforts to 

harmonize analysis protocols (Wisse et al., 2017).  

Typically, histological data would be considered the ground truth in such segmentation 

protocols, and a manual segmentation of MRI based on this reference would be 

considered the gold standard. This approach works reasonably well in the body of the 

hippocampus but has serious limitations in the hippocampal head and tail and does not 

take full advantage of the 3D nature of MRI. Specifically, alignment of landmarks is 

highly dependent on the slice angle and distance along the anterior-posterior axis of the 
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hippocampus (Ding and Van Hoesen, 2015; Cai et al., 2019; de Flores et al., 2019; 

DeKraker et al., 2020). Inter-individual variability in the anterior-posterior curvature of 

both the whole hippocampus and its digitations further exacerbate this problem (Ding and 

Van Hoesen, 2015; Cai et al., 2019; DeKraker et al., 2020). We have discussed these 

issues and possible solutions in a recent Opinion paper (DeKraker et al., under review). 

Some of those discussion points are highlighted in the remainder of this section. Note that 

this paper references published work included in Chapters 2 and 3.  

Recent studies utilizing 3D histology, ultra-high field MRI, an d ex-vivo MRI have begun 

to reveal the complexity and inter-individual variability seen in folding, or digitations, 

within the hippocampal head (anterior) and tail (posterior). Figure 3 illustrates this 

complex folding using data from BigBrain 3D histology (Amunts et al., 2013) and 

published anatomical work on the hippocampus to be discussed in Chapter 3 (DeKraker 

et al., 2020). Note that the SRLM appears light here as it contains few stained cell bodies 

and represents the space between subfields. In this example, it can be easily appreciated 

that the topological relationship between subfields, including their continuity, is typically 

not preserved in coronal slices through the hippocampal head and tail, and can change 

drastically between successive slices. Thus, it can be very difficult to match 

corresponding slices between histological reference materials and in-vivo MRI coronal 

slices.  
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Figure 3. Illustration of hippocampal subfield topology in traditional and 

multiplanar histological slices. A) shows traditional hippocampal slices with and 

without subfields overlaid. Black lines indicate the continuity of subfields from the 

dentate gyrus to medial temporal lobe neocortex. B) shows the approximate 

locations of the sagittal slice shown (outlined in orange) in the full brain, and 

coronal slices (outlined in solid or dashed blue lines) on the left 3D model of the 

hippocampus. In particular, slices through the hippocampal head (light blue dashed 

line) and tail (dark blue dashed line) show within-plane discontinuities. C) shows 

multi-planar resampled slices along the axis of hippocampal curvature with and 

without subfields overlaid. The colour of each image outline corresponds to the 

location of its sampling on the right 3D hippocampal model in B). The continuity of 

subfields is again shown by a black line and is consistent in all slices in C). 

Early histological descriptions of the internal architecture of the hippocampus emphasize 

its topological continuity despite its complex 3D folding (Nieuwenhuys, Voogd and van 

Huijzen, 1981; Duvernoy, Cattin and Risold, 2013). More recently, it was shown that 

reslicing the hippocampus perpendicular to this curvature can simplify the arrangement 

of subfields in each slice (Gross et al., 2020). This could allow for the application of 

manually defined labels in each slice to a much simpler configuration of tissue, which 
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more often resembles the classic curled ‘C’ shape seen in coronal slides through the 

hippocampal body. In this case global 3D curvature is implicitly encoded in the slice 

angle. In Figure 3C we performed a similar reslicing of the isotropic BigBrain left 

hippocampus, and additionally included slices through the most antero-medial ‘vertical 

component of the uncus’, where the orientation of this axis is axial. As expected, the 

topology is consistent between all slices, and thus we can imagine it would be much 

easier to define manual or automated rules for segmentation in these planes than in 

traditional coronal slices. However, a challenge arises due to variability seen between 

individuals. This can include gross differences in long-axis curvature, as well as smaller 

or meso-scale differences in folding or digitation. These features are illustrated using 7-

Tesla MRI data from (DeKraker et al., 2018) in Figure 4, and examined in more detail in 

Chapter 2. The hippocampal subfields, as estimated in (DeKraker et al., 2018), shift in 

concert with this digitation and curvature. This adds a layer of complexity to both coronal 

and multi-planar manual segmentation that, to our knowledge, has not been addressed in 

any manual coronal or multi-planar protocol.  

 

Figure 4. Variability in overall hippocampal shape in four representative 

individuals as measured in MRI. 3D models are shown to the left of each grey box, 

with a coronal slice through the hippocampal head (outlined in blue) and a sagittal 

slice (outlined in orange) to the right. Hippocampi were affine registered such that 

all slices shown here are from equivalent positions. Hippocampi were organized 

along two arbitrary, qualitative axes: curvature and digitation. Curvature refers to 

the long-axis, which can appear more ‘J’ shaped with a straight hippocampal body, 

or more ‘C’ shaped with a curved hippocampal body. This is most easily seen in the 
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3D model. Digitation refers to the number and amplitude of grey matter folds within 

the hippocampus, and can be seen on the 3D model, the coronal plane when 

digitations are in the hippocampal head, and the sagittal plane when digitations are 

in the hippocampal body. Equivalent coronal planes can show dramatically 

different subfield organization depending on these morphological differences. 

1.4.4 Registration-based subfield delineation 

Given the absence of histological cues in MRI, the task of subfield segmentation is 

essentially one of manual or computational alignment to histological reference materials. 

Computationally, this entails maximizing the alignment of image features in one image 

with another. Typically, one image is held constant (the reference image) while the other 

(the target or floating image) is linearly translated or stretched in 3D (affine 

transformations, which can also include rotations, shears, and some other operations), or 

differentially deformed at all locations until some measure of image alignment is 

optimized (the cost or loss function). One common example of such a loss function might 

be the mean squared difference of all voxel intensities between the two images. For 

images with different contrasts, the cross-correlation between voxels of the two images 

could be used instead of mean squared difference, allowing for structures of different 

contrasts but similar shapes to still be aligned during optimization. Many 

implementations exist to perform this optimization. Optimization of deformable 

transformations are more challenging than affine transformations given the large number 

of possible solutions (or degrees of freedom). Thus, most methods introduce some form 

of regularization to this problem. For example, enforcing similar or smooth deformations 

between neighbouring voxels effectively reduces the problem space. In many 

implementations, parameters can be adjusted to make such a registration more fluid, with 

high degrees of freedom, or more elastic, in which case less deformation will be applied 

to the floating image such that it might retain some of its original form (e.g. see Dale, 

Fischl and Sereno, 1999; Fischl and Dale, 2000; Jenkinson and Smith, 2001; Fischl et al., 

2002; Jenkinson et al., 2002; Avants et al., 2014; Tustison et al., 2014).  

Though initially treated with skepticism due to limitations in implementation (Wisse, 

Biessels and Geerlings, 2014), computational approaches are becoming increasingly 
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popular in hippocampal subfield delineation. Such methods are advantageous not only 

because they are time-efficient and reproducible, but in principle they can also utilize 3D 

image features that would be out-of-plane to a histologist or manual rater of MRI images. 

Common approaches to perform segmentation involve deformable registration of a given 

subject’s hippocampus to a sufficiently detailed 3D reference material, which is 

constructed via a combination of densely sampled histology, ex-vivo MRI, and/or manual 

annotations at very high resolution (Iglesias et al., 2015; Yushkevich, Pluta, et al., 2015; 

Schmidt et al., 2018). Thus, the quality of segmentation depends on the quality of 

manually annotated references which are also subject to the problems described in 

Chapter 1.4.3. Recent and ongoing work enhances both the registration process and 3D 

reference materials used in these methods (Iglesias et al., 2015; Yushkevich, Pluta, et al., 

2015; Wisse et al., 2016; Berron et al., 2017). Automatic Segmentation of Hippocampal 

Subfields (ASHS) (Yushkevich, Pluta, et al., 2015) is a good example that allows for 

multiple, interchangeable reference materials. Given good quality reference materials, 

these approaches can often account for anterior-posterior differences in subfield 

arrangements and inter-individual differences in the gross curvature of the hippocampus, 

though inter-individual differences in finer scale curvature and digitation are typically not 

respected with these methods.  

At a finer spatial scale, there are inter-individual differences in digitation within the 

hippocampus that are not well posed for registration-based approaches to segmentation. 

For example, it is not clear what deformation should be applied to align a hippocampus 

with three anterior digitations to one with five anterior digitations. Some solutions may 

involve topological breaks – combining digitations together or else stretching one 

digitation out over multiple digitations of a reference image, which can lead to major 

image distortions. This is similar to the problem of registering the neocortex of 

individuals with variable gyrification or sulcal patterns, a problem which is discussed in 

Figure 5 below. The fact that these digitations sometimes continue into the more posterior 

hippocampal body and tail (DeKraker et al., 2018, 2020; Cai et al., 2019) further enlarges 

the problem space. These morphological features are already apparent under many state-

of-the-art MRI acquisition methods, and so it is not clear that resolution and contrast 

improvements in acquisition will improve the ability of the approaches discussed above 
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to capture such details. Rather, improving acquisition protocols may even obviate this 

shortcoming.  

Several notable additions to volumetric, computational segmentation approaches have 

recently been proposed to improve their generalizability across inter-individual 

differences in curvature and digitation. One approach - manifold learning for atlas 

propagation - involves the selection, weighting, or step-wise registration to multi-atlas 

references that are most suitable for the subject at hand (Wolz et al., 2010). For example, 

in the case of the hippocampus, a reference atlas could be selected with comparable 

curvature and digitations to the given subject. This approach was taken by (Xie et al., 

2017) for resolving inter-subject variability in perirhinal cortex gyrification, and by (Li et 

al., 2015) for resolving the entire hippocampus, but it has not been used for hippocampal 

subfields.  

1.4.5 Classification-based subfield delineation 

Another approach to segmentation is voxel-wise classification using local or global 

image features, as in Freesurfer’s Adaptive Segmentation (ASEG) (Fischl et al., 2002). In 

short, a list of features is generated for each voxel, including things like intensity, 

intensity of neighbouring voxels, likely classes of these neighbouring voxels, or absolute 

position in the brain. These features are then compared to a reference distribution and the 

most likely class for each voxel is determined, in this case using a Bayesian mathematical 

framework. Thus, as in registration-based methods, the reference materials and the 

optimization algorithms are critical in ASEG, however, this approach is not necessarily 

limited by deformation parameters like elasticity (though in practice such constraints are 

often still introduced under a classification-based approach). This approach is used in 

conjunction with 3D deformable registration in the Freesurfer hippocampal subfield 

pipeline, which performs a bijective registration and ASEG optimization to segment the 

hippocampal subfields (Van Leemput et al., 2009; Iglesias et al., 2015), and thus may 

exhibit some limitations in generalizability as discussed above.  
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1.4.6 Deep learning-based subfield delineation 

A newly popular approach to image segmentation is deep learning, as often implemented 

using artificial neural networks (ANNs). In general, ANNs iteratively refine or optimize a 

model with a relatively large number of parameters, rather than more traditional 

approaches that rely iteratively or analytically optimizing a relatively simple (few 

parameter) model. In ANNs, the model, or network, typically consists of a series of 

hierarchically connected nodes, or neurons. We can imagine a set of connections that 

might map any input, encoded by a subset of neurons, to any output, encoded by another 

subset of neurons. These encoding schemes tend to be relatively simple, such as a one-

hot-vector in the case of classification problems, or pixel/voxel intensities in the case of 

2D or 3D images. Training an ANN consists of presenting an input and allowing its 

values to propagate through the network, which is initially given random connection 

strengths (these are typically referred to as the model’s parameters). Once this signal 

reaches the output nodes, a difference is calculated between the returned values and the 

“ground truth”, or “supervision” signal. This difference, or loss, is then used to update 

network connections. By iterating over a huge number of input-output pairs, the network 

eventually leverages general relationships between the input and output datasets (or 

distributions). The generalizability of such relationships can then be tested on 

independent datasets, where ANNs show state-of-the-art performance in many tasks. 

Many training algorithms have been proposed to optimize this mapping of inputs to 

outputs in a given task context, but the method of backpropagation of error (or simply 

backprop) is most ubiquitous (Rumelhart, Hinton and Williams, 1986; Goodfellow, 

Bengio and Courville, 2016). Briefly, this entails calculating not only the loss from the 

output, but also a local error estimate for each neuron in a hierarchical fashion (i.e. asking 

“what should this neuron’s activity have been in order to generate the correct response for 

its downstream neurons?”). Though many additional innovations have since been added, 

this simple learning rule has proved amazingly robust and general, and it now makes up 

the backbone of nearly all deep learning applications.  

U-Net (Chen et al., 2018) is a popular ANN architecture for image segmentation that 

makes use of recent innovations such as convolutional layers (Krizhevsky, Sutskever and 
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Hinton, 2017), residual connections (He et al., 2016), and an encoder-decoder framework 

with a bottleneck layer (Ronneberger, Fischer and Brox, 2015; Badrinarayanan, Kendall 

and Cipolla, 2017). The utility of an encoder-decoder framework has to do with the 

relationship between generalizability and compression. For example, if we want to 

classify images of cats and dogs, each image may consist of one thousand pixels. There is 

no one pixel value or relationship between pixels that make up a general category of dogs 

or cats, but by compressing such images down to a relatively small collection of features 

makes such a distinction much easier. For example, one feature might be any 

arrangement of pixels into something resembling whiskers, the presence or absence of 

which could then be used to classify the image as a dog or a cat. An ANN is not provided 

with or restricted to any specific feature, but it tends to naturally produce features that 

differentiate the categories of interest. Interestingly, such features are often naturally 

recognizable by humans (Olah et al., 2018) and tend to correlate with estimates of 

representational content in the brain (Cichy et al., 2016). This extraction of features, or 

compression, comprises the ‘encoding’ branch of an encoder-decoder architecture. The 

‘decoder’ generally performs a similar decompression of features into an output with 

corresponding pixels as the input, and the output resembles an input image in that it could 

have plausibly produced the same set of compressed features. In the context of 

biomedical imaging, there is no one voxel that makes a brain structure recognizable and 

so feature extraction, or compression, is also advantageous. For example, using an 

encoder-decoder framework the input may be an MRI image and the output may be a 

segmentation of corresponding labels, and the compressed features (or the bottleneck 

layer) might consist of local and global relationships between pixels.  

Convolutional layers in the encoder or deconvolutional layers (also known as transpose 

convolutions, or dilated convolutions) in the decoder can make networks like U-Net 

easier to train in practice by reducing the overall number of parameters compared to a 

fully connected network. This works by reusing a set of relationships between pixels, or 

filters, across multiple locations in an image. This is similar to traditional image 

processing where an image may be passed through multiple handcrafted filters to 

highlight certain image elements, but in convolutional ANNs the nature of the filters is 

learned from the bottom up during training.  
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Finally residual and ‘skip’ connections bypass some hierarchical steps of an ANN 

architecture, which improves U-Net performance in two ways: typically there is a drop-

off in performance as ANNs become too deep, but introducing residual connection helps 

to mitigate this problem (known as the vanishing or exploding gradients problem) 

(Zaeemzadeh, Rahnavard and Shah, 2020). Secondly, residual connections can provide 

low-level or perceptually detailed features from the encoder to the decoder without 

having to pass through the more compressed bottleneck layer, which helps produce more 

detailed output segmentations.  

Some recent protocols apply ANNs, including U-Net, to voxel-wise classification of 

hippocampal subfields (Shi, Cheng and Liu, 2019; Zhu et al., 2019; Yang et al., 2020). In 

principle, ANNs could be robust to inter-individual differences in hippocampal curvature 

and digitation or could leverage subtle intensity differences indicative of the underlying 

cytoarchitecture. However, in each of the cases cited here, output segmentations closely 

resemble the manual segmentations that they were trained on, which do not explicitly 

address intensity differences between subfields or differences in digitation and curvature 

between subjects. Generally, the use of ANNs in neuroimaging tends to be limited by the 

availability of detailed and consistent training data. I will explore this class of approaches 

using more detailed reference materials and in conjunction with a surface-based approach 

in more detail in Chapter 4.  

1.4.7 Surface-based subfield delineation 

The logic of surface-based registration is to account for inter-individual differences in 

folding by projecting to a 2D flat or spherical surface, which removes gyrification, 

curvature, and digitations but preserves topology. Once these patterns of folding are 

detected and unfolded, the problem of defining hippocampal subfield boundaries 

becomes much simpler (i.e. by constraining it from a 3D problem to a 2D problem). 

Registration and parcellation performed in such an unfolded space can then be projected 

back to the native space, an approach that has been highly successful in the neocortex 

(Dale, Fischl and Sereno, 1999; Fischl, Sereno and Dale, 1999). An example that may be 

familiar to medial temporal lobe researchers is the collateral sulcus, which shows highly 

variable depth and branching patterns (Huntgeburth and Petrides 2012; Berron et al. 
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2017; Pruessner et al. 2002). It is not clear what 3D deformation should be applied to 

align a subject with a branched or split collateral sulcus to a subject with a single 

collateral sulcus (green arrows in Figure 5), but a surface-based representation allows an 

equivalent surface to be fit to both cases, as illustrated in the example shown in Figure 5. 

Furthermore, the boundaries of parcels or ROIs can be aligned in 2D on such a surface, 

allowing them to be shifted topologically between individuals without erroneously 

crossing sulci or gyri (known as topological breaks), which can cause a parcel to become 

drastically stretched or compressed. Typically 2D neocortical surfaces are aligned 

according to fixed anchor points (e.g. the edges of the neocortex), and additional features 

can be used to further refine registrations, for example using the major gyri and sulci 

evident in highly smoothed gyrification maps (Dale, Fischl, and Sereno 1999; Desikan et 

al. 2006; B. Fischl, Liu, and Dale 2001; B. Fischl, Sereno, and Dale 1999) or intracortical 

myelin maps and other features (Glasser et al. 2016). This is particularly advantageous 

for parcellation driven based on cytoarchitectonic features (as opposed to parcellation 

based on connectivity or task involvement), which are generally topologically clustered 

due to their ontogeny in the developing neural tube (Sperber, 1995; see Figure 1). In 

principle, this approach can accommodate any pattern of digitation and curvature within 

the hippocampus, and potentially even abnormal cases like hippocampal malrotations 

(Lehéricy et al., 1995; Tsai et al., 2016). As such, this type of approach is promising for 

subfield segmentation, and more generally, for measuring structural features of the 

hippocampus at a level of detail that requires delineation of individual digitations.  

 

Figure 5. Equivalent coronal slices showing the left collateral sulcus in two Human 

Connectome Project subjects (Elam and Van Essen, 2015) (minimally preprocessed 

and parcellated using Freesurfer’s surface-based APARC neocortical parcellation). 

Labels include hippocampus (orange; ASEG subcortical parcellation method), 
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parahippocampal cortex (green), fusiform cortex (sage) and inferior temporal 

cortex (pink). 

Several studies have used surface-based methods to ‘flat-map’ the hippocampus (Zeineh 

et al., 2001; Ekstrom et al., 2009; DeKraker et al., 2018, 2020; Vos de Wael et al., 2018) 

(Note that DeKraker et al., 2018 and 2020 represent the work described here in Chapters 

2 and 3). In its first implementations, Bookheimer and colleagues (Zeineh et al., 2001; 

Ekstrom et al., 2009) performed subfield segmentation in native volumetric space, before 

transforming the entire volume of the hippocampus, with its segmentations, to an 

unfolded space. In this approach, all subfield labels and corresponding MRI voxels are 

transformed to flattened space based on multidimensional scaling methods similar to 

those that have been used in the neocortex (Engel, 1997; Lauer et al., 2018). Other 

groups have employed similar combinations of manual and surface-based methods, but 

with flat-mapping applied at the level of individual subfields which are then stitched 

together to make up a single surface after the fact (Vos de Wael et al., 2018). Chapters 2 

and 3 show the development and applications of an approach that starts with unfolding of 

the entire hippocampal volume and subsequently performs segmentation in this unfolded 

space. All of these methods (Zeineh et al., 2001; Ekstrom et al., 2009; DeKraker et al., 

2018, 2020; Vos de Wael et al., 2018) allow for measurement of structural hippocampal 

features, such as thickness, by virtue of providing a dimension that can be estimated 

perpendicular to the axis of hippocampal topology. However, only approaches that start 

with unfolding (DeKraker et al., 2018, 2020) explicitly leverage topology to register to a 

standardized space and perform subfield delineation in a topologically informed and 

contiguous manner. 

1.5 Goals of this thesis and overview of projects 

Broadly, the goal of this thesis was to gain as much structural information as possible 

from neuroimaging of the hippocampus. To that end, this thesis aimed to develop and 

explore a topological (or surface-based) coordinate framework for analyzing the 

hippocampus in 3D. This framework should encompass inter-individual differences in 

intra-hippocampal folding, a major methodological challenge in the field. Ideally, this 

would enable topological alignment between subjects with different native 3D 
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hippocampal folding configurations. Under this framework, hippocampal subfields 

should be definable in an unfolded 2D space, simplifying the problem from its original 

3D form where the spatial relationship between subfields can be highly complex, 

especially in the hippocampal head and tail. Additionally, based on the literature, one 

would expect that subfields should be fully contiguous when unfolded. Such a framework 

would go beyond extant surface-based hippocampal analysis methods by leveraging 

inferences about hippocampal topology or folding as a basis for alignment and subfield 

definition, as opposed to other methods that reconstruct or align surfaces from predefined 

or heuristically estimated subfields in native 3D space. The methods developed here 

should also apply a higher level of detail than extant methods, ideally delineating even 

small folds (or digitations) within the hippocampus. This would improve measures such 

as thickness, which might otherwise erroneously cross hippocampal folds. Finally, with 

such a framework it should be possible to do the following: i) sample quantitative MRI 

with minimal partial voluming effects from surrounding or intra-hippocampal white 

matter, ii) given sufficient resolution and contrast, extract laminar features of 

hippocampal tissue, and iii) quantify other morphological characteristics of hippocampal 

tissue, such as the extent of hippocampal folding, or gyrification. Overall, these methods 

should flexibly encompass inter-individual variability in hippocampal folding, constrain 

possible subfield definitions, and improve the sensitivity and specificity of hippocampal 

structural measures.  

Chapter 2 aimed to develop a computational method to unfold hippocampal grey matter, 

with a focus on the hippocampal head where complexity is highest due to medial curving 

of the structure and the variable presence of digitations. In particular, we aimed to 

leverage the visibility of a critical image feature composed of the hippocampal sulcus and 

strata radiatum, lacunosum, and moleculaire, (SRLM) in high resolution neuroimaging to 

facilitate the separation of different hippocampal folds or digitations. This structure was 

segmented in high-resolution, T2-weighted 7-Tesla MRI data from 12 healthy 

participants and one surgical patient with epilepsy whose resected hippocampal tissue 

was used for histological validation. We then employed user-guided semi-automated 

techniques to detect and subsequently unfold the surrounding hippocampal grey matter. 

This unfolding was performed by solving Laplace's equation in three dimensions of 



28 

 

interest (long-axis, proximal-distal, and laminar). The resulting ‘unfolded space’ provided 

an intuitive way of mapping the hippocampal subfields in 2D space (long-axis and 

proximal-distal), such that similar subfield borders can be applied in the head, body, and 

tail of the hippocampus independently of its folding. This unfolded space was 

additionally employed to map intracortical myelin and thickness in relation to subfield 

borders, which revealed intracortical myelin differences that closely followed the subfield 

borders used here. Examination of a histological resected tissue sample from a patient 

with epilepsy revealed ways in which our unfolded coordinate system has biological 

validity. This examination also showed that subfield segmentations applied in this space 

are able to capture features not seen in extant fully manual tracing protocols. 

Chapter 3, we asked whether the unfolded coordinate framework we had previously 

developed might be leveraged to extract features there are sufficient to derive the known 

hippocampal subfields. For this, we analyzed a histological dataset with unprecedented 

3D coverage, BigBrain. From this data we imposed the computational unfolding 

framework developed in Chapter 2. We adapted neocortical feature extraction techniques 

to our coordinate framework to map the hippocampus with respect to 10 laminar and 5 

morphological features. Unsupervised clustering of these features revealed subdivisions 

that closely resemble gold standard manual subfield segmentations in the native 3D 

histology. Critically, we also showed that morphological features alone are sufficient to 

derive most hippocampal subfield boundaries, despite the fact that hippocampal subfields 

are traditionally defined by laminar composition. This offers promise for in-vivo 

neuroimaging where laminar features are typically not available. Moreover, some 

features showed differences within subfields along the hippocampal longitudinal axis. 

These findings highlight new characteristics of internal hippocampal structure and offer 

new avenues for its characterization with in-vivo neuroimaging. 

Chapter 4 aimed to generalize the methods developed throughout this thesis to new 

datasets in a way that can readily be taken up by new labs without manual segmentation, 

which is costly in both time and expertise required. Specifically, the unfolding framework 

developed in Chapters 2 and 3 is initialized by classification of the different intra-

hippocampal tissues, such as grey matter, SRLM, cysts, and other surrounding structures. 
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These tissue classes must be delineated with sufficient detail to differentiate distinct folds 

within the hippocampus. Similar to subfield segmentation, this problem is challenging to 

address using traditional medical image processing techniques due to broad inter-

individual variability in hippocampal folding configurations. Thus, we employed a U-Net 

deep learning architecture. We overcame limitations in the amount of available training 

data by pooling data across previous studies and by applying incremental learning over 

the open source Human Connectome Project dataset. Final hippocampal tissue 

segmentations on left out test data showed high Dice overlap with manual segmentations. 

Following post-processing to correct for segmentation errors (specifically topological 

breaks which distort subsequent unfolding), seamless integration was seen with the 

unfolding coordinate framework, with similar patterns of gyrification, quantitative T2w, 

and thickness as seen in previous work. We applied histologically defined subfield 

boundaries from 3D histology as examined in Chapter 3 to all subjects in unfolded space, 

and propagated labels back to each subject’s native space hippocampal folding 

configuration. We compared these subfield segmentations to other prominent automated 

methods and found that our subfield segmentations generally compare favourably to 

other methods in terms of subfield detail, coverage of the full hippocampus, and 

definition of digitations. 
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Chapter 2  

2 Unfolding Coordinate Framework 

This Chapter focuses on the methodological details of the proposed standardized 

topological coordinate framework for the hippocampus, which is now published in the 

journal NeuroImage with the title ‘Unfolding the hippocampus: An intrinsic coordinate 

system for subfield segmentations and quantitative mapping’ (DeKraker et al., 2018). 

This framework is not inherently specific to any imaging modality, but in the current 

study data were acquired from 7-Tesla structural MRI (T2w; 0.3mm3 final resolution). 

The hippocampus, including intra-hippocampal high myelin strata and several 

surrounding structures, were manually delineated. Gradients were then imposed over 

hippocampal grey matter along three dimensions: anterior-posterior, proximal-distal, and 

inner-outer. These gradients were defined by solving Laplace’s equation with boundary 

conditions where the hippocampus borders neighbouring structures. For example, the 

anterior-posterior gradient boundaries were defined by the border between hippocampal-

amygdalar transition area and the antero-medial hippocampal head and the border 

between the indusium griseum and the postero-medial hippocampal tail. Indexing 

hippocampi according to these gradients provided a method for implicit topological 

registration to a standardized or ‘unfolded’ space. The utility of this method was 

demonstrated in two ways. First, quantitative features (intracortical myelin and cortical 

thickness) were mapped in unfolded space for all subjects. Averaging across participants 

in this topologically aligned space gave rise to emergent patterns which qualitatively 

match observations from ex-vivo studies of the hippocampus. Secondly, each 

hippocampal subfield was mapped in unfolded space, where their contiguity can be easily 

observed, and a surprisingly high degree of inter-subject consistency was seen that is not 

evident in native 3D space. These subfield definitions were validated in a patient MRI 

and corresponding ex-vivo histology sample.  

2.1 Introduction 

Researchers often distinguish the hippocampus from neocortex but the hippocampus, in 

fact, also has a cortical composition sometimes referred to as archicortex due to its wide 
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evolutionary preservation (e.g. Duvernoy et al., 2013). Like the neocortex, the 

hippocampus shows variable gyrification, often referred to as digitations or pseudo-

digitations in the anterior hippocampal head and more posterior body/tail, respectively. 

This variability creates major challenges for cross-participant alignment and 

segmentation. This is particularly of interest given the recent controversy over 

segmentation of the hippocampus into subfields in MR data, which are not sensitive to 

most cytoarchitectonic features that define the subfields (for an overview of this 

controversy see Yushkevich et al., 2015 and harmonization efforts by Wisse et al., 2017). 

Though present in the rest of the hippocampus, digitations are most prominent in the 

hippocampal head. This structural feature is a significant challenge for subfield 

segmentation protocols and as such most protocols do not segment this region, or do not 

honour its complex and variable structure (see Yushkevich et al., 2015). Ding and Van 

Hoesen (2015) recently provided detailed descriptions of the hippocampal head including 

three different morphologies (2, 3, or 4 digitations). However, there are observed cases 

with even more digitations that continue through the hippocampal body (see also Gao and 

Ver Hoef, 2016) and cases with differences in the amount of medial curvature of the 

uncus. Dalton et al. (2017) and Berron et al. (2017) have recently published protocols 

leveraging Ding & Van Hoesen's descriptions. These protocols collapse across different 

morphologies and deal primarily with one canonical case. This may produce results that 

are close to the ground truth under different morphologies as well. However, differences 

in folding will cause a topological shift and so each subfield border should shift in turn. 

Thus, attempting to impose borders without considering topology creates challenges in 

subjects with different degrees of folding, or different rotations or positions within the 

medial-temporal lobe (e.g. varying degrees of dysplasia), similar to the challenge of 

aligning the neocortex in participants with variable gyrification. 

