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Abstract
Over the past 50 years, prominent mid-infrared (MIR) emission features from 3–20 µm

have been observed ubiquitously in the interstellar medium (ISM) of Galactic and extragalactic
sources. These emission features arise from the vibrational relaxation of polycyclic aromatic
hydrocarbons (PAHs) after the absorption of a far-ultraviolet (FUV) photon. PAHs are astro-
nomically significant in that they contain up to 15% of the cosmic carbon inventory and play an
important role in the physical and chemical processes of the ISM such as, for example, the gas
heating and the ionization balance. Variations in the relative strengths of the major PAH bands
can be used to understand their underlying molecular properties and their interaction with the
surrounding photodissociation region (PDR) environment.

We employ these variations to characterize the PAH populations in terms of properties such
as degree of ionization and sizes and investigate their dependence on the physical conditions
such as the FUV radiation field strength, the gas density and the gas temperature for nearby
spatially resolved Galactic PDRs. We find both size and charge tend to rise with increasing
radiation field strength or proximity to the illuminating source. Correlations between PAH
emission features in spatially resolved sources are found to be highly dependent on the PDR
morphology (i.e. edge-on versus face-on) and environmental conditions. These results are
indicative of significant UV processing driving the photochemical evolution of astronomical
PAH populations.

We utilize observations of far-infrared (FIR) cooling lines of atoms and the FIR dust con-
tinuum emission of a nearby reflection nebula in combination with PDR models to derive maps
of the physical conditions. Comparing these derived physical conditions with PAH emission
characteristics at a matching spatial resolution and apertures allows us to critically test previ-
ous established relationships between PAH emission and these physical conditions. From these
results, we show that these relationships also hold at a higher spatial resolution than previously
obtained.

Keywords: Polycyclic Aromatic Hydrocarbons, MIR Astronomy, NGC 1333, NGC 2023,
NGC 7023, Orion Bar, Interstellar medium, Photo-Dissociation Regions, Reflection Nebulae
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Summary for Lay Audience

Peppered throughout the interstellar medium of our Galaxy and other galaxies, young, massive
stars are born from the depths of gigantic molecular clouds. These stars give off a large amount
of UV light, which carves out ionized cavities around them through the irradiation of the sur-
rounding cloud. The interface between the ionized cavity (or HII region) and the molecular
cloud is referred to as a photo-dissociation region (PDR).

Within these irradiated PDRs, the physics and chemistry of its gas and dust constituents are
driven by the high quantity of incident UV radiation, hence the name. The chemical species
native to PDRs range from simple atomic gases to large dust grains of sub-millimeter size.
Somewhere in between, we find large quantities of a peculiar group of molecules referred to
as polycyclic aromatic hydrocarbons (PAHs). These PAHs are akin to such earthbound species
found in soot, auto exhaust, tobacco smoke, charcoal, etc. All of which are notably highly
carcinogenic.

We are able to detect emission from different gas and dust species within PDRs using as-
tronomical observations that cover a large range in the electromagnetic spectrum. In particular,
at mid-Infrared wavelengths of light, there is a prominent group of broad emission bands that
are now widely accepted to result from the vibrational relaxation of PAH species that have
previously absorbed a UV photon.

In this thesis, we investigate the dominant PAH emission features within four relatively
nearby PDRs including: three reflection nebulae and the famous Orion Nebula. Questions
we try to answer include: i) What is the effect of the UV radiation field on PAH molecular
properties such as size and ionization state? ii) How do the PAH emission features vary within
different types of interstellar environments? iii) Can we use these PAH emission features to
quantitatively measure the physical conditions within PDRs?

iii



Authorship statement

The following authors contributed to Chapter 2: C. Knight, E. Peeters, D. J. Stock, W. D. Vacca,
A. G. G. M. Tielens
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Chapter 1

Introduction

1.1 The Life of Stars

When we think of space, we think of just that, empty space with a few stars far in between.
However the definition of this word betrays the true nature of the Cosmos beyond our little
planet. Despite the perception of space as empty, there is an enormous quantity of gas and
dust located between the stars, referred to as the interstellar medium (ISM). In other words,
the stars and their planetary systems within our Milky Way only take up 3 × 10−10 of the
available space, with the rest corresponding to the ISM (Tielens, 2005). The ISM is composed
primarily of hydrogen and helium gases while all of the heavier elements only account for a
small fraction. The ISM has multiple distinct phases including cold dense molecular gas, cold
and warm neutral H clouds, warm ionized gas, hot H ii regions (nebulae of ionized gas when
recent star formation has taken place), and the highly diffuse, hot intercloud medium. The gas
densities of these phases range from ∼10−3 cm−3 in the hot intercloud medium to >105 cm−3

in some H ii regions and molecular clouds and temperatures range from ∼ 10 K in molecular
clouds up to ∼106 K in the hot intercloud medium (Tielens, 2005). It is from the material in
the ISM that all stars and subsequently all organic life is born.

All stars begin their life in a giant molecular cloud, with temperature on the order of T ∼ 10-
15 K and densities of n ∼ 103 cm−3. The structure of the molecular cloud is not homoge-
neous, instead it may contain clumpy regions that tend to exceed the typical average densities
in molecular clouds, up to 106 cm−3 (e.g. Shu et al., 1987) . Under the influence of gravity,
these clumps contract inwards to eventually form hot dense cores, with T ∼ 100 - 300 K and
n ∼ 107 - 109 cm−3. Gravitational contraction continues until these conditions become hot and
dense enough within these cores to allow hydrogen fusion to occur, a process that usually oc-
curs on the order of a million to a hundred million years. The immense amount of radiation
pressure produced from this ignition pushes back against the cloud’s gravitational collapse un-
til the two forces eventually balance out into a stable configuration. It is in this way that a star
begins its life cycle (see Figure 1.1 for a schematic outlining the typical life cycle of stellar
objects with respect to the ISM).

The advent of hydrogen fusion for all stars is referred to as the zero age main sequence.
Stars spend a large portion of their life cycle on the main sequence (MS), where hydrogen
fusion in their core is the main source of energy to combat the ever present gravitational pull.

1
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Figure 1.1: The life cycle of stars along with the associated gas and dust in the ISM. Within
this cycle, interstellar gas and dust becomes more enriched with heavier elements moving in a
clockwise direction. Figure from Jones (2004), reproduced by permission of the Astronomical
Society of the Pacific Conference Series.

The main sequence lifetime of a star is determined by a multitude of factors, in particular its
mass and core temperature. Early–type main sequence stars typically are much more massive
(> 10 M�) compared to their late–type counterparts, implying they are subject to a stronger
gravitational field. This yields a higher core temperature, drastically increasing the rate of core
hydrogen fusion as fusion is highly sensitive to temperature. These high–mass stars can exhaust
their core hydrogen supply in tens to hundreds of millions of years. In contrast, intermediate–
mass stars (1.4 < M� < 10) take about a billion years to exhaust their core hydrogen supply,
while in lower mass stars (M� < 1.4), this same process is predicted take tens of billions up to
even trillions of years.

After a star depletes its core hydrogen supply, gravitational contraction once again becomes
the dominant force. The star continues to contract until it becomes hot enough for helium core
fusion to begin. For intermediate to massive stars, the large gravitational force causes the tem-
perature to become high enough to allow a smooth transition into helium fusion. In lower
mass stars, degeneracy pressure (i.e. electrons are packed in so densely that they cannot be
compressed by gravity any further due to all of the lowest energy states being occupied) and
temperatures continue to rise until an abrupt chain reaction of helium fusion occurs through-
out the core causing a rapid outburst of energy referred to as a helium flash. This marks the
beginning of the horizontal branch where helium fusion persists in stellar cores.

For low–mass stars, helium core fusion tends to last about a tenth of the time of hydrogen
core fusion (e.g. Carroll & Ostlie, 2007). The exhaustion of the helium core supply leads into
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the asymptotic giant branch (AGB) phase. In AGB–type stars, the outer envelope becomes so
tenuous that it cools enough to allow dust and gas molecules to form without being immediately
destroyed. In the gas outflows of the star, chemical reactions involving dust grains and simple
molecular gas can occur. Once the helium core is depleted, envelope contraction occurs until
the hydrogen shell becomes hot enough to ignite. This hydrogen shell fusion in turn causes the
outer envelope to expand until the temperature decrease stops further fusion. However, during
hydrogen shell fusion, helium ash is deposited onto an inert helium shell layer surrounding the
core, leading to the contraction of this helium shell until it becomes hot enough to begin helium
fusion. This helium fusion is accompanied by a burst of energy expelling some of the outer
envelope, referred to as a thermal pulse. The helium shell fusion will continue for a time until
the expansion of the above hydrogen layers decreases the temperature within the helium shell,
below the helium fusion threshold. This cycle of dual shell fusion accompanied by thermal
pulses will continue around 10 times until all of the remaining envelope is blown off into a
planetary nebula and only the inert carbon-oxygen core remains as a white dwarf remnant.

Similarly, intermediate–mass stars are also left with an inert carbon core after the helium
fusion phase ends (e.g. Carroll & Ostlie, 2007). Helium shell fusion will continue to deposit
ash onto the degenerate carbon core causing a continuous rise in temperature and pressure.
This leads to a similar process as the helium flash found in low–mass stars as the conditions
become hot enough to allow for a chain reaction of carbon fusion. However, this carbon flash
produces much more energy in comparison and the entire envelope is rapidly expelled leaving
only a dense, inert core. Further gravitational contraction compresses the electron and protons
making up this core into neutrons, which are then able to repel further contraction via neutron
degeneracy pressure (analogous to the aforementioned electron degeneracy pressure) to form a
relatively stable neutron star remnant.

In the most massive stars once helium fusion ends, a cycle of gravitational contraction
followed by core fusion of heavier elements will occur (e.g. Carroll & Ostlie, 2007). Above
the core, hydrogen and helium fusion shells will form as the core contracts until the temperature
becomes hot enough to begin carbon fusion. This leads to an onion-like structure with layers
of more massive elements forming above the core as it continues to contract and fuse heavier
elements all the way up to iron. As iron fusion is an endothermic reaction, it will not support
the star against its massive weight. This results in a rapid contraction throughout the star
onto the now rigid degenerate core. The degeneracy pressure within the core increases until it
overcomes its gravity and the accumulated matter is rebounded sending a shock wave outwards
with energies on the order of 1051 ergs. This results in a catastrophic event known as a Type II
supernova where a massive star blows itself apart. It is prior to this event that elements heavier
than iron are formed and distributed amongst the ISM.

In summary, all stars are essentially giant nuclear reactors that produce the elemental con-
stituents of our Universe except for hydrogen and helium. When they have finally run out of
nuclear energy to stop the timeless persistence of gravity, they release their material back into
the ISM. Over time, the enriched gas will become part of the molecular clouds where the next
generation of stars are born, thus beginning the stellar life cycle anew.

The gas and dust of the ISM also have a life cycle of their own as briefly discussed above.
From the initial formation within the outflows of carbon–rich stars or from energetic processes
with the ISM, incident UV radiation absorbed by this material promotes a rich gas-phase chem-
istry, yielding a wide variety of different molecular species. This material is further processed
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and expelled throughout the local galaxy by means of stellar winds or supernovae shocks.
Gravitational forces and local stellar environments cause the gas and dust to conglomerate into
the different phases of the ISM. Some of this matter is contained in the dense cores of molecu-
lar clouds and becomes part of the star formation process. In the more diffuse ISM phases, this
material can exist for up to hundreds of millions of years where photochemical processes from
nearby stars continually change its molecular structure. We now turn our focus to a very con-
spicuous type of ISM material that illustrates the interplay between stars and their surrounding
environment.

1.2 PAH Characteristics

Polycyclic aromatic hydrocarbon (PAH) molecules are found throughout the ISM in abundance
in a wide variety of astronomical environments. These species are thought to be formed in the
outflows of carbon-rich stars or from energetic processes such as interstellar shocks within the
diffuse ISM (e.g. Tielens, 2008, and references therein). PAHs are organic molecules charac-
terized by multiple planar benzene (or hexagonal) rings linked together in a planar honeycomb
structure with peripheral hydrogen atoms inhabiting the edge of the molecule. Figure 1.2 shows
a single benzene ring along with some simple PAH species. Each carbon atom in a ring forms
three covalent σ-bonds with adjacent carbon or hydrogen atoms. The fourth valence electron
from each carbon atom forms a delocalized π-bond that is shared throughout the ring, hence we
refer to these bonds as having an aromatic nature. Aromatic bonds are significantly more stable
than non-aromatic bonds, making PAHs more resilient to interstellar conditions compared to
linear (aliphatic) hydrocarbons.

On Earth, PAHs are a component of incomplete combustion products that we encounter
on a daily basis. Some terrestrial examples of PAHs are auto exhaust, soot, tobacco smoke,
and coal. All of these chemical species are carcinogenic and prolonged exposure should be
avoided. Despite these health concerns, there is immense scientific value in studying the PAH
species that can be found here as a prototype of those that exist throughout the Universe.

It should be noted that various carbonaceous molecules are present in space. In particular,
fullerenes are spherical or ellipsoidal cage structured molecules made of both 5-membered and
6-membered aromatic carbon rings (Figure 1.2). These molecules were hypothesized to form
around stars with carbon-rich, hydrogen poor atmospheres (e.g. Kroto & Jura, 1992) or within
the ejecta of Type II supernovae (Clayton et al., 2001). Recent observational evidence has
shown the presence of multiple fullerene species: C60, C+

60, and C70 in numerous environments
including a planetary nebula (PNe, Cami et al., 2010), in reflection nebulae (RNe, Sellgren
et al., 2010), and the diffuse ISM (Berné et al., 2017; Cordiner et al., 2019).

1.2.1 Mid–Infrared Astronomical Spectra
Mid-infrared (MIR) spectroscopic observations for a large range of astronomical sources show
prominent emission features at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm, attributed to the IR fluo-
rescence of PAHs (Allamandola et al., 1985). These bands were originally observed by Gillett
et al. (1973) and were first referred to as the unidentified infrared bands (UIR). This was due
to the nature of their carriers being unknown for a decade after their discovery.
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Figure 1.2: Chemical structure of benzene and a few small PAH species made up of multiple
benzene rings fused together: napthalene, pyrene, coronene, and ovalene. Peripheral hydrogen
atoms are not shown here. PAHs in the ISM typically are significantly larger with ∼ 50–
100 carbon atoms and sizes of ∼ 6–9 Å (e.g. Tielens, 2005). Also shown is C60, a fullerene
cage made up of aromatic carbon rings.2

Since their discovery, these PAH emission features have been observed using ground-based,
airborne, and space-based observatories. They are ubiquitous and dominate the MIR spectra
of virtually all objects that have gas and dust illuminated by stellar ultraviolet (UV) radiation.
This includes Galactic and extragalactic sources such as H ii regions, post-AGB stars, young
stellar objects (YSOs), PNe, RNe, the (diffuse) ISM, galactic nuclei, and galaxies as a whole
(e.g. Hony et al., 2001; Verstraete et al., 2001; Peeters et al., 2002; Smith et al., 2007b; Galliano
et al., 2008, 2018).

A typical MIR spectrum is shown in Figure 1.3 of the Orion Bar. Strong PAH emission at
3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm can be seen, along with additional weaker features of the
same nature at 3.4, 5.25, 5.7, 6.0, 11.0, 12.0, 13.5, 14.2, 15.8, 16.4, 17.4, and 17.8 µm. All
of these features are on top of broad emission plateaus at 3.2-3.6, 6-9, 11-14, and 15-19 µm
which are perched on top of a rising dust continuum.

2”Structure of benzene” and ”Structure of naphthalene” by NEUROtiker; ”Structure of pyrene.”
by Emeldir; ”The structure of Coronene” and ”The structure of Ovalene, a polycyclic aro-
matic hydrocarbon, or PAH” by Inductiveload; ”Image of [60]Fullerene or C-60” by Torsten
Brandmueller released into the public domain (https://commons.wikimedia.org/wiki/File:Benzol.svg,
https://commons.wikimedia.org/wiki/File:Naphthalin.svg, https://commons.wikimedia.org/wiki/File:Pyrene 200.svg,
https://en.wikipedia.org/wiki/File:Coronene.svg, https://commons.wikimedia.org/wiki/File:Ovalene.svg,
https://commons.wikimedia.org/wiki/File:C60-1.jpg).
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Figure 1.3: The MIR spectra of the Orion Bar (shown in black). The emission features at-
tributed to PAHs are shown in red with the associated vibrational modes labelled in the top
panel. The purple line separates the PAH emission from the emission plateaus due to larger
carbonaceous grains and the rising dust continuum. Figure from Peeters et al. (2004a), repro-
duced by permission of the Astronomical Society of the Pacific Conference Series.

1.2.2 PAHs as Carriers of UIR Emission Bands

The first glimpse into the identification of the carriers of the UIR bands was the attribution of
the 3.3 µm band to the vibrational excitation of aromatic C-H groups by Duley & Williams
(1981). In the following years, various carbonaceous species were considered as potential car-
riers including hydrogenated amorphous carbon (Duley & Williams, 1988), quenched carbon
composite (Sakata et al., 1984), coal (Papoular et al., 1989), and PAHs (e.g. Allamandola et al.,
1989; Puget & Léger, 1989). The vibrational spectra of all of these species have emission bands
which peak at the same wavelengths as the UIR bands. Hence, any of these spectra can provide
a reasonable fit to the observed astronomical spectra. These similarities largely stem from all
of these species consisting of primarily aromatic material on the smallest scales. For example,
a comparison of the 6.2 and 7.7 µm emission bands in the MIR spectrum of the Orion Bar with
the MIR Raman spectra of auto exhaust shows remarkable similarities (see Figure 1.4). The
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agreement between these two spectra gives strong evidence for the carriers of the UIR bands
being comprised of aromatic material.

Figure 1.4: (a) Raman spectra from 5 to 10 µm of auto exhaust. (b) Orion Bar spectrum from
5 to 10 µm. Figure from Allamandola et al. (1985), reproduced by permission of the AAS.

The distinction between the carriers of the UIR bands existing as aromatic molecules in the
gas phase as opposed to larger dust grains was first made by Sellgren (1984). She observed
near-infrared emission in three RNe, which all showed strong 3.3 µm emission with a smooth
continuum from 1.25 to 4.8 µm, characterized by a colour temperature of ∼ 1000 K. This
emission was found to be independent of the distance from the illuminating source. Large
classical carbonaceous dust grains containing ∼ 1000 carbon atoms are in thermal equilibrium
with their environment. In the diffuse ISM with temperatures on the order of 10 K, these
dust grains do not become hot enough to account for the observed emission. Sellgren (1984)
explained these observations in terms of an emission model where very small grains with a
typical size of 10 Å are rapidly heated to 1000 K through the absorption of a single UV photon,
referred to as stochastic heating. Further studies confirm that the carriers of the UIR bands must
be small aromatic molecules (PAHs) containing ∼ 50 carbon atoms (e.g. Léger & Puget, 1984;
Allamandola et al., 1989; Tielens et al., 1999).

1.2.3 PAH Emission Mechanism

The emission process responsible for the PAH emission features is detailed as follows (e.g.
Allamandola et al., 1989; Puget & Léger, 1989; Tielens, 2005): a PAH molecule absorbs a
far-ultraviolet (FUV) photon causing it to transition into a higher electronic energy level with
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internal temperatures greater than 1000 K. This energy is rapidly (∼ 10−9 s) internally redis-
tributed into high vibrational excitation in a lower electronic state. The vibrationally excited
PAH molecule will then cool down predominantly through IR fluorescence relatively slowly
(∼ 1 s) which is observed as MIR emission. An excited PAH molecule cools back down to
the equilibrium temperature of its environment (∼ 10 K) after a few seconds and will remain
cold until it absorbs another FUV photon. Characteristic time scales between FUV absorption
events range from ∼ 10 minutes in photo-dissociation regions (PDRs) such as the Orion Bar to
once a year in the diffuse ISM (Tielens, 2005).

The relaxation of vibrationally excited PAH species occurs most prominently through C-C
and C-H vibrational modes. Each of the major PAH bands are attributed to aromatic bending
and stretching modes between the atomic constituents within PAH molecules (Allamandola
et al., 1989). The 3.3 µm band is attributed to aromatic C-H stretching, the 6.2 µm and 7.7 µm
bands are both attributed to C-C stretching, while the 8.6 µm band is attributed to C-H in-
plane bending. Emission in the 10-15 µm range is attributed to C-H out-of-plane bending
modes, including bands at 11.0, 11.2, 12.7, 13.5, and 14.2 µm (Allamandola et al., 1989; Hony
et al., 2001). The frequency of each of these emission bands depends on the number of adjacent
peripheral C-H bonds; which may be solo, duo, trio, or quartet C-H groups. Weaker PAH bands
in the 15-20 µm range are attributed to C-C-C bending modes (Allamandola et al., 1989).

1.2.4 Astronomical Importance

There are numerous reasons why PAH species are significant within an astronomical context
aside from their ubiquity. PAHs contain up to 15% of the cosmic carbon inventory (Alla-
mandola et al., 1989), a non negligible fraction of the key element in organic chemistry and
biological life as we know it. The MIR emission attributable to PAHs accounts for up to 20%
of the total IR emission in galaxies (Smith et al., 2007b). In other words, PAHs absorb a sig-
nificant amount of UV energy from young, high–mass stars. Consequentially, PAH emission
serves as a tracer of star formation rates (e.g. Peeters et al., 2004a).

PAHs play an important role in several significant astrophysical and astrochemical pro-
cesses. The heating of neutral gas in the ISM is driven in large part through the photoelectric
ejection of electrons from PAHs and PAH clusters (Bakes & Tielens, 1994). The ionization
balance in the neutral ISM is dominated by the photoionization and recombination of PAHs
(Lepp & Dalgarno, 1988). Their large surface area also makes them ideal sites for surface
chemistry, providing an environment to facilitate the formation of smaller molecules such as
H2 (e.g. Habart et al., 2004; Wolfire et al., 2008; Verstraete, 2011). Additionally, the chemical
structure of PAHs may be modified through photo-processing. In this way other carbon–based
species may be formed, such as smaller hydrocarbon radicals and carbon chains (Tielens, 2008)
or even fullerenes (e.g. Berné & Tielens, 2012; Zhen et al., 2014). Finally, PAH species in water
ice may be relevant in the formation of prebiotic molecules, such as amino acids (Allamandola,
2011). Hence, MIR observations of PAH-rich environments are a way to reveal the molecular
nature of the Universe.
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1.3 Variability in PAH Emission
To first order, the MIR spectra of many astronomical sources show the same PAH emission
features. Upon closer inspection, there are subtle differences as these PAH emission features
tend to show variability in intensities, peak positions, and profiles between sources and spatially
within extended sources (e.g. Bregman et al., 1989; Hony et al., 2001; Peeters et al., 2002;
Galliano et al., 2008; Stock et al., 2016; Peeters et al., 2017). In this section, we address the
variations found in these spectra and relate them to the underlying physical principles at work.

1.3.1 Intensity Variations
Variations in the strength of the major PAH emission bands (e.g. 3.3, 6.2, 7.7, 8.6, 11.2, and
12.7 µm) can be seen between and within astronomical sources (e.g. Joblin et al., 1996a; Hony
et al., 2001; Vermeij et al., 2002; Smith et al., 2007b; Galliano et al., 2008). To a lesser extent,
the weaker bands also demonstrate variation in emission strength (e.g. Peeters et al., 2012;
Shannon et al., 2015). These variations are found not only in absolute PAH emission strength
but also in their relative emission strength (emission ratios, e.g. 8.6/11.2 µm). Relative inten-
sities are advantageous in that they normalize differences between objects of study including
abundances and distances to the observer (e.g. Chan et al., 2000).

PAH bands are typically characterised observationally by how well they correlate with
each other. For instance, the 6.2, 7.7, and 8.6 µm emission ratios are highly correlated over a
wide range of environmental conditions (e.g. Joblin et al., 1996a; Vermeij et al., 2002; Smith
et al., 2007b; Galliano et al., 2008) indicating these features originate from the same PAH
subpopulation (Figure 1.5). The 6.2 µm band has also been found to correlate with the 12.7 µm
band (e.g. Hony et al., 2001). Likewise, the 3.3 and 11.2 µm emission bands are well correlated
with each other but not with the 6-9 µm emission bands, suggesting that these bands become
more prominent in different subpopulations of PAHs (Figure 1.5, Russell et al., 1977; Hony
et al., 2001). It is also worthwhile to note that the weaker 11.0 µm band has been shown to be
strongly correlated with the 8.6 µm band and, to a slightly lesser extent with the 6.2 and 7.7 µm
bands (e.g. Peeters et al., 2017).

Correlations between the weaker PAH emission bands in the 15-20 µm range and the major
PAH bands are also present in wide range of astronomical environments (e.g. Boersma et al.,
2010; Peeters et al., 2012; Shannon et al., 2015). The 15.8 µm band shows correlations with
the 11.2 µm band. In contrast, the 16.4 µm band shows correlations with the 6.2 and 12.7 µm
bands. The 17.4 µm band shows weak correlation with the 16.4 µm band, but is more prominent
in higher radiation fields towards the illuminating sources observed. The 17.8 µm band is found
to have two components that are similar to the 11.2 and the 12.7 µm bands respectively.

1.3.2 Profile Variations
The profile and peak position of the PAH emission features in the 6-9 µm range show significant
variations (Figure 1.6, Peeters et al., 2002). Peeters et al. (2002) classified the profile variations
based on the peak positions of the PAH emission features and their overall shape into three
spectral classes: A, B, and C. Profile variations are most apparent in the 7.7 µm complex in
terms of its two main components at 7.6 and 7.8 µm with varying relative emission strength
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Figure 1.5: left The relative integrated strength of the 6.2 µm vs. the 7.7 µm PAH emission
bands, both normalized to the 11.2 µm band, over a large sample of Galactic and extragalactic
sources. The black points and associated error bars correspond to measurements that are con-
sidered to be reliable, whereas the gray points have a higher uncertainty. Figure from Galliano
et al. (2008), reproduced by permission of the AAS. right The relative integrated strength of
the 3.3 µm vs. the 11.2 µm PAH emission bands, both normalized to the 6.2 µm band, from
a survey of Galactic sources. Hexagons are H ii regions and intermediate–mass star–forming
regions, squares are RNe, and triangles are PNe. Figure from Hony et al. (2001), reproduced
with permission© ESO.

(Bregman, 1989; Cohen et al., 1989). Class A spectra have emission features that peak at
shorter wavelengths relative to the other classes: the 7.7 µm emission band peaks at ∼ 7.6 µm.
Class B peaks redward of class A: the 7.7 µm band peaks between 7.8 and 8.0 µm. Class C
has a broad emission feature that peaks at 8.22 µm instead of the typical profile shape seen for
the 7.7 µm complex as shown in Figure 1.3. More recently, a fourth spectral class, D, has been
discovered that has broad emission from 7 - 9 µm (Matsuura et al., 2014). The shift in peak
position is also apparent in the 6.2 and 8.6 µm to a lesser degree: the difference between class
A to C peak positions range from 6.2 to 6.3 µm in the 6.2 µm band, whereas the difference
between the class A and B peak positions range from ∼ 8.6 to 8.7 µm in the 8.6 µm band. Note
that in class C profiles, the 8.6 µm band is very weak or absent.

The 3.3 and 11.2 µm emission features are also distinguished in terms of class A and B
spectra (Figure 1.6, van Diedenhoven et al., 2004). Observations of the 3.3 µm band show two
distinct profile types: a symmetric feature peaking at ∼ 3.290 µm and an asymmetric feature
peaking at ∼ 3.3 µm. The 11.2 µm profile is generally asymmetrical with peak position ranging
from 11.20 - 11.24 µm.

Each of these spectral classes are dependent on the type of object, while the reverse is not
true. That is to say, there is not a one-to-one correlation between some sources, such as post-
AGB stars and PNe, and their associated spectral class. Generally, Class A profiles are found
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Figure 1.6: Profile variations of the major PAH emission features. In each case, class A peaks
at the shortest wavelength (shown as a black line) and class B peaks at a longer wavelength
(shown as a light grey line). For the 6–9 µm features, there is a third class C (shown as
grey line), peaking at even longer wavelengths than the class B profiles. Note that the spectra
shown in each panel are normalized to the peak intensity of the emission features within the
wavelength range given. Figure from van Diedenhoven et al. (2004), reproduced by permission
of the AAS.

in interstellar sources including H ii regions, RNe, and non–isolated Herbig Be stars but also
include some PNe and post-AGB stars. Class B profiles are found in circumstellar sources
including planetary nebula, isolated Herbig Be stars and some post-AGB stars. Class C and D
profiles have only been found in a couple post-AGB and Herbig Ae/Be stars. This classification
suggests that the emission properties of PAHs and their composition are determined by the local
environment.

Finally, from a study on the profile variations of a sample of post-AGB stars and isolated
HAeBe stars of class B or C, Sloan et al. (2007) found an anti-correlation between the peak
position of the 7.7 µm band with the effective temperature of the exciting star. This correlation
does not extend to class A objects. Despite this, they attributed this trend to an increase in UV
processing as the driving factor for profile variations. Hotter stars will produce a stronger UV
radiation field, thus increasing the degree of photo-processing in a nearby PAH population.

1.3.3 Emission Variations as Tracers of Physical Properties

The variations found between the 6–9 µm bands and the 3.3, 11.2 µm bands can be explained
through consideration of the underlying physical properties. Comparison of astronomical spec-
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tra with experimental and theoretical PAH spectra suggest the most significant driver of inten-
sity variations is PAH charge (e.g. Joblin et al., 1996a; Hony et al., 2001; Hudgins & Allaman-
dola, 2004; Galliano et al., 2008; Bauschlicher et al., 2008). The emission strength of the 6.2,
7.7, and 8.6 µm emission feature are found to increase with ionization, whereas the emission
strength of the 3.3 and 11.2 µm emission features are prominent in neutral PAHs (Allaman-
dola et al., 1989; Bauschlicher et al., 2008). The 12.7 µm emission feature has been found to
have spectral components corresponding to both cationic and neutral PAHs (Boersma et al.,
2013; Shannon et al., 2016). The 11.0 µm band, is attributed to solo C-H out-of-plane bending
modes in PAH cations, acting as an ionized analog to the neutral 11.2 µm band (e.g. Hudgins
& Allamandola, 1999). Additionally, based on the observed correlations, the PAH emission
features in the 15–20 µm range have also been linked to both cationic PAHs (16.4, 17.4 µm
and a component of the 17.8 µm band) and neutral PAHs (15.8 µm and a component of the
17.8 µm band, e.g. Boersma et al., 2010; Peeters et al., 2012; Shannon et al., 2015).

The intensity ratio of ionized to neutral PAHs as traced by, e.g. the 6.2/11.2 emission ratio,
can be used to trace the ionization balance of the emitting PAH population (e.g. Galliano et al.,
2008; Stock et al., 2016). The charge state of the PAH population is determined by the ratio of
the ionization and recombination rates which sets the PAH ionization parameter, γ = G0T 0.5/ne,
where G0 is the intensity of the ambient FUV radiation field, T is the gas temperature, and ne

is the electron density (Bakes & Tielens, 1994). Hence, the ionized to neutral PAH emission
ratio can be used to probe environmental conditions.

PAH emission ratios can provide more insight on the properties of a PAH population than
just the relative charge state. The 11.2/3.3 emission ratio can be used as a tracer of the average
size of the emitting population (Schutte et al., 1993; Ricca et al., 2012; Maragkoudakis et al.,
2020). Both of these emission bands correspond to primarily neutral species and cover the
largest wavelength range between the major PAH bands. These traits avoid any dependency
on ionization and maximize the spectral sensitivity to temperature respectively. As previously
discussed, the absorption of a FUV photon by a PAH molecule results in stochastic heating
with a rapid rise in internal energy that is redistributed to vibrational energy (Allamandola
et al., 1989). Smaller PAHs have fewer vibrational modes, and so become hotter than larger
PAHs when a photon with the same amount of energy is absorbed and will emit more radiation
at a shorter wavelength. Through probing variations in relative PAH size through the 11.2/3.3
emission ratio within an extended region, we can find evidence of the photochemical evolution
of these species promoted by UV processing (e.g Croiset et al., 2016, Knight et al. submitted
(Chapter 2)).

Another useful way to probe a PAH population is through the 11.2/12.7 emission ratio as it
can be used to determine the prevalent molecular edge structure of these species (Hony et al.,
2001; Bauschlicher et al., 2009). Recall that both emission features are attributed to C-H out-
of-plane bending modes: the 11.2 µm band is due to solo C-H adjacency and the 12.7 µm band
is ascribed to a combination of duo and trio C-H groups. If the intrinsic strength of each band
is known, observations reveal the relative abundance of solos and duo C-H groups. In regions
where the 11.2 µm band dominates, there is an abundance of large, compact, symmetrical
PAHs. In contrast, a stronger 12.7 µm band implies the presence of more irregularly shaped
PAHs. However, as the 11.2 µm is largely dominated by neutral PAHs and the 12.7 µm by
both ions and neutrals, correction for the influence of PAH charge must be made (e.g. Boersma
et al., 2013; Shannon et al., 2015).
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1.4 Life Cycle of PAHs

1.4.1 Formation
The formation of PAHs is still a topic of debate despite their ubiquitous nature in the ISM.
There are currently two proposed formation routes: bottom-up processing, where PAHs are
formed from smaller hydrocarbon molecules in the outflows of carbon-rich AGB stars and top-
down processing, where PAHs are formed through the fragmentation of larger carbonaceous
grains.

Bottom-up Processing

PAHs are a natural product in the outflows of carbon-rich AGB stars, as they provide a high
temperature soot-producing environment (Latter, 1991). Due to the absence of UV photons
in these stars, there is a lack of observational evidence for PAH formation in these outflows
in most cases. However, in the later evolutionary stages of these stars with higher effective
temperatures, including carbon-rich post-AGB objects and PNe, the PAH emission features
can be seen. Additionally, PAH emission has been detected in carbon-rich AGB stars where a
blue binary companion provides UV–pumping photons (Boersma et al., 2006).

