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Abstract 

The peristaltic pumping through channels with vibrating walls has been studied. The vibrations 

take the form of traveling waves. The spectrally accurate algorithm used to study flow 

properties is based on the Fourier expansions in the flow direction, Chebyshev expansions in 

the transverse direction, and the immersed boundary conditions (IBC) concept to deal with the 

irregular form of the solution domain associated with the waves. The flow domain is immersed 

in a regular computational domain. The flow boundary conditions are imposed in the form of 

constraints. Effectiveness of peristaltic pumping is assessed by determining the variation in the 

flow rate created by the wall vibrations. The study includes analysis of vibrations of just one 

wall as well as both walls. The effects of variations of the wave wavenumber, its amplitude, 

and the phase speed are analyzed. The effect of the relative position of the waves on different 

walls is studied in the case of the two wall vibrations. The results show that the flow rate is 

nearly constant and marginally dependent on the wave wavenumber as long as this 

wavenumber is sufficiently small but rapidly increases when the wavenumber becomes larger 

than one. The flow rate increases proportionally to the second power of the wave amplitude 

and proportionally to the first power of the wave phase speed. The largest flow rate is achieved 

for the two-wave system when the phase difference between both waves is equal to the half of 

their wavelength. 

 

Keywords 

Peristaltic pumping, pumping, immersed boundary condition method, vibrating wall, spectral 
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Summary for Lay Audience 

The application of moving boundaries in the form of peristaltic pumping is available in many 

biological and engineering systems. Understanding this effect is, hence, crucial. To understand 

this effect, channel flow will be considered as a sample problem. The focus of this work will 

be on the modification of channel flow resulting from the transverse movement of the bounding 

walls in the form of a traveling wave. Waves can be created using properly distributed 

piezoelectric pistons with a relevant phase difference. Investigations will be carried out 

considering constant pressure gradient constraint.  

This project will help to have more insight into the effect of peristaltic pumping which can be 

used to tailor numerous applications involving this concept to get the desired performance.  
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Chapter 1  

1 Introduction 

The applications of moving boundaries in the form of peristaltic pumping are available in 

many biological and engineering systems. Understanding the effect of peristaltic pumping 

is, hence, crucial. To understand this effect, channel flow is considered as a sample 

problem. The focus of this work is on the modification of channel flow resulting from the 

transverse movement of the bounding walls in the form of a traveling wave (as shown in 

Fig. 1). Waves can be created using properly distributed piezoelectric pistons (as shown in 

Fig. 1) with a relevant phase difference.  

 

Figure 1 
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1.1 Objectives 

The main aim of this work is to analyze the effect of moving boundaries on fluid flow in 

the form of peristaltic pumping. To understand the effect, flow through a channel with 

moving boundaries is taken into consideration. The physical mechanism activated by the 

moving boundary and responsible for variation in the flow response is to be investigated. 

This analysis is conducted under the consideration of fixed pressure gradient constraint. 

1.2 Motivations 

Application of this work can be found in many applications ranging from biological, 

medical to bio-medical and mechanical engineering. For example: in the biological system 

it’s the application can be found in urine transportation from the kidney to bladder, food 

transport through the gullet. In mechanical engineering, applications can be found in 

peristaltic pumps. Hence, understanding this effect in full is crucial. While the literature on 

the subject is quite voluminous, fundamental aspects of the flow response to the presence 

of boundary movements have yet to be explained. 

1.3 Literature Review 

Peristalsis is a mechanism either to mix contents in a container or propel the contents 

through a duct. Application of this is widely found in engineering, medical and biomedical 

applications. In the case of biological applications, examples are mixing of contents inside 

bile duct, ureter, glandular duct, etc. Peristaltic transport is assumed to have a solution for 

many of the engineering and biomedical problems. 

When fluids are being transmitted only through expansion and contraction of muscles then 

this is referred to as peristaltic pumping whereas the process is named as peristalsis. This 
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term was first coined by Bayliss and Starling (1902). A nice example of peristalsis can be 

our eating process where the food bolus moves through the esophagus after we swallow it. 

This movement takes place through the expansion and contraction of smooth muscles. 

Muscles that squeezes behind the food bolus, prevent it from going back. This way 

contractions take place like unidirectional waves that facilitate the food to reach the 

stomach. This is a unidirectional process as the food goes from mouth to the stomach.  

Following is an overview of the existing literature on peristalsis. It shows research 

conducted from various perspectives. To present the review systematically, it is divided 

into several subsections as presented below: 

1.3.1 Review on peristalsis with magnetohydrodynamics  

Magnetohydrodynamic effects facilitate a form of control mechanism in a fluid flow which 

can be observed in the case of magnetic peristaltic pumps and other biomagnetic pumps. 

A better alternative to micro-pumps was proposed by Kim (2006). In his developed 

micropump, magnetic fluids were driven through a concentric channel by dint of magnetic 

force. It was claimed to be more durable and reliable than the existing micro-pumps. 

Several variants of the magnetohydrodynamic peristaltic pump were developed by some 

other researchers like Neto (2011), Al-Halhouli (2010), etc. In the field of industrial fluid 

dynamics, an important role is played by flow field and boundary conditions. Endoscopy 

can be considered as an example of that which is employed to inspect the interior of any 

organ. Contributions found in this stream of research are due to Abd elnaby and Misiery 

2002, Abd elnaby 2004, Hayat 2006, Khan, Sohail, Ayesha, and Rashid 2015, Tripathi 

2011a, Tripathi 2011b, Tripathi 2011c, Tripathi 2012d and Tripathi 2012e. These studies 

were on the peristaltic flow of various types of fluids (Newtonian and non-Newtonian) 
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between two concentric tubes.  Theoretical researches were conducted on peristaltic 

magnetohydrodynamic flows. A study on a couple of stress fluid was conducted by Tripathi 

and Beg (2013). Peristalsis with magnetized nanofluid was studied by Kothandapani and 

Prakash (2014, 2015). The combined effect of heat transfer and magnetic induction was 

studied by Akbar (2015). A numerical analysis of the peristaltic flow through a circular 

tube was conducted by Tripathy (2011c). Studies on various pros and cons of 

magnetohydrodynamic peristaltic pumping are also available (Kumari and 

Radhakrishnamacharya (2012) and Ramesh and Devakar (2015)). Moreover, studies on the 

same topic with various formulations (e.g., consideration of Lorentz force, magnetic 

nanofluids, heat transfer, etc.) are also prevailing in the existing literature (Ellahi 2015b, 

Rashidi 2015, Ellahi 2015a, Sheikholeslami and Ellahi 2015). 

1.3.2 Review on peristalsis through porous media  

Many mathematical studies were conducted on peristalsis in porous media focusing on the 

digestive system. A flow model using viscous Newtonian fluid was proposed by El 

Shehawey (2000). Perturbation solutions were obtained for pressure gradient and stream 

function using this model. The analytical solution was developed by Hayat (2007) for the 

cases which involve a small-amplitude ratio in the peristaltic flow of viscoelastic fluids. 

Perturbation solution for the cases of peristaltic pumping which involves heat transfer was 

developed by Vajravelu (2007). Investigation of Darcy number effects in peristaltic flow 

and heat transfer in a porous medium was accomplished by Vasudev (2011). A generalized 

Darcy formulation was proposed by Tripathi and Bég (2012a) for peristalsis in porous 

media employing Maxwell’s viscoelastic model. Investigation of diffusion in blood flow 

in non-Darcy porous media was conducted by Bég (2012).                                                      
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1.3.3 Review on peristaltic flow of nanofluids  

Nanotechnology drew great attention in the past few years for the sake of the development 

of medical devices on a smaller scale. The discussion on nano-fluid mechanics was 

pioneered by Chol (1995), focusing on the modification of micro-fluids through employing 

specially designed nanoparticles. It had such an impact on biomedical engineering that 

several journals (Journal of Nanofluids [Prasad 2015], ASME Journal of Nanotechnology 

in Engineering Medicine [Lu 2011]) were initiated in this stream of research. Several 

studies in this stream of research are - peristalsis of nanofluid through a curved channel by 

Hayat and Ahmed (2019), peristaltic pumping of Nanofluids in the presence of 

magnetohydrodynamics and thermal radiation by Prakash and Siva (2019), hydrodynamic 

peristalsis of Nanofluids by Hayat (2017), the endoscopic effect on the peristaltic flow of 

Nanofluid by Khaled (2014), an analytical solution of the peristaltic flow of Nanofluid 

developed by Ebaid (2013), application of peristaltic flow of Nanofluids in drug delivery 

system by Tripathy and Beg (2014), peristaltic pumping of Nanofluid through a tapered 

channel by Prakash and Tripathy (2019), etc. Mathematical studies focusing on the 

peristaltic flow-through channel were conducted by Akbar and Nadeem (2012), Mustafa 

(2012), Akbar (2012), Aly and Ebaid (2014).             

1.3.4 Review on peristaltic flow of couple-stress fluid  

It is a variant of non-Newtonian fluid. The peristaltic flow of this type of fluid through a 

channel under an oscillatory flux was investigated by Kumar (2010). The peristaltic flow 

of couple stress fluid under the influence of the magnetic field in an asymmetric channel 

was investigated by Nadeem (2011). Before that, a similar type of investigation was 

conducted by Nasir and Hayat (2007). The magnetohydrodynamic peristaltic flow of 



6 

 

couple stress fluids with heat and mass transfer was investigated by Nabil, Samy, Hasan, 

and Elogail (2012). The magnetohydrodynamic peristaltic flow of couple stress fluids with 

slip effect was investigated by Lika, Ahmed, and Liqaa (2014). A similar investigation by 

adding the effect of the magnetic field was conducted by Swarnalathamma and Krishna 

(2016). Effect of peristaltic flow of couple stress fluid in a channel at low Reynolds number 

was investigated by Kumar (2016). A study on the peristaltic flow of couple stress fluid 

through a uniform porous medium was conducted by Alsaedi, Nasir, and Tripathy (2014) 

whereas the peristaltic flow of couple stress fluid both in uniform and a non-uniform 

channel was studied by Mekheimer (2002). The exact solution for the peristaltic flow of 

couple stress fluid was worked out by Hina, Mustafa, and Hayat (2015). Peristaltic flow 

with heat and mass transfer tailoring it to an application of biomedicine was also 

investigated by them (2015). A blood flow model was proposed by Kumar (2015) where 

the effect of couple stress fluid on magnetohydrodynamic peristaltic flow with a porous 

medium through an inclined channel at the presence of slip effect was investigated by him. 

The magnetohydrodynamic peristaltic flow of a couple stressed fluid through a porous 

medium with long-wavelength approximation was studied by Mohanakrishnan and Siva 

(2015). Thermal properties of couple stress fluid in an asymmetric channel with peristalsis 

were studied by Elmaboud, Mekheimer, and Abdellateef (2013). Hall effects of the same 

type of fluid in a vertical asymmetric channel was studied by Kumar, Kavitha, and 

Saravana (2017).  

1.3.5 Review on peristaltic flow of non-Newtonian fluids 

Several studies were conducted on the peristaltic flow of various kinds of non-Newtonian 

fluids. The non-Newtonian effects of the peristaltic flow of a Maxwell fluid were 
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investigated by Tsiklauri and Beresnev (2001). The slip effect on a non-Newtonian 

Maxwellian fluid in the case of peristaltic flow was studied by El-Shehawy, El-Dabe, and 

Eldesoky (2006). The magnetohydrodynamic peristaltic flow of non-Newtonian fluid 

through a circular cylindrical tube was investigated by Eldabe, Nabil, and Ghaly, A.Y. and 

Sayed, Haneen (2007). The peristaltic flow of a non-Newtonian fluid under the influence 

of the magnetic field in a planner channel was investigated by Hayat, Tasawar, and Khan, 

M. and Siddiqui, Abdul, and Asghar, Saleem (2007). The peristaltic flow of non-

Newtonian fluid in a curved channel was studied by Nasir and Sajid (2010). A similar 

numerical study was conducted by Kalantari, Sadeghy, and Sadeqi (2013).  Non-

Newtonian characteristics of the peristaltic flow of blood in micro-vessels were studied by 

Maiti and Misra, (2011). The compressibility effects on peristaltic flow through an annulus 

in the case of non-Newtonian Maxwell fluid were investigated by Mekheimer and Abdel-

Wahab, Hina, Sadia (2013). The peristaltic flow of Pseudoplastic fluid in a curved channel 

was explored by Mustafa, Meraj, Hayat, Tasawar, and Alsaedi (2013). The effect of wall 

properties on the peristaltic flow of a non-Newtonian Fluid was worked out by Javed, 

Maryiam, Hayat, Tasawar, and Alsaedi (2014). An analysis of the convective heat transfer 

of the peristaltic flow of power-law fluid in a channel was conducted by Hayat, Tasawar, 

Yasmin, Humaira, and Alsaedi (2014). A mathematical study of non-Newtonian fluid 

through composite stenosis in the case of arterial blood flow was conducted by Ellahi and 

Rahmat (2014) along with their group. An exact solution of the peristaltic flow of non-

Newtonian fluid was proposed by Singh (2016). The peristaltic flow of non-Newtonian 

fluid through a nonuniform tube was also analyzed by him along with Medhavi, Gupta, 

and Bhatt (2017). Recently, modeling and simulation of the peristaltic flow of Newtonian 
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and non-Newtonian fluids with application to the human body were accomplished by 

Samer (2017). Research on the peristaltic flow of an Ellis fluid in an inclined uniform tube 

was conducted by Kumar, Thanesh, Kavitha, and Saravana (2018). The peristaltic flow of 

non-Newtonian Maxwell fluid through a heated non-uniform tube was investigated by 

Vaidya and Choudhari (2019) along with their group.  

