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Abstract 

Previous studies using fMRI adaptation to investigate the neural substrate of 

symbolic number processing have found ratio-dependent responses in regions of the 

parietal cortex, suggesting that number symbols are coded by overlapping neuronal 

populations: the larger the ratio between two numerals, the more their representation 

overlap. The current study analyzed the distributed patterns of activation associated 

with numerals presented during this task. I could not find substantial evidence 

supporting the ratio-dependent structure of the similarity space predicted by the 

univariate adaptation analyses. I also failed to find evidence in favor of the alternative 

model that similarities were driven by lexical frequency. These null results were 

confirmed by Bayesian analysis showing substantial support for the null. These findings 

do not align with the theory of ratio-dependent overlapping representation of number 

symbols and challenge previous interpretations of the adaptation literature.  
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Lay Summary  

How are symbolic numerals represented in the brain? Some theories have 

suggested that numerals are represented in a number line according to their magnitude. 

Numerals that are closer in this number line are represented in the brain more similarly 

than numbers that are further away. In other words, the way our brain represents the 

numeral “3” is more similar to the representation of numeral “4” than numeral “9”. Other 

authors have suggested that magnitude is not as important in the association between 

numerals that are established in the brain. These authors have suggested that other 

factors like frequency are more important. Said differently, this alternative theory poses 

that numerals that are seen together more frequently in real life are more similar, 

disregarding their magnitude. In this thesis we tested those competing theories. We 

could not find evidence for either of them. However, because the first alternative has 

been highly influential in this research field, our results lead to rethink about these 

theories. Future studies should develop more advanced models that may determine 

how numerals are organized in the brain. 
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1. Introduction 

Back in 1967, before the widespread availability of high-resolution neuroimaging, 

Moyer and Landauer (Moyer & Landauer, 1967) used a simple number comparison task 

to investigate the cognitive underpinnings of symbolic number processing. They found 

that participants are faster and more accurate comparing two numerals that are 

relatively far apart (e.g., 1 and 9) compared to numerals that are closer together (e.g., 7 

and 8). Moreover, for a fixed distance, comparison of relatively smaller numbers (e.g., 1 

and 2) was also found to be faster and less error-prone, relative to larger ones (e.g. 8 

and 9). Such behavioral signatures of symbolic number comparison, known in the 

literature as the distance and size effect, have been replicated numerous times since 

then (e.g. Ansari et al., 2005; Dehaene et al., 1990; Duncan & McFarland, 1980; 

Holloway & Ansari, 2009; Van Opstal et al., 2008). These results suggest that mental 

representations of numerical magnitude do not follow the formal rules of the symbolic 

system, in which the difference between 3 and 4 is exactly the same as the difference 

between 8 and 9. Instead, it appears as though such numerical computations are 

supported by an analog code in which the accuracy of the representation decreases as 

magnitude increases. In this compressed representation, the difference between any 

two numerals is determined by their ratio, as described by Weber’s Law.  

A large volume of research has studied this analog system directly (Cantlon & 

Brannon, 2006; Dehaene, 1992; Feigenson et al., 2004; Gallistel & Gelman, 1992; 

Halberda & Feigenson, 2008), using non-symbolic discrimination tasks (i.e., comparing 

or ordering sets of dots). These studies found that, when counting is not possible, 

humans’ ability to discriminate between two patterns of dots also depends on their ratio. 
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These experiments typically control the physical properties of the stimuli used. Hence, 

most researchers agree that such comparisons are supported by neural networks 

specialized for the perception of magnitude information from the environment (but see 

Leibovich et al., 2017).  

This module seems to exist from infancy onwards. Specifically, the same type of 

non-symbolic discrimination abilities has also been demonstrated in pre-verbal infants 

(Xu & Spelke, 2000) and non-human primates (Cantlon, 2012; Cantlon & Brannon, 

2006). These studies have revealed very similar behavioral signatures across 

phylogeny and ontogeny: human adults, children and animals alike, are slower and 

more error prone as the ratio between the two magnitudes (calculated as smaller/larger) 

gets closer to 1. This consistency of the ratio effect has further supported the idea of an 

evolved capacity for magnitude discrimination in the human brain, grounded on neural 

circuits that represent magnitude in a logarithmic, compressed scale.  

 

1.1. An analog code for the representation of numerical information in the 
human brain 

Studies trying to uncover the neural basis of this analog, magnitude code have 

identified a system of numerosity selective neurons on the monkey brain, along regions 

equivalent to the human prefrontal cortex (PFC) and parietal cortex (PC) (Nieder et al., 

2002; Nieder & Miller, 2003). The response pattern of these neurons is characterized by 

a gaussian tuning curve. The center of the curve represents the numerosity to which the 

neuron responds preferentially. The width represents the noise in the response; namely, 

the degree in which other magnitudes, different from the preferred one, also activates 
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the neuron. Together, these neurons form a system of overlapping representations that 

code numerosity in an imprecise way (Figure 1). As the magnitude increases, so does 

the noise in the representation and thus, the overlapping between the neurons.  

 

 
Figure 1. Response profiles of numerosity selective neurons in Monkey’s prefrontal 

cortex. Recreated from Nieder & Dehaene (2009). 

 

To test whether such system may be the base for later symbolic knowledge, 

researchers trained monkeys to associate dot patterns with corresponding number 

symbols (Diester & Nieder, 2007). Once the association was established, the authors 

measured the responses of single neurons across PFC and PC to the presentation of 

either the dot arrays or the symbols. They were able to identify “association” neurons 

that responded to the abstract magnitude information, disregarding the presentation 
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format. These results provide indirect evidence that such distributed population code of 

magnitude identified in the monkey is a plausible evolutionary precursor of humans’ 

advanced, symbolic numerical abilities. 

By using functional Magnetic Resonance Imaging (fMRI) techniques, researchers 

have tried to test more directly whether a similar system for magnitude discrimination 

can be identified in the human brain. In particular, neuroimaging studies have identified 

regions across the parietal cortex that are consistently active during both symbolic and 

non-symbolic tasks (Holloway et al., 2010; Holloway & Ansari, 2010).  

In order to reveal the underlying representation that may be hosted in these 

regions, researchers have used paradigms such fMRI adaptation. During a typical fMRI 

habituation paradigm, a monotonic decrease in the blood-oxygen-level dependent 

(BOLD) signal is observed as a result of the repeated presentation of a particular 

stimulus (Grill-Spector & Malach, 2001). After this habituation phase, a variation of one 

of the properties of the stimuli is introduced. Functional properties of different neuronal 

populations can be inferred by measuring their response -or lack of- to this change. 

Namely, a rebound in the BOLD signal should be observed across those regions 

containing populations of neurons that are sensitive to the feature that was varied. 

Hence, the less overlap between the deviant stimuli and the adapted one, the larger the 

rebound that is obtained (Grill-Spector, 2006).  

Using this paradigm, Piazza et al. (2004) found repetition suppression effects 

across the parietal cortex while participants looked at different dot patterns with the 

same numerosity (e.g., 16 dots). Critically, when this habituation phase was interrupted 

by an array of dots with different numerosity (e.g., 32), a distance-dependent recovery 
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of the activation was observed across bilateral intraparietal sulci. In other words, the 

rebound in the BOLD signal was larger as the deviant was numerically further away 

from the habituation stimuli (e.g. larger for 32 than 18). These effects are consistent with 

a system for approximate magnitude processing in humans, similar to the one identified 

in monkeys, in which numerosities that are closer have more overlapping representation 

and thus, are harder to discriminate.  

Moreover, based on the behavioral data showing that performance on both 

symbolic and non-symbolic comparison is modulated by the ratio of the magnitudes, 

researchers have argued that symbolic numerals inherit the same representational code 

of their non-symbolic counterparts (Piazza, 2010; Piazza et al., 2007). Recent studies 

using a similar fMRI adaptation paradigm suggest that this may be the case (Goffin et 

al., 2019; Holloway & Ansari, 2010; Notebaert et al., 2010; Vogel et al., 2015, 2017). 

Specifically, in these studies, researchers used a symbolic version of Piazza’s 

adaptation design. Instead of dot arrays, habituation effects were triggered by the 

repeated presentation of a symbolic numeral (e.g., number “6”). The habituation phase 

was then interrupted by a numerical deviant (e.g., number “9”). Similar to the Piazza 

study, by varying the numerical magnitude of the deviants in a parametric fashion, these 

studies have successfully identified a subregion of the parietal cortex (the intraparietal 

sulcus; IPS) where activation decreases during the adaptation phase and rebounds 

after the presentation of deviants. Critically, the recovery of the activation is a function of 

the numerical ratio between the adaptation and the deviant number: the larger the ratio 

between two numerals, the smaller the signal recovery in the IPS. These results are 

consistent with the tuning curve model. Under this model, neurons responding to 
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numeral 6 also respond, in less degree, to numeral 5 and vice versa. Because of that, a 

portion of the neurons coding for numeral 5 also get adapted during the habituation 

phase and only the remaining, non-shared portion detects a change when deviant 5 is 

presented. As the ratio between deviant and adaptation stimuli decreases, so does the 

proportion of shared neuronal populations and thus, a larger response to the deviant is 

observed. These results represent strong evidence in favor of an analog code 

underlying the processing of symbolic numerals. 

Contrary to non-symbolic stimuli, in which the physical properties of the dot 

patterns cannot be fully controlled and may represent a confound, there is nothing in the 

visual shape of the numerals that may fully explain such ratio-dependent recovery (but 

see Cohen, 2009). In fact, the semantic nature of this effect has been confirmed by 

further replications of this paradigm in a cross-linguistic sample -using Arabic numerals 

and Chinese Ideographs- showing that this effect only occurs when participants know 

the meaning of the symbols (Holloway et al., 2013).  

In summary, the parallel between behavioral and neuroimaging ratio signatures 

during both symbolic and non-symbolic processing has been taken as evidence of a 

unique abstract representation of numerical information. This has been one of the most 

influential theories in the field of numerical cognition, with significant implications for our 

understanding of how symbolic numerals are represented in the brain.  
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1.2. New evidence challenging the tuning curve model 

Despite the popularity of the tuning curve model as a plausible code to represent 

number symbols, the key ideas at the core of this theory are currently been subject of 

debate (see Leibovich & Ansari, 2016; Reynvoet & Sasanguie, 2016; Wilkey & Ansari, 

2020 for detailed reviews) as some researchers have failed to find support for some of 

the predictions that can be derived from this theory. For example, if there is indeed a 

unique abstract code to represent both symbolic and non-symbolic magnitudes, 

conversion between both formats should be a relatively easy, if not automatic, process. 

To put this idea to the test, Lyons et al. (2012) presented participants with a comparison 

task that included three different conditions: a non-symbolic comparison, a symbolic 

comparison, and a mixed-format comparison. The authors hypothesized that a strong 

link between numerals and their corresponding analog magnitudes would result in a 

very low cognitive cost of the mixed comparison. However, their results point in another 

direction. Numerical comparisons across different formats were always less accurate 

and slower than comparisons within the same format, an effect that could not be 

explained by the differences of visual properties. These results do not support the 

existence of a strong mapping between both systems, at least during adulthood, 

although the authors do not rule out the possibility of such link during the first stages of 

learning. 

In addition to the behavioral evidence, the availability of new multivariate analysis 

methods, have provided new information about the distributed patterns of activation 

across specific brain regions when participants are presented with numerical 

information. While traditional univariate analyses have provided insights into which brain 
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regions may play an essential role in the representation of numerals, the fine-grained 

information about the distributed activation of individual voxels is usually lost as 

activation is averaged across whole regions. In contrast, multivariate methods allow 

researchers to test whether activation of similar regions across non-symbolic and 

symbolic processing results from similar representations or the coexistence of different 

neuronal populations with different properties across the same regions.  

Studies using machine learning methods to analyze brain activity during number 

processing tasks have confirmed that magnitude information can be decoded from the 

activation of parietal regions, for both symbolic and non-symbolic stimuli (Bulthé et al., 

2014, 2015, 2018; Damarla & Just, 2013; Eger et al., 2009; Wilkey et al., 2020). 

Consistent with the tuning curve model, some studies also found that decoding 

accuracy between non-symbolic arrays increased with numerical distance (Bulthé et al., 

2014; Eger et al., 2009). However, surprisingly, the same effect was not observed for 

symbolic numerals.  

Another critical question that these studies have addressed is whether algorithms 

trained to identify numerosity from one format can accurately classify stimuli on the 

other format. If there is a unique, analog representation of numerals underlying both 

symbolic and non-symbolic stimuli, then we should expect considerable overlap 

between the patterns across both formats, resulting in a high level of cross-format 

classification. Results from studies testing this prediction have not been consistent, with 

some authors reporting some degree of cross-format classification (Damarla & Just, 

2013; Eger et al., 2009), while other not (Bulthé et al., 2014, 2015). For example, Eger 

et al. (2009) found that classifiers trained on non-symbolic stimuli did not generalize to 
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symbolic stimuli. However, when classification was attempted in the other direction, 

from symbolic to non-symbolic, they did observe some degree of generalization, 

however the accuracy was lower than 60% (chance = 50%). In a more recent study, 

with a larger sample size, Wilkey et al. (2020) found cross-format generalization in both 

directions, from symbolic to non-symbolic stimuli and vice versa. However, as the 

authors point out, this data suggest the existence of shared neural resources across 

both formats at a certain spatial scale; however, it cannot establish whether both 

representations completely overlap.  

