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Abstract

Automatically ranking comments by their relevance plays an important role in text mining and

text summarization area. In this thesis, firstly, we introduce a new text digitalization method:

the bag of word clusters model. Unlike the traditional bag of words model that treats each

word as an independent item, we group semantic-related words as clusters using pre-trained

word2vec word embeddings and represent each comment as a distribution of word clusters.

This method can extract both semantic and statistical information from texts. Next, we pro-

pose an unsupervised ranking algorithm that identifies relevant comments by their distance to

the “ideal” comment. The “ideal” comment is the maximum general entropy comment with

respect to the global word cluster distribution. The intuition is that the “ideal” comment high-

lights aspects of a product that many other comments frequently mention. Therefore, it can be

regarded as a standard to judge a comment’s relevance to this product. At last, we analyze our

algorithm’s performance on a real Amazon product.

Keywords: word embedding, word2vec, word cluster, the general entropy, the maxi-

mum general entropy comment, K-L divergence.
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Lay Summary

Gathering information based on other people’s opinions is an essential part of the purchasing

decision process. With the rapid growth of the Internet, these conversations in online markets

provide a large amount of product information. So when doing online shopping, consumers

rely on online product comments, posted by other consumers, for their purchase decisions.

In this thesis, we propose a new method to identify relevant comments under a product.

Our method is sensitive to the content of a comment and can successfully filter out unrelated

comments. By ranking these relevant comments higher, consumers can better evaluate the true

underlying quality of a product.
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Chapter 1

Introduction

Nowadays, online shopping has become popular all over the world. The total spending of

Canadian online shoppers reached $57.4 billion in 2018, compared to $18.9 billion in 2012,

with nearly 84% of Internet users buying goods or services online, which means more than 8

in 10 Canadians shopped online [2]. There are many benefits of online shopping. The most

obvious benefit of online shopping is convenience, shoppers can simply access online stores

from their computer whenever they have free time available. Another benefit is that online

shopping provides a greater diversity of products. This means you can choose goods that

suit your requirements and budget the most. However, there are also disadvantages of online

shopping. One of the most obvious ones is the lack of interactivity. You can not touch and

feel the product you want to buy. Besides, the lack of touch and feel creates concerns over the

quality of the product. For example, many people don’t like buying shoes online since people

will not know if shoes fit unless they try it. With a large variety of goods and websites, people

tend to do a lot of research before making a purchasing decision when doing online shopping.

They will browse web pages about product details and, more importantly, check other buyer’s

comments on the product site.

Gathering information based on other people’s opinions is an essential part of the purchas-

ing decision process [8]. With the rapid growth of the Internet, these conversations in on-

line markets provide a large amount of product information. So when doing online shopping,

consumers rely on online product comments, posted by other consumers, for their purchase

decisions.

1



2 Chapter 1. Introduction

However, a large number of comments for a single product may make it harder for people to

evaluate the true underlying quality of a product. In this situation, consumers tend to focus on

the average rating of a product, like the number of stars on Amazon.com. But in reality, some

products can easily obtain high average ratings by cheating while some other products may

get unfair low ratings. Therefore, it is very important to extract these relevant and high-quality

comments from the product site, which can help consumers obtain accurate information about

this product.

1.1 How to judge a comment’s quality?

Before we start to construct a comment ranking algorithm, the fundamental question is how to

judge a comment’s quality. Most online business sites evaluate their comments’ quality using

criteria such as overall rating or helpfulness. Helpfulness is typically a score measured as the

total votes given by consumers, which is an interesting way of defining a comment’s relevance

and quality. Many researches in comments ranking area also use this type of helpfulness score

as their comments’ evaluation score [32]. However, this method fails to identify these most

recent comments with few votes. For example, we may always observe that only a few com-

ments published a long time ago have a high helpfulness score in a product site, and most other

comments have no votes. The reason for the phenomenon is that most people only read the

first few pages of comments before making their purchase decisions. A new comment that has

just appeared on the product site and has not received any votes until recently may remain at

the bottom of the comment list. This comment may contain important information about this

product, thus has the potential to rise to the top of the list.

There is also another type of comment’s quality evaluation method, Chen and Tseng [7]

construct an information quality (IQ) framework for Internet product reviews. The IQ frame-

work is a multi-dimensional framework in which each dimension represents a single aspect or

construct of information items and is described by a set of features. Chen and Tseng treat each

comment as an information item and construct fifty-one features from each comment, includ-

ing the content of comments and believability of this product and comment authors’ reputation.

Their framework is able to make a detailed comparison between each comment and also have
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a good performance when ranking comments. However, their IQ framework requires too much

information where most online business websites may not be able to provide, like authors’ rep-

utation and product’s believability, and some of the features need human-annotated. Their IQ

framework may not be feasible in most applications.

So how to judge each comment’s quality with only a collection of comments under a prod-

uct? In our research, we judge each comments’ quality by their relevance and text complexity.

We want to explain this by using an example. Table 1.1 below shows five comments of one of

my favorite book “The Little Prince” on Amazon. It’s very easy for us to see that the first three

comments have obviously better quality than the last two. Comment #4 has only two words

“Fantastic book”, actually using these two words to describe this book is not inappropriate. So

in terms of relevance, we can see that this comment is relevant to this product. However, in

terms of text complexity, this comment is too concise and contains little information. Com-

bining these two features together, we can easily see why this comment is not as good as the

first three comments. Similarly, comment #5 is apparently an advertisement. In terms of text

complexity, it’s better than comment #4 but for relevance, it has almost no relevance to this

product.

# Comment Helpfulness
1 One of the most influential books every read. Never forget the light of

the child. It is spoken through so many true persons if “time” gone by.
2

2 I bought this book to read to my students. The story is very cute but
a little overwhelming with the underlying Concepts in the book. Al-
though it is a story you can read to young children I would recommend
waiting and having an older child read this book.

1

3 My favourite book arrived right on time. It has a folded corner but
nothing that can’t be ignored. This is the best book in the world. It’s
been written for little kids but has a lot of life lessons for us, the grown
ups, who have forgotten about that kid that we once were. I highly
recommend everyone to read it, at least once.

1

4 Fantastic book! 0
5 Please use this link http://bit.ly/125 to buy “wiki” book. 2

Table 1.1: Example of Product Comments

Relevance is a measure of how a comment is releted to this product and text complexity

is a measure of a comment’s information richness. In our studies, we use these two features to



4 Chapter 1. Introduction

judge a comment’s quality.

1.2 Ranking Comments using Entropy

Ranking comments can be a very important task, and there is no doubt that there are many

studies in this field. Some researches treat this ranking task as a supervised learning task, like

[13] [3]. Most of them used the consumers’ votes, like helpfulness scores, as their training

target. Then they adopted or designed several statistical or machine-learning models based on

training data. As mentioned before, the reliability of this training data is hard to be assured;

some high-quality comments may have relatively low votes. Moreover, these supervised rank-

ing models can not be used on multiple products simultaneously since they have to be retrained

for different products.

In this situation, we would like to develop a comment ranking algorithm that is unsuper-

vised, which means we do not require any human-annotated training set. Besides, as we men-

tioned before, in most cases, online business sites may not be able to provide some information,

like the reviewer’s reputation. We prefer to develop an algorithm that ranks comments based

on their contents. To construct this ranking algorithm, we need to solve these two problems

below..

1. How to define a metric that can evaluate both comments’ relevance and text com-

plexity?

2. How to effectively retrive information from comments’ content?

Let’s take a look at the first question first. When it comes to text complexity or informa-

tion richness, we will naturally think of Shannon’s entropy [26]. In statistics, entropy is a

quantity that can measure any random variable’s average rate of information inherent in the

variable’s possible outcomes. For a discrete random variable X with all possible outcomes

{x1, x2, ...xm} and probability mass function PX(x), the entropy is defined as,

H(X) = −

m∑
i=1

PX(xi) log PX(xi) =

m∑
i=1

PX(xi)IX(xi) = E[IX], (1.1)

where IX(xi) is self-information associated with outcome xi. We can treat IX(xi) = − log PX(xi)
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as a random variable, thus entropy is actually expectation of self-information IX. Self-information

can be regarded as the rate of information associated with one particular outcome of a random

variable, and then entropy is the average rate of information of a random variable. To use

entropy as a ranking metric, we need to consider each comment as a distribution of words,

defined as P = [P0, ..., Pn], where n is the number of unique words and Pi is the frequency of

ith words in this comment. There are different ways to represent a comment as a distribution,

and we will describe later. Entropy is an effective measure of comment’s text complexity, Hsu

et al [13] also used entropy as a comment complexity measure in their supervised comments

ranking application. For example, if a comment only has one type of word in it like “good

good good...good”, then this comment has a distribution with P(good) = 1, and the entropy of

this comment is zero.

Take a look at the entropy formula again. We can see that this metric does not measure

comment’s relevance to the product. So how to redefine entropy and take comment’s relevance

into account? Zhang [31] defined a new entropy value called the general entropy. In his

thesis, he developed an unsupervised ranking method on Amazon’s dataset and used the general

entropy to measure the answer’s information quality. The general entropy is defined as follows.

E(P) = −

n∑
i=0

Qi · Pi · log Pi, (1.2)

where P = [P0, ..., Pn] is the words distribution of an individual comment and Q = [Q0, ...,Qn]

is the distribution of the words of all comments combined under the same product, which

is called global distribution. We can see that general entropy assigns weight on each self-

information of word where the weight is the corresponding word probability in the global

comment set. Since we want to measure the information richness and the relevance of a com-

ment, we can give higher weight to these words that other comments also mentioned and lower

weight to words that other comments hardly mentioned. More detail about this definition are

described in Chapter 3.

The general entropy seems a good ranking metric that can measure both relevance and text

complexity. However, in our experiment described in Chapter 4, comment with high com-

plexity (for example, very long comment with many different kinds of words) and almost no



6 Chapter 1. Introduction

relevance to this product can get very high general entropy. These comments may have high

ranks since most comments’ entropy scores are close to each other. So instead of calculat-

ing scores for every comment, we first find an “ideal” comment and then judge comment by

how far or how different it is from our “ideal” comment. Naturally, we can define comment

with maximum general entropy as our “ideal” comment, and we call this “ideal” comment the

Maxmium General Entropy Comment. Since the maximum general entropy comment has

the maximum general entropy, it keeps a good balance of relevance and information richness.

We define the Maxmium General Entropy Comment as follows,

B = argmax
P

E(P). (1.3)

Note that the maximum entropy comment is a comment with the maximum general entropy

within all possible comments. This comment may not exist in the existing comment set. Now,

the question is how to measure each comment’ “distance” to this “ideal” comment. Since we

treat each comment as a distribution, we can use Kullback–Leibler (K-L) divergence defined

as follows,

DKL(P|B) =

n∑
i=0

Pi · log(
Pi

Bi
). (1.4)

Notice that this is a divergence, not a “distance”. Actually, K-L divergence is used to mea-

sure how one probability distribution is different from others. In our application, we need to

compare how each comment is different from the maximum general entropy comment. If a

comment is similar to the maximum general entropy comment, it can get low divergence. Oth-

erwise, if a comment is very different from the maximum general entropy comment, it may

get high divergence. Compare to the method purely using the general entropy, this method

achieved better performance in our experiment since it is more sensitive to comments’ rele-

vance to the product.
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1.3 Text Representation

Now, let’s consider the second problem described before: How to retrieve information from

comments’ content effectively?. As we discussed in the previous section, in order to use

entropy as our comments’ ranking metric, we need to treat each comment as a distribution of

words P = [P1, ..., Pn]. P is a numerical vector where each dimension indicates the frequency

of a word that appeared in the comment, and n indicates the number of unique words in the

whole collection of comments. This is actually called the Bag of Words (BOW) model. A bag-

of-words is a representation of text that describes the occurrence of words within a document.

Despite the simplicity of this representation method, it has two significant disadvantages:

(1) the number of unique words in comments data is about 10000 while each comment has

only 10-200 words, using the BOW model will lead to high-dimensional and sparse vectors.

(2) BOW representation doesn’t consider the semantic relation between words, it assumes

all the words are independent. This assumption may have some problems, for example, “used

bicycle” and “old bike” will be considered entirely different phrases because they have no

words in common.

In Zhang’s research [31], he designed a new text representation method to solve these

problems. In his method, firstly, he takes the maximum general entropy comment as a refer-

ence to find “keywords” in the global comment set. Then he digitalizes each comment only

considering these “keywords” and treats all other words as noise. For example, imagine we

have a comment:

‘‘This is very easy to clean, very adjustable, and cute! Beautiful!

This is the second one I have purchased."

And after data cleaning and removing stopwords, we have

‘‘easy-clean adjustable cute beautiful product second purchased".

Since the vocabulary size is normally far larger than the number of keywords selected, it’s

possible that only “adjustable” and “product” are selected as keywords based on the maximum

general entropy comment. It has seven words in total, then this comment can be digitalized

as [1
7 ,

1
7 ,

5
7 ], the first two dimensions of this vector indicates two keywords “adjustable” and
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“product” and the last dimension is the frequency of noise words. Finally, he will calculate

each comment’s general entropy based on the frequency of these keywords and noise and rank

comments based on their entropy value. This method can solve the BOW model’s sparsity

problem, but it only considers a few keywords and treats other words as noise, which may lose

a lot of information. In Zhang’s thesis, he also tried to solve the semantic relation problem of

the BOW model. In his thesis, if two words represent the same meaning, he used one of them to

replace another word. For example, he used “baby” to replace words like “diminutive”, “wee”,

“babyish”, “tiny” and “youthful”. These synonyms are chosen based on a online dictionary

called “thesaurus”. As we can see, this method can only partly solve the problem, one word

may have multiple meanings in different situations. For example, using “baby” to replace

every “tiny” in the comments is appropriate and may give the word “baby” an unrealistic high

frequency.

