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Abstract 

Tremendous interest in increasing the control over surface properties has led to high demand 

for new efficient methods for chemical surface modifications. In this work, several 

approaches toward surface functionalization are explored, and modified surfaces are 

subsequently characterized using uniquely suited spectroscopic techniques. In the first part of 

this thesis, strain-promoted alkyne-azide cycloaddition (SPAAC) reactions are investigated 

for their potential to precisely tune the surface properties of gold substrates at the monolayer 

level. The utility of SPAAC reactions in preparing biorecognition interfaces for cell adhesion 

is then examined. Polarization modulation infrared reflection-absorption spectroscopy is used 

to characterize adsorbed monolayers and probe the progress of surface SPAAC reactions. In 

the second section of this thesis, novel plasmonically active metallic substrates are fabricated. 

These substrates are used to catalyze the plasmon-mediated grafting of diazonium salts onto 

gold nanoparticle surfaces and are also employed as platforms for surface-enhanced Raman 

spectroscopy. 
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Surface chemistry, plasmonics, metallic nanostructures, plasmon-mediated chemistry, 

diazonium salts, surface-enhanced Raman spectroscopy, click chemistry, strain-promoted 

alkyne-azide cycloaddition, self-assembled monolayers, polarization modulation infrared 

reflection-absorption spectroscopy  
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Summary for Lay Audience 

The ability to tune the surface properties of materials through chemical modifications is an 

essential field of study that plays an indispensable role in many applications ranging from 

nanoelectronics to bioengineering. Fine control over surface chemistry is vital, as the 

properties and interactions of surfaces on the microscale directly dictate the nature and 

function of material surface interfaces at the macroscopic level. Thus, there is considerable 

demand for new and improved surface modification techniques that allow for precise 

tailoring of material surfaces. Currently, there exists a host of methodologies to manipulate 

surface chemistry. In this thesis, select surface modification strategies of interest are 

investigated in detail. 

One reaction that has been examined for the development of chemically modified surfaces is 

a “click” reaction called the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. 

Click chemistry, a class of reactions characterized by rapid kinetics, mild reaction conditions, 

high selectivity, and high efficiency, is well established as a means of surface modification. 

One of the aims of this research is to employ a variety of SPAAC reactions designed to 

specifically alter the surface properties of metal substrates, and to explore the applicability of 

SPAAC reactions in the preparation of surfaces for biochemical applications. Polarization 

modulation infrared reflection-absorption spectroscopy (PM-IRRAS), a specialized type of 

infrared spectroscopy developed for the study of monolayers on reflective surfaces, is used to 

detect and characterize the modified substrates. 

Localized surface plasmon resonance (LSPR) occurs when a collective oscillation of free 

electrons in a metallic nanoparticle (NP) is excited by electromagnetic radiation, often in the 

range of visible light. As the LSPR decays, high energy electrons are generated at the NP 

surface. These electrons can participate in and contribute to chemical reactions between 

organic species on the NP surface. Activation of chemical reactions via plasmon-driven 

pathways is a relatively new concept that remains largely unexplored. The second portion of 

this thesis focuses on designing and creating LSPR-supporting substrates and using these 

substrates to activate chemical reactions via plasmonic catalysis. The substrates are then used 

to perform surface-enhanced Raman spectroscopy measurements for surface characterization. 
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Chapter 1  

1 General Introduction 

Surfaces constitute the boundary between a bulk material and its surroundings and thus 

govern the interactions of a material with its environment. The molecular-level chemical 

properties of surfaces play a fundamental role in defining the functions and 

characteristics of material interfaces. Surface chemistry may be altered through chemical 

reactions to achieve or optimize specific functional properties. Deliberate chemical 

modifications to surfaces enable control over the physical, chemical, or biochemical 

properties of surfaces without affecting the bulk material. Refined control over surface 

properties and interactions is highly desirable as chemical modifications may be used in 

the construction of novel interfaces and devices for a vast range of applications. Indeed, 

the exploitation of engineered surfaces has led to great advances in many fields across 

science and technology. Consequently, there is constant high demand both in academic 

research and in industry for new and improved surface modification techniques that allow 

for precise tailoring of surface reactivity, function, and architecture necessary for the 

development of advanced materials.  

1.1 Material Surface Modifications: Importance and 
Applications 

In addition to conferring specific functions and properties on a surface, ideal surface 

modification techniques are high yielding, robust, cost effective, simple to execute, and 

utilize straightforward covalent chemistry. Many surface functionalization and 

modification techniques have been developed to accommodate several different types of 

substrates and to alter many different properties including but not limited to wettability,1-2 

adhesion,3-4 corrosion resistance,5-6 optical properties,7-8 biocompatibility,9-10 and specific 

recognition of biological or biochemical components.11-12 Surface modifications may also 

be used to produce highly reactive platforms designed to facilitate further modifications. 

Their broad versatility and ability to enable a high degree of control over surface 

chemistry often place surface modifications in the vanguard of new developments in 

functional materials. 
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There are countless cases in the literature of surface modifications designed to control the 

interaction between a surface and its environment. In particular, tunable wettability or 

hydrophilicity is of great interest for engineering anti-corrosive, anti-icing, anti-fogging, 

and self-cleaning surfaces for many applications.13-14 For example, Shin et al. have 

recently demonstrated that the wettability of solution-shearing blades used in the 

fabrication of halide perovskite solar cells strongly influences the properties of the 

perovskite thin film, directly impacting the power conversion efficiency of the cells.15 

Vapour-treating the shearing blade with trichloro-(1H,1H,2H,2H-perfluorooctyl)-silane 

to produce a non-wetting blade was found to increase perovskite film thickness and 

coverage, significantly improving solar cell efficiency.15 In another study, Takahara and 

coworkers utilized focused ion beam irradiation to reduce the fluorine content at the 

surfaces of self-assembled monolayers to increase their hydrophilicity.16 They then used 

the same approach to create submicron-scale hydrophobic-hydrophilic hybrid surfaces, 

which are expected to enable the fabrication of micro- and nano-structured fluidic devices 

with applications in nanobiotechnology and high-resolution printing.16 Microscale water 

evaporation experiments were performed on the patterned hydrophobic-hydrophilic 

hybrid surface, revealing that when a water droplet covering the entire patterned area 

slowly evaporates from the surface, it results in the formation of tiny water droplets left 

behind on the surface specifically in the patterned rectangular hydrophilic regions. This 

experiment, illustrated in Figure 1.1, confirms that the hydrophilic dots created using 

focused ion beam irradiation of monolayers can control the position of water droplets 

formed following rupture of the liquid film.16 

Surface chemical modification techniques are essential tools in nanotechnology and 

molecular electronics. The foundation of the field of molecular electronics, motivated by 

the goal to shrink traditional electrical circuits down to the nanometer scale, is the use of 

individual organic molecules or ensembles of molecules as working building blocks for 

the fabrication of electronic devices and components.17-18 One of the most important 

concepts in molecular electronics is the molecular junction, wherein one or more 

molecules are in electrical contact with two conductors (or semi-conductors) in a 

conductor-molecule-conductor configuration, such that electrons are transmitted through 

the molecules.17-20 As efficient electron transport across a junction is integral to its  
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function, very precise control over the composition, structure, and electronic properties of 

the organic molecular component is crucial. This fine control is often accomplished using 

surface modification techniques to alter one or both of the electrodes. Many ensemble 

molecular junctions are fabricated by forming self-assembled monolayers on one 

electrode with terminal functional groups that react covalently with the second electrode 

to form a bridge.21-22 Langmuir-Blodgett films are also commonly employed as the 

organic component of molecular junctions.20,23 In other cases, electrochemical reactions 

have been used to covalently graft organic layers onto the electrodes.22,24-25 Several 

functional microelectronic devices have been constructed using ensemble molecular 

junctions with tailored organic monolayers, including molecular diodes,26-27 switches,28-29 

transistors,30-31 and molecular memories.32-33 

Figure 1.1: Environmental scanning electron microscopy images of a water droplet 

on the patterned hydrophobic-hydrophilic hybrid surface (a) before and (b) after 

evaporation.16 (c) High-magnification image of (b).16 (d) Diagram of small droplet 

formation during water evaporation.16 The scale bar in (a), (b), and (c) are 10, 10, 

and 3 μm, respectively.16 Adapted with permission from ref. [16]. Copyright 2015 

American Chemical Society. 
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Controllable chemical modifications of surfaces are also vitally important in biochemistry 

and medicine. Notably, biosensors and biosensing technologies have seen tremendous 

improvements in recent years due in part to advances in surface modification techniques. 

These are devices that combine biological receptors with a physicochemical detector to 

detect with high sensitivity the presence of specific biological analytes and to monitor 

their function. Surface modifications are a key step in the fabrication of biosensing 

devices, as they are used to prepare surfaces for specific recognition of biological or 

biochemical species by chemical attachment of biological receptor components to 

surfaces.34-36 For example, Girotto and coworkers developed a highly sensitive and 

specific surface plasmon resonance-based biosensor for the detection of human epidermal 

receptor protein-2 (HER2) antigen – a protein strongly associated with breast cancer – by 

functionalizing a plasmonically active metallic surface with HER2 antibodies.37 The 

sensor was coupled to a microfluidic system and ultraviolet-visible (UV-vis) 

spectrometer for solution flow and optical measurements, respectively.37 The sensor 

shows potential to be used for the diagnosis or prognosis of breast cancer. Another group 

reported the successful development of a nano-biosensor for the detection of α-1 

antitrypsin, a biomarker for Alzheimer's disease, through multiple chemical modifications 

to different surfaces.38 The authors proposed a novel sandwich-type electrochemical 

biosensor using alkaline phosphatase-labeled α-1 antitrypsin antibody-functionalized 

silver nanoparticles as signal enhancers and perylene tetracarboxylic acid-treated carbon 

nanotubes as the sensing platform capable of binding NH2-modified α-1 antitrypsin 

aptamers for immobilizing α-1 antitrypsin.38 The biosensor demonstrated exceptional 

specificity, stability, reproducibility, and high sensitivity for α-1 antitrypsin, and holds 

potential for future point-of-care diagnostics of Alzheimer’s disease.38 Such 

methodologies may be applied more broadly to other medical diagnostic biosensing, to 

surface-based protein-ligand interaction studies, and even to the development of 

bioelectronics. Further, chemical modifications of solid surfaces with proteins and other 

biological species play a very important role in mitigating negative biological reactions to 

medical implants and devices by the body, as the biological response to such objects is 

governed largely by their surface chemistry.39 Surface modifications allow for the 

retention of key physical properties and functionalities of the implanted device while 
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enabling control over the composition and state of surface proteins that actively improve 

the biological reaction to the tissue-device interface, including coagulation and immune 

response.39-41 Similar functionalization techniques to increase biocompatibility may also 

be used to prepare metallic nanoparticles for targeted drug delivery.41-44 

1.2 Methods of Interest for Chemically Modifying Metal 
Surfaces 

Due to their unique chemical, mechanical, optical, and electronic properties, many metals 

are materials of great interest for surface modification. Chemical modifications to 

metallic surfaces are crucial to numerous fields including electronics,45 nanotechnology,46 

lab-on-a-chip technology,47 molecular sensing and biosensing,48-49 design and 

construction of medical implants,50-52 targeted drug delivery,53-54 and corrosion 

protection.55 One of the most common approaches to control the surface chemistry of 

metals is through the attachment of organic compounds to the metal surface. A 

monolayer or thin film of organic molecules bound to a metal may be used to completely 

alter the surface chemistry of the metal, depending on the identity and chemical 

properties of the molecule. In this thesis, select strategies for chemically modifying 

metallic surfaces using organic species are investigated in detail. Namely, click chemistry 

and plasmon-mediated chemistry are each explored as a means to change the surface 

chemistry of metals. 

1.2.1 Click Chemistry 

Click chemistry refers to a group of reactions that are modular, rapid, high yielding, 

stereospecific, versatile, robust, insensitive to water and oxygen, wide in scope, simple to 

perform, based on readily available starting materials, run in mild or easily removed 

solvents, and generate easily purified products.56 Due to their broad applicability and their 

ability to link reactants together with high efficiency, many click reactions have been 

established as excellent tools for material surface modifications. Click reactions present 

the possibility to attach manifold chemical functionalities to surfaces, and thus have 

found widespread applications in the functionalization and modification of metal 

surfaces. Collman et al. in 2004 were the first to report the use of Huisgen 1,3-dipolar 
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cycloadditions to modify the surface chemistry of gold electrodes coated with self-

assembled monolayers.57 Gold electrodes were functionalized with self-assembled 

monolayers of azidoundecanethiol, and the terminal azide groups were reacted with either 

ethynyl ferrocene or propynone ferrocene in the presence of Cu(I) catalyst as a model 

reaction system for this proof-of-concept study to demonstrate the applicability of 

Huisgen 1,3-dipolar cycloaddition click reactions as a general methodology for 

modifying metal electrode surfaces.57 In a more recent example of click chemistry 

performed on metal surfaces, Takahara and coworkers demonstrated the effective post-

modification of various polymer-coated metal surfaces, including aluminum, nickel, 

titanium, and stainless steel, using photoinitiated thiol-ene click chemistry.58 

One of the most attractive properties of many click chemistry reactions is their 

biocompatibility. Bioorthogonal reactions – that is, any reaction that can occur within a 

living system without interfering with native biological or biochemical functions – have 

become increasingly important for a wealth of applications in biochemistry and biology, 

including in vivo imaging,59 bioconjugation,60 protein labelling,61 and even the in vivo 

assembly of functional therapeutics.62 The combination of bioorthogonal click chemistry 

with functional metallic nanomaterials been the subject of rising interest for its potential 

applications in targeted drug delivery systems.63-64 The Workentin group recently 

reported the development of multi-functional gold nanoparticles functionalized with a 

dual-orthogonal molecular tool that enables the interchangeable use of four distinct 

bioorthogonal transformations (the strain promoted alkyne-azide (SPAAC) and alkyne-

nitrone (SPANC) cycloaddition click reactions, the perfluoroaryl azide Staudinger 

reaction, and the Staudinger Bertozzi ligation) capable of following both “double-click” 

and “click-to-release” pathways to easily attach, release, and replace functionalities.65 

Each of these pathways are shown in Scheme 1.1. They further presented a proof-of-

concept model for gold nanoparticle-based pretargeted delivery of a fluorophore, 

specifically a Rhodamine B derivative, to human fibroblast cells with biotin as the 

targeting agent using their dual-orthogonal molecular tool via the “double click” 

strategy.65 This system has potential applications in the development of nanocarriers for 

targeted drug delivery. 



7 

 

 

(a) 

(b) 

Scheme 1.1: (a) “Click-to-release” pathway on gold nanoparticles via strain-

promoted alkyne-azide and alkyne-nitrone cycloaddition (SPAAC and SPANC, 

respectively) reactions, and Staudinger-Bertozzi ligation.65 (b) “Double-click” 

pathway on gold nanoparticles with biotin and a Rhodamine B derivative.65 Adapted 

with permission from ref. [65]. Copyright 2019 American Chemical Society. 
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In addition to targeted drug delivery, click chemistry reactions are also often employed 

on metallic nanostructured surfaces for biosensing applications.66 Bioorthogonal click 

reactions offer better control over the bioconjugation process, significantly increased 

chemoselectivity, and shortened reaction times compared to more traditional 

bioconjugation techniques for the fabrication of biosensors.66-68 There are a multitude of 

examples in literature of biosensors incorporating click reactions either as a surface 

modification step in biosensor preparation, or as the mechanism of bioanalyte detection. 

In an example of the former, Chiari et al. utilized the Cu(I)-catalyzed alkyne-azide 

cycloaddition (CuAAC) click reaction to functionalize polymer-coated gold nanoparticles 

with anti-mouse IgG antibodies as a proof-of-concept study to show the general 

applicability of the click chemistry approach to preparing biosensors, as antibodies are 

often essential components in the development of labels in biosensing techniques.69 In 

this approach, gold nanoparticles were coated with an alkyne-bearing polymer to stabilize 

and prevent aggregation of the nanoparticles, and to enable alkyne-azide click chemistry 

at the nanoparticle surface.69 Azide-modified anti-mouse IgG antibodies were “clicked” 

onto the nanoparticles in the presence of Cu(I) catalyst, and their ability to specifically 

recognize the complementary anti-CD63 antibody in a biosensing assay was successfully 

tested.69 In another study, Li and coworkers presented a novel click chemistry-based 

colorimetric biosensor for microbial detection.70 In this work, a mixture was prepared of 

gold nanoparticles functionalized with either azide- or alkyne-terminated long chain 

thiols, in solution with Cu2+ ions.70 This method of biosensing exploited the microbial 

copper homeostasis mechanisms that allowed some bacteria to reduce Cu2+ to Cu+.70 

Escherichia coli, a model bacteria, was added to the gold nanoparticle solution and 

immediately reduced Cu2+ to Cu+, which enabled CuAAC click reactions to occur 

between the azide- and alkyne-coated nanoparticles, resulting in nanoparticle 

aggregation.70 Nanoparticle aggregation caused an immediate visible colour change in 

solution, indicating the successful colorimetric detection of bacteria.70 
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1.2.2 Plasmon-Mediated Chemistry 

Plasmons are collective oscillations of free electrons in a conductive material. When 

visible light is incident upon a metallic nanostructure, excitation of the electron 

oscillations may result in confinement of the electric field to nanoscale domains on the 

nanostructure surface, leading to “hotspots” of highly intense near-field enhancement. 

This phenomenon is referred to as localized surface plasmon resonance. This intense 

electromagnetic near-field enhancement is often exploited for plasmon-enhanced 

spectroscopies. However, one of the most exciting new developments in plasmonics has 

been the discovery that surface plasmon resonances may also be used to catalyze a 

variety of chemical processes. Excited localized surface plasmons can initiate or catalyze 

chemical processes either through localized electric field enhancement, local heating 

effects, or the donation of high-energy electrons and holes, generated through plasmon 

decay, to chemical species. Chemical reactions may also be facilitated by several of these 

factors synergistically. To date, some of the most impactful reactions with societal 

interest for which plasmon-driven catalysis has been achieved are photoelectrochemical 

water splitting,71-72 which is employed as a means to create and store energy in the form 

of hydrogen fuel, and photocatalytic CO2 reduction,73 an important reaction for lowering 

atmospheric CO2 levels to diminish pollution and combat climate change. 

The field of plasmonics has become a subject of heightened interest in the surface 

chemistry community. Over the past few years, the integration of plasmonics into 

chemical surface modification techniques has become a rapidly growing research area 

with wide-ranging applications. It utilizes the localized field enhancements, local heating, 

and electron excitation associated with localized surface plasmon resonances to catalyze 

surface functionalization or modification reactions with a high degree of spatial control 

down to the nanoscale. Plasmon-mediated surface chemistry offers the potential for a fast 

and cost-effective means to site-selective surface modifications by catalyzing reactions at 

specific localized reactive areas on nanostructure surfaces. One of the most well-known 

and well-studied plasmon-mediated reactions is the dimerization of p-aminothiophenol 

(p-ATP) into p,p-dimercaptoazobenzene (DMAB). While it is often used as a model 

reaction to gain insight into plasmon-mediated reaction mechanisms,74-76 it has also been 
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employed to modify the surface chemistry of metallic nanoparticles. Hildebrandt et al. 

made use of the simple and rapid plasmon-induced coupling of p-ATP into DMAB to 

create reversible molecular photoswitches on Ag/AgCl nanoparticles.77 Ag/AgCl 

substrates were functionalized with p-ATP and then laser irradiated to activate the 

formation of DMAB. Continued irradiation induced the photoisomerization of the 

adsorbed DMAB from its cis configuration to trans, and subsequent isolation of the 

substrate in the dark for several minutes resulted in the recovery of cis-DMAB.77 Such 

photoswitchable platforms have many applications in micro- and nanopatterning of 

material surfaces.78 Another group also employed the plasmon-induced p-ATP/DMAB 

transformation for patterning on the nanoscale; Fang and coworkers proposed a novel 

method for nanoscale molecular patterning of a planar gold surface functionalized with a 

self-assembled monolayer of p-ATP.79 The molecular patterning of these molecules 

involved placing a silver-coated scanning probe microscopy tip located a few nanometers 

above an ATP-functionalized flat gold substrate and irradiating the tip with a laser, 

yielding the localized transformation of p-ATP into DMAB on the substrate only in the 

area under the tip.79 By moving the tip across the functionalized surface under laser 

irradiation, DMAB can potentially be site-specifically patterned into the surface with a 

precise control and high spatial resolution at the nanoscale. 

