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variability of the marginals. These features suggest that as the dependence between 

outcomes becomes stronger, the joint model captures such dependence through increased 

shared variability. 

Though not presented here, these features hold for all six combinations of the three margins 

under all four types of copulas, which suggest that the joint model framework can describe 

copulas and the increase in outcome dependence is captured as an increase in the amount 

of shared outcome variability and a reduction in the total variability over both outcomes. 

The right panel of Figure 3.5 provides summary of the estimates of the 𝜇’s and 𝛽’s. We see 

that joint models also provide robust location parameters and coefficient estimates. Note 

that the study only considers a fixed sample size and did not incorporate a covariate effect. 

The theoretical properties of the parameters estimate under model misspecification also 

deserve a further investigation. 

3.6 Discussion 

This chapter has developed a copula model framework and a joint model framework that 

can be utilized to model and predict the survivorship of an extended attack fire in terms of 

its containment time and area burned, given its environmental information as covariates. 

As a joint outcome analysis, duration and size are defined by a common origin and event, 

while two flexible frameworks (i.e. copula and joint modeling) are used to model their 

dependence. The factor loading form of the joint model reflects the scale difference 

between the shared error of the two outcomes. 

We focused on understanding the relationship between and utility of the copula model and 

the factor loading form, as well as developing novel techniques to construct covariates and 

providing estimates of their effects. Our results suggest that duration and size are 

significantly dependent, and joint modeling outperforms modeling the outcomes 

separately. Our simulation studies show that as the outcome dependence in a copula 

increases, the shared variability in a joint model increases and the outcome-specific 
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variability decreases, while estimates of associated parameters become more precise. Some 

striking covariate effects were observed. Fire center and decade affect both duration and 

size. Increases in initial and day-over-day organic layer dryness have positive effects on 

duration, while increase in the ADFT of precipitation has negative effect on size. The 

findings provide a comprehensive perspective for understanding the statistical uncertainty 

quantified in modeling fire duration and fire size through copulas and joint models. The 

findings are also significant in a climate change context as BUI and DMC are expected to 

increase, and precipitation decrease, in parts of the fire season in central to southern BC in 

future decades. They also help to explain the large fire sizes in BC in the 2017 and 2018 

fire seasons. 

With regard to the moderate heteroscedasticity and skewness observed in the residuals, 

developing methods to handle clustering effects in the data may provide an effective 

mechanism to reduce these effects. Different containment strategies may result in more 

than one population of fires (i.e. mild and severe) and , hence, clustered outcome 

distributions. Under the framework of joint model, such clustering can be accounted for by 

introducing another latent variable as an unobserved label of the clusters. For instance, the 

nesting of joint modeling and mixture model utilizes one method as a foundation model 

and applies the other method in one of its sub-models (e.g. Dean et al., 2007; Huang et al., 

2016). The bivariate normal mixture is also a comparable alternative often used in medical 

studies (e.g. Vink et al., 2016). Developing a finite mixture of the joint model for fire 

duration and fire size may be of both scientific and statistical interest to extend methods for 

this dependent modeling framework. 
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Chapter 4  

4 Joint Mixture Models for the Duration and Size of 

Wildfires 

4.1 Introduction 

Fire duration and fire size, representing how long a fire lasts and how much area is burned, 

respectively, have been studied as key outcomes of wildland fire risk in fire science (Fried 

and Gilless 1989; Taylor et al. 2013; Xi et al., 2019). Early studies have been motivated by 

an assessment of their relationship with environmental variables for ecological and 

managerial purposes (Cumming, 2001; Finney et al., 2009). Both outcomes are non-

negative, right skewed, quantifying the survivorship of the fires from an origin to 

extinguishment. 

Fires with long durations tend to be large in size, hence fire duration and fire size are often 

correlated outcomes (Yoder and Gebert 2012; Sun, 2013; Bayham, 2013; Xi et al., 2020). 

These authors note indications of multimodality, namely, that there are distinct peaks in the 

density functions of the outcomes. From the fire management perspective, this is not 

unexpected as some fires are contained quickly on initiation of fire suppression activities, 

while others escape or indeed are left to burn (Filmon, 2004; Xi et al., 2019). Such fire 

suppression strategies are widely adopted in fire management, hence aside from being 

correlated, both fire duration and fire size can also be regarded as being generated from 

multiple management strategies yielding distinct subpopulations of fires.  

Usual parametric distributions that rely on location and scale parameters are often not 

suitable for modeling data with multimodality in their distribution. Some authors choose to 

avoid modeling irregular shapes by analyzing only the subset of fires that exceed a 

threshold of duration (DaCamara et al., 2014) or size (Holmes et al., 2008), while others 

handle such irregularities by utilizing non-parametric survival models (Morin et al., 2015; 
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Tremblay et al., 2018). These studies have considered only a single outcome (i.e. either 

duration or size). While correlation in the outcomes has been noted, there have been no 

models developed to address both multimodality and correlation in the outcomes 

simultaneously. It is of both scientific and statistical interest to develop a comprehensive 

model to account for the correlation of fire duration and fire size, while also modeling the 

potential multimodality observed in their marginal and joint distributions. 

Two types of statistical methods more commonly used in biostatistics may initiate such 

development: joint modeling, and mixture models. For the application of joint modeling in 

environmental and other circumstances, see for example, Feng and Dean (2012), Renouf et 

al. (2016), Juarez-Colunga et al. (2017) and Lundy and Dean (2018). Joint modeling 

provides an approach where correlation of the outcomes may be addressed (Dunson, 2000; 

Henderson et al., 2000). By assuming that the distributions of the outcomes are 

independent, conditional on a shared latent variable, the joint distributions of the outcomes 

may be obtained by integrating their product over the support of the latent variable. The 

latent variable included in each of the outcomes induces correlation. As well, multimodality 

can be accommodated through finite mixture models, in which the outcome distribution 

arises from a mixture of components reflecting subpopulations, and a categorical latent 

variable identifies the subpopulation to which a fire is associated. (McLachlan and Peel, 

2000).  