In our thesis, we construct an entirely different method that can solve both the BOW

model’s sparsity and semantic problem. We called our model: the bag of word clusters model.

Unlike the traditional bag of words model that treats each word as an independent item, we

group semantic-related words as clusters using pre-trained word2vec word embeddings [19]

[20]. For example, consider the “used bike” and “old bicycle” example, we have four unique

words: “old”, “bike”, “used” and “bicycle”. By using traditional BOW model, we can rep-

resent “old bike” as vector [1
2 ,

1
2 , 0, 0] and represent “used bicycle” as [0, 0, 1

2 ,
1
2 ]. As we can

see, these two vectors are orthogonal, two vectors have no element in common, but in reality

“used bicycle” and ”old bike” are semantic related. Using our methods, we will first group

similar words like “bicycle” and “bike” into the same cluster and treat them as the same item.

For example, we have two groups: cluster #1: “used”, “old”; cluster #2: “bike”, “bicycle”.

Then we can represent “old bike” as [ 1
2 ,

1
2 ] where each dimension indicates one cluster, then

the bag of word clusters representation of “used bicycle” is also [1
2 ,

1
2 ]. Using this example,

we can see that our method can solve the BOW model’s sparsity problem, the number of clus-

ters is significantly smaller than the number of unique words. Also, we can retrieve semantic

information from text, similar phrases “old bike” and “used bicycle” are represented as the

same vector in our model. Besides, unlike Zhang’s method, which only considers keywords

and treats all other words as noise, our method keeps most words and treats related words as
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the same item. We believe our method can extract more information from text, thus has a bet-

ter ranking performance. More detail about the bag of word clusters model is introduced in

Chapter 2.

1.4 Thesis Outline

In this thesis, we propose a new unsupervised method to identify relevant comments under a

product. There are several advantages of our ranking methods: a) it is entirely unsupervised,

which requires no prior domain knowledge and no training data. Therefore, this method can be

applied to most of the products’ comments ranking applications. b) This method is sensitive to

the content of a comment and can successfully filter out unrelated comments. c) This method

has low computational cost since it only requires statistical information from the text.

To help achieve better performance, in Chapter 2, we propose a new text representation

method: the bag of word clusters model. Unlike the traditional bag of words model that treats

each word as an independent item, we group semantic-related words as clusters using pre-

trained word2vec word embeddings and represent each comment as a distribution of word

clusters. This method can extract both semantic and statistical information from the text.

In Chapter 3, we give a detailed description of our ranking algorithm. Firstly, we introduced

the general entropy, a ranking metric based on the Shannon entropy with respect to the global

word distribution of a product’s comments. The general entropy is a simple metric that fo-

cuses on both text complexity and relevance. Then, we develop an advanced algorithm that we

first define the maximum general entropy comment as an “ideal” comment and rank comments

based on their Kullback-Liebler (K-L) divergences to this “ideal” comment. This method is

more sensitive to the relevance of the comments to the product and has a better ranking per-

formance. Last but not least, we introduced our evaluation metrics: normalized Discounted

Cumulative Gain (nDCG).

Chapter 4 introduces our experiment with a real Amazon product using the Amazon prod-

uct dataset [12] [17]. We applied both pure general entropy and K-L divergence method on

this product and K-L divergence method outperforms pure general entropy method in our ex-

periment. By comparing these two methods, we can have a clear view on each method’s char-
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acteristics and how they distinguish unrelated comments from actual comments. Moreover, we

analyzed the relationship between the two ranking metrics of the general entropy method and

K-L divergence method.



Chapter 2

Bag of Words Model with Word

Embedding Clusters

In most text mining or text analytics applications, the first and fundamental problem is how we

are going to represent text as input to our model or algorithm. More specifically, how to repre-

sent the text documents to make them mathematically computable. Various text representation

methods were proposed during the last few years, the most commonly used text representation

model in the area of text mining is called the Vector Space Model (VSM) [16], which aims

to represent a text document as numerical vectors. One main advantage of VSM is that it is

straightforward to compute the similarity between each vector (document), for example, by

using cosine similarity.

One of the commonly used VSM is the Bag of Words model (BOW). A bag-of-words is a

representation of text that describes the occurrence of words within a document. And to build a

BOW model, people need to provide two things: the vocabulary of known words and a measure

of the presence of known words. Given the document collection D = {di, i = 1, 2, 3...n} and m

unique words in these documents. Mathematically, each document di can be represented by an

m × 1 vector vi ∈ Rm×1. For instance, consider there are three documents in this collection D:

d1: I like learning text mining.

d2: What is text mining?

d3: Apple tastes good.

Now we can make a list of all words in our model’s vocabulary. The unique words here

11
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(ignoring case and punctuation) are:{I, like, learning, text,mining,what, is, apple, taste, good}.

As you can see, we have 10 unique words and 12 words in total within this collection D.

The next step is to score each word in the documnet. There are many methods of scoring

which we will discuss later. Let’s consider the simple Boolean first. If a word appears in a

document, its corresponding weight is 1; otherwise, it is 0. Since our vocabulary has 10 words,

we can use a fixed-length vector representation, with each position in the vector to score a

word. Then the vector representations of these three documents are like this,

v1 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

v2 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0]

v3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],

notice that the order of word index is the same as the unique word list above.

The intuition of this model is that the information within a document is from its content,

which are words in this case. Documents are similar if they have similar words in it. Since each

of the three vectors has a fixed length, we can use cosine similarity to measure their similarity.

Consider two vectors ~A and ~B with a fixed length N, cosine similarity is defined as follows,

Cosine S imilarity =
~A · ~B

||~A||||~B||
=

∑i=N
i=1 AiBi√∑i=N

i=1 A2
i

√∑i=N
i=1 B2

i

, (2.1)

where Ai and Bi are components of vectors ~A and ~B, respectively.

The cosine value ranges between [−1, 1], 1 for vectors pointing at the same direction, 0

for orthogonal, and -1 for vectors pointing in the opposite direction. For documents, the term

values are usually non-negative, so the cosine similarity ranges between [0, 1], the higher the

value is, the more similar two documents are.

Now we can calculate the similarity between documents d1, d2 and d3 using this formula,

cos(d1, d2) = 0.4472; cos(d1, d3) = 0; cos(d2, d3) = 0.

We believe that this result is consistent with our observation, d1 and d2 are similar to each
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other because they are both talking about text mining, d3 has no relation with d1 and d2 thus

their cosine similarity is zero.

The BOW model is very straight forward and easy to implement. For the word weight in the

BOW model, besides the simple Boolean model, we can also use counts of words, frequency or

term frequency–inverse document frequency (tf-idf) as word weight, more information about

this is referred to [25].

Despite the simplicity of this representation method, we will face two significant disadvan-

tages if we want to adapt this method on our comments data: (1) the vocabulary size in com-

ments data is about 10000 while each comment has only 10-200 words, using the BOW model

will lead to high-dimensional and sparse vectors. (2) BOW representation doesn’t consider the

semantic relation between words, it assumes all the words are independent. This assumption

may have some problems, for example, “used bicycle” and “old bike” will be considered as

entirely different phrases because they have no words in common.

In this chapter, we will develop a new text representation method based on the BOW model

to overcome these disadvantages. Firstly, we will introduce word embeddings, a learned repre-

sentation of words where words with the same meaning will have similar representations [16].

Then we will introduce word2vec [19] [20], word2vec is a very effective algorithm to train

word embeddings based on the local documents. With these word embeddings, we can easily

group similar words as a cluster using the clustering method. Finally, instead of representing

document (comment) as “bag of words”, we represent them as “bag of word clusters”. In this

way, we can retrieve semantic information from the text, for example, “bike” and “bicycle”

will be grouped together because they have the same meaning. Moreover, the BOW model’s

sparsity problem will be handled since the number of clusters is significantly smaller than the

vocabulary size.

2.1 Word2vec

Just like the BOW model, representing words as vectors is also a very essential topic in text

mining and especially natural language processing area. With the increasing applications of

machine learning and neural network in the natural language area, we need an efficient word
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vectorization method that can represent word as vectors and also bring enough semantic infor-

mation within the vector. Several methods are proposed during the last few years, and one of

the most popular methods is word2vec.

Word2vec was created and published in 2013 by a team of researchers led by Tomas

Mikolov at Google [19] [20]. Word2vec is a group of related models used to produce word

vectors (also called word embeddings). Usually, word2vec can be referred to two model archi-

tectures and two related training techniques:

- 2 model architectures: continuous bag-of-words (CBOW) and skip-gram(SG). CBOW

aims to predict a center word from the surrounding context in terms of word vectors. Skip-gram

does the opposite and predicts the probability of context words from a center word.

- 2 training techniques: negative sampling and hierarchical softmax. Negative sampling

defines an objective by sampling negative examples, while hierarchical softmax defines an

objective using an efficient tree structure to compute probabilities of appearance for all the

vocabulary.

In our application, the skip-gram model with negative sampling will be used and introduced

in this chapter, for a detailed explanation of other models in word2vec, one can refer to [24].

Moreover, since skip-gram is a neural network model, if you are not familiar with the neural

network model, you can refer to [10].

2.1.1 Skip-gram

The basic idea of SG model is to predict context words based on a center word. More precisely,

as in a sentence, our model is to take each current word as an input and predict words within

a specific range before and after the current word. For example, we have the sentence “I

am closing the window”, take the center word ”closing” as an input, the model will be able to

predict the surrounding words: “I”, “am”, “the”, “window”. Generally, this model is a classifier

on a binary prediction task: “is word wi likely to appear near word w j in a sentence?” However,

we do not care about the prediction task, and we will take the learned classifier weights W as

our word embeddings.

As you can see in Figure 2.1, the structure of skip-gram model is actually a simple 2-layer



2.1. Word2vec 15

neural network with only one hidden layer. In our setting, the vocabulary size is V , and the

hidden layer size is N. The units on adjacent layers are fully connected. The input is a one-hot

encoded vector, which means for a given word wi in vocabulary, only the ith term in vector

[x1, x2, x3, ...xV] will be 1, and all the other terms are 0.

As you can see, there are C panels in the output layer, indicating the predicted multinomial

distributions of C surrounding words of the input word. For example, yc, j is the predicted

probability of word w j’s presence at position c. Before training the model, you can arbitrarily

change the length of context window C and the size of hidden layer N.

Figure 2.1: Skip-gram model [24]

As you can see from the Figure 2.1, the weight matrix between the input layer and hidden

layer is represented by a V × N matrix WV×N . Each row of WV×N is the N-dimension vector

representation of the corresponding word of the input layer. Formally, we denote row i of WV×N

as vwi
T . Given an input word wI with index i∗, the input layer would be its corresponding vector
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x with xi∗ = 1 and x j = 0 for j , i∗, we have

h = WT x = WT
(i∗,) := vwI . (2.2)

So the hidden layer h = {hi} is simply copying a row of the weight matrix WV×N , which

means the link function between the input layer and the hidden layer is linear. From the hidden

layer to the output layer, we have another weight matrix W′
N×V , and all panels of the output

layer share the same weight matrix. For each position in the context of the input word, we can

compute a score vector uc,

uc = W′T h, (2.3)

where c is from 1 to C. Then we denote jth column of W′
N×V as v′w j , and each term of the

vector uc would be,

uc, j = v′w j
T h = v′w j

T vwi . (2.4)

This is the score of word w j at position c, but not the final output. Remember the output

is the predicted probability of each word in the vocabulary at each position in the context,

which is a multinomial distribution. Here we use the softmax function to convert each score

to a probability, given the input word wI , the predicted probability of the word w j appear at

position c is,

P̂(wO,c = w j|wI) = ŷc, j =
exp(uc, j)∑V

j′=1 exp(uc, j′)
, (2.5)

where wO,c is the actual context word at position c and ŷc, j is the jth term of the output panel c.

Substituting (2.4) into (2.5), we have

P̂(wO,c = w j|wI) = ŷc, j =
exp(v′w j

T vwI )∑V
j′=1 exp(v′w j′

T vwI )
. (2.6)

From Mikolov, et al [20], vw and v′w are called the “input” and “output” vector representa-

tion of word w.

The training objective of this model (for one training sample) is to maximize the conditional
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probability of observing actual output words wO,1,wO,2, ...,wO,C given the input center word wI ,

so the loss function E is the negative log of this conditional probability (since we always want

to minimize the loss function),

E = − log p̂(wO,1,wO,2, ...,wO,C |wI)

= − log
C∏

c=1

p̂(wO,c|wI)

= − log
C∏

c=1

exp(uc, j∗c )∑V
j′=1 exp(uc, j′)

= −

C∑
c=1

uc, j∗c +

C∑
c=1

log
V∑

j′=1

exp(uc, j′),

(2.7)

where j∗c is the index of the actual c-th output context word in the vocabulary, notice that this

model makes a very strong assumption that all context words in different positions are inde-

pendent of each other. With the loss function E defined, we can now derive the update equation

for the weight matrix in the model. Here we used a training technique called backpropagation,

which in general is to update weight backward. In our case, it is to update hidden→output

matrix W′ first, then update input→hidden matrix W, for more detail about backpropagation,

please refer to [10].

First, let us derive the gradient of the loss function with respect to output score uc, j,

∂E
∂uc, j

= ŷc, j − yc, j := ec, j, (2.8)

where yc, j will be 1 if j is the index of the actual output word and 0 otherwise, note that the

derivative is simply the prediction error ec, j.