PAH formation in the carbon-rich AGB outflows is thought to begin with the smaller car-
bonaceous species present. Most of the carbon in AGB outflows is in the form of CO and C2H2

(acetylene). CO is a highly stable species and is relatively impervious to the high temperature
environment. C2H2 is significantly more reactive than CO with atomic hydrogen promoting the
formation of larger hydrocarbon species. This is similar to the combustion processes found on
Earth, where PAHs are a significant intermediate species in soot formation (Frenklach et al.,
1985).

Theoretical studies of PAH formation in AGB outflows have been done by Frenklach &
Feigelson (1989) and Cherchneff et al. (1992). The formation of a single benzene ring from
C2H2 or C3H3 is the rate–limiting step to PAH formation (Miller & Melius, 1992). There are
multiple proposed mechanisms for the growth of additional aromatic rings, one of note is the
hydrogen abstraction-acetylene addition (HACA) mechanism as described by Frenklach et al.
(1985). In this case, radical sites on the benzene ring allow additional C2H2 species to bond,
which can lead to the formation of another ring and so on. However, a recent computational
study has suggested that this mechanism fails for PAH species with more than three benzene
rings and thus alternative formation pathways are required (Kaiser et al., 2015).

Top-down Processing

Larger carbonaceous dust grains composed of aromatic and aliphatic material are present
throughout the ISM. One of the natural products of the fragmentation of these species are
freely-floating PAH molecules. PAHs can be extracted from carbonaceous dust through inter-
stellar shocks and UV radiation.

Shock waves produced by supernovae or the stellar outflows of young stars ripple through-
out the ISM, causing high velocity grain-grain collisions (Tielens, 2008). Collisions between
large and small grains can cause fragmentation or complete destruction of entire grains. Jones
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et al. (1996) have calculated the lifetime of large grains (of size ∼ 1000 Å) against shattering
from collisions to be ∼ 108 years. A typical interstellar shock can free 10% of the carbonaceous
material in grains to produce smaller carbon species of size < 15 Å, characteristic of PAHs and
very small grains (Jones et al., 1996). Unfortunately, there is currently minimal evidence for
PAH formation in regions affected by interstellar shocks due to the difficulty of separating the
emission of supernova remnants from the Galactic background (Tielens, 2008). With regards
to shocks produced by young stars, PAH emission has been observed in the shocked gas of the
superwind produced by the nuclear starburst in M82 (Engelbracht et al., 2006).

Another hypothesis is the fragmentation by UV radiation of very small dust grains (VSG)
into PAHs. Cesarsky et al. (2000) attribute continuum and broadband emission in the RN
Ced 201 found far from the illuminating star to VSG of size ∼ 1 nm. VSG are thought to be
present throughout the ISM, but only show MIR emission in specific environments where they
are sufficiently heated such as RNe. Within these extended environments, continuum emission
far from the illuminating source comes from the same chemical family as the PAH emission
features closer to the source, but these two types of emission are not directly correlated (e.g.
Cohen et al., 1985; Roche et al., 1989; Bregman et al., 1989). The stratification with respect to
distance from the illuminating source in the observed MIR emission due to VSG and PAHs with
increasing UV flux is indirect evidence of VSG fragmentation producing PAHs (e.g. Rapacioli
et al., 2005). Additionally, Goto et al. (2003) found that the relative intensity of the 3.4 µm
band (aliphatic C-H stretching) to the 3.3 µm band (aromatic C-H stretching) decreased with
increasing distance from a carbon-rich post-AGB star, indicative of the UV processing of dust
grains into material with a higher degree of aromaticity.

1.4.2 PAH Evolution
The chemical evolution of PAHs – i.e. their transformation into other carbonaceous species
as well as other PAH species – is determined by the environmental conditions. We consider
some of the principal drivers of PAH evolution such as grain-grain collisions, freezing onto
grain surfaces, and photo-processing which modifies the PAHs in the following ways. First,
in low energy grain-grain collisions, PAHs grow through the coagulation or accretion of other
species and can become a part of larger dust grains. In contrast, in high energy collisions,
PAHs are fragmented or completely destroyed. Second, in the low temperature environments
of dense molecular clouds, PAHs will freeze out onto grain surfaces. Incident UV radiation
or cosmic rays on these ice mantles induce chemical reactions involving PAHs that lead to a
multitude of complex molecules, including some prebiotic materials, such as amino acids and
amphiphilic organic compounds similar to cell membranes (Allamandola, 2011). Finally, the
photo-processing of PAHs further changes the PAH structure. Significant progress has recently
been made on understanding the effects of photo-processing, and we will expand on this in the
following section.

The Effects of UV Processing on PAH Evolution

With the advent of the current generation of high spatial resolution observatories, in particular
the Spitzer Space Telescope, we can investigate variations in MIR emission on a much finer
spatial scale. This allows the properties of PAHs and their relationship to the UV radiation
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field from the illuminating stellar source to be investigated on much smaller scales in sources
with strong MIR emission (e.g. Peeters et al., 2012; Boersma et al., 2013; Shannon et al., 2015;
Stock et al., 2016; Peeters et al., 2017; Stock & Peeters, 2017; Andrews et al., 2018).

PAHs and Other Carbonaceous Species

PAHs and C60 The fraction of elemental carbon locked–up in PAH species can be mea-
sured using IR observations with the following equation (Tielens 2005):

fc = 0.23
(7 × 10−18cm2)

σPAH
uv

R
(1 − R)

, (1.1)

whereσPAH
uv is the UV absorption cross-section of PAHs, with a typical value of 7 x 10−18 cm2

per carbon atom and R is defined as the ratio of PAH flux to the total IR flux, which is repre-
sented by the sum of the total MIR PAH flux and the far-infrared (FIR) flux. Using the typical
values of the elemental carbon abundance (3.9 × 10−4) and the average number of carbon atoms
in an interstellar PAH molecule (50 carbon atoms, Tielens et al., 1999), the PAH abundance can
be determined. A variation in the PAH abundance reflects the formation and/or destruction of
PAHs, exemplified by Berné & Tielens (2012) in their analysis of the RN NGC 7023. These au-
thors reported a decrease in PAH abundance from the PDR front towards the central star. This
suggests that the higher UV radiation field near the star increases the rate of photo-destruction
of PAHs.

In addition, this decrease in PAH abundance towards the central star coincides with an in-
crease in the C60 abundance (see Figure 1.7). This anti-correlation indicates that the formation
of fullerenes may be related to the fragmentation of large PAH species (> 60 carbon atoms).
Based on this observation, Berné & Tielens (2012) hypothesized a top-down model in which
the UV processing of large PAHs can lead to the formation of C60. The strong UV radiation
field near the star first dehydrogenates the PAHs leaving large graphene sheets. Upon further
photo-processing, the graphene species will isomerize into C60 as it is significantly more stable.
Theoretical models have shown C60 can survive for a long period of time in the harsh radiation
near a star whereas similar sized PAHs are quickly destroyed (Berné et al., 2015).

In order to test the hypothesis of C60 formation from PAHs in a laboratory environment,
Zhen et al. (2014) irradiated large PAHs with UV lasers. These authors found that upon the
irradiation of large PAHs, sequential H losses occurred until these PAHs were fully dehydro-
genated into graphene. Further irradiation lead to the removal of C2 molecules in the graphene
sheet which induced curling into the cage structures of fullerenes. Thus, fullerenes can be
formed through the photo-processing of PAHs.

PAHs and VSG Blind signal separation (BSS) is a mathematical technique that restores
a set of unknown spectral source signals due to their different morphology from an observed
mixture of spectra that is a linear combination of the source spectra without any information
on the mixing parameters (Aapo Hyvärinen, 2001). BSS analysis has been used to explain
spatial variations in MIR spectral maps of RNe in terms of three different spectral components,
layered with distance to the star (see Figure 1.8, e.g. Boissel et al., 2001; Rapacioli et al., 2005;
Berné et al., 2007). The component closest to the illuminating star is attributed to PAH ions of
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Figure 1.7: Abundances of PAHs and C60 as a function of distance from the central star in
NGC 7023. The red curves give the 1-sigma uncertainty. Figure from Berné & Tielens (2012),
reproduced by permission of the PNAS.

typical size of 50–150 carbon atoms. Moving further away, the next component is attributed to
neutral PAHs of similar size as the aforementioned PAH ions. The spectral component deepest
into the cold molecular clouds is hypothesized to be due to VSG or very large PAH species
of size > 300 carbon atoms. The change in dominant species is ascribed to an increase in the
level of UV processing with decreasing distance from the illuminating source. At the edge
of the molecular cloud, VSGs are photo-evaporated prompting the release of smaller neutral
PAH species. These molecules are subsequently ionized as they drift closer to the star and
are eventually destroyed or transformed into other, more stable carbonaceous species upon
sufficient photo-processing.

Spatial Variations of PAH Populations

Charge PAH charge is an important factor in determining the relative intensities of the
PAH emission bands (Section 1.3.3). Conversely, we can use the observed relative PAH in-
tensities to infer the charge state of a PAH population. Following this logic, two of the three
spectral templates found with the BSS method were assigned to neutral and ionic PAH species
with the ionic species peaking closer to the star. This assignment was confirmed by Rosenberg
et al. (2011) by fitting each spectral template using the NASA Ames PAH IR Spectroscopic
Database (PAHdb, Bauschlicher et al., 2010; Boersma et al., 2014b; Bauschlicher et al., 2018).
In addition, the spatial distribution of individual PAH features show that the emission bands
associated with PAH cations (i.e. 6.2, 7.7, and 8.6 µm) peak closer to the star, whereas the
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Figure 1.8: Distribution of three MIR emission components derived from BSS in NGC 7023:
PAH ions (blue), PAH neutrals (green), and VSG (red). Figure from Berné et al. (2008),
reproduced with permission© ESO.

bands indicative of neutral PAHs (i.e. 3.3 and 11.2 µm) peak further away from the star. This
distribution further supports the picture of the photochemical evolution of astronomical PAHs
as they become more ionized with increasing exposure to the UV radiation of the central star.

Size PAH size is traced using the observed ratio of the 11.2/3.3 (Section 1.3.3). Indeed,
a PAH size distribution can be constructed by comparing the observed ratio with the intrinsic
11.2/3.3 ratio from theoretical spectra of PAHs over a range of sizes expected to be found in the
region (e.g. Bauschlicher et al., 2008, 2009; Ricca et al., 2012; Boersma et al., 2013; Croiset
et al., 2016; Maragkoudakis et al., 2020), typically around 50 carbon atoms (Allain et al., 1996;
Tielens et al., 1999). This PAH size distribution probes the photochemical evolution of PAHs
by mapping how the average PAH size varies with distance to an illuminating source. Since
smaller PAHs are less stable (e.g. Schutte et al., 1993), they are dissociated with less radiative
energy and are expected to be found further from the illuminating star compared to their larger
counterparts. Moving closer to the star, the average PAH size will increase as only the largest,
most stable species can survive the increase in UV radiation (e.g. Andrews et al., 2015; Peeters
et al., 2017). Thus, it follows that an observed change in PAH size is evidence of UV processing
and is a suitable probe for the photochemical evolution of these species.

PAH Structure Similar to the PAH charge and size, the edge structure of PAHs can be
examined in finer detail through the spatial mapping of the relevant PAH emission features
(Hony et al., 2001; Fleming et al., 2010; Boersma et al., 2013; Shannon et al., 2016). The
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12.7/11.2 emission ratio is one such tracer of the edge structure (section 1.3.3). Changes in the
edge structure of a PAH population can be analysed through measuring the spatial variations
in each emission band upon correcting for charge state differences.

In addition, the 7–9 µm PAH emission features can be decomposed into four Gaussian
components (G7.6, G7.8, G8.2, G8.6, Peeters et al., 2017; Stock & Peeters, 2017). The G7.6
and G8.6 components show the same spatial distribution, are well correlated and are both
attributed to compact, symmetrical PAHs based on the PAHdb emission models. Similarly, the
G7.8 and G8.2 are correlated, have a similar spatial distribution as the dust continuum emission
and are attributed to irregularly edged PAHs with bay regions from the PAHdb models. Thus,
these four spectral components of the 7–9 µm PAH emission provides another way to probe
PAH structure.

Spatial Sequence of PAH Emission Features In the reflection nebula NGC 2023, spatial
variations of the PAH emission components were probed in finer detail by Peeters et al. (2017).
Similar studies were done on the reflection nebula NGC 7023 by Boersma et al. (2013) and
Shannon et al. (2015). The authors found that the peak emission of individual PAH bands
as well as continuum emission showed a spatial sequence from the illuminating star. Each of
these emission features were grouped based on location and assigned to different carriers based
on the PAHdb.

The spatial sequence of the emission features and their assignments reveals the photochem-
ical evolution of the PAH population driven by increased exposure to the UV radiation field
from the central source within the evaporate flows of NGC 2023 (see Figure 1.9). Beginning
from the edge of the molecular cloud, MIR emission is dominated by VSG and neutral PAH
clusters with large irregular edges. Moving inwards towards the central star, these species are
photoprocessed into very large PAHs with irregular edges with sizes between 100–150 carbon
atoms, which are subsequently broken into neutral and cationic highly symmetrical compact
PAHs at the PDR front (Andrews et al., 2015). Further inwards, more smaller irregular edged
PAHs are found. In the cavity region closest to the star, only large, compact PAH cations
(> 70 carbon atoms) and C60 can exist without being rapidly fragmented.

1.5 Photo-Dissociation Regions
PAHs reside in PDRs. The existence of PDRs, regions where far-ultraviolet (FUV) photons
with energies > 6 eV and < 13.6 eV (the ionization energy of hydrogen) control the physics
and chemistry of the gas, was initially prompted by observations of the fine structure lines [C ii]
158 µm and [O i] 63 µm in massive star forming regions (Melnick et al., 1979; Storey et al.,
1979; Russell et al., 1980, 1981). From these studies, the conclusion was drawn that primarily
neutral, IR-luminous regions exist around H ii regions surrounding young stars. Within these
regions, molecules are photodissociated and elements with ionization potentials below 13.6 eV
are photoionized by the FUV photons from nearby stars. However, the study of PDRs extends
to the warm neutral medium, giant molecular clouds, RNe, the neutral gas enveloping PNe,
the photodissociated winds of red giants and AGB stars, and the ISM within the nuclei of
starburst galaxies and galaxies containing active galactic nuclei (Hollenbach & Tielens, 1999).
Thus, all atomic and at minimum 90% of the molecular gas in the Galaxy is contained in
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Figure 1.9: Diagram of the photochemical evolution of PAH population in NGC 2023. The
changes in PAH structure with increasing exposure to the UV radiation field from the central
star on the right upon transitioning from the PDR into the cavity are shown along with the
prominent emission features associated with each class of PAH species. Figure from Peeters
et al. (2017), reproduced by permission of the AAS.

PDRs (Hollenbach & Tielens, 1999). Observed emission from PDRs consist of the FIR dust
continuum, PAH emission, H2 emission, the atomic fine structure lines of [O i] and [C ii], and
CO rotational lines.

The morphology of a PDR can be understood in terms of a simple one dimensional schematic
(see Figure 1.10). Consider a source of FUV flux, such as the interstellar radiation field (ISRF)
or a nearby hot star, incident on a neutral gas cloud. A PDR is defined to begin at the H i/H ii
boundary, the ionization front (IF), where Lyman continuum photons dominate, and to end
deeper into the cloud at the O/O2 boundary. Moving inwards from the outer boundary, the gas
is predominantly in the form of atomic hydrogen extending to depth of AV ∼ 1–2 from the
ionization front. Eventually, there is a transition from H i to molecular hydrogen, with FUV-
pumped H2 emission peaking at the H i/H2 interface. Other prominent atomic species found
in PDRs are C and O, with C+/C emission extending to a depth of AV ∼ 2–4 and atomic O
emission extending to a depth of AV ∼ 5–10. In the case of diffuse clouds, PDRs only reach
AV < 2, thus contain primarily atomic gas. Within cooler, denser clouds, PDRs extend into
regions where H becomes molecular and most of the C is in the form of CO. Significant FUV
photochemistry involving free C and O atoms can persist up to AV ∼ 10. Typical values for
G0

3 range from the local average ISRF (∼ 1.7, Draine, 1978) up to > 106 ergs/cm2/s in prox-
imity to an O type star. The gas density, n, ranges from ∼ 0.25 cm−3 in warm neutral gas up to

3integrated radiation flux from 6 to 13.6 eV in units of the Habing field = 1.6 x 10−3 ergs/cm2/s



20 Chapter 1. Introduction

∼ 103–107 cm−3 for regions including molecular gas.

Figure 1.10: A schematic diagram of a photo-dissociation region. A strong UV flux from
the left illuminates the PDR beginning at the H i/H ii transition boundary up to a depth of
AV ∼ 10 visual magnitudes, the transition boundary from primarily atomic O to O2. A PDR
will typically include a neutral atomic surface layer as well as a large molecular layer. Re-
published with permission of G. Burbidge, from Hollenbach & Tielens (1997); permission
conveyed through Copyright Clearance Center.

There are two principal heating mechanisms that couple the gas in the PDR to stellar FUV
photon emission (Hollenbach & Tielens, 1997): (1) The absorption of a FUV photon of suf-
ficient energy by a PAH species will cause an electron to be ejected. This free electron con-
tributes to the gas heating through the transfer of kinetic energy upon colliding with other
species present. The photoelectric heating will be significant when the PAH population is pri-
marily neutral as a higher charge state translates into a higher ionization potential, decreasing
the efficiency of this process. In other words, the photoelectric heating efficiency depends on
γ, the PAH ionization parameter. (2) The FUV fluorescence of a H2 molecule causes it to be-
come vibrationally excited. This is followed by the IR fluorescence of H2 or the collisional
de-excitation of H2 with another species in the gas depending on the gas density, thus con-
tributing to the heating of the gas. The fraction of the FUV photon flux that excites H2 depends
on the H i/H2 boundary, which depends on the physical conditions, G0 and n.

Gas cooling in PDRs is mainly through the FIR fine structure lines, which include [C ii] 158 µm,
[O i] 63, 146 µm, [Si ii] 35 µm, [C i] 609, 370 µm (Hollenbach & Tielens, 1997). The intensity
of the FIR fine structure lines depends on the density of the gas layer from which the emission
arises. If the gas density is above the critical density of the emitting species, collisional de-
excitation becomes dominant returning the energy to the gas. Thus each fine structure line will
only be present in the gas layers that are below the critical density of the emitter. In this way,
different lines are used to probe different depths of a PDR. Consider Figure 1.11, in which
the ratio of [C ii] 158 µm/ [O i] 63 µm is plotted as a function of density for different tem-
peratures. In the low density layers (n < ncr([C ii]) = 3x103 cm−3), [C ii] emission dominates
cooling and the gas temperature is the only variable (Tielens, 2005). In high density layers
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(n >> ncr([O i]) = 5x105 cm−3), [O i] cooling is dominant at each temperature regime. For
intermediate densities (3x103 cm−3 < n < 5x105 cm−3), the largest dependence on gas density
is found.

Figure 1.11: The ratio of the cooling from the [C ii] 158 µm to the cooling from the [O i] 63 µm
line as a function of the gas density at different temperatures: solid line, T = 100 K; dotted
line, T = 250 K; dashed line, T = 1000 K. Figure from Tielens (2005), reproduced with the
permission of Cambridge University Press through PLSclear.

1.5.1 PDR models

Theoretical models serve as a bridge to compare observations with calculations of physical
parameters. Tielens & Hollenbach (1985b) developed a novel PDR model to describe the gas
heating and cooling based on assumptions of the gas chemistry and the thermal balance of
dense neutral gas illuminated by FUV photons. This model was then applied to a prototyp-
ical PDR, the Orion Bar (Tielens & Hollenbach, 1985a; Tielens et al., 1993). These authors
assumed a one dimensional plane-parallel semi-infinite slab illuminated on one side by FUV
radiation. Their model for the Orion Bar region is quantitatively shown in Figure 1.12, where
the abundance of significant species, the temperatures of gas and dust, and the FIR cooling
lines are calculated as a function of visual magnitude. There have since been more sophisti-
cated PDRs model that have iterated upon this original model (e.g. Kaufman et al., 1999, 2006;
Hollenbach et al., 2012; Wolfire et al., 1990, 2010).
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Figure 1.12: Calculated structure of the Orion PDR as a function of visual extinction, AV , with
the illuminating source on the left. The top two panels show the abundances of relevant species
to H abundance. The third panel shows the gas and dust temperatures. The bottom panel gives
cooling rates from prominent gas lines. Republished with permission of G. Burbidge, from
Hollenbach & Tielens (1997); permission conveyed through Copyright Clearance Center.

1.5.2 FIR PDR Diagnostics

The FIR fine structure lines can be used to derive the physical conditions within a PDR. As
a result, diagnostic diagrams using the line ratios of the bright PDR cooling lines such as
[O i] and [C ii] are able to probe the density and temperatures within a PDR. This is due to
the critical densities and excitation energies of these species spanning the range of conditions
found in PDRs.

One example of a diagnostic diagram illustrates how the ratio [O i] 63/[C ii] 158 depends
on the physical parameters G0 and n (see Figure 1.13). The [O i] 63 µm/[C ii] 158 µm ratio
is approximately constant for a fixed value n for G0 > 104. At low G0, the decrease in the
intensity of the 63 µm line is much greater than in the 158 µm line, causing a decrease in the
ratio at densities < 104 cm−3. As the critical density of the [O i] 63 µm line, ∼ 5x105 cm−3, is
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much higher than the [C ii] 158 µm line, n > 3x103 cm−3, [O i] 63 µm intensity continues to
increase with density whereas the [C ii] 158 µm intensity remains constant for G0 < 102 and
n > 3x103 cm−3. It is clear that there is no simple dependence between the line emission and
the physical parameters. To obtain singular values for these parameters, multiple diagnostics
must be used to find where these values intersect (e.g. Wolfire et al., 1990; Kaufman et al.,
1999).

Figure 1.13: Ratio of the [O i] 63 µm line intensity to the [C ii] 158 µm line intensity emitted
from a PDR surface as a function of gas density and incident FUV flux. Figure from Kaufman
et al. (1999), reproduced by permission of the AAS.

1.5.3 PAHs as PDR Diagnostics
Recently, PAH emission has been explored as a quantitative probe of the environmental con-
ditions within a PDR. Galliano et al. (2008) have derived an empirical relationship between
the 6.2/11.2 intensity ratio and the PAH ionization parameter, γ, based on the observations
of three well studied PDRs where the physical conditions had already been constrained (see
Figure 1.14). Boersma et al. (2015) also found a correlation between the 6.2/11.2 intensity
ratio and γ by fitting spectral data of NGC 7023 with a selection of PAHs from the PAHdb.
However, these relationships disagree with each other by about an order of magnitude. The
Boersma et al. (2015) method may be influenced by the bias towards the PAH species found in
the PAHdb and the applied conversion of the ionization fraction to γ, whereas the Galliano et al.
(2008) method suffers from uncertainties in deriving the physical conditions and a mismatch
in apertures (or FOV) of the MIR and FIR observations. Additionally, they are both unable to
distinguish between individual physical parameters within γ. Thus, by deriving the ionization
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parameter using the Boersma et al. (2015) method and comparing it with the observed ioniza-
tion parameter derived from PDR cooling line and FIR dust emission measurements observed
in the same aperture and spatial resolution as the MIR PAH emission, we can fine-tune and/or
validate this method and investigate the discrepancy between both methods.

Figure 1.14: Empirical relationship between the 6.2/11.2 emission ratio and γ, the ionization
parameter. The black thick line is the linear relationship found by Galliano et al. (2008), with
the thinner lines being the 1 σ deviations. The blue line is the relationship derived from PAHdb
fitting of NGC 7023 by Boersma et al. (2015). Figure from Stock et al. (2016), reproduced by
permission of the AAS.

Ratios of the sub-components of the 7.7 µm complex are also found to be closely related to
the environmental conditions (see Figure 1.15, Stock & Peeters, 2017). It was found that the
7.8/7.6 intensity ratio was linearly related to G0. The red solid line is a fit to data points which
have a literature prediction for G0, whereas the blue dashed line includes two ISO diffuse ISM
spectra. Note that there are much fewer sources for low G0 values leading to more uncertainty
in what the nature of a typical PAH spectrum looks like for low G0. Stock et al. (2014) have
argued that the diffuse emission surrounding the H ii region, W49A is a good representative
for the PAH spectrum in a diffuse ISM as the majority of the emission is emitted along the
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line of sight instead of near the H ii region. This relationship can be further investigated
using spatially resolved observations of PDRs cooling lines for a wide range of sources with
matching positions and apertures as the current PAH emission observations, with an emphasis
on increasing the sample size of PDRs with low G0.

Figure 1.15: Correlation between the 7.8/7.6 emission ratio and the UV field intensity, G0.
The red solid and blue dashed line are fits to the black points and the black and blue points
respectively. The dashed line is the maximum 7.8/7.6 emission ratio found in the outskirts of
the H ii region, W49A. Figure from Stock & Peeters (2017), reproduced by permission of the
AAS.

BSS analysis has the ability to decompose a spectral map of PAH emission into three dis-
tinct components (Section 1.4.2). Based on this analysis, the fitting tool PAHTAT has been
developed (Pilleri et al., 2012). PAHTAT enables these spectral components to be extracted
in the absence of a spectral map. Using this tool, an empirical relation between the fraction
of carbon atoms locked within VSG and G0 was derived providing another way to probe PDR
conditions based on VSG emission (Pilleri et al., 2012). This relationship shows a decrease in
the fraction of carbon atoms locked in VSG with increasing G0, implying an increase in UV
processing will cause the fragmentation or destruction of these species. It should be noted that
this method does not work for H ii regions because it is unable to correctly measure the rise in
dust continuum emission.
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1.6 The Interplay of PAHs and their Environment: Thesis
Outline

1.6.1 Investigating PAH properties in Nearby Prominent Mid–Infrared
Environments

The photochemical evolution of astronomical PAHs is evident throughout the ISM (section
1.4). Within nearby MIR bright regions, observed spatial variations in the PAH emission and
PAH abundance are attributed to changing physical conditions. For example, an in-depth study
of the RN NGC 7023 has shown evidence for the importance of the photo–destruction of PAHs
and the subsequent formation of C60 (section 1.4.2). Nearby PDRs, such as the RNe NGC 1333,
NGC 2023, NGC 7023 and the Orion Bar, provide an ideal location to investigate this photo-
chemical evolution. The study of the PAH population in these regions allow us to critically test
the interpretation of UV processing driving variations in the spatial and spectral characteristics
of the PAH emission as well as the underlying properties of the emitting species.

This photochemical evolution of PAHs is investigated by quantitatively measuring the PAH
size distribution, the degree of ionization of these species and by characterizing the spatial
behaviour of the various components of the PAH emission. The PAH size distribution is mea-
sured through spatially mapping the observed 3.3/11.2 emission ratio and comparing with the
intrinsic 3.3/11.2 emission ratio based on theoretically or experimentally calculated emission
spectra of PAHs available in PAHdb (section 1.3.3). We can then use this size distribution to
indicate the presence of significant UV processing within these regions (Chapter 2). Similarly,
spatial variations in the relative ionization state of PAHs can be mapped using ratios of emis-
sion features related to ionized and neutral PAH species respectively (e.g. 7.7/11.2, section
1.3.3, Chapter 2). Additionally, we use spectral maps to determine how spatial variations of
the relative intensities of the PAH emission features are related to their environment (Chap-
ter 4). We compare the relative behaviour of these PAH bands in a highly irradiated nebula
with the surrounding diffuse ISM to demonstrate how some of these bands can be attributed to
multiple PAH subpopulations (Chapter 4).

In nearby spatially–resolved sources, we can also consider the effect that the relative ori-
entation (such as edge–on or face–on) of the PDR structure to the source of UV photons has
on the observed PAH emission as well as on other atomic and molecular species found within
PDR environments (Chapter 3). In short, for a purely edge–on PDR, we can clearly differen-
tiate between the the level of UV processing of different gas layers (i.e. material closer to the
illuminating source will be increasingly processed as it has been exposed to a higher intensity
of UV photons). Hence, for edge–on PDRs such as the Orion Bar, we can test how previously
established correlations between the PAH emission features hold up with respect to exposure
to the FUV radiation field. In contrast, within a face–on PDR, we observe multiple gas layers
with varying degrees of UV processing within a given beam, making it much more difficult to
gauge the photochemical evolution of a PAH population in these regions.
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1.6.2 PAHs as Environmental Tracers
The PAH emission features clearly depend on environmental conditions as seen in a wide
range of sources (see section 1.5.3). Previously established empirical relationships between
PAH emission and PDR physical conditions show promise in the use of the PAH emission
features as diagnostic tools for both Galactic and extragalatic PDR studies. In the case of
extragalactic PDRs, such a PAH diagnostic tool would be invaluable due to the primary PDR
cooling lines being difficult to observe in these sources. However, there are some discrepancies
in the established empirical relationships that require further investigation.

We compare the PAH emission features and the physical conditions in two nearby PDR
environments, the Orion Bar and the RN NGC 1333. In Chapter 3, we use the same assump-
tions about the physical conditions for the Orion Bar as was done in by Galliano et al. (2008)
to derive line profiles for G0 and the ionization parameter, γ. In Chapter 4, we use spatially
resolved measurements of the FIR cooling lines and FIR dust continuum emission to compute
the physical conditions (G0, T, and ne) for NGC 1333. Maps of the physical conditions in
NGC 1333 are derived by calibrating the FIR cooling lines and FIR dust continuum emission
with theoretical PDR models. We compare the PAH emission features with the physical con-
ditions at matching spatial resolution and aperture size in both the Orion Bar and NGC 1333.
This enables us to test the previously established empirical relationships and potentially derive
new relationships between PAHs and their environment.
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2.1 Introduction
The mid-infrared (MIR) spectra of many astronomical sources are dominated by emission fea-
tures at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm, attributed to the infrared (IR) fluorescence of
Polycyclic Aromatic Hydrocarbon molecules (PAHs, e.g. Allamandola et al., 1985; Léger &
Puget, 1984). It has been well established that PAH molecules with sizes from 50 – 100 carbon
atoms are the carriers of these bands (e.g. Allamandola et al., 1989; Puget & Léger, 1989). In
recent works, different authors have adopted various monikers to refer to these features such as
the aromatic emission features (AEFs, e.g. Werner et al., 2004a), the aromatic infrared bands
(AIB, e.g. Croiset et al., 2016) or simply referred to them as the PAH emission features (e.g.
Boersma et al., 2012; Peeters et al., 2012, 2017). Other related species are also considered to
be carriers such as polycyclic aromatic nitrogen heterocycles (PANHs, Hudgins et al., 2005;
Bauschlicher et al., 2008) or PAHs with functional groups attached (e.g. Joblin et al., 1996a;
Sloan et al., 1997; Pilleri et al., 2015; Maltseva et al., 2016; Shannon & Boersma, 2019). These
PAH emission features have been found in wide variety of Galactic and extragalactic sources
such as H ii regions, reflection nebulae (RNe), post-AGB stars, planetary nebulae (PNe), the
diffuse interstellar medium, and galaxies (e.g. Sellgren et al., 1996; Hony et al., 2001; Peeters
et al., 2002; Verstraete et al., 2001).

The PAH emission features show variations in intensities, peak positions, and band pro-
files (e.g. Bregman et al., 1989; Hony et al., 2001; Peeters et al., 2002; Galliano et al., 2008).

28
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Relative intensity variations reveal how these bands relate to each other and to the intrinsic
properties of these species. The 6.2, 7.7, 8.6 µm bands are well correlated over a wide range of
environments (Joblin et al., 1996a; Galliano et al., 2008). Likewise, the 3.3 and 11.2 µm bands
are well correlated (Russell et al., 1977; Hony et al., 2001) but do not strongly correlate with
the 6–9 µm PAH bands. Laboratory and quantum chemical studies show that the most signif-
icant driver of these intensity variations is the PAH charge state: 6.2, 7.7, 8.6 µm bands are
prominent in ionized PAHs, whereas the 3.3 and 11.2 µm bands are strongest in neutral PAHs
(e.g. Allamandola et al., 1989; Bauschlicher et al., 2008). This in turn is strongly dependent
upon the UV radiation field of nearby stellar sources incident upon the environment in which
these PAHs reside (as well as local gas density and temperature, e.g. Tielens, 2005; Galliano
et al., 2008; Boersma et al., 2013; Stock et al., 2016; Stock & Peeters, 2017; Peeters et al.,
2017).

The MIR spectra can be strongly influenced not only by ionization, but also by changes
in the chemical structure of these species. In particular, changes in PAH size can be traced
by relative intensity variations within an extended region (e.g. Mori et al., 2012; Croiset et al.,
2016). We investigate the PAH size distribution through the measurement of the 11.2/3.3 PAH
intensity ratio in the photodissociation regions (PDRs) adjacent to three astronomical sources:
two reflection nebulae (RNe): NGC 2023 and NGC 7023; and the region southeast from the
Orion Bar. RNe are ideal test beds for the study of the PAH emission bands as they have strong
MIR emission and have a well defined structure without contamination from atomic lines (i.e.
Sellgren, 1983; Rapacioli et al., 2005; Berné et al., 2007; Boersma et al., 2013, 2016), whereas
the Orion Bar has long been considered the prototypical photodissociation region (PDR Tielens
& Hollenbach, 1985a), i.e. regions where far-ultraviolet (FUV) photons with energies between
6 eV and 13.6 eV control the physics and chemistry of the gas.

In this paper, we relate the PAH sizes in each source considered (NGC 2023, NGC 7023,
and the region southeast of the Orion Bar) to other properties of these species as well as the
physical characteristics of their PDRs. Section 2.2 details the properties of each of the sources
studied here. In Section 2.3, the observations used in this study are detailed while in Section
2.4, the data reduction performed is discussed. Section 4.5 presents the results of our analysis in
the form of spatial maps of emission feature ratios and line projections of these ratios extending
from the illuminating sources. These results are discussed in Section 2.6 and conclusions are
given in Section 2.7.