In the neocortex, the challenge of inter-subject alignment in cases of variable gyrification 

have been largely overcome by using topology-preserving surface-based alignment (Dale 

et al., 1999, Fischl et al., 1999a, Fischl et al., 1999b, Fischl et al., 2001), which has led to 

the development of powerful methods for parcellation (e.g. Glasser et al., 2016). These 

types of methods have not yet been applied to the archicortex of the hippocampus. 
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However, several studies reported by Bookheimer and colleagues have implemented a 

technique that is similar but used primarily for visualizing results rather than as an 

analysis technique (see Ekstrom et al., 2009, Zeineh et al., 2003; and also in 7-Tesla MRI 

Suthana et al., 2015). Under their protocol, delineation of medial temporal neocortex and 

hippocampus is performed in the subject's native space and conformal mapping is used to 

flatten this tissue, such that results can be viewed in a single plane. However, this 

protocol does not make use of some of the advantageous features used in neocortical 

surface-based analysis: it does not use a standardized set of coordinate points and 

segmentation is performed based on a geometric landmarks in native space (i.e. prior to 

any surface-based alignment). Although the folded topology in the hippocampal body is 

captured, the digitations and medial curvature of the hippocampal head and tail do not 

appear to be separately delineated – instead they are labelled using a similar coronal 

scheme as the hippocampal body. Consequently, topology is not fully preserved in these 

areas under this protocol. 

2.1.1 Goals of the current study 

The current study aimed to examine the topological structure and ontogeny of the 

hippocampus, as discussed above, in order to develop a two-dimensional coordinate 

system for alignment and segmentation of variably folded hippocampi across individuals, 

similar to surface-based alignment methods used in the neocortex. Specific structural 

features we identified and aimed to account for are the medial folding forming the classic 

hippocampal C-shape (or inverse C-shape depending on hemisphere and orientation), 

long-axis and uncal curvature, digitations, and inter-individual variability in each of these 

features. After tracing each of these features in 7-Tesla T2-weighted MR images, we 

applied the Laplace equation to divide hippocampal archicortex into a set of standardized 

long-axis and proximal-distal coordinates using anatomically motivated boundary 

structures that are topologically continuous with the hippocampus. We applied a 

segmentation of the hippocampus based on the histological samples used by (Ding and 

Van Hoesen, 2015) under the framework of this two dimensional, topology-preserving 

coordinate space, which we then validated by comparison to quantitative MR measures of 

intracortical myelin and thickness, as well by direct comparison to a surgically resected 
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tissue sample from a patient with epilepsy (i.e. comparison of preoperative segmentation 

to postoperative histology). 

2.1.2 Critical structural features we aimed to accommodate 

As discussed above, during development the hippocampus originates from a single flat 

tissue, which in addition to its long-axis curvature, also folds medially upon itself 

forming a C-shape while differentiating into the various subfields. This developmental 

characteristic has several interesting consequences for the structure of the adult 

hippocampus: all subfields make up adjacent segments of a contiguous tissue (though the 

dentate gyrus makes up a distinct tissue but keeps a consistent position at the distal edge 

of the CA fields). The sulcus, or ‘crease’, around which this folding occurs can be 

visualized in histology as the hippocampal sulcus and surrounding high myelin laminae 

SRLM. In the current study we aimed to capture the SRLM in the hippocampal head and 

tail as well, which we then critically leveraged to differentiate the folds of the entire 

hippocampus, preserving its topology. 

Recent histological evidence from (Ding and Van Hoesen, 2015) offers a new 

morphological characterization of the hippocampal head, which we also aimed to respect 

in our unfolded coordinate space. A main finding in this characterization was the 

documentation of considerable inter-individual differences in digitations (i.e. folding, 

similar to the gyrification of neocortex) in the hippocampal head, varying from 2 to 4 

digitations, with additional pseudo-digitations sometimes found along the lateral and 

inferior sides of the hippocampal body and tail. Ding & Van Hoesen also delineated the 

subfields in detail in the uncus - a part of the hippocampal head that curves medially, and 

then superiorly (see Figure 6B). In line with (Duvernoy, Cattin and Risold, 2013), (Ding 

and Van Hoesen, 2015) showed that all subfields of the hippocampus contiguously 

follow this curvature through the hippocampal head and have their natural anterior 

termination not in the absolute anterior tip of the hippocampus, but rather in the more 

medial and posterior vertical component of the uncus (see Figure 6C). As the subfields 

curve into the uncus, their borders also shift such that the subiculum and CA1 move from 

the inferior side to the lateral, anterior, and finally superior side. A detailed segmentation 
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of this region must capture each of these features, and here we aim to provide a tool with 

sufficient precision and documented validity to index these structural complexities. 

2.2 Methods and data 

2.2.1 Study participants 

For MRI data acquisition, healthy participants were recruited from Western University, 

London, Canada (n = 12; 6 females; ages 20–35, mean age 27.6). This study was 

conducted with Western's Health Science Research Ethics Board approval, and informed 

consent was obtained from each participant prior to participation. 

2.2.2 MRI acquisition 

Imaging was performed using a 7-Tesla neuroimaging optimized MRI scanner (Agilent, 

Santa Clara, CA, USA/Siemens, Erlangen, Germany) and employing a 23-channel 

transmit-receive head coil array, which was constructed in-house. Four T2-weighted 

turbo spin echo (TSE) 3D (3D sagittal, matrix: 260 × 366, 266 slices, 0.6mm3 isotropic, 

∼8.5 mins per scan) images were acquired from each participant. All images were 

acquired in sagittal rather than coronal oblique orientation for optimal whole brain 

coverage, given that these data were also used for other, whole brain studies. The use of 

isotropic acquisition differs from most hippocampal imaging protocols that acquire thick 

coronal slices oblique to the hippocampus to maximize in-plane resolution. However, 

these protocols limit the visibility of structures that run perpendicular to the long-axis of 

the hippocampus, including most of the hippocampal head and tail. By using isotropic 

voxels, we were able to capture small features such as the hippocampal SRLM in high 

detail, throughout the entire hippocampus. A T1-weighted MPRAGE (3D sagittal, 

matrix: 256 × 512, 230 slices, 0.75mm3 isotropic) image was also collected for all 

participants. 

2.2.3 Preprocessing 

All scans were processed as follows: the first T2-weighted image (scan 1) was upsampled 

to 0.3mm3 isovoxels using cubic spline interpolation; subsequently, scans 2, 3, and 4 

were rigidly registered to scan 1 using FSL FLIRT registration (Jenkinson, 2002, Tofts, 
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2005). All four scans were then averaged together to produce a single, 0.3mm3 isovoxel, 

high-contrast volume, similar to Winterburn et al. (2013). This volume was reoriented to 

an oblique orientation, with coronal slices perpendicular to the long-axis of the 

hippocampus, by rigid registration to an average template in coronal oblique orientation 

(as determined by visual alignment of the long-axis of the template hippocampus to the 

anterior-posterior axis). T1-weighted scans were registered to this high-contrast coronal 

oblique T2-weighted volume using rigid registration as described above. 

2.2.4 Detection and labelling of the SRLM and hippocampal grey 
matter 

Under our isotropic MR acquisition protocol, the SRLM was visible in the entire long-

axis of the hippocampus, including the digitations and uncus of the hippocampal head. 

Representative slices from the hippocampal head and body and a 3D model 

reconstruction can be seen in Figure 12. All manual tracing was performed in ITK-SNAP 

3.4 (Yushkevich et al., 2006), and the built-in ‘Snake’ tool was also used to facilitate 

tracing. The detailed protocol for tracing, ‘feathering’, dilation, and manual adjustments 

can be found in Appendix 1. 

 

Figure 6. Illustration of SRLM (green) and hippocampal grey matter (red) labelling. 

A) 3D model of the SRLM label in the center, with representative coronal slices 
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from the head and body on the sides, at the positions indicated by the dotted lines. 

B) Same views as above but depicting the SRLM label after spherical dilation. C) 

Same views as above showing the combined SRLM label and grey matter label, after 

manual adjustments to the grey matter label. 

Much of the morphology of the hippocampus is systematically related to the SRLM. This 

can be observed in our dataset (e.g. Figure 12), where models of the SRLM capture the 

same digitation and curvature structures as models of hippocampal grey matter. This 

characterization also agrees with anatomical descriptions wherein all laminae of the CA 

fields (including SRLM), and even the underlying dentate gyrus, follow the hippocampus' 

digitated structure (see Figure 11; Duvernoy, Cattin and Risold, 2013; Ding and Van 

Hoesen, 2015). The various subfields of the hippocampus surround the SRLM, and, thus, 

we made use of this proximity to initialize grey matter segmentation with the SRLM 

segmentation. We segmented the grey matter of the hippocampus initially by dilation of 

the SRLM label using an active contour evolution of the SRLM, followed by manual 

correction. We used ITK-SNAP's Snake tool (Yushkevich et al., 2006), which evolves a 

seed region in 3D to fill a structure of interest. In our case, we initialized the evolution 

using the SRLM and first applied no constraints on the evolution, which resulted in 

uniform, spherical dilation. The amount of dilation was determined by visually inspecting 

whether the outer borders of hippocampal grey matter had been reached and varied 

slightly between traces depending on the available image information. Evolution 

constrained by edge attraction (with parameters defined by the user based on image 

quality) and manual adjustments were then applied. We did not trace the SRLM along the 

superior side of the subiculum (the most medial, less folded extension of the 

hippocampus) as it was not consistently visible. Accordingly, grey matter in this region 

was not labelled as part of the dilation of the SRLM label but had to be labelled manually 

by the rater, using a spherical paintbrush. This was also the case in the most medial, 

vertical component of the uncus where the SRLM was often not visible. Further manual 

adjustments included the removal of grey matter label from the CSF on the medial side of 

the dentate gyrus, and minor changes throughout to ensure all grey matter was labelled as 

such. Because errors in manual segmentation can produce distortions in the next step of 

hippocampal grey matter unfolding, the unfolding results of each hippocampus were 
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visually examined by the raters to ensure their labelling followed the rules outlined in 

Appendix 1. 

To assess how reliably the SRLM could be segmented in our high-resolution images, we 

repeated the segmentation with an additional trained rater, and calculated the spatial 

overlap between these segmentations using the Dice similarity index (DSI). DSI 

represents the proportion of overlapping voxels in two segmentation labels over the mean 

number of voxels per label. It can vary from 0 to 1, with values close to 1 denoting high 

overlap (Dice, 1945; Sørensen, 1948). 

2.2.5 Manual subfield segmentation 

Before unfolding of hippocampal grey matter, we performed manual segmentation of this 

tissue into subfields in a set of 10 hippocampi (5 participants ×2 hemispheres) with 

varying numbers of digitations and varying curvature in the uncus. This was done by 

carefully matching coronal views in our MR images with the closest corresponding 

histological segmentations in the hippocampal head provided by (Ding and Van Hoesen, 

2015). In the hippocampal body and tail, segmentations were performed based on the 

descriptions of (Duvernoy, Cattin and Risold, 2013). Representative slices of these 

segmentations can be seen in Figure 12, and additional examples as well as qualitative 

descriptions can be found in Appendix 2. Note that it was not our intention to develop a 

manual segmentation protocol in this paper; we simply aimed to determine whether the 

trajectories of the hippocampal subfields in our unfolded coordinate space could be 

captured in a way that respects the recently elucidated complexity in the hippocampal 

head. Thus, we assessed the reproducibility of these segmentations in only a small sample 

(four left and four right) using DSI scores as above, to ensure values were at least 

comparable with previous reports (see results in Figure 10). 
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Figure 7. Representative slices showing manual subfield labelling from hippocampal 

head (top) and body (tail). Left shows reference materials from (Ding and Van 

Hoesen, 2015), middle shows manually traces SRLM (green), hippocampal grey 

matter (red) and cysts (yellow), right shows manually delimited subiculum (brown), 

CA1(blue), CA2 (white), CA3 (pink), and dentate gyrus (cyan). See Appendix 2 for 

further details. Images were adapted with permission from (Ding and Van Hoesen, 

2015). 

2.2.6 Unfolding of hippocampal grey matter 

In the neocortex, 3D computational tools such as Laplace's equation have been used to 

precisely and flexibly calculate neocortical thickness (e.g. Jones, Buchbinder and Aharon, 

2000; Sowell, 2004). In principle, the Laplace equation, ∇2φ = 0, defines a potential field 

(φ) whose values change based on their distance from two boundary surfaces. The 

solution is twice differentiable (∇2 = 0), which guarantees a level of smoothness that is 

appropriate for brain anatomy. In studies of neocortical thickness, the potential field 

spans the neocortical grey matter, while the boundaries are the white matter and pial 

surfaces. Thickness is then computed by generating streamlines across the resulting 

potential field gradient. 

We reasoned that Laplace's equation may also be used for unfolding of hippocampal grey 

matter, not only to determine thickness along the laminar dimension, as above, but also to 
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compute potential field gradients along the long-axis and proximal-distal dimensions. To 

do so, it is critical to employ multiple sets of boundary conditions, sometimes referred to 

as ‘source’ and ‘sink’. For example, unfolding along the long-axis dimension makes use 

of anatomically motivated boundaries at the anterior (source) and posterior (sink) ends of 

the hippocampus. The potential field in between is defined over all grey matter and 

increases smoothly from source to sink. We thus solved Laplace's for three different 

equations, ∇2φlong-axis = 0, ∇2φproximal-distal = 0, ∇2φlaminar = 0, to determine a different 

potential field for each hippocampal dimension. The domain was identical for each 

dimension, i.e., the hippocampal grey matter, but the boundary conditions were distinct in 

each of them, defined as anatomical landmarks along at the edges of the hippocampal 

tissue. 

An iterative finite-differences approach was used to obtain the solution for each Laplace 

equation, while employing a 26-neighbour average to compute the updated potential field 

and terminating when the potential field change is below a specified threshold (sum of 

changes < 0.001% of total volume). It is important to note that the SRLM voxels were 

not included in the grey-matter domain of Laplace's equation. This protocol feature 

effectively provides a barrier such that the streamlines follow a geodesic (i.e. along the 

outer surface) path along the hippocampus and do not introduce short-circuits. Solving of 

the Laplace equations was performed in MATLAB (code available at 

https://github.com/jordandekraker/HippUnfolding). 

Long-axis dimension boundaries 

As discussed in Chapter 2.1.2, each of the subfields has its natural anterior terminus in 

the vertical component of the uncus (Ding and Van Hoesen, 2015). Hippocampal grey 

matter in this area borders the grey matter of the amygdala, making up an area that is 

typically referred to the hippocampal-amygdalar transition area (HATA) (Ding and Van 

Hoesen, 2015). At the tail of the hippocampus, a structure named the indusium griseum 

(which is actually a vestigial extension of the dentate gyrus) extends medially and 

posteriorly from the hippocampus and then curves upward and anteriorly along the 

midline of the brain, before merging with the cingulate cortex (Duvernoy et al., 2013). 
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The HATA and indusium griseum, thus, make up two visible structures that correspond 

to the natural anterior and posterior termini of each of the hippocampal subfields. We 

manually traced these structures only where they border hippocampal grey matter (see 

Appendix 1 for details) and used them as source and sink regions in Laplace's equation 

(see Figure 8A for illustration). 

 

Figure 8. Illustration of Laplacian unfolding along the long-axis, proximal-distal, 

and laminar dimensions in A), B), and C), respectively. The upper left inset image in 

A) shows a 3D model of the SRLM (green) and grey matter (red) labels, with the 

HATA (pink) and indusium griseum (grey) to be used as boundaries for Laplace's 

equation. The lower left image in A) shows arbitrarily coloured bins within the 

resulting potential field gradient. To the right is the same model as the lower left but 
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showing cross sections from the body (top) and head (lower three), depicting in 

particular the uncus (lower two) and vertical component of the uncus (bottom). The 

locations of these cross sections are shown by the black dotted lines (1–3) and the 

eye figure (4). B) shows the same views of the same hippocampus but using the inner 

dentate gyrus (turquoise) and medial temporal lobe cortex border (white) (upper 

left insert in B), as boundaries for Laplace's equation for the proximal-distal 

dimension. C) shows the same views of the same hippocampus but using the SRLM 

(seen in green under semi-transparent red grey matter) and outer hippocampal 

borders (upper left insert in C) as boundaries for Laplace's equation for the laminar 

dimension. White dotted lines in C) (right) show the true laminar structure of CA4 

and DG, which is not respected in our laminar potential field gradient. 

Proximal-distal dimension boundaries 

We defined the proximal border as the point at which the subiculum, the most proximal 

subfield, contacts the grey matter of neighbouring medial-temporal lobe neocortex (see 

Appendix 1 for details). To index the full extent of hippocampal grey matter, its distal 

border can be defined as the granule cell layer of the dentate gyrus (i.e. the part of dentate 

gyrus which most closely borders the SRLM). We employed a custom approach to detect 

this tissue: within each previously computed long-axis bin we applied volumetric fast 

marching (Sethian, 1996) along hippocampal grey matter, starting at the border with 

surrounding temporal lobe cortex, and estimated the dentate gyrus as being the most 

distal 12% of this distance (determined experimentally). To index only the innermost 

granule cell layer of this tissue, we dilated the SRLM by a single voxel (8 nearest 

neighbours) over this rough dentate gyrus approximation. The result included only the 

most distal portions of the dentate gyrus, corresponding roughly to the granule cell layer. 

An additional challenge in the proximal-distal unfolding of the hippocampus lies in the 

vertical component of the uncus. Here, hippocampal grey matter, unlike in the rest of the 

hippocampus, does not follow the classic folded C-shape, and instead flattens out (Figure 

8 right panels 3 and 4). The dentate gyrus continues on the medial edge of this region, but 

it is not separated by the other subfields with any visible SRLM at the current image 
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resolution. We thus defined the dentate gyrus’ location manually for this region (Figure 

8B, third and fourth right panels, turquoise bin). 

Laminar dimension boundaries 

We defined the sink for Laplace's equation as the outermost surface of the hippocampus, 

and the source as the SRLM. However, as mentioned in Chapter 2.2.1, the subiculum and 

vertical component of the uncus do not border the SRLM. Therefore, these labels were 

artificially extended over these regions. For the subiculum, this was performed 

computationally by dilating the SRLM label along the surface of the subiculum until the 

most medial point was reached in each coronal slice. For the vertical component of the 

uncus this label was created manually. These artificially extended labels were used as the 

source in Laplace's equation (Figure 8C). 

2.2.7 Subfield borders in unfolded coordinate space 

The long-axis and proximal-distal potential field gradients together make up a 2D 

coordinate system that can be used for indexing columns of hippocampal grey matter. 

Using this ‘unfolded coordinate space’, the location of each subfield border can easily be 

indexed. We used the manual subfield segmentations performed on 10 hippocampi (see 

Chapter 2.2.5) to generate a subfield atlas in the unfolded coordinate space. That is, for 

each manually segmented hippocampus, we identified the long-axis and proximal-distal 

coordinates that correspond to each of the subfield borders. We then averaged these 

borders together at each long-axis point and plotted the labelled data in the 2D unfolded 

coordinate space (see Figure 11). 

Given the low variability of the subfield borders in unfolded space, we then applied our 

Laplacian unfolding to the remaining hippocampi and, rather than performing subfield 

segmentation manually, we applied the group-averaged borders from Figure 11. That is, 

for each long-axis and proximal-distal coordinate in each hippocampus, we assigned the 

corresponding label from Figure 11. We then assessed the overlap of the 10 manually 

segmented hippocampi to their unfolded group-average border segmented counterparts 

using Dice Similarity Indices. To avoid bias, we used a leave-one-out approach wherein a 
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given participant's manual segmentations (both left and right) were not included in 

unfolded group-averaged borders. 

2.2.8 Quantitative unfolded tissue properties 

Properties such as intracortical myelin content and cortical thickness have been shown to 

be useful for parcellation of the neocortex into functional subregions (e.g. Glasser and 

Van Essen, 2011; Glasser et al., 2014). The ratio of T1-weighted over T2-weighted 

values produces a map that is correlated with quantitative R1 and is used as a surrogate 

measure of intracortical myelin (Glasser and Van Essen, 2011). We estimated 

intracortical myelin in this way and estimated cortical thickness by fitting streamlines to 

the laminar potential field gradients of all hippocampi. We then plotted these values 

across unfolded coordinate space. To avoid confounds from partial voluming, we mapped 

the myelin contents of hippocampal tissue from only the middle 25–75%, as determined 

by our laminar Laplacian field, corresponding to approximately 2 voxels at the current 

resolution (similar results were obtained when the superficial and deep laminae were 

included as well). To illustrate how these values map onto the native 3D space of the 

hippocampus, we generated 3D hippocampal models with surface colouring that 

corresponds to the underlying myelin estimates from the group average in two 

hippocampi (one highly digitated and one less digitated exemplar; see Figure 11). 

2.2.9 Histological validation 

One temporal lobe epilepsy patient with left mesial temporal sclerosis (age 34; male) 

underwent preoperative 7-Tesla scanning and then went on to receive a left anterior 

temporal lobectomy, with inclusion of the amygdala and hippocampus, as part of their 

standard of care. The surgically resected tissue underwent a standardized protocol 

involving overnight scanning in an ultra-high field ex-vivo 9.4-Tesla MRI, agar 

embedding, and cutting into blocks 4.4mm apart for paraffin embedding and histological 

sectioning. Staining with H&E, Neu-N, GFAP, and Luxol fast blue was performed, and 

slides were digitized at 0.5 micron/pixel resolution. The subfields were manually 

annotated on the Neu-N histology images by Kayla Ferko (K.F.) using the Aperio 

ImageScope software, with criteria outlined in (Ding and Van Hoesen, 2015) and verified 
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by experienced pathologist, Dr. Robert Hammond (see Appendix 3 for additional details 

on how these segmentations were performed). We employed our previously developed 

and validated pipeline for MRI and histology registration (Goubran et al., 2013, 2015) to 

perform direct validation of 7-Tesla hippocampal subfield segmentation against ground-

truth histological sections. The histology-MRI image registration procedure involved 

iterative 2D-3D deformable registration of downsampled (100 micron/voxel) histology 

slides to the reference 9.4-Tesla tissue MRI, along with 3D deformable landmark-based 

registration of the 7-Tesla MRI to the 9.4-Tesla MRI. Segmentation labels as well as each 

Laplacian gradient from the in-vivo 7-Tesla images were then propagated to this aligned 

histology space for direct comparison. 

2.3 Results 

2.3.1 Detection and labelling of the SRLM and hippocampal grey 
matter 

To assess reliability, inter-rater DSI was calculated for SRLM and grey matter labels. 

Note that DSI tends to be lower for thin structures at higher resolutions because of the 

high surface area to volume ratio. DSI revealed good spatial overlap in both the SRLM 

(0.72 ± 0.03 right; 0.70 ± 0.04 left) and hippocampal grey matter (0.84 ± 0.01 right 0.81 

± 0.02 left). Thus, our dataset contained sufficient contrast to detect and label the SRLM 

and grey matter based on the visual features described in Appendix 1 with good 

consistency. 

2.3.2 Subfield borders in unfolded coordinate space 

Hippocampal subfields projected into unfolded coordinate space are shown in Figure 9. 

As expected, the same proximal-distal arrangement of subfields was found throughout the 

entire hippocampus in unfolded coordinate space, including the hippocampal head. 

Variability was low for all borders (i.e. low SEM compared to the area of each subfield), 

and no subfields crossed over each other, either in the group average or in any given 

unfolded segmentation example. 
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Figure 9. Hippocampal segmentations in unfolded coordinate space. A) Example of 

a manual subfield segmentation based on (Ding and Van Hoesen, 2015). Similarly, 

B) shows an exemplar with fewer digitations and less medial curvature. C) shows 

‘unfolded’ hippocampal grey matter, with subfield label identity determined at each 

long-axis and proximal-distal coordinate from the manual segmentations (winner-

takes-all over the sample). The shaded areas indicate standard error of the mean for 

each subfield boundary location across the sample of manual segmentations. Dotted 

lines approximately indicate commonly used boundaries between the hippocampal 

head, body, and tail, with the head further subdivided into uncus and vertical 

component of the uncus. 

Reliability of the manual subfield segmentations (based on Ding and Van Hoesen, 2015) 

and comparison of unfolded group-average segmented hippocampi to their manually 

labelled counterparts are displayed in Figure 10. Lowest DSI was seen for the smallest 

subfields- CA2 and CA3. The data show that combining these two labels, as in some 

other manual segmentation protocols, leads to moderate improvements. 
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Figure 10. Spatial overlap in Dice Similarity Index (DSI) between manual subfield 

segmentations (manual-manual) and between leave-one-out unfolded group-average 

subfield segmentations and their manually segmented counterparts (unfolded-

manual). The leave-one-out technique was performed such that borders from one 

participant's left and right hippocampi were not included in the averaged borders 

that informed unfolded segmentation of that participant's hippocampi. 

2.3.3 Quantitative unfolded tissue properties 

Unfolding provides a way to view grey matter properties across the entire extent of the 

hippocampus in a single 2D view. This unfolded view can obviate patterns that are not 

apparent when limited to single slices in native 3D space. Here, we mapped intracortical 

myelin and cortical thickness (Figure 11A and B, respectively). It should be noted that 

additional properties, including those used by (Glasser et al., 2016), can be mapped in 

this way as well. We also mapped these results to the surface of a representative 3D 

hippocampal model in order to visualize them in native space and to allow for easier 

comparison with manual and unfolded average segmentations (Figure 11C). 
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Figure 11. Quantitative mapping in unfolded coordinate space compared to subfield 

borders. A) Average intracortical myelin estimates (T1 over T2 MR intensities; 

arbitrary units). B) Average cortical thickness. Both A) and B) have average 

subfield borders overlaid. Note that in the dentate gyrus, thickness estimates are 

perpendicular to the true laminar structure (see Chapter 2.3.2). C) Manual and 

unfolded subfield segmentations compared to intracortical myelin in highly 

digitated (top) and less digitated (bottom) representative hippocampal models. 

Average intracortical myelin is mapped to the surface models of these hippocampi 

for easier comparison. 

2.3.4 Histological validation 

Segmentation of in-vivo 7-Tesla data from the surgical patient are compared to the same 

patient's ex-vivo resected and histologically stained hippocampus in Figure 12. Atrophy 

and cell loss in area CA1, CA3, and the dentate gyrus, with relative sparing of CA2, can 
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be seen in the epileptogenic tissue (Figure 12, far left). Cell loss is most evident in the 

distal portions of CA1, where reduced staining is seen, and atrophy is apparent in the 

small area occupied by each subfield compared to histological references (e.g. Ding and 

Van Hoesen, 2015), as well as reduced digitation structure (see Oppenheim et al., 1999). 

These findings describe classical hippocampal sclerosis (Blümcke et al., 2007). Note also 

that this patient shows only two clear digitations in the hippocampal head, which were 

not well captured in the in-vivo labelling of grey matter tissue (i.e. digitations cannot be 

seen in any of the in-vivo labelled data from this patient). In-vivo segmentations showed 

some misalignment of both grey matter and SRLM labels, which can be seen in areas 

where neurons are visible in the histology without being obscured by grey matter labels. 

This likely reflects imperfect alignment between the in-vivo scan and ex-vivo histology 

but may also be due to poor image quality in this patient, making it difficult to correctly 

label hippocampal grey matter and SRLM. 

 

Figure 12. Neu-N stain of resected hippocampal tissue with comparison of 

histologically segmented hippocampal subfields to in-vivo subfield labels and 

unfolding Laplace gradients in the same individual. Slices move from posterior 

(hippocampal body) to anterior through the hippocampal head and are separated 
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by 4.4mm. Red arrows indicate marked cell loss in distal CA1. The proximal-distal 

and long-axis gradients are surrounded by low colour-scaled voxels because of their 

interpolation when transforming to the histological space. 

Some inconsistencies are noticeable in direct comparison between the in-vivo manual 

subfield segmentation (Figure 12 column 2) and the histological ground truth (Figure 12 

column 3). They may be due to misalignment, tissue atrophy, poorer image quality, errors 

in the segmentation protocol, or inter-individual differences in subfield border locations. 

Note, however, that some key features are preserved in our segmentations: CA2 passes 

into plane twice in row 3 (i.e. appears in two different places), and both dentate gyrus and 

CA3 are seen in the uncus in row 2. Because these borders are curved medially in the 

head, they are difficult to capture in coronal slices alone and will vary drastically 

depending on the exact position of the slice. 

The long-axis and proximal-distal gradient together make up our two-dimensional 

unfolded coordinate space, which can be viewed in relationship to histology in Figure 12 

columns 4 and 5. The long-axis gradient changes between coronal slices, as expected 

when moving from posterior to anterior, but also changes within each slice. This is 

because the anterior point is located in the most medial, vertical component of the uncus, 

where each of the subfields has its natural terminus, rather than the absolute anterior of 

the hippocampus. Thus, the long-axis gradient shows how any given coronal slice is out-

of-plane with respect to the medial curvature of the uncus. The proximal-distal gradient 

identifies a set of potential subfield borders, which can also be adjusted depending on 

anterior-posterior extent. In row 3 this gradient can be seen to increase and then decrease 

as the gradient passes into and then out of the plane of view (i.e. from proximal to distal 

colours pass from green-yellow-orange-yellow-orange), similar to what is seen for CA1 

and CA2 in the corresponding histological ground truth images. We used this gradient in 

combination with the long-axis gradient to apply group-averaged subfield borders to this 

participant's unfolded hippocampal space, which is shown in the rightmost column. This 

segmentation suffers from some of the same issues as the fully manual segmentation, but 

as in the manual segmentation, many of the key features of the hippocampal head are 

retained, including the passing into and out-of-plane for CA2 and the presence of CA3 in 
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the uncus (Figure 12 rows 2 and 3, respectively). However, in the unfolded group-

average segmentation and in the fully manual segmentation, each of the in-vivo 

segmentation borders was incorrectly placed. Specifically, all subfield borders should be 

shifted more distally in rows 1 and 2, and in rows 3 and 4 the manually segmented border 

shifts are mixed whereas the group-averaged borders should be shifted more proximally. 