Initiation of click reactions via irradiation with visible light, which is more readily 

available than other means of catalysis and is not harmful to biological samples, is an 

under-explored field. Localized surface plasmon resonances represent a convenient 

method of coupling visible light energy to the initiation of chemical reactions. Lyutakov 

and coworkers present a novel approach for plasmon-mediated alkyne-azide 

cycloaddition reaction activation, in the absence of the typically required Cu(I) catalyst, 

wherein diazonium salts with alkyne moieties are grafted onto a plasmonically active 

gold grating surface, then azide-bearing molecules are introduced to the surface and the 

click reaction is triggered by laser irradiation of the grating surface.80 Reaction progress 

is monitored dynamically via surface-enhanced Raman spectroscopy (SERS) of the 

“clicked” molecules on the grating surface, and a reaction mechanism is proposed 

involving the injection of high energy electrons from the plasmonic surface into the 

organic species.80 Plasmon-mediated click chemistry has also been demonstrated by 
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Lamy de la Chapelle et al., who reported successful thiol-ene coupling reactions induced 

by nanoplasmonic effects on the surfaces of gold nanostructures under visible light 

irradiation.81 

One of the greatest draws of plasmon-mediated chemistry is the potential for highly 

controllable nanolocalization of surface reactions, as this introduces the possibility of 

nanoscale patterning and multi-functionalization. For example, Lacroix et al. showed the 

plasmon-mediated reduction of aryl diazonium salts which resulted in the grafting of 

poly(aryl) films specifically at the vertices of triangular gold nanostructures, aligning 

precisely with the plasmonic “hotspots” of the nanostructures, as can be seen in Figure 

1.2a.82 Furthermore, by utilizing different polarizations of light, different plasmon modes 

may be excited on a given metallic nanostructure allowing for the activation of different 

reactions at different areas around the nanostructure. Bachelot et al. utilized this property 

to develop two-colour plasmonic nanoemitters, depicted in Figure 1.2b, that enable the 

selection of the dominant emitting wavelength by rotating the polarization of incident 

light.83 The nanoemitters were fabricated by immersing gold nanodisks in a solution of 

green-emitting quantum dot (QD)-grafted pentaerythritol triacrylate, irradiating with a 

linearly polarized laser to achieve plasmon-driven two-photon polymerization of the QD-

grafted pentaerythritol triacrylate along one axis of the nanodisk, then immersing the gold 

nanodisks in a solution of red-emitting QD-grafted pentaerythritol triacrylate and 

irradiating with a linearly polarized laser orthogonal to the first to polymerize the QD-

grafted pentaerythritol triacrylate along the opposite axis of the nanodisk.83 The two 

different colours of the QDs could then be optically selected by the polarization of the 

incident light.83
 Further discussion of plasmon-mediated reactions, and specifically the 

plasmon-driven reduction of diazonium salts, will be realized in Chapter 4 of this thesis. 
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(a) 

(b) 

Figure 1.2: (a) Scanning electron microscopy image of triangular gold 

nanostructures grafted with diazonium salts via plasmonic effects.82 Adapted with 

permission from ref. [82]. Copyright 2017 American Chemical Society. (b) 

Schematic representation and scanning electron microscopy image of the gold 

nanodisk-based two-colour nanoemitter, alongside far-field fluorescence images of 

the nanoemitter under illumination with X-axis and Y-axis polarization.83 Adapted 

with permission from ref. [83]. Copyright 2015 American Chemical Society.  
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1.3 Scope of Thesis 

In this work, two projects were pursued relating to the functionalization, chemical 

modification, and spectroscopic characterization of metallic surfaces. This thesis is 

organized into five chapters, each summarized as follows: 

Chapter 2 delves into the physical and theoretical principles underlying several key 

surface chemistry and spectroscopy techniques that feature in thesis. Self-assembled 

monolayers, microcontact printing, click chemistry, and plasmon-mediated chemistry are 

each discussed with respect to their applications in surface functionalization and 

modification. Essential theoretical background and fundamentals for plasmonics, Raman 

spectroscopy, SERS, and polarization modulation infrared reflection-absorption 

spectroscopy are provided. 

Chapter 3 investigates the possibility of using SPAAC reactions as a tool to finely control 

the surface chemistry of flat gold substrates and to prepare flat gold substrates for 

biochemical applications. Thiolated, cyclopropenone-caged strained alkyne precursors 

are functionalized onto gold through self-assembly and then photochemically deprotected 

to reveal a reactive template for surface modifications via SPAAC reaction. Polarization 

modulation infrared reflection-absorption spectroscopy is used to detect and characterize 

monolayers of protected strained alkynes adsorbed onto gold substrates, and to probe the 

progress of the alkyne photo-deprotection and subsequent surface SPAAC reactions. 

Chapter 4 focuses on the design and construction of new plasmonically active substrates 

using soft lithography techniques, and then employing these substrates to catalyze 

plasmon-driven surface reactions and to characterize these surface modifications via 

SERS.  Specifically, nitrobenzenediazonium-derived aryl thin films are chemically 

grafted onto spatially patterned gold nanoparticles via the plasmon-mediated reduction of 

aryl diazonium salts, and then the reaction products are identified through both SERS and 

scanning electron microscopy. 

Chapter 5 concludes this work with final remarks and a brief discussion of the potential 

future directions of this research and its wider applications. 
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Chapter 2  

2 Principles of Material Surface Modification and 
Characterization Techniques 

This chapter focuses on developing a thorough understanding of relevant surface 

functionalization strategies and key spectroscopic characterization techniques to serve as 

a basis for the research presented in this thesis. Various methods for surface modification, 

including self-assembled monolayer formation, click chemistry, and plasmon-mediated 

reactions, are discussed, and details regarding the optical and spectroscopic principles of 

polarization modulation infrared reflection-absorption spectroscopy and surface-

enhanced Raman spectroscopy are provided. 

2.1 Self-Assembled Monolayers 

Self-assembled monolayers (SAMs) are well-defined and organized single-layer 

assemblies of organic molecules formed by spontaneous adsorption of organic species 

from solution or the gas phase onto solid surfaces.1 This absorption occurs spontaneously 

due to a chemical affinity between the adsorbates and the substrate, and because the 

close-packed monolayer lowers the free energy of the interface between the solid surface 

and the ambient environment.2 The initial self-assembly is followed by spontaneous 

reorganization into densely packed, uniform, long-range, two-dimensional crystalline 

structures.3-4 This is commonly achieved by immersing the substrate in a dilute (1-10 

mM) solution of the molecule of choice, washing the substrate with the same solvent, and 

then drying. Organic species that are suitable for SAM formation typically comprise a 

headgroup, which binds the molecule to the surface, a backbone, generally composed of 

alkyl chains, polyethylene glycol (PEG) chains, or aromatic oligomers, and a terminal 

group, which occupies the outer interface of the SAM and defines the topography and 

chemistry of the surface.3-5 The self-assembly process is strongly influenced by the 

affinity of the head group for the substrate, and by the lateral van der Waals interactions 

between backbone components, which are largely responsible for the molecular 

reordering and structural stabilization of the SAM following the initial chemisorption to 
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the surface.6 Careful selection of the head, backbone, and terminal groups can be used to 

specifically control the structural and chemical properties of the SAM.  

Owing to their customizability and ease of use, SAMs provide a simple, flexible, and 

convenient system for creating highly ordered organic interfaces that allow specific 

tailoring and fine-tuning of surface properties. As a result, SAMs have been exploited 

extensively in research for an enormous range of practical applications in materials 

chemistry, biochemistry, and nanotechnology. Specifically, they have been employed as a 

means to control surface properties such as wettability,7 friction,8-9 adhesion,10 corrosion 

protection,11 and lubrication;12-13 they have also been utilized in devices designed for 

molecular sensing,14 biosensing,15-16 and conjugation of biomolecules,17 and in 

nanofabrication techniques including microcontact printing18 and constructive 

lithography.19-20 

One of the most well-studied and commonly used SAM systems is the functionalization 

of gold surfaces with alkanethiols. Initially reported by Nuzzo and Allara in 1983,21 

SAMs of thiolates on gold present a robust, versatile, and effective means of surface 

functionalization. Thiol SAMs form easily and rapidly, exhibit high stability and 

reproducibility, and allow a high degree of control over the macroscopic interfacial 

properties of surfaces through specific tailoring of their microscopic structure and 

composition.5,22 The foundation of all alkanethiol SAMs on gold is the strong and stable 

Au–thiol bond (40-50 kcal mol-1) that anchors thiolated species to the gold surface.23 This 

bond has been confirmed and studied by X-ray photoelectron spectroscopy, Fourier 

transform infrared spectroscopy, mass spectrometry, and Raman spectroscopy.4 The Au-S 

bond is generally considered to be covalent in nature, although the exact geometric and 

electronic configurations of the bond are still a topic of some debate.23-25 Alkanethiol 

SAMs typically arrange themselves with a surface density of approximately 4.5 × 1014 

molecules per cm2 and an average tilt angle between 20 – 30°,5,26 as shown in Figure 2.1; 

however, the overall arrangement of SAMs on a surface depends on a wide variety of 

factors, including the backbone and terminal group identities, substrate surface 

morphology, and the concentration and purity of the adsorbate during functionalization. 
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Surface properties may be controlled either by careful selection of the thiolated molecule 

itself, or via chemical modification of the SAM terminal groups post-assembly.27-31 

2.2 Click Chemistry 

The term “click chemistry” describes a class of reactions characterized by their high 

yields, easily removable byproducts or no byproducts, versatility, stereospecificity, 

insensitivity to water and oxygen, readily available starting materials, and mild reaction 

conditions.32 The phrase “click” refers to the simple joining together of two molecular 

species that occurs in click chemistry processes. There are four general classifications of 

click chemistry reactions. The first and most widely used among the four classes are 

cycloadditions, specifically 1,3-dipolar and hetero-Diels Alder cycloadditions.32-34 

Another popular class of click reactions are additions to carbon-carbon double and triple 

bonds, including epoxidations, aziridinations, and certain Michael addition reactions.33-34 

The third class of click chemistry is non-aldol type carbonyl chemistry, such as the 

formation of ureas, hydrazones, oxime ethers, and amides.32-33 Lastly, the fourth category 

of click reactions are nucleophilic ring openings, in particular ring openings of strained 

heterocycles, including aziridines, epoxides, and cyclic sulfates.35-36 

The unique properties of click reactions have led them to become invaluable tools across 

chemistry, biology, and medicinal sciences.37 More specifically, they have found 

applications in synthetic chemistry, drug discovery and pharmaceuticals,38 polymer 

Figure 2.1: Schematic diagram of an ideal SAM of alkanethiolates on a flat gold 

surface. 



24 

 

chemistry,39 and biochemistry.40 Furthermore, click chemistry has generated considerable 

interest in the field of material surface modifications, as it presents an efficient strategy 

for coupling organic species to surfaces. For example, various click chemistry reactions 

have been used to modify the surfaces of metallic nanoparticles41-43 and silica particles,44 

the bilayer surfaces of mosaic viruses,45 and the surfaces of large polymers,46-47 graphene 

sheets,48 nanocrystalline diamond films,49 and planar metallic substrates.50-51 

One click reaction in particular has garnered much attention for its utility in surface 

reactions. Since its introduction in the landmark review by Sharpless and coworkers in 

2001,32 the copper (I)-catalyzed Huisgen alkyne-azide cycloaddition (CuAAC)52-53 has 

emerged as the quintessential example of click chemistry; currently one of the most 

commonly used click reactions available, the CuAAC has a diversity of applications in 

fields such as drug synthesis,38 polymer functionalization,39 biomolecule conjugation,40 

and surface modifications.54 The CuAAC converts azide groups and terminal alkynes into 

biostable 1,4-disubstituted 1,2,3-triazole linkages via a copper-catalyzed mechanism at 

room temperature, as shown in Scheme 2.1. The reaction is rapid, efficient, regiospecific, 

and is chemoselective against reactive species common to biological systems, meaning 

that, in the context of biochemical studies, unwanted side reactions with reactive 

chemical components native to biological environments may be avoided.55 Because of its 

general usability and its compatibility with biochemical species, the CuAAC can provide 

the means to modifying SAMs of thiols on metallic surfaces with target biomolecules. 

Such experiments have been previously published by several groups. For example, Brust 

and coworkers reported conjugation of lipase enzymes modified with acetylene to azide-

functionalized gold nanoparticles (AuNPs) via CuAAC for the purpose of creating hybrid 

AuNP bioconjugates.56 Jiang and coworkers presented a CuAAC-based assay for the 

Scheme 2.1: General reaction scheme for the CuAAC reaction. 
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quantitative determination of protein concentrations, using azide- and alkyne-

functionalized AuNPs.57 Epple et al. reported synthesis of fully water-dispersible 

ultrasmall AuNPs functionalized with azide groups, and subsequent “click” of alkyne-

bearing peptides.58 Furthermore, they showed that their functionalized and “clicked” 

nanoparticles were able to penetrate the cell membrane, providing the opportunity for in 

vivo protein targeting and labelling.58  

Although the CuAAC is an effective and widely applicable reaction across multiple 

disciplines, there are some drawbacks associated with this method of surface 

functionalization. Most notably, the catalytically active Cu(I) ion is highly cytotoxic, 

which is detrimental to cell viability even if present in trace amounts.59-61 This issue may 

be circumvented by employing the interfacial strain-promoted alkyne-azide cycloaddition 

(SPAAC), a version of the [3+2] Huisgen cycloaddition that occurs at room temperature 

and without the need for a copper catalyst.  

2.2.1 The Strain-Promoted Alkyne-Azide Cycloaddition 

The SPAAC reaction is an incredibly useful bio-orthogonal click process due to its 

chemoselectivity, biocompatibility, clean reactivity, and rapid kinetics.62 It can be 

described as a [3+2] Huisgen cycloaddition between an azide group and a cyclooctyne, as 

illustrated in Scheme 2.2. Although it had previously been shown that cyclooctynes, the 

smallest of the stable cycloalkynes, react rapidly with azides to form the triazole 

product,63 Bertozzi and coworkers first showcased the SPAAC reaction as an alternative 

to the CuAAC in 2004 in a series of model reactions for the selective modification of 

biomolecules under physiological conditions, both in vitro and on living cells.64 The 

driving force behind the SPAAC reaction is the strain imposed on the alkyne moiety by 

the eight-membered ring. The deformation of the acetylene bond angle to 163° in 

cyclooctyne65 from its ideal 180° is responsible for approximately 18 kcal mol-1 of ring 

strain energy.66 This bond angle distortion destabilizes the carbon-carbon triple bond, 

lending the cyclooctyne its high reactivity and rapid rate acceleration compared to 

unstrained alkynes.67  
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In the years since Bertozzi and coworkers’ first use of the SPAAC reaction in a biological 

system, a wide range of cyclooctyne structural derivatives have been developed for the 

purpose of further enhancing the SPAAC reaction rate.68-70 For example, the addition of 

two aryl rings flanking the cyclooctyne to create 4-dibenzocyclooctyne (DIBO), as shown 

in Figure 2.2, has been found to drastically improve SPAAC reaction rates.71-73 The 

aromatic rings on either side of the cyclooctyne in DIBO and DIBO analogues increase 

the ring strain and conjugate with the alkyne, boosting the reactivity of the alkyne in the 

SPAAC process.73 

2.3 Preparation of Patterned Substrates by Microcontact 
Printing 

In recent decades, great advances in microfabrication technology have revolutionized the 

fields of biotechnology, microelectronics, optoelectronics, and nanotechnology. 

Photolithography, the paragon example of microfabrication, is a highly developed and 

well-established technique that has contributed to all of these applications. However, 

conventional photolithography suffers from several drawbacks; the sophisticated 

equipment, complex facilities, and expensive materials required for photolithography 

make it an inherently expensive and, for some, inaccessible process. Furthermore, it is 

Scheme 2.2: General reaction scheme for the SPAAC reaction. 

Figure 2.2: Diagram of the chemical structure of DIBO. 
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limited to the use of only certain specific materials, providing very little control over the 

surface chemistry of the patterned substrates. Lastly, it is not applicable to nonplanar 

surfaces. 

As a complementary system to photolithography, soft lithography extends the 

possibilities of photolithography to include a broader range of substrates and materials. 

So-called because of its use of mechanically soft and flexible components, soft 

lithography describes a family of techniques for microfabrication that employ patterned 

elastomeric molds, or “stamps”, to impart microstructures and patterns onto a variety of 

surfaces.74-76 Soft lithography, originally developed by Whitesides and Xia in 1998,74-76 

presents a low cost, simple, and accessible means to produce chemically patterned 

surfaces. Amenable to a diverse range of materials and surfaces, these techniques deliver 

fine control over molecular-level detail and surface chemistry while enabling large-scale 

surface area coverage (up to several tens of cm2) with well-defined microscale and sub-

micron patterning.76-78  

One of the most common soft lithography methods is microcontact printing (μCP). It is 

known for its simplicity, low cost, versatility, and ability to chemically pattern surfaces 

with high precision.74,76-78 The μCP process, illustrated in Figure 2.3, is analogous to 

printing ink onto paper with a rubber stamp. In this methodology, microscale-patterned 

“stamps” of an elastomeric material, most often polydimethylsiloxane (PDMS), are used 

to transfer a pattern of functionalization onto a given substrate with a solution of the 

target molecule acting as the “ink”. PDMS is most commonly used for the stamp material 

because it is well-studied, non-toxic, readily commercially available and affordable, and, 

most importantly, its elastomeric character allows it to conform very well to a surface, 

achieving atomic-level contact.77 This is an important feature for both the making of the 

stamp and its ability to effectively transfer its pattern. To create the stamp, liquid PDMS 

prepolymer is poured over a master pattern and then allowed to cure, as shown in Figure 

2.3. Once cured, the PDMS stamp is peeled off the master pattern, revealing a 

complementary replica of the master. The stamp is then dipped in the molecular ink of 

choice to allow adsorption of the molecules to the PDMS. The inked stamp is dried and 

then brought into conformal contact with the substrate. The ink molecules are transferred 
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from the stamp to the substrate. The primary limitation of μCP is that transfer efficiency 

is often less than 100%, resulting in some variation between experiments. 

As a simple and cost-effective method for microscale patterning, microcontact printing 

has found applications in optics79, microelectronics80, DNA81-82 and protein83-84 

patterning, patterned cell adhesion,85-87 patterning of SAMs,88-90 and patterning of 

metallic nanostructures.91-92 

2.4 Plasmons 

A plasmon is defined as the collective oscillation of delocalized electrons in a conductive 

material. This may alternatively be described as the concerted displacement of a 

negatively charged electron “cloud” with respect to a positively charged lattice. Plasmons 

that exist at the surface of a conductive material can interact with and absorb 

electromagnetic (EM) radiation with wavelengths corresponding to the frequency of the 

Figure 2.3: Schematic illustration of the microcontact printing technique. 
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oscillation, resulting in surface plasmon resonance (SPR). Because they can interact with 

external EM radiation, SPRs strongly influence the optical properties of some metals. The 

field of plasmonics, which seeks to control the coupling of light with free oscillating 

electrons at metal surfaces, takes advantage of optically excited surface plasmons and 

their properties for a variety of applications including optics,93 photovoltaics,94 

spectroscopy and imaging, molecular sensing,95 electronics,96 and, most recently, the 

activation and catalysis of plasmon-mediated reactions.97 

2.4.1 Surface Plasmon Polaritons 

The light-induced excitation of surface plasmons at the interface between a dielectric 

medium and a smooth planar metal surface results in the generation of surface plasmon 

polaritons (SPPs). This phenomenon was first observed by Wood in 1902, who reported 

uneven distribution of light in optical reflection measurements on metal diffraction 

gratings.98 SPPs are a combination of surface EM waves that propagate along the metal-

dielectric interface and associated surface charges,99 as depicted in Figure 2.4a. Coupling 

between the surface plasmons and the oscillating electric field of light is most effective 

when the wavevector of the incident light is nearly parallel to the surface.100  

Figure 2.4: (a) Illustration of a propagating SPP at the interface between a planar 

metal surface and a dielectric material; (b) Representation of the strength of the 

strength of the electric field |Ez| decaying exponentially in the z direction, away from  

the metal surface 



30 

 

The oscillation frequency of the electron density, and thus the wavelength of light that is 

able to excite surface plasmons, is highly dependent upon the type of metal, the 

surrounding dielectric material, and the size and shape of the metallic structure. SPP 

waves are tightly confined to the metal-dielectric interface, causing significant 

enhancement of the electric field at and very near the metal surface. The intensity of this 

electric field decays exponentially away from the metal surface,101 as shown in Figure 

2.4b. The decay length into the dielectric medium is estimated by λ/2n where λ is the 

wavelength of incident light and n is the refractive index of the dielectric.102 

Due to their unique and interesting properties, SPP-based structures and devices have 

found wide-ranging applications in optics,100 biosensing and molecular sensing,103 solar 

cells,104 data storage,99 and spectroscopy.  