2.2 Astronomical Sources
For our analysis, we selected three well known sources that show prominent PAH emission fea-
tures. We briefly summarize the general morphology and properties of these sources relevant
to this study below.

NGC 2023 NGC 2023 is a well-known RN illuminated by the B1.5V type star, HD 37903,
and located at a distance of 403 ± 4 pc (Kounkel et al., 2018). Its MIR emission has been
the focus of many studies over the past 40 years (e.g. Sellgren, 1984; Gatley et al., 1987;
Abergel et al., 2002; Peeters et al., 2012, 2017). It shows the same morphology at a wide range
of wavelengths: a limb-darkened shell or a ‘bowl’ shaped PDR surrounding the interior cavity
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(Figure 2.1). We can see into the various layers of the PDR along with some diffuse filamentary
structure throughout the RN. PDR models of the cavity have shown a FUV radiation field
strength of ∼ 4000 times that of the average interstellar field (position H5, Steiman-Cameron
et al., 1997) as well as gas densities ranging from 104 to 105 cm−3 (e.g. Burton et al., 1998;
Wyrowski et al., 2000; Sandell et al., 2015). We focus our study of this RN to the south of
HD 37903, where the presence of multiple MIR emission peaks are suggestive of significant
PAH emission along the PDR boundaries and are associated with the densest gas structures in
the region. These peaks are labelled as in Peeters et al. (2017) as the S ridge, the SSE ridge,
the SE ridge and the S’ ridge.

NGC 7023 NGC 7023 is another RN that is well-known for its strong MIR emission (e.g.
Cesarsky et al., 1996; Boissel et al., 2001; An & Sellgren, 2003; Werner et al., 2004a; Rapacioli
et al., 2005; Berné & Tielens, 2012; Boersma et al., 2013, 2014a). It is illuminated by the
Herbig Be star, HD 200775, and is located at a distance of 361 ± 6 pc (Gaia Collaboration et al.,
2016, 2018). There are three main regions of study located around this star: 40′′ northwest,
70′′ south, and 170′′ east (Berné et al., 2007). Each of these regions coincides with a PDR
front. In Figure 2.2, only the NW and S PDR are visible. The NW PDR is the most prominent
of the three with an edge-on structure in which clear stratification of emission is visible (e.g.
Pilleri et al., 2012). Estimates for the UV radiation field strength at the NW PDR front are
2600 times that of the average interstellar value with gas densities on the order of 4×103 cm−3

(Chokshi et al., 1988). Due to its prominence, the NW PDR of NGC 7023 is the focus of our
study of this RN.

Orion Bar The Orion Bar or Bright Bar refers to the ionization ridge in the Orion Nebula
or the interface between the H ii region and PDR located at a distance of 414 ± 7 pc (Menten
et al., 2007). The MIR emission within the Orion Bar has been well studied showing a stratified
plane-parallel structure in which different species peak at a range of distances from the source
of UV radiation, θ1 Ori C (e.g. Aitken et al., 1979; Sellgren, 1981; Bregman et al., 1989;
Geballe et al., 1989; Sellgren et al., 1990; Tielens et al., 1993; Giard et al., 1994; Cesarsky et al.,
2000; Rubin et al., 2011; Boersma et al., 2012; Haraguchi et al., 2012). In Figure 2.3, the Bar
structure is quite prominent as it separates the extremely bright Trapezium Cluster responsible
for the production of the strong UV radiation field in the northwest from the relatively colder,
lower density region extending southeast from the Bright Bar. The faint foreground Veil region
along the outer edges of the Orion Nebula can also be seen, extending from the northeast to
southeast of Figure 2.3. PDR models of the Orion Bar suggest a gas density of 5×104 cm−3 and
FUV radiation field strength of 4×104 times that of the average interstellar value (e.g. Tauber
et al., 1994). The UV field of the H ii region surrounding θ1 Ori is expected to be too harsh
to allow a significant PAH population to prosper. Indeed, most of the MIR emission to the
north of the Orion Bar is associated with warm dust within the ionized gas (Salgado et al.,
2016). Thus our study of the Orion Nebula extends beyond the PDR front within the Bright
Bar southwards towards the outer Veil.
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Figure 2.1: FLITECAM 3.3 µm (top left), IRAC 8.0 µm (top right),a nd the 11.2 µm band
extracted from IRS SH (bottom center) observations of NGC 2023. The illuminating star,
HD 37903 is indicated by a cyan circle, the young stellar objects, C and D, are indicated
by black circles, the south IRS SH FOV by a blue rectangle, the ISO-SWS FOV by a black
rectangle and the crosscut used for the line profile by a magenta line. The south ridge and south-
southeast ridge as referred to by Peeters et al. (2017) are labelled by S Ridge and SSE Ridge
respectively. A 2MASS point source embedded within the S Ridge is indicated by a small cyan
circle (see Section 2.6). The units are surface brightness (MJy sr−1) for FLITECAM 3.3 µm
and IRAC 8.0 µm images and integrated fluxes (W m−2 sr−1) for the 11.2 µm image.
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Figure 2.2: FLITECAM 3.3 µm (top left), IRAC 8.0 µm (top right), and the 11.2 µm band
extracted from IRS SH (bottom center) observations of NGC 7023. The illuminating star,
HD 200775, is indicated by a cyan circle, the northwest IRS SH FOV by a blue rectangle, the
ISO-SWS FOV by a black rectangle and the crosscut used for the line profile by a magenta
line. We use the same units as given in Figure 2.1.
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Figure 2.3: FLITECAM 3.3 µm (top) and IRAC 8.0 µm (bottom) observations of the Orion
Nebula. The position of the illuminating source, θ1 Ori C, is indicated by a cyan circle, the
IRS SH maps for each position specified in Rubin et al. (2011) by blue rectangles, and the
ISO-SWS FOVs by black rectangles. We note that the FLITECAM 3.3 µm and IRAC 8.0 µm
images use a square root scale to show the entire range in emission structure. We use the same
units as given in Figure 2.1.
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2.3 Observations

We used multiple MIR observations to measure the dominant PAH emission bands. First, we
obtained photometric observations from the First Light Infrared TEst CAMera (FLITECAM,
Temi et al., 2012) on–board the Stratospheric Observatory for Infrared Astronomy (SOFIA,
Young et al., 2012) to probe the 3.3 µm PAH emission. Second, PAH emission in the 7–9 µm
range was investigated using observations from the Infrared Array Camera (IRAC, Fazio et al.,
2004) on–board the Spitzer Space Telescope (Werner et al., 2004b). Finally, the 11.2 µm PAH
emission was extracted from observations in the short-high mode (SH) of the Infrared Spectro-
graph (IRS, Houck et al., 2004) on–board the Spitzer Space Telescope. These observations are
detailed below and are summarized in Table 2.1.

2.3.1 SOFIA observations

We obtained SOFIA-FLITECAM observations in the 4th to 6th cycles for both NGC 2023
(Figure 2.1) and two pointings towards the southeast of the Orion Bar (Figure 2.3) in the ‘PAH’
filter, which has an effective wavelength of 3.302 µm and a bandwidth of 0.115 µm (PID:
04 0058, PI: A. Tielens). The FLITECAM instrument has a 1024 pixel × 1024 pixel InSb
detector that covers a 8 arcmin × 8 arcmin area on the sky with 0.475 arcsec × 0.475 arcsec
pixels.

The NGC 2023 field of view (FOV) is centered on the central star, HD 37903, while the
Orion FOVs were chosen such that they are centered on the Spitzer-IRS SH pointings I2 and
M2 as defined in Rubin et al. (2011), which probe the region southeast of the Orion Bar, in order
to cover all the Spitzer-IRS SH pointings closest to the Trapezium cluster observed by Rubin
et al. (2011). To account for background emission, the instrument was used in nod mode, where
the nod parameters were set so that the telescope was moved sufficiently off source between
each observation. In the case of NGC 7023 (Figure 2.2), we have used SOFIA-FLITECAM
archival data previously published by Croiset et al. (2016). The FLITECAM 3.3 µm images
were found to have a point source FWHM of ∼ 2.1 arcseconds.

2.3.2 Spitzer observations

We obtained Spitzer-IRAC 8.0 µm observations (channel 4) of each source (see Figures. 2.1,
2.2, and 2.3). The IRAC 8.0 µm band is a broadband filter with a bandwidth of 2.9 µm and a
nominal wavelength of 7.87 µm, and is found to be an excellent tracer for the Σ7–9 µm PAH
emission (e.g. Smith et al., 2007a; Stock et al., 2014, see Appendix A.1). The IRAC 8.0 µm
observations were found to have a point source FWHM of 2 arcseconds.

For each source, we measured the 11.2 µm PAH emission using IRS SH data, which covers
the wavelength range of 10–20 µm at a spectral resolution of 600. IRS SH spectral maps were
obtained over a portion of the nebula for both NGC 2023 and NGC 7023 (see Figures. 2.1
and 2.2 respectively). The spectral map of NGC 2023 covers the S and SSE emission ridges
(following the nomenclature of Peeters et al. 2017) as well as YSO C defined by Sellgren
(1983). The spectral map of NGC 7023 is comprised of the region surrounding the NW PDR.
For Orion, we use IRS SH pointings taken along a line from 2.1 to 12.1 arcminutes extending
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radially away from the illuminating source θ1 Ori C near the Bright Bar (Rubin et al., 2011;
Boersma et al., 2012). The spectra obtained for each pointing correspond to a 2 × 10 aperture
grid pattern or ‘chex’ of SH spectra (for details, see Rubin et al., 2011). The resulting FOV
of each of these pointings (25.4′′ × 16.3′′) and the position of each pointing are shown in
Figure 2.3. These pointings are given the following designations by Rubin et al. (2011) with
increasing distance from the Bar: ‘inner’ (I4, I3, I2, I1), ‘middle’ (M1, M2, M3, M4), and
‘veil’ (V1, V2, V3).

2.4 Data Processing

The same general reduction procedure was used for all sources to generate emission ratio maps.

2.4.1 FLITECAM
To extract the 3.3 µm emission feature, the raw FLITECAM frames were co-added using a
noise weighted mean into a single image and flux calibrated using standard stars observed
during the same night as the observations. These images were slightly misaligned with respect
to the IRAC 8.0 µm images. We correct for this misalignment by shifting our FLITECAM
images to align with the IRAC 8.0 µm images. The FLITECAM images are converted from
units of surface brightness (Jy pixel−1) to flux (W m−2 sr−1) by multiplying by the bandwidth
of the FLITECAM filter, assuming a nominal flat spectrum. This is done in order to have
comparable units with the 11.2 µm emission extracted from the IRS SH spectra.

Reflection Nebulae

In the case of NGC 7023, we obtained a single set of observations for which it was necessary
to rotate the FLITECAM image to get the NW and S PDRs to overlap with respect to the
IRAC 8.0 µm image (Croiset et al., 2016). In the case of NGC 2023, we obtained three sets of
observations. Each of these three FLITECAM frames had a significantly high median on-frame
background level that is subtracted from each frame (755, 357, and 224 MJy sr−1) after which
they are combined in a single image. We checked the absolute calibration for both sources in
two ways. First, by comparison with ISO-SWS observations1. In particular, we checked the
absolute flux calibration of the ISO-SWS spectra with IRAC 3.6 µm observations by comparing
the observed IRAC 3.6 µm emission with the expected value in the IRAC 3.6 µm bandpass
based on the ISO-SWS spectrum. We found a consistency of 90% and 98% for NGC 7023
and NGC 2023 respectively, indicating that the ISO-SWS spectra are well calibrated in an
absolute sense. Subsequently, we compare the FLITECAM emission observed in the ISO-
SWS aperture with the expected FLITECAM emission based on the ISO-SWS spectrum. We
found an agreement of 100% and 104% for NGC 7023 and NGC 2023 respectively, indicating
that the FLITECAM images are well calibrated. Second, by comparison with photometry of

1Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially
the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS
and NASA. The TDT (Target Dedicated Time) number is 20700801 and 65602309 for respectively NGC 7023
and NGC 2023.
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Table 2.1: Log of observations.

Data SNR1 RA2 DEC2 Nod Exp.12

(′′, ◦)3 (s)
NGC 2023

FC4 12 5 41 37.89 -2 15 52.2 1000, 245 460
IRS SH5 5 41 37.63 -2 16 42.5
IRAC 8.06,7 46 5 41 37.89 -2 15 52.2

NGC 7023

FC4,8 76 21 01 36.92 68 09 47.7 600, 0 50
IRS SH9 21 01 32.89 68 09 52.5
IRAC 8.06,8 80 21 01 36.92 68 09 47.7

Orion

FC I24 40 5 35 26.00 -5 26 12.0 1500, 50 360
FC M24 9 5 35 37.00 -5 29 21.0 1400, 4513 792
IRS SH10

I4 5 35 23.3 -5 25 20.7
I3 5 35 24.4 -5 26 39.1
I2 5 35 26.3 -5 26 12.1
I1 5 35 28.1 -5 27 43.8
M1 5 35 29.9 -5 27 14.4
M2 5 35 31.6 -5.27 43.6
M3 5 35 33.3 -5 28 12.9
M4 5 35 35.0 -5 28 42.1
V1 5 35 39.7 -5 30 2.7
V2 5 35 42.5 -5 30 51.9
V3 5 35 48.3 -5 32 30.3
IRAC 8.011 39 5 35 22.33 -5 24 36.0

1 This value corresponds to the peak SNR in each frame.; 2 α, δ (J2000) refer to the center of
the map; α has units of hours, minutes, and seconds, and δ has units of degrees, arc minutes,
and arc seconds; 3 Nod parameters (throw, angle); 4 FLITECAM; 5 e.g. Peeters et al. (2012,
2017); Shannon et al. (2016); 6 Spitzer Heritage Archive; 7 Fleming et al. (2010); 8 Croiset
et al. (2016); 9 e.g. Berné et al. (2007); Boersma et al. (2013); Stock et al. (2016); 10 Rubin
et al. (2011); Boersma et al. (2012); 11 Megeath et al. (2012); α, δ in this case reference the
center of a sub image extracted from the original mosaic. 12 Exposure Time. 13 We use the nod
position of FLITECAM I2
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their central star. Specifically, for NGC 2023, we performed photometry on the central star,
HD 37903, in each frame after background subtraction which resulted in a flux density of
0.38 ± 0.02 Jy on average. Similarly for NGC 7023, we performed photometry on the central
star, HD 200775, in the FC frame and found a flux density of 11.56 ± 0.03 Jy. This is consistent
with the spectra of HD 37903 and HD 200775 given in Sellgren (1984), again demonstrating
that our FLITECAM data is properly calibrated.

We estimate the PAH contribution to the total flux observed in this filter from AKARI spec-
tral observations of NGC 7023 coinciding with the NW PDR (Pilleri et al., 2015). We do this
by multiplying both the continuum–subtracted 3.3 µm band and the total spectrum with the
FLITECAM 3.3 µm filter response curve and subsequently integrate over the filter range for
each AKARI pointing. Dividing these quantities, we found that the PAH contribution in the
3.3 µm filter ranges from 59–74% of the total emission (which comprises both PAH and dust
continuum emission). As both continuum and PAH features are due to UV pumped fluores-
cence from large molecules (Allamandola et al., 1989) and both species require similar sizes to
be excited, it is reasonable to assume that the feature to continuum ratio will remain constant
within a given source. Moreover, ISO-SWS observations of NGC 2023 and NGC 7023 show
that both sources have very similar feature to continuum emission ratios for the 3.3 µm band
(e.g. Moutou et al., 1999, their figure 3), thus the total PAH contribution in the FLITECAM
filter will be approximately the same.

Orion

The Orion FLITECAM observations (I2 and M2, Figure 2.3) were taken on separate dates and
were thus calibrated independently. The chosen nod off source position for the FLITECAM
M2 observation in Orion has the same level of flux in the IRAC 3.6 µm image as the faintest
portion in the FLITECAM FOV. Therefore, we used the sky background of the FLITECAM
I2 observation. Comparing the I2 and M2 observations in the entire overlap region, we find
the data do not agree with each other: the I2 observation exhibits higher surface brightness for
the diffuse emission. We therefore match the background level of the I2 to the M2 frame by
subtracting the difference in the average surface brightness of both frames within the overlap
region (293 ± 3 MJy sr−1)) from the I2 data. We compare the I2 observation to the M2 obser-
vation (after this offset correction) by performing a linear fit with a fixed y-intercept of 0 on all
pixels in the overlap region (Figure 2.4). The resulting slope fit between both images shows a
slope of 1 implying they agree well with each other. Both FLITECAM FOVs were regridded
onto a larger area that encompassed both frames and subsequently combined into one image
(shown in Figure 2.3). We note that when combining these images, flux density values from
the M2 observation were taken for the overlapping pixels to avoid adding more uncertainty and
minimize any discontinuities between the borders of these two FOVs.

Due to these calibration difficulties with the FLITECAM data, we further investigate the ab-
solute calibration by comparing it with IRAC 3.6 µm data. First, we estimate the expected ratio
of the FLITECAM to IRAC observations for the Orion Bar. To this end, we use the ISO-SWS
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slope =   1.004+/-   0.003

50 100 150 200 250 300
 I2 Surface Brightness (MJy/sr)

0

50

100

150

200

250

300

M
2 

Su
rfa

ce
 B

rig
ht

ne
ss

 (M
Jy

/s
r)

0

20

40

60

80

100

Nu
m

be
r o

f P
ix

el
s

Figure 2.4: The observed surface brightness in the M2 and I2 FLITECAM observations (after
offset correction) for all pixels in the overlap region (see text for details). The magenta line
represents a slope fit to the data of which the fit parameters are given at the bottom of the
figure. All stellar sources present have been masked.

spectra across the Orion Bar 2. We multiply these ISO-SWS spectra with both filter response
curves and find that the average FLITECAM-to-IRAC ratio equals 2.7 ± 0.2. Next, we compare
the observed flux densities of the FLITECAM I2 3.3 µm and the IRAC 3.6 µm images (after ap-
plying the IRAC 3.6 µm extended source correction) within the ISO-SWS pointings3. We find
the average observed FLITECAM I2/IRAC 3.6 µm ratio is 4.4 ± 0.2. A FLITECAM-to-IRAC
ratio of 4.4 is 1.6 times higher than our predicted ratio of 2.7 and indicates that the absolute
flux calibration of the FLITECAM 3.3 µm emission is overestimated by a factor of 1.6 ± 0.1.
To further validate this approach, we also apply it to the RNe. The predicted FLITECAM to
IRAC ratio is determined by multiplying the AKARI spectra of NGC 7023 (Pilleri et al., 2015)
with the respective filters. We find that the mean flux density of the spectrum multiplied with
the 3.3 µm filter is about 2 times greater than multiplying with the IRAC 3.6 µm. A similar
ratio is expected for NGC 2023 based on the similarity of the IR spectra of these sources (e.g.
Moutou et al., 1999; Verstraete et al., 2001). Using the same sized apertures as the Orion point-
ings in both RNe, we are able to reproduce the predicted FLITECAM-to-IRAC flux ratios of
2. This shows that the FLITECAM observations of the RNe are in agreement with predicted
values whereas those of Orion are not. We thus apply a scaling factor of 1/1.6, as determined
above, to the FLITECAM Orion data. We find that the M2 observations is in better agreement
with IRAC 3.6 µm than the I2 observations as the latter requires an additional negative offset.
Hence, we will use the M2 observation as a reference and we only consider the I2 observation
where the M2 observation is unavailable, i.e. for the IRS SH positions I4 and I3. The IRS
SH I2 position lies on the edge of the FLITECAM M2 frame, thus we use a combination of
both the FLITECAM I2 and M2 data for this position. All other IRS SH position that overlap

2There are five ISO-SWS spectra available across the Orion Bar at distances of 2.597′, 2.175′, 1.971′, 1.766′,
and 1.356′ from θ1 Ori C referred to as positions D2, H2S1, D5, Brγ, and D8 respectively (Fig 2.3, e.g. Peeters
et al., 2002; van Diedenhoven et al., 2004). Their TDT numbers are 69502005, 69501806, 83101507, 69502108,
and 69501409 respectively.

3See Appendix A.2 for a comparison between FLITECAM and IRAC 3.6 µm for all pixels.
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with our FLITECAM frames (I1, M1, M2, M3, M4, V1, and V2) are covered solely by the
FLITECAM M2 data. We note that the relative intensity variations are not influenced by the
large factor applied to match the FLITECAM data with the IRAC 3.6 µm data, hence relative
intensities and derived relative ratios will not be affected.

We estimate the PAH contribution to the total flux observed in the FLITECAM filter from
the ISO-SWS Orion Bar D2 position by multiplying the filter response curve with the Bar D2
spectrum (e.g. Peeters et al., 2002; van Diedenhoven et al., 2004). We find that the total PAH
contribution to the 3.3 µm filter is about 71% of the total emission (which comprises both PAH
and dust continuum emission).

2.4.2 Spitzer

We obtained the Spitzer-IRS data in reduced form (for details on the reduction process, see
Peeters et al. (2012) and Shannon et al. (2015) for the RNe and Boersma et al. (2012) for
the Orion data). To measure the 11.2 µm PAH emission, we defined and subtracted a local
spline continuum with anchor points at 10.85 and 11.65 µm (as in Peeters et al., 2017) from
the spectrum at each pixel in our spectral maps or in the case of the Orion IRS SH data, from
the spectrum at each pointing. We performed a simultaneous Gaussian fitting procedure to the
11.0 and 11.2 µm emission features in each continuum–subtracted spectra in order to separate
these features (e.g. Stock et al., 2014, 2016; Peeters et al., 2017). The flux of the 11.2 µm
emission band is then determined by integrating these continuum–subtracted spectra over the
wavelength range given above and subtracting the 11.0 µm band flux.

We obtained the Spitzer-IRAC data in reduced form for NGC 2023 and the Orion Neb-
ula (Fleming et al., 2010; Megeath et al., 2012) and retrieved them from the Spitzer Heritage
Archive in the case of NGC 7023. To approximate the 7.7 µm PAH emission, we convert the
IRAC 8.0 µm images (MJy sr−1) to flux densities (W m−2 sr−1) by multiplying by the wave-
length range covered by the 7.7 µm emission band of ∼ 1.0 µm (e.g. Peeters et al., 2002), again
assuming a nominal flat spectrum. The relative PAH contribution in this filter is expected to be
up to about 89% of the total emission in the diffuse ISM (Stock et al., 2014) 4. This approxi-
mation remains valid across the FOV except near the illuminating source where the radiation
field strength will be significantly stronger and the relative PAH contribution will drop. For
example, Stock et al. (2014) found that in the center of an ultra-compact H ii region, the PAH
contribution drops to about 55% of the emission. As these correspond to the most extreme
variations that may be expected and are likely much larger than for the PDRs considered here,
we are confident in our procedure.

In order to compare the spatial distribution of the different PAH bands for the RNe, the
FLITECAM and IRAC 8.0 µm images were regridded to the IRS SH pixel scale (2.3′′ × 2.3′′).
Both images were additionally averaged over 2 x 2 pixels, set by the IRS spatial resolution.
Bright stellar sources in the IRS FOVs and pixels for which there was no 3 σ detection of the
11.2/3.3 PAH ratio were masked out. In case of the Orion, we determined the median flux

4We find taking a radial cut of a Spitzer IRS SL spectral cube across the S ridge PDR front in NGC 2023 and
find PAH emission accounts for between 72–80% across the cut (see Appendix A.1.)
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density for both FLITECAM and IRAC 8.0 µm images within the IRS SH aperture at each
pointing. In this way, the PAH emission at 3.3, 7.7, and 11.2 µm are compared at 10 different
pointings within the Orion region (as the V3 IRS FOV was not covered by the FLITECAM
observations).

2.5 Results

We determined the 11.2/3.3 and IRAC 8.0/11.2 (as probed by IRAC 8.0 µm/11.2 µm) PAH in-
tensity ratios spatially where images of each band were present. For NGC 2023 and NGC 7023,
these ratios were measured where each of our observations overlap, this resulted in a FOV of
the same size as the IRS SL maps. For Orion, we determined these ratios in the IRS SH aper-
tures in each of the different pointings. We consider the ratio maps and cuts obtained for each
source individually.

NGC 2023

Figure 2.5 shows the 11.2/3.3 and IRAC 8.0/11.2 PAH intensity ratios in the southern PDR
of NGC 2023. Contours of the 12.3 µm H2 line are overplotted in white to emphasize the S
and SSE emission ridges. These bright filaments are thought to be edge-on corrugations of the
cloud material that surrounds the bowl-shaped cavity (Field et al., 1994). The central star is
beyond the upper right edge of this map.

We find minima in the 11.2/3.3 PAH intensity ratios at the peak of the H2 emission and
the 3.3 µm emission near the S ridge. In the SSE ridge, the minimum is slightly displaced (in
the direction towards the star) compared to the H2 peak intensity, again coinciding with the
nearby peak of the 3.3 µm emission. Another minimum in the 11.2/3.3 ratio behind the H2

peak centered at pixel (5, 11) is also apparent. In general, we find an increase in this ratio as
we move towards the star and further into the molecular cloud behind both ridges. Moving
inwards towards the star from the S ridge H2 peak, there is a local minimum shown in cyan
surrounded by green which extends westward from the SSE ridge towards the far right of the
image and which is centered at pixel coordinates (15, 18). This ratio then proceeds to rise
moving further inwards towards the top right of the frame.

Overall, the IRAC 8.0/11.2 PAH intensity ratio exhibits a stratified morphology with its
highest values closest to the central star. In addition, it exhibits a narrow local peak just above
the H2 peak within the S ridge as well as in the lower right portion of the S ridge. The SSE
ridge, in contrast, has a minimum in this ratio. Below the S ridge into the molecular cloud,
there is a rise in this ratio.

Figure 2.6 shows a crosscut taken across the S ridge emission peak (see Figure 2.1 for the
orientation of the cut) of (a) the normalized flux densities of the 3.3, IRAC 8.0, and 11.2 µm
emission as well as (b) the 11.2/3.3 and IRAC 8.0/11.2 ratios. Note that the 3.3 µm and the
11.2/3.3 profile have a shorter range beyond the PDR front, due to the lack of a 3 σ detection
with FLITECAM. All three emission features peak at the PDR front (as traced by the peak
intensity of the H2 emission, at 78.6′′ from the illuminating source). However, the 3.3 µm
emission drops fastest in intensity away from this PDR front, followed by the 11.2 µm emis-
sion. Interestingly, the IRAC 8.0 µm emission shows a plateau from ∼ 50–70′′, before dropping
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Figure 2.5: (a) The 11.2/3.3 and (b) the IRAC 8.0/11.2 PAH intensity ratios for the south FOV
in NGC 2023. Contours of the 12.3 µm 0-0 S(2) H2 line are overplotted in white ((2.5, 3.32,
4.14) × 10−7 W m−2 sr−1). The direction to the illuminating source, HD 37903, is indicated
by a white arrow. A magenta line is overplotted to indicate the position of the radial profile
used for this source. The MIR emission peaks referred to as the the south ridge and south-
southeast ridge as in Peeters et al. (2017) are given by S and SSE respectively. Pixels below a
3 σ detection or near the source YSO C are set to zero (shown here in black). North is up and
east is to the left.

off as well closer to the central star. This overall radial profile is reflected in the 11.2/3.3 and
IRAC 8.0/11.2 PAH intensity ratios which show, in general, a smooth decrease with increasing
distance from the star until the PDR front, after which they start to increase again. We note
that the 11.2/3.3 ratio decreases quickly from ∼ 4 ± 1 to ∼ 2.5 ± 0.5 going from 45 to 55′′

away from the star. It then tends to be relatively constant between 55–70′′ before dropping to a
minimum of ∼ 1.8 ± 0.1 near the PDR front. In contrast, the IRAC 8.0/11.2 PAH intensity ratio
displays a slower decrease moving away from the star, until it becomes relatively flat between
65–75′′. At the PDR front, the IRAC 8.0/11.2 PAH ratio shows a very small peak which thus
correspond to the local maximum at the PDR front as discussed above (see also Figure 2.5 (b)).

NGC 7023

Figure 2.7 shows 11.2/3.3 and IRAC 8.0/11.2 ratios in the NW PDR of NGC 7023. Note
that these images have been rotated to align with the astrometry of NGC 7023 H2 data from
Lemaire et al. (1996). Contours of the 2.124 µm H2 line are overplotted in white to probe
the PDR front. The central star is positioned beyond the bottom left edge of this image. The
11.2/3.3 intensity ratio is at a minimum all along the PDR front. Moving towards the star, this
ratio rises while also showing some smaller local fluctuations on top of the overall increase with
respect to the PDR front. In addition, it does not trace very well the ring structure observed
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Figure 2.6: Shown are normalized radial profiles of 3.3, IRAC 8.0, and 11.2 µm intensities
(a) radial profiles of the 11.2/3.3 and the IRAC 8.0/11.2 intensity ratios (b) as a function of
distance to the central star in NGC 2023 (see Figure 2.1). In (a), we overplot as a black–dashed
line a Gaussian fit to the PSF of YSO C within the SH cube shifted to peak at the PDR front in
NGC 2023. The 11.2/3.3 intensity ratio determined from the ISO-SWS pointing is shown as
a green circle in the respective ratio profiles (right panels, see text for details). The PDR front
is traced by the 12.3 µm 0-0 S(2) H2 emission line (shown in magenta). Note that increasing
11.2/3.3 corresponds to increasing PAH size and increasing IRAC 8.0/11.2 corresponds to
increasing ionization. The associated uncertainties are indicated as error bars of the same color
as the respective data.

in the IRAC 8.0 µm and FLITECAM 3.3 µm images. Behind the PDR front, the ratio rises
although a SNR decrease limits the extent to which this can be traced reliably.

Overall, the IRAC 8.0/11.2 ratio decreases in an almost parallel layered structure with
distance from the central star and does not show the ring structure as seen in the IRAC 8.0
emission. While the lowest values are found in regions sandwiching the PDR front, local
maxima are apparent along the PDR front itself relative to its immediate surrounding area
(around pixels (5, 20) and (13, 18)). Behind the PDR front, away from the central star, the ratio
seems to rise again.

Figure 2.8 shows a crosscut across the NW PDR (see Figure 2.2 for the orientation of the
cut) of (c) the normalized fluxes of the 3.3, IRAC 8.0, and 11.2 µm emission as well as (d)
the 11.2/3.3 and IRAC 8.0/11.2 intensity ratios. Each of the emission features peak close to
or at the PDR front (as traced by the peak intensity of the H2 emission, at 46.3′′ from the
illuminating source). In NGC 7023, as was also found for NGC 2023, the 3.3 µm emission
decreases more sharply away from the PDR front compared to the 8.0 and 11.2 µm emission.
Moving towards the star, both the 3.3 and IRAC 8.0 µm intensities show an initial decrease
followed by a plateau between ∼ 30–40′′ before decreasing again close to the star. This plateau
in emission is likely due to the ring of emission seen south of the PDR front detected at both
wavelengths (Figure 2.2). The 11.2 emission shows a linear decrease in intensity as the portion
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Figure 2.7: (a) The 11.2/3.3 and the (b) IRAC 8.0/11.2 PAH intensity ratios for the northwest
NGC 7023 FOV. Contours of the 2.124 µm 1-0 S(1) H2 line are overplotted in white (80,
120, 175, 220 arbitrary units, Lemaire et al., 1996). The direction to the illuminating source,
HD 200775, is indicated by a white arrow. A magenta line is overplotted to indicate the position
of the radial profile used for this source. Pixels below a 3 σ detection or outside of the IRS SH
aperture are set to zero (shown here in black). North is up and east is to the left.

of the ring structure facing the illuminating star is much fainter in this band. The 11.2/3.3 radial
profile shows a decrease away from the star up to a distance of 25′′. The ratio then increases up
to a maximum at ∼ 38′′ due to the filaments comprising the ring structure perpendicular to the
PDR front becoming increasingly luminous in the 11.2 µm. Beyond this peak, there is another
decrease to a minimum located just beyond the PDR front at 50′′, after which the ratio increases
again. The IRAC 8.0/11.2 radial profile shows a different overall trend. It peaks closest to the
illuminating star and shows a significant decrease away from the star down to a minimum that
occurs at the same distance as the maximum in the 11.2/3.3 radial profile, corresponding to the
emergence of the 11.2 µm emission within the ring structure. This again can be attributed to
the steadily increasing prominence of the ring structure in the 11.2 µm emission relative to the
other bands which show a more uniform emission distribution here. With continuing distance
from the central star, the IRAC 8.0/11.2 ratio increases again until ∼ 50′′ after which it drops.