1.3.6 Review on Peristaltic pumping in Esophagus  

The peristaltic pressure profiles of the human esophagus were studied by Gernhardt and 

Castell (2000). The effect of gravity on oesophageal peristalsis in the human body was 

investigated by Allen and Zamani (2003). An artificial Esophagus with Peristaltic 

Movement was designed by Makoto and Sekine (2005) along with their group. Property 

evaluation of an artificial esophagus with peristaltic motion was done by Miki and Hiroyuki 

(2010) along with their group. A peristaltic pump based on bowl peristalsis was developed 

by Suzuki and Nakamura (2010). A study on the shape optimization of peristaltic pumping 

was conducted by Shawn and Shelley (2010). A mathematical model on peristaltic flow 

through the esophagus was proposed by Toklu (2011).  A model for the movement of food 

through the esophagus was designed by Misra and Maiti (2011). A peristaltic actuator for 

esophageal swallowing was developed by Dirven and Steven (2014) along with their group. 

The sinusoidal peristaltic waves for mimicry of esophageal swallowing were analyzed by 

Dirven, Xu, Peter, Cheng, and Leo (2014). A study on the characterization of the 

biomimetic peristaltic pumping system was conducted by Esser and Krüger (2019) along 

with their group. 
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1.4 Methodology 

Moving boundaries can be considered as dynamically evolving grooves or boundary 

irregularities. There are many engineering problems pertinent to the fluid flow which 

involves the effect of boundary irregularities on the flow. Flow problems where these 

boundary irregularities are stationary are referred to as "fixed boundary problems". When 

these irregularities dynamically evolve, then the boundary can be considered as a moving 

boundary.  

How this moving boundary is going to affect the flow response? This is to be investigated 

in the proposed research. To achieve this research objective, it is essential to compute the 

flow modifications that occurred to mean flow due to the moving boundary. This is done 

by solving steady Navier-Stokes equations. It necessitates an efficient and accurate 

algorithm that allows simple modeling of moving boundaries. In the following section, a 

review of the available algorithm is presented from which the most suitable one is selected. 

Most of the available algorithms for solving flow problems with boundary irregularities 

(stationary or dynamically evolving) involves the generation of boundary conforming grids 

based on finite-volume, finite element schemes (Croce 2005; Yoon 2006).  

These methods use low order discretization schemes which results in lower spatial 

accuracy. Using these methods, one needs to use a very fine grid or need to apply higher-

order schemes. Both have limitations. The use of a very fine grid is associated with 

unreasonable computational cost whereas the application of higher-order schemes is 

associated with the increased effort in formulations, complexity in programming, and grid 
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construction  (Jiang 2005). Again, efficiencies of all the methods drop when it is required 

to investigate a good number of geometries. 

Other methods that are based upon the numerical or analytical mapping of the physical 

domain are Domain Transformation (DT), Domain Perturbation (DP), and Immersed 

Boundary (IB) method. 

In the DT method, physical boundary irregularities are analytically mapped into a regular 

computational domain. High spatial accuracy is achievable by combining the DT method 

with the spectral discretization of the transformed spatial coordinate (Husain and Floryan 

2007, Angelis 1997). However, this comes with the complication in the transformed field 

equation which leads to an increase in computational cost for generating coefficient matrix. 

Hence, it is advisable to use spectral implementation of the DT method in case flow 

problems with high irregularities (on boundaries) only.    

The domain perturbation (DP) method uses the regular computational domain. This method 

transfers the boundary conditions to a mean location instead of enforcing them to the edges 

of the physical domain (Tsangaris 1986). But, the applicability of this method is confined 

to irregularities with a very small amplitude (Cabal 2002).  

Immersed boundary (IB) method uses regular computational domains like DT and DP 

method but the boundaries of the computational domain extend beyond the boundaries of 

the physical domain. IB methods do not require to generate a body-conforming grid. This 

has made this method computationally efficient. There are a good number of variants of 

the immersed boundary method developed by various researchers from time to time (Mittal 

2005, Peskin 2002). Most of the IB methods have low spatial accuracy due to their 
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dependence on low order finite difference, finite volume, or finite element techniques 

(Mittal 2005). 

 From the discussion presented above, it is observed that a common limitation of the 

methods is the dependence of them on low-order discretization techniques which leads to 

low spatial accuracy. A promising method to get out of this limitation is the spectral method 

as it can provide the highest accuracy in case of spatial discretization.  

A novel algorithm that takes advantage of the efficiency of the immersed boundary method 

and combines it to the highest accuracy of spectral discretization, was developed by 

Szumbarski and Floryan (1999). It is called the "Immersed Boundary Conditions (IBC)" 

method. This method is used for this research project.   

According to the IBC method, assuming the flow to be periodic, the field equation is 

discretized using Fourier expansion in the stream-wise direction which leads the governing 

partial differential equation into a set of ordinary differential equations. In the direction 

normal to the wall, discretization is done using Chebyshev polynomials which results in a 

set of algebraic equations of unknown coefficients of Chebyshev polynomial (Canuto 

1987).  

In this algorithm, moving boundaries are considered to be periodic and modeled in terms 

of Fourier expansion. In the IBC method, the boundary value problem turns into an internal 

value problem as the discretized boundary conditions are placed as internal constraints in 

the algorithm. So, for the proposed research IBC method is going to be used for the reasons 

as explained above. 
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1.5 Outline of this work 

The objective of this work is to explain mechanics of fluid response to boundary 

movements. The interest is in a special class of movements, i.e. boundary movements in 

the form of travelling waves which generate peristalic pumping effect. Detailed 

explanation of the mechanics of this movement, description of the process leading to 

pumping as well as its basic parametrization will be discussed. The presentation is 

organized as follows. Chapter 1 describes the objectives, motivations of this work. It also 

provides a brief literature review on related topics. This chapter concludes with the 

description of the available methodologies and explains out of these methodologies, why 

the current one is used for this work. Chapter 2 discusses the problem formulation. Chapter 

3 illustrates the numerical solution method. Chapter 4 presents the outcome of the analysis. 

Chapter 5 gives a summary of conclusions and gives directions for future work. 
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Chapter 2  

2 Problem Formulation 

This chapter describes the problem formulation. 

2.1 The geometry of flow domain 

A two-dimensional slot formed by two parallel plates placed at a distance 2ℎ apart as 

shown in Fig.2 and extending to  in the 𝑋-direction is considered. Both plates are 

subjected to vibrations in the form of traveling waves with known shapes.  

 

Figure 2: Channel with moving boundary 

The resulting time-dependent slot geometry is described as 

𝑌𝑈 (𝑡, 𝑋) =   1 + 𝐵𝑈 𝐻𝑈(𝑋 − 𝑐𝑡) =   1 + 𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

𝑒𝑖𝑛𝛼(𝑋−𝑐𝑡)𝑛=𝑁𝐴
𝑛=−𝑁𝐴

,                 (2.1a) 

𝑌𝐿 (𝑡, 𝑋) = −1 + 𝐵𝐿 𝐻𝐿(𝑋 − 𝑐𝑡) = −1 + 𝐵𝐿 ∑ 𝐻𝐿
(𝑛)

𝑒𝑖𝑛𝛼(𝑋−𝑐𝑡)𝑛=𝑁𝐴
𝑛=−𝑁𝐴

                  (2.1b) 

where subscripts U, L refer to the upper and lower walls, 𝐻𝑈 and 𝐻𝐿 are the known 

functions describing waveforms satisfying the following conditions  
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−
1

2
≤ 𝐻𝑈(𝑋 − 𝑐𝑡) ≤

1

2
 ,     −

1

2
≤ 𝐻𝐿(𝑋 − 𝑐𝑡) ≤

1

2
 ,                  (2.1c) 

𝐵𝑈 and 𝐵𝐿 are the wave amplitudes, 𝑁𝐴  denotes the number of Fourier modes required to 

describe wave shapes, 𝑐 and 𝛼 denote the wave phase speed and wavenumber, respectively,  

𝐻𝑈
(𝑛)

= 𝐻𝑈
(−𝑛)∗

 and 𝐻𝐿
(𝑛)

= 𝐻𝐿
(−𝑛)∗

are the real conditions with * denoting the complex 

conjugates and all quantities have been scaled with h as the length scale. 

2.2 Governing equations, boundary conditions and 
equation of constraint 

The character of fluid movement induced by surface waves is described by the Navier-

Stokes and continuity equation of the form 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑋
+ 𝑣

𝜕𝑢

𝜕𝑌
= −

𝜕𝑝

𝜕𝑋
+

𝜕2𝑢

𝜕𝑋2 +
𝜕2𝑢

𝜕𝑌2,                                (2.2a)                                                             

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑋
+ 𝑣

𝜕𝑣

𝜕𝑌
= −

𝜕𝑝

𝜕𝑌
+

𝜕2𝑣

𝜕𝑋2 +
𝜕2𝑣

𝜕𝑌2,                                                        (2.2b) 

𝜕𝑢

𝜕𝑋
+

𝜕𝑣

𝜕𝑌
= 0,                                                                                                                   (2.2c) 

where (𝑢, 𝑣) denotes velocity vector with components in the (𝑋, 𝑌)-directions scaled with 

𝑈𝑣 = 𝜈/ℎ as the velocity scale, p denotes pressure scaled with 𝜌𝑈𝑣
2 as the pressure scale and 

t stand for time scaled with ℎ/𝑈𝑣 as the time scale. In the above, 𝜈 denotes kinematic 

viscosity, and 𝜌 stands for density. The appropriate boundary conditions are 

𝑌 = 𝑌𝑈(𝑋, 𝑡):  𝑢 = 0,    𝑣 =
𝜕𝑌𝑈

𝜕𝑡
,                              (2.2d)  

𝑌 = 𝑌𝐿(𝑋, 𝑡):  𝑢 = 0,    𝑣 =
𝜕𝑌𝐿

𝜕𝑡
.                    (2.2e) 
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Fluid motion, if any, including the net flow rate in the x-direction, can be induced solely 

by the wall vibrations and this necessitates the imposition of a constraint which eliminates 

any externally imposed mean pressure gradient, i.e. 

𝜕𝑝

𝜕𝑋
|
𝑚𝑒𝑎𝑛

= 0.                                   (2.2f)                                                                        

Mean flow rate 𝑄|𝑚𝑒𝑎𝑛 evaluated as  

𝑄(𝑡, 𝑋)|𝑚𝑒𝑎𝑛 = [∫ 𝑢(𝑡, 𝑋, 𝑌)
𝑌𝑈(𝑡,𝑋)

𝑌𝐿(𝑡,𝑋)
𝑑𝑌]

𝑚𝑒𝑎𝑛
                                                                (2.3) 

provides a means for analysis of pumping effectiveness. 

