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Abstract 

Understanding the dynamics of wildland fires contributes significantly to the development 

of fire science. Challenges in the analysis of historical fire data include defining fire 

dynamics within existing statistical frameworks, modeling the duration and size of fires as 

joint outcomes, identifying how fires are grouped into clusters of subpopulations, and 

assessing the effect of environmental variables in different modeling frameworks. We 

develop novel statistical methods to consider outcomes related to fire science jointly. These 

methods address these challenges by linking univariate models for separate outcomes 

through shared random effects, an approach referred to as joint modeling. Comparisons 

with existing approaches demonstrate the flexibilities of the joint models developed and 

the advantages of their interpretations. Models used to quantify fire behaviour may also be 

useful in other applications, and here we consider modeling disease spread. The 

methodologies for fire modeling can be used, for example, for understanding the 

progression of Covid-19 in Ontario, Canada.  

The key contributions presented in this thesis are the following: 1) Developing frameworks 

for modelling fire duration and fire size in British Columbia, Canada, jointly, both through 

modelling using shared random effects and also through copulas. 2) Illustrating the 

robustness of joint models when the true models are copulas. 3) Extending the framework 

into a finite joint mixture to classify fires into components and to identify the subpopulation 

to which the fires belong. 4) Incorporating the longitudinal environmental variables into 

the models. 5) Extending the method into the analysis of public health data by linking the 

daily number of Covid-19 hospitalizations and deaths as time series processes using a 

shared random effect. A key aspect of the research presented here is the focus on extensions 

of the joint modeling framework. 

Keywords 

Joint modeling, finite mixture model, time series, fire duration, fire size, Covid-19 data
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Summary for Lay Audience 

This thesis develops novel statistical techniques for analyzing data associated with fire 

science and disease modeling. In general terms, a mathematical model can be used to 

describe relationships observed in the real world. We create modeling frameworks in which 

different types of data (e.g. time to event occurrence and repeated environmental 

observations) can be incorporated into a single model. 

Understanding how wildland fires grow contributes to the development of fire science. 

Some research areas we study include analyzing historical fire data to learn how they 

behave, and studying predictive variables such as the time to supress the fire and the area 

burned. We also consider variables such as seasonality, location, and weather, and the 

impact of these variables on fire behaviour.  

We use a technique called joint modeling that allows the incorporation of multiple types of 

data into one model simultaneously, and we build on this approach to describe fire 

behavior. Using this approach, we show the effect of predictive variables on two outcomes, 

duration and size of fires. Models used to quantify fire behaviour may also be useful in 

other applications, such as modeling disease spread. The methodologies for fire modeling 

can be used, for example, for understanding the progression of an infectious disease.  We 

apply our techniques developed for studying fire science to the study of Covid-19 in 

Ontario, Canada. 



i 

 

Co-Authorship Statement 

Paper 1: Chapter 2 

Paper title: Statistical models of key components of wildfire risk 

List of authors: Dexen D. Z. Xi, Steve W. Taylor, Douglas G. Woolford, C. B. Dean 

Publication: 

Xi, D. D. Z., Taylor, S. W., Woolford, D. G., & Dean, C. B. (2019). Statistical Models of 

Key Components of Wildfire Risk. Annual Review of Statistics and Its Application, 6(1), 

197–222. https://doi.org/10.1146/annurev-statistics-031017-100450 

Author contributions: 

Dr. Dean was invited to write a paper with the purpose of providing a review for the role 

that statistics and its application has played in the development of fire science. Dr. 

Woolford formulated the outline of the paper and wrote section 2. Fire scientist Steve 

Taylor wrote section 1, 3 and 7. Dr. Dean wrote section 8 and took lead in the editing. I 

wrote section 2, 5, and 6. I organized the development of the paper and took lead in its 

revision. All authors contributed to the preparation of the manuscript with regard to the 

content and relevance of the work. 

 

Paper 2: Chapter 3 

Paper title: Modeling the duration and size of extended attack wildfires as dependent 

outcomes 

List of authors: Dexen D. Z. Xi, C. B. Dean, Steve W. Taylor 

Publication: 

Xi D. D. Z., Dean, C. B., & Taylor, S.W. (2020). Modeling the duration and size of 

extended attack wildfires as dependent outcomes. Environmetrics. 31(e2619). 

https://doi.org/10.1002/env.2619 

https://doi.org/10.1146/annurev-statistics-031017-100450
https://doi.org/10.1002/env.2619


 

ii 

 

 

Author contributions: 

The topic of jointly modeling fire duration and fire size using shared random effects was 

initiated by Dr. Dean, Steve Taylor and the visiting scholar Dr. Giovani da Silva. Mr. Taylor 

provided the data and Dr. Silva carried out exploratory work. I proposed and formulated 

the model frameworks, then carried out the analysis. Dr. Dean and Mr. Taylor provided 

statistical guidance and scientific interpretation during the analysis. All authors contributed 

to the preparation of the manuscript regarding the content and relevance of the work. 

 

Paper 3: Chapter 4 

Paper title: Modeling the Duration and Size of Wildfires Using Joint Mixture Models 

List of authors: Dexen D. Z. Xi, C. B. Dean, Steve W. Taylor 

Publication: 

Xi, D. D. Z., Dean, C. B., & Taylor, S. W. Modeling the Duration and Size of Wildfires 

Using Joint Mixture Models. Submitted for publication. 

Author contributions: 

After discussions with Dr. Reg Kulperger at my thesis proposal defense, I initiated the topic 

of developing a multivariate mixture model for fire duration and fire size through joint 

modeling. Dr. Dean proposed examining the estimated component probabilities while I 

proposed using a Dirichlet regression to assess the effect of covariates on the probabilities. 

Mr. Taylor and Dr. Khurram Nadeem prepared the fire data and I performed the analysis 

of the data. Dr. Dean and Mr. Taylor provided statistical guidance and scientific 

interpretation during the analysis. All authors contributed to the preparation of the 

manuscript with regard to the content and relevance of the work. 

 



 

iii 

 

Paper 4: Chapter 5 

Paper title: Joint Modeling of Hospitalization and Mortality of Ontario Covid-19 cases 

List of authors: Dexen Xi, C. B. Dean, Elizabeth M. Renouf 

Publication: In preparation 

Author contributions: 

The seriousness of the pandemic led to many discussions about how statistical science and 

my work on joint modeling could contribute to understanding aspects of the impact of 

Covid-19. The topic of analyzing the observed and underlying relationship between daily 

number of hospitalizations and deaths was initiated by Dr. Dean. I raised the idea of 

viewing the outcome processes as time series and conducting a cointegration analysis. 

Cointegration analysis was studied and applied in my M.Sc. summer project. Dr. Elizabeth 

Renouf and Dr. Georges Bucyibaruta collected data and provided suggestions in model 

building. I formulated the joint model and carried out the analysis. All authors contributed 

to the preparation of the manuscript with regard to the content and relevance of the work. 

  



 

iv 

 

 

 

 

 

 

 

 

To Qi Lin and Yuan 



i 

 

 

 

 

 

 

 

 

 

“Where tree leaves dance... one shall find flames... the fire's shadow will illuminate the 

village... and once again tree leaves shall bud anew.” 

– Hiruzen Sarutobi, the Third Hokage 
 

Kishimoto, M. (2007). Naruto (Shonen jump manga ed.). San Francisco, CA: Viz. 
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Chapter 1  

1 Introduction 

Scientific studies often consider different types of outcomes obtained from the same 

individual. These outcomes of interest are usually modeled by current understanding of the 

scientific principles from which the outcomes arise, and as well, their distributions can be 

modeled statistically and empirically when historical records are available. These kinds of 

studies are commonly seen in biometrics, environmetrics, econometrics, and other fields of 

science, with the main purpose of understanding, if any, the relationship between the 

outcomes. For example, in biostatistics, the progression of CD4 (i.e. cluster of 

differentiation 4 counts, a longitudinal biomarker measuring white blood cells of a patient 

in AIDS research) and lifetime are outcomes of different types that are often studied 

together using statistical models. The purposes of such a study are (i) to understand the 

within-subject pattern of CD4 and (ii) to characterize the relationship between CD4 and the 

lifetime. 

Statistical models also play a similar role in the development of wildland fire science. Fire 

danger systems have evolved from qualitative indices, to process-driven deterministic 

models of fire behavior and growth, to data-driven stochastic models of fire occurrence and 

simulation systems. However, there has often been little overlap or connectivity in these 

frameworks, and validation has not been common in deterministic models. Examples of 

validation approaches for such deterministic models are the use of expert intuition, the 

contrast with real system measurements, and comparisons with theoretical analysis.  

Yet, marked increases in annual fire costs, losses, and fatality costs over the past decade 

draw attention to the need for better understanding of fire risk to support fire management 

decision making through the use of science-backed, data-driven tools. Contemporary risk 

modeling systems provide a useful integrative framework. Chapter 2 discusses a variety of 

important contributions for modeling fire risk components over recent decades, certain key 
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fire characteristics that have been overlooked, and areas of recent research that may 

enhance risk models. 

Understanding the complex relationship between the duration and size of forest fires is 

important in order to better predict these key characteristics of fires for fire management 

purposes in a changing climate. Describing this relationship is also important for our 

fundamental understanding of fire science. In Chapter 3, we develop and utilize novel 

techniques for characterizing the distribution of multiple outcomes related to a specific 

event, placed in the fire science context. In this framework, we jointly model time spent 

(duration), in days, and area burned (size), in hectares, from ground attack to final control 

of a fire as a bivariate survival outcome using two broad methodologies: a copula model 

that connects the two outcomes functionally, and a joint modeling framework that connects 

the two outcomes with a shared random effect. We compare these two methodologies in 

terms of their utility and predictive power. We also consider how longitudinal 

environmental variables (e.g. precipitation, drought indices) are best incorporated in this 

context, and challenges related to the complexity of computation associated with the 

analysis of two outcomes considered jointly.  

As well, fire behaviour, linked to hidden effects, tends to yield that fires arise from different 

subpopulations. Indeed, it is not unusual for fire behaviour to be identified as arising from 

either normal or extreme subpopulations, for example. In Chapter 4, we embed these two 

concepts into a new framework for jointly modeling fire duration and fire size. We develop 

a bivariate finite mixture framework that can be used to model duration and size with four 

subpopulations of the outcomes whereby duration and size are either normal or extreme. 

We utilize a shared random effect model as well as a bivariate Gaussian mixture model for 

such mixture modeling. We also incorporate the effect of explanatory variables associated 

with each fire event, on the posterior probability of the component that the fire belongs to, 

through a Dirichlet model. In an analysis of fire outcomes from British Columbia, Canada, 

we find that the majority of the fires are of normal or extreme magnitude in both outcomes, 

with strong evidence indicating correlation between duration and size. The effect of fire 

centre, month, and several environmental covariates are identified as key predictors and we 
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are able to determine through these approaches how these covariates differentially affect 

the four subpopulations.  

The concepts of joint modeling developed in the previous chapters can be applied to a wide 

variety of settings. Given the current focus on pandemic modeling, we also consider its 

utility in modeling public health data related to Covid-19. Daily number of hospitalizations 

and deaths are key outcomes in quantifying the outbreak of infectious diseases. For the 

purposes of understanding the trend of the processes and the effect of observations from 

previous days, it may be useful to consider time series approaches for modeling the 

outcomes. Using such an approach, cointegration analysis may be employed to identify the 

long-run relationship between those multiple processes that are key to understanding trends 

in infectious disease such as hospitalization and death. As an alternative perspective, 

relationships between outcomes can be modeled through a shared latent stochastic error 

term; in Chapter 5, we propose a novel framework to study the underlying correlation 

between two time series processes through this method called joint modeling. In our 

Ontario Covid-19 study, a cointegration analysis utilizes statistical tests to identify the long-

run relationship between the daily number of new hospitalizations six days prior and the 

daily number of new deaths in Ontario. Additionally, a joint autoregressive model provides 

a framework to model the underlying correlation between the processes. 

The remainder of the thesis is organized as follows: Chapter 2 provides the background on 

statistical models developed in fire science as they relate to the work contained in the thesis. 

The joint modeling frameworks for fire duration and fire size, as well as the analysis of 

historical fires in British Columbia, Canada are presented in Chapter 3 and Chapter 4. 

Chapter 5 provides the framework to jointly model daily number of hospitalizations and 

deaths for Covid-19 studies. Chapter 6 concludes the thesis with a discussion of future work 

related to the research presented here. The thesis is organized in the integrated-article 

format with the chapters treating discrete but related problems (see 

https://grad.uwo.ca/administration/regulations/8.html#8321, Section 8.3 The Thesis 

Preparation and Format). 

https://grad.uwo.ca/administration/regulations/8.html#8321


 

4 

 

 

 

Chapter 2  

2 Statistical Models of Key Components of Wildfire Risk 

2.1 Introduction 

The global average annual area burned due to wildfires was recently estimated (Giglio et 

al., 2013) to be approximately 3.48 million km2 for the 1997–2011 period, about the area 

of India. Wildfire characteristics such as the number of fires, their size, their severity, the 

season during which they occur, and the annual area burned in a region vary considerably 

with climate, vegetation, topographic controls, and human influence at local (Heyerdahl et 

al., 2007), regional (Parks et al., 2012), and global (Krawchuk et al., 2009) scales. Fires are 

moderately rare events at a daily scale. For example, while about 5,000 fires occur in 

Canada every year, this translates to a background rate of approximately one new fire per 

ten million hectares per day during an approximately 5-month fire season. However, this 

may be punctuated by surges in the number of fire ignitions associated with high pressure 

systems or lightning storms at local or regional scales, resulting in many dozens to hundreds 

of fire starts being discovered within a few hours to days. Consumption of biomass, smoke 

emissions, and changes in land cover associated with vegetation fires have an important 

influence on global atmospheric chemistry, the global carbon budget, and energy balance, 

as well as the structure and function of affected ecosystems (Ryan, 1991; GLOBAL, 2013). 

As well, unwanted fires may also cause loss of life and property, impacts on air quality and 

human health, and loss of business revenue. 

The field of fire science evolved over approximately 100 years from early descriptive 

studies (e.g., Plummer, 1912) to the development of complex models of fire spread and 

other physical processes (e.g., Linn et al., 2007). Research has followed two streams: basic 

research to enhance understanding of wildfire as an ecological process, and applied 

research to inform fire management decision making. Contemporary fire management 

organizations follow the four pillars of emergency management: prevention and mitigation, 

planning and preparedness, response, and recovery. Thus, to inform preparedness and 
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response actions, wildfire managers would like know, at a daily to weekly scale, how many 

fires will likely occur, whether and how fast they will spread, how intense and how large 

they will grow, and how long they will last. To inform prevention and mitigation activities, 

they would also like to know the long-term likelihood of a vegetated area burning. Because 

of the close connection between weather and fire, much early effort was devoted to the 

development of fire danger rating systems to predict fuel flammability, fire occurrence, and 

fire behavior in different vegetation types with changing weather conditions to support 

preparedness and suppression response decision making (Taylor & Alexander, 2006; Hardy 

& Hardy, 2007; Fujioka et al., 2008). An important historical development is that 

independent systems have been developed to portray fire danger in different countries; no 

single global fire danger system has emerged. Examples include the Canadian Fire Weather 

Index (FWI) System, a subsystem of the Canadian Forest Fire Danger Rating System; the 

National Fire Danger Rating System in the United States; and the McArthur Forest Fire 

Danger Index in Australia. 

Because wildfire is a natural process that cannot be completely eliminated from some 

environments, even where unwanted, fire management is increasingly being recognized as 

a form of risk management. Natural hazard risk, the expected loss or impact arising from a 

natural event, is considered to have three components: hazard, vulnerability, and exposure 

(Cardona et al., 2012), which can be visualized as a risk triangle (Crichton, 1999). It is 

important to note that this is not a statistical representation of risk but one that has been 

developed and utilized by the natural hazards community. We present it here because of its 

common usage in environmental science. Scott (2006) adapted this concept, defining the 

wildland fire risk triangle as including the three components: fire probability (i.e., the 

hazard or the risk of fire occurrence), fire behavior (i.e., the severity or potential behavior 

of a fire if it occurs), and fire effects (i.e., the exposure or potential impact of the fire). 

Statistical science has made many contributions to modeling some of the components of 

this risk triangle, as we discuss later. Figure 2.1 illustrates the concept of the general risk 

triangle and its adaptation to wildland fire risk. 
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Figure 2.1: The risk triangle concept from the insurance and wildland fire perspectives. (a) 

The general risk triangle framework in insurance (adapted from Crichton, 1999). (b) The 

risk triangle concept as it applies to assessing wildland fire risk (modified from Scott, 

2006). Risk in general, as well as in the context of wildland fires, can be viewed as having 

three connected components, as highlighted by the sides of the risk triangle. 

Consequently, there has been increasing focus on the development of quantitative risk 

analysis methods (Miller & Ager, 2013). Quantitative risk assessment to inform 

management decision making has its foundations in decision theory and utility theory 

(Morgan et al., 1992). Figure 2.2 illustrates a number of factors that contribute to wildfire 

risk, including the likelihood and severity of fires in a region and the exposure, 

vulnerability, and value of valued assets. Finney (2005) defined wildfire risk as the 

expected change in net present value obtained from the aggregate losses and benefits in 𝑛 

values or assets over all 𝑁 possible fire behaviors (under all weather conditions from all 

ignition locations): 

∑∑𝑝(𝐹𝑖)[𝐵𝑖𝑗 − 𝐿𝑖𝑗],

𝑛

𝑗=1

𝑁

𝑖=1

 

where 𝑝(𝐹𝑖) is the probability of the 𝑖 th fire behavior, and 𝐵𝑖𝑗 and 𝐿𝑖𝑗 are the benefits and 

losses resulting from the effects of the 𝑖 th fire behavior on the 𝑗 th asset type, respectively. 
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Figure 2.2: Some factors contributing to wildfire hazard and risk are estimated with various 

qualitative, deterministic, and stochastic models. 

 More recently, Papakosta et al. (2017) defined wildfire risk to the 𝑗 th asset as 

∫ 𝑓𝐻(ℎ) ∫ 𝑓𝐷𝑗|𝐻(𝑑|ℎ)𝐶𝑗(𝑑, ℎ)d𝑑dℎ,

Damage scenario dHazard scenarios h

 

where 𝑓𝐷𝑗|𝐻(𝑑|ℎ)  is the conditional density of damage 𝑑  given a wildfire event ℎ 

(vulnerability), 𝐶𝑗(𝑑, ℎ) is the cost associated with the damage by the wildfire, and 𝑓𝐻(ℎ) 

is the probability density of a wildfire event. In a further refinement of the model, the 

density 𝑓𝐻(ℎ) may be related to a certain fire severity characteristic, for example, the 

likelihood of a particular type of fire, fire intensity, duration, size, or incident complexity. 

These key characteristics represent positive continuous outcomes (or marks in the context 

of a point process; e.g., Daley & Vere-Jones, 2003). 

The precise definition of each fire severity characteristic may vary in different contexts. As 

an example, the characteristic may be the size being larger than some specific value, for 

instance, a fire being class classified as a large fire as defined by Stocks et al. (2002). In 

this case, the risk on assets relates to risks especially for large fire events.  Alternatively, 
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a certain epoch of the fire’s duration may be of interest (e.g., Morin et al., 2015). In that 

case, the risk on assets refers to the risk during this epoch of the fires. Note that this 

framework can be further extended by decomposing the fire characteristic into components, 

such as decomposing fire size into the probability of a large fire given fire occurrence and 

then modeling the size distribution for large fires. This approach was utilized in Preisler et 

al. (2011), where size was decomposed even further by coupling to a model for cost per 

acre in order to forecast future suppression costs. 

Statistical science has an important role in modeling and quantifying uncertainties in the 

various components that make up wildland fire risk, through such conditional and marginal 

models, in order to better understand wildland fire science and inform wildland fire 

management (Preisler & Ager, 2013; Taylor et al., 2013). The latter review also includes a 

thorough commentary on the history of statistical modeling of fire occurrence, starting with 

the pioneering work of Bruce (1963) and Cunningham & Martell (1973), followed by the 

seminal work of Brillinger et al. (2003) and Preisler et al. (2004) that led to substantial 

developments over the next decade. 

This chapter reviews key statistical models that have been used to predict wildfire risk 

components, including some very recently developed novel modeling strategies. Section 2 

reviews models for fire occurrence prediction, while Section 3 discusses deterministic 

models for fire spread, intensity, and growth. Section 4 presents models for fire duration, 

and Section 5 examines models for estimating fire size. Sections 2 through 5 discuss past 

research investigating each of those characteristics of fire regimes separately or through the 

conditional framework as discussed above. In Section 6, we introduce the use of joint 

modeling methods using duration and size as an illustration, which we believe has the 

potential for gaining further insight into fire behavior. In Section 7, we turn to an alternative 

conditional framework for modeling fire hazard and its utilizations through computer 

simulations. We conclude with a discussion. 



 

9 

 

 

 

2.2 Occurrence 

2.2.1 A Point Process Viewpoint 

It is important to note that not all wildland fire ignitions may appear in fire management 

agency records (Taylor et al., 2013). Ignitions that lead to sustained fire spread may be 

detected by wildland fire management agencies (e.g., aerial detection or stationary towers), 

by the public, or by satellite-borne sensors. Detected fires that are subsequently reported 

and then recorded by a fire management agency are referred to as fire occurrences. 

Observed patterns in fire occurrences can be viewed as realizations of a spatio-temporal 

point process. Examples of applying methodology from the point process literature include 

Podur et al. (2003), Wang & Anderson (2011), and Turner (2009). The spatio-temporal 

point process underlying the generation of fire occurrence is denoted 𝑁(𝑠1, 𝑠2, 𝑡), where 𝑥 

and 𝑦 are location variables and 𝑡 is time. Since the rate of wildfire occurrences depends 

on environmental conditions favorable for ignition, the presence of an external ignition 

source, and detection capability, the point process can be assumed to have an 

inhomogeneous conditional intensity function λ  that depends on parameter θ = θ(𝑧) , 

where 𝑧 is a vector of such predictors. The log-likelihood of the spatio-temporal point 

process is 

𝐿(θ) = ∫ ∫ ∫ 𝑙𝑜𝑔[λ(𝑠1, 𝑠2, 𝑡|θ)] d

𝑠2𝑠1

𝑇

0

𝑁(𝑥, 𝑦, 𝑡) − ∫ ∫ ∫ 𝑙𝑜𝑔[λ(𝑠1, 𝑠2, 𝑡|θ)] d

𝑠2𝑠1

𝑇

0

𝑥d𝑦d𝑡. 

A discretized approach to approximating this likelihood has been the preferred framework 

for modeling fire occurrences with the underlying conditional intensity function 

approximated by a Bernoulli probability of a fire occurrence; the response and covariates 

are recorded on a set of discrete space-time voxels, chosen to be at a fine enough scale so 

that the counts of fire occurrence are reduced to presence/absence of a fire occurrence in 

any given voxel. A common scale for dividing space-time is 1 km × 1 km by daily cells 

(voxels). Dynamic covariates, such as weather and fire weather indices, or lightning counts 
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for lightning-caused fires, are interpolated to the centroid of that voxel. Static covariates, 

including measures of key predictors related to human-caused fires, such as measures 

related to roads, railways, or population density, are integrated over each voxel. For more 

details on the connection between the underlying spatio-temporal point process likelihood 

function and discretized approximations in the context of modeling fire occurrence and an 

example of such a model, readers are directed to Brillinger et al. (2003) or the review 

discussion in Taylor et al. (2013). 

2.2.2 Logistic Models as a Discretized Approach to Estimate a Point 

Process 

Using the discretized approach, the most widely employed method for modeling fire 

occurrence appears to be logistic regression or related extensions such as logistic 

generalized additive models (GAMs); sometimes models with random effects are also 

considered. Separate models, stratified by the cause of the fire, are commonly developed 

due to differences between the underlying processes generating the different types of 

ignitions. For example, different types of ignition sources can lead to different lag periods 

between the ignition of a fire and its eventual arrival to a fire management agency as a 

reported wildfire. This was reflected in the set of models characterizing the probabilities of 

ignition and eventual arrival (i.e., occurrence) of lightning fires in Ontario as developed by 

Wotton & Martell (2005). Lightning ignitions and their subsequent arrivals as reported 

forest fires are modeled separately. Then, the probability of a lightning strike igniting a fire 

at time s and that fire being reported at time 𝑠 + 𝑡 is calculated by 

P(lightning strike at time s leads to a lightning fire occurrence at time 𝑠 + 𝑡) =

P(occurrence at time 𝑠 + 𝑡|ignition at time𝑠)P(ignition at time 𝑠) . 

There are also commonly highly nonlinear relationships between the probability of fire 

occurrence and other predictors, such as for seasonality or spatial effects. These nonlinear 

relationships on the log-odds scale are commonly modeled by spline-based smoothers using 

logistic GAMs. Wood (2006), for example, provides a general discussion of GAMs, and 
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Preisler & Ager (2013) provide a high-level overview of GAMs in the fire occurrence 

context. Prior to the introduction of GAMs, nonlinear seasonality components were 

modeled using periodic functions (e.g., Martell et al. 1989). 

Let 𝑌𝑖 , 𝑖 = 1,… , 𝑛 be a set of random variables representing an indicator for fire occurrence 

(Yes = 1, No = 0) in voxel 𝑖 , assumed to be independently distributed as Bernoulli(𝑝𝑖), 

conditional on observed covariates. Here, 𝑝𝑖 = 𝑃(𝑌𝑖 = 1|𝑥𝑖) where 𝑥𝑖 denotes a vector of 

covariates for the 𝑖 th voxel. We may model 𝑝𝑖 through 

logit 𝑝𝑖 = 𝛽0 +∑𝑔𝑝

𝑃

𝑝=1

(𝑥𝑖𝑝), 

where logit 𝑝𝑖 = log (
𝑝𝑖

1−𝑝𝑖
), β0 is an intercept, 𝑥𝑖𝑝, 𝑝 = 1,… , 𝑃 are covariates, and 𝑔𝑝 are 

corresponding zero-mean smoothers of these covariates. The terms in the model may 

include multidimensional smoothers [e.g., 𝑔(𝑠, 𝑡),  where 𝑠𝑖 = (𝑠𝑖1, 𝑠𝑖2)  represents the 

location and 𝑡𝑖 = (𝑡𝑖1, 𝑡𝑖2) represents day of year and year] to model spatial and temporal 

effects, where the latter allows for trends both within (e.g., seasonality) and across (e.g., 

climate change or other trends) years, as well as other nonlinear and/or linear effects of 

other key predictors, such as measures of fuel moisture and human-land use characteristics. 

As noted by Woolford et al. (2011), the volume of data can present computational 

difficulties when modeling on a fine spatio-temporal scale such as the discretized space-

time voxel approach as outlined previously. For example, in their case study of the Romeo 

Malette Forest in Ontario, Canada, Woolford et al. (2011) noted that discretizing the data 

to a set of 1 km × 1 km × daily voxels led to nearly 90 million records. For larger-scale 

studies, such as developing provincial or national modeling frameworks, this problem 

compounds immensely. Interestingly, however, the solution to this problem lies at the heart 

of one of the underlying dogmas of statistical inference: Rather than trying to fit a model 

to all data, a representative sample is used for model fitting. Since fires are an moderately  

rare event on any fine space-time scale, a response-dependent sampling scheme is 
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commonly employed, where all the voxels with fire occurrences are kept, along with a 

simple random sample of the nonfire voxels. 

From a decision-support point of view, a key contribution of spatio-temporal fire 

occurrence modeling is that it produces a relative occurrence probability map where cells 

with higher probability of fire occurrence are identified, which can aid decision support, 

such as aerial detection routing. The expected number of fire occurrences in a given region 

on a given day can then be estimated. We also note that it is common to achieve greater 

specificity (correct identification of cells without fire occurrences) than sensitivity (correct 

prediction of cells with fire occurrences) because of the stochastic nature of the ignition 

process and because an overwhelming number of voxels refer to nonfire day and areas. The 

mathematical details of this framework are discussed in depth by Brillinger et al. (2003) 

and Taylor et al. (2013). The latter also summarizes the connections between this technique 

and logistic retrospective case-control studies. 

2.2.3 Changes in Fire Occurrence 

Whether and where fire occurrence is changing with climate is of considerable interest to 

fire managers. For example, fire occurrence has been shown to be increasing under a 

warming climate in the western United States (e.g., Westerling et al. 2006). Observed 

increases in fire occurrence have been found to be associated with anomalies in fire weather 

indices (Woolford et al. 2014). The fire season as measured by fire occurrence probability 

has been getting longer (Woolford et al. 2010; Albert-Green et al. 2013) and, based on 

results from studies using global climate model data under various scenarios, fire 

occurrence probability is predicted to increase under a warming climate, (e.g., Krawchuk 

et al. 2009; Wotton et al. 2003, 2010). 

As commented on by Taylor et al. (2013), difficulties with historical analyses (e.g., 

Woolford et al., 2010; Albert-Green et al., 2013) arise because fire detection system 

effectiveness can change over time, leading to potential confounding with any climate 

change effect. Woolford et al. (2010) found that the median size at detection for lightning-
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caused fires had been decreasing over the 42 years of their study, suggesting that the 

detection system may have become more effective over time, under the assumption that a 

fire would continue to grow after ignition. 

Woolford et al. (2010) noticed three dominant characteristics in the lightning-caused fire 

occurrence records they analyzed, namely, regular seasonal patterns (as commonly 

quantified in other fire occurrence work such as Martell et al. (1989); Brillinger et al. 

(2003); Preisler et al. (2004); Woolford et al. (2009, 2011)); large deviations from these 

patterns, including zero-heavy behavior where no fires were observed even though fires 

were typically observed around such a period; and extreme behavior where many more 

fires were observed than what is typical. 