We note that while the relative trends in 11.2/3.3 and IRAC 8.0/11.2 ratios are quite sim-
ilar between this study and Croiset et al. (2016), the absolute values of the ratios are not in
agreement. This arises due to the following differences. First, Croiset et al. (2016) used the
FORCAST 11.1 µm broadband filter with a FWHM of 0.95 µm. These authors estimated that
the continuum emission contributes 20% to the observed emission in the FORCAST filter and,
as a consequence of this low contribution, represent the 11.2 µm PAH flux by the observed
FORCAST 11.1 µm flux. In contrast, we measure the integrated 11.2 µm band strength from
the IRS SH cube (Section 2.4.2). We find that this (integrated) flux accounts for 58% of the
PDR front emission within the FORCAST bandwidth decreasing to 35% at 20′′ from the illu-
minating star. At 11.2 µm, the peak position of the 11.2 PAH band, PAH emission contributes
80% of the observed emission at this wavelength at the PDR front. Due to the FORCAST
filter width, this results in a lower (integrated) PAH contribution. In addition, we note that
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the portion of the ring-like structure facing the illuminating source is not clearly visible in our
11.2 µm PAH map (extracted from IRS SH spectra) whereas it is clearly evident in the FOR-
CAST 11.2 µm image presented in Figure 1 of Croiset et al. (2016). We attribute this to our
subtraction of the dust continuum emission from the IRS SH spectra to isolate the 11.2 µm
PAH emission. Summarizing, different methods of representing the 11.2 µm PAH emission
strength and the subtraction (or not) of the underlying dust continuum give rise to differences
in the 11.2 µm PAH strength between this work and Croiset et al. (2016). Second, the absolute
surface brightness of the IRAC 8.0 µm observations used in each study differs. Specifically,
the surface brightness at the NW PDR of the archival IRAC 8.0 µm observation used here is
∼ 3–4 times brighter than those of the IRAC 8.0 µm observations used in Croiset et al. (2016).
The origin of this discrepancy is unknown and so we elected to use the archival IRAC 8.0 µm
observations. As a consequence of these issues with the 11.2 and IRAC 8.0 µm measurements,
our IRAC 8.0/11.2 ratios are a factor of 7 higher than those reported in Croiset et al. (2016).
Despite these discrepancies, we emphasize that the relative trends found in both studies are
consistent.
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Figure 2.8: Shown are normalized radial profiles of 3.3, IRAC 8.0, and 11.2 µm intensities (a)
radial profiles of the 11.2/3.3 and the IRAC 8.0/11.2 intensity ratios (b) as a function of distance
to the central star in NGC 7023 (see Figure 2.2). The 11.2/3.3 intensity ratio determined from
the ISO-SWS pointing is shown as a green circle in the respective ratio profiles (right panels,
see text for details). The PDR front is traced by the 2.124 µm 1-0 S(1) H2 emission line
in NGC 7023 (shown in magenta). Note that increasing 11.2/3.3 corresponds to increasing
PAH size and increasing IRAC 8.0/11.2 corresponds to increasing ionization. The associated
uncertainties are indicated as error bars of the same color as the respective data.

Orion

Figure 2.9 shows (a) the normalized flux densities of the 3.3, IRAC 8.0, and 11.2 µm PAH
emission as well as (b) the IRAC 8.0/11.2 and (c) the 11.2/3.3 ratios as a function of distance
from the illuminating source for each IRS SH pointing. The V2 pointing is not included for the
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3.3 µm profile and the 11.2/3.3 ratio due to the lack of a 3 σ detection with FLITECAM. Each
of the three emission features are brightest near the Bar and decrease steeply out to the M1
pointing. Note that all three of these features vary in lockstep. Subsequently, moving outwards
towards the Veil, the IRAC 8.0 and 11.2 µm exhibit a slower rate of decrease with distance
reaching a minimum at the V1 pointing. Finally, both band intensities rise again at the V2
pointing. From measurements of the IRAC 8.0 and 11.2 µm emission in the V3 pointing (not
shown in Figure 2.9), these flux densities continue to increase further into the Veil (see also
Boersma et al., 2012). We note that the 11.2 µm band, as well the IRAC 8.0 µm band to a lesser
extent, shows enhanced emission at the M2 and M3 pointings relative to the M1 and M4 point-
ings (or, alternatively, a relative steeper decline than expected at the M1 position) and a dip in
its emission at the M1 position. Differences in the relative decline of the band intensity are bet-
ter probed with their intensity ratios. At the I3 position, the 11.2/3.3 ratio reaches a maximum
of 2.1 ± 0.1, which decreases out to the M1 position, where this ratio drops to a minimum of
1.0 ± 0.1 due to the larger relative decrease in the 11.2 µm band. Past this minimum, there
is a slight rise in the 11.2/3.3 ratio at the M2 and M3 positions mimicking the bump found in
the 11.2 µm profile. At the M4 position all the way out to the V1 position, the ratio remains
constant within uncertainties at the same value as the M1 position.

In contrast, the IRAC 8.0/11.2 intensity is high at the I4 position and decreases down to
a minimum at the I1 position. This is followed by an increase back to a maximum at the M1
position, again due to the 11.2 µm emission showing the sharpest relative decrease at this point-
ing. Beyond the M1 pointing, the ratio then decreases down to another minimum at the M3
pointing before rising again all the way out to the V2 pointing.

2.6 Discussion

Relative intensity variations of the 3.3 to 11.2 µm bands trace the average size of the observed
PAH population (e.g. Schutte et al., 1993; Ricca et al., 2012). Indeed, upon absorption of
a UV photon of a given energy, a smaller PAH molecule, with fewer vibrational modes in
comparison to a larger molecule, will obtain a higher internal temperature as more energy is
being distributed per mode. Smaller PAHs will thus emit preferentially in the 3.3 µm band
compared to the 11.2 µm band. Both the 3.3 and 11.2 µm emission bands originate in neutral
PAH species which eliminates any dependence on the PAH charge state. Both bands also
originate in C–H modes and are therefore not sensitive to variations in the H/C ratio of the
emitting species. In addition, these bands span the largest range in wavelength of the major
PAH bands (excluding the 12.7 µm, which is of mixed charge state, i.e. Peeters et al., 2012,
2017; Shannon et al., 2015, 2016), maximizing the spectral sensitivity to internal temperature.

Ricca et al. (2012) employed the NASA Ames PAH IR spectroscopic database (PAHdb,
Bauschlicher et al., 2010; Boersma et al., 2014b; Bauschlicher et al., 2018) to calculate the
intrinsic emission spectrum of PAHs with different sizes for an average photon energy of 6 and
9 eV. These authors find i) a clear inverse-relationship between the 3.3/11.2 PAH band ratio and
PAH size for PAHs of the coronene and ovalene family and ii) that a higher absorbed average
photon energy will increase the 3.3/11.2 ratio for a given PAH species (their Figure 16). Hence,
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Figure 2.9: (a) Normalized radial profiles of the 3.3, IRAC 8.0, and 11.2 µm intensitiesand
radial profiles of (b) the IRAC 8.0/11.2 ratio and (c) the 11.2/3.3 ratio as a function of distance
to the illuminating source in the Orion Nebula (see Figure 2.3). Radial profiles including
3.3 and 11.2 µm intensities and the associated ratios derived in each of the five ISO SWS
pointings across the Orion Bar are shown here using dashed lines. The projected distance from
θ1 Ori C to the ionization front of the Orion Bar (shown in magenta) is taken from [OI] 6300 Å
measurements of Salgado et al. (2016). Note that increasing 11.2/3.3 corresponds to increasing
PAH size and increasing IRAC 8.0/11.2 corresponds to increasing ionization. The associated
uncertainties are indicated as error bars of the same color as the respective data.

comparing the observed 3.3/11.2 PAH intensity ratios with these calculations can then provide
an estimate for the expected size distribution of the PAH population.

In contrast, the IRAC 8.0/11.2 ratio traces the ionization balance of the PAH population.
Indeed, the IRAC 8.0 µm channel covers the 7.7 and 8.6 µm PAH emission bands which are due
to ionized PAH molecules while the 11.2 µm emission band arises from neutral PAH species.
Hence, this ratio yields another probe of the interaction between FUV radiation and the PAH
population.

Croiset et al. (2016) investigated the size and charge distribution of the PAH population
in NGC 7023. These authors followed the approach by Ricca et al. (2012) to determine the
average size of the PAH population based on the 11.2/3.3 µm PAH intensity ratio using an
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average absorbed photon energy of 6.5 eV (their Figure 5). They report that the average PAH
size reaches a minimum of 50 carbon atoms at the PDR front and thus increases away from
the PDR front towards both the molecular cloud and the illuminating star reaching sizes up to
70 carbon atoms. In addition, these authors report that the charge distribution becomes more
dominated by ionized PAHs with decreasing distance from the central star, consistent with
previous results (e.g. Joblin et al., 1996b; Verstraete et al., 1996; Berné et al., 2007).

Comparing the (relative) PAH intensity radial profiles for NGC 7023 and NGC 2023 (Fig-
ure 2.8 and (Figure 2.6), we report very similar trends in both RNe which are consistent with
the results of Croiset et al. (2016): i) the intensity of each emission component increases with
distance from the illuminating source and peaks at the PDR front before decreasing again into
the molecular cloud, ii) the size of the PAH population reaches its minimum at the PDR front,
and iii) the charge state of the PAH population decreases from the illuminating source towards
the PDR front. As we probe a different configuration with our pointings towards the Orion
Bar, its trends, as described in Section 2.5, are clearly distinct compared to those of the RNe.
We now consider the specific properties of the size distribution and charge balance of the PAH
population for each source individually.

2.6.1 Average PAH size distribution
We derive the average PAH sizes for our sample based on the 11.2/3.3 ratios as observed
with FLITECAM and IRS. We remind the reader that some uncertainty exists related to their
absolute values (cf. FLITECAM - SWS comparison, Section 2.5) and we did not apply a
correction for the PAH contribution in the FLITECAM filter. Both will affect the derived
average PAH sizes. Consequently, trends in the average PAH size are trustworthy while its
absolute value is indicative.

NGC 7023 To determine the average PAH size in NGC 7023, we apply the emission model
shown in Figure 5 of Croiset et al. (2016). The minimum in the 11.2/3.3 ratio of ∼ 1.7 ± 0.1 at
the NW PDR front (Figure 2.7 (a) and Figure 2.8 (b)) corresponds to an average PAH size of
∼ 50 ± 2 carbon atoms. Closer to the illuminating star, the 11.2/3.3 ratio rises up to 2.9 ± 0.2,
corresponding to PAHs with ∼ 65 ± 5 carbon atoms. This is followed by a decrease to a ratio of
1.8 ± 0.1 or PAHs with ∼ 50 ± 2 carbon atoms before rising again into the cavity surrounding
the star. As detailed in Section 2.5, the trends found in the 11.2/3.3 and consequently the
average PAH size for the NW region of NGC 7023 are overall similar to those reported by
Croiset et al. (2016) while absolute values differ due to the different methods used to measure
the 11.2 µm emission.

NGC 2023 We use the Kurucz stellar model used by Andrews et al. (2015) and the emission
model of Croiset et al. (2016, which takes the absorption cross-section into account) to obtain
an average photon energy of 7.3 eV. Using the dependence of the 11.2/3.3 PAH ratio on size
as determined by Ricca et al. (2012, their Figure 16), we obtain an average PAH size of 75 ± 5
carbon atoms for a minimum value of the 11.2/3.3 ratio of ∼ 1.8 ± 0.1 at the S and SSE Ridges
(Figures. 2.5 and 2.6 (b)). Moving towards the star, the 11.2/3.3 ratio rises up to ∼ 4 ± 1
corresponding to a size of ∼ 110 ± 20 carbon atoms.
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Table 2.2: Physical conditions and average PAH size for our sample.

Source coordinates1 G0
2 ne

3 Tgas γ 4 Average PAH size Refs
(J2000) (cm−3) (K) (× 102) minimum maximum

NGC 7023 (21:01:33.3; +68:10:17.60) 2.6 (3) 0.64 250 20 50 ± 2 65 ± 5 1
NGC 2023 (05:41:40.39; -02:16:02.48) 5 1.5 (4) 16 750 8 2

(05:41:37.99; -02:16:35.26) 6 4 (3) 75 ± 5 110 ± 20 2
Orion Bar (05:35:19.9; -05:25:09.82) 7 4 (4) 8 500 88 55 ± 5 80 ± 5 3, 4

1 Position at which the physical conditions were derived; 2 G0 is the integrated 6-13.6 eV radiation flux in units of the Habing
field = 1.6 × 10−3 erg cm−2 s−1. Order of magnitude is given in parenthesis ; 3 electron density in the PDR (cm−3) estimated by

ne ≈ (C/H)nH = 1.6 × 10−4 nH using the Carbon abundance of Sofia et al. (2004); 4 Ionization parameter γ = (G0/ne)(Tgas/1000 K)0.5; 5

corresponds to the peak IR emission located outside our IRS FOV; 6 corresponds to the S ridge position; 7 Orion Bar position 4, which
corresponds to the ISO-SWS D5 position.

References: 1. Chokshi et al. (1988); 2. Steiman-Cameron et al. (1997); 3. Tauber et al. (1994); 4. Galliano et al. (2008).

Orion By using the emission model of Croiset et al. (2016) with a Kurucz stellar model of
Teff = 39000 K and log(g) = 4 for θ1 Ori C (Kurucz, 1993), we obtain an average photon energy
of 8.1 eV5. The 11.2/3.3 ratios in all regions probed SE of the Orion Bar vary between approx-
imately 2.1 ± 0.1 to 1.0 ± 0.36. This corresponds to an average PAH size range from 55 ± 5
to 80 ± 5 carbon atoms based on the 11.2/3.3 PAH ratio and size relationship as determined by
Ricca et al. (2012).

Considering these three sources, we thus find that i) the average PAH sizes in NGC 7023
are the smallest, with its maximum average PAH size being similar to the minimum average
PAH size in both NGC 2023 and SE of the Orion Bar, and ii) the range of average PAH size
across the FOV is largest towards NGC 2023 (Table 2.2). Comparing these results with the
physical conditions of the sources (Table 2.2), we note that for the RNe, the average PAH size
increases when the intensity of the radiation field, as measured by G0, increases.

2.6.2 PAH charge distribution

NGC 7023 As discussed in Section 2.5, the values of the IRAC 8.0/11.2 ratio are signif-
icantly higher than those derived by Croiset et al. (2016). Yet the relative ionization of the
PAH population in NGC 7023 shows the same overall decreasing trend with distance from
the illuminating star as well as a local peak along the PDR front as reported by Croiset et al.
(2016).

Another tracer for the PAH ionization balance is the 11.0/11.2 PAH ratio (e.g. Hudgins &
Allamandola, 1999; Rosenberg et al., 2011; Shannon et al., 2016; Peeters et al., 2017) as the
11.0 and 11.2 µm PAH emission is due to solo-C–H out-of-plane bending modes in respectively
cationic and neutral PAHs (e.g. Hudgins & Allamandola, 1999; Hony et al., 2001; Bauschlicher
et al., 2008). A crosscut of the 11.0/11.2 PAH ratio in NGC 7023 shows a clear decrease with

5We again note that O’Dell et al. (2017) have suggested that the primary ionization source beyond the Orion
Bar is θ2 Ori A, a O9.5V type star with Teff = 34600 K. This corresponds to an average photon energy of 7.9 eV,
which does not significantly change our size estimates.

6We note that these ratios and the subsequent PAH size derivations are highly influenced by the large mul-
tiplication factor used in Orion FLITECAM calibration. Hence, we emphasize the absolute values should be
considered highly uncertain while the relative variations are trustworthy.
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distance from the illuminating source (see Figure 2.10 (b) and (c)). This is fairly consistent
with the crosscut of the IRAC 8.0/11.2 ratio in NGC 7023 shown in Figure 2.8 (b). We note
however, that the rise in the IRAC 8.0/11.2 ratio seen moving into the molecular cloud (see
Figure 2.8 (b)) is not evident in the 11.0/11.2 PAH ratio data. This suggest that the continuum
contribution within the IRAC 8.0 µm filter increases behind the PDR and consequently the
IRAC 8.0/11.2 ratio is not as strong of a tracer of relative PAH ionization in this region.

NGC 2023 Regarding the degree of ionization, we noticed the existence of a local maximum
in the S ridge whereas no similar peak is seen at the SSE ridge (Figure 2.5 (b)). The Two
Micron All Sky Survey (2MASS, Skrutskie et al., 2006) observations of NGC 2023 detect a
stellar source embedded within the south ridge located ∼ 2.5′′ to the west of our line cut through
this region (see Figure 2.1), which possibly gives rise to this increased PAH ionization balance.

There are clear difference between the IRAC 8.0/11.2 ratio and the 11.0/11.2 PAH ratio in
NGC 2023 (see Figure 2.10 (a) and (c)). The 11.0/11.2 PAH ratio does not show the local
maximum at the PDR front seen in the IRAC 8.0/11.2, but a local minimum just behind this
point. Additionally, the 11.0/11.2 PAH ratio profile may reflect the bowl-shaped geometry of
the cavity, where the relative ionization decrease is largest at the edge-on PDR front. Unlike the
11.0/11.2 ratio of NGC 7023, there is a slight rise in the 11.0/11.2 PAH ratio moving into the
molecular cloud, but it is nowhere near as pronounced as the rise found in the IRAC 8.0/11.2 ra-
tio of NGC 2023 (see Figure 2.6 (b)). The discrepancy between the IRAC 8.0/11.2 ratio and the
11.0/11.2 PAH ratio seen beyond the PDR front further reinforces the point that the increasing
continuum contribution of the IRAC 8.0 µm makes the IRAC 8.0/11.2 ratio a relatively worse
tracer of PAH ionization into the molecular cloud (e.g Appendix A.1).

Orion The radial profile of the PAH ionization as traced by the IRAC 8.0/11.2 ratio does not
resemble that of the 11.0/11.2 PAH ratio reported by Boersma et al. (2012, see Figure 2.11
(a)). This discrepancy may arise from, amongst others, a possible changing PAH contribution
to the IRAC 8.0 µm band and/or from PAH dehydrogenation. As discussed in Section 2.3.2,
the former cannot be the main driver of the observed variation in the IRAC 8.0/11.2 ratio. In
contrast, PAH dehydrogenation will influence the 11.0, 11.2, and 8.6 µm band differently as
the 11.0 and 11.2 µm bands are due to solo C–H groups while the 8.6 µm band probes all C–H
groups in large compact PAHs. We note that the IRAC 8.0 µm band comprises both the 7.7
and 8.6 µm band with the 7.7 µm band dominating. Hence, PAH dehydrogenation may cause
the IRAC 8.0/11.2 and 11.0/11.2 tracers for PAH ionization to diverge. Boersma et al. (2012)
invoke PAH dehydrogenation for these observations to explain the discrepancy between the
11.0/11.2 PAH ratio and the observed change in the hardness of the radiation field as traced by
the [S iv] 10.5/[S iii] 18.7 line ratio reported by Rubin et al. (2011).

Additionally, Peeters et al. (2017) have shown that the 6.2 and 7.7 µm bands are spatially
distinct from the 8.6 and 11.0 µm bands in NGC 2023. They found that the 11.0 and 8.6 µm
bands peak much closer to the illuminating source in NGC 2023 than the 6.2 and 7.7 µm
bands. Although all of these bands are attributed to ionic PAH species, the spatial diversity
found suggests that the 6.2/7.7 and 8.6/11.0 bands correspond to distinct groups of PAH ions.
Since the 7.7 µm band will have a significantly larger contribution within IRAC 8.0 µm than
8.6 µm, we conclude that IRAC 8.0/11.2 and 11.0/11.2 cannot both be used as identical tracers
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Figure 2.10: (a) The 11.0/11.2 PAH intensity ratios for the south FOV in NGC 2023 and (b)
the 11.0/11.2 PAH intensity ratios for the northwest NGC 7023 FOV. See Figures. 2.5 and 2.7
for details on the contours and directions shown for NGC 2023 and NGC 7023 respectively.
The direction to the illuminating source in both RNe is indicated by white arrows. A magenta
line is overplotted to indicate the position of the radial profile used for these sources. Pixels
below a 3 σ detection or outside of the IRS SH aperture are set to zero (shown here in black).
North is up and east is to the left. Radial profiles of the PAH ionization balance as traced by
the 11.0/11.2 PAH ratio (red) as a function of distance to the central star in NGC 2023 (c,
see Figure 2.1) and NGC 7023 (d, see Figure 2.2). The PDR front is traced by the 12.3 µm 0–
0 S(2) H2 emission line in NGC 2023 and the 2.124 µm 1–0 S(1) H2 emission line in NGC 7023
(shown in magenta). The associated uncertainties are indicated as error bars.
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Figure 2.11: The Orion Nebula radial profiles of (a) the PAH ionization balance as traced by
the IRAC 8.0/11.2 ratio (red, this work) and the 11.0/11.2 PAH ratio (green, Boersma et al.,
2012), and of (b) the hardness of the radiation field as traced by the S+++/S ++ ratio (blue, Rubin
et al., 2011) as a function of distance to the illuminating source. The associated uncertainties
are indicated as error bars of the same color as the respective data.

of relative PAH ionization.

2.6.3 Photochemical evolution of PAHs

The observed variation of the average PAH size gives further evidence of significant ongoing
photoprocessing of these molecules. Indeed, for both RNe, NGC 7023 and NGC 2023, we find
that the average PAH size distribution in each source and variations in average size between
the two RNe is strongly dependent on the radiation field strength, G0. Specifically, we find
that the minimum average PAH size is found at the PDR front and that the average PAH size
increases upon closer approach to the illuminating stars as G0 increases. Likewise, smaller
average PAH sizes are found towards NGC 7023 (compared to NGC 2023) which has also
the lowest radiation field intensity (Table 2.2). Enhanced intensity of the radiation field thus
leads to increased PAH photo-processing resulting in the destruction of smaller PAH species as
predicted by Allain et al. (1996). This, in turn, gives rise to a larger average PAH size. Together
with the enhanced emission of fullerenes near the illuminating source (Sellgren et al., 2010;
Peeters et al., 2012; Berné & Tielens, 2012), these results give support to the hypothesis of
the formation of fullerenes from PAH molecules. Specifically, extreme levels of UV radiation
promote the complete dehydrogenation of PAHs (> 60 carbon atoms) that subsequently fold
into loose cage structures upon losing C2 atoms until they reach stability as C60 molecules
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(Berné & Tielens, 2012; Zhen et al., 2014; Berné et al., 2015). The interpretation of the average
PAH size distribution southeast of the Orion Bar is more complicated than that of the RNe. We
find an overall decreasing trend in the average PAH size (within the associated uncertainties)
with distance from the illuminating source. While the G0 value given in Table 2.2 is for the
PDR front in the Bar, we expect G0 to decrease with distance from the illuminating source
(Pabst et al. 2021). Similar to the RNe, we thus find that the average PAH size decreases
with G0. However, due to lack of concrete G0 values further into the Veil, we cannot make a
direct comparison with the average PAH size in the two RNe. Boersma et al. (2012) report i) a
notable decrease in the C60 emission from the Bar to the first Veil position at a distance of 9.90′

(their Figure 6), and ii) fullerene-to-PAH ratio larger than 1 up to M1 and the V1-V2 positions
and smaller than 1 from M1-M4 and at the V3 position. The latter has been interpreted as due
to photo-processing of PAHs (Berné & Tielens, 2012; Boersma et al., 2012), this is reflected
in the determined larger average PAH sizes closer to the Bar. The geometrical nature of the
region delineated by the Orion Bar and the southeastern Veil is much more complex than the
edge-on morphology of the PDRs found in the RNe. The Bar is an edge-on, compressed shell
at the edge of a bowl created by the Trapezium cluster (Salgado et al., 2016). In our positions
out to the Veil, we see a face-on PDR at the surface of the molecular cloud (Pabst et al., 2019).
In the case of an edge-on PDR, the gas is transported into the cavity by the PDR evaporation
flow and hence the material closer to the star is the ”same” material as farther away except that
it is more thoroughly processed by UV photons. In contrast, in the Veil, we are looking face-
on and hence we are integrating over the history of this processing. Considering the complex
morphology of this region along with the relative high uncertainties on the PAH size tracer
(3.3/11.2), it is difficult to characterize the photochemical evolution of PAHs with the same
level of confidence as in the simpler RNe geometries.

2.7 Conclusions

We present spatial maps of the 3.3 and 11.2 µm PAH intensities, the IRAC 8.0 µm emission,
and the 11.2/3.3 and IRAC 8.0/11.2 emission ratios in three prominent MIR-bright sources –
the reflection nebulae NGC 2023 and NGC 7023, and the region southeast of the Orion Bar
– based upon observations from FLITECAM onboard SOFIA as well as archival Spitzer data.
These emission ratio maps provide a measure of the average PAH size distribution and the
relative PAH ionization respectively.

Both RNe exhibit similar trends in these intensity ratios: i) the average PAH size increases
upon approaching the illuminating source while it is at a minimum along the PDR front and ii)
the relative PAH ionization increases with proximity to the illuminating source. iii) In contrast
to the 11.0/11.2 PAH ratio, the IRAC 8.0/11.2 ratio is not a suitable tracer of the relative PAH
ionization into the molecular cloud region because of an increasing continuum contribution to
the IRAC 8.0 µm band. The region southeast of the Orion Bar exhibits a decrease in the average
PAH size from the Bar out to ∼ 5′ from the illuminating source with a slight bump peaking at
∼ 6′ before continuing to decrease in the Veil. Southeast of the Orion Bar, there is also a
peculiar radial profile in the relative PAH ionization: a decrease away from the illuminating
source up to 4.5′, followed by a local maximum at ∼ 5′ and a second maximum at ∼ 10′. This
radial profile does not resemble that of the 11.0/11.2 PAH ratio.
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We derive an average PAH size of 75 carbon atoms at the PDR front up to 110 carbon
atoms nearest to the illuminating source for NGC 2023; 50 carbon atoms at the PDR front,
which increases up to 65 carbon atoms near the cavity region surrounding HD 200775 for
NGC 7023; and a range of 55 to 80 carbon atoms for the southeast Orion region. For all
sources, larger average PAH sizes correlate with an increase in G0. In addition, the average
PAH size in NGC 7023 is lower at all points in comparison to NGC 2023, whereas NGC 2023
has the widest range of average PAH sizes in the FOV considered. These results support the
interpretation of the rise in the UV field intensity with proximity to the illuminating source
driving the photochemical evolution of the PAH population that destroys all but the largest
species and promote the formation of more stable fullerene molecules. Future studies of these
astronomical sources using space-borne telescopes with higher spatial resolution instruments
and lower uncertainties such as the James Webb Space Telescope will allow these trends of
PAH size and relative ionization to be refined in much more detail.
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3.1 Introduction

Mid-infrared (MIR) observations throughout the interstellar medium (ISM) of our Galaxy as
well as external galaxies show strong emission features at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm
attributed to the infrared fluorescence of polycyclic aromatic hydrocarbons (PAHs). These
molecules absorb far-ultraviolet (FUV) photons causing electronic excitation (i.e. Allaman-
dola et al., 1989), which is rapidly converted into vibrational excitation that is radiated away as
MIR emission as these PAH species cool. Since their discovery by Gillett et al. (1973), these
bands have been observed in a wide variety of sources including H ii regions, young stellar
objects, post-AGB stars, planetary nebulae, reflection nebulae, galaxies as well as the diffuse
ISM (e.g. Hony et al., 2001; Verstraete et al., 2001; Peeters et al., 2002; Berné et al., 2007;
Boersma et al., 2012; Shannon et al., 2016; Stock et al., 2016). PAHs and related species ac-
count for up to 15% of the cosmic carbon inventory (Allamandola et al., 1989) and play a key
role in the physical and chemical processes in these environments. For instance, PAHs have
been shown to be useful tracers of star formation rates (e.g. Peeters et al., 2004b; Calzetti et al.,
2007; Maragkoudakis et al., 2018), they are the dominant heating source in the neutral ISM
via photoelectric ejection (Bakes & Tielens, 1994), and are essential to the ionization balance
through photoionization and recombination processes (Lepp & Dalgarno, 1988). Thus, study-
ing these PAH emission features can yield a wealth of knowledge towards our understanding
of the important role these molecules have in the physical and chemical processes that occur
within the ISM.

The PAH emission features show variations in relative intensities, peak position, and band
shape in different Galactic and extragalactic environments as well as within extended sources
(e.g. Hony et al., 2001; Peeters et al., 2002; Galliano et al., 2008). The main driver for vari-
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ations in PAH band intensities is the charge state of the underlying population. The 6.2, 7.7,
and 8.6 µm bands are strong in ionic PAHs, whereas the 3.3 and 11.2 µm bands are more
prevalent within neutral PAHs (e.g. Allamandola et al., 1989; Hudgins et al., 1994; Bakes &
Tielens, 1994; Allamandola et al., 1999). Generally, PAH bands attributed to the same relative
ionization state tend to be well correlated. For instance, there is a tight relationship between
the 6.2 and 7.7 µm bands found in a wide variety of MIR bright sources (e.g Galliano et al.,
2008; Boersma et al., 2014a; Stock & Peeters, 2017; Peeters et al., 2017; Maragkoudakis et al.,
2018). However, the above relationship does not hold for all astronomical sources. Indeed, it
has been found to break down on small spatial scales within the giant star-forming region N66
in the Large Magellanic Cloud (Whelan et al., 2013) and towards the center of ultra-compact
H ii regions within the Galactic massive star-forming region W49A (Stock et al., 2014). An
investigation of PAH emission features in a much closer H ii region with similar radiation field
properties could provide an explanation for this anomaly by availing of the much higher spatial
resolution as set by the observing instrument by virtue of proximity.

To this end, we consider the prototypical nearby star-forming region, the Orion Nebula
(M42), located at a mere distance of 414 ± 7 pc (Menten et al., 2007). Within this nebula lies
the Orion Bar, which has long been known to be a source of strong MIR emission (e.g. Aitken
et al., 1979; Sellgren, 1981; Tielens & Hollenbach, 1985a; Bregman et al., 1989; Geballe et al.,
1989; Sellgren et al., 1990; Tielens et al., 1993; Giard et al., 1994; Cesarsky et al., 2000;
Rubin et al., 2011; Boersma et al., 2012; Haraguchi et al., 2012; Salgado et al., 2016; Pabst
et al., 2019). Due to the edge-on, stratified nature of this photo-dissociation region (PDR), it is
considered to be the benchmark for modelling these environments (e.g. Tielens & Hollenbach,
1985a; Tielens et al., 1993). Furthermore, the edge-on morphology is a key facilitator in our
understanding of PDRs in that it allows us to clearly delineate the boundaries between the
ionized cavity surrounding a stellar source of strong UV radiation, the neutral PDR where
freely flying PAH species can prosper, and the cold molecular cloud that tends to encompass
these PDRs (e.g. Tauber et al., 1994; Tielens et al., 1993; Walmsley et al., 2000; van der Werf
et al., 2013; Cuadrado et al., 2015; Goicoechea et al., 2015).

In this study, we examine PAH emission features along with prominent MIR atomic and
molecular emission lines towards the Orion Bar using spectroscopic observations from the
Spitzer Space Telescope, along with supplementary data previously obtained from FLITE-
CAM on–board the Stratospheric Observatory for Infrared Astronomy (SOFIA). In Section
3.2, we give an overview of the general morphology and physical properties of the Orion Bar.
In Section 3.3, we present our spectroscopic observations as well as the data reduction method-
ology and we describe how the continuum and feature fluxes were measured in Section 3.4. In
Section 3.5, we describe our primary results in the form of line projections of individual emis-
sion components and corresponding emission ratios with respect to distance from the primary
illuminating source and correlations between these features. We discuss these results with re-
spect to the environmental conditions and the properties of the PAH population in Section 3.6.
Finally, a summary of this work is provided in Section 3.7.
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3.2 Orion Bar

In the Orion Nebula, the primary illuminating source of the PDR is the brightest member of the
Trapezium cluster, θ1 Ori C, an O6V type star with Teff = 38,950 K (e.g. O’Dell et al., 2017).
In Figure 3.1, we show a zoomed-in mosaic of the Orion Nebula using MIR imaging. This im-
age demonstrates that the MIR bright gas and dust forms the PDR boundary between the large
ionized cavity centered on the Trapezium cluster and the surrounding molecular cloud. The
Orion Bar is part of this PDR boundary and is an edge-on, compressed shell (Salgado et al.,
2016). The outer boundary of the Orion Nebula is referred to as the Orion Veil, a large expand-
ing shell of neutral gas driven by stellar winds expanding radially from the Trapezium Cluster
(Pabst et al., 2019). The stratified edge-on morphology of the Orion Bar and its proximity
makes it an ideal probe of a PDR environment as we can investigate the photo-processing of
the gas and dust with distance to the illuminating source (e.g. Cesarsky et al., 2000; Goicoechea
et al., 2015, Chapter 2). In contrast, in a face-on morphology, as found in the background PDR
behind the ionized cavity surrounding the Trapezium cluster bounded by the Bar and behind
the Bar out to the Veil, the entire processing history is mixed along the line of sight. Hence,
this morphology makes it significantly more difficult to infer how the gas and dust chemistry
is driven by the stellar radiation field. PDR models computed at the position of the Orion Bar
have derived a gas density of 5 × 104 cm−3 and FUV radiation field strength, G0

1, of 4 × 104

times that of the average interstellar value (e.g. Tauber et al., 1994). As we consider observa-
tions that are, in part, positioned behind the Bar, it is worth noting that it has been suggested
that θ2 Ori A, a O9.6V type star with an effective temperature of 34600 K, is the primary source
of UV radiation on the far side of the Bar (O’Dell et al., 2017).

3.3 Observations and Data Reduction

3.3.1 Observations

Spitzer

Spectroscopic observations were obtained with the short-low (SL) staring mode of the Infrared
Spectrograph (IRS, Houck et al., 2004) on–board the Spitzer Space Telescope (Werner et al.,
2004b). This data set consists of three pointings with slits that transverse the Orion Bar at
different locations (PID: 45, PI: Thomas Roellig, Figure 3.1). We assign the following nomen-
clature for these three pointings based on how much (part of) the aperture is in front of the
Orion Bar towards the illuminating source, θ1 Ori C. From closest to farthest from θ1 Ori C,
these pointings are referred to as: ‘Orion Bar ionized’ (OBI), ‘Orion Bar’ (OB), and ‘Orion
Bar neutral’ (OBN). A summary of our observations is given in Table 3.1.

The SL mode has an effective wavelength range of 5.2 – 14.5 µm and a spectral resolution
of 60 to 128 over three orders of diffraction: SL1, SL2, and SL3. The pixel size of the SL mode
is 1.8′′, with a slit width of 3.6′′ and a slit length of 57′′.

1in units of the Habing field (1.3 × 10−4 erg cm−2 s−1 sr−1, Habing, 1968)
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Table 3.1: Log of observations.