2.4.2 Localized Surface Plasmon Resonances 

Light impinging on a metallic structure that is smaller than the photon wavelength may 

generate surface plasmon resonance that is non-propagating and confined to the vicinity 

of the metal structure. This localized surface plasmon resonance (LSPR) occurs when the 

collective oscillation of free electrons in a metallic nanoparticle (NP) is excited by EM 

radiation with a wavelength that corresponds to the frequency of electron oscillation.105 

The oscillation of conduction electrons with respect to the incident electric field creates 

an accumulation of charges at the surface of the NP. This process is shown in Figure 2.5. 

Metallic NPs are able to collect photons with wavelengths much larger than the NP itself 

and concentrate that energy into a very small area. Just as for SPPs, the intensity of the 

resulting electric field decays exponentially away from the metal surface. Confinement of 

the electric field to nanoscale regions on the metallic NP leads to “hotspots” of high 

intensity near-field enhancement. Furthermore, by placing a metallic NP within nanoscale 

distances of a metallic surface or another nanoparticle, even greater enhancement of the 

electric field may be produced in the nanogaps between structures.   
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The optical and plasmonic properties of metallic NPs depend heavily on the dielectric 

constants of the metal and the surroundings, as well as on the size and shape of the NPs. 

In 1857, Faraday discovered that by varying the diameters of spherical AuNPs in aqueous 

solution, it was possible to alter their resonance positions to afford AuNP solutions in an 

assortment of vibrant colours.106 This serves to demonstrate the sensitivity of plasmonic 

NPs to changes in geometry. By fine-tuning the geometries of metallic NPs, their 

plasmonic properties may be tightly controlled. LSPR positions may also be controlled 

through choice of metal; plasmonic nanostructures are often made from coinage metals, 

in particular gold or silver, because the LSPR modes of nanostructures of these materials 

typically fall within the range of visible light.  

Enhanced spectroscopy techniques such as surface-enhanced Raman spectroscopy, tip-

enhanced Raman spectroscopy, surface-enhanced infrared absorption, and surface-

enhanced fluorescence, each rely on the localized enhancement of incident electric fields 

and precise tunability of LSPR modes achievable with metallic NPs. LSPR-active NPs 

have also found use in lab-on-a-chip technology,107 medical diagnostics,108 and optical 

fiber sensors.109 Over the past decade, however, the scope of LSPR applications has 

expanded to include plasmon-mediated chemical reactions (PMCRs) and processes.110 

Figure 2.5: Diagram of localized surface plasmon resonance of a metallic 

nanoparticle induced by incident light. 
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2.4.3 Plasmon-Mediated Chemistry 

The concept of using optically excited surface plasmons to influence chemical reactions 

was first proposed and computationally modelled in 1981,111 and then demonstrated 

experimentally for the first time in 1983.112 Despite these early findings, the field of 

PMCRs did not truly burgeon until the late 2000’s when studies by Tian and coworkers 

revealed that p-aminothiophenol (p-ATP) could be selectively oxidized into 

dimercaptoazobenzene (DMAB) on plasmonically active substrates under laser 

irradiation at room temperature.113-114 To date, this dimerization, as well as that of 4-

nitrothiophenol (4-NTP) into DMAB, remain the most well-studied PMCRs and are often 

used as model systems for investigating plasmon-mediated reaction mechanisms.115-119 

Although research interests in PMCRs have expanded in the last decade, the field is still 

relatively young and our physicochemical understanding of PMCRs and their reaction 

pathways is still very much incomplete. Growth in this field is strongly reliant on a 

thorough fundamental understanding of surface plasmons and the ways in which LSPRs 

can interact with chemical species. In addition to interacting with excited plasmons 

directly, PMCRs also often occur as a consequence of LSPR decay.120 An excited surface 

plasmon only maintains its coherence for 1-10 fs,121 and relaxation of the LSPR follows 

one of two pathways: radiative decay or non-radiative decay.122 The LSPR relaxation 

process is illustrated in Figure 2.6. The radiative decay pathway simply involves re-

emission of an absorbed photon by the plasmonic material.122 This is a rapid process, 

occurring within the first 1-100 fs of plasmon decay.110 Non-radiative decay of an excited 

surface plasmon generally occurs in three stages.123-124 In the first 1-100 fs, dephasing of 

the LSPR leads to the generation of excited, high-energy electron-hole pairs, or “hot 

carriers” with energies far above the Fermi level of the material.125-126 The hot electrons 

subsequently undergo electron-electron scattering interactions on the timescale of 100-

1000 fs into the plasmon decay process, wherein the hot electrons transfer some of their 

energy to lower-energy electrons, creating multiple excited carriers. At this stage, hot 

carriers contain energies at or below the Fermi level of the material.127-128 Finally, the hot 

carriers relax fully through electron-phonon interactions, culminating in the release of 

thermal energy and local heat dissipation.129-130  
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Excited surface plasmons are able to mediate chemical processes either through local EM 

field enhancement, local heating effects, or injection of hot carriers into chemical species. 

While the local EM near-field enhancements associated with LSPRs are most commonly 

exploited for plasmon-enhanced spectroscopies, they have also been reported to 

contribute to the catalysis of some photoinduced reactions.131-132 The approach of using 

the near-field enhancement of LSPRs to catalyze reactions is generally applied to 

chemical processes that are triggered by light, as they are expected to benefit most from 

the localized concentration of light intensity.133 The enhanced EM near-field enables 

increased light absorption as a result of increased light intensity, which in turn increases 

the probability of excitation of the reactants.134 The most notable example of this is the 

66-fold enhancement of photocatalytic water splitting, assisted by the plasmonic near-

field under visible light irradiation.135 Importantly, overlap of the plasmon resonance 

position, i.e. absorption of the plasmonic material, and the absorption spectrum of the 

reaction precursor is essential for EM field-mediated reactions to proceed efficiently.110 

Figure 2.6: Photoexcitation and subsequent relaxation processes of an LSPR on a 

metallic nanoparticle. 
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The local increase in temperature that occurs as a side effect of late-stage LSPR 

relaxation has frequently been used as a means to provide localized energy for chemical 

reactions.132 The ability of plasmonically active materials to generate heat in response to 

incident visible light presents many unique advantages, as it allows nanoscale heating 

confined to specific locations, and also enables the possibility of solvent superheating 

through efficient heat transfer to solution.133 For example, Branda and coworkers 

employed the photothermal effects of AuNPs for the controlled release of fluorescein dye 

via a retro Diels-Alder reaction,136 a process for which temperature control is crucial for 

proper initiation.137 The photothermal effects of LSPR decay have also been utilized by 

Scaiano and coworkers for the decomposition of dicumyl peroxide.138 LSPR 

photothermal enhancement was pursued for this reaction because of the relatively harsh 

thermal conditions required for the reaction to proceed otherwise (∼140 °C).138 Scaiano 

also later demonstrated the LSPR photothermally enhanced Friedel-Crafts alkylation of 

anisole using AuNPs supported by Nb2O5.
139  

Transfer of hot carriers, either directly or indirectly, from a plasmonic material to nearby 

chemical species is among the most prevalent of the proposed mechanisms for PMCRs. 

The first steps of non-radiative LSPR decay involve the excitation of hot electrons and 

hot holes, and the subsequent generation of multiple hot electrons through electron-

electron interactions.125-128 In the direct charge transfer (CT) process, LSPR decay takes 

an alternative pathway wherein, instead of producing a hot electron at the surface of the 

plasmonic nanostructure, decay occurs through an interfacial electron transfer directly 

from the nanostructure to the lowest unoccupied molecular orbital (LUMO) of the nearby 

chemical species.140-141 Direct injection of hot carriers into molecules at the instant of 

plasmon dephasing requires a strong interaction between the molecular species and the 

metallic nanostructure.140 The direct transfer mechanism is not often observed, as this 

strong interaction between the metal and chemical species is not common.132 More 

common than this is the indirect transfer mechanism. This pathway involves the donation 

of electrons from the first and second stages of non-radiative LSPR decay, once hot 

electrons have been excited on the metal surface and some have relaxed to lower energies 

through electron-electron interactions. Like in the direct transfer process, hot electrons 

are donated to the LUMO of the molecule. The direct and indirect CT processes are 
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portrayed in Figure 2.7. Each pathway requires the metal nanostructures and the chemical 

reactants to overlap both spatially and energetically to allow transfer of charges. The 

donation of high-energy hot electrons to the empty orbitals of molecules can lead to the 

breaking of bonds or to the formation of new bonds.  

There are numerous examples of known CT-driven chemical reactions. The previously 

mentioned dimerizations of p-ATP and 4-NTP into DMAB have both been shown to 

proceed via transfer of hot electrons from the metallic nanostructure to the adsorbed 

molecules.110,113-114 Yoon and coworkers recently reported the plasmon-driven 

Figure 2.7: Direct and indirect CT-driven PMCRs. 
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decarboxylation of 4-mercaptobenzoic acid into benzenethiol on AuNPs, and deduced a 

mechanism that involves the transfer of both hot electrons and hot holes to the organic 

species.142 One chemical mechanism for CT-driven PMCRs that is commonly proposed 

suggests that some PMCRs may actually be induced by reactive oxygen species that are 

generated through hot electron donation to O2 at the plasmonic surface.143-144 For 

example, Takeyasu et al. performed the plasmon-mediated oxidation of 1-butanethiol to 

introduce an alkene moiety, and indicated that plasmon-generated reactive oxygen 

species are critical for this PMCR to proceed.145 A prominent PMCR of interest is the 

plasmon-mediated grafting of various diazonium salts to plasmonically-active metal 

nanostructures, as it allows controllable and highly localized surface modification of 

nanostructures, and diazonium salts offer a wide range of  terminal functional groups.146-

147 This reaction also grants the opportunity for multi-functionalization by exploiting 

different plasmon modes of the nanostructures.146 These reactions will be discussed in 

further detail in Chapter 4 of this thesis. 

Because the near-field enhancement, local heating, and hot carrier injection mechanisms 

for PMCRs are each so closely related and not necessarily mutually exclusive, it can be 

challenging to determine which process or processes are responsible for driving a 

particular plasmon-mediated reaction forward. Furthermore, short-lived reaction 

intermediates for these reactions are not easy to isolate or detect. For this reason, critical 

information on the chemical reaction steps mediated by hot carriers is largely unknown 

and difficult to study.120 However, there are some spectroscopic methods that may be 

employed to probe PMCRs. Conveniently, the same plasmonic platforms on which 

PMCRs can be performed may also be used simultaneously for plasmon-enhanced 

detection methods, such as surface-enhanced Raman spectroscopy. Surface-enhanced 

Raman spectroscopy is a vibrational spectroscopic technique that, under the proper 

conditions, can deliver structural information on longer-lived reaction intermediates and 

the vibrational states of molecules, and in some cases can provide time-resolved 

characterization of PMCRs through simultaneous spectral acquisition and plasmon-

mediated activation of the reaction under study.148-149 
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2.5 Raman Spectroscopy 

Interactions between light and matter can give rise to a host of different physical and 

chemical processes. Typically, light that strikes matter is either transmitted, reflected, 

absorbed, or scattered. When light is scattered by a molecule or particle of interest, the 

oscillating EM field of the incident photon induces an oscillating dipole in the molecule 

which promotes the molecule to a high-energy virtual state.150 This virtual state is 

unstable, so the photon is immediately re-emitted as scattered light.150 In the vast 

majority of scattering events, the light is scattered elastically, meaning that the re-emitted 

photon has the same energy as that of the incident photon. The elastic scattering process 

is known as Rayleigh scattering. However, one in every 108 scattered photons is scattered 

inelastically, such that there is a transfer of energy between the photon and the molecule 

resulting in a re-emitted photon that is of a different wavelength than the incident light.151 

This phenomenon is known as the Raman effect, first observed by Sir C.V. Raman in 

1928 – a discovery that earned him the Nobel Prize in Physics in 1930.152-153 When the 

photon loses energy to the molecule, the molecule relaxes from its virtual state to an 

excited vibrational energy level, and the re-emitted photon of lower energy is referred to 

as Stokes shifted. Conversely, when the photon gains energy from the molecule, the 

molecule relaxes from its virtual state down to a lower vibrational energy level, and the 

re-emitted higher-energy photon is referred to as anti-Stokes shifted. Each of these three 

scattering processes are illustrated in Figure 2.8. 

Raman spectroscopy is an analytical technique that collects information on the chemical 

and structural properties of materials using inelastically scattered light. Because the 

energy differences between the incident and inelastically scattered photons correspond to 

the vibrational energy levels of the irradiated species, Raman spectroscopy allows 

observation of the vibrational modes of molecules and characterization of molecules 

through their vibrational fingerprints. In this way, Raman spectroscopy is a 

complementary system to Fourier Transform Infrared (FTIR) spectroscopy; while FTIR 

spectroscopy is based on light absorption and detects vibrational modes associated with a 

change in the dipole moment of a molecule, Raman spectroscopy collects inelastically 

scattered light and detects vibrational modes associated with a change in polarizability. 
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Raman spectroscopy allows investigation of molecular vibrations that are not visible in 

FTIR spectra due to these different selection rules.  

Generally, Raman spectroscopy measures Stokes shifts rather than anti-Stokes shifts. 

This is because anti-Stokes shifts require the irradiated molecule to already occupy an 

excited vibrational energy level in order to have energy available for transfer to the 

incident photon. Since the great majority of molecules exist in their ground state under 

ambient conditions according to the Boltzmann distribution,154 Stokes scattering is 

statistically much more likely to occur than anti-Stokes scattering, and so the Stokes 

scattering is always more intense. Although Raman spectroscopy is a useful technique for 

materials characterization, Rayleigh scattering is by far the more dominant scattering 

process over Stokes and anti-Stokes. The greatest limitation of Raman spectroscopy is its 

intrinsic weak signal intensity and low sensitivity caused by the poor scattering cross 

section of materials for Raman scattering. One way to overcome this limitation is to 

enhance the Raman signal using surface-enhanced Raman spectroscopy (SERS). 

Figure 2.8: Energy diagram depicting the Rayleigh, Stokes, and anti-Stokes 

scattering processes. 
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2.5.1 Surface-Enhanced Raman Spectroscopy 

SERS is a spectroscopic technique that exploits the plasmonic properties of metallic 

nanostructures in order to enhance the Raman scattering of materials near or at the metal 

surface. The first recorded instance of the SERS effect was an accidental discovery by 

McQuillan and coworkers in 1974 in an experiment involving Raman spectroscopic 

measurements on pyridine molecules adsorbed onto a roughened silver electrode.155-156 

At the time, the mechanism behind the observed dramatic enhancement of the Raman 

signal intensity was not fully understood. Subsequent similar experiments by 

Creighton157 and Van Duyne158 in the late 70’s served to elucidate the true processes by 

which the Raman signal enhancement occurred. Today, SERS has emerged as a powerful 

analytical tool for the highly sensitive detection of molecules adsorbed onto metallic 

nanostructures. 

The total SERS enhancement comprises two primary contributions: the EM enhancement 

mechanism and the chemical enhancement mechanism.159 The EM mechanism stems 

directly from the LSPRs of metallic nanostructures. LSPR arises when a metallic 

nanostructure is irradiated with light of a frequency that corresponds to the frequency of 

electron oscillations in the metal.105 This ultimately results in hotspots of strong near-

field enhancement collecting at the edges of the metallic nanostructure. The Raman 

scattering cross section of materials is dependent on the strength of the local field, |Eloc|, 

which is the near-field at the location of molecules on the nanostructure surface.160 This 

enhanced local field acts on both the incident and scattered rays; thus, the overall Raman 

scattering cross section is elastically enhanced by enhancement factor M which may be 

expressed as a product of the two enhancements, as shown in equation (2.1):161 

𝑀 =
|𝐸𝑙𝑜𝑐(𝜔𝐼)|

2

|𝐸0|2
∙
|𝐸𝑙𝑜𝑐(𝜔𝑅)|

2

|𝐸0|2
     (2.1) 

Here, Eloc is the local near-field, ωI is the frequency of the incident light, ωR is the 

frequency of the Raman scattered light, and E0 is the electric field of the incident beam. 

Since the frequencies of molecular vibrations are generally much smaller than the 

frequency of visible light, |Eloc(ωR)|2 can be considered similar enough to |Eloc(ωI)|
2

 that 

the following approximation can be made:162 
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𝑀 =
|𝐸𝑙𝑜𝑐(𝜔𝐼)|

4

|𝐸0|4
     (2.2) 

The scaling of M to the fourth power dramatically increases the sensitivity of the SERS 

technique for molecules located near plasmonic hotspots, even down to single molecule 

detection.163 As the main contributor to SERS intensity, the EM enhancement factor is 

responsible for enhancement of the Raman signal by a factor of up to 1010.164 Meanwhile, 

the chemical enhancement mechanism of SERS can increase the Raman signal by a 

factor of 102 to 104.165-166 

Unlike the EM enhancement mechanism, which relies on the plasmonic properties of the 

SERS substrate, the chemical enhancement mechanism of SERS is dependent upon the 

molecule under study.167 What is referred to as the “chemical mechanism” is in fact a 

combination of three different enhancement processes: direct or indirect charge transfer, 

resonance Raman, and non-resonance Raman enhancements.168 In each case, interactions 

between the metallic nanostructure and the absorbed species serve to influence the 

polarizability of the molecule, which in turn affects its Raman scattering cross section, 

enabling enhancement of the overall SERS signal.160,169 Whether these mechanisms occur 

and to what degree they enhance the SERS signal is dependent on the properties of the 

molecular species.168 These interactions, particularly charge transfers from the substrate 

to the adsorbed material, are closely related to PMCR processes.110 The major difference 

is that in PMCRs, the hot carriers are donated completely to the chemical species, 

whereas in the SERS chemical enhancement mechanism, the excited carriers that are 

transferred to the adsorbed species quickly decay back to the metal surface, causing 

resonance-like enhancement of the Raman signal.119 

2.6 Fourier Transform Infrared Spectroscopy 

FTIR spectroscopy is a technique of high spectral resolution used extensively in all 

branches of chemistry to characterize and identify molecules through their vibrational 

fingerprints. Vibrational modes that are associated with a change in the dipole moment of 

a given dipole mode with respect to the normal coordinates of the bond will selectively 

absorb wavelengths of infrared (IR) light that correspond to the frequency of the 
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vibration. The IR spectrum of a given sample can provide information on the molecular 

orientation, conformational regularity, and types of atoms and bonds in the molecule.170  

While FTIR spectroscopy is a very common analytical technique with widespread use in 

many fields, it can sometimes require large quantities of sample, up to several milligrams, 

to obtain a quality spectrum. This is a severe limitation for research at the nanoscale, as 

some configurations for FTIR spectroscopy lack the sensitivity to study thin films. 

Fortunately, there are a number of different FTIR setup arrangements designed for the 

study of surface adsorbates with high sensitivity down to the single monolayer. One such 

variation of classical FTIR spectroscopy is polarization modulation infrared-reflection 

absorption spectroscopy (PM-IRRAS), a powerful chemical analysis technique dedicated 

specifically for the qualitative and quantitative study of organic monolayers and thin 

films. 