The mixture framework of Woolford et al. (2014) identified significant increases to the 

lightning-caused fire occurrence probability that were associated with temperature and fire-

weather index anomalies. Their study monitored long-term trends in a set of historical fire 

records for the period 1963–2009 for a region of northwestern Ontario, Canada, using a 

three-component mixture of logistic GAMs with the component densities representing 

seasonal, zero-heavy, and extreme behavior as discussed above. They noted that potential 

confounders, such as improved wildland fire detection systems, make it difficult to tease 

out climate change trends and that longer than a half-century of historical records is 

required to have strong confidence in correctly concluding significance in such a study 

monitoring temporal changes to fire occurrence. They also noted that determining power 

to detect trends in fire occurrence probability as a function of the number of years in the 

historical records was a “key, yet commonly overlooked, point in many quantitative 

scientific investigations of trends that may be related to climate change.” (Woolford et al., 

2014, p. 407) For their study, 47 years of fire records yield a power of 20% to detect trend 

changing. This power evaluation offers an opportunity to consider how many years of 

records are required to detect changes in environmental effects with high confidence. 

Regardless of the underlying model and study, goodness-of-fit checking is a key step in 

any model-building framework. Typically, the goodness-of-fit logistic-based models can 
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be assessed by comparing observed counts versus those expected under the model where 

such counts are aggregated on various scales. Ideally, cross-validation (Wood, 2006; James 

et al., 2013) is also used to assess predictive accuracy. Vilar et al. (2010) provide simple 

examples of this in the context of fine-scale spatio-temporal fire occurrence prediction. 

However, assessing goodness of fit in the mixture modeling framework is more 

complicated. Woolford et al. (2014) examined goodness of fit by comparing observed 

versus expected counts for each subcomponent of their mixture model. This is illustrated 

in Figure 2.3. Such an assessment approach offers the opportunity to determine which of 

the subcomponents are not appropriate and could find wide application in other mixture 

modeling frameworks. 

 

Figure 2.3: Panels a and b plot the estimated component-specific fire occurrence probability 

curves (red lines) for the regular and extreme components, respectively. A fire day refers 

to a day when one or more wildland fires are reported. Overlaid on each of these curves are 

the observed empirical weighted proportion of the number of fire days per week over all 

years (red circles), where the observed data were weighted by the posterior probabilities of 

membership for the corresponding regular or extreme component. Panel c compares 

observed and expected frequencies of excess zeros. The light blue line is the expected 

number of zeros from the zero-heavy component plotted versus year. The blue circles are 

the empirical number of excess zeros: the number of observed zeros minus the number of 

zeros expected to arise from both the regular and extreme seasonal components. Adapted 

with permission from Woolford et al. (2014). 
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2.2.4 The Two Cultures of Fire Occurrence Prediction Modeling 

Statistical Modeling Versus Algorithmic Methods 

Breiman (2001) noted that the objective of a statistical analysis is to use data to make 

inferences, observing that the two dominant cultures for doing so are “statistical” and 

“algorithmic,” where the latter focuses on finding a function to predict the response as a 

function of other variables without assuming a specific stochastic model. The preceding 

subsections have focused on summarizing key developments from a statistical modeling 

standpoint. However, algorithmic modeling approaches have also been used in the context 

of fire occurrence prediction. 

For example, Garcia et al. (1996) developed artificial neural networks for wildfire 

occurrence and compared them to those of Garcia et al. (1995), who had utilized logistic 

regression models to analyze the data. This early study of fire occurrence using algorithm 

methods found reasonable predictive accuracy with neural nets; it correctly predicted 85% 

of the nonfire days and 78% of the fire days. They also commented that the improvement 

in predictions over traditional logistic regression modeling results were “not as dramatic as 

it has been in other applications” (Garcia et al., 1996, p. 14) that compared neural nets to 

logistic regression methods. The total percentage correctly predicted by the neural net 

model was found to improve by only 2% when compared with the logistic regression model 

for the same independent validation data set. They postulated that this could be due to the 

limited amount of data used in these studies (only five fire seasons). Ongoing research for 

large fire prediction in Canada (e.g., Nadeem et al., 2016) is exploring extensions to that 

work using lasso logistic regression, as well as algorithmic approaches, such as random 

forests. Hastie et al. (2011) and James et al. (2013) provide details on lasso and random 

forests. 

2.3 Fire Spread, Intensity and Growth 

Once ignited, a fire will continue to spread from fuel particle to particle as a self-sustaining 

process as long as the heat produced by combustion is sufficient to heat the adjacent 
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particles to the ignition temperature, or the fuel is exhausted. The rate of fire spread is 

influenced by fuel properties, particularly the moisture content and temperature, and the 

ambient atmospheric conditions, particularly wind speed. Over the past decades, several 

dozen mathematical fire spread models have been developed using approaches varying 

from simple empirically based nonlinear regressions to detailed computational fluid 

dynamics models (Sullivan, 2009). Fire intensity, the amount of energy released per unit 

length of fire front, is usually modeled as a function of fire spread rate, fuel consumption, 

and heat content of the fuel. A number of empirical models have been developed (assuming 

local homogeneity) to model the two-dimensional spread of the fire perimeter through 

heterogeneous fuel and topographic conditions at landscape scales (< 1–100 km) (Sullivan, 

2009). The study area and time period of interest represent a set of voxels, with vegetation, 

topographic and other geographic covariates varying between points in a two-dimensional 

grid, and weather and other covariates varying spatially across the grid and temporally for 

each time step in the period. Early models represented fire spread as cellular automata, 

where a cell along a fire perimeter composed of grid cells could ignite adjacent grid cells 

in a time step, depending on vegetation, topographic, and weather covariates in the adjacent 

cell. Higher-resolution models simulate fire spread as a wave process, projecting the 

angular velocity of a number of discrete points around the fire perimeter as a vector over a 

discrete time step, depending on vegetation, topographic and weather covariates, but where 

the spread distance and directions are unconstrained by the grid resolution. The fire 

perimeter after each time step is remapped as the convex hull of the new points. However, 

although fire prediction is inherently probabilistic (because of the difficulty in accurately 

representing fuel properties and assessing and predicting atmospheric conditions; Taylor et 

al. 2013), most fire spread models are deterministic. Recently several authors have used 

ensemble methods to introduce stochasticity to fire spread (Cruz, 2010) and fire growth 

models (Braun & Woolford, 2013; McLoughlin & Gibos, 2016; Pinto et al., 2016) to better 

represent uncertainty. 

Statistical models may provide important alternative risk measures or adjuncts to 

deterministic models. Noting that large, intense fires are rare events, Hernandez et al. 
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(2015) fitted generalized extreme value (GEV) distributions to remote-sensing based 

observations of fire intensity (fire radiative power) and size for fires in Portugal and used a 

nearest neighbor procedure to estimate the parameters of the distribution from 

meteorological covariates. They suggested that this approach provides an important 

estimate of uncertainty beyond qualitative fire danger indices. Price et al. (2015) fitted 

binomial regression models of large fire spread distances through cells with varying fuel 

conditions and weather conditions for 677 large fires in the Sydney region of Australia. 

They used the models to estimate the likely spread distance and the probability that a fire 

starting from the 667 ignition points would reach one of 26,000 3.4-hectare receiver points 

in the study area. The heuristic of modeling potential fire spread from an ignition to a 

receiver point of interest provides a simpler alternative to explicitly modeling fire spread 

from all points on the fire perimeter, which is computationally demanding. 

2.4 Duration 

Although the probability of fire occurrence has been well studied using statistical models 

for over half of a century, quantifying the survival distribution of fires during its 

containment for management purposes has not received much attention until more recently. 

Finney et al. (2009) categorized stages of containment of a fire into spreading intervals 

based on fire occurrences during 2001 to 2005 in the United States. The number of days in 

each interval were modeled using generalized linear mixed models using the same 

framework as for a repeated measures problem. Other quantitative studies also have been 

carried out for studying fire containment elsewhere with various foci in their statistical 

methods, such as for Italy (Marchi et al., 2014), Spain (Costafreda-Aumedes et al., 2015), 

Canada (Xiong, 2015), Mediterranean Europe (DaCamara et al., 2014), and Portugal 

(Fernandes et al., 2016). The latter three modeled duration directly, while the latter two 

considered the survival probabilities of duration. The former two studies used analysis of 

variance and regression trees, respectively. However, integrating these models into a 

unified framework incorporating fire occurrence models to describe and predict the 

complete dynamics of wildfires remains a challenge. 
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The duration of a fire may also be modeled directly as a survival outcome using statistical 

survival models. These models exist commonly in industrial and medical research; they 

work in similar ways as logistic regression under fire occurrence modeling but differ in that 

the quantity of interest is the survivor function or the hazard function of an outcome 

(typically a time quantity, obtained by measuring from an origin to an event). Since the 

survivor and hazard functions represent, respectively, the probability that the individual can 

survive more than a certain time and the instantaneous rate of death at a certain time given 

survival up to that time, they seem well-suited to describing the dynamics of wildfires. 

Let 𝑡𝑖 , 𝑖 = 1,… , 𝑛 be the duration of fire 𝑖, assumed to be independently distributed. We 

may model 𝑡𝑖 through a log-location-scale model, sometimes referred to as the accelerated 

failure time (AFT) model: 

log(𝑡𝑖) = 𝜇 + 𝜷
𝑻𝒙𝒊 + 𝜎𝜖𝑖, 

where   and   are the location and scale parameters, 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑃)
𝑇 is a vector of 𝑃 

covariates and β𝑇 = (β1, … , β𝑃)  are the corresponding coefficients, and ϵ𝑖  are random 

errors. The survivor function of the outcome is 

𝑆(𝑡𝑖|𝑥𝑖) = 𝑆0 (
log𝑡𝑖 − (μ + 𝑥𝑖

𝑇β)

σ
), 

where 𝑆0  is the survivor function of the random error, termed the baseline survivor 

function. Since fire duration tends to be heavily right-skewed, the survivor functions may 

be modeled through parametric right-skewed distributions. Three common such baseline 

survivor functions are standard Gumbel, standard normal, and standard logistic, which 

correspond respectively to Weibull, log-normal, and log-logistic distributions for the 

outcome. As the covariate effects are multiplicative on time, the model assumes that 

different covariate values will scale the time axis of the survivor function. Covariates that 

are exogenous environmental variables (e.g., wind speed and temperature) then serve as 

stress factors that accelerate/decelerate the time to containment of a fire but keep the shape 

of the survivor function the same. 
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The hazard function may also be modeled directly using a Cox proportional hazards (PH) 

model: 

ℎ(𝑡𝑖|𝒙𝑖) = ℎ0(𝑡𝑖)exp( 𝜷
𝑇𝒙𝑖 ), 

where ℎ  is the hazard function of the outcome; ℎ0  is the baseline hazard function 

corresponding to the hazard when 𝑥𝑖 = 0, which can be either parametrically specified or 

unspecified to capture potential irregular features. In the PH framework, the covariate 

effects act multiplicatively on the baseline hazard rate. The model assumes that fires with 

different covariate values will result in hazard functions that are proportional to each other. 

This modeling strategy particularly lends itself to covariates such as endogenous fire 

characteristic variables (e.g., initial size and drought indices), where the intrinsic tendency 

of burning is different for fires with different values of these covariates. In particular, fires 

with large initial size occurring during drought conditions will have less steep hazard 

curves. 

Recently, Morin et al. (2015) used survival techniques to model the duration of forest fires 

in Ontario’s intensive fire management zone using data on more than 18,000 fires recorded 

during 1989 through 2004. Fire management zones are partitions of a study region that are 

assumed to be approximately internally homogeneous with respect to ecological 

characteristics such as fuel, weather, topography, and fire management strategy, and so 

may have a similar range or pattern of fire characteristics including size, duration, intensity, 

frequency, and season (Morin et al., 2015). They restricted their analysis to a period up to 

2004 due to a change to Ontario’s fire management strategy that led to a change in the 

number and location of fire management zones in the province after 2004. Response time, 

initial size, and several other FWI System indices were considered as covariates. The 

duration of each fire was defined to be the time interval from the start of initial attack to 

the time that a fire was declared as being under control, measured in hours. To capture 

changes in shapes of the hazard that were observed in nonparametric estimates of the 

survival function, and to ensure that the requirement for proportional covariate effects was 

not violated, a nonparametric stratified PH model was used to model survival times of 
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lightning-caused fires. Their work appears to be the first of its kind to model duration on a 

fine timescale using a stratified PH model, demonstrating that survival models that include 

covariate effects, such as the PH model, can be used as building blocks for more 

complicated structures in wildfire modeling. 

Within fire management zones, the durations of fires within the same zone are dependent. 

An important extension of univariate regression type models to account for such 

dependence is the inclusion of a shared random effect 𝑧𝑖  to explain the variation in 

homogenous space polygon 𝑖 = 1, … , 𝑛 for fires 𝑘 = 1,… , 𝑛𝑖 occurring in that polygon. A 

typical modeling framework in survival models is 

𝑆(𝑡𝑖𝑘|𝑥𝑖𝑘, 𝑧𝑖) = 𝑆(𝑡𝑖𝑘|𝑥𝑖𝑘)
𝑧𝑖 , 

or equivalently, 

ℎ(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝑧𝑖) = 𝑧𝑖ℎ(𝑡𝑖𝑘|𝒙𝑖𝑘), 

where S(tik|x𝑖𝑘, zi)  is the conditional survivor function for fire 𝑘  of polygon 𝑖  with 

covariate vector 𝑥𝑖𝑘 = (𝑥𝑖𝑘1, … , 𝑥𝑖𝑘𝑃)
𝑇  and ℎ(𝑡𝑖𝑘|𝑥𝑖𝑘, 𝑧𝑖)  is the conditional hazard 

function. The term 𝑧𝑖 is commonly referred to as a shared frailty, and the framework is 

referred as a shared frailty model. The frailty extension of the PH model has been discussed 

in many texts because of the popularity of PH frailty models in medical studies (Hougaard, 

2000; Therneau & Grambsch, 2000; Duchateau & Janssen, 2008; Wienke, 2010). Using 

the fact that ℎ(𝑡) = −
d

d𝑡
log 𝑆(𝑡)  and the formulation of the PH model, the above 

expression leads to 

ℎ(𝑡𝑖𝑘|𝑥𝑖𝑘, 𝑧𝑖) = 𝑧𝑖ℎ0(𝑡𝑖𝑘)exp(β𝑘
𝑇𝑥𝑖𝑘) = ℎ0(𝑡𝑖𝑘)exp(β𝑘

𝑇𝑥𝑖𝑘 + 𝑏𝑖), 

where the term 𝑏𝑖 = log𝑧𝑖 can be interpreted as a latent covariate. 

In her study of the lifetimes of forest fires in Ontario, Morin (2014) developed a set of PH 

frailty models to explore and quantify spatial differences in duration across a set of fire 

management compartments (FMC). The FMC partition was developed by Martell & Sun 
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(2008). Morin (2014) found that a Gaussian frailty term 𝑏𝑖, representing an FMC effect, 

had an estimated variance significantly different from zero for lightning-caused fires, which 

is evidence in favor of a positive dependence between the durations of fires in the same 

FMC. Mapping posterior estimates of the frailties showed that the western region of 

Ontario experiences lightning-caused fires with shorter survival times (Figure 2.4). 

It is worth noticing that the AFT model can be extended to a shared frailty model of the 

form described earlier. For example, if the outcomes follow a Weibull distribution, with 

location parameters λ𝑘 = exp (−
 μ𝑘+x𝑖𝑘

𝑇 β𝑘

σ𝑘
) and scale parameters υ𝑘 =

1

σ𝑘
 , including the 

term 𝑏𝑖 as an additive latent covariate yields 

ℎ(𝑡𝑖𝑘|𝑥𝑖𝑘, 𝑏𝑖) = λ𝑘υ𝑘𝑡
υ𝑘−1 = exp(−

μ𝑘 + 𝑥𝑖𝑘
𝑇 β𝑘 + 𝑏𝑖
σ𝑘

)
1

σ𝑘
𝑡
1
σ𝑘
−1

 

= exp (−
𝑏𝑖
σ𝑘
) ℎ(𝑡𝑖𝑘|𝑥𝑖𝑘). 
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Figure 2.4: Choropleth map of the frailty terms for lightning-caused fires in the former 

intensive fire management zone of Ontario, Canada, which was partitioned into a set of fire 

management compartments (FMCs). Each FMC polygon was assigned a heat map color 

based on the estimate of the latent effect of the FMC (i.e., the frailty). FMCs that are outside 

of the study region are white. Exponentiated values of posterior frailty estimates can be 

viewed as multiplicative factors on the hazard function of fire lifetimes. Negative estimates 

imply an increase in survival probability via a reduction in hazard rate. Adapted with 

permission from Morin (2014). 
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The AFT model may be an appropriate alternative when modeling long fires with 

environmental variables (i.e., having smooth survivor functions and exogenous covariates). 

We come back to this formulation in section 6. 

The frailty model and the copula model serve as important pieces of the foundation of 

modeling multivariate survival outcomes. Here, we briefly note the connection between 

shared frailty models and Archimedean copulas. For simplicity, we model without 

covariates. Shared frailty models assume that, conditional on 𝑧𝑖 , 𝑡𝑖𝑘 are independent across 

all fires within the same polygon; thus, the joint survivor function conditioning on 𝑧𝑖 is 

𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖|𝑧𝑖) = 𝑆(𝑡𝑖1|𝑧𝑖)…𝑆(𝑡𝑖𝑛𝑖|𝑧𝑖) 

= exp{−𝐻(𝑡𝑖1|𝑧𝑖)}… exp{−𝐻(𝑡𝑖𝑛𝑖|𝑧𝑖)} 

= exp{−𝑧𝑖𝐻(𝑡𝑖1)}… exp{−𝑧𝑖𝐻(𝑡𝑖𝑛𝑖)} 

= exp{−𝑧𝑖[𝐻(𝑡𝑖1)…𝐻(𝑡𝑖𝑛𝑖)]}, 

where 𝐻(𝑡) = −log 𝑆(𝑡) is the cumulative hazard function. Taking the expectation of the 

right-hand side of the expression above over 𝑧𝑖, the joint survivor function, yields 

𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖) = 𝐸 𝑆(𝑡𝑖1, … , 𝑡𝑖𝑛𝑖) 

= 𝐸 exp{−𝑧𝑖[𝐻(𝑡𝑖1) + ⋯+ 𝐻(𝑡𝑖2)]} 

= 𝑳[𝐻(𝑡𝑖1) + ⋯+ 𝐻(𝑡𝑖2)], 

where L(𝑎) = 𝐸𝑒−𝑥𝑎 is the Laplace transformation of the random variable 𝑥. Using the 

fact that 𝑆(𝑡) = 𝑒−𝐻(𝑡) = 𝐸𝑒𝑧𝐻(𝑡) = L𝐻(𝑡), we have 

𝑆(𝑡𝑖1, … , 𝑡𝑖2) = L[𝐻(𝑡𝑖1) + ⋯+ 𝐻(𝑡𝑖2)] = L[L
-1S(ti1)+…+L

-1S(ti2)], 

which yields the so-called Archimedean copula family (Nelsen, 2006; Liu, 2012; Joe, 

2014). Embrechts & Hofert (2014) provide a detailed overview of the connections between 
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the two frameworks, as well as the development of copulas in a quantitative risk 

management perspective. 

2.5 Size 

The increase in fire size during the life of a fire and its ultimate size at extinction are 

important to the difficulty of control, and fire size also has many other impacts of scientific 

and economic concern. Qualitative publications based on physical/process models derived 

in the natural sciences historically dominated the study of this phenomenon; however, 

quantitative studies based on empirical/statistical models have been appearing in the 

literature at an increasing rate since approximately the late 1990s (Cui & Perera, 2008). 

Early empirical models assumed a power law (i.e., Pareto) distribution for wildfire sizes: 

𝑓𝑋(𝑥; 𝑏) ∝ 𝑥
−𝑏 , 

where 𝑋 is the random variable representing fire size, and its density function 𝑓𝑋(𝑥; 𝑏) 

depends on a parameter 𝑏. An example using this approach was presented by Schoenberg 

et al. (2003), who considered several parametric models for the distribution of wildfire sizes 

in Los Angeles County, California. Using visual diagnostics and nonparametric tests for 

comparing distributions, they advocated for the use of a tapered Pareto distribution for 

modeling size distributions in that area. Cumming (2001) modeled the survivor function of 

the size of fires in the province of Alberta, Canada, using a right-truncated exponential 

distribution under the assumption that there was a maximum size a fire could grow to, based 

on characteristics of the study area. Recent models for fire size include environmental 

variables into models. Butry et al. (2008) incorporated environmental variables using linear 

regression for modeling the logarithm of the size of large fires in northeast Florida from 

1981–2001. Chen et al. (2014) used quantile regression to study the effect of precipitation 

on fires in southwestern China. A comprehensive review of fire size models appears in Cui 

& Perera (2008). 
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Here, we review two key threads of research in the development of statistical methods for 

modeling fire size. Power-law behaviors are commonly observed in nature. If fire growth 

follows a preferential attachment or Yule process (Gibrat’s Law), the distribution of 

randomly killed states (or states observed once) under stochastic processes follows a power 

law in one or both tails (Reed, 2001; Reed & Hughes, 2002). Using percolation theory, 

Reed (1999) observed that a piecewise probability distribution, partitioned at the 

percolation threshold, fits the distribution of forest fire size reasonably well. Reed & 

McKelvey (2002) derived the density function and survival function of the killed state. Let 

the fire size at time 𝑡 be 𝑋(𝑡) = exp(μ𝑡) and the growth rate at size 𝑋  be μ(𝑋) = μ𝑋, 

proportional to size by a constant, μ. We further assume that the killing rate 𝑘(𝑡) takes the 

form of 

𝑘(𝑡) = lim
𝑑𝑡→0

𝑃(𝑇 < 𝑡 + 𝑑𝑡|𝑇 > 𝑡)

𝑑𝑡
= v(𝑋(𝑡)), 

where 𝑣(𝑥) is a nonincreasing function referred to as the extinguishment rate. Let 𝑋̅ denote 

the killed state, and then it can be shown that the density function of 𝑋̅ is  

𝑓𝑋̅(𝑥) = 𝜌(𝑥)exp(− ∫𝜌(𝑥′
𝑥

𝑥0

)𝑑𝑥′), 

where ρ(𝑥) = 𝑣(𝑥)/μ(𝑥) is the hazard rate function. The survival function of 𝑋̅ is 

𝑆𝑋̅(𝑥) = exp(− ∫𝜌(𝑥′
𝑥

𝑥0

)𝑑𝑥′). 

The plot of empirical log𝑆𝑋̅(𝑥) against log𝑥 demonstrates a linear trend if the data exhibit 

power-law behavior. The authors suggest plotting the extinguishment growth-rate ratio 

(EGRR) against log𝑥, which is expressed as 

EGRR = 𝑅(𝑥) =
𝑥𝑣(𝑥)

𝜇(𝑋)
=
𝑥𝑓𝑋̅(𝑥)

𝑆𝑋̅(𝑥)
. 
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Power-law behavior will occur on an interval that EGRR is constant. Conditions when 

ECGR is not constant that may lead to thin- or thick-tailed distributions include the 

following: (a) In regions where the fire season is limited to a portion of the year (e.g., by 

winter), the distribution of killing times for fires starting later in the season may be right 

truncated; this also applies for regions where fire size may be limited by available fuel. (b) 

In a managed environment where all fires are suppressed but where occasional extreme 

weather such as Santa Ana winds favors large fire growth (Moritz, 1997), distributions may 

be thick tailed; this may also occur when climate over a long sampling period is 

nonstationary. When power-law behavior does not occur, the authors recommended using 

non-power-law distributions such as a 3-parameter Weibull distribution for certain cases. 

The theoretical foundation of the work above connects well with methods developed to 

model the distribution of size in other fields of science (Reed & Hughes 2002, 2004; Reed 

& Jorgensen 2004; Reed 2011, 2012). 

Another thread of research in modeling fire size has developed in engineering. To examine 

extreme fire size, Holmes et al. (2008) utilized GEV methods for analyzing fire sizes with 

heavy-tailed distributions. GEV methods play important roles in engineering and actuarial 

science because of their focus on rare but extreme events (Castillo, 2012; Longin, 2016). 

Foss et al. (2011) provide a probabilistic perspective of heavy-tailed distributions. The 

distribution of a random variable 𝑌 is said to be heavy-tailed if, for any 𝑢 > 0, 𝑣 > 0, 

lim
𝑢→∞

P (𝑌 > 𝑢 + 𝑣|𝑌 > 𝑢) = lim
𝑢→∞

𝑆(𝑢 + 𝑣)

𝑆(𝑢)
= 1. 

That is, if the observation already exceeds a large value 𝑢 , then it will likely exceed a larger 

value 𝑢 + 𝑣. The maximum value of a sample of observations is traditionally used for 

constructing the models under GEV methods. To overcome the limitation of information 

loss, the authors used all the observations beyond a threshold (e.g., size > 200 ha) instead. 

Thus, the survivor function of the observations beyond a threshold is 

𝑆(𝑢 + 𝑦𝑖|𝑢) = 𝑃(𝑌𝑖 > 𝑢 + 𝑦𝑖|𝑌𝑖 > 𝑢) =
𝑆(𝑢 + 𝑦𝑖)

𝑆(𝑢)
, 
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where 
iY  is the size for fire 𝑖 and u  is the threshold. It follows that the resulting distribution 

function follows a generalized Pareto distribution (Davison & Huser, 2015): 

𝑓(𝑦𝑖|μ, ξ, σ𝑖) =
1

σ𝑖
(1 + ξ

𝑦𝑖 − μ

σ𝑖
)
−(1+

1
ξ
)

, 

where μ , σ , and ξ  are the location, scale, and shape parameters. Covariates 𝑧𝑖  can be 

included through σ𝑖 = σ(𝑧𝑖) = μ + β
𝑇𝑧𝑖  to model and simulate fire sizes given 

environmental variables. The model leads to a set of integrated frameworks (e.g., Preisler 

& Westerling, 2007; Westerling & Bryant, 2008; Preisler et al., 2011; Westerling et al., 

2011; Bryant & Westerling, 2014) that can be used to understand, for example, the impact 

of climate change and human development on fire-related losses in different regions. 

2.6 Modeling Duration and Size as Joint Outcomes 

As mentioned in the section on fire occurrence modeling, it is possible to combine models 

for fire occurrence with other models, such as those for duration, to model fire load (e.g., 

Morin, 2014), or such as those for fire size and cost distributions, to develop spatially 

explicit forecasts for suppression costs (e.g., Preisler et al., 2011). These frameworks 

commonly decompose the problem through a multi-stage approach, developing separate, 

independent models for each component as building blocks for the overall model, such as 

an occurrence model coupled to an independent survival model (Morin, 2014), or coupling 

occurrence models to independent models for fire size and cost distributions (Preisler et al., 

2011). However, components may be linked. 

For example, marked point process models have been proposed for wildfire modeling: The 

point process identifies the occurrence of the fire, with size as the mark. However, the 

marks may not be separable from the points. This was illustrated by Schoenberg (2004), 

who found evidence of a lack of separability between fire occurrences and sizes in Los 

Angeles County, California, due to small-scale clustering. Moreover, even outside of the 

context of developing marked point processes models, key wildfire characteristics are 
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likely linked. An obvious example of this is fire duration and size, under the principle that 

the longer a fire lasts, the larger it grows. Such situations motivate the need to consider 

alternative modeling frameworks where outcome characteristics are modeled jointly. In this 

section, we give an overview of joint modeling of two random variables, using fire duration 

and size as an illustration. 

Jointly modeling the duration and size of fires with environmental variables as covariates 

offers a potential novel direction for effectively quantifying these outcomes. Since smaller-

sized fires’ (<2 hectares) lifetimes are usually short (<2 days), while larger ones are usually 

long (days to months), such modeling accounts for the dependence between duration and 

size. In managed regions, more than 90% of fires are contained during an initial attack, and 

for fires that escape extended attack, there is a clear connection between the time to 

containment and fire size (Fried & Gilless, 1989). The two-dimensional framework for 

bivariate extreme value models (e.g., Weibull, log-normal, logistic) has been recently 

adopted in some pioneering work because duration and size are often weakly correlated 

with heavy tails. (Yoder & Gebert, 2012; Sun, 2013). Bayham (2013), in his dissertation, 

modeled the duration, size, and cost of containment on 3,829 US fires using a tri-outcome 

PH frailty model with environmental and geographical variables as covariates. Endogenous 

time-varying covariates were lagged for one period, and the median value was used instead 

of the complete covariate trajectories. 

Past work modeling duration and size as a function of environmental variables shares four 

common features. First, although the survivor or hazard functions of the outcomes are often 

of interest, they can be obtained easily from estimates of the distribution of these outcomes 

and hence do not need to be modeled directly. Nevertheless, they need to be measured from 

the same origin to the same event (e.g., from the start of initial attack to the time of final 

control). Second, heavy-tailed distributions may be used to model both outcomes. Although 

power-law or extreme value distributions have received much attention in the context of 

wildfire science, basic location-scale distributions also fit well, and such empirical 

approaches have been overlooked. Third, although AFT frameworks have been commonly 

used, they do not necessarily lead to a model where the frailty can be interpreted as a latent 
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covariate acting multiplicatively on the hazard. Finally, we note that covariate coefficients 

in the PH frailty model may not be estimated well when the PH assumption does not hold 

(He & Lawless, 2005; He, 2014), which may be of concern in the use of these frailty models 

in wildfire science. As a result, placing the random effect additively as a latent covariate in 

an AFT model would provide a compromise to both frameworks (Lambert et al., 2004; 

Komárek & Lesaffre, 2008) and a foundation to model duration and size jointly. 