A mechanism by which both joint models and mixture models may be employed, reflecting 

the scientific context of fire science, uses each of these as building blocks in constructing 

an overarching model. Vink et al. (2016) use a bivariate Gaussian mixture model for 

estimating vaccine-type seroprevalence from correlated antibody responses, hence 

incorporating mixtures in correlated outcomes. In a forestry study, Dean et al. (2007) 

developed a multi-state model for tree disease status using a two-component mixture. In 

the component of affected trees, the forward and backward transition probabilities of the 

disease status are linked with a tree-specific spatial random effect. In AIDS research, Huang 

et al. (2016) developed a three-component skewed-𝑡 mixture model for longitudinal viral 

load. The underlying trajectories of a covariate are linked with the viral load model through 
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a latent covariate process. To date, there has been little research on the development of 

models that correlate outcomes through shared latent variables to form multivariate joint 

mixture distributions. 

Additionally, covariate effects could be incorporated in such mixtures by formulating a 

logistic model linking covariate effects to probabilities of the underlying component 

membership. Such an approach is computationally unattractive for a variety of key reasons. 

Importantly, model building becomes more computationally intensive in determining 

covariate selection (Asparouhov and Muthén, 2014; Murphy and Murphy, 2019). As well, 

such techniques sometimes require estimates of component membership to be 

approximated as the component which has the largest posterior. Instead, a two-stage 

approach is adopted here whereby the estimated probabilities of component membership 

from a mixture model are considered as a function of covariates in a Dirichlet regression. 

This chapter therefore aims to address several gaps in crucial research regarding joint 

outcome models in a mixture context. Importantly, this is a critical statistical advancement 

that seems particularly applicable in the fire science context we are considering. 

In this chapter, we propose and develop a finite mixture framework for the joint modeling 

of fire duration and fire size. Duration and size are modelled simultaneously using 

univariate lognormal distributions, which are linked through shared errors to form a four-

component bivariate mixture. The posterior estimates of the probabilities of component 

membership for each fire are modeled as a function of explanatory variables using Dirichlet  

regression. Our framework provides a novel perspective to study the underlying mechanism 

linking fire duration and fire size, while being flexible and having the advantage of a 

straightforward interpretation when the number of outcomes is large or the marginal 

distributions are complex.  

We present the models for fire duration and fire size in section 2 and provide methods of 

estimation of the joint mixture model in section 3. In section 4, we describe the fire data 

from British Columbia, Canada, that motivated this research. Section 5 discusses the 



 

88 

 

 

 

analysis and the interpretation of the results from models fitted. The chapter closes with a 

discussion in section 6. 

4.2 Modelling Frameworks 

We describe two hierarchical frameworks for joint modeling of fire duration and fire size, 

a finite mixture joint model (FMJM) and a finite mixture bivariate model (FMBM). The 

distributions of the two models are provided in detail later. Individual fires are indexed by 

𝑖 = 1, … , 𝑛, with unobserved component labels 𝑗 = 1, … , 𝐽, specifying the unique mixture 

component from which the joint distribution of duration and size arises. Outcomes are 

indexed by 𝑘, with 𝑘 = 1 for duration and 𝑘 = 2 for size. The bivariate random variable, 

𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2)
𝑇 is a 2 ×1 vector of the duration and size outcomes, where 𝑡𝑖1 is the duration 

of the fire in days and 𝑡𝑖2 is the size in hectares, with 𝒕1,… , 𝒕𝑛 independent. We conduct a 

2-stage analysis. In the first stage we estimate the parameters of the mixture models. In the 

second stage, the estimated probabilities that 𝒕𝑖 belongs to each component are regressed 

against explanatory variables in a Dirichlet model to assess the effect of covariates. 

4.2.1 Finite Mixture Joint Models 

Let 𝑧𝑖 = 1,… , 𝐽 be the unobserved component label of 𝒕𝑖. The distribution of 𝑧𝑖 is defined 

as i.i.d. Multinomial(1,𝝅), where 𝝅 = (𝜋1, … , 𝜋𝐽)
𝑇

 is a vector of mixture probabilities 

such that ∑ 𝜋𝑗
𝐽
𝑗=1 = 1, with 𝜋𝑗 denoting the probability that 𝑧𝑖 = 𝑗. We represent 𝑧𝑖 by a 

𝐽 × 1 latent vector 𝒛𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝐽)
𝑇
, where 𝑧𝑖𝑗 = 1 if 𝑧𝑖 = 𝑗, and 𝑧𝑖𝑗 = 0 otherwise. Let 

𝒃𝑖𝑗 = (𝑏𝑖𝑗1 , 𝑏𝑖𝑗2)
𝑇

 be a 2 × 1  vector of random effects that accounts for potential 

correlation between 𝑡𝑖1  and 𝑡𝑖2  given membership in component 𝑗 , with the correlation 

depending on the component to which they belong. The distribution of 𝒃𝑖𝑗 is defined as 

i.i.d. 𝑄𝑗(𝒃𝑖𝑗|𝑫𝑗) = 𝑁2(𝟎,𝑫𝑗), with a zero-mean 2 × 1 vector, 𝟎, and a 2 × 2 symmetric 

and positive definite variance-covariance, 𝑫𝑗 . Given membership in component 𝑗 , and 

given 𝒃𝑖𝑗 , the outcomes 𝑡𝑖1  and 𝑡𝑖2  are independent. We define the 2 × 𝑛  matrix 𝒕 =