 

2.3 Determination of stresses and forces 

Description of the flow mechanics requires knowledge of surface forces acting on the fluid 

at the walls. The description will start with the lower wall and specifically with the 

determination of the stress vector 𝜎⃗𝐿, 

𝜎⃗𝐿 = [𝜎𝑋,𝐿 𝜎𝑌,𝐿 ] = [𝑛𝑋,𝐿 𝑛𝑌,𝐿] [
2

𝜕𝑢

𝜕𝑋
− 𝑝

𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
2

𝜕𝑣

𝜕𝑌
− 𝑝

]

𝑌=𝑌𝐿

,                   (2.4) 

where the normal unit vector 𝑛⃗⃗𝐿 pointing outwards is expressed as 

𝑛⃗⃗𝐿 = (𝑛𝑋,𝐿 , 𝑛𝑌,𝐿 ) = 𝑁𝐿  (
𝑑𝑌𝐿

𝑑𝑋
, −1),     𝑁𝐿 =  [1 + (

𝑑𝑌𝐿

𝑑𝑋
)
2

]
−

1

2

       (2.5) 

The components of the stress vector can be written explicitly as follows: 
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𝜎𝑋,𝐿 = 𝜎𝑋𝑣,𝐿 + 𝜎𝑋𝑝,𝐿 = 𝑁𝐿 [2
𝑑𝑌𝐿

𝑑𝑋

𝜕𝑢

𝜕𝑋
|
𝑌𝐿

− (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝐿

] − 𝑁𝐿
𝑑𝑌𝐿

𝑑𝑋
𝑝|

𝑦𝐿

,               (2.6a) 

𝜎𝑌,𝐿 = 𝜎𝑌𝑣,𝐿 + 𝜎𝑌𝑝,𝐿 = 𝑁𝐿 [
𝑑𝑌𝐿

𝑑𝑋
(
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝐿

− 2
𝜕𝑣

𝜕𝑌
|
𝑌𝐿

] + 𝑁𝐿 𝑝|𝑌𝐿
,                (2.6b) 

where (𝜎𝑋𝑣,𝐿 , 𝜎𝑌𝑣,𝐿) and (𝜎𝑋𝑝,𝐿 , 𝜎𝑌𝑝,𝐿) denote the viscous and pressure contributions, 

respectively. Similarly, the normal (𝜎𝑛,𝐿) and tangential (𝜎𝑡,𝐿) components can be 

expressed as 

𝜎𝑛,𝐿 = 𝜎𝑛𝑣,𝐿 + 𝜎𝑛𝑝,𝐿 =  2𝑁𝐿
2 [ (

𝑑𝑌𝐿

𝑑𝑋
)
2 𝜕𝑢

𝜕𝑋
|
𝑌𝐿

−
𝑑𝑌𝐿

𝑑𝑋
(
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝐿

+
𝜕𝑣

𝜕𝑌
|
𝑌𝐿

] − 𝑝|𝑦𝐿
,     (2.7a) 

𝜎𝑡,𝐿 = 𝑁𝐿
2 {2

𝑑𝑌𝐿

𝑑𝑋
(

𝜕𝑢

𝜕𝑋
−

𝜕𝑣

𝜕𝑌
)|

𝑌𝐿

− [1 − (
𝑑𝑌𝐿

𝑑𝑋
)
2

] (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝐿

} ,                                  (2.7b) 

where 𝜎𝑛𝑣,𝐿 and 𝜎𝑛𝑝,𝐿 denote the viscous and pressure contributions, respectively. The X- 

and Y-components of the total force (𝐹𝑋,𝐿 , 𝐹𝑌,𝐿) acting on the fluid at the lower wall per its 

unit length can be determined as  

𝐹𝑋,𝐿 = 𝐹𝑋𝑣,𝐿 + 𝐹𝑋𝑝,𝐿 = 𝜆−1 ∫ [2
𝑑𝑌𝐿

𝑑𝑋
 
𝜕𝑢

𝜕𝑋
|
𝑦𝐿

− (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝐿

] 𝑑𝑋
𝑋0+𝜆

𝑋0
−

𝜆−1 ∫
𝑑𝑌𝐿

𝑑𝑋
𝑝|𝑌𝐿

𝑑𝑋
𝑋0+𝜆

𝑋0
,                                     (2.8a) 

𝐹𝑌,𝐿 = 𝐹𝑌𝑣,𝐿 + 𝐹𝑌𝑝,𝐿 = 𝜆−1 ∫ [
𝑑𝑌𝐿

𝑑𝑋
 (

𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑦𝐿

− 2
𝜕𝑣

𝜕𝑌
|
𝑌𝐿

] 𝑑𝑋
𝑋0+𝜆

𝑋0
+ 𝜆−1 ∫ 𝑝|𝑌𝐿

𝑑𝑋
𝑋0+𝜆

𝑋0
, 

                           (2.8b) 
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where 𝑋0 is a convenient reference point and integration extends over one wavelength, 

𝐹𝑋𝑝,𝐿 and 𝐹𝑌𝑝,𝐿 denote the pressure contributions while 𝐹𝑋𝑣,𝐿 and 𝐹𝑌𝑣,𝐿 stand for the viscous 

contributions. 

The similar process applied to the upper wall leads to  

𝜎⃗𝑈 = [𝜎𝑋,𝑈 𝜎𝑌,𝑈 ] = [𝑛𝑋,𝑈 𝑛𝑌,𝑈] [
2

𝜕𝑢

𝜕𝑋
− 𝑝

𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
2

𝜕𝑣

𝜕𝑌
− 𝑝

]

𝑌=𝑌𝑈

,                   (2.9) 

where the normal unit vector 𝑛⃗⃗𝑈 pointing outwards is expressed as 

𝑛⃗⃗𝑈 = (𝑛𝑋,𝑈, 𝑛𝑌,𝑈 ) =  𝑁𝑈 (−
𝑑𝑌𝑈

𝑑𝑋
, 1),       𝑁𝑈 = [1 + (

𝑑𝑌𝑈

𝑑𝑋
)
2

]
−

1

2

       (2.10) 

The components of the stress vector are expressed as 

𝜎𝑋,𝑈 = 𝜎𝑋𝑣,𝑈 + 𝜎𝑋𝑝,𝑈 = 𝑁𝑈 [−2
𝑑𝑌𝑈

𝑑𝑋

𝜕𝑢

𝜕𝑋
|
𝑌𝑈

+ (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

] + 𝑁𝑈
𝑑𝑌𝑈

𝑑𝑋
𝑝|

𝑦𝑈

,            (2.11a) 

𝜎𝑌,𝑈 = 𝜎𝑌𝑣,𝑈 + 𝜎𝑌𝑝,𝑈 = 𝑁𝑈 [−
𝑑𝑌𝑈

𝑑𝑋
(
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

+ 2
𝜕𝑣

𝜕𝑌
|
𝑌𝑈

] − 𝑁𝑈 𝑝|𝑌𝑈
,                  (2.11b) 

where (𝜎𝑋𝑣,𝑈, 𝜎𝑌𝑣,𝑈) and (𝜎𝑋𝑝,𝑈, 𝜎𝑌𝑝,𝑈) denote the viscous and pressure contributions, 

respectively. Similarly, the normal (𝜎𝑛,𝑈) and tangential (𝜎𝑡,𝑈) components can be 

expressed as 

𝜎𝑛,𝑈 = 𝜎𝑛𝑣,𝑈 + 𝜎𝑛𝑝,𝑈 =  2𝑁𝑈
2 [ (

𝑑𝑌𝑈

𝑑𝑋
)
2 𝜕𝑢

𝜕𝑋
|
𝑌𝑈

−
𝑑𝑌𝑈

𝑑𝑋
(
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

+
𝜕𝑣

𝜕𝑌
|
𝑌𝑌

] − 𝑝|𝑦𝑈
, 

                      (2.12a) 
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𝜎𝑡,𝑈 = 𝑁𝑈
2 {2

𝑑𝑌𝑈

𝑑𝑋
(

𝜕𝑢

𝜕𝑋
−

𝜕𝑣

𝜕𝑌
)|

𝑌𝑈

− [1 − (
𝑑𝑌𝑌

𝑑𝑋
)
2

] (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

} ,                         (2.12b) 

where 𝜎𝑛𝑣,𝑈 and 𝜎𝑛𝑝,𝑈 denote the viscous and pressure contributions, respectively. The X- 

and Y-components of the total force (𝐹𝑋,𝑈, 𝐹𝑌,𝑈) acting on the fluid at the upper wall per its 

unit length can be determined as  

𝐹𝑋,𝑈 = 𝐹𝑋𝑣,𝑈 + 𝐹𝑋𝑝,𝑈 = 𝜆−1 ∫ [−2
𝑑𝑌𝑈

𝑑𝑋

𝜕𝑢

𝜕𝑋
|
𝑌𝑈

+ (
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

 ] 𝑑𝑋
𝑋0+𝜆

𝑋0
+

𝜆−1 ∫
𝑑𝑌𝑈

𝑑𝑋
𝑝|𝑌𝑈

𝑑𝑋
𝑋0+𝜆

𝑋0
,                   (2.13a) 

𝐹𝑌,𝑈 = 𝐹𝑌𝑣,𝑈 + 𝐹𝑌𝑝,𝑈 = 𝜆−1 ∫ [−
𝑑𝑌𝑈

𝑑𝑋
(
𝜕𝑢

𝜕𝑌
+

𝜕𝑣

𝜕𝑋
)|

𝑌𝑈

+ 2
𝜕𝑣

𝜕𝑌
|
𝑌𝑈

 ] 𝑑𝑋
𝑋0+𝜆

𝑋0
−

𝜆−1 ∫ 𝑝|𝑌𝑈
𝑑𝑋

𝑋0+𝜆

𝑋0
,                      (2.13b) 

where 𝐹𝑋𝑝,𝑈 and 𝐹𝑌𝑝,𝑈  denote the pressure contributions while 𝐹𝑋𝑣,𝑈 and 𝐹𝑌𝑣,𝑈 stand for 

the viscous contributions. 

The total force 𝐻𝑡𝑜𝑡 acting on the fluid at both walls per unit slot length must be zero and 

its evaluation according to the relation 

𝐻𝑡𝑜𝑡 = [𝐻𝑡𝑜𝑡,𝑋 , 𝐻𝑡𝑜𝑡,𝑌] = [(𝐹𝑋,𝐿 + 𝐹𝑋,𝑈) , (𝐹𝑌,𝐿 + 𝐹𝑌,𝑈)]                        (2.14) 

serves as a useful check for the integrity of the numerical solution.  

2.4 Introducing Galileo transformation 

How the introduction of Galileo transformation simplifies the problem is described in this 

subsection. The form of the governing equations, boundary conditions, equation of flow 
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constraint, and location of boundaries after introducing Galileo transformation are also 

presented here. The analysis is simplified by introducing a frame of reference moving with 

wave phase speed. The relevant Galileo transformation has the form 

𝑦 =  𝑌, 𝑥 =  𝑋 –  𝑐𝑡.                              (2.15) 

Its use leads to a steady problem of the form 

(𝑢 − 𝑐)
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
,                                (2.16a)                                                   

(𝑢 − 𝑐)
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2,                                                    (2.16b) 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                                 (2.16c) 

𝑦 = 𝑦𝑈(𝑥):            𝑢 =  0,               𝑣 = − 𝑐
𝑑𝑦𝑈

𝑑𝑥
,                               (2.16d)  

𝑦 = 𝑦𝐿(𝑥):            𝑢 =  0,               𝑣 = − 𝑐
𝑑𝑦𝐿

𝑑𝑥
,                                                                (2.16e)                                                                                                                                                                                                                               

𝜕𝑝

𝜕𝑥
|
𝑚𝑒𝑎𝑛

= 0,                                                                       (2.16f) 

where locations of the boundaries are given as 

𝑦𝑈 (𝑥) =  1 + 𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

,  𝑦𝐿 (𝑥) = − 1 + 𝐵𝐿 ∑ 𝐻𝐿
(𝑛)

𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

    (2.16g-h) 
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Chapter 3  

3 Numerical Solution 

This chapter introduces the procedure used in the numerical solution. 

3.1 Introducing function ψ 

Analysis of waves with arbitrary forms requires the use of numerical methods. As the first 

step, equations are re-arranged into a form suitable for numerical solution, i.e. function 𝜓 

is introduced which can be defined as 

𝑢 =
𝜕𝜓

𝜕𝑦
,          𝑣 = −

𝜕𝜓

𝜕𝑥
                                  (3.1) 

which eliminates the continuity equation. 

3.1.1 Governing equation after introducing function 𝜓 

Now, the pressure is eliminated by taking the derivative of (2.16a) with respect to y and 

the derivative of (2.16b) with respect to x and subtracting the resulting relations. The 

resulting flow problem has the form 

𝛻2(𝛻2𝜓) + 𝑐
𝜕

𝜕𝑥
𝛻2𝜓 = 𝑁𝑢𝑣        where      𝑁𝑢𝑣 =

𝜕

𝜕𝑦
(

𝜕

𝜕𝑥
𝑢𝑢̂ +

𝜕

𝜕𝑦
𝑢𝑣̂) −

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
𝑢𝑣̂ +

𝜕

𝜕𝑦
𝑣𝑣̂),     

                         (3.2a) 

In the above, hats denote products of quantities under the hat. 