2.6.1 Polarization Modulation Infrared Reflection-Absorption 
Spectroscopy 

In conventional FTIR studies, the IR beam incident upon the sample is randomly 

polarized. When the beam is linearly polarized, however, only vibrational modes of the 

sample with a component of their dipole moment oriented parallel to the plane of 

polarization will be able to absorb the IR light and contribute to the spectrum. Samples 

that are gaseous, liquid, or in solution possess a rotational degree of freedom, and as a 

result the orientation of all dipole moments in the sample are constantly changing; their 

polarized spectra are therefore identical, independent of the orientation of the linearly 

polarized IR light incident upon the sample.171 Conversely, molecules that are deposited 

as thin films adsorbed onto a surface maintain a fixed orientation over time. Furthermore, 

SAMs often tend to adopt a particular molecular conformation and uniform bond 

orientations at surfaces and interfaces.5,172 This phenomenon lends SAMs a directional 

dependence and an overall uniform macroscopic conformation. Such samples exhibit 

anisotropy, wherein their physical properties differ when measured along different 

molecular axes. Thus, anisotropic thin films and monolayers can be characterized in 

terms of the chemical composition and bond orientations of the system using distinct 

orientations of linearly polarized IR light. One particular technique that takes advantage 
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of this property is infrared reflection-absorption spectroscopy (IRRAS), an established 

and reliable method for characterizing thin films adsorbed onto highly reflective metallic 

substrates.173 IRRAS experiments are typically carried out by collecting the reflectance 

spectrum of a thin film with IR light that is linearly polarized parallel to the plane of 

incidence and then normalizing this measurement with respect to the reflectance 

spectrum of the “bare” (non-functionalized) substrate.174 This technique offers relatively 

high sensitivity, and the use of linearly polarized IR light provides information about the 

bond orientations of surface molecules. 

PM-IRRAS is based on some of the same principles as IRRAS experiments, but with 

several crucial improvements. While IRRAS uses light that is linearly polarized along 

one direction, PM-IRRAS utilizes a polarized beam of light that is modulated between 

two states. During acquisition, the orientation of the linearly polarized IR beam is rapidly 

modulated between two orthogonal polarizations, parallel (p-polarized) and perpendicular 

(s-polarized) to the plane of incidence. This rapid modulation is achieved using a 

photoelastic modulator (PEM) placed between a linear polarizer and the substrate. 

One of the greatest advantages of this modulation technique is the surface selection rule. 

This rule states that only p-polarized light may interact with surface molecules, and only 

vibrational modes with a component of the transition dipole moment aligned parallel to 

the plane of incidence may contribute to the absorbance spectrum.173,175 This is a direct 

result of the physics of the reflection of light from a metal surface. In PM-IRRAS 

experiments, the IR beam is directed at the substrate at a grazing incidence of 80˚. S-

polarized light undergoes a phase change of 180˚ regardless of the angle of 

incidence.173,175 This creates a node in the electromagnetic field at the substrate surface 

that prevents surface molecules from interacting with this polarization of light.14 

However, when light is p-polarized and the angle of incidence is high, the electric field 

vector undergoes a phase change of less than 90˚.173,175 This allows the incident and 

reflected rays to constructively interfere to form a standing wave at the substrate 

surface.175 Vibrational modes that are parallel to this standing wave can contribute to the 

absorbance spectrum. This surface selection rule is illustrated in Figure 2.9. PM-IRRAS 

does not collect the individual polarized spectra, but instead takes the difference between 
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the p-polarized and s-polarized reflectances and normalizes this with respect to the sum 

of these reflectances. This differential measurement not only contributes to the high 

sensitivity of this technique and provides information about the orientation of the 

vibrational modes of surface molecules, but also allows measurements to be taken in 

atmosphere. Because they have no macroscopic uniform orientation, non-surface 

molecules absorb the p- and s-polarized light equally and thus when the difference is 

taken, the absorbances are cancelled. For this reason, PM-IRRAS is insensitive to the 

surrounding atmospheric gases since they absorb IR light isotropically. Furthermore, PM-

IRRAS measurements are made quantitative through use of a spectral calibration 

procedure developed by Buffeteau et al.,176-177 details for which can be found in 

Appendix A. 

2.7 Summary 

This chapter outlines key relevant approaches to surface modification, including click 

chemistry, plasmon-mediated chemistry, and microcontact printing. Also provided in this 

chapter is detailed exposition on the physical principles underlying select vibrational 

spectroscopic techniques, namely SERS and PM-IRRAS, for the characterization of 

monolayers and thin films.  

 

 

 

Figure 2.9: Illustration of the phase change of (a) s-polarized light and (b) p-

polarized light upon reflection from a metallic surface. 
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Chapter 3  

3 PM-IRRAS Investigation of Photo-Enabled Surface 
Click Reactions at the Monolayer Level 

Adapted with permission from Langmuir, 2020, 36, 1014-1022. This chapter investigates 

the utility of the SPAAC reaction in precisely tuning the surface properties of gold 

substrates at the monolayer level, and explores its applicability in the preparation of 

biorecognition interfaces on metallic surfaces. Polarization modulation infrared 

reflection-absorption spectroscopy (PM-IRRAS) has been used to detect and characterize 

monolayers adsorbed onto gold substrates, and to probe the progress of the surface 

SPAAC reactions. 

3.1 Introduction 

In recent years, growing interest in the modification of material surfaces has cultivated a 

demand for modification techniques that enable precise control over chemical 

functionality, polarity, hydrophobicity, reactivity, and other properties of surfaces. SAMs 

of thiolates on gold represent a convenient, bottom-up approach towards preparing 

chemically and structurally well-defined organic interfaces. The capacity of these SAMs 

to fine-tune surface properties has led to their emergence as key elements for biochemical 

research. 

The structurally complex and dynamic nature of biological systems, such as proteins and 

cell membranes, can make detailed analysis of such samples difficult. In this respect, 

SAMs of thiols on gold have proven useful as model surfaces for the study of 

biochemical molecules, interactions, and processes. Thiol-containing molecules quickly 

and readily self-assemble on gold surfaces into consistently reproducible monolayers 

through the formation of the Au-S bond, a strong and highly stable bond generally 

considered to be covalent in nature.1 In addition to their controllable ligand density, 

homogeneity, orientation, and surface properties,2 and their ability to present specific 

organic molecules with a range of chemical functionalities, the high degree of order and 

tightly-packed surface density of alkane-thiol SAMs on gold reasonably mimic the 
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natural environment of the lipid bilayer structures of cell membranes.1,3 As a result, 

SAMs have been utilized in a variety of biochemical applications, including in biosensor 

development, as cell culture substrates, and as platforms to study biomolecular 

interactions.4-8  

Substrates designed for studying biochemical events, such as protein interactions, 

biomolecule detection, or cell adhesion, often require the presentation of specific ligands 

or biochemical species at the substrate interface for effective target immobilization.4-8 

The most obvious way to construct such interfaces using SAMs on gold is to prepare 

ligand molecules with thiol groups and incorporate them onto the gold surface directly by 

self-assembly. However, this method poses several difficulties; firstly, functionalizing the 

desired ligand molecules with thiol groups can be synthetically challenging, time-

consuming, and expensive, as biomolecules are often large and complex. Secondly, if this 

molecule contains multiple thiol groups, as biomolecules often do, it can exhibit multiple 

binding modes at the surface with different structural conformations that may have a 

significant impact on biorecognition. An alternative approach to preparing surfaces 

functionalized for biological studies is to create SAMs of small molecules with reactive 

functional groups that are capable of covalently conjugating biomolecules to the 

substrate. 

In this context, click chemistry, such as the CuAAC,9-10 can provide the means to SAM 

derivatization with biomolecules via the formation of stable triazole linkages. For 

example, Murphy and coworkers showed that an alkyne-bearing RGDSP peptide can be 

immobilized using the CuAAC on azide-terminated SAMs, which provided a modified 

platform for adhesion studies of human mesenchymal stem cells.11-12 Yeo and coworkers 

demonstrated on-demand electrochemical activation of the CuAAC on SAMs to afford a 

dynamic substrate to study cell migration.13 Lee and coworkers modified SAMs to 

display terminal maleimide groups using CuAAC, which was subsequently used for a 

thiol-Michael addition as a secondary click reaction to immobilize poly(L-lysine) as a 

model for polypeptide surfaces.14 More recently, Rubinstein and coworkers reported 

reactivity between azide-terminated SAMs and terminal alkyne-containing biological 

receptors via the CuAAC, and demonstrated LSPR biosensing on the modified 
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substrates.15 Although effective, these methods suffer from the cytotoxicity of Cu(I), 

which can have an effect on cell viability even in trace amounts if not properly 

removed.16-18 Furthermore, the introduction of alkynes into target molecules, although 

synthetically simpler than thiolation, can still be challenging and time-consuming. To 

circumvent these drawbacks, a complementary system is proposed that utilizes a strained 

cyclooctyne as the SAM terminal group, which can undergo SPAAC reactions with azido 

molecules to afford the triazole linkage.19 The advantages of using the SPAAC reaction 

with cyclooctyne-terminated SAMs as opposed to the CuAAC on azide-terminated SAMs 

are two-fold: first, the Cu(I) catalyst is no longer required, which makes this reaction 

suitable for use even with live samples; second, azido molecules are easily synthesized 

and widely commercially available – azide-bearing biomolecules in particular are readily 

commercially obtained. However, the strained alkyne is unstable in the presence of many 

nucleophilic groups.20-21 One limitation of this click reaction with regard to its utility in 

surface functionalization is that thiolated strained alkynes cannot be easily incorporated 

onto metallic surfaces through the metal-thiol bond due to self-reactivity of the alkyne via 

thiol-yne addition. 

Recently, the Workentin and Popik groups have developed a novel approach to 

functionalize AuNPs with thiol-terminated strained alkynes by masking the alkyne with a 

cyclopropenone moiety.22-23 Once incorporated onto the surface, the cyclopropenone is 

cleanly decarbonylated by irradiation with ultraviolet (UV) light to reveal the strained 

alkyne.22-23 This chemical system is adapted from Popik et al. who first utilized 

cyclopropenone-masked dibenzocyclooctynes (DIBOs) to label living cells,24 and then to 

functionalize polymer brushes and immobilize azido molecules via SPAAC.23 This 

method allowed for the synthesis of a thiolated alkyne precursor and its direct assembly 

onto AuNPs.22 Following decarbonylation, the DIBO-terminated SAM may be used as a 

versatile reactive template to immobilize any azide-containing molecules of choice. In 

this work, we have applied this strategy to SAMs on flat gold, enabling a similar 

approach to effectively introduce new functionalities, as depicted in Scheme 3.1. As the 

surface chemistry, preparation, and applications of SAMs on flat, solid-state Au 

substrates differ significantly from solution-dispersible colloidal Au, we sought to 
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investigate the feasibility of implementing this cyclopropenone-based strategy on this 

new material, as well as explore methods of validating the molecular reactivity.  

In addition to conferring surface functionality on SAMs, this photochemical deprotection 

strategy allows for spatial and temporal control over the unmasking of the alkyne, which 

grants the unique opportunity for photopatterning of the functionalized surface. Such 

surface modifications have the potential to alter a host of physical and chemical surface 

characteristics. Thus, these surface SPAAC reactions have a range of applications in the 

development of chemical sensors, biosensors, and other nanotechnologies that rely on the 

precise tunability of surface properties.23, 25 In this study, we attempt to investigate the 

use of a photomask to produce photopatterned, spatially resolved derivatization of the 

SAM with fluorescent dye molecules. 

SAMs of thiolates on gold are amenable to a number of analytical techniques that enable 

our understanding of their surface chemistry, including X-ray photoelectron 

spectroscopy, FTIR spectroscopy, and surface plasmon resonance spectroscopy. One 

technique that is particularly interesting and ideally suited for the investigation of SAMs 

is PM-IRRAS, a well-established FTIR spectroscopic technique specifically developed to 

study monolayers of molecules adsorbed onto metallic surfaces.26-27 PM-IRRAS allows 

highly sensitive measurements of Au SAMs, yielding strong IR signals from a single 

Scheme 3.1: General strategy for incorporation of strained alkynes onto flat gold 

substrates and subsequent SPAAC reaction. 
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monolayer of molecules, while also providing information about the orientation of 

functional groups at the surface. Furthermore, PM-IRRAS measurements are made 

quantitative through use of a spectral calibration procedure.26 The cyclopropenone-caged 

alkyne precursor possesses strong and distinct stretching vibrations in the mid-IR range, 

and the flat Au substrate is highly compatible with the PM-IRRAS technique. Hence, in 

this work, these SAMs were characterized by PM-IRRAS for the first time through 

collection of the vibrational fingerprints of key functional groups to provide important 

information on chemical composition and orientation of the SAM, and to monitor 

SPAAC reaction progress at each step of the chemical modifications to confirm 

successful reactivity. The high sensitivity and resolution of the PM-IRRAS technique 

also allowed assessment of the purity of monolayers at each step of the process to ensure 

that the SPAAC reactions proceeded cleanly, i.e. without producing unwanted side 

products or contaminants. PM-IRRAS spectra were accompanied with contact angle 

measurements of the SAMs to further validate successful surface modification. 

In this work we have realized a facile and clean one-step protocol for the assembly of 

alkane-thiol SAMs with terminal cyclopropenone-masked DIBO groups on gold and their 

modification via photo-enabled SPAAC with azide reagents, as illustrated in Scheme 3.1. 

The unmasked strained alkyne SAMs were derivatized with a series of model azides with 

varied hydrophobicity to demonstrate the generality of this chemical system for the 

modification and fine-tuning of the surface chemistry, specifically hydrophobicity, on 

gold substrates. Photopatterning of the cyclopropenone SAMs with fluorescent dye 

molecules was also investigated. Furthermore, as a proof-of-concept study to show SAMs 

can be derivatized with larger biomolecules via SPAAC, we have prepared peptide-

modified SAMs using this protocol and demonstrated their applicability for creating cell 

adhesion platforms and live imaging of human fibroblast cells. This derivatization 

method, as applied to flat Au, addresses a key deficiency in the field with respect to the 

use of cyclooctyne terminal groups in flat Au SAMs that will allow for faster and simpler 

preparation of functionalized and biofunctionalized SAMs. 
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3.2 Methods 

3.2.1 PM-IRRAS Setup and Measurements 

PM-IRRAS measurements were carried out using a Thermo Scientific Nicolet 6700 FTIR 

Spectrometer and a custom-built optical setup featuring a ZnSe photoelastic modulator 

(PEM-90 Model II, Hinds Instruments, Inc.) oscillating at 74 kHz. A wire grid polarizer 

was used to select the p-polarized light incident on the PEM. All spectra were recorded at 

a spectral resolution of 4 cm-1 and an angle of incidence of 80˚ with the PEM set for 

maximum modulation efficiency at 2000 cm-1 or 2500 cm-1 to cover the entire mid-IR 

range. 2000 scans were performed for each sample. The polarization-modulated beam 

was directed at a liquid nitrogen-cooled Thermo Scientific photovoltaic mercury-

cadmium-telluride A (MCT-A) detector and then separated into high frequency “AC” and 

low frequency “DC” signals by a Stanford Research Systems Model SR650 Dual 

Channel Electronic Filter. AC and DC are the accepted designations for these signals 

because the high frequency signal oscillates at a much faster rate than the low frequency 

signal, similar to alternating and direct current electricity. For each measurement, AC 

signal is modulated twice: once by the PEM, and once by the Michelson interferometer. 

Thus, after electronic filtering, the AC signal was demodulated by a Stanford Research 

Systems Model SR830 DSP Lock-in Amplifier (LIA). Following simultaneous 

acquisition of the low frequency and demodulated high frequency signals through the two 

channels of the spectrometer and subsequent Fourier transform, the high frequency and 

low frequency signals were ratioed to give normalized differential reflectance spectra. 

Spectra were further calibrated using the procedure described by Buffeteau et al.26, 28 

Calibration spectra were acquired by inserting a wire grid linear polarizer between the 

sample and the detector. Details regarding the PM-IRRAS spectral calibration procedure 

can be found in Appendix A. The resulting calibrated PM-IRRAS spectra show the 

vibrational absorptions of surface species with absorbance values smaller than A=10-4. 

An illustration of the PM-IRRAS setup is shown in Figure 3.1. 
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3.2.2 Gold Substrate Fabrication 

Gold mirror substrates were prepared via electrom beam evaporation of 150 nm of 

chromium followed by 100 nm of gold onto 3 × 1-inch glass microscope slides. Prior to 

metal deposition, glass slides were cleaned with piranha solution (3:1 solution of 

concentrated H2SO4/30% H2O2) and rinsed thoroughly with ultrapure water. 

3.2.3 Synthesis of Organic Molecules 

All reagents, unless otherwise stated, were purchased from Sigma-Aldrich and used as 

received. All common solvents, triethylamine (TEA), sodium sulfate anhydrous, and 

trifluoroacetic acid were purchased from Caledon. Azides A and B were synthesized 

according to a literature procedure.29-30 Azide C was synthesized according to a protocol 

previously developed in the Workentin group.31 Compound 1 was synthesized following 

a previously developed protocol.22 

Figure 3.1: Schematic diagram of the PM-IRRAS optical setup and electronic 

processing. 
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FTIR spectra of model molecules were recorded using an attenuated total reflectance 

(ATR) attachment using a Bruker Vector 33 FTIR spectrometer. Characterization of each 

synthesized organic species by 1H, 13C{1H}, and 19F{1H} nuclear magnetic resonance 

(NMR) spectroscopy was carried out on Varian INOVA 400 (or 600) or Bruker AvIII HD 

400 spectrometers using CDCl3 or CD3OD as solvent. 

Cyclopropenone Thiol Precursor and Thiol 

To a solution of 1 (1.19 g, 3.70 mmol) in dimethylformamide (DMF; 40 mL) was added 

compound 2 (3.37 g, 5.55 mmol). Next, portionwise was added K2CO3 (0.512 g, 3.70 

mmol), then the solution was stirred and heated to 80 °C for 5 h (Scheme 3.2). The 

reaction was cooled to room temperature (r.t.), diluted with ethyl acetate (400 mL), 

washed 5 times with water (75 mL), brine (100 mL), and dried over MgSO4. The organic 

layer was then filtered, concentrated in vacuo, and purified via silica gel chromatography 

(hexanes: ethyl acetate 3:1 to CH2Cl2: MeOH 30:1) to provide 3 (2.01 g, 72% yield) as a 

yellow oil. 1H NMR (CDCl3, 400 MHz): δ 7.92 – 7.95 (m, 2H), 7.40 – 7.42 (m, 6H), 7.25 

– 7.29 (m, 6H), 7.18 – 7.21 (m, 3H), 6.88 – 6.90 (m, 4H), 4.17 – 4.19 (t, J = 4.7 Hz, 2H), 

4.03 – 4.06 (t, J = 6.5, 2H), 3.86 – 3.88 (t, J = 4.7 Hz, 2H), 3.71 – 3.73 (m, 2H), 3.64 – 

3.65 (m, 2H), 3.57 – 3.60 (m, 2H), 3.45 – 3.3.47 (t, J = 4.7 Hz, 2H), 3.29 – 3.32 (m, 4H), 

2.60 – 2.63 (d, J = 10.7 Hz, 2H), 2.41 – 2.44 (t, J = 6.9 Hz, 2H), 1.75 – 1.84 (m, 4H), 

1.47 – 1.56 (m, 2H), 0.98 – 1.01 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 

162.8, 161.8, 154.0, 148.0, 148.0, 145.0, 142.6, 142.2, 136.0, 135.9, 129.8, 128.1, 126.9, 

116.8, 116.6, 116.44, 116.39, 112.54, 112.45, 71.1, 70.9, 70.7, 70.4, 69.8, 69.7, 68.2, 

67.9, 66.8, 37.38, 37.35, 31.9, 31.4, 19.4, 14.0. ESI-MS calculated for C48H51O6S [M + 

H]+ 755.3401, found 755.3401. 

Compound 3 (1.45 g, 1.92 mmol) was dissolved in CH2Cl2 (20 mL) and trifluoroacetic 

acid (TFA) (1.850 mL, 24.01 mmol). iPr3SiH (0.866 mL, 4.23 mmol) was added and the 

reaction mixture was stirred at r.t. under argon for 45 min (Scheme 3.2). The reaction was 

concentrated in vacuo and purified via silica gel chromatography (EtOAc:MeOH 95:5) to 

provide 4 (0.910 g, 92%) as a yellow oil. 1H NMR (CDCl3, 400 MHz): δ 7.92 – 7.95 (d, J 

= 8.7 Hz, 2H), 6.88 – 6.92 (m, 4H), 4.20 – 4.23 (m, 2H), 4.03 – 4.06 (t, J = 6.5 Hz, 2H), 
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3.88 – 3.91 (m, 2H), 3.74 – 3.76 (m, 2H), 3.59 – 3.71 (m, 8H), 3.32 – 3.35 (d, J = 10.6, 

2H), 2.61 – 2.64 (d, J = 10.7 Hz, 2H), 2.87 – 2.72 (m, 2H), 1.77 – 1.84 (m, 2H), 1.58 – 

1.63 (t, J = 7.4 Hz, 1H), 1.47 – 1.56 (m, 2H), 0.98 – 1.01 (t, 3H). 13C{1H} NMR (CDCl3, 

101 MHz): δ 162.3, 161.8, 154.0, 148.0, 142.6, 142.2, 136.0, 135.9, 116.8, 116.6, 116.43, 

116.37, 112.6, 112.5, 73.1, 71.1, 70.9, 70.8, 70.4, 69.7, 68.2, 67.9, 37.39, 37.36, 31.3, 

24.5, 19.4, 14.0. ESI-MS calculated for C29H37O6S [M + H]+ 513.2305, found 513.2303. 