(𝒕1,… , 𝒕𝑛), the 𝐽 × 𝑛 matrix 𝒛 = (𝒛1, … , 𝒛𝑛), 2 × 𝐽 matrices 𝝁 = (𝝁1, … , 𝝁𝐽) where 𝝁𝑗 =
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(𝜇𝑗1 ,𝜇𝑗2)
𝑇

 and 𝝈 = (𝝈1, … , 𝝈𝐽)  where 𝝈𝑗 = (𝜎𝑗1, 𝜎𝑗2)
𝑇

, as well as 𝒃 = (𝒃1, … , 𝒃𝑛) , the 

collection of 2 × 𝐽 matrices such that 𝒃𝑖 = (𝒃𝑖1,… , 𝒃𝑖𝐽). The joint distribution of the data 

𝒕 and the latent variable 𝒛, given all model parameters and random effects, is: 

𝑝(𝒕,𝒛|𝝁, 𝝈, 𝒃,𝝅) = ∏∏[𝜋𝑗𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗)]
𝑧𝑖𝑗

𝑗𝑖

, 

where 𝑓𝑗(𝒕𝑖|𝝁𝑗 , 𝝈𝑗, 𝒃𝑖𝑗) is the conditional joint density function of 𝒕𝑖 given 𝝁𝑗 , 𝝈𝑗, and the 

random effect 𝒃𝑖𝑗. 

To model the correlation between the outcomes, we represent the relationship in a loglinear 

model (Duchateau and Janssen, 2008). Given that the outcomes belong to component 𝑗, we 

assume that 𝒃𝑖𝑗 has an additive effect on the logarithm of 𝑡𝑖𝑘 : 

log 𝑡𝑖𝑘 = 𝜇𝑗𝑘 +𝑏𝑖𝑗𝑘 + 𝜎𝑗𝑘𝜀𝑖𝑘 , 

where 𝜀𝑖𝑘  follows an i.i.d. 𝑁(0,1) and is the outcome-𝑘-specific random error associated 

with fire 𝑖. The subscript 𝑗 can be replaced by 𝑧𝑖 for a more coherent notation. We assume 

that 𝒃𝑖𝑗  and 𝜀𝑖𝑘  are independent for all 𝑖 . When duration and size in component 𝑗  are 

dependent, that is, when the covariance entries of 𝑫𝑗 are not zero, we assume that 𝑏𝑖𝑗1 =

𝑏𝑖𝑗 , 𝑏𝑖𝑗2 = 𝛾𝑗𝑏𝑖𝑗 , where 𝑏𝑖𝑗  follows i.i.d. 𝑞𝑗(𝑏𝑖𝑗|𝜎𝑏𝑗) = 𝑁(0, 𝜎𝑏𝑗
2 ) . In this case, 𝑏𝑖𝑗  is a 

shared frailty that produces the correlation between duration and size, while 𝛾𝑗  is the factor 

loading on 𝑏𝑖𝑗 that accounts for the scale difference between the outcomes. When duration 

and size are independent, 𝑏𝑖𝑗1  and 𝑏𝑖𝑗2  are freely varying with independent distributions. 

Then 𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) becomes 

𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) =∏𝑓𝑗𝑘(𝑡𝑖𝑘|𝜇𝑗𝑘 , 𝜎𝑗𝑘 , 𝑏𝑖𝑗𝑘)

𝑘

, 

where 𝑓𝑗𝑘(𝑡𝑖𝑘|𝜇𝑗𝑘 , 𝜎𝑗𝑘 , 𝑏𝑖𝑗𝑘)  is the conditional density function of outcome 𝑘  given 

membership in component 𝑗 and associated random effect 𝑏𝑖𝑗𝑘 . 
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4.2.2 Finite Mixture Bivariate Model 

We also consider a finite mixture of bivariate distributions (FMBM) for modeling 

correlation in mixture models. Such a framework is used for comparison with the latent 

model framework developed in the previous section. We assume that 𝒚𝑖 = log(𝒕𝑖) follows 

i.i.d. 𝑁2(𝟎,𝚺𝑗)  with a zero-mean 2 × 1 vector, 𝟎 , and a 2 × 2 symmetric and positive 

definite variance-covariance matrix, 𝚺𝑗 . In 𝚺𝑗 , the marginal variability of duration, 

marginal variability of size, and covariance of duration and size for component 𝑗 are each 

specified directly by its elements: 𝚺𝑗
11 = 𝜎𝑗1

2 , 𝚺𝑗
22 = 𝜎𝑗2

2 , and 𝚺𝑗
12 = 𝚺𝑗

21 = 𝜌𝑗𝜎𝑗1𝜎𝑗2, where 

𝝆 = (𝜌1 …𝜌𝐽) is the vector of correlation parameters between 𝑦𝑖1 and 𝑦𝑖2 in component 𝑗. 

The terms 𝒕, 𝒛, 𝝅, 𝝁 and 𝝈, follow from their definition in section 2.1.  

The joint distribution of 𝒕 and 𝒛 given all model parameters is: 

𝑝(𝒕, 𝒛|𝝁, 𝝈, 𝝆, 𝝅) =∏∏[𝜋𝑗𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝜌𝑗)]
𝑧𝑖𝑗

𝑗𝑖

, 

where 𝑓𝑗(𝒕𝑖|𝝁𝑗 , 𝝈𝑗, 𝜌𝑗) is the joint density function of 𝒕𝑖 given 𝝁𝑗 , 𝝈𝑗 and 𝜌𝑗 . 