This resulted in no CA1 label for the slice seen in row 4 of the unfolded group-average 

segmentation, despite its presence in the histological ground truth. 

2.4 Discussion 

Using isotropic T2 7-Tesla MR imaging, we were able to detect substructures of the 

hippocampus that can be leveraged to understand and quantify its complex and variable 

topology. Towards this end, we developed a methodology to ‘unfold’ or index this 

topology in a way that respects accounts of hippocampal subfields from the literature and 

inherently aligns tissues despite variable folding. The resulting system can be used to 

index or segment that tissue with a high level of precision and flexibility. Segmentations 

performed in the resulting unfolded space agree with quantitative metrics of intracortical 

myelin and capture key features shown in an ex-vivo validation sample from a patient 

with epilepsy. 

2.4.1 Detection and labelling of the SRLM and hippocampal grey 
matter 

High Dice Similarity Indices were found for both hippocampal grey matter and SRLM 

using the segmentation instructions outlined in Appendix 1. This feature is critical in that 

it allows for the differentiation of folds throughout the entire hippocampus and was 

necessary to constrain the proximal-distal Laplacian solution obtained here to the 

topology of hippocampal archicortex. Another constraint worth mentioning is that, in our 

protocol, the SRLM is required to separate folds of hippocampal grey matter with no 

points of contact between the folds. This feature may be challenging to obtain in datasets 

generated with highly anisotropic acquisition, which will limit visibility of the SRLM in 

the medial extensions of the hippocampus, and also limit the rater's ability to create a 

label with separated folds of hippocampal grey matter (as they may change too drastically 
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between slices). However, with sufficiently thin slicing, it may still be possible to employ 

these criteria and procedures in anisotropic datasets. 

2.4.2 Anatomical details of unfolding 

The following list describes specific anatomical details that were correctly captured with 

our unfolded coordinate system: 

• In the long-axis unfolding, a cross-section of hippocampal grey matter at an 

equipotential point in the hippocampal body reveals the same classic C-shaped 

orientation of grey matter as in coronal slices from histology and in extant MRI 

tracing protocols (Figure 8A, first right panel, red dotted line). Unlike in extant 

protocols based on coronal or other views, cross-sections in our unfolding at 

equipotential points in the hippocampal head also correctly reveal these C-shaped 

orientations of subfields (e.g. Figure 8A, second right panel, red dotted line). 

• In the vertical component of the uncus, the C-shape of hippocampal grey matter 

flattens out to form a line (e.g. Figure 8A, third and fourth right panel, red dotted 

line). Here, the dentate gyrus passes most medially around the other subfields 

before extending upwards and reaching the vertical component of the uncus (Ding 

and Van Hoesen, 2015). This feature is accounted for in our unfolding by the 

manual placement of the ‘sink’ in the proximal-distal unfolding of hippocampal 

grey matter (Figure 8B, third and fourth right panels, turquoise bin; see also 

Appendix 1, step 3: labelling of extra-hippocampal structures). 

• In the proximal-distal unfolding, the more proximal regions of hippocampal grey 

matter wrap around the absolute anterior tip of the hippocampus, moving from the 

inferior to superior side. This feature honours the descriptions of the subiculum 

provided by Ding and Van Hoesen (2015) and discussed in Chapter 2.1.2 (Figure 

8B, main model, green, blue, and yellow and cyan bins following dotted red 

arrow) 

There are some remaining anatomical limitations of the current unfolded coordinate 

system: 
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• The ‘sink’ used for proximal-distal unfolding captures most of what corresponds 

to the granule cell layer of the dentate gyrus in histological studies. However, this 

tissue is so thin that it cannot easily be matched to the true granule cell layer seen 

in histology. Thus, we do not recommend using it as an independent region of 

interest for in-vivo MRI. Rather, we recommend combining it with area CA4, or 

the CA3 hilar region, as implemented in our manual subfield segmentations and 

in our unfolded subfield descriptions. 

• The laminae of the dentate gyrus are known to be situated perpendicular to those 

of the other subfields (Duvernoy et al., 2013). This is not respected by our 

laminar unfolding. Instead, most of the dentate gyrus is treated as being deep 

laminae (e.g. Figure 8C, second right panel, correct lamination shown in white 

dotted line). Thus, caution is necessary when the goal is to index the laminae of 

the CA4 and dentate gyrus. 

Another strength of this ‘unfolded’ space pertains to the fact that all its distances are 

relative to the full size of the corresponding individual hippocampus and can thus be 

applied across a range of hippocampal sizes and morphologies. With some adaptation of 

landmarks used as boundaries in the Laplace equation (i.e. source and sink), this protocol 

may also be applied to the characterization of abnormal hippocampi (due to abnormal 

development or neurological disease) or even those from other mammalian species. 

2.4.3 Subfield borders in unfolded coordinate space 

Figure 9 shows the mapping of subfields segmented in each participant's native space to 

the standardized unfolded space. The fact that the SEM of the average unfolded borders 

was relatively low (i.e. accounts for a relatively small proportion of the area of each 

subfield) is surprising, given the large inter-individual variability of subfield locations in 

native space (e.g. highly variable digitations; see Ding and Van Hoesen, 2015). This 

result suggests that much of the variability in native space is due to differential curvature 

and folding of hippocampal tissue in development, rather than differences in the 

cytoarchitectural differentiation within this tissue. 
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Comparison of manual segmentations in native space to segmentations applied using the 

group-averaged borders in unfolded space revealed moderate to good spatial overlap, as 

determined by DSI, particularly when the smallest subfields CA2 and CA3 were 

combined (Figure 10). These DSI scores were also similar to inter-rater manual DSI 

scores. However, the sources of the remaining variability are not clear. They might reflect 

individual variability in subfield border locations that are not captured by our unfolded 

average borders. Alternatively, they might reflect deviations from the true subfield border 

locations in a manual segmentation in native space due to tracing errors. 

2.4.4 Quantitative unfolded tissue properties 

An important finding for the intracortical myelin estimates we obtained is that they 

appear to closely correspond to the average subfield borders used in our demonstration of 

subfield segmentations (Figure 11A). The subiculum and areas CA2 and CA3 appear to 

have greater myelin content than CA1 and the dentate gyrus, with the proximal part of the 

subicular complex showing greatest values. Though speculative, we suggest that this 

characteristic could reflect contributions of the perforant path passing through the 

subiculum, elevating myelin estimates due to the presence of white matter tracts. In area 

CA3, dense recurrent collaterals might contribute to elevated myelin estimates. An 

alternative explanation is that increased vasculature, which would also appear dark in T2-

weighted images, contributes to this contrast. Support for this explanation comes from the 

observation that area CA2 is the most highly vascularized subfield in humans (Duvernoy 

et al., 2013). Our findings also agree with those of Ábrahám et al. (2012) who examined 

intracortical myelin in histological samples, and those of Marques and Gruetter (2013), 

who found similar differences in R1 MR intensities between the subfields. 

Cortical thickness was also calculated using Laplacian streamlines and mapped in 

unfolded coordinate space (Figure 11B). Critically, these differences do not appear to 

correspond to the subfield borders. Note that thickness in the dentate gyrus was actually 

calculated perpendicular to the true laminae of the dentate gyrus because of the different 

orientation of tissue (see Chapter 2.3.2). Therefore, thickness in this region should not be 

considered to reflect true laminar structure. With this exception, our results are similar to 

thickness measures reported by Yushkevich et al. (2011), who found that thickness was 
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highest between subiculum and CA1 and lowest in CA3, both in healthy individuals and 

those with mild cognitive impairment. However, these results differ from those reported 

by Burggren et al. (2008), who found that thickness was highest in CA3/dentate gyrus, 

particularly in the anterior hippocampus. This discrepancy may be due to the fact that 

their method did not account for the digitations in the hippocampal head, which could 

have led to overestimation of thicknesses. 

Comparing both manual and unfolded group-average subfield segmentations performed 

in this study to intracortical myelin, we noted some discrepancies between border 

locations. In the representative hippocampi examined, the subfield borders in the manual 

segmentation did not follow as smooth of a trajectory as in the unfolded segmentation 

(Figure 11C). This discrepancy could be due to unique aspects of this particular 

participant's subfield border locations that may not be captured by the group average. 

However, we believe it is more likely due to limitations of the manual segmentation 

employed. For example, imperfect alignment between coronal slices in MRI with 

histological reference slices from Ding and Van Hoesen (2015) and Duvernoy et al. 

(2013) could cause subfield borders to shift, making them more jagged when in reality 

they follow a smooth trajectory. Detailed 3D histological examinations are needed to 

determine whether this is indeed the case. These issues may contribute to the variability 

observed between manual segmentations and unfolded group-averaged segmentations 

that are apparent in Figure 10. They also speak to more fundamental challenges related to 

the reliability and feasibility of manual segmentation protocols that are based primarily 

on coronal slices, which fall beyond the scope of the current paper. Nevertheless, the fact 

that these discrepancies largely average out in a sample of unfolded hippocampi, while 

still respecting differences in morphology, further highlight the strength of the approach 

presented here. 

The unfolding of hippocampal grey matter accounts for much of the inter-individual 

variability related to differences in ontological folding. However, inter-individual 

differences in subfield border locations beyond differences in folding structure (for 

example, as shown by Zeineh et al., 2015), as well as variability due to the presence of 

disease (as in the resected tissue examined here) may reflect additional sources of 
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variability in unfolded subfield locations and size. This variability presents a significant 

challenge when aiming to apply unfolded group-average borders, as well as for manual or 

automated segmentation protocols that rely on geometric rules and structural landmarks. 

Thus, the use of other cues, such as intracortical myelin or thickness, may be useful in 

generating subject-specific subfield borders in future follow-up research. 

2.4.5 Histological validation 

Results from Figure 12 show some inconsistencies in our manual subfield segmentation 

as well as in our group-averaged unfolded space segmentations when compared to the 

histological ground truth in one resected tissue sample from a patient with epilepsy. In 

addition to general segmentation errors and natural inter-individual variability in border 

locations, some of these inconsistencies may arise because of tissue atrophy and poor 

grey matter labelling in this participant with a neurological condition as compared to 

healthy control participants. Such factors may make manual segmentation based on Ding 

and Van Hoesen (2015)’s descriptions, or the use of borders established in healthy 

control participants less appropriate for characterization of the hippocampi in a disease 

state. However, it should be noted that several features seen in the histology were still 

captured by our unfolding coordinate system, despite being absent from the subfield 

borders applied here. In particular, the proximal-distal gradient can be seen to increase 

and decrease along the length of a coronal slice, capturing how the CA1 passes into plane 

twice in the histological ground truth. Thus, although subfield borders may be shifted due 

to various factors, the coordinate space presented here still respects this feature of the 

hippocampal head. As such, this application illustrates how segmentations in unfolded 

coordinate space are able to capture critical structural complexities of the hippocampal 

head. 

2.4.6 Hippocampal unfolding in the context of extant literature 

One possible source of the recent controversy over hippocampal subfield borders relates 

to the constraint that in order to be reliable, a coronal slice segmentation protocol should 

make use of heuristics, such as geometric rules with reference to visible intra- or extra-

hippocampal landmarks. For these rules to be applicable across different hippocampal 
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morphologies and MR image qualities, some level of simplification is necessary, 

reducing accuracy and precision. Given the large number of possible border locations, the 

unfolded coordinate system presented here inherently allows for increased precision, 

even across hippocampi with varied morphologies. This is because it respects critical 

structural features of the hippocampal head without reliance on the heuristics mentioned. 

Thus, although we do not wish to present the specific subfield borders used here as an 

alternative to the efforts towards international harmonization by the Hippocampal 

Subfields Group, we hope that these efforts will include the structural considerations 

discussed in the current paper, and may also lead to exploration of methodologies other 

than manual segmentation. Furthermore, we anticipate that, once international consensus 

is reached, the resulting subfield borders can be applied using the unfolded coordinate 

system presented here and be complemented by further characterization of inter-

individual differences that can be captured with the present methodology. Given the 

increasing prevalence of high-resolution data in which the SRLM can be identified 

throughout the length of the hippocampus, this appears to be a particularly promising 

avenue. 

A final point worth noting is that the unfolded coordinate system offered here will also 

allow for easy implementation of further subfield divisions in future work. For example, 

Ding & Van Hoesen's recent characterization of the hippocampal head (2015), as well as 

other histological evidence from humans and nonhuman animals (see Ding, 2013), reveal 

differentiation of the subiculum into distinct components, including the prosubiculum 

(postsubiculum in rodents), subiculum, presubiculum, and parasubiculum. Furthermore, 

some studies have documented functional differentiation between proximal and distal 

CA1 (Nakazawa et al., 2016, Knierim et al., 2014) and CA3 (Nakamura et al., 2013). 

These findings highlight the increasing need for precision and standardization in indexing 

hippocampal tissue, as well as the need for flexibility in applying subfield labels so as to 

honour new developments in tissue characterization. We believe that the unfolded 

coordinate system presented here can provide such a framework. 
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2.4.7 Conclusions 

We have presented a new tool that promises to allow for in-vivo characterization of the 

complex structure of the human hippocampal subfields in unprecedented detail. Manual 

segmentation with high anatomical detail poses many challenges for the generation of 

reliable protocols that are suitable for tracing of hippocampal subfields, particularly in the 

hippocampal head. However, consideration of regularities in hippocampal structure 

related to ontogeny offer ways in which computational tools, such as the Laplace 

equation, can be applied for indexing and segmenting hippocampal tissue in a way that 

preserves topology across individual differences. In the current study, we pursued an 

approach that took advantage of these considerations. Through computational unfolding 

of the hippocampus, the current protocol provides a coordinate system that can index 

hippocampal tissue in a precise and flexible manner, while capturing the noticeable inter-

individual differences in morphology that have been documented in histological studies 

of this structure. This method critically depends on the visualization of the SRLM, or 

‘crease’, along which the hippocampus is folded. We argue that this method offers 

several practical advantages over manual segmentation techniques. These advantages can 

be summarized as follows: 

• Unfolding hippocampal grey matter allows for indexing of analogous tissues (or 

sets of candidate boundary locations) across participants with variable 

morphologies. 

• The unfolded coordinate space can be used for inter-subject alignment and 

subsequent mapping of properties across the full long-axis and proximal-distal 

extent of the hippocampus, as illustrated here for intracortical myelin and cortical 

thickness measures. 

• Segmentations applied in this unfolded coordinate space show good spatial 

overlap with, and may even correct for tracing errors in, detailed manual subfield 

segmentations. This coordinate system also captures subtle but critical structural 

features, as demonstrated in a direct comparison with a resected histological 

sample from a patient with epilepsy. 
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Future directions for this work include the integration of automatic tissue segmentation 

tools for detection of the SRLM, grey matter, and surrounding structures in order to 

reduce user input and improve reliability. Promising applications of this unfolded 

coordinate system include cross-species comparison and normative mapping of 

hippocampal tissue properties in health and disease. 
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Chapter 3  

3 Unsupervised 3D Histology Analysis 

This Chapter focuses on a data-driven analysis of the open source BigBrain 3D histology 

dataset under the hippocampal unfolding framework presented in Chapter 1. This work is 

now published in the journal NeuroImage under the title ‘Hippocampal subfields revealed 

through unfolding and unsupervised clustering of laminar and morphological features in 

3D BigBrain’ (DeKraker et al., 2020). BigBrain consists of an ex-vivo brain that was 

serially sectioned, stained, imaged, and then reconstructed in 3D at 40um3 resolution 

(Amunts et al., 2013). We performed manual tissue segmentation of the left and right 

hippocampi with unprecedented detail, then applied our previously developed unfolded 

coordinate framework with minor changes to the code. A set of 10 laminar features and 5 

morphological features were computationally extracted in unfolded space, and data-

driven clustering was performed on these features. Resulting clusters closely resembled 

manual subfield definitions from the native 3D histology. This speaks to the sensitivity of 

the feature extraction methods applied here, as well as the validity of subfield definitions 

used. Translation, insights, and limitations of in-vivo neuroimaging are discussed as they 

pertain to the observation made in this project.  

3.1 Introduction 

The hippocampus is one of the most heavily investigated brain structures in neuroscience. 

Much research in recent years has focused on questions about its subdivisions, guided by 

the idea that different regions within the hippocampus may perform different functions 

and may also be differentially prone to disease (Small et al., 2011). These developments 

pose central questions as to how to characterize subdivisions in anatomical terms. 

Traditionally, most proposed subdivisions have relied on histology and cytoarchitecture, 

leading to the notion of distinct hippocampal subfields that typically include the subicular 

complex, Cornu Ammonis 1 to 4, and the dentate gyrus (Duvernoy et al., 2013). More 

recently, increasing interest has also emerged concerning graded differences along the 

anterior-posterior axis based on subfield composition and connectivity (Strange et al., 

2014; Poppenk et al., 2013; Plachti et al., 2019). An organizational principle that shapes 



60 

 

these dimensions, i.e., subfields and anterior-posterior differences, is the complex 

topology within the hippocampus that results from folding during its ontological 

development (Duvernoy et al., 2013; DeKraker et al., 2018). This principle has received 

only limited investigation to date but requires careful consideration in any effort to 

characterize the internal architecture of the hippocampus. The current paper aims to 

investigate the relationship between hippocampal morphology and laminar 

cytoarchitecture under a topological framework in humans. In other words, the goal is to 

examine laminar and morphological (i.e. non-laminar) features, such as cortical thickness 

or curvature, within a framework that explicitly honours 3D continuity across 2D images. 

In order to pursue this goal, we took advantage of the unique and powerful “BigBrain” 

dataset that provides continuous histological sampling with full 3D coverage (Amunts et 

al., 2013). A particular promise of this approach lies in its applicability to in-vivo 

Magnetic Resonance Imaging (MRI). 

While commonly used MRI measures do not allow for cytoarchitectural characterization, 

MR-based protocols have been developed to indirectly infer the locations of hippocampal 

subfields in humans based either on manually delineated landmarks or corresponding 

probabilistic atlases that are informed by histological reference material (Yushkevich et 

al., 2015a, 2015b; Iglesias et al., 2015). However, traditional histological references can 

be problematic for several reasons. First, they often contain only select coronal slices 

taken from regions where folding is the simplest, most frequently from the hippocampal 

body, with the notable exception of (Ding and Van Hoesen, 2015) who focus greater 

attention on the hippocampal head than most other investigations. Second, even in the 

hippocampal body slices are taken sparsely, limiting the number of contextual features 

that can be gathered from neighbouring slices or other planes of view. Third, histological 

preparation often deforms the tissue of interest relative to its in-vivo state, which is a 

problem for MRI co-registration unless the histological sample is also imaged prior to 

histological preparation. Finally, even among neuroanatomists there is some 

disagreement as to exactly which labels, stains, and histological features should be used 

for defining hippocampal subfields (Wisse et al., 2017). Some previous studies have 

made use of ex-vivo MRI to aid in the translation of histology to MRI (Iglesias et al., 

2015; Yushkevich et al., 2009) in an effort to mitigate some of these issues. However, 
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even with such an approach, inter-individual differences in hippocampal morphology can 

impose limitations for inferring subfields or other structural features, when hippocampal 

topology is not considered. 

It is well established that the human hippocampus is a folded component of archicortex 

that is continuous with the neocortex (Duvernoy et al., 2013; Nieuwenhuys et al., 2013). 

The hippocampal folds include wrapping around its innermost region - the dentate gyrus, 

as well as anterior-posterior folding that is sometimes referred to as dentation, digitation, 

or gyrification. The gyrification seen in the hippocampus is morphologically similar to 

gyrification in the neocortex (although not necessarily based on the same ontogeny). It 

has been shown to vary considerably between individuals (DeKraker et al., 2018; Chang 

et al., 2018) and can be affected by age (Cai et al., 2019) or disease, such as temporal-

lobe epilepsy (Blümcke et al., 2013). This folding is an important aspect of understanding 

the internal structure of the hippocampus, and for appreciation of the continuity of 

subfields, particularly in its anterior portion that includes the uncus (Ding and Van 

Hoesen, 2015). Topological analyses can provide a framework for extracting these 

continuities, for example through unfolding (DeKraker et al., 2018), and offer the basis 

for laminar and further morphological characterization of complete hippocampal 

structure in 3D, including subject-specific gyrification. 

The dataset made publicly available by BigBrain (Amunts et al., 2013) provides a unique 

opportunity to conduct topological analyses of histology data in 3D, and to examine 

topological measures in unfolded tissue. This dataset consists of 3D histology, digitally 

reconstructed from images of serially sectioned and stained cadaveric brain tissue. In the 

current project, we used reconstructed blocks of the left and right hippocampi (40μm 

isotropic) from BigBrain to identify topologically-derived laminar and morphological 

features under our hippocampal unfolding framework. To characterize laminae, we 

focused on 10 computationally derived features describing the distributions of neurons 

(Amunts et al., 1999), which were also recently used to characterize the neocortex in 

BigBrain (Wagstyl et al., 2018; Wagstyl et al., bioRxiv). Morphological features were 

also computationally derived and included thickness, curvature, inner and outer surface 

textures, as well as gyrification. We then compared these morphological and laminar 
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features to classic descriptions of subfields and examined variations along the anterior-

posterior hippocampal axis. We anticipated that the features examined would differ 

substantially between subfields. Therefore, we also tested whether it might even be 

possible to obtain successful subfield segmentation with an unsupervised feature-based 

approach. This type of approach is desirable for its objectivity, which could help resolve 

differences among neuroimagers and histologists on subfields definitions. It also allowed 

us to examine which subsets of features are sufficient to derive clusters resembling gold 

standard hippocampal subfields. For this purpose, we contrasted the contributions of 

laminar and morphological features, given that laminar features are used most 

prominently in histology (see Duvernoy et al., 2013; Nieuwenhuys et al., 2013) but 

morphological features, such as thickness, are more readily available in high-resolution 

structural MRI (e.g. DeKraker et al., 2018). 

3.2 Methods 

The backbone of our analyses was to impose a topological unfolding framework to 

manual hippocampal traces, a method that we previously developed for 7-Tesla MRI 

(DeKraker et al., 2018). We then extracted various morphological features of 

hippocampal structure from the left and right BigBrain hippocampi. We computed 

laminar features based on the work of (Amunts et al., 1999) and modelled as in 

(Waehnert et al., 2014). We then performed unsupervised, data-driven clustering of these 

features and compared resulting clusters to manually segmented hippocampal subfields. 

Finally, we examined differences in hippocampal structure along its longitudinal (i.e., 

anterior-posterior) axis. 

3.2.1 Materials 

Histological data used in this study came from the BigBrain dataset, which consists of 

serially sectioned and stained brain tissue that was then reconstructed in 3D. Specifically, 

in the present study we used bilateral 40 μm3 resolution hippocampal blocks 

(ftp://bigbrain.loris.ca/BigBrainRelease.2015/3D_ROIs/Hippocampus/) in addition to 

serial section images at 20 μm2 resolution 

(ftp://bigbrain.loris.ca/BigBrainRelease.2015/2D_Final_Sections/Coronal/Png/Full_Reso
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lution/) (Amunts et al., 2013). BigBrain preparation involved silver staining, which 

selectively targets cell bodies, providing a contrast that is different from, but conceptually 

similar to, Grey Level Index (Schleicher et al., 1999; Wagstyl et al., 2018). Because of 

the large file sizes, tracing and application of our unfolding framework were performed 

on downsampled images (80μm isotropic) before upsampling by nearest-neighbour 

interpolation in the case of labelmaps, and linear interpolation in the case of unfolding 

solutions. 

3.2.2 Manual tracing 

Detailed histological tracing was performed for each hippocampus by a combination of 

manual tracing and the user-guided computational tools in ITK-SNAP 3.6 (Yushkevich et 

al., 2006). ITK-SNAP is primarily used for manual tracing using a 2D or 3D paintbrush, 

but it additionally contains some semi-automated tools that were used at the manual 

tracer's discretion, including morphological operations such as dilation and erosion. Since 

these tools rely so closely on the supervision of the tracer, we will refer to the use of 

these tools as a manual process throughout this manuscript. All traces were performed in 

native space, using all three view planes. A general label for hippocampal grey matter 

(subiculum and CA1-4) was manually traced first, and this tissue was later manually 

divided into subfields. Only the laminae which contained stained neuronal cell bodies - 

stratum pyramidale, oriens, and lucidum - were traced (Figure 13). Strata radiatum, 

lacunosum, and moleculaire (SRLM) and the alveus were given separate labels even 

though they are sometimes considered laminae of the archicortex containing dendrites 

and axons of pyramidal cells (Duvernoy, Cattin and Risold, 2013); they were not stained 

by this contrast (although note that some of these strata contain interneurons - see 

Appendix 4 for discussion). 
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Figure 13. Manual traces of hippocampal archicortex and segmentation into 

subfields. A) shows coronal slices through the left hippocampal head (rows 1–3) 

body (row 4) and tail (row 5), with manual segmentations overlaid in the images to 

the right. Images were taken from coronal slices 716, 632, 590, 376, and 230 of the 

40 μm native space left hippocampal block. B) shows 3D models of each 

hippocampus as seen from their superior aspect, with the inferior aspect shown in 

C). Dotted lines in B) indicate approximate locations of each coronal slice shown in 

A). SRLM, vestigial hippocampal sulcus, alveus, and fimbria were excluded from all 

labels. Red arrows indicate anterior folding in the vertical component of the uncus, 

the orange inset in the third row highlights ‘islands’ of neuronal cell bodies in the 

subicular stratum lacunosum, and yellow arrows indicate gyrifications in the 

posterior body and tail of the hippocampus. 
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Subfield segmentation (i.e. the division of archicortical grey matter into distinct 

subfields) was performed in 3D by rater Kayla Ferko (K.F.) according to the criteria 

outlined by (Ding and Van Hoesen, 2015). This work provides a detailed and instructive 

guide to segmenting all subfields of the hippocampus, including the hippocampal head 

with multiple samples with varied folding structure. One limitation of our segmentations 

is that Ding et al.’s protocol includes the use of both neuronal body and myelin stains, 

whereas no myelin stain is available in the BigBrain dataset. To take full advantage of the 

histological features available in BigBrain and make use of the highest resolution 

available, original 20 μm images were also consulted every 2 mm. In other words, 

subfield borders on the 80 μm 3D hippocampus were manually compared to borders on 

20 μm 2D images and, where necessary, the 80 μm borders were updated to best match 

20 μm images. These segmentations included the subiculum and CA1-4 but did not 

differentiate the regions within the subicular complex due to lack of resolution and since 

no myelin staining was available. Subfields were traced through the entire length of the 

hippocampus including the uncus and vertical component of the uncus, in which (Ding 

and Van Hoesen, 2015) describe modified versions of the same subfields. Because the 

vertical component of the uncus is very thin, its subfields were not easily discriminable. 

As a consequence, they were partially inferred from neighbouring regions of the 

hippocampus. Smoothing of the final traces was then performed by label-specific dilation 

(e.g. dilating subiculum 4 voxels over CA1; then dilating CA1 8 voxels over subiculum; 

then dilating subiculum 4 voxels over CA1 again, while always ensuring dilation was 

balanced in both directions). This was performed for all subfields in the order CA4-CA3-

CA2-CA1-subiculum, ensuring that subfield borders followed smooth transitions from 

slice to slice. 

Structures surrounding the hippocampus were traced only in the regions that border the 

hippocampus. These labels included medial-temporal lobe neocortex (MTLc) (entorhinal 

and parahippocampal regions), hippocampal-amygdalar transition area (HATA), and 

indusium griseum (ind. gris.). HATA borders were clearly discriminable from archicortex 

by a marked change in density and physical separation from archicortical neurons. Ind. 

gris. and MTLc borders were less clear, and so they were demarcated using the heuristics 

used in previous work in MRI (for example, the MTLc-subiculum boundary is defined at 
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the super-medial edge of the white matter in the parahippocampal gyrus. See (DeKraker 

et al., 2018) or Chapter 2 for further details).  

3.2.3 Topological unfolding framework 

In previous work (DeKraker et al., 2018 or Chapter 2), we imposed a topological 

unfolding framework on the hippocampus by solving Laplace's equation over the domain 

of the hippocampus under multiple sets of boundary conditions: anterior-posterior, 

proximal-distal, and laminar. The anterior-posterior and proximal-distal solutions can 

then be used to index regions of the hippocampus in 2D according to its topology, 

irrespective of inter-individual differences in gyrifications, rotation, curvature, size, 

orientation, or position of the hippocampus. This provides implicit registration between 

hippocampi despite inherently different morphologies. Data can be transformed between 

native and unfolded space bidirectionally using interpolation. We applied this same 

approach to BigBrain hippocampal traces (see Figure 14 for illustration). However, note 

that several minor improvements were made to this code which are detailed in Appendix 

5. Most notably, instead of binning maps into 100 × 100 pixels, they were instead derived 

from a mid-surface mesh consisting of 512 × 256 vertices, with data being sampled from 

all features by nearest neighbour. The dentate gyrus (DG) was not included in this 

unfolding. Although it was easily distinguishable from other subfields by its very high 

cell density, it is topologically disconnected from the rest of the archicortex, and 

therefore would be out-of-plane (i.e. perpendicular) to our unfolded space (see Figure 13 

for visualization). Note that this differs from the work presented in Chapter 2, which 

presents the thickness of the DG in what would conventionally be considered the width of 

the DG granule cell layer.  
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Figure 14. Topological unfolding framework in BigBrain with hippocampal 

subfields. A) Sagittal slice and 3D models of the Laplacian solutions (proximal-distal 

and anterior-posterior) for the right hippocampus. Image was taken from sagittal 

slice 514 of the 40 μm native space left hippocampal block. B) Mid-surface 

topological models of the left and right hippocampi in native and unfolded space. 