3.1.2 Boundary conditions after introducing function ψ and 
equation of constraint 

The following form of boundary conditions are obtained after introducing function ψ 



21 

 

𝑦 = 𝑦𝑈(𝑥):             
𝜕𝜓

𝜕𝑦
= 0,                         

𝜕𝜓

𝜕𝑥
=  𝑐

𝑑𝑦𝑈

𝑑𝑥  
,                                         (3.2b,c)                      

𝑦 = 𝑦𝐿(𝑥):               
𝜕𝜓

𝜕𝑦
= 0,                         

𝜕𝜓

𝜕𝑥
=  𝑐

𝑑𝑦𝐿

𝑑𝑥
,                                              (3.2d,e) 

𝜕𝑝

𝜕𝑥
|
𝑚𝑒𝑎𝑛

= 0.                                                                       (2.16f) 

3.1.3 Function ψ along the boundaries 

Condition (3.2e) can be written in a different form by noting that variations of 𝜓 along the 

lower wall can be expressed as 

 𝑑𝜓𝐿 = (
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦)|

𝑦𝐿(𝑥)
= 𝑐 

𝑑𝑦𝐿

𝑑𝑥
𝑑𝑥.                      (3.3) 

Integration along the wall results in 

𝜓𝐿(𝑥) =  𝑐[𝑦𝐿(𝑥) − 𝑦𝐿(𝑥0)]                                   (3.4) 

where the constant of integration has been selected by assuming that 𝜓𝐿(𝑥0) = 0 with 𝑥0 

representing an arbitrary point on the lower wall. As 𝜓 is defined with accuracy up to a 

constant (it is defined by velocity derivatives), this condition results in selecting this 

constant. A similar analysis carried out for the upper wall leads to expression of the form 

𝜓𝑈(𝑥) = 𝑐[𝑦𝑈(𝑥) − 𝑦𝑈(𝑥0)] + 𝑐𝑜𝑛𝑠𝑡                            (3.5) 

where 𝑐𝑜𝑛𝑠𝑡 needs to be determined from the pressure gradient constraint. 

3.2 Discretization Method 

The discretization procedure is described in this subsection.  
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The Chebyshev and Fourier expansions are used to provide a spectrally accurate 

discretization of the field equations (Canuto et al, 2006). Preference is given to use the 

standard definitions of Chebyshev polynomials involving domain 𝑦 ∈ (−1,1). Since the 

computational domain extends beyond these limits, transformation is introduced in the 

form  

𝑦̂ = 2 [
𝑦−(1+𝑦𝑡)

𝑦𝑡+𝑦𝑏+2
] + 1                        (3.6) 

which maps the strip 𝑦 ∈ (−1 − 𝑦𝑏 , 1 + 𝑦𝑡) in the y-direction into the strip 𝑦̂ ∈ (−1,1) in 

the 𝑦̂-direction. Here 𝑦𝑡 and 𝑦𝑏 denote locations of extremities of the upper and lower 

walls, respectively. As a result, the flow domain is completely immersed in the 

computational domain. 

3.2.1 Discretization of governing equations 

The field equations and boundary condition expressed using the  𝑦̂- rather than the 𝑦-

coordinate have the form 

𝛤4 𝜕4𝜓

𝜕𝑦̂4 + 2𝛤2 𝜕2

𝜕𝑥2 (
𝜕2𝜓

𝜕𝑦̂2) +
𝜕4𝜓

𝜕𝑥4 + 𝑐
𝜕

𝜕𝑥
(
𝜕2𝜓

𝜕𝑥2 + 𝛤2 𝜕2𝜓

𝜕𝑦̂2) = 𝛤
𝜕

𝜕𝑦̂
(

𝜕

𝜕𝑥
𝑢𝑢̂ + 𝛤

𝜕

𝜕𝑦̂
𝑢𝑣̂) −

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
𝑢𝑣̂ + 𝛤

𝜕

𝜕𝑦̂
𝑣𝑣̂),                   (3.7a) 

𝑦̂ = 𝑦̂𝑈(𝑥):  
𝜕𝜓

𝜕𝑦̂
= 0,                        (3.7b) 

𝜕𝜓

𝜕𝑥
=  𝑐

𝑑𝑦̂𝑈

𝑑𝑥
  𝑜𝑟  𝜓(𝑥) =  𝑐𝛤−1[𝑦̂𝑈(𝑥) − 𝑦̂𝐿(𝑥0)] − 2𝑐,                       (3.7c)                                                                                                                                                

𝑦̂ = 𝑦̂𝐿(𝑥):  
𝜕𝜓

𝜕𝑦̂
= 0,                           (3.7d) 
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𝜕𝜓

𝜕𝑥
=  𝑐

𝑑𝑦̂𝐿

𝑑𝑥
  𝑜𝑟  𝜓(𝑥) =  𝑐𝛤−1

[𝑦̂𝐿
(𝑥) − 𝑦̂

𝐿
(𝑥0)]                             (3.7e)                                

where the locations of the boundaries are given as 

𝑦̂𝑈 = ∑ 𝐴𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥𝑁𝐴
𝑛=−𝑁𝐴

 with  𝐴𝑈
(0)

= 1 − 𝛤𝑦𝑡 + 𝛤𝐵𝑈𝐻𝑈
(0)

,    𝐴𝑈
(𝑛)

= 𝛤𝐻𝑈
(𝑛)

   for  

𝑛 ≠ 0,                             (3.7f) 

𝑦̂𝐿 = ∑ 𝐴𝐿
(𝑛)

𝑒𝑖𝑛𝛼𝑥𝑁𝐴
𝑛=−𝑁𝐴

  with  𝐴𝐿
(0)

= 1 + 𝛤(−2 − 𝑦𝑡) + 𝛤𝐵𝐿𝐻𝐿
(0)

,  𝐴𝐿
(𝑛)

= 𝛤𝐻𝐿
(𝑛)

  for  

𝑛 ≠ 0.                              (3.7g) 

In the above,  𝛤 =
𝑑𝑦̂

𝑑𝑦
=

2

𝑦𝑡+𝑦𝑏+2
  and 𝐴𝑈

(𝑛)
= 𝐴𝑈

(−𝑛)∗
 and 𝐴𝐿

(𝑛)
= 𝐴𝐿

(−𝑛)∗
 represent the reality 

conditions.                   (3.8) 

Since waves are periodic, all unknowns can be expressed as Fourier expansions of the form 

 𝑞(𝑥, 𝑦̂) = ∑ 𝑞(𝑚)(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀

                                  (3.9) 

where q stands for any of the following quantities: 𝜓, 𝑣, 𝑢, 𝑝, 𝑣𝑣̂, 𝑢𝑢̂, 𝑢𝑣̂, the modal 

functions 𝑞(𝑚)(𝑦̂) satisfy the reality conditions, i.e. 𝑞(𝑚) is the complex conjugate of 

𝑞(−𝑚), and 𝑁𝑀 > 𝑁𝐴 with its acceptable value to be determined through numerical 

convergence studies. Substitution of (3.9) into (3.7a) and separation of Fourier components 

lead to the following equations for the modal functions 𝜓(𝑚) 

[Γ4𝐷4 − 2𝑚2𝛼2Γ2𝐷2 + 𝑚4𝛼4]𝜓(𝑚)(𝑦̂)  +  𝑖𝑚𝛼𝑐[Γ2𝐷2 − 𝑚2𝛼2]𝜓(𝑚)(𝑦̂)  =

 𝑖𝑚𝛼Γ𝐷𝑢𝑢̂(𝑚)(𝑦̂) + [Γ2𝐷2 + 𝑚2𝛼2] 𝑢𝑣̂(𝑚)(𝑦̂) − 𝑖𝑚𝛼Γ𝐷𝑣𝑣̂(𝑚)(𝑦̂),                 (3.10) 
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where 𝐷 =
𝑑

𝑑𝑦̂
,  −𝑁𝑀 ≤ 𝑚 ≤ 𝑁𝑀 and terms on the right-hand side originate from the 

nonlinearities. To convert (3.10) into algebraic equations, the modal functions are 

represented as Chebyshev expansions of the form 

[𝜓(𝑚), 𝑢𝑢̂(𝑚), 𝑢𝑣̂(𝑚), 𝑣𝑣̂(𝑚), 𝑢(𝑚), 𝑣(𝑚), 𝑝(𝑚)](𝑦̂)

≈  ∑ [𝐺𝜓𝑘
(𝑚)

, 𝐺𝑢𝑢̂𝑘
(𝑚)

, 𝐺𝑢𝑣̂𝑘
(𝑚)

, 𝐺𝑣𝑣̂𝑘
(𝑚)

, 𝐺𝑢𝑘
(𝑚)

, 𝐺𝑣𝑘
(𝑚)

, 𝐺𝑃𝑘
(𝑚)

]𝑇𝑘(𝑦̂)

𝑁𝑇−1

𝑘=0

. 

             (3.11) 

(3.11) is substituted into (3.10) and the Galerkin projection method is used to construct the 

linear algebraic equations for the Chebyshev expansion coefficients. The algebraic 

equations have the following form 

∑ {(Γ4〈𝑇𝑗 , 𝐷
4𝑇𝑘〉 − 2𝑚2𝛼2Γ2〈𝑇𝑗 , 𝐷

2𝑇𝑘〉 + m4𝛼4〈𝑇𝑗 , 𝑇𝑘〉)  +  𝑖𝑚𝛼𝑐 (Γ2〈𝑇𝑗 , 𝐷
2𝑇𝑘〉 −

𝑁𝑇−1
𝑘=0

m2𝛼2〈𝑇𝑗 , 𝑇𝑘〉) }𝐺𝜓𝑘
(𝑚)

= ∑ [𝑖𝑚𝛼Γ〈𝑇𝑗, 𝐷𝑇𝑘〉 𝐺𝑢𝑢̂𝑘
(𝑚)

+ (Γ2〈𝑇𝑗, 𝐷
2𝑇𝑘〉 +

𝑁𝑇−1
𝑘=0

𝑚𝛼2〈𝑇𝑗 , 𝑇𝑘〉) 𝐺𝑢𝑣̂𝑘
(𝑚)

− 𝑖𝑚𝛼Γ〈𝑇𝑗, 𝐷𝑇𝑘〉 𝐺𝑣𝑣̂𝑘
(𝑚)

]                                                 (3.12) 

where 0 ≤ 𝑘, 𝑗 ≤ 𝑁𝑇 − 1, −𝑁𝑀 ≤ 𝑚 ≤ 𝑁𝑀 and the inner products are defined as 

〈𝑓(𝑦̂), 𝑔(𝑦̂)〉  = ∫ 𝑓(𝑦̂) 𝑔(𝑦̂) 𝜔(𝑦̂)𝑑𝑦̂
1

−1
  where  𝜔(𝑦̂) =

1

√1−𝑦̂2
   is the weight function. 

3.2.2 Discretization of boundary conditions and pressure gradient 

constraint 

Spectral methods are not suitable for handling of irregular geometries. This difficulty can 

be overcome by implementing the immersed boundaries (IBC) concept. The method that 
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is followed here is described by Husain and Floryan (2008, 2010), Husain et al (2009), 

Zandi et al (2015), and Moradi et al (2017).  

 The boundary conditions are imposed using the tau concept (Canuto et al, 2006). Four 

equations resulting from the discretization of each modal equation (3.12) corresponding to 

the highest Chebyshev polynomials are eliminated to provide space for the inclusion of the 

boundary conditions. 