To illustrate a joint modeling framework that addresses the issues above, we consider a 

simple model that has been discussed extensively in the literature. Assuming that both the 

duration and size of fires follow a location-scale distribution, AFT models can be linked to 

model the two outcomes jointly: 

log(𝑡𝑖𝑘) = μ𝑘 + β𝑘
𝑇𝑥𝑖𝑘 + 𝑏𝑖𝑘 + σ𝑘ϵ𝑖𝑘, 

where 𝑏𝑖 = (𝑏𝑖1, 𝑏𝑖2)
𝑇  is a random effect with components that are dependent. Here, 𝑘 

equals 1,2, for duration and size respectively; 𝑡𝑖𝑘 is the outcome; 𝑥𝑖𝑘 are covariates with 

associated coefficients β𝑘; μ𝑘 is the intercept term (the mean of the logarithm of 𝑡𝑖𝑘 when 

𝑥𝑖𝑘 = 0); ϵ𝑖𝑘 is the outcome-specific error with unit variance, associated with outcome 𝑘 

for fire 𝑖; and σ𝑘 are variance parameters associated with outcome 𝑘. 

Various forms of 𝑏𝑖  have been discussed in the literature. He & Lawless (2005) and 

Duchateau & Janssen (2008), among many others, note that 𝒃𝑖 may be parametrized with 

𝑏𝑖1 = 𝑏𝑖2 = 𝑏𝑖, as a shared frailty acting additively on the logarithm of the outcomes. To 

account for the scale difference between the two outcomes, an additional parameter, γ, 

often called the factor loading parameter, can be introduced by letting 𝑏𝑖 = (𝑏𝑖, γ𝑏𝑖)
𝑇 with 

𝑏 = (𝑏1, … 𝑏𝑛)
𝑇 ∼ 𝑀𝑉𝑁(0, Σ𝑏), with 𝑏𝑖 and ϵ𝑖𝑘 independent. The term 𝑏𝑖 can be viewed 

as an individual-specific error that is shared across the two outcomes. With the assumption 

that individual fire lifetimes and sizes are independent, a simple form for Σ𝑏 is σ𝑏
2𝐼 (Renouf 

et al., 2016; Juarez-Colunga et al., 2017). Having σ𝑏 significantly different from 0 suggests 

that there is dependence between the two outcomes. When γ = 1 the shared random effect 

influences the two outcomes identically. This is not likely in situations where the two 
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outcomes, such as duration and size, have very different scales. In general, having γ 

significantly different from 1 suggests that the terms 𝑏𝑖 have different scales by which they 

act on the outcomes. If prior knowledge suggests that the frailty is correlated, for example, 

spatially, then Σ𝑏  may take more complicated forms (Feng & Dean, 2012). Additional 

constraints are required (i.e., removing ϵ𝑖1 from the model) to ensure that the model is 

identifiable. Alternative forms such as assuming 𝑏𝑖 = (𝑏𝑖1, 𝑏𝑖2)
𝑇 with 𝑏𝑖 ∼ 𝑁2(0, 𝐷) have 

also being considered in Komárek & Lesaffre (2008) and Bogaerts et al. (2018). For other 

methods that also use random effects or latent variables to model multiple outcomes jointly, 

readers are directed to, for example, Molenberghs & Verbeke (2017). 

2.7 Event Sets and Burn Probability 

Many fire characteristics, such as ignition probability, spread rate and duration, and fire 

size contribute to the fire hazard. Reed (2006) defined the local hazard of burning at a point 

𝑥 in a study area, at time 𝑡, as 

λ(𝑡; 𝑥) = lim
d𝑡→0

{P(fire at location 𝑥 in[𝑡, 𝑡 + d𝑡])/d𝑡}, 

the area-wide hazard of burning as 

Λ(𝑡) = lim
d𝑡→0

{P (fire ignited somewhere in the area in [𝑡, 𝑡 + d𝑡])/d𝑡}, 

and the relationship between local and area wide hazard of burning as 

𝜆(𝑡: 𝑥) = Λ(𝑡)∫ℎ(𝑥, 𝑦: 𝑡)𝑓(𝑦; 𝑡)
𝐴

𝑑𝑦, 

where ℎ(𝑥, 𝑦: 𝑡) is the conditional probability of a fire ignited at point 𝑦 spreading to 𝑥 at 

time t and 𝑓(𝑦; 𝑡) is the probability density function of where ignitions will occur over the 

area 𝐴 given that a fire occurs in time 𝑡. The integral above can be simplified, where 𝑝(𝑡, 𝑥) 

is the conditional probability of a fire occurring at 𝑥 given that a fire starts somewhere in 

the area, as 
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𝜆(𝑡: 𝑥) = Λ(𝑡)𝑝(𝑡, 𝑥). 

It is noteworthy that most of the local hazard of burning at a point x obtains from incursions 

of fire from adjacent locations. This model is analogous to population system epidemiology 

(Koopman & Lynch, 1999), where infection connections between individuals and joint 

effects of possible multiple exposures are incorporated into infectious disease spread 

analysis. The local hazard of burning in a region has been estimated from empirical data 

from fire scars and forest stand age data (see summary in Taylor et al., 2013) in a region, 

assuming spatial homogeneity, while the area-wide hazard can be estimated from 

administrative fire records or remote sensing data. However, a number of authors have 

found that the local hazard of burning may vary within a landscape at scales important to 

fire and land management due to topographic and vegetation conditions. For example, 

forest stands on warm slopes in the Rocky Mountains have a greater likelihood of burning 

(Rogeau & Armstrong, 2017), while those adjacent to nonvegetated areas such large lakes 

have a lower likelihood of burning (Bergeron, 1991). 

Over the past decade, a body of work termed burn probability modeling (Miller et al., 2008) 

has developed to estimate the local hazard of burning while incorporating the influences of 

varying vegetation types and topographic positions within regional landscapes. Briefly, 

burn probability is estimated geometrically by modeling fire event sets, where an event is 

a spatially referenced fire perimeter map, the final fire perimeter obtained from the 

cumulative spread over a fire’s lifetime. Monte Carlo methods are used to simulate a large 

number of fire events in a study area. As with the spread modeling described earlier, the 

study area and simulation period represent a set of voxels, with vegetation, topographic, 

and other geographic covariates varying spatially and weather covariates varying 

temporally for each day in the simulation period. In one approach, a fire is ignited at a point 

using a conditional spatial point process model of fire occurrence (Woo et al., 2017) 

including covariates at the grid points; the fire spreads between points using a deterministic 

fire growth model, depending on weather, vegetation, and topographic covariates at the 

grid points on a particular day; and individual fire events are modeled for a number of days 



 

32 

 

 

 

informed by duration models. The burn probability of a given cell is estimated as the 

empirical proportion of fire events in that cell over the number of simulation iterations 

(usually years), as shown in Figure 2.5. The size distribution of fires in resulting event sets 

can be compared against fire size models to assess goodness of fit (e.g., appendix S.6 in 

Wang et al., 2016). Several systems have developed around different fire spread models. 

Parisien et al. (2013) provide a flowchart of the modeling process for an application of the 

BurnP3 system that uses the Prometheus spread model; similar procedures are used for 

simulations with the FSim system, which uses the FarSite fire growth simulator (Finney et 

al., 2011). Further challenges may include closer integration of joint models of size and 

duration and covariance of numbers of fires and fire size, as well as explicit representation 

of fire suppression. 

 

Figure 2.5: (a) Wildfire event sets can be generated with stochastic point process models 

and fire growth simulations of specified duration (ellipses used for illustration only; figure 

courtesy of Carol Miller, US Department of Agriculture Forest Service). Elements within 

a cell are homogenous respect to weather fuels and topography. The ellipses are individual 

fires, and the blue square represents a sampling point. (b) Monte Carlo methods have been 

used to map burn probability by simulating large event sets representing many thousands 

of potential outcomes in modeled landscapes, such as the Thompson-Okanagan region of 

southern British Columbia (Wang et al., 2016). 
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2.8 Discussion 

Fire danger and risk research has evolved from the development of qualitative indices, to 

deterministic models of fire characteristics, to stochastic models of fire characteristics. It is 

an ongoing challenge to integrate these models and approaches in probabilistic, quantitative 

hazard and risk models. Improving prediction of daily wildfire dynamics is critical for 

proactive rather than reactive fire management decision making. Effective prediction for 

decision making requires (a) an understanding of the physical and management processes 

influencing ignition, growth, and survival; (b) the acquisition and assembly of historical, 

longitudinal data on daily fire starts, size, management actions, extinguishment, and 

covariates for building empirical models; (c) the development of appropriate statistical 

models; and (d) the implementation of predictive models in fire management decision 

support systems, preferably with an ability to use new data on fires for continuous 

improvement of predictive models. 

Much work has focused on developing models to understand ignition and growth processes, 

and far fewer studies have considered containment and extinction. Even so, there are few 

models that consider changes in fire size by day while also accounting for resources 

allocated to suppression; this is due in part to limited availability of such longitudinal data 

on a daily scale. More work is also needed in the development of appropriate models that 

take into account fire-pest interaction effects and the health of trees in the path of a fire. 

New remote-sensing products may assist here, but there will be considerable work involved 

in building historical archives. Importantly, there are substantial challenges associated with 

mounting investigations and developing predictive models because of the massive effort 

involved in the assembly of historical fire databases, validation of these databases, linkage 

and data fusion across regions and across governmental agencies that record environmental 

and management variables associated with fire, and management of differences in spatial 

and temporal resolution that are associated with each database. 

Verification of historical records can be very difficult, as can homogenization of long-term 

series of environmental data, when monitoring stations change location over time. There 
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are also challenges associated with appropriately accommodating the differences in fire 

suppression management protocols over time, changes in detection efficiency over time, 

and the differences in tools and techniques for fire suppression that have evolved over 

recent decades. These large data issues are not inconsequential, especially when developing 

provincial/national models at high spatial/temporal resolution. Finally, accurate prediction 

models require incorporating variability associated with the differential use of fire 

suppression resources between fires and variability associated with future weather 

conditions. Importantly, we note that few statisticians are willing to expend the effort 

necessary to take models and methods to an implementation or knowledge translation stage 

as identified in item d above, but this is a key critical process step for impact. Further work 

is also needed to better represent uncertainty in models of spread, growth, and intensity and 

also for visualization of these characteristics. 

Comprehensive, fine-scale fire occurrence modeling over a large study area introduces 

specific challenges. For example, the province of Ontario uses a suite of person-caused and 

lightning-caused fire occurrence prediction models operationally on a daily basis 

(Woolford et al., 2016). For this decision support tool, human-caused and lightning-caused 

fire occurrence predictions based on models need to be integrated into a single probability 

scale. This can be challenging because occurrence probabilities for lightning-caused fires 

in a given cell can be much larger than the probabilities for human-caused fires. This is 

because lightning-caused fire occurrence models incorporate lightning strike observations, 

which have high daily variability (e.g., Wotton & Martell, 2005), whereas indicators of 

human presence or activity in human-caused fire models don’t have strong daily variation 

(e.g., Woolford et al., 2011). This difference in scale may occur because lightning-caused 

fire occurrence models incorporate information about the observed strikes that are recorded 

by a network of sensors (e.g., Wotton & Martell, 2005), whereas human-caused fire 

occurrence prediction models summarize historical patterns in fire ignitions without 

incorporating information about potential ignition sources (e.g., Woolford et al., 2011). In 

addition, outputs from fitting complex models in statistical software, such as a logistic 

GAM model object fit in R software, need to be summarized (as, e.g., a set of lookup tables 
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for each partial effect in the model) for easy implementation into a non-R-based fire 

management operations decision support tool. 

Simulation systems that are currently used to estimate the annual local burn probability use 

statistical models to represent stochastic components in that complex system. However, 

there are many components that are modeled as separate subprocesses. In order to enhance 

quantitative risk assessment models, a joint modeling framework should be considered 

when key characteristics may not necessarily be independent. Further development of 

quantitative risk assessment methods across all temporal scales will require, as in statistical 

physics, hybrid approaches that combine mathematical and statistical models with 

simulation methods to estimate very complex processes. For example, key stakeholders 

such as fire management agencies and property insurers are interested not only in annual 

burn probability maps but also in burn probabilities at other temporal scales, such as the 

probability that a fire may be ignited and spread into a nearby town on a given day. 

We comment that it would be very interesting to compare simulation methods with other 

means of estimating these complex processes, which may be effective at some spatial 

scales. It would be also useful to compare modern statistical learning algorithmic 

techniques to the well-established logistic-based modeling techniques. Developing 

methodology for combining these and other models together in an ensemble framework, 

thereby building on the benefits of each of these approaches, would be particularly helpful. 

It is challenging to incorporate estimates of uncertainty in fire management strategies, in 

part because it is a highly dynamic and multiscalar decision environment. Although 

advances have been made in developing stochastic models of characteristics such as fire 

occurrence, medium-term fire spread, and burn probability, few studies have connected 

hazard measures, including uncertainty, with damage functions and impacts (e.g., Preisler 

et al., 2011). Implementation of new models within a fire management decision 

environment presents special challenges at the interface between data analytics and human 

factors (that are not unique to the fire community). These include: 
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1. The time available for decision making decreases in the series of activities: 

mitigation/prevention, planning/preparedness, and response. At the sharp end of fire 

response, the time for decision making may be reduced to a few minutes or less 

(e.g., Alexander et al., 2016). Models have to be simple to use and easy to interpret; 

visualization techniques should be used whenever possible. 

2. Decision makers within an operations background tend to be “men (or women) of 

action, rather than men of letters” (Macleod, 1964, p. 8) coming from an 

institutional culture that values fast, intuitive decision making over slower, rational 

decision processes (e.g., Kahneman, 2011) and have a healthy skepticism of models. 

It is important to validate models and provide case studies showing the value of 

information. In counterpoint, fire managers with long experience with weather 

dependent fire phenomena may have an intuitive appreciation for the stochastic 

nature of fire characteristics. Current machine learning algorithms based on 

historical data cannot adequately replicate such experience. 

Collaborative approaches have proved successful in developing and implement the models 

currently used in fire management. Whereas commonly the statistician’s goal is finding a 

useful application, it is important at a project’s outset to set common goals, find champions 

who are influential members of the user community, create relationships, and seek to 

understand the decision maker’s way of doing business and constraints.
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Chapter 3  

3 Modeling the Duration and Size of Extended Attack 

Wildfires as Dependent Outcomes 

3.1 Introduction 

Two outcomes that have been studied extensively to quantify fire survivorship are the 

containment time and the area burned, commonly referred as duration and size. Although 

fire size and duration have been studied separately (e.g. Morin et al., 2015 for duration and 

Tremblay et al., 2018 for size), it is important to note that these are likely dependent 

outcomes and hence are prime candidates for so-called joint outcome analysis that allow 

for such potential for dependence. Indeed, very early work studying fire outcomes 

considered this concept of dependency; Beall (1949) showed graphically the relationship 

between time to control and fire size at control. There has also been early work on this 

relation by considering area burned as a function of time (Mcarthur, 1968; Van Wagner, 

1969). Additionally, some authors have recently considered using multivariate distributions 

(Yoder and Gebert, 2012; Sun, 2013) or shared frailty Cox proportional hazards models 

(Bayham, 2013; Morin et al., 2019) to capture dependence in a variety of fire related 

outcomes. However, these models usually assume that outcomes are measured on the same 

scale, which is not suitable for jointly modeling time to containment and area burned when 

considering fire survivorship. As well, the inclusion of environmental variables and other 

information as covariates should be incorporated in any analysis related to these outcomes 

because of the substantial environmental influence on these outcomes. For detailed reviews 

of related work in fire science, see, for example, Taylor et al. (2013) and Xi et al. (2019). 

Here we focus on providing novel approaches and insight for fire science through the 

adoption of two modern statistical frameworks that may be used to model dependence 

among multiple outcomes that are measured on different scales, while also accounting for 

the effects of covariates. One is the copula modeling framework, which has been used, for 
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instance, in Wu (2014), for linking the age and the mileage of automobiles in order to assess 

changes in warranty plans. Whereas alternative frameworks represent mileage as a function 

of age (e.g. Lawless et al., 1995), or use standard bivariate distributions (e.g. Pal and 

Murthy, 2003) for both outcomes, copula models have gained advantages in reliability 

analysis by offering flexibility in the types of tail dependence that can be accommodated 

in the joint distribution of the outcomes, as well as allowing the outcomes to take distinct 

marginal distributions (Genest and Favre, 2007). For a comprehensive overview of copulas, 

see for example, Nelsen (2006) and Joe (2014). 

Since both containment time and area burned can be considered as survival outcomes, 

another suitable framework is an additive frailty modeling framework, which uses cluster-

specific random effects (i.e. frailties) to incorporate variation that is common to the 

outcomes. Compared to the traditional frailty models (e.g. Hougaard, 2000; Therneau and 

Grambsch, 2000; Duchateau and Janssen, 2008; Wienke, 2010), which constrain frailties 

to have multiplicative effects on the hazard, the additive frailty model framework offers 

more flexible specification and interpretation for the frailties when the outcomes are 

measured with different scales or the hazard is not directly of interest. Using random effects 

to construct models in this way is commonly referred to as joint modeling. For recent 

publications of joint modeling in biostatistics and ecology, see, for example, Feng and Dean 

(2012), Renouf et al. (2016) and Juarez-Colunga et al. (2017). 

In this chapter, we model the duration of a fire, in days, and its area burned, or size, in 

hectares, from two critical points in the life history of a fire: (1) ground attack, to (2) final 

control, for lightning-caused, extended attack fires in British Columbia (BC), Canada. A 

typical life history of fires in BC is characterized by critical points, including for example, 

the date and time of fire discovery, ground attack, final control, and mop-up. Here, ground 

attack and final control are the common origin and event, related to both survival outcomes 

regarding fire containment.  

We extend univariate accelerated failure time (AFT) models for each of these outcomes 

using both a copula model framework and a joint model framework. AFT models assume 



 

49 

 

 

 

location-scale distributions for the outcomes, which align well with our knowledge of the 

distributions of duration and area burned during fire containment (DaCamara et al., 2014; 

Fernandes et al., 2016; Schoenberg et al., 2003; Reed and McElvey, 2002; Cumming, 2001; 

Butry et al., 2008; Holmes et al., 2008).  

For the joint analysis of duration and size, we will consider the Normal copula and three 

Archimedean copulas— Clayton, Gumbel, and Frank. These forms of copulas have often 

been used in applications, and, as well, the three Archimedean copulas can be constructed 

from the traditional frailty models by assuming different distributions of the frailties, hence 

linking the two frameworks we consider here. For modeling the distribution of the frailties 

in the joint models, we will consider a factor loading (e.g. Feng and Dean, 2012) form and 

a multivariate form (e.g. Komárek and Lesaffre, 2008). Static location variables are 

included to incorporate topographical and temporal effects. Dynamic environmental 

variables are included by summarizing their trajectories. We consider whether these 

frameworks offer an improvement over utilizing univariate approaches for modeling the 

outcomes in terms of their model fits and predictabilities.  

Section 2 outlines our proposed modeling frameworks. The data that motivate this research 

are discussed in Section 3. Section 4 discusses the analysis of the data, contrasting 

interpretation of the results in the context of the two modeling frameworks. Section 5 

considers the effect of model misspecification. A direct comparison of the robustness of 

the two broad statistical frameworks under model misspecification is investigated by 

simulation. Section 6 closes with a discussion and recommendations. 

3.2 Modeling and Estimation of Joint Outcomes 

We develop two frameworks for modeling bivariate survival outcomes, one based on 

copulas, the other based on frailties, and we note immediately that generalization of the 

frameworks to multivariate or censored outcomes is straightforward. For a continuous 

outcome 𝑡 > 0, we use 𝑓(𝑡) to denote its density function, 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0
 to denote the 

probability that the outcome is less than or equal to 𝑡, termed the distribution function, and 
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𝑆(𝑡) = 1 − 𝐹(𝑡) to denote the probability that the outcome is greater than or equal to 𝑡, 

termed the survival function.  

Let 𝑡𝑖𝑘,  𝑘 = 1,  2 be the two outcomes considered in the fire science context, respectively, 

the duration and the size of fire 𝑖 = 1,… , 𝑛, where the logarithm of the outcome, 𝑦𝑖𝑘 =

log 𝑡𝑖𝑘 , follows a location-scale distribution, and 𝑛  is the number of observations. A 

univariate AFT model where outcomes are not linked can be written as 

log 𝑡𝑖𝑘 = 𝜇𝑘 + 𝜷𝑘
𝑇𝒙𝑖𝑘 + 𝜎𝑘𝜀𝑖𝑘,  

where 𝒙𝑖𝑘 = (𝑥𝑖𝑘1, … , 𝑥𝑖𝑘𝑅𝑘)
𝑇
is a vector of 𝑅𝑘 covariates associated with outcome 𝑘 for 

fire 𝑖, 𝜷𝑘
𝑇 = (𝛽𝑘1, … , 𝛽𝑘𝑅𝑘) are the corresponding coefficients, 𝜀𝑖𝑘 represents the random 

error, and 𝜇𝑘 and 𝜎𝑘 are the location and scale parameters associated with outcome 𝑘. We 

refer to model parameters as 𝜽𝑘 = (𝜇𝑘, 𝜷𝑘, 𝜎𝑘)
𝑇. Hence the survival function of outcome 

𝑘 is 

𝑆𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘) = 𝑆0𝑘(𝜀𝑖𝑘|𝜽𝑘),  

where 𝑆0𝑘(𝜀𝑖𝑘|𝜽𝑘) is the survival function of the random error, termed the baseline survival 

function. Three common baseline survival functions discussed in the survival analysis 

literature in biostatistics (e.g. Lawless, 2011) and considered here are — the standard 

Gumbel, standard normal, and standard logistic, which correspond respectively to the 

Weibull, lognormal, and loglogistic distributions on the scale of the outcomes. Analogously, 

let 𝐹𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘) = 𝐹0𝑘(𝜀𝑖𝑘|𝜽𝑘) = 1 − 𝑆0𝑘(𝜀𝑖𝑘|𝜽𝑘)  be the distribution function of 

outcome 𝑘 , and let 𝑓𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘) = 𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘) = 𝑑𝐹0𝑘(𝜀𝑖𝑘|𝜽𝑘) 𝜀𝑖𝑘⁄  be the density 

function of outcome 𝑘, where 𝐹0𝑘(𝜀𝑖𝑘|𝜽𝑘) and 𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘) are termed respectively as the 

baseline distribution function and the baseline density function. Table 3.1 provides the 

parameterizations of the three distributions used here for modeling each of 𝑡𝑖𝑘  and 𝜀𝑖𝑘 , 

noting that the model provides flexibility that the forms need not be identical for the two 

outcomes 𝑘 = 1, 2. 
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Table 3.1: Distributions for the outcomes under the accelerated failure time (AFT) model 

 

 Weibull lognormal loglogistic 

𝜆(𝜇, 𝜷, 𝜎) exp [−
𝜇 + 𝜷𝑇𝒙𝑖

𝜎
] 𝜇 + 𝜷𝑇𝒙𝑖 −

𝜇 + 𝜷𝑇𝒙𝑖
𝜎

 

𝜈(𝜎) 
1

𝜎
 𝜎2 

1

𝜎
 

𝑓(𝑡| 𝜆, 𝜈) 𝜈𝜆𝑡𝜈−1 exp(−𝜆𝑡𝜈) 

1

𝑡√2𝜋𝜈
exp [−

1

2𝜈
(log 𝑡

− 𝜆)2] 

exp(𝜆)𝜈𝑡𝜈−1

[1 + exp(𝜆)𝑡𝜈]2
 

𝑆(𝑡| 𝜆, 𝜈) exp(−𝜆𝑡𝜈) 1 − Φ(
log 𝑡 − 𝜆

√𝜈
) 

1

1 + exp(𝜆)𝑡𝜈
 

𝑓0(𝜀) exp[−(𝜀 + 𝑒−𝜀)] 
1

√2𝜋
exp (−

1

2
𝜀2) 

exp(𝜀)

[1 + exp(𝜀)]2
 

𝑆0(𝜀) 1 − exp(−𝑒−𝜀) 1 − Φ(𝜀) 
1

1 + exp(𝜀)
 

 

To represent the two multivariate frameworks, we further define 𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2) , 𝒕 =

(𝒕1, … , 𝒕𝑛) , 𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2) , 𝒚 = (𝒚1, … , 𝒚𝑛) , 𝒙𝑖 = (𝒙𝒊1, 𝒙𝒊2) , 𝜺𝑖 = (𝜀𝑖1, 𝜀𝑖2) , 𝜺 =

(𝜺1, … , 𝜺𝑛) , 𝝁 = (𝜇1, 𝜇2) , 𝜷 = (𝜷1, 𝜷2) , 𝝈 = (𝜎1, 𝜎2) , and 𝜽 = (𝝁,𝜷, 𝝈) . Framework-

specific parameters will be defined later in the corresponding subsections. For both 

multivariate frameworks, model parameters are estimated by maximizing their posterior 

distribution through a Bayesian MCMC approach. We assume vague priors commonly used 

in the literature (see, for example, Feng and Dean (2012)), independent and identically 

distributed as: 𝜇𝑘~𝑁(0, 1)  , 𝑘 = 1, 2 , 𝛽𝑘𝑟~𝑁(0, 100), 𝑘 = 1, 2, 𝑟 = 1,… , 𝑅𝑘 , and 

𝜎𝑘~𝑈(0, 100) 𝑖𝑖𝑑, 𝑘 = 1, 2. The joint prior distribution, required for estimation of the 

model parameters, is 

𝑝(𝝁)𝑝(𝜷)𝑝(𝝈) =∏𝑝(𝜇𝑘)𝑝(𝛽𝑘1)…𝑝(𝛽𝑘𝑅1)𝑝(𝜎𝑘)

2

𝑘=1

.  
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This product will be referred to in constructing the posterior distributions under both 

multivariate frameworks. Other priors will be required for specific models and these are 

identified in the subsections below. 

The two frameworks and the models developed under each will be discussed below, using 

the following nomenclature: a digit with 1 representing copula models and 2 representing 

joint models, and a letter for the form these models take under each framework. See Tables 

3.2 and 3.3 for details on the nomenclature. 

3.2.1 The Copula Model Framework 

The definition of copulas is stated in the following theorem taken from Sklar (1959): 

Theorem 2.1 (Sklar’s theorem): Let 𝐹 be a continuous joint distribution function of the 

outcomes 𝑡1 and 𝑡2 with margins 𝐹1 and 𝐹2. The copula associated with 𝐹 is a distribution 

function  

𝐶(𝑢1, 𝑢2|𝛿): [0,1]
2 → [0,1] that satisfies 

𝐹(𝑡1, 𝑡2) = 𝐶(𝐹1(𝑡1), 𝐹2(𝑡2)|𝛿).  

Such 𝐶 exists for all 𝑡1 and 𝑡2 and is termed a copula function or copula, with association 

parameter 𝛿. Conversely, if 𝐶 is a copula and 𝐹1(𝑡1) and 𝐹2(𝑡2) are distribution functions, 

then 𝐹(𝑡1, 𝑡2) is a joint distribution function. 

Essentially, copulas link two univariate models as the marginal models of a multivariate 

framework by plugging their distribution functions into a copula function. Table 3.2 

summarises the four different forms of copula function we consider.  
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Table 3.2: Parameterization of the copulas. 

 

Form Copula Function 
Range 

of 𝛿 
Kendall’s 𝜏 

Normal 

(1n) 

𝐶(𝑢1, 𝑢2|𝛿) = Φ2(Φ
−1(𝑢1),Φ

−1(𝑢2)|𝛿) 

𝑐(𝑢1, 𝑢2|𝛿) = (1 − 𝛿
2)−1/2 exp {−

𝑥1
2 + 𝑥2

2 − 2𝛿𝑥1𝑥2
2(1 − 𝛿2)

} exp {
𝑥1
2 + 𝑥2

2

2
} 

where 𝑥𝑘 = Φ−1(𝑢𝑘), 𝑘 = 1,2 

[−1, 1] 2𝜋−1 arcsin(𝛿) 

Clayton 

(1c) 

𝐶(𝑢1, 𝑢2|𝛿) = (𝑢1
−𝛿 + 𝑢2

−𝛿 − 1)
−1/𝛿

 

𝑐(𝑢1, 𝑢2|𝛿) = (1 + 𝛿)(𝑢1𝑢2)
−𝛿−1(𝑢1

−𝛿 + 𝑢2
−𝛿 − 1)

−2−
1
𝛿 

[0,∞) 𝛿 (𝛿 + 2)⁄  

Gumbel 

(1g) 

𝐶(𝑢1, 𝑢2|𝛿) = ex p {−([− log 𝑢1]
𝛿 + [− log 𝑢2]

𝛿)
1 𝛿⁄
} 

𝑐(𝑢1, 𝑢2|𝛿) = 𝐶(𝑢1, 𝑢2|𝛿)(𝑢1𝑢2)
−1(𝑢̃1

𝛿 + 𝑢̃2
𝛿)
−2+

2
𝛿(𝑢̃1𝑢̃2)

𝛿−1 [1

+ (𝛿 − 1)(𝑢̃1
𝛿 + 𝑢̃2

𝛿)
−1/𝛿

] 

where 𝑢̃𝑘
𝛿 = − log 𝑢𝑘 , 𝑘 = 1,2 

[1,∞) (𝛿 − 1) 𝛿⁄  

Frank 

(1f) 

𝐶(𝑢1, 𝑢2|𝛿) =
−1

𝛿
log (

1 − 𝑒−𝛿 − (1 − 𝑒−𝛿𝑢1)(1 − 𝑒−𝛿𝑢2)

1 − 𝑒−𝛿
) 

𝑐(𝑢1, 𝑢2|𝛿) =
𝛿(1 − 𝑒−𝛿)𝑒−𝛿(𝜇1+𝜇2)

[1 − 𝑒−𝛿 − (1 − 𝑒−𝛿𝑢1)(1 − 𝑒−𝛿𝑢2)]2
 

(−∞,∞) 1 +
4

𝜋
[𝐷1(𝛿) − 1] 

Here 𝑫𝟏(𝒙) = 𝒙−𝟏 ∫ 𝒕𝟏(𝒆𝒕 − 𝟏)−𝟏d𝒕
𝒙

𝟎
 f. See Nelson (1986) and Genest (1987). 
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To model dependence between two outcomes of AFT models using copulas, we make use 

of the multivariate extension of the survival function, discussed by He and Lawless (2005), 

in terms of distribution functions: 

𝐹(𝒕𝑖|𝒙𝑖, 𝜽) = 𝐹0(𝜺𝑖|𝜽) = 𝐹0(𝜀𝑖1, 𝜀𝑖2|𝜽),  

where  𝐹(𝒕𝑖|𝒙𝑖, 𝜽)  is the joint distribution of the outcomes, and 𝐹0(𝜺𝑖|𝜽)  is the joint 

distribution function of the corresponding random errors. By the equation of copula, we 

have 

𝐹0(𝜀𝑖1, 𝜀𝑖2|𝜽) = 𝐶(𝐹01(𝜀𝑖1|𝜽1),  𝐹02(𝜀𝑖2|𝜽2)|𝛿).  