Waehnert et al. (2014) noted that neocortical laminae are displaced due to curvature in 

gyri and sulci, and they propose an ‘Equivolume’ model that captures this feature better 

than a Laplacian (or equipotential) solution. Their model is motivated by the observation 

that a given lamina, for example near the pial surface, will stretch at the apex of a gyrus 

and compress at the depth of a sulcus, causing it to become thinner and thicker in these 

respective regions, and vice versa for laminae at the white matter surface. Thus, we also 

included an alternative laminar indexing system using the Equivolume model solution 

obtained from Nighres (Landman et al., 2013). Again, this was performed on the 

downsampled (80μm) traces before upsampling as described above. The resulting model 

had fewer gyrification-related artifacts in laminar profiles and was used for all subsequent 

laminar analyses. However, some other artifacts were observed under this model solution, 

likely as a result of the rough texture of the subiculum surface (see Appendix 6 for 

details). These laminar profiles were extracted for each unfolded point (512 × 256 × 16 

points, or vertices) at the corresponding nearest neighbour (full resolution) native space 

voxel. 



68 

 

3.2.4 Morphological feature extraction 

Each morphological feature is illustrated in the top left panel of Figure 15. Thickness 

estimates were obtained across the unfolded space of the hippocampus as in previous 

work, that is, by generating and measuring streamlines in 3D across the laminar 

Laplacian solution obtained from our topological unfolding framework. Curvature 

estimates were obtained by generating a mid-surface along the hippocampus with the 

vertices being interpolated xyz coordinates from each unfolded point at a laminar 

distance of 0.5, which is the midpoint between the inner and outer surface. Smoothing of 

face normals was applied, and mean curvature was then estimated at each vertex (see 

Appendix 5 for details). The inner (i.e. adjacent to the SRLM; continuous with the 

neocortical pial surface) and outer (i.e. adjacent to the alveus, continuous with the 

neocortical white matter surface) surfaces of the hippocampus were rougher than their 

mid-surface counterpart due to the presence of other features, such as subicular ‘islands’ 

of cell bodies shown in Figure 13. Thus, we additionally computed curvatures of these 

surfaces after smoothing as described above. Gyrification is typically defined as a ratio 

outer surface area, for example that of a brain mask over gyrified surface area, in this 

example including sulcal area (Larsen, Nielsen and Sporring, 2006). Since the 

hippocampus is an open-ended cortical surface it does not map easily to an outer surface 

area or to a sphere as in the neocortex, and so our unfolding framework instead maps it to 

a rectangle. We thus defined gyrification as a ratio of native space surface area over 

unfolded surface area at each unfolded point. 
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Figure 15. Characterization of the hippocampus using morphological and laminar 

features. The top diagrams illustrate how each feature is derived (see Chapters 3.2.4 

and 3.2.5 for details). Top left shows an example segment of cortex, while the top 

center and top right show an example laminar profile and its absolute derivative 

(Abs.Deriv), respectively (Amunts et al., 1999; Larsen, Nielsen and Sporring, 2006). 

Heat maps below show the z-scored values of each feature across the unfolded 

hippocampus in the left and right hemispheres, with the same colour scaling in both 

hemispheres. Overlaid in white are manually defined subfield borders, the top edge 

being the border with the DG which is out-of-plane. 
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3.2.5 Laminar feature extraction 

We extracted laminar profiles along the Equivolume laminar solution described above, 

and then summarized these profiles using the same 10 features consistently used by 

(Amunts et al., 1999; Wagstyl et al., 2018). Briefly, this involved sampling staining 

intensities (y) along a laminar profile through the cortex and calculating the mean 

(Mean(y)). This intensity profile was then treated as a distribution (x), and the mean 

(Mean(x)) and first 3 moments (SD(x), Skew(x), and Kurt(x)) were calculated. The 

absolute value of the derivative (Abs.Deriv) of the profile was then calculated (y→y.d), 

and the same measures (e.g. Mean(y.d), Mean(x.d), etc.) were obtained. These methods 

are illustrated with corresponding terminology at the top of Figure 15. 

There were several methods developed for 3D MRI, which we were able to incorporate 

into this analysis, with resulting differences when compared with the analyses performed 

by (Amunts et al., 1999). Firstly, we sampled laminar profiles under the 3D Equivolume 

model that minimizes distortions in laminae due to curvature (as discussed above). 

Secondly, our laminar sampling was not as dense because of the reduced resolution 

available in the current data, and the fact that the laminae of the archicortex are generally 

thinner than those of the neocortex. Lastly, we included only laminae containing neuronal 

cell bodies (as discussed above). Further details on these differences between our 

methods and those of (Amunts et al., 1999) can be found in Appendix 5. 

3.2.6 Unsupervised clustering 

In order to cluster visually homologous regions of the feature maps into segments, we 

applied a scale-space representation employing image pyramids. That is, for each of the 

selected features, we smoothed the data in unfolded space with a Gaussian kernel and a 

Laplacian of Gaussian kernel of sizes sigma = 0.16, 0.32, 0.64, 1.28, and 2.56 mm in 

order to capture features at various spatial scales. Because unfolded space does not 

necessarily have correspondence to real-world size, we reparametrized our unfolded 

space according to real-world distances between points prior to smoothing, and then 

returned the resulting smoothed feature maps to the original unfolded space 

parameterization. See Appendix 7 for details and visualization of this reparameterization. 
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This multi-scale smoothing is meant to reduce noise in the data, but also to provide some 

spatial regularization of features, ensuring that resulting clusters will not be distributed in 

only small patches. The anterior 10% and posterior 10% of each feature were discarded 

due to high noise. 

All morphological and laminar features from the left and right hippocampi were then 

reshaped into single vectors, z-scored, and entered into a principal component analysis 

(PCA). K-means clustering was then computed on the first 8 components, which 

explained >1% variance each, with a fixed number of output clusters of k = 5 (since 

manual segmentations contained 5 subfield labels). PCA followed by K-means clustering 

was ideal for this type of analysis for several reasons: 1) Co-linearity among features can 

be clearly assessed using PCA prior to k-means clustering; 2) Clusters were expected to 

be of comparable sizes, which k-means is biased towards; and 3) The number of clusters 

is known a-priori. Clusters were then assigned subfield labels based on highest overlap. 

Dice Similarity Index (DSI) was calculated (Dice, 1945; Sørensen, 1948) in unfolded 

space for each subfield (i.e. disregarding thickness), excluding the 10% anterior and 

posterior edges that were removed due to high noise. DSI was also calculated in native 

space, which is shown in Appendix 7. In this case, however, clusters had to be 

extrapolated over the 10% anterior and posterior regions leading to lower total overlap 

scores. We also explored clustering under k = [2,4,8,16,32], and performed alternative 

clustering methods, in order to determine the consistency of subfields and sensitivity to 

further subdivisions in the data, with results described in Appendix 7. In brief, these 

results support the validity of the clustering methods we employed, and show that when 

other methods are used, cluster boundaries occur at locations similar to those reported in 

the main body of this article. PCA variance explained per component, component 

loadings and visualization of the first 8 components can be viewed in Figure 17, along 

with the correlations between all features. 

In order to determine whether subfield clustering could be derived using only laminar 

features or only morphological features alone, we repeated the above process for the 

subsets of morphological and laminar features separately. We used the same '>1% 

variance explained' threshold to remove PCA ‘noise’ components, which resulted in 5 
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components in the laminar feature clustering, and 3 components in the morphological 

feature clustering. Morphological features of inner and outer surface textures were 

excluded since they capture subicular 'islands' of cell bodies in stratum lacunosum, which 

could be considered a laminar feature. This exclusion was also based on the limited value 

of these two features for any MRI assessment. 

3.2.7 Anterior-posterior variation 

One hypothesis that we had based on prior literature was that there may be anterior-

posterior differences in some aspects of hippocampal structure (Poppenk et al., 2013; 

Strange et al., 2014; Plachti et al., 2019). We thus plotted select features of interest across 

the anterior-posterior axis within each subfield. All features can be seen in Appendix 4, 

where we additionally fit linear trends to the data to determine whether anterior-posterior 

gradients were present in any subfield. In Figure 18 we display the features mean 

neuronal density (Mean(y)), thickness, and gyrification that most clearly differed between 

subfields and are of immediate interest in MRI. 

3.3 Results 

3.3.1 Manual tracing 

Figure 13 shows BigBrain coronal slices alongside manually segmented subfields in the 

head, body, and tail of the hippocampus, as well as corresponding 3D models. Several 

features were detected in tracings of the hippocampus in BigBrain that were not detected 

in previous in-vivo MRI work that we know of. Clusters of pyramidal cells or ‘islands’ 

can be seen on the inner surface of the subiculum (stratum lacunosum), which have been 

observed in histology throughout the presubiculum (Duvernoy, Cattin and Risold, 2013; 

Ding and Van Hoesen, 2015). A medial and anterior fold along the vertical component of 

the uncus, approximately 0.3 mm thick and up to 3.6 mm in length, was observed, as 

described in (Duvernoy, Cattin and Risold, 2013; Ding and Van Hoesen, 2015). Finally, 

numerous gyrifications throughout the posterior body and tail of the hippocampus were 

observed, which have previously also been observed using MRI in (Chang et al., 2018), 

although not to the extent seen here. This was most prominent in CA1 but was also 

present in the DG and in CA4, which followed the same gyrification scheme as CA1. 
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Models of the dentate gyrus alone and additional anatomical notes can be found in 

Appendix 4. Total volumes of each subfield can be seen in Table 1. Note that these 

volumes are smaller than what is typically reported in MRI. This may be due to our 

exclusion of alveus and SRLM laminae, which can be hard to differentiate from partial 

voluming in MRI but may also be influenced by tissue shrinkage during histological 

processing. Furthermore, the issue of partial voluming in MRI may be exacerbated by the 

presence of gyrifications, which appeared more prominent in the right BigBrain 

hippocampus. These gyri are discussed in greater detail in Appendix 4. 

Table 1. Volumes of each manually defined subfield (mm3). 

 Left Right 

Sub 345.9 282.5 

CA1 574.0 534.0 

CA2 46.6 40.6 

CA3 66.9 54.4 

CA4 109.0 107.4 

DG 140.1 131.1 

3.3.2 Topological unfolding 

Figure 14A shows the proximal-distal and anterior-posterior Laplacian solutions that 

make up the two axes of our topological unfolded space. The dentate gyrus (DG) was not 

unfolded. Although it was easily distinguishable from other subfields by its very high cell 

density it is topologically disconnected from the rest of the archicortex, and therefore 

would be out-of-plane (i.e. perpendicular) to our unfolded space (see Figure 13 for 

visualization). Figure 14B shows a mid-surface mesh of the hippocampus, coloured 

according to manually segmented subfields as in Figure 13. This surface was then 

mapped to 2D unfolded space according to the anterior-posterior and proximal-distal 

Laplace solutions. In unfolded space, subfields are relatively constant from anterior to 

posterior, with subiculum being proportionally larger in the very anterior and smaller in 

the very posterior extent. However, these differences may be artifacts of manual 

segmentation since these regions are very small in native space. This unfolding is 

illustrated in our online video (created through linear interpolation of all points between 

native and unfolded space). 
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3.3.3 Characterization of the hippocampus in unfolded space 

Figure 15 shows a full characterization of the left and right BigBrain hippocampi with 

respect to the 5 morphological and 10 laminar features. These features are illustrated at 

the top of the figure, but additional details can be found in Chapters 3.2.4 and 3.2.5. As in 

related work (Duvernoy, Cattin and Risold, 2013; DeKraker et al., 2018), thickness was 

highest in the subiculum and CA4 and lowest in CA2. Curvature was generally high in 

subiculum, which reflects its outward curling away from the rest of the hippocampus. In 

CA1, vertical bands of positive and negative values can be seen that correspond to the 

hippocampal gyrifications displayed in Figure 13. This region is also highlighted by our 

gyrification measure, which differs from curvature in that it does not vary by direction. 

Inner surface texture shows an almost honeycomb texture that is most prominent in the 

subiculum, where subicular ‘islands’ of neurons are found in stratum lacunosum 

(Duvernoy, Cattin and Risold, 2013). Outer surface texture appears smoother, and more 

closely resembles the mid-surface curvature measure. Note that the surface textures 

measures differ from the curvature measure only in that they capture very local details. 

Thus, they may not be available in lower resolution data. By contrast, features such as 

thickness and gyrification may be especially of interest in translation of this work to 

MRI, particularly because they show such clear distinction between subfields. 

Of the laminar features computed here, Mean(y) was highest in region CA2, which also 

agrees with the high neuronal densities observed in this region (Duvernoy, Cattin and 

Risold, 2013). Mean(x) showed almost the inverse pattern, with high values in all regions 

except CA2. This means that the distribution of neurons was shifted towards the inner 

surface in CA2. SD(x) was highest in CA2, indicating a wide distribution of neurons 

relative to the thickness of that tissue. This was counter-intuitive since in native space 

CA2 appears to have a tight distribution of neurons; however, relative to its small 

thickness the distribution is wide. The remaining 8 laminar features become more 

complex and quite similar to Mean(y), Mean(x) or SD(x). Thus, some of these features 

may be redundant. We nevertheless included them for consistency with previous work in 

the neocortex (Amunts et al., 1999). Although we did not perform any systematic 
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comparison, there is visibly very high consistency in all features between the left and 

right hippocampus, particularly with respect to the subfields. 

3.3.4 Unsupervised identification of hippocampal subfields using 
combination of morphological and laminar features 

By visual inspection, many of the features in Figure 15 show a clear distinction between 

the different manually defined subfields. Therefore, we sought to determine whether a 

combination of these features could be used to derive some or all of the subfield 

boundaries between subiculum and CA1 to CA4 computationally, using PCA followed 

by k-means clustering (see Materials and Methods for details). In this endeavour we also 

examined whether morphological or laminar features in isolation would be sufficient to 

allow for successful clustering, i.e. to derive clusters that closely resemble gold standard 

hippocampal subfields. For consideration of morphological features, we excluded surface 

textures given that they include subicular ‘islands’, which arguably also qualify as 

laminar features (see Appendix 7, and (Ding, 2013; Ding and Van Hoesen, 2015) for 

further discussion). Figure 16 shows the results of unsupervised clustering of the 

combined feature sets, laminar features only, and morphological features only. We 

compared clusters to their closest corresponding manually defined subfield (gold 

standard) using DSI in Table 2. When all features were combined in this analysis, good 

(0.7) to very good (0.8+) overlap was found for most subfields. Specifically, subfields 

subiculum, CA1, as well as combined CA2 and CA3 showed overlap with gold standard 

segmentations. Manually defined region CA2 had two clusters that overlapped with it 

(orange and green in Figure 16). The green cluster corresponded to the densest regions of 

CA2 (e.g. where Mean(y) and SD(x) were high), and several other laminar features 

echoed this pattern. The fact that multiple features showed this pattern may have 

contributed to the generation of two clusters in CA2. In other words, the variance within 

CA2 may have been amplified by the presence of redundant features. Using a 

combination of labels CA2 and CA3, as is often done in MRI segmentation protocols 

(Yushkevich et al., 2015), increased the DSI as expected. We note that subfield CA4 did 

not emerge as a unique cluster and was instead included in the same cluster as CA1 or 

CA3. This remained true even when the number of clusters (k) was increased up to k = 16 
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(Appendix 7). Overlap of CA4 with CA3 is to be expected given their topological 

closeness but overlap with CA1 is more surprising. One possible explanation is that 

despite their topological separation, both of these regions were thicker, had higher 

gyrification, and contained a lower density of neurons than CA2 and CA3 (see Figure 15; 

CA4 is at the very top of each map). Relabeling clusters 1 and 2 (when they were present) 

past a proximal-distal distance of 200 allowed us to force a separation based on its break 

in continuity (i.e., separation in unfolded space, see Table 2). It should be noted that this 

latter approach is not purely data-driven and only offers a heuristic that is built on a-

priori knowledge. Finally, the current analyses did not reveal any evidence for the 

subregions of the subicular complex as described by (Ding, 2013). This is not surprising 

because BigBrain only contains a single contrast (neuronal cell bodies); other contrasts 

(particularly myelin) or even immunochemical profiles are typically used to detect these 

subregions (Ding, 2013; Ding and Van Hoesen, 2015). Converging evidence was 

obtained for these results using different numbers of clusters, k, in k-means clustering, 

and using a different clustering algorithm, i.e., hierarchical clustering (see Appendix 7). 
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Figure 16. Unsupervised k-means clustering of features. The left images show k-

means clusters in unfolded space at k = 5, with manually defined subfield borders 

overlaid in white. The right images show the same data in native space, with 10% 

anterior and posterior edges extrapolated by nearest neighbour. Clustering was 
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completed for the combined set of all features, laminar features only, and 

morphological features only. 

 

Figure 17. Exploration of inherent feature variance. A) shows PCA component 

loadings from each feature with a dotted line at 1% after which subsequent 

components were discarded. B) shows the feature loadings of the first 8 components, 

with multiple rows for the various smoothing kernels applied to each feature. C) 

shows the correlation between all features, with separate boxes around 

morphological and laminar features. D) shows a visualization of the first 8 

components, with manually defined subfield borders overlaid in white. 

 

Figure 18. Features of interest plotted with respect to the anterior-posterior axis of 

the hippocampus. Colours indicate manually defined subfields, and shaded areas 

indicate standard deviation. Data are combined across the left and right 

hippocampi. a.u. stands for arbitrary units, see Chapter 3.2.7 for additional details. 
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Table 2. DSI between k-means clusters and their closest corresponding manually 

defined subfield. 

 All features Laminar features Morphological 

features 

Left Right Left Right Left Right 

Sub 0.87 0.83 0.83 0.79 0.92 0.87 

CA1 0.67 0.63 0.61 0.61 0.80 0.74 

CA2 0.72 0.67 0.73 0.68 0 0 

CA3 0.56 0.55 0.53 0.52 0.59 0.56 

CA2&CA3 0.84 0.77 0.84 0.75 0.84 0.80 

CA4 0.59a 0.41a 0 0 0 0 

aAfter additional post-processing (see text). 

3.3.5 Unsupervised identification of hippocampal subfields using 
morphological or laminar features in isolation 

We next asked whether subsets of features (i.e. morphological features alone or laminar 

features alone) could be used to derive hippocampal subfield borders. Laminar features 

alone were able to capture most boundaries with good accuracy, with the exceptions of 

CA1, CA2, and CA3 which had DSI below 0.7. (Figure 16; Table 2). Again, combining 

CA2 and CA3 lead to good (0.7+) agreement with manually defined gold standard 

segmentations. CA1 was less well defined using only laminar features, and indeed there 

is some disagreement over the exact border between subiculum and CA1 in the 

histological literature (some disagreement may depend on the inclusion of prosubiculum 

as its own region or simply a transition zone; see (Wisse et al., 2017). Morphological 

features alone revealed two clusters within subiculum and two within CA1 and did not 

differentiate between CA2 and CA3 at all. Clustering using these features also 

highlighted boundaries surrounding CA4, but CA4 did not contain a unique cluster. 

Rather, the same clusters that were assigned to CA1 were assigned to CA4, similarly to 

when all features were included in clustering. However, it is worth noting that when their 

topological separation is considered visually, CA4 can easily be distinguished from CA1. 

Overall, with the exception of differentiating CA2 from CA3, morphological features 

were sufficient to delineate hippocampal subfields with very good (0.8 + in most cases) 

accuracies, at a level similar to clustering based on the combination of all features. 
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3.3.6 Relative contributions of individual features to subfield 
clustering 

In order to better understand the inherent structure of the data used in the above k-means 

clustering of all features, we revisited the PCA that guided clustering and examined 

various PCA metrics. Figure 17A shows the total variance explained by each PCA 

component; only the first 8 components explained >1% of the variance and were included 

in subsequent analyses. Figure 17B and D shows a breakdown of the first 8 principal 

components. The first and most prominent component was most highly correlated with 

most laminar features, except Mean(x), Skew(x), and Mean(x.d) which showed an anti-

correlation. Visualization of this component shows consistently high values in CA2. This 

makes sense since most laminar features showed uniquely high values in CA2, while 

Mean(x), Skew(x), and Mean(x.d) contained low values in this region (Figure 15). 

Subsequent components explain a decreasing portion of the total variance in the data, but 

correlate with different input features. Visual inspection of these components shows that 

some loosely follow the contours of the subfields. For example, component 3 quite 

clearly alternates high and low between subiculum, CA1, CA2, and CA3. Others, 

particularly components 5–8, appear to contain little subfield-related variance and may 

reflect noise captured by the later components. Interestingly, components 2 and 3 appear 

to show gradual anterior-posterior differences, with higher values in the anterior and 

lower values in the posterior extent in component 2, and the opposite pattern in 

component 3. 

Of the features used in this analysis, some were more correlated with each other than 

others (Figure 17C). In particular, all morphological features tended to be correlated with 

each other. All laminar features tended to be correlated or anti-correlated with each other, 

with only small correlations between morphological and laminar features. The fact that 

laminar features tended to be uncorrelated with morphological features is in line with the 

goal of the Equivolume model (Waehnert et al., 2014), which we applied in order to 

remove the effects of curvature on laminar displacement. Thus, overall, when modelled 

in 3D using the appropriate methods, morphological and laminar features represent 

different levels of structural information about tissue within the hippocampus. One 
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notable exception is that thickness was anti-correlated with many laminar features. This 

could be due to measurement bias: If thickness were overestimated in manual 

segmentation, then laminar profiles would be systematically shifted. However, this may 

also relate to how microstructural differentiation of local tissue features contribute to 

overall cortical thickness (see Wagstyl et al., 2018 for discussion). 

3.3.7 Structural variation along the longitudinal hippocampal axis 

In a final set of analyses, we aimed to explore qualitatively whether subfields would 

show differences in feature composition along the anterior-posterior axis of the 

hippocampus. Towards this end we visualized possible trends along the axis in each 

manually-defined subfield (Figure 18). We primarily focused on the features gyrification, 

thickness, and mean neuronal density (Mean(y)), given that these features showed high 

contrast between different subfields. (Data for all other features are included in Appendix 

4). Note that with this visualization, a high degree of separation can be seen between 

some subfields, as previously described (see Figure 15). Thickness and gyrification 

tended to show lower values at the anterior and posterior extremes, or in the vertical 

component of the uncus and tail of the hippocampus. This pattern was also observed 

during manual tracing (Figure 13). However, in the remainder of the hippocampus, 

namely the head and body, thickness remained relatively constant in each subfield while 

gyrification gradually decreased, as observed during manual tracing. This is most notable 

in CA1 where gyrification is especially prominent (note that in the Appendix 4, we also 

report a similar linear decrease in gyrification in CA3, but at a much smaller scale). 

Neuronal density was notably lower in most subfields in the anterior sections, 

approximately corresponding to the vertical component of the uncus. Additionally, 

subfield CA1 and CA4 showed linear increases in density from anterior to posterior 

(Appendix 4). Overall, these visualizations suggest that anterior-posterior differences are 

clearly present in gyrification in CA1, and in density in CA1 and CA4. 

3.4 Discussion 

In the present study we show, for the first time, unsupervised clustering of human 

hippocampal subfields that closely resembles the manually defined gold standard. We 
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additionally show that morphological features alone are sufficient to derive most 

hippocampal subfield boundaries. Moreover, our findings reveal that some features, most 

notably gyrification in CA1, showed within-subfield differences along the anterior-

posterior hippocampal axis. The current study sheds new light on the relationship 

between hippocampal topology, morphology, and laminar cytoarchitecture with respect 

to hippocampal subfields and the anterior-posterior axis. 

3.4.1 Structural characterization of the hippocampus in BigBrain 

Manual tracing and 3D modelling of the hippocampus (Figure 13) at the level of 

resolution available in BigBrain revealed several features not seen in any 3D atlas that we 

are aware of. First, medial folding in the posterior end of the vertical component of the 

uncus was observed, similar to the inward ‘curling’ of the CA fields around the innermost 

DG in the rest of the hippocampus. Second, ‘islands’ of pyramidal neurons were present 

in stratum lacunosum in the subiculum. Third, gyrifications were present throughout the 

head, body, and tail of the hippocampus but were most prominent in CA1. These 

gyrifications were also echoed in the underlying DG (where the term dentation is often 

used to refer to this feature), and region CA4 that the DG partially encircles. Each of 

these features has been described in histology (Duvernoy et al., 2013; Ding and Van 

Hoesen, 2015), but has not been reconstructed in a 3D model at this level of detail. For 

example (Adler et al., 2018), and (Iglesias et al., 2015) both performed detailed and fully 

3D segmentation of the hippocampus and its subfields using ex-vivo MRI data, with 

additional histological data in the same participants provided by Adler et al. Our 

approach extends these studies by utilizing higher-resolution tracing and by using 

histological cues inherent in the same images. Furthermore, our manual traces and 

quantitative analyses fully respect the topology of the hippocampus and, in turn, the 

continuity of each subfield throughout the entire length of the hippocampus. We note that 

the topology developed here does not cover the dentate gyrus, which has its own 

topological arrangement that is perpendicular to the rest of the cortex (including archi- 

and neo-cortex). This difference in topology arises from a different trajectory in 

ontogeny, in which the DG ‘breaks with’ the rest of the cortex and wraps around the 

distal-most archicortex, i.e., CA4 (Duvernoy et al., 2013; Nieuwenhuys et al., 2013). In 
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future work, the DG could also be unfolded using a general framework similar to what is 

presented here. Critically, however, this approach would require employment of 

endpoints in a different plane. 

After applying our topological unfolding framework, we computationally extracted 

morphological and laminar features from the hippocampus (Figure 15). Many of these 

features agree with qualitative descriptions by neuroanatomists, as discussed in Chapter 

3.3.3. Some of these features may be informative for in-vivo imaging as well. For 

example, measures of thickness and gyrification can be obtained under our topological 

unfolding framework given sufficiently detailed segmentations, regardless of the 

availability of cytoarchitectonic features. These two features in particular show good 

contrast between subfields subiculum, CA1, and CA4. Thus, they could be explicitly 

leveraged to guide segmentation or registration to histological reference materials in 

future MRI work. This may have been underappreciated in other in-vivo studies, 

including our own previous MRI study, where some of the gyrifications in the body and 

tail of the hippocampus could not be detected. This prior lack of detail would also lead to 

overinflated thickness measures, larger overall volumes, and perhaps differences in the 

proportional sizes of some subfields along the anterior-posterior extent of the 

hippocampus. Quantitative MR, such as T1 mapping, may additionally provide cues to 

approximate cytoarchitectonic features. Indeed, in our previous work we observed higher 

T1-weights in CA2 and CA3 (DeKraker et al., 2018), which may be driven by the higher 

neuronal cell densities observed in the current study. Thus, the features described here 

show clear promise for characterizing or segmenting the hippocampus in future MRI 

work. 

3.4.2 Unsupervised clustering of all features reveals hippocampal 
subfields 

We performed unsupervised clustering of all features to determine whether we could 

identify the classically described hippocampal subfields using a completely unsupervised 

computational approach. Results from clustering yielded generally high overlap with 

manual subfield segmentations in most cases (Table 2), with several exceptions that are 

outlined in Chapter 3.3.4. One particularly interesting observation was that CA4 was 
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consistently assigned the same cluster as CA3 or CA1, even though it shares no 

topological boundary with CA1. The shared structural elements between CA4 and CA1, 

particularly their relatively high thickness, gyrification, and low density of neurons, may 

relate to why certain diseases, such as subtypes of epilepsy, selectively affect CA1 and 

CA4 similarly (Duvernoy et al., 2013; Blümcke et al., 2013). In future imaging work, 

CA1 and CA4 may be differentiated from each other, particularly under our unfolding 

framework, due to their topological separation. 

Finally, to further explore the inherent dimensionality of the structural feature space 

under consideration, we also examined its principle components (Figure 17). In these 

analyses, we noted that the most prominent components varied in ways that followed the 

contours of some or all subfield borders (see Chapter 3.3.4). This pattern suggests that the 

inherent structural variance in the hippocampus most naturally follows a proximal-distal 

patterning, as seen in the classic histological subfield definitions. Some components 

additionally hinted at inherent anterior-posterior differences across the hippocampus. 

Note that the analyses performed here assume discrete subfield boundaries, but some 

recent literature considers select regions simply as transition areas (e.g. prosubiculum 

could be considered a discreet region or a transition area between CA1 and subiculum, 

see Olsen et al., 2019). In Appendix 7, alternative clustering results consistently show a 

boundary in this region, but, even with large numbers of clusters in k-means clustering, a 

discreet prosubiculum region doesn’t clearly emerge. This most closely aligns with the 

idea that prosubiculum is a transitional area, showing graded differences between CA1 

and subiculum rather than its own unique characteristics. However, it should be noted 

that we did not examine myelo- or chemo-architecture, which may indeed differentiate 

prosubiculum from its neighbours (Ding and Van Hoesen, 2015).  

3.4.3 Morphological features are sufficient to approximate most 
subfield boundaries 

In addition to clustering using all features, we also asked whether hippocampal subfields 

could be derived using only the subset of morphological features or the subset of laminar 

features (Figure 16 and Table 2). Clustering using laminar features revealed all 
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hippocampal subfields with reasonable accuracy with respect to manually defined gold 

standard segmentations (except CA4, and CA2 versus CA3 were not easily distinguished 

from one another). This was expected, since laminar features provide the key criteria 

used by histologists to define subfield boundaries (e.g. Duvernoy et al., 2013; Ding and 

Van Hoesen, 2015). However, when we examined morphological features alone, we also 

found unsupervised clusters that closely resembled subfields subiculum, CA1, and a 

combined CA2 and CA3 region. Additionally, CA4 was assigned the same clusters as 

CA1, similar to when clustering was performed on all features combined. This outcome 

was not expected based on histological data and provides support for the notion that 

morphological features capture an independent set of subfield-related structural elements. 