Now let us denote each component of W′ as ω′i j, by using the chain rule, we can obtain the

gradient of E with regard to ω′i j,

∂E
∂ω′i j

=

C∑
c=1

∂E
∂uc, j

·
∂uc, j

∂ω′i j
=

C∑
c=1

ec, j · hi. (2.9)

Then with learning rate η we can have the update equation for hidden layer→output layer

weight matrix W′,
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ω′ (new)
i j = ω′ (old)

i j − η ·

C∑
c=1

ec, j · hi (2.10)

or

v′ (new)
w j

= v′ (old)
w j

− η ·

C∑
c=1

ec, j · h. (2.11)

(2.11) is the update equation for the output vector. Now we can move to the input→hidden

matrix W, first we take derivative of E on hidden layer hi,

∂E
∂hi

=

V∑
j=1

C∑
c=1

∂E
∂uc, j

·
∂uc, j

∂hi
=

V∑
j=1

C∑
c=1

ec, j · ω
′
i j (2.12)

and take xk as the kth unit of the input layer, using the chain rule again, the derivative of hi with

respect to each element of W is

∂E
∂ωki

=
∂E
∂hi
·
∂hi

∂ωki
=

V∑
j=1

C∑
c=1

ec, j · ω
′
i j · xk. (2.13)

Remember the input x is a one-hot encoded vector, only one component is 1, and all the

others are 0. So at each iteration, only one row of the weight matrix W will be updated, which

is the ”input vector” vwI , and the update equation is

v(new)
wI

= v(old)
wI
− η · EH, (2.14)

where EH is a N-dimensional vector with each element EHi is defined as

EHi =

V∑
j=1

C∑
c=1

ec, j · ω
′
i j. (2.15)

Now we have already obtained the update equation of W and W′, when training this model,

at each iteration, the output matrix W′ will be update first using equation (2.11) and then we

use the updated matrix W′ (new) to update matrix W by using equation (2.14). Normally, we use

the input vector vwI as our learned vector representation of words.
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2.1.2 Negative sampling

In the previous section, we discussed the original form of the skip-gram model without any

optimization techniques. As you can see, there is a problem with the update equation (2.11):

its computational complexity is too large. During training process, for each training iteration,

it will scan all the words w j in the vocabulary and compute its predicted probability and error.

Since there are C context words, the computational complexity will be O(C × V) while the

vocabulary size V can go easily beyond 104. Doing such computation at each iteration is very

expensive. And to get a high-quality vector representation of words, the model needs to be

trained on a large amount of text data.

To fix this problem, Mikolov et al. proposed a method in [20] called negative sampling.

Instead of updating every output vectors at each iteration, we only update a sample of them. Of

course, we will keep these positive samples wc, j∗c in our sample set and randomly select a few

words in the vocabulary as negative samples.

Before training, people can determine a distribution themselves for sampling negative sam-

ples, in Mikolov et al.’s paper [20], they used a unigram distribution:

Pα(w) =
count(w)α∑
w′ count(w′)α

, (2.16)

where α is commonly set as 0.75. We can choose k noise words for every postion c according to

this distribution, and these groups of noise words are denoted as Wc,neg = {wc, j| j = 1, 2, 3, ..., k}.

For the loss function E, instead of using a multinomial distribution like 2.7, Mikolov et al

defined a simplified loss function,

E = −

C∑
c=1

logσ(uc, j∗c ) −
C∑

c=1

∑
j′∈Wc,neg

logσ(−uc, j′), (2.17)

where σ(x) = 1
1+e−x is a sigmoid function. To obtain the update equation, let’s first take deriva-

tive of E on output score uc, j,
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∂E
∂uc, j

=


σ(uc, j) − 1, i f wc, j = wc, j∗c

σ(uc, j), i f wc, j ∈ Wc,neg

0, otherwise

(2.18)

=


σ(uc, j) − yc, j, i f wc, j ∈ {wc, j∗c} ∪Wc,neg

0, otherwise
. (2.19)

Remember that wc, j∗c is the actual cth output context word and yc, j equals to 1 only if j = j∗c

and equals to 0 otherwise. Now we can obtain the update equation for the output vector,

∂E
∂v′w j

=

C∑
c=1

∂E
∂uc, j

·
∂uc, j

∂v′w j

=


∑C

c=1(σ(uc, j) − yc, j) · h i f wc, j ∈ {wc, j∗c} ∪Wc,neg

0 otherwise
(2.20)

v′ (new)
w j

=


v′ (old)

w j − η ·
∑C

c=1(σ(uc, j) − yc, j) · h i f wc, j ∈ {wc, j∗c} ∪Wc,neg

v′ (old)
w j otherwise

, (2.21)

as you can see, we only need to update vectors of wc, j ∈ {wc, j∗c} ∪ Wc,neg, while other output

vectors will remain the same. So the computational complexity per iteration will be reduced

from O(C × V) to O(C × k) where k usually ranges from 5 to 20.

2.2 Word Embedding clusters with K-means

Training using word2vec model produces N-dimensional vectors for each word in our vocab-

ulary. These word embeddings have many good properties that we can use. Since each word

embeddings have the same size N, it is easy to measure the distance between a pair of word em-

beddings. Another property of these pre-tained word embeddings is that semantically related

words usually have a close distance. Here we use the cosine similarity defined at (2.1), and the

more similar two words are the higher cosine similarity of their word embeddings. Fig 2.2 are

three examples of words “baby” “apple” and “well” with their top 10 most similar words in
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the whole vocabulary with around 104 words. More detail about how these word embeddings

trained is described in Chapter 4.

Figure 2.2: Word2vec Example

As you can see, the most similar words calculated by cosine similarity are very similar to

the target words, for example, “child”, “babe”, “infant”, “little guy” are indeed very similar

with target word “baby”. The top 10 most similar words of “apple” are all fruit or vegetables.

And what’s more surprising is that these most similar words are not just semantically related

with target words but also syntactically. In the most similar words of “well”, most of the words

are adverbs.

As we mentioned before, instead of treating each word as an independent term, we prefer

to group similar words as a cluster and treat the words in the same cluster as the same term.

Here we need a clustering method to be able to put similar words in the same group as well as

keep not similar words in different groups.

The clustering of word embedding is actually applied to various studies. Gonzalez et al.

[21] developed a system to extract mentions of adverse drug reactions (ADRs) from the highly

informal text in social media. In their model, by grouping word embeddings using k-means,

they can assign the same cluster number to similar words as a feature that adds a higher-level

abstraction to the feature space. Wang et al. [28] constructed a convolutional neural network
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(CNN) for short text classification and used word embedding clusters as a feature extension.

2.2.1 K-means Algorithm

In our method, we adopt the K-means algorithm [11] to perform word embeddings clustering.

K-means is a straightforward and efficient algorithm for general clustering. We will introduce

how k-means are applied in our method, let us review this algorithm first.

In this clustering problem, we are given n word embeddings as our training set {w(1),w(2), ...,w(n)}

and w(i) ∈ RN . The number of clusters is a pre-set parameter K, and the K-means algorithm are

as follows:

1. Initialize cluster centroids µ1, µ2, ..., µK ∈ RN randomly;

2. Repeat until convergence: {

for every i ∈ {1, ..., n}, set

c(i) := arg min
j
||w(i) − µ j||

2 (2.22)

for every j ∈ {1, ...,K}, set

µ j =

∑n
i=1 1{c(i) = j}w(i)∑n

i=1 1{c(i) = j}
(2.23)

}

For every repetition, there are two steps, first is to assign each training sample w(i) to its

nearest cluster µ j and update its assigned cluster index ci. Then, update the cluster µ j to the

mean of the points assigned to it. The K-means algorithm can also be regarded as a coordinate

descent on the distortion function J,

J(c, µ) =

n∑
i=1

||w(i) − µc(i) ||2. (2.24)

As you can see, the distortion function is a non-convex function, so the K-means algorithm

can easily get stuck in local minima. One common solution to this problem is to run K-means

many times with different random initialization of µ and out of all different clusters founded,

use the one with the lowest distortion J as our final solution.

Normally, we use cosine similarity to measure the distance between word embeddings as
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we mentioned before, but K-means use only Euclidean distance as the distance measure. Al-

though other clustering methods can use cosine as a distance measure like K-medoids [15], we

still use K-means due to its much higher computational efficiency. And we can justify that for

normalized vectors, cosine similarity and Euclidean distance are linearly connected. For two

normalized vectors A = {Ai}, B = {Bi} (
∑

A2
i =
∑

B2
i = 1), the Euclidean distance between A

and B is

||A − B||2 =
∑

(Ai − Bi)2

=
∑

(A2
i + B2

i − 2AiBi)

=
∑

A2
i +
∑

B2
i − 2

∑
AiBi

= 1 + 1 − 2 cos(A, B)

= 2(1 − cos(A, B)).

(2.25)

Note that for normalized vectors cos(A, B) =
∑

AiBi√∑
A2

i

√∑
B2

i

=
∑

AiBi. The higher two word

embeddings’ cosine similarity is, the closer their Euclidean distance is, which is consistent with

our objective. Thus in our application, we will perform k-means on the normalized pre-trained

word embeddings.

2.2.2 Bag of word clusters representation

As we discussed at the beginning of this chapter, instead of representing text documents as

“bag of words”, we would like to represent them as “bag of word clusters”. Now we have our

pre-trained word embeddings, and then we perform K-means algorithm, which assigns each

word a unique cluster index. Then constructing bag of word clusters representation of text

document can be summarized as the following steps:

1. Preprocess and tokenize the text (see Chapter 4 for more detail of data preprocess), then

each text will be represented as a list of words;

2. Given pre-trained K word cluster, replace each word in the list as its cluster index, if there

are unknown words, replace them with K + 1, so this vector will be transformed to numerical

lists with the number 1 to K + 1;

3. Calculate each cluster’s frequency in the text list, construct a vector with length k+1
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where each term will be the calculated frequency of clusters with the corresponding index

number. And this new vector is our “bag of clusters” representation of text.

As you can see, we will be able to transform each text into a K + 1-dimensional vector. For

example, we have a short text:

‘‘I love eating apples, they are delicious"

and we have four pretrained word clusters: C1 = {“I”, “they”, “you”}, C2 = {“apple”, “pear”,

“banana”}, C3 = {“is”, “are”, “was”}, C4 = {“delicious”, “good”, “tasty”}. First, we tokenize

this text as a vector v = [“I”, “love”, “eating”, “apples”, “they”, “are”, “delicious”], then re-

place these words with corresponding clusters v = [1, 5, 5, 2, 1, 3, 4], remember to replace

unknown words with ”k+1” which is 5 here. Next we calculate each cluster’s relative fre-

quency: f1 = 2
7 , f2 = 1

7 , f3 = 1
7 , f4 = 1

7 , f5 = 2
7 , and represent this text with new vector

v′ = [ f1, f2, f3, f4, f5] = [ 2
7 ,

1
7 ,

1
7 ,

1
7 ,

2
7 ].

Text digitalization or representing text as numerical vectors is an essential part of every

text mining application. Our “bag of word clusters” model can extract not only statistical

information but also part of semantic information from text.
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Ranking comments with general entropy

In this chapter, we will introduce our comment ranking method. Firstly, we will introduce

General Entropy [31] and how to rank comments directly based on the entropy value. Then

we will introduce the Maximum Entropy Comment, by treating the maximum entropy com-

ment as an ”ideal” comment, we can measure each comments distance to the ”ideal” comment

by using K-L divergence and rank comments based on this distance. Moreover, there are two

features of our comment ranking algorithm:

1) Our method is unsupervised, which means there is no human-labeled training set we can

learn from, all we have is a group of comments without any order. In other words, our method

does not depend on an annotated training set;

2) Judging the quality of a comment is subjective, and we can’t just create a judgement

standard from nothing. So the objective of our method is not to distinguish these top-ranked

comments but to make sure those unrelated or “fake” comments have as lower ranks as possi-

ble. In general, one of the objectives of our method is to filter out “bad” comments.

Ranking comments can be a very important task. As the internet develops fast, people

tend to get information from these comments on websites, for example, when doing online

shopping, people always like to check the comments of a product and these comments have

a great influence on their decisions. So there is no doubt that there are many studies in this

field. Chiao-Fang Hsu et al [13] proposed a machine learning based approach for ranking

comments on the social Web. They extract several different features from each comment:

comment visibility, user reputation and content-based features, in the content-based features,

25
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they also used entropy as a comment complexity measure. Since the comment data they used

have already been ranked by community ratings (for example, the number of “likes”), they

treat this ranking problem as a regression problem where the objective y is community ratings.

Burges et al. [6] designed a cost function for the ranking problem and constructed a neural

network model, Ranknet. This model is simple to train and has excellent performance with a

large amount of data. Tulio et al. [3] developed an application to filter out spam comments

on youtube called TubeSpam. They vectorized each comment using the BOW model with

term weight as term frequency and used these vector as input to their model. Their study

compared several different machine learning models like decision tree, SVM, knn, etc. In their

application, the Bernoulli Naive Bayes model is chosen since it offered a good balance between

robustness and computational effort.