Discretization of boundary conditions at the upper wall starts with substituting (3.9) and 

(3.11) into (3.2b, c) resulting in 

𝜕𝜓

𝜕𝑦̂
|
𝑦̂𝑈

= ∑ 𝐷𝜓(𝑛)(𝑦̂𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

= ∑ ∑ 𝐺𝜓𝑘
(𝑛)

𝐷𝑇𝑘(𝑦̂𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

, (3.13a) 

𝜕𝜓

𝜕𝑥
|
𝑦̂𝑈

= ∑ 𝑖𝑛𝛼𝜓(𝑛)(𝑦̂𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

= ∑ ∑ 𝑖𝑛𝛼𝐺𝜓𝑘
(𝑛)

𝑇𝑘(𝑦̂𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥.
𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

 

           (3.13b)  

Taking the Fourier expansion of Chebyshev polynomials and their derivatives from (3.13) 

the following are obtained: 

[detail derivation of these relations is given in Appendix A] 

𝜕𝜓

𝜕𝑦̂
= ∑ ∑ ∑ 𝐺𝜓𝑘

(𝑛)(𝑑𝑈)𝑘
(𝑚)𝑁𝑠

𝑚=−𝑁𝑠
𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

 ∑ ∑ ∑ 𝐺𝜓𝑘
〈𝑛〉(𝑑𝑈)𝑘

(ℎ−𝑛)𝑁𝑇−1
𝑘=0 𝑒𝑖ℎ𝛼𝑥,𝑁𝑀

𝑛=−𝑁𝑀

𝑁𝑠+𝑁𝑀
ℎ=−𝑁𝑠−𝑁𝑀

                 (3.14a) 

𝜕𝜓

𝜕𝑥
= 𝑖𝛼 ∑ ∑ ∑ 𝑛𝐺𝜓𝑘

(𝑛)(𝑤𝑈)𝑘
(𝑚)𝑁𝑠

𝑚=−𝑁𝑠
𝑒𝑖(𝑛+𝑚)𝛼𝑥𝑁𝑇−1

𝑘=0
𝑁𝑀
𝑛=−𝑁𝑀

     

  =   𝑖𝛼 ∑ ∑ ∑ 𝑛𝐺𝜓𝑘
(𝑛)(𝑤𝑈)𝑘

(ℎ−𝑛)𝑁𝑇−1
𝑘=0 𝑒𝑖ℎ𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀

𝑁𝑠+𝑁𝑀
ℎ=−𝑁𝑠−𝑁𝑀

                         (3.14b) 
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where ℎ = 𝑛 + 𝑚. It can be deduced that (𝑤𝑈)𝑘
(ℎ−𝑛)

 and (𝑑𝑈)𝑘
(ℎ−𝑛)

 take the non-zero 

values only for |ℎ − 𝑛| ≤ 𝑁𝑠. Redefining the indices 𝑛 → 𝑚 and ℎ → 𝑛 in (3.14) and 

substituting them into (3.7b, c) and use of (3.7f), lead to boundary relations of the form 

∑ ∑ 𝐺𝜓𝑘
(𝑚)(𝑑𝑈)𝑘

(𝑛−𝑚)
= 0

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

                                    for      0 ≤ |𝑛| ≤ 𝑁𝑓 , (3.15a) 

∑ ∑ 𝑖𝑚𝛼𝐺𝜓𝑘
(𝑚)(𝑤𝑈)𝑘

(𝑛−𝑚)
= 𝑖𝑛𝛼 𝑐𝛤−1𝐴𝑈

(𝑛)𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

 for    1 ≤ |𝑛| ≤ 𝑁𝑓 ,       (3.15b) 

where 𝑁𝑓 = (𝑁𝑇 − 1)𝑁𝐴 + 𝑁𝑀.  

A similar process applied at the lower wall leads to the following relations 

∑ ∑ 𝐺𝜓𝑘
〈𝑚〉(𝑑𝐿)𝑘

(𝑛−𝑚)
= 0

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

   for        0 ≤ |𝑛| ≤ 𝑁𝑓,              (3.16a) 

∑ ∑ 𝑖𝑚𝛼𝐺𝜓𝑘
〈𝑚〉(𝑤𝐿)𝑘

(𝑛−𝑚)
= 𝑖𝑛𝛼 𝑐𝛤−1𝐴𝐿

(𝑛)𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

  for  1 ≤ |𝑛| ≤ 𝑁𝑓.             (3.16b) 

Relations (3.15b) and (3.16b) do not provide conditions for 𝑛 = 0 which is due to the 

character of the boundary conditions for 𝑣.  The first missing condition can be constructed 

by substituting (3.7g) into (3.7e) and taking 𝑥0 = 0 leading to 

𝜓𝐿 = 𝑐𝛤−1 ∑ 𝐴𝐿
(𝑛)

𝑒𝑖𝑛𝛼𝑥𝑛=𝑁𝑀
𝑛=−𝑁𝑀

− 𝑐𝛤−1 ∑ 𝐴𝐿
(𝑛)𝑛=𝑁𝑀

𝑛=−𝑁𝑀
                  (3.17) 

where 𝜓𝐿 denotes the value of 𝜓 at the lower wall. 𝜓 can also be expressed at this wall 

using (3.9), (3.11), i.e. 

𝜓𝐿 = ∑ ∑ ∑ 𝐺𝜓𝑘
(𝑚)(𝑤𝐿)𝑘

(𝑛−𝑚)
𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1

𝑘=0
𝑁𝑀
𝑚=−𝑁𝑀

𝑁𝑓

𝑛=−𝑁𝑓
.                  (3.18) 
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Equating (3.17) with (3.18) and extracting mode zero leads to the final form of this 

condition 

∑ ∑ 𝐺𝜓𝑘
(𝑚)

(𝑤𝐿)𝑘
(𝑚)∗ = 𝑐𝛤−1(𝐴𝐿

(0)
− ∑ 𝐴𝐿

(𝑛)𝑛=𝑁𝑀
𝑛=−𝑁𝑀

).
𝑁𝑇−1
𝑘=0  

𝑁𝑀
𝑚=−𝑁𝑀

                      (3.19) 

The fixed pressure gradient constraint (2.16f) is used to construct the second missing 

condition. It is going to be started with the determination of the pressure field assuming 

that the velocity field is known. Use of the x-momentum equation (2.16a) written in the 

(𝑥, 𝑦̂)-coordinates lead to  

𝜕𝑝

𝜕𝑥
= −

𝜕〈𝑢𝑢〉

𝜕𝑥
− Γ

𝜕〈𝑢𝑣〉

𝜕𝑦̂
+

𝜕2𝑢

𝜕𝑥2 + Γ2 𝜕2𝑢

𝜕𝑦̂2 + 𝑐
𝜕𝑢

𝜕𝑥
 .                     (3.20) 

Substitution of (3.9) into (3.20) and separation of Fourier modes results in  

𝑖𝑚𝛼 𝑝(𝑚)(𝑦̂) = −𝑖𝑚𝛼 〈𝑢𝑢〉(𝑚)(𝑦̂) − 𝛤 𝐷〈𝑢𝑣〉(𝑚)(𝑦̂) − 𝑚2𝛼2 𝛤 𝐷𝜓(𝑚)(𝑦̂) +

𝛤3𝐷3𝜓(𝑚)(𝑦̂) + 𝑐 𝑖𝑚𝛼𝛤 𝐷𝜓(𝑚)(𝑦̂)              (3.21) 

which can be used to determine pressure modal functions 𝑝(𝑚)(𝑦̂) for any m, except 𝑚 =

0. The actual computations involve the substitution of Chebyshev expansions for all terms, 

taking the inner products with 𝑇𝑗(𝑦̂) and using orthogonality properties to arrive at 

𝐺𝑃𝑘
(𝑚)

 =  2(𝑖𝑚𝛼𝜋C𝑗)
−1 ∑ {−𝑖𝑚𝛼 𝐺𝑢𝑢̂𝑘

(𝑚)〈𝑇𝑗 , 𝑇𝑘〉  −  Γ𝐺𝑢𝑣̂𝑘
(𝑚)〈𝑇𝑗 , 𝐷𝑇𝑘〉  +

𝑁𝑇−1
𝑘=0

𝑐 𝑖𝑚𝛼Γ 𝐺𝜓𝑘
(𝑚)〈𝑇𝑗, 𝐷𝑇𝑘〉  +  Γ 𝐺𝜓𝑘

(𝑚)
[−𝑚2𝛼2〈𝑇𝑗, 𝐷𝑇𝑘〉  +  Γ2〈𝑇𝑗, 𝐷

3𝑇𝑘〉 ]}                (3.22)       

 where C𝑗  =  {
2    for 𝑗 =  0,
1    for 𝑗 ≠  0,

   for  {
𝑚 ≠  0,

0 ≤  𝑗 ≤  𝑁𝑇 − 1.
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Determination of mode zero requires the use of the y-momentum equation (2.16b) written 

in the (𝑥, 𝑦̂)-coordinates which have the following form 

Γ
𝜕𝑃

𝜕𝑦̂
= −

𝜕〈𝑢𝑣〉

𝜕𝑥
− Γ

𝜕〈𝑣𝑣〉

𝜕𝑦̂
+

𝜕2𝑣

𝜕𝑥2 + Γ2  
𝜕2𝑣

𝜕𝑦̂2 + 𝑐
𝜕𝑣

𝜕𝑥
.                    (3.23) 

Substitution of (3.9) into (3.23) and separation of Fourier modes result in  

𝛤 𝐷𝑃(𝑚)(𝑦̂) = −𝑖𝑚𝛼〈𝑢𝑣〉(𝑚)(𝑦̂) − 𝛤 𝐷〈𝑣𝑣〉(𝑚)(𝑦̂) + 𝑖𝑚3𝛼3 𝜓(𝑚)(𝑦̂) −

𝑖𝑚𝛼𝛤2 𝐷2𝜓(𝑚)(𝑦̂) + 𝑐 𝑚2𝛼2𝜓(𝑚)(𝑦̂)                          (3.24) 

which reduces for mode zero to 

𝐷𝑃(0)(𝑦̂) = −𝐷〈𝑣𝑣〉(0)(𝑦̂)                           (3.25) 

which, after integration, becomes 

𝑃(0)(𝑦̂) = −〈𝑣𝑣〉(0)(𝑦̂) − 𝐶1                          (3.26)     

where 𝐶1 stands for an arbitrary constant. Substitution of Chebyshev expansions into 

(3.26), taking inner products with 𝑇𝑗(𝑦̂) and use of orthogonality properties results in 

𝐺𝑃𝑘
(0)

 =  −2 (C𝑗𝜋)−1 ∑ 𝐺𝑣𝑣̂𝑘
(0)

 〈𝑇𝑗, 𝑇𝑘〉 
𝑁𝑇−1
𝑘=0 −2 𝐶1 (C𝑗𝜋)−1〈𝑇𝑗, 𝑇0〉  

for  0 ≤  𝑗 ≤  𝑁𝑇 − 1.                         (3.27) 

The complete pressure field for peristaltic pumping is given by 

𝑃(𝑥, 𝑦̂)  =  ∑ ∑ 𝐺𝑃𝑘
(𝑚)

𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

.       (3.28) 
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Extraction of mode zero from (3.21) provides the condition leading to the imposition of 

the zero mean pressure gradient constraint, i.e. 

𝐷3𝜓(0) = Γ−2𝐷𝑢𝑣̂(0).                       (3.29) 

One integration gives the form of this constraint suitable for numerical implementation, i.e. 

𝐷2𝜓(0)(1) − 𝐷2𝜓(0)(−1) = Γ−2[𝑢𝑣̂(0)(1) − 𝑢𝑣̂(0)(−1)].                            (3.30) 

This constraint involves both ends of the solution domain.  

3.3 Solution Process 

The solution procedure is described in this subsection in two parts i.e., iterative solution 

process and method of updating nonlinear terms. 

3.3.1 Iterative solution process 

The system (3.12) supplemented with boundary relations (3.15), (3.16), (3.19), and (3.30) 

is solved assuming that the right-hand side is known which makes this system linear. A 

very efficient algorithm that takes advantage of the structure of the coefficient matrix is 

described by Husain and Floryan (2013). Since the right-hand side of (3.12) is not known, 

the overall solution process relies on iterations and yields new approximations of 𝜓(𝑛)(𝑦̂), 

denoted as [𝜓(𝑛)(𝑦̂)]
(𝑘)

, at each iteration where the superscript 𝑘 denotes the iteration 

number. The nonlinear terms on the right-hand side of (3.12) are taken from the previous 

iteration (these terms are ignored during the first iteration) resulting in the first-order fixed 

point method. The iteration process can be summarized as  
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[𝜓(𝑛)]
(𝑘+1)

= [𝜓(𝑛)]
(𝑘)

+ 𝑅𝐹 {[𝜓(𝑛)]
(𝑐𝑜𝑚𝑝)

− [𝜓(𝑛)]
(𝑘)

}                         (3.31)                       

where the superscript 𝑐𝑜𝑚𝑝 identifies the solution computed at the new iteration, and the 

process is controlled using the under-relaxation parameter 𝑅𝐹. Typically, 𝑅𝐹 < 0.1 is used 

with its value decreasing with an increase of the wave amplitude and the phase speed. 