The observation that morphological features are sufficient to determine most subfield 

boundaries holds great promise for future refinement of MRI protocols for subfield 

delineation, given that histological- or laminar-level details are not available in current 

imaging protocols. Indeed, many of the MR-based subfield segmentation protocols 

presently available rely on some combination of structural landmarks within or 

surrounding the hippocampus, but only indirectly on morphological features (see 

Yushkevich et al., 2015a). However, some caution should still be exercised here as the 

current results were obtained from a single individual.  

3.4.4 Anterior-posterior structural variation 

Anterior-posterior structural differences in the hippocampus are particularly of interest, 

given the growing body of literature suggesting functional gradients along the 

longitudinal axis of the hippocampus (e.g. Strange et al., 2014; Poppenk et al., 2013; 

Plachti et al., 2019; Zeidman and Maguire, 2016). Structural anterior-posterior gradients 

are difficult to assess using conventional histology, given that coronal or sagittal sections 

are typically out-of-plane with respect to the different subfields in most of the 

hippocampal head and tail. This highlights the utility of the 3D BigBrain dataset. Figure 

18 shows features gyrification, thickness, and neuronal density along the anterior-

posterior axis of the hippocampus. Most notable anterior-posterior differences included 

differences in most features at the very anterior and posterior extents of the hippocampus. 

Previous work by (Ding and Van Hoesen, 2015) described the anterior most region - the 
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vertical component of the uncus - as containing modified subfields that were much 

thinner than their counterparts throughout the rest of the hippocampus, consistent with 

our observations. 

Gyrification was low in the anterior uncus, high in the remainder of the hippocampal 

head, and gradually decreased towards the posterior end of the hippocampus, most 

notably in CA1. Qualitatively, similar trends in gyrification have been observed in our 

previous 7-Tesla MRI study (DeKraker et al., 2018) and in other work (Chang et al., 

2018). However, both of these studies were limited in their ability to detect small 

gyrifications (i.e. those detected in this study had peak-to-peak distances as low as 2mm). 

Biophysical models of the development of gyrification suggest a relationship between 

gyrus size and cortical thickness (Zilles et al., 2013; Striedter et al., 2015). Yet, no 

systematic anterior-posterior differences in thickness were seen in the present data 

despite clear decreases in gyrification size towards the posterior extent. Other structures 

such as white matter might also constrain gyrification patterns (Striedter et al., 2015), 

which may additionally have consequences for functional properties of different gyri. For 

example (Henderson and Robinson, 2014), examined gyrification and structural 

connectivity in the neocortex and found more unified or modular graph theoretical 

properties within gyri, as opposed to sulcal regions which were more diffusely connected 

or hub-like. Similarly (Plachti et al., 2019; Libby et al., 2012), recently performed 

parcellation of the hippocampus according to its functional connectivity and observed 

divisions primarily along the anterior-posterior extent of the hippocampus, rather than 

across subfields (although some proximal-distal clustering was also observed, as in the 

present study). This functional parcellation may even relate to modular divisions of 

function within a given gyrus, as proposed for the neocortex by (Henderson and 

Robinson, 2014). 

It is also interesting that neuronal density increased from anterior to posterior sections in 

subfields CA1 and CA4 in the present study. It should be noted that the current methods 

cannot differentiate density from neuronal size, but other related work has also found 

similar effects in density (Dam and Mouritzen Dam, 1979). 
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3.4.5 MRI applications and future directions 

There are several clear implications of this work for in-vivo neuroimaging studies of the 

human hippocampus. Firstly, as described in the Chapters 1.4 and 3.1, considerable 

research has gone into defining the hippocampal subfields according to available 

landmarks in MRI. Yet, relatively few studies have explicitly investigated the 3D shape 

of the underlying archicortex in which those subfields are embedded. Most subfield 

delineations rely directly or indirectly on manual segmentation performed predominantly 

in the coronal view, in which the only visible gyrifications are in the hippocampal head 

(Yushkevich et al., 2015a). Because of this complication, many protocols have elected 

not to divide subfields in this region, or else to simplify them. The same concern also 

applies in the hippocampal tail, albeit at an even finer spatial scale. In our previous 7-

Tesla MRI study (DeKraker et al., 2018), we demonstrated the use of topological 

modelling to overcome this challenge, but we note that this previous work captured fewer 

details than the current histological study due to resolution limitations. In future work, we 

anticipate it will be possible to explicitly model gyrifications and all other aspects of 

hippocampal topology considered in the present study. In addition, topological modelling 

of the hippocampus in MRI can open new lines of structural investigation, including the 

development of more precise measures of thickness, gyrification, and, at higher 

resolutions, potentially laminar features. Our approach promises to be of particular value 

in overcoming systematic partial voluming with white matter structures within the 

hippocampus and in adjacent structures. At a broader level, consideration of the 

hippocampal features highlighted in our study may also allow researchers and clinicians 

to link pathological changes, or behavioural and cognitive phenotypes, to more specific 

structural elements within the hippocampus. Finally, our current results may also help 

bridge the gap between microcircuit level modelling of the hippocampus and subfield 

modelling at the scales currently available in MRI. Because we found that subfields are 

characterized by unique morphological feature combinations, we may even be able to 

infer a relationship between subfield microcircuitry and fMRI measures in future work. 
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3.4.6 Data and resources made available 

Alongside this publication, we released our detailed manually defined hippocampal 

subfields, unsupervised clustering results, topological unfolding framework, Equivolume 

laminar model solutions, and each of the unfolded morphological and laminar features 

computed here for the BigBrain dataset. These resources can be used as templates in 

other studies. Alternatively, registration of these features to new data in our unfolded 

space can be used to guide future subfield segmentation. In addition, we have also made 

the code used in this project available via Open Science Framework 

(https://osf.io/x542s/). A toolbox for performing hippocampal unfolding, feature 

extraction, and other useful operations on more general datasets can be found at 

https://github.com/jordandekraker/Hippunfolding. 

3.4.7 Conclusions 

In the current project, we mapped the human hippocampus in detail by combining three 

methods. First, we used a unique dataset, BigBrain, that contains both histological-level 

detail and macroscopic 3D spatial context. Second, we imposed a topological unfolding 

framework to the hippocampus. Third, with this framework we extracted a set of 

morphological and laminar features, the latter of which have been used prolifically in 

neocortical characterization and parcellation. Using these methods, we highlight three 

novel empirical observations. First, unsupervised clustering of these features closely 

resembles classically defined hippocampal subfields. Secondly, despite traditional 

reliance on laminar features in histology, morphological features alone are sufficient to 

closely approximate most hippocampal subfields. Finally, some features such as 

gyrification in CA1 show, at least qualitatively, subfield-specific anterior-posterior 

differences that might relate to functional differences described in the extant literature. 

Overall, these findings highlight new structural characteristics of the hippocampus, and 

offer promising avenues for improved delineation and characterization of hippocampal 

subfields using in-vivo neuroimaging. 
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Chapter 4  

4 Hippocampal Automated Topology 

This Chapter focuses on the automation and generalization of the hippocampal coordinate 

framework and feature extraction methods discussed Chapters 2 and 3 to new datasets. 

This includes the translation of subfield boundaries defined using 3D histology in 

Chapter 3 to new MRI data via our unfolded (or surface-based) coordinate framework. 

This framework requires classification of hippocampal tissues into grey matter, high 

myelin strata (or SRLM), and surrounding structures. In particular, detailed separation of 

different hippocampal folds or digitations via the SRLM on the inner surface, and 

surrounding alveus, white matter, or CSF on the outer surface is required. This is 

challenging to do using traditional segmentation methods since these structures are often 

thin (e.g. as low as 0.3mm in thickness) and their location can be variable depending on 

the folding configuration of each subject’s hippocampus. To overcome these challenges, 

we pooled data from previous projects and used it to train a deep neural network (U-Net) 

for tissue classification. We then applied incremental learning to further train U-Net on 

the Human Connectome Project (HCP1200) dataset, specifically on 0.7mm3 isotropic 

T2w images. With post-processing of resulting tissue classifications via a template shape 

injection method, we were able to apply the unfolded coordinate framework to all 

subjects in the HCP1200 dataset. We then applied the subfield boundaries derived in 

Chapter 3 to all subjects in unfolded space. Collectively, we refer to these methods as 

Hippocampal Automated Topology (HAT). Features and subfields extracted or applied 

with these methods were compared to previous work and other extant automated 

hippocampal subfields segmentation methods. Overall, HAT yielded structural features 

that agree with previous work and ex-vivo studies, and subfields defined using this 

method compared favourably to other extant methods in terms of detail and qualitative 

comparison to anatomical literature. 

4.1 Introduction 

State-of-the art methods for neocortical parcellation make use of surface-based 

representations. This facilitates feature extraction (e.g. thickness, gyrification index, or 
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quantitative MRI), but also allows similar parcellation schemes to be applied to many 

subjects despite broad differences in gyral and sulcal patterning. This is challenging to do 

using more traditional 3D registration based methods where topological breaks often 

occur when registering subjects with different fine scale gyral or sulcal patterns. A 

surface-based approach can help overcome this problem by projecting cortical tissue to 

an unfolded flat or spherical space with 2D topology (see Dale, Fischl and Sereno, 1999; 

Fischl, Sereno and Dale, 1999; MacDonald et al., 2000; Zijdenbos, Forghani and Evans, 

2002; Kim et al., 2005; Glasser et al., 2016; Research and Case Medical Research, 2019). 

Parcellation performed in this space is constrained from 3D to 2D and can subsequently 

be projected back to each subject’s native space despite differences in folding patterns. In 

recent work, we developed a surface-based (or topological) framework for examination 

of the archicortex, specifically, the hippocampus. As in the neocortex, this enables 

detailed feature extraction and helps overcome broad inter-individual variability in 

gyrification, or digitation as it is often referred to in the hippocampus. This is especially 

critical given recent reports of inter-individual morphological variability in the 

hippocampus and its subfields (Ding and Van Hoesen, 2015; Cai et al., 2019; de Flores et 

al., 2019; DeKraker et al., 2020). One major challenge with this surface-based approach, 

which we aim to address here, is the need for careful manual delineation of tissues that 

separate the folds or digitations of the hippocampus. This process is costly in time and 

expertise and reduces the reproducibility and scalability of this method.  

Briefly, our surface-based approach to hippocampal feature extraction and parcellation, 

or subfield delineation, involves indexing hippocampal grey matter on three geodesic 

axes: anterior-posterior, proximal-distal, and laminar (or inner-outer). The anterior-

posterior and proximal-distal indices make up a 2D topologically organized space that 

can readily be flatmapped. This indexing is determined according to the Laplace 

equation, where hippocampal grey matter corresponds to the domain and anatomically 

motivated structures at each edge (e.g. the hippocampal-amygdalar transition area at the 

anterior terminus) make up boundary conditions. The hippocampal sulcus and 

surrounding high myelin laminae (strata radiatum, lacunosum, and moleculaire or SRLM) 

separate the inward curling of the hippocampus, as well as the inner boundaries between 

digitations, while the alveus and surrounding structures (including the third ventricle and 
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inferior longitudinal fasciculus) separate the outer boundaries between digitations. 

Topological breaks or bridges between digitations in this grey matter label can introduce 

major distortions to the Laplacian solution, and so highly detailed segmentation of these 

structures is required.  

Artificial neural networks, and particularly the U-Net architecture (Chen et al., 2018) are 

becoming increasingly popular in medical image segmentation. U-Net can take advantage 

of local and global image features in 3D, and in principle it could also discover 2D 

topological structure in 3D data or leverage subtle differences in thickness or intensity 

between hippocampal subfields. However, there is no evidence that current applications 

of U-Net for hippocampal and hippocampal subfield segmentation leverage such 

sophisticated topological modelling or subtle subfield-related intensity differences. 

Instead, results closely resemble the manually labelled data which they were trained on, 

which does not show detailed digitations and corresponding topological shifts in 

subfields (Shi, Cheng and Liu, 2019; Zhu et al., 2019; Yang et al., 2020). This highlights 

a need for more elaborate methods and/or more detailed training data.  

In the current work, we apply U-Net segmentation in concert with our previously 

developed hippocampal unfolding framework, which we jointly refer to here as 

Hippocampal Automated Topology or HAT. Starting with detailed hippocampal 

segmentations from a collective of previous studies, we aimed to develop an automated 

method for obtaining detailed segmentation of hippocampal tissue classes in the Human 

Connectome Project (HCP1200) dataset (Glasser et al., 2013). These tissue classes can 

then be used to unfold hippocampal grey matter under our previously developed 

hippocampal coordinate framework (DeKraker et al., 2018). That is, we use U-Net to 

segment grey and white matter tissue classes within the hippocampus (most critically 

hippocampal grey matter and the high myelin SRLM, with background tissues spanning 

CSF, surrounding white matter, and alveus). Following post-processing, we then apply 

our previously developed unfolded coordinate framework and define hippocampal 

subfields according to highly detailed boundaries derived from 3D histology in previous 

work (DeKraker et al., 2020). It should be noted that while the same boundaries are 

applied to all hippocampi in unfolded space, they may vary considerably between 
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subjects in native space depending on the folding configuration (particularly the number 

and prominence of digitations) in each subject's hippocampus. This entire pipeline is 

overviewed in Figure 19.  

 

Figure 19. Overview of full Hippocampal Automated Topology pipeline. Step 1: left 

and right hippocampi are cropped and resampled to 0.3mm3 isotropic obliquely to 

the hippocampal long-axis. Step 2: images are segmented via U-Net architecture and 

then post-processed using template shape injection. Step 3: Previously developed 

Laplace coordinate framework is applied to the domain of hippocampal grey matter 

tissue. Step 4: A single subfield atlas defined in 2D unfolded space, in this case 

generated from BigBrain 3D histology, is propagated to a given subject’s native 

hippocampal folding configuration. Shown here is the example of the right 

hippocampus of HCP1200 subject 108020. 
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4.2 Methods and data 

4.2.1 Preprocessing and resampling 

Initial manually labelled data was reused from a variety of different studies, including 20 

samples (from 10 subjects) from the HCP1200 dataset (Glasser et al., 2013; Ferko et al., 

2017), 22 samples (from 16 subjects) from an open source UPenn ex-vivo MRI dataset 

(UPennExVivo) (Adler et al. 2018) with manual adjustments to suit our unfolding 

protocol, and 24 samples (from 12 subjects) used in our initial hippocampal unfolding 

protocol development (UWO7T) (Jordan DeKraker et al. 2018). Using incremental 

learning, we were able to achieve highly detailed semi-manual segmentations of left and 

right hippocampi from the full HCP1200 dataset. 

Prior to U-Net segmentation, the left and right hippocampi were extracted from each 

whole-brain T2w scan, then each was rotated to be coronally oblique to the long-axis of 

the hippocampus, resampled to 0.3mm3, and cropped to a 128x256x128 voxel volume 

surrounding the hippocampus. This was performed by computing an affine 

transformation using FSL’s FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) 

to a single group-averaged atlas (CITI168 (Tyszka, Michael Tyszka and Pauli, 2016) 

which was combined with a manually defined rotation to coronal oblique and a manually 

defined left and right cropping. These steps (linear registration to the CITI168 atlas, 

rotation to coronal oblique, and cropping) were all performed using a single linear 

interpolation to minimize loss of image contrast. Taking advantage of the high left-right 

symmetry of the hippocampus, left hippocampi were flipped sagittally to resemble right 

hippocampi in order to simplify segmentation.  

4.2.2 U-Net implementation 

In the current work, we aimed to segment tissue classes within the hippocampus 

including grey matter, high myelin SRLM, background tissues spanning CSF, 

surrounding white matter, and alveus, and extra-hippocampal structures that act as 

boundaries for our unfolding coordinate framework (hippocampal-amygdalar transition 

area, indusium griseum, medial temporal lobe cortex, and the dentate gyrus within 

hippocampal grey matter). To this end, we applied a specific variant of a U-Net known as 
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highres3Dnet (Li et al., 2017), which includes design choices and hyperparameters that 

are able to efficiently handle large 3D images such as those often seen in medical image 

processing. Briefly, this includes a total of 20 convolutional layers with regularly 

increasing numbers of kernels and dilations, as well as batch normalizations and residual 

connections every two layers. The output from this network contains the same number of 

nodes as the input image multiplied by the number of labels. We used NiftyNet (Gibson 

et al., 2018) software for implementation of this network, built on Tensorflow (Abadi et 

al., 2015). During the first step of incremental learning, we experimented with several 

data augmentation methods and U-Net hyperparameters and selected the following 

configuration based on qualitative observation of resulting inferred segmentations: 

• The ‘large’ variant of highres3Dnet was used, which introduces 3 additional 

convolutional layers. 

• 64x64x64 voxel patches were uniformly sampled with 16 voxels of overlap in 

each direction (since segmentation quality is generally poorer at the periphery of 

each patch) (larger patches exceeded available GPU memory). 

• Dice overlap was chosen as a loss function (Dice, 1945; Sørensen, 1948), which 

has also been shown to be effective in training deep neural networks for 

segmentation (Sudre et al., 2017). 

• Data augmentation included rotations of 10o in any direction, random 

deformations with 4 control points combined with a smoothing kernel of 

sigma=15, and the introduction of random 3rd order bias fields in any direction of 

up to 5%. These were performed on all samples except the deformations which 

were performed on only 75% of samples.  

4.2.3 U-Net training and evaluation 

U-Net was trained over 4 incremental learning steps, with quality control of results 

between each step. When the quality of inference segmentations was good in one step, 

they were added to the pool of training data for the next step. Quality was assessed in two 

ways: any segmentation that could not be run to completion through the remainder of the 

unfolding pipeline was discarded, and of those that did run to completion were manually 
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inspected and then either discarded, manually adjusted, or added directly to the pool of 

training data for the next step. Though labour intensive, this protocol was exponentially 

more efficient than performing de novo manual segmentation of such a large dataset, 

while still ensuring excellent quality in the training data for subsequent incremental 

learning steps.  

The first step in incremental learning was trained using manual segmentations collected 

from a variety of different studies, including 20 samples (from 10 subjects) from the 

HCP1200 dataset (Glasser et al., 2013; Ferko et al., 2017), 22 samples (from 16 subjects) 

from an open source UPenn ex-vivo MRI dataset (UPennExVivo) (Adler et al., 2018) 

with manual adjustments to suit our unfolding protocol, and 24 samples (from 12 

subjects) used in our initial hippocampal unfolding protocol development (UWO7T) 

(DeKraker et al., 2018). The second step in incremental learning additionally included 80 

samples (from 40 subjects) from in-house scans (UWO3T). The third step in incremental 

learning additionally included 1992 samples (from 1000 HCP1200 subjects). Finally, for 

the fourth step in incremental learning we decided to further tighten the inclusion criteria 

and include only samples for which we had very high confidence in the segmentation 

quality following manual inspection. This included only 1161 samples (from 763 

subjects) from the HCP1200 dataset. The participant, acquisition, and preprocessing 

details from all of these datasets can be found in Appendix 8. 

During the final incremental learning step, 15% (n=190 samples) of the data were 

randomly chosen and left out of the training pool for validation, and an additional 15% 

(n=190 samples) were left out for test benchmarking. These subsamples never split the 

same subjects left and right hippocampi between training, validation, and test sets which 

could bias results if high within-subject left-right similarity was seen. Every 1000 

training iterations, the validation set was compared against manual ground truth in terms 

of Dice overlap using Tensorflow’s ‘Tensorboard’ tool. Each incremental learning step 

was performed using 50 000 iterations, as performance on the training and validation sets 

showed little improvement beyond 40 000 iterations (see Figure 20A). U-Net was 

reinitialized with random weights between each step. Thus, steps were nearly 

independent, except for the fact that segmentations used in training from one step could 
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be generated through inference and manual correction from a previous step. Following 

training on the final incremental learning step, the test set was compared to manual 

segmentations both before and after post-processing.  

4.2.4 Post-processing 

In post-processing we employed a method called template shape injection (Qiu and 

Miller, 2008) to correct possible segmentation errors in U-Net segmentation, making 

labelmaps more amenable to the previously developed hippocampal unfolding methods. 

The basic principle of template shape injection is to perform highly fluid deformable 

registration of a template segmentation label map to a given subject’s segmentation label 

map. This differs from typical registration-based segmentation methods in that the 

registration is optimizing labels rather than image feature similarity (i.e. registration is 

performed on labels encoded as integers rather than on floating point voxel intensities). 

Specifically, we used mean squared error between labels as the cost function, which is 

minimized when identical labels are overlapping. In our implementation, we apply multi-

contrast SyN deformable registration using the Advanced Normalization Toolkit (ANTs) 

(Avants et al., 2008), where each contrast is a binarized label from the U-Net 

segmentation outputs. The reference template that we applied was created by combining 

manual segmentations from the UPennExVivo dataset using a standard template building 

ANTs script ‘buildtemplateparallel.sh’ (Avants et al., 2010). This template generation 

entails averaging all images and then registering each sample to the average, iteratively 

refining and sharpening the average image. The UPennExVivo dataset was selected for 

template building because we had high confidence in the quality of these segmentation 

since they contained higher resolution and contrast than other datasets while still 

including multiple samples.  

In the current work we introduced several optional tweaks to this post-processing step, 

though they may be excessively convoluted and may be omitted in future versions. 

Currently, extra-hippocampal structures (HATA, IG, DG, MTLc, pial) were defined 

according to the manual protocol presented in (DeKraker et al., 2018), which only 

defines these ROIs at their border with the hippocampus. The other boundaries of these 

structures were more or less arbitrary as they were not needed for our protocol, and so we 
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chose to exclude them from label-label registrations. Additionally, the positioning of 

cysts along the SRLM is somewhat spurious, and so for the purposes of label-label 

registration we chose to simply combine cysts with the SRLM label. Thus, only two 

binarized labels were used in multicontrast deformable registration of the template to a 

given sample: hippocampal grey matter and SRLM. We also were initially concerned in 

particular about loss of detail in the hippocampal SRLM, which would lead to a general 

'flattening' of the digitations which it separates. To mitigate this, we performed a separate 

registration weighted more heavily on the binarized SRLM label to capture more of the 

details of this structure. We then combined this deformation with the deformation 

generated from the combined labels using weighted averaging (where weights were 

determined by distance from the SRLM such that the deformations computed uniquely 

from the SRLM would be preferred near the SRLM). Qualitatively we found this 

approach to work well, but it does introduce complications to the pipeline that may not be 

necessary, as noted above. 

It is important to note that this post-processing strategy can introduce bias into new 

segmentations. Depending on the fluidity or regularization of the registration, 

segmentations can come to more closely resemble the reference template than the original 

subject-specific segmentation. In this case the reference template was generated from a 

group average from the UPennExVivo dataset, as described above, and so we expect 

some level of regression towards the mean hippocampal shape. In the case of image-

image registration, high fluidity can lead to errors because of the increased size of the 

problem space or decreased spatial regularization. However, this was less problematic in 

our case given that registration was performed only between corresponding labels rather 

than potentially noise image voxels. To test the effect that our reference template had on 

final segmentation outputs, we replaced the averaged template for individual samples 

from the UPennExVivo dataset and qualitatively examined resulting segmentations 

deformed to one subject’s U-Net segmentation (HCP1200 subject 105023’s right 

hippocampus). We additionally tested different values of deformable registration 

parameter ‘update field variance’ which most closely controls fluidity.  
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4.2.5 Unfolding and subfield definition 

The remainder of the hippocampal unfolding pipeline is exactly as described in 

(DeKraker et al., 2018, 2020). That is, Laplace fields are calculated across the domain of 

the hippocampus in three axes of interest: anterior-posterior, proximal-distal, and inner-

outer (or laminar). These gradients were binned into 256x128x4 points. The anterior-

posterior and proximal-distal values are used as a 2D indexing system for flatmapping, or 

unfolding, the hippocampus. T2w was extracted along the mid-surface of the 

hippocampus (i.e. at half the value of the inner-outer axis) to avoid potential partial 

voluming with neighbouring white matter or CSF. Because of the same partial voluming 

concern, we did not examine laminar intensity differences as in (DeKraker et al., 2020). 

Cortical thickness was assessed by measuring streamlines spanning the inner-outer 

gradient. Gyrification index was calculated as a ratio of native space surface area over 

unfolded surface area at each unfolded point.  

Unfolded space provides intrinsic registration between subjects and so it makes up an 

ideal space in which to define the hippocampal subfields. In previous 3D histology work 

(DeKraker et al., 2020) we defined these subfields in great detail and validated these 

definitions with unsupervised methods. Thus, we aimed to apply the same unfolded 

subfield definitions here. Minor differences were seen in subfield boundaries between the 

left and right hippocampus in this previous work, and so the two were averaged together 

before being applied to all HCP1200 subjects in unfolded space. Note that while these 

subfields are all defined the same way in unfolded space, they may take on drastically 

different positions when projected back to each subject’s native 3D space. This illustrates 

the advantage of defining subfields in a topologically unfolded space rather than in native 

space where subfield locations can vary considerably depending on inter-individual 

differences in hippocampal folding or morphology. Volume of each subfield was 

calculated in CITI168 space in order to control for overall brain volume. 

4.2.6 Comparison to other methods 

Ideally, subfield definitions generated through the current method, Hippocampal 

Automated Topology, which we abbreviate here as HAT, could be compared to a same-
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subject histological subfield definition as a ground truth, but no such data were available. 

Subfield definitions can also be compared to a reference material, such as 3D BigBrain 

which was examined in Chapter 3. This could be done in unfolded space to enforce 

alignment between each subject and the reference, but this comparison would be 

uninteresting since our HAT method already applies BigBrain subfield definitions in 

unfolded space. Subfields could be compared in native space using traditional alignment 

methods, such as 3D deformations, but 3D deformations between subjects with different 

hippocampal folding configurations can lead to topological breaks or gross deformations 

(for example, when registering a subject with 3 anterior digitations to one with 5). Thus, 

this method would not produce an appropriate gold standard and would instead be cruder 

than the topological subfield definitions implemented here using HAT. Thus, we make 

only qualitative observations about subfield definitions using HAT and compare them to 

extant anatomical literature. Additionally, we also quantitatively and qualitatively 

benchmark HAT against popular extant automated subfield segmentations methods.  

The two most popular methods for automatically delineating hippocampal subfields in 

MRI are Freesurfer’s (FS) hippocampal subfields extension (Iglesias et al., 2015) 

(currently at 382 citations), and Automatic Segmentation of Hippocampal Subfields 

(ASHS) (Yushkevich, Pluta, et al., 2015) (currently at 255 citations). We thus applied FS 

and ASHS to a subset of 310 HCP1200 samples (from 155 subjects) and compared them 

to HAT. Note that ASHS can implement different reference atlases and more recent and 

detailed atlases do exist. However, we chose the current version (UPenn PMC Atlas - 

2016 version) for its widespread popularity. We calculated the volume of each subfield 

from each protocol, and then we identified equivalent labels across protocols (see Figure 

22). We calculated Dice overlap between equivalent labels between each of the three 

protocols. Additionally, for each subject we projected subfield identities from HAT, FS, 

and ASHS into the unfolded space generated via HAT. We then identified the most 

common (mode) subfield identity at each unfolded position across all subjects in each of 

the protocols (Figure 24).  

To further examine systematic differences between protocols, we performed label-label 

registration between HAT and FS and HAT and ASHS. This is illustrated for one subject 
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in Figure 25A, but we also wanted to look for systematic differences between protocols 

across all subjects, which is challenging when subjects are not aligned. Thus, we sampled 

each deformation field in unfolded space before averaging across subjects. For easier 

visualization, we generated an average mid-surface on which we then overlaid the 

average deformations from HAT to FS and from HAT to ASHS as vectors originating 

from each vertex. Applying these averaged deformations generated mid-surfaces 

resembling the ASHS and the FS protocols. The results from each of these operations can 

be seen in Figure 25B. 

4.3 Results and Discussion 

4.3.1 U-Net segmentation 

Figure 20A shows the final step of U-Net training, though the training was monitored at 

all incremental learning steps, which follow a similar pattern to the final step. The Loss 

(1 - Dice overlap) is shown averaged across all labels for the training and validation sets 

over 500K training iterations. Little improvement was seen past 400K iterations. No 

evidence of overfitting was seen, as the validation Loss closely followed the training Loss 

rather than eventually increasing. It is possible that further training might result in 

slightly better model fits, but this would also run the risk of overfitting any possible 

idiosyncrasies of the training dataset.  

 

Figure 20. Benchmarking of tissue segmentation following the final incremental U-

Net training step. A) shows the training of the final U-Net incremental learning step 
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over 500 000 iterations. Solid colours are smoothed over iterations and faded 

colours indicate raw loss at each iteration. B) shows the Dice overlap between 

manual and automatically generated segmentations for each label of interest in the 

test set (15%). Results are shown both before and after post-processing via template 

shape injection. 

We evaluated performance (Dice overlap) for each label separately in the test set after 

training was completed, which is shown in Figure 20B. Dice overlap scores are well 

above manual inter-rater scores in critical labels grey matter (GM) and SRLM, which 

were previously reported to be ~0.83 and ~0.71 for GM and SRLM in 7-Tesla MRI 

(DeKraker et al., 2018), and ~0.79 and ~0.67 for GM and SRLM in a related bachelor’s 

thesis examining application of our manually defined hippocampal unfolding in the 

HCP1200 dataset (Ferko et al., 2017). Other labels showed lower Dice overlap but this is 

to be expected since they were defined mainly using heuristics rather than boundaries 

discernable in the images themselves. This is of little consequence for subsequent 

unfolding and subfield definition since extra-hippocampal labels are only used where 

they directly border the hippocampus.  