We learned a lot from these studies about how they extract information from these com-

ments. However, most of them used a supervised learning technique with a large amount of

pre-classified data. There are also some researches about unsupervised text ranking, but not as

many as the supervised ones. Rada and Paul proposed TextRank [18], a graph-based model for

text processing. This model’s objective is to extract keywords and key sentences from a long

document, which is also called text summarization. For key sentence extraction, each sentence

will be the node of this graph model and fully connectedto each other, and the transition prob-

ability between each node is the calculated similarity between sentences. After setting up the

graph model, they let computer simulate traversing the whole graph and calculate the score of

each sentence. At last, sentences with high scores will be extracted as key sentences. This

algorithm is motivated by Google’s PageRank [5] and perform well on long documents like

research papers. Vinicius et al. [29] proposed MRR (Most Relevant Reviews), an unsuper-

vised algorithm that identifies relevant reviews based on the concept of graph centrality. The

intuition behind this approach is that central reviews highlight aspects of a product that many

other reviews frequently mention. MRR is a graphic model where vertices represent reviews

connected by edges and each edge is the similarity between a pair of reviews. Then reviews

are ranked with the centrality scores calculated by the PageRank algorithm.

The graphic model like TextRank is state of the art in unsupervised text ranking area. How-

ever, the graphic model focuses more on the relevance or similarity between each pair of com-
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ments. In our methods, we focus more on comments information quality as well as its relevance

to the whole group of comments under a specific product.

General Entropy was first introduced by Zhang [31], he developed a ranking method on

Amazon’s question-answering dataset and used general entropy as a measure of answer’s in-

formation quality. However, he has an entirely different text digitalization method with us,

he only considered each word’s frequency in the document and chose some of the most fre-

quent words as keywords while all other words as noise. His method can also solve the high-

dimension problem of text digitalization but did not extract semantic information from text.

For example, under a food product, most comments described this food as “delicious”, only a

few of them used the word “tasty”. If we treat high-frequency word ”delicious” as keyword and

low-frequency word “tasty” as noise word, then comments using ”delicious” will be considered

having higher information quality than comments using “tasty”, which is not reasonable. While

in our digitalization method, we will group similar words like “delicious” and “tasty” and treat

them as the same item. There are also other differences in terms of the ranking algorithm, and

we will discuss them later in this chapter.

3.1 General Entropy

After the pre-trained word embedding clustering, given n clusters of words and m comments

under a product, we regard the collection of all m comments together as the Global Comments

Set. Then we can calculate the number of each word cluster appears in the global comments set,

which can be represented as {NumG
0 ,NumG

1 ,NumG
2 , ...,NumG

n }, notice that NumG
0 is the number

of unknown words that appear in the collection. Now we can define the global probability of

word cluster i in the global comments set as,

Qi =
NumG

i

NumG
0 + NumG

1 + NumG
2 + ... + NumG

n
. (3.1)

And for all global probabilities, we have

n∑
i=0

Qi = 1. (3.2)
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Remember that in Chapter 2, to ensure these word embeddings’ quality, our word2vec

model has to be trained on a large corpus with around 104-105 unique words. Then we can

group these words into n word clusters. One feature of our bag of word clusters model is that

these pre-trained word clusters can be used for many products at the same time. So for one

product, it’s possible that no word within its global comments set falls into the word cluster i∗.

In other words, it’s possible that global probability Qi∗ = 0 for this product.

In our comments ranking method, we tend to treat each text or comment as a distribution

of word clusters. If two comments have similar distributions, they probably expressed similar

meanings. And as an unsupervised method, without any training set, the global comments set’s

distribution can be an essential reference for determining each individual comment’s relevance

to others. We believe that under a product, most comments will focus on some specific as-

pects of this product, which tend to have similar distributions of words, if a comment have a

completely different word distribution with the others, it might be a “fake comment.”

The same as global probability, for an individual comment with index j, we have the num-

ber of each word cluster in the comment as {Num j
0,Num j

1,Num j
2, ...,Num j

n}, the probability of

word cluster i in the jth comment can be defined as,

P j
i =

Num j
i

Num j
0 + Num j

1 + Num j
2 + ... + Num j

n

, (3.3)

where

n∑
i=0

P j
i = 1, (3.4)

note that i f Qi = 0 then P j
i = 0.

As we mentioned in Chapter 2, each comment including the global comments set can be

represented by a n + 1 dimensional vector, with our new definition, for global comment set, the

vector is [Q0,Q1,Q2, ...,Qn] and for individual comment j is [P j
0, P

j
1, P

j
2, ..., P

j
n]. By treating

each comment as a distribution, we can assess each comment’s information quality by calcu-

lating entropy based on these probabilities.

In statistics, entropy is a quantity that can measure any random variable’s average rate

of information inherent in the variable’s possible outcomes, and the concept of entropy was
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first introduced by Claude Shannon [26]. For a discrete random variable X with all possible

outcomes {x1, x2, ...xm} and probability mass function PX(x), the entropy is defined as,

H(X) = −

m∑
i=1

PX(xi) log PX(xi) =

m∑
i=1

PX(xi)IX(xi) = E[IX], (3.5)

where IX(xi) is self-information associated with outcome xi. We can treat IX(xi) = − log PX(xi)

as a random variable, thus entropy is actually expectation of self-information IX. Self-information

can be regarded as the rate of information associated with one particular outcome of a random

variable, then entropy is the average rate of information of a random variable. As you can

see, self-information IX(xi) is simply a negative log of the probability of this event, and this

is monotonically decreasing in probability PX(xi). To help understand self-information, take

a simple example, imagine a person randomly select a book from a library, and he observes

that the word “the” is in this book. This observation hardly gives him any information since the

word “the” has a very high probability appearing in any document. However, if he observes the

word “Shakespeare” in that book, he may learn that the book might relate to literature or po-

etry. The word “Shakespeare” has a lower probability appearing in a book, and this observation

definitely contains more information than the last one.

In terms of comments, we treat each comment as a multinomial distribution of word clus-

ters with probability P j = [P j
0, P

j
1, P

j
2, ..., P

j
n], that is if we randomly sample a word from this

comment, this word should have this probability distribution. For the worst scenario, if a com-

ment only has one type of word in it like “good good good...good”, then this comment has a

distribution with P(good) = 1, and the entropy of this comment is zero. For the best scenario,

without any constraint, the uniform distribution is the maximum entropy probability distribu-

tion for a random variable. The reason is that the entropy score is the “expected information

gain” and the hardest distribution to predict is the uniform distribution when using a binomial

score. [30]. For example, if a comment has an equal probability of every word cluster in it, it

would have the maximum entropy. However, if we use entropy defined at (3.3) as our ranking

score, a comment with uniform distribution would rank highest under any product, which can-

not be used in our application. That is why we have to consider each comment relevance to the

others, so we define the General Entropy as follows,
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Definition 1 (General Entropy) Given global probability Q = {Q0,Q1, ...,Qn} and a com-

ment with probability P j = {P j
0, P

j
1, ..., P

j
n}, the general entropy of this comment is

E(P j) = −

n∑
i=0,P j

i,0

Qi · P
j
i · log P j

i .

Notice that P j
i can be 0 since a comment may not include all word clusters. The general

entropy can measure the average information rate for an individual comment j with respect

to the global probability. From the entropy definition at 1, we can see that general entropy

assigns weight on each self-information of word cluster where the weight is the corresponding

global probability. As we mentioned before, the global probability can be regarded as a high-

level abstraction of the topic in the comments under this product. Since we want to measure

the information richness and the relevance of a comment, we can give higher weight to these

words that other comments also mentioned and lower weight to words that other comments

hardly mentioned.

At last, we can summarize our general entropy ranking algorithm as follows:

Algorithm 1 Ranking comments based on the general entropy
Input:

The set of n word clusters;
The set of m comments under a product;

Output:
Ranking results of all comments;

1: Covert all comments into their bag of word clusters representations;
2: Calculate the global probability Q = [Q0,Q1,Q2, ...,Qn];
3: Calculate each comment’s probability: P j = [P j

0, P
j
1, P

j
2, ..., P

j
n], j = 1, 2...m;

4: Calculate each comment’s general entropy E(P j);
5: Rank comments based on their general entropy, comment with higher general entropy is

ranked higher;
6: return Ranking results;
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3.2 Kullback–Leibler (K-L) divergence to the Maximum Gen-

eral Entropy Comment

In the previous section, we introduced the general entropy, which simultaneously measures

information richness and relevance of a comment. However, in our experiment, comment with

high complexity (for example, very long comment with many different kinds of words) and

almost no relevance to this product can get pretty high general entropy. These comments may

have high ranks since most comments’ entropy scores are close to each other. So instead

of calculating scores for every comment, we first find an “ideal” comment and then judge

comment by how far or how different it is from our “ideal” comment. Naturally, we can

define comment with maximum general entropy as our “ideal” comment, and we call this

“ideal” comment the Maxmium General Entropy Comment. Since the maximum general

entropy comment has the maximum general entropy, it keeps a good balance of relevance and

information richness. We define the Maxmium General Entropy Comment as follows,

Definition 2 (Maxmium General Entropy Comment) Given global probability Q = {Q0,Q1,

...,Qn}, the maximum general entropy comment B := {B0, B1, ..., Bn} are defined as

B = argmax
P

E(P),

where P := {P0, P1, ..., Pn} and
∑n

i=0 Pi = 1.

Note that the maximum entropy comment is a comment with the maximum general en-

tropy within all possible comments. This comment may not exist in the existing comment set.

However, it can be regarded as a standard to judge each comment’s relevance to the product.

The following theorem shows that the maximum entropy comment exists and is unique, given

a collection of comments.

Theorem 3.2.1 Given gloabl probability Q = {Q0,Q1, ...,Qn} and an index set C that i ∈ C

if Qi , 0 and i < C otherwise. Then there exist an unique maximum general entropy answer

B = {B0, B1, ..., Bn} so that B = argmaxP E(P) and Bi =


e−1− λ

Qi i ∈ C

0 i < C
, where λ is a unique
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value and
∑n

i=0 Bi = 1.

Proof For i < C, Qi = 0, which means word clusters with index i never appear in the collection

of all comments. Then for any comments in the collections, P j
i = 0 for i < C and j = 1, 2, ...m.

Since we would like to compare each comment in the collections with the maximum entropy

comment, we determine all Bi = 0 for i < C.

For i ∈ C, in order to maximize E(P), we define the objective function f as,

f (P0, P1, ..., Pn, λ) = −
∑
i∈C

Qi · Pi · log Pi + λ(1 − P0 − P1 − ... − Pn),

where λ is the Lagrange multiplier.

Take the derivative of f with respect to Pi

∂ f
∂Pi

= −Qi − Qi · log Pi − λ

= −(1 + log Pi)Qi − λ,

then set the derivative to 0,

−(1 + log Pi)Qi − λ = 0.

We have the solution to the equation above,

P̂i = e−1− λ
Qi f or i ∈ C. (3.6)

Assume we have more than one element in set C, to solve λ, we have two conditions

1 > P̂i > 0 and
∑n

i=0 P̂i = 1. Based on the first condition,

for all i ∈ C,

1 > P̂i > 0.

P̂i is exponential thus bigger than 0, then for any i ∈ C,

P̂i = e−1− λ
Qi < 1.
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Take logarithm on both sides,

1 +
λ

Qi
> 0,

then,

λ > −Qi.

Since this inequality holds for all Qi, to conclude, we have

λ > −min{Qi|i ∈ C}. (3.7)

Based on the second condition, we set the objective function

g(λ) =

n∑
i=0

P̂i − 1

=
∑
i∈C

e−1− λ
Qi − 1.

Taking the derivative of g with respect to λ,

∂g
∂λ

= −
∑
i∈C

1
Qi
· e−1− λ

Qi .

The derivative of g is negative for λ > −min{Qi|i ∈ C} which means g is monotone decreas-

ing function, then we have

lim
λ→−min{Qi |i∈C}

g(λ) > 0 and lim
λ→∞

g(λ) = −1.

Thus the solution of λ is unique.

In conclusion, we have the maximum general entropy comment Bi =


e−1− λ

Qi i ∈ C

0 i < C
,

where λ is a unique value .

After the definition of the “ideal” comment, now we need a method to measure each com-

ment’s distance to the maximum general entropy comment. As we mentioned before, we treat

each comment as a multinomial distribution with probability {P j
0, P

j
1, ..., P

j
n}, that is if we ran-

domly sample a word from this comment, this word can belong word cluster i with probability
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P j
i . We treat the maximum general entropy answer the same way, the maximum general en-

tropy answer is a multinomial distribution with {B j
0, B

j
1, ..., B

j
n}, to measure how one probability

distribution is different from others, we use Kullback–Leibler (K-L) divergence define as

follows,

Definition 3 (Kullback–Leibler (K-L) divergence) Given jth comment probability P j = {P j
0,

P j
1, ..., P

j
n} and the maximum general entropy comment B = {B0, B1, ..., Bn}, the Kullback–Leibler

divergence from the maximum general entropy comment B to jth comment P j is defined to be

DKL(P j|B) =

n∑
i=0,P j

i,0

P j
i · log(

P j
i

Bi
).

In statistics, we call B the prior probability distribution and P j the posterior probability

distribution, and the K-L divergence from B to P j is,

DKL(P j|B) =

n∑
i=0,P j

i,0

P j
i · log(

P j
i

Bi
)

= −

n∑
i=1,P j

i,0

P j
i · log(Bi) − (−

n∑
i=1,P j

i,0

P j
i · log(P j

i ))

= −

n∑
i=1,P j

i,0

P j
i · log(Bi) − H(Pj).

(3.8)

According to the entropy defination at (3.5), DKL(P j|B) is actually the information gain if

we use distribution B to approximate P j. When two distributions are close to each other, this

value can be relatively small, and large if two distributions are very different. The first item

−
∑n

i=1,P j
i,0

P j
i · log(Bi) in (3.8) are called cross-entropy, which is a very popular loss function

of classification problem in machine learning area.