Orion Bar Orion Bar Neutral Orion Bar Ionized

map α1 5:35:27.5 5:35,27.7 5:35:25.7
map δ1 -5:30:48 -5:31:14 -5:30:39
AORs2 4117760 4118016 4118272

1 α, δ (J2000) are the central coordinates of each map. α has units of hours, minutes, and
seconds and δ has units of degrees, arc minutes, and arc seconds;2 AOR is Astronomical Ob-
servation Request Identifier.
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Figure 3.1: Mosaic of the Orion Nebula with IRAC 3.6 µm in blue, IRAC 5.8 µm in green, and
IRAC 8.0 µm in red (Megeath et al., 2012). IRS SL apertures are referred to as ‘Orion Bar’
(OB), ‘Orion Bar Neutral’ (OBN), and ‘Orion Bar ionized’ (OBI) in blue, white and yellow
respectively. We combine OB and OBN into a single aperture ‘Orion Bar Combined’ (OBC),
shown in black, as detailed in section 3.3.2. The position of θ1 Ori C and θ2 Ori A are indicated
by white circles. We note that the IRAC 3.6 µm, IRAC 5.8 µm, and IRAC 8.0 µm images use
a square root scale.
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SOFIA

We obtained SOFIA-FLITECAM observations in the 4th to 6th cycles towards the SE of the
Orion Bar (Chapter 2). We regrid the FLITECAM 3.3 µm image to each of the three IRS SL
apertures to compare these observations on an equivalent spatial resolution. Additionally, a
2 × 2 binning of the FLITECAM data is performed to be consistent with our analysis of the
IRS SL data. While we acknowledge that the 3.3 µm emission feature accounts for ∼ 70%
of the flux in the FLITECAM 3.3 µm filter for ISO-SWS2 observations near the Orion Bar
as described in Chapter 2, no correction factor is applied to account for this. We convert
the 3.3 µm observations from units of surface brightness (W m−2 µm−1 sr−1) to flux density
(W m−2 sr−1) following the method employed in Chapter 2. Specifically, we multiply by the
bandwidth of the 3.3 µm filter of ∼ 0.1 µm, which assumes emission within the filter can be
approximated by a nominal flat spectrum.

3.3.2 Data Reduction
The IRS SL raw data were processed by the Spitzer Science Center with the S18.18 pipeline
version. The resulting bcd products are further processed with cubism (Smith et al., 2007a).
Specifically, we set cubism’s wavsamp to 0.04 – 0.96 and applied cubism’s automatic bad pixel
generation with σTRIM = 7 and Minbad-fraction = 0.50 and 0.75 for global and record bad
pixels respectively. Remaining bad pixels were subsequently removed manually.

Spectra are extracted in an aperture of 2 × 2 pixels moving along the slit in one-pixel steps.
As a consequence, adjacent pixels are not independent. We found small mismatches in absolute
flux levels between the SL1 and SL2 of 2–16% and <5% between SL1 and SL3. To remedy
this, the SL3 data were scaled to the SL1 data followed by a scaling of the SL2 data to the
combined SL1 and scaled SL3 data. Subsequently, the SL1 and SL2 orders were combined
into a single spectral cube for each pointing.

Due to the considerable spatial overlap of the OB and OBN apertures (see Figure 3.1), we
combine both slits into one extended aperture. We take pixels corresponding to the OB slit
where the pointings overlap as it has a higher SNR in overlapping pixels. We refer to this
combined aperture as ‘Orion Bar Combined’ (OBC) for the remainder of the text.

3.3.3 Spectra
Typical spectra observed towards the Orion Bar are displayed in Figure 3.2. Comparison of
these spectra demonstrates how the slope of continuum rises with increasing proximity to the
illuminating source. Emission features discernible above the dust continuum include the major
PAH bands at 6.2, 7.7, 8.6, 11.2, and 12.7 µm as well as weaker PAH bands at 5.7, 6.0, 11.0,
12.0, and 13.5 µm. These PAH bands are usually on top of broad emission plateaus at 5–10 and
10–15 µm (separate from the dust continuum, detailed in Section 3.4.1). Additionally, other
atomic and molecular lines were detected such as the 6.98 µm [Ar ii] line, the 7.46 µm Pfund α
line, the 8.99 µm [Ar iii] line, the 9.7 µm S(3) H2 line, the 10.5 µm [S iv] line, the 12.37 µm

2Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially
the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS
and NASA
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Figure 3.2: Typical SL spectra from the PDR (left) and the H ii region (right) are shown. The
orange line traces the local spline continuum (LS), the magenta line traces the global spline
continuum (GS), and the green line traces the underlying dust continuum (PL).

H i recombination line, and the 12.8 µm [Ne ii] line. In the ionized gas, the underlying dust
continuum is much steeper and displays broad silicate emission at 10 µm (Cesarsky et al.,
2000).

3.4 Data Analysis

3.4.1 Continuum Fitting

In order to separate the PAH emission features from the underlying continuum, we make use of
the spline decomposition method (e.g Van Kerckhoven et al., 2000; Hony et al., 2001; Peeters
et al., 2002; van Diedenhoven et al., 2004; Boersma et al., 2012; Stock et al., 2014, 2016;
Shannon et al., 2015, 2016; Peeters et al., 2017) to define a local spline (LS), a global spline
(GS), and the underlying dust (PL) continuum (Figure 3.2). For the LS continuum, we use
anchor points at 5.37, 5.52, 5.83, 6.54, 7.07, 8.25, 9.15, 9.40, 9.89, 10.33, 10.76, and 11.82 µm.
In order to better fit the continuum underneath the 12.7 µm complex, we extend our spline fits
as two straight lines from 11.82 to 12.1 µm and 12.1 to 13.2 µm respectively. We do not fit the
spectra beyond 13.2 µm due to the abrupt change in slope at the end of the spectra. The GS
continuum fitting uses the same anchor points as the LS, except for the removal of the 8.25 µm
anchor point. The difference between these two continua (LS and GS) is referred to as the
8 µm bump (e.g Peeters et al., 2017). The dust continuum consist of a straight line between
anchor points at 5.5 µm and 10.1 µm as well as a straight line between 10.4 µm and 13.2 µm.

We find two very different shapes in the underlying dust continuum which is related to
the position with respect to the illuminating source (Figure 3.2). Spectra obtained at positions
closest to the star have a much steeper rise in continuum emission towards longer wavelengths
(Figure 3.2, right panel). All other spectra that are located behind the ionization front (IF) into
the PDR have a much shallower rise in continuum emission (e.g. Sellgren et al., 2010; Pilleri
et al., 2012; Stock et al., 2016; Peeters et al., 2017; Andrews et al., 2018). In the case of the
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spectra in front of the IF, we do not detect significant plateau continua emission and the steep
slope of the underlying dust continuum does not allow a fit to a straight dust continuum from
5.5 to 10.1 µm, hence the GS fit is used to characterise this continuum similar to what was
found for H ii region spectra by Stock & Peeters (2017).

3.4.2 Flux Measurement
The fluxes of the major PAH bands are determined through integrating the LS continuum–
subtracted spectra over the wavelength range of the feature. However, in the case of the 6.2,
11.2, and 12.7 µm features, another method is needed due to blending with weaker PAH fea-
tures or atomic emission lines. Similar to Peeters et al. (2017), a two Gaussian fit of the 6.0 and
(blue wing of the) 6.2 µm PAH bands was done with peak positions/FWHM of 6.02/0.12 µm
and 6.232/0.156 µm respectively. We determine these values by allowing them to vary dur-
ing the initial fitting procedure and subsequently take the average values over all the spectra.
The 6.2 µm band flux is determined by subtracting the 6.0 µm Gaussian from the integrated
flux of the LS subtracted spectra taken over the wavelength range spanning the 6.0 µm and
6.2 µm bands. We use a similar decomposition method to obtain the 11.2 µm emission fea-
ture flux. The 2 Gaussian fit of the 11.0 and (blue wing of the) 11.2 µm PAH bands has peak
positions/FWHM of 11.003/0.15 µm and 11.262/0.227 µm respectively.

The 12.7 µm PAH band is significantly blended with the 12.8 µm [Ne ii] line in all obser-
vations and, in some cases, with a weak 12.37 µm H i recombination line. To differentiate be-
tween these emission features, the decomposition method used in Stock et al. (2014), Shannon
et al. (2015), and Stock et al. (2016) is employed. We use the NGC 2023 12.7 µm profile in the
Southern Ridge PDR front detailed in Peeters et al. (2017) as template for 12.7 µm band. We
perform a fitting procedure to the continuum–subtracted spectra in which we fit simultaneously
two Gaussian functions to the 12.37 µm H i recombination line and the 12.8 µm [Ne ii] line,
and a 12.7 µm template profile which is scaled to align it with the spectra in the 12.4 to 12.7 µm
range. The 12.7 µm band flux is obtained by integrating the continuum–subtracted spectra from
12.15 to 13.2 µm and subtracting the 12.37 µm H i line and the 12.8 µm [Ne ii] fluxes deter-
mined from the Gaussian fits. We find an average peak position/FWHM of 12.829/0.13 µm for
the Gaussian fitted to the 12.8 µm [Ne ii] line for all of our spectra. We also note that it is only
in spectra closest to the illuminating source where the 12.37 µm H i line flux was detected at
the 3 σ level or higher. Thus for most spectra, the 12.37 µm H i recombination line does not
influence the measurement of the 12.7 µm PAH strength.

A Gaussian decomposition was performed to extract individual components within the 7
to 9 µm spectral range, similar to Peeters et al. (2017); Stock & Peeters (2017). Taking the
GS continuum–subtracted spectra, 6 Gaussians were simultaneously fitted to the prominent
features within this range: 4 PAH Gaussian components at 7.6, 7.8, 8.2, and 8.6 µm, the
8.99 µm [Ar iii] line, as well as the 7.46 µm Pfund α line (see Appendix B.2 for details).
Figure 3.3 shows examples of this decomposition. The fit is unable to match the sharpness of
the 7.6 µm peak due to the chosen FWHM (and they thus overshoot around ∼7.8 µm).

Aside from the [Ne ii] 12.8 µm line, lines that are isolated upon LS continuum subtraction
are fit using a Gaussian profile. These include the 6.98 µm [Ar ii] line, the 9.7 µm H2 line, and
the 10.5 µm [S iv] line. However, the 7.7 and 8.6 µm PAH emission features show significant
blending with the 7.46 µm Pfund α line and the 8.99 µm [Ar iii] line respectively in the majority
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Figure 3.3: The 7 to 9 µm decomposition at positions behind (Left) and in front (Right) of the
Orion Bar with respect to the illuminating source. The GS continuum–subtracted spectra are
displayed in black, individual Gaussian components are shown in blue, and the combined fit
in orange. The residuals (shown in yellow) and black dashed lines are offset by 1 × 10−5 for
clarity.

of our spectra and are incorporated in the 6 Gaussian decomposition of the 7–9 µm region.
The signal-to-noise ratio of the PAH emission features is estimated as SNR = F/(2× rms×√

N × ∆λ) where F is the feature’s flux (in W m−2 sr−1), rms the rms noise, N the number of
wavelength elements within the feature, and ∆λ is the size of each wavelength element in the
spectrum. The rms noise is determined from featureless portions of the spectra between 5.36–
5.52, 9.2–9.4, and 9.95–10.3 µm. For atomic and H2 lines, the signal-to-noise is the ratio of
the peak line flux to the underlying rms noise.

3.5 Results
In this section we investigate the relationships between individual PAH emission bands, atomic
spectral lines, H2 emission line, the underlying plateaus and the dust continuum emission
within our pointings across the Orion Bar. We use two separate methods to analyse these
spectral features, namely linear projections and correlation plots. Our linear projections (or
radial cuts) allow us to measure how these spectral features as well as their ratios vary i) with
distance to the illuminating source, and ii) relative to the changing environmental conditions
across the Orion Bar.

3.5.1 Line Projections
Figures. 3.4 and 3.5 show line profiles of the intensity of emission features and their ratios for
the Orion Bar Combined and Orion Bar Ionized apertures3. We normalize these line profiles to
their maximum value within each respective aperture. Only fluxes and emission ratios equal or

3We give a summary of all of the emission components for which we have derived line profiles in Appendix
B.1.
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PDR Front

Ionization Front
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G7.6 G7.8 G8.2 G8.6 G11.0 8 bump (d) G7.6 G7.8 G8.2 G8.6 G11.0 8 bump (h)

Figure 3.4: Orion Bar combined (left) and Orion Bar ionized (right) line profiles normalized
to the peak values for each emission feature. The dark grey shaded region corresponds to PDR
front position as defined by the peak of the 9.7 µm H2 line and the light grey shaded region
corresponds to the ionization front as defined by the [OI] 6300 Å line peak given in Salgado
et al. (2016). G0 profiles values are shown on the right y-axis in units of 103 Habings (see
Section 3.6.2 for derivation).
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PDR Front
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Figure 3.5: Orion Bar combined (left) and Orion Bar ionized (right) emission ratio profiles
normalized to the peak values for each ratio. The dark grey shaded region corresponds to PDR
front position as defined by the peak of the 9.7 µm H2 line and the light grey shaded region
corresponds to the ionization front as defined by the [OI] 6300 Å line peak given in Salgado
et al. (2016). G0 profiles values are shown on the right y-axis in units of 103 Habings (see
Section 3.6.2 for derivation).
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larger than 3 σ are presented here. We make use of the following groupings for the remainder
of this section based on the relative position to the IF in each aperture as mentioned in Section
3.4.1, i.e in front of and behind the IF. For the following discussion, we further refer to the
region between the IF and PDR front, encompassing the PAH peak, as the edge-on PDR and
beyond the edge-on PDR front as ‘further into the PDR’ despite it being a face-on PDR (e.g.
Boersma et al., 2012; van der Werf et al., 2013; Pabst et al., 2019). We refer to pixels in front
of the IF as the H ii region where we find the steep underlying dust continuum coinciding with
the ionized cavity surrounding the Trapezium.

We find that all of the major PAH bands peak at the same distance from the illuminating
source in both apertures between the edge-on PDR front, as defined by the 9.7 µm H2 peak, and
the edge-on ionization front, as defined by the [O i] 6300 Å line peak given in Salgado et al.
(2016). The distance between the peak of the PAH emission and H2 emission is 13.0 ± 3.6′′,
which agrees with the distance found between the 3.3 µm peak and the 2.122 µm H2 peak of
∼ 12 ± 2′′ in Tielens et al. (1993). Salgado et al. (2016) found the ionization front to be located
at 113 ± 1.5′′, ∼ 4′′ in front of the PAH emission peak4. In this section, we will first discuss
in detail the line projections along the OBC slit, followed by a discussion on the observed
differences and similarities between the OBC and OBI slits.

Atomic Lines

In Figure 3.4 (a), the line profiles for each of the atomic emission lines peak inward of the
ionization front towards the illuminating source in the following order: [Ar ii], [Ne ii], [Ar iii],
Pfund α, and [S iv] (which does not show a peak but a steady rise towards the star). Note that
the order in which these atomic emission lines peak (aside from Pfund α) towards the star is
directly related to the ionization potential of each respective species. The relative emission of
these lines sharply drops from their peak emission moving away from the Trapezium cluster
but they are still detected well beyond the IF.

Dust Emission

The dust continuum emission measured at 10.2 and 13.2 µm as well as the integrated 10-
13.2 µm continuum emission generally agree with each other (Figure 3.4 (b)). These continua
all have a strong peak at 100′′ from the illuminating star, coinciding with the peak emission
of [Ar iii] and Pfund α. A secondary (local) continuum maximum, not seen in the [Ar iii]
and Pfund α emission, is found where the PAH emission peaks. These continuum measure-
ments show a gradual decrease moving further away from the Trapezium cluster past the PAH
emission peak into the PDR.

PAH Emission Features

All PAH bands, the Gaussian PAH sub-components from the 7-9 µm decomposition, the 5–10
and the 10–13 µm PAH plateaus show the same peak position within the PDR at 117′′ from the
illuminating star (see Figure 3.4 (c) and (d)). Moving towards the illuminating source, all of

4The cross–cut used by Salgado et al. (2016) crosses the IF at ∼ RA, Dec: 5 35 19.4, -5 24 53.0 (J2000). This
cross-cut intersects the OBI aperture at 113 ± 1.5′′ from θ1 Ori C. We assume the same position for the IF in OBC.
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the PAH bands display a rapid decrease in emission strength but remain detected throughout
(except for the G8.2 component and 3.6 µm bump). In contrast, further into the PDR, a more
gradual decline occurs for all PAH emission features. Additionally, significant variations in
the relative intensities of the PAH emission features become evident upon moving away from
their shared peak position. In particular, the intensity at which the PAH features level off in
the H ii region varies and does not seem to be solely governed by the ionization state of the
feature’s carrier. Further into the PDR, the drop in PAH band intensity (relative to the peak
emission) varies with the 3.3, 11.2, 12.7, 6.2, 7.7, G11.0, and 8.6 µm band in decreasing order
respectively. In other words, the PAH bands that are attributed to neutral species have a less
pronounced decrease in relative flux in this region. Similarly, we find that the 7–9 µm Gaussian
components show a decrease in relative intensity (with respect to the peak intensity) towards
the illuminating source in the following order: G7.6, G8.6, G7.8, and G8.2 µm components.
We note that the G8.2 component is very weak or absent in the H ii region. Further into the
PDR, these components show a decrease in relative intensity in the reverse order to what is
found in the H ii region: i.e. G8.2, G7.8, G7.6, and G8.6 µm. We note that the G7.6 µm
component and LS derived 7.7 µm band have very similar spatial profiles in both apertures,
reflecting the dominance of the G7.6 µm component to the 7.7 µm complex.

The 5–10 and 10–13 µm plateaus shown profiles very similar to the PAH bands within the
edge-on PDR and have a gradual decline moving further into the PDR. The more significant
aspect about these plateau profiles to note is the rapid drop at the IF to the point where they
are no longer detected in the H ii region. Similarly, the 3.6 µm bump has a profile that is
comparable with other PAH features, most notably the G8.2 µm component as it is derived
from essentially the exact same spectral region.

PAH Emission Ratios

In Figure 3.5 (a), the 6.2/11.2, 7.7/11.2, 8.6/11.2, and 11.0/11.2 ratios are very comparable:
these ratios show a broad maximum at the dust continuum peak, which coincides with the peak
emission of [Ar iii] and Pfund α, and the PAH peak. Further into the PDR, these ratios all drop
substantially, with a broad minimum behind the PDR front. Considering the relative strength
of the maxima of these ratios at the dust continuum peak with their maxima at the PAH peak,
these ratios can be organized in the following order: 11.0/11.2, 8.6/11.2, 7.7/11.2, 6.2/11.2.
In other words, the 11.0/11.2 maximum at the dust continuum peak has the largest relative
increase compared to its maximum at the PAH peak whereas the 6.2/11.2 shows the greatest
relative decrease.

In Figure 3.5 (b), the 6.2/7.7 ratio shows little variation behind the IF. However, within the
H ii region, the 6.2/7.7 ratio decreases to a minimum roughly co-spatial with the dust con-
tinuum peak. Interestingly, the 6.2/(G7.6 +G7.8) ratio shows very little variation (see Figure
3.5 (c)). This arises from the difference in the PAH behaviour being traced by the LS derived
7.7 µm band and the combined G7.6 and G7.8 µm components as they include emission from
the 8 µm bump which is minimized within the H ii region (Figure 4.4). In contrast, the 8.6/7.7,
8.6/6.2 and 11.0/8.6 ratios are strong in the H ii region and weaker behind the IF.

The 12.7/11.2 and 12.7/7.7 emission ratios show overall similar trends, characterized by a
strong peak near the dust continuum peak akin to the 11.0/11.2 ratio. However, despite each
of these ratios showing a sharp decrease at the IF, these ratios differ with the 11.0/11.2 ratio as
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they do not show any significant maxima near the PAH peak.
Regarding emission ratios between the 7–9 µm Gaussian components shown in Figure 3.5

(c), G7.8/G7.6 shows a very pronounced minimum at the dust continuum peak followed by
a substantial rise towards the ionization front and a local minimum between the IF and the
PDR front (as traced by H2), followed by a rise moving further in the PDR. The G8.6/G7.6
ratio fluctuates across the line profile with local maxima roughly corresponding to the dust
emission peak, the PAH emission peak and at 155′′ further into the PDR. The G8.2/G7.8,
G8.2/G8.6, and the 8 µm bump/7.7 emission ratios are comparable, with a strong minimum
roughly corresponding with the dust continuum peak. Further from the illuminating star, these
profiles shows a steep rise into the edge-PDR, which levels off near the edge-on PDR front.
Further into the PDR, these ratios proceed to significantly drop again to a sharp local minimum
found at ∼ 160′′ attributable to a ‘blip’ the G8.2 µm and 8 µm bump components here.

Overall, the 3.3/6.2, 3.3/7.7, 3.3/11.2 ratios all show similar trends with a strong peak near
the dust continuum peak comparable with the 6–9/11.2 and 11.0/11.2 peaks here. However,
each of these emission ratios involving the 3.3 µm have a minimum corresponding to the PAH
peak followed by a subsequent rise further into the PDR. The 3.3/11.0 is unique amongst PAH
ratios involving the 3.3 µm PAH emission feature as it shows very little variation in front of the
IF and in the edge-on PDR. At the edge-on PDR front, this ratio increases considerably and
plateaus further into the PDR within the large uncertainties.

Aperture Differences

The OBI aperture is a slightly different case in comparison to the OBC aperture as it does not
intersect with the edge-on PDR front and extends much deeper into the ionized cavity sur-
rounding the Trapezium cluster. The atomic lines show, in general, the same behavior as in the
OBC aperture with the peak of the [Ne ii], [Ar iii] and H i Pfund α line being broader, encom-
passing the shoulder seen in the OBC slit (Figure 3.4 (e)). The 10–13.2 µm continuum profile
(and the 10.2 and 14.2 µm continuum emission) is distinctly different in the OBI aperture with
a continual rise towards the star and a broad peak much deeper into the H ii region (Figure 3.4
(f)). Many of the atomic emission lines show a minor bump that can be associated with the
dust continuum peak in the OBI aperture.

All of the major PAH bands excluding the 12.7 µm band show very similar profiles moving
towards the source, with a somewhat broad local maximum centered at ∼ 98′′, a few arcseconds
behind a corresponding small bump in the dust continuum profiles (Figure 3.4 (g) and (h)).
Only minor variations in each profile are seen further inwards with a slight rise closest to the
star. The emission ratio profiles between PAH features within the OBI aperture show very
similar trends with those found for the OBC aperture in the H ii region with each emission
ratio generally having the same behaviour at the dust continuum peak and within the edge-on
PDR (Figure 3.5 (e)–(h)). The most significant discrepancy between both apertures is the local
maximum, the ‘PAH bump’, at ∼ 98′′ which is only found in the OBI aperture. In addition,
the 12.7/11.2 and 12.7/7.7 ratios are notably different in the OBI aperture, with a strong peak
in front of the IF and a broad minimum at the dust continuum peak. This peak coincides with
the peak of the [Ne ii] emission, which may influence the 12.15-13.2 µm decomposition we
applied. Higher spectral resolution data from, for example, the James Webb Space Telescope,
will settle this.



3.5. Results 67

3.5.2 Correlation plots

We investigate possible intensity correlations between major PAH features in the 6–9 µm range
as well as the 7–9 µm Gaussian components (Figure 3.6). We separate our data into two
groupings based on the relative position to the IF: in the H ii region (red) and the PDR (blue)
as described in Section 3.4.1. For comparison, we include the observed correlation fits for the
RN NGC 2023 (black line, Peeters et al., 2017) and the Orion Bar (green line, Galliano et al.,
2008).

We observe a strong correlation between the 6.2 and 7.7 µm bands for the PDR spectra,
which is significantly weaker within the H ii region spectra (Figure 3.6 (a)). However, the
6.2 µm band and the sum of the G7.6 and G7.8 µm show a much tighter correlation in both
types of spectra (Figure 3.6 (d)). This can be related to the line profiles of these features found
in Figures. 3.4 and 3.5. We observe little variation in the 6.2/(G7.6 + G7.8) ratio but the 6.2/7.7
profile shows a large decrease in positions where the FUV radiation field was the strongest. If
we compare (G7.6 + G7.8) µm directly with the 7.7 µm band (Figure 3.6 (e)), we find that they
correlate equally strong as the 6.2 and 7.7 µm bands in the PDR spectra and better within the
H ii region spectra. We note the presence of a bi–modal distribution in the (G7.6 + G7.8) µm
versus 7.7 µm relation, where the H ii region data fit is steeper and located above the neutral
data fit. This is seen to a lesser extent in the 6.2 versus 7.7 µm plot yet in the 6.2 versus (G7.6
+ G7.8) µm plot, data points from both regions are strongly mixed. Comparing the 7.7 µm and
the G7.6 µm component, we also find strong correlations in both the PDR and H ii region.

Comparing the 6.2 and 8.6 µm bands (Figure 3.6 (b)), we again find a modest correlation
in both the PDR and the H ii region spectra, but numerous points are located well below the
line of best fit for the PDR spectra. Notably, the 6.2 µm band and the G8.6 µm component are
slightly better correlated in the PDR regime and are worse in the H ii region (Figure 3.6 (h)).
The 6.2 µm band versus G8.6 µm component plot also shows points far below the line of best
fit and are worse in the H ii region region. In both cases, we also see a separation between H ii
region and PDR data points. However, the PDR and H ii region linear fits are reversed between
the 6.2 versus 8.6 µm plot and the 6.2 versus G8.6 µm plot as the 8.6 is considerably weaker
compared to the G8.6 in regions with weak or no G8.2 or 8 µm bump, i.e. the ionized gas in
the H ii region.

The 7.7 and 8.6 µm bands show the best correlation between the LS derived PAH features
in the H ii region spectra (Figure 3.6 (c)) with numerous points well above the line of best
fit in the PDR region in a similar fashion as in the 6.2 versus 8.6 µm plot. However, the
Gaussian sub-components show much more variation between each other. For instance, the
G7.6 and G8.6 µm components show a strong correlation within the PDR spectra but there
is significantly greater scatter found between them within the H ii region spectra (Figure 3.6
(i)). The G7.8 and G8.2 µm components are moderately correlated in the H ii regime and
interestingly have a clear separation in data associated with the PDR and H ii region spectra
(Figure 3.6 (j)). The G7.8 and G8.6 µm components show moderate correlation in the PDR
spectra and the H ii region spectra but again have clear boundaries between both regimes
(Figure 3.6 (k)). The G8.2 and G8.6 µm components also show two separate clusters of data
points, but show a significantly better correlation in H ii region spectra (Figure 3.6 (l)). Finally,
comparing G8.6 with (G7.6 + G7.8) µm, we find a strong correlation within the PDR spectra
and a lower correlation in the H ii region spectra (Figure 3.6 (f)).
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Figure 3.6: PDR spectra are shown in blue and H ii region spectra for the Orion Bar Combined
(squares) and the Orion Bar Ionized (triangles). Correlation coefficients for each respective
region are given in the same color. Weighted and unweighted linear fits are shown as solid
and dashed lines for each respective region given in the same color. The black and green lines
correspond to the respective correlation fits found for NGC 2023 in Peeters et al. (2017) and
the Orion Bar using the spline method in Galliano et al. (2008) respectively.
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Figure 3.7: Orion Bar correlation plots II: PDR spectra are shown in blue and H ii region spec-
tra for the Orion Bar Combined (squares) and the Orion Bar Ionized (triangles). Correlation
coefficients for each respective region are given in the same color. Weighted and unweighted
linear fits are shown as solid and dashed lines for each respective region given in the same
color. The black lines correspond to the respective correlation fits found for NGC 2023 in
Peeters et al. (2017).



70 Chapter 3. PAH Emission Across the Orion Bar

In Figure 3.7, we compare the 6-9 µm bands and 7–9 µm Gaussian components with the
11.0 and 12.7 µm bands. We note that the behaviour of the 11.0 µm in the PDR and H ii
region spectra tends to change drastically, these correlation fits show two distinct distributions.
The 6.2 µm band shows a reasonable correlations with the 11.0 µm band in the PDR spectra
and a much weaker correlation within the H ii region spectra (Figure 3.7 (e)). These trends
are closely mimicked in the 11.0 µm band versus the sum of G7.6 and G7.8 µm plot (Figure
3.7 (h)), which we again note is very well correlated with the 6.2 µm band. The 7.7 and
11.0 µm bands are well correlated within the PDR spectra (Figure 3.7 (f)), but again falls off

considerably in the H ii region spectra. We find that the 8.6 µm shows the best correlation with
the 11.0 µm band of the features probed (Figure 3.7 (g)), with strong to moderate correlations
in the PDR and H ii region spectra respectively. The G8.6 µm component shows a strong
correlation with the 11.0 µm in the PDR spectra, but does not correlate at all in the H ii region
spectra, showing that it is clearly different from the LS derived 8.6 µm feature (Figure 3.7 (i)).
We do not find any strong correlations with the 12.7 µm band. The 7.7 and 8.6 µm bands both
show weak correlations with the 12.7 µm band with both slightly better correlated with the
12.7 µm within the H ii region spectra (Figure 3.7 (a) and (d)). Interestingly, the 12.7 µm band
and sum of G7.6 and G7.8 µm components (and the 6.2 µm band by extension) show even
poorer correlations with both spectral regimes showing clear differences in behaviour (Figure
3.7 (b)). Comparing the 12.7 µm band with solely the G7.6 µm component gives a slightly
better correlation than the sum of the G7.6 and G7.8 µm in the PDR spectra, while there is
essentially no correlation within the H ii region spectra (Figure 3.7 (c)).

3.6 Discussion

In Section 3.5, we presented the behaviour of the emission features observed towards the Orion
Bar. Here, we investigate potential drivers of this behaviour such as the environmental condi-
tions and properties of the underlying PAH populations detected in the IRS SL spectra.

3.6.1 Probing PDR Morphologies
In Section 3.5, we grouped the Orion spectra in both apertures into two groups based on the
relative position of each pixel to the edge-on IF of the Orion Bar (Figure 3.8 (a)). Using this
grouping, the correlations found are significantly worse than reported for the Orion Bar and
other PDR sources in the literature (e.g. Galliano et al., 2008; Boersma et al., 2014a; Stock
et al., 2016; Stock & Peeters, 2017; Peeters et al., 2017). One explanation for this lack of
correlation may be due to a inadequate account of the different PDR morphologies present
within our Orion pointings. We briefly alluded to the positions behind the edge-on PDR front
in the Bar as being part of a face-on PDR in Section 3.5.1 as shown in diagrams depicting the
structure of the Orion Nebula such as in Boersma et al. (2012); van der Werf et al. (2013); Pabst
et al. (2019). From these diagrams, it is also clear that the spectra coming from the H ii region
includes emission from the face-on PDR located behind the ionized cavity along the line of
sight.

In order to investigate the effects of PDR morphology on behaviour found within Figures
3.6 and 3.7, we now employ a different grouping of these spectra. In one group we only include
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Figure 3.8: The 10–13.2 µm continuum profile for Orion Bar combined (squares) and Orion
Bar ionized (triangles). We highlight in panel (a), the pixel grouping used for Figures 3.6 and
3.7, panel (b) for Figure 3.9 and panel (c) for Figure 3.10 (see Section 3.6.1 for details). OBC
PDR and H ii region pixels are in dark blue and red respectively. OBI PDR and H ii region
pixels are in light blue and red respectively. The dark grey shaded region corresponds to PDR
front position as defined by the peak of the 9.7 µm H2 line and the light grey shaded region
corresponds to the ionization front as defined by the [OI] 6300 Å line peak given in Salgado
et al. (2016). Face-on and Edge-on labels refer to positions where these are thought to be the
dominant PDR morphologies as detailed in Section 3.6.1.

the spectra from the edge-on PDR, bounded by the edge-on IF and PDR front, and in the other,
all spectra of the face-on PDR located in front of the IF and behind the edge-on PDR front
of the Orion Bar (Figure 3.8 (b)). In Figure 3.9, we show correlations between the 6–9 µm
PAH emission features using this grouping of edge-on and face-on PDRs. In the 6.2 versus
7.7 µm correlation plot (Figure 3.9 (a)), the vast majority of the edge-on PDR points are traced
well by a line that lies below the face-on PDR points. The exception is a few of the OBI
edge-on PDR points that seem to mix with the face-on PDR points. Thus, the spectra located
behind the Bar agree better with those in front of the Bar rather than within the Bar. In both
the 6.2 versus 8.6 and 8.6 versus 7.7 µm correlation plots (Figure 3.9 (b) and (c)), the ‘line’
of outliers located respectively below and above the majority of the data points in our sample
can be traced back to the OBC edge-on PDR. Thus, the correlations found between the 6.2,
7.7, and 8.6 µm bands shown between the ‘blue’ data points in Figure 3.6 are fitting primarily
the face-on PDR spectra located behind the Bar in the OBC aperture and the OBI edge-on
PDR spectra. The latter oddly seems to show more similarities with the face-on PDR spectra
than the OBC edge-on PDR spectra. This suggest that the environment of the Bar within the
OBI aperture is notably distinct from that within the OBC aperture. We also note that the
correlations between 6.2, 7.7 and 8.6 µm for all of the face-on PDRs (as traced in red in Figure
3.9) is much better than just the H ii region spectra (as traced in red in Figure 3.6). Conversely,
correlations involving the 8.6 µm band for pixels in the edge-on PDRs is markedly worse due
to the discrepancy between the OBI and OBC spectra in the Bar.

To this end, we use a third grouping (Figure 3.8 (c)) in which the OBC edge-on PDR
spectra are grouped by themselves with all of the face-on PDR and the OBI edge-on PDR
spectra in a second group (Figure 3.10). In each of these plots, there appears to be a bi-linear
trend that clearly separates the OBC edge-on spectra from the remainder of the spectra. The
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Figure 3.9: Orion Bar correlation plots III: Edge-on PDR spectra are shown in blue and face-on
PDR spectra in red for the Orion Bar Combined (squares) and the Orion Bar Ionized (trian-
gles). Correlation coefficients for each group are given in their respective color. Weighted and
unweighted linear fits are shown as solid and dashed lines respectively for each respective re-
gion in their color. The black and green lines correspond to the respective correlation fits found
for NGC 2023 in Peeters et al. (2017) and the Orion Bar using the spline method in Galliano
et al. (2008) respectively.

addition of the OBI edge-on PDR to the face-on PDR spectra group shows a slight decline
in correlations found within this set of spectra, suggesting that the OBI edge-on PDR has
its own unique behaviour. With the exception of the OBI edge-on PDR spectra, these plots
suggest that the relative morphology of a PDR can be discerned from the relative slope in the
line of best fit for a given morphology. Other studies have shown the presence of bi-linear
trends or bifurcation between different PAH emission features (e.g. Stock et al., 2016; Stock
& Peeters, 2017, Chapter 4). This bifurcation has been attributed to probing different physical
environments with the low G0 diffuse ISM being distinct from high G0 H ii regions.