On the other hand, studies using Representational Similarity Analysis (RSA, 

Kriegeskorte, Mur, & Bandettini, 2008) have found very low correlations between the 

neural patterns of activation associated with numerals and dot arrays (Lyons et al., 

2015a). This method also allows researchers to compare how the observed pattern of 

similarities between individual stimulus fits different theoretical predictions. For example, 

these studies have confirmed that similarities in the distributed patterns of neural activity 

along parietal regions when participants are presented with non-symbolic stimuli can be 

predicted by ratio (Lyons et al., 2015a; Lyons & Beilock, 2018). This is in line with the 

tuning curve model for the representation of analog magnitudes. The larger the ratio 

between two numbers, the larger the similarity in the distributed patterns as a result of a 

larger overlap between the populations of neurons tuned to each numerosity. In contrast 

to the non-symbolic number processing data, Lyons et al reported that the ratio model 

does not fit the geometry of similarities when processing symbolic numbers. Moreover, 

when comparing the neural patterns of the symbolic numerals, researchers found near 
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zero correlation between them, suggesting that symbols are represented independently 

from one another (Lyons et al., 2015).  

In summary, while there seems to be evidence favoring the tuning curve model to 

represent non-symbolic magnitudes in the human brain, direct proof of this being the 

system that supports the representation of number symbols has not been reported. 

Critically, some studies have demonstrated that distance and ratio effect during number 

comparison can also appear due to other factors, such as differences in stimulus 

frequency. It is known that the probability of encountering an Hindu-Arabic digit does not 

follow a uniform distribution (Benford, 1938; Dehaene & Mehler, 1992). In a study 

measuring the regularities in the frequency of numerals across different languages, 

Dehaene and Mehler quantified those probabilities and found a consistent decrease in 

the frequency of numerals with increasing magnitudes. Some authors have 

hypothesized that because small numerals are considerably more frequent in our daily 

interactions with the environment, their representation may be more accurate. To test 

this hypothesis, Krajsci et al. (2016) used a paradigm in which participants had to learn 

new numerical symbols and manipulated the frequency distributions. They found that 

size effects during numerical comparison tasks using the newly learned symbols only 

appeared when the frequency of presentation of the symbols was uneven. Consistent 

with these results, one recent study using RSA found that similarities in the patterns of 

activation associated with individual numerals along the parietal cortex are better 

predicted by frequency of co-occurrence, rather than ratio (Lyons & Beilock, 2018). 

These results raise the need to revisit previous neuroimaging evidence about the neural 

representation of numerals. Critically, if other factors such as frequency may explain the 
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behavioral signatures observed in symbolic comparison, it is possible that it also 

explains effects on brain activation, such as the ratio-dependent recovery observed in 

the IPS during adaptation paradigms.  

    While the existence of some degree of overlap between symbolic numerals and 

analog magnitudes in parietal regions cannot be completely ruled out, the link between 

these two representations may be more dynamic than previously hypothesized. As has 

been proposed by some authors, it is possible that associations between both systems 

only occur during initial stages of learning (Lyons et al., 2012), or are limited to really 

small numerosities (Reynvoet & Sasanguie, 2016). During development, as the more 

abstract properties of numerals become more relevant for more complex math abilities, 

initial links between symbols and magnitudes may be gradually replaced by other, more 

relevant symbol-symbol associations. Alternatively, features of the symbolic system 

such as order and differences in frequency distributions may bias the learning process 

from the very beginning.  

The combination of experimental paradigms that can accurately capture 

developmental changes in the brain, combined with the new methods for fMRI 

multivariate data analysis may help to answer these questions. However, our ability to 

study how representations of numerals change across development and learning is 

constrained by the limitations of current neuroimaging techniques. When participants of 

different ages are asked to complete a task within the scanner, it is hard to discriminate 

whether observed changes are due to a refinement of the representation of numerical 

information or other general domain processes such as age-related differences in 

reaction times or task comprehension (Poldrack, 2000). Passive paradigms, such as the 
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ones described above, are a suitable alternative to this limitation, since they 

disconfound developmental changes in behavior from age-related changes in the 

underlying neural representation (Nordt et al., 2016).  

One important argument in favour of this fMRI adaptation paradigm with symbolic 

numerals relies on the consistency of the results across multiple, independent 

replications. The ratio-dependent recovery of the signal appears with either small or 

large numbers (Notebaert et al., 2010), visual or auditory presentation modalities (Vogel 

et al., 2017), children or adults (Goffin, 2019; Vogel et al., 2015). This body of research 

provides a strong foundation for the use of this design to study automatic responses to 

numerals in the absence of explicit task demands and raises the need to understand 

better the neural mechanisms that cause this effect. 

 

1.3. The current study 

With the current study, I aimed to understand better the neural basis of symbolic 

numbers representation and associated developmental changes. Specifically, I carried 

out a secondary analysis of an open fMRI data set including 45 children from ages 6 to 

14 (Goffin, 2019). In particular, this study used a method known as fMRI adaptation to 

glean insights into the neural correlates of symbolic number processing and age-related 

differences therein. In the original study, the authors found neural habituation effects 

across parietal regions during the repeated presentation of a symbolic numeral; 

followed by a ratio-dependent rebound of the signal after the presentation of a deviant. 

In order to better understand the neural mechanism at the base of this effect, the 

current study will use a Representational Similarity Analysis (Kriegeskorte, Mur, & 
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Bandettini, 2008) to assess the distributed patterns of activation generated by the 

numerical deviants across specific regions of the brain and the changes that occur in 

this representation across development.  

Specifically, I tested whether the ratio-dependent rebound of the BOLD signal 

observed at the univariate level translated into ratio-dependent similarities at the 

multivariate level. If the overlap between the populations of neurons coding for specific 

numerals is consistent with the tuning curve model - as has been hypothesized in the 

past - we should expect this to be true. In other words, deviants that are closer to the 

adaptation stimuli (larger ratio) should have more overlapping representations and, 

therefore, elicit a more similar pattern of activation than those that are further away. 

Additionally, I examined whether the pattern of similarities between the numerals is 

driven by their lexical frequency. Since we know that smaller numerals are more 

frequently encountered in real life, the probability of any two small being together is 

higher than that of two larger numerals. As a result, smaller numerals may have more 

similar representations than larger numerals. Recent studies suggest this is a better 

model to predict similarities between the neural representation of numerals along the 

IPS (Lyons & Beilock, 2018). However, those results come from the analysis of neural 

responses in the adult brain and thus, may reflect only the end state of a representation 

which is gradually constructed and refined over the course of learning and experience. 

The present study extended those findings by testing whether this model is also a good 

predictor of the similarity space during the initial years of learning, or whether this 

frequency-based structure is only gradually established as a result of the interactions 

with numerals across development. In addition, in contrast to Lyons et al. (2018) who 
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used a number matching task, the present study analyzed patterns of activation in 

response to numerals during a passive paradigm. Previous studies have shown that 

activation of parietal regions during this paradigm is sensitive to the magnitude 

information being presented, even though participants are not required to perform any 

numerical judgment.  
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2. Methods 

2.1. Participants 

The data used for the current analysis was originally collected by Goffin 

(2019). They recruited children across 9 different age points, ranging from 6 to 14 years 

old. The final sample included 45 participants (18 females, MAge = 125.44 months, SDAge 

= 31.46 months), 5 per age group. In order to reach this number of valid datasets, 

researchers had to recruit a total of 65 children. Twenty participants had to be excluded 

from the analysis according to pre-registered criteria (available at: https://osf.io/amuc5/). 

For the current analysis, I used the same inclusion parameters as the original study.  

Participants had to be healthy, right-handed, fluent-English speakers. On each 

functional run participants had to meet the minimum accuracy (at least 75%) and head 

motion criteria (< 3mm across run and < 1.5mm volume-to-volume displacement). Runs 

that did not meet these parameters were left out of the analysis. Because of that, some 

participants only contributed 2 or 3 functional runs to the final dataset. Participants with 

less than 2 valid runs were excluded completely.  In addition, two participants were able 

to complete 5 runs of the task. In those cases, accuracy and head motion was assessed 

for each run and only the four best were included in the analysis. As a result, a total of 

161 valid data sets were included in our analysis.  
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2.2.  fMRI Task and Stimuli  

Functional data was collected while participants completed 4 runs of a symbolic-

number adaptation task. The task consisted of several repetitions of the numeral 6, 

consistently interrupted by a deviant (Figure 2). The length of the repetition phase was 

varied across the run, ranging from 5 to 9 repetitions (overall mean of 7), to create a 

jitter in the interval between deviants and oversample the hemodynamic response. 

Deviants were selected according to their ratios relative to number 6, calculated as 

smaller / larger numeral. Deviants 3 and 12 represented the Small Ratio condition (ratio 

= .5). Deviants 4 and 9 represented the Medium Ratio condition (ratio = .67). Finally, 

deviants 5 and 8 represented the Large Ratio condition (ratio = .75 and .83, 

respectively). During a single run, there were three repetitions of each deviant (for a 

total of 18 numerical deviant trials).  

 

 
Figure 2. fMRI task and stimuli. Representation of one experimental run. 
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In addition to these deviants, the adaptation phase could also be interrupted by 

either a catch trial (8 per run) or a null trial (4 per run). Catch trials consisted of any of 

the deviant numerals but accompanied by a Smurf. Participants were instructed to 

respond to these trials with a button press, using their right hand. Null trials consisted of 

yet another presentation of the adaptation numeral and thus, they look identical to the 

adaptation phase. During the analysis, these trials will be used to estimate the neural 

activation corresponding to the numeral 6. The order of presentation of different trials 

types was randomized across the run. Catch trials in particular were pseudo-

randomized so participants could not predict their presentation, but they were never 

next to each other.  

Across the whole experiment, the stimuli were presented during 200ms, 

interspersed with a blank screen with a duration of 1200ms. To avoid adaptation effects 

related to low-level properties of the stimuli both font and screen location were varied 

consistently during the experiment. Additional details about the procedure could be 

found on Goffin (2019).  

 

2.3. fMRI acquisition 

Anatomical and functional MRI data was collected with a 3T Siemens Magnetom 

Prisma scanner using a Siemens 32-channel head coil. To collect fMRI data, a BOLD- 

sensitive T2* weighted echo-planar sequence was used. Each volume included 48 

slices that covered the entire brain (voxel size = 2.5mm x 2.5mm x 2.5mm, 2.5mm 

thickness, TR = 1000ms, TE = 30ms, multi-band factor = 4, FOV = 208x208mm, matrix 

size = 84 x 84, flip angle = 40°. The slices were collected in an ascending-interleaved 
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method. A total of 386 volumes were collected for each run of the adaptation task. The 

anatomical data was collected using high-resolution T1-weighted images in the sagittal 

plane (voxel size = 1mm x 1mm x 1mm, TR = 2300ms, TE = 2.98ms, TI = 900ms, flip 

angle = 9°, in-plane resolution = 256mm x 256mm). A total of 192 slices covering the 

whole brain were collected.  

 

2.4. fMRI Preprocessing 

Imaging data was pre-processed using BrainVoyager, version 20.6 (Brain 

innovation, Maastricht, the Netherlands; Goebel et al., 2006). Anatomical images were 

skull separated, corrected for intensity inhomogeneities and transformed to MNI 

space.  Functional data was processed using slice scan-time correction using cubic 

spline interpolation, low frequency drift removal using a high-pass filter with a 2 cycles 

cut-off (GLM with Fourier basis set), 3D head motion correction using trilinear/sinc 

interpolation. Spatial smoothing was applied only for the univariate contrasts (6mm 

FWHM Gaussian kernel); the multivariate analyses were performed on unsmoothed 

data. Finally, functional and anatomical data were co-registered to the same space 

(gradient-based registration) and functional images were resampled to 3mm isotropic 

voxel.  

The stimuli presented during the experimental task were modeled into a GLM and 

convolved with a two-gamma hemodynamic response function. Different GLM’s were 

used for the ROI selection procedure and the RSA analysis, as specified down below. 
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2.5. Predictive models 

2.5.1. Ratio 

The numerical ratio between numerals was calculated as [ratio = min(n1,n2) / 

max(n1,n2)]. This model assumes equivalent activation patterns for deviants below or 

above the adaptation numeral, provided that the ratio is the same.   

2.5.2. Frequency 

The frequency with which each number appears in everyday life was calculated 

according to Benford’s Law (Benford, 1938). This law describes accurately the 

probability of encountering a numeral n in the first (leftmost) position of a number as: p = 

log10(n+1) – log10(n). In a subsequent study, Dehaene and Mehler (1992) tested is 

whether the law can in fact be used to predict the frequencies of numbers as a whole, 

rather than digit positions. They found that the law does provide a very accurate 

estimate of the frequency of single-digit numerals. This estimation of frequency is highly 

correlated with number size: smaller numerals are more frequent than larger ones.  

However, it should be noted that Benford’s Law does not accurately predict certain 

peaks in the frequency distribution of numerals that are frequently used in 

approximation contexts, such as 10, 12, 20 or 100. As a result, it is unclear what would 

be the exact estimation of frequency value for the numeral 12 included in our task. 

Given the lack of either raw data or a specific algorithm to estimate this probability, and 

for the sake of simplicity, I used Benford’s Law as an approximation for the frequency of 

numeral 12. Throughout all the analyses, I tested whether excluding this numeral from 

the analyses had an impact on the results. 
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Finally, in order to predict pattern similarity on any two numerals based on this 

model, I calculated a joint frequency measure. This is, the product of the numeral’s 

individual probabilities. This procedure is similar to the one used by Lyons & Beilock 

(2018).  

 

2.6. Analysis Plan 

A complete analysis plan was elaborated and preregistered before having access 

to the neuroimaging data (pre-registration can be found at https://osf.io/t4jb3/). The 

following sections contain the description of all the pre-registered procedures. 