Hence, the joint posterior distribution is expressed as: 

𝑝(𝜽, 𝛿|𝒕) ∝ 𝑝(𝒕|𝜽, 𝛿)𝑝(𝛿)𝑝(𝝁)𝑝(𝜷)𝑝(𝝈).  

The first term on the right-hand side of the above is the likelihood:  

𝑝(𝒕|𝜽, 𝛿) =∏{𝑐(𝐹01(𝜀𝑖1|𝜽1),  𝐹02(𝜀𝑖2|𝜽2)|𝛿)∏𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘)

2

𝑘=1

}

𝑛

𝑖=1

,  

where 𝑐(𝑢,  𝑣|𝛿) = 𝑑2𝐶(𝑢,  𝑣|𝛿) 𝑑𝑢 𝑑𝑣⁄ , and 𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘) is the density function of the 

random error. Note that the two error random variables for given 𝑖 are not independent. 

However, their joint density can be shown to be written in this way. 

We estimate parameters utilizing the approach described in Kelly (2007). The association 

parameter 𝛿 is assumed to follow a prior distribution of 𝑈(0,1) for the Normal copula, 

𝑈(0,50) for the Clayton copula, 𝑈(1,50) for the Gumbel copula and 𝑈(0,50) for the Frank 

copula. Since different copulas have different ranges for 𝛿, for comparing copulas, we will 

instead report their Kendall’s 𝜏 (Kendall, 1938), a standardized value between −1 and 1 

for measuring the ordinal association between two random variables. Table 3.2 provides 

the relationship between 𝛿 and 𝜏 for the copulas considered. 
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3.2.2 The Joint Model Framework 

Another way to model the dependence between two outcomes of AFT models is by utilizing 

an additive frailty framework through what has been termed joint outcome modeling. For 

fire 𝑖 = 1,… , 𝑛, outcome 𝑘 = 1 for duration and 𝑘 = 2 for size, the framework takes the 

general form by extending the univariate AFT model: 

log 𝑡𝑖𝑘 = 𝜇𝑘 + 𝜷𝑘
𝑇𝒙𝑖𝑘 + 𝑏𝑖𝑘 + 𝜎𝑘𝜀𝑖𝑘,  

where 𝒃𝑖 = (𝑏𝑖1, 𝑏𝑖2)
𝑇  is a random effect, independent of 𝜺𝑖 , and assumed to be 

independent and identically distributed as 𝑄(𝒃𝑖|𝑫) = 𝑁2(𝟎,𝑫). The distribution of 𝒃𝑖 , 

often called the mixing distribution, is bivariate normal with a zero-mean 2 × 1 vector, 𝟎, 

and a 2 × 2 symmetric and positive definite variance-covariance, 𝑫. The form of 𝑫 defines 

the dependence in the outcomes 𝑡𝑖1 and 𝑡𝑖2. Before we consider the form of 𝑫 in depth, we 

note that regardless of its form, the joint posterior distribution is expressed as 

𝑝(𝜽, 𝒃, 𝑫|𝒕) ∝ 𝑝(𝒕|𝜽, 𝒃)𝑄(𝒃|𝑫)𝑝(𝝁)𝑝(𝜷)𝑝(𝝈)𝑝(𝑫),  

where 𝒃 = (𝒃1, … , 𝒃𝑛) , and 𝑄(𝒃|𝑫)  is the product of  𝑄(𝒃𝑖|𝑫)  over 𝑖 = 1,… , 𝑛  by 

independence of 𝑄(𝒃𝑖|𝑫) over 𝑖; 𝑝(𝑫) is the prior of 𝑫. The first term on the right-hand 

side is the likelihood: 

𝑝(𝒕|𝜽, 𝒃) ∝∏𝑓(𝒕𝑖|𝒙𝑖, 𝜽, 𝒃𝑖)

𝑛

𝑖=1

,  

where 𝑓(𝒕𝑖|𝒙𝑖, 𝜽, 𝒃𝑖) is the conditional joint density function of the outcomes given 𝒃𝑖. 

Various forms of 𝑫 under the above framework have been discussed in the literature (e.g. 

He and Lawless, 2005; Duchateau and Janssen, 2007; Verbeke and Molenberghs, 2017). 

Table 3.3 summarises the three different forms, along with 𝑓(𝒚𝑖|𝒙𝑖 , 𝜽𝑘, 𝒃𝑖) , the joint 

distribution of the outcomes on the logarithm scale, that align with the application 

considered as discussed in Section 3 and developed here. The factor 
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Table 3.3: Parameterization the joint models 

Form 𝒃𝑖 𝑫 Model Constraints 𝑓(𝒚𝑖|𝒙𝑖 , 𝜽𝑘 , 𝒃𝑖) 

Factor Loading form 

(2a) 
[
𝑏i
𝛾𝑏i
] [

𝜎𝑏
2 𝛾𝜎𝑏

2

𝛾𝜎𝑏
2 𝛾2𝜎𝑏

2] 
log 𝑡𝑖1 = 𝜇1 + 𝜷1

𝑇𝒙𝑖1 + 𝑏𝑖 

log 𝑡𝑖2 = 𝜇2 + 𝜷2
𝑇𝒙𝑖2 + γ𝑏𝑖 + 𝜎2𝜀𝑖2 

𝑁2 ([
𝜇1 + 𝜷1

𝑇𝒙𝑖1
𝜇2 + 𝜷2

𝑇𝒙𝑖2
] , [

𝜎𝑏
2 𝛾𝜎𝑏

2

𝛾𝜎𝑏
2 𝛾2𝜎𝑏

2 + 𝜎2
2]) 

Separate form 

(2s) 
[
0
0
] not applicable 

log 𝑡𝑖1 = 𝜇1 + 𝜷1
𝑇𝒙𝑖1 + 𝜎1𝜀𝑖1 

log 𝑡𝑖2 = 𝜇2 + 𝜷2
𝑇𝒙𝑖2 + 𝜎2𝜀𝑖2 

𝑁2 ([
𝜇1 + 𝜷1

𝑇𝒙𝑖1
𝜇2 +𝜷2

𝑇𝒙𝑖2
] , [
𝜎1
2 0

0 𝜎2
2]) 

Multivariate form 

(2m) 
[
𝑏i1
𝑏i2
] [

𝜎𝑏1
2 𝜎𝑏12

2

𝜎𝑏12
2 𝜎𝑏2

2 ] 
log 𝑡𝑖1 = 𝜇1 + 𝜷1

𝑇𝒙𝑖1 + 𝑏𝑖1 

log 𝑡𝑖2 = 𝜇2 + 𝜷2
𝑇𝒙𝑖2 + 𝑏𝑖2 

𝑁2 ([
𝜇1 +𝜷1

𝑇𝒙𝑖1
𝜇2 + 𝜷2

𝑇𝒙𝑖2
] , [
𝜎𝑏11
2 𝜎𝑏12

2

𝜎𝑏12
2 𝜎𝑏22

2 ]) 
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loading form whereby 𝑏𝑖1 = 𝑏𝑖, and 𝑏𝑖2 = 𝛾𝑏𝑖 is a modification of the traditional shared 

frailty model and has been applied in the joint modeling studies discussed earlier. In Table 

3.3, the distributional form labelled 2a uses a factor loading framework where the 

parameter 𝛾 accounts for the different scale of the effect of the frailty term 𝑏𝑖 on the two 

outcomes. The term 𝑏𝑖  can be viewed as a fire-specific error, shared commonly and 

additively on the logarithm of both outcomes. Note that one of the outcome specific errors, 

𝜀𝑖𝑘, is set to zero (variance set to zero) to avoid over-parameterization. Under this form, 

having 𝜎𝑏 significantly different from zero suggests that there is dependence between the 

two outcomes, and having 𝛾 significantly different from 1 suggests that such 𝑏𝑖 are acting 

on the outcomes with different scales. Hence the dependence between the outcomes can be 

measured by, 𝛾2𝜎𝑏
2 (𝛾2𝜎𝑏

2 + 𝜎𝑘
2)⁄ × 100%, the percentage of heterogeneity explained by 

the shared component, similar to the intraclass correlation coefficient for random effect 

models (Faraway, 2006). We assume that the outcomes are independent given their shared 

frailties, thus the right-hand side of equation above can be simplified as: 

∏𝑓(𝒕𝑖|𝒙𝑖, 𝜽, 𝒃𝑖)

𝑛

𝑖=1

=∏∏𝑓𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘, 𝑏𝑖𝑘)

2

𝑘=1

𝑛

𝑖=1

=∏∏𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘, 𝑏𝑖𝑘)

2

𝑘=1

𝑛

𝑖=1

,  

where 𝑓𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘, 𝑏𝑖𝑘) is the conditional density function of outcome 𝑘 given 𝑏𝑖𝑘 with 

𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘, 𝑏𝑖𝑘)  as the conditional baseline density. We utilize vague priors, with 

𝜎𝑏~𝑈(0,100), 𝛾~𝑁(0,100), and 𝑝(𝑫) = 𝑝(𝜎𝑏)𝑝(𝛾).  

We also consider a model where the outcomes are not dependent, called the separate form 

(Table 3.3, distribution form labelled 2s), where no linking frailty is introduced, and each 

outcome has its own outcome-specific error 𝜎1 and 𝜎2. Hence 𝑏𝑖1 and 𝑏𝑖2 are identically 

zero and the conditional likelihood (11) is proportional to:  

∏𝑓(𝒕𝑖|𝒙𝑖, 𝜽, 𝒃𝑖)

𝑛

𝑖=1

=∏∏𝑓𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘)

2

𝑘=1

𝑛

𝑖=1

=∏∏𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘)

2

𝑘=1

𝑛

𝑖=1

,  
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where 𝑓𝑘(𝑡𝑖𝑘|𝒙𝑖𝑘, 𝜽𝑘) is the density function of outcome 𝑘 with 𝑓0𝑘(𝜀𝑖𝑘|𝜽𝑘) as the baseline 

density. Models constructed under this form will be used to contrast the fits of, and assess 

the benefits of, joint models. 

Alternatively, the multivariate form (Table 3.3, distribution form labelled 2m), a 

modification of the correlated frailty model (Wienke, 2011) that has been considered, for 

example, in the cluster-specific AFT model by Komárek and Lesaffre (2008), may be used 

here. Under this form, the frailties 𝑏𝑖1 and 𝑏𝑖2, follow a multivariate normal distribution 

with covariance taking a non-zero value. The correlation of the frailties is defined by 𝜌 =

 𝐷12 √𝐷11𝐷22⁄ , where 𝐷11 and 𝐷22 each represents the variance of the 𝑏𝑖1 and 𝑏𝑖2, and 𝐷12 

represents their covariance. Having 𝜌 significantly different from zero suggests that there 

is dependence between the two outcomes. For priors, we further assume that 

𝑫~Wishart(2, 𝑹) , where 𝑹  is a 2 × 2  matrix such that 𝑅11 = 0.01, 𝑅22 = 0.1, 𝑅12 =

𝑅21 = 0.  

3.3 British Columbia Fire Data 

3.3.1 Data Description 

Our work is motivated by an interest in understanding the relationship, if any, between fire 

size and fire duration as well as the effect of environmental variables on theses outcomes. 

Records of wildland fires that occurred in British Columbia from 1953-2000 were obtained 

from the BC Wildfire Service. Weather variables for the same period were obtained from 

an unpublished Canadian Forest Service study (Flannigan et al., 2002). The weather 

observations (noon temperature, relative humidity, wind speed, 24-hour precipitation) in 

this analysis were obtained from the Meteorological Service of Canada (MSC) and BC 

Wildfire Service weather stations for the 1953-1970 and 1971-2000 periods, respectively, 

and were interpolated to a 5 km grid using inverse distance weighting (temperature and 

relative humidity were corrected for elevation); the interpolated weather observations were 

subsequently used to calculate the six standard indices of the Canadian Forest Fire Weather 

Index System (Van Wagner, 1987). We used the location of the centroid of the fires 
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(latitude, longitude) to extract the observations for each day of each fire’s life history from 

the appropriate grid cell. 

The data contain the following information on historical fire activity from 1953-2000 and 

are described in Table 3.4: duration in days and size in hectares, six static location variables, 

and ten interpolated dynamic environmental variables recorded daily through the complete 

life history of the fires. The ten environmental variables include four weather observations 

and six indices calculated from the weather observations. The four weather observations 

include temperature (TEMP), wind (WIND), relative humidity (RH), and Precipitation 

(PCP). The six indices include three fuel moisture codes and three fire behavior indices. 

The former contains Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and 

Drought Code (DC), which increase as the dryness of the corresponding layer of the forest 

floor increases. The latter contains Initial Spread Index (ISI), Buildup Index (BUI), and 

Fire Weather Index (FWI), which increase as the fire spread rate, the available fuel, and the 

intensity of the fire-line increases correspondingly. The ten environmental variables are 

also functionally related in a hierarchical structure (Natural Resources Canada, 2017). 

There will be need for care in employing these variables because of potential 

multicollinearity. De Groot (1998), Lawson and Armitage (2008) and Wotton (2008) 

provide an excellent review of the scientific interpretation of these variables. We validate 

the estimates of the linear effect of the by comparing with scientific knowledge. 

For this project, we are interested in the 911 lightning-caused, extended attack fires. 

Extended attack fires are those that have escaped initial attack and for which duration 

exceeds 2 days and size exceeds 4 hectares, and therefore require additional resources to 

contain. These fires account for around 93% total area burned by lightning fires, and a large 

percentage of suppression costs and damage. The left panel of Figure 3.1 is a plot of the 

locations of these fires. Fire occurrence is more severe along a ridge from the north-east to 

the south-west of the province. This occurs because there is a high density of lightning 

strikes and lightning caused fires in south east BC (Magnussen and Taylor, 2013). The right 

panel of Figure 3.1 is a scatter plot of duration versus size, with a log base 10 scale on both   
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Table 3.4: Data used in the study 

Outcomes and Variables Descriptions 

Outcomes:  

Duration (days) Time spent from ground attack to final control 

Size (ha) Area burned from ground attack to final control 

  

Location Variables:  

Slope (degree) Steepness of the landscape 

Elevation (m) Height above sea level 

Ground attack size (ha) Burned area at the ground attack stage 

Fire centre Administrative regions of the province, coded as: Coastal, Northwest, 

Prince George, Kamloops, Southeast, Cariboo 

Decade Decades that the fires occur 

Month Months that the fires occur 

  

Weather Observations:  

Temperature (TEMP; °C) The noon temperature recorded in Celsius 

Wind (WIND; km/h) The average wind speed measured over a 10-minute period 

Relative Humidity (RH; %) The fraction of moisture present in the atmosphere 

Precipitation (PCP; mm) The amount of rain accumulated in the 24-hour period from noon to noon 
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Outcomes and Variables Descriptions 

Fuel Moisture Codes:  

Fine Fuel Moisture Code (FFMC) An index of the moisture content of litter and other cured fine fuels 

Duff Moisture Code (DMC) An index of the moisture content of loosely compacted organic (duff) 

layers of moderate depth 

Drought Code (DC) An index of the moisture content of deep, compact organic layers  

  

Fire Behavior Indices:  

Initial Spread Index (ISI) A relative measure of the expected rate of fire spread, which combines the 

effects of wind and Fine Fuel Moisture Code 

Buildup Index (BUI) A weighted combination of Duff Moisture Code and Drought Code, a 

relative measure of the total amount of fuel available for combustion 

Fire Weather Index (FWI) A combination of the Initial Spread Index and Buildup Index, a relative 

measure of the potential intensity of a spreading fire as energy output rate 

per unit length of fire front 
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Figure 3.1: The locations of the fires (left) and a scatter plot of duration versus size, with a 

log base 10 scale on both axes (right). Fires are clustered around the Rocky Mountain 

Trench. Duration and size have a moderate positive dependence. 

 

 

Figure 3.2: The estimated parametric and nonparametric survivor functions of the 

outcome. The lognormal distribution seems to fit both outcomes well.
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axes. There are more short-and-small extended attack fires than long-and-large such fires, 

and a moderate positive correlation seems to exist between the outcomes. Figure 3.2 has 

six plots; each plot contains the estimated parametric and nonparametric survival functions 

of the outcome based on the parametric forms mentioned in the previous section and not 

accounting for covariates. The top row corresponds to the outcome of duration and the 

bottom row correspond to the outcome of size. The columns, from left to right, are the plots 

for estimated Weibull, lognormal, and loglogistic distributions. The parametric forms are 

estimated using maximum likelihood (Lawless, 2011) using the R package survival 

(Therneau and Lumley, 2014) as a simple exploratory analysis. For 𝑡 ≥ 0 , the 

nonparametric estimate, the empirical survival function (Lawless, 2011), is calculated as 

𝑆̂(𝑡) = [Number of observations ≥ 𝑡] 𝑛⁄ . The lognormal distribution seems to fit both 

outcomes reasonably well and is used for each outcome in the two multivariate frameworks. 

To illustrate the dynamic environmental variables, Figure 3.1 plots the trajectories of the 

ten environmental variables from 30 randomly chosen fires. These trajectories illustrate the 

high variability in these variables as well as the sharp changes that may be exhibited in 

some variables showing how susceptible they are to changes in moisture and wind speed.  

3.3.2 Construction of Derived Covariates 

For fire 𝑖 outcome 𝑘, we partition its associated 𝑅𝑘 covariates 𝒙𝑖𝑘 as 𝒙𝑖𝑘 = (𝒙𝑖𝑘
𝑃 , 𝒙𝑖𝑘

𝑄 )
𝑇
, in 

which 𝒙𝑖𝑘
𝑃 = (𝑥𝑖𝑘1

𝑃 , … , 𝑥𝑖𝑘𝑃𝑘
𝑃 )

𝑇
 is the vector of 𝑃𝑘  static covariates representing the six 

location variables, and 𝒙𝑖𝑘
𝑄 = (𝑥𝑖𝑘1

𝑄 , … , 𝑥𝑖𝑘𝑄𝑘
𝑄 )

𝑇

 is a set of 𝑄𝑘  derived covariates 

constructed by summarizing the trajectories of the corresponding environmental variables 

into relevant indices. Precisely, a derived covariate 𝑥𝑖𝑘𝑞
𝑄
, 𝑞 = 1, … , 𝑄𝑘 , is defined as 

𝑔(𝑋𝑖𝑘𝑞
𝑄 ), where 𝑋𝑖𝑘𝑞

𝑄 = {𝑥𝑖𝑗𝑘𝑞
𝑄 , 𝑗 = 1,… ,𝑚𝑖} denotes the complete history of the observed 

dynamic variables, and 𝑔 is a function that summarizes the history over its 𝑚𝑖 observations. 

For all 𝑄 derived covariates of fire 𝑖, outcome 𝑘, we define 
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𝑥𝑖𝑘𝑞
𝑄 = 𝑔(𝑋𝑖𝑘𝑞

𝑄 ) =
∑ (𝑥𝑖𝑗𝑘𝑞

𝑄 − 𝑥𝑖0𝑘𝑞
𝑄 )

𝑚𝑖
𝑗=1

𝑚𝑖
,  

where 𝑥𝑖0𝑘𝑞
𝑄

 is a threshold value for the associated variable, based on scientific knowledge. 

These thresholds are either weather conditions in a normal day of July (Van Wagner, 1987) 

or critical values of the fuel moisture codes (Stocks et al., 1989) and fire behavior indices 

(Podur and Wotton, 2011) which the intensity of fire activity increases. For example, days 

in which FWI>19 are considered “spread event days” that have the potential to yield large 

fire size. The quantity, 𝑥𝑖𝑘𝑞
𝑄

, can be interpreted as the average deviation from threshold 

(ADFT) over the complete history of the fire. In our nomenclature, the threshold is 

appended to the variable name; for example, DC400 refers to the effect of the average 

deviation from the threshold of 400 for the variable DC. Table 3.5 summarizes the 

covariates used in the study and identifies the thresholds through the ADFT variable names. 

The threshold value for each environmental variable is also plotted in red dashed lines on 

Figure 3.3. Additionally, for those environmental variables that demonstrate clear linear 

trend in their trajectories (DC, DMC, BUI), we centre them, fit a simple linear regression 

model by maximum likelihood from the first day (day of ground attack) to the last day (day 

of final control) of the fire, and use the estimated intercept and slope as additional covariates. 

Table 3.5 also summarizes the estimated slopes and intercepts. Note that around 86%, 60%, 

and 62% of the estimated slopes were positive for the regression analysis for DC, DMC, 

and BUI. The derived covariates used in this study are then: summaries of the linear trends, 

ADFT of weather observations, ADFT of fuel codes, and ADFT of fire behaviour indices.  

Exploratory analyses indicate that summaries of the linear trends are generally not 

correlated with the other covariates, while the ADFT of the fuel codes are strongly 

correlated with the ADFT of the fire behavior indices. Fuel code covariates are generally 

positively correlated; the same is true for fire behaviour indices. These correlations have 

been noted by other authors for other fire data.  
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Table 3.5: Descriptive statistics of the covariates 

Continuous Location Variables Categorical Location Variables 

 Mean SD Min Median Max Fire Centre Duration  Size  
Slope 57.8 30.6 0.0 60.0 99.0 Coastal 8.3 36.3 

Elevation 33.3 170.4 0.0 12.0 1900.0 Northwest 9.6 281.9 
Ground 

attack 
size 65.4 253.6 0.0 5.0 2952.5 

Prince 
George 6.0 130.5 

ADFT of the Environmental Variables Kamloops 6.0 52.5 

 Mean SD Min Median Max Southeast 8.4 58.5 

TEMP21 -1.4 5.2 -21.5 -1.5 16.5 Cariboo 5.0 131.5 
RH45 9.9 18.5 -26.7 8.3 55.0    

WIND13 -3.3 3.9 -13.0 -3.7 15.2 Decade Duration  Size  
PCP12 -11.0 1.3 -12.0 -11.4 -1.3 1950s 5.3 68.8 

FFMC74 4.4 14.9 -74.0 9.3 22.8 1960s 7.0 105.7 
DMC20 41.1 42.9 -20.0 30.8 246.3 1970s 5.9 52.8 
DC400 21.1 134.6 -329.8 10.7 466.3 1980s 8.0 97.2 
ISI7.5 -2.2 4.1 -7.5 -3.2 19.9 1990s 7.3 44.9 
BUI50 33.8 49.3 -50.0 26.4 233.8    
FWI19 -1.8 13.4 -19.0 -5.3 49.7 Month Duration  Size  

      May 5.0 408.0 

      June 5.6 236.1 

      July 8.0 81.8 

      August 6.2 53.2 

      September 8.0 34.4 
 

Linear Model Summaries 

 Median Percent of Positive 
DC intercept -22.5 - 

DC slope 6.0 0.85 
DMC intercept -2.7 - 

DMC slope 0.6 0.60 

BUI intercept -4.8 - 
BUI slope 1.0 0.62 

 

The continunous location and the average deviation from threshold (ADFT) for the 

envionmental variables are summarized in terms of mean, standard deviation (SD), 

minimum (Min), median, and maximum (Max). The median duration and size of the 
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categorical location variables are summarized for each of their categories. The linear model 

estimates (i.e. estimated intercepts and slopes) are summarized by their medians and the 

percentage of estimated slope parameters that are positive is provided. With regard to 

duration, fires at Prince George, Kamloops, and Cariboo tend to be shorter than those in 

other regions. Fires from the 60’s, 80’s, and 90’s, as well as fires in July tend to be long. 

With regard to size, fires at Northwest, Prince George, Cariboo, from the 60’s and 80’s, as 

well as in May and June tend to be larger.  

 



 

67 

 

 

 

 

Figure 3.3: The trajectories of the environmental variables for 30 randomly chosen fires. The threshold values are plotted in dashed lines. 

BUI = Buildup Index; DC = Drought Code; DMC = Duff Moisture Code; FFMC = Fine Fuel Moisture Code; FWI = Fire Weather Index; 

ISI = Initial Spread Index; PCP = precipitation; RH = relative humidity; TEMP = temperature; WIND = windspeed. 
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3.4 Analysis and Results 

Model fitting is carried out by adaptive MCMC using the R package runjags (Denwood, 

2016) with 3 chains. Each chain has 10000 adapting steps, 5000 burn-in steps, and 30000 

steps thinned at 4. The parameter estimate is its posterior median. Convergence is assessed 

by visually examining chain trajectories and density plots of the sampled parameter values, 

as well as by calculating the Gelman-Rubin statistic (Gelman and Rubin, 1992). 

Autocorrelations of the values of the chains are plotted to assess if the chains are of 

sufficient length. Chains are run on parallel hardware to improve computational efficiency. 

Credible intervals are obtained as the lower/upper 2.5% quantiles of the posterior density. 

Covariate identification proceeded by forward selection. Model fits are assessed using the 

Deviance information criteria (DIC) by Spiegelhalter et al. (2002) and the Watanabe–

Akaike information criterion (WAIC) by Watanabe (2010). The WAIC uses the computed 

log pointwise posterior predictive density and adds a correction for effective number of 

parameters to account for overfitting. 

The final models, discussed in depth in this section, utilize the normal form with the copula 

model (1n), and the factor loading and multivariate forms of the joint model (2a and 2m, 

respectively). With the copula model, the normal form outperforms the other forms in terms 

of DIC and WAIC. Additionally, the factor loading form of the joint model outperforms 

the separate form. The full posterior distributions of the final models are provided in 

Appendix 3A. A summary of the fit of all models considered is provided in Appendix 3B. 

Tables 3.6 and 3.7 present parameter estimates (95% credible intervals) obtained from 

fitting the three models and resulting from the selection procedure for the normal copula 

model, the factor loading model, and the multivariate model. We include the static 

covariates, and employ a forward selection procedure for each of the four categories of 

derived covariates as defined earlier: summaries of the linear trends, ADFT of weather 

observations, ADFT of fuel codes, and ADFT of fire behaviour indices. Covariate effects 

Table 3.6 identifies that for model 1n, the dependence between the outcomes is captured  
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Table 3.6: Posterior estimates of model parameters and statistics accessing model 

fits of the three dependent models 

 Model 1n 

 Model Parameters Model Fits 

 𝑄.025 𝑄.500 𝑄.975    

𝜇1 1.049 1.525 1.977  DIC 18238791 

𝜇2 0.607 1.857 3.058  WAIC 168 

𝜎1 1.295 1.363 1.437    

𝜎2 2.910 3.065 3.234    

𝜏 0.573 0.602 0.630    

 Model 2a 

 Model Parameters Model Fits 

 𝑄.025 𝑄.500 𝑄.975    

𝜇1 0.839 1.437 1.998  DIC 14728 

𝜇2 0.426 1.261 2.340  WAIC 17130 

𝜎2 0.017 0.125 0.442    

𝛾 3.741 4.386 4.918    

𝜎𝑏 0.377 0.429 0.501    

 Model 2m 

 Model Parameters Model Fits 

 𝑄.025 𝑄.500 𝑄.975    

𝜇1 1.089 1.563 2.015  DIC 5688 

𝜇2 0.764 1.951 3.068  WAIC 5596 

𝜎11 0.636 0.697 0.767    

𝜎12 0.722 0.833 0.954    

𝜎22 3.209 3.519 3.862    

 

For model 1n, the dependence between the outcomes is captured by a Normal copula with 

a moderate τ estimated as 0.602 with 95% credible interval (0.573,  0.630). For model 2a, 

the shared error, σb , is estimated as 0.429 with 95% credible interval (0.377, 0.501)and 

attached to a factor loading of 4.386 with 95% credible interval (3.741, 4.918)on size. For 

model 2m, the correlation between the frailties, ρ, is estimated as 0.283 with 95% credible 

interval (0.255,  0.308). These three models yield the best fit among all the other model 

candidates (see Appendix 3B).  
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Table 3.7: Posterior estimates of the covariate effects for model 2a. 
 

 Duration Coefficients Size Coefficients 

 𝑄.025 𝑄.500 𝑄.975 𝑄.025 𝑄.500 𝑄.975 

Slope -0.001 0.001 0.003 -0.008 -0.004 0.001 

Elevation 0.000 0.000 0.000 0.000 0.001 0.001 

Ground attack size 0.000 0.000 0.000 0.001 0.001 0.002 

Northwest -0.098 0.160 0.405 0.887 1.479 2.076 

Prince George -0.458 -0.272 -0.064 0.621 1.059 1.507 

Kamloops -0.511 -0.312 -0.088 -0.471 0.019 0.522 

Southeast -0.221 -0.053 0.143 -0.283 0.144 0.568 

Cariboo -0.701 -0.440 -0.160 -0.164 0.463 1.096 

1960s 0.097 0.319 0.531 -0.109 0.390 0.888 

1970s -0.042 0.197 0.444 -0.081 0.435 0.966 

1980s 0.249 0.474 0.697 0.053 0.546 1.053 

1990s 0.318 0.571 0.804 -0.292 0.253 0.796 

June -0.013 0.351 0.712 -0.499 0.392 1.305 

July 0.222 0.517 0.848 -0.659 0.149 0.977 

August 0.030 0.331 0.676 -0.920 -0.103 0.749 

September -0.101 0.441 0.945 -1.168 0.018 1.249 

BUI intercept 0.006 0.010 0.014    
BUI slope 0.029 0.047 0.066    
WIND13    -0.006 0.025 0.057 

PCP12    -0.252 -0.168 -0.088 

DMC20    0.004 0.007 0.010 

DC400 0.000 0.000 0.001    
 

Parameter estimates (𝑄.500) are reported as well as the lower limit (Q.025) and upper limit 
(Q.975)of their 95% credible intervals. Dominant covariate effects are highlighted in green. 