4.2.3 The Four-Component Mixture Models 

We consider a special case in the fire science context for the two frameworks discussed 

above for modeling fire duration and size, with the parameterization of 𝑓𝑗(𝒚𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) 

and 𝑓𝑗(𝒚𝑖|𝝁𝑗 ,𝝈𝑗 ,𝜌𝑗) provided in Table 4.1 under the columns FMJM and FMBM, where 

𝒚𝑖 = log(𝒕𝑖).  

Fires tend to occur in two main clusters: of typical size and duration, given the time of the 

fire season in which they occur; or, of extreme fire size and duration, contrasted with typical 

fires at that time of the year. This results in four groups of fires according to the 
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Table 4.1: Parameterization of the models considered in the fire science application 

Component 

Label 

𝑓𝑗(𝒚𝑖𝑗|𝝁𝑗 , 𝝈𝑗, 𝒃𝑖𝑗) 

FMJM FMBM 

𝑧𝑖 = 1 
𝒚𝑖1~𝑁2([

𝜇𝑁1
𝜇𝑁2

] , [
𝜎𝑏𝑁
2 +𝜎𝑁1

2 𝛾𝑁𝜎𝑏𝑁
2

𝛾𝑁𝜎𝑏𝑁
2 𝛾𝑁

2𝜎𝑏𝑁
2 +𝜎2

2]) 𝒚𝑖1~𝑁2([
𝜇𝑁1
𝜇𝑁2

] , [
𝜎𝑁1
2 𝜌1𝜎𝑁1𝜎𝑁2

𝜌1𝜎𝑁1𝜎𝑁2 𝜎𝑁2
2

]) 

𝑧𝑖 = 2 
𝒚𝑖2~𝑁2([

𝜇𝑁1
𝜇𝐸2

] , [
𝜎𝑏𝑁
2 +𝜎𝑁1

2 0

0 𝛾𝐸
2𝜎𝑏𝐸

2 +𝜎2
2]) 𝒚𝑖2~𝑁2([

𝜇𝑁1
𝜇𝐸2

] , [
𝜎𝑁1
2 𝜌2𝜎𝑁1𝜎𝐸2

𝜌2𝜎𝑁1𝜎𝐸2 𝜎𝐸2
2

]) 

𝑧𝑖 = 3 
𝒚𝑖3~𝑁2([

𝜇𝐸1
𝜇𝑁2

] , [
𝜎𝑏𝐸
2 +𝜎𝐸1

2 0

0 𝛾𝑁
2𝜎𝑏𝑁

2 + 𝜎2
2]) 𝒚𝑖3~𝑁2([

𝜇𝐸1
𝜇𝑁2

] , [
𝜎𝐸1
2 𝜌3𝜎𝐸1𝜎𝑁2

𝜌3𝜎𝐸1𝜎𝑁2 𝜎𝑁2
2

]) 

𝑧𝑖 = 4 
𝒚𝑖4~𝑁2([

𝜇𝐸1
𝜇𝐸2

] , [
𝜎𝑏𝐸
2 + 𝜎𝐸1

2 𝛾𝐸𝜎𝑏𝐸
2

𝛾𝐸𝜎𝑏𝐸
2 𝛾𝐸

2𝜎𝑏𝐸
2 + 𝜎2

2]) 𝒚𝑖4~𝑁2([
𝜇𝐸1
𝜇𝐸2

] , [
𝜎𝐸1
2 𝜌4𝜎𝐸1𝜎𝐸2

𝜌4𝜎𝐸1𝜎𝐸2 𝜎𝐸2
2

]) 
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magnitude of their duration and size–normal (𝑁) or extreme (𝐸 ), suggesting a four-

component bivariate mixture joint model to reflect components: 

{
 

 
normal duration −  normal size (𝑗 = 1)

normal duration − extreme size (𝑗 = 2)

extreme duration − normal size (𝑗 = 3)

extreme duration − extreme size (𝑗 = 4)

. 

We put constraints on certain univariate terms, namely, 𝜇𝑗𝑘 , 𝑏𝑖𝑗𝑘 , 𝛾𝑗 , 𝜎𝑗𝑘  and 𝜎𝑏𝑗𝑘 , if the 

associated term is describing the distribution of the corresponding outcome in a normal 

cluster or an extreme cluster. For both FMJM and FMBM, we assume that the centres of 

the related components are the same for model parsimony and identifiability: 𝝁1 =

(𝜇𝑁1, 𝜇𝑁2 , ), 𝝁2 = (𝜇𝑁1, 𝜇𝐸2, ), 𝝁3 = (𝜇𝐸1, 𝜇𝑁2, ) , 𝝁4 = (𝜇𝐸1, 𝜇𝐸2 , ), where 𝜇𝐸1 = 𝜇𝑁1 +

∆𝜇1, 𝜇𝐸2 = 𝜇𝑁2 +∆𝜇2.  

For FMJM, we further assume that only the outcomes in component 1 and 4 are linked 

through a latent variable. Since the factor loading parameter defines the scale difference of 

the random effect on the outcome of fire size, this parameter would be the same for 

components representing normal size (components 1 and 3), and also the same for 

components related to extreme size (components 2 and 4). Hence 𝛾1 = 𝛾𝑁 , 𝛾2 = 𝛾𝐸 , 𝛾3 =

𝛾𝑁 , 𝛾4 = 𝛾𝐸 , where we parameterize 𝛾𝐸 = 𝛾𝑁 + ∆𝛾 , and 𝒃𝑖1 = (𝑏𝑖𝑁, 𝛾𝑁𝑏𝑖𝑁)
𝑇 , 𝒃𝑖2 =

(𝑏𝑖𝑁, 𝛾𝐸𝑏𝑖𝐸 )
𝑇 , 𝒃𝑖3 = (𝑏𝑖𝐸 , 𝛾𝑁 𝑏𝑖𝑁)