The level of photoprocessing we observe in a given PDR depends on the relative contribu-
tion of regions with different physical conditions along our line of sight (e.g. Chapter 2). In
an edge-on PDR, when resolved, we are able to investigate how the PAH population changes
moving from the dense molecular region into the PDR to the ionization front closer to a FUV
radiation source. This is not possible for a face-on morphology as all these distinct zones are
mixed within a single pixel or resolution element. As the PAH population changes within an
extended source, an edge-on or face-on PDR morphology results in different fractional con-
tributions to the total PAH emission of the various PAH subpopulations. The bi-linearity we
find within our correlations thus indicate that these different PAH subpopulations have distinct
intrinsic relative PAH intensities.

Next, we compare the PAH ratio trends we find for the OBC edge-on PDR data with those
found by other studies. Galliano et al. (2008) studied ISOCAM observations of the Orion Bar
which included the ionized region, the Orion Bar as well as the region behind the Bar. These
observations thus cover all the different regions discussed above. These authors also find tight
correlations between the 6.2 versus 7.7 and the 7.7 versus 8.6 µm bands. However, their cor-
relation is offset from our data points (Figure 3.6 (a) and (c)). For both correlations, the data
points corresponding to the OBC edge-on PDR are significantly closer to their correlation (and
thus data points) than the remainder data points within our apertures. The origin of the offset
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Figure 3.10: Orion Bar correlation plots IV: OBC edge-on PDR spectra are shown in blue and
face-on along with OBI edge-on PDR spectra in red for the Orion Bar Combined (squares)
and the Orion Bar Ionized (triangles). Correlation coefficients for each region are given in
their respective color. Weighted and unweighted linear fits are shown as solid and dashed lines
respectively for each respective region in their color. The black and green lines correspond to
the respective correlation fits found for NGC 2023 in Peeters et al. (2017) and the Orion Bar
using the spline method in Galliano et al. (2008) respectively.

between the trends in both datasets of the Orion Bar is currently unclear and warrants further
investigation. However, such offsets are also seen for other sources. Indeed, for the reflection
nebula NGC 2023 (Peeters et al., 2017) the correlations are in most cases displaced from our
trends albeit parallel. Here as well, they are closest to what we found for the OBC edge-on
PDR. Moreover, while not directly compared here, Stock et al. (2016) reported that the reflec-
tion nebula NGC 1333 shows correlations that closely mimic those of NGC 2023. Thus, the
OBC edge-on PDR is much better representative of a prototypical PDR spectra that what we
find in the face-on PDR spectra and the OBI edge-on PDR spectra.

One particularly interesting trend found in our data is the deviation of the 6.2 and 7.7 µm
ratio from the usual very tight correlation in the H ii region within the OBC aperture. This is
evident from the line profile of 6.2/7.7 within the OBC aperture where we see a stark minimum
at the G0 peak (Figure 3.5 (b)). Notably, we do not find a similar trend in the line profile of the
OBI aperture. The deviation in the behaviour of the 6.2 and 7.7 µm bands has been previously
reported by Stock et al. (2014) and Whelan et al. (2013) within other H ii regions. Stock
et al. (2014) suggests this behaviour arises from the different vibrational assignments of these
features, namely the 6.2 µm band is attributed to C–C stretching whereas the 7.7 µm band
is a combination of the C–C stretching and C–H in plane bending modes (i.e. Allamandola
et al., 1989). Indeed, they suggest this breakdown arises from the dominance of the C–H in
plane bending mode within the ionized cavity. Based on this assessment, Stock et al. (2014)
surmises that the 8.6/7.7 ratio should also show an increase within the ionized cavity as the
8.6 µm band is attributed to C–H in plane bending which they found to be consistent with their
observations. In Figure 3.5 (b), we do indeed find a rise in the 8.6/7.7 ratio in the OBC aperture
moving from the edge-on PDR front towards the H ii region. This trend is opposite to that of
the 6.2/7.7, which begins to drop at the edge-on PDR front towards the H ii region. Despite
the fluctuations of the 8.6/7.7 ratio in the OBI aperture, they are not in sync with changes in
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the environment. This is supported by Figure 3.6 (a) where the 6.2 and 7.7 µm bands have a
much weaker correlation in the H ii region while conversely the 7.7 and 8.6 µm bands have a
stronger correlation in this region relative to the PDR. This indicates that there is a substantial
shift in the vibrational behaviour of the underlying PAH population as they are increasingly
exposed to the stellar FUV radiation field as they move into the H ii region.

3.6.2 Environmental Diagnostics

Deriving PDR Conditions

We determine the FUV radiation field strength, G0, across our apertures following the method
employed by Galliano et al. (2008). Briefly, these authors measured the very small grain (VSG)
continuum emission from 10 to 16 µm to determine G0 using the relationship G0 ∝ I1/1.3

cont and
the absolute value of G0 = 4 × 104 at the PDR front taken from Tauber et al. (1994).

First, we measured the integrated strength of the dust continuum emission from 10–13.2 µm.
To connect this 10–13.2 µm continuum flux with the 10-16 µm VSG continuum of Galliano
et al. (2008), we use ISO-SWS spectra positioned across the Bar5. For these spectra, we de-
termined the ratio of the integrated strength of the underlying dust continuum from 10–13.2
and 10–16 µm to be an average of 2.2 ± 0.1 over the five SWS pointings, indicating that these
continua are effectively proportional. Using the absolute value of G0 at the edge-on PDR front
in the Bar as reported by Tauber et al. (1994), we calculate the G0 profile for the OBC aperture
using the following scaling relationship:

G0(r) = G0(PDR)
(

I10–13 cont(r)

I10–13 cont(PDR)

)1/1.3

(3.1)

where PDR refers to the position of the PDR front and r refers to an arbitrary position in the
OBC aperture. This results in G0 ranging from 1.6–6.5 × 104 in this aperture with G0 peaking
in the H ii region. The derived G0 profile is shown in Figures 3.4 and 3.5.

We were not able to use the absolute value of G0 at the PDR front for the OBI G0 aper-
ture since it does not intersect the PDR front. Instead, we take the average of the OBI 10–
13.2 µm continuum between 87–95′′ where we observe comparable strength with the OBC
10–13.2 µm continuum (Figure 3.8). As a consequence, we assume both apertures have simi-
lar G0 at these positions and we use the mean G0 of the OBC aperture in this overlap region of
(5.686 ± 0.004) × 104 as the reference value in equation 3.1 for the OBI aperture. In addition,
we use the mean OBI 10–13.2 µm continuum strength in the overlap region as the reference
value for the corresponding continuum measurement. The resulting G0 values range from 3.3–
7.2 × 104 with a strong peak deep into the H ii region. The derived G0 profile is shown in
Figures 3.4 and 3.5.

The G0 profiles derived for the OBC and OBI apertures are quite different with respect to
their absolute values within the edge-on PDR and their peak positions in the H ii region. This
is indicative of a non-uniform structure throughout the Bar, similarly to the divergent emission

5There are five ISO-SWS spectra available across the Orion Bar at a distance of 2.597′, 2.175′, 1.971′, 1.766′,
1.356′ from θ1 Ori C referred to as positions D2, H2S1, D5, Brγ, and D8 respectively (e.g. Peeters et al., 2002;
van Diedenhoven et al., 2004). Their target dedicated time (TDT) numbers, a unique identifier, are 69502005,
69501806, 83101507, 69502108, and 69501409 respectively, see Chapter 2 for their FOVs.
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and ratio profiles as reported in Section 3.6.1. This supports previous results that have shown
variations in the emission substructure of molecular species in the Bar (e.g. Goicoechea et al.,
2017). For this reason, we analyse both of our apertures separately.

Furthermore, we derive the PAH ionization parameter, γ = G0 T0.5/ ne (Bakes & Tielens,
1994) where ne is the electron density and T the gas temperature, using the same method as
described in Galliano et al. (2008). We take the values for both gas density, nH, and temper-
ature at the PDR front of 5 × 104 cm−3 and 500 K respectively as derived in Tauber et al.
(1994). The gas density is then converted to electron density using the assumption that all
free electrons result from the photo-ionization of carbon and all gas–phase carbon is ionized,
ne ' (C/H) nH ' 1.6 × 10−4 nH, where 1.6 × 10−4 is the interstellar gas-phase carbon abun-
dance (Sofia et al., 2004). Under the assumption that the electron density and gas temperature
remains constant within both pointings, we derive a γ value for all spectra. We find γ ranges
from ∼ 1.5–5.8 × 103 in the PDR positions and from ∼ 3.0–6.4 × 103 in the H ii region posi-
tions.

PAHs as PDR Tracers

In Figure 3.11, we compare our Orion Bar data with the previously established relationship
of Stock & Peeters (2017) between G0 and G7.8/G7.6. We observe a strong anti-correlation
between these two parameters with G7.8/G7.6 being high in low G0 environments, consistent
with Stock & Peeters (2017). In the left panel of this figure, we first compare these parameters
in the PDR and H ii region grouping (see 3.5.2) of the OBC and OBI apertures separately. We
find a strong anti-correlation in the OBC aperture, a significantly weaker correlation in the OBI
H ii region, and a strong positive correlation in the OBI PDR aperture. The latter, however,
only probes a very small range in G0. Compared to the results of Stock & Peeters (2017), our
linear fits are significantly steeper. This may be attributed to i) the much smaller range of G0
values covered here and ii) the fact that we only probe high UV field regions relative to the
range given in Stock & Peeters (2017). In fact, if we only consider the H ii region observations
of Stock & Peeters (2017), the slope of their relation will increase substantially. Additionally,
it should be noted that these authors only consider the global, spatially integrated, values of
G0 and G7.8/G7.6 in each of the sources they included in their relationship, which resulted in
considerable uncertainties in G0.

We discussed in Section 3.6.1 that the PDR versus H ii region grouping fails to take the
underlying differences in PDR morphology into account. In order to understand the effects of
PDR morphology on the G7.8/7.6 ratio versus G0, we use a different grouping of our data, i.e.
the grouping with the OBC edge-on PDR in one group and all of the face-on and the OBI edge-
on PDR in the second group (Figure 3.11, right panel). In the OBC edge-on PDR, we find a
moderate anti-correlation but more interestingly, the linear fit to these data points agrees within
the uncertainties with the Stock & Peeters (2017) relationship that excludes the diffuse ISM.
Additionally, we find that the grouping including the face-on PDRs and the OBI edge-on PDR
has a very strong correlation between G7.8/7.6 ratio and G0 with a steeper slope than the (Stock
& Peeters, 2017) relationships. This suggests that an edge-on and face-on PDR morphology
may generally also yield a different linear relationship between G7.8/G7.6 and G0. Despite the
differences between these studies and between face-on and edge-on PDRs, it is clear that the
the G7.8/G7.6 has the potential to become a useful tracer of the FUV radiation field for a wide
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Figure 3.11: G0 versus G7.8/G7.6: Orion Bar combined (squares) and Orion Bar ionized (tri-
angles). left OBC PDR and H ii region pixels are in dark blue and red respectively and OBI
PDR and H ii region pixels are in light blue and red respectively. right OBC edge-on PDR in
dark blue and all face-on and OBI edge-on PDRs in dark red. Correlation coefficients for each
respective region are given in the same color as listed above. Weighted linear fits are shown as
solid lines for each region in their respective color. The linear fits derived in Stock & Peeters
(2017) are given as a green dot-dashed line and magenta solid line where they do and do not
include the Ophiuchus diffuse cloud pointings. The maximum G7.8/G7.6 ratio of 0.88 found
in the outskirts of W49A by Stock & Peeters (2017) is shown as a black horizontal dashed line.

variety of PDRs.

Next, we investigate the relationship between the PAH ionization parameter, γ, and the
6.2/11.2 ratio and compare with the results reported by Galliano et al. (2008) (see Figure 3.12).
Overall, we do not observed a very strong relationship between these parameters. However,
as before, we consider the OBC and OBI apertures in the H ii region and the PDR separately.
In this case, we find strong and modest correlations between these parameters in the PDR and
H ii region, respectively, for the OBC aperture, and a negligible correlation for both regions
within the OBI aperture. These linear fits are much shallower than the relationship derived by
Galliano et al. (2008) with the exception of the OBC PDR. Interestingly, these authors derived
their relationship based on selected positions within the edge-on PDR for Orion along with two
pointings from a reflection nebula and a planetary nebula (which have γ < 103). Our edge-on
PDR data points seem to be just below the Galliano et al. (2008) fit in both apertures.

We have established previously that the grouping of the face-on PDR spectra behind the
Bar with the edge-on PDR in the OBC aperture fails to trace the PAH emission ratio behaviour
in both regions (Section 3.6.1). In this case, the data points attributed to the OBC face-on PDR
in Figure 3.12 below γ < 2000 follow a different trend in comparison to the OBC edge-on PDR
region points above this threshold causing this fit to be much poorer than if we consider these
regions separately. Thus, we again make use of the grouping with the all of the edge-on PDRs
and all of the face-on PDRs are separated (Figure 3.12, right panel).The combination of the
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Figure 3.12: PAH ionization parameter γ versus 6.2/11.2: Orion Bar combined (squares) and
Orion Bar ionized (triangles). left OBC PDR and H ii region pixels are in dark blue and red
respectively and OBI PDR and H ii region pixels are in light blue and red respectively. right
All edge-on PDRs in dark blue and all face-on PDRs in dark red. Correlation coefficients for
each region are given in the same color as listed above. Weighted linear fits and their 1 σ fit
uncertainties are shown as solid and dashed lines respectively for each region in their respective
color. The linear fit derived by Galliano et al. (2008) is shown as a solid green line with dashed
green lines representing the 1 σ deviations.

OBC and OBI edge-on PDRs gives a tight correlation between the 6.2/11.2 ratio and γ despite
the disagreement that has been found between these edge-on PDRs in most other relationships
we have considered. The combined edge-on PDRs agree quite well with the Galliano et al.
(2008) fit within the corresponding fit uncertainties. In contrast, the combined face-on PDRs
do not seem to be well correlated with respect to 6.2/11.2 ratio and γ. This suggest that the
relationship between these parameters only seems to hold within edge-on PDRs.

3.7 Conclusion

In this chapter, we investigate the characteristics of the PAH emission features across the Orion
Bar through the use of Spitzer IRS SL spectroscopic observations consisting of two apertures
that cross the Bar at different locations along with SOFIA FLITECAM imaging observations.
We make use of the spline decomposition method to separate the PAH emission features from
the underlying continuum components. We measure the fluxes on the various emission compo-
nents found within both spectral apertures including the PAH emission and related components,
the atomic recombination lines, the H2 lines, and the underlying dust continuum. Variations
in these spectral components are found using line profiles taken with respect to distance from
the primary illuminating source in the Orion Nebula. Correlations between the PAH related
features are considered based on the relative position to the ionization front of the Orion Bar
as well as the different PDR morphologies present in each aperture, these being edge-on and
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face-on. Finally, we compare specific PAH emission ratios with the derived profiles of the FUV
radiation field and the PAH ionization parameter. Our major findings are as follows:

• All of the PAH-related emission is found to have a strong peak located within the Orion
Bar. Variations in PAH features become more prominent away from this peak into the
H ii region in front of the Bar and further into the PDR. Additional maxima or mimima
in the PAH emission profiles and PAH ratio profiles were found to typically coincide
with the G0 peaks as defined by the dust continuum emission profile in each aperture.

• Grouping the spectra based on PDR morphology yielded much tighter correlations be-
tween the PAH emission features in comparison to grouping based on relative position to
the ionization front in general. PAH emission correlations in many cases demonstrated
two distinct trends that were attributed to the edge-on PDR of the Bar and the face-on
PDRs located in front of and behind the Bar.

• The PAH emission within the edge-on PDRs between both apertures is found to behave
differently suggesting the Bar is not a uniform structure.

• Deviation from the well-known tight relationship between the 6.2 and 7.7 µm bands is
found to occur at the peak of the radiation field within the H ii region. This was found to
correspond with the enhancement of the 8.6/7.7 profile suggesting a shift in the relative
strength of the intrinsic vibrational modes in this region.

• We are able to replicate the anti-correlation found between the G7.8/G7.6 and G0 of
Stock & Peeters (2017) in both the H ii region and the PDR. Using a grouping based
on PDR morphology showed that the OBC edge-on PDR displayed a similar linear re-
lationship as was found by Stock & Peeters (2017) whereas the face-on PDRs showed a
steeper relationship.

• We replicate the linear relationship found between 6.2/11.2 and the ionization parameter
of Galliano et al. (2008) within the edge-on PDR spectra. In contrast, the face-on PDR
spectra show a much weaker (or no) relationship between these parameters.

To summarize, the Orion Bar PDR has clearly earned its reputation as the prototype edge-
on PDR. We show clear stratification of the relative intensities of the PAH emission features
within the different layers of the Orion Bar yielding insight into the physical and chemical
structure of this well-studied environment. However, the murkier face-on PDRs on both sides
of the Bar also deserve closer scrutiny as few observed PDRs are as unambiguous as the Orion
Bar. Novel JWST observations within the coming years of the Orion Bar will allow us to
further advance our understanding of astronomical PAHs and their relationship with the PDR
environments.
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4.1 Introduction
The mid-infrared (MIR) spectra of a vast number astronomical sources are dominated by
prominent emission features at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm along with weaker as-
sociated bands found at 5.2, 5.7, 6.0, 11.0, 12.0, 13.5, and 14.2 µm. These features are widely
attributed to the infrared fluorescence of polycyclic aromatic hydrocarbons (PAHs) (e.g. Léger
& Puget, 1984; Allamandola et al., 1985, 1989; Puget & Léger, 1989) and related carbona-
ceous species such as PAH clusters, polycyclic aromatic nitrogen heterocycles (PANHs, Hud-
gins et al., 2005; Bauschlicher et al., 2008) or PAHs with functional groups attached (e.g. Joblin
et al., 1996a; Sloan et al., 1997; Pilleri et al., 2015; Maltseva et al., 2016; Shannon & Boersma,
2019). These species are all characterized by their shared molecular composition, made up
primarily of a planar collection of fused benzene rings with hydrogen atoms located on the
outer edges. These molecules are electronically excited by the absorption of far-ultraviolet
(FUV) photons from a nearby stellar source. This energy is rapidly redistributed to lower lying
vibrational states, where these molecules cascade back to their ground state by radiating MIR
photons corresponding to vibration relaxation. Astronomical sources where these bands have
been routinely observed include: H ii regions, young stellar objects (YSOs), post-AGB stars,
planetary nebulae (PNe), reflection nebulae (RNe), external galaxies as well as the diffuse ISM
(e.g. Hony et al., 2001; Verstraete et al., 2001; Peeters et al., 2002; Berné et al., 2007; Smith
et al., 2007a; Galliano et al., 2008; Boersma et al., 2012; Shannon et al., 2016; Stock et al.,
2016).

The spectral fingerprints of these PAHs show significant variation with respect to the rela-
tive intensities, profile shape, and peak positions between sources and spatially within extended

80
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sources. Intensity variations are mainly attributed to the molecular charge state, i.e. the PAH
emission in the 6–9 µm range increases in cationic species, whereas the 3.3 and 11.2 µm bands
are more prominent in neutral species (Allamandola et al., 1989), the 12.7 µm band has both
cationic and neutral components (Peeters et al., 2012; Boersma et al., 2013; Shannon et al.,
2016, e.g.). To a lesser extent, intensity variations are driven by the size distribution of a PAH
population because smaller molecules tend to have less vibrational modes available, hence
they have more energy per mode or reach a higher internal temperature upon the absorption
of a FUV photon (Schutte et al., 1993; Croiset et al., 2016, Chapter 2). Additionally, intensity
variations in PAH bands in the 10–15 µm range are attributed to structural differences in their
carriers, i.e the 11.2 µm band is stronger in compact–symmetrical species whereas the 12.7 µm
band becomes more prominent in species with an irregular edge structure (e.g. Hony et al.,
2001).

PAH molecules are observable in photo-dissociation regions (PDRs). These are regions
where the FUV photons of energies between > 6 eV and < 13.6 eV (i.e. the ionization energy
of hydrogen) control the physics and chemistry of the gas and which includes primarily neutral
hydrogen and molecular hydrogen dominated, IR-luminous regions that encompass H ii regions
around young, massive stars (Melnick et al., 1979; Storey et al., 1979; Russell et al., 1980,
1981). PDRs extend to a wide variety of neutral environments, in fact they account for all
atomic and a minimum of 90% of the molecular gas in the Galaxy (Hollenbach & Tielens,
1999).

In addition to PAH emission features, observed emission features within PDRs include the
far-infrared (FIR) dust continuum, H2 emission lines, the atomic fine structure lines of species
such as [O i] and [C ii], and CO rotational lines. These emission features have all proven
to be useful in predicting the physical conditions of PDR environments through the use of
PDR modelling (e.g. Tielens & Hollenbach, 1985b; Wolfire et al., 1990; Kaufman et al., 1999;
Young Owl et al., 2002; Kaufman et al., 2006; Wolfire et al., 2010; Neufeld & Wolfire, 2016).
These models use underlying assumptions about thermal balance, gas chemistry, ionization
balance and elemental abundances (Hollenbach & Tielens, 1997) to derive how the emission
lines change as function of environment, using such parameters as gas temperature (T), gas
density (nH) and FUV radiation field strength (G0). However, PAH emission features remain
one avenue of measuring the physical conditions of PDR environments that is still in its infancy.

Recent efforts have uncovered some promising correlations between PAH emission fea-
tures and PDR physical conditions. Based on three distinct PDR environments, Galliano et al.
(2008) have empirically determined a quantitative relationship between the observed 6.2/11.2
PAH emission and the PAH ionization/recombination ratio or the PAH ionization parameter
γ = G0 T0.5/ ne (Bakes & Tielens, 1994), where ne is the electron density. Similarly, Boersma
et al. (2015) found a relationship between the 6.2/11.2 emission ratio and the ionization pa-
rameter in the RN NGC 7023, where they fit spectra within the the RN with a collection of
PAH species from the NASA Ames PAH IR Spectroscopic database (PAHdb, Bauschlicher
et al., 2010; Boersma et al., 2014a; Bauschlicher et al., 2018) to calculate the ionization pa-
rameter. Additionally, it has been shown that the 7.7 µm PAH complex can be decomposed
into four Gaussian components (Peeters et al., 2017). The ratio of two of these components,
G7.8/G7.6, has been shown to have a linear relationship with G0 over a wide range range of
PDR environments (Stock & Peeters, 2017). Finally, through the use of the spectral fitting
program, PAHTAT, an empirical relationship between the fraction of carbons contained within
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very small grains (VSG) and G0 has been established over a wide range of PDR environments
(Pilleri et al., 2012).

Unfortunately each of the above relationships between PAH emission and environmental
conditions have outstanding issues that must be resolved before they become more applicable
to astronomy at large. For instance, the correlations between the 6.2/11.2 and γ determined
by Galliano et al. (2008) and Boersma et al. (2015) disagree with each other by an order of
magnitude in γ. Another important issue with the latter relationships is the individual parame-
ters that make up γ (i.e. G0, ne, and T) cannot be isolated. Hence, this correlation alone does
not provide enough information to properly characterize the PDR environment. Likewise, the
Stock & Peeters (2017) relationship between G7.8/G7.6 and G0 suffers from a bias in their data
set towards higher values of G0, with almost no representation from more quiescent regions.
Moreover, due to a lack of FIR observations at a comparable resolution to the MIR observa-
tions, the Stock & Peeters (2017) relationship is currently forced to make simple assumptions
to derive an estimate for G0. The Pilleri et al. (2012) correlation between fraction of carbon
locked in VSG and G0 also has its limitations as this method is unable to properly measure the
rising dust continuum found in spectral observations of H ii regions and star-forming galaxies.

In this work, we aim to further investigate the relation between the PAH emission features
and PDR physical conditions using matching apertures and spatial resolution for observations
of the RN NGC 1333. We use archival Spitzer MIR spectral maps to characterize the PAH
emission features and the relevant emission ratios. We obtain SOFIA FIR spectroscopic maps
to measure three dominant PDR cooling lines: [O i] 63, 146 µm and [C ii] 158 µm. We use
archival Herschel FIR photometric observations to measure the FIR dust continuum. We derive
maps of the PDR physical conditions in this region by comparing the cooling line observations
along with FIR dust continuum observations with the relevant PDR models. We then relate
the PAH emission to the derived PDR conditions to i) compare with the previously established
empirical relationships of Galliano et al. (2008) and Stock & Peeters (2017), and, ii) develop
new diagnostic tools between these quantities. In Section 4.2 we introduce NGC 1333. Section
4.3 presents to the observations and data reduction applied. Section 4.4 reviews the methodol-
ogy used to measure the MIR and FIR emission involved in this study. We present our major
results in terms of emission maps, correlations and PDR modelling in Section 4.5 and provide
an interpretation of these results in Section 4.6. Finally, we give a summary of these findings
in Section 4.7.

4.2 NGC 1333

NGC 1333 primarily refers to a large star-forming region located within the Perseus cloud
complex (e.g. Liseau et al., 1988; Gutermuth et al., 2008; Walawender et al., 2008), however
it originally referred to the RN at the core of this region (Figure 4.1). In this paper we will
use the original nomenclature when referring to NGC 1333 (Strom et al., 1976). Astrometry
of H2O masers within the star–forming region of NGC 1333 has shown this complex is at a
distance of 235 ± 18 pc from the Sun (Hirota et al., 2008). This RN is illuminated primarily by
SVS 3, a B type star located at the center of the RN with the B6 star BD +30◦ 549 illuminating
the nebulous region at 3.5′ to the northeast of SVS 3 (see Figures 4.1 and 4.2, Strom et al.,
1976; Harvey et al., 1984). Young Owl et al. (2002) performed a study of the FIR cooling
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lines of the PDR gas within the RN and found a far ultraviolet radiation field strength of 4800
times the interstellar average as well as gas density and temperature of 2 × 104 cm−3 and 690 K
respectively.

There have been several notable MIR studies of NGC 1333 which are focused on PAH
emission features. Bregman et al. (1993) used ground–based spectral imaging of the nebula
around SVS 3 to show that the 3.3 and 11.2 µm bands are spatially distinct. In particular, the
3.3 µm emission peaks further from SVS 3 than the 11.2 µm emission and has a distribution
comparable to a limb–brightened shell. Joblin et al. (1996a) showed how the relative intensity
of the aliphatic 3.4 µm band to the 3.3 µm band increased significantly in the diffuse ISM
surrounding the RN with respect pointings near SVS 3, suggesting that interstellar PAHs are
highly methylated. Other ground–based MIR spectroscopic observations of NGC 1333 found
the 8.6 µm band peaked at the location of SVS 3, while the 11.2 µm peaked 10′′ south of SVS 3,
suggesting this was evidence for the existence of ionized PAHs in the ISM (e.g. Joblin et al.,
1996b; Sloan et al., 1999). Another ground–based MIR spectroscopic study, showed that the
relative intensities of PAH emission features in the 8–13 µm range in NGC 1333 and another
well–studied RN NGC 2023 are comparable (Roche et al., 1994). More recently, Stock et al.
(2016) did a survey of MIR-bright regions using Spitzer IRS SL observations including both
NGC 1333 and NGC 2023, where it was again found that correlations between the observed
PAH emission features are similar in both sources (For a recent overview of the observed
PAH emission features in NGC 2023 see Peeters et al., 2017). Moreover, using space–based
ISOCAM spectral imaging Bregman & Temi (2005) observed a shift in the central wavelength
of the 7.7 µm band in NGC 1333, where it shifted from 7.75 to 7.65 µm with decreasing
distance to SVS 3. These authors found that the 11.2/7.7 ratio also decreases with proximity to
the star which they relate to PAH ionization.

4.3 The Data

4.3.1 Observations

Spitzer

We present observations obtained with the Infrared Spectrograph (IRS Houck et al., 2004) on–
board the Spitzer Space Telescope (Werner et al., 2004b). We retrieved Spitzer-IRS 5-14 µm
short–low (SL) spectral mapping observations from the Spitzer archive (AORKEY 14587648,
PI T. Bergin). These observations have a spectral resolution ranging from 60 to 128 over three
orders of diffraction: SL1, SL2, and SL3. The SL mode has a pixel size of 1.8′′, with a slit
with of of 3.6′′ and a slit length of 57′′. The position of the IRS SL aperture used is shown in
Figure 4.1.

SOFIA

The Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS) on–board SOFIA is an integral
field FIR spectrometer which includes two independent grating spectrometers with wavelength
ranges from 51–210 µm and 115–200 µm respectively (Colditz et al., 2018; Fischer et al.,
2018). Both channels have a 5 × 5 pixel projection onto the sky, with centers offset by 10′′. The
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Figure 4.1: Spitzer IRAC Mosaic of NGC 1333 RN region (Gutermuth et al., 2008). IRAC 3.6,
4.5, and 8.0 µm are shown in blue, green and red respectively. Illuminating sources BD
+30◦549 and SVS 3 are indicated by green circles and the Spitzer IRS SL aperture is shown as
a white rectangle.

short and long wavelength channels have a pixel size of 6′′ × 6′′ and 12′′ × 12′′ respectively
which translates to a 0.5 and 1.0 arcminute–square FOV respectively. The 5 × 5 pixels are
re-organized along a 25 × 1 line and subsequently dispersed into 16 pixels in the spectral
dimension. Spectral resolution ranges from 600–2000 depending on the observed wavelength,
which tends to be higher towards the longer wavelengths in both spectrometers.

We obtained FIFI-LS spectral observations of NGC 1333 for the following cooling lines:
[O i] 63, 145 µm and [C ii] 158 µm (PID: 05 0110, PI: E. Peeters). These data cubes have a PSF
FWHM of 6.4′′, 14.6′′, and 15.9′′ respectively. Our observations are centered at (3:29:09.3,
+31:21:47.2) (J2000) and are comprised of 4 parallel pointings with a stepsize of 30′′.

Herschel

We obtained FIR photometric observations taken with the Photodetector Array Camera and
Spectrometer (PACS; Poglitsch et al., 2010) on–board the Herschel Space Observatory (Pilbratt
et al., 2010) from the Herschel Science archive. PACS includes a dual–band photometer with
an instantaneous FOV of 3.5′ × 1.75′ that has bandpass combinations of either 60–85 µm and
125–210 µm (70/160 µm filter) or 85- 125 µm and 125–210 µm (100/160 µm filter). The 70 and
100 µm bands have a pixel scale of 3.2′′ while the 160 µm band have a pixel scale of 6.4′′. The
absolute flux uncertainties for the 70, 100, 160 µm filters are ± 10, 10, and 20% respectively
(Poglitsch et al., 2010).

These observations consist of imaging data of the Perseus Complex in the 70, 100 and
160 µm bands (PID: KPGT pandre 1, OBS ID: 1342190326 and 1342227103) created with
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Figure 4.2: Hershel PACS Mosaic of NGC 1333 RNe Region. PACS 70, 100, and 160 µm are
shown in blue, green and red respectively. All images are shown on a square root scale for
clarity. Illuminating sources BD +30◦549 and SVS 3 are indicated by green circles and the
Spitzer IRS SL, FIFI–LS [O i] 63 µm, 146 µm and [C ii] 158 µm apertures are shown as white,
blue, green, and red rectangles respectively.

the JScanam task (Figure 4.2). Notably the 70 µm map was taken in the SPIRE/PACS parallel
mode with a nominal scan velocity of 60′′ s−1 corresponding to a PSF FWHM of 5.86′′ × 12.16′′.
The 100 and 160 µm maps were taken in the PACS photo mode with a nominal scan speed of
20′′ s−1 corresponding to PSF FWHMs of 6.89′′ × 9.74′′ and 11.31′′ × 13.32′′ respectively.

4.3.2 IRS Reduction

The SL raw data were processed with the S18.18 pipeline by the Spitzer Science Center. The
resulting bcd data products were further processed using cubism (Smith et al., 2007a). We
applied a wavesamp of 0.04–0.96 to exclude spurious data at the extremities of the SL slit
and cubism’s automatic bad pixel generation (σTRIM = 7 and Minbad-fraction = 0.5 and 0.75
for respectively global and record bad pixels). Remaining bad pixels were removed manually.
The resulting SL2 and SL3 data cubes were regridded to the SL1 spatial aperture. We clip the
original SL1 data cube to a 24 × 41 pixel aperture around the NGC 1333 SVS 3 where we find
appreciable PAH emission.

We found order mismatches between the different orders of the SL module (SL1, SL2, and
SL3). To remedy this issue, scaling factors of < 20% were applied to the SL2 and < 10% to
the SL3 to scale these orders to the SL1 data, with the exception of some outlier pixels in the
southwest and southeastern corners of the FOV considered which are masked out. We also
masked out two prominent YSOs in the western edge of the considered FOV, as they exhibit
strong silicate absorption and extinction. The SL1 and scaled SL2 data are combined into a
single spectrum for each pixel.
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Figure 4.3: NGC 1333 extinction map in units of Ak. North and East are indicated by the thick
and thin white arrows respectively in the upper left corner of the map. Contours of the 11.2
and 7.7 µm emission are shown respectively in black (1.0, 1.4, 1.8, and 2.2 × 10−5 W m−2 sr−1)
and pink (1.0, 2.0, 3.0, 4.5, 6.0 and 9.5 × 10−5 W m−2 sr−1). The position of SVS 3 is indicated
by a white cross.