Effects of fire centre, decade, and month roughly agree with our findings in Table 3.5, 

except that Cariboo, the decade of the 60’s and month are not significant for modeling size. 

BUI intercept and BUI slope are positively related to duration. Ground attack size and the 

average deviation from threshold (ADFT) for DMC are positively related to size, while the 

ADFT for PCP is negatively related. Results are reported in comparison to the reference 

group (i.e. at Coastal, from the 50’s, and in May). Though not shown here, results related 

to these covariates are about the same for the three dependent models (i.e. 1n, 2a, 2m).are 

nearly identical across the three dependent models, thus only the effects corresponding to 

model 2a are presented in Table 3.7 to avoid redundancy.
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by a Normal copula with a moderate 𝜏 estimated as 0.602 (0.573, 0.630). For model 2a, 

the error shared across both outcomes is significant with an estimate of 𝜎𝑏  as 

0.429 (0.377,0.501). The factor loading parameter 𝛾 is estimated as 4.386 (3.741,4.918), 

suggesting that the effect of the shared error on the logarithm of size is about four times as 

large as its effect on the logarithm of duration. Furthermore, the size-specific error, 𝜎2, 

estimated as 0.125 (0.017,0.442), is quite small compared to the shared outcome error. As 

a result, about 99.6% of heterogeneity in size is explained by the shared variability. For 

model 2m, the correlation between the frailties, 𝜌, is estimated as 0.283 (0.255, 0.308). 

The dependence across the two outcomes is significant for all three models as described by 

these parameter estimates.  

Dominant covariate effects are highlighted in green in Table 3.7 and summarized as follows: 

• Ground attack size: Size (the difference in fire size between ground attack and final 

control) tends to be larger as the size at ground attack increases. 

• Fire centre: Compared to the fires from the Coastal fire centre, fires from Prince 

George, Kamloops, and Cariboo fire centres tend to have shorter duration while 

fires from Northwest and Prince George fire centres tend to have larger sizes. 

• Decade: Fires in recent decades tend to have considerably longer duration and 

larger sizes compared the ones in the 1950’s, except for the 70’s for duration and 

the 90’s for size. 

• BUI intercept and BUI slope: In our fire data, one standard deviation in the 

distribution of the estimated BUI intercept is about 20 units. In the Canadian Fire 

Behaviour Prediction System (CFS Fire Danger Group 1992) the effect of BUI on 

fuel consumption varies non-linearly by fuel (forest) type. For example, increasing 

BUI by 20 units in the C-3 jackpine-lodgepole pine fuel type represents an increase 

in surface fuel consumption of 0.78 kg/m2 at BUI 40 and 0.11 kg/m2 at BUI 200 

when most of the surface fuel will have been consumed. However, this does not 

account for the effect of BUI and fuel consumption on crowning. Such a change in 

the fuel for combustion will multiply duration by exp(20 × 0.01) =1.22. A fire 
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with an initial BUI of 150 would have a duration 2.77 times that of a fire at 50 BUI. 

Likewise, one standard deviation in the distribution of the estimated BUI slopes is 

about 5 units, which represents a day-over-day increase in surface fuel consumption 

of 0.16 kg/m2 at BUI 80 and will multiply duration by exp(5 × 0.047) =1.26. That 

is, such changes in initial and day-over-day fuel combustion will result in a 22% 

and 26% increase in duration, respectively. 

• The average deviation from threshold (ADFT) for precipitation and DMC: 

Increasing the ADFT of precipitation by 1mm will multiply size by 

exp(−0.168) =0.85  (See Table 3.5 for a summary of ADFT values for 

precipitation in our data). Increase in the ADFT of DMC by 10 units will multiply 

size by exp(10 × 0.007) =1.07. These results quantify, through the lifetime of 

fires, how precipitation leads to smaller fire sizes, and how dryer organic layers at 

moderate depth will lead to larger fire sizes. Importantly, the small change in the 

ADFT of precipitation substantially affects fire size. 

Figure 3.4 presents the histogram of the standardized residuals and a plot of the 

standardized residuals vs. fitted value for each of the two outcomes based on model 2a. For 

both outcomes, residuals are distributed around zero with no extreme outliers. The right 

skewness of the histograms and the heteroscedasticity observed in the plot of residuals 

versus fitted values suggest that the variability of residuals is increasing as the outcomes 

become large, an effect that will be discussed later.  

 

3.5 Robustness under Joint Modeling 

Joint modeling offers a helpful framework for interpreting the relationship between the two 

outcomes considered here in the fire science context. Even so, it is of interest to determine 

how robust joint models are when the true model is a copula, and to assess whether the 

factor loading form captures the variability for each of the outcomes. We consider a 

simulation study to investigate if the joint outcome models can effectively describe data
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Figure 3.4: Residual diagnostics for the final models. For both duration and size, the 

standardized residuals are roughly normal with no significant outliers. The straight edges 

along the bottom of the points arise from the truncation at duration >2 days and size > 4 

hectares. These features can be identified among all three final models (1n, 2a, 2m). 
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 generated from the four copulas discussed earlier.  

We generate 𝑛 observations from each of the four copulas with the marginal for each 

outcome distributed as either Weibull, lognormal, or loglogistic. Data are generated from 

copula models using the conditional approach (Frees and Valdez, 2014; Hofert et al., 2014). 

This approach randomly generates 𝑡𝑖1 from 𝐹1(𝑡𝑖1|𝒙𝑖1, 𝜽1), 𝑖 = 1,… , 𝑛 using the inverse 

method, and generates 𝑡𝑖2 from the conditional distribution of 𝑡𝑖2 given 𝑡𝑖1. Parameters are 

set as 𝜇1 = 2.0, 𝜇2 = 4.5, 𝜎1 = 1.0, 𝜎2 = 2.0, and we incorporate a single covariate 𝑥 for 

both outcomes with 𝑥𝑖1 = 𝑥𝑖2 = 0 for 𝑖 = 1,… , 𝑛/2 and 𝑥𝑖1 = 𝑥𝑖2 = 1 for 𝑖 = 𝑛/2,… , 𝑛. 

The true covariate effects are 𝛽1 = 0.100, 𝛽2 = 0.075; 𝑛 is set at 200. These parameter 

values generate outcomes that are about the same scale and variability as the fire data. A 

range of values for the association parameter for the copula was considered with 𝜏 =

0.1, 0.2, … , 0.9. One hundred data sets were generated at each of the 216 combinations of 

the parameter values.  

Here we focus on understanding the decomposition of the variability in each outcome under 

the joint model and how the decomposition is affected by the changes in the value of the 

association parameter for the copula model. Table 3.8 and the left panel of Figure 3.5 

identify the 2.5% and 97.5% quantile of the distribution of the estimates of 𝜎2, 𝛾, and 𝜎𝑏 

when data are generated from the normal copula with both margins as lognormal. The 

medians of these estimates are also identified in Table 3.8. When the dependence between 

the outcomes approaches zero, the copula function will converge to the independence 

copula, which is the same model as the joint model with no dependence (the separate form 

of the model). In this case, the median of the estimates of 𝜎2 is about 2 while that for 𝜎𝑏 is 

1, accurately capturing the variability of the marginal distributions of the outcomes. As the 

association parameter 𝜏 increases, the shared variability increases. The distribution of the 

estimates of 𝛾 and 𝜎2 become narrower, while that for 𝜎𝑏 remains about the same. As 𝜏 

increases to one, the median of estimates of 𝜎𝑏 remain approximately 1. The estimates of 

𝜎2 decrease substantially , while the estimates of 𝛾 increases to about 2, again capturing the 
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Table 3.8: The lower limit (𝑄.025) , median (𝑄.500) and the upper limit (𝑄.975) of the distribution of the joint model estimates for data 

generated from the normal copula with both margins as lognormal. As the association parameter 𝜏 increases, the shared variability 

increases, the distribution of the estimates of 𝛾 and 𝜎2 become narrower, while that for 𝜎𝑏  remains about the same. Joint models also 

provide robust location parameters and coefficient estimates (see next page).
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  Kendall's 𝜏 

Parameter Summary Statistic 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

𝜇1 = 2.0 

𝑄.025 1.779 1.763 1.737 1.711 1.706 1.698 1.704 1.717 1.715 
𝑄.500 1.967 1.952 1.939 1.927 1.932 1.889 1.902 1.903 1.913 
𝑄.975 2.154 2.141 2.140 2.143 2.159 2.080 2.101 2.089 2.112 

𝜇2 = 4.5 

𝑄.025 3.947 3.998 3.903 3.895 3.899 3.838 3.891 3.936 3.935 

𝑄.500 4.326 4.328 4.308 4.301 4.324 4.248 4.281 4.307 4.325 
𝑄.975 4.704 4.658 4.713 4.707 4.748 4.658 4.671 4.677 4.714 

𝛽1 = 0.1 

𝑄.025 -0.155 -0.108 -0.101 -0.094 -0.135 -0.070 -0.091 -0.096 -0.096 

𝑄.500 0.123 0.149 0.177 0.182 0.160 0.227 0.196 0.187 0.183 
𝑄.975 0.401 0.406 0.454 0.458 0.454 0.524 0.484 0.470 0.462 

𝛽2 = 0.075 

𝑄.025 -0.389 -0.363 -0.424 -0.357 -0.523 -0.419 -0.443 -0.443 -0.447 
𝑄.500 0.119 0.116 0.131 0.179 0.087 0.192 0.145 0.095 0.093 
𝑄.975 0.627 0.595 0.687 0.716 0.696 0.803 0.733 0.633 0.633 

𝜎2 

𝑄.025 1.793 1.727 1.609 1.442 1.271 1.058 0.799 0.525 0.208 

𝑄.500 1.980 1.912 1.790 1.609 1.418 1.164 0.899 0.588 0.247 
𝑄.975 2.167 2.098 1.971 1.776 1.565 1.269 1.000 0.650 0.285 

𝛾 

𝑄.025 0.098 0.331 0.638 0.960 1.241 1.472 1.682 1.827 1.952 

𝑄.500 0.352 0.613 0.926 1.197 1.458 1.638 1.798 1.922 1.994 
𝑄.975 0.607 0.895 1.213 1.434 1.674 1.804 1.915 2.017 2.037 

𝜎𝑏 

𝑄.025 0.893 0.893 0.908 0.901 0.910 0.899 0.882 0.902 0.920 
𝑄.500 0.997 0.998 0.999 1.003 0.999 0.990 0.994 1.004 1.013 
𝑄.975 1.101 1.104 1.091 1.106 1.088 1.081 1.106 1.106 1.106 
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Figure 3.5: The lower limit, median, and the upper limit of the distribution of the joint model estimates of 𝜎2, 𝛾, and 𝜎𝑏(left panel) and 

𝜇1, 𝜇2, 𝛽1, 𝛽1 (right panel) for data generated from the normal copula with both margins as lognormal. As the association parameter τ 

increases, the shared variability increases. The distribution of the estimates of 𝛾 and 𝜎2 becomes narrower, whereas that for σb remains 

about the same. Joint models also provide robust location parameters and coefficient estimates. 
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variability of the marginals. These features suggest that as the dependence between 

outcomes becomes stronger, the joint model captures such dependence through increased 

shared variability. 

Though not presented here, these features hold for all six combinations of the three margins 

under all four types of copulas, which suggest that the joint model framework can describe 

copulas and the increase in outcome dependence is captured as an increase in the amount 

of shared outcome variability and a reduction in the total variability over both outcomes. 

The right panel of Figure 3.5 provides summary of the estimates of the 𝜇’s and 𝛽’s. We see 

that joint models also provide robust location parameters and coefficient estimates. Note 

that the study only considers a fixed sample size and did not incorporate a covariate effect. 

The theoretical properties of the parameters estimate under model misspecification also 

deserve a further investigation. 

3.6 Discussion 

This chapter has developed a copula model framework and a joint model framework that 

can be utilized to model and predict the survivorship of an extended attack fire in terms of 

its containment time and area burned, given its environmental information as covariates. 

As a joint outcome analysis, duration and size are defined by a common origin and event, 

while two flexible frameworks (i.e. copula and joint modeling) are used to model their 

dependence. The factor loading form of the joint model reflects the scale difference 

between the shared error of the two outcomes. 

We focused on understanding the relationship between and utility of the copula model and 

the factor loading form, as well as developing novel techniques to construct covariates and 

providing estimates of their effects. Our results suggest that duration and size are 

significantly dependent, and joint modeling outperforms modeling the outcomes 

separately. Our simulation studies show that as the outcome dependence in a copula 

increases, the shared variability in a joint model increases and the outcome-specific 
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variability decreases, while estimates of associated parameters become more precise. Some 

striking covariate effects were observed. Fire center and decade affect both duration and 

size. Increases in initial and day-over-day organic layer dryness have positive effects on 

duration, while increase in the ADFT of precipitation has negative effect on size. The 

findings provide a comprehensive perspective for understanding the statistical uncertainty 

quantified in modeling fire duration and fire size through copulas and joint models. The 

findings are also significant in a climate change context as BUI and DMC are expected to 

increase, and precipitation decrease, in parts of the fire season in central to southern BC in 

future decades. They also help to explain the large fire sizes in BC in the 2017 and 2018 

fire seasons. 

With regard to the moderate heteroscedasticity and skewness observed in the residuals, 

developing methods to handle clustering effects in the data may provide an effective 

mechanism to reduce these effects. Different containment strategies may result in more 

than one population of fires (i.e. mild and severe) and , hence, clustered outcome 

distributions. Under the framework of joint model, such clustering can be accounted for by 

introducing another latent variable as an unobserved label of the clusters. For instance, the 

nesting of joint modeling and mixture model utilizes one method as a foundation model 

and applies the other method in one of its sub-models (e.g. Dean et al., 2007; Huang et al., 

2016). The bivariate normal mixture is also a comparable alternative often used in medical 

studies (e.g. Vink et al., 2016). Developing a finite mixture of the joint model for fire 

duration and fire size may be of both scientific and statistical interest to extend methods for 

this dependent modeling framework. 
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Chapter 4  

4 Joint Mixture Models for the Duration and Size of 

Wildfires 

4.1 Introduction 

Fire duration and fire size, representing how long a fire lasts and how much area is burned, 

respectively, have been studied as key outcomes of wildland fire risk in fire science (Fried 

and Gilless 1989; Taylor et al. 2013; Xi et al., 2019). Early studies have been motivated by 

an assessment of their relationship with environmental variables for ecological and 

managerial purposes (Cumming, 2001; Finney et al., 2009). Both outcomes are non-

negative, right skewed, quantifying the survivorship of the fires from an origin to 

extinguishment. 

Fires with long durations tend to be large in size, hence fire duration and fire size are often 

correlated outcomes (Yoder and Gebert 2012; Sun, 2013; Bayham, 2013; Xi et al., 2020). 

These authors note indications of multimodality, namely, that there are distinct peaks in the 

density functions of the outcomes. From the fire management perspective, this is not 

unexpected as some fires are contained quickly on initiation of fire suppression activities, 

while others escape or indeed are left to burn (Filmon, 2004; Xi et al., 2019). Such fire 

suppression strategies are widely adopted in fire management, hence aside from being 

correlated, both fire duration and fire size can also be regarded as being generated from 

multiple management strategies yielding distinct subpopulations of fires.  

Usual parametric distributions that rely on location and scale parameters are often not 

suitable for modeling data with multimodality in their distribution. Some authors choose to 

avoid modeling irregular shapes by analyzing only the subset of fires that exceed a 

threshold of duration (DaCamara et al., 2014) or size (Holmes et al., 2008), while others 

handle such irregularities by utilizing non-parametric survival models (Morin et al., 2015; 



 

86 

 

 

 

Tremblay et al., 2018). These studies have considered only a single outcome (i.e. either 

duration or size). While correlation in the outcomes has been noted, there have been no 

models developed to address both multimodality and correlation in the outcomes 

simultaneously. It is of both scientific and statistical interest to develop a comprehensive 

model to account for the correlation of fire duration and fire size, while also modeling the 

potential multimodality observed in their marginal and joint distributions. 

Two types of statistical methods more commonly used in biostatistics may initiate such 

development: joint modeling, and mixture models. For the application of joint modeling in 

environmental and other circumstances, see for example, Feng and Dean (2012), Renouf et 

al. (2016), Juarez-Colunga et al. (2017) and Lundy and Dean (2018). Joint modeling 

provides an approach where correlation of the outcomes may be addressed (Dunson, 2000; 

Henderson et al., 2000). By assuming that the distributions of the outcomes are 

independent, conditional on a shared latent variable, the joint distributions of the outcomes 

may be obtained by integrating their product over the support of the latent variable. The 

latent variable included in each of the outcomes induces correlation. As well, multimodality 

can be accommodated through finite mixture models, in which the outcome distribution 

arises from a mixture of components reflecting subpopulations, and a categorical latent 

variable identifies the subpopulation to which a fire is associated. (McLachlan and Peel, 

2000).  

A mechanism by which both joint models and mixture models may be employed, reflecting 

the scientific context of fire science, uses each of these as building blocks in constructing 

an overarching model. Vink et al. (2016) use a bivariate Gaussian mixture model for 

estimating vaccine-type seroprevalence from correlated antibody responses, hence 

incorporating mixtures in correlated outcomes. In a forestry study, Dean et al. (2007) 

developed a multi-state model for tree disease status using a two-component mixture. In 

the component of affected trees, the forward and backward transition probabilities of the 

disease status are linked with a tree-specific spatial random effect. In AIDS research, Huang 

et al. (2016) developed a three-component skewed-𝑡 mixture model for longitudinal viral 

load. The underlying trajectories of a covariate are linked with the viral load model through 
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a latent covariate process. To date, there has been little research on the development of 

models that correlate outcomes through shared latent variables to form multivariate joint 

mixture distributions. 

Additionally, covariate effects could be incorporated in such mixtures by formulating a 

logistic model linking covariate effects to probabilities of the underlying component 

membership. Such an approach is computationally unattractive for a variety of key reasons. 

Importantly, model building becomes more computationally intensive in determining 

covariate selection (Asparouhov and Muthén, 2014; Murphy and Murphy, 2019). As well, 

such techniques sometimes require estimates of component membership to be 

approximated as the component which has the largest posterior. Instead, a two-stage 

approach is adopted here whereby the estimated probabilities of component membership 

from a mixture model are considered as a function of covariates in a Dirichlet regression. 

This chapter therefore aims to address several gaps in crucial research regarding joint 

outcome models in a mixture context. Importantly, this is a critical statistical advancement 

that seems particularly applicable in the fire science context we are considering. 

In this chapter, we propose and develop a finite mixture framework for the joint modeling 

of fire duration and fire size. Duration and size are modelled simultaneously using 

univariate lognormal distributions, which are linked through shared errors to form a four-

component bivariate mixture. The posterior estimates of the probabilities of component 

membership for each fire are modeled as a function of explanatory variables using Dirichlet  

regression. Our framework provides a novel perspective to study the underlying mechanism 

linking fire duration and fire size, while being flexible and having the advantage of a 

straightforward interpretation when the number of outcomes is large or the marginal 

distributions are complex.  

We present the models for fire duration and fire size in section 2 and provide methods of 

estimation of the joint mixture model in section 3. In section 4, we describe the fire data 

from British Columbia, Canada, that motivated this research. Section 5 discusses the 
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analysis and the interpretation of the results from models fitted. The chapter closes with a 

discussion in section 6. 

4.2 Modelling Frameworks 

We describe two hierarchical frameworks for joint modeling of fire duration and fire size, 

a finite mixture joint model (FMJM) and a finite mixture bivariate model (FMBM). The 

distributions of the two models are provided in detail later. Individual fires are indexed by 

𝑖 = 1, … , 𝑛, with unobserved component labels 𝑗 = 1, … , 𝐽, specifying the unique mixture 

component from which the joint distribution of duration and size arises. Outcomes are 

indexed by 𝑘, with 𝑘 = 1 for duration and 𝑘 = 2 for size. The bivariate random variable, 

𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2)
𝑇 is a 2 ×1 vector of the duration and size outcomes, where 𝑡𝑖1 is the duration 

of the fire in days and 𝑡𝑖2 is the size in hectares, with 𝒕1,… , 𝒕𝑛 independent. We conduct a 

2-stage analysis. In the first stage we estimate the parameters of the mixture models. In the 

second stage, the estimated probabilities that 𝒕𝑖 belongs to each component are regressed 

against explanatory variables in a Dirichlet model to assess the effect of covariates. 

4.2.1 Finite Mixture Joint Models 

Let 𝑧𝑖 = 1,… , 𝐽 be the unobserved component label of 𝒕𝑖. The distribution of 𝑧𝑖 is defined 

as i.i.d. Multinomial(1,𝝅), where 𝝅 = (𝜋1, … , 𝜋𝐽)
𝑇

 is a vector of mixture probabilities 

such that ∑ 𝜋𝑗
𝐽
𝑗=1 = 1, with 𝜋𝑗 denoting the probability that 𝑧𝑖 = 𝑗. We represent 𝑧𝑖 by a 

𝐽 × 1 latent vector 𝒛𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝐽)
𝑇
, where 𝑧𝑖𝑗 = 1 if 𝑧𝑖 = 𝑗, and 𝑧𝑖𝑗 = 0 otherwise. Let 

𝒃𝑖𝑗 = (𝑏𝑖𝑗1 , 𝑏𝑖𝑗2)
𝑇

 be a 2 × 1  vector of random effects that accounts for potential 

correlation between 𝑡𝑖1  and 𝑡𝑖2  given membership in component 𝑗 , with the correlation 

depending on the component to which they belong. The distribution of 𝒃𝑖𝑗 is defined as 

i.i.d. 𝑄𝑗(𝒃𝑖𝑗|𝑫𝑗) = 𝑁2(𝟎,𝑫𝑗), with a zero-mean 2 × 1 vector, 𝟎, and a 2 × 2 symmetric 

and positive definite variance-covariance, 𝑫𝑗 . Given membership in component 𝑗 , and 

given 𝒃𝑖𝑗 , the outcomes 𝑡𝑖1  and 𝑡𝑖2  are independent. We define the 2 × 𝑛  matrix 𝒕 =

(𝒕1,… , 𝒕𝑛), the 𝐽 × 𝑛 matrix 𝒛 = (𝒛1, … , 𝒛𝑛), 2 × 𝐽 matrices 𝝁 = (𝝁1, … , 𝝁𝐽) where 𝝁𝑗 =
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(𝜇𝑗1 ,𝜇𝑗2)
𝑇

 and 𝝈 = (𝝈1, … , 𝝈𝐽)  where 𝝈𝑗 = (𝜎𝑗1, 𝜎𝑗2)
𝑇

, as well as 𝒃 = (𝒃1, … , 𝒃𝑛) , the 

collection of 2 × 𝐽 matrices such that 𝒃𝑖 = (𝒃𝑖1,… , 𝒃𝑖𝐽). The joint distribution of the data 

𝒕 and the latent variable 𝒛, given all model parameters and random effects, is: 

𝑝(𝒕,𝒛|𝝁, 𝝈, 𝒃,𝝅) = ∏∏[𝜋𝑗𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗)]
𝑧𝑖𝑗

𝑗𝑖

, 

where 𝑓𝑗(𝒕𝑖|𝝁𝑗 , 𝝈𝑗, 𝒃𝑖𝑗) is the conditional joint density function of 𝒕𝑖 given 𝝁𝑗 , 𝝈𝑗, and the 

random effect 𝒃𝑖𝑗. 

To model the correlation between the outcomes, we represent the relationship in a loglinear 

model (Duchateau and Janssen, 2008). Given that the outcomes belong to component 𝑗, we 

assume that 𝒃𝑖𝑗 has an additive effect on the logarithm of 𝑡𝑖𝑘 : 

log 𝑡𝑖𝑘 = 𝜇𝑗𝑘 +𝑏𝑖𝑗𝑘 + 𝜎𝑗𝑘𝜀𝑖𝑘 , 

where 𝜀𝑖𝑘  follows an i.i.d. 𝑁(0,1) and is the outcome-𝑘-specific random error associated 

with fire 𝑖. The subscript 𝑗 can be replaced by 𝑧𝑖 for a more coherent notation. We assume 

that 𝒃𝑖𝑗  and 𝜀𝑖𝑘  are independent for all 𝑖 . When duration and size in component 𝑗  are 

dependent, that is, when the covariance entries of 𝑫𝑗 are not zero, we assume that 𝑏𝑖𝑗1 =

𝑏𝑖𝑗 , 𝑏𝑖𝑗2 = 𝛾𝑗𝑏𝑖𝑗 , where 𝑏𝑖𝑗  follows i.i.d. 𝑞𝑗(𝑏𝑖𝑗|𝜎𝑏𝑗) = 𝑁(0, 𝜎𝑏𝑗
2 ) . In this case, 𝑏𝑖𝑗  is a 

shared frailty that produces the correlation between duration and size, while 𝛾𝑗  is the factor 

loading on 𝑏𝑖𝑗 that accounts for the scale difference between the outcomes. When duration 

and size are independent, 𝑏𝑖𝑗1  and 𝑏𝑖𝑗2  are freely varying with independent distributions. 

Then 𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) becomes 

𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) =∏𝑓𝑗𝑘(𝑡𝑖𝑘|𝜇𝑗𝑘 , 𝜎𝑗𝑘 , 𝑏𝑖𝑗𝑘)

𝑘

, 

where 𝑓𝑗𝑘(𝑡𝑖𝑘|𝜇𝑗𝑘 , 𝜎𝑗𝑘 , 𝑏𝑖𝑗𝑘)  is the conditional density function of outcome 𝑘  given 

membership in component 𝑗 and associated random effect 𝑏𝑖𝑗𝑘 . 
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4.2.2 Finite Mixture Bivariate Model 

We also consider a finite mixture of bivariate distributions (FMBM) for modeling 

correlation in mixture models. Such a framework is used for comparison with the latent 

model framework developed in the previous section. We assume that 𝒚𝑖 = log(𝒕𝑖) follows 

i.i.d. 𝑁2(𝟎,𝚺𝑗)  with a zero-mean 2 × 1 vector, 𝟎 , and a 2 × 2 symmetric and positive 

definite variance-covariance matrix, 𝚺𝑗 . In 𝚺𝑗 , the marginal variability of duration, 

marginal variability of size, and covariance of duration and size for component 𝑗 are each 

specified directly by its elements: 𝚺𝑗
11 = 𝜎𝑗1

2 , 𝚺𝑗
22 = 𝜎𝑗2

2 , and 𝚺𝑗
12 = 𝚺𝑗

21 = 𝜌𝑗𝜎𝑗1𝜎𝑗2, where 

𝝆 = (𝜌1 …𝜌𝐽) is the vector of correlation parameters between 𝑦𝑖1 and 𝑦𝑖2 in component 𝑗. 

The terms 𝒕, 𝒛, 𝝅, 𝝁 and 𝝈, follow from their definition in section 2.1.  

The joint distribution of 𝒕 and 𝒛 given all model parameters is: 

𝑝(𝒕, 𝒛|𝝁, 𝝈, 𝝆, 𝝅) =∏∏[𝜋𝑗𝑓𝑗(𝒕𝑖|𝝁𝑗, 𝝈𝑗, 𝜌𝑗)]
𝑧𝑖𝑗

𝑗𝑖

, 

where 𝑓𝑗(𝒕𝑖|𝝁𝑗 , 𝝈𝑗, 𝜌𝑗) is the joint density function of 𝒕𝑖 given 𝝁𝑗 , 𝝈𝑗 and 𝜌𝑗 . 

4.2.3 The Four-Component Mixture Models 

We consider a special case in the fire science context for the two frameworks discussed 

above for modeling fire duration and size, with the parameterization of 𝑓𝑗(𝒚𝑖|𝝁𝑗, 𝝈𝑗, 𝒃𝑖𝑗) 

and 𝑓𝑗(𝒚𝑖|𝝁𝑗 ,𝝈𝑗 ,𝜌𝑗) provided in Table 4.1 under the columns FMJM and FMBM, where 

𝒚𝑖 = log(𝒕𝑖).  