4.3.2 Post-processing 

Dice overlap scores between manual raters and automatic segmentation following post-

processing via template shape injection are shown in Figure 20B. In general, slight 

reductions were seen for all labels following post-processing but performance remained 

well above manual inter-rater Dice overlap scores. As described in Chapter 4.2.3, this 

may reflect some regression of hippocampal morphology towards the template shape. To 

test this effect, we compared post-processing via template shape injection with an 

averaged template reference to post-processing via template shape injection with several 

exemplar segmentations from the UPennExVivo dataset as references. We additionally 

compared several different update field variance parameter values (which relates to 

fluidity of the registration). Results are shown in Figure 21. 
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Figure 21. Effect of template choice and update field variance (a parameter 

regulating fluidity) on template shape injection results. Only GM (red) and SRLM 

(orange) are shown for clarity. The original tissue segmentation contains topological 

breaks (green arrows) due to segmentation errors, which are problematic for 

subsequent unfolding. Highly fluid template shape injection from an averaged 
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hippocampal shape, as well as several notably different exemplars are shown. The 

effect of template choice is particularly notable at lower update field variance. Final 

parameter choices are indicated by the black box. Segmentation errors persist in 

this case (purple arrows), but do not include topological breaks. 

We specifically chose template shape exemplars with a wide variety of overall 

morphologies but nevertheless, remarkable similarity was seen following injection to the 

original segmentation as produced by U-Net. This was especially true with higher update 

field variance values, which increased the overall fluidity of the deformable registrations. 

Update field sigmas beyond a value of approximately 15 made little difference to the 

final segmentation, and so we used this parameter value in the remainder of the work 

shown here. Note that template shape injection does not perfectly account for 

segmentation errors, as indicated by the purple arrows in Figure 21. The main utility of 

this step in the overall pipeline is that it enforces some level of topological continuity, 

preventing holes or bridges between adjacent structures that are not connected (e.g. 

bridges between digitations or across the SRLM) in order to avoid possible errors in the 

subsequent unfolding paradigm.  

4.3.3 Unfolded subfields and features 

All subjects ran to completion through our previously developed hippocampal unfolding 

framework, and visual inspection showed negligible distortions in the Laplace fields used 

to define unfolded space. Features extracted using this unfolding method are shown in 

Figure 22.  
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Figure 22. Average features across all HCP1200 subjects plotted in unfolded space. 

A group-averaged mid-surface in native space is shown in the top left. 

Features plotted in unfolded space and averaged across all HCP1200 subjects showed 

remarkable similarity to previous work (DeKraker et al., 2018). That is, T2w was 

generally high in CA1 and CA4 while being low in the other subfields. Gyrification index 

was high in CA1 and CA4 as in (DeKraker et al., 2020), but in this case high values were 

also seen in distal subiculum. Thickness was high in CA1 and subiculum and low in the 

other subfields, especially CA2. Vertical stripes of higher thickness can be seen near the 

hippocampal head and tail, and also thickness values were generally higher than in 

previous 3D work (DeKraker et al., 2020) in CA1. This may be due to the level of detail 

available in previous 3D histology work which allows for identification of even small 

digitations. When these digitations are not detectable, they may simply appear as a 

thicker and smoother archicortical mantle rather than a folded structure. Indeed, this 

previous work suggested that imprecise measurements of small digitations may conflate 

measures of thickness, surface area, and even T2w due to partial voluming. 

4.3.4 Comparison to other methods 

We aimed to compare subfield segmentations obtained under the present protocol to other 

popular methods Automatic Segmentation of Hippocampal Subfields (ASHS) and 

Freesurfer 6.0+ (FS). One example segmentation from each method can be found in 
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Figure 24. Average total volumes (i.e. all grey matter and SRLM labels combined) were 

2933±228mm3 and 2943±227mm3 in the left and right FS segmentations, 2720±474mm3 

and 2771±482mm3 in the left and right HAT segmentations, and 2622±233mm3 and 

2700±264mm3 in the left and right ASHS segmentations. Figure 23 shows these volume 

differences for each subject. Note that FS includes parasubiculum, which is part of the 

hippocampal formation but was not included in either of the other two protocols. This 

may partially account for larger volumes under this protocol. We additionally note that 

the hippocampal head and tail were larger under this protocol, in some cases clearly 

exceeding the outer boundaries of the hippocampus.  

 

Figure 23. Bland-Altman plots comparing total hippocampal volume between FS, 

HAT, and ASHS. Units are in mm3, and volumes include both hippocampal grey 

matter and SRLM. 
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We calculated the average volume of each subfield (Figure 24 second column), which 

varied considerably between methods. Of particular note is that the combined subiculum 

labels in FS are much larger than HAT or ASHS, while CA1 was considerably smaller. 

This may pertain particularly to the subiculum-CA1 border, which is subject to some 

debate in the field (see discussion by Wisse et al., 2017). ASHS segmentations of CA2 

and CA3 were much smaller than HAT or FS, and indeed there are many coronal slices 

that contain no CA2 or CA3 at all. This may in part be due to interpolation and voxel size 

of the reference materials: large reference voxel sizes may mean that no voxels are 

labelled CA2 or CA3 or, even when they are present in the reference material, they may 

become compressed during registration to target samples and disappear entirely. Finally, 

ASHS also showed CA4&DG labels that were much larger than the other two methods. 

This may be in part due to the inclusion of SRLM. Overall, HAT total volumes were 

much smaller but, proportionally, individual subfield volumes were similar or in between 

those obtained from FS or ASHS.  

 

Figure 24. Subfield definitions using the method proposed here Hippocampal 

AutoTop (HAT), Freesurfer6.0 (FS), and Automatic Segmentation of Hippocampal 

Subfields (ASHS). The first column shows a single subject example (HCP1200, 

105923) subfield definitions using each method. The second column shows tables of 
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the average subfield volumes using each method. The third column shows the Dice 

overlap between equivalent subfields from each method. The final column illustrates 

the equivalency between methods. 

We examined the overlap between equivalent subfield labels between FS, HAT, and 

ASHS by calculating Dice overlap. The equivalence between different labels are 

summarized in the table to the far right of Figure 24. Briefly, we tried to match as many 

equivalent labels as possible between each method. However, parasubiculum and the 

hippocampal tail from FS had no equivalent labels and so for fair comparison, 

parasubiculum was discarded and the hippocampal tail was masked out of other methods 

when comparing to FS segmentations. Dice overlap is shown in the third column of 

Figure 24, and in general scores were quite low. Within the same protocol, good values 

might range from 0.7-0.9, or 70-90% overlap, but between these protocols no such 

overlap was observed for any subfield. It should also be noted that Dice overlap is 

generally lower for small structures, which are less likely to overlap. Thus, combining 

labels leads to much higher Dice overlap scores, and so the scores reported here might be 

considered upper bound to what the overlap of individual subfields from each method 

could actually be if they were present across all methods.  

We further aimed to examine any systematic differences between HAT and the other two 

methods (FS and ASHS) in more detail. For this, we quantified the 3D deformations of 

label-label registrations between HAT and FS, and HAT and ASHS (using the same label 

equivalencies as above). A single subject example of such a deformation is shown in 

Figure 25A, including the same coronal and sagittal slices segmented using each of the 

three methods. Using unfolded space, we were able to average these deformations across 

subjects despite gross differences in shape in native space. We show these averaged 

deformations in Figure 25B as vectors, the lengths of which correspond to real-world 

distances. All subfields of the hippocampal head extended more posteriorly in FS 

compared to HAT, and the body of the hippocampal was generally wider. That is, 

subiculum extended more medially in FS compared to HAT, while the lateral subfields 

CA1 and CA2&CA3 extended even further laterally. Deformations were less extreme 
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when comparing ASHS to HAT, but all subfields of the head and tail were generally 

found to extend further posterior.  

 

Figure 25. Deformations between equivalent subfield produced using the method 

proposed here Hippocampal AutoTop (HAT), Freesurfer6.0 (FS), and Automatic 

Segmentation of Hippocampal Subfields (ASHS). A) shows equivalent labels from 

each method from a single subject, as well as the fluid label-label 3D deformations 

between them. Shown here is the example of the left hippocampus of HCP1200 

subject 105923. B) shows the group-averaged deformations from a HAT to each 

other method (right), as well as the mode subfield identities projected into unfolded 

space and on a group-averaged mid-surface (left). 

One possible contributor to differences in the posterior hippocampal head, sometimes 

referred to as the apex of the uncus, may have to do with partial voluming with 

surrounding CSF, blood vessels, and other white matter structures. This can be seen in 

the sagittal slices of the example case shown in Figure 25A, where FS in particular 

includes some of these more posterior structures as part of the hippocampal head. In the 

tail of the hippocampus, small and frequent digitations are often seen (again visible in 
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sagittal slices of Figure 25A). This is not addressed in FS which does not distinguish 

subfields in this region, and in ASHS these smaller scale digitations are not segmented 

separately. In the example shown, these small digitations were not all delineated in HAT 

either, and indeed the SRLM that separates these digitations may have been 

overestimated (and therefore excluded from the analyses shown here) due to partial 

voluming.  

Another key difference between the protocols examined here is that in the anterior 

hippocampus, HAT shows subiculum wrapping around the antero-medial hippocampal 

head and running along the superior aspect of the hippocampus to the vertical component 

of the uncus, while in FS and ASHS subiculum is strictly confined to the inferior aspect 

of the hippocampus. It was recently noted by (Ding and Van Hoesen, 2015) that the 

subiculum is consistently present on the superior aspect of the hippocampus, even across 

variable folding patterns in the hippocampal head.  

Finally, we can examine the subfields generated under each protocol relative to the 

topology (or unfolded space) as estimated through HAT (Figure 25B, left). HAT shows 

clear distinction between all subfields, but ASHS showed no CA2 and little CA3 

throughout most of the anterior-posterior extent of the hippocampus. This is because the 

subfields were not consistently aligned to the estimated folding of the hippocampus, and 

so the mode label at each unfolded point was not aligned in these smaller subfields. For 

the same reason, we also see discontinuities in labels CA2&CA3, CA4, and DG under the 

FS protocol. Only HAT showed clearly defined and contiguous subfields along the 

topological folding of the hippocampus. However, it should be noted that HAT inherently 

relies on this topologically unfolded space for defining subfields and so it is to be 

expected that this method alone respects the known topological contiguity of the 

hippocampal subfields.  

4.4 Discussion 

4.4.1 Methodological approach 

The goal of the methods explored here was to combine the power and flexibility of deep 

learning based segmentation with the constraints, flexibility, and feature extraction utility 
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of a surface-based segmentation approach. Deep learning has come to dominate image 

processing in many domains, and especially U-Net or similar variants in medical image 

segmentation. However, U-Net is often limited by the availability and consistency of data 

and manual ground truth segmentations. The present study pooled data across several 

initial studies employing our surface-based unfolding (Adler et al., 2018; DeKraker et al., 

2018, 2020; Ferko et al., 2017), and we employed incremental learning to gradually 

achieve good ground truth segmentations for the full HCP1200 dataset. This yielded 

broad hippocampal tissue classes (i.e. grey matter, SRLM, and surrounding structures but 

not hippocampal subfields) that were as good or better than manual segmentation in this 

dataset (Figure 20). That is, Dice overlap between U-Net and manual counterparts in a 

left out test set were higher than what is typically seen between two manual inter-raters. 

This high level of performance remained true even after post-processing via template 

shape injection which was required to enforce the conditions for subsequent topological 

unfolding. We explored the consequences of parameter choices (template selection and 

update field variance) of this post-processing in Figure 21, which justified our choice of 

parameters and illustrated the robustness of template shape injection in this context.  

We next applied our previously developed hippocampal unfolding framework and feature 

extraction. This approach was motivated by the 2D archicortical organization of the 

hippocampal subfields. By delineating the folding of this mantle, hippocampal tissue can 

be indexed and flatmapped, constraining problems like subfield segmentation from 3D to 

2D. This is a clear analogue to state-of-the-art methods for neocortical parcellation (see 

Dale, Fischl and Sereno, 1999; Fischl, Sereno and Dale, 1999; MacDonald et al., 2000; 

Zijdenbos, Forghani and Evans, 2002; Kim et al., 2005; Glasser et al., 2016; Research 

and Case Medical Research, 2019). The exact definitions of subfields in 2D are still 

widely debated, but as a proof of concept we applied the same definitions to all subjects, 

which were motivated by previous 3D histology work (DeKraker et al., 2020). These 

subfield definitions are then projected back to each subject’s native space, which can vary 

considerably depending on that subject’s pattern of hippocampal folding. An average of 

this folding as well as a single subject example are shown in Figures 4 and 5, 

respectively. Features extracted under this unfolding protocol, including thickness, 
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gyrification index, and T2w, differed markedly between the different subfields, in 

agreement with previous work (DeKraker et al., 2018, 2020) (Figure 22).  

4.4.2 Comparison to extant methods 

We benchmarked the subfield segmentation proposed here against other popular methods 

Freesurfer6.0 (FS) and Automatic Segmentation of hippocampal Subfields (ASHS) to 

highlight systematic differences in the results obtained using these methods. Note that 

there is no direct validation dataset to which we can compare any of these results, and so 

instead we evaluate each method by comparison to extant anatomical literature. Each of 

these methods use a different labelling scheme, and so we drew direct comparisons only 

where anatomically appropriate (see Figure 24 right). Broad discrepancies in Dice 

overlap were seen between all three methods, which highlights the need for 

harmonization of methods (Yushkevich, Amaral, et al., 2015; Wisse et al., 2017) and also 

suggests that caution should be exercised when comparing subfields across these 

methods. In general, total volumes were similar (Figure 23) but each subfield volume was 

smaller under our proposed Hippocampal Automated Topology (HAT) method than 

under FS or ASHS (Figures and 6). This is most likely attributable to our extensive 

delineation of SRLM across the full anterior-posterior extent of the hippocampus, which 

was limited in FS and not present at all in ASHS. Partial voluming with surrounding 

structures and between small digitations in the hippocampal tail may also contribute to 

the overall volume discrepancies of subfields between methods. As discussed in previous 

work (DeKraker et al., 2018, 2020; Cai et al., 2019), failing to delineate digitations could 

lead to overestimations of hippocampal thickness and volume, with a corresponding 

underestimation of SRLM. This was likely the case in FS and ASHS, and to some extent 

this was true in HAT as well, particularly in the small digitations often present in the 

hippocampal tail (e.g. see comparison to DeKraker et al., 2020).  

Some systematic differences between FS, ASHS, and HAT can also be seen in the 

transverse, or unfolding, directions. Notably, the subiculum-CA1 boundary varies 

considerably between protocols, which can be seen in coronal slices or in the unfolded 

space in Figure 25. That is, this boundary is generally more medial under ASHS and 

more lateral under FS, with the HAT definition being in between. Part of this broad 
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discrepancy may have to do with the distinction of prosubiculum as being a distinct 

subfield and part of the subicular complex, or simply a transition area to be divided 

between subiculum and CA1 (Wisse et al., 2017). Other discrepancies in the transverse 

direction were less extreme, except in the anterior and posterior edges of the 

hippocampus which were labelled predominantly CA1 under both ASHS and FS (and no 

label is provided in the posterior tail of the hippocampus from FS). This may be an 

oversimplification on behalf of ASHS and FS since recent and long-standing work (e.g. 

Duvernoy, Cattin and Risold, 2013; Ding and Van Hoesen, 2015) shows that all subfields 

are present even in the most anterior vertical component of the uncus. Finally, it should 

be noted that only HAT showed consistent subfield contiguity in the unfolded or 

transverse direction across the full anterior-posterior extent of the hippocampus. This was 

necessarily the case since HAT subfields are contiguous defined in unfolded space, but 

this contiguity is well described in histology and can readily be enforced under our 

protocol. 

4.4.3 Limitations and future directions 

As discussed above, one limitation of the current approach is that there remain small-

scale digitations in hippocampal grey matter that are not always captured using the 

current method (notably in the hippocampal tail, but some digitations in the remainder of 

the hippocampus may also be attenuated). This likely stems from two methodological 

limitations: firstly, resolution limits the contrast of the SRLM and alveus which separate 

digitations, particularly at a small scale. Secondly, the post-processing step employed 

here entails some regression towards an averaged, smooth hippocampal morphology. 

This post-processing was necessary to enforce separation between digitations and across 

the SRLM precisely because of segmentation errors that are most common in ambiguous 

parts of the hippocampus, like the SRLM in the hippocampal tail. Future improvements 

could include more detailed segmentation data for U-Net training, which could entail 

more careful manual segmentation of the SRLM in the hippocampal tail, or 

improvements in acquisition resolution. Further U-Net training could also alleviate the 

need for the post-processing employed here, eliminating the small amount of regression 

towards a smoother, averaged hippocampal shape. Note that details like small scale 



113 

 

digitations and corresponding shifts in subfield boundaries are not captured by other 

manual or automated protocols for hippocampal subfield delineation. Thus, we believe 

that the overall pipeline proposed here is the most detailed protocol for in-vivo 

hippocampal analysis to date.  

In the current work, we applied the same hippocampal subfield boundaries to all subjects 

in unfolded space. A more subject-specific approach may vary these boundaries in 2D 

according to further available information, such as the quantitative and morphological 

features extracted and plotted in unfolded space. In native space this would constitute a 

topological shift in subfield boundaries. This may help account for further subject-

specific variability, but could also introduce systematic errors, especially if measures like 

thickness are inflated due to imperfect delineation of digitations or the presence of 

abnormal tissue as in some diseases differentially affecting hippocampal subfields (e.g. 

Blümcke et al., 2013; Steve et al., 2020).  

Generalizability was high between the training and test sets examined here, but it remains 

unclear how HAT will perform on different datasets with different resolutions and 

contrasts. In particular, the convolutional kernels applied in U-Net are well suited for the 

current data but may not be appropriate for higher resolution images with sharper tissue 

boundaries, lower resolution images with smoother tissue boundaries or other contrast 

types (e.g. T1w where contrast is inverted). Other deep learning applications use fine-

tuning to overcome analogous issues in generalizability, wherein a pretrained network is 

further trained on a new target dataset. This can be combined with an incremental 

learning approach to limit the requirement for manually segmented training data. That is, 

the current HAT pipeline can be applied to a new dataset, and then U-Net can be further 

trained using only the subset of the new dataset that was successful as assessed by 

manual inspection. This subset could be expanded further by manually adjusting U-Net 

outputs that were close but not perfectly segmented. This approach has been highly 

successful in other deep learning applications with limited data, as in a research context, 

such as biological motion tracking (Nath et al., 2018; Mathis et al., 2018; Graving et al., 

2019; Heras et al., 2019). However, it should be noted that the success of the current 

methods and the level of detail therein will depend critically on the visibility of folds, 
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such as hippocampal digitations and the SRLM, in new datasets which likely requires sub 

millimetric resolution (DeKraker et al., 2020).  

The current code, including pre trained U-Net model, are all available for deployment in 

new research contexts via a containerized BIDSapp or a MATLAB-based development 

version at https://github.com/jordandekraker/Hippocampal_AutoTop. This code is 

modular and well documented for easy expansion to new domains, and future releases 

will include U-Net models trained on new datasets with different resolution and contrast 

properties. Some automated checks are employed to ensure there are no gross 

segmentation errors, but users are advised to manually inspect results to ensure good 

quality on new datasets. Tools to easily perform such visualizations are also included. 

Application to new datasets is advantageous for answering questions about those data as 

well as for expanding the generalizability of the methods presented here. Thus, it is our 

hope that in future work the generalizability, detail, and feature extraction capability of 

this hippocampal automated topology framework will only grow, especially with 

increased availability of high resolution MRI data or even 3D data from other acquisition 

methods.  

4.4.4 Conclusions 

In the current work, we present a method termed Hippocampal Automated Topology 

which performs tissue segmentation, unfolding, feature extraction, and subfield definition 

of sub millimetric T2w MRI data. This method combines the power and flexibility of 

deep learning with subsequent constraints and utility afforded by surface-based 

approaches to cortical segmentation. We developed this method specifically for 0.7mm3 

T2w data found in the open source Human Connectome Project (HCP1200) dataset. This 

method produces segmentations that are as good or better than manual segmentations in 

terms of Dice overlap, and all HCP1200 cases were amenable to subsequent unfolding 

and feature extraction. In agreement with previous work, extracted features including 

thickness, gyrification index, and T2w differed markedly between subfields. Comparison 

to other popular automated hippocampal subfield segmentation methods reveal 

systematic differences which, for the most part, favour the methods proposed here. This 

method can readily be extended to new datasets with different resolution and contrast. 
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We hope that with automation of these methods, more labs will consider the highly 

variable folding in the hippocampus which is critical for segmenting or extracting 

features from hippocampal substructures (e.g. subfields, individual digitations, or other 

subdivisions like laminae or anterior-posterior differentiation) in detail. 
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Chapter 5  

5 General Discussion 

5.1 Background and scope 

The research conducted in this thesis represents an effort to understand the true 

underlying folding structure of hippocampal tissue in neuroimaging. This research was 

initially motivated by an attempt to mechanistically link functions of the hippocampus to 

microcircuits that are stereotypical of the individual hippocampal subfields (see Chapter 

1.2.2). In other words, the initial goal of my graduate work (and the current direction of 

the field of hippocampal research more broadly) was to decompose the overall functions 

of the hippocampus at the macroscale into sets of microscale elements. As discussed in 

Chapter 1.4.3, this can be done on a rudimentary level by overlaying subfield definitions 

from ex-vivo histology onto in-vivo MRI images containing much less detail. However, in 

this endeavour it quickly became apparent that mesoscale differences at the level of 

folding and gyrification between individuals increases the complexity of this problem. 

All three projects of this thesis are thus devoted specifically to this problem, as addressed 

using a topological coordinate framework.  

The problem of mesoscopic folding within the hippocampus is not ubiquitously 

recognized in the field of hippocampal neuroimaging. As the promise and feasibility of 

hippocampal subfield delineation in neuroimaging became clear, many manual and 

automated protocols were developed in quick succession to estimate subfield boundaries 

(Yushkevich et al., 2015). Initially, none of these protocols placed emphasis on the 

folding of the hippocampus, which was assumed to remain relatively constant in coronal 

slices through the hippocampal body. Folding in the hippocampal head and tail was 

frequently simplified or excluded in these protocols because it was deemed too complex 

and beyond the capabilities of these protocols. Nevertheless, many differences between 

protocols were clear even within only the body of the hippocampus, which have given 

rise to concerns about replicability and comparability between studies performed using 

disparate protocols. To address these concerns, an international effort to harmonize the 

protocols has been launched (Wisse et al., 2017; Olsen et al., 2019). Concurrently, and 
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with these concerns in mind, new investigations using ex-vivo histology and MRI have 

begun to elucidate the complexity and inter-individual variability seen in the arrangement 

of hippocampal subfields. This variability is currently receiving increased attention 

among researchers, with likely links to aging (Cai et al., 2019) and disease (Oppenheim 

et al., 1998; Henry et al., 2011). The methods described in this thesis were developed in 

an effort to address these complexities and inter-individual differences under a common 

2D surface-based framework.  

5.2 Summary of projects 

In Chapter 2, we pursued a computational approach to take advantage of regularities in 

hippocampal structure related to ontogeny, which entails consideration of the 

hippocampus as a folded archicortical structure. Through computational unfolding of the 

hippocampus, the proposed protocol provides a coordinate system that can index 

hippocampal tissue in a precise and flexible manner, while capturing the noticeable inter-

individual differences in morphology that have been documented in histological studies 

of this structure. This method critically depends on the visualization of the SRLM, or 

‘crease’, along which the hippocampus is folded. We argue that this method offers 

several practical advantages over manual segmentation techniques. These advantages can 

be summarized as follows: i) Unfolding hippocampal grey matter allows for indexing of 

analogous tissues (or sets of candidate boundary locations) across participants with 

variable morphologies. ii) The unfolded coordinate space can be used for inter-subject 

alignment and subsequent mapping of properties across the full long-axis and proximal-

distal extent of the hippocampus, as illustrated in Chapter 2.3.3 for intracortical myelin 

and cortical thickness measures. iii) Segmentations applied in this unfolded coordinate 

space show good spatial overlap with, and may even correct for tracing errors in, detailed 

manual subfield segmentations. This coordinate system also captures subtle but critical 

structural features, as demonstrated in a direct comparison with a resected histological 

sample from a patient with epilepsy (see Chapter 2.3.4). 

In Chapter 3 we mapped the human hippocampus in detail by combining three methods. 

First, we used a unique dataset, BigBrain, that contains both histological-level detail and 

fully 3D spatial context. Second, we imposed the topological hippocampal unfolding 
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framework developed in Chapter 2. Third, with this framework we extracted a set of 

morphological and laminar features, the latter of which have been used prolifically in 

neocortical characterization and parcellation. Using these methods, we made three novel 

empirical observations: i) Unsupervised clustering of these features closely resembled 

classically defined hippocampal subfields. ii) Despite traditional reliance on laminar 

features in histology, morphological features alone were sufficient to closely approximate 

most hippocampal subfields. iii) Some features such as gyrification in CA1 showed, at 

least qualitatively, subfield-specific anterior-posterior differences that might relate to 

functional differences described in the extant literature. Overall, these findings highlight 

new structural characteristics of the hippocampus, and offer promising avenues for 

improved delineation and characterization of hippocampal subfields using in-vivo 

neuroimaging. 

In Chapter 4, we presented a method termed Hippocampal Automated Topology (HAT) 

which performs fully automated tissue segmentation, unfolding, feature extraction, and 

subfield definition given sub millimetric T2w MRI data. This method combines the 

power and flexibility of deep learning with subsequent constraints and utility afforded by 

the unfolded coordinate framework developed in Chapter 2. We developed this method 

specifically for 0.7mm3 T2w data found in the open source Human Connectome Project 

(HCP1200) dataset. This method produced tissue segmentations that showed high Dice 

overlap with manual segmentations, and all HCP1200 cases were amenable to subsequent 

unfolding and feature extraction. In agreement with previous work, extracted features 

including thickness, gyrification index, and T2w differed markedly between subfields. 

Comparison to other popular automated hippocampal subfield segmentation methods 

revealed systematic differences which, for the most part, favored the methods proposed 

here in terms of detail and qualitative comparison to anatomical literature. This method 

can readily be applied to new sub millimetric T2w datasets, and supporting methods are 

offered for generalization to new datasets with different resolution or contrast. We hope 

that with automation of these methods, more researchers will consider the highly variable 

folding in the hippocampus which is critical for segmenting or extracting detailed 

features from hippocampal substructures like subfields, individual digitations, laminae, or 

anterior-posterior gradients.  
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5.3 Accommodation of specific hippocampal features 
in the unfolding framework 

5.3.1 Curvature in the hippocampal head and tail 

As discussed in Chapters 1 and 2, we aimed to computationally fit the gross curvature 

seen in the hippocampal head, including the uncus and vertical component of the uncus, 

as well as smoother curvature in the hippocampal body and tail. With this gross curvature 

accounted for, we found that similar subfield definitions could be applied across the full 

anterior-posterior extent of the hippocampus, which is most easily visualized in unfolded 

space. This aim was consistently met throughout all applications of our unfolded 

coordinate framework in this thesis which is briefly illustrated in Figure 26. However, 

investigations at higher resolution (ex-vivo MRI and 3D histology) revealed several 

additional smaller-scale folds or digitations that were not well captured in manually 

segmented or subsequently automatically segmented (Chapter 4) MRI images. This is 

discussed in the following section. 

 

Figure 26. Mid-surface models of hippocampal folding estimated through MRI (A) 

and 3D histology (B). Purple arrows indicate folds seen in histology that are not 

typically seen using in-vivo MRI, while black arrows represent gross curvature and 

digitations that are typically seen in both modalities. Digitations in the hippocampal 

body are not always present and are absent from this MRI sample. Such digitations 
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are typically visible but likely attenuated in MRI under current acquisition 

protocols. 

5.3.2 Fine scale folding in the uncus and tail 

Long standing anatomical work has illustrated a distinct fold within the vertical 

component of the uncus. This fold mimics the classic ‘C’ shape of the hippocampal 

subfields in the remainder of the hippocampus but at a smaller scale and in the axial, 

rather than coronal, plane (Duvernoy, Cattin and Risold, 2013). This fold was not well 

captured in our manual segmentations and subsequent unfolding protocol using in-vivo 

MRI, as illustrated in Figure 26. This limitation was primarily due to limitations in image 

resolution and contrast. While high myelin SRLM does exist to differentiate this fold, it 

was not consistently visible in the dataset examined. In Chapter 3, resolution was well 

above the level of individual folds within the hippocampus, and we have high confidence 

that the full topology of the hippocampus was correctly delineated and unfolded, even in 

the vertical component of the uncus. In Chapters 2 and 3 we noted that digitations were 

not confined to the hippocampal head as previously described (Ding and Van Hoesen, 

2015), but rather in many cases extended throughout the length of the hippocampal body, 

with some other recent studies making similar observations (Cai et al., 2019; de Flores et 

al., 2020). Indeed, with the microscopic levels of resolution used in Chapter 3, these 

digitations could be seen extending throughout the hippocampal tail, where they were 

much smaller than the more anterior digitations (see Figure 26). Reexamining in-vivo 

data from Chapter 2 while keeping in mind the digitations noted in Chapter 3, it is still 

not clear where the fold within the vertical component of the uncus is located, but it is 

clear in some cases that smaller scale digitations are present within the hippocampal tail.  

The overall effect of failing to delineate digitations or folds, whether in the vertical 

component of the uncus or in the body or tail of the hippocampus, is an overestimation of 

thickness and an underestimation of surface area. This underestimation of surface area 

also causes topological shifting of the hippocampal subfields in unfolded space. In 

particular, we noted in Chapter 3 that digitations tended to be confined mostly to CA1. 

Thus, if we apply boundaries from a sample with an extensively folded CA1 to a sample 

which showed no delineated digitations in CA1, we will overestimate the true extent of 
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CA1, and all other subfields will be slightly shifted, proportionally. In the case of the fold 

in the vertical component of the uncus, a similar problem is present: by failing to 

delineate this fold the proximal distal axis in this region essentially forms a line instead of 

a hook or flattened ‘C’ shape. As with the hippocampal tail, subfields defined on a more 

detailed map of hippocampal folding will become topologically shifted when applied to a 

simpler, less folded map of hippocampal folds.  