2.6.1. ROI selection 

Two different criteria will be used for ROI selection. First, a univariate contrast will 

be run on the smoothed data (6mm kernel) in order to identify regions that respond to 

the presentation of the deviant events (See Figure 2 above). The GLM used for this 

analysis will include two main regressors: one for the main effect of change, in which all 

deviants are assigned the same weight; and one parametric regressor, in which 

deviants are weighted differently according to their ratio to the adaptation stimuli (the 

repeated 6’s). In addition, catch and null trials will be included in the GLM as predictors 

of no interest. The adaptation phase will be modeled as baseline. 

Regions of interest will be selected using the conjunction [Main effect > Baseline] + 

[Parametric effect > Baseline]. With this conjunction I am aiming to identify regions that 

respond to the change introduced by deviants in a meaningful way, avoiding areas that 

respond to low level changes or possible spurious parametric effects.  In other words, 



 

 

21 

 
 

this conjunction identifies regions that are both modulated by the presentation of the 

deviants and that are correlated with the ratio between the deviant and the habituation 

stimuli. Initially, significant clusters will be identified using an uncorrected threshold of 

p<.001 and then corrected for multiple comparisons at the cluster level using Monte 

Carlo simulations (1000 iterations) at p <.05 (Forman et al., 1995). In order to make 

results more interpretable, large clusters will be split into smaller regions using a k-

means clustering algorithm (Lloyd, 1982) implemented in Matlab (version 

9.5.0.1298439, R2018b). This conjunction analysis is similar to previous studies 

describing the parametric recovery of the BOLD signal in response to deviants across 

the parietal cortex (Goffin, 2019; Vogel et al., 2015). With this part of the analysis, I aim 

to characterize the multivariate properties of the regions showing this particular effect.  

In a second set of analyses, I will use an independent ROI selection method. 

Specifically, I will include the subregions of the IPS defined by the Juelich Atlas 

probability maps (Figure 3). This atlas defines three different subdivisions of IPS:  IP1, 

IP2 (Choi et al., 2006) and IP3 (Scheperjans, Eickhoff, et al., 2008; Scheperjans, 

Hermann, et al., 2008). These subdivisions were defined taking into account the 

cytoarchitectonic properties of the tissue, which makes them well suited to test 

hypotheses about brain function. To avoid overlapping between the probability maps, 

only those voxels with at least a 40% probability of being part of a subdivision will be 

included in the ROIs. Excluding the voxels with lower probabilities should result in an 

increased anatomical precision, while providing an accurate estimate of the real size of 

the subdivision (Eickhoff et al., 2006). 
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Figure 3. Subdivisions of the IPS according to Juelich Atlas (unthresholded) 

 

2.6.2. Representational Similarity Analysis  

In order to obtain the activity estimates that will be used for the Representational 

Similarity Analysis, I will run an RFX GLM on the unsmoothed functional data including 

separate regressor for each of the six deviants, one regressor for null trials and one 

regressor for catch trials. The pattern of neural activation will be assessed by extracting 

beta values for each condition in the functional voxels (3x3x3mm) in each ROI. 

In each individual ROI, the similarities between the patterns will be tested during 

two separate analyses. In the first part the similarities between each deviant and the 

adaptation numeral will be assessed. This analysis is the multivariate equivalent of the 

traditional Deviant VS Adaptation contrast that has been done by previous studies. In 

the second part, the similarities between deviant numerals only will be tested against 

our conceptual models.  

2.6.2.1. Deviant to Adaptation Similarity 

For the first part of our analysis (full analysis plan depicted in Figure 5), the activity 

patterns corresponding to each of the six deviants and the adaptation numeral will be 
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compared in each individual ROI. The pattern associated with the adaptation numeral 

will be estimated using the data from null trials, not the baseline adaptation phase. As a 

result, comparisons between this pattern and that of numerical deviants should not be 

biased by the [Deviants > Baseline] contrast used during the ROI selection procedures 

(see Kriegeskorte et al., 2009). In addition, keeping the adaptation phase as baseline 

would be consistent with previous univariate contrasts performed on this data, which will 

make results more comparable. 

Representational similarities within a particular ROI will be estimated using 

Pearson’s r. The beta maps corresponding to each number will be vectorized and then, 

the correlation between the vectorized maps of each deviant and numeral 6 will be 

computed. These will be partial correlations, as catch trials will be included as 

covariates. While catch trials also include a motor component (participants are 

supposed to press a button in response to this trials), they share with the rest of the 

stimuli other task related components. Controlling for these trials would give us the 

opportunity to isolate the activity uniquely related to the representation of numerals. 

However, zero-order correlations will be computed as well and relevant changes in the 

results will be reported. Since Pearson’s r values are not normally distributed (values 

range from -1 to 1), the obtained correlations will be normalized using a z transformation 

(z =arctanh(r)) in order to used them as input for further statistical analysis.  

For a given ROI, the similarities values (normalized correlations) obtained on each 

participant will be analyzed at the group level using a repeated-measures ANOVA 

with polynomial contrast. Figure 4 represents the two main predictions for this analysis. 

If a larger ratio between the deviants and the adaptation numeral is associated with 
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higher similarities in the underlying patterns of activation (Hypothesis 1), we should 

expect a significant quadratic trend (blue line). Under this model, the mean similarities 

between deviants in the same ratio bin should be equal.  

 

 
Figure 4. Expected pattern similarities between each deviant and the adaptation numeral 

as predicted by the Ratio (blue) or the Frequency (yellow) model. 

 

 

On the other hand, if the similarities are predicted by the joint frequency of 

numerals (Hypothesis 2), then we should expect a significant linear trend (yellow line), 

indicating a decrease of the similarities as the magnitude of the deviant increases. To 

confirm that pattern, I will test whether, for a given ratio, similarities of the deviants 
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below the adaptation numeral are significantly larger than the ones above (Hypothesis 

2.1) using a t-test with significance level of p<.05.  

Finally, follow-up analysis will be done to test the effect of the participants’ 

chronological age (Hypothesis 1.1 for the ratio model; Hypothesis 2.2 for the frequency 

model). To do that, I will repeat the ANOVA analysis but adding age as a between-

subjects factor. For all of our analysis, I will report our results at the uncorrected 

threshold of p=0.05, but also using a Dunn-Sidak correction for multiple comparisons 

(Šidák, 1967), in which the alpha level is adjusted according to the number of 

independent ROIs. 
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Figure 5. Deviant – Adaptation similarity analysis 

 

 

2.6.2.2. Within-Deviant Similarity 

Next, the activity patterns corresponding to deviant numerals only will be 

compared on each individual ROI (full analysis plan depicted in Figure 7). The similarity 

between patterns will be calculated using Pearson’s r correlations. This is, all possible 

pairwise correlations between the vectorized beta maps corresponding to each deviant 

will be computed. Since all the deviants are presented after a repeated stream of 
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numeral 6, null trials will be included as a covariate. This would allow us to remove 

influence of previous presentations of the adaptation numeral from the pattern and 

isolate the effects specific to each individual deviant. However, zero-order correlations 

will be reported as well. The obtained correlations will be also normalized here, using a 

z transformation, where z =arctanh(r).  

 

 
Figure 6. (A) Simulated, grayscale representational similarity matrix. (B) Prediction form 

the Ratio model. (C) Prediction from the Frequency model. 

 

For each individual participant, a Representational Similarity Matrix (RSM, Figure 

6A) will be built, containing all pairwise normalized correlations. This matrix is then 

tested against predictions built from a Ratio (Hypothesis 3; Figure 6B) and a Frequency 

model (Hypothesis 4, Figure 6C), using Pearson’s r. The obtained correlations between 

participants’ RSM and each of the two models are then z-transformed and analyzed at 

the group level using a one-sample t-test to determine whether they are significantly 

different from zero. If neural activity fits the predictions from the model, then we would 

expect that the correlation between the individual RSM’s and the model should be 
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significantly larger than 0. On the other hand, a significant negative correlation would 

indicate neural encoding in the opposite direction as the model prediction.   

This procedure is repeated across each ROI. Model fit significance will be reported 

using both an uncorrected alpha of p<.05, and after correcting for multiple comparisons 

also using a Dunn-Sidak method (Šidák, 1967) in which the alpha level is adjusted 

according to the number of ROIs.  

Next, I will compare model fit of the Ratio and the Frequency model by running a 

two-sample t-test on the model fit values, using a significance level of p<.05. This would 

allow me to test whether one model described the neural encoding of numerals 

significantly better than the other (Hypothesis 5).   

For any region in which model fit is non-significant, I will run Bayesian one sample 

t-test using JASP software, Version 0.12.2 (JASP Team, 2019), in order to calculate the 

amount of evidence in favour of the null hypothesis (the mean correlation between the 

neural representation is and the model is zero). Support for the null model (that the 

mean similarities between all deviants and the adaptation stimuli are equal) will be 

estimated using Bayes Factor (BF). Results will be interpreted using the guidelines from 

Jarosz & Wiley (2014):  BF between 1 and 3 = weak/anecdotal support (not enough 

evidence to make any substantial claims either for or against the predicted relationship); 

BF between 3 and 10 = substantial support (enough evidence to make moderate claims 

about effect); BF between 10-100 = strong evidence (enough evidence to be make 

moderate/strong claims about effect); BF greater than 100 = very strong/decisive 

evidence (enough evidence to make strong claims about effect). 
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Regardless of significance, I will test whether model fit can be predicted from 

participants’ chronological age (Hypothesis 3.1 for the Ratio model; Hypothesis 4.1 for 

the Frequency model). In other words, I will try to answer the question of whether the 

predictive value of each of our conceptual models changes across age. To do that, I will 

use the model fit measures obtained before for each participant (normalized correlations 

between the RSM and the model’s prediction) and correlate this measure with 

participant’s age in months. Pearson’s r with significance level of p<.05 will be used for 

this correlation. If children learn numerals by mapping symbols to their analog 

counterparts but then replace these relationships with symbol-symbols associations, 

then we may expect differences in model fit measures across ages. Ratio may fit the 

neural representation during the first years, but then frequency may become more 

important. In that case, we should see a negative correlation between model fit 

measures of the Ratio model and age, but a positive correlation between Frequency 

model fit and age. For any non-significant correlations with age I will then run a 

Bayesian Pearson’s correlation. Evidence for the null will be estimated using Bayes 

Factor. Interpretation of the Bayes Factor will be done using the guidelines described 

above.   



 

 

30 

 
 

 
Figure 7. Deviant – Deviant similarity analysis plan 
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3. Results 

3.1. Regions of Interest definition  

The conjunction [Main Effect > Baseline] + [Parametric Effect + Baseline] revealed 

9 significant cluster showing a meaningful response to the numerical deviants (Table 1, 

Regions from Univariate contrast). These are regions that respond to the presentation 

of deviants with an increase in the overall level of activation; but most importantly, the 

rebound is larger as the deviant was further away from the adaptation numeral. We 

found significant clusters along bilateral parietal cortex, bilateral fusiform cortex, and 

others (Figure 8).  

 

 
Figure 8. Significant clusters for the univariate contrast [Main > Baseline] + [Parametric > 

Baseline]. Coordinates are in MNI space. 
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Table 1. Regions identified with the univariate contrast [Main > Baseline] + [Parametric > 
Baseline] 

ROI Label Mean x Mean y Mean z SD x SD y SD z Anat. 
Voxels 

Funct. 
Voxels 

Right Middle Temporal Gyrus 
(RMTG) 

55.96 -48.09 -10.41 2.79 3.56 2.83 967 33 

Right Middle Frontal Gyrus 

(RMFG) 
42.20 19.96 25.14 4.93 11.86 5.80 6492 261 

Right Temporal Fusiform Cortex 

(RTFC) 
36.52 -47.79 -22.55 7.24 6.42 2.55 2452 98 

Right Intraparietal Sulcus (RIPS) 30.73 -61.47 43.04 4.58 5.49 7.38 7827 296 

Brain Stem (BS) 6.21 -33.39 -3.68 7.29 4.00 2.70 1207 40 

Right Thalamus (RT) 9.98 -18.17 12.86 2.99 3.74 2.05 719 27 

Cingulate Gyrus (CC) 2.80 -22.41 32.2 4.09 14.81 6.72 4598 193 

Left Intraparietal Sulcus (LIPS) -27.99 -62.14 42.59 3.66 6.20 5.49 4371 167 

Right Temporal Fusiform Cortex 

(RTFC) 
-38.52 -55.20 -20.27 3.92 8.49 5.76 2843 125 

Coordinates are in MNI space. Number of voxels are provided in both the anatomical and functional 

space. 

 

 

Figure 9 shows the regions defined from the probabilistic maps included in the 

Juelich Atlas. Anatomical information about these clusters, including location and 

resulting number of voxels after applying the p > .40 threshold. Can be found in Table 2 
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Figure 9. A. Clusters defined from the IPS subdivisions on Juelich Atlas, including only 

voxels with p>.40; B. Comparison of IPS subdivisions and parietal regions from 
univariate contrast. Coordinates are in MNI space. 

 

 
Table 2. Regions defined from the probabilistic maps on Juelich Atlas 

ROI Label Mean x Mean y Mean z SD x SD y SD z Anat. 
Voxels 

Funct. 
Voxels 

AIPS_IP1_Left (IP1L) -36.59 -54.73 44.10 3.67 4.47 4.33 1092 68 

AIPS_IP1_Right (IP1R) 40.28 -52.38 43.02 3.91 3.19 3.39 1498 57 

AIPS_IP2_Left (IP2L) -46.7 -45.89 46.25 3.11 3.11 4.33 1030 41 

AIPS_IP2_Right (IP2R) 44.39 -45.37 49.49 3.07 3.07 4.88 987 36 

AIPS_IP3_Left (IP3L) -31.79 -60.06 50.00 4.86 4.86 5.74 2380 89 

AIPS_IP3_Right (IP3R) 35.04 -55.35 54.92 5.26 5.26 4.99 1964 73 
Coordinates are in MNI space. Number of voxels are provided in both the anatomical and 
functional space. 
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3.2. Deviant - Adaptation similarities 

We performed a repeated measures ANOVA to assess whether the parametric 

effect observed across the 9 clusters identified from the univariate contrast translated 

into parametric differences in the distributed patterns of activation. We are reporting 

significant results at both the uncorrected and corrected thresholds (Table 2), however, 

for the discussion we will only focus on those effects that remained significant after the 

correction for multiple comparisons.  