Fires tend to occur in two main clusters: of typical size and duration, given the time of the 

fire season in which they occur; or, of extreme fire size and duration, contrasted with typical 

fires at that time of the year. This results in four groups of fires according to the 
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Table 4.1: Parameterization of the models considered in the fire science application 

Component 

Label 

𝑓𝑗(𝒚𝑖𝑗|𝝁𝑗 , 𝝈𝑗, 𝒃𝑖𝑗) 

FMJM FMBM 

𝑧𝑖 = 1 
𝒚𝑖1~𝑁2([

𝜇𝑁1
𝜇𝑁2

] , [
𝜎𝑏𝑁
2 +𝜎𝑁1

2 𝛾𝑁𝜎𝑏𝑁
2

𝛾𝑁𝜎𝑏𝑁
2 𝛾𝑁

2𝜎𝑏𝑁
2 +𝜎2

2]) 𝒚𝑖1~𝑁2([
𝜇𝑁1
𝜇𝑁2

] , [
𝜎𝑁1
2 𝜌1𝜎𝑁1𝜎𝑁2

𝜌1𝜎𝑁1𝜎𝑁2 𝜎𝑁2
2

]) 

𝑧𝑖 = 2 
𝒚𝑖2~𝑁2([

𝜇𝑁1
𝜇𝐸2

] , [
𝜎𝑏𝑁
2 +𝜎𝑁1

2 0

0 𝛾𝐸
2𝜎𝑏𝐸

2 +𝜎2
2]) 𝒚𝑖2~𝑁2([

𝜇𝑁1
𝜇𝐸2

] , [
𝜎𝑁1
2 𝜌2𝜎𝑁1𝜎𝐸2

𝜌2𝜎𝑁1𝜎𝐸2 𝜎𝐸2
2

]) 

𝑧𝑖 = 3 
𝒚𝑖3~𝑁2([

𝜇𝐸1
𝜇𝑁2

] , [
𝜎𝑏𝐸
2 +𝜎𝐸1

2 0

0 𝛾𝑁
2𝜎𝑏𝑁

2 + 𝜎2
2]) 𝒚𝑖3~𝑁2([

𝜇𝐸1
𝜇𝑁2

] , [
𝜎𝐸1
2 𝜌3𝜎𝐸1𝜎𝑁2

𝜌3𝜎𝐸1𝜎𝑁2 𝜎𝑁2
2

]) 

𝑧𝑖 = 4 
𝒚𝑖4~𝑁2([

𝜇𝐸1
𝜇𝐸2

] , [
𝜎𝑏𝐸
2 + 𝜎𝐸1

2 𝛾𝐸𝜎𝑏𝐸
2

𝛾𝐸𝜎𝑏𝐸
2 𝛾𝐸

2𝜎𝑏𝐸
2 + 𝜎2

2]) 𝒚𝑖4~𝑁2([
𝜇𝐸1
𝜇𝐸2

] , [
𝜎𝐸1
2 𝜌4𝜎𝐸1𝜎𝐸2

𝜌4𝜎𝐸1𝜎𝐸2 𝜎𝐸2
2

]) 
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magnitude of their duration and size–normal (𝑁) or extreme (𝐸 ), suggesting a four-

component bivariate mixture joint model to reflect components: 

{
 

 
normal duration −  normal size (𝑗 = 1)

normal duration − extreme size (𝑗 = 2)

extreme duration − normal size (𝑗 = 3)

extreme duration − extreme size (𝑗 = 4)

. 

We put constraints on certain univariate terms, namely, 𝜇𝑗𝑘 , 𝑏𝑖𝑗𝑘 , 𝛾𝑗 , 𝜎𝑗𝑘  and 𝜎𝑏𝑗𝑘 , if the 

associated term is describing the distribution of the corresponding outcome in a normal 

cluster or an extreme cluster. For both FMJM and FMBM, we assume that the centres of 

the related components are the same for model parsimony and identifiability: 𝝁1 =

(𝜇𝑁1, 𝜇𝑁2 , ), 𝝁2 = (𝜇𝑁1, 𝜇𝐸2, ), 𝝁3 = (𝜇𝐸1, 𝜇𝑁2, ) , 𝝁4 = (𝜇𝐸1, 𝜇𝐸2 , ), where 𝜇𝐸1 = 𝜇𝑁1 +

∆𝜇1, 𝜇𝐸2 = 𝜇𝑁2 +∆𝜇2.  

For FMJM, we further assume that only the outcomes in component 1 and 4 are linked 

through a latent variable. Since the factor loading parameter defines the scale difference of 

the random effect on the outcome of fire size, this parameter would be the same for 

components representing normal size (components 1 and 3), and also the same for 

components related to extreme size (components 2 and 4). Hence 𝛾1 = 𝛾𝑁 , 𝛾2 = 𝛾𝐸 , 𝛾3 =

𝛾𝑁 , 𝛾4 = 𝛾𝐸 , where we parameterize 𝛾𝐸 = 𝛾𝑁 + ∆𝛾 , and 𝒃𝑖1 = (𝑏𝑖𝑁, 𝛾𝑁𝑏𝑖𝑁)
𝑇 , 𝒃𝑖2 =

(𝑏𝑖𝑁, 𝛾𝐸𝑏𝑖𝐸 )
𝑇 , 𝒃𝑖3 = (𝑏𝑖𝐸 , 𝛾𝑁 𝑏𝑖𝑁)

𝑇 , 𝒃𝑖4 = (𝑏𝑖𝐸 , 𝛾𝐸 𝑏𝑖𝐸)
𝑇 . We allow duration-specific 

variabilities to be distinct, but set size-specific variabilities equal across all components to 

avoid over-parameterization: 𝝈1 = (𝜎𝑁1 , 𝜎2) , 𝝈2 = (𝜎𝑁1 , 𝜎2) , 𝝈3 = (𝜎𝐸1, 𝜎2) , 𝝈4 =

(𝜎𝐸1, 𝜎2), where 𝜎𝐸1 = 𝜎𝑁1 +∆𝜎1 . In other words, 

𝑦𝑖𝑘~𝑁(𝝁𝑧𝑖
(𝑘) +𝒃𝑧𝑖

(𝑘) ,𝝈𝑧𝑖
(𝑘)), 

where 𝝁𝑧𝑖
(𝑘), 𝒃𝑧𝑖

(𝑘), and 𝝈𝑧𝑖
(𝑘) are the 𝑘-th elements of 𝝁𝑧𝑖 , 𝒃𝑧𝑖, and 𝝈𝑧𝑖 , respectively.  
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For FMBM, we further assume that the marginal variabilities in components that reflect 

normal or extreme duration and normal or extreme size are the same, but the correlation 

parameters among the components are distinct: 

𝚺1 = [
𝜎𝑁1
2 𝜌1𝜎𝑁1𝜎𝑁2

𝜌1𝜎𝑁1𝜎𝑁2 𝜎𝑁2
2

]  

𝚺2 = [
𝜎𝑁1
2 𝜌2𝜎𝑁1𝜎𝐸2

𝜌2𝜎𝑁1𝜎𝐸2 𝜎𝐸2
2

]  

𝚺3 = [
𝜎𝐸1
2 𝜌3𝜎𝐸1𝜎𝑁2

𝜌3𝜎𝐸1𝜎𝑁2 𝜎𝑁2
2

]  

𝚺4 = [
𝜎𝐸1
2 𝜌4𝜎𝐸1𝜎𝐸2

𝜌4𝜎𝐸1𝜎𝐸2 𝜎𝐸2
2

]. 

Hence, the joint posterior distributions of a FMJM and a FMBM become:  

𝑝(𝝁, 𝝈, 𝒛, 𝒃, 𝝅,𝑫|𝒕) ∝ 𝑝(𝒕,𝒛|𝝁, 𝝈, 𝒃, 𝝅)𝑝(𝒃|𝑫)𝑝(𝝁)𝑝(𝝈)𝑝(𝑫), 

and 

𝑝(𝝁, 𝝈, 𝒛, 𝝆, 𝝅|𝒕) ∝ 𝑝(𝒕,𝒛|𝝁,𝝈, 𝝆,𝝅)𝑝(𝝁)𝑝(𝝈)𝑝(𝝆), 

respectively, where the joint prior distributions, required for estimation of the model 

parameters, are 

𝑝(𝒃|𝑫)𝑝(𝝁)𝑝(𝝈)𝑝(𝑫) =∏∏[𝑄(𝒃𝑖𝑗|𝑫𝑗)𝑝(𝝁𝑗)𝑝(𝝈𝑗)𝑝(𝑫𝑗)]
𝑧𝑖𝑗

𝑗𝑖

 

=∏∏[𝑝(𝛾𝑗 )∏𝑞(𝑏𝑖𝑗𝑘|𝜎𝑏𝑗𝑘)𝑝(𝜎𝑏𝑗𝑘)𝑝(𝜇𝑗𝑘)𝑝(𝜎𝑗𝑘)

𝑘

]

𝑧𝑖𝑗

,

𝑗𝑖

 

and 

𝑝(𝝁)𝑝(𝝈)𝑝(𝝆) = ∏ ∏ [𝑝(𝝁𝑗)𝑝(𝝈𝑗)𝑝(𝜌𝑗)]
𝑧𝑖𝑗

𝑗𝑖 = ∏ ∏ [𝑝(𝜌𝑗)∏ 𝑝(𝜇𝑗𝑘)𝑝(𝜎𝑗𝑘)𝑘 ]
𝑧𝑖𝑗

𝑗𝑖 . 
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Model fitting is carried out by the adaptive MCMC method. We assume vague priors 

commonly used in the literature (e.g. Feng and Dean, 2012; Vink et al., 2016): for 𝑗 = 𝑁, 𝐸 

and 𝑘 = 1, 2, 𝑝(𝑢𝑗𝑘) is distributed as 𝑁(0,10000); 𝑝(𝜎𝑗𝑘), 𝑝(𝜎𝑏𝑗), 𝑝(𝛾𝑗), 𝑝(∆𝑢𝑘), 𝑝(∆𝛾) 

and 𝑝(∆𝜎1) are distributed as half. 𝑁(0,10000); 𝑝(𝜌𝑗) is distributed as 𝑈(−1,1), where 

𝑈(𝑎, 𝑏) is the uniform distribution over (𝑎, 𝑏); 𝑝(𝝅) is distributed as Dirichlet(𝟏) where 

Dirichlet(𝜶) has density 

𝑝(𝝅) = Γ(∑𝛼𝑗

𝐽

𝑗=1

)∏
𝜋
𝑗

𝛼𝑗−1

Γ(𝛼𝑗)

𝐽

𝑗

, 

with the shape parameter vector, 𝜶 = (𝛼1, … , 𝛼𝐽) and 𝟏 is a vector of 1’s with dimension 

𝐽. The posterior estimates of parameters and of latent variables are obtained as their 

posterior medians. The full posterior distributions of the final models are provided in 

Appendix 4C. 

 

4.2.4 Dirichlet Model for the Effect of Covariates on Component 

Membership 

Let 𝑝𝑖1, … , 𝑝𝑖𝐽  be the estimated probabilities that 𝑧𝑖 = 𝑗, 𝑗 = 1,… , 𝐽 , given 𝒕𝑖 , the 

estimated probabilities of component membership. We model these as a function of the 

covariates, 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑅)
𝑇, in a Dirichlet regression (Douma and Weedon, 2019). The 

term 𝑝𝑖𝑗 is obtained through Bayes’ Rule as 

𝑝𝑖𝑗 = 𝑃(𝑧𝑖 = 𝑗|𝒕𝑖) =
𝑃(𝑧𝑖 = 𝑗)𝑃(𝒕𝑖|𝑧𝑖 = 𝑗)

∑ 𝑃(𝑧𝑖 = 𝑗)𝑃(𝒕𝑖|𝑧𝑖 = 𝑗)𝑗

=
𝜋𝑗𝑝(𝒕𝑖|𝑧𝑖 = 𝑗)

∑ 𝜋𝑗𝑝(𝒕𝑖|𝑧𝑖 = 𝑗)𝑗

, 

where 𝑝(𝒕𝑖|𝑧𝑖 = 𝑗) is the posterior density function of 𝒕𝑖 given 𝑧𝑖, which is obtained using 

the estimated model parameters in the first stage analysis. The membership probabilities 
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are rescaled in the manner 𝑝𝑖𝑗
∗ = [𝑝𝑖𝑗(𝑁− 1) + 0.5]/𝑁 to avoid values very close to zero 

or one (Smithson and Verkuilen, 2006). 

In the second stage of the analysis, we model the 𝐽 × 1  vector 𝒑𝑖
∗ = (𝑝𝑖1

∗ ,… , 𝑝𝑖𝐽
∗ )

𝑇
 is 

distributed as Dirichlet(𝜶𝑖), where each element of the shape parameter vector, 𝜶𝑖 =

(𝛼𝑖1, … , 𝛼𝑖𝐽), is parametrized as  

logit(𝛼𝑖𝑗) = 𝛼0 + 𝛽0𝑗 +∑𝛽1𝑗𝑟𝑥𝑖𝑟

𝑅

𝑟=1

, 

and 𝛼0  is the global mean; 𝛽0𝑗  is the component-𝑗  specific mean, and the 1 × 𝑅  vector 

𝜷1𝑗 = (𝛽1𝑗1 , … , 𝛽1𝑗𝑅) is the component-𝑗-specific vector of covariate coefficients. For 

identifiability, we set  𝛽04  and all the elements in 𝜷14  as zero. The sum 𝛼0 + 𝛽0𝑗  is 

interpreted as the log-odds of a fire belonging in the 𝑗th component, relative to the fourth 

component, with all covariates constant. As discussed by Maier (2014), in the development 

of Dirichlet regression models, the variable exp(𝛽1𝑗𝑟) is interpreted as the odds ratio 

corresponding to the increase of 𝑥𝑖𝑟 by one unit, given that the observation is in the 𝑗th 

component. Then 

𝑝̂𝑖𝑗
∗ =

𝛼̂𝑖𝑗
∑  𝛼̂𝑖𝑗𝑗

, 

is the estimate of the transformed probability that fire 𝑖 belongs to component 𝑗, conditional 

on its covariates. We assume vague priors 𝑝(𝛼0), 𝑝(𝛽0𝑗), and 𝑝(𝛽1𝑗𝑟), 𝑗 = 1, … ,3,𝑟 =

1,… ,𝑅 distributed as 𝑁(0,10000). 

4.3 British Columbia Fire Study 

4.3.1 Data Description 

Our study is motivated by an interest in understanding the correlation between fire duration 

and fire size, as well as the effect of environmental variables. We consider an approach that 
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is based on the mixture model context discussed earlier. Duration and size are defined as 

the days and the hectares burned from two critical points in the life history of a fire: (1) 

start of ground attack, to (2) time of final control. Here we focus on only lightning-caused, 

extended attack fires (i.e. fires for which duration exceeds 2 days and size exceeds 4 

hectares).  

The data, assembled by fire scientists at the Pacific Forestry Centre, Natural Resources 

Canada, include historical fire records and the associated environmental records obtained 

from the British Columbia Wildfire Service and weather stations. The data comprise 

information about 1285 fires. There are six regional location variables identifying the fire 

centres in which the fire occurred: fire centres are geographic areas varying in size from 

about 73,000 to 319,000 km2, with varying forest and topographic conditions and fire 

weather conditions that influence fire growth and difficulty of control, as well as values at 

risk that may influence fire management strategies and allocation of suppression resources. 

The fire management offices in each fire centre is responsible for wildland fire management 

within its regional boundaries. Additional variables are: temporal variables—decade and 

month in which the fire occurred; slope; elevation; size of the fire at the time of attack; and 

ten environmental variables recorded at weather stations for which daily records are 

available. The environmental variables include four weather observations and six standard 

fire indices of the Canadian Forest Fire Weather Index System (Van Wagner, 1987), 

derived from the weather observations. The four weather observations, temperature, wind, 

relative humidity, and precipitation are interpolated to a 20 km by 20 km grid using 

smoothing splines after adjusting for elevation and snowmelt/snow onset effects (Nadeem 

et al., 2020). The interpolated values are then used to calculate the six standard indices. The 

indices include three fuel moisture codes, Fine Fuel Moisture Code, Duff Moisture Code, 

Drought Code, that describe the dryness of the corresponding layer of the forest floor, and 

three fire behavior indices, Initial Spread Index, Buildup Index, and Fire Weather Index, 

that describe the fire spread rate, the available fuel, and the intensity of the fire-line 

respectively.  
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We adopt simple, meaningful ways to summarize environmental variables through their 

lifetime. As in Xi et al. (2020), variables demonstrating a clear trend through their 

trajectories are centered and regressed against time. The estimated intercept and the slope 

are used to summarize the trajectory. The remaining environmental variables are 

summarized into an index, referred to as the average deviation from threshold (ADFT), 

describing the amount of exceedance, averaged across the lifetime of the fire, from a 

threshold value determined by scientific input. The terminology referring to the covariates 

identifies the names of the variables, either intercept or slope, or the values of the threshold 

(see Table 4.3). 

4.3.2 Parameter Estimates 

The four panel plots in Figure 4.1 present the data and the estimated distributions of fire 

duration and fire size. The top row contains the estimated marginal distributions of the 

outcomes, overlaid on their histograms, with duration on the left panel and size on the right. 

The estimated FMJM and FMBM distributions are provided in red dashed lines and green 

dotted lines respectively. The marginal distributions of duration and size are both captured 

by a narrowly spread normal component and a widely spread extreme component, and seem 

to provide reasonable fits. The bottom row identifies the component with the highest 

posterior probability of membership for each of the fires. The plots on the bottom row 

contain estimated contours based on the estimated normal joint distributions of the 

outcomes for each of the model components, with the panel on the left based on the fitted 

FMJM while that on the right is based on the fitted FMBM. Estimated components are 

identified with different colours and symbols.  

Table 4.2 presents parameter estimates of the two models. The posterior median and the 

95% credible interval of the parameters are reported. Under FMJM, the probability that a 

fire belongs to components 1 to 4, 𝜋1 ,… , 𝜋4 , are estimated as 0.339(0.278, 0.407), 

0.052(0.016, 0.095), 0.109(0.054,0.170) and 0.497(0.420, 0.571). For convenience for the 

following discussion, recall that the specification of the means and the variabilities of the 

outcomes in each component are given in Table 4.1. For the means, 𝜇𝑁1  and 𝜇𝐸1 are 
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Figure 4.1: The data and the estimated distributions of fire duration and fire size. The top 
row contains the estimated marginal distributions of the outcomes, overlaid on their 

histograms, with duration on the left panel and size on the right. The marginal distributions 
of duration and size are both captured by a narrowly spread normal component and a widely 

spread extreme component and seem to provide reasonable fits. Fires that are normal or 
extreme in both outcomes tend to have outcomes correlated . 
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Table 4.2: Posterior estimates of model parameters 

FMJM  FMBM 

 𝑄.025  𝑄.500  𝑄.975    𝑄.025  𝑄.500  𝑄.975  

𝜋1 0.278 0.339 0.407  𝜋1 0.267 0.323 0.388 

𝜋2 0.016 0.052 0.095  𝜋2  0.020 0.056 0.098 

𝜋3 0.054 0.109 0.170  𝜋3  0.124 0.192 0.270 

𝜋4 0.420 0.497 0.571  𝜋4  0.341 0.426 0.505 

𝜇𝑁1 1.425 1.483 1.551  𝜇𝑁1  1.419 1.473 1.540 

𝜇𝐸1 2.592 2.690 2.804  𝜇𝐸1 2.577 2.674 2.782 

𝜇𝑁2 3.006 3.205 3.414  𝜇𝑁2  3.070 3.272 3.497 

𝜇𝐸2 5.562 5.872 6.222  𝜇𝐸2 5.813 6.184 6.622 

𝛾𝑁 0.516 2.951 6.410  𝜎𝑁1  0.278 0.318 0.367 

𝛾𝐸 4.247 5.933 8.681  𝜎𝐸1  0.782 0.829 0.879 

𝜎𝑏𝑁 0.077 0.136 0.247  𝜎𝑁2  0.978 1.110 1.252 

𝜎𝑏𝐸 0.200 0.285 0.385  𝜎𝐸2  1.696 1.866 2.032 

𝜎𝑁1 0.196 0.291 0.354  𝜌1 0.084 0.241 0.397 

𝜎𝐸1 0.718 0.772 0.827  𝜌2  -0.073 0.493 0.775 

𝜎2 0.782 1.001 1.158  𝜌3  0.312 0.463 0.581 

     𝜌4  0.306 0.433 0.557 

 

.
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estimated as 1.483 and 2.690, while 𝜇𝑁2  and 𝜇𝐸2 are estimated as 3.205 and 5.872. For the 

factor loading parameters, 𝛾𝑁
2   and 𝛾𝐸

2   are estimated as 2.951 (0.516, 6.410) and 

5.933(4.247, 8.681). For the variabilities, 𝜎𝑏𝑁
2  and 𝜎𝑏𝐸

2  are estimated as 0.136(0.077, 0.247) 

and 0.285(0.200, 0.385), while 𝜎𝑁1
2  , 𝜎𝐸1

2  , and 𝜎2
2  are estimated as 0.291(0.196, 0.354), 

0.772(0.718, 0.827) and 0.772(0.782, 1.158). Corresponding values from fitting the FMBM 

are very close and omitted here (see Table 4.2). Note that Appendix 4D provides a 

sensitivity analysis to the choice of other priors, indicating robustness to the choice of 

priors. 

A focus here is to understand the correlation between duration and size. Under FMJM, the 

estimates of the standard error of the shared error distribution, 𝜎𝑏𝑁  and 𝜎𝑏𝐸 , are 

0.136(0.077, 0.247) and 0.285(0.200, 0.385), while the factor loading parameters, 𝛾𝑁  and 

𝛾𝐸 , are estimated as 2.951(0.516, 6.410) and 5.933(4.247, 8.681). The effect of the shared 

error on the logarithm of size is about three times as large as its effect on the logarithm of 

duration in component 1 and is about six times in component 4. Furthermore, the size-

specific error, 𝜎2, estimated as 0.125 (0.017,0.442), is quite small compared to the shared 

outcome error, suggesting that much of the variabilities in component 1 and 4 is shared . 

Under FMBM, the correlation of component 1, 3, and 4, 𝜌1, 𝜌2 , and 𝜌3  are significant and 

estimated respectively as 0.241(0.084, 0.397), 0.463(0.312, 0.581) and 0.433(0.306, 

0.557).  

As both models constrain the means of the components similarly, the estimated means are 

similar across the models. The estimates of the component labels, 𝑧𝑖𝑗, from both models 

are very close, with high positive correlation (see Appendix 4E).  

The covariance entries, 𝐶𝑜𝑣(𝑦𝑖𝑗1,𝑦𝑖𝑗2), are 0.054, 0, 0 and 0.482 for component 𝑗 = 1, . . ,4 

for FMJM, while the corresponding entries are 0.085, 0.295, 0.426 and 0.670 for FMBM 

(See Table 4.1). Essentially, when the shared variability is normally distributed, both 

models are Gaussian mixtures, while FMJM forces the outcome covariance in two of the 

components to be zero but FMBM does not, which is shown by the difference of the 
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directions of the estimated contours of component 2 and 3 in Figure 4.1. On the other hand, 

joint models allow that the shared variability may have different distributions than the 

normal, which offers one component of flexibility that is not reflected in FMBM. 

4.3.3 Effect of Covariates in the Dirichlet Model 

In this section we discuss covariates which are seen to have dominant effects on the 

response. Results are presented here for the FMJM given the similarity in results for the 

two mixture models and the benefits offered based on this model. Appendix 4F provides 

supplemental material related to other covariates considered. Figures 4.2 to 4.5 and Figures 

B.6 to B.8 in the supplemental materials display the estimated transformed membership 

probabilities, 𝑝̂𝑖𝑗
∗ , plotted against each of the covariates in the model. These scatterplots 

include a smoothing loess for numerical covariates, providing the overall trend of the plots 

using weighted linear least squares regressions over the span of the value of the covariates; 

for categorical covariates, the plots are side-by-side violin plots. The exponentiated 

estimated covariate effects, relative to component 4, exp(𝛽1𝑗𝑟) , 𝑟 = 1,… , 𝑅 , for 

components 𝑗 = 1,2,3 are summarized in Table 4.3.  

Fire Centre: The estimated transformed membership probability by fire centre are 

presented in violin plots in the left panel of Figure 4.2. The plots show the posterior estimate 

of the probability of each fire belonging to component 1 to 4 for each of the fire centres. 

Fire management strategies vary by fire centre, and differences in such strategies may be 

exacerbated for fires with extreme duration which tend to receive more containment 

resources. Hence, we expect to see some variation by fire centre. As evidenced in Figure 

4.2, the medians of the probabilities displayed in the violin plots demonstrate clear variation 

over fire centres for the extreme duration components. Within component 3 (displayed in 

blue), which identifies fires with extreme duration and normal size, the Coastal Region 

(Co) and the Cariboo Region (Ca) have the highest and the lowest probabilities 

respectively. The Southeast Region (So) also has a high corresponding probability. Within 

component 4 (displayed in red), which identifies fires with extreme duration and extreme 

size, the Coastal Region and the Cariboo Region have the lowest and the highest 
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probabilities respectively. This suggests that, for fires with extreme duration, fires in the 

Coastal Region of the province tend to have high probability of being small in size and the 

fires in the interior Cariboo Region tend to have high probabilities of being large in size.  

Month: Figure 4.3 provides estimates of the probability of each fire belonging to component 

1 to 4 by month and by year. The seasonality of the fire behavior displays different patterns 

depending on component. In component 1 (green), identifying fires with normal duration 

and normal size, the probabilities tend to a minimum in the middle of the fire season, 

whereas in component 4 (red), identifying fires with extreme duration and extreme size, 

probabilities tend to a maximum in the middle of the fire season. The months of August 

through October are associated with a much higher risk of fires being extreme in duration 

and size (in component 4, displayed in red). These components include 85% of the fires in 

the study. Fires of extreme size and normal duration (in component 2, displayed in yellow) 

tend to occur in May. Fires of extreme duration and normal size (in component 3, displayed 

in blue) are more likely to present at the end of the season than at the beginning. 

Wind and Precipitation: Figure 4.4 presents the posterior probability estimates by the 

average wind speed (km/h) measured over a 10-minute period on the left panel and the 

amount of rain (mm) accumulated in the 24-hour period from noon to noon on the right. 

As wind speed increases, the probability of being identified in the component 

corresponding to normal duration and extreme size increases, while as precipitation 

increases, the probability of being identified in the component corresponding to extreme 

duration and extreme size decreases. 

Drought Code and Duff Moisture Code: Figure 4.5 demonstrates posterior probability 

estimates by the ADFT of DC on the left panel and by DMC the right. DMC and DC are 

correlated with the moisture content of forest floor organic layers approximately 5-10 cm, 

and 10-20 cm thick, respectively, and indicate the average amount of available fuel in mid 

to deeper organic layers throughout the lifetime of the fire. The DMC is modeled from 

cumulative observations of relative humidity, temperature, and precipitation, and the DC 

from temperature and precipitation observations over the fire season. In our analysis, DMC 
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influenced fire size, and DC influenced fire duration. As the ADFT of DMC increases, the 

probability of being identified as normal size components (component 1 and 3) decreases 

while the probability of being identified as extreme size components (component 2 and 4) 

increases. As the ADFT of DC increases, the probability of fires with short duration 

(components 1 and 2) decreases and the probability of fires having long duration tends to 

increase (components 3 and 4). 
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Figure 4.2: The probability estimates by fire centre are presented in violin plots. The plots 

show the posterior estimate of the probability of each fire belonging to component 1 to 4 

for each of the fire centres. The medians of the probabilities displayed in the violin plots 

demonstrate clear variation over fire centres for the extreme duration components 

(component 3, displayed in blue and component 4, displayed in red).
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Figure 4.3: Posterior estimates of the probability of each fire belonging to component 1 to 

4 by month. October data are combined into September because of its small number of 

observations. The seasonality of the fire behavior displays different patterns depending on 

component. The months of August through October are associated with a much higher risk 

of fires being extreme in duration and size. On the other hand, fires of extreme size and 

normal duration tend to occur in May. Fires of extreme duration and normal size are more 

likely to present at the end of the season than at the beginning. 
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Figure 4.4: The posterior probability estimates (y-axis) by the ADFT of average wind speed (km/h, x-axis) measured over a 10-minute 
period on the two left panels and the ADFT of the amount of rain (mm, x-axis) accumulated in the 24-hour period from noon to noon on 

the two right panels. As wind speed increases, the probability of being identified in the component corresponding to normal duration and 
extreme size increases, while as precipitation increases, the probability of being identified in the component corresponding to extreme 

duration and extreme size decreases. 



 

107 

 

 

 

  

Figure 4.5: The posterior probability estimates (y-axis) by the ADFT of DC (x-axis) on the two left panels and by DMC (x-axis) on the 
two right panels. As the ADFT of DC increases, the probability of fires with short duration (components 1 and 2) decreases and the 

probability of fires having long duration tends to increase (components 3 and 4). This suggests that exceedance in temperature and 
shortage of precipitation will increase the containment time of the fire. As the ADFT of DMC increases, the probability of being identified 
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as normal size components (component 1 and 3) decreases while the probability of being identified as extreme size components 
(component 2 and 4) increases. 
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Table 4.3: Posterior estimates (exponentiated) of the covariate effects obtained from FMJM 

 

 Component 1 Component 2 Component 3 

 𝑄.025  𝑄.500  𝑄.975  𝑄.025  𝑄.500  𝑄.975  𝑄.025  𝑄.500  𝑄.975  

intercept 0.032 0.110 1.091 0.419 4.388 47.564 1.000 1.000 1.000 

Slope 0.995 0.998 1.001 0.996 0.998 1.001 0.998 1.002 1.005 

Elevation 0.999 0.999 0.999 1.000 1.000 1.000 0.999 1.000 1.000 

G. Attack Size 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

NorthWest 0.297 0.456 0.702 0.644 0.909 1.283 0.259 0.411 0.651 

PrinceGeorge 0.264 0.383 0.551 0.662 0.875 1.153 0.273 0.410 0.609 

Kamloops 0.547 0.799 1.153 0.757 1.010 1.350 0.382 0.574 0.852 

Southeast 0.410 0.590 0.844 0.608 0.802 1.057 0.561 0.840 1.260 

Cariboo 0.297 0.451 0.687 0.673 0.944 1.319 0.297 0.466 0.726 

Decade90 0.902 1.176 1.536 0.806 0.992 1.222 0.911 1.192 1.561 

Decade00 0.880 1.188 1.617 0.732 0.947 1.226 0.846 1.142 1.553 

Decade10 1.165 1.730 2.594 0.705 0.974 1.348 0.907 1.324 1.959 

May 1.277 2.890 6.632 1.172 2.212 4.299 0.371 0.885 1.921 

Jun 2.435 5.368 12.476 1.071 1.951 3.703 0.440 1.047 2.274 

Jul 4.506 10.088 25.108 1.191 2.221 4.326 0.657 1.598 3.685 

Aug 8.571 20.028 53.542 1.424 2.752 5.546 0.944 2.389 5.882 

Sep and Oct 18.278 47.386 142.783 1.681 3.337 6.965 1.834 5.100 13.957 

BUI.intercept 0.894 0.927 0.960 0.951 0.978 1.007 0.948 0.986 1.023 

BUI.slope 0.941 0.981 1.022 0.971 1.003 1.038 0.921 0.958 0.996 

WIND13 0.668 0.766 0.882 0.827 0.944 1.040 0.868 1.053 1.336 

PCP12 0.995 0.998 1.000 0.999 1.001 1.003 0.992 0.995 0.997 

DMC20 0.994 0.995 0.996 0.997 0.998 0.999 0.997 0.998 0.999 

DC400 0.995 0.998 1.001 0.996 0.998 1.001 0.998 1.002 1.005 
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4.4 Discussion 

In this chapter, we developed a finite mixture model for the joint modeling of fire duration 

and fire size. The model can be viewed as an extension of the model by Xi et al. (2020) 

where the joint distribution of the outcomes is separated into components for capturing 

multimodality in the first stage of the analysis, and effect of covariates are assessed in the 

second stage. Compared to existing multivariate frameworks such as the Gaussian mixture 

model, joint modeling has the flexibility to link outcomes to enable a better understanding 

of how each outcome is related to the other, in this case, whether and how fire duration and 

size are connected. A factor loading parameter is utilized to account for the scale difference 

between duration and size in developing the shared variability model. For fires that are 

classified as having extreme duration and size, as discussed here, the shared variability 

across these outcomes is identified as the dominant variability term. Compared to the joint 

model, the Gaussian mixture model is more suitable if the marginals are known to follow 

univariate Gaussian distributions. Joint modeling, on the other hand, offers an intuitive 

approach to link the two distributions that provides a natural interpretation of how the two 

outcomes are connected.  