A U-Net deep learning architecture was used to automate tissue segmentations in Chapter 

3 (including alveus and SRLM that separate the folds and digitations of the 

hippocampus). U-Net was trained with manual segmentations from the same protocol and 

some of the same data as Chapter 2. Furthermore, the HCP1200 dataset was slightly 

lower in resolution than the data used in Chapter 2, and so it is unlikely that every 

digitation was delineated. Finally, we also included a post-processing step which entails 

some regression towards a smooth, average hippocampal shape and therefore subtle 

reduction in the magnitude of digitations. This step was necessary to avoid major 

distortions of the coordinate framework due to imperfect U-Net segmentation by 

removing topological discontinuities or erroneous ‘bridges’ between tissues. Thus, while 

perfect segmentation of all mesoscopic folds in the hippocampus is close, and may be 

achievable in the near future, the methods presented in Chapters 2 and 4 here still show 

some room for improvement. This will most critically depend on resolution which limits 

our ability to detect small scale folding, most notably in the vertical component of the 

uncus and the hippocampal tail. This improvement could be accomplished through fine-

tuning the U-Net architecture employed in Chapter 4, which I will discuss further in 

Chapter 5.4.  

5.3.3 Non-topologically defined hippocampal substructures 

The intra-hippocampal structures SRLM and DG are not unfolded in our current 

framework, mainly due to limitations in image contrast and resolution. Instead, these 

distinct structural labels are only employed to demarcate the boundaries of hippocampal 

grey matter. That is, SRLM marks the inner edge of hippocampal grey matter (continuous 

with the pial surface of the neocortex) while the DG marks the distal edge of 

hippocampal grey matter. SRLM is typically considered laminae of the CA fields (with 
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SLM extending as laminae of the subiculum) and together this structure is composed of 

dense axonal and dendritic fields high in myelin and blood vessels. These properties give 

rise to differing contrast in MRI, bearing greater resemblance to white matter than grey 

matter. Indeed, this contrast difference is the criterion for manually or automatically 

defining SRLM in most protocols. Our current framework could be extended to map out 

the SRLM via a process of interpolating its nearest corresponding points in hippocampal 

grey matter, as in (Hussain et al., in preparation), but without microscopic resolution it is 

difficult to determine which parts of SRLM belong to which surrounding grey matter 

folds (for example, a given SRLM voxel in the hippocampal body may be a part of CA1 

which is lateral to it, or CA4 medially to it). Though it presents challenges, this may be a 

useful future direction, especially given that some work has suggested that the 

quantitative properties of SRLM may be a useful biomarker in Alzheimer’s disease 

(Kerchner et al., 2010).  

No contrast differences were seen between the DG and its neighbouring CA4 in MRI, 

and thus under our manual protocol this boundary had to be defined heuristically. This 

was challenging since the DG is composed of a thin granule cell layer with its own 

topology, distinct from the rest of the hippocampus. However, the DG does closely 

follow the SRLM including between the digitations where SRLM folds outward into 

digitations (see Duvernoy, Cattin and Risold, 2013). Thus, the heuristic we used to define 

the DG was a dilation of the SRLM over the distal portions of hippocampal grey matter 

by a distance of 0.3mm. This roughly corresponds to the thickness of the healthy DG, but 

this structure is itself complex as it occasionally shows additional inward folding upon 

itself (Duvernoy, Cattin and Risold, 2013). These same rules were used in the manual 

segmentation on which U-Net was trained in Chapter 4. Thus, under the methods 

employed in Chapters 2 and 4, the DG will consistently show a thickness of 

approximately 0.3mm but may vary in width depending on the morphology of the SRLM. 

Since our protocol involves detailed delineation of the SRLM, and the DG is tightly 

anchored to SRLM, we assert that our method still holds high validity compared to other 

currently utilized segmentation protocols, but it is important to note these limitations, 

particularly in estimating the thickness and folding within DG. Finally, it should be noted 

that some ex-vivo work has found distinct MRI intensities between the DG and CA4. 
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Thus, it may be possible to define this structure in a data-driven rather than heuristic 

fashion if future improvements in MRI contrast and resolution are made.  

5.4 Adaptation of current approach to new data 

5.4.1 Higher resolution datasets 

MRI has steadily improved in resolution and contrast since its integration into medical 

imaging and basic research, and with several promising lines of investigation into new 

acquisition methods, this trend seems likely to continue. This may obviate certain 

hippocampal features, such as the SRLM that separates the different folds of the 

hippocampus. Thus, technological improvements might highlight the need to consider 

inter-individual differences in intra-hippocampal folding in future neuroimaging work 

focused on the hippocampus. This is not typically explicitly considered in current 

methods such as Freesurfer (FS), Automatic Segmentation of Hippocampal Subfields 

(ASHS), or the host of manual subfield segmentation protocols developed in recent years. 

However, as noted above, the methods presented here still do not perfectly delineate all 

folds or digitations within the hippocampus. As illustrated in Chapter 3, the general 

coordinate framework we have developed can indeed be applied to a fully topologically 

correct hippocampal tissue segmentation if available. Therefore, the main element that 

could be improved with higher resolution imaging is the manual or automated U-Net 

segmentation of hippocampal tissue classes. In anticipation of this eventuality, and to 

better fit images of different contrast types, we have included recommendations and code 

for how to go about fine-tuning U-Net to fit new datasets or new manually defined 

structural features as they become available. Briefly, this could be done using incremental 

learning which would entail applying the current pipeline and then manually inspecting 

and correcting results until good quality tissue segmentations are achieved for a subset of 

the new dataset. The U-Net architecture can then be trained on this new subset of data 

and then tested on the remainder. Ideally this would result in good segmentation for the 

entire novel dataset, though it remains unclear how large this dataset should be and how 

much manual or semi-manual correction would be required. This will most likely depend 

on the extent to which new datasets differ from the ones on which U-Net is currently 

trained, in resolution and in contrast. 
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5.4.2 Anisotropic datasets 

As discussed in Chapter 1.4.2, MRI for hippocampal subfield segmentation is often 

performed using anisotropic or thick slice T2w scanning, with high in-plane coronal 

resolution (e.g. 0.4x0.4x2.0mm3). This makes it easier to view the SRLM in coronal 

slices through the hippocampal body, but more difficult in the hippocampal head and tail 

and furthermore this may obscure digitations. Nevertheless, good contrast is seen in many 

such acquisitions, and it may still be possible to discern or infer out-of-plane 

hippocampal features such as its curvature and digitations in these data. The current 

proposed methods involve resampling all images to 0.3mm3, which generates significant 

blurring of anisotropic data in the anterior-posterior direction. As with datasets using 

different resolutions, discussed above, the current U-Net segmentation method is not 

optimized for this level of contrast, and could likely be improved through further training 

or fine-tuning on such data.  

5.4.3 Datasets with T1w or other contrasts 

As discussed above, the unfolding framework presented in this thesis can be applied 

across different resolutions and image modalities, provided a detailed segmentation of the 

different hippocampal tissue types (grey matter, white matter alveus and SRLM, and 

surrounding structures) can be attained. Indeed, the current thesis applied the same 

methods to in-vivo T2w MRI, ex-vivo T2w MRI, and ex-vivo 3D histology. The current 

automated application, HAT, is optimized specifically for T2w, but can flexibly be 

retrained or fine-tuned to suit other contrast types. 

Though T2w MRI is most common in hippocampal subfield delineation, T1w structural 

imaging is more common for imaging the rest of the brain in part because of the high 

contrast it provides between neocortical grey matter and underlying white matter. Thus, 

in studies where both the hippocampus and also other brain structures are of interest, T1w 

may be the only or the best resolution and contrast imaging modality available, and some 

subfield segmentation protocols can be applied to T1w images alone (e.g. Iglesias et al., 

2015). In particular, T2w imaging shows good contrast in the hippocampal SRLM while 

in T1w imaging this feature exists but is not as clear (see Figure 2 for example). As 
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discussed in Chapter 1.4.1, there is an imprecisely inverse relationship between T1w and 

T2w. That is, these two modalities are typically inversely related, but they also show 

differences in their susceptibility to molecules other than fat and water, such as iron 

sequestered inside grey matter tissue or blood. If not for these tissue contrast differences, 

it would be relatively straightforward to apply the current version of Hippocampal 

AutoTop to T1w data by simply computing inverse T1w. Thus, it is most likely that fine-

tuning or retraining of the U-Net tissue segmentation model would be required before 

application to T1w images, as overviewed in Chapter 5.3.1. Further improvements in 

T1w contrast and resolution may make this modality even more desirable, especially if 

additional scans are not required for imaging neocortex and hippocampus separately. The 

additional time that this affords could be spent increasing resolution, or acquiring 

additional T1w images for averaging, improving contrast as discussed in Chapter 1.4.2. 

 

Figure 27. Sample scans employing T2w, T1w, and low b-value dMRI acquisition 

protocols. The T2w scan represents a different subject, since no directly comparable 

data were available. Note that CSF and white matter within and surrounding the 

hippocampus show opposite intensities in T2w and T1w images, but not in dMRI 

images. 

5.4.4 Diffusion magnetic resonance imaging 

Another MRI acquisition technique, diffusion MRI (dMRI) shows particularly high 

sensitivity to structural abnormalities in the hippocampus (Förster et al., 2012). dMRI 

measures the diffusion of water, which is constrained by structures like cell membranes. 
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Thus, anisotropy in diffusion is seen in structures like heavily myelinated axon bundles, 

such that diffusion is greatest in parallel to the direction of these bundles. The resulting 

anisotropies can be used to estimate the course of large fiber bundles, a technique called 

tractography. Such tracts have been successfully traced within and around the 

hippocampus in recent work in both health (Augustinack et al., 2010; Yassa, Muftuler 

and Stark, 2010; Adnan et al., 2016) and disease (Pereira et al., 2014; Dinkelacker et al., 

2015). This work has improved our understanding of hippocampal connectivity and 

revealed degradation of some pathways in aging and disease. Diffusion properties can 

also differ between grey matter tissues with different properties, like the density of 

dendrite networks which also act to constrain diffusion. This is the principle behind 

intracortical quantitative dMRI, which can be used to distinguish neocortical regions with 

stereotyped cytoarchitectonic properties (Aggarwal et al., 2015; Ganepola et al., 2018) 

and even to distinguish laminae within the neocortex (Leuze et al., 2014). In particular, 

this can be done by differentiating diffusion along the columnar or transverse direction 

from diffusion along the laminar or inner-outer direction. One prerequisite of such an 

approach is having a good model of the direction of cortical folding, and so in recent and 

ongoing work we have developed a method to apply our hippocampal unfolding 

framework to dMRI data (Hussain et al., in preparation). This involves mapping not only 

the different positions within the hippocampus to an unfolded space, but also rotating 

corresponding directional encoding data. Briefly, this work used high quality in-vivo 

dMRI acquisitions and some key findings showed that unfolding the hippocampus leads 

to a more anatomically plausible modelling of the connectivity of the hippocampus as 

probed by probabilistic tractography, revealing key elements of the polysynaptic pathway 

and anterior-posterior connectivity gradients. Future work along this line of investigation 

will further examine intracortical measures along the columnar and laminar directions 

within the hippocampus.  

Finally, dMRI is typically performed at lower resolution (e.g. >2mm3) than other 

structural scans (e.g. <1mm3), but recent work has developed promising acquisitions for 

high resolution dMRI (1mm3) that may even be useful in detecting hippocampal folds or 

digitations (Treit et al., 2018). This may be useful because it overcomes an important 

limitation in T1w and T2w imaging: cysts or pockets of CSF are often seen along the 
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hippocampal sulcus, between laminae of the SRLM. In T1w and T2w imaging, this gives 

rise to partial voluming of CSF with white matter, which can thus resemble grey matter. 

This makes the SRLM and, subsequently, the folds of the hippocampus difficult to detect 

unless very high resolution is achieved. Under the protocol proposed by (Treit et al., 

2018), higher resolution is achieved through low b-value (or less directional encoding), 

and segmentation is performed on the mean diffusion image rather than in any given 

directionally coded volume. dMRI under this novel protocol shows similar contrast 

between white matter, as in the SRLM, and cysts and so while it remains difficult to 

distinguish cysts from SRLM, it is relatively straightforward to distinguish both of these 

structures from hippocampal grey matter and therefore understand intra-hippocampal 

folding. Current and future work could aim to further investigate similar acquisition 

techniques and their utility for our hippocampal coordinate framework (for example, see 

Figure 27).  

5.5 Applications 

5.5.1 Research in patient populations 

Having more accurate and detailed delineation of hippocampal subfields can improve the 

quality of hippocampal neuroimaging in many respects, including quantitative MRI, 

morphometry or volumetry, and fMRI. Extensions of the work described here have 

already begun on neuroimaging patients with Major Depressive Disorder (MDD) and, 

separately, patients with medial temporal lobe epilepsy (mTLE). Both of these studies 

were designed to make use of the hippocampal unfolding and analysis methods presented 

here (that is, they include high resolution isotropic T2w MRI scans). Different subtypes 

of mTLE have been shown to differentially affect hippocampal subfields CA1 and CA4 

in terms of neuronal loss and overall volume or atrophy (Blümcke et al., 2013). More 

recent work has suggested these mTLE subtypes may even be detectable using in-vivo 

imaging (Blumcke et al., 2017), which could prove useful in treatment planning. The 

current work improves subfield definitions over previous work and extends these 

definitions into the hippocampal head and tail, which was specifically identified as a 

shortcoming of previous mTLE subfield imaging (Blumcke et al., 2017). Volume losses 

specific to each subfield can be detected in this way, and these measures can also be 
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further decomposed into surface area and thickness, one or both of which may be more 

sensitive than overall volume measures of structural differences between patients and 

healthy controls (or between the subtypes of mTLE patients). Neuronal loss is difficult to 

detect using MRI; however, this can sometimes entail the formation or sclerotic (or scar-

like) tissue within hippocampal grey matter. This can be detected in quantitative MRI as 

a change in intracortical myelin or diffusivity compared to healthy tissue, as discussed 

above. These measures are ameliorated under our unfolding framework since MRI values 

can be sampled along a mid-surface, reducing the partial voluming of other nearby CSF 

or white matter structures. This is a critical improvement over currently implemented 

measures since the contrast between grey matter and CSF or grey matter and white matter 

is greater than that expected between sclerotic tissue and healthy tissue, especially if 

sclerosis is in early stages (Jackson et al., 1990; Berkovic et al., 1991; Cross et al., 1993; 

Coan et al., 2014). Accidental inclusion of these surrounding structures can drastically 

bias results, adding noise to experimental analyses or, in cases of systematic 

morphological differences between the populations being compared, this could lead to 

systematic errors. Thus, in applying our hippocampal unfolding framework to MRI data 

obtained from patients and healthy controls, we expect to see improved sensitivity 

compared to previous work and can concurrently examine any systematic differences in 

morphology to identify potential systematic biases.  

Similar principles apply to hippocampal imaging of patients with MDD. In this case we 

are particularly interested in the DG subfield as the primary site of adult neurogenesis. 

Some animal and human imaging studies have already shown links between MDD and 

hippocampal subfields, of which the DG is most notable (Maruszak and Thuret, 2014; 

Malykhin and Coupland, 2015). Some of these links even include increases in volume 

with recovery from depression, which could be in part driven by neurogenesis, though 

contributions from other processes like synaptogenesis or angiogenesis are likely (Firth et 

al., 2018; Sahay and Hen, 2007). The ongoing study employing the methods presented 

here aims to collect behavioural data on tasks specifically targeted at hippocampal 

subfields functions, like pattern separation in the DG as discussed in Chapter 1.3.1. Thus, 

improved delineation of the DG may also help elucidate its functional contributions to 

behavioural measures. Specifically, improved DG measures improve the sensitivity of 
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possible links between this structure’s integrity and its function as measured 

behaviourally. Additionally, this study employs fMRI which is often used to probe the 

function of the hippocampus and hippocampal subfields. Such endeavours stand to 

improve with better hippocampal subfield delineation in the same way that quantitative 

measures stand to improve through improved sensitivity and improved localization which 

I will discuss further below.  

5.5.2 Localization beyond subfields 

Another benefit of the hippocampal unfolding method described here is that it allows for 

localization of tissue properties beyond subfields or coarse anterior-posterior subdivisions 

that are typically employed. Projecting quantitative MRI or fMRI data to our 

hippocampal unfolded space provides implicit registration between subjects not seen in 

any other hippocampal analysis method. This allows for direct comparison of each 

unfolded point across subjects, rather than having to average values within an entire ROI. 

In this way, structural abnormalities can be more precisely localized. For example, a 

systematic analysis of all unfolded points might reveal statistically reliable effects only in 

proximal CA1 rather than CA1 as a whole. This precision is also afforded in the antero-

posterior axis of the hippocampus. Equivalently, these unfolded pixels can be treated as 

vertices in a 3D surface mesh, as in the mid-surface representations shown here. This 

type of representation is popular in neocortical analyses, allowing for vertex-wise 

analysis rather than voxel-wise. This is advantageous in reducing partial voluming from 

surrounding white matter and potentially from averaging signals in the laminar direction 

in situations where laminar differences are not expected. Such analyses can thus contain 

cleaner signals, and there are often fewer vertices than voxels. This has the advantage of 

reducing the number of statistical comparison in methods like General Linear Modelling, 

potentially striking a better balance between control of Type I and Type II error rates. 

Other statistical methods can also benefit from vertex-wise analysis as well, such as 

diffusion map embedding – a method for neocortical analysis that doesn’t make hard 

assumptions about boundaries between regions but rather allows signals to vary in 

continuous but topologically described gradients (see Paquola et al., in submission; de 

Wael et al., 2020) 
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This type of dense comparison is also advantageous when using statistical methods that 

are sensitive to gradients of quantitative differences across a tissue, rather than assuming 

differences are confined to parcels or subfields. Indeed, in recent work such an approach 

yielded graded differences over the transition from the archicortex (or allocortex) of the 

hippocampus to the neocortex (or isocortex) surrounding it (see Figure 28B) (Paquola et 

al., in submission). This type of analysis aligns well with previous literature which 

highlights distinctive subfields that differ along the proximal-distal axis of the 

hippocampus, but graded differences in other properties such as widespread connection 

with the rest of the brain across the anterior-posterior axis of the hippocampus.  

 

Figure 28. Extension of unfolding (or surface-based) coordinate framework to 

surrounding medial temporal lobe neocortical structures. A) shows an extension of 

our proximal-distal hippocampal axis in the hippocampus (yellow) into 

neighbouring neocortex (orange, red, then black) according to geodesic distance. B) 

shows an example of a statistical analysis (based on singular value decomposition) 

that employs contiguous points rather than distinct parcels or ROIs. Data from 

(Paquola et al., in submission). 
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5.5.3 Integration with neocortical surface representations 

Surface-based methods for neocortical analysis are already widely used, and the 

hippocampus, or archicortex, is fully continuous with the neocortical surface. Most 

neocortical analysis methods cleave the hippocampus from neocortical surfaces, and 

instead apply volumetric analysis methods to the hippocampus similar to those used on 

subcortical structures (Dale, Fischl, and Sereno 1999; Desikan et al. 2006; B. Fischl, Liu, 

and Dale 2001; B. Fischl, Sereno, and Dale 1999). Many of the same advantages of 

surface-based methods apply in both the hippocampus and neocortex, such as facilitated 

registration between subjects, unfolded or partially unfolded (sometimes ‘inflated’ in the 

neocortex) visualizations, and sampling quantitative or functional data along a mid-

surface to avoid partial voluming. Future neuroimaging pipelines could combine surface-

based or vertex-wise analyses used in the neocortex with hippocampal surfaces, reducing 

the number of separate analyses and files being generated from these structures. One 

extension of the work described in this thesis stitches together hippocampal surfaces with 

the inner and outer surfaces from surrounding neocortical regions (Figure 28A). This 

project also extends the coordinate framework we employ within the hippocampus to 

neighbouring neocortical regions. Briefly, this was done by extending our proximal-distal 

coordinates to the surrounding neocortex according to geodesic distance, while anterior-

posterior coordinates were linearly extrapolated (also in a geodesic fashion). Key results 

of this work include graded histological differences over the extended allo-isocortical 

axis and simultaneous connectivity differences over the extended anterior-posterior axis. 

This 2D organizational framework nicely summarizes many of the histological and 

connectivity differences seen throughout the medial temporal lobe literature (Colombo et 

al., 1998; Poppenk et al., 2013; Strange et al., 2014; Zeidman and Maguire, 2016; Plachti 

et al., 2019).  

5.5.4 Impact on cognitive neuroscience 

The above sections detail how the surface-based methods developed in this thesis can 

improve delineation of hippocampal subfields, morphometry, or statistical analyses such 

as vertex-wise modelling. Each of these methodological improvements will allow the 

field at large to improve the sensitivity and specificity of hypothesis testing, but beyond 
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that the current framework also opens some novel theoretical directions. For example, 

there are known signals which depend on the topology of the hippocampus described 

here. In particular, intracranial recordings show that hippocampal theta oscillations, 

which are the sum of many local activations, resemble travelling waves via anatomically 

constrained short-ranged signaling (Lubenov & Siapas, 2009). Much of this work has 

been carried out in rodents, which don’t show hippocampal digitations as seen in humans. 

Thus, it is not yet clear whether such travelling waves follow digitations, which could 

drastically increase their distance travelled through the hippocampus. Theta oscillations 

are thought to have a modulatory role, and likely organize the recruitment of neurons in 

support of memory encoding and retrieval. Thus, the path taken by these waves could 

have consequences for the functional organization of the hippocampus as well. The 

methods described in this thesis provide a way to delineate the full topology of the 

hippocampus, including its digitations, making it possible to predict how theta waves 

might be expected to propagate across hippocampal tissue. Specifically, this method 

could be used to determine the geodesic (rather than absolute) distance between 

intracranial electrode contacts, so that the propagation of a wave between contacts can be 

investigated. Additionally, the way that a single wave might propagate over the entire 

hippocampus could take place over a large enough time and volume that it could be 

detectable even using non-invasive fMRI, but more work will be required to determine 

whether this is methodologically feasible or not.  

In addition to the tri- and mono-synaptic circuits described in section 1.2.3, topologically-

constrained short-range connections within and between hippocampal subfields have 

been observed in human post-mortem data (for review, see Duvernoy, Cattin and Risold, 

2013). These connections are often overlooked in current in-silico models of human 

hippocampal circuitry (e.g. Norman and O’Reilly, 2003; more recent implementations in 

Schapiro et al., 2017 and others). The inclusion of these short-ranged connections and 

their constraints based on the topology of the hippocampus may improve such models in 

future work. In particular, both the mono-and tri-synaptic pathways are known to project 

to the subicular complex, but its not clear which subregions of the subicular complex are 

involved. Propagation of these two pathways via short-ranged connections would suggest 

termini on the more proximal prosubiculum and subiculum proper before subsequent 
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projections from these regions to the more distal presubiculum and parasubiculum, 

followed by projections to the adjacent entorhinal cortex - the starting and ending point of 

the mono- and tri-synaptic loops. Alternatively, it is certainly possible for mid-range 

connections within the hippocampus to bypass some of these topologically ordered 

regions. Future work on the connectivity of these subicular subregions would benefit 

from hippocampal models which account for topological constraints of folding. For 

example, ongoing work shows that the computational unfolding methods proposed here 

can improve the detail and biological validity of tractography, in part by reducing errors 

due to tracts that, due to limitations in resolution and signal, appear to cross hippocampal 

folds (Hussain et al., in preparation). With a better understanding of the mid- and short-

range connectivity within the hippocampus, it will be possible to update in-silico models 

improving their biological validity and potentially revealing new emergent properties.  

5.6 Conclusions 

Overall, the projects presented here provide multifaceted evidence for the strengths of a 

surface-based approach to hippocampal analysis and subfield segmentation, as developed 

in this thesis. In particular, these projects demonstrated that such an approach helps 

account for inter-individual differences in hippocampal morphology, most notably due to 

different configurations of hippocampal folds or digitations. By modelling these folds 

under our topological coordinate framework, the hippocampus can be computationally 

unfolded, providing a standardized space in which subjects can be aligned despite gross 

differences in their native 3D morphology. This is helpful for delineation of subfields and 

for extracting structural features of interest, many of which are also demonstrated here to 

differ between subfields when examined with the sensitivity afforded by our methods. 

Indeed, with the resolution and contrast afforded by 3D histology, features extracted 

using our hippocampal coordinate framework are sufficient to derive most hippocampal 

subfields in an unsupervised manner. These methods are now automatically deployable in 

new neuroimaging work, with support for extensions to new imaging modalities. It is my 

hope that this framework will benefit the broader hippocampal imaging community either 

directly through uptake of the methods proposed here, or indirectly through their impact 

on the development of related new methods. 
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Appendices  

Appendix 1 (Chapter 2): Manual and user-guided steps for labelling of SRLM, 

hippocampal grey matter, and extrahippocampal structures for subsequent 

unfolding 

Criteria for automatic unfolding under current code setup: 

- Hippocampus should be split into 3 labels in the hippocampus: 

SRLM, hippocampal grey matter, and cysts  

- Four extra-hippocampal structure labels are needed for subsequent unfolding: 

border with the medial-temporal lobe cortex (MTLc), medial side of vertical 

component of the uncus (mVUnc) (for determining thickness in this area; also 

serves to mark dentate gyrus in this area), hippocampal-amygdalar transition 

area (HATA), and indusium griseum. 

- SRLM should have no ‘holes’ in it (e.g. when viewed in 3D with no model 

smoothing). 

- SRLM should be visible on the finished 3D model all along its medial edge (above 

subiculum) and nowhere else (i.e. no ‘holes’ in grey matter label). 

- Hippocampal grey matter label should not contain or be touching any blank label 

except on its outer surface (i.e. no blank voxels inside hippocampus) 

- Cyst label should only include CSF inside the hippocampus. If there are cysts that 

pass to the outside of the hippocampus, they should be ignored. 

- Extra-hippocampal structures should be labelled where they border the 

hippocampus (their entire structure can be labeled, but it's not necessary 

performing subsequent unfolding).  

- Consideration of folding in a manual segmentation is recommended. If 

hippocampal grey matter from one fold contacts a different fold (e.g. in the 

digitations or along the curve of the uncus), then the automatic unfolding of the 

hippocampus will be incorrect (think of the Laplacian filter as ‘leaking’ through 

holes in the SRLM or across overlapping folds).  

- We HIGHLY RECOMMEND viewing the finished segmentation models we have 

provided in addition to the instructions here. Even better is to keep the model 

that most closely resembles a segmentation being performed open in another 

window, as a reference.  

 

1. Tracing of the SRLM 

 

The SRLM separates the dentate gyrus on the inside from the outer subfields, and 

therefore the SRLM should always be some distance inward from the outer 
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hippocampal border, surrounded by hippocampal grey matter. The exception to this 

rule is along the medial side of the hippocampus, where the SRLM extends over 

subiculum to the ventricle. The SRLM may sometimes be obscured by hippocampal 

cysts, in which case it should be estimated and drawn in or the cyst label should 

completely ‘plug’ the hole in SRLM label. It’s very easy to confuse SRLM with alveus, 

particularly in the axial and sagittal planes. Thus, only dark areas which clearly 

constitute SRLM should be traced on the first pass, and missing areas can be filled in 

later. Where uncertain, use of the other planes of view is recommended.  

We have found tracing with a 2x2 paintbrush to offer good feasibility. 

The label for the SRLM should be saved separately from the labels which will later be 

generated from it.  

 

 
Fig 1.1. Models of hippocampal SRLM in a highly digitated (left) and a less digitated 

hippocampus (right). Green is labelled SRLM and yellow is hippocampal cysts. 

 

Axial view. In this view, at the approximate middle of the hippocampus, the 

hippocampus should look like a footprint, the anterior digitations being the toes. The 

SRLM is just inward of the outer border, and should be traced only when it is clear, and 

only when it passes through the plane (as opposed to parts where it runs parallel to this 

plane, which will appear as larger, poorly defined dark blobs). Starting in the middle of 

the hippocampus and working downward and then upward is recommended.  
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Fig 1.2. Axial view of SRLM trace. Green is labelled SRLM and yellow is hippocampal 

cysts. 

 

Sagittal view. The same rules as 1.2 apply here. There is no SRLM over top of most of 

the subiculum in more medial views. This view should be used for tracing the 

hippocampal tail, which should be included as far posteriorly and medially as the SRLM 

is obvious. Dilation of the SRLM in the next step should include all the grey matter that 

touches the hippocampus, even if it appears to extend somewhat far posteriorly. It may 

be necessary to relabel this far posterior grey matter as indusium griseum later when 

labelling extra-hippocampal structures.  

 

 
Fig 1.3. Sagittal view of SRLM on the lateral side (top) and very medial side where only 
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hippocampal tail is present (bottom). Green is labelled SRLM and yellow is hippocampal 

cysts 

 

Coronal view. This is where the SRLM should be most clear in many cases and should 

have a distinctive ‘C’ shape throughout the hippocampal body. In the head this shape is 

modified to extend into each digitation, and at the very most anterior the ‘C’ closes in 

on itself and becomes a single line. Note that at the superior side, the surface subfield 

CA3 often appears dark and so great care should be taken to separate SRLM from CA3.  

After tracing what is visible in all slices, it should become clear from the model what 

parts of SRLM were missed (This is all one continuous tissue! It is critical to look for the 

holes). Any large gaps should be filled in, and when uncertain about how a piece of 

SRLM connects to the rest of the SRLM structure, the other planes and the example 

segmentations provided should be considered. After hippocampal grey matter is traced, 

the SRLM will still border the medial side of the hippocampus along the entire anterior-

posterior extent except at the most anterior tip, around where the VUnc (which will be 

traced in the next steps) is no longer visible. Looking through this opening, the concavity 

that the SRLM forms enclosing the dentate gyrus should be visible.  