We first analyzed the significance of the overall ANOVA model to determine if 

there was at least one deviant that was significantly more or less similar to the 

adaptation numeral, compared to the other deviants (see Appendix A for the full ANOVA 

table). However, for our analysis, the most critical results are the within-subject 

contrasts (Table 2). This test would tell us whether, at the individual level, the 

similarities between each deviant and the adaptation numeral follow the trend predicted 

by ratio or frequency. Regions showing ratio-dependent similarities should have a 

significant quadratic trend, and regions showing frequency-dependent similarities 

should have a significant linear trend. The trends observed on each ROI are depicted in 

Figure 10.  

Among the regions defined from the univariate contrast, the overall F for 

differences across the deviant factor was significant at the uncorrected threshold only in 

the LIPS cluster (F(5,220) = 2.26, p = .049, η2= .049). In other words, after individual 

differences in overall similarity values are taking into account, only a 4.9% of the 

variance in the similarity values was due to differences across deviants. The test of 

polynomial contrast revealed small but significant linear (F(1,44) = 4.936, p = .031, η2= 
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.101) and quadratic trends (F(1,44) = 4.3, p = .044, η2= .089) in this region.  However, 

neither the main effect, nor the linear or quadratic trend survived the Dunn-Sidak 

correction for multiple comparisons.  

 

 
Figure 10. Average similarities between each deviant and the adaptation numeral on each 

ROI included in the analysis 
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Table 3. Within-Subject polynomial contrasts of repeated measures. 

ROI CONTRAST SS MS F Sig. η2 
IP1L Linear 0.378 0.378 2.461 0.124 0.053 

Quadratic 0.001 0.001 0.004 0.948 0.000 

IP1R Linear 0.054 0.054 0.339 0.563 0.008 

Quadratic 0.249 0.249 1.621 0.210 0.036 

IP2L Linear 0.474 0.474 3.573 0.065 0.075 

Quadratic 0.026 0.026 0.128 0.722 0.003 

IP2R Linear 0.596 0.596 2.901 0.096 0.062 

Quadratic 1.391 1.391 5.000* 0.030 0.102 
IP3L Linear 0.445 0.445 2.707 0.107 0.058 

Quadratic 0.009 0.009 0.076 0.784 0.002 

IP3R Linear 0.004 0.004 0.043 0.838 0.001 

Quadratic 0.025 0.025 0.143 0.707 0.003 

BS Linear 0.118 0.118 0.759 0.388 0.017 

Quadratic 0.008 0.008 0.041 0.840 0.001 

CC Linear 0.206 0.206 2.093 0.155 0.045 

Quadratic 0.049 0.049 0.421 0.520 0.009 

LIPS Linear 0.664 0.664 4.936* 0.031 0.101 
Quadratic 0.431 0.431 4.300* 0.044 0.089 

LTFC Linear 0.62 0.620 5.198* 0.028 0.106 
Quadratic 0.119 0.119 1.356 0.251 0.030 

RIPS Linear 0.361 0.361 2.93 0.094 0.062 

Quadratic 0.203 0.203 1.974 0.167 0.043 

RMFG Linear 0.021 0.021 0.221 0.640 0.005 

Quadratic 0.82 0.820 8.995** 0.004 0.170 
RMTG Linear 0.834 0.834 3.661 0.062 0.077 

Quadratic 0.002 0.002 0.007 0.935 0.000 

RT Linear 0.344 0.344 2.055 0.159 0.045 

Quadratic 0.068 0.068 0.335 0.566 0.008 

RTFC Linear 0.013 0.013 0.14 0.710 0.003 

Quadratic 0.231 0.231 2.771 0.103 0.059 

         *  Significant at the uncorrected p < .05 

       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 
method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 



 

 

37 

 
 

 

There were other two regions showing significant trends at the within-subject level, 

even though the overall ANOVA model was not significant. Namely, there was a linear 

trend in the LTFC cluster (F(1,44) = 5.198, p = .028, η2= .106) that was significant at the 

uncorrected p-value, but did not survived the multiple comparisons correction. More 

importantly, there was a quadratic trend in the RMFG cluster (F(1,44) = 8.995, p = .004, 

η2= .17) which remained significant even after the Dunn-Sidak correction.  

The same analysis was done for regions identified from the probabilistic maps. 

The overall ANOVA model was only significant at the uncorrected threshold in the 

cluster corresponding to the right IP2 subdivision (F(5,220) = 2.574, p = .028, η2= .055). 

This means that only 5.5% of the variance in the similarity values was related to 

differences across deviants, after controlling for individual differences across subjects. 

This regions also showed a quadratic trend (F(1,44) = 5.0, p = .03, η2= .102) that was 

significant at the uncorrected, but not the corrected threshold.    

In summary, for most of our ROI, we failed to find enough evidence to reject the 

null hypothesis that the mean similarities between each deviant and the adaptation 

numeral are equal; at least after correcting for multiple comparisons. Only the right 

Medial Frontal Gyrus showed a significant quadratic trend that survived the correction. 

These results indicate that, in this region, those deviants that were numerically closer 

(larger ratio) to the adaptation numeral had more similar distributed patters of activation 

than those that are further away.  

Two alternative versions of the analysis were also run. First, the analysis was 

repeated excluding Deviant 12. This is the only two-digit numeral included in the task 
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and it is also the only one for which Benford’s law may not accurately describe its 

frequency. Additionally, the same model was run but using the zero-order correlations to 

estimate similarity between the neural patterns, instead of the partial correlations 

controlling for catch trials reported above. Similar results were obtained on both cases 

(see Appendix B and C).  

 

3.2.1. Effect of Age on the Deviant-Adaptation similarities 

In order to test whether there were age-related changes in the structure of 

similarities between deviants and the adaptation numeral, we added participants age in 

years as a between-subject factor. Ratio or frequency dependent similarities may be 

masked at the whole group level and only be evident after accounting for age 

differences. However, for most regions, we did not find significant interaction between 

the linear or quadratic contrasts and age (Table 3). Only the BS cluster had an 

interaction (F(8,36) = 2.542, p = .026, η2= .361), but this was only significant at the 

uncorrected threshold.  

None of these results changed substantially after excluding the deviant “12” was 

excluded from the analysis or after using zero-order correlations to estimate the 

similarities, instead of the partial correlations controlling for catch trials reported here 

(see Appendix D and E).   
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Table 4. Within-Subject polynomial contrasts: interaction with Age. 

ROI Contrast SS MS F Sig. η2 
IP1L Linear 0.378 0.378 0.834 0.579 0.156 

Quadratic 0.001 0.001 0.531 0.825 0.106 
IP1R Linear 0.054 0.054 1.388 0.235 0.236 

Quadratic 0.249 0.249 0.107 0.999 0.023 
IP2L Linear 0.474 0.474 1.566 0.17 0.258 

Quadratic 0.026 0.026 0.257 0.976 0.054 
IP2R Linear 0.596 0.596 1.331 0.26 0.228 

Quadratic 1.391 1.391 1.973 0.079 0.305 
IP3L Linear 0.445 0.445 0.245 0.979 0.052 

Quadratic 0.009 0.009 1.043 0.423 0.188 
IP3R Linear 0.004 0.004 1.528 0.182 0.254 

Quadratic 0.025 0.025 1.408 0.226 0.238 
BS Linear 0.118 0.118 2.542* 0.026 0.361 

Quadratic 0.008 0.008 0.669 0.715 0.129 
CC Linear 0.206 0.206 1.021 0.438 0.185 

Quadratic 0.049 0.049 1.642 0.147 0.267 
LIPS Linear 0.664 0.664 0.769 0.632 0.146 

Quadratic 0.431 0.431 0.999 0.454 0.182 
LTFC Linear 0.62 0.62 1.631 0.150 0.266 

Quadratic 0.119 0.119 0.401 0.913 0.082 
RIPS Linear 0.361 0.361 1.523 0.184 0.253 

Quadratic 0.203 0.203 0.842 0.573 0.158 
RMFG Linear 0.021 0.021 0.9 0.527 0.167 

Quadratic 0.82 0.82 1.452 0.209 0.244 
RMTG Linear 0.834 0.834 0.724 0.669 0.139 

Quadratic 0.002 0.002 0.539 0.819 0.107 
RT Linear 0.344 0.344 0.987 0.462 0.18 

Quadratic 0.068 0.068 0.262 0.974 0.055 
RTFC Linear 0.013 0.013 0.463 0.874 0.093 

Quadratic 0.231 0.231 1.081 0.398 0.194 
         *  Significant at the uncorrected p < .05 
       **  Significant Dunn-Sidak correction; this correction was applied separately for each 

ROI selection method. For ROIs selected from univariate contrast the corrected 

threshold was p < .00568; for the ROIs selected from probabilistic maps the 

corrected threshold was p < .00851.  
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3.3. Deviant – Deviant Similarities 

We tested whether the correlational structure between the six deviants presented 

in the task (Figure 11) could be predicted by a Ratio or a Frequency model. We first 

assessed the similarities between the correlational geometry of the neural 

representations and the predictions from the model and then tested whether these 

similarities were significantly different from zero. Our results do not provide evidence in 

favor of any of these models. The model fit was not significantly different from zero in 

any of the regions included in the analysis (Table 4). We then used Bayes Factor to 

calculate the amount of evidence for the null hypothesis. In most cases, the Bayes 

Factor indicates substantial support for the null hypothesis that the correlations between 

the model and the data was not significantly different from zero.   

 

Table 5. Ratio and Frequency model fit. 

ROI Ratio Model Fit  Frequency Model Fit 

t p d BF01  t p d BF01 

IP1L 1.248 0.219 0.186 2.996  0.260 0.796 0.039 5.994† 

IP1R -1.066 0.292 -0.159 3.636  -1.195 0.239 -0.178 3.181† 

IP2L -0.195 0.846 -0.029 6.078†  1.793 0.080 0.267 1.422 

IP2R -1.261 0.214 -0.188 2.953  -0.224 0.824 -0.033 6.043† 

IP3L -0.729 0.470 -0.109 4.818†  -0.486 0.629 -0.073 5.534† 

IP3R -1.853 0.071 -0.276 1.290  -1.139 0.261 -0.170 3.377† 

BS 0.051 0.960 0.008 6.181†  1.101 0.277 0.164 3.511† 

CC 0.029 0.977 0.004 6.186†  -1.154 0.255 -0.172 3.324† 

LIPS -0.045 0.964 -0.007 6.183†  -0.836 0.408 -0.125 4.457† 

LTFC -0.419 0.677 -0.062 5.697†  0.789 0.434 0.118 4.617† 

RIPS -0.380 0.705 -0.057 5.779†  -1.167 0.250 -0.174 3.279† 

RMFG -0.647 0.521 -0.097 5.079†  -0.997 0.324 -0.149 3.885† 

RMTG -0.585 0.561 -0.087 5.265†  -1.284 0.206 -0.191 2.873 

RT -0.749 0.458 -0.112 4.754†  0.408 0.685 0.061 5.720† 

RTFC 0.523 0.604 0.078 5.439†  -1.038 0.305 -0.155 3.738† 
† Bayes Factor indicating substantial support for the null 
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Figure 11. Average Similarity Matrices for each region of interest 

 

 

We then used a two-samples t-test to compare model fit across both conceptual 

models (Table 5). We fail to find evidence in favor of any of the models. Moreover, for 

most of our regions the Bayes Factor indicates substantial support for the null of no 

difference between the predictive value of both models.  
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Table 6. Differences between Ratio and Frequency model fit.  

ROI Ratio Model Fit vs. Frequency Model Fit 
t p d BF 

IP1L 0.677 0.500 0.143 4.851† 

IP1R 0.256 0.799 0.054 6.024† 

IP2L -1.508 0.135 -0.318 0.788 

IP2R -0.609 0.544 -0.128 5.031† 

IP3L -0.092 0.927 -0.019 6.162† 

IP3R 0.117 0.908 0.025 6.155† 

BS -0.846 0.400 -0.178 3.649† 

CC 0.832 0.408 0.175 4.749† 

LIPS 0.533 0.595 0.112 5.363† 

LTFC -0.873 0.385 -0.184 4.017† 

RIPS 0.651 0.517 0.137 5.253† 

RMFG 0.485 0.629 0.102 5.598† 

RMTG 0.492 0.624 0.104 5.651† 

RT -1.526 0.134 -0.228 2.109 

RTFC 0.265 0.792 0.040 5.987† 
† Bayes Factor indicating substantial support for the null 

 

None of these results changed substantially after excluding the deviant “12” was 

excluded from the analysis (see Appendix F). Likewise, using zero-order instead of 

partial correlations yielded similar results (see Appendix G).    

 

 

3.3.1. Effect of age on the Deviant-Deviant similarities 

We assessed whether there were age-related changes in the correspondence 

between our conceptual models and the observed structure of the neural 

representation. We used Pearson Correlation to test whether model fit could be 

predicted from participants age in months (Table 6).  
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Table 7. Ratio and Frequency model fit correlation with Age. 