Cyclopropenone Model 6 

To a solution of compound 1 (0.190 g, 0.593 mmol) in CH3CN (8 mL) was added 1-iodo-

2-(2-(2-methoxyethoxy)ethoxy)ethane 5 (0.179 mg, 0.652 mmol) and K2CO3 at r.t. while 

stirring. The resulting suspension was heated to 55°C and left to stir for 16 h. After, the 

mixture was cooled to r.t. and CH2Cl2 (ca. 20 mL) was added (Scheme 3.2). Solids were 

removed by gravity filtration and the filtrate was concentrated by evaporation in vacuo. 

The residue was purified by column chromatography on silica gel using 7.5% CH3OH in 

EtOAc as the eluent to afford compound 6 as a pale yellow oil (0.242 g, 87%). 1H NMR 

(CDCl3, 600 MHz): δ 7.93 – 7.88 (m, 2H), 6.93 – 6.83 (m, 4H), 4.20 (t, J = 5.3 Hz, 2H), 

4.02 (t, J = 6.6 Hz, 2H), 3.87 (t, J = 4.8 Hz, 2H), 3.75 – 3.71 (m, 2H), 3.69 – 3.66 (m, 

2H), 3.66 – 3.63 (m, 2H), 3.56 – 3.52 (m, 2H), 3.36 (s, 3H), 3.35 – 3.25 (m, 2H), 2.65 – 

2.54 (m, 2H), 1.82 – 1.74 (m, 2H), 1.53 – 1.46 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 13C{1H} 

NMR (CDCl3, 151 MHz): δ 162.0, 161.5, 153.6, 147.67, 147.66, 142.4, 142.0, 135.7, 

135.6, 116.5, 116.3, 116.1, 112.3, 112.2, 71.8, 70.8, 70.6, 70.5, 69.4, 67.9, 67.6, 59.0, 

37.10, 37.07, 31.1, 19.1, 13.7. ESI-MS calculated for C28H34NaO6 [M + Na]+ 489.2253, 

found 489.2267. 

Alkyne Model 7 

A solution of compound 6 (0.088 g, 0.189 mmol) in CH3OH (94 mL, [2] = 2.0 mM) was 

irradiated in a Luzchem (LZC-4V) photoreactor equipped with 14 UV-A (350 nm) lamps 

for 20 min at r.t. (Scheme 3.2). The solution was concentrated in vacuo and purified by 

column chromatography on silica gel using EtOAc as the eluent to afford compound 7 as 

a pale yellow oil (0.078 g, 95%). 1H NMR (CDCl3, 600 MHz): δ 7.20 (d, J = 8.2 Hz, 1H), 

7.19 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 2.6 Hz, 1H), 6.88 (d, J = 2.6 Hz, 1H), 6.78 (dd, J = 
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8.5 Hz, J = 2.6 Hz, 1H), 6.76 (dd, J = 8.2 Hz, J = 2.6 Hz, 1H), 4.16 – 4.12 (m, 2H), 3.98 

(t, J = 6.4 Hz, 2H), 3.88 – 3.85 (m, 2H), 3.76 – 3.73 (m, 2H), 3.70 – 3.68 (m, 2H), 3.68 – 

3.64 (m, 2H), 3.57 – 3.54 (m, 2H), 3.38 (s, 3H), 3.23 – 3.13 (m, 2H), 2.48 – 2.38 (m, 2H), 

1.81 – 1.74 (m, 2H), 1.55 – 1.46 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H). 13C{1H} NMR 

(CDCl3, 151 MHz): δ 158.6, 158.2, 154.8, 154.7, 126.6, 126.5, 116.8, 116.6, 116.4, 

115.9, 111.9, 111.7, 110.5, 110.2, 71.9, 70.8, 70.6, 70.5, 69.6, 67.7, 67.5, 59.0, 36.58, 

36.57, 31.2, 19.2, 13.8. EI-MS calculated for C27H34O5 [M]+ 438.2406, found 438.2408. 

Click Model 8a/8b 

To a solution of compound 7 (0.021 g, 0.048 mmol) in CH2Cl2 (2 mL) was added azide 

A (10.7 mg, 0.048 mmol) at r.t. while stirring. This mixture was left to stir for 16 h 

(Scheme 3.2). After, the solution was concentrated in vacuo and purified by column 

chromatography on silica gel using EtOAc as the eluent to afford compounds 8a and 8b 

as a mixture of regioisomers (0.030 g, 95%). 1H NMR (CDCl3, 400 MHz): δ 7.46 – 7.37 

(m, 1H), 7.17 – 7.08 (m, 1H), 6.95 – 6.65 (m, 4H), 5.74 – 5.62 (m, 1H), 5.47 – 5.35 (m, 

1H), 4.22 – 4.04 (m, 2H), 4.04 – 3.78 (m, 4H), 3.78 – 3.59 (m, 6H), 3.59 – 3.48 (m, 2H), 

3.43 – 3.25 (m, 4H), 3.12 – 2.95 (m, 2H), 2.90 – 2.77 (m, 1H), 1.83 – 1.68 (m, 2H), 1.56 

– 1.40 (m, 2H), 1.03 – 0.92 (m, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 160.2, 159.9, 

158.8, 158.4, 146.3, 146.2, 143.4, 143.3, 139.2, 139.1, 134.0, 133.8, 132.8, 130.2, 122.4, 

122.0, 118.0, 117.5, 116.5, 116.3, 116.1, 115.9, 112.8, 112.7, 112.4, 112.3, 108.9, 71.9, 

70.81, 70.77, 70.64, 70.62, 70.55, 70.53, 69.64, 69.55, 67.73, 67.47, 67.24, 59.0, 39.6, 

36.4, 36.3, 33.0, 31.3, 31.2, 29.7, 19.2, 13.79, 13.77. ESI-MS calculated for C34H36F5 

N3NaO5 [M + Na]+ 684.2473, found 684.2483. 

Click Model 9a/9b 

To a solution of compound 7 (0.021 g, 0.048 mmol) in CH2Cl2 (2 mL) was added azide B 

(7.6 mg, 0.048 mmol) at r.t. while stirring. This mixture was left to stir for 16 h (Scheme 

3.2). After, the solution was concentrated in vacuo and purified by column 

chromatography on silica gel using EtOAc as the eluent to afford compounds 9a and 9b 

as a mixture of regioisomers (0.028 g, 98%). 1H NMR (CDCl3, 400 MHz): δ 7.63 – 7.55 

(m, 2H), 7.50 – 7.43 (m, 1H), 7.27 – 7.16 (m, 2H), 6.99 – 6.90 (m, 1H), 6.87 – 6.64 (m, 
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4H), 5.60 (s, br, 2H), 4.18 – 4.03 (m, 2H), 4.01 – 3.79 (m, 4H), 3.78 – 3.61 (m, 6H), 3.59 

– 3.50 (m, 2H), 3.42 – 3.35 (m, 3H), 3.35 – 3.20 (m, 1H), 3.08 – 2.92 (m, 1H), 2.87 – 

2.61 (m, 2H), 1.83 – 1.67 (m, 2H), 1.56 – 1.42 (m, 2H), 1.03 – 0.92 (m, 3H). 13C{1H} 

NMR (CDCl3, 101 MHz): δ 160.2, 159.8, 158.8, 158.4, 147.0, 146.9, 143.2, 143.1, 

140.69, 140.65, 138.9, 138.8, 133.7, 133.6, 132.9, 132.48, 132.47, 129.81, 129.79, 128.0, 

122.3, 121.9, 118.2, 118.1, 117.6, 116.5, 116.4, 115.8, 115.6, 112.8, 112.7, 112.4, 112.3, 

112.13, 112.12, 71.9, 70.79, 70.76, 70.62, 70.59, 70.53, 70.50, 69.6, 69.5, 67.7, 67.5, 

67.4, 67.2, 58.99, 58.97, 51.48, 51.46, 36.55, 36.53, 32.81, 32.80, 31.23, 31.16, 29.6, 

19.2, 13.8. EI-MS calculated for C35H40N4O5 [M]+ 596.3000, found 596.3002. 

Click Model 10a/10b 

To a solution of compound 7 (0.026 g, 0.059 mmol) in CH3OH (2 mL) was added azide 

C (11.8 mg, 0.059 mmol) at r.t. while stirring. This mixture was left to stir for 16 h 

(Scheme 3.2). After, the solution was concentrated in vacuo to afford compounds 10a and 

10b as a mixture of regioisomers (0.028 g, 98%). 1H NMR (CD3OD, 600 MHz): δ 7.91 – 

7.85 (m, 2H), 7.32 – 7.26 (m, 1H), 7.11 – 7.04 (m, 3H), 6.85 – 6.67 (m, 4H), 5.66 – 5.63 

(m, 2H), 4.10 – 4.02 (m, 2H), 3.94 – 3.85 (m, 2H), 3.80 – 3.73 (m, 2H), 3.68 – 3.62 (m, 

2H), 3.61 – 3.54 (m, 4H), 3.48 – 3.45 (m, 2H), 3.290 (s, 1.5H), 3.287 (s, 1.5H), 3.17 – 

3.09 (m, 1H), 3.00 – 2.90 (m, 1H), 2.67 (t, J = 7.0 Hz, 2H), 1.73 – 1.64 (m, 2H), 1.49 – 

1.40 (m, 2H), 0.95 (t, J = 7.3 Hz, 1.5H), 0.93 (t, J = 7.3 Hz, 1.5H). 13C{1H} NMR 

(CD3OD, 151 MHz): δ 169.5, 162.0, 161.6, 160.7, 160.4, 148.2, 148.0, 144.6, 144.5, 

142.0, 141.3, 141.2, 136.0, 135.8, 133.54, 133.50, 132.2, 131.6, 131.2, 128.6, 123.5, 

123.1, 119.3, 118.9, 117.6, 117.5, 117.0, 116.9, 114.3, 114.1, 113.9, 113.8, 73.1, 71.85, 

71.84, 71.68, 71.67, 71.5, 70.91, 70.85, 68.9, 68.8, 68.6, 59.2, 53.1, 37.3, 37.2, 34.1, 32.6, 

32.5, 20.4, 14.3. 
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3.2.4 SAM Assembly 

Prepared gold mirror substrates were cut into approximately 1 × 2 cm pieces and then 

cleaned by immersion in a 3% (weight/volume) solution of Nochromix (Godax 

Laboratories, Inc.) in concentrated H2SO4 at 80 °C for 30 min. Cleaned substrates were 

rinsed thoroughly with ultrapure water followed by absolute ethanol and then dried under 

a stream of N2 gas. Substrates were then immersed in a deoxygenated methanolic solution 

of thiol 4 (2 mM) for 16 h at room temperature. Afterward, substrates were removed from 

the thiol solution, washed generously with methanol and dried on the benchtop.  

3.2.5 Photo-Click Modification of SAMs 

Cyclopropenone SAMs on gold substrates were immersed in a 2 mM deoxygenated 

solution of azide in CH3OH (azide A or C), CH3OH/H2O (azide B), or H2O (RGD 

peptide) followed by irradiation in a Luzchem LZC-4V photoreactor equipped with 14 

UVA (350 nm) 8 W lamps for 12 min at room temperature. Afterward, substrates were 

left to react for 12 h. Modified SAMs were washed with H2O and CH3OH then left to dry 

on the benchtop. 

Scheme 3.2: Synthesis of thiol 4 and model molecules. 
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3.2.6 Photopatterning of SAMs 

Cyclopropenone SAMs on Au substrates were irradiated in a H2O:methanol solution of 

azide-PEG3-biotin (CAS 875770-34-6 from Millipore Sigma) with a 400 mesh copper 

grid (FCF400-Cu from Electron Microscopy Sciences) placed gently on the surface as a 

photomask. Following irradiation, SAMs were immersed in a solution of streptavidin 

Alexa Fluor 488 dye conjugate in PBS for 20 min to allow biotin-streptavidin 

complexation, then washed with PBS. Fluorescence microscopy of the photopatterned 

substrates was performed using a Nikon ECLIPSE ITi2 Inverted Research Microscope. 

3.2.7 Contact Angle Measurements 

Contact angles were measured with deionized water using a Kruss Drop Shape Analysis 

(DSA) 100 goniometer with DSA software, at room temperature (22°C). All the static 

water contact angles were determined by averaging values measured for 10 μL droplets at 

three different spots on each substrate. The Laplace-Young fitting method was used to 

calculate all the static contact angles. 

3.2.8 Cell Adhesion Studies 

Primary fibroblasts were derived from surgically resected palmar fascia tissues of 

Dupuytren’s disease patients. Fibroblast cultures were incubated in Dulbecco’s Modified 

Eagle Medium (D-MEM) supplemented with 10% fetal bovine serum albumin 

(Invitrogen), 1% L-glutamine and antibiotic-antimycotic solution (Sigma-Aldrich). Cell 

cultures were serially passaged at confluency up to 6 passages for analysis; otherwise, 

cells were discarded. Primary fibroblast cells were plated (about 250,000 cells) onto 

SAMs on gold modified with Cyclo[Arg-Gly-Asp-D-Phe-Lys(Azide)] (RGDFK) peptide 

(Peptides International; RGD-3749-PI) overnight. After gentle washing with phosphate-

buffered saline (PBS) to remove loosely bound cells, substrates were immersed in 2 mM 

Calcein AM (Abcam; ab141420) solution in PBS. After 30 min, cells were imaged live 

using a Nikon ECLIPSE ITi2 Inverted Research Microscope set to the FITC channel (λex 

= 488 nm) to monitor esterase activity. 
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3.3 Results and Discussion 

3.3.1 Cyclopropenone SAM Assembly and Characterization 

SAMs of cyclopropenone thiols were prepared via immersion of clean gold substrates 

into 2 mM solutions of thiol 4 in methanol at room temperature overnight, as illustrated 

in Figure 3.2a. Model compound 6 (Scheme 3) was synthesized to allow comparison of 

the cyclopropenone SAM to corresponding FTIR spectroscopic data. PM-IRRAS 

measurements of the functionalized gold surface, shown in Figure 3.2b, displayed the 

characteristic absorption at 1841 cm-1 of the cyclopropenone C=O stretch.22, 32 

Furthermore, comparison of the PM-IRRAS data with an FTIR spectrum of 

cyclopropenone model 6 revealed that the same peaks were present in the fingerprint 

regions of both the model and the SAM, confirming proper SAM assembly. An overlay 

of PM-IRRAS and FTIR spectra is shown in Figure 3.2b. Detailed assignments of the IR 

peaks are presented in Table 3.1.  

These findings were validated by contact angle measurements taken using water on the 

gold substrate surface before and after functionalization. The greater the spreading of the 

droplet on the surface, the larger the contact angle that is made at the interface. The 

spreading of water at the surface of a given sample is directly related to the wettability of 

the surface, thus contact angle measurements are direct indicators of surface wettability 

and hydrophilicity. Significant change in the contact angle from 63° to 74°, as seen in 

Figure 3.2a, was observed upon SAM formation, indicating successful functionalization 

as organic SAMs are expected to increase surface hydrophobicity. 

While the peak positions of model 6 and the cyclopropenone SAM align well, there are 

significant differences in the relative intensities of some peaks. For example, the signal at 

1841 cm-1, corresponding to the cyclopropenone C=O stretch, appears less intense in the 

spectrum of the SAM than in the spectrum of the model molecule relative to other 

prominent peaks in each spectrum. This is likely due to the surface selection rule of PM-

IRRAS, which states that only vibrational modes with a component of the transition 

dipole moment aligned perpendicular to the substrate surface can contribute to the 

absorbance spectrum.33 As a result, PM-IRRAS is sensitive to the orientation of bonds in 
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a monolayer. The direct consequence of this is that lower absorbances will be observed 

for vibrational modes that are parallel to the surface. Thus, disparities in relative peak 

intensities between the SAM and the model, such as that observed for the cyclopropenone 

C=O stretch at 1841 cm-1, may indicate that, within the SAM, this functional group is 

oriented parallel or near parallel to the substrate surface.  

Table 3.1: List of important vibrational modes and mode assignments for the PM-

IRRAS spectrum of a SAM of cyclopropenone thiol 4 on gold. 

Frequency (cm-1) Assignment 

1844 C=O stretch of cyclopropenone 

1610 C=C stretch of cyclopropenone 

1562 Aromatic ring vibrations 

1504 Aromatic ring vibrations 

1354 Alkyl C-H bend 

1321 Alkyl ether 

1278 C-O-C stretch of alkyl aryl ether (PEG chain) 

1257 C-O-C stretch of alkyl aryl ether (tert-butyl aryl ether) 

Figure 3.2: (a) Assembly of cyclopropenne SAMs. Water contact angles were 

measured in triplicate and reported as an average. (b) Overlaid PM-IRRAS 

spectrum of cyclopropenone SAM and FTIR spectrum of model compound 6; blue 

spectrum designates FTIR spectrum of model molecule; red spectrum designates 

PM-IRRAS spectrum of SAM. Arrow indicates respective scale. 
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3.3.2 Tuning Surface Hydrophobicity by SAM Modification 

Following successful cyclopropenone SAM formation, we sought to investigate our 

ability to specifically control the surface properties of gold substrates by chemically 

modifying these SAMs via photo-enabled interfacial SPAAC reactions. Gold mirror 

substrates were functionalized with SAMs of 4, immersed in a solution of the target 

azide, then irradiated with UV light to deprotect the cyclooctyne in situ, with complete 

decarbonylation achieved within a few hundred picoseconds.34-35 The uncaged strained 

alkyne is then able to react with azides in solution to form the triazole linkage. In the 

absence of UV irradiation, SAMs of 4 do not react with azides at the surface as the 

cyclopropenone-masked DIBO moiety is very stable at room temperature and under 

ambient light conditions.23-24 Azides A-C (Scheme 3) were selected as model reagents for 

SAM modification, as they serve as a gradient of increasing hydrophilicity that may be 

monitored through contact angle measurements in conjunction with PM-IRRAS 

characterization (Figure 3.3). Additionally, azides B and C contain functional groups 

C≡N and C=O, respectively, that feature prominent characteristic IR stretches (C≡N at 

2220 cm-1 and C=O at 1720 cm-1) that can be probed with PM-IRRAS. Separately, model 

cyclopropenone 6 was irradiated to afford alkyne model 7, which was then reacted to 

azides A-C to yield model molecules 8a/8b, 9a/9b, and 10a/10b (Scheme 3) for 

comparison of PM-IRRAS spectra of SAMs to FTIR data of the models.  

PM-IRRAS analysis of the three modified SAMs on gold showed in each case complete 

disappearance of the cyclopropenone C=O peak at 1841 cm-1 as well as the presence of 

characteristic IR signals associated with the key functional groups within each of the 

corresponding azides, as evidenced in Figure 3.3. PM-IRRAS spectra of SAMs “clicked” 

with azide A contained IR signals consistent with a polyfluorinated ring.36 PM-IRRAS 

spectra of SAMs comprising azide B featured the nitrile C≡N stretch at 2220 cm-1, and 

those modified with azide C showed the characteristic C=O stretch at 1720 cm-1. 

Furthermore, in spectra of all three modified SAMs there is no trace of any peaks in the 

2120 cm-1 region. This is significant, as a signal in or near this position would correspond 

to an azide N=N=N stretch. The absence of such a peak indicates that the observed 

signals that appear to correspond to azides A-C are in fact due to the product of the 
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surface SPAAC click reaction, and are not due to excess unreacted azides trapped in the 

SAM or resting on the surface of the gold substrate. Lastly, comparison of PM-IRRAS 

spectra of the SAMs with FTIR spectra of the model compounds 8a/8b, 9a/9b, and 

10a/10b for azides A-C, respectively, was used to verify successful SAM modification. 