It is important to track tissues across different slices or across the different planes to 

determine what they are and to confirm that labels line up correctly. 
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Fig 1.4. Coronal views of hippocampal SRLM from body (top), through the digitations in 

the hippocampal head, to the anterior where it flattens out into a single line 

(descending). Green is labelled SRLM and yellow is hippocampal cysts 



152 

 

 

Touch-ups. A good way to smooth SRLM label and also fill in any small gaps is to dilate 

and then contract the entire label by a few voxels, a technique known as ‘feathering’. 

This can be done using the ‘Snake’ tool in ITK-SNAP – use of the edge attraction 

operation is recommended, with the filter options such that no edges are visible. Then 

roughly 2-10 iterations of positive growth should be run, followed by the same number 

of iterations of negative growth. It is important not to grow the label so much that 

different folds become connected!  

When confident, tracing of every other slice may be sufficient in order to save time. The 

feathering of the label will fill the gaps in between. Manual adjustments to the SRLM 

can be made later too, so if uncertain then go to the next step.  

It is important to try to keep the SRLM label thin! Contracting the label as far as possible 

without opening up gaps will be helpful to best capture only the dark voxels in the 

SRLM. 

 

2. Generation of hippocampal grey matter label 

 

The SRLM label contains most of the spatial information we need – it enters into each 

digitation and runs parallel to the inferior, lateral, and much of the superior edge of the 

hippocampus (the medial and superior edges will still need some work).  

 

 
Fig 2.1. Whole hippocampus model, with the SRLM visible in green along the medial 

side. Green is labelled SRLM, red is hippocampal grey matter, and yellow is hippocampal 

cysts. 

 

Dilation of the SRLM. This can be done in ITK-SNAP using the Snake tool. I’ve found the 

best way to do this is run unconstrained dilation (i.e. no thresholding or edge attraction) 

to almost the outer edge of hippocampal grey matter, and then introduce some edge 

attraction constraints for the rest of the dilation. This avoids attraction to other 

features, but still allows grey matter thickness to vary slightly. The goal here is to best fit 

as many of the outer edges of the hippocampus as possible. Some edges, particularly 
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the medial, will have to be manually adjusted no matter what criteria are set, so focus 

on the lateral, superior, and inferior borders.  

This should be saved separately from the SRLM label. Next the SRLM label should be 

combined with this dilated label (for example, add the two label images together using 

FSL’s fslmaths tool). The resulting label should contain 1’s for whole hippocampus and 

2’s for SRLM. 

 

 
Figure 2.2. Dilation of SRLM in the body (top) and head (bottom). 

 

Manual adjustments. Along the superior edge, the dilation may have gone past the 

border of the hippocampus since the subfield present there – the CA3 – is typically thin. 

Thus, it will have to be trimmed down, and may have to be extended slightly medially to 

fill in any additional grey matter that was missed. Similarly, dark blood vessels, alveus, 

and CSF are also often present medially to the dentate gyrus and superior to the 

subiculum and should be removed (see Fig 2.3).  

Some patches in the center of the dentate gyrus may have been missed, and some 

minor adjustments to the lateral and inferior borders are sometimes necessary. 

Additionally, the alveus entering in between each digitation is sometimes filled in 

because of too much dilation. This should also be manually removed such that label 

from one digitation is separated from other digitations by at least 1 voxel in all 

orientations (including diagonally). SRLM can also be manually adjusted while 

performing these adjustments.  
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Looking at the model, the SRLM should be cleanly visible on the medial side. In the 

uncus, the SRLM should still be visible and sometimes a large area of SRLM label is 

visible on the model below VUnc. In these cases, it is critical to remove all of the dilated 

hippocampal label medial to the SRLM. The grey matter of the uncus should not contact 

the grey matter of the subiculum running below it - they should be separated by clear 

label or otherwise by SRLM.  

Because the hippocampal tail curves medially, the SRLM will be visible on the anterior 

side. 

The thresholding tool should be used across the entire hippocampus to relabel any cysts 

or CSF around the hippocampus as such. Look for round, light ‘patches’ that fade 

gradually into more typical grey matter and exclude the light parts. If this does not work 

well, these cysts can simply be labelled manually (we recommend a spherical, 4-voxel 

diameter 3D brush. Where CSF is visible in one slice, there is also likely to be at least 

some partial voluming with CSF in the next slices.  

 

 
Fig 2.3. Examples of manual adjustments to be made to the whole hippocampus label in 

the body (top) and head (bottom). Green is labelled SRLM, red is hippocampal grey 

matter, and yellow is hippocampal cysts. 

 

Subiculum. The subiculum is typically dark and is sometimes almost indistinguishable 



155 

 

from white matter. However, even if it is difficult to distinguish, a band of tissue (~1mm 

in thickness) should extend medially from the hippocampus towards MTLc. This tissue 

runs below the CSF in the ventricle and should not include partial voluming from the 

ventricle. The most medial border of subiculum is defined here as the most medial 

extension of white matter (though note that in Ding et al. (2016), parasubiculum 

sometimes extends slightly past this point, which we did not include here for simplicity). 

In the hippocampal head, the subiculum runs almost entirely inferior to the SRLM and 

so not much will need to be added (though there should still be a small ‘lip’ visible 

extending downward and medially. In the hippocampal tail, we use the following rule: 

the medial extension that is subiculum reaches the medial extent of white, which 

becomes shorter until it collides with the most medial, posterior edge of the 

hippocampal tail (see Fig 2.1) (though note that according to Ding et al., (2016) this 

tissue also contains some retrosplenial area 29).  

 

 
Fig 2.4. Tracing of medial extension making up the subiculum in the body (top) and head 

(bottom). Green is labelled SRLM, red is hippocampal grey matter, and yellow is 

hippocampal cysts. 

 

Vertical component of the uncus. This must be drawn in manually (or carefully grown in 

using the Snake tool). It is a thin layer of grey matter on the medial side of the uncus 

and separated from the rest of the uncus by white matter of the alveus. Often there is 

CSF medial to this, so care is required not to include partial volume CSF. In anterior 
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slices the superior border is not clear and should be drawn approximately at the most 

superior part of the rest of the hippocampus. Past this is defined here as hippocampal-

amygdala transition area (though note that according to Ding et al. (2016) this border is 

sometimes even more superior). The VUnc should become shorter in the most anterior 

until it is indistinguishable from the rest of the hippocampal head at roughly the same 

coronal slice as the SRLM can no longer be seen on the medial side of the 3D model.  

 

 
Fig 2.5. Tracing of vertical component of the uncus (VUnc). Green is labelled SRLM, red is 

hippocampal grey matter, and yellow is hippocampal cysts. 

 

3. Labeling of extra-hippocampal structures 

 

These labels aren’t part of the hippocampus, but are needed to mark the anterior, 

posterior, and medial edges of the hippocampus in subsequent unfolding. Since these 

aren’t the primary structures of interest here, we typically label them only where they 

actually border the hippocampus. Each of these labels should contact one of the others 

(e.g. HATA touches MTLc label - so subsequent unfolding will be close to orthogonal). 
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Fig 3.1. Extra-hippocampal structures in the head (top) and tail (bottom). Green is 

labelled SRLM and red is hippocampal grey matter. The MTLc border is marked in white, 

HATA in pink, indusium griseum in purple, and the mVUnc in yellow. Labels include only 

parts of their structure that border the hippocampus. 

 

Medial-temporal lobe cortex border. This should border the medial edge of the 

subiculum. In the hippocampal head, it wraps upward and medially along with the 

subiculum, and terminates on the VUnc (also where the hippocampal-amygdalar 

transition area ends). Note that the MTLc label should not touch the inferior-posterior 

side of the uncus (where it runs over the subiculum in the hippocampal head). In the 

hippocampal tail this border should extend back until it contacts the indusium griseum 

label.  

 

Hippocampal-Amygdala Transition Area (HATA). This should be marked on the grey 

matter on the superior edge of the VUnc, just below and medial to the amygdala. The 

cutoff we used to distinguish VUnc from HATA was a straight, horizontal line at the 

superior most extent of the rest of the hippocampal head. Its posterior border is where 

no grey matter ‘bridge’ can be seen connecting the VUnc to the amygdala, and its 

anterior border is where the VUnc is no longer visible and is instead replaced with MTLc. 

The superior border is where this grey matter bridge abruptly widens, forming the 

inferior-medial edge of the amygdala. However, this superior border was not always 

enforced in our tracing as we were only interested in the components of HATA that 

directly bordered the hippocampus.  
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Fig 3.2. Borders of the HATA. First row shows the anterior border where no VUnc is 

visible. Second row shows the bridge between hippocampus and amygdala, and the 

third row shows the posterior border where this bridge is no longer visible (blue 

arrows). Blue line shows the border between hippocampal tissue and HATA at the 

superior extent of hippocampus.  

 

Medial edge of vertical component of the uncus (mVUnc). This label is a dummy label, 

defined geometrically in order to mark the medial edge of this tissue as separate from 

the lateral edge when determining cortical thickness. It should completely cover the 

hippocampal grey matter label where the VUnc appears as a single, thin layer of tissue. 

The Dentate Gyrus granule cell layer (DGgcl) within the vertical component of the 
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uncus, which is used as the sink in the process of proximal-distal unfolding, is also 

derived from this label: the posterior edge of mVUnc will mark where the dentate gyrus 

extends through the VUnc on the medial side. Thus, the posterior border of mvUnc 

should be the most posterior third of the VUnc (see Fig 3.1 third panel). DGgcl is defined 

as the voxels that border mVUnc as well as the clear label medial to the hippocampus. 

Along the inferior side of the uncus, DGgcl within the vertical component of the uncus 

will overlap with DGgcl in the rest of the hippocampus. Thus, the two labels are 

continuous after being combined. 

 

 
Fig 3.3. Borders of mVUnc. This is a dummy label defined as everything medial to the 

anterior two thirds of the vertical component of the uncus (approximated by the blue 

line in the left panel).  

 

Indusium griseum. This is the grey matter that extends from the posterior and medial 

edge of the hippocampal tail. This part may have already be labeled as part of this as 

hippocampal grey matter after dilating the SRLM label, but if not simply label all grey 

matter in this vicinity as indusium griseum, and the border between indusium griseum 

and hippocampus will be established based on the 3D model in the following way: 

viewing the hippocampus from the superior side, follow the curvature of the posterior 

edge of the hippocampal tail. When the tail begins to curve posteriorly again, extend the 

medial curve to cut it off, forming indusium griseum to the posterior of that line. In the 

current data, Indusium griseum was labelled only where it immediately borders 

hippocampus. 
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Fig 3.4. Indusium griseum border. Top row shows grey matter extension from the 

posterior hippocampus. Bottom row shows the border defined from a superior view of 

the hippocampal tail (white line) 
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Appendix 2 (Chapter 2): Manual subfield segmentation by alignment with Ding 

& Van Hoesen, 2015; Duvernoy et al., 2013 

Most of this work was completed before the release of segmentation protocols that 

make use of recent histological work by Ding et al (namely Dalton et al., 2017 and 

Berron et al., 2017), and so we had no clear protocol available that could leverage this 

new information. We aimed to capture the highest subfield validity, in this case at the 

expense of quantified reliability, so we thus performed our segmentation by trying to 

find the best correspondences between slices in our data and in Ding & Van Hoesen’s 

images.  

Segmentations were performed by raters JD and KF. Each coronal slice from the 

hippocampal head was matched to its closest corresponding slice from the 

hippocampus with the same number of anterior digitations in Ding & Van Hoesen Some 

Coronal slices from the hippocampal body were matched to Ding & Van Hoesen or 

Duvernoy et al., depending on which image most closely resembled that participant. In 

the hippocampal tail, slices were segmented in the sagittal view and matched to 

descriptions and images found in Duvernoy et al. After slices were matched between 

our images and reference images, the segmenter subjectively interpolated the subfield 

borders over the surface of the 3D model in order to ensure the subfields followed a 

smooth trajectory. In some cases, borders were roughly matched to differences in grey 

matter intensity, with areas CA2, CA3, and the subiculum sometimes appearing slightly 

darker than CA1 and the dentate gyrus. However, these differences were very 

inconsistently visible and so were only used when they closely corresponded to 

expected border locations as per histological reference. 

Note that not every slice in our data had a perfectly corresponding image in the 

anatomical references, in part due to the lack of fully 3D high resolution histological 

references. Also, in some cases there were still considerable differences between slices 

of the current dataset and the histological references. This might be due to any number 

of factors including inter-individual differences, tissue changes during histological 

processing, or different slice angles. In these cases, the subjective opinion of the rater 

was used, in conjunction with reference to where the subfield surfaces might be 

expected to fall on the surface of the 3D model.  
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Fig 1. Example slices showing corresponding subfield arrangements between anatomical 

references (Ding & Van Hoesen, 2015 and Duvernoy et al., 2013) and segmentations 

performed on our dataset (same example hippocampus as shown throughout). Rows 1-

7 are coronal and row 7 is sagittal, reflecting the plane in which subfield segmentation 

was performed. Left column shows examples of anatomical references (Ding & Van 

Hoesen for rows 1-5, Duvernoy et al. for rows 6-7), middle column shows our dataset 
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with the grey matter (red), SRLM (green), and cysts (yellow), and right column shows 

example segmentations by rater JD with subiculum in brown, CA1 in blue, CA2 in white, 

CA3 in pink, and dentate gyrus in cyan. 
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Appendix 3 (Chapter 2): Manual histology labelling protocol 

Slices were stained with NeuN, and delineation of the hippocampal subfields was 
performed according to the rules set in Ding & Van Hoesen (2015). The border of the 
subiculum with the entorhinal cortex is shown by the smaller neurons in the subiculum 
compared with the entorhinal cortex (Fig 1).  

 

Fig 1. Left: histology slice from the hippocampal head stained with NeuN. Right: zoomed 
in to the border between the entorhinal cortex and subiculum. Green and red arrows 
indicate larger and smaller layer 2 neurons in entorhinal cortex and subiculum, 
respectively. 

The border of the subiculum with CA1 can be determined because the subiculum has a 
polymorphic cell layer in addition to a pyramidal cell layer, which is a distinct 
characteristic from CA1 (Fig 2). 

  

Fig 2. Left: histology slice from the hippocampal head including the posterior uncus, 
stained with NeuN. Right: zoomed in to the border between subiculum and CA1 

The tissue from this particular sample shows marked cellular loss in CA1 and, to a lesser 
extent, CA3, but sparing CA2 (Fig 3 left) which is typical of hippocampal epilepsy 
pathology (Blümcke et al., 2007). In addition to the difference in cellular loss between 

Polymorphic 
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CA2 and CA3, there is also a shallow depression in the pyramidal cell layer between CA2 
and CA3 to help determine this border (Fig 3 middle).  

  

 

Fig 3. Left: view of CA1, CA2, CA3, DG/CA3h subfields with arrows indicating cellular loss 
in CA1 and, to a lesser extent, CA3. Middle: zoomed in to the border between CA2 and 
CA3Right: Adapted from Ding & Van Hoesen (2015). Arrows in the middle and right 
panels indicate the shallow depression in pyramidal cell layer between CA2 and CA3 

CA3 has darker and more densely packed neurons than CA3h region (Ding & Van 
Hoesen, 2015). This was less evident given the cell loss in CA3, but some difference was 
still visible (Fig 4 left). The rest of the DG/CA3h border is determined by the dense 
granule cell layer of the DG (Fig 4 right).  
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Fig 4. Left: border between CA3 and CA3h. Right: entire DG/CA3h subfield including the 
granule cell layer of the DG.  

This paper also considers the modified subfields that Ding & Van Hoesen (2015) discuss 
in the head of the hippocampus. For example, CA3(uncal) and DG/Ca3h(uncal) are very 
similar to their counterparts in the rest of the hippocampus, but the cells are slightly less 
densely packed and slightly less darkly stained with NeuN (Fig 5). 

  

Fig 5. The uncus of the hippocampus. The uncal modified subfields are outlined: CA3 in 
blue, DG/CA3h in pink. Note that the subfields are similar but less dense to those in the 
rest of the hippocampus (i.e. Figures 1 to 4).  
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Appendix 4 (Chapter 3): Additional anatomical details of the hippocampus and 

surrounding structures in BigBrain 

The dentate gyrus, modelled in Fig 1A, was excluded from our hippocampal 
unfolding framework because it was used as a boundary condition for proximal-distal 
coordinates. However, it was easily differentiated from other subfields by its very high 
neuronal density. Fig 1B shows residual staining at tissue boundaries, as well as some 
staining within the SRLM laminae which may be due to the presence of inhibitory 
interneurons.  

 
Fig 1. Anatomical details noted in BigBrain 3D histology outside of ‘archicortex’ label. A) 
3D models of the dentate gyrus from the superior (top) and inferior (bottom), with the 
red line demonstrating the ‘U’ shape and green arrows indicating ‘dentations’ that are 
prominent in the human DG and follow the gyrification of archicortex. B) Increased 
staining can be seen on CSF boundaries (e.g. orange arrows) but also may include 
interneurons found in the stratum moleculare of the CA fields (blue arrows) and stratum 
moleculare of the dentate gyrus (green arrows), which are intermittently fused or 
separated by the vestigial hippocampal sulcus. Images shown are from the original 
20um resolution slices (left) and a coronal slice from the 40um isoluminant hippocampal 
block (right). 
 

We detected gyral peaks in the left and right hippocampi and calculated the 
distance between them. Briefly, peaks were detected by taking an anterior-posterior 
profile midway through manually defined subfield CA1 (where most gyri were centered) 
and detecting local maxima in curvature (see sections 2.3 and 2.4). Distances between 
gyral peaks are shown in Fig 2, and were generally low in the uncus, high in the 
remaining hippocampal head and anterior body, and decreasing in size through the 
body and tail of the hippocampus. Smaller gyri had as little as 0.4mm of tissue (alveus 
on the outer surface or SRLM on the inner surface) separating them. Thus, it should be 



168 

 

possible to visualize all these gyri with 0.4mm isotropic resolution, provided sufficient 
image contrast is available. However, with more sophisticated modelling it may be 
possible to estimate these gyri despite partial voluming between gyri with resolutions as 
low as the Nyquist frequency between gyri (~1mm isotropic).  

 
Fig 2. Peak-peak distances between hippocampal gyri.  
 

Fig 3 shows the distributions of all these data from both the left and right 
hippocampi, colour-coded by subfield. Linear trends where R-squared values were 
greater than 0.1 are overlaid. Laminar feature Mean(y), or the mean amount of staining, 
increased towards the posterior of the hippocampus in regions CA1 and CA4. Mean(x.d), 
or the depth at which the greatest change in staining intensity was seen, increased in 
CA2 and CA3 towards the posterior as well. Skew(x), or the skew on the depth of 
neurons, decreased towards posterior subiculum. The morphological feature gyrification 
also showed a decrease towards the posterior in most prominently in CA1 which was 
also noted in Fig 1, but also in CA3. 

 
<2 column width> Fig 3. Examination of anterior-posterior differences in hippocampal 
structure. The x-axes represent the anterior-posterior axis of the hippocampus and the 
y-axes are the corresponding feature values, colour-coded by manual subfields. Linear 
correlations with R-squared values greater than 0.1 are overlaid. 
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Appendix 5 (Chapter 3): Additional methodological details  

Our Laplacian unfolding framework was modified in several ways since its use in 
our previous publication (DeKraker et al. 2018):  

1) DG was excluded from the domain of hippocampal archicortex (though 
CA4 was instead differentiated from CA3). 

2) Unfolded representations were modified to have a 2:1 rather than 1:1 
anterior-posterior:proximal-distal aspect ratio which we found to more 
closely match the real world dimensions of hippocampal tissue. BigBrain 
flatmaps were generated with 512x256 coordinate points in order to 
capture the higher level of detail available in that dataset (previous work 
was 100x100 points). 

3) General code optimizations to make it faster given large datasets and 
more robust to errors in manual segmentation. Interpolated mid-surfaces 
are now also automatically generated. These changes do not affect the 
unfolding outputs.  

 
Updated code and the history of changes made can be seen at 
https://github.com/jordandekraker/HippUnfolding. 

The Equivolume model solution was obtained by a python wrapper of ‘CBStools’ 
called ‘Nighres’ (https://github.com/nighres/nighres).  

Laminar sampling differences between Wagstyl et al. (2018) and the current 
study differed in the following way: horizontal (i.e. perpendicular to each profile) 
smoothing was performed with a Gaussian kernel of sigma=3 in unfolded space, rather 
than with a parametrically optimized sigma in native space (sigma could not be 
optimized to detect 3-5 laminar profile peaks in the neocortex since we expected only 1-
3 laminar profile peaks in the archicortex and we wanted to avoid overfitting).  

Mean curvature was estimated using the function ‘patchcurvature()’ from the 
MathWorks File Exchange 
(https://www.mathworks.com/matlabcentral/fileexchange/32573-patch-curvature). 

Prior to smoothing of features in unfolded space, the unfolded space was 
reparametrized to reflect real-world distances between points, ensuring that all regions 
of the hippocampus were smoothed with equal kernel sizes. This was done by scaling 
the distances between points in unfolded space by their distances in native space. This is 
illustrated in Fig 4. Smoothed flatmaps were then returned to standard unfolded space.  

 

https://paperpile.com/c/FTkx1W/PURZu
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Fig 4. Illustration of one feature (thickness) in unfolded space (left) in the 
reparametrized unfolded space (right). Note that the axes in the reparametrized 
unfolded space reflect real-world distances (*0.04mm). 
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Appendix 6 (Chapter 3): Laminar modelling using Laplacian vs. Equivolume model 

in BigBrain 

The Equivolume model aims to account for displacements of laminae due to 
curvature. The Laplacian model remains smooth even over complex shapes but does not 
account for displacement of laminae due to curvature, and so there is an offset between 
the depths at which peak staining along a laminar profile is found. The Equivolume 
model more closely aligns peaks between gyral and sulcal areas but is highly susceptible 
to distortion from the rough surfaces of detailed manual segmentations (e.g. due to 
subicular ‘islands’), which can be seen in the sagittal slice of the model solution.  

 
Fig 5. Comparison of Equivolume and Laplacian models of archicortical lamination. The 
left images show a sagittal slice of each model solution in the right hemisphere. Right 
images show two example laminar profiles, one at the peak of a gyrus (A-P,P-D 
coordinates 236,104) and one at the depth of sulcus (A-P,P-D coordinates 218,104) in 
the CA1 of the right hippocampus.  
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Appendix 7 (Chapter 3): Additional clustering results  

PCA followed by K-means clustering is only one of many possible methods for 
extracting summary information from the many features examined in the current study. 
In this section, we explore other possible methods 
 

Fig 6 demonstrates the discriminability between gold standard subfield 
definitions using the first 8 PCA components. For example, comparing PCA component 1 
against any other component, we can see that CA2 shows high values while subiculum 
shows low values. In combination with other PCA components, linear decision 
boundaries can be drawn between the subfields according to their scores along each 
component. This linearity makes clustering a well posed problem, suitable for k-means 
or other similar algorithms.  

 
Fig 6. Linear separability of subfields using only PCA components. The first 7 PCA 
components are each plotted against each other, and with points coloured according to 
the gold standard subfield definitions. Blue indicates subiculum; cyan indicates CA1; 
green indicates CA2, orange indicates CA3, and red indicates CA4. 
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 By setting k=5 in k-means clustering we imposed some prior information onto 
the segmentation of the hippocampus. Thus, we also explored different possible 
parcellation schemes by setting k=[2,4,8,16,32]. We ordered the resulting clusters 
according to their median proximal-distal distance in order to better align with our 
manual segmentation label scheme. Within each clustering result, borders can be seen 
near the manually defined subfield borders. With greater numbers of clusters, the 
subfields divide into additional regions, but most borders separate proximal-distal 
regions rather than anterior-posterior regions. This could be due to the presence of 
transition zones between subfields, or perhaps in the case of subiculum additional 
proximal-distal segments become clustered due to subicular subregions (e.g. 
prosubiculum, presubiculum, subiculum proper, or parasubiculum). Overall, these data 
provide strong motivation for the segmentation of the hippocampus along its proximal-
distal rather than its anterior-posterior axis, and the most seen borders resemble the 
classic hippocampal subfield definitions. Plotting Dice overlap as a function of the 
number of clusters shows an elbow for most subfields near k=4, which suggests that our 
a-priori choice of k=5 is likely an appropriate number of clusters.  
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Fig 7. Exploration of different clustering schemes by varying k in k-means clustering. 
Resulting clusters are labeled and coloured according to their median proximal-distal 
distance. Below are plotted Dice scores for each subfield by the number of clusters, k, in 
k-means clustering.  
 

In addition to k-means, we also tested whether another clustering algorithm 
might yield similar results, hierarchical clustering. Distances were calculated on the first 
8 PCA components, using a ‘ward’ distance metric. Because of the large size of the data, 
each PCA component was reshaped into a flatmap (as in Fig 5 in the main text) and then 
downsampled by a factor of half before calculating distances. Fig 8 (left) shows possible 
clustering hierarchical solutions based on these distances. Choosing 5 clusters, we see a 
similar pattern of clustering as when K-means was used (Fig 8 right). 

 
Fig 8. Hierarchical clustering of PCA component 1 to 8. The left image shows a 
dendrogram of the linkage between the first 30 possible cluster solutions, with the 
dotted line indicating a divide into 5 clusters (colour coded according to the clusters 
shown on the right). The right shows a clustering of this linkage into 5 clusters, 
projected onto unfolded and a mid-surface space.  
 

Data-driven clustering results were evaluated using Dice overlap in unfolded 
space, however, this does not account for different thicknesses of the different subfields 
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or the fact that clusters had to be extrapolated over the anterior and posterior 10% 
edges which were not analyzed due to high noise. We thus additionally projected 
clusters to native space using nearest neighbour interpolation and calculated Dice 
overlap scores again, as shown in Table 1. Note that these scores are generally lower 
than those reported in the main body of the paper, which is most likely due to the fact 
that subfields which were most poorly captured by clustering, CA2 and CA3, are thinnest 
and therefore small deviations have a larger impact on overall volume overlaps. 
Furthermore, extrapolation at the anterior and posterior edges of the hippocampus 
likely contributed to reduced overlap, since clustering results were not particularly close 
to manual gold standard near these edges, perhaps due to high noise. These regions 
also contained the highest distortion in unfolded space (e.g. Appendix 4 Fig 3), which 
may have also contributed to the difference in Dice scores between native and unfolded 
space. 
 
Table 1. Dice overlap scores between k-means clusters using all features and their 
closest corresponding manually defined subfield.  

 Left Right 

Sub 0.76 0.77 

CA1 0.67 0.65 

CA2 0.65 0.64 

CA3 0.38 0.32 

CA2&CA3 0.61 0.51 

CA4 0 0 
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Appendix 8 (Chapter 4): Acquisition and preprocessing details of datasets used in 

U-Net training 

All datasets examined employ T2w sub millimetric MRI data. Acquisition and 
preprocessing details were as follows: 

UWO7T:  

Four T2-weighted turbo spin echo (TSE) 3D (3D sagittal, matrix: 260 × 366, 266 slices, 
0.6mm3 isotropic, ∼8.5 mins per scan) images were acquired from each participant. All 
images were acquired in sagittal rather than coronal oblique orientation for optimal 
whole brain coverage. The first T2-weighted image (scan 1) was upsampled to 0.3mm3 
isovoxels using cubic spline interpolation; subsequently, scans 2, 3, and 4 were rigidly 
registered to scan 1 using FSL FLIRT registration (Jenkinson, 2002, Tofts, 2005). All four 
scans were then averaged together to produce a single, 0.3mm3 isovoxel, high-contrast 
volume.  

UWO3T: 

T2-weighted SPACE (3D sagittal, 0.8mm3 isotropic, iPAT GRAPPA acceleration x2) images 
were acquired from each participant. MRI data were converted to brain imaging data 
structure (BIDS) and run through fmriprep-v1.1.8 (Esteban et al., 2018). 

UPennExVivo: 

31 specimens were collected from 25 donors. The donors were older adults with and 
without dementia (nine AD, nine other dementia, and seven no dementia). Specimens, 
fixed in 10% formalin solution for a minimum of 21 d, were imaged on a Varian 9.4-Tesla 
animal scanner at 200 × 200 × 200 μm3 (160 × 160 × 160 μm3 in one specimen) 
resolution. Only 22 samples were used in the present work since other samples were 
missing some hippocampal tissue which could lead to distortions in our unfolding 
coordinate framework. See Adler et al., (2018) for further details.  

HCP1200: 

T2w image were acquired using the variable flip angle turbo spin-echo sequence 
(Siemens SPACE (Mugler et al., 2000)) with 0.7mm isotropic resolution (same matrix, 
FOV, and slices as in the T1w), TR=3200ms, TE=565ms, BW=744 Hz per pixel, no fat 
suppression pulse, phase encoding undersampling factor GRAPPA=2, total turbo 
factor=314 (to be achieved with a combination of turbo factor and slice turbo factor, 
when available), echo train length of 1105 echoes, 10% phase encoding oversampling 
(anterior - posterior) to avoid nose wrap-around, readout along superior - inferior 
direction with dwell time of 2.1µs (for readout distortion correction with FUGUE). See 
Glasser et al., (2013) for further details. 
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Oral presentations 

● “Computational unfolding of the human hippocampus to derive subfields in MRI” 

at: 

○ Helmholtz International BigBrain Analytics Learning Laboratory, Montreal, 

2020 (international) (invited but not yet delivered) 

○ Canada Student Health Research Forum, Winnipeg, 2020 (national) 

(invited but not yet delivered) 

● “Computational anatomy of the hippocampus: bridging spatial scales with 

topological (archi)cortical modelling” at: 

○ National Institute of Mental Health, Washington DC, 2019 (invited talk by 

Dr. Armin Raznahan) 
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at: 

○ Brainhack Western, London, 2019 (regional) 
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● Winner of Athletic Bursary from Carleton in 2012; 2013 
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