ROI 
Ratio Model Fit ~ Age  Frequency Model Fit ~ Age 

r p BF  r p BF 

IP1L 0.271 0.072 1.123  -0.193 0.203 2.454 

IP1R 0.142 0.353 3.541†  0.116 0.446 4.063† 

IP2L 0.143 0.348 3.514†  0.104 0.497 4.305† 

IP2R 0.149 0.329 3.390†  -0.056 0.715 5.046† 

IP3L 0.157 0.302 3.209†  0.226 0.136 1.837 

IP3R 0.459 0.002** 0.041  0.046 0.766 5.157† 

BS 0.199 0.191 2.347  -0.029 0.848 5.287† 

CC 0.177 0.245 2.796  -0.013 0.934 5.364† 

LIPS 0.119 0.436 4.012†  0.117 0.444 4.053† 

LTFC 0.447 0.002** 0.055  0.042 0.783 5.189† 

RIPS 0.234 0.122 1.685  -0.065 0.670 4.930† 

RMFG 0.029 0.853 5.293†  0.221 0.145 1.920 

RMTG 0.277 0.066 1.042  -0.168 0.269 2.976 

RT 0.492 0.001** 0.018  0.009 0.955 5.374† 
RTFC 0.171 0.262 2.924  -0.200 0.187 2.312 

         *  Significant at the uncorrected p < .05  
       **  Significant Dunn-Sidak correction; this correction was applied separately for 

each ROI selection method. For ROIs selected from univariate contrast the 

corrected threshold was p < .00568; for the ROIs selected from probabilistic 

maps the corrected threshold was p < .00851 

 

 

We found significant positive associations between age and the Ratio model fit on 

three of our regions. These correlations remained significant after correcting the p value 

for multiple comparisons. In the IP3R subregion from Juelich Atlas (r(43) = .459, p = 

.002, r2 = 0.211), the similarity matrix built from the Ratio model explained around a 

21% of the variance in the similarity values from the neural data. A similar correlation 

was observed in the LTFC cluster (r(43) = .447, p = .002, r2 = 0.200), in which around a 

20% of the neural similarities were predicted by the model. Finally, a positive correlation 

was also identified in the RT cluster (r(43) = .492, p = .001, r2 = 0.242), where the model 
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explained around the 24% of the variance in the neural similarities. All of these 

correlations were positive, indicating that model fit was better across these regions as 

age increased (Figure 12). 

 

 
Figure 12. Clusters showing a significant correlation of Ratio Model fit and Age. 

  
 

Finally, we did not find significant associations between age and the Frequency 

model fit across any of our ROI. In order to calculate the evidence for the null we 

performed a Bayesian correlation. Bayes factors indicate substantial support for the null 

hypothesis that the model fit was not significantly different from zero in most of the 

regions (Table 6).  

None of the correlations changed substantially after excluding the deviant “12” was 

excluded from the analysis (see Appendix H). Likewise, using zero-order instead of 

partial correlations yielded similar results (see Appendix I).    
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4. Discussion 

The primary goal of the present thesis was to better characterize, using 

multivariate neuroimaging analyses, the neural patterns of activation that have been 

consistently associated with the semantic processing of number symbols (e.g. knowing 

that 6 is bigger than 9). My second goal was to assess age-related changes in the 

neural activation patterns. In particular, I was interested in characterizing the spatially 

distributed neural responses during an fMRI adaptation paradigm in which participants 

are passively presented with numerals.  

In this design there are two stimulus categories: adaptation numerals and deviant 

numerals. A train of repeated adaptation numerals (e.g. “6”) is occasionally interrupted 

by the presentation of deviant numerals (e.g. “8”). The brain response to the deviants 

are the events of interest in this design. In particular, the repeated presentation of the 

adaptation numeral is thought to induce a decrease in activation (i.e. adaptation) in 

regions that code for different aspects of the adaptation numeral; and the presentation 

of the deviant numerals is thought to lead to a rebound of the overall activation. By 

manipulating the numerical magnitude of the deviants, researchers have identified 

regions in which the recovery from habituation varies as a function of the ratio between 

the deviant and the adaptation numeral (i.e. the response to the deviant increases as 

the numerical ratio between the adaptation and deviant numeral decreases) (Goffin, 

2019; Holloway et al., 2013; Notebaert et al., 2010; Vogel et al., 2015, 2017). Hence, 

these regions not only seem to detect that a variation has been introduced by the 

deviant, but also seem to be sensitive to the relative numerical magnitude change. This 

ratio-dependent parametric effect is most commonly observed in the parietal cortex, 
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which, convergent with the results of studies in which participants had to actively 

process the meaning of numerals, suggests that this region has a relevant role in the 

processing of the numerical magnitude information conveyed by the symbols.  

What might explain the presence of such a parametric effect of ratio on brain 

activation? Against the background of data from single-cell neurophysiology which 

revealed that there exist neurons that are approximately tuned to specific numbers 

(Nieder et al., 2002; Nieder & Miller, 2003, 2004), researchers have speculated that the 

parametric effect reflects a representation of numerals in which numbers close to each 

other are represented by partially overlapping neuronal populations. For example, 

Notebaert and colleagues (2010) note that the ratio-dependent parametric recovery 

from adaptation “is in line with the idea that symbolic numbers are represented by a 

place coding system […]. According to this principle, numbers activate their own 

corresponding set of neurons and will partially activate the neuronal set of neighboring 

magnitudes with a decreasing strength as a function of numerical distance” (Notebaert 

et al., 2010). This has been the most prominent explanatory account of this fMRI 

adaptation effect.  

However, since univariate analysis are not sensitive to properties of the distributed 

voxel-by-voxel BOLD response, they are not suited to directly test hypotheses about the 

degree of overlap/correlation between the populations of neurons coding for different 

number symbols. As a result, the nature of this effect remains poorly understood. Put 

differently, the current explanation of the ratio dependent response to the numerical 

deviants cannot be directly tested using univariate analyses. In the current study, I set 

out to investigate the relationship between the patterns corresponding to the different 
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deviants in an effort to better understand whether the similarity space generated during 

this task fits the aforementioned hypothesis.  

Critically, the account of the parametric effect in terms of shared representations 

directly leads to the prediction of a particular correlational structure of the neural 

responses to deviant numbers. Namely, the pattern of activation elicited by numerals 

that are closer in magnitude should be more similar than those of numerals that are 

further away. In this way, the Ratio model assumes that the representation of numbers 

is organized according to the magnitudes they represent.  

In addition, motivated by recent theories arguing that there are other associations 

among symbols that are perhaps more relevant than the magnitudes they represent, I 

also set out to test an alternative model which predicts that the representation of the 

numerals is organized according to their relative frequency. More specifically, recent 

studies have revealed that the frequency with which two numerals co-occur in the world 

can account for ratio signatures in behavioral performance (Krajcsi et al., 2016). More 

importantly, there is recent evidence that this frequency model accurately describes 

similarities in the neural patterns of activation associated with numerals (Lyons & 

Beilock, 2018). In summary, in the present thesis, using RSA analysis, I sought to 

investigate whether fMRI adaptation data can be statistically predicted by a ratio-

dependent or a frequency dependent model.  

4.1. Predictive value of the Ratio Model 

Contrary to the most prominent account of univariate ratio-dependent recovery 

from numeral adaptation data, my RSA analysis does not offer support for a 

correlational structure between numerals that depends on the ratio between the 
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adaptation numeral and the deviant. The lack of evidence in favor of the ratio model is 

particularly remarkable for those regions defined from the univariate contrast. 

Specifically, these regions were selected because they exhibited significant ratio-

dependent increases in activation at the univariate level. Said differently, the differences 

in the mean activation of these regions in response to deviant numerals did not translate 

into the predicted similarity structure of the distributed patterns. These results were 

further confirmed by the analysis of similarities among deviants alone. We found that 

the Ratio model was not a good predictor of the correlational geometry of the neural 

patterns associated with the deviants. Moreover, for most of the regions, Bayesian 

analysis revealed there was substantial evidence in favor of the null hypothesis that the 

correlation between the Ratio model and the neural data was not significantly different 

from zero. In some cases, the null was up to 5 times more likely than the alternative 

hypothesis, given the data observed.  

Our results are in line with findings from previous RSA analyses of numerical 

processing (Lyons et al., 2015b; Lyons & Beilock, 2018). These authors also found no 

ratio-dependent correlational structure of the fMRI response to numerals during a 

matching task. Our results and Lyons et al’s do not support the previously held notion 

that symbolic numerals are represented by an imprecise system of numerosity selective 

neurons with overlapping responses. Under this view, the amount of overlap in the 

neuronal population code that is used to represent any two numerals is determined by 

their ratio: as the ratio gets closer to one, the overlap in the representation is more 

pronounced, which explains why these numerals harder to discriminate during 

behavioral tasks.  
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Put differently, our findings show that numeral 6 was as similar to numeral 3 as it 

was to numeral 8. This was confirmed by our ANOVA results showing that, in most 

regions, the similarities between each of the deviants and the adaptation numeral were 

equivalent (Figure 10). In addition, by looking at our average similarity matrices (Figure 

11) it is also apparent, for a given region, there was very low variabilities in the 

correlations between the deviants. More indirectly, our findings are also consistent with 

the study by Harvey et al (2013) who identified regions having a topographic 

organization of the representation of non-symbolic magnitudes, but not for number 

symbols. 

 

4.2. Predictive value of the Frequency Model 

Across all of our analyses, we failed to find evidence of frequency-dependent 

similarities in the patterns associated with numerals. Furthermore, on 13 out the 15 

regions included in the analysis, we found substantial evidence for the null hypothesis 

that the frequency model fit was not significantly different from zero. These results are in 

contrast with findings reported by Lyons et al. (2018). They found evidence to suggest 

that the organization of symbolic numerals in the adult brain can be predicted by 

symbol-symbol association, which are determined by the frequency of co-occurrence of 

numerals. Our results do not converge with this account.  

It is possible that the lack of convergence of the results reported in this thesis and 

those reported by Lyons et al’s (2018) is due to differences between the children data 

analyzed here and adult data analyzed by them. We know from the frequency 

calculations reported by Dehaene and Mehler (1992) that Benford’s Law accurately 
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describes the frequency of spontaneous occurrence of numerals in everyday life. 

Therefore, it is reasonable that the patterns observed in the neural organization of the 

adult brain reflects these biases. However, in the case of children, “everyday life” 

interactions with numerals occur in the more controlled context of school. As a result, 

semantic associations between number symbols may be strongly biased in children by 

a different set of factors, like multiplication tables and other number facts, whose 

influence is less strong in adults. The model tested in this study may not accurately 

reflect these specific biases.  

For example, calculating the frequency of co-occurrence of two numerals by 

multiplying their individual probabilities assumes that these probabilities are 

independent. If children symbol-symbol associations are mediated, for example, by the 

frequency with which they appear together in multiplication facts, this independence is 

not granted. In fact, we know from studies estimating the frequency of number facts in 

math books from 1st to 6th grade that 2X multiplication facts are up to twice more 

frequent than 9X facts (Ashcraft & Christy, 1995). This would result in numerals like 6 

and 12 occurring more frequently together (as in “2 times 6 equals 12”) than, for 

example, 6 and 8 (as in “6 times 8 equals 48”), in contrast to what our model predicts. In 

essence, it is possible that symbol-symbol associations are more prominent than 

symbol-magnitude in the children's brain, just like has been described in adults. 

However, in order to model them appropriately, we need to develop more specific 

models of these associations that take into account the particular biases determined by 

interactions with numbers in the school context.  
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Another difference between our study and Lyon et al’s has to do with the nature of 

the task. They measured the pattern of brain activity during a matching task using 

number symbols. Participants were presented with a numeral and had to decide 

whether the following numeral was equal or different. In contrast, during our task, 

participants were not required to do any sort of numerical judgement (they only had to 

press a button when a Smurf appeared on the screen). It is possible that semantic 

associations among numerals are only activated if they are relevant for the task, which 

may explain why such relationships are not evident during our passive design.  

 

4.3. Age related effects 

Another important question I addressed, in the present thesis, is whether the lack 

of evidence for both of these models at the group level can be explained by age-related 

changes in their fits to the data. Put differently, it is possible that the relative fit of the 

two models undergoes age-related changes. Previous univariate analysis if this dataset 

failed to find correlations between age and the parametric effect (Goffin, 2019). In 

contrast, we did find age related changes in the predictive value of the Ratio model in 3 

out of the 15 regions of interest, including one of the subdivisions of the Intraparietal 

Sulcus located in the right hemisphere (IP3R). As age increased, the organizational 

structure of the representation in this region was progressively more similar to the 

pattern predicted by the ratio model: numerals that are closer have more similar 

representation than the ones that are further away. These trends remained significant 

after correcting for multiple comparison. 
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As has been mentioned before, taking all of our regions together, our analysis 

does not favor the existence of associations among numerals on the base of their 

relative magnitude differences, as predicted by the Ratio model. Nevertheless, the 

observed age-related increases in model fit along specific clusters may suggest that this 

type of representation emerges in parietal cortex over developmental time. Previous 

studies describing developmental changes in the neural circuits involved in numerical 

processing have found differences in the recruitment of both frontal and parietal regions 

in children vs adults (Ansari et al., 2005b). Compared to adults, children seem to rely 

more in frontal networks during numerical tasks and it is only later in development that 

parietal networks become engaged. Interestingly, this developmental shift from frontal to 

parietal cortex is also consistent with another result from this study. The only area 

showing a pattern of similarities consistent with the Ratio across the whole group is a 

cluster in the Middle Frontal Gyrus. It is possible that we were able to find magnitude-

dependent similarities only in these frontal regions just because they are more involved 

in the processing of symbolic stimuli in children. If parietal areas, on the other hand, are 

recruited later in development, activation across these regions may be noisier in 

younger children.  