𝑇 , 𝒃𝑖4 = (𝑏𝑖𝐸 , 𝛾𝐸 𝑏𝑖𝐸)
𝑇 . We allow duration-specific 

variabilities to be distinct, but set size-specific variabilities equal across all components to 

avoid over-parameterization: 𝝈1 = (𝜎𝑁1 , 𝜎2) , 𝝈2 = (𝜎𝑁1 , 𝜎2) , 𝝈3 = (𝜎𝐸1, 𝜎2) , 𝝈4 =

(𝜎𝐸1, 𝜎2), where 𝜎𝐸1 = 𝜎𝑁1 +∆𝜎1 . In other words, 

𝑦𝑖𝑘~𝑁(𝝁𝑧𝑖
(𝑘) +𝒃𝑧𝑖

(𝑘) ,𝝈𝑧𝑖
(𝑘)), 

where 𝝁𝑧𝑖
(𝑘), 𝒃𝑧𝑖

(𝑘), and 𝝈𝑧𝑖
(𝑘) are the 𝑘-th elements of 𝝁𝑧𝑖 , 𝒃𝑧𝑖, and 𝝈𝑧𝑖 , respectively.  
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For FMBM, we further assume that the marginal variabilities in components that reflect 

normal or extreme duration and normal or extreme size are the same, but the correlation 

parameters among the components are distinct: 

𝚺1 = [
𝜎𝑁1
2 𝜌1𝜎𝑁1𝜎𝑁2

𝜌1𝜎𝑁1𝜎𝑁2 𝜎𝑁2
2

]  

𝚺2 = [
𝜎𝑁1
2 𝜌2𝜎𝑁1𝜎𝐸2

𝜌2𝜎𝑁1𝜎𝐸2 𝜎𝐸2
2

]  

𝚺3 = [
𝜎𝐸1
2 𝜌3𝜎𝐸1𝜎𝑁2

𝜌3𝜎𝐸1𝜎𝑁2 𝜎𝑁2
2

]  

𝚺4 = [
𝜎𝐸1
2 𝜌4𝜎𝐸1𝜎𝐸2

𝜌4𝜎𝐸1𝜎𝐸2 𝜎𝐸2
2

]. 

Hence, the joint posterior distributions of a FMJM and a FMBM become:  

𝑝(𝝁, 𝝈, 𝒛, 𝒃, 𝝅,𝑫|𝒕) ∝ 𝑝(𝒕,𝒛|𝝁, 𝝈, 𝒃, 𝝅)𝑝(𝒃|𝑫)𝑝(𝝁)𝑝(𝝈)𝑝(𝑫), 

and 

𝑝(𝝁, 𝝈, 𝒛, 𝝆, 𝝅|𝒕) ∝ 𝑝(𝒕,𝒛|𝝁,𝝈, 𝝆,𝝅)𝑝(𝝁)𝑝(𝝈)𝑝(𝝆), 

respectively, where the joint prior distributions, required for estimation of the model 

parameters, are 

𝑝(𝒃|𝑫)𝑝(𝝁)𝑝(𝝈)𝑝(𝑫) =∏∏[𝑄(𝒃𝑖𝑗|𝑫𝑗)𝑝(𝝁𝑗)𝑝(𝝈𝑗)𝑝(𝑫𝑗)]
𝑧𝑖𝑗

𝑗𝑖

 

=∏∏[𝑝(𝛾𝑗 )∏𝑞(𝑏𝑖𝑗𝑘|𝜎𝑏𝑗𝑘)𝑝(𝜎𝑏𝑗𝑘)𝑝(𝜇𝑗𝑘)𝑝(𝜎𝑗𝑘)

𝑘

]

𝑧𝑖𝑗

,

𝑗𝑖

 

and 

𝑝(𝝁)𝑝(𝝈)𝑝(𝝆) = ∏ ∏ [𝑝(𝝁𝑗)𝑝(𝝈𝑗)𝑝(𝜌𝑗)]
𝑧𝑖𝑗

𝑗𝑖 = ∏ ∏ [𝑝(𝜌𝑗)∏ 𝑝(𝜇𝑗𝑘)𝑝(𝜎𝑗𝑘)𝑘 ]
𝑧𝑖𝑗

𝑗𝑖 . 



 

94 

 

 

 

Model fitting is carried out by the adaptive MCMC method. We assume vague priors 

commonly used in the literature (e.g. Feng and Dean, 2012; Vink et al., 2016): for 𝑗 = 𝑁, 𝐸 

and 𝑘 = 1, 2, 𝑝(𝑢𝑗𝑘) is distributed as 𝑁(0,10000); 𝑝(𝜎𝑗𝑘), 𝑝(𝜎𝑏𝑗), 𝑝(𝛾𝑗), 𝑝(∆𝑢𝑘), 𝑝(∆𝛾) 

and 𝑝(∆𝜎1) are distributed as half. 𝑁(0,10000); 𝑝(𝜌𝑗) is distributed as 𝑈(−1,1), where 

𝑈(𝑎, 𝑏) is the uniform distribution over (𝑎, 𝑏); 𝑝(𝝅) is distributed as Dirichlet(𝟏) where 

Dirichlet(𝜶) has density 

𝑝(𝝅) = Γ(∑𝛼𝑗

𝐽

𝑗=1

)∏
𝜋
𝑗

𝛼𝑗−1

Γ(𝛼𝑗)

𝐽

𝑗

, 

with the shape parameter vector, 𝜶 = (𝛼1, … , 𝛼𝐽) and 𝟏 is a vector of 1’s with dimension 

𝐽. The posterior estimates of parameters and of latent variables are obtained as their 

posterior medians. The full posterior distributions of the final models are provided in 

Appendix 4C. 