Overlays of each pair of FTIR and PM-IRRAS data, shown in Figure 3.3, display nearly 

identical peaks in the fingerprint regions of each set of spectra. This direct comparison 

Figure 3.3: Modification of SAMs via photo-enabled click chemistry with azides A-

C. Water contact angles were measured in triplicate and reported as an average. 

Blue spectra designate FTIR spectra of model molecules; red spectra designate PM-

IRRAS spectra of SAMs. Arrow indicates respective scale. 
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not only confirms successful SAM reactivity but also indicates that this surface SPAAC 

reaction is likely a clean process that does not generate undesirable side products. 

PM-IRRAS characterization of each SAM was accompanied by contact angle 

measurements of the chemically modified surfaces in order to illustrate how our unique 

chemical system can be used to selectively tune surface properties such as hydrophilicity 

simply through choice of azide. As expected, incorporation of the chosen target azides 

onto the functionalized gold surfaces induced changes in the surface hydrophilicity in an 

increasing manner from azides A to C. SAMs modified with azide A were found to have 

the highest contact angle at 82°, SAMs reacted with azide B had on average a contact 

angle of 73°, and SAMs containing azide C possessed the lowest contact angle, 55°. This 

observed surface tension gradient showing increasing hydrophilicity from azide A to C 

demonstrates the ability of this photo-enabled interfacial SPAAC reaction to dictate the 

properties of metallic surfaces through easily achieved chemical modification. 

3.3.3 Photopatterning of Cyclopropenone SAMs 

After confirming that Au SAM modifications could be readily achieved via photo-

enabled SPAAC, we investigated the use of a photomask to afford spatially resolved 

derivatization of the SAM. In this photopatterning experiment, a cyclopropenone SAM 

substrate was irradiated in a solution of azide-PEG3-biotin with a 400 mesh copper grid 

placed gently on the surface as a photomask, illustrated in Figure 3.4. The resulting 

partially derivatized SAM was then exposed to a solution of streptavidin Alexa Fluor 488 

dye conjugate in PBS to allow for biotin-streptavidin complexation, followed by washing 

with PBS. Fluorescence microscopy of the photopatterned SAM revealed the copper grid 

pattern (Figure 3.4); however, poor contrast was observed. We believe this may have 

been due to the inherent difficulties associated with taking fluorescence measurements on 

an opaque and highly reflective surface, or potentially due to quenching of the 

fluorescence as a result of proximity to the gold surface.37 It is also possible that the that 

the pattern was simply transferred poorly due to limitations of the experiment. 
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3.3.4 Cell Adhesion Studies on Modified SAMs 

Once it was established that the photo-enabled SPAAC was a viable means for surface 

modification of SAMs on gold, the compatibility of this approach with biochemical 

applications was investigated. One gold substrate functionalized with a SAM of 

cyclopropenone thiol 4 was irradiated and clicked with an azide-modified RGDFK 

peptide (Figure 3.5a/b), a common cyclic cell adhesion peptide found in the extracellular 

matrix that is known to bind the αvβ3 integrin cell membrane receptors that populate the 

surfaces of many different cell types.11-12, 38 Separately, another gold substrate 

functionalized with 4 was left in the dark and immersed in a solution of the same peptide 

to act as a negative control sample (Figure 3.5c/d); the cyclopropenone would not be 

decarbonylated and thus no subsequent SPAAC reaction could occur. After thoroughly 

rinsing each substrate to remove unreacted RGDFK-N3 peptide, both SAMs were 

incubated in cultures of live human fibroblast cells (approximately 250,000 cells) 

Figure 3.4: Photopatterning of SAMs on gold using biotin-N3 and streptavidin Alexa 

Fluor 488. 
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overnight to promote adhesion. After incubation, loosely bound cells were gently washed 

away with PBS solution and the rinsed SAMs were immersed in a solution of calcein 

AM, which is taken up by cells and metabolized by intracellular esterases into the 

Figure 3.5: Cell adhesion studies using cyclopropenone SAMs; (a) fluorescence 

microscopy image of the substrate irradiated and derivatized with cyclic RGDFK 

peptide at a lower magnification and (b) at a higher magnification; (c) fluorescence 

microscopy image of the substrate not irradiated in the presence of cyclic RGDFK 

peptide at a lower magnification and (d) at a higher magnification. 
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fluorescent dye calcein. This allowed for imaging of the adhered cells by fluorescence 

microscopy and also served as a means to test for cell viability. We hypothesized that this 

would present fewer challenges related to quenching of the fluorescent dye, as the cells 

extend microns above the gold surface.  

Although fluorescence microscopy of each substrate revealed living cells present on both 

the peptide-derivatized and negative control SAMs, there were two key differences 

between the samples. First, the adhesion density of human fibroblast cells on the 

RGDFK-bearing SAM was higher and much more equally distributed across the substrate 

surface (Figure 3.5a/b), whereas there were fewer adhered cells on the control substrate, 

and cells were tightly packed into confined areas (Figure 3.5c/d). We attribute this effect 

to defect sites in the control SAM. Second and most notable, the spindle-shaped and 

elongated morphology exhibited by typical human fibroblast cells in their native 

environment was retained on the peptide-modified SAM (Figure 3.5a/b). Conversely, 

cells adhered on the negative control SAM adopted a spherical and clustered formation, 

which may indicate less favorable, non-specific interactions between the cell membranes 

and the SAM of molecule 4 (Figure 3.5c/d). These crucial differences highlight the need 

for peptide modification facilitated by the photo-enabled click chemistry methodology 

presented here in order to properly study live human fibroblast cells in their native 

morphology on metallic substrates. 

3.4 Conclusions 

In this research we have developed an improved methodology for controlling and 

modifying the surface properties of flat metallic substrates through photo-enabled 

interfacial SPAAC reactions. The challenges associated with incorporating thiolated 

strained alkynes onto metal surfaces have been overcome by utilizing a photochemical 

alkyne precursor, an approach that has not been previously realized. PM-IRRAS was 

used to characterize SAMs of cyclopropenone-masked cyclooctynes, as well as to probe 

the progress of several SPAAC reactions with SAMs designed to specifically tune the 

substrate surface properties at the monolayer level. Furthermore, we demonstrated the 

suitability of this process for biochemical applications such as cell adhesion studies. By 

employing a system of alkyne-terminated SAMs and azide reagents – unlike the more 
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common azide SAMs and alkyne reagents – we have been able to both eliminate the 

presence of cytotoxic Cu(I) catalysts as well as increase the versatility and utility of the 

SPAAC reaction, as azide reagents are far more commercially available and easier to 

synthesize. The ease-of-synthesis and rapid commercialization of azide reagents ranging 

from small molecules to large biomolecules, like the azide-RGDFK peptide in this work, 

reinforces the applicability and generality of this strategy such that SAM modifications 

are readily achieved with target molecules designed for many different applications. 
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Chapter 4  

4 Plasmon-Mediated Grafting of Diazonium Salts on 
AuNP-Patterned Surfaces 

Chemical reactions can be catalyzed on the surfaces of metallic nanostructures by transfer 

of hot charge carriers generated through excitation of localized surface plasmon 

resonance. This chapter first explores the design and fabrication of substrates patterned 

with metallic nanostructures using soft lithography techniques, and then validates their 

utility as plasmonically active platforms suitable for SERS and for plasmon-mediated 

catalysis. Finally, aryl thin films are chemically grafted onto the patterned substrates via 

the plasmon-mediated reduction of aryl diazonium salts. 

4.1 Introduction 

Molecular plasmonics utilizes metallic nanostructures to confine light to subwavelength 

regions, enabling the ability to manipulate interactions between light and molecules 

located at the surface of nanoscale metallic structures.1 Metallic nanoparticles exhibit 

collective oscillations of free electrons in the conduction band, called plasmons, which 

can be excited by light of a wavelength that corresponds to the frequency of oscillation.2 

Plasmon excitation on the surface of a metallic nanostructure generates localized surface 

plasmon resonance (LSPR), described as the confinement of an external electric field to 

nanoscale areas on a nanostructure surface resulting in hotspots of intense near-field 

enhancement. Surface-enhanced Raman spectroscopy (SERS) and other plasmon-

enhanced spectroscopies, such as surface-enhanced fluorescence and surface-enhanced 

infrared reflection-absorption spectroscopy, take advantage of this strong electromagnetic 

near-field enhancement, providing powerful tools for the identification and 

characterization of chemical species in the vicinity of these hotspots yielding sensitivity 

down to the single molecule.3-5  

In recent advancements in the field of plasmonics, LSPR excitation has been used to 

catalyze a variety of chemical processes. As the LSPR decays, high energy hot electrons 

and hot holes are often generated at the nanostructure surface, followed subsequently by 
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localized heating of the nanostructure and surrounding medium. When molecules are in 

the vicinity of a plasmonic nanostructure, LSPR excitation may be used to initiate or 

catalyze a chemical reaction through localized electric field enhancement, local heating, 

or the injection of hot charge carriers into chemical species.6-7 Reactions may also be 

driven by two or more of these effects working synergistically. Numerous examples of 

plasmon-driven chemical reactions have been reported, including H2 dissociation,8 N2 

dissociation,9 conversion of aldehydes to esters,10 polymerization reactions,11-12 

decomposition of organic molecules,13-15 and catalytic oxidation reactions such as 

ethylene epoxidation, CO oxidation, and NH3 oxidation.16 

Rising interest in plasmon-mediated chemistry has brought about the emergence of a new 

research area stemming from the integration of plasmonics into the field of surface 

chemistry. Upon LSPR excitation, metallic nanoparticles exhibit near-field 

enhancements, hot electron production, and elevated temperatures at highly localized 

hotspots on the nanostructure surface that can be used to photo-control surface reactions. 

Thus, plasmon-mediated chemistry offers the possibility to site-selectively catalyze 

surface functionalization or modification reactions at specific localized reactive areas on 

nanostructure surfaces with a high degree of spatial control down to the nanoscale. For 

example, Kadodwala et al. presented a novel strategy for the spatially selective plasmon-

mediated functionalization of nanomaterials by using chiral plasmonic gold 

nanostructures as nanosources of heat at the LSPR hotspots.17 In this strategy, the chiral 

plasmonic structures were coated with thermally responsive PEG-thiol SAMs that, at 

higher temperatures (above ~330 K), undergo a conformational change from a helical to 

an elongated form,18 freeing up space on the plasmonic structure to allow adsorption of 

other ligands or biomolecules.17 Though LSPR decay is known to induce uniform heating 

of metal nanostructures as a result of rapid heat dissipation from hotspots, it can also 

cause the formation of localized temperature gradients in surrounding aqueous medium. 

Chiral plasmonic substrates coated with PEG-thiol SAMs were immersed in water and 

irradiated with an 8-nanosecond pulse laser, causing localized water heating at the 

plasmonic hotspots which induced the conformational change of the PEG molecules from 

helical to elongated at specifically at the hotspots on the nanostructures.17 This change 

subsequently promoted the self-assembly of  nitrilotriacetic acid ligands in the exposed 
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regions.17 This plasmon-mediated spatially selective surface modification methodology 

highlights and demonstrates the potential for nanoscale control over surface 

functionalization using plasmon-mediated chemistry. 

Currently, alkanethiol SAMs remain one of the most popular choices for functionalizing 

metal surfaces. However, metal surface functionalization via the reduction of diazonium 

salts is becoming an increasingly promising alternative to SAMs. Grafting aryl diazonium 

salts to metallic surfaces allows the covalent immobilization of strong, stable organic 

layers (Au–C bond strength of ~37 kcal mol-1)19 that can be customized to display a wide 

array of terminal functional groups.20 Further, aryl diazonium salt chemistry is highly 

compatible with plasmon-mediated surface functionalization, as diazonium salts are well-

known for their ability to graft onto various types of surfaces by electron transfer.21-22 

Several groups have recently demonstrated the plasmon-mediated grafting of aryl 

diazonium salts to plasmonic nanoparticles via hot electron donation. Felidj, Mangeney, 

and coworkers pioneered this approach to surface functionalization, reporting the 

plasmon-mediated grafting of aryl thin films onto gold nanostripes in the regions of 

maximum near-field enhancement by submerging gold nanostripe arrays in an aqueous 

solution of 4-(2-hydroxyethyl)-benzene diazoniumtetrafluoroborate salt and irradiating 

with a laser for several minutes.23 This was shortly followed up with a similar study by 

the same groups wherein gold nanorods were site-specifically functionalized at each of 

their ends, corresponding to the LSPR hotspots of the nanorods, via plasmon-mediated 

aryl diazonium salt grafting.24 In each case, laser irradiation of the gold nanostructures 

immersed in diazonium salt solution regioselectively triggered the grafting of aryl thin 

films to the nanostructure surfaces at the locations of LSPR hotspots, where hot electrons 

are generated as a result of LSPR decay. As described briefly in Chapter 1.2.2, Lacroix et 

al. also employed this strategy to demonstrate the localized hot electron-driven reduction 

of aryl diazonium salts, resulting in the grafting of aryl films specifically at the vertices of 

triangular gold nanostructures, in alignment with the plasmonic hotspots of the 

structures.25 Furthermore, the excitation of different plasmon modes on a given metallic 

nanostructure may allow the opportunity for multi-functionalization. For example, Felidj 

et al. have reported the regiospecific grafting of two distinct diazonium-derived 

molecules with different terminal functional groups to separate sides of gold nanodisks 
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by altering the polarization of the incident laser used for grafting, thus changing the 

locations of the hotspots.26  

Chemical attachment of diazonium salts can also occur spontaneously on some surfaces, 

and can be promoted by heating. However, very thin layers (less than 4 nm) typically 

form, and the thickness of the film and efficiency of the grafting process depend on the 

nature of the diazonium salt.25 Additionally, spontaneous grafting of diazonium salts 

most often requires relatively high solution concentrations and can take several hours to 

complete.27-29 Conversely, the plasmon-mediated grafting of diazonium salts on a 

plasmonic surface takes place in a matter of seconds or minutes under light irradiation, 

and can result in thin or thicker polyphenylene layers (up to 30 nm) using much lower 

diazonium salt concentrations.23 Furthermore, plasmon-mediated grafting enables 

localization and spatial control over the grafted areas. Plasmonically grafted aryl thin 

films can be exploited for many applications, such as adhesion primers30 and antifouling 

coatings.31 Because of their ease of preparation, compatibility with a wide range of 

materials, strong covalent bonding to metal surfaces, and customizability and large 

diversity of choices available for terminal functional groups on aryl diazonium salts, 

these plasmon-grafted thin films also have the potential to be used in the fabrication of 

interfaces for molecular sensors and biosensors.32-33 The regiospecificity of the approach 

may even serve to improve detection for biosensing applications using SERS, as the 

grafted receptor molecules, and consequently the analytes, would be concentrated in 

hotspots where the SERS enhancement is strongest.24 The plasmon-mediated grafting of 

diazonium salts is also of great interest for the development of ensemble molecular 

junctions in nanoelectronic devices.30 An ensemble molecular junction can easily be 

generated by plasmonically grafting aryl layers directly between two metal 

electrodes.25,34 

In this work, the plasmon-mediated grafting of diazonium salts is investigated on 

plasmonic substrates patterned with gold nanoparticles (AuNPs). Patterning is achieved 

using microcontact printing (μCP), a simple, versatile, and cost effective soft lithography 

technique for chemically patterning surfaces.35-36 μCP delivers large-scale surface area 

coverage (up to several tens of cm2) with precise and well-defined microscale and sub-



86 

 

micron patterning.35-36 It utilizes elastomeric polydimethylsiloxane (PDMS) “stamps” to 

transfer a pattern of functionalization onto a substrate with a solution of the target 

substance acting as the “ink”. μCP is most often employed for biochemical applications, 

and has been shown to effectively pattern DNA,37-38 proteins,39-40 cell adhesion 

components,41-43 and SAMs of organic molecules44-46 on a variety of substrates. There are 

also some reported instances wherein μCP has been used to pattern metallic 

nanoparticles, with suspensions of the metallic nanoparticles used as the ink patterned 

directly onto the target substrate surface.47-49 Reproducible, controllable, structured, 

dense, and non-aggregated assemblies of metallic nanoparticles are of fundamental 

interest as they promise intriguing physicochemical properties with a broad range of 

applications across several research fields, such as biosensing and biomedicine,50-51 

information storage,49 optics,52 electronics,53-54 and plasmon-enhanced spectroscopies.55 

When using AuNP solution directly as the ink for μCP, several extra steps often have to 

be taken to concentrate AuNPs or arrange them into uniform arrays before they are 

applied to the stamp, otherwise it can be difficult to achieve uniform patterning and 

consistent spacing of the nanoparticles over a sufficiently large area of the target 

substrate.48-49 An alternative approach to the direct patterning of AuNPs is to instead 

pattern an organic molecular monolayer or thin film onto the substrate as an adhesion 

template to spatially guide the adsorption of the AuNPs onto the pattern from solution. 

One ideal candidate for directing the adsorption of well-ordered arrays of nanostructures 

onto a surface is the self-assembly of block copolymer (BCP) thin films.56-60 Although 

the binding of the BCP to the surface is not covalent, the multiple interactions between 

the polymer and the substrate surface collectively yield high stability and surface 

coverage.57 Furthermore, the immiscibility of the polymer blocks causes microphase 

separation of the blocks in thin films, resulting in the formation of nanoscale hydrophilic 

and hydrophobic domains of high uniformity and long-range order that can be used to 

control nanoparticle adsorption.57,61 

In the present work, plasmonic platforms are fabricated by patterning substrates with 

microscale parallel lines, modelled after a diffraction grating, using μCP of polystyrene-

block-poly(4-vinylpyridine) (PS-b-P4VP) and subsequent adsorption of AuNPs. The 
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LSPR activity of the AuNP-patterned substrates is probed through SERS imaging of 

substrates functionalized with 4-nitrothiophenol (4-NTP). The plasmon-mediated grafting 

of 4-nitrobenzenediazonium (4-NBD) onto the patterned substrates is explored. 

4.2 Methods 

All purchased reagents and materials were used as received. Gold(III) chloride trihydrate, 

sodium citrate, hydroquinone, 4-NTP, and 4-NBD tetrafluoroborate were purchased from 

Sigma-Aldrich. Concentrated HCl and H2SO4 were purchased from Caledon 

Laboratories, and concentrated HNO3 was purchased from Anachemia Canada. The 

solvent tetrahydrofuran (THF) was purchased from Thermo Fisher Scientific, and 

anhydrous ethanol was purchased from Greenfield Global. 

4.2.1 Synthesis of AuNPs 

Gold nanoparticles were synthesized using a seeded growth approach. Seed AuNP 

solutions were prepared by a standard sodium citrate reduction method.62 First, a 1% 

(w/v) chloroauric acid solution was prepared by dissolving 0.25 g of HAuCl4 • 3H2O in 

25 mL of ultrapure water. A 1% (w/v) solution of sodium citrate was then prepared by 

dissolving 0.05 g of sodium citrate in 5 mL of ultrapure water. Next, 300 μL of the 1% 

HAuCl4 solution were placed into a 250 mL Erlenmeyer flask with 30 mL of ultrapure 

water and heated to a boil with vigorous stirring. As soon as the solution was boiling, 900 

μL of 1% sodium citrate solution were added to the flask. The solution was kept at a boil 

with stirring until a colour change to deep wine red was observed, about 10 minutes after 

the addition of sodium citrate. The flask was then removed from heat and cooled at room 

temperature with gentle stirring. 

From the seed particles, 10 mL batches of AuNPs approximately 100 nm in diameter and 

with a raspberry-like morphology were synthesized using a protocol adapted from Yang 

et al.63 First, a 1% sodium citrate solution and a 1% HAuCl4 solution were each prepared 

as previously described. A 0.03 M solution of hydroquinone was also prepared by 

dissolving 16.52 mg of hydroquinone in 5 mL of ultrapure water. Then, 9.42 mL of 

ultrapure water, 100 μL of 1% HAuCl4 solution, and 30 μL of the seed AuNP solution 

were placed in a 20 mL scintillation vial and stirred rapidly at room temperature for 5 
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minutes. Next, 22 μL of 1% sodium citrate solution were added to the vial, immediately 

followed by the addition of 250 μL of the 1% hydroquinone solution. The mixture was 

stirred vigorously at room temperature for 1 hour to allow the complete formation of the 

raspberry-like AuNPs. The resulting AuNP solution was dark blue in colour.  