4.4 Analysis

4.4.1 IRS SL Continuum and Extinction

To correct the spectra for extinction, we apply the ‘modified Spoon method’ (Stock et al.,
2013, 2014, 2016). The Spoon method (Spoon et al., 2007) is an iterative fitting procedure that
interpolates a power law continuum with anchor points at 5.5 and 14.5 µm of the form y = a xk

and then calculates the natural log of the ratio of this continuum at 9.8 µm to the observed flux
at 9.8 µm. This is referred to as the optical depth of the 9.8 µm silicate absorption feature, τ9.8.
In some cases the 14.5 µm is affected by silicate absorption, leading to an underestimation of
τ9.8. The spectrum is then dereddened using the derived τ9.8 and the Spoon method is reapplied
to get a new value for τ9.8. This process is reiterated until the anchor point at 14.5 µm does
not change, at which point the final continuum at 9.8 µm is compared to the observed flux at
9.8 µm in the original spectrum. However, RN typically have a more linear shaped continua
(i.e. Berné et al., 2007; Stock et al., 2016; Peeters et al., 2017). Thus we use a linear fit to the
continua for this procedure as done by Stock et al. (2016), referred to as the modified Spoon
method. We define a linear continuum of the form, y = a + 9.90 b, where b is the slope between
anchor points of 5.5 and 13.9 µm and a is the flux at 5.5 µm minus b × 5.5 µm. This process is
iterated upon until the observed flux at 9.8 µm and the continuum at 9.8 µm agree within 5%.
We then deredden our spectral data by dividing by our final silicate extinction, Ak = 1.079 τ9.8

(Stock et al., 2013). We show a map of the extinction in Figure 4.3. We find that the extinction
is very high (Ak > 1) in the southwestern edge of the map and the western edge near the two
YSOs.

We make use of the spline decomposition method (e.g. Hony et al., 2001; Peeters et al.,
2002; van Diedenhoven et al., 2004; Boersma et al., 2012; Stock et al., 2014; Shannon et al.,
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Figure 4.4: Typical SL spectrum from the RN within NGC 1333 are shown. The orange line
traces the local spline continuum (LS), the magenta line traces the global spline continuum
(GS), and the green line traces the underlying dust continuum (PL).

2015, 2016; Stock et al., 2016; Peeters et al., 2017) to fit the continuum in each of the spectra
as local spline (LS), global spline (GS), and the underlying dust continuum (PL). An example
of the typical spectrum and its continua is shown in Figure 4.4. For the LS continuum, we
apply anchor points at 5.36, 5.46, 5.86, 6.58, 6.92, 8.28, 9.15, 9.40, 9.89, 10.14, 10.51, 10.76,
11.8,12.13, 13.18, and 13.49 µm. A spectral artefact arises beyond 14 µm, therefore, we ex-
clude that wavelength range. The GS continuum uses all the same anchor points as the LS
except for the removal of 8.28 µm point. The PL continuum is fit using straight lines between
anchor points at 5.46 and 9.40 µm and 10.14 to 13.8 µm. We refer to the broad emission com-
ponent in the 7–9 µm range between the LS and GS as the 8 µm bump. Likewise, we define the
broad emission components between GS and the PL continua as the 5–10 µm and 10–15 µm
plateaus. We use the term ‘plat7 GS’ to refer to the 5–10 µm plateau under the GS continuum
and bounded below by the PL continuum. Likewise, we use the term ‘plat11’ to refer to the 10-
14 µm plateau under the GS continuum and bounded below by the PL continuum. An example
of the spectra observed within the RN of NGC 1333 is shown in Figure 4.4.

4.4.2 IRS SL Flux measurement
The fluxes of the major PAH bands are in general derived by integrating the continuum–
subtracted spectra. In the case of the 6.2 and 11.2 µm bands, there is significant blending
with the weaker 6.0 and 11.0 µm bands respectively. We fit Gaussians to the 6.0 and the (blue
part of the ) 6.2 µm simultaneously with λ (FWHM) of 6.027 (0.10) and 6.228 (0.18) µm re-
spectively. We obtain these parameters by taking the average peak position for both Gaussians
in pixels with sufficiently high 7.7 µm flux (≥ 1.0 × 10−5 W m−2 sr−1). The peak positions are
then fixed and the average FWHM over the same set of pixels is determined and subsequently
fixed as well. We then subtract the flux of 6.0 µm Gaussian from the integrated 6.0 + 6.2 µm
flux. The same treatment is used to disentangle the 11.0 and 11.2 µm bands where we use
Gaussians λ (FWHM) of 10.979 (0.21) and 11.261 (0.258) µm respectively.

The 12.7 µm feature blends with the 12.3 µm H2 line. Therefore, we use a decomposition
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method similar to that used in previous studies (Stock et al., 2014, 2016) to isolate the 12.7 µm
emission band. In short, the NGC 2023 12.7 µm profile at the PDR front from Peeters et al.
(2017) is scaled to the 12.7 µm band between 12.4–12.8 µm. We subtract this scaled profile
from the spectra and a Gaussian component is used to fit the 12.3 µm H2 line. We then inte-
grate each spectra from 12.15–13.1 µm and subsequently subtract the 12.3 µm H2 Gaussian
component to measure the 12.7 µm flux.

Following Peeters et al. (2017) and Stock & Peeters (2017), we decompose the PAH emis-
sion in the 7-9 µm range using four Gaussians, refered to as G7.6, G7.8, G8.2, and G8.6
components. We begin with a constrained fit to each component where the peak positions and
FWHMs are allowed to vary within a 0.2 and 0.25 µm range respectively. The starting values
for these parameters are set to the average RN values found by Stock & Peeters (2017, Table 1).
Each Gaussian is then fixed to the average peak position found for the pixels where the 7.7 LS
integrated flux is above a threshold value of 1.0 × 10−5 W m−2 sr−1. The average FWHMs
over the set of pixels is determined and fixed as well. The fitting procedure is run once more
with the following fixed λ (FWHM) values for G7.6, G7.8, G8.2, and G8.6 µm: 7.58 (0.497),
7.90 (0.443), 8.25 (0.29), and 8.57 (0.41) µm respectively. For additional details and example
fits of the above decompositions, see Stock et al. (2016); Stock & Peeters (2017); Peeters et al.
(2017).

We estimate the signal–to–noise ratio of the PAH emission features as SNR = F/(2× rms×√
N × ∆λ) where F is the feature’s flux (in W m−2 sr−1), rms the rms noise, N the number of

wavelength elements within the feature, and ∆λ is the size of each wavelength element in the
spectrum. The rms noise is determined from featureless portions of the spectra between 9.3–
9.5, 13.3–13.5, and 13.7–13.9 µm. For atomic and H2 lines, the signal-to-noise is the ratio of
the peak line flux to the underlying rms noise.

4.4.3 FIFI-LS Flux measurement
We make use of the SOSPEX spectral cube analysis software (Fadda & Chambers, 2018) to
measure the FIR cooling line fluxes. We apply an atmospheric correction to all spectra. Specif-
ically, for the [O i] 63 µm line, we apply an atmospheric correction equal to the median value of
the atmospheric transmission, ∼ 0.56, due to the atmospheric transmission curve having a large
drop towards the red end of this spectral range. For the [O i] 146 µm line, we apply an atmo-
spheric correction equal the median value of the atmospheric transmission, over the wavelength
range of the spectra, ∼ 0.8, due to a significant broad absorption band corresponding with the
reference wavelength of the line. For the [C ii] 158 µm line, we apply an atmospheric correc-
tion equal to the value of the atmospheric transmission at the reference wavelength of the line,
∼ 0.85, to avoid a broad absorption band at 157.5 µm (Lord, 1992).

We fit a straight line to anchor points to both ends of each spectral line to define the under-
lying continuum over the entire spectral cube with the boundary condition that the continuum
must have positive values. The continuum for each pixel is then set to the median value within
the surrounding pixels. To measure the line intensities, we use a Gaussian model for [O i]
63 µm and a Voigt model for [O i] 146 and [C ii] 158 µm (Dario Fadda, private communica-
tion).

We convolve the [O i] 63 and 146 µm flux maps to match the larger PSF of the [C ii]
158 µm map. For example, the width of the Gaussian kernel for the [O i] 63 µm to 158 µm
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Figure 4.5: Example of the SED fitting procedure used to fit the PACS data. The data is shown
as black squares and the modified blackbody fit is shown in red. The fit parameters for this
pixel are given in the upper right.

convolution is w =
√

(15.9)2 − (6.4)2, where 6.4′′ and 15.9′′ are the [O i] 63 µm and 158 µm
PSFs respectively (e.g. Houde & Vaillancourt, 2007). The FIR maps are then converted to units
of W m−2 sr−1 and regridded to the largest spatial resampling size of 2′′ for the red spectrometer
of FIFI–LS and clipped to the FOV of the [O i] 63 µm map allowing us to compare both data
sets at a matching spatial resolution and FOVs.

4.4.4 FIR SED Fitting

We use PACS images at 70, 100, and 160 µm to measure the FIR dust continuum emission. We
first convolve each of these images to the largest PSF in our data set, that of the [C ii] 158 µm
observation, using a 2D Gaussian kernel to account for the asymmetric PSFs of the PACS data.
We extract a sub image of the convolved PACS maps equal to the FOV of the [C ii] 158 µm
map and regrid to the PACS 160 µm pixel scale. We then fit the data with a modified blackbody
function of the form:

I(λ,T ) =
K
λ β

B(λ,T ) (4.1)

where K is a scaling parameter, β is the spectral index, T is the dust temperature and B(λ,T) is
the Planck function (e.g. Abergel et al., 2010; Berné & Tielens, 2012; Andrews et al., 2018).
We use starting values of β = 1.8, T = 20 K and K = 1.0 × 10−15. The obtained modified
blackbody fits to the PACS data points agrees with the observations within the absolute flux
uncertainties for each pixel (Figure 4.5). The FIR flux is determined by integrating the area
under the fitted function for each pixel.
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4.4.5 Matching Apertures
In order to compare the MIR IRS SL spectral maps with the FIR FIFI-LS and PACS maps,
we convolved the maps to the lowest common resolution as was done in previous sections.
As the [C ii] 158 µm observation has the larger PSF of this dataset, all of the other maps are
convolved to this spatial resolution. In our comparison of the MIR and FIR maps in Section
4.6.2, subimages of the FIR maps are extracted to match the IRS SL FOV, the smallest FOV
within this dataset.

4.5 Results

4.5.1 IRS Results
In this section, we probe the relationships between the PAH emission features, the underlying
plateaus, the H2 emission, and the dust continuum emission obtained from the IRS SL data.
We present our maps at the native pixel scale of the SL cube to explore this data at the highest
resolution possible. Beyond this section, where we compare these maps with the FIR data
in section 4.6.2, we convolve the IRS maps to the lowest common resolution as discussed in
section 4.4.5.

SL Maps

In Figure 4.6, we show the spectral maps of the fluxes of the various spectral components within
the IRS SL spectral cube of NGC 1333 including the PAH features, plateau components, and
H2 lines. We set the range of the colorbar to the minimum and maximum intensities shown in
each map. Note that the black areas correspond to the pixels that have been masked for various
reasons as described in section 4.3.2.

The major trends present within these maps are as follows. To first order, each of the major
PAH features appears to share a similar concentric ovular morphology with intensities peaking
just to the south of the stellar source, SVS 3, and gradually dropping with distance from this
source. All PAH bands show deviations in symmetry from this concentric ovular morphology.
In particular, the southern edge of the RN has a much steeper drop in emission relative to the
other edges. This corresponds to regions with increased extinction.

The morphologies of the 6.2, 7.7, 8.6, and 11.0 µm PAH bands all show a similar condensed
shape in their peak emission, which contrast with the much more elongated peak emission in
the spatial distribution of the 11.2 µm PAH band, the 5–10 µm plateau, and the 10–15 µm
plateau. The spatial distribution of the 8 µm bump and the 12.7 µm PAH band is a mix between
these condensed and elongated morphologies. We also note the presence of a diffuse emission
‘plateau’ in the PAH morphologies moving westward from the center in a pixel range of ap-
proximately x = 10–20 and y = 3–5, which may be attributed to the two YSOs that are located
at the western edge of these map. This emission plateau is much more readily apparent in the
11.2 µm band and the emission components that share a similar peak morphology. Continuum
emission at 13.9 µm is much more spatially concentrated compared to the PAH emission with
peaks almost on top of SVS 3. The H2 S(3) 9.7 µm morphology deviates from the above trends:
it is clearly concentrated to the southwest of SVS 3 with a peak co-spatial with the 10–15 µm
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plateau and one near the YSO at the western edge of the map. We do not have 3 σ detection of
H2 S(2) 12.3 µm line over much of the RN inhibiting any conclusive trends.

In Figure 4.7, we present the spectral maps of the four Gaussian components in the 7–9 µm
decomposition. Upon first inspection, it is evident that the G7.6 and G8.6 µm components
show a remarkably similar morphology which is comparable to that of the major PAH bands in
the 7–9 µm range. The spatial distribution of the G7.8 and G8.2 µm components is very similar
but is distinct from that of the G7.6 and G8.6 components with an elongated shape in their peak
emission as well as both having an extended emission ‘plateau’ towards the western edge of
the map. However, the peak intensity of the G7.8 µm component is more concentrated near
the 7.7 µm emission peak while the G8.2 µm morphology better mimics that of the 11.2 µm
band. These results support the conclusions of Peeters et al. (2017) in NGC 2023 regarding the
behaviour of four Gaussian components.

In Figure 4.8, we compare the spatial distribution of PAH emission ratios that have pre-
viously been shown to be relevant in PDR studies (e.g. Galliano et al., 2008; Boersma et al.,
2013; Stock & Peeters, 2017). First, we compare the ratio of each of the respective major PAH
bands in the 6–9 µm to the 11.2 µm. In each of these ratio maps, we see a circular peak very
close to the position of the star which are more concentrated and symmetric compared to the
7.7 µm emission. The overall morphology deviates from circular symmetry with enhanced
emission towards the west, i.e. north of the 11.2 µm peak and in the direction of the YSO lo-
cated at the bottom of the map. Furthermore, the spatial distribution of the 8.6/11.2 emission is
more extended compared to the 6.2/11.2 and 7.7/11.2 morphology. We note two long filaments
(vertical and diagonally in pixel coordinates respectively) in the 6.2/11.2 and 7.7/11.2 ratios
that extends into the eastern reaches of these maps.

The spatial distribution of the G7.8/G7.6 ratio exhibits a minimum throughout much of
the RN where we find the 6–9/11.2 ratios are highest. Only in the outskirts is an appreciable
increase found in this ratio, with a maxima located in the eastern edge of this map where PAH
emission is essentially at its lowest1.

IRS Correlation Plots

Figure 4.9 presents a selection of observed intensity correlations found between PAH related
emission components within the IRS SL data. To investigate the effects of extinction in our
data, we group this data based into three regimes of extinction: low AK < 0.5; intermediate
0.5 < Ak < 1; and high Ak > 1. In general, all correlations show an improvement when we only
account for the low extinction pixels, which fortunately coincides with the bulk of the RN.

We find very tight correlations between the 6.2 and 7.7 µm LS PAH bands (Figure 4.9
(a)). The 8.6 LS µm band also shows a strong correlation with both of these bands (Figure 4.9
(b) and (c)). Notably, we find that the 6.2, 7.7 GS and 8.6 GS µm bands show even tighter
correlations with each other than the LS counterparts (Figure 4.9 (e), (f) and (g)). This is most
evident for the correlations involving the 8.6 GS µm band. In addition, at high values, the 7.7
and 8.6 (both LS and GS) level off instead of linearly increase.

1We note that the 7–9 µm decomposition had generally much poorer fits to the 7.7 µm peak in these east-
ern pixels. This is attributed to a weak bump at ∼ 7.2 µm which the G7.6 µm component tries to fit resulting
in an underestimation of the peak in the 7.7 µm band. Consequently we find that these pixels correspond to
G7.8/G7.6 > 1.0, thus we consider these pixels to be unreliable in tracing this ratio.
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Figure 4.6: Spatial distribution of the emission features in the 5– 15 µm IRS SL data within the
NGC 1333 SVS 3 region. PAH band and continuum intensities are given in units of 10−6 W m−2

sr−1 and 100 MJy sr−1 respectively. Contours of the 11.2 and 7.7 µm emission are shown
respectively in black (1.0, 1.4, 1.8, and 2.2 × 10−5 W m−2 sr−1) and pink (1.0, 2.0, 3.0, 4.5, 6.0
and 9.5 × 10−5 W m−2 sr−1). North and East are indicated by the thick and thin white arrows
respectively in the upper left corner of each map.The position of SVS 3 is indicated by a white
cross in the H2 S(2) 12.3 µm map.
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Figure 4.7: Spatial distribution of the Gaussian Components in the 7–9 µm range of the IRS SL
data within the NGC 1333 SVS 3 region. Color bars of band intensities are given in units of
106 W m−2 sr−1. Contours of the 11.2 and 7.7 µm emission are shown respectively in black (1.0,
1.4, 1.8, and 2.2 × 10−5 W m−2 sr−1) and pink (1.0, 2.0, 3.0, 4.5, 6.0 and 9.5 × 10−5 W m−2 sr−1).
North and East are indicated by the thick and thin white arrows respectively in the upper left
corner of each map.

Figure 4.8: Spatial distribution of ratios of major PAH bands and Gaussian Components in the
7–9 µm range of the IRS SL data within the NGC 1333 SVS 3 region. Contours of the 11.2
and 7.7 µm emission are shown respectively in black (1.0, 1.4, 1.8, and 2.2 × 10−5 W m−2 sr−1)
and pink (1.0, 2.0, 3.0, 4.5, 6.0 and 9.5 × 10−5 W m−2 sr−1). North and East are indicated by
the thick and thin white arrows respectively in the upper left corner of each map.
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The G7.6 and G8.6 µm components have the best correlation of all features (Figure 4.9 (i)),
while the 6.2 µm band and the G8.6 µm also show very tight correlations (Figure 4.9 (k)). In
contrast, the G7.8 and G8.2 µm only correlate modestly (Figure 4.9 (j)).

The 12.7 µm band correlates strongest with the 8.6 LS µm band (Figure 4.9 (o)). However,
instead of exhibiting a linear correlation, there are two regimes present. At low 8.6/11.2 values,
a steep increase in the 12.7/11.2 is seen while at intermediate and high 8.6/11.2 values, the
corresponding increase in 12.7/11.2 is more moderate. A similar behavior is seen in the relation
of the 12.7 µm band with the 6.2, 7.7, and G7.6 µm bands overall though they exhibit enhanced
“scatter” which seem to occur in a similar pattern (Figure 4.9 (m), (n), and (p)). The 11.0 µm
band shows a bifurcated pattern for all correlations considered. One of the branches is entirely
composed of spectra with moderate to high extinction while the other branch is dominated
by regions with low extinction. Given the uncertainty related to extinction measurements, we
restrict ourselves to low extinction areas. The 11.0 µm band exhibit strong correlations with
the 6.2, 7.7, and 8.6 µm bands (Figure 4.9 (r), (s) and (t)). Its behaviour with the 12.7 µm band
shows a similar pattern as that of the 12.7 versus 8.6 µm band: for the lower range of 12.7/11.2
values, little to no variation is seen in the 11.0/11.2 and only for the upper range of 12.7/11.2
values, a clear correlation is observed (Figure 4.9 (q)).

The 5–10 µm plateau does not correlate well with the 6.2 and 7.7 µm bands, primarily
because of a bi–linear trend that seems to stem from this plateau. This bi–linear trend is also
evident between the 6.2 and G8.2 µm correlation with both branches containing pixels with
low extinction.

4.5.2 FIFI–LS Maps
In Figure 4.10, we show the FIFI-LS spectral maps of the three FIR cooling line fluxes. Each
of these maps is convolved to the PSF of the [C ii] 158 µm observations and regridded to the
PACS 160 µm map grid (see Section 4.4.3). In each case, these emission lines show a simple
concentric morphology with emission peaking near the illuminating source. However, the [O i]
146 µm peak intensity is offset from the source position (to the southeast) as is the 7.7 µm
PAH peak emission, whereas [O i] 63 and [C ii] 158 µm peaks are nearly co–spatial with the
star. The [C ii] emission is slightly displaced from the central star to the northeast and exhibits
significant emission to the north and north east of the star. Another notable difference is the
[O i] 63 µm is significantly more centrally concentrated relative to the other FIR cooling lines
which cannot be discounted because this map has been convolved to match the [C ii] 158 µm
resolution.

4.5.3 PACS Maps
In Figure 4.2, we show the PACS 70, 100, 160 µm images in blue, green and red respectively.
These maps shows a very similar concentric morphology within the RN with peak emission
found to south of SVS 3 in each case. They also show emission extending to the west of
SVS 3 with a secondary peak corresponding to the YSO IRAS 03260 +3111E. In Figure 4.11,
we show the FIR dust continuum emission map derived from the PACS images as detailed in
section 4.4.4. This map is essentially identical in spatial morphology to the individual PACS
maps.



4.5. Results 95

Figure 4.9: Correlation plots between PAH features in NGC 1333 IRS SL. The data is sorted
into three separate regimes based on the degree of extinction (Section 4.4.1): points with
Ak < 0.5 are given as blue squares, points with 0.5 < Ak < 1 are shown as orange squares,
and points with Ak > 1 are shown as red squares. Correlation coefficients are given in the top
left of each panel for the entire map in black and for only the pixels with Ak < 0.5 in blue.
Linear fits are shown for all pixels in black and for only the pixels with Ak < 0.5 in green.
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Figure 4.10: FIR Cooling line fluxes derived from SOSPEX. Top The [O i] 63 µm line fluxes
with white contours of 0.60, 1.43, 2.26, 3.09, 3.92 × 106 W m−2 sr−1. Middle The [O i]
146 µm line fluxes with white contours of 1.06, 2.17, 3.27, 4.38, 5.48 × 07 W m−2 sr−1.
Bottom The [C ii] 158 µm line fluxes with white contours of 2.05, 2.81, 3.59, 4.35,
5.12 × 107 W m−2 sr−1. Contours of the PAH 7.7 µm flux are shown in black at 1.0, 2.0,
3.0, 4.5, 6.0 and 9.5 × 10−5 W m−2 sr−1. The position of SVS 3 is shown as a white cross.
Pixels below the 3 σ noise level of each respective map are shown in black.
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Figure 4.11: The FIR dust continuum in units of W m−2 sr−1. The IRS SL aperture is
shown as a red rectangle. Contours of the 11.2 and 7.7 µm emission are shown respectively
in white (1.0, 1.4, 1.8, and 2.2 × 10−5 W m−2 sr−1) and black (1.0, 2.0, 3.0, 4.5, 6.0 and
9.5 × 10−5 W m−2 sr−1). The position of SVS 3 is shown as a magenta cross. North is up and
east is to the left. Pixels below the 3 σ noise level are shown in black.

4.5.4 PDR Modelling
We make a simple estimate for the FUV radiation field strength (between 6 and 13.6 eV) using
the FIR dust continuum emission:

G0 '
1
2

IFIR

1.3 × 10−7 (4.2)

where we assume a face–on PDR morphology (Hollenbach & Tielens, 1997) and take G0 in
units of the Habing field (1.3 × 10−7 W m−2 sr−1; Habing, 1968). We use i) this FIR dust con-
tinuum derived G0 along with the FIR cooling lines [O i] 63 and [C ii] 158 µm and ii) the [O i]
63/ [C ii] 158 PDR model as a function of gas density and FUV radiation field strength from the
Photo Dissociation Region Toolbox (PDRT) software (Kaufman et al., 2006; Pound & Wolfire,
2008) to determine the gas density and temperature. Several of the chemical and thermal pro-
cesses in the model have been updated with recent rates. In particular the photo-dissociation
and photo-ionization rates of Heays et al. (2017) are used and the collisional excitation rates
of [O i] from Lique et al. (2018) and (Lique private communication). These model grids have
resolution elements of 0.125 in log G0 and nH. These grids cover a range of -3.3–3.7 in log G0

and a range of 1–7 cm−3 in log nH. We observe the median [O i] 146/63 ratio in pixels where
[O i] 63 µm line has a 3 σ detection to be 0.154, higher than 0.1 which Ossenkopf et al. (2015)
suggest is a sign for self-shielding. To account for the self–shielding of [O i] 63 µm, we mul-
tiply our [O i] 63 µm observations by a factor of 2 (e.g. Schneider et al., 2018). We compare
the observed 2 ×[O i] 63/ [C ii] 158 ratio and G0 in each pixel with the [O i] 63/ [C ii] 158
model grid in G0 and nH to predict the gas density, nH, based on where the observed quantities
intersect the grid. We use the derived densities along with the G0 values to derive a gas temper-
ature by comparing our predicted values with a model grid for gas temperature, T, as a function
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of gas density and FUV radiation field strength. We then convert the gas density to electron
density using the assumption that all free electrons result from the photoionization of carbon
and all gas–phase carbon is ionized (e.g. Galliano et al., 2008), ne ' (C/H) nH ' 1.6 × 10−4 nH,
where 1.6 × 10−4 is the interstellar gas–phase carbon abundance (Sofia et al., 2004). From this,
we derive the PAH ionization parameter (γ = G0 T0.5 / ne Bakes & Tielens, 1994).

We find that the derived G0, nH, and T are of the same order of magnitude as the results
of the FIR analysis performed by Young Owl et al. (2002) for this region: 103, 104 cm−2, and
102 K respectively. Slight discrepancies in the absolute values found between both studies may
be attributed to a difference in spatial resolution. Indeed, Young Owl et al. (2002) consider a
single pointing for each line with beam sizes > 40′′ whereas our maps have been convolved to
the [C ii] 158 µm PSF of 15.9′′ and resampled to the PACS 160 µm grid with a pixel scale of 3.2.
Thus we are effectively probing a spatial resolution of approximately an order of magnitude
higher.

The resulting maps of the PDR conditions are shown in Figure 4.12. Except for the G0

map, these maps are cut by the [O i] 63 µm 3 σ detection limit. The G0 and T maps show a
high degree of spherical symmetry emanating from their nearly co–spatial peaks. Likewise,
the morphology of the PAH ionization parameter is similar to that of G0. Oddly however, each
of these three parameters peak to the south of SVS 3 where they almost overlap with the PAH
11.2 µm emission peak. In contrast, the gas density map shows very little variation, with a
large plateau at ∼ 2.3 × 104 cm−3 over much of the nebula and a substantial rise towards the
southern edge of the map beyond the PDR front as traced by H2 S(3) 9.7 µm (Figure 4.6).

4.6 Discussion

4.6.1 PAH Relative Intensities
While we report significant correlations between various PAH features, clear deviations from
these tight correlations and anomalous groups of pixels exist within our FOV (see Figure 4.9)
that deserve a more in–depth investigation. We have illustrated that in particular for the 11.0 µm
band, the degree of extinction introduces such an anomalous group of pixels. Clearly, due to
its weakness and being located in the wing of the silicate absorption feature, the 11.0 µm band
is more affected by extinction (correction) in comparison to the major PAH bands. However,
significant scatter remains when we only account for the low extinction regime. Here we apply
other weighting schemes in order to better characterize these discrepancies. In Figure 4.13,
we show a selection of the correlation plots shown in Figure 4.9 where we apply a color to
each pixel based on the PAH 7.7 LS µm flux (top two rows) and the 8.6/11.2 ratio (bottom two
rows). We use the same color scale as shown for the 7.7 µm map in Figure 4.6 and for the
8.6/11.2 µm map in Figure 4.8 for easy comparison.

In panels (a), (b) and (c) of Figure 4.13, we compare the correlations between the major
PAH bands in the 6–9 µm range. When only considering positions where the 7.7 µm flux is
> 10−5 W m−2 sr−1, the correlations are tighter than in the case of the low silicate regime of
Figure 4.9. This cut-off value for 7.7 µm flux distinguishes between the nebula itself and the
outskirts in the FOV which correspond to the more diffuse ISM (see Fig 4.6). Thus, these
bands are much better correlated in irradiated PDRs than in the diffuse ISM. In addition, when
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Figure 4.12: The environmental conditions in NGC 1333 derived from FIR data and PDR
models. Top The FUV radiation field strength, G0, in units of the Habing field. The IRS SL
aperture is shown as a red rectangle. Center left The gas density, nH, in units of cm−3. Center
right The gas temperature, T, in units of K. Bottom The ionization parameter, γ = G0 T0.5 / ne.
Contours of the 11.2 and 7.7 µm emission are shown respectively in black (1.0, 1.4, 1.8, and
2.2 × 10−5 W m−2 sr−1) and white (1.0, 2.0, 3.0, 4.5, 6.0 and 9.5 × 10−5 W m−2 sr−1). Pixels
where [O i] 63 µm emission line has a SNR < 3 are shown in black for center and bottom
panels. The position of SVS 3 is indicated by a magenta cross in each map. North is up and
east is to the left.
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Figure 4.13: Correlation plots between PAH features in NGC 1333. The data is color–coded
to the PAH 7.7 LS µm flux with the values given in units of 10−6 W m−2 sr−1 (top two rows)
and to the PAH 8.6 LS/11.2 ratio (bottom two rows). Correlation coefficients are given in the
bottom right of each panel for the entire map (black) and for the pixels where the 7.7 µm LS
flux > 10−5 W m−2 sr−1 (orange) and ≤ 10−5 W m−2 sr−1 (blue, top two rows) and for the pixels
where the 8.6/11.2 ratio > 0.3 (orange) and ≤ 0.3 (blue, bottom two rows). Linear fits are
shown in the same respective colors as for the regimes defined for the correlation coefficients.
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the 8.6 µm band is considered, a stumpier second correlation is observed for locations where
the 7.7 µm flux is ≤ 10−5 W m−2 sr−1, i.e. the diffuse ISM. This second branch exhibits little
change in the 8.6 µm band intensity while a larger change is seen in the 6.2 or 7.7 µm band
intensity. Another notable anomaly is the ‘arc’ found in the correlation of the 6.2 versus 8.6 µm
bands and the 7.7 versus 8.6 µm bands while it is absent in the correlation of the 6.2 versus
7.7 µm bands. The majority of the pixels in the arc exhibit a low degree of extinction excluding
extinction as its origin. However, the pixels in the arc are located in the western edge of the
FOV and thus the PAH emission may be affected by the nearby YSO. Similarly, it is only
when considering the 8.6 µm band that at high ratio values the data levels off. We note that
the arc disappears and the degree of levelling off decreases significantly when considering the
G8.6 component instead of the 8.6 µm band (which were obtained with different underlying
continua).

Concerning correlations with the 12.7 µm band (Figure 4.13 (d) and (e)), two major regimes
are present characterized by high and low 12.7/11.2 (i.e. > 0.25 or < 0.25 respectively). This
boundary corresponds approximately to the region between the two lowest contours in our
7.7 µm map (Figure 4.6), representing the transition from the nebula to the diffuse ISM. In the
lower flux regimes, there is significant scatter with a much wider range in 12.7/11.2 compared
those found in the other ionic bands normalized to 11.2 µm band. In particular, the 6.2 or 7.7
versus 12.7 relation exhibit two separate arcs in this low 12.7/11.2 regime that seem to make
up opposite halves of a circular trend. Based on the 7.7 µm band intensity, the right arc is
largely located in the transition region between the nebula and the diffuse ISM, the left arc
is relegated to the diffuse emission outside of the PDR while the nebula represents the high
12.7/11.2 regime.

A similar behaviour with pixel location is seen for the strong bi-linear trend observed be-
tween the 6.2 µm band and 5–10 µm plateau (Figure 4.13 (f)). The branch representing a large
change in the plateau emission relative to the 11.2 µm band has a high correlation coefficient
and low ionization degree (as traced by 8.6/11.2 intensity ratio in Figure 4.13 (i)). This branch
arises from the diffuse ISM. In contrast, the second branch exhibiting a smaller range in plateau
intensity normalized to the 11.2 µm band represents the nebula where a medium to high degree
of ionization is found. Bi-linear trends arising from different regions are also found between
the 6.2 µm band and the four Gaussian components (Figure 4.13 (g), (h), (j), (k) and (l)), in
particular for the G8.2 and G7.8 components. An 8.6/11.2 value of about 0.3 distinguishes the
nebula from the diffuse ISM and the transition between both (Figure 4.8). Using this boundary
condition, one branch arises from the nebula and exhibits a strong correlation while the other
branch arises from the diffuse ISM and the transition region between the nebula and the dif-
fuse ISM and shows more scatter. The diffuse ISM branch is very pronounced and distinct for
the G8.2 component and subsequently the G7.8 component while for the G7.6 and G8.6 this
branch is highly blended with the nebula branch and shows much less variation. In addition,
the G7.8 and G8.2 components normalized to the 11.2 µm band show a stronger increase for
a given increase in 6.2/11.2 for the diffuse ISM branch than the branch arising in the nebula
while the opposite holds for the G7.6 and G8.6 components.

Finally, we note the existence of a third branch for relations between the G7.8 component
and the G7.6 component, G8.6 component, or 8 µm bump (Figure 4.13 (l) shows the second
correlation). Specifically, the relationship between these set of bands is different in the nebula,
the diffuse ISM as well as the transition region between both with the third brand representing
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the latter. Moreover, the third branch is parallel with the branch representing the nebula. The
common factors in this set of relations is the G7.8 component and the almost ‘identical’ char-
acteristics of the G7.6 and G8.6 components (cf. these bands exhibit the strongest correlation
between any PAH bands). As the relation of the G7.8 with the G8.2 component exhibits a
single linear correlations, albeit with significant scatter, and the G8.2 component exhibit bi-
linear trends with the G7.6 and G8.6 components, the existence of the third branch confirms
that the G7.8 and G8.2, as defined here, do not completely arise from the same PAH population.