 

4.2.4 Dirichlet Model for the Effect of Covariates on Component 

Membership 

Let 𝑝𝑖1, … , 𝑝𝑖𝐽  be the estimated probabilities that 𝑧𝑖 = 𝑗, 𝑗 = 1,… , 𝐽 , given 𝒕𝑖 , the 

estimated probabilities of component membership. We model these as a function of the 

covariates, 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑅)
𝑇, in a Dirichlet regression (Douma and Weedon, 2019). The 

term 𝑝𝑖𝑗 is obtained through Bayes’ Rule as 

𝑝𝑖𝑗 = 𝑃(𝑧𝑖 = 𝑗|𝒕𝑖) =
𝑃(𝑧𝑖 = 𝑗)𝑃(𝒕𝑖|𝑧𝑖 = 𝑗)

∑ 𝑃(𝑧𝑖 = 𝑗)𝑃(𝒕𝑖|𝑧𝑖 = 𝑗)𝑗

=
𝜋𝑗𝑝(𝒕𝑖|𝑧𝑖 = 𝑗)

∑ 𝜋𝑗𝑝(𝒕𝑖|𝑧𝑖 = 𝑗)𝑗

, 

where 𝑝(𝒕𝑖|𝑧𝑖 = 𝑗) is the posterior density function of 𝒕𝑖 given 𝑧𝑖, which is obtained using 

the estimated model parameters in the first stage analysis. The membership probabilities 
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are rescaled in the manner 𝑝𝑖𝑗
∗ = [𝑝𝑖𝑗(𝑁− 1) + 0.5]/𝑁 to avoid values very close to zero 

or one (Smithson and Verkuilen, 2006). 

In the second stage of the analysis, we model the 𝐽 × 1  vector 𝒑𝑖
∗ = (𝑝𝑖1

∗ ,… , 𝑝𝑖𝐽
∗ )

𝑇
 is 

distributed as Dirichlet(𝜶𝑖), where each element of the shape parameter vector, 𝜶𝑖 =

(𝛼𝑖1, … , 𝛼𝑖𝐽), is parametrized as  

logit(𝛼𝑖𝑗) = 𝛼0 + 𝛽0𝑗 +∑𝛽1𝑗𝑟𝑥𝑖𝑟

𝑅

𝑟=1

, 

and 𝛼0  is the global mean; 𝛽0𝑗  is the component-𝑗  specific mean, and the 1 × 𝑅  vector 

𝜷1𝑗 = (𝛽1𝑗1 , … , 𝛽1𝑗𝑅) is the component-𝑗-specific vector of covariate coefficients. For 

identifiability, we set  𝛽04  and all the elements in 𝜷14  as zero. The sum 𝛼0 + 𝛽0𝑗  is 

interpreted as the log-odds of a fire belonging in the 𝑗th component, relative to the fourth 

component, with all covariates constant. As discussed by Maier (2014), in the development 

of Dirichlet regression models, the variable exp(𝛽1𝑗𝑟) is interpreted as the odds ratio 

corresponding to the increase of 𝑥𝑖𝑟 by one unit, given that the observation is in the 𝑗th 

component. Then 

𝑝̂𝑖𝑗
∗ =

𝛼̂𝑖𝑗
∑  𝛼̂𝑖𝑗𝑗

, 

is the estimate of the transformed probability that fire 𝑖 belongs to component 𝑗, conditional 

on its covariates. We assume vague priors 𝑝(𝛼0), 𝑝(𝛽0𝑗), and 𝑝(𝛽1𝑗𝑟), 𝑗 = 1, … ,3,𝑟 =

1,… ,𝑅 distributed as 𝑁(0,10000). 

4.3 British Columbia Fire Study 

4.3.1 Data Description 

Our study is motivated by an interest in understanding the correlation between fire duration 

and fire size, as well as the effect of environmental variables. We consider an approach that 
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is based on the mixture model context discussed earlier. Duration and size are defined as 

the days and the hectares burned from two critical points in the life history of a fire: (1) 

start of ground attack, to (2) time of final control. Here we focus on only lightning-caused, 

extended attack fires (i.e. fires for which duration exceeds 2 days and size exceeds 4 

hectares).  

The data, assembled by fire scientists at the Pacific Forestry Centre, Natural Resources 

Canada, include historical fire records and the associated environmental records obtained 

from the British Columbia Wildfire Service and weather stations. The data comprise 

information about 1285 fires. There are six regional location variables identifying the fire 

centres in which the fire occurred: fire centres are geographic areas varying in size from 

about 73,000 to 319,000 km2, with varying forest and topographic conditions and fire 

weather conditions that influence fire growth and difficulty of control, as well as values at 

risk that may influence fire management strategies and allocation of suppression resources. 

The fire management offices in each fire centre is responsible for wildland fire management 

within its regional boundaries. Additional variables are: temporal variables—decade and 

month in which the fire occurred; slope; elevation; size of the fire at the time of attack; and 

ten environmental variables recorded at weather stations for which daily records are 

available. The environmental variables include four weather observations and six standard 

fire indices of the Canadian Forest Fire Weather Index System (Van Wagner, 1987), 

derived from the weather observations. The four weather observations, temperature, wind, 

relative humidity, and precipitation are interpolated to a 20 km by 20 km grid using 

smoothing splines after adjusting for elevation and snowmelt/snow onset effects (Nadeem 

et al., 2020). The interpolated values are then used to calculate the six standard indices. The 

indices include three fuel moisture codes, Fine Fuel Moisture Code, Duff Moisture Code, 

Drought Code, that describe the dryness of the corresponding layer of the forest floor, and 

three fire behavior indices, Initial Spread Index, Buildup Index, and Fire Weather Index, 

that describe the fire spread rate, the available fuel, and the intensity of the fire-line 

respectively.  
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We adopt simple, meaningful ways to summarize environmental variables through their 

lifetime. As in Xi et al. (2020), variables demonstrating a clear trend through their 

trajectories are centered and regressed against time. The estimated intercept and the slope 

are used to summarize the trajectory. The remaining environmental variables are 

summarized into an index, referred to as the average deviation from threshold (ADFT), 

describing the amount of exceedance, averaged across the lifetime of the fire, from a 

threshold value determined by scientific input. The terminology referring to the covariates 

identifies the names of the variables, either intercept or slope, or the values of the threshold 

(see Table 4.3). 