4.2.2 Fabrication of PDMS Stamps 

Magnetic microstructured PDMS stamps were fabricated by molding PDMS (Sylgard™ 

184, The Dow Chemical Company) over a 600 lines/mm diffraction grating (Edmund 

Optics, Inc.). PDMS prepolymer solution was prepared by combining the polymer base 

and curing agent in a 10:1 ratio, mixing thoroughly, and then degassing for 15 minutes. 

The degassed prepolymer was poured over the grating, used as the master pattern, in a 

Teflon dish so that there was a 1-3 mm thick layer of PDMS covering the surface of the 

grating. This was degassed once more for 10 minutes and then partially cured in a 60 °C 

oven for 1 hour. To make the magnetic layer, PDMS prepolymer was mixed with iron 

powder (Goodfellow Cambridge, Ltd., 60 μm diameter Fe particles) in a 50:50 (w/w) 

ratio. This mixture was alternatingly stirred for 5 minutes then degassed for 15 minutes 

for three cycles. The degassed Fe-PDMS mixture was then poured over the partially 

cured PDMS in a 1-3 mm thick layer. Once poured, it was degassed for another 10 

minutes and then fully cured in a 60 °C oven overnight. 

4.2.3 Patterning of Glass Substrates via Microcontact Printing 

Patterned substrates were fabricated via μCP using the InnoStamp 40™ (Innopsys) 

instrument. The InnoStamp 40™ is a fully automated magnetic-field-assisted 

microcontact printer that utilizes a movable head containing a set of four magnets 

(NdFeB magnets, 25 mm × 25 mm × 12 mm) to manipulate the position of an Fe-PDMS 

stamp in order to carry out all of the steps in a standard μCP process. A typical μCP 

experiment consists of five steps: stamp loading, inking, drying, printing, and stamp 

unloading. To set up a μCP experiment, an Fe-PDMS stamp was placed, with the 

patterned side facing down and magnetic side facing up, in the centre of the stamp 

loading area in the InnoStamp 40™. A clean substrate, in this case a 22 x 22 mm 

(thickness #1) glass coverslip, was placed at the centre of the printing area and secured in 
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place with copper tape at two opposite corners of the coverslip. Prior to printing, the glass 

coverslips were cleaned by immersion in a 3% (w/v) solution of Nochromix (Godax 

Laboratories, Inc.) in concentrated H2SO4 at 80°C for 30 minutes. Cleaned substrates 

were rinsed five times with ultrapure water and then dried under a stream of N2 gas. 

Lastly, an ink platform was placed in the inking area of the InnoStamp 40™ and the 

molecular ink was loaded onto the platform. For the fabrication of substrates patterned 

with AuNPs, a clean glass microscope slide was used as the ink platform, and the ink 

used was a 0.05 mg/mL solution of PS-b-P4VP (Mn(PS) = 41 kg/mol, Mn(P4VP) = 20 kg 

mol-1, Mw/Mn (total) = 1.18, Polymer Source, Inc.) in THF. A 0.5 mg/mL stock solution 

of PS-b-P4VP was prepared by placing 7.5 mg of solid PS-b-P4VP in 15 mL of THF, 

gently sonicating too dissolve, and then filtering successively through 0.45 μm and 0.2 

μm polytetrafluoroethylene filters (Chromspec). The 0.05 mg/mL PS-b-P4VP solutions 

were then prepared as needed by diluting portions of the 0.5 mg/mL solution using THF. 

To load the ink, a few mL of the 0.05 mg/mL PS-b-P4VP solution were pipetted onto the 

microscope slide in the inking area such that the surface of the solution was visibly 

convex, resulting in a layer of solution that reached 2-3 mm above the surface of the 

microscope slide. A schematic of the InnoStamp 40™ working areas and their contents 

preceding a μCP experiment are shown in Figure 4.1. 

Figure 4.1: Top view schematic of the Innostamp 40™ working areas and 

experimental apparatus. 
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For each μCP experiment, the InnoStamp 40™ instrument followed a custom protocol to 

move the stamp through each step of the printing process. In the loading step of a μCP 

experiment, the InnoStamp 40™ stamp head is lowered to the magnetic surface of the Fe-

PDMS stamp to pick it up. The stamp head then moves the stamp over to the inking area, 

where the stamp is lowered toward the ink platform until the patterned surface of the 

stamp is in full contact with the surface of the PS-b-P4VP ink. The patterned side of the 

stamp is held immersed in the ink solution for one minute. After inking, the stamp is 

moved to the dryer area, where it is dried with air using a turbine for 3 minutes. Once 

dried, the stamp is moved and slowly lowered over the centre of the clean glass coverslip 

in the printing area, and the stamp is released onto the substrate. A set of magnets 

underneath the printing area generate a magnetic field to bring the stamp into conformal 

contact with the substrate and apply stamping pressure, ensuring a homogenous printed 

pattern. During the printing step, these magnets move closer to the printing platform to 

increase the force of the stamp pressing down on the substrate. In the stamping protocol 

used here, the magnets move to their maximum position and remain for 4 minutes. The 

magnets then lower, and the stamp head removes the stamp from the substrate, leaving 

behind thin films of PS-b-P4VP only in areas on the substrate that were in contact with 

the stamp. The stamp head then deposits the stamp in the stamp unloading area, 

concluding the μCP process. 

Following patterning with PS-b-P4VP via μCP, the substrates were coated with 100 nm 

raspberry-like AuNPs over the PS-b-P4VP thin films. Glass coverslips patterned with PS-

b-P4VP were placed in 20 mL beakers such that they were propped up at an angle in the 

beaker, and a stir bar was placed in the bottom of each beaker in the space below the 

coverslip. Coverslips were then fully immersed in 10 mL of AuNPs suspended in 

ultrapure water, as synthesized. Coverslips remained immersed in AuNP solution with 

gentle stirring for 2 hours, then were rinsed three times with ultrapure water and dried 

under a stream of N2 gas. 

4.2.4 Visible – Near-Infrared Absorption Measurements 

Visible – near-infrared (vis-NIR) absorption measurements were performed to determine 

the plasmon resonance positions of the lines of AuNPs patterned onto glass coverslips. 
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These measurements were carried out using a home-built setup featuring a halogen lamp 

(HL-2000, Ocean Optics, Inc.) passed through a polarizer and connected by a 100 μm 

optical fibre to a Nikon Diaphot inverted optical microscope. The beam from the halogen 

lamp was first expanded by a 10× objective (numerical aperture (NA) = 0.25), and then 

recollimated by a 20× objective (NA = 0.40) onto the sample, resulting in a spot with a 

diameter around 50 μm. The light was transmitted through the sample and collected by a 

20× objective (NA = 0.50, UPlanFL N, Olympus Corporation). A pinhole size of 200 μm 

and a diffraction grating of 600 lines/mm were used. Scattered light was analyzed using a 

USB 4000-VIS-NIR-ES spectrometer (Ocean Optics, Inc.). Spectra were collected in the 

400-1000 nm range, with an acquisition time of 1 second per spectrum and at least 50 

accumulations to improve the signal-to-noise ratio.  

4.2.5 SAM Formation on AuNP-Patterned Surfaces 

Patterned substrates were functionalized with SAMs of 4-NTP by immersion in a 5 mM 

solution of 4-NTP in ethanol for 1 hour. Functionalized substrates were rinsed three times 

with ethanol and blown dry with nitrogen gas. 

4.2.6 Plasmon-Mediated Grafting of Aryl Diazonium Salts 

In order to demonstrate that LSPR excitation on the plasmonic substrates patterned with 

AuNPs can locally activate and enhance surface functionalization, patterned coverslips 

were covered with a solution of 4-NBD and irradiated using a laser source to induce the 

plasmon-mediated reduction of the diazonium salt, resulting in the grafting of 4-NBD to 

the surfaces of the AuNPs in the irradiated spot. To achieve this, the surfaces of the 

substrates were first examined using an inverted optical microscope (IX71, Olympus 

Corporation) to locate the patterned areas. Substrates were placed with the patterned face 

upwards, and when a patterned area was located, a Teflon O-ring (1 cm diameter) was 

placed over the area. A 5 mM solution of of 4-NBD tetrafluoroborate was prepared by 

dissolving 11.95 mg in 10 mL of ultrapure water. Then, 45 μL of the 5 mM 4-NBD 

solution were pipetted into the Teflon ring on the patterned surface of the substrate. The 

area was the illuminated with a 632.8 nm laser, polarized parallel to the lines of AuNPs 

and focused using a 20× objective (NA = 0.50, UPlanFL N, Olympus Corporation) in 
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transmission, for 2-5 seconds. Irradiation was carried out with the laser slightly out of 

focus to reduce the power density at the surface and to induce grafting over a larger area 

than would be possible with a focused laser spot. Following the grafting procedure, 

coverslips were rinsed three times with ultrapure water. The setup configuration used for 

grafting is shown in Figure 4.2. 

4.2.7 Surface-Enhanced Raman Spectroscopy 

Raman and SERS spectra were obtained using a Horiba HR LabRAM Raman 

spectrometer connected to an inverted optical microscope (IX71, Olympus Corporation). 

A 100× optical objective (NA = 0.9, MPlanFL N, Olympus Corporation) was used to 

focus the 632.8 nm excitation laser onto the sample from below, and the same objective 

was used to collect the Raman-scattered light. The Raman signal was detected by a liquid 

nitrogen-cooled charge-coupled device (CCD; Horiba, Symphony), with the fundamental 

laser line removed by a notch filter. The temperature of the CCD was typically -119 °C. 

The signal was collected with a 600 lines/mm grating and the spectrometer pinhole set to 

a width of 200 μm. Spectra were recorded in the range of 800 – 1800 cm-1 with an 

acquisition time of 5 seconds per spectrum. For SERS mapping experiments of 4-NTP or 

Figure 4.2: Schematic diagram representing the setup and procedure for plasmon-

mediated grafting of diazoniums salts under laser irradiation. 
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4-NBD on AuNP-patterned substrates, an acquisition time of 1 second was used. A 

schematic diagram of the setup used for SERS measurements is shown in Figure 4.3. 

4.2.8 Scanning Electron Microscopy 

A LEO Zeiss 1530 scanning electron microscope (SEM) was used for imaging 

micropatterned substrates, and for imaging areas where the plasmon-mediated grafting of 

diazonium salts had occurred. A 3 nm layer of osmium was deposited onto the substrates 

before imaging. 

4.3 Results and Discussion 

4.3.1 Fabrication of AuNP-Patterned Substrates 

To construct unique plasmonic platforms, AuNPs were synthesized and patterned onto 

glass substrates via μCP. AuNPs were grown using a seeding method with hydroquinone 

as the reducing agent.63 The resulting nanoparticles were approximately 100 nm in 

diameter and had a bumpy, “raspberry-like” surface morphology. The size and shape of 

the AuNPs were characterized by SEM imaging, shown in Figure 4.4.  

 

Figure 4.3: Schematic diagram of the setup for the measurement of SERS spectra. 
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Non-spherical and textured nanoparticles are a subject of interest in plasmonics because, 

as discussed in Chapter 2.4.2, the optical and electronic properties of metallic 

nanoparticles depend not only on the size but also the shape of the nanoparticles.64-65 

Plasmonic nanoparticles are highly sensitive to changes in geometry, and thus variations 

in shape and surface structure may be used to control their LSPR properties. Gold 

nanoparticles have been formed in a wide variety of shapes, including rods,66 cubes,67 

stars,68 plates,69 and prisms.70 Each unique geometry produces LSPR hotspots in different 

locations and with different levels of enhancement compared to spherical particles due to 

the anisotropic distribution of the electric field at the nanoparticle surfaces.63  Raspberry-

like AuNPs were desired for the present application as it has been reported that 

particularly intense near-field enhancement exists at the tips of branched AuNPs, 

generating strong LSPR activity.68,71-72 

Following AuNP synthesis, microscale parallel lines of AuNPs were patterned onto glass 

coverslips. A PDMS stamp was molded using a 600 lines/mm diffraction grating as the 

master pattern, and then μCP was used to transfer lines of PS-b-P4VP thin films onto 

clean glass coverslips. Coverslips were then immersed in AuNP solution, and adsorption 

of the AuNPs onto the substrates was guided by the patterned copolymer thin films, 

resulting in glass substrates patterned with lines of AuNPs. The fabricated substrates 

were characterized by SEM imaging, shown in Figure 4.5a and b. The patterned lines 

were found to be approximately 0.2 μm thick with a periodicity of 1.7 μm. 

Figure 4.4:(a) SEM image of raspberry-like AuNPs; (b) SEM image at a higher 

magnification, to show more accurately the size and morphology of the AuNPs. 
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LSPR occurs when the collective oscillation of free electrons in a metallic nanoparticle 

interacts with and absorbs incident electromagnetic radiation. Plasmonic nanoparticles 

only couple with light at specific wavelengths that correspond to the frequency of 

electron oscillation, which is dependent on the nanoparticle size, shape, and chemical 

composition.64-65 These select wavelengths can be analyzed with absorption 

spectroscopy. Absorption spectra are often used to determine the wavelengths of 

maximum absorbance for a plasmonic material, referred to as its plasmon resonances. 

The plasmon resonance positions are important to identify as they reveal which 

wavelengths should be used in order to most efficiently excite the LSPR mode of a given 

nanostructure. To find the optimal excitation wavelength for SERS and for the plasmon-

Figure 4.5: (a) SEM image of the AuNP-patterned substrate; (b) SEM image of the 

AuNP-patterned substrate at a higher magnification to show AuNP distribution and 

line periodicity; (c) Absorbance spectrum of the AuNP-patterned substrate. 
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mediated grafting of diazonium salts, an absorption spectrum was collected of an AuNP-

patterned substrate, shown in Figure 4.5c. Vis-NIR absorption measurements were 

carried out in transmission mode through the sample. The detected signal was compared 

to that of a clean “blank” coverslip, and the extinction spectrum was obtained by 

calculating their ratio. The resonance position of the AuNP-patterned substrate was found 

to be 580 nm. Thus, a 632.8 nm excitation wavelength was chosen for subsequent SERS 

measurements and plasmon-mediated surface reactions. 

4.3.2 Validation of AuNP-Patterned Substrates as Plasmonically 
Active Platforms 

Prior to pursuing the plasmon-mediated grafting of diazonium salts, the LSPR activity of 

the AuNP-patterned substrates was first examined by probing their SERS capabilities. 

The AuNPs were functionalized with SAMs of 4-NTP by immersion of the patterned 

substrates in a 5 mM solution of 4-NTP for 1 hour, followed by thorough rinsing with 

ethanol. SERS mapping was then performed on the functionalized sample in a 7.0 × 4.1 

μm area using a 632.8 nm excitation laser. 20 × 10 data points were collected with a 1 

second acquisition time per point. Separately, a few milligrams of 4-NTP powder were 

placed on a clean glass coverslip and the Raman spectrum was acquired to act as a 

reference. 4-NTP was chosen for this experiment as it is a widely studied model molecule 

and the assignments for its Raman modes have been extensively reported in literature.73 

The acquired reference spectrum of bulk 4-NTP is shown in Figure 4.6d. The dominant 

peaks in the reference spectrum are located at 1575, 1344, 1116, and 1087 cm-1, 

corresponding to C=C ring stretching, the NO2 symmetric stretching, C–H bending, and 

C–H bending coupled with C–S stretching, respectively, in agreement with values 

reported in literature.73-75 As the strongest signal in the spectrum of 4-NTP, the SERS 

map of the patterned substrate was generated using the peak arising from the NO2 

symmetric stretch. The resulting map is displayed in Figure 4.6a, alongside an SEM 

image in Figure 4.6b of an area on a patterned substrate similar to the mapped area, 

shown for comparison. Peak assignments for the 4-NTP SAMs are listed in Table 4.1. 
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Table 4.1: SERS spectral peak assignments for the SAMs of 4-NTP on AuNP-

patterned substrates. 

Frequency (cm-1) Assignment 

1572 C=C ring stretch 

1332 NO2 symmetric stretch 

1107 C–H bend 

1077 C-H bend coupled with C–S stretch 

 

Figure 4.6: (a) SERS mapping composed of 20 × 10 spectra on the AuNP-patterned 

substrate, showing variation of the SERS peak intensity at 1332 cm-1 for 4-NTP 

SAMs; (b) SEM image of a similar region as the mapped area; (c) SERS spectra 

from the positions I and II indicated in (a); (d) Raman spectrum of 4-NTP powder 

on a glass coverslip. 
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SERS mapping of the AuNP-patterned substrate functionalized with SAMs of 4-NTP 

revealed patterned SERS enhancement of the 4-NTP signal across the substrate, with the 

areas of maximum SERS intensity along the lines of AuNPs (Figure 4.6a). Figure 4.6c 

shows a comparison of two SERS spectra taken from different points in the map, one on 

a line of AuNPs (point I) and one in the space between two lines (point II). Point I shows 

strong SERS enhancement of the 4-NTP signals. The feature peaks of 4-NTP appear at 

1572, 1332, 1107, and 1077 cm-1, in agreement with values reported in literature for 

SAMs of 4-NTP on gold nanostructures.75-77 This represents a slight shift in the peak 

positions compared to the bulk 4-NTP reference spectrum, as is occasionally seen in 

SERS measurements of 4-NTP.75-77 Point II also contains the key peaks corresponding to 

4-NTP, but with significantly weaker signal intensity and lower signal-to-noise ratio. The 

spectrum obtained at point I, on the AuNPs, is approximately 15× more intense than the 

spectrum obtained at point II, away from the nanoparticles. It might be expected that 

SERS measurements taken in between the lines of AuNPs would show no trace of 4-

NTP; however, because the AuNP lines are only 1.5 μm apart and the laser spot used for 

SERS is ~1 μm in diameter, it is likely that even for measurements seemingly taken on 

bare regions of the substrate, some nanoparticles are still irradiated, resulting in a very 

weak SERS signal of 4-NTP at point II and in similar areas. 

Successful SERS mapping of the functionalized AuNP-patterned substrates serves to 

demonstrate their patterned LSPR activity and confirm their suitability for SERS 

applications. The LSPR activity displayed by these substrates also indicates their 

potential applicability for plasmon-mediated chemistry. 

4.3.3 Plasmon-Mediated Grafting of 4-Nitrobenzenediazonium 
onto AuNP-Patterned Substrates 

In order to show that LSPR excitation on the AuNP-patterned substrates may be 

exploited to catalyze surface functionalization reactions, the plasmon-mediated grafting 

of aryl diazonium salts was investigated. The mechanism for this surface reaction is 

shown in Scheme 4.1. Although there is still some debate, the plasmon-mediated 

reduction is predominantly considered to proceed via charge transfer. In this process, hot 

electrons are donated from the AuNPs to the diazonium cations, resulting in the loss of 



99 

 

N2 gas and the formation of an aryl radical species.20,23,27 The highly reactive aryl radicals 

are then able to bind to the gold surface, forming a covalently linked aryl thin film. 

Grafting was performed by depositing a droplet of 5 mM 4-NBD solution onto the 

AuNP-patterned coverslip, and then irradiating the sample with a 632.8 nm laser, 

polarized parallel to the lines of AuNPs, for 5 seconds. The laser power at the surface was 

~5 mW. Following the grafting, the substrate was rinsed thoroughly with ultrapure water. 

SERS mapping was carried out using a 632.8 nm excitation laser in a 10 × 10 μm square 

covering the grafted area. 20 × 12 data points were collected with a 1 second acquisition 

time per point. The resultant SERS map is shown in Figure 4.7a. Once SERS maps were 

acquired, the substrate surface was further characterized via SEM imaging, displayed in 

Figure 4.7b. A reference Raman spectrum of 4-NBD was collected from a few milligrams 

of 4-NBD powder placed on a clean glass coverslip. 4-NBD was selected for these 

experiments over other diazonium salts because, like 4-NTP, it contains an NO2 group 

with strong Raman signals. The reference spectrum is presented in Figure 4.7d. The 

dominant peaks in the reference spectrum are located at 1575, 1355, 1104, and 1066 cm-1, 

which have been assigned to C=C ring stretching, NO2 symmetric stretching, and two  

C–H bending modes, respectively. 

Scheme 4.1: : General reaction mechanism for the plasmon-mediated reduction of 4-

NBD by hot electron donation and subsequent grafting of the aryl radical species 

onto an AuNP. 
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Table 4.2: Raman peak assignments for bulk 4-NBD. 