Iterations are stopped when the convergence criterion of the form 

|[𝜓(𝑛)]
(𝑘+1)

− [𝜓(𝑛)]
(𝑘)

| / |[𝜓(𝑛)]
(𝑘+1)

| < 𝐶𝑂𝑁𝑉                              (3.32) 

is satisfied, where |[𝜓(𝑛)]
(𝑘+1)

− [𝜓(𝑛)]
(𝑘)

| is the 𝐿2 norm of the difference between the 

solution vectors computed at two consecutive iterations and |[𝜓(𝑛)]
(𝑘+1)

| is the 𝐿2 norm of 

the current solution vector. 𝐶𝑂𝑁𝑉 = 10−14 was used in all tests of the algorithm while 

𝐶𝑂𝑁𝑉 = 10−10 is sufficient for physical studies. 

3.3.2 Method of updating nonlinear terms 

The nonlinear terms on the right-hand side of (3.12) need to be updated at the end of each 

iteration step. It is more efficient to evaluate the required products by transferring data to 

the physical space, carrying out the multiplications there, and transferring the results back 

into the Fourier space (Canuto et al, 2006). The new values of the velocity components of 

the form 

𝑢(𝑥, 𝑦̂) = 𝛤 ∑ 𝐷𝜓(𝑛)(𝑦̂)𝑒𝑖𝑛𝛼𝑥,      
𝑁𝑀
𝑛=−𝑁𝑀

𝑣(𝑥, 𝑦̂) = −𝑖𝛼 ∑ 𝑛𝜓(𝑛)(𝑦̂)𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

    (3.33) 
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are computed on a suitable grid in the (𝑥, 𝑦̂) plane. 2𝑁𝑥 + 2 equidistant points, where 𝑁𝑥 =

3

2
𝑁𝑀, are used along the 𝑥-direction to remove the aliasing error with the last point removed 

due to periodicity, and 𝑁𝑇 points are used in the 𝑦̂-direction with the first and last points 

overlapping with the borders of the computational domain. Chebyshev points defined as 

𝑦̂𝑗 = cos (
𝑗𝜋

𝑁𝑇−1
), where 𝑗 = 1, 2, … ,𝑁𝑇 − 2, are used in the interior of the domain. This 

process results in the formation of two matrices containing values of 𝑢 and 𝑣 and their 

multiplication yields the desired products, i.e. 𝑢𝑢̂, 𝑢𝑣̂ , 𝑣𝑣̂. These products need to be 

expressed using Fourier expansions (3.9) which necessitates the determination of the modal 

functions 𝑢𝑢̂(𝑛),  𝑢𝑣̂(𝑛), 𝑣𝑣̂(𝑛). This is accomplished using the Fast Fourier Transform 

(FFT) at each 𝑦̂-location; 2𝑁𝑥 + 1 data points are used in the 𝑥-direction resulting in values 

of 2𝑁𝑥 + 1 modal functions. Modal functions with indices in the range [–𝑁𝑀, 𝑁𝑀] are 

retained and the remaining ones are discarded as part of the aliasing error control process 

(Canuto et al, 2006). The last step involves expressing each modal function in terms of a 

Chebyshev expansion, i.e. the evaluation of coefficients 𝐺𝑢𝑢̂𝑘
(𝑛)

, 𝐺𝑢𝑣̂𝑘
(𝑛)

, 𝐺𝑣𝑣̂𝑘
(𝑛)

. Since 

values of these functions are available at the 𝑦̂-grid points, one can write the equation of 

type (3.11) for each point resulting in a system of the linear equation whose numerical 

solution determines the unknown expansion coefficients. The number of grid points 

determines the maximum length of the Chebyshev expansion. No de-aliasing is required in 

the Chebyshev direction if a sufficient number of polynomials are used. 
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3.4 Post-Processing  

Evaluation of stresses and forces along the boundaries 

The evaluation of various surface forces along the boundaries as described in this section. 

The discussion begins with the lower wall, specifically with the unit normal vector along 

the lower wall. Normal unit vectors can be expressed as 

𝑛⃗⃗𝐿 = (𝑛𝑥,𝐿 , 𝑛𝑦,𝐿 )  = 𝑁𝐿  (
𝑑𝑦𝐿

𝑑𝑥
, −1) =  [𝐵𝐿 ∑ 𝐻𝐿

(𝑛)
 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 

𝑛=𝑁𝐴
𝑛=−𝑁𝐴

, −1 ]𝑁𝐿    (3.34) 

where 

 𝑁𝐿 =  [1 + (
𝑑𝑦𝐿

𝑑𝑥
)
2

]
−

1

2

=  [1 − (𝐵𝐿𝛼)2{∑ 𝐻𝐿
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
−

1

2

 . 

Component of shear stress vector along the lower boundary given by the following 

equation: 

𝜎𝑋𝑣,𝐿 = 𝑁𝐿 [2
𝑑𝑦𝐿

𝑑𝑥

𝜕𝑢

𝜕𝑥
|
𝑦𝐿

− (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

].  

Substitution of u and v using (3.1) and making use of (3.9) and (3.11) gives 

𝜎𝑋𝑣,𝐿 =  [1 − (𝐵𝐿𝛼)2{∑ 𝐻𝐿
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
−

1

2

    

[2{𝛼𝐵𝐿 ∑ 𝐻𝐿
(𝑛)

𝑖𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

} {𝛤𝛼 ∑ ∑ (𝑖𝑚)𝐺𝑁𝑇−1
𝑘=0 𝜓𝑘

(𝑚)
𝐷𝑁𝑀

𝑚=−𝑁𝑀 𝑇𝐾(𝑦̂)𝑒𝑖𝑚α𝑥}|
𝑦𝐿

−

[∑ {∑ (𝛤2𝐺𝜓𝑘
(𝑚)

𝐷2𝑇𝐾(𝑦̂) − (𝑖𝑚α)2𝐺𝜓𝑘
(𝑚)

𝑇𝑘(𝑦̂))𝑁𝑇−1
𝑘=0 }𝑁𝑀

𝑚=−𝑁𝑀  𝑒𝑖𝑚α𝑥]|
𝑦𝐿

].             (3.35) 
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The x-component of viscous force along the lower wall is given by: 

𝐹𝑋𝑣,𝐿 = 𝜆−1 ∫ 𝜎𝑋𝑣,𝐿𝑑𝑥
𝑥0+𝜆

𝑥0
                                           (3.36) 

where  𝜎𝑋𝑣,𝐿 can be obtained from (3.35). 

the x-component of normal stress generated due to pressure along the lower boundary is 

given by: 

𝜎𝑋𝑝,𝐿  =  −𝑁𝐿
𝑑𝑦𝐿

𝑑𝑥
𝑝|

𝑦𝐿

 =  −𝑝|𝑦𝐿
 𝑛𝑥,𝐿   

= − [1 − (𝐵𝐿𝛼)2 {∑ 𝐻𝐿
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2
]
−

1

2

  

 𝐵𝐿 ∑ 𝐻𝐿
(𝑛)

 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

(∑ ∑ 𝐺𝑃𝑘
(𝑚)

𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

)|
𝑦𝐿

.      (3.37) 

Inserting (3.37) into (2.8a), the expression for evaluating x-component of pressure force 

acting along the lower boundary can be obtained as follows: 

𝐹𝑋𝑝,𝐿 = 𝜆−1 ∫ 𝜎𝑋𝑝,𝐿 𝑑𝑥
𝑥0+𝜆

𝑥0
           (3.38) 

where 𝜎𝑋𝑝,𝐿can be obtained from (3.37). 

Similarly, the expression for evaluating the y-component of viscous stress along the lower 

boundary is as follows: 

𝜎𝑌𝑣,𝐿 =  𝑁𝐿 [
𝑑𝑦𝐿

𝑑𝑥
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝐿

− 2
𝜕𝑣

𝜕𝑦
|
𝑦𝐿

] 
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= [1 − (𝐵𝐿𝛼)2 {∑ 𝐻𝐿
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴

𝑛=−𝑁𝐴

}

2

]

−
1
2

 

[𝐵𝐿 ∑ 𝐻𝐿
(𝑛)

 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

[∑ {∑ (𝛤2𝐺𝜓𝑘
(𝑚)

𝐷2𝑇𝐾(𝑦̂) −𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

 (𝑖𝑚𝛼)2𝐺𝜓𝑘
(𝑚)

𝑇𝑘(𝑦̂))} 𝑒𝑖𝑚𝛼𝑥]|
𝑦𝐿

− 2𝛤 ∑ ∑ (𝑖𝑚𝛼)𝐺𝜓𝑘
(𝑚)

𝐷𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

|
𝑦𝐿

]. 

           (3.39)       

The y-component of the viscous force acting along the lower boundary is determined as 

follows: 

𝐹𝑌𝑣,𝐿 = 𝜆−1 ∫ 𝜎𝑌𝑣,𝐿  𝑑𝑥
𝑥0+𝜆

𝑥0
                                (3.40) 

where 𝜎𝑌𝑣,𝐿 can be obtained from (3.39). 

Evaluation of the y-component of normal stress generated due to pressure at the lower 

boundary is obtained as follows 

𝜎𝑌𝑝,𝐿 = 𝑁𝐿 𝑝|𝑦𝐿
    

= [1 − (𝐵𝐿𝛼)2 {∑ 𝐻𝐿
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2
]
−

1

2

  (∑ ∑ 𝐺𝑃𝑘
(𝑚)

𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

)|

𝑦𝐿

.    (3.41) 

The y-component of pressure force acting along the lower boundary is given by 

𝐹𝑌𝑝,𝐿 = 𝜆−1 ∫ 𝜎𝑌𝑝,𝐿 𝑑𝑥
𝑥0+𝜆

𝑥0
                               (3.42) 

where 𝜎𝑌𝑝,𝐿 can be obtained from (3.41). 
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This is how the stress vectors and forces acting on fluid along the lower boundary can be 

determined. Following a similar procedure, these quantities can be determined for the 

upper boundary as well. 

Evaluation of various surface forces along the upper wall: 

Unit vectors along the upper wall: 

The unit normal vector pointing outwards has the form 

𝑛⃗⃗𝑈 = (𝑛𝑥,𝑈, 𝑛𝑦,𝑈 )  =  𝑁𝑈 (−
𝑑𝑦𝑈

𝑑𝑥
, 1) =

[
 
 
 
 

−𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

√1+{𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

  𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2
,

1

√1+{𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

  𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
 
 
 
 

    

             (3.43) 

here, 𝑁𝑈 = [1 + (
𝑑𝑦𝑈

𝑑𝑥
)
2

]
−

1

2

 =   [1 − (𝐵𝑈𝛼)2{∑ 𝐻𝑈
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
−

1

2

. 

Component of shear stress vector along the upper boundary given by the following 

equation: 

𝜎𝑋𝑣,𝑈 = 𝑁𝑈 [2
𝑑𝑦𝑈

𝑑𝑥

𝜕𝑢

𝜕𝑥
|
𝑦𝑈

− (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝑈

].   

Substitution of u and v using (3.1) and making use of (3.9) and (3.11) gives 

𝜎𝑋𝑣,𝑈 =  [1 − (𝐵𝑈𝛼)2{∑ 𝐻𝑈
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
−

1

2
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[2{𝛼𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

𝑖𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

} {𝛤𝛼 ∑ ∑ (𝑖𝑚)𝐺𝑁𝑇−1
𝑘=0 𝜓𝑘

(𝑚)
𝐷𝑁𝑀

𝑚=−𝑁𝑀 𝑇𝐾(𝑦̂)𝑒𝑖𝑚𝛼𝑥}|
𝑦𝑈

−

[∑ {∑ (𝛤2𝐺𝜓𝑘
(𝑚)

𝐷2𝑇𝐾(𝑦̂) − (𝑖𝑚𝛼)2𝐺𝜓𝑘
(𝑚)

𝑇𝑘(𝑦̂))𝑁𝑇−1
𝑘=0 }𝑁𝑀

𝑚=−𝑁𝑀  𝑒𝑖𝑚𝛼𝑥]|
𝑦𝑈

].              (3.44) 

By integrating the stress over one wavelength, the x-component of the viscous force along 

the upper boundary can be determined as follows: 

𝐹𝑋𝑣,𝑈 = 𝜆−1 ∫ 𝜎𝑋𝑣,𝑈 𝑑𝑥
𝑥0+𝜆

𝑥0
                          (3.45) 

where 𝜎𝑋𝑣,𝑈 can be obtained from (3.44). 