Finally, we can summarize our ranking process as follows:
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Algorithm 2 Ranking comments based on K-L divergence to the maximum general entropy
comment
Input:

The set of n word clusters;
The set of m comments under a product;

Output:
Ranking results of all comments;

1: Covert all comments into their bag of word clusters representations;
2: Calculate the global probability: Q = [Q0,Q1,Q2, ...,Qn];
3: Calculate each comment’s probability: P j = [P j

0, P
j
1, P

j
2, ..., P

j
n], j = 1, 2...m;

4: Based on the global probability Q, find the maximum general entropy comment: B =

{B0, B1, ..., Bn};
5: Calculate each comment’s K-L divergence to the maximum general entropy comment B;
6: Rank comments based on their K-L divergence, comment with lower divergence is ranked

higher;
7: return Ranking results.

3.3 Evaluate Ranking Quality with nDCG

In the previous section, we introduced our new comment ranking algorithm, naturally, the next

step is to assess this algorithm by evaluating the ranking quality. Here we introduce normal-

ized Discounted Cumulative Gain (nDCG) [14], it is often used to measure the effectiveness

of web search engine algorithms, but it can also applied to text ranking application. Many re-

search mentioned before [13] [29] adapt this method to assess their ranking algorithm. Firstly,

let us define Discounted Cumlative Gain (DCG).

Definition 4 (Discounted Cumlative Gain (DCG)) Given a ranked list with m comments, and

reli is graded relevance of the result at position i, Discounted Cumulative Gain is defined as

DCGm =

m∑
i=1

reli

log2(i + 1)
.

According to this definition, if a comment with high graded relevance appears lower in the

ranking result, it will be penalized as the graded relevance value is reduced logarithmically

proportional to the position of the ranking result. To achieve high DCG value, the algorithm

should rank a high relevance comment higher than low relevance one. Notice that in our
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application, graded relevance reli is a manually annotated comment quality score that will

not be used as an input in our algorithm, more detail about our experiment are described in

Chapter 4.

While DCG is already a valid measure of ranking quality, it does not have a proper upper

and lower bound to let people better compare the performance of different ranking results, then

normalized Discounted Cumulative Gain (nDCG) is defined as follows,

Definition 5 (normalized Discounted Cumulative Gain (nDCG)) Given a ranked list with

m comments and its DCG value, the normalized Discounted Cumulative Gain is computed as,

nDCGm =
DCGm

IDCGm
,

where IDCGm is the Ideal Discounted Cumulative Gain.

IDCGm is straightforward to compute where the ideal ranking result is to rank these com-

ments directly based on their graded relevance. nDCG ranges from 0 to 1 while 0 will not be

able to achieve, and the closer our nDCG is to 1, the better quality our result has.



Chapter 4

Experiment with Amazon Review Data

In this chapter, we will introduce our experiment built on the Amazon product dataset [12] [17],

which contains users’ reviews on Amazon website spanning 1996-2014. We will choose one

of the Amazon products and rank its comments using both pure general entropy and K-L di-

vergence to “ideal comment”. By comparing these two methods on a real dataset, we can

understand each method’s characteristics and how they distinguish “fake” comments from ac-

tual comments. Moreover, we will also analyze the relationship between general entropy and

K-L divergence.

4.1 Amazon Product dataset

Amazon product data contains 142.8 million reviews from millions of products, and these

reviews were grouped into different categories as in Fig 4.1. In our experiment, we chose the

category “baby”, which includes 160,782 comments of 7701 products. Notice that the dataset

is titled “5-core”, which means each of the users and products has at least 5 comments. In that

case, we can assume that most of the comments in this dataset are reasonable.

Fig 4.2 shows a sample within this dataset, it contains multiple information. In our appli-

cation, since our method is unsupervised, we only use two parts of this dataset: “asin”: ID of

the product; and “reviewText”: text of this comment.

37
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Figure 4.1: Amazon Product Dataset

Figure 4.2: Amazon Data Sample

As described in Chapter 2, in order to keep our word embedding’s quality, we need a large

amount of data to train our word2vec model. In that case, we will combine all comment text in

“baby” category as our corpus, which can be used as an input to our word2vec model.

4.2 Data Cleaning

Data cleaning is an essential part of every text mining application. We need to carefully remove

all noise or unnecessary words in the text and keep as much information as possible. We

performed our data cleaning process using a Python package called Gensim [23]. Gensim is

one of the most effective and robust packages to realize unsupervised semantic modeling. It
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also provides several useful toolkits for text cleaning and processing. We use this package to

build our word2vec model.

Now we can summarize our data cleaning process as following steps:

Step 1 Remove non-alphabetic: This step is very straightforward, which is to remove all

non-alphabetic characters from the text. Since in our application, we only care about the word

distribution, while other elements like punctuation marks or special symbols and numbers have

no effect. Moreover, we removed tokens that are too short or too long since after removing non-

alphabetic characters, there are always a bunch of garbled characters left. For example, there

might be a hyperlink within the raw comment.

Step 2 Remove stopwords: Sometimes, some extremely frequent words have little value

in our comments ranking application. These words like “a”, “and”, “the” are called stopwords

and it’s always necessary to remove them in text mining tasks. Removing stopwords can help

us focus more on those informative words and reduce the dimensionality needed to digitalize

each comment. Also, there are many stopword lists avaliable where most of them are pretty

similar, and the gensim’s method adapts the stopword list from Stone et al [27].

Step 3 Lemmatization: Lemmatization is the process of converting a word to its base

form. Words in English can have different forms, for example, “saw” and “see”, “apple” and

“apples”, while computers will tend to treat these words as totally different items. A lemma-

tizer is able to identify these words and covert them to their meaningful base form. However,

precise lemmatization needs every word’s POS tag in the sentence, which is not feasible in our

experiment. So we can only lemmatize nouns in the corpus. And the lemmatizer we used is

the Wordnet lemmatizer [9] from the Python library called nltk [4].

Step 4 Merging bigram: Bigram is referred as a sequence of two adjacent words in a text.

There are many words frequently appear together like “new” “york”, “car” “seat” and “ice”

“cream”, and in fact, we would like to treat these bigrams as one item. Therefore, we detect

and merge bigrams that appears more than 30 times in our corpus, for example, “new” “york”

will be combined as “new york”.

Table 4.1 is an example of the cleaning process. In Step 3, we can see that plural noun

“products” was converted to its base form “product”. And in Step 4, since “easy” and “clean”

appear simultaneously in our corpus more than 30 times, they will be merged as one word
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“easy clean”. All the above is the entire data cleaning process, and we will use the cleaned

comments as input to our word embedding training model and ranking algorithm.

Raw Text “This is very easy to clean, very adjustable, and cute! Love OXO products!
This is the second one I have purchased.”

Step 1 “This is very easy to clean very adjustable and cute Love OXO products
This is the second one I have purchased ”

Step 2 “easy clean adjustable cute love oxo products second purchased ”
Step 3 “easy clean adjustable cute love oxo product second purchased ”
Step 4 “easy clean adjustable cute love oxo product second purchased ”

Table 4.1: Example of Data Cleaning Process

4.3 Word2vec and K-means

After cleaning the dataset, we can feed the corpus to our word2vec model. As discussed in

Chapter 2, we adapt the skip-gram model with negative sampling using the python library

Gensim [23]. Table 4.2 shows the parameters of our model. Parameter Window is the max-

imum distance between the current and predicted word within a sentence. For the skip-gram

model, our window size is 2, which means we have 1 input word and 4 output words. Size

is the dimensionality of the word vectors, usually ranges from 100-200, we set as 150 in our

model. Sample is the threshold for configuring which higher-frequency words are randomly

downsampled, since we already removed stop words, we set as 0. Alpha and Min Alpha are

the initial learning rate and the minimum learning rate respectively. The initial learning rate

will linearly drop to the minimum learning rate as training progresses, and this process can

help our results converge faster. Min Count is 30, which means that all words with a total fre-

quency lower than this will be ignored in our training process. The last parameter is Negative,

which indicates how many “noise words” should be drawn when using negative sampling.

We then trained the word2vec model on our corpus, which has 6,032,591 words and 9,497

unique words. The whole training process ran 30 epochs on the data set using the stochastic

gradient. The training result is that each unique word in the corpus has a corresponding 150-

dimension vector. Figure 4.3 shows the top 10 most similar words of input words: ‘baby’,

‘apple’, ‘toyota’ and ‘well’. Here the similarity is cosine similarity between our trained word
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Min Count 30
Window 2

Size 150
Sample 0
Alpha 0.03

Min Alpha 0.0007
Min Count 30

Negative 20

Table 4.2: Parameters of Word2vec Model

embeddings. We can observe that these words are semantically similar to each other, which

means the word2vec model performs well on this data set.

Figure 4.3: Word2vec results

The next step is to group similar words using K-means clustering. In our application, we

used a very famous Python package scikit-learn [22], scikit-learn contains a group of efficient

tools for predictive data analysis and machine learning. There are two parameters when imple-

menting k-means clustering. The first one is the number of clusters. There are many methods

determining the number of clusters. Most of these methods are purely based on the quantitative

relationship between vectors, but may not lead to a good ranking performance. We have tried

the number of clusters from 100 to 500, where 300 clusters lead to the best ranking perfor-

mance. Another parameter is the number of initializations, which is the number of times the
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k-means algorithm will run with different centroid seeds. As discussed in Chapter 2, k-means

can easily fall in local minima, so it is useful to restart it several times with different initial

centroids. We set our number of initializations as 100, then the final result will be the best

output of 100 consecutive runs in terms of the loss function.

Cluster# Semantic category Examples of clustered words
133 Baby baby, son, daughter, child, kid, she, little guy, kiddo, babe,...
11 Automobile car, trunk, vehicle, drive, suv, truck, sedan, van, ford,...

248 Food banana, apple, veggie, pea, chicken, meat, pasta, avocado,...
116 Adverb well, fine, perfectly, nicely, properly, beautifully, poorly,...
104 Media picture, movie, video, image, show, pic, visual, television,...

Table 4.3: Examples of the word embedding clusters

Table 4.3 shows part of the results of our word clusters, notice that the “Semantic category”

titles are manually assigned and not used in the ranking algorithm. We can observe that in

cluster#133, word “she” is in the same cluster as “baby”. That’s an interesting feature of the

word2vec model, remember our data set is the collection of all products’ comments under the

“baby” category. In these comments, “she” always indicates a “baby”, where these two words

have similar context words thus have similar word embeddings. That’s also why word “poorly”

and “perfectly” are in the same cluster, despite the two words are antonyms, they have similar

context words in the corpus. This property does not affect our application since we only care

about each comments’ relevance, criticism and praise of a product are both information-rich

comments.

Assigning similar words with the same cluster number can help us distinguish comments

more accurately. For example, if most of the words in a comment are in word cluster#11, we

can tell that this comment might be under a car-related product. Moreover, if a comment has

an entirely different distribution of word clusters with other comments under the same product,

this comment may not be relevant.

Now we get our word embedding clusters ready, we are able to transform each comment

to its “bag of word clusters” representation. Table 4.4 shows how we transform a comment

into its bag of word clusters representation. We first covert every word in the comment to its

cluster# and then transform to a 300-dimension vector where each element is its frequency of

the corresponding cluster.
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Raw Text
“This is very easy to clean, very adjustable, and cute! Love OXO products!
This is the second one I have purchased.”
Cleaned Text
“easy clean adjustable cute love oxo product second purchased ”
Covert Words to Cluster#
[170,24,62,221,212,66,199,274]
Bag of Word Clusters Representation
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0.125,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Table 4.4: Examples of bag of word clusters representation
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4.4 Ranking Comments under a Real Amazon Product

Finally, after all the text digitalization process, we can apply our ranking algorithm on a real

product. We used a product called “OXO Tot Waterproof Silicone Roll Up Bib with Comfort-

Fit Fabric Neck”(ASIN: B00D3TPGAO) [1]. This product also belongs to the “baby” category,

which means we will have no difficulties transforming comments to their Bag of word clusters

representation. The detail of this product is shown in Figure 4.4.

Figure 4.4: Product Detail [1]

As we mentioned before, this data set follows the 5-core principle, where all users and items

have at least 5 reviews. This product has 95 comments in total. We checked all comments and

made sure that they are all related to the products.

4.4.1 Global Word distribution

Let us first take a look at the word cluster distribution of all comments, which we also called

global probability in Chapter 3. Figure 4.5 is the histogram of global word distribution, where

the horizontal axis represents the cluster index, and the vertical axis represents frequency.
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Figure 4.5: Global Word Distribution

The word clusters distribution is not very uniform, some clusters have significantly higher

frequencies than the others. Table 4.5 and Table 4.6 show the top 3 most frequent and least fre-

quent word clusters in the whole collection of comments. Obviously, one of the most frequent

words under this product should be “bib”, and its corresponding word clusters has the highest

frequency. It is not just because this cluster includes the word “bib”, it also includes many re-

lated words like “spoon”, “fork”, “catch food’, which may also appear a lot in the comments.

The second most frequent cluster includes “baby” related words; these words appear a lot in

the comments as this is a baby product. The third cluster is “easy” related words; many users

describe this product using these adjectives. If these clusters have high frequency appearing in

a comment, this comment is likely related to our product.

Cluster# Frequency Examples of clustered words
112 0.0701 bib, spoon, bowl, plate, dish, fork, catch food...
133 0.0299 baby, son, daughter, child, kid, little guy, kiddo...
1 0.0216 easy, easier, simple, useful, handy, make easier...