Frequency (cm-1) Assignment 

1575 C=C ring stretch 

1355 NO2 symmetric stretch 

1104 C–H bend 

1066 C-H bend 

Figure 4.7: (a) SERS mapping composed of 20 × 12 spectra on the grafted substrate, 

showing variation of the SERS intensity at 1575 cm-1; (b) SEM image of the grafted 

region; (c) SERS spectra from the positions i and ii indicated in (a); (d) Raman 

spectrum of 4-NBD powder on a glass coverslip. 
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The SEM image of the grafted substrate in Figure 4.7b shows a buildup of material 

preferentially along the AuNP lines within the irradiated area, indicating successful 

plasmon-mediated functionalization of the AuNPs. The aryl thin films appear to encase 

each nanoparticle within the laser spot reaching across an approximately 5×5 μm area, 

with film thickness decreasing away from the centre of the spot where the laser intensity 

is greatest. Interestingly, some scattered specks of material are also seen adsorbed to the 

glass substrate between the AuNP lines, suggesting that the grafting may also in part be 

heat- or photo-induced. 

As expected, SERS mapping of the grafted region (Figure 4.7a) showed overall increased 

SERS intensity along the lines of AuNPs compared to the spaces between the lines. 

Figure 4.7c shows a comparison of two SERS spectra taken from different points in the 

map, one on a line of AuNPs where significant grafting was observed (point i) and one in 

the space between two lines (point ii). Surprisingly, the expected peaks of 4-NBD were 

not detected at either point. Instead, the spectrum at point i contains two large, broad 

signals at 1341 and 1575 cm-1. For this reason, the SERS map in Figure 4.7a was 

generated using the variation in intensity of the broad peak at 1570 cm-1. Point ii contains 

these same peaks, but at an intensity about 20× lower than that at point i. This spectrum 

was observed across the entire mapped area. Rather than aligning with the reference 

spectrum of 4-NBD, these broad peaks at 1575 and 1340 cm-1 are instead highly 

consistent with the typical G-band and disorder-induced D-band, respectively, of 

amorphous carbon.78-80 This strongly suggests that the sample was damaged by burning, 

either during SERS mapping or during the grafting process, caused by overexposure to 

the laser. 

To lessen the adsorption of diazonium salts to the glass between the lines of AuNPs and 

potentially reduce burning of the aryl layers, the plasmon-mediated grafting was repeated 

with the irradiation time reduced from 5 seconds to 2 seconds. SEM images of the grafted 

region is shown in Figure 4.8. 
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Decreasing the irradiation time used for the plasmon-mediated grafting of 4-NBD 

significantly reduced non-plasmon-mediated absorption of the diazonium salts to the 

glass between AuNP lines. As with the previous sample, plasmon-induced grafting of 4-

NBD has resulted in a buildup of aryl thin films preferentially along the AuNP lines 

within the irradiated area, encasing each particle with thin films decreasing in thickness 

farther away from the centre of the laser spot.  For further characterization, SERS 

mapping parameters must be optimized to prevent burning of the sample while 

maintaining sufficient signal intensity to produce quality spectra.  

4.4 Conclusions 

In this work, a new methodology was developed for fabricating robust and reproducible 

micropatterned LSPR platforms via μCP of block copolymer thin films and subsequent 

adsorption of raspberry-like AuNPs. As a proof-of-concept experiment to establish the 

SERS capabilities of these LSPR platforms, SERS mapping of AuNP-patterned 

substrates functionalized with SAMs of 4-NTP was performed. The patterned substrates 

were then employed for the plasmon-mediated reduction of diazonium salts, resulting in 

the grafting of aryl thin films to the surfaces of the AuNPs, visualized by SEM. 

Although SEM images of the AuNP-patterned substrates functionalized with 4-NBD 

appear to suggest successful plasmon-mediated grafting of the diazonium salts, SERS 

mapping did not reveal the corresponding Raman peaks for 4-NBD. Instead, evidence of 

Figure 4.8: SEM images of (a) an AuNP-patterned substrate grafted with 4-NBD 

using a 2-second irradiation time; (b) the grafted area at a higher magnification. 
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partial transformation of the aryl layers into carbonaceous materials is observed, an 

indication of local overheating. In future experiments, the laser power and exposure time 

for both grafting and SERS mapping must be optimized in order to properly achieve 

surface functionalization and characterization without damaging the aryl layers. If 

successful, this method of plasmon-mediated grafting would not only represent a means 

for functionalizing plasmonic nanoparticles, but also provide a potential strategy to site-

specifically immobilize a range of diazonium-derived species that may be used in the 

fabrication of nanoelectronic devices, the development of protective coatings, or as 

localized receptor molecules for improved molecular sensing and biosensing. 
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Chapter 5  

5 Conclusions and Outlook 

In this thesis, two projects were presented, each exploring key approaches to the 

functionalization, chemical modification, and spectroscopic characterization of gold 

surfaces. First, a new methodology was presented for controllably altering the surface 

chemistry of functionalized gold substrates through photo-enabled interfacial SPAAC 

reactions. Separately, novel LSPR-supporting substrates micropatterned with AuNPs 

were designed and fabricated, and the plasmon-mediated reduction of aryl diazonium 

salts was investigated. 

A general introduction to surface chemistry research and its far-reaching applications is 

provided. The relevance of both click reactions and plasmon-mediated reactions with 

respect to their utility in modifying and controlling surface chemistry are discussed with 

examples, highlighting prominent recent works within the field. Following this 

discussion, comprehensive descriptions and background are given for select surface 

modification methodologies including self-assembled monolayers, microcontact printing, 

click chemistry, and plasmon-mediated chemistry. Further, the fundamental physical and 

theoretical principles of plasmonics, Raman spectroscopy, SERS, and PM-IRRAS are 

explained. 

The third chapter of this thesis sees several SPAAC reactions applied as tools for fine-

tuning the surface chemistry of flat gold substrates, supported by characterization using 

PM-IRRAS and contact angle measurements. An improved methodology was developed 

for modifying and controlling the surface properties of these gold substrates through 

photo-enabled interfacial SPAAC reactions. Using this chemical system, SAMs on flat 

gold substrates were successfully derivatized with a series of model azides with varied 

hydrophobicities to specifically induce changes in the surface hydrophobicity of the gold 

substrates. These changes were reflected in both PM-IRRAS measurements and contact 

angle measurements. Additionally, the same methodology was employed to functionalize 

flat gold substrates with azide-modified peptides for use in cell adhesion studies. Cells 
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were found to adhere well to the modified gold substrates while retaining the spindle-

shaped and elongated morphology exhibited by typical human fibroblast cells in their 

native environment. This acts as a proof-of-concept experiment to demonstrate the 

general suitability of the interfacial SPAAC reaction process for biochemical 

applications. 

In Chapter 4, the plasmon-driven grafting of aryl diazonium salts onto gold nanostructure 

surfaces is investigated. Microcontact printing was used to fabricate LSPR-supporting 

platforms by patterning AuNPs into microscale parallel lines modelled after a diffraction 

grating. To confirm their plasmon activity, patterned substrates were functionalized with 

4-NTP and their surfaces were mapped using SERS, showing strong Raman signals 

associated with 4-NTP in regions of the substrate covered with AuNPs. Aryl thin films 

were then locally grafted onto the patterned AuNPs via plasmon-mediated reduction of 4-

NBD under laser irradiation. Grafting of the thin films was confirmed by SEM. 

The newly devised interfacial SPAAC reaction methodology for functionalizing planar 

gold surfaces presented here can potentially find use in more widespread applications. 

Future work may seek to incorporate into this SPAAC reaction system a “double-click” 

functionality similar to the reaction sequence previously proposed by the Workentin 

group,1 wherein the SPAAC click reaction is used in tandem with a modified Staudinger 

reaction2-3 between aryl phosphines and perfluoroaryl azides to accomplish multiple 

ligations within a single moiety. This would allow even greater control over surface 

chemistry. 

While in this thesis the surface SPAAC reaction system was used to functionalized gold 

substrates with RGD peptides for cell adhesion experiments, this click methodology 

going forward could ostensibly be employed to prepare metal surface for a range of 

biochemical or sensing applications. For example, AuNPs functionalized with 

carbohydrate molecules, referred to as “glyco-gold nanoparticles” or GAuNPs, are often 

used to study carbohydrate-carbohydrate and carbohydrate-protein interactions, and 

associated biological processes.4-5 Recently, alkyne-azide click chemistry has become an 

attractive approach to synthesizing GAuNPs, and the interfacial SPAAC reaction system 
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reported here could lend itself very well to this purpose while also helping to overcome 

some of the drawbacks associated with the CuAAC, such as nanoparticle aggregation.4,6-7  

The plasmon-mediated grafting of diazonium salts to surfaces patterned with gold 

nanostructures requires further in-depth investigation. This includes optimizing grafting 

parameters to prevent burning and control thin film growth, improving characterization 

through SERS and other detection methods, as well as pursuing more detailed elucidation 

of the grafting mechanism. To fully understand the mechanistic reaction pathway, it is 

important to determine the contributions of hot electron donation, local EM field 

enhancements, and local heating effects to the progress of the reaction, as any 

combination of these plasmonic effects may play a role in the overall grafting process. 

It is also a possibility to explore the grafting of diazonium salts onto AuNPs stamped in a 

variety of different patterns. This is interesting because the locations of the plasmonic hot 

spots can be manipulated by changes to the interparticle distances and to the polarization 

of the excitation laser. Numerous variations of patterns are achievable with microcontact 

printing, down to 500 nm resolution.8 Thus, by utilizing different patterns and varying the 

incident laser polarization, the grafting can be controllably localized to different areas of 

a patterned substrate. This also presents the opportunity for multi-functionalization of 

AuNP-patterned substrate surfaces. As mentioned in Chapter 4.1, multi-functionalization 

of metallic nanostructures via the plasmon-mediated reduction of diazonium salts has 

been previously demonstrated by Felidj et al., who were able to graft two different 

diazonium-derived molecules in a regiospecific manner to different sides of gold 

nanodisks simply by changing the polarization of the incident laser used for grafting.9 

Similarly, in the work presented in this thesis, the aim moving forward is to fabricate 

patterned substrates suitable for multi-functionalization, and to graft multiple different 

diazonium-derived chemical species to the surface. One possibility is to fabricate a 

substrate with AuNPs patterned in a grid configuration by printing the surface with a 

grating stamp twice, turning the stamp 90° before printing the second time to create 

perpendicular crisscrossing lines on the surface. Such grid-patterned substrates, along 

with substrates patterned with concentric rings created using a circular grating as the 

master pattern, have in fact already been successfully constructed, as shown in Figure 
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5.1. Hypothetically, by aligning the polarization of the grafting laser with only one set of 

lines in the grid at a time, it may be possible to graft different molecules along the lines in 

different directions.  

Such multi-functionalized surfaces have potential applications in molecular sensing and 

biosensing. The grafted films may be further modified with receptor molecules designed 

to recognize a specific target analyte. This may also serve to improve SERS detection as 

the grafting, and subsequently the analyte binding, would only occur in regions that align 

with plasmonic hot spots, where SERS sensitivity is greatest.9 One possible approach 

toward post-functionalization of the diazonium-derived thin films could be to use azide-

Figure 5.1: (a) SEM image of a substrate with raspberry-like AuNPs printed into a 

grid pattern; SEM images of a substrate with raspberry-like AuNPs printed into a 

pattern of concentric rings (b) at a low magnification, to show the curvature of the 

rings, and (c) at a higher magnification. 
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terminated diazonium salts that, once plasmonically grafted, may undergo alkyne-azide 

click reactions with alkyne-containing organic or biological molecules. In this way, 

plasmon-mediated chemistry and click chemistry may be combined for the spatially 

controlled chemical surface modification and, potentially, multi-functionalization of 

plasmonically active metallic nanoparticles. This idea represents another promising 

direction for the future of this research. 

Control over surface chemistry is critical to many fields in science and in industry, such 

as electronics,10 molecular sensing,11 surface protective coatings,12 medical technology,13 

and more. Ultimately, this work seeks to diversify and expand upon the current repository 

of surface modification techniques and strategies. 
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Appendix A – Details for PM-IRRAS Spectral Calibration 

The PM-IRRAS calibration procedure used in this thesis is adapted from the protocol 

developed by Buffeteau et al.1-3 For each PM-IRRAS measurement, the experimental 

PM-IRRAS signal received by the detector is sent to an electronic filter that splits the 

signal into two distinct sets of data, given by: 

𝐼𝐷𝐶 =
𝐶𝐷𝐶𝐼0

𝑝(𝜔𝑖)

2
× [(𝑅𝑝(𝑑) + 𝑅𝑠(𝑑)) + (𝑅𝑝(𝑑) − 𝑅𝑠(𝑑)) 𝐽0(𝜑0)]  (S1) 

which describes the low frequency component of the signal that is modulated only at the 

Fourier frequencies ωi introduced by the Michelson interferometer, and 

𝐼𝐴𝐶=𝐶𝐴𝐶𝐼0
𝑝(𝜔𝑖) × [(𝑅𝑝(𝑑) − 𝑅𝑠(𝑑)) × 𝐽2(𝜑0) × cos(2𝜔𝑚𝑡)]  (S2) 

which describes the high frequency component of the signal that is modulated at the 

Fourier frequencies ωi as well as the frequencies ωm introduced by the photoelastic 

modulator (PEM), which modulates the polarization of incident light.2 Here, Rp(d) and 

Rs(d) are the reflectances of the substrate with p-polarized light and s-polarized light, 

respectively, at film thickness d; J0(φ0) and J2(φ0) represent the zero- and second-order 

Bessel functions of the maximum dephasing φ0 introduced by the PEM; 𝐼0
𝑝
(ωi) is the 

intensity of the p-polarized IR beam of frequency ωi after passing through the polarizer 

attached to the PEM; and CDC and CAC are constants that account for the gain and 

demodulation adjustments applied during electronic processing of the signal. “AC” and 

“DC” are the accepted designations for the electronically filtered signals because the high 

frequency signal oscillates at a much faster rate than the low frequency signal, analogous 

to alternating and direct current electricity. 

After electronic filtering, the doubly modulated AC signal is demodulated by a lock-in 

amplifier (LIA). Demodulation of the IAC signal by the removes the cos(2ωmt) term from 

equation (S2), and then the IDC signal and the demodulated IAC signal are plotted as two 

separate spectra. To obtain from these data the “theoretical” PM-IRRAS signal, the ratio 

of the two spectra are taken by dividing equation (S2) by equation (S1): 
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𝑆𝑃𝑀−𝐼𝑅𝑅𝐴𝑆 =
𝐼𝐴𝐶

𝐼𝐷𝐶
=

2𝐺∙|(𝑅𝑝(𝑑)−𝑅𝑠(𝑑))∙𝐽2(𝜑0)|

(𝑅𝑝(𝑑)+𝑅𝑠(𝑑))+(𝑅𝑝(𝑑)−𝑅𝑠(𝑑))∙𝐽0(𝜑0)
  (S3) 

where 𝐺 =
𝐶𝐴𝐶

𝐶𝐷𝐶
= 10 (

𝐺𝐴𝐶

𝑆∙𝐺𝐷𝐶
) [exp(−2𝑉�̅�𝜏)] is a gain factor that accounts for the 

different amplifications, GAC and GDC, on the two channels, the sensitivity, S, the optical 

mirror velocity, V, the wavenumber, �̅�, and the time constant, τ.2-3 

Highly reflective gold mirror substrates are used for all PM-IRRAS experiments in this 

study, so in this case [Rp(d)+Rs(d)] is much greater than [Rp(d)-Rs(d)], Rs(d) is greater 

than Rp(d), and the term J0(φ0) is less than 1. Therefore, it is reasonable to neglect [Rp(d)-

Rs(d)]‧ J0(φ0) and equation (S3) becomes:3 

𝑆𝑃𝑀−𝐼𝑅𝑅𝐴𝑆 = 2𝐺𝐽2(𝜑0)
𝑅𝑠(𝑑)−𝑅𝑝(𝑑)

𝑅𝑝(𝑑)+𝑅𝑠(𝑑)
   (S4) 

From equation (S4), Buffeteau et al. were able to derive the following expression of the 

theoretical PM-IRRAS signal: 

𝑆𝑃𝑀−𝐼𝑅𝑅𝐴𝑆 = 𝑆𝑠𝑢𝑏 + 𝑆𝑓𝑖𝑙𝑚 = 2𝐺𝐽2(𝜑0)
𝑅𝑠(0)−𝑅𝑝(0)

𝑅𝑝(0)+𝑅𝑠(0)
+ 𝐺𝐽2(𝜑0)

16𝜋�̅�𝑘𝑑𝑠𝑖𝑛2𝜃

𝑛3𝑐𝑜𝑠𝜃
    (S5) 

where Rp(0) and Rs(0) are the reflectances of the bare substrate with p- and s-polarized 

light, respectively, k is the extinction coefficient of the film, θ is the angle of the incident 

light, and n is the refractive index of the film.3  

The expression of the PM-IRRAS signal represented in equation (S5) contains two terms, 

the first of which, 𝑆𝑠𝑢𝑏 = 2𝐺𝐽2(𝜑0)
𝑅𝑠(0)−𝑅𝑝(0)

𝑅𝑝(0)+𝑅𝑠(0)
, corresponds to the contribution of the 

gold substrate to the PM-IRRAS spectrum, and the second of which, 𝑆𝑓𝑖𝑙𝑚 =

𝐺𝐽2(𝜑0)
16𝜋�̅�𝑘𝑑𝑠𝑖𝑛2𝜃

𝑛3𝑐𝑜𝑠𝜃
, corresponds to the contribution of the thin film to the PM-IRRAS 

spectrum.3  

It is essential to account for the Bessel functions introduced during IAC demodulation with 

the LIA by applying the PM-IRRAS calibration procedure. As previously mentioned, the 

calibration procedure is designed to allow the complex PM-IRRAS signal to be expressed 
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as the more conventional IRRAS spectrum, which is often represented as a pseudo-

absorption spectrum of the thin film, according to the following equation:1-4 

𝐴(𝑑) = 1 −
𝑅𝑝(𝑑)

𝑅𝑝(0)
   (S6) 

where A(d) represents the absorbance of the sample with film thickness d. 

From equation (S5), the PM-IRRAS pseudo-absorption spectrum may be expressed by 

the following equation:3 

𝐴(𝑑) = 1 −
𝑅𝑝(𝑑)

𝑅𝑝(0)
=

16𝜋�̅�𝑘𝑑𝑠𝑖𝑛2𝜃

𝑛3𝑐𝑜𝑠𝜃
=

𝑆𝑓𝑖𝑙𝑚

𝐺𝐽2(𝜑0)
   (S7) 

The contribution of the thin film to the PM-IRRAS spectrum can be calculated from 

rearrangement of equation (S5): 𝑆𝑓𝑖𝑙𝑚 = 𝑆𝑃𝑀−𝐼𝑅𝑅𝐴𝑆 − 𝑆𝑠𝑢𝑏. Following this calculation, 

the calibration spectra Cpp and Cps must be obtained. These calibration spectra are 

obtained by placing a linear polarizer between the bare substrate and the detector. Cpp is 

obtained by orienting the polarizer to select for p-polarized light, and Cps is obtained by 

orienting the polarizer to select for s-polarized light. Cpp and Cps are expressed by 

equating Rs(d) and then Rp(d), respectively, to 0 in equation (S3).3 This yields: 

𝐶𝑝𝑝 =
2𝐺′∙|𝐽2|

1+𝐽0
   (S8a) 

and 

𝐶𝑝𝑠 =
2𝐺′∙|𝐽2|

1−𝐽0
  (S8b) 

where G’ is the gain factor for the calibration spectra. G and G’ differ because calibration 

measurements and normal PM-IRRAS measurements typically require different 

experimental conditions. Equations (S8a) and (S8b) can be combined and then multiplied 

by G in order to calculate GJ2: 

𝐺𝐽2(𝜑0) =
𝐺

𝐺′
∙
𝐶𝑝𝑝𝐶𝑝𝑠

𝐶𝑝𝑝+𝐶𝑝𝑠
  (S9) 
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To obtain the final calibrated PM-IRRAS absorption spectrum, the calculated value for 

Sfilm is divided by equation (S9), in accordance with equation (S7). 
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