Following a similar procedure of the lower wall, the equation for evaluating the x-

component of normal stress generated due to pressure at the upper boundary can be 

obtained as follows:    

𝜎𝑋𝑝,𝑈  =  −𝑁𝑈
𝑑𝑦𝑈

𝑑𝑥
𝑝|

𝑦𝑈

 =  −𝑝|𝑦𝑈
 𝑛𝑋,𝑈   

= − [1 − (𝐵𝑈𝛼)2 {∑ 𝐻𝑈
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2
]
−

1

2

 

 𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

(∑ ∑ 𝐺𝑃𝑘
(𝑚)

𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

)|
𝑦𝑈

.     (3.46) 

The x-component of pressure force acting along the upper wall is given by: 

𝐹𝑋𝑝,𝑈 = 𝜆−1 ∫ 𝜎𝑋𝑝,𝑈 𝑑𝑥
𝑥0+𝜆

𝑥0
                             (3.47) 

where 𝜎𝑋𝑝,𝑈 can be obtained from (3.46). 
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Similarly, the equation for determining the y-component of viscous stress along the upper 

boundary can be obtained as follows: 

𝜎𝑌𝑣,𝑈 =  𝑁𝑈 [
𝑑𝑦𝑈

𝑑𝑥
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)|

𝑦𝑈

− 2
𝜕𝑣

𝜕𝑦
|
𝑦𝑈

]   

= [1 − (𝐵𝑈𝛼)2{∑ 𝐻𝑈
(𝑛)

  𝑛 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2

]
−

1

2

   

[𝐵𝑈 ∑ 𝐻𝑈
(𝑛)

 𝑖𝑛𝛼 𝑒𝑖𝑛𝛼𝑥 
𝑛=𝑁𝐴
𝑛=−𝑁𝐴

[∑ {∑ (𝛤2𝐺𝜓𝑘
(𝑚)

𝐷2𝑇𝐾(𝑦̂) −𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

 (𝑖𝑚𝛼)2𝐺𝜓𝑘
(𝑚)

𝑇𝑘(𝑦̂))} 𝑒𝑖𝑚𝛼𝑥]|
𝑦𝑈

− 2𝛤 ∑ ∑ (𝑖𝑚𝛼)𝐺𝜓𝑘
(𝑚)

𝐷𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

|
𝑦𝑈

].              

                        (3.48) 

The y-component of the viscous force along the upper boundary is as follows: 

𝐹𝑌𝑣,𝑈 = 𝜆−1 ∫ 𝜎𝑌𝑣,𝑈 𝑑𝑥
𝑥0+𝜆

𝑥0
                     (3.49) 

where 𝜎𝑌𝑣,𝑈 can be obtained from (3.48). 

Following the similar procedure of the lower wall, the expression for evaluation of the y-

component of normal stress generated due to pressure at the upper boundary can be 

obtained as follows 

𝜎𝑌𝑝,𝑈 = 𝑁𝑈 𝑝|𝑦𝑈
 =  [1 − (𝐵𝑈𝛼)2{∑ 𝐻𝑈

(𝑛)
  𝑛 𝑒𝑖𝑛𝛼𝑥 

𝑛=𝑁𝐴
𝑛=−𝑁𝐴

}
2
]
−

1

2
               

(∑ ∑ 𝐺𝑃𝑘
(𝑚)

𝑇𝑘(𝑦̂)𝑒𝑖𝑚𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

)|
𝑦𝑈

.                            (3.50) 
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Integration of stress over one wavelength gives the equation for the y-component of 

pressure force acting along the upper boundary: 

𝐹𝑦𝑝,𝑈 = 𝜆−1 ∫ 𝜎𝑌𝑝,𝑈 𝑑𝑥
𝑥0+𝜆

𝑥0
                                  (3.51) 

where 𝜎𝑌𝑝,𝑈 can be obtained from (3.50). 
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Chapter 4  

4 Results and Discussion 

The results of various investigations carried out as a part of this thesis will be discussed in 

this chapter. It will start with the wave placed at one of the walls and symbol A is used for 

its amplitude. 

4.1 Effect of the wave wavenumber 

Change of the wave wavenumber is expected to affect the system performance as 

quantified by the flow rate. Figure 4a illustrates variations of the flow rate Q as a function 

of the wavenumber 𝛼. The flow rate is nearly constant for sufficiently small wavenumbers 

but starts increasing when the wavenumber increases beyond 𝛼 ≈ 1. This increase is 

proportional to 𝛼2. Some form of saturation is expected in the limit of 𝛼 → ∞ but this limit 

was not investigated due to limitations of the computational method used in the analysis. 

Figure 4b illustrates variations of various forces generated at the walls, i.e. the x-component 

of the pressure force 𝐹𝑋𝑝,𝐿 acting on the fluid at the lower wall, and the x-components of 

the viscous forces acting on the fluid at the lower (𝐹𝑋𝑣,𝐿) and upper (𝐹𝑋𝑣,𝑈) walls. The 

pressure force is responsible for driving the fluid movement while the viscous forces resist 

this movement. These forces are in balance as verified by evaluation of all forces acting on 

a control volume extending over one wavelength in the streamwise direction.  All forces 

reach constant limits for 𝛼 → 0 but their magnitudes begin to increase rapidly when the 

wavenumber increases beyond 𝛼 ≈ 1. Viscous forces are negative in this figure 

demonstrating that they oppose the fluid movement while pressure forces are positive 

demonstrating that they propel the fluid. 
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(a)                                                                     (b) 

Figure 4.1  (a) Variation of the flow rate Q as a function of the wavenumber for different 

wave phase speeds c. Dashed and solid lines correspond to the wave amplitudes A=0.05 

and 0.01 respectively. Dotted lines represent asymptotes. (b) Variations of the force 

components (the x-component of the shear force 𝐹𝑋𝑣,𝐿 (dotted line), the x-component of 

the pressure force 𝐹𝑋𝑝,𝐿  (dashed line) acting on the fluid at the lower wall and the x-

component of the shear force 𝐹𝑋𝑣,𝑈  (dash-dotted line) acting on the fluid at the upper wall) 

as functions of the wavenumber . The variations of the flow rate Q are represented by 

solid lines. These computations are done for the amplitude A = 0.01 and the wave phase 

speed c = 5. 

Variation of the flow rate can be divided into three regions, namely: small alpha region, 

big alpha region, and the region in between the two. In the small alpha region, variations 

of Q follow a certain asymptote and in the big alpha region, these variations follow another 

asymptote.  
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(a)                                                                     (b) 

Figure 4.2 (a) Sketch of the lower wall with the small wavenumber waves; (b) Sketch of 

the lower wall with the large wavenumber waves. 

From Fig 4.2(a), it can be deduced that at small wavenumbers the channel height changes 

very slowly and as a result, the flow rate remains almost constant. That is why in the region 

of small wavenumbers variations of the flow rate follow a “small alpha asymptote”. 

Similarly, from Fig 4.2(b), it is noticed that when the wavenumber is large, then the 

effective channel height decreases while the wall appears to the fluid as a wall moving to 

the right resulting in the flow rate following a “big alpha asymptote”. 

   

               (a)                                        (b)                                             (c) 

Figure 4.3 (a) Distribution of the x-component of the pressure force acting on the fluid at 

the lower wall over one wavelength, (b) Distribution of the x-component of the shear force 

acting on the fluid at the lower wall over one wavelength, (c) Distribution of the x-
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component of the shear force acting on the fluid at the upper wall over one wavelength. In 

all plots, solid lines represent forces and the dashed lines represent wave shape. All these 

plots correspond to the wave amplitude A = 0.01 and the wave phase speed c = 5. 

Variations of surface forces and how they change with the wave wavenumber are going to 

be observed in the following. Results presented in Fig. 4.3 (a) illustrate: 

o how the x-component of the pressure force acting on the fluid at the lower wall 

wave varies over one wavelength, 

o how this distribution changes with the change of the wavenumber, 

o that 𝜎𝑥𝑝,𝐿 increases with the increase of the wave number i.e., as the wavenumber 

increases, 𝜎𝑥𝑝,𝐿 increases causing a more intense movement of the fluid. 

Results presented in Fig. 4.3 (b) illustrate: 

o how the x-component of the viscous force acting on the fluid at the lower wall varies 

over one wavelength, 

o how its distribution changes with the change of the wavenumber, 

o that the magnitude of 𝜎𝑥𝑣,𝐿 increases with an increase of the wavenumber i.e., 𝜎𝑥𝑣,𝐿 

generates bigger resistance to the fluid movement as the wavenumber increases. 

Results presented in Fig 4.3 (c) illustrate: 

o how the x-component of the viscous force acting on fluid at the upper wall varies 

over one wavelength, 

o how its distribution changes with the change of the wavenumber, 

o that the magnitude of 𝜎𝑥𝑣,𝑈 increases with an increase of the wavenumber i.e., 

𝜎𝑥𝑣,𝑈 generates bigger resistance to the fluid movement as the wavenumber 

increases. 
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Figure 4.4 illustrates velocity profiles at different locations of the wave. It can be seen that 

fluid changes direction of its movement depending on its position with respect to the wave. 

The character of these changes varies with the wave wavenumber. At small wavenumbers, 

the forward/backward movement extends across the conduit creating “sloshing” which 

produces a small net forward movement. As 𝛼 increases, this “sloshing” is confined to a 

progressively smaller zone attached to the vibrating wall while the net forward movement 

increases. Figure 4.5 displays the same velocity profiles but grouped according to the wave 

wavenumbers. The “sloshing” effect along the wave wavelength is well illustrated and its 

progressive confinement closer and closer to the vibrating wall as 𝛼 increases is well 

underlined. 

 

                        x/ = 0      x/ = 0.25                          
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         x/ = 0.5                         x/ = 0.75 

 

Figure 4.4: u-velocity profiles at selected locations. At each location, the variation of the 

u-velocity profile is shown for selected wavenumbers. Computations are carried out for the 

amplitude A = 0.01 and the wave phase speed c = 5. 

 

                          = 0.1                 = 2                       = 5 
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                    = 7         = 10           = 45 

 

Figure 4.5 u-velocity profiles for selected wavenumbers. At each wavenumber, the 

variation of the u-velocity profile is shown at four different locations. Computations are 

carried out for the wave amplitude A = 0.01 and the wave phase speed c = 5. 

The character of the fluid movement is illustrated in Fig. 4.6 displaying instantaneous 

vector lines over one wave wavelength. Large zones of backward moving fluid are found 

for waves with small wavenumbers. A typical particle would undergo large amplitude 

forward/backward movements with a small preference for the forward movement. The 

flow separation zones decrease with an increase of 𝛼 until the sloshing is confined to a very 

narrow layer adjacent to the vibrating wall with most of the fluid moving to the right in a 

nearly rectilinear manner. 
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(a)                                       (b)                        (c) 

 

(d)                                               (e)              (f) 

Figure 4.6 Plots of velocity fields. (a) to (f) correspond to   = 0.1, 2, 5, 7, 10, 45, 

respectively, for the wave phase speed c = 5 and the wave amplitude A = 0.01. Flow zones 

with fluid moving in the opposite direction are identified using shading. 

4.2 Effect of variations of the wave amplitude 

Variations of the flow rate Q with the wave amplitude A are illustrated in Fig. 4.7. It can 

be seen that Q increases proportionally to 𝐴2 in the whole range of wavenumbers in the 

range of A being of interest in this analysis. 
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Figure 4.7 Plots of variations of the flow rate Q as a function of the wave amplitude A for 

selected wave phase speeds c = 1, 5, 10. Dashed lines correspond to the wavenumber  = 

0.1 and solid lines correspond to the wavenumber  = 10. 

4.3 Effect of variations of the wave phase speed  

Variations of the flow rate Q with the wave phase speed are illustrated in Fig. 4.8. It can 

be seen that Q increases proportionally to c in the whole range of wavenumbers being of 

interest in this analysis. 
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Figure 4.8 Plots of variations of the flow rate Q as a function of the wave phase speed c for 

selected wavenumbers ( = 0.1, 2, 5, 7, 10) 

4.4 Effect of the phase difference 

The effect of the relative positions of the upper and lower waves as quantified by the phase 

shift Ω is going to be discussed in this section. Amplitudes of both waves are set to be the 

same and equal to A. Results displayed in Fig.4.9 demonstrate large sensitivity of the flow 

rate to variations of Ω as long as the wave wavenumber is small enough. Under such 

conditions, the largest flow rate is achieved when the phase difference corresponds to half 

of the wave wavelength. It has been shown previously that fluid movement involves large 

forward/backward “sloshing” with a small net forward movement. This “sloshing” is 

strongly affected by the relative position of both waves. As the wavenumber increases, 

“sloshing” is confined to thinner and thinner zones adjacent to vibrating walls, and the flow 
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losses sensitivity to variations of the phase difference. Each “sloshing” zone acts 

independently from the other with the fluid moving in a nearly rectilinear manner in the 

central zone of the conduit. A significant increase in the flow rate (when compared with 

the one wall vibrations) is achieved under such conditions. 