Correlations between Age and the Ratio model fit was also present on the left 

temporal fusiform cortex. This region has been consistently identified by previous 

studies that tested for ratio-dependent recovery from adaptation (Holloway et al., 2013; 

Vogel et al., 2017). However, unlike the parietal cortex, left fusiform regions are 

considered to be involved in the processing of visual features of the numerals. For 

example, Holloway et al. (2013), found that this was the only region showing a recovery 
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from activation consistent with a model based on shared visual features among the 

numerals. However, further follow up analysis have suggested that processing in this 

region is more complex than previously thought. Namely, Vogel et al. (2017) used a 

variation of the adaptation paradigm in which numerals were presented either visually or 

aurally and found that parametric effects in the left fusiform gyrus also appear in the 

auditory condition. The authors argue that activation in this region may not be purely 

visual. Instead, it seems to be influenced by top-down modulation from other regions 

that are engaged in the processing of the semantic meaning of numerals. In summary, 

the factors that explain the parametric recovery of activation in response to deviants on 

fusiform cortex are still unclear. Notably, none of these previous studies has analyzed 

the pattern information that underlie the aforementioned effects, which can help to 

elucidate how much of this response reflects the coding of numerical or visual features. 

Our data predicts that, at least in the adult brain, ratio-dependent similarities should be 

expected in the pattern of activation associated with the presentation of numerals in this 

region. It is possible that the fusiform cortex is involved in the association of the visual 

shape of the symbol and its meaning (Grotheer et al., 2018; Yeo et al., 2017), which 

would explain why both visual and semantic effects are observed in this region. This 

hypothesis would be in line with our results, since it is possible that such associations 

become stronger as children have increasingly more experience with numerals, which 

may result in the age-modulation of the ratio model observed here.  
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4.4. Adaptation vs. Multivariate analysis 

One of the most striking result of the present thesis is the strong lack of 

convergence between the univariate responses and the multivariate similarity analysis 

of the data. It is true that these two methods are sensitive to different properties of the 

neural data and thus, conclusions from one and the other do not need to completely 

match. Univariate analysis of fMRI data capture differences in the overall activation of 

brain regions in response to stimuli and do not consider voxel-by-voxel differences 

(indeed these are reduced by the use of spatial smoothing of the data). Multivariate 

analyses, on the other hand, are more sensitive to fine-grained information in the 

patterns of activation. Most reports comparing the two methods highlight that multi-voxel 

patterns are usually more sensitive to detect selectivity of the underlying neuronal 

populations than adaptation paradigms (Sapountzis et al., 2010). The pattern observed 

in our data is rather different. We have adaptation data suggesting a particular structure 

of the representation, which is not supported by the multivariate methods.  

These results raise the question of whether the parametric effect is actually being 

driven by numerical selectivity along neurons of these regions. Recent reviews of the 

adaptation literature highlight that adaptation effects do not necessarily reflect selectivity 

of the underlying populations of neurons (Larsson et al., 2016). Other factors like 

attention or differences in neurovascular coupling may also account for these effects. 

Yet, we have evidence to believe there is a numerical component of this effect, 

especially in the parietal cortex. Using a cross-linguistic version of this paradigm, 

Holloway et al. (2013) compared participants' responses when presented with Hindu-

Arabic numerals and Chinese characters. They found that parametric recovery from 
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adaptation only occurs when participants know the meaning of the symbols that are 

being presented, suggesting that this effect is driven by a semantic processing of the 

numerals and not just low-level properties of the stimuli. Another study by Goffin et al. 

(2019) tested whether ordinal relations could explain the parametric recovery by 

presenting participants with both letters and numbers (both are ordered sequences). 

They found that, in contrast to numbers, letters do not induce parametric recovery from 

adaptation in any region of the brain.  

However, it is possible that this numerical component is heavily mixed with other 

task-related effects such as motor response. Despite the very low demands of this task, 

it is certainly not completely passive. Participants are instructed to press a button when 

a certain stimulus appears on the screen. These occasional button presses appear in 

the context of a paradigm in which participants mostly see the same stimulus (i.e the 

adaptation numeral). Therefore, when a change is introduced in the form of a number 

deviant, a motor response may need to be inhibited. In fact, the parietal cortex is 

considered to be part of the dorsal stream, a network thought to be involved in 

perceptual processing of action-relevant stimuli (Goodale & Milner, 1992). Moreover, 

recent studies have shown that action-related activation occurs in parietal regions even 

when no explicit action is required (for a review see Culham & Valyear, 2006). It is 

possible that the activation we see in these regions is the result of a mixed effect of a 

motor and a numerical component. In fact, it may be the case that the amount to which 

the activation reflects the processing of the numerical magnitude of the deviant 

numerals is relatively small and, as a result, there is not consistent evidence for 

numerical relationships in the multivariate patterns. 
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It is also possible that the experimental design employed here, which was 

optimized to find differences in the habituation response, is simply not suited for 

obtaining accurate and reliable multi-voxel pattern information. One recent study 

suggests that multivariate pattern analysis techniques are particularly sensitive to 

variability in the estimates of the beta weights corresponding to each experimental 

condition (Davis et al., 2014). The passive nature of the task and its corresponding low 

attentional demands may result in a very large inter-trial variability in the patterns 

associated with the numerals. This, combined with the limited number trials available for 

each condition during our task, may difficult the accurate estimation of the beta weights, 

rendering the MVPA analysis inaccurate.  

 

4.5. Implications for future studies 

Adaptation studies like the one reported in this thesis have been largely used as 

an alternative to avoid confounds in the neural activation that are due to task demands 

and response selection. Our study reveals that future studies wanting to take advantage 

of this paradigm should also consider complementing univariate contrasts with analysis 

of the underlying pattern information. Specifically, future studies may benefit from using 

whole-brain pattern analysis, such as a combination of RSA with a searchlight 

approach, in order to identify regions showing patterns of similarities consistent with 

relevant conceptual models that may not have been evident at the univariate level.  

More broadly, our study tested predictions from a theory that has been very 

influential in the field of numerical cognition, suggesting that the neural code used to 

represent numerals is imprecise and characterized with increasing overlap between the 



 

 

57 

 
 

representations as the numerals are numerically closer.  Our data does not offer 

support for such ratio-dependent imprecision in the way numerals are coded in the 

brain. However, further studies are necessary to test some of the alternative theories 

that have been proposed. For example, some authors suggest that association between 

symbols and their magnitude are necessary to understand the meaning of the first 

learned symbols (e.g. 1, 2 and 3). Even though semantic association are more relevant 

for later stages of learning involving larger numbers, ratio-dependent associations may 

still persist for the smaller numerals (Reynvoet & Sasanguie, 2016). Our study cannot 

directly address this possibility given the limited number of stimuli included in this 

dataset. Future studies would benefit from using more stimuli-rich designs than the one 

presented here.  

Finally, one important follow up to this study would be to use the same analysis 

described here in a dataset from adult participants. The associations we found between 

the ratio model fit and age lead to predictions regarding some regions of the brain 

where the ratio model should fit the adult neural data. However, this prediction is 

contrary to other studies using RSA on data from active tasks, which have failed to find 

such ratio-dependent patterns in adults (Lyons et al., 2015b; Lyons & Beilock, 2018). 

Further studies are needed to address whether such ratio-dependent similarities are 

task-dependent.  
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5. Conclusions  

The notion that numerical symbols are coded in the brain by a system of 

numerosity selective neurons with overlapping tuning curves has been highly influential 

in the field of numerical cognition (Dehaene et al., 1998; Piazza et al., 2007). Originally, 

this theory was put forward as a possible explanation for the ratio effects observed in 

behavioral number comparison tasks: as the ratio between two numerals is closer to 

one, participants take more time to compare the numerals and make more mistakes. 

The tuning curve model assumes that these behavioral effect results from the 

imprecisions in the neural code used to represent number symbols. This theory has 

been supported by a large body of neuroimaging research showing ratio-dependent 

responses in regions of the parietal cortex. Although these results are consistent with 

the overlapping tuning curve model, they did not offer direct evidence of overlapping 

patterns of activation in response to numerals. The current study was the first one to 

directly address this assumption from adaptation data by testing whether the similarities 

in the patterns of activation obtained during the presentation of Hindu-Arabic symbols 

are modulated by their numerical ratio. In 14 out of the 15 regions analyzed, we failed to 

find evidence in favor of this ratio-dependent similarities hypothesis. Instead, our results 

are more consistent with the idea that number symbols are represented as discrete 

entities, as previous studies have suggested (Krajcsi et al., 2016; Lyons et al., 2015b; 

Lyons & Beilock, 2018; Reynvoet & Sasanguie, 2016). These null results have relevant 

implications for our understanding of how numerals are represented in the brain. Our 

data does not provide evidence of ratio-dependent imprecisions in the neural code used 

to represent numerals that may explain the ratio effects observed in behavioral tasks. 
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As a result, we argue that alternative accounts already offered in the literature should be 

more closely considered. 

As part of the present study I actually tested one of those alternative models. 

Namely, the possibility that this discrete representation of numerals is organized 

according to the frequency in which numbers occur together in real life. Although this 

theory has already received support from neuroimaging evidence in the adult brain 

(Lyons et al., 2015b; Lyons & Beilock, 2018), I failed to find similar results in the current 

sample form children. Future studies should examine whether the influence of 

frequency of the numerals upon the organization of the representation is experience-

dependent and thus, it is only evident later in development. 

Taken together, the results I report in the present thesis challenge previously held 

notions about the meaning of the neural habituation effects observed during this task. In 

the light of our limited understanding of the neural processes underlying this effect, we 

argue that future studies should complement univariate analysis of habituation and 

signal recovery effects with multivariate approaches. 

  



 

 

60 

 
 

6. References 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005a). Neural correlates of 

symbolic number processing in children and adults. NeuroReport, 16(16), 1769–

1773. https://doi.org/10.1097/01.wnr.0000183905.23396.f1 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005b). Neural correlates of 

symbolic number processing in children and adults. NeuroReport, 16(16), 1769–

1773. https://doi.org/10.1097/01.wnr.0000183905.23396.f1 

Ashcraft, M. H. ., & Christy, K. S. . (1995). The Frequency of Arithmetic Facts in 

Elementary Texts : Addition and Multiplication in Grades 1-6. Journal for Research 

in Mathematics Education, 26(5), 396–421. 

Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American 

Philosophical Society, 78(4), 551–572. 

Bulthé, J., De Smedt, B., & Op de Beeck, H. P. (2014). Format-dependent 

representations of symbolic and non-symbolic numbers in the human cortex as 

revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. 

https://doi.org/10.1016/j.neuroimage.2013.10.049 

Bulthé, J., De Smedt, B., & Op de Beeck, H. P. (2018). Arithmetic skills correlate 

negatively with the overlap of symbolic and non-symbolic number representations 

in the brain. Cortex, 101(January), 306–308. 

https://doi.org/10.1016/j.cortex.2018.01.008 

Bulthé, J., Smedt, B. De, & Beeck, H. P. Op de. (2015). Vidual number Beats Abstract 

Numerical Magnitude: Format-Dependent Representation of Arabic Digits and Dot 

Patterns in th ehuman parietal cortex. Journal of Cognitive Neuroscience, 1–33. 



 

 

61 

 
 

Cantlon, J. F. (2012). Math, monkeys, and the developing brain. Proceedings of the 

National Academy of Sciences of the United States of America, 109(SUPPL.1), 

10725–10732. https://doi.org/10.1073/pnas.1201893109 

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large 

numbers in monkeys and humans. Psychological Science, 17(5), 401–406. 

https://doi.org/10.1111/j.1467-9280.2006.01719.x 

Choi, H. J., Zilles, K., Mohlberg, H., Schleicher, A., Fink, G. R., Armstrong, E., & 

Amunts, K. (2006). Cytoarchitectonic identification and probabilistic mapping of two 

distinct areas within the anterior ventral bank of the human intraparietal sulcus. 

Journal of Comparative Neurology, 495(1), 53–69. 

https://doi.org/10.1002/cne.20849 

Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. 

Psychonomic Bulletin and Review, 16(2), 332–336. 

https://doi.org/10.3758/PBR.16.2.332 

Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion 

in Neurobiology, 16(2), 205–212. https://doi.org/10.1016/j.conb.2006.03.005 

Damarla, S. R., & Just, M. A. (2013). Decoding the representation of numerical values 

from brain activation patterns. Human Brain Mapping, 34(10), 2624–2634. 

https://doi.org/10.1002/hbm.22087 

Davis, T., LaRocque, K. F., Mumford, J. A., Norman, K. A., Wagner, A. D., & Poldrack, 

R. A. (2014). What do differences between multi-voxel and univariate analysis 

mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. 

NeuroImage, 97, 271–283. https://doi.org/10.1016/j.neuroimage.2014.04.037 



 

 

62 

 
 

Dehaene, S. (1992). Variaties of numerical abilities. Cognition, 42, 1–42. 

https://doi.org/10.1016/0010-0277(92)90049-N 

Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of 

numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361. 

https://doi.org/10.1016/S0166-2236(98)01263-6 

Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is Numerical Comparison Digital? 

Analogical and Symbolic Effects in Two-Digit Number Comparison. Journal of 

Experimental Psychology: Human Perception and Performance, 16(3), 626–641. 

https://doi.org/10.1037/0096-1523.16.3.626 

Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of 

number words. Cognition, 43, 1:19. 

Diester, I., & Nieder, A. (2007). Semantic associations between signs and numerical 

categories in the prefrontal cortex. PLoS Biology, 5(11), 2684–2695. 

https://doi.org/10.1371/journal.pbio.0050294 

Duncan, E. M., & McFarland, C. E. (1980). Isolating the effects of symbolic distance, 

and semantic congruity in comparative judgments: An additive-factors analysis. 

Memory & Cognition, 8(6), 612–622. https://doi.org/10.3758/BF03213781 

Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). 