Table 4.5: Top 3 Most Frequent Word Clusters
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Cluster# Frequency Examples of clustered words
20 0 phone, iphone, tablet, computer, laptop, smartphone...
259 0 brush, hair, bristle, toothbrush, nail cliper, scalp...
263 0.0047 sleep, sleeping, fall asleep, cozy, snuggle, cuddle...

Table 4.6: Top 3 Least Frequent Word Clusters

Let us take a look at the top 3 least frequent word clusters. Apparently, words like “phone”,

“laptop”, “hair” and “sleep” have little or no relation to our products. If these clusters appear a

lot in a comment, this comment may not be as applicable to our product.

After analyzing the global word cluster distribution, we can see that global probabilities

contain a lot of information regarding our product and are capable of judging the relevance of

a comment to this product, which partially proves our methods’ feasibility.

4.4.2 Ranking Performance

In this section, we will apply our two ranking methods on our dataset: general entropy and K-L

divergence to the maximum general entropy comment. In the dataset, we have one product with

95 comments, and these comments are considered as relevant comment. Since we will not

judge these 95 comments’ quality, we arbitrarily select 5 sets of comments that are not related

to this product. Each set contains 10 comments. We called these comments fake comment, and

they are all real comments under other Amazon products. It is worth mentioning that during the

experiment, we are not aware of which comment is fake, which is not. We will calculate global

distribution and the maximum general entropy comment based on all comments, including fake

comments.

To assess the ranking performance, we used the evaluation metric nDCG defined at Defi-

nition 5. According to the definition, we need to assign each comment a relevance score reli.

In our experiment, we assigned the 95 original comments with relevance score 10 and fake

comments with relevance score -10. To achieve higher nDCG value, original comments should

rank higher than fake comments. Moreover, in the best scenario, fake comments happen to

have the lowest ranks, we can calculate our ideal DCG (iDCG) based on this case.
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Figure 4.6: nDCG of Two Methods on Amazon Dataset

Figure 4.6 shows the nDCG values of two methods on 5 different fake answer sets. Re-

member that nDCG ranges from 0 to 1, where a higher score indicates better performance. The

red dashed line at the bottom of this figure is the baseline of our application. To construct the

baseline, we generate 100000 random sequences as the ranking results and calculate the mean

of their nDCG values, which is 0.9396. Both of the two methods have better performance than

the baseline, which shows our methods’ effectiveness. The K-L method generally outperforms

the general entropy method, and they have the same trend. We can observe that when the K-

L achieves higher nDCG scores, the general entropy always has a higher score as well. The

reason for this phenomenon is that they both rank comments based on their relevance to the

global distribution. K-L method is more sensitive to each comment word distribution, and the

variation of comments’ K-L score is bigger than that of the general entropy method, so it has

better discrimination power. We will see more detail about this later.

Table 4.7 below is the ranking detail of the fake comment set #1. The detail of other 4

fake comment sets is in appendix A. Note that Entropy and E-Rank are comment’s general

entropy value and the rank based on the entropy, while K-L and K-Rank are comment’s K-L
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divergence to the maximum general entropy comment and its rank based on K-L value.

# Comment Text Entropy E-Rank K-L K-Rank
1 ‘I remember the controversy about this

movie when it came out in ’83 and it was
rightly so. It showed a real ugly side of Mi-
ami and the drug wars and this movie didn’t
hold back. The chainsaw scene still sends
shivers whenever I see it and the movie just
continues on delivering a punch right up un-
til the finale. Had a DVD copy of it but the
price was too good to resist and now I’m glad
to have a great looking Blu-ray copy and get
to enjoy this classic again and again.’

0.006987 84 56.6583 102

2 ‘My son loves this formula it really helped
wean him from breastfeeding. It’s also a
good supplement since he’s still not eating a
ton and can be a picky with what he does eat.
We use the single packets when traveling so
we don’t have to bring a big can’

0.005426 96 34.4120 57

3 ‘Have to give only 4 stars on this version of
the paperwhite. The reader works perfectly.
Sits well in your hands. I have no issues
with the lighting quality. I absolutely love
the flush screen. But, the bezel attracts a lot
of fingerprints and my number 1 reason for
only giving 4 stars is that the canadian ver-
sion does not have bluetooth or Audible. I
think this is absolutely ridiculous and Ama-
zon has no reason for not including this. It’s
in the international version if bought from
Amazon.com but not if you but from Ama-
zon.ca.’

0.008193 68 55.6625 101
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4 ‘This is definitely the worst car seat I’ve
ever encountered. I’ve dealt with about 15
carseats in my time. (1) it’s false advertising:
I scoured the listing to ensure it doesn’t have
the ARB and nothing stated it was included.
I even searched model # separately etc, and
nothing. It arrives and course it has the ARB,
which is super dangerous (my daughter has
entangled her feet in it a few times making
me pull over ON THE HIGHWAY to help re-
lease her little feet). (2), it is extremely dif-
ficult almost impossible to install and once
done, it is STILL UNSTEADY AND WOB-
BLY. Horrible. (3) the buckles aren’t very
effective as my daughter has been able to re-
move it more than once and she just turned
one and has never unbuckled anything else
in her life. (4) once buckled, the belts often
cannot be tightened because something aw-
ful in this horrendous company’s design pro-
hibit the belt from being pulled through the
tiny crack they’ve allowed for it. It’s just bad
bad bad. literally the worst. I’m embarrassed
and sad to admit I haven’t taken my baby out
as often as a result of this since surgery com-
plications left me with low tolerance for ab-
dominal pain. I’m now recovered but feel as
if im about to have a hernia just pulling the
belt to tighten it. I HATE THIS THING.’

0.009914 50 49.6285 97

5 ‘This was a treat to myself and boy does it
deliver my place was a haven for dust. it was
immense not being held back by a cord and
the extra applications are superb. A super
clean flat now delivered in Apple style pack-
aging. MUST BUY!’

0.006959 85 44.8305 93
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6 ‘This product is terrible, not only did the ana-
log stick start jittering after 2 months of us-
age, it started getting discolored after about
1 months of usage. The build quality is terri-
ble and does not feel like an official PS4 con-
troller and if it is by Sony, then why are they
making such bad controllers for so expensive
nowadays?. I have no idea why Amazon is
even allowing such a terrible product to be
sold on their site. I do not recommend buy-
ing this, the only time I would recommend
this controller is if they offered a warranty.
You’re better off buying it from a store where
you can actually get a warranty and return it
when it decides to break on you, because it
will.’

0.012239 17 41.1088 84

7 ‘I ordered this after looking for a while for a
hand soap with no perfume or fragrance. Itś
not listed on the website but it’s listed on the
bottle. I hope this wasn’t intentional, it’s re-
ally frustrating trying to find a natural hand
soap. Claiming it’s natural but putting fra-
grant chemicals in it is really misleading.’

0.010473 40 49.8882 98

8 ‘Shoe says its size 9 wide but its not wide.
Been buying this model for years and this is
the first time I’ve had an issue. The only dif-
ference between these shoes and my others
seem to be that these were made in India and
the others were made in Vietnam. I’m out
of the return window so I’m stuck, my fault,
however Rockport quality assurance seems
to have slipped at least in my case.’

0.006418 90 42.6048 90
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9 ‘Love them. So much so that I bought an-
other set (in pink) right after sleeping with
this set when they arrived! So happy I fi-
nally have these, I’ve heard so many good
things/benefits of having satin pillowcases!
It also came with washing instructions which
I appreciated.’

0.015290 2 20.8472 10

10 ‘It stored all my European holiday pictures,
but now I cant́ transfer them into my com-
puter or look at them for long... the computer
recognizes it, but it promptly disappears and
I get an ”improperly ejected” message even
though its still plugged in!...so FRUSTRAT-
ING!!!’

0.004958 99 59.0544 105

Table 4.7: Ranking Detail of Fake Comment Set 1

Obviously, these comments have no relation to our product by our judgment, but more

important here is how our algorithms distinguish these comments. Remember that including

the fake answers,in each experiment, we have 105 comments in total. We can see that most

fake comments have relatively low ranks, which indicate that our methods perform well on this

answer set. Take a look at the fake comment #1, which can be regarded as a tough one since

it is also a comment from “baby” category. Using the general entropy method, this comment

ranks 50th in the list, which is around the median. However, using K-L divergence method, we

have a very low rank: 97th. One reason for this situation is that this comment does have some

words in common with most other comments. Another reason is that this is a relatively long

comment with many different kinds of words, and comments with high complexity like this

tend to have high general entropy. However, K-L divergence method focuses on the difference

between word distributions. This comment obviously has quite a different word distribution

with these original comments, so this comment has a high K-L divergence. The same situation

also happens in fake comment #4 and 6. Fake comment #9 is also worth noticing; both methods

give this comment pretty high ranks. As we can see, this comment is about a pillowcase, but it

does not have any specific words or descriptions regarding the pillowcase. Only based on the
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words this comment has, this comment can also be used to describe a bib, which is similar to

most other relevant comments.

In conclusion, the K-L method is more sensitive to the word distribution while the

general entropy put more weight on the text complexity. To illustrate this, we make up a

comment that only repeats three words: ‘baby’, ‘bib’ and ‘easy’; remember that these three

words are in the top three most common word clusters shown in Table 4.5. Table 4.8 below

shows the ranks of this comment using two methods, as we can see, the results are completely

different using two methods. This comment only contains three unique words, which implies

very low text complexity, thus a low entropy score.

Comment Text Entropy E-Rank K-L K-Rank
‘baby bib easy baby bib easy baby bib
easy baby bib easy baby bib easy baby bib
easy’

0.002482 104 17.853996 4

Table 4.8: An Example of Comment with Low Complexity

Figure 4.7: Global Distribution and the Maximum General Entropy Comment

Figure 4.7 above shows the comparison between the global distribution and the maximum

general entropy comment. We can see that the maximum general entropy comment put more

attention on the word clusters that frequently appear in the dataset and less attention on those

less frequent clusters. We can call these frequently appeared word clusters as “essential” word

clusters. This plot tells us why the K-L method is more sensitive to these non-relevant fake
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comments than pure general entropy: the K-L method focus on the distribution of few “essen-

tial” word clusters. If a comment has none of these “essential” word clusters included, it must

result in high K-L divergence and low rank. However, if a comment can precisely contain these

“essential” word clusters, it may result in low K-L divergence and high rank even though it has

low text quality like the one in Table 4.8.

4.4.3 Relationship Between K-L Divergence and the General Entropy

In the previous section, we analyzed our two ranking methods’ performance. Now let us take

a look at the relationship between these two ranking metrics. Figure 4.8 below illustrate these

two metrics’ relationship, note that this plot includes comments from fake comments set #1. In

general, the K-L divergence has a negative relationship with the general entropy. Since lower

K-L divergence indicates closer distance to the maximum general entropy comment and higher

general entropy indicate better text quality with respect to the global distribution, this result

corresponds to our statement that two methods are ranking comments based on comments’

relevance to this product.

Figure 4.8: Relationship between General Entropy and K-L Divergence

To compare two metrics’ distributions, we generate a group of random comments. Each
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one of these comments is a list of cluster indexes randomly generated from a discrete uniform

distribution of [1,300]. Each comment’s length also follows a uniform distribution with a mean

of 53, which is the same as our dataset. Figure 4.9 shows distributions of our dataset’s general

entropy and K-L divergence compared with the randomly generated comments.

Figure 4.9: Distribution of the general entropy and K-L Divergence

In terms of the variation, our dataset’s general entropy distribution is more concentrated

than random comments. In contrast, K-L divergence does not have much difference with ran-

dom comments. As we discussed before, the K-L method is more sensitive to comments’ word

distribution than the general entropy method, resulting in a higher variation of the scores and

better ranking performance.

In terms of the average, we can see that our dataset’s general entropy distribution is left-

shifted compared to random comments, which means that comments in our dataset generally

have lower general entropy than random comments. This is because the general entropy method

focuses more on the text complexity of a comment. Remember that these random comments

are generated from a uniform distribution, where all word clusters can be selected with equal

probabilities. So these random comments tend to have higher text complexity than comments

in our dataset. Since the K-L method focuses more on the comments’ relevance to the product,

its distribution is also left-shifted compared to random comments. Random comments tend

to have lower relevance to this product, thus having higher average K-L divergence to the

maximum general entropy comment.



Chapter 5

Conclusion

In this thesis, we first proposed a new text representation model: the bag of word clusters

model. Unlike the traditional bag of words (BOW) model that treats each word as an inde-

pendent item, we group semantic-related words as clusters using pre-trained word2vec word

embeddings and represent each comment as a distribution of word clusters. This model suc-

cessfully solves the high dimensions and sparsity problem of the BOW model since the number

of clusters is far less than the vocabulary size. A sufficient amount of computational power can

be saved by using our text representation method. Another advantage of the bag of word clus-

ters model is that it considers the semantic relationship between words, where words with the

same semantic meaning will be treated as the same item in our model. In that way, our model

can perform better when making a comparison between two texts.

Next, we proposed our comment ranking algorithm: the K-L divergence to the maximum

general entropy comment. We consider the maximum general entropy comment as an “ideal”

comment concerning the global word cluster distribution and judge each comment by its dis-

tance to this “ideal” comment. The intuition is that the “ideal” comment highlights aspects of a

product that many other comments frequently mention. In our experiment with a real Amazon

product, this method outperforms the method using the general entropy purely and success-

fully identifies most of the fake comments. Besides the excellent ranking performance, there

are two advantages of our ranking methods: a) it is entirely unsupervised, which requires no

prior domain knowledge and no training data. Therefore, this method can be applied to most

of the products’ comments ranking applications since only the comments texts are needed; b)

55



56 Chapter 5. Conclusion

this method has low computational cost since it only requires statistical information from the

text. Training word2vec word embeddings is generally more time consuming, but in fact, many

high-quality pre-trained word embeddings can be downloaded from the internet.