Multi-linear trends in the relation between various PAH ratios have already been reported
in the literature. Specifically, Stock et al. (2016) demonstrated that correlations between the
12.7 and 7.7 µm bands, normalized to the 11.2 µm band, showed different linear trends with re-
spect to the different physical environments they probed from most quiescent environments to
harsher environments associated with H ii regions with PDRs characteristic of RNe in between.
Using the same sample, Stock & Peeters (2017) reported a bifurcation in the correlations be-
tween the G7–9 µm Gaussian components involving G7.8 and G8.2 µm, normalized to the
11.2 µm band intensity. They associate the G7.8 µm with diffuse regions and the G7.6 µm
with irradiated PDRs, consistent with the results reported above. The presented analysis here
and by these authors thus clearly demonstrates that the relative behaviour of the PAH bands
(i.e. how the band intensities normalized to the 11.2 µm band intensity of different PAH bands
relate to each other) depends on the type of environment in which they reside, the diffuse ISM,
the irradiated PDR or the transition region between these environments. Note that we detect a
discrete set of trends or branches (e.g. one, two or three) and not a continuous distribution.

This implies that (some of) the PAH bands arise from multiple PAH subpopulations or
from multiple grand-PAHs (Andrews et al., 2015) that i) each have distinct relative PAH intrin-
sic intensities, and ii) have different relative abundances in these different environments. For
instance, the fact that we only see one branch or linear relationship between the G7.6 and G8.6
components and between the 6.2 and 7.7 µm bands indicates that both sets of bands arises from
either a single PAH subpopulations or from PAH subpopulations which are co-located across
the entire FOV (i.e. for all three environments: the diffuse ISM, the irradiated PDR and the
transition region). In contrast, when we observe two linear relationships or branches for a set
of PAH bands, e.g. the 6.2 and the 8.6 µm band, indicates these bands arise from at least two
distinct subpopulations that have relative abundances dependent on the environment in which
they reside. As a consequence, this then indicates that, similar to the 7.7 µm band, the 6.2 µm
band arises from at least two distinct PAH subpopulations. The latter was already implied by
the fact that the 6.2 µm band correlates very strongly with the 7.7 µm band which has been
found to arise from at least two subpopulations (Peeters et al., 2017, this chapter). In this chap-
ter, we thus present support of this hypothesis by the unique behaviour of the PAH emission in
the diffuse ISM versus the nebula.

We have found the PAH emission bands and their associated ratios have a dependence on
their environment qualitatively. Probing the relationships between PAH emission ratios and
the physical conditions in the different regions found within this source quantitatively could
provide insight into a novel way to use PAH emission as PDR diagnostics. We further explore
this in Section 4.6.2.
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Figure 4.14: Correlation between the strength of the FUV radiation field, G0, and PAH emission
ratios in NGC 1333. Correlation coefficients are given in the upper right or upper left of each
plot. Linear fits between log(G0) and each PAH ratio is shown by a green line. We divide each
plot into two regimes based on the relative strength of the FUV radiation field: log(G0) ≥ 3 in
orange corresponds to the irradiated RNe and log(G0) ≤ 3 in blue corresponds to the diffuse
ISM. In the bottom center panel, we show linear fits of Stock & Peeters (2017), with (blue)
and without (red) inclusion of low G0 regions. In this panel, the maximum G7.8/G7.6 ratio of
0.88 found in the diffuse outskirts of W49A by Stock & Peeters (2017) is shown as a magenta
horizontal dashed line.
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Figure 4.15: Relationship between the PAH ionization parameter, γ, and PAH emission ratios
in NGC 1333. The correlation coefficient are given in the upper right or upper left of each plot.
Linear fits between log(γ) and each PAH ratio are shown as a green line.

4.6.2 PAHs as PDR Diagnostics
In Figure 4.14, we compare the strength of the FUV radiation field (G0; as derived from the
FIR dust continuum) with selected PAH ratios at the [C ii] 158 µm resolution. The three major
PAH bands in the 6–9 µm range as well the G7.6 µm component normalized to the 11.2 µm
band show very similar, positive, trends with G0 (Figure 4.14 (a), (b), and (c)). The G7.6/11.2
intensity ratio has the best positive correlation with G0 of all PAH (and PAH-related) bands
(Figure 4.14 (d)). These positive correlations reflect the fact that all four ratios trace the PAH
ionization state which is driven, in part, by a stronger radiation field. We observe two separate
regimes: a tight correlation between each ratio and G0 for lower ranges of each quantity, while,
for G0 > 103, we find substantial scatter for all four PAH ratios. In this regime, the observed
relation rather gives a lower boundary to the considered PAH ratio. These stronger radiation
field strengths are found within the nebula (see Figure 4.12). The increased range in these PAH
ratios for a given FUV radiation strength across the nebula likely reflects the larger variation
present in the electron density and gas temperature across the nebular compared to the outskirts
as these parameters also determine the PAH ionization parameter and thus the PAH ionization
fraction.

Figure 4.14 (e) also shows a strong anti-correlation between G7.8/G7.6 and G0 of the form:

I7.8/I7.6 = 1.7575 − 0.3797 log G0 (4.3)

In contrast with the ratios discussed above, this relationship does not show increased scatter
for strong FUV radiation fields (G0 > 103). This dependence of G7.8/G7.6 on G0 strongly
supports the results of Stock & Peeters (2017). These authors found a strong anti–correlation
of G7.8/G7.6 with G0 for a sample of integrated PDRs over a wide range of physical conditions.
Here we show that this also holds true within a spatially resolved source. However, we find
that the slope of our fit (equation 4.3) is significantly larger than the slope of both fits given by
(Stock & Peeters, 2017, see Figure 4.14). This contradicts their prediction that the inclusion
of diffuse ISM regions or regions with a weak FUV radiation field will cause a shallower
correlation between G7.8/G7.6 and G0. One explanation for this discrepancy may be the lack
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of data at low G0 in the Stock & Peeters (2017) study and the large uncertainties involved in
estimating G0 as mentioned in section 4.1. In particular, here only a single method is employed
to derive G0 values while Stock & Peeters (2017) resort to multiple methods which likely result
in systematic effects. While we do not probe G0 values as low as the Ophiuchus positions in
Stock & Peeters (2017), we do encounter G7.8/G7.6 ratios greater than those found in the
diffuse outskirts of W49A, which has been argued to be representative of PAH spectra for
diffuse ISM sightlines (Stock et al., 2014). In fact, pixels where G7.8/G7.6 > 0.88 seem to fall
in between the two correlations from Stock & Peeters (2017), suggesting their predictions are
not too far off for the diffuse ISM.

In Figure 4.14 (f), we find another strong anti-correlation between G8.6/G7.6 and G0. Given
that the G7.6 and G8.6 components exhibit the strongest correlation of all PAH bands (when
normalized to the 11.2 µm band) for NGC 1333 (Figure 4.9) and for NGC 2023 (Peeters et al.,
2017), this is somewhat surprising. However, we note that the range of variation in G8.6/G7.6
is quite small (of ∼ 0.1) while G0 varies over almost two orders of magnitude. Nevertheless,
the observed anti-correlation with G8.6/G7.6 suggests that our simple four Gaussian decompo-
sition needs further improvement to disentangle the components contributing to the 7 to 9 µm
emission. Alternatively, or in addition, it may reflect the different band assignments of the
7.6 and 8.6 µm PAH emission. Indeed, while both the G7.6 and G8.6 µm components are at-
tributed to compact symmetric cationic PAH species, the G7.6 µm emission arises from PAHs
with sizes ranging from 50 – 100 carbon atoms whereas, with a few exceptions, the G8.6 µm
PAH band is only detected in larger PAHs (with a size range from 96 – 150 carbon atoms, e.g.
Bauschlicher et al., 2008, 2009; Ricca et al., 2012; Peeters et al., 2017). This tight correlation
with G0 may be suggestive of photo-processing of the larger compact to smaller compact PAHs
as they are increasingly exposed to the radiation field.

In Figure 4.15, we compare the map of the ionization parameter, γ, derived from the PDR
models with a few relevant PAH ratios. We note that convolving the IRS spectral maps to
the PSF of the [C ii] 158 µm observation and accounting for the 3 σ detection limits of the
[O i] 63 µm map in our PDR models restricts this comparison primarily to pixels within nebula
as shown in Figure 4.12. In Figure 4.15 (a) and (b), we do not find a significant correlation
between 6.2/11.2 and 7.7/11.2 with γ. Nevertheless, no low PAH ratios are found for medium
to high values of the PAH ionization parameter. Here as well, the observed relation (fit) gives
a lower boundary to the considered PAH ratio. This is in contrast with the strong correlation
between γ and 6.2/11.2 found by Galliano et al. (2008) and Boersma et al. (2015). We note
the different regimes in γ considered in this study compared to Galliano et al. (2008) and
Boersma et al. (2015): both of these studies consider regions where γ > 104. Nevertheless, this
discrepancy may arise from the methodology we used to derive the PDR conditions: Galliano
et al. (2008) assumed a fixed nH and T for the Orion Bar whereas we derived both nH and T
using PDR models. Additionally, these models may not be sensitive enough to probe the PDR
at the same resolution as the MIR and the FIR maps. In Figure 4.15 (c), compares γ with
G8.6/G7.6 where we do see a modest anti-correlation. However, there is significant scatter and
the range in G8.6/G7.6 is ∼ 0.05. Hence, this may as well reflect the imperfectness of the four
Gaussian decomposition.

In summary, from this comparison between PAH emission ratios and PDR conditions in
and around the RN NGC 1333 there is clearly evidence to support the case for the emission
features as viable PDR diagnostics in particular with respect to G0.
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4.7 Conclusion

In this chapter, we characterize the PAH emission and investigate its dependence on the phys-
ical conditions for the RN NGC 1333 by using a Spitzer–IRS spectral map from 5–15 µm,
SOFIA FIFI–LS spectral maps of the FIR cooling lines [O i] at 63 and 146 µm and [C ii] at
158 µm and Herschel PACS images at 70, 100 and 160 µm. We derive maps for the PDR’s
physical conditions using the FIR cooling lines and the FIR dust continuum emission deter-
mined from SED fitting of the PACS images in combination with the PDR models of Kaufman
et al. (2006) and Pound & Wolfire (2008). The derived physical conditions are in agreement
with previous PDR modelling efforts of Young Owl et al. (2002). Subsequently, we compare
the MIR PAH emission with the PDR conditions determined from the FIR data using matching
apertures and spatial resolution for the MIR and FIR data.

Within the nebula, we find a distinction in the behaviour between the PAH emission bands
in the 6–9 µm range and the 11.2 µm band along with the underlying plateaus between 5–10
and 10–15 µm with respect to the distance from the illuminating source, SVS 3. Namely, the
6–9 µm PAH bands are much more condensed within the nebula relative the 11.2 µm band and
the plateaus. This dichotomy is also reflected in the 7–9 µm Gaussian components where the
G7.6 and G8.6 µm components show a similar structure to the 6–9 µm bands whereas the G7.8
and G8.2 µm components are more comparable to the 11.2 µm band group.

In addition, we find the PAH characteristics of the nebula and the diffuse outskirts to be
distinct from each other. Specifically, the PAH emission features within the nebula tend to be
stronger and more tightly correlated with respect to the PAH features from the diffuse regions.
In several cases, we find separate linear correlations for the diffuse emission and the nebula
suggesting their PAH population consist of distinct subpopulations with different underlying
properties. This supports previous evidence of multi-linear trends discovered between PAH
ratios with respect to different physical environments.

We investigate previously reported relationships between PAH emission ratios and the
physical condition within the relatively simple PDR geometry of the RN NGC 1333. We find
strong correlations between the ratio of the 6–9 µm bands to the 11.2 µm band and the FUV
radiation field strength particularly within the diffuse ISM. We also find strong negative cor-
relations between ratios of the 7–9 µm Gaussian components, G7.8/G7.6 and G8.6/G7.6, with
respect to G0. This supports a similar relationship found by Stock & Peeters (2017) between
G7.8/G7.6 and G0 for a sample of PDRs covering 3 orders of magnitude in G0. We did not find
strong correlations between the ionization parameter and the 6.2/11.2 contradicting the previ-
ously established relationships of Galliano et al. (2008) and Boersma et al. (2015). However,
we did find there is a promising correlation between G8.6/G7.6 and γ that warrants additional
investigation.

To conclude, PAHs have much potential as PDR diagnostics. Further refinement of these
correlations between PAH emission and PDR conditions will solidify the value of the PAH
emission features in PDR studies. A robust survey of PAH and FIR observations in spatially
resolved PDR sources within the Galaxy is the next step to accomplish this goal. With the
imminent launch of JWST and the FIR access of SOFIA, a new golden age of astronomy will
allow astronomers to characterize PDR environments and their PAH emission in our own Milky
way as well as in extragalactic sources.
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Chapter 5

Conclusions

In this thesis, we investigated the characteristics of the PAH emission features in nearby Galac-
tic PDRs with respect to the properties of the underlying carriers and their physical environ-
ment. The main topics we tried to shed light on include:

How does the PAH size distribution vary within spatially resolved PDRs and with the
strength of the incident FUV radiation field?

In Chapter 2, we present observations from SOFIA FLITECAM and the Spitzer IRAC and
IRS SH mode in three well-known photo-dissociation Regions (PDRs), the RNe NGC 7023
and NGC 2023 and to the southeast of the Orion Bar, each of which are well suited to probe
PAH emission. We investigate the spatial behaviour of the FLITECAM 3.3 µm filter as a
proxy for the 3.3 µm PAH band, the IRS SH derived integrated 11.2 µm PAH band, and the
IRAC 8.0 µm filter as a proxy for the sum of the 7.7 and 8.6 µm PAH bands. The resulting
ratio of IRAC 8.0/11.2 provides an approximate measure of PAH ionization while the ratio of
11.2/3.3 combined with emission models of PAHs of varying sizes (e.g. Ricca et al., 2012;
Croiset et al., 2016; Maragkoudakis et al., 2020) provides a measure of the average PAH size.

In both RNe, we find that the average PAH size and relative PAH ionization reaches a
minimum near the PDR front and increases with proximity to the respective illuminating stars.
The average PAH sizes derived for NGC 2023 are greater than those found for NGC 7023 at
all points. As NGC 2023 has a stronger FUV radiation field intensity than NGC 7023, both
results indicate that PAH size is dependent on the radiation field intensity. These results provide
additional evidence of a rich carbon-based chemistry driven by the photo-chemical evolution
of the omnipresent PAH molecules within the interstellar medium.

In contrast, no major trend was found for the average PAH size or relative ionization with
respect to the illuminating source in the region southeast of the Orion Bar. We attribute this to
the face-on morphology of the PDR found between the Orion Bar and the Veil. In a face-on
PDR, no stratification of the key zones in the PDR can be observed as they are mixed within
the line of sight. More data is needed to better characterize the PAH population in this region.
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How do the major PAH emission features vary with respect to different astronomical
environments?

In Chapters 3 and 4, we make use of Spitzer IRS SL observations of the Orion Bar and the
RN NGC 1333 respectively. We measure the fluxes from the PAH emission features, atomic
recombination lines, H2 lines, and the underlying dust continuum present within the spectra.
The Orion Bar and NGC 1333 both show evidence of spatial variations in the relative intensities
of PAH emission features. These variations are found to be highly dependent on the distance
from the illuminating source and thus the FUV radiation field strength. There is a clear spatial
sequence in the relative strength of the PAH emission features with respect to distance from
the illuminating sources that is indicative of photoprocessing driving the chemical evolution of
each PAH population.

Within the Orion Bar spectra, we find a decoupling of the usual tight relationship between
the 6.2 and 7.7 µm bands within the H ii region with a minimum in the 6.2/7.7 ratio at the
G0 peak. Correspondingly, we find the 8.6/7.7 ratio is enhanced with the H ii region. This
suggests there is a shift in the relative strength of the intrinsic vibrational modes of the emitting
population that is driven by the FUV radiation field.

Furthermore, the Orion Bar observations show significant scatter in several well-known
strong PAH correlations. Considering data arising from the H ii gas (i.e. in front of the ioniza-
tion front) and from the neutral region (i.e. behind the ionization front) did not alleviate this
discrepancy. However, grouping these spectra based on the PDR morphology instead shows
two distinct trends for several of these PAH correlations indicating that the emission in edge-on
and face-on PDRs exhibit different relationships between the relative PAH intensities. Simi-
larly, comparing the PAH emission in NGC 1333 within the diffuse outskirts, we find that the
relative emission is stronger and better correlated in the RN. The relative behaviour of the PAH
bands normalized to the 11.2 µm band depends on the type of environment in which they reside
namely: the diffuse ISM, the irradiated PDR or the transition region between these environ-
ments. We detect a discrete set of trends or branches (e.g. one, two, of three) between emission
features that we attribute to these different environments. This implies that some of the PAH
bands arise from multiple PAH subpopulations or from multiple grand–PAHs (Andrews et al.,
2015) with distinct relative PAH intrinsic intensities and different relative abundances in these
different environments.

How can PAHs be used as PDR diagnostics for future studies?

In Chapters 3 and 4, we use observations of the Orion Bar and the RN NGC 1333 respectively to
test previously reported correlations between the PAH emission features and the PDR physical
conditions (e.g. Galliano et al., 2008; Pilleri et al., 2012; Boersma et al., 2013; Stock & Peeters,
2017). We use different methods to derive the PDR conditions for both sources. Hence, we
consider their results separately.

Orion Bar We follow the method of Galliano et al. (2008) to derive a FUV radiation field
intensity, G0, profile in both IRS apertures using a relationship between G0 and the dust con-
tinuum emission. Assuming that the electron density and gas temperature do not vary within
these apertures, we subsequently derive the PAH ionization parameter, γ.
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We find comparable relationships between G0 and the G7.8/G7.6 ratio as reported by Stock
& Peeters (2017) and between γ and the 6.2/11.2 ratio as reported by Galliano et al. (2008).
However, we report differences in these relationships derived for edge-on and face-on PDRs.
Notably the fits from the edge-on PDR spectra showed the best agreement with both Stock
& Peeters (2017) and Galliano et al. (2008), while the fits from the face-on PDR deviated
significantly from the previous studies.

NGC 1333 We make use of SOFIA FIFI-LS observations to measure the FIR cooling lines
at [O i] 63, 146 and [C ii] 158 µm, archival Herschel PACs observations to measure the FIR
dust continuum emission and use previously obtained Spitzer IRS SL data to measure the PAH
emission features (Stock et al., 2016). From the FIR dust continuum emission, we estimate
the intensity of the FUV radiation field, G0, within NGC 1333 (Hollenbach & Tielens, 1997).
Combining this FIR dust continuum emission with the FIR cooling lines into PDR models
(Kaufman et al., 2006; Pound & Wolfire, 2008) allows us to estimate the electron density, ne,
and gas temperature, Tgas, within NGC 1333. We convert all images onto a grid of matching
aperture and spatial resolution to allow a comparison of the PAH emission with these physical
conditions.

We derived linear relationships between the ratios of the 6–9 µm bands to the 11.2 µm band
with G0. Correlations between these parameters were found to be stronger within the diffuse
ISM compared with the nebula. We also find a strong anti-correlation between G7.8/G7.6 with
G0 and G8.6/G7.6 with G0. We were unable to find any significant correlations between the
ratios of the 6–9 µm bands to the 11.2 µm band with γ contradicting the results of Galliano
et al. (2008) and of the edge-on PDR in the Orion Bar (Chapter 3). The lack of relationship
between 6.2/11.2 and γ found in this source in comparison to the strong relationship derived by
Galliano et al. (2008) for the Orion Bar may be attributable to the different assumptions made
in deriving the ionization parameter: Galliano et al. (2008) assumed a fixed nH and T for the
Orion Bar whereas we derived both nH and T using PDR models.

5.1 Future Work
With the James Webb Space Telescope (JWST) planned to become operational in the next
decade, there is an abundance of opportunities to study astronomical PAHs and their relation-
ship with PDRs in greater detail than ever before. Galactic nearby MIR bright sources such as
those encountered in this thesis can be revisited with improved angular resolution and greater
sensitivity not possible with the previous generation of space-based observatories. In particu-
lar, with higher spatial resolution we can probe individual key areas within nearby PDRs such
as the Orion Bar at the scale on which PAH processing occurs. Higher sensitivity will allow us
to detect the weaker PAH bands or PAH emission from extragalactic sources in greater detail
than ever before. The medium spectral resolution of JWST coupled with the higher spatial res-
olution will greatly advance studies of the spectral substructure of the PAH emission features
and their relative profiles building on these results within the past 30 years (e.g. Bregman et al.,
1989; Cohen et al., 1989; Peeters et al., 2002; van Diedenhoven et al., 2004; Bregman & Temi,
2005; Sloan et al., 2007; Matsuura et al., 2014) and will allow for futher refinement of PAH
emission decomposition methods such as the 7–9 µm Gaussian decomposition (Peeters et al.,
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2017; Stock & Peeters, 2017, Chapters 3 and 4). In addition, JWST is capable of covering all
of the major PAH bands with the on–board suite of instruments eliminating the need for the use
of multiple observations to cover this range. Obtaining access to a spatially resolved spectral
mapping of all the major PAH bands of an extended source allows us to investigate various
PAH properties such as charge, size, and structure (e.g. Croiset et al., 2016; Maragkoudakis
et al., 2018, 2020, Chapter 2). These improvements will yield a better understanding of the
relationship between the PAH bands as well as the role UV processing plays in the physical
and chemical evolution of their carriers.

Significant results for astronomical PAH research are expected early in the life cycle of
JWST with the Early Release Science program ID 1288 titled:“Radiative Feedback from Mas-
sive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics”. This program intends
to perform spectral mapping from 1–28.5 µm across the Orion Bar with an effective aperture
of ∼ 27′′ × 3′′, angular resolution from 0.2′′–1.14′′, and a spectral resolution of 1550–3250
covering the H ii region, the edge-on PDR and extending well into the southeastern face-on
PDR behind the Bar (i.e. improved PAH emission measurements for Chapters 2 and 3). Addi-
tionally, NIR and MIR imaging of the Bar will be done with filters covering the 3.3, 7.7, 8.6,
and 11.2 µm bands. This program will employ cross-calibration of MIR spectra and images,
further constraining the relative contributions of spectral features including the PAH emission
bands, the PAH plateaus and the underlying dust continuum emission within a given filter
and/or spectral aperture. This will allow us to refine the methodology of using photometric ob-
servations to trace PAH emission (Chapter 2). Other relevant highlights of this program include
creating template spectrum using BSS (e.g. Berné et al., 2007), using PAHdb theoretical and
experimental PAH spectra to fit the Orion Bar spectra (e.g. Boersma et al., 2013), and using the
PDRT to derive the physical parameters from the latest PDR models (e.g. Neufeld & Wolfire,
2016). To summarize, the results from this program will allow us to better constrain the results
of Chapters 2–4, such as more precise estimates of PAH size and ionization, investigating the
influence of edge-on versus face-on PDR morphologies on the observed PAH emission, and
deriving higher resolution PDR models than previously obtained.

To understand the impact of new space-based observatories have had on PAH-based re-
search, we need only look back to Spitzer. Since its launch over 17 years ago, Spitzer has ad-
vanced our understanding of the PAH emission features in nearby sources such as NGC 2023
and NGC 7023 through the use of spectral mapping which allows us to link spectral charac-
teristics to the spatial morphology (e.g. Berné et al., 2007; Peeters et al., 2012; Boersma et al.,
2013; Shannon et al., 2015; Stock et al., 2016; Peeters et al., 2017; Stock & Peeters, 2017).
With JWST, the power of spectral mapping will be brought to a whole new level. Furthermore,
the number of MIR sources available for spatially resolved PAH studies will grow substan-
tially. To summarize, JWST, along with its on–board suite of instruments, will revolutionize
PAH research.

As discussed in Chapters 3 and 4, the PAH emission features have immense potential to
be used in the study of PDRs. However, there are significant discrepancies between previous
attempts at empirical calibrations of PAH emission with the PDR physical conditions (c.f.
Section 1.5.3). Hence more data is needed to fortify and calibrate these relationships for the
full range of observed environments. A large survey of PAH emission features within Galactic
PDRs over a wide range of FUV radiation field strengths, G0, and gas densities, nH, will give
more confidence in the general use of PAH emission as PDR diagnostics. This can be done by
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obtaining FIR cooling line and PAH emission observations with matching apertures and spatial
resolution as was done in Chapter 4 for the RN NGC 1333. SOFIA will be invaluable for this
purpose in the coming decade as it is the sole observatory to offer FIR spectral mapping with
on–board instruments such as FIFI-LS and GREAT (e.g. Andrews et al., 2018; Pabst et al.,
2019; Goicoechea et al., 2020, Chapter 4). Through the use of FIR cooling lines and FIR
dust continuum emission measurements as input into PDR models, spatially resolved maps
of G0 and nH, and T can be derived (e.g. Wolfire et al., 1990; Kaufman et al., 1999, 2006;
Hollenbach et al., 2012). Comparing the trends found in maps of the PAH emission ratios
such as 6.2/11.2 (Galliano et al., 2008; Boersma et al., 2013), G7.8/G7.6 (Stock & Peeters,
2017), or the fraction of carbons locked in VSG (Pilleri et al., 2012) to the physical parameters
derived from PDR models with a comprehensive data set of PDR covering a wide range in G0

and nH will constrain relationships between PAHs and their environment to an unprecedented
level. With the launch of JWST planned for this decade, the availability of a large survey of
these PAH diagnostics could prove to be an invaluable resource to the extragalactic astronomy
community in particular, as the aforementioned FIR cooling lines tend to be significantly harder
to resolve at these distances and the corresponding PAH emission is readily available.
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Appendix A

Additional content for Chapter 2

A.1 Relative PAH contribution to the IRAC 8.0 µm emission
in a PDR

The IRAC 8.0 µm emission is often used as a tracer for PAH emission (e.g. Hogg et al., 2005;
Smith et al., 2007a; Stock et al., 2014). Here, we estimate the relative contribution of the
individual emission components contained within the IRAC 8.0 µm filter within the South
NGC 2023 IRS SL spectral cube (e.g. Stock et al., 2016; Peeters et al., 2017; Stock & Peeters,
2017). The spectral components that dominate these spectra within the IRAC 8.0 µm filter
include the 7.7 and 8.6 µm emission features, the 8 µm bump and 5–10 µm plateau, both of
which are attributed to emission of PAHs and related species, the 6.9 µm H2 line, and the
underlying dust continuum (where we follow the decomposition given by Peeters et al., 2017).
We multiply spectral maps of these emission components by the IRAC 8.0 µm filter response
function and integrate over the relevant wavelength range of each feature. Subsequently, we
determine the fractional contribution of each spectral component to the total IRAC 8.0 µm flux
for a given spectrum.

Figure A.1 presents these relative contributions to the IRAC 8.0 µm bandpass along a radial
cut across the S ridge PDR front in the direction to the illuminating source, HD 37903. We
find that along the radial cut, extending from inside the cavity to the PDR front, the PAH
related species account for ∼ 80% of the emission within the IRAC 8.0 µm filter. Beyond
the PDR front into the molecular cloud, PAH related emission drops down to ∼ 73% of the
total emission. Thus, we can effectively state that the IRAC 8.0 µm filter is a strong tracer of
PAH emission within PDR environments but becomes a less reliable tracer in molecular cloud
dominated regions.

A.2 Comparing FLITECAM 3.3 µm and IRAC 3.6 µm

We compare both of the individual Orion FLITECAM 3.3 µm images with the IRAC 3.6 µm
image within each FOV at a matching spatial resolution (Figure A.2). An unweighted linear
relationship was found between the IRAC 3.6 µm and FLITECAM I2 observations with a
slope of 3.203 ± 0.007 and an intercept of 101.4 ± 0.7 as well as between the IRAC 3.6 µm
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Figure A.1: A radial profile of the NGC 2023 IRS SL South data cube taking the relative
contribution of the emission features within the IRAC 8.0 µm bandpass. The dashed vertical
magenta line indicates the position of the PDR front as traced by H2 emission. The position of
the cross–cut is given in Peeters et al. (2017).
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and FLITECAM M2 observations with a slope of 4.80 ± 0.02 and an intercept of 28.1 ± 0.3.
Noise weighted linear relationships were found between the IRAC 3.6 µm and FLITECAM I2
observations with a slope of 3.876 ± 0.018 and an intercept of 55.1 ± 0.9 as well as between
the IRAC 3.6 µm and FLITECAM M2 observations with a slope of 5.579 ± 0.044 and an
intercept of 18.9 ± 0.5. The expected surface brightness values of both the FLITECAM I2
and IRAC 3.6 µm data within the ISO-SWS apertures across the Orion Bar are determined
by multiplying each SWS spectra with the respective filter response curves. The observed
surface brightness values measured at each of the SWS positions for both the FLITECAM I2
and IRAC 3.6 µm images are taken as the median value within the SWS apertures. Using linear
fits with a fixed y-intercept of 0, the expected and observed data points in the IRAC 3.6 µm
and FLITECAM 3.3 µm filters gives slopes of 2.765 ± 0.168 and 4.342 ± 0.997 respectively.
The ratio of the observed to expected slopes is 1.57 ± 0.37, in agreement with the scale factor
of 1.6 ± 0.1 derived in Section 2.4.1.

Figure A.2: The observed surface brightness in the calibrated FLITECAM data and the
IRAC 3.6 µm data (after extended source correction) for all pixels contained within the I2 frame
(left panel) and the M2 frame (right panel). All stellar sources present have been masked. Un-
weighted and weighted linear fits are given by red lines and green lines respectively. left panel
Surface brightness values of the I2 observations within the ISO-SWS apertures are indicated
by magenta triangles and expected mean surface brightness values (from multiplying the SWS
spectra with each filter response curve) are shown as black diamonds. Weighted slope fits to
the expected and observed mean surface brightness values from the SWS spectra are shown as
a blue and magenta line respectively. right panel Surface brightness values of the M2 observa-
tions taken within the IRS SH apertures are shown as magenta circles.



Appendix B

Additional content for Chapter 3

B.1 Orion Bar Spitzer IRS SL Breakdown
In Table B.1, we summarize the prominent emission components found in the Orion Bar Spitzer
IRS SL spectra as discussed in Chapter 3. To facilitate parsing the large amount of line profiles
shown in Figures 3.4 and 3.5, we use the same nomenclature used to refer to each feature. We
organize these components based on the different types of emission found and as well as where
they spatially peak within each aperture relative to the Orion Bar Ionization front.

B.2 Decomposition of 7–9 µm region
We decomposed the GS subtracted spectra in the 7–9.2 µm region with 6 Gaussians. These
include the 7-9 µm PAH components: G7.6, G7.8, G8.2, and G8.6 µm (Peeters et al., 2017;
Stock & Peeters, 2017) and the atomic recombination lines: H i 7.45 µm and [Ar iii] 8.99 µm.
As in Peeters et al. (2002), we chose PAH components to fit the 7.6 and 7.8 µm peaks of the
7.7 µm complex, the 8.6 µm PAH band, and a fourth PAH component at 8.2 µm to obtain
a good fit in the 7–9 µm region. We also note that the 8 µm bump found between the LS
and GS spline continua is incorporated into these Gaussian components, hence the similarities
between the line profiles of the 8 µm bump and the G7.8 and G8.2 µm components in particular
(Figure 3.6 (d) and (h)). This fitting procedure was first run with the starting parameters of all 6
Gaussians allowed to vary in peak position in a window of 0.2 µm and in FWHM in a window
of 0.1 µm. Subsequently, the average peak positions for each feature within each aperture
was obtained and fixed (Table B.2). We then determine the average FWHM for each of these
Gaussian fits and fix these parameters as well.
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Table B.1: Orion Bar IRS SL Spectral Emission Components

Feature Tag1 Emission Description Peak Location2

Atomic Lines
[Ar ii ] [Ar ii ] 6.98 µm recombination line H ii region

H i 7.46 H i 7.45 µm recombination line H ii region
[Ar iii ] [Ar iii ] 8.99 µm recombination line H ii region
[S iv ] [S iv ] 10.5 µm recombination line H ii region

H i 12.37 H i 12.37 µm recombination line H ii region
[Ne ii ] [Ne ii ] 12.8 µm recombination line H ii region

Dust Emission
cont. 10.2 Dust continuum emission at 10.2 µm H ii region
cont. 13.2 Dust continuum emission at 13.2 µm H ii region
cont.10–13 Integrated dust continuum emission from 10–13.2 µm H ii region

PAH–Related Emission
3.3 (FC) PAH 3.3 µm band3 Orion Bar PDR

6.2 PAH 6.2 µm band Orion Bar PDR
7.7 PAH 7.7 µm band Orion Bar PDR
8.6 PAH 8.6 µm band Orion Bar PDR

G7.6 PAH G7.6 µm sub–component Orion Bar PDR
G7.8 PAH G7.8 µm sub–component Orion Bar PDR
G8.2 PAH G8.2 µm sub–component Orion Bar PDR
G8.6 PAH G8.2 µm sub–component Orion Bar PDR

G11.0 PAH 11.0 µm band Orion Bar PDR
11.2 PAH 11.2 µm band Orion Bar PDR
12.7 PAH 12.7 µm band Orion Bar PDR

8 bump 8 µm bump PAH plateau Orion Bar PDR
5–10 plat 5–10 µm PAH plateau Orion Bar PDR

10–13 plat 10–13 µm PAH plateau Orion Bar PDR

Molecular Hydrogen Lines
H2 9.7 H2 9.7 µm emission line Orion Bar PDR

1 Shorthand used to refer to individual features in Figures 3.4 and 3.5.; 2 Emission component
peak within the Orion Bar IRS SL apertures (see Section 3.5.1).; 3 Observed with SOFIA
FLITECAM photometry (see Chapter 2).
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Table B.2: Orion 7 to 9 Decomposition Parameters

Feature (µm) < Peak Position (µm) > < FWHM (µm) >

Orion Bar Totals1

Pfund α 7.481 ± 0.006 0.06 ± 0.01
GPAH 7.6 7.59 ± 0.02 0.44 ± 0.01
GPAH 7.8 7.86 ± 0.04 0.40 ± 0.03
GPAH 8.2 8.29 ± 0.02 0.263 ± 0.02
GPAH 8.6 8.61 ± 0.01 0.34 ± 0.01
Ar III 8.99 9.004 ± 0.008 0.122 ± 0.009

1 Combined averages of fits in spectra of all three slits.
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