Deciphering Cortical Number Coding from Human Brain Activity Patterns. Current 

Biology, 19(19), 1608–1615. https://doi.org/10.1016/j.cub.2009.08.047 

Eickhoff, S. B., Heim, S., Zilles, K., & Amunts, K. (2006). Testing anatomically specified 

hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage, 32(2), 

570–582. https://doi.org/10.1016/j.neuroimage.2006.04.204 



 

 

63 

 
 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in 

Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002 

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. 

(1995). Improved Assessment of Significant Activation in Functional Magnetic 

Resonance Imaging (fMRI): Use of a Cluster-Size Threshold. Magnetic Resonance 

in Medicine, 33(5), 636–647. https://doi.org/10.1002/mrm.1910330508 

Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. 

Cognition, 44, 43–74. 

Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of FIAC data with 

BrainVoyager QX : From single - subject to cortically aligned group GLM analysis 

and self - organizing group ICA. Human Brain Mapping, 27(5), 392–401. 

http://download.brainvoyager.com/doc/Goebel_etal_Preprint_HBM2006.pdf 

Goffin, C. (2019). How does the brain represent digits ? Investigating the neural 

correlates of symbolic number representation using fMRI- Adaptation. University of 

Western Ontario. 

Goffin, C., Sokolowski, H. M., Slipenkyj, M., & Ansari, D. (2019). Does writing 

handedness affect neural representation of symbolic number? An fMRI Adaptation 

Study. Cortex, 121, 27–43. https://doi.org/10.1016/j.cortex.2019.07.017 

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and 

action. Trends in Neurosciences, 15(1), 20–25. 

https://doi.org/https://doi.org/10.1016/0166-2236(92)90344-8 

Grill-Spector, K. (2006). Selectivity of Adaptation in Single Units: Implications for fMRI 

Experiments. Neuron. https://doi.org/10.1016/j.neuron.2006.01.004 



 

 

64 

 
 

Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for studying the functional 

properties of human cortical neurons. Acta Psychologica, 107(1–3), 293–321. 

https://doi.org/10.1016/S0001-6918(01)00019-1 

Grotheer, M., Jeska, B., & Grill-Spector, K. (2018). A preference for mathematical 

processing outweighs the selectivity for Arabic numbers in the inferior temporal 

gyrus. NeuroImage, 175(November 2017), 188–200. 

https://doi.org/10.1016/j.neuroimage.2018.03.064 

Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the 

“Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds 

and Adults. Developmental Psychology, 44(5), 1457–1465. 

https://doi.org/10.1037/a0012682 

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The 

numerical distance effect and individual differences in children’s mathematics 

achievement. Journal of Experimental Child Psychology, 103(1), 17–29. 

https://doi.org/10.1016/j.jecp.2008.04.001 

Holloway, I. D., & Ansari, D. (2010). Developmental specialization in the right 

intraparietal sulcus for the abstract representation of numerical magnitude. Journal 

of Cognitive Neuroscience, 22(11), 2627–2637. 

https://doi.org/10.1162/jocn.2009.21399 

Holloway, I. D., Battista, C., Vogel, S. E., & Ansari, D. (2013). Semantic and perceptual 

processing of number symbols: Evidence from a cross-linguistic fMRI adaptation 

study. Journal of Cognitive Neuroscience, 25(3), 388–400. 

https://doi.org/10.1162/jocn_a_00323 



 

 

65 

 
 

Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural 

pathways for the processing of symbolic and nonsymbolic numerical magnitude: An 

fMRI study. NeuroImage, 49(1), 1006–1017. 

https://doi.org/10.1016/j.neuroimage.2009.07.071 

Jarosz, A. F., & Wiley, J. (2014). What Are the Odds? A Practical Guide to Computing 

and Reporting Bayes Factors. Journal of Problem Solving, 7, 2–9. 

https://doi.org/10.7771/1932-6246.1167 

JASP Team. (2019). JASP (Version 0.10.2)[Computer software]. https://jasp-stats.org/ 

Krajcsi, A., Lengyel, G., & Kojouharova, P. (2016). The source of the symbolic 

numerical distance and size effects. Frontiers in Psychology, 7(NOV), 1–16. 

https://doi.org/10.3389/fpsyg.2016.01795 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - 

connecting the branches of systems neuroscience. Frontiers in Systems 

Neuroscience, 2(NOV), 1–28. https://doi.org/10.3389/neuro.06.004.2008 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular 

analysis in systems neuroscience: The dangers of double dipping. Nature 

Neuroscience, 12(5), 535–540. https://doi.org/10.1038/nn.2303 

Larsson, J., Solomon, S. G., & Kohn, A. (2016). fMRI adaptation revisited. Cortex, 80, 

154–160. https://doi.org/10.1016/j.cortex.2015.10.026 

Leibovich, T., & Ansari, D. (2016). The Symbol-Grounding Problem in Numerical 

Cognition: A Review of Theory, Evidence, and Outstanding Questions. Canadian 

Journal of Experimental Psychology, 70(1), 12–23. 

https://doi.org/10.1037/cep0000070 



 

 

66 

 
 

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to 

“sense of magnitude”: The role of continuous magnitudes in numerical cognition. 

Behavioral and Brain Sciences, 40. https://doi.org/10.1017/S0140525X16000960 

Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on 

Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence 

against a strong association between numerical symbols and the quantities they 

represent. Journal of Experimental Psychology: General, 141(4), 635–641. 

https://doi.org/10.1037/a0027248 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2015a). Qualitatively different coding of 

symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 

36(2), 475–488. https://doi.org/10.1002/hbm.22641 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2015b). Qualitatively different coding of 

symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 

36(2), 475–488. https://doi.org/10.1002/hbm.22641 

Lyons, I. M., & Beilock, S. L. (2018). Characterizing the neural coding of symbolic 

quantities. NeuroImage, 178(May), 503–518. 

https://doi.org/10.1016/j.neuroimage.2018.05.062 

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgment of numerical 

inequality. NATURE, 215, 1519–1520. 

Nieder, A., & Dehaene, S. (2009). Representation of Number in the Brain. Annual 

Review of Neuroscience, 32(1), 185–208. 

https://doi.org/10.1146/annurev.neuro.051508.135550 



 

 

67 

 
 

Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of 

visual items in the primate prefrontal cortex. Science, 297(5587), 1708–1711. 

https://doi.org/10.1126/science.1072493 

Nieder, A., & Miller, E. K. (2003). Coding of Cognitive Magnitude: Compressed Scaling 

of Numerical Information in the Primate Prefrontal Cortex. Neuron, 37(1), 149–157. 

https://doi.org/10.1016/s0896-6273(02)01144-3 

Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical 

information in the monkey. Proceedings of the National Academy of Sciences of the 

United States of America, 101(19), 7457–7462. 

https://doi.org/10.1073/pnas.0402239101 

Nordt, M., Hoehl, S., & Weigelt, S. (2016). The use of repetition suppression paradigms 

in developmental cognitive neuroscience. Cortex, 80, 61–75. 

https://doi.org/10.1016/j.cortex.2016.04.002 

Notebaert, K., Nelis, S., & Reynvoet, B. (2010). The magnitude representation of small 

and large symbolic numbers in the left and right hemisphere: An event-related fMRI 

study. Journal of Cognitive Neuroscience, 23(3), 622–630. 

https://doi.org/10.1162/jocn.2010.21445 

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. 

Trends in Cognitive Sciences, 14(12), 542–551. 

https://doi.org/10.1016/j.tics.2010.09.008 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 

approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. 

https://doi.org/10.1016/j.neuron.2004.10.014 



 

 

68 

 
 

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A Magnitude Code Common 

to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 

53(2), 293–305. https://doi.org/10.1016/j.neuron.2006.11.022 

Poldrack, R. A. (2000). Imaging brain plasticity: Conceptual and methodological issues - 

A theoretical review. NeuroImage, 12(1), 1–13. 

https://doi.org/10.1006/nimg.2000.0596 

Reynvoet, B., & Sasanguie, D. (2016). The symbol grounding problem revisited: A 

thorough evaluation of the ans mapping account and the proposal of an alternative 

account based on symbol-symbol associations. Frontiers in Psychology, 7(OCT), 

1–11. https://doi.org/10.3389/fpsyg.2016.01581 

Sapountzis, P., Schluppeck, D., Bowtell, R., & Peirce, J. W. (2010). A comparison of 

fMRI adaptation and multivariate pattern classification analysis in visual cortex. 

NeuroImage, 49(2), 1632–1640. https://doi.org/10.1016/j.neuroimage.2009.09.066 

Scheperjans, F., Eickhoff, S. B., Hömke, L., Mohlberg, H., Hermann, K., Amunts, K., & 

Zilles, K. (2008). Probabilistic maps, morphometry, and variability of 

cytoarchitectonic areas in the human superior parietal cortex. Cerebral Cortex, 

18(9), 2141–2157. https://doi.org/10.1093/cercor/bhm241 

Scheperjans, F., Hermann, K., Eickhoff, S. B., Amunts, K., Schleicher, A., & Zilles, K. 

(2008). Observer-independent cytoarchitectonic mapping of the human superior 

parietal cortex. Cerebral Cortex, 18(4), 846–867. 

https://doi.org/10.1093/cercor/bhm116 

Šidák, Z. (1967). Rectangular Confidence Regions for the Means of Multivariate Normal 

Distributions Author ( s ): Zbynek Sidak Source : Journal of the American Statistical 



 

 

69 

 
 

Association , Vol . 62 , No . 318 ( Jun ., 1967 ), pp . Published by : Taylor & Francis 

, Ltd . on be. Journal of the American Statistical Association, 62(318), 626–633. 

http://www.jstor.org/stable/2283989?seq=1#page_scan_tab_contents 

Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic 

distance effect: Comparison and priming effects in numerical and nonnumerical 

orders. Psychonomic Bulletin and Review, 15(2), 419–425. 

https://doi.org/10.3758/PBR.15.2.419 

Vogel, S. E., Goffin, C., & Ansari, D. (2015). Developmental specialization of the left 

parietal cortex for the semantic representation of Arabic numerals: An fMR-

adaptation study. Developmental Cognitive Neuroscience, 12(1), 61–73. 

https://doi.org/10.1016/j.dcn.2014.12.001 

Vogel, S. E., Goffin, C., Bohnenberger, J., Koschutnig, K., Reishofer, G., Grabner, R. 

H., & Ansari, D. (2017). The left intraparietal sulcus adapts to symbolic number in 

both the visual and auditory modalities: Evidence from fMRI. NeuroImage, 

153(November 2016), 16–27. https://doi.org/10.1016/j.neuroimage.2017.03.048 

Wilkey, E. D., & Ansari, D. (2020). Challenging the neurobiological link between number 

sense and symbolic numerical abilities. Annals of the New York Academy of 

Sciences, 1464(1), 76–98. https://doi.org/10.1111/nyas.14225 

Wilkey, E. D., Conrad, B. N., & Price, G. R. (2020). Shared numerosity representations 

across formats and tasks revealed with 7 Tesla fMRI: decoding, generalization, and 

individual differences in behavior. In PREPRINT. 

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. 

Cognition, 74(1), 1–11. https://doi.org/10.1016/S0010-0277(99)00066-9 



 

 

70 

 
 

Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A 

functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 

78(January), 145–160. https://doi.org/10.1016/j.neubiorev.2017.04.027 

  



 

 

71 

 
 

 

7. Appendices 

 
Appendix A. Repeated measured ANOVA (6 Deviants). Within-Subjects Effects. 

 

Similarities between the deviants and the Adaptation numerals were estimated using 

partial correlations (controlling for catch trials) 

 

VOI Type III Sum 
of Squares df Mean 

Square F Sig. Partial Eta 
Squared 

IP1L 0.706 5 0.141 0.786 0.561 0.018 

IP1R 0.949 5 0.19 1.087 0.368 0.024 

IP2L 1.18 5 0.236 1.347 0.245 0.03 

IP2R 3.35 5 0.67 2.574 0.028* 0.055 
IP3L 1.106 5 0.221 1.477 0.198 0.032 

IP3R 0.147 5 0.029 0.203 0.961 0.005 

BS 0.234 5 0.047 0.245 0.942 0.006 

CC 0.729 5 0.146 1.397 0.227 0.031 

LIPS 1.391 5 0.278 2.261 0.049* 0.049 
LTFC 1.151 5 0.23 2.22 0.053 0.048 

RIPS 1.179 5 0.236 1.847 0.105 0.04 

RMFG 0.957 5 0.191 2.069 0.07 0.045 

RMTG 1.278 5 0.256 1.079 0.373 0.024 

RT 1.822 5 0.364 1.739 0.127 0.038 

RTFC 0.661 5 0.132 1.189 0.316 0.026 
         *  Significant at the uncorrected p < .05 

       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI 

selection method. For ROIs selected from univariate contrast the corrected threshold 

was p < .00568; for the ROIs selected from probabilistic maps the corrected threshold 
was p < .00851 
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Appendix B. Within-Subjects Polynomial Contrast, after excluding Deviant 12. 