4.3.2 Parameter Estimates 

The four panel plots in Figure 4.1 present the data and the estimated distributions of fire 

duration and fire size. The top row contains the estimated marginal distributions of the 

outcomes, overlaid on their histograms, with duration on the left panel and size on the right. 

The estimated FMJM and FMBM distributions are provided in red dashed lines and green 

dotted lines respectively. The marginal distributions of duration and size are both captured 

by a narrowly spread normal component and a widely spread extreme component, and seem 

to provide reasonable fits. The bottom row identifies the component with the highest 

posterior probability of membership for each of the fires. The plots on the bottom row 

contain estimated contours based on the estimated normal joint distributions of the 

outcomes for each of the model components, with the panel on the left based on the fitted 

FMJM while that on the right is based on the fitted FMBM. Estimated components are 

identified with different colours and symbols.  

Table 4.2 presents parameter estimates of the two models. The posterior median and the 

95% credible interval of the parameters are reported. Under FMJM, the probability that a 

fire belongs to components 1 to 4, 𝜋1 ,… , 𝜋4 , are estimated as 0.339(0.278, 0.407), 

0.052(0.016, 0.095), 0.109(0.054,0.170) and 0.497(0.420, 0.571). For convenience for the 

following discussion, recall that the specification of the means and the variabilities of the 

outcomes in each component are given in Table 4.1. For the means, 𝜇𝑁1  and 𝜇𝐸1 are 
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Figure 4.1: The data and the estimated distributions of fire duration and fire size. The top 
row contains the estimated marginal distributions of the outcomes, overlaid on their 

histograms, with duration on the left panel and size on the right. The marginal distributions 
of duration and size are both captured by a narrowly spread normal component and a widely 

spread extreme component and seem to provide reasonable fits. Fires that are normal or 
extreme in both outcomes tend to have outcomes correlated . 
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Table 4.2: Posterior estimates of model parameters 

FMJM  FMBM 

 𝑄.025  𝑄.500  𝑄.975    𝑄.025  𝑄.500  𝑄.975  

𝜋1 0.278 0.339 0.407  𝜋1 0.267 0.323 0.388 

𝜋2 0.016 0.052 0.095  𝜋2  0.020 0.056 0.098 

𝜋3 0.054 0.109 0.170  𝜋3  0.124 0.192 0.270 

𝜋4 0.420 0.497 0.571  𝜋4  0.341 0.426 0.505 

𝜇𝑁1 1.425 1.483 1.551  𝜇𝑁1  1.419 1.473 1.540 

𝜇𝐸1 2.592 2.690 2.804  𝜇𝐸1 2.577 2.674 2.782 

𝜇𝑁2 3.006 3.205 3.414  𝜇𝑁2  3.070 3.272 3.497 

𝜇𝐸2 5.562 5.872 6.222  𝜇𝐸2 5.813 6.184 6.622 

𝛾𝑁 0.516 2.951 6.410  𝜎𝑁1  0.278 0.318 0.367 

𝛾𝐸 4.247 5.933 8.681  𝜎𝐸1  0.782 0.829 0.879 

𝜎𝑏𝑁 0.077 0.136 0.247  𝜎𝑁2  0.978 1.110 1.252 

𝜎𝑏𝐸 0.200 0.285 0.385  𝜎𝐸2  1.696 1.866 2.032 

𝜎𝑁1 0.196 0.291 0.354  𝜌1 0.084 0.241 0.397 

𝜎𝐸1 0.718 0.772 0.827  𝜌2  -0.073 0.493 0.775 

𝜎2 0.782 1.001 1.158  𝜌3  0.312 0.463 0.581 

     𝜌4  0.306 0.433 0.557 

 

.
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estimated as 1.483 and 2.690, while 𝜇𝑁2  and 𝜇𝐸2 are estimated as 3.205 and 5.872. For the 

factor loading parameters, 𝛾𝑁
2   and 𝛾𝐸

2   are estimated as 2.951 (0.516, 6.410) and 

5.933(4.247, 8.681). For the variabilities, 𝜎𝑏𝑁
2  and 𝜎𝑏𝐸

2  are estimated as 0.136(0.077, 0.247) 

and 0.285(0.200, 0.385), while 𝜎𝑁1
2  , 𝜎𝐸1

2  , and 𝜎2
2  are estimated as 0.291(0.196, 0.354), 

0.772(0.718, 0.827) and 0.772(0.782, 1.158). Corresponding values from fitting the FMBM 

are very close and omitted here (see Table 4.2). Note that Appendix 4D provides a 

sensitivity analysis to the choice of other priors, indicating robustness to the choice of 

priors. 