There are still many areas regarding our works we can focus on for future research:

1) Finding Other Clustering Method: During the research, we are aware that clustering

results using k-means are not very stable because our word embeddings have relatively high

dimensions. In the future, we may be able to find a more suitable method for clustering word

embeddings.

2) Other Applications of the Bag of Word Clusters Model: As a text representation

method, the bag of word clusters model performs well in our comments ranking application.

However, this method can also be used in other text mining applications, such as text classifi-

cation and sentiment analysis.

3) Combining the General Entropy Method and the K-L Method: In Chapter 4, we

compare the performances of the general entropy method and the K-L method. We find that

the entropy method focuses on the text complexity, while the K-L method focuses more on the

distribution difference. If we can combine these two methods, we may be able to get better

ranking performance.

4) Develope a Python Package: Our algorithm is purely implemented on Python, which

can be developed as an open-source Python package.



Bibliography

[1] Oxo tot waterproof silicone roll up bib with comfort-fit fabric neck. https://www.

amazon.com/dp/B00D3TPGAO, 2014. Accessed: 2020-03-02.

[2] Online shopping in canada, 2018. https://www150.statcan.gc.ca/n1/pub/

89-28-0001/2018001/article/00016-eng.htm, 2019. Accessed: 2020-08-01.

[3] Alberto, T. C., Lochter, J. V., and Almeida, T. A. Tubespam: Comment spam filtering

on youtube. In 2015 IEEE 14th International Conference on Machine Learning and

Applications (ICMLA) (2015), pp. 138–143.

[4] Bird, S., Klein, E., and Loper, E. Natural Language Processing with Python, 1st ed.

O’Reilly Media, Inc., 2009.

[5] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search engine.

Computer Networks 30 (1998), 107–117.

[6] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullen-

der, G. Learning to rank using gradient descent. 89–96.

[7] Chen, C. C., and Tseng, Y. Quality evaluation of product reviews using an information

quality framework. Decision Support Systems 50, 4 (2011), 755 – 768.

[8] Chevalier, J. A., and Mayzlin, D. The effect of word of mouth on sales: Online book

reviews. Journal of Marketing Research 43, 3 (2006), 345–354.

[9] Fellbaum, C. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

57

https://www.amazon.com/dp/B00D3TPGAO
https://www.amazon.com/dp/B00D3TPGAO
https://www150.statcan.gc.ca/n1/pub/89-28-0001/2018001/article/00016-eng.htm
https://www150.statcan.gc.ca/n1/pub/89-28-0001/2018001/article/00016-eng.htm


58 BIBLIOGRAPHY

[10] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[11] Hartigan, J. A., and Wong, M. A. Algorithm as 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 1 (1979), 100–

108.

[12] He, R., andMcAuley, J. Ups and downs: Modeling the visual evolution of fashion trends

with one-class collaborative filtering. In proceedings of the 25th international conference

on world wide web (2016), pp. 507–517.

[13] Hsu, C., Khabiri, E., and Caverlee, J. Ranking comments on the social web. 2009

International Conference on Computational Science and Engineering 4 (2009), 90–97.
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Lists of Fake Comments

asin Comment Text Entropy E-Rank K-L K-Rank
B07PDHT5XP ’Currently waiting for two weeks

to receive a replacement speaker.
Like so many (60-90 in the reviews)
people on Amazon who purchased
the Bose Soundlink, mine failed to
charge or turn on after a few short
months. Don’t know why, but I do
know that in spite of this extremely
common software, Bose won’t send
a replacement - you have to send
yours in, wait for it to arrive at
Bose - they say 10-12 days -and
be verified as non functional. Then
they will send out a replacement.
Don’t know how long that will take.
The Bose rep verified that to me
on the phone that it would not turn
on. He then asked me if I had up-
dated the firmware. This was dif-
ficult to do, and the speaker would
not work. Oh well. With any luck,
the replacement will last as long
as the inexpensive ones I’ve pur-
chased. Time will tell!’

0.007413 80 46.0707 97
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B07BBKVK8G ’Decent sound for something the
size of a hockey puck. Pretty handy
i must say. Keep it in the kitchen,
good for timers music, conversions,
weather and asking general or even
area specific. questions etc. I
was surprised how well it picks up
voice. Wife still basically can’t
fight the instinct to yell at it like
an overseas call. My two year old
somehow gets her to play whitney
houston consistency even though
she is speaking gibberish. I’m start-
ing to think its an actual language
that only alexa understands. Some
free advice: never ask it to play
hide and seek, it will never shut up,
be warned. Would reccomend to
people who aren’t afraid of robots
eventually taking over the world. I
think it would be a bit overwhelm-
ing for my mom’s generation.(no
offence to you oldr folks). Thumbs
up.’

0.006517 89 48.6258 100

B01GY7IKEA ’Fantastic glasses that truly pre-
vent eye strain. As someone with
a history of concussions and trau-
matic brain injury, I am sensitive
to screen time headaches. How-
ever, since wearing these I have
noticed an astronomical deffierence
and best of all... no vision change
or headaches! My loved ones have
already begun to buy pairs for them-
selves!’

0.007115 83 45.2737 94
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B018K1EHFO ’I bought this for my 10 month
old son (currently 25 pounds at 12
months) when we went to Wash-
ington D.C. and would highly rec-
ommend for anyone traveling with
a little one. He would get tired of
the stroller and would want to be
held, there were also times where I
wanted him up close with me and
not in the stroller. He was very
happy and comfortable in this. I
have only used the frontal position,
facing me so far, I have yet to try
any of the other 3 - but its a great
product and he loves it. Its also very
comfortable with the wide straps
and the strap that goes across the
lumbar. My husband who is 6’3”
250 pounds and I who am 5’3” 140
pounds, can both wear this - so it
also has a wide range as far as who
can use.’,

0.011175 32 22.0476 19

B00KWKD64U ’My husband finds these shorts su-
per comfortable. They’re so thin
and airy without being see through.
He is 6’7” and the tall size fall just
at the centre of his knees. The band
is very comfortable and the mate-
rial has great stretch. They wash
well without shrinking in the dryer.
They look great on him.’

0.010365 45 41.9543 90
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B002L3J3H0 ’Super fun! I bought this to take
a White Elephant gift exchange.
Once gifts were opened, we tore
open this gift to start playing. So
FUN! There are many blank tiles
and at first we were bummed but
then we made changes to the game.
Every time we started a new game,
we made new rules for the blank
tiles. The ability to make the game
as interesting and fun as possible
was the best. I had so much fun
playing this game, I bought one to
keep at my house!’

0.008695 69 32.2230 60

B01LWVX2RG ’Received controller opened box
and found a used controller in poor
condition, Multiple scratches, curse
words carved into the plastic, paint
worn away in areas, control knobs
sticking due to filth. Seems to be a
very used old controller’

0.002048 105 64.8508 105

B01I58TWAW ’The products themselves are lovely
(although, Umbra: not thrilled with
the logo emblazened on the side of
the product), however! one of them
arrived with a chip. :( They were
packaged very well and obviously
new/never opened, and the chip was
nowhere to be found within the
packaging. Too much of a hassle to
return, so I’ll keep it.’

0.006462 90 58.4808 104
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B06ZXX3LJB ’If you are a wipes snob you will
love these! We were using Babies
R Us brand before which are like
hard wet paper towel... But beware
after you try these you will never
switch! They are so moist and gen-
tle on your babies skin and you re-
ally only need 1 wipe to get the job
done. They are like the Viva paper
towel of baby wipes!’

0.012192 18 42.749037 92

B00O8PNW6M ’I was introduced to the author
in the Norwegian documentary
on firewood (National Firewood
Night) on netflix - what a fasci-
nating cultural phenomenon! Fire-
wood is a national passion and sci-
ence, and useful for anyone with
a fireplace or wood stove. I read
most of it around a campfire dur-
ing an extended camping trip in
New Hampshire, and highlighted
and bookmarked so much - It’s like
a textbook in terms of the validity
of the information. I highly recom-
mend this read even if purely for
pleasure.’

0.005926 95 46.8511 98

Table A.1: Detail of Fake Comment Set 2
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asin Comment Text Entropy E-Rank K-L K-Rank
B001XSFW42 This is a very poorly designed pizza

cutter. The grey surface which
tries to mimic a circular saw deck
just scrapes the cheese from any
pizza regardless of the thickness.
There is a ridiculous blade guard,
again designed to look like a cir-
cular saw blade guard which just
gums up, and partially falls out of
place while you’re using the cut-
ter.Waste of money. Selling ASAP.
There are far better pizza cutters
than this!Boooo!’

0.011898 22 38.8387 75

B00VND51XE ’In all fairness it seems like the
scent was changed 5 years ago. I
used Dreft when my son was a baby,
and found the fragrance heavenly.
I then wanted to reintroduce Dreft
into our family, and was extremely
disappointed to find out that the
scent is now different. Like others
said it smells way too strong and
perfumy. Why ruin such an amaz-
ing product?!’

0.004810 98 48.0275 97
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B01IVTVK3W ’I decided to buy this on prime day
since the price was reduced and I’m
so glad I did. I was worried be-
cause I have a large 2 month old
son and if he couldn’t fit, I would
have no use for it. Not only is it big
enough for him, but my 2 year old
also loves it. Obviously she’s too
big to lay down but she fits comfort-
ably sitting, even with my son lay-
ing down next to her. It’s also rel-
atively lightweight and folds very
easily. I plan on sticking it in the
car seat bag when we travel via air-
plane, I think it will fit easily when
folded but we’ll see. We spend a lot
of time outdoors so this way I wont
have to hold my son outside, it gets
very hot in the summertime so this
way he can stay cooler, especially
with the canopy.’

0.011028 34 24.8252 11



68 Chapter A. Lists of Fake Comments

B00Z9QVE4Q ’The power bank needs more than
5 hours to charge from 50% sta-
tus (which is the status when I re-
ceived the item). I directly wrote to
Anker when after 4 hours or so it
is still not fully charged, suspecting
that the item is defective. ANKER
responded within hours with infos-
uggestion to use the original USB
cable that came together with the
item. It seems that my usual long
USB cable is not suitable for this
power bank even though it is work-
ing fine wirth my other power bank.
Please note that to get a quicker
charge this Anker power bank need
that short USB cable, do not use
your own cable, it will take longer
to charge. Good lessons learned. It
is working fine and charge well for
the last 10 days.’

0.006185 88 40.9257 82

B01D1HEP0E This jasmine candle is very fragrant
, it’s a soy candle and burns down
leaving no residue on the inside
of the opal container which has a
lovely lid when not in use .’

0.005992 91 45.6706 94

B00UTO8YKU ’Switched from a Bodum brand
travel press to this. There is no
comparison between the two. The
filter on this one works far better
and the coffee is much cleaner tast-
ing. It is well made, stylish and not
a speck of grit gets into the coffee.
An excellent purchase.’

0.004587 99 59.2816 102
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B012A4IXES ’Have been using these wipes since
my son was born. This is what
the hospital used and I’ve been us-
ing it since. They are soft, fra-
grance free and strong. They don’t
rip very easily unlike the other com-
petitors. I was given a sample of
huggie wipes and these are far su-
perior. My son doesn’t have sen-
sitive skin but I wouldn’t purchase
any other type. I even use them to
wipe his hands when soap and wa-
ter aren’t in reach. Great value and
fast shipping, thanks Amazon.’

0.014022 7 42.5158 86

B00OK3TXJC ’Never owned a Pneumatic drill be-
fore. While building planters &
deck, worked great for 1/8” holes
back to back... but didn’t seem to
have the sustainable power to do the
1” hole in a 2x8. Pulled out my
corded Dewalt and went through in
about 20 seconds.’

0.005774 94 60.6564 103

B01LNSAYJ4 ’This truly large lens is very sharp,
even at 600mm with a full frame
sensor. It’s a bit tricky to learn
to use the lens because of the lens
aperture, which requires a lot of
light, or a high ISO and a low shut-
ter speed. Highly recommended
to use with a tripod for lower
ISO shooting of stationary or slow-
moving subjects. Not for indoor
or night sports. Highly recom-
mended.’

0.007040 80 34.2202 48
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1419717987 ’I contemplated buying this book
a year ago to see what all the
’Non-Fiction book of the year’ fuss
was about but thought it’s got to
be way too boring, like seriously,
wood chopping, drying and stack-
ing. Got it for Christmas and I
was very wrong, can’t put it down,
takes you to a place of relaxation,
now where’s my firelighters and
matches.’

0.005244 97 51.5619 99

Table A.2: Detail of Fake Comment Set 3



71

asin Comment Text Entropy E-Rank K-L K-Rank
B07P68CZ5D ’A good quick and easy gift idea for

ANYONE! It took less than 3 min-
utes for me to purchase and have
the gift card emailed to me which
is great whenever you’re in a pinch
to find a last minute gift. Love that
there are so many options...amazon
will create a printable version for
you or you can choose a date and
time to have it emailed directly to
the recipient and of course if you
have time you can order a phsyical
gift card.’