 

Similarities between the deviants and the Adaptation numerals were estimated using 

partial correlations (controlling for catch trials) 

 

VOI Contrast  F Sig. Partial Eta 
Squared 

IP1L Linear 2.461 0.124 0.053 
Quadratic 0.004 0.948 0 

IP1R Linear 0.339 0.563 0.008 
Quadratic 1.621 0.21 0.036 

IP2L Linear 3.573 0.065 0.075 
Quadratic 0.128 0.722 0.003 

IP2R Linear 2.901 0.096 0.062 
Quadratic 5* 0.03 0.102 

IP3L Linear 2.707 0.107 0.058 
Quadratic 0.076 0.784 0.002 

IP3R Linear 0.043 0.838 0.001 
Quadratic 0.143 0.707 0.003 

BS Linear 0.759 0.388 0.017 
Quadratic 0.041 0.84 0.001 

CC Linear 2.093 0.155 0.045 
Quadratic 0.421 0.52 0.009 

LIPS Linear 4.936* 0.031 0.101 
Quadratic 4.38 0.044 0.089 

LTFC Linear 5.198* 0.028 0.106 
Quadratic 1.356 0.251 0.03 

RIPS Linear 2.93 0.094 0.062 
Quadratic 1.974 0.167 0.043 

RMFG Linear 0.221 0.64 0.005 
Quadratic 8.995** 0.004 0.17 

RMTG Linear 3.661 0.062 0.077 
Quadratic 0.007 0.935 0 

RT Linear 2.055 0.159 0.045 
Quadratic 0.335 0.566 0.008 

RTFC 
Linear 0.14 0.71 0.003 
Quadratic 2.771 0.103 0.059 

         *  Significant at the uncorrected p < .05 
       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 
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Appendix C. Within-Subjects Polynomial Contrast using zero-order correlations 
to estimate similarities 

 

VOI Contrast F Sig. Partial Eta 
Squared 

IP1L Linear 4.157* 0.047 0.086 
Quadratic 0 0.984 0 

IP1R Linear 0.253 0.617 0.006 
Quadratic 3.228 0.079 0.068 

IP2L Linear 2.511 0.12 0.054 
Quadratic 0.073 0.788 0.002 

IP2R Linear 3.567 0.066 0.075 
Quadratic 5.792* 0.02 0.116 

IP3L Linear 1.57 0.217 0.034 
Quadratic 0.007 0.932 0 

IP3R Linear 0.041 0.841 0.001 
Quadratic 0.135 0.715 0.003 

BS Linear 0.843 0.364 0.019 
Quadratic 0.001 0.979 0 

CC Linear 0.642 0.427 0.014 
Quadratic 0.337 0.564 0.008 

LIPS Linear 4.281* 0.044 0.089 
Quadratic 4.654* 0.036 0.096 

LTFC Linear 3.53 0.067 0.074 
Quadratic 0.312 0.579 0.007 

RIPS Linear 4.697* 0.036 0.096 
Quadratic 1.604 0.212 0.035 

RMFG Linear 1.168 0.286 0.026 
Quadratic 8.65** 0.005 0.164 

RMTG Linear 2.271 0.139 0.049 
Quadratic 0.069 0.794 0.002 

RT Linear 0.652 0.424 0.015 
Quadratic 0.009 0.925 0 

RTFC 
Linear 0.061 0.806 0.001 
Quadratic 2.304 0.136 0.05 

         *  Significant at the uncorrected p < .05 
       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 
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Appendix D. Within-Subjects Polynomial Contrast interaction with Age, after 
excluding Deviant 12. 

 

Similarities between the deviants and the Adaptation numerals were estimated using 

partial correlations (controlling for catch trials) 

 

VOI Source Contrast  F Sig. Partial Eta 
Squared 

IP1L Deviants * Age_Years Linear 1.137 0.363 0.202 
Quadratic 0.525 0.83 0.104 

IP1R Deviants * Age_Years Linear 0.955 0.486 0.175 
Quadratic 0.42 0.901 0.085 

IP2L Deviants * Age_Years Linear 1.028 0.434 0.186 
Quadratic 0.508 0.842 0.101 

IP2R Deviants * Age_Years Linear 0.861 0.557 0.161 
Quadratic 2.07 0.065 0.315 

IP3L Deviants * Age_Years Linear 0.422 0.9 0.086 
Quadratic 0.973 0.472 0.178 

IP3R Deviants * Age_Years Linear 0.54 0.818 0.107 
Quadratic 0.816 0.593 0.154 

BS Deviants * Age_Years Linear 2.115 0.06 0.32 
Quadratic 0.97 0.474 0.177 

CC Deviants * Age_Years Linear 0.819 0.591 0.154 
Quadratic 2.089 0.063 0.317 

LIPS Deviants * Age_Years Linear 0.483 0.86 0.097 
Quadratic 0.623 0.753 0.122 

LTFC Deviants * Age_Years Linear 1.267 0.291 0.22 
Quadratic 0.908 0.521 0.168 

RIPS Deviants * Age_Years Linear 1.046 0.422 0.189 
Quadratic 0.837 0.577 0.157 

RMFG Deviants * Age_Years Linear 2.452* 0.031 0.353 
Quadratic 0.506 0.843 0.101 

RMTG Deviants * Age_Years Linear 0.441 0.888 0.089 
Quadratic 1.184 0.336 0.208 

RT Deviants * Age_Years Linear 0.891 0.534 0.165 
Quadratic 0.782 0.621 0.148 

RTFC Deviants * Age_Years Linear 0.494 0.853 0.099 
Quadratic 0.776 0.626 0.147 

 
         *  Significant at the uncorrected p < .05 

       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 
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Appendix E. Within-Subjects Polynomial Contrast interaction with Age, using 
zero-order correlations to estimate similarities. 

 

VOI Source Deviants F Sig. Partial Eta 
Squared 

IP1L Deviants * Age_Years Linear 0.625 0.751 0.122 
Quadratic 0.418 0.903 0.085 

IP1R Deviants * Age_Years Linear 1.182 0.337 0.208 
Quadratic 0.371 0.929 0.076 

IP2L Deviants * Age_Years Linear 0.776 0.626 0.147 
Quadratic 0.33 0.949 0.068 

IP2R Deviants * Age_Years Linear 0.724 0.669 0.139 
Quadratic 1.595 0.161 0.262 

IP3L Deviants * Age_Years Linear 0.228 0.983 0.048 
Quadratic 0.747 0.65 0.142 

IP3R Deviants * Age_Years Linear 0.62 0.755 0.121 
Quadratic 1.037 0.427 0.187 

BS Deviants * Age_Years Linear 1.545 0.176 0.256 
Quadratic 0.595 0.776 0.117 

CC Deviants * Age_Years Linear 1.265 0.292 0.219 
Quadratic 1.684 0.136 0.272 

LIPS Deviants * Age_Years Linear 0.555 0.807 0.11 
Quadratic 0.852 0.565 0.159 

LTFC Deviants * Age_Years Linear 2.052 0.068 0.313 
Quadratic 0.546 0.814 0.108 

RIPS Deviants * Age_Years Linear 1.512 0.187 0.252 
Quadratic 0.641 0.738 0.125 

RMFG Deviants * Age_Years Linear 1.178 0.339 0.207 
Quadratic 1.168 0.344 0.206 

RMTG Deviants * Age_Years Linear 0.977 0.469 0.178 
Quadratic 0.909 0.52 0.168 

RT Deviants * Age_Years Linear 0.987 0.462 0.18 
Quadratic 0.409 0.908 0.083 

RTFC Deviants * Age_Years Linear 0.518 0.835 0.103 
Quadratic 1.009 0.447 0.183 
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Appendix F. Ratio and Frequency Model fit, after excluding Deviant 12. 

 

Similarities between the deviants and the Adaptation numerals were estimated using 

partial correlations (controlling for catch trials) 

 

ROI Ratio Model Fit  Frequency Model Fit 

t p d BF01  t p d BF01 

IP1L 1.353 0.183 0.202 2.644  0.702 0.487 0.105 4.908† 
IP1R -0.458 0.649 -0.068 5.604†  0.112 0.911 0.017 6.152† 
IP2L 0.886 0.380 0.132 4.279†  1.068 0.291 0.159 3.630† 
IP2R -0.381 0.705 -0.057 5.778†  0.703 0.486 0.105 4.903† 
IP3L 0.257 0.798 0.038 5.999†  0.398 0.692 0.059 5.741† 
IP3R 0.106 0.916 0.016 6.156†  -0.162 0.872 -0.024 6.112† 
BS 0.566 0.574 0.084 5.319†  1.546 0.129 0.230 2.053 
CC 0.271 0.787 0.040 5.977†  -0.015 0.988 -0.002 6.188† 
LIPS 0.461 0.647 0.069 5.597†  0.531 0.598 0.079 5.416† 
LTFC 0.311 0.757 0.046 5.912†  1.880 0.067 0.280 1.235 
RIPS 1.077 0.287 0.161 3.599†  0.108 0.915 0.016 6.155† 
RMFG 0.279 0.781 0.042 5.964†  0.262 0.794 0.039 5.990† 
RMTG 1.731 0.090 0.258 1.565  0.668 0.508 0.100 5.015† 
RT 1.186 0.242 0.177 3.210†  0.686 0.496 0.102 4.957† 
RTFC 0.940 0.352 0.140 4.089†  0.208 0.836 0.031 6.063† 

 
         †  Bayes Factor indicating substantial support for the null 
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Appendix G. Ratio and Frequency Model fit, using zero-order correlations to 
estimate similarity 

 

ROI Ratio Model Fit  Frequency Model Fit 
t p d BF01  t p d BF01 

IP1L 1.207 0.234 0.180 3.139†  0.622 0.537 0.093 5.156† 
IP1R -1.883 0.066 -0.281 1.228  -1.180 0.244 -0.176 3.231† 
IP2L -0.609 0.546 -0.091 5.195†  2.278* 0.028 0.340 0.603 
IP2R -1.328 0.191 -0.198 2.727  0.369 0.714 0.055 5.803† 
IP3L -0.983 0.331 -0.146 3.936†  -0.496 0.622 -0.074 5.509† 
IP3R -2.301* 0.026 -0.343 0.578  -1.190 0.240 -0.177 3.197† 
BS 0.306 0.761 0.046 5.921†  1.717 0.093 0.256 1.599 
CC -0.630 0.532 -0.094 5.132†  -1.380 0.175 -0.206 2.558 
LIPS -0.090 0.929 -0.013 6.165†  -0.466 0.643 -0.070 5.584† 
LTFC -0.345 0.732 -0.051 5.850†  1.074 0.289 0.160 3.608† 
RIPS -0.202 0.841 -0.030 6.070†  -0.959 0.343 -0.143 4.021† 
RMFG -0.430 0.670 -0.064 5.672†  -0.684 0.497 -0.102 4.963† 
RMTG -0.374 0.710 -0.056 5.792†  -0.907 0.369 -0.135 4.205† 
RT -1.526 0.134 -0.228 2.109  1.029 0.309 0.153 3.771† 
RTFC 0.265 0.792 0.040 5.987†  -0.722 0.474 -0.108 4.843† 

 
        †  Bayes Factor indicating substantial support for the null 

         *  Significant at the uncorrected p < .05 
       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 
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Appendix H. Ratio and Frequency Model fit interaction with Age, after excluding 
Deviant 12. 

 

Similarities between the deviants and the Adaptation numerals were estimated using 

partial correlations (controlling for catch trials) 

 

ROI 
Ratio Model Fit ~ Age  Frequency Model Fit ~ Age 

r p BF  r p BF 

IP1L 0.375 0.011 0.237  -0.121 0.427 3.966† 
IP1R 0.154 0.312 3.277  0.116 0.449 4.076† 
IP2L -0.064 0.678 4.951  0.153 0.316 3.306† 
IP2R 0.008 0.960 5.376  -0.012 0.939 5.367† 
IP3L 0.161 0.290 3.129  0.196 0.198 2.410 
IP3R 0.404** 0.006 0.138  0.038 0.806 5.277† 
BS 0.060 0.695 4.996  -0.096 0.531 4.448† 
CC 0.068 0.658 4.895  0.035 0.820 5.249† 
LIPS 0.019 0.904 5.344  0.131 0.393 3.777† 
LTFC 0.327* 0.028 0.525  -0.052 0.734 5.090† 
RIPS 0.064 0.675 4.941  -0.022 0.884 5.327† 
RMFG 0.121 0.427 3.966  0.311* 0.038 0.662 
RMTG 0.376* 0.011 0.233  -0.049 0.751 5.126† 
RT 0.203 0.180 2.253  -0.128 0.400 3.821† 
RTFC 0.022 0.886 5.329  -0.216 0.155 2.019 

  
       †  Bayes Factor indicating substantial support for the null 

         *  Significant at the uncorrected p < .05 

       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for 

the ROIs selected from probabilistic maps the corrected threshold was p < .00851 
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Appendix I. Ratio and Frequency Model fit interaction with Age, using zero-order 
correlations to estimate similarity. 

 

ROI 
Ratio Model Fit ~ Age  Frequency Model Fit ~ Age 

r p BF  r p BF 

IP1L 0.200 0.187 2.314  -0.217 0.153 1.996 
IP1R 0.164 0.281 3.067  0.074 0.629 4.808† 
IP2L 0.214 0.158 2.050  0.101 0.510 4.363† 
IP2R 0.169 0.266 2.959  -0.043 0.779 5.180† 
IP3L 0.129 0.399 3.814  0.164 0.282 3.069† 
IP3R 0.427** 0.003 0.086  0.066 0.668 4.923† 
BS 0.088 0.567 4.593  0.133 0.385 3.735† 
CC 0.156 0.306 3.238  -0.115 0.451 4.089† 
LIPS 0.084 0.584 4.653  0.145 0.343 3.479† 
LTFC 0.398* 0.007 0.154  -0.011 0.943 5.369† 
RIPS 0.141 0.354 3.551  -0.063 0.683 4.964† 
RMFG 0.066 0.668 4.923  0.126 0.411 3.879† 
RMTG 0.320* 0.032 0.586  0.048 0.753 5.129† 
RT 0.486** 0.001 0.021  0.004 0.979 5.380† 
RTFC 0.095 0.534 4.463  -0.213 0.161 2.076 

 
        †  Bayes Factor indicating substantial support for the null 

         *  Significant at the uncorrected p < .05 
       **  Significant Dunn-Sidak correction; this correction was applied separately for each ROI selection 

method. For ROIs selected from univariate contrast the corrected threshold was p < .00568; for the ROIs 

selected from probabilistic maps the corrected threshold was p < .00851 
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