A focus here is to understand the correlation between duration and size. Under FMJM, the 

estimates of the standard error of the shared error distribution, 𝜎𝑏𝑁  and 𝜎𝑏𝐸 , are 

0.136(0.077, 0.247) and 0.285(0.200, 0.385), while the factor loading parameters, 𝛾𝑁  and 

𝛾𝐸 , are estimated as 2.951(0.516, 6.410) and 5.933(4.247, 8.681). The effect of the shared 

error on the logarithm of size is about three times as large as its effect on the logarithm of 

duration in component 1 and is about six times in component 4. Furthermore, the size-

specific error, 𝜎2, estimated as 0.125 (0.017,0.442), is quite small compared to the shared 

outcome error, suggesting that much of the variabilities in component 1 and 4 is shared . 

Under FMBM, the correlation of component 1, 3, and 4, 𝜌1, 𝜌2 , and 𝜌3  are significant and 

estimated respectively as 0.241(0.084, 0.397), 0.463(0.312, 0.581) and 0.433(0.306, 

0.557).  

As both models constrain the means of the components similarly, the estimated means are 

similar across the models. The estimates of the component labels, 𝑧𝑖𝑗, from both models 

are very close, with high positive correlation (see Appendix 4E).  

The covariance entries, 𝐶𝑜𝑣(𝑦𝑖𝑗1,𝑦𝑖𝑗2), are 0.054, 0, 0 and 0.482 for component 𝑗 = 1, . . ,4 

for FMJM, while the corresponding entries are 0.085, 0.295, 0.426 and 0.670 for FMBM 

(See Table 4.1). Essentially, when the shared variability is normally distributed, both 

models are Gaussian mixtures, while FMJM forces the outcome covariance in two of the 

components to be zero but FMBM does not, which is shown by the difference of the 
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directions of the estimated contours of component 2 and 3 in Figure 4.1. On the other hand, 

joint models allow that the shared variability may have different distributions than the 

normal, which offers one component of flexibility that is not reflected in FMBM. 

4.3.3 Effect of Covariates in the Dirichlet Model 

In this section we discuss covariates which are seen to have dominant effects on the 

response. Results are presented here for the FMJM given the similarity in results for the 

two mixture models and the benefits offered based on this model. Appendix 4F provides 

supplemental material related to other covariates considered. Figures 4.2 to 4.5 and Figures 

B.6 to B.8 in the supplemental materials display the estimated transformed membership 

probabilities, 𝑝̂𝑖𝑗
∗ , plotted against each of the covariates in the model. These scatterplots 

include a smoothing loess for numerical covariates, providing the overall trend of the plots 

using weighted linear least squares regressions over the span of the value of the covariates; 

for categorical covariates, the plots are side-by-side violin plots. The exponentiated 

estimated covariate effects, relative to component 4, exp(𝛽1𝑗𝑟) , 𝑟 = 1,… , 𝑅 , for 

components 𝑗 = 1,2,3 are summarized in Table 4.3.  

Fire Centre: The estimated transformed membership probability by fire centre are 

presented in violin plots in the left panel of Figure 4.2. The plots show the posterior estimate 

of the probability of each fire belonging to component 1 to 4 for each of the fire centres. 

Fire management strategies vary by fire centre, and differences in such strategies may be 

exacerbated for fires with extreme duration which tend to receive more containment 

resources. Hence, we expect to see some variation by fire centre. As evidenced in Figure 

4.2, the medians of the probabilities displayed in the violin plots demonstrate clear variation 

over fire centres for the extreme duration components. Within component 3 (displayed in 

blue), which identifies fires with extreme duration and normal size, the Coastal Region 

(Co) and the Cariboo Region (Ca) have the highest and the lowest probabilities 

respectively. The Southeast Region (So) also has a high corresponding probability. Within 

component 4 (displayed in red), which identifies fires with extreme duration and extreme 

size, the Coastal Region and the Cariboo Region have the lowest and the highest 
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probabilities respectively. This suggests that, for fires with extreme duration, fires in the 

Coastal Region of the province tend to have high probability of being small in size and the 

fires in the interior Cariboo Region tend to have high probabilities of being large in size.  

Month: Figure 4.3 provides estimates of the probability of each fire belonging to component 

1 to 4 by month and by year. The seasonality of the fire behavior displays different patterns 

depending on component. In component 1 (green), identifying fires with normal duration 

and normal size, the probabilities tend to a minimum in the middle of the fire season, 

whereas in component 4 (red), identifying fires with extreme duration and extreme size, 

probabilities tend to a maximum in the middle of the fire season. The months of August 

through October are associated with a much higher risk of fires being extreme in duration 

and size (in component 4, displayed in red). These components include 85% of the fires in 

the study. Fires of extreme size and normal duration (in component 2, displayed in yellow) 

tend to occur in May. Fires of extreme duration and normal size (in component 3, displayed 

in blue) are more likely to present at the end of the season than at the beginning. 

Wind and Precipitation: Figure 4.4 presents the posterior probability estimates by the 

average wind speed (km/h) measured over a 10-minute period on the left panel and the 

amount of rain (mm) accumulated in the 24-hour period from noon to noon on the right. 

As wind speed increases, the probability of being identified in the component 

corresponding to normal duration and extreme size increases, while as precipitation 

increases, the probability of being identified in the component corresponding to extreme 

duration and extreme size decreases. 

Drought Code and Duff Moisture Code: Figure 4.5 demonstrates posterior probability 

estimates by the ADFT of DC on the left panel and by DMC the right. DMC and DC are 

correlated with the moisture content of forest floor organic layers approximately 5-10 cm, 

and 10-20 cm thick, respectively, and indicate the average amount of available fuel in mid 

to deeper organic layers throughout the lifetime of the fire. The DMC is modeled from 

cumulative observations of relative humidity, temperature, and precipitation, and the DC 

from temperature and precipitation observations over the fire season. In our analysis, DMC 
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Figure B.6: Posterior estimates of component membership by slope and elevation 
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