In this analysis, the research objective from the fire science context leads to the 

development of the four-component mixture model, and how covariates differentially affect 

each of the components. For instance, the effects of environmental variables on large fires, 

controlled quickly, are of particular importance for fire suppression, while identifying the 

conditions leading to small fires with little need to suppress is also crucial for the 

management of suppression resources. Hence the focus here on a simple four-component 

model. Alternatively, approaches that estimate the number of subpopulations in the 

outcomes may be developed by extending current mixture model methodologies for a 

single outcome (e.g. McLachlan and Peel, 2000). Such approaches would be theoretically 

and computationally complex yet would provide a more elegant solution and could be 

considered in the future.  
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Note that the marginal distributions of the outcomes can be replaced by other location-scale 

distributions, specifically, the Weibull or the loglogistic distribution. In a univariate 

analysis by Xi et al. (2020), the lognormal models demonstrate the best fit using the 

deviance statistic. Unsurprisingly, the lognormal models truncated at duration of 2 days 

and size of 4 hectares yield a slightly better fit, but the corresponding joint mixture model 

is more complicated to estimate and needs more detailed investigation in the future in order 

to resolve identifiability problems and other issues with regards computations.  

In the second stage of the analysis, roughly 50% of the 𝑝𝑖𝑗 are close to one and zero, but 

none of them is exactly one or zero. In component 1, 2 and 4, the 𝑝𝑖𝑗 and the transformed 

𝑝𝑖𝑗 differ by no more than (-0.06, 0.015). In component 3, the difference is a bit larger 

(greater than 0.4) for 20% of the fires. The transformation does not appear to have a strong 

impact. 

The Coast and Columbia Mountains are major topographic features in the Coastal and 

Southeast Regions of B.C., respectively, whereas the Fraser Plateau is a dominant feature 

in the Cariboo Region. The finding that fires of extreme duration are smaller in the Coastal 

and Southeast Regions and larger in the Cariboo Region maybe due to the influence of 

rugged topography on constraining fire size in the western Cordillera of North America 

(Krawchuk et al., 2016). 

Fire weather conditions influencing fire spread and duration vary daily to seasonally as well 

as spatially across British Columbia. Forest floor moisture contents are typically higher in 

the spring following snowmelt, decreasing in July and August, with an opposite trend in 

DMC and DC. During September and October decreasing day lengths and temperatures 

and increasing dewpoint overnight limits the daily period for active fire growth. Fires of 

extreme size and duration would be expected to be more frequent in mid fire season with 

peak burning conditions as discussed in the previous section. Higher probability of fires of 

average size and duration, or average size and long duration may be due to the more limited 

burning conditions. Fire centres may also change their management strategies to less 
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aggressive suppression actions as cooler temperatures and the end of the fire season 

approaches, contributing to longer duration fires. 

Spring fires are typically wind driven and can result in a large size during a short time. In 

such cases, fire containment is only effective accompanied with rain events, which limit  

the size and the duration of the fires. As we saw in the previous section, this is reflected in 

Figure 5 where wind has the most dominant effect in component 2 (displayed in yellow) 

while precipitation has the most dominant effect in component 4 (displayed in red). 

The consumption of surface organic matter is an important factor in achieving the critical 

surface fire intensity for crown fire initiation (Van Wagner, 1977). The association between 

increasing fire size and DMC may reflect increasing surface fuel consumption and 

probability of crown fire occurring over the duration of the fire, which favours fire growth 

- fire spread rates increase by about an order of magnitude when a fire transitions from a 

surface to crown fire. 

The finding of increasing fire duration with Drought Code is consistent with high DC 

values being associated with smouldering combustion in deeper organic layers (Lawson et 

al., 1997); when smouldering combustion persists in deep organic layers, fires are more 

difficult or more time consuming to fully extinguish. There are very likely correlations 

between DC and seasonal effects; DC, in particular, typically increases throughout the fire 

season, whereas DMC varies more throughout the fire season in response to wetting and 

drying weather systems. 

An important consideration when considering the influence of weather and fire danger 

variables on fire size and duration is that these measures are interpolated to a fire location 

from observations at a network of weather stations (with elevation and modeled weather as 

covariates) that could be from several kilometres to 100 kilometres distant in more remote 

parts of BC. Temperature, relative humidity, and precipitation (and so DMC and DC) have 

more spatial correlation over longer distances, and so interpolated values are more accurate 

than for wind speed. 
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The two stages of the analysis can be considered differently by incorporating covariates in 

the mixture model as a direct relationship with the outcomes, for example, in a model for 

the probability of component membership. This approach would be conceptually more 

elegant but would not permit ease of computation, as covariate and model selection would 

be quite computationally intensive. Note that instead of conducting a variable selection, we 

employed the selected variables in Xi et al. (2020). However, similar variable selection 

could be employed for the two-stage analysis of the mixture model with relative ease. Non-

parametric estimation methods for modeling density functions and regularization methods 

in variable selection may also be useful in this context and are potential future research 

directions.  
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Chapter 5  

5 Joint Modeling of Hospitalization and Mortality of 

Ontario Covid-19 Cases 

5.1 Introduction 

In epidemiology, various empirical methods have been developed to quantify the outbreak 

of infectious diseases. One approach models public health data as time series processes 

(Zeger et al. 2006), which is typically suitable when an outcome is observed for a long 

period of time. Time series models generally assume that the observation today is linearly 

related to the observations lagged several days prior, with additive error terms 

independently and identically distributed (i.e. i.i.d.) from a normal distribution with a mean 

of zero and an unknown variance. The average, the trend, and the seasonality of the 

outcome process can then be specified in the model. 

Time series models have previously been used in public health studies of infectious 

diseases. Examples of the diseases and study regions where time series models have been 

applied are Campylobacter and measles in Montreal, Canada (Allard, 1998), diarrhoea in 

Peru (Checkley et al., 2000), and Covid-19 in Italy (Ding et al., 2020). Time series models 

are prominently studied in fields outside of public health, such as econometrics, where a 

technique, termed cointegration analysis, can further assess whether there is correlation in 

the long run between two processes (Pfaff, 2008). For example, cointegration analysis was 

applied to various processes of stock prices to examine if the SARS outbreak in 2003 had 

an impact on them (e.g. Chen et al., 2018). As hospitalization data regarding Covid-19 are 

collected and become available, several authors have indeed studied the relationship 

between the daily number of cases and stock prices (e.g. Zeren and Hizarci, 2020; Şenol 

and Zeren, 2020).  
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Another potential approach for studying the relationship between two outcomes is through 

joint-outcome modeling (Dunson, 2000; Henderson et al., 2000). One approach links the 

outcomes through a latent variable, a shared error term that is incorporated in the models 

for each of the outcomes, which then induces an underlying correlation between the 

outcomes. The method has been utilized in linking, for example, various outcomes that are 

count data (Feng and Dean, 2012; Juarez-Colunga et al., 2017), survival data (Tsiatis and 

Davidian, 2004), and presence/absence data (Lundy and Dean, 2018), where the latent 

variable is shared among the outcomes. Such methodology has not been considered in 

linking time series data, and it may provide a novel perspective for understanding the long-

run relationship between two time series processes.  

In this chapter, we analyze the daily number of new hospitalizations and the daily number 

of new deaths from Covid-19 in Ontario as autoregressive processes. In infectious disease 

studies, these two processes are key indicators in an outbreak (e.g. Trivedi et al., 2012). We 

chose to model hospitalized cases instead of the number of new infections because testing 

was initially limited to the sickest patients or those recently returned from travel, so that 

case counts did not reflect the true progression of transmission. Section 2 outlines two 

frameworks for assessing the relationship between hospitalizations and deaths, where a 

cointegration analysis and a joint modeling framework are used to understand and model 

the long-run relationship between these two outcomes. Section 3 presents results of the 

analysis on the Ontario data using each framework, identifying the unique perspective that 

each framework provides. Section 4 closes with a discussion of the utility of each of the 

frameworks and potential ways that the models can be extended.  

5.2 Models and Methods 

5.2.1 Cointegration Analysis 

We assume that the time series process, 𝑦𝑡 , 𝑡 = 𝑝 + 1,… , 𝑛  follows an autoregressive 

model with lag 𝑝, termed an AR(𝑝) model, defined as 
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𝑦𝑡 = 𝜇 + 𝜃1(𝑦𝑡−1 −𝜇) +⋯+𝜃𝑝(𝑦𝑡−𝑝 −𝜇) + 𝜀𝑡 , 

where  𝜇  is the intercept; 𝜃𝑠 = 𝜎𝑠/𝜎0, 𝑠 = 1, … , 𝑝  such that 𝜎𝑠 = COV(𝑦𝑡 ,𝑦𝑡+𝑠) , the 

covariance between 𝑦𝑡 and 𝑦𝑡+𝑠, is the autocorrelation coefficient associated with lag 𝑠; 𝜀𝑡 

is the random error assumed to be distributed as i.i.d. 𝑁(0,𝜎2), 𝑡 = 𝑝+ 1,… , 𝑛. Inference 

on the model is straight forward when the time series process is stationary, that is, if the 

intercept and the autocorrelation are both fixed and do not depend on 𝑡. This is equivalent 

to stating that |𝜃𝑠 | < 1 . A non-stationary process can often become stationary by 

differencing 𝑦𝑡 with respect to time 𝑑 times, and such process is denoted as 𝑦𝑡~𝐼(𝑑). For 

example, if 𝑦𝑡~𝐼(1), then 𝑦𝑡
∗ = ∆𝑦𝑡 = 𝑦𝑡 −𝑦𝑡−1 is stationary; whereas if 𝑦𝑡~𝐼(2), then 

𝑦𝑡
∗∗ = ∆𝑦𝑡

∗ = 𝑦𝑡
∗ −𝑦𝑡−1

∗  is stationary. The value 𝑑  is often referred as the order of 

integration.  

Two outcome processes 𝑦𝑘𝑡 ,𝑘 = 1, 2 are cointegrated with other, if there exists an integer 

constant 𝑏  such that 𝑦1𝑡~𝐼(𝑑) , 𝑦2𝑡~𝐼(𝑑)  and 𝑧𝑡~𝐼(𝑑 − 𝑏) , where 𝑧𝑡  is a linear 

combination of 𝑦1𝑡  and 𝑦2𝑡 . In other words, given two processes that are stationary after 

differencing 𝑑 times, if their residuals 𝑧𝑡 are stationary by differencing less than 𝑑 times, 

the two processes are related in a unique long-run relationship and they are termed 

cointegrated. Heuristically, the processes will deviate, but in a random or stochastic and 

stationary fashion.  

We first need to determine the value of 𝑑 that supports stationarity in the two outcome 

processes. Several tests can be used to determine if a process, 𝑦𝑡 is stationary. For example, 

an AR(1) process with intercept zero can be written as 

𝑦𝑡 = 𝜃𝑦𝑡−1 + 𝜀𝑡 . 

For testing that 𝑦𝑡 is non-stationary, the Dickey-Fuller test (Dickey and Fuller, 1979) tests 

that 𝜋 = 0, 𝜋 =  𝜃 − 1, in the rearranged model framework 

𝑦𝑡 −𝑦𝑡−1 = 𝜃𝑦𝑡−1 − 𝑦𝑡−1 + 𝜀𝑡  
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∆𝑦𝑡 = (𝜃 − 1)𝑦𝑡−1 + 𝜀𝑡  

∆𝑦𝑡 = 𝜋𝑦𝑡−1 + 𝜀𝑡 . 

When the null hypothesis is true, the stochastic error term accumulates over time and hence 

the process is unstable. Hence the null and the alternative hypotheses can be written as 

𝐻0: 𝜋 = 0 

𝐻1: 𝜋 < 0.  

If there is significant evidence to reject 𝐻0 , we conclude that 𝑦𝑡  is stationary. More 

generally, assuming an AR(𝑝) process analogously yields the augmented Dickey-Fuller 

(ADF) test, utilizing the same null and alternative hypotheses, here using the modeling 

framework 

∆𝑦𝑡 = 𝜋𝑦𝑡−1 +∑ 𝛾𝑠

𝑝−1

𝑠=1

∆𝑦𝑡−𝑠 + 𝜀𝑡 . 

The parameters can be estimated using least squares. The test statistic follows a Dickey-

Fuller distribution whose 𝑝-value is computed through Monte Carlo methods (i.e. Park, 

2002; Wei, 2014; Chang et al., 2017). Although the Dickey-Fuller test is a standard in the 

literature, we note that alternative tests, such as the Phillips-Perron (PP) test, the Elliott-

Rothenberg-Stock (ERS) test, and the Schmidt-Phillips (SP) test may also be used; see Pfaff 

(2008) for a description of these tests. 

5.2.2 Joint Modeling 

Let 𝑦𝑘𝑡 , 𝑘 = 1,2, 𝑡 = 𝑝 + 1,… , 𝑛 be two time series processes, each process with lag 𝑝𝑘 

and 𝑝 = max (𝑝1,𝑝2). This model assumes that the processes quantify outcomes measured 

at the same values of 𝑡. The model is defined by 

𝑦𝑘𝑡 = 𝜇𝑘 + 𝜃𝑘1(𝑦𝑘,𝑡−1 −𝜇𝑘) +⋯+ 𝜃𝑘𝑝𝑘(𝑦𝑘,𝑡−𝑝𝑘 − 𝜇𝑘)+ 𝑏𝑘𝑡 + 𝜀𝑘𝑡 , 
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where, associated with outcome 𝑘: 𝜇𝑘  is the intercept; 𝜃𝑘𝑠 = 𝜎𝑘𝑠/𝜎𝑘0 , 𝑠 = 1, … , 𝑝𝑘 such 

that 𝜎𝑘𝑠 = COV(𝑦𝑘𝑡 ,𝑦𝑘,𝑡+𝑠), the covariance between 𝑦𝑘𝑡 and 𝑦𝑘,𝑡+𝑠, is the autocorrelation 

coefficient with lag 𝑠 ; 𝜀𝑘𝑡  are random errors distributed as i.i.d. 𝑁(0,𝜎𝑘
2) ; and 𝒃𝑡 =

(𝑏1𝑡 , 𝑏2𝑡)
𝑇   is a 2 × 1 vector of random effects, independent from 𝜀𝑘𝑡, used to model the 

shared variability between the outcomes. The distribution of 𝒃𝑡 , 𝑡 = 𝑝 + 1,… ,𝑛 , is 

assumed i.i.d. 𝑄(𝒃|𝑫) = 𝑁2(𝟎,𝑫), with a 2 × 1 mean vector 𝟎 and a 2 × 2 symmetric and 

positive definite variance-covariance 𝑫. Each outcome is of an order of integration 𝑑𝑘 . In 

other words, the outcomes will need to be differenced 𝑑𝑘  times before model development 

in order to achieve stationarity in the transformed outcomes. 

It is convenient to represent the framework in matrix notation. The response 𝒀𝑘 , the design 

matrix 𝑿𝑘 , and the associated vectors of parameters and random effects are specified as 

follows 

𝒀𝑘 = 𝑿𝑘𝜽𝑘 +𝜇𝑘 (1−∑𝜃𝑘 ,𝑠

𝑝𝑘

𝑠=1

)+ 𝑩𝑘 + 𝝐𝑘 , 

where  

𝒀𝑘 = [

𝑦𝑘,𝑝+1
⋮

𝑦𝑘,𝑛

] , 𝑿𝑘 = [

𝑦𝑘,𝑝 ⋯ 𝑦𝑘,𝑝+1−𝑝𝑘
⋮ ⋱ ⋮

𝑦𝑘,𝑛−1 ⋯ 𝑦𝑘,𝑛−𝑝𝑘

] , 𝜽𝑘 = [

𝜃𝑘 ,1
⋮

𝜃𝑘 ,𝑝𝑘

] , 𝑩𝑘 = [

𝑏𝑘,𝑝+1
⋮
𝑏𝑘,𝑛

] , 𝝐𝑘

= [

𝜀𝑘,𝑝+1
⋮
𝜀𝑘,𝑛

]. 

The joint posterior distribution is expressed as 

𝑝(𝝁, 𝜽, 𝒃,𝑫|𝒚) ∝ 𝑝(𝒚|𝝁,𝜽, 𝒃)𝑄(𝒃|𝑫)𝑝(𝝁)𝑝(𝜽)𝑝(𝑫)𝑝(𝝈), 

where 𝒚 = (𝒚𝑝+1, … , 𝒚𝑛) , 𝒚𝑡 = (𝑦1𝑡 , 𝑦2𝑡 ) , 𝝁 = (𝜇1,𝜇2) , 𝜽 = (𝜽1, 𝜽2) , 𝒃 =

(𝒃𝑝+1 , … , 𝒃𝑛), and 𝝈 = (𝜎1, 𝜎2). The first term on the right-hand side is the conditional 

likelihood 
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𝑝(𝒚|𝝁, 𝜽, 𝒃) ∝ ∏ 𝑓(𝒚𝑡|𝝁,𝜽, 𝒃𝑡)

𝑛

𝑡=𝑝+1

, 

where 𝑓(𝒚𝑡|𝝁, 𝜽, 𝒃𝑡) is the joint density function of 𝒚𝑡. We impose different constraints on 

the term 𝑏𝑘𝑡 and 𝜀𝑘𝑡 to create four joint outcome models and these are shown in Table 5.1. 

For instance, Model B defines the vectors of error terms as (𝑏1𝑡 + 𝜀1𝑡 , 𝑏2𝑡 + 𝜀2𝑡 )
𝑇 =

(𝛾𝑏𝑡 , 𝑏𝑡 + 𝜀2𝑡)
𝑇 . This model assumes that all the variability in 𝑦1𝑡  is explained by the term 

𝑏𝑡 which follows i.i.d. 𝑁(0,𝜎𝑏
2) and is scaled by the factor loading parameter 𝛾; as well, 

that all the variability in 𝑦2𝑡  is explained by the sum of 𝑏𝑡 and the additive error term 𝜀2𝑡 , 

where 𝜀2𝑡  is 𝑁(0, 𝜎𝜀2
2 ). Since the outcomes are independent, given the shared random 

effect, we have the joint density expressed as 

∏ 𝑓(𝒚𝑡|𝝁,𝜽, 𝒃𝑡)

𝑛

𝑡=𝑝+1

= ∏ ∏𝑓𝑘(𝑦𝑘𝑡|𝜇𝑘 ,𝜽𝑘 , 𝑏𝑘𝑡)

2

𝑘=1

𝑛

𝑡=𝑝+1

, 

where 𝑓𝑘(𝑦𝑘𝑡|𝜇𝑘 ,𝜽𝑘 , 𝑏𝑘𝑡) is the marginal density function of 𝑦𝑘𝑡. Finally, the product of 

the prior distributions is given by 

𝑝(𝝁)𝑝(𝜽)𝑝(𝑫)𝑝(𝝈) =∏[𝑝(𝜇𝑘)𝑝(𝜃𝑘1)… 𝑝(𝜃𝑘𝑝𝑘 )𝑝(𝜎𝑘)]𝑝(𝛾)𝑝(𝜎𝑏)

2

𝑘=1

. 

Choices of the distributions of the priors will be discussed more fully in the next section. 

5.3 Results and Analysis 

5.3.1 Ontario Data 

We obtained data from the daily epidemiological summaries provided by Public Health 

Ontario. To study the delayed effect of hospitalization on mortality, the daily number of 

new hospitalizations 6 days prior and the daily number of new deaths are defined as the 

outcomes of interest. We shifted the time between these two outcomes by 6 days because 
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Table 5.1: Parameterization of the joint models, where 𝒖𝒌 = 𝝁𝒌 +𝜽𝒌𝟏(𝒚𝒌𝒕−𝟏−𝝁𝒌) + ⋯+ 𝜽𝒌𝒑𝒌(𝒚𝒌𝒕−𝒑𝒌 −𝝁𝒌) 

 

 

 

 

 

 

 

 

 

 

 

 

Model Form [
𝑏1𝑡 + 𝜀1𝑡
𝑏2𝑡 + 𝜀2𝑡

] 𝑓𝑘(𝑦𝑘𝑡|𝜇𝑘 ,𝜽𝑘 , 𝑏𝑘𝑡) 𝑓(𝒚𝑡|𝝁, 𝜽, 𝒃𝑡) 

A [
𝛾𝑏𝑡 + 𝜀1𝑡

𝑏𝑡
] 

𝑦1𝑡~𝑁(𝑢1,𝛾
2𝜎𝑏

2 + 𝜎𝜀1
2 ) 

𝑦2𝑡~𝑁(𝑢2,𝜎𝑏
2) 

𝒚𝑡~𝑁2([
𝑢1
𝑢2
] , [
𝛾2𝜎𝑏

2 +𝜎𝜀1
2 𝛾𝜎𝑏

2

𝛾𝜎𝑏
2 𝜎𝑏

2 ]) 

B [
𝛾𝑏𝑡

𝑏𝑡 + 𝜀2𝑡
] 

𝑦1𝑡~𝑁(𝑢1,𝛾
2𝜎𝑏

2) 

𝑦2𝑡~𝑁(𝑢2,𝜎𝑏
2 +𝜎𝜀2

2 ) 
𝒚𝑡~𝑁2([

𝑢1
𝑢2
] , [
𝛾2𝜎𝑏

2 𝛾𝜎𝑏
2

𝛾𝜎𝑏
2 𝜎𝑏

2 + 𝜎𝜀2
2 ]) 

C [
𝑏𝑡 + 𝜀1𝑡
𝛾𝑏𝑡

] 
𝑦1𝑡~𝑁(𝑢1,𝜎𝑏

2 +𝜎𝜀1
2 ) 

𝑦2𝑡~𝑁(𝑢2,𝛾
2𝜎𝑏

2) 
𝒚𝑡~𝑁2 ([

𝑢1
𝑢2
] , [
𝜎𝑏
2 +𝜎𝜀1

2 𝛾𝜎𝑏
2

𝛾𝜎𝑏
2 𝛾2𝜎𝑏

2]) 

D [
𝑏𝑡

𝛾𝑏𝑡 + 𝜀2𝑡
] 

𝑦1𝑡~𝑁(𝑢1,𝜎𝑏
2) 

𝑦2𝑡~𝑁(𝑢2,𝛾
2𝜎𝑏

2 + 𝜎𝜀2
2 ) 

𝒚𝑡~𝑁2([
𝑢1
𝑢2
] , [

𝜎𝑏
2 𝛾𝜎𝑏

2

𝛾𝜎𝑏
2 𝛾2𝜎𝑏

2 + 𝜎𝜀2
2 ]) 
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recent research shows that a reasonable estimate of the median time from hospitalization to 

death for Covid-19 varies between 4 days (i.e. Richardson et al., 2020; Ontario Agency for 

Health Protection and Promotion, 2020) to 7.5 days (i.e. Zhou et al., 2020). Additional 

evidence for using a 6-day lag is that a basic generalized additive model examining the 

relationship between hospitalizations at various lags and deaths gives the highest deviance 

explained at a 6-day lag period. There were 𝑛 = 78 observations from March 29 to June 

14. Figure 5.1 provides an illustration of the data. The left panel is the base 10 logarithm 

of the cumulative number of hospitalizations (black solid lines) and deaths (red dashed 

lines) and the right panel provides the daily number of these outcomes. On the right panel, 

both processes demonstrate a downward trend starting in May, while their residual, defined 

as their difference (blue dotted line), appears stationary. We define the daily number of new 

hospitalizations and new deaths by 𝑦1𝑡  and 𝑦2𝑡  and identify here the potential long-run 

relationship between them, if any. 

5.3.2 Cointegration Analysis of Ontario Data 

To assess if 𝑦1𝑡  and 𝑦2𝑡  are cointegrated, we first need to identify an appropriate model for 

each process, respectively denoted as AR(𝑝𝑘), 𝑘 = 1,2. For 𝑝𝑘 = 1,… ,10, the Akaike 

information criterion (AIC) of the models yield a minimum at 𝑝1 = 5 for 𝑦1𝑡  and at 𝑝2 =

3 for 𝑦2𝑡 . We apply the ADF test to 𝑦1𝑡  and 𝑦2𝑡  to determine if they are non-stationary 

under the models selected with the minimum AIC. The 𝑝-values for the tests are 0.258 and 

0.193, respectively, suggesting that 𝑦1𝑡  and 𝑦2𝑡  are not stationary. Taking the first order 

difference of each process and reapplying the above procedure on 𝑦1𝑡
∗ = ∆𝑦1𝑡  and 𝑦2𝑡

∗ =

∆𝑦2𝑡  yields a minimum AIC for each model at 𝑝1 = 9 for 𝑦1𝑡
∗  and 𝑝2 = 8 for 𝑦2𝑡

∗ . Under 

the models with the minimum AIC, the 𝑝 -values for the tests are 0.027 and 0.052, 

respectively, suggesting that 𝑦1𝑡
∗  and 𝑦2𝑡

∗  are stationary. Identifying an appropriate model 

for 𝑧𝑡 = 𝑦1𝑡 −𝑦2𝑡  as an AR(𝑝) process, yields a minimum over 𝑝 = 1,… ,10 of the AIC at 

𝑝 = 3. The corresponding 𝑝-value for testing non-stationarity of 𝑧𝑡, distributed as AR(3), 

is 0.019, suggesting that 𝑧𝑡 is stationary. This evidence indicates that there is long-
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Figure 5.1: The left panel illustrates the logarithm of the cumulative number of hospitalizations 6 days prior (black) and the cumulative  

number of deaths (red). Hospitalizations and deaths grow with a decreasing rate over time. The right panel plots the daily number of 
these quantities and their residuals (blue) against time. The processes are identified as having a long-term correlation through the 
cointegration analysis described in the text. 
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run correlation between 𝑦1𝑡  and 𝑦2𝑡 ; that 𝑦1𝑡  and 𝑦2𝑡  are cointegrated such that 𝑦1𝑡~𝐼(1), 

𝑦2𝑡~𝐼(1) and 𝑧𝑡~𝐼(0). 

5.3.3 Joint Modeling of Ontario Data 

The joint model is fitted by the adaptive Markov Chain Monte Carlo (MCMC) method 

described in Xi et al. (2020). We assume vague priors commonly used in the literature: for 

𝑘 = 1, 2 and 𝑠 = 1,… , 𝑝𝑘 , 𝑝(𝑢𝑘) and 𝑝(𝜃𝑘𝑠)  follow i.i.d. 𝑁(0,10000); 𝑝(𝛾), 𝑝(𝜎𝑏) and 

𝑝(𝜎𝜀𝑘) follow i.i.d. half. 𝑁(0,10000). Credible intervals are obtained as the lower and 

upper 2.5% quantiles of the posterior density. The goodness of fit of the models are assessed 

by their deviance information criteria (DIC) with models having low DIC considered to 

offer a good fit to the data (Spiegelhalter et al., 2002). 

We consider model parameterization in three ways. Four forms of the joint model as 

provided in Table 5.1 are considered; four choices of order of integration based on the result  

of the cointegration analysis above and additionally exploring the use of the responses 

themselves as well as first differences: (𝑑1,𝑑2) = (0,0) , (0,1), (1,0), (1,1); a hundred 

combinations of the number of lags: 𝑝𝑘 = 1,… ,10 for each of 𝑘 = 1,2. Hence a total of 

1600 models are estimated. We first select the models with the optimal number of lags 

using the DIC criterion under each of the joint models and the forms of the order of 

integration, then choose an overall model that provides the best fit.  

Table 5.2 lists the 16 optimal models along with their DIC. Including an outcome-specific 

variability term, 𝜀𝑘𝑡, in modeling the outcome death (i.e. as in models B and D) yields a 

much better fit than incorporating such a term in modeling the outcome hospitalization (i.e. 

as in models A and C). Models with a factor loading on hospitalization (i.e. B) have slightly 

better fit than those with a factor loading on death (i.e. D). Both of the outcomes 

hospitalization and death are best fitted with an order of integration 𝑑𝑘 = 1 . This is 

consistent with the results from our cointegration analysis. We note that for all models 

omitting the additive error term, 𝜀𝑘𝑡, yields that the maximum number of lagged terms 
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Table 5.2: Statistics assessing model fits for the candidate models 

Form d1 d2 p1 p2 DIC 

A 0 0 4 10 518 

A 0 1 4 10 518 

A 1 0 5 10 516 

A 1 1 3 10 520 

B 0 0 10 4 493 

B 0 1 10 3 487 

B 1 0 10 2 485 

B 1 1 10 3 482 

C 0 0 5 10 521 

C 0 1 4 10 517 

C 1 0 5 10 517 

C 1 1 3 10 518 

D 0 0 10 4 494 

D 0 1 10 3 486 

D 1 0 10 2 486 

D 1 1 10 3 484 

 

needs to be considered. We note that a better fit may be produced by incorporating an even 

higher number of lagged terms in the model, but a model with high number of lagged terms 

is not conducive to model parsimony. 