0.010153 49 45.2188 85

07STGGQ18 ’First CPU I’ve ever seen in 25
years of building my own PC’s
that was dead on arrival.Tested
on 3 different MB’s (including
X570 Board), 2 known working
sets of Ram, 2 known working
PSUś, 2 known working Graphics
Cards.Refused to boot in all cases.
Sent it this back and grabbed a 2600
instead and it worked fine.’

0.009022 59 58.0232 101

B07FK9KVPM ’I would have given these awesome
shoes 5 stars other than they are
way TOO SMALL. I wear a 39
but returned that size. This pair is
40/41 and barely fits my 8.5 foot.
But they’re gorgeous with a nice
rubber tread and seem well con-
structed. Given that Ottawa is plow-
ing through snowstorm after snow-
storm I have yet to try them on the
beach BUT trust me..I will!’

0.010875 35 37.8595 53



72 Chapter A. Lists of Fake Comments

B0876XJ6CX ’Much like yourself, I enjoy hav-
ing eyes. I also prefer when they
aren’t burning from the heat of the
sun radiating straight into my skull,
or from the light reflecting from the
snow. This is why I bought these
polarized aviators. I’m a man of
class and style, which is why I try
and look like I travel the world (I
don’t leave my apartment) by wear-
ing aviators. These help me see
straight into the depths of the river
when I’m fishing, and they have
helped me reel in more behemoths
than Jeremy Wade (y’know, the old
white dude from River Monsters).
They are also quite large, which
help hide the bags under my eyes
while I’m at work. No, Susan, I’m
not hungover - I was up all night
crying because my wife left me and
took the kids. All in all, I would
recommend these sunglasses if you
have eyes and don’t want glaucoma
when you’re 34.’,

0.008559 73 53.7139 98

B00DI1H614 ’This thing is made to be impossi-
ble to repair. I’m a electronic tech-
nician and after trying to repair a
defective display (almost gone), Iv́e
notice that most of the screws are
rusted. Also, they made it to be im-
possible to repair without breaking
the enclosure. Oster, never again.’

0.004458 101 55.3778 100
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B086YHGDNC ’Exactly as shown in photos, ar-
rived early! It’s weird that I have
a darker red band that is between
the black and purple. The bands
weren’t too stiff upon arrival but
still need some “breaking in”. I use
the tiny red for everyday stretch-
ing.’

0.010596 40 42.5785 78

B07XR5XMJX ’One of the best toothbrushes I’ve
had! It’s a lot less clunky than other
electric toothbrushes but it still has
great battery life. I haven’t had to
charge it since I first got it. I re-
ally appreciate the different modes,
which allow me to you less power
on parts of my mouth that are more
sensitive. Definitely a great buy for
the price.’

0.007699 82 47.1460 87

B01M6C5SMP ’I have newborn twin girls so I can-
not even begin to express how much
easier these pyjamas have made my
life! First off the zip is a godsend...
no really! When you are strug-
gling through the newborn phase,
pulling a zipper open and closed to
get your little one ready is really
convenient and above all quick! No
more struggling with poppers in the
dark with a fussy baby. Times that
by two and well.. there you have
it lolSecond the material is really
warm so I no longer have to layer
my girls’ clothes as much to keep
them nice and cosy during these
winter months.’

0.011366 27 42.2115 76
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B00N1X6JV2 ’Saw these pens in a video and be-
ing the stationery addict i am, i had
to buy! They are honestly the nicest
pens ive used...ink dries quick and
doesnt smear with the zebra mild-
liners, which was the main concern
as my muji gel pens smear every
where when highlighted. The barrel
is slightly uncomfortable to hold,
as it is one width all the way, so i
would recommend putting the ink
in a zebra sarasa 0.5mm barrel, as
ive seen many people do. definitely
makes a difference’

0.010508 41 49.2298 91

B07MLWYXJM ’This knife comes with a beauti-
ful gift box, is very nice making
the knife a great gift if you choose.
Knife is super sharp right out of
the box .It also come with a knife
sharpener so nice.The handle and
blade look great, and it feels great
in the hand. It has light weight that
mean your hand is tireless when
you prepare the dishes for your
family. We’ve used it on veggies
and meats so far and have no com-
plaints. This knife will been great
tool in my kitchen. I love it so
much.’

0.008556 74 47.334071 88

Table A.3: Detail of Fake Comment Set 4
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asin Comment Text Entropy E-Rank K-L K-Rank
B073SNVD13 ’this machine has been worth its

weight in gold. it has been that
good!! I believe I’m going on 3
years and I use it a minimum of at
least once a week. Tip: press air out
at the beginning of sealing feature it
seems to help prime the vacuum if
even possible, plus lift package up
slightly as its vacuuming as it is be-
ing ’suck’ towards the machine.’

0.014773 5 27.3552 12

B01N1UX8RW ’It’s really good and pretty accurate,
however please note that this does
not take it your overall body fat per-
centage, only for your lower half.
To take in overall body fat, you’ll
need a scale with hand sensors for
the upper body.However still a good
gadget to keep track of progress.’

0.009084 67 45.4925 89

B00XISYB42 ’I bought this particular product
solely based off product reviews,
only to find most of the ones on
amazon suspiciously posted by one
time posters or people only pump-
ing up EVL products. I would stay
away from EVL solely due to the
shady marketing practices and stick
to better known brands such as ON’

0.009494 62 35.4899 49

B082WRL64V ’Ordered these for my hubby and
they fit him perfectly. He wears
slippers inside and out on our porch
and patio. So I put them by the door
and He said they are super comfort-
able . They also have a harder bot-
tom so that works nicely for him
when he steps outside . Easy slip
on and off .’,

0.007007 86 30.3250 25
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B00NLZUM36 ’Bought this thing ages ago and had
a ton of issues but never bothered
to review it. But then I bought an-
other product from these people and
had even MORE issues that they
ignored me about until I left them
a bad review and they promised
me a replacement that they never
sent. So i decided to go back
and review this one too. Its super
cheap, the LED’s in the keyboard
NEVER worked, the mouse scroll
wheel stopped working almost im-
mediately and the left click is spo-
radic at best and clearly as men-
tioned above the customer service is
AWFUL.’

0.007411 82 56.3201 101

B07SW1LSRG ’Absolutely terrible. Items do not
transfer when you reach for them,
doors do not open or close, zom-
bies kill you from a distance by
some type of teleportation while the
screen goes completely black????
What? How is this a full release?
Wow. Just don’t spend your hard
earned money on this. I am will-
ing to suffer some bugs, but this is
honestly completely unplayable.’

0.010067 49 37.9314 60
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B006PDJZ48 ’This is a great product. I misplaced
the original one I purchased and I
recently purchased two new ones. I
keep one at my office desk and one
at my favourite TV viewing chair
at home. My only issue with the
chest expander is that I would like
my wife to be able to use it but at
her current strength she would need
to have a set of 3 20 pound resis-
tance bands or perhaps even 3 10
pound ones. There does not ap-
pear to be any way to purchase such
lower strength resistance bands for
the chest expander.’

0.008228 79 70.1274 105

B085QC2Q32 ’The overall quality is okay but it is
advertised as being stainless steel/
hypoallergenic but I do not think
this is the case. I could only stand
the pain for a few hours before tak-
ing it off completely. Also, the ear-
rings are waaay to big for the carti-
lage - even the smallest size.’

0.006817 90 44.6643 86

B075JS5RHD ’Great photo and video quality.
The video output was disappoint-
ing though, HLG 10-bit is not sup-
ported yet so you have no ”effec-
tive” way of getting 10-bit ”out
of the box”. Then you also need
to do some post processing to get
the right color grading. In other
words don’t expect to shoot your
kids at the park and then watch
them in beautiful vivid color on
your NVidia Shield, it’s just not de-
signed for that use-case.’

0.011397 26 35.1542 47
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B07JWJTD1Y ’This product is very nice. This
is the second Zilla product I have
bought and I have been pleased with
them both. The pump works well
and is very quiet. The small plants
are a nice touch too. The even in-
clude a nice thick plastic feeding
dish. I am not using it, but it is nice
to have. It hold around 48 oz. of
water and helps keep the humidity
up in my sons crested gecko enclo-
sure. It matches the zilla rock hide
I have. I highly recommend this.’

0.010994 35 38.9952 66

Table A.4: Detail of Fake Comment Set 5



Appendix B

Python Code

B.1 Data Cleaning

1 import pickle

2 import pandas as pd

3 from nltk.stem import WordNetLemmatizer

4 import gensim.parsing.preprocessing as preprocess

5 from gensim.utils import simple_preprocess

6 from gensim.models.phrases import Phrases, Phraser

7 from time import time # To time our operations

8

9 def parse(path):

10 g = open(path, ’rb’)

11 for line in g:

12 yield eval(line)

13

14 def getDF(path):

15 i = 0

16 df = {}

17 for d in parse(path):

79
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18 df[i] = d

19 i += 1

20 return pd.DataFrame.from_dict(df, orient=’index’

)

21

22

23 def lemmatize(sentence, lemmatizer):

24 """

25 @param: sentence(string);

26 @param: lemmatizer(function)

27 return: list of str

28 """

29 sentence = simple_preprocess(sentence, min_len

=3)

30 sentence = [lemmatizer.lemmatize(w) for w in

sentence]

31 return sentence

32

33

34 def clean_data(text, lemmatizer):

35 """

36 @param: text(String),

37 @param: lemmatizer(function)

38 return: corpus(list)

39 """

40 res = []

41 for sentence in text:

42 sentence = preprocess.remove_stopwords(

sentence.lower())
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43 sentence = preprocess.strip_non_alphanum

(sentence)

44 # remove punctuation

45 sentence = preprocess.strip_numeric(

sentence)

46 # remove number

47 sentence = lemmatize(sentence ,

lemmatizer)

48 # lemmatize data

49 if len(sentence) > 2:

50 res.append(sentence)

51

52 return res

53

54

55 if __name__ == "__main__":

56 T = time()

57 text = ""

58 true, false = 1, 0

59 df = getDF(’reviews_Baby_5.json’)

60 for t in df[’reviewText’]:

61 if not type(t) == str:

62 continue

63 text = text + t

64 # every line represent one sentence

65 text = text.split(".") # split data by sentence

66 lemmatizer = WordNetLemmatizer()

67 text = clean_data(text, lemmatizer)

68 # automatically detect common phrases (bigrams)

from a list of sentences
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69 phrases = Phrases(text, min_count=30,

progress_per=10000)

70 bigram = Phraser(phrases)

71 text = bigram[text]

72 # save bigram model

73 bigram.save(".../my_bigram_model.pkl")

74 # write text into our file

75 with open(".../train.txt", "wb") as f:

76 pickle.dump(text, f)

77 f.close()

78 print(’Time\ to\ clean\ the\ data:\ {} mins’.

format(round((time() - T) / 60, 2)))

B.2 word2vec model

1 import pickle

2 from time import time # To time our operations

3 import multiprocessing

4 from gensim.models import Word2Vec

5 import logging # Setting up the loggings to monitor

gensim

6 logging.basicConfig(format="%(levelname)s - %(asctime)s:

 %(message)s", datefmt=’%H:%M:%S’, level=logging.INFO

)

7

8 # Read data

9 with open("train.txt", "rb") as f: # Unpickling

10 train = pickle.load(f)

11
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12 cores = multiprocessing.cpu_count() # Count the number

of cores in a computer

13

14 w2v_model = Word2Vec(min_count=30,

15 window=2,

16 sg=1,

17 size=150,

18 sample=0,

19 alpha=0.03,

20 min_alpha=0.0007,

21 negative=20,

22 workers=cores -1)

23

24 # Build Vocabulary

25 t = time()

26 w2v_model.build_vocab(train, progress_per=10000)

27 print(’Time to build vocab: {} mins’.format(round((time

() - t) / 60, 2)))

28 # Train

29 t = time()

30 w2v_model.train(train, total_examples=w2v_model.

corpus_count , epochs=30, report_delay=1)

31 print(’Time to train the model: {} mins’.format(round((

time() - t) / 60, 2)))

32

33 # Save model

34 w2v_model.save("word2vec.model")
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B.3 word embedding clustering

1 import pickle

2 from gensim.models import Word2Vec

3 from time import time

4 from sklearn.cluster import KMeans

5 from sklearn.metrics import silhouette_score

6

7 # load model

8 w2v_model = Word2Vec.load("word2vec.model")

9

10 # normalize vectors in the model

11 w2v_model.init_sims(replace=True)

12

13 # Build training data

14 X = w2v_model.wv.vectors

15

16 # initialize k-means model

17 kmeans = KMeans(n_clusters=50, n_init=100, random_state

=777, n_jobs=-1)

18

19

20 # fit k-means model

21 t = time()

22 kmeans.fit(X)

23 labels = kmeans.labels_

24 res = silhouette_score(X, labels)

25 print(’Time to train the model: {} mins’.format(round((

time() - t) / 60, 2)))

26
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27 # build map: word->cluster label

28 wordlist = w2v_model.wv.index2word

29 word2cluster = {wordlist[i]: kmeans.labels_[i] for i in

range(len(wordlist))}

30 # build map: cluster->word cluster[list]

31 cluster2word = {}

32 for i in range(kmeans.n_clusters):

33 group = [key for key in word2cluster if

word2cluster[key]==i]

34 cluster2word[i] = group

35

36 with open("word2cluster", "wb") as f:

37 pickle.dump(word2cluster , f)

38 f.close()

B.4 Experiment with an Amazon Product

The experiment in this thesis is implemented using a Jupyter Notebook. You can download

this notebook using this link.

https://www.dropbox.com/sh/4slx4sexkxa6it3/AAAtS96nrAIHdTsws0h5D3K5a?dl=0
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