The parameter estimates along with the 95% credible intervals for model B, with the lowest 

DIC, are presented in Table 5.3. The intercepts of the model are non-significant with 

estimates of 𝜇𝑘  respectively as 1.560 (−0.171,3.350) and −1.631 (−0.280,1.080) for 

𝑘 = 1,2 ; recall the responses here are first order differences since 𝑑𝑘 = 1, 𝑘 = 1,2 . 

Although model B incorporated 10 lagged terms for the outcome hospitalization, only the 

credible intervals for the coefficients of the first two lagged terms do not include zero. The 

values of the coefficients of the leading lagged terms, 𝜃𝑘1 , are estimated respectively as 

−0.295 (−0.410,−0.165)  and −0.741 (−0.977,−0.506) , suggesting that the 

correlation of death (𝑘 = 2) with observations on the previous day is stronger than the 

corresponding correlation for hospitalization (𝑘 = 1). The standard deviation of the shared 
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Table 5.3: Posterior estimates of the model parameters 

 𝑄.025  𝑄.500  𝑄.975  

𝜇1 -0.171 1.560 3.350 

𝜇2 -1.631 -0.280 1.080 

𝜃11  -0.410 -0.295 -0.165 

𝜃12  -0.341 -0.172 -0.046 

𝜃13  -0.053 0.020 0.094 

𝜃14  0.056 0.143 0.283 

𝜃15  -0.042 0.056 0.225 

𝜃16  -0.006 0.058 0.161 

𝜃17  -0.170 -0.077 0.010 

𝜃18  -0.101 -0.038 0.044 

𝜃19  -0.093 0.054 0.161 

𝜃110  -0.071 0.023 0.116 

𝜃21  -0.977 -0.741 -0.506 

𝜃22  -0.598 -0.318 -0.035 

𝜃23  -0.489 -0.254 -0.017 

𝛾 11.129 13.644 14.876 

𝜎𝑏 1.151 1.416 1.841 

𝜎𝜀2 10.610 12.533 15.131 

 

variability, 𝜎𝑏 , has an estimate of 1.416 (1.151,1.841). The factor loading parameter, 𝛾, 

and the standard deviation of the outcome-specific variability in modelling death, 𝜎2, have 

estimates of 13.644 (11.129,14.876)  and 12.533 (10.610,15.131), respectively. The 

variance of the outcomes is parameterized as 𝛾2𝜎𝑏
2  for 𝑦1𝑡  and 𝜎𝑏

2 +𝜎𝜀2
2  for 𝑦2𝑡 , 

373.06 (258.57,537.15)  and 159.08 (114.48,229.82) . These estimates suggest that 

although there is dependence between hospitalizations and deaths, much of the variability 

in these outcomes is unexplained as outcome specific random error. 

The left panel of Figure 5.2 illustrates the posterior estimates of the shared random effect, 

𝑏𝑡, along with their 95% credible intervals, plotted against time. The peak value of 5.38 on 

May 02 reflects the peak of hospitalization six days prior in Figure 5.1. The right panel of 
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Figure 5.2: Posterior estimates of the shared random effect (left panel) and the estimated joint distribution (right panel) of the outcomes, 

𝒚𝟏 and 𝒚𝟐 being the first order difference of hospitalizations six days prior and deaths, respectively. The posterior estimates of the shared 

random effect have a peak on May 02, reflecting the peak in daily hospitalizations. The estimated joint distribution of the outcomes 
demonstrates a weak dependence between the outcomes. 
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Figure 5.2 provides the estimated joint distribution of the outcomes, reflecting the positive, 

weak correlation in these outcomes as discussed earlier.  

5.4 Discussion 

The co-integration analysis identified a long-run relationship between hospitalizations and 

deaths subsequently modeled through a joint outcome autoregressive model with a shared 

latent random effect. The first order differences of hospitalizations 6 days prior, and deaths, 

in the joint outcome model are autoregressively correlated with the observations two and 

three days ago respectively. The autocorrelation could be a result of the reporting schedule 

by public health units as many of them do not report on weekends. The weak dependence 

between the outcomes may be due in part to reporting lags in both hospitalizations and 

deaths in the Ontario data. The data are reported to Public Health Ontario by 34 different 

public health units, and while the reporting lag is not currently quantified, it likely varies 

by health unit and by outcome. In future work we hope to be able to adjust for the lags in 

both outcomes. 

The framework can be extended in several ways to reduce the unexplained variability, 

enhance predictability, and sharpen linkages across the outcomes. An ARIMA model that 

has moving averaging error terms may better describe the structure of the variability, and 

it may also be useful to incorporate autoregressive structures in the latent random effect. 

Comparisons with multivariate time series frameworks may help identify the benefits of 

using shared random effect for modeling joint outcomes beyond ease of interpretation. 

Environmental data associated with each day, such as temperature and humidity (i.e. Chan 

et al., 2011; Sajadi et al., 2020), as well as geographical information, if available, may be 

included into the model as explanatory covariates. As the uncertainty in the model is 

reduced and with stronger linkages evidenced across the outcomes, given any current 

increment in hospitalization, more accurate predictions of future mortality may be obtained 

through the estimated joint distribution of the outcomes. 
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Chapter 6  

6 Future Work 

As the second chapter suggests, the field of wildland fire science has many open 

questions that could benefit from statistical and analytical methods. The following 

subsections identify preliminary ideas on two areas that are of importance to collaborators 

at the Pacific Forestry Centre. 

6.1 Future Work as Identified in the Articles Integrated to 

Form the Thesis 

This section identifies research directions discussed in Chapter 2 to Chapter 5 of the 

thesis but not developed in later chapters. The key ideas are summarized as: 

- The work in Chapter 2 identified the need for the development of quantitative risk 

assessment methods that combine mathematical and statistical models for the 

estimation of complex fire dynamics. For example, fire management agencies and 

property insurers are interested in the probability that a fire may be ignited and 

spread into a nearby town on a given day. A hybrid approach utilizing fire 

occurrence models (Section 2.2) and burn probability modeling (Section 2.7) 

could provide analytic results at an appropriate temporal scale, reported as point 

estimates associated with standard errors. 

- In Chapter 4, we used a fixed number of components in the mixture model 

because of the computational complexity of the model even with the number of 

subpopulation fixed. More generally, it will be useful to formulate 

computationally efficient approaches that estimate the number of subpopulations 

in the outcomes. Such approaches might build on algorithms developed for 

mixture model methodologies for a single outcome. Adding covariates in the 

mixture model as a direct relationship with the outcomes, applying non-parametric 

estimation methods for modeling density functions, and introducing regularization 
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methods in variable selection may also be useful in identifying the effect of 

environmental variables. 

There are several extensions that can be considered for the analysis in Chapter 5.  Indeed, 

this work is at an early stage of development. One key issue is adjusting for the reporting 

lag in the number of hospitalizations and deaths. As well, the joint time series models can 

be extended by incorporating environmental and geographical covariates, and 

importantly, autoregressive structures in the latent random effect, and moving average 

error terms. Comparisons with multivariate time series frameworks may help identify the 

benefits of using shared random effect for modeling joint outcomes beyond ease of 

interpretation. 

The context and the methods discussed in the fire science context may be applied in the 

analysis of Covid data and vice versa. For instance, the log-transformed number of fires 

over time as well as the log-transformed area burned can be regarded as two processes 

evolving over time, which may be cointegrated. As well, if the Covid data arise from 

latent subpopulations, a mixture model may provide a better fit in that analysis. 

 

6.2 A Framework for Predicting Daily Fire Load 

This section identifies an important research project that is currently under development 

and that considers methods for efficient resource allocation for fire suppression activities.  

Statistical and machine learning methods for predicting the arrival of extreme fires have 

also been utilized in the development of fire science in recent decades (e.g. Mitsopoulos 

and Giorgos Mallinis. 2017; Rodrigues et al. 2019; Nadeem et al. 2020). Under the fire risk 

modeling framework discussed in Chapter 1, we propose an integration of statistical 

methods for modeling fire duration and fire size, and machine learning methods for 

predicting fire arrivals.  
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The proposed work will be a component in the fire prediction system that is currently under 

development by Natural Resources Canada. The system will contain historical fire records 

up to the present, together with their associated environmental variables, updated on a daily 

basis. Daily weather predictions for the next two weeks provided by Environmental Canada 

will also be included in the system. We propose that machine learning techniques will 

determine the probability of a fire arrival, and survival models will be used to predict the 

day-to-day fire behavior. The forecasted number of fires, referred to as the fire load, for 

each day will be presented in five fire size classes. The term fire load is a managerial term 

reflecting the suppression resource allocation in the province of British Columbia. A 

stochastic model for fire load is discussed in Morin (2014). 

Let 𝐵̂𝑐,𝑡 , 𝑐 = 1, … ,5, 𝑡 = 1, … ,14 be the 𝑡-day ahead forecast of the predicted fire load in 

fire size class 𝑐 at the end of day 𝑡, such that 

𝐵̂𝑐,𝑡 = 𝐸̂𝑐,𝑡 + 𝑉̂𝑐 ,𝑡   

where 𝐸̂𝑐,𝑡 is the predicted number of fires currently active that will continue to day 𝑡 in 

class 𝑐; 𝑉̂𝑐 ,𝑡 is the predicted number of new arrivals that will still be active on day 𝑡 in class 

𝑐. Hence 𝐸̂𝑐,𝑡 is calculated as 

𝐸̂𝑐,𝑡 =∑𝑆(𝑡 + 𝑎𝑖,𝑐|𝑎𝑖,𝑐 ,𝒙𝑖 ,𝑐,𝑡)

𝑛𝑐

𝑖=1

  

where 𝑖 indexes fires currently active, 𝑖 = 1, … , 𝑛𝑐  in class 𝑐, 𝑐 = 1,… ,5; 𝑎𝑖,𝑐  is the age of 

active fire 𝑖  in class 𝑐 ; 𝒙𝑖,𝑐,𝑡  are covariates associated with fire 𝑖  in class 𝑐  on day 𝑡 ; 

𝑆(𝑡 + 𝑎𝑖,𝑐|𝑎𝑖,𝑐 ,𝒙𝑖 ,𝑐,𝑡) is the conditional survivor function, the probability that an active fire 

of age 𝑎 lasts 𝑡 more days. We refer to this survival probability as the residual survival 

probability at day 𝑡, calculated as: 

𝑆(𝑡 + 𝑎𝑖,𝑐|𝑎𝑖,𝑐 ,𝒙𝑖 ,𝑐,𝑡) =
𝑆(𝑡 + 𝑎𝑖 ,𝑐| 𝒙𝑖,𝑐,𝑡)

𝑆(𝑎𝑖,𝑐| 𝒙𝑖,𝑐 ,𝑡)
.  
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Survivor probabilities are estimated based on models derived from analyses of historical 

data.  

To obtain 𝑉̂𝑐 ,𝑡, we estimate arrivals on a grid of 𝑀 cells that are of size 20km by 20km over 

the province using machine learning techniques such as random forest. This allows the 

prediction of arrivals based on historical data with about the same covariates as at 𝑡 , 

including environmental covariates as well as seasonality. Let 

𝑅̂𝑐,𝑡 =∑𝑅̂𝑗,𝑐,𝑡

𝑚

𝑗=1

,  

where 𝑅̂𝑗,𝑐,𝑡 , 𝑗 = 1, … ,𝑚, 𝑐 = 1,… ,5, 𝑡 = 1, … ,14 is the predicted number of arrivals in cell 

𝑗, in class 𝑐, at day 𝑡, estimated using a fire occurrence model. Then 

𝑉̂𝑐 ,𝑡 = ∑𝑅̂𝑐,𝑘𝑆(𝑡 − 𝑘 + 1|𝒙𝑖 ,𝑐,𝑡)

𝑡

𝑘=1

  

is the predicted number of new arrivals to the system that will still be active in class 𝑐 on 

day 𝑡.  

By estimating the two-week ahead forecast of fire load, 𝐵̂𝑐,𝑡, we are then able to predict the 

fire suppression resources required provincially and hence whether there is an excess of 

resources available for sharing with other provinces or a deficit requiring the borrowing of 

resources that may not be utilized elsewhere. Extending this model to encompass all 

provinces could lead to a Canadian resource allocation framework that could optimize how 

resources move across Canada for fire suppression purposes.  
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Appendices 

Appendix 3A: Full Conditional Posterior Distributions of The 

Models Used in The Analysis 

Model 1n: 

Let Ω = {𝜇𝑘 , 𝛽𝑘𝑟 ,𝜎𝑘 , 𝛿} where 𝑖 = 1, . . , 𝑛, 𝑘 = 1,2, 𝑟 = 1,… , 𝑅𝑘 . Define 𝜀𝑖𝑘 =

log 𝑡𝑖𝑘−𝜇𝑘−𝜷𝑘
𝑇𝒙𝑖𝑘

𝜎𝑘
 

𝑝(𝜇𝑘|𝒕, Ω−𝜇𝑘 ) ∝ {∏exp[−
1

2
(
𝜀𝑖𝑘
2 −2𝛿𝜀𝑖1𝜀𝑖2
1 − 𝛿2

)] exp(
𝜀𝑖𝑘
2

2
)

𝑖

} exp(−
𝜇𝑘
2

2
) 

𝑝(𝛽𝑘𝑟|𝒕,Ω−𝛽𝑘𝑟) ∝ {∏exp[−
1

2
(
𝜀𝑖𝑘
2 − 2𝛿𝜀𝑖1𝜀𝑖2
1 − 𝛿2

)] exp(
𝜀𝑖𝑘
2

2
)

𝑖

} exp(−
𝛽𝑘𝑟
2

2(102)
) 

𝑝(𝜎𝑘|𝒕,Ω−𝜎𝑘 ) ∝ {∏exp[−
1

2
(
𝜀𝑖𝑘
2 − 2𝛿𝜀𝑖1𝜀𝑖2
1 − 𝛿2

)] exp(
𝜀𝑖𝑘
2

2
)

𝑖

} ,0 < 𝜎𝑘 < 100 

𝑝(𝛿|𝒕,Ω−𝛿) ∝ {∏(1− 𝛿2)−
1
2 exp [−

1

2
(
𝜀𝑖1
2 + 𝜀𝑖2

2 − 2𝛿𝜀𝑖1𝜀𝑖2
1 − 𝛿2

)]

𝑖

} , 0 < 𝛿 < 1. 

Model 2a: 

Let Ω = {𝜇𝑘 , 𝛽𝑘𝑟 ,𝜎2 , 𝛾, 𝜎𝑏} where 𝑖 = 1, . . , 𝑛, 𝑘 = 1,2, 𝑟 = 1,… , 𝑅𝑘. Define 𝑏𝑖1 = 𝑏𝑖, 

𝑏𝑖2 = 𝛾𝑏𝑖, 𝒃𝑖 = (𝑏𝑖1, 𝑏𝑖2), 𝜎1 = 1. 

Let 𝑫 = [
𝜎𝑏
2 0

0 𝛾2𝜎𝑏
2] be a 2 × 2 symmetric and positive definite variance-covariance 
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𝑝(𝜇𝑘|𝒕,Ω−𝜇𝑘 ) ∝ {∏exp[−
1

2
(
log 𝑡𝑖𝑘 − 𝑏𝑖𝑘 −𝜷𝑘

𝑇𝒙𝑖𝑘 −𝜇𝑘
𝜎𝑘

)

2

]

𝑖

} exp(−
𝜇𝑘
2

2
) 

𝑝(𝛽𝑘𝑟|𝒕,Ω−𝜇𝑘 ) ∝
{∏exp[−

1

2
(
log 𝑡𝑖𝑘 − 𝑏𝑖𝑘 − 𝛽𝑘𝑟𝑥𝑖𝑘𝑟 −𝜇𝑘

𝜎𝑘
)
2

]

𝑖

} exp(−
𝛽𝑘𝑟
2

2(102)
) 

𝑝(𝜎2|𝒕, Ω−𝜎2 ) ∝∏
(𝜎2

2)−1 2⁄ exp[−
1

2
(
log 𝑡𝑖2 −𝛾𝑏𝑖 −𝜷2

𝑇𝒙𝑖2 −𝜇2
𝜎2

)

2

]

𝑖

, 0 < 𝜎2 < 100 

𝑝(𝛾|𝒕, Ω−𝛾)

∝ {∏exp[−
1

2
(
log 𝑡𝑖2 − 𝛾𝑏𝑖 −𝜷2

𝑇𝒙𝑖2 − 𝜇2
𝜎2

)

2

]

𝑖

} |𝑫|−1 2⁄ exp [−
1

2
𝒃𝑖
𝑇𝑫−1𝒃𝑖] exp(−

𝛾2

2(102)
) 

𝑝(𝜎𝑏|𝒕, Ω−𝜎𝑏 ) ∝
∏ |𝑫|−1 2⁄ exp [−

1

2
𝒃𝑖
𝑇𝑫−1𝒃𝑖]𝑖 , 0 < 𝜎𝑏 < 100. 

Model 2m: 

Let Ω = {𝝁, 𝜷, 𝑫} where 𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2), 𝒙𝑖 = (𝒙𝒊1, 𝒙𝒊2), 𝝁 = (𝜇1, 𝜇2), 𝜷 = (𝜷1,𝜷2), 𝑖 =

1, . . , 𝑛, 𝑘 = 1,2, 𝑟 = 1,… ,𝑅𝑘 . 

Let 𝑫 = [
𝜎𝑏11
2 𝜎𝑏12

2

𝜎𝑏12
2 𝜎𝑏22

2 ] be a 2 × 2 symmetric and positive definite variance-covariance, 

𝑹 = [
0.01 0
0 0.1

]. 

Define 𝜺 = ∑ (log 𝒕𝑖 − 𝜷
𝑇𝒙𝑖 −𝝁)(log 𝒕𝑖 − 𝜷

𝑇𝒙𝑖 − 𝝁)
𝑇

𝒊  

 

𝑝(𝝁|𝒕, Ω−𝝁) ∝ {|𝑫|
−𝑛 2⁄ exp [−

1

2
𝑇𝑟(𝑫−1𝜺)]}∏exp(−

𝜇𝑘
2

2
)

𝑘
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𝑝(𝜷|𝒕, Ω−𝜷) ∝ {|𝑫|
−𝑛 2⁄ exp [−

1

2
𝑇𝑟𝑎𝑐𝑒(𝑫−1𝜺)]}∏∏exp(−

𝛽𝑘𝑟
2

2(102)
)

𝑟𝑘

 

𝑝(𝑫|𝒕,Ω−𝑫) ∝ |𝑹||𝒃|
−1 2⁄ exp [−

1

2
𝑇𝑟(𝑹𝑫)]. 
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Appendix 3B: Comparison of Fit of Candidate Models Based on DIC and WAIC for the Fire 

Data 

The table below displays the goodness of fit of the candidate models. Under the copula model framework, models with the static 

covariates generally have better measures of fit than those with all covariates or no covariate. Models with a Normal copula form 

generally fit better than using other copula forms. Under a joint model framework, models with the full covariates fit better than those 

with static covariates or the null model. Importantly, note that joint modeling always outperforms modeling the two outcomes separately. 

Note that the copula models, the joint form and the multivariate form of the joint models are not nested, and hence the goodness of fit 

metrics for those models are not directly comparable (Gelman et al., 2014). Hence the normal copula model (1n), the factor loading 

model (2a), and the multivariate model (2s) are chosen for discussion. Static covariates are considered in depth, while a forward selection 

procedure is employed for each of the four categories of derived covariates. 

 

  Covariate Structure 

Framework Form All Covariates Static covariates No Covariate 

  DIC WAIC DIC WAIC DIC WAIC 

Copula Model (1) Normal (n) 18237907 506 17858429 218 18239100 282 

 Clayton (c) 18237937 560 17858422 243 18239036 242 

 Gumbel (g) 18237932 530 17858463 266 18239153 340 

 Frank (f) 17857496 562 17858489 342 17858687 416 

        
Joint Model (2) factor loading (a) 14704 16122 14770 16946 17635 17154 

 separate form (s) 16874 16496 18062 17659 17735 17735 

 multivariate form (m) 4668 4673 5798 5664 5979 5835 
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Appendix 4C: Full Conditional Posterior Distributions of the Models in the Analysis 

Model FMJM: 

Let Ω = {𝜇𝑗𝑘 , 𝜎𝑗𝑘 , 𝑏𝑖𝑗 , 𝛾𝑗 , 𝜎𝑏𝑗, 𝜋𝑗 , 𝑧𝑖} where 𝑖 = 1, . . , 𝑛, 𝑘 = 1,2, 𝑗 = 1,… , 𝐽 

Define 𝑏𝑖𝑗1 = 𝑏𝑖𝑗 , 𝑏𝑖𝑗2 = 𝛾𝑗𝑏𝑖𝑗, 𝒃𝒊𝒋 = (𝑏𝑖𝑗1 , 𝑏𝑖𝑗2), 𝜎𝑗2 = 𝜎2 ,  

Let 𝑫𝑗 = [
𝜎𝑏𝑗
2 0

0 𝛾𝑗
2𝜎𝑏𝑗

2
] be a 2 × 2 symmetric and positive definite variance-covariance 

𝑝(𝜇𝑗𝑘|𝒕, Ω−𝜇𝑗𝑘) ∝ {∏exp[−
1

2
(
log 𝑡𝑖𝑘 −𝑏𝑖𝑗𝑘 − 𝜇𝑗𝑘

𝜎𝑗𝑘
)

2

]

𝑖

} exp(−
𝜇𝑗𝑘
2

2
) 

𝑝 (𝜎𝑗𝑘|𝒕, Ω−𝜎𝑗𝑘) ∝∏(𝜎𝑗𝑘
2 )

−1 2⁄
exp[−

1

2
(
log 𝑡𝑖𝑘 − 𝛾𝑗𝑏𝑖𝑗𝑘 −𝜇𝑗𝑘

𝜎𝑗𝑘
)

2

]

𝑖

,0 < 𝜎𝑗𝑘 < 100 

𝑝 (𝛾𝑗 |𝒕, Ω−𝛾𝑗 ) ∝ {∏exp[−
1

2
(
log 𝑡𝑖2 − 𝛾𝑗𝑏𝑖𝑗2 − 𝜇𝑗2

𝜎𝑗2
)

2

]

𝑖

} |𝑫𝑗|
−1 2⁄

exp[−
1

2
𝒃𝑖𝑗
𝑇𝑫𝑗

−1𝒃𝑖𝑗] exp(−
𝛾𝑗
2

2(102)
) 

𝑝 (𝜎𝑏𝑗|𝒕, Ω−𝜎𝑏𝑗 ) ∝∏|𝑫𝑗|
−1 2⁄

exp[−
1

2
𝒃𝑖𝑗
𝑇𝑫𝑗

−1𝒃𝑖𝑗]

𝑖

, 0 < 𝜎𝑏𝑗 < 100 

𝑝 (𝜋𝑗|𝒕, Ω−𝜋𝑗 ) ∝ Dir(𝟏) 

𝑝 (𝑧𝑖|𝒕,Ω−𝜎𝑏𝑗 ) ∝ Multinomial(𝟏,𝜋). 
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Model FMBM: 

Let Ω = {𝝁𝑗 , 𝚺𝑗, 𝜋𝑗, 𝑧𝑖} where 𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2)
𝑇, 𝝁𝑗 = (𝜇𝑗1, 𝜇𝑗2)

𝑇
, 𝑖 = 1, . . , 𝑛, 𝑘 = 1,2, 𝑗 = 1,… , 𝐽 

𝚺1 = [
𝜎𝑁1
2 𝜌1𝜎𝑁1𝜎𝑁2

𝜌1𝜎𝑁1𝜎𝑁2 𝜎𝑁2
2

] 

𝚺2 = [
𝜎𝑁1
2 𝜌2𝜎𝑁1𝜎𝐸2

𝜌2𝜎𝑁1𝜎𝐸2 𝜎𝐸2
2

] 

𝚺3 = [
𝜎𝐸1
2 𝜌3𝜎𝐸1𝜎𝑁2

𝜌3𝜎𝐸1𝜎𝑁2 𝜎𝑁2
2

] 

𝚺4 = [
𝜎𝐸1
2 𝜌4𝜎𝐸1𝜎𝐸2

𝜌4𝜎𝐸1𝜎𝐸2 𝜎𝐸2
2

] 

be 2 × 2 symmetric and positive definite variance-covariance matrices. Define 𝜺𝑗 = ∑ (log 𝒕𝑖 −𝝁𝑗)(log 𝒕𝑖 −𝝁𝑗)
𝑇

𝒊  

𝑝(𝝁𝑗 |𝒕,Ω−𝝁𝑗) ∝ {|𝚺𝑗|
−𝑛 2⁄

exp[−
1

2
𝑇𝑟(𝚺𝑗

−1𝜺𝑗)]}∏exp(−
𝜇𝑗𝑘
2

2
)

𝑘

 

𝑝 (𝚺𝑗|𝒕, Ω−𝚺𝑗) ∝ {|𝚺𝑗 |
−𝑛 2⁄

exp[−
1

2
𝑇𝑟(𝚺𝑗

−1𝜺𝑗)]}∏(𝜎𝑗𝑘
2 )

−1 2⁄

𝑘

, 0 < 𝜎𝑗𝑘 < 100 

𝑝 (𝜋𝑗|𝒕, Ω−𝜋𝑗 ) ∝ Dir(𝟏) 

𝑝 (𝑧𝑖|𝒕,Ω−𝜎𝑏𝑗 ) ∝ Multinomial(𝟏,𝜋). 
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Appendix 4D: Sensitivity to Priors in the FMJM 

Alternative priors for the variance parameters of the FMJM, including half.𝑁(0,10) , 

𝑈(0,10000), 𝑈(0,10), 𝐼𝐺(0.00001,0.00001) and 𝐼𝐺(0.1,0.1), are used to determine the 

robustness to the choice of the priors. The table below provides the posterior estimates of 

the parameters and model fits in terms of the Deviance Information Criteria (DIC) under 
these choices of priors. The results suggest that compared to using half.𝑁(0,10000), 
alternative choices of prior do not provide strikingly different estimates. Convergence issue 
arose under the 𝑈(0,10000) prior.  

 

 half.𝑁(0,10000) half.𝑁(0,10) 

 𝑄.025  𝑄.500  𝑄.975  DIC 𝑄.025  𝑄.500  𝑄.975  DIC 

𝛾𝑁  0.516 2.951 6.410 

36470 

0.436 1.92 4.083 

28956 

𝛾𝐸  4.247 5.933 8.681 3.914 5.368 7.833 

𝜎𝑏𝑁  0.077 0.136 0.247 0.094 0.182 0.274 

𝜎𝑏𝐸 0.200 0.285 0.385 0.216 0.308 0.411 

𝜎𝑁1  0.196 0.291 0.354 0.137 0.259 0.325 

𝜎𝐸1  0.718 0.772 0.827 0.711 0.767 0.823 

𝜎2 0.782 1.001 1.158 0.883 1.032 1.186 

 𝑈(0,10000) 𝑈(0,10) 

 𝑄.025  𝑄.500  𝑄.975  DIC 𝑄.025  𝑄.500  𝑄.975  DIC 

𝛾𝑁  0.898 2.019 4.38 

30501 

0.213 2.54 6.901 

44121 

𝛾𝐸  2.411 7.711 47.254 4.145 5.885 9.923 

𝜎𝑏𝑁  0.334 0.49 0.732 0.033 0.079 0.219 

𝜎𝑏𝐸 5.627 11.539 20.449 0.182 0.284 0.393 

𝜎𝑁1  0.261 0.502 0.637 0.181 0.308 0.37 

𝜎𝐸1  1.256 25.967 64.811 0.716 0.772 0.826 

𝜎2 0.771 1.327 1.773 0.786 1.031 1.183 

 𝐼𝐺(0.00001,0.00001) 𝐼𝐺(0.1,0.1) 

 𝑄.025  𝑄.500  𝑄.975  DIC 𝑄.025  𝑄.500  𝑄.975  DIC 

𝛾𝑁  0.148 0.215 0.282 

30082 

0.259 2.8 5.241 

30877 

𝛾𝐸  1.86 2.261 2.791 3.372 4.515 6.246 

𝜎𝑏𝑁  0.447 0.704 0.856 0.25 0.35 0.462 

𝜎𝑏𝐸 0.585 0.672 0.759 0.341 0.43 0.536 

𝜎𝑁1  0.264 0.38 0.499 0.247 0.365 0.457 

𝜎𝐸1  0.264 0.38 0.499 0.619 0.696 0.771 

𝜎2 0.911 1.067 1.228 0.594 0.946 1.112 
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Appendix 4E: Comparison of Estimated Component 

Membership Probabilities from FMJM and FMBM 

The estimated component membership probabilities from FMJM (x-axis) and FMBM (y-
axis) are plotted for each component 𝑗 = 1, … ,4. The correlations are estimated as 0.99, 

0.97, 0.90, and 0.90 for each of the components, respectively. 
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Appendix 4F: Additional Covariates Not Discussed in Detail in Section 3 

For completeness, the plots below provide the estimated transformed component membership probabilities by the covariates not 
discussed in detail in section 3. There are no obvious trends in the posterior probability estimates by slope, elevation, ground attack size, 

BUI intercept, BUI slope, and ground attack size.  
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Figure B.6: Posterior estimates of component membership by slope and elevation 
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Figure B.7: Posterior estimates of component membership by ground attack size and decade 
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Figure B.8: Posterior estimates of component membership by BUI intercept and BUI slope
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