 

Figure 4.9 Plots of variations of the flow rate Q as a function of the phase difference 𝛀 

between the waves at the upper and lower walls for the phase speed c = 5 and the amplitude 

A = 0.01 for selected wavenumbers. Dashed lines indicate results for the one-wall 

vibrations. 

 



50 

 

Chapter 5  

5 Conclusions and Recommendations 

5.1 Conclusions 

This thesis presents a grid-less, spectrally accurate algorithm for analyzing flows through 

channels with moving boundaries. It uses a fixed regular computational domain where the 

boundary conditions were expressed as internal constraints. It is capable of simulating 

waves of arbitrary shapes. The presence of the waves results in an irregular solution domain 

and hence, necessitates the use of proper solution methodologies capable to deal with the 

irregular flow domains. The algorithm uses the Immersed Boundary Conditions (IBC) 

concept. This eliminates the need for a costly numerical coordinate generation while 

permitting the use of a simple computational domain. It employs Fourier expansions in the 

streamwise direction and Chebyshev expansions in the cross-flow direction. This algorithm 

is very flexible from the point of view of the analysis of waves with various shapes as long 

as these shapes can be described by Fourier expansions. The field equations are discretized 

using a regular, rectangular computational domain with the flow domain with moving 

boundaries immersed inside the computational domain. Galerkin procedure is used to 

construct the relevant algebraic equations. Boundary conditions are included in the 

discretized problem using the Tau procedure. These conditions are expressed in terms of 

Fourier expansions based on the shape of the moving boundaries to make them suitable for 

inclusion in the algorithm. The solution procedure employs the iterative process with the 

nonlinear terms taken from the previous iteration. This results in the first-order fixed-point 

method. 
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Investigations of flow properties were carried out for vibrations applied either at a single 

wall or on both walls. For the case of the one-wall vibrations, the effects of the wave 

wavenumbers, the amplitude, and the phase speed were investigated whereas, for the case 

of the two-wall vibrations, the effect of the phase difference between the upper and lower 

waves were included in the investigation. In all these cases, the effectiveness of vibrations 

was assessed by determining the flow rate generated by these vibrations. 

The results show the dependence of the flow rate on the wave wavenumber. It was found 

that the variations of the flow rate follow asymptotes at the two extreme cases i.e., for very 

small wavenumber and very large wavenumber. The flow rate remains nearly constant 

when the wavenumber increases but starts to increase rapidly once the wavenumber 

increases beyond unity. At higher wavenumbers, the flow rate increases proportionally to 

1.73. Analysis of viscous and pressure forces acting on the fluid at the walls shows that the 

fluid movement is driven by the pressure force generated at the vibrating wall and is 

opposed by the viscous friction. It was observed that the flow rate increased proportionally 

to the second power of the wave amplitude and proportionally to the first power of the 

wave phase speed. It was further observed that the variations of the flow rate with the phase 

difference between the waves at the upper and lower walls were symmetric about the 

relative position corresponding to the half of the wave wavelength, and this relative 

position of the waves generated the highest flow rate. 

Only waves with sinusoidal shape were investigated in this thesis. 
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5.2 Recommendations for future work 

As only the sinusoidal waves were considered in this thesis, further investigations could 

look at different wave shapes and could determine the optimal wave shape, i.e. shape which 

produces the largest flow rate. The analysis could extend to the determination of the system 

response to the commensurable and non-commensurable wave shapes. 

One may find it to be of interest to investigate other effects combined with the peristaltic 

effect, e.g. combination of the wall transpiration with the peristaltic effect, combination of 

heating patterns applied at the walls with the peristaltic effect, etc. 

A similar investigation can be extended to non-Newtonian fluids after making the 

necessary adjustments to the algorithm.         
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Appendices 

Appendix A: Evaluation of Fourier Expansion of Chebyshev 
Polynomials and their derivatives 

This section will describe how to derive Fourier expansions of Chebyshev polynomials 

and their derivatives along the upper wall. 

Evaluation of Fourier Expansion of Chebyshev Polynomials 

This sub-section will show how to derive Fourier expansions of Chebyshev polynomials. 

Let, the Fourier expansion of Chebyshev polynomial 𝑇𝑘 along the upper wall is given by: 

𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ (𝑤𝑈)𝑘
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀 .       (A.1) 

Now, it is required to determine (𝑤𝑈)𝑘
⟨𝑚⟩

 , which is presented below: 

From recurrence relation it is known: 

𝑇𝑘+1(𝑦̂) = 2𝑦̂𝑇𝑘(𝑦̂) − 𝑇𝑘−1(𝑦̂).           (A.2) 

Specifically, along the upper wall this relation can be written as: 

𝑇𝑘+1(𝑦̂𝑈) = 2𝑦̂𝑈𝑇𝑘(𝑦̂𝑈) − 𝑇𝑘−1(𝑦̂𝑈).          (A.3) 

Combining equation (A.1) and equation (A.3), it can be written: 

∑ (𝑤𝑈)𝑘+1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 =  2𝑦̂𝑈 ∑ (𝑤𝑈)𝐾

(𝑚)
𝑒𝑖𝑚𝛼𝑥 𝑁𝑀

𝑚=−𝑁𝑀 − ∑ (𝑤𝑈)𝐾−1
(𝑚)

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 .(A.4) 

Taking Fourier expansion of 𝑦̂𝑈 : 
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𝑦̂𝑈 = ∑ 𝐴𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥∞
𝑛=−∞  ≈ ∑ 𝐴𝑈

(𝑛)
𝑒𝑖𝑛𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀 .          (A.5) 

 Combining equation (A.4) and equation (A.5):  

   ∑ (𝑤𝑈)𝑘+1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 =   2∑ 𝐴𝑈

(𝑛)
𝑒𝑖𝑛𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀 ∑ (𝑤𝑈)𝐾
(𝑚)

𝑒𝑖𝑚𝛼𝑥 𝑁𝑀
𝑚=−𝑁𝑀 −

∑ (𝑤𝑈)𝐾−1
(𝑚)

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 .          (A.6) 

In the right-hand side of equation (A.6) there is a multiplication of two Fourier 

expansions. Here, it is shown, how they can be reduced to one Fourier expansion.  

2∑ 𝐴𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀 ∑ (𝑤𝑈)𝐾

(𝑚)
𝑒𝑖𝑚𝛼𝑥 𝑁𝑀

𝑚=−𝑁𝑀        

= 2 ∑ ∑ 𝐴𝑈
(𝑛)(𝑤𝑈)𝐾

(𝑚)
𝑒𝑖(𝑛+𝑚)𝛼𝑥 .𝑁𝑀

𝑚=−𝑁𝑀
𝑁𝑀
𝑛=−𝑁𝑀   

Let’s define m+n = p which gives m = p - n 

= 2 ∑ ∑ 𝐴𝑈
(𝑛)(𝑤𝑈)𝐾

(𝑝−𝑛)
𝑒𝑖(𝑝)𝛼𝑥𝑁𝑀+𝑁𝑀

𝑝=−𝑁𝑀−𝑁𝑀
𝑁𝑀
𝑛=−𝑁𝑀 .  

Replacing index “p” with “m” gives: 

= 2 ∑ ∑ 𝐴𝑈
(𝑛)(𝑤𝑈)𝐾

(𝑚−𝑛)
𝑒𝑖𝑚𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀
2𝑁𝑀
𝑚=−2𝑁𝑀 . 

With this, equation (A.6) stands: 

∑ (𝑤𝑈)𝑘+1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 = 2∑ ∑ 𝐴𝑈

(𝑛)(𝑤𝑈)𝐾
(𝑚−𝑛)

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

2𝑁𝑀
𝑚=−2𝑁𝑀  −

∑ (𝑤𝑈)𝐾−1
(𝑚)

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 .  

Separating for each Fourier mode:  
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(𝑤𝑈)𝑘+1
(𝑚)

= 2∑ 𝐴𝑈
(𝑛)(𝑤𝑈)𝑘

⟨𝑚−𝑛⟩𝑛=𝑁𝑀
𝑛=−𝑁𝑀 − (𝑤𝑈)𝑘−1

(𝑚)
    |𝑘 ≥ 1|. (A.7) 

This equation will give values of Fourier coefficient for which k is greater than or equal 

to 1, then how the initial terms i.e., terms corresponding to k less than 1 are to be 

determined? The following discussion is going to answer this question. 

For k = 0: 

From equation (A.1), the following can be written: 

𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ (𝑤𝑈)𝑘
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀  . 

It is known:  

𝑇0(𝑦̂𝑈(𝑥)) = 1.          (A.8) 

For k = 0, equation (A.1) stands: 

𝑇0(𝑦̂𝑈(𝑥)) = ∑ (𝑤𝑈)0
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥.𝑚=+𝑁𝑀
𝑚=−𝑁𝑀       (A.9) 

Combining the above two equations: 

∑ (𝑤𝑈)0
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀  =  1.                  (A.10) 

For mode zero i.e., m = 0: 

(𝑤𝑈)0
⟨0⟩

 =  1   .             (A.11)          

Equation (A.10) and (A.11) can be true at the same time only when the following 

equation is true: 



63 

 

(𝑤𝑈)0
⟨𝑚⟩

 =  0  |𝑚| ≥ 1.       (A.12) 

For k = 1: 

Recall equation (A.1): 

𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ (𝑤𝑈)𝑘
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀 .  

From the basic relation of Chebyshev Polynomials, the following can be written: 

𝑇1(𝑦̂𝑈(𝑥)) =  𝑦̂𝑈(𝑥).          (A.13) 

For k = 1, equation (A.1), stands: 

𝑇1(𝑦̂𝑈(𝑥)) = ∑ (𝑤𝑈)1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀  .      (A.14) 

Combining equation (A.13) and equation (A.14): 

𝑦̂𝑈(𝑥)  = ∑ (𝑤𝑈)1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀 .       (A.15) 

According to equation (A.5), the following can be written: 

𝑦̂𝑈 = ∑ 𝐴𝑈
(𝑚)

𝑒𝑖𝑚𝛼𝑥𝑁𝑀
𝑚=−𝑁𝑀 .        (A.16) 

Comparing equation (A.15) and equation (A.16): 

∑ (𝑤𝑈)1
⟨𝑚⟩

𝑒𝑖𝑚𝛼𝑥𝑚=+𝑁𝑀
𝑚=−𝑁𝑀 = ∑ 𝐴𝑈

(𝑚)
𝑒𝑖𝑚𝛼𝑥 .𝑁𝑀

𝑚=−𝑁𝑀      (A.17) 

Separating for each Fourier mode: 

(𝑤𝑈)1
⟨𝑚⟩

 =  𝐴𝑈
(𝑚)

      |𝑚| ≥ 0.    (A.18) 
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Following is a summary of this sub-section: 

(𝑤𝑈)0
⟨0⟩

 =  1.           (A.11) 

(𝑤𝑈)0
⟨𝑚⟩

 =  0        |𝑚| ≥ 1.   (A.12)  

(𝑤𝑈)1
⟨𝑚⟩

 =  𝐴𝑈
(𝑚)

      |𝑚| ≥ 0.   (A.18) 

(𝑤𝑈)𝑘+1
(𝑚)

= 2∑ 𝐴𝑈
(𝑛)(𝑤𝑈)𝑘

⟨𝑚−𝑛⟩𝑛=𝑁𝑀
𝑛=−𝑁𝑀 − (𝑤𝑈)𝑘−1

(𝑚)
   𝑘 ≥ 1 and |𝑚| ≥ 0.       (A.7) 

Evaluation of Fourier Expansion of first derivative of Chebyshev 

Polynomials 

This sub-section will determine the Fourier expansion of the first derivative of 

Chebyshev polynomials along the upper wall: 

Recall the recurrence relation: 

𝑇𝑘+1(𝑦̂) = 2𝑦̂𝑇𝑘(𝑦̂) − 𝑇𝑘−1(𝑦̂).  

Differentiating the recurrence relation with respect to 𝑦̂ 

𝐷𝑇𝑘+1(𝑦̂) = 2 𝑇𝑘(𝑦̂)  +  2𝑦̂𝐷𝑇𝑘(𝑦̂) − 𝐷𝑇𝑘−1(𝑦̂).      (A.19) 

Along the upper wall this equation can be written as: 

𝐷𝑇𝑘+1(𝑦̂) = 2 𝑇𝑘(𝑦̂𝑈)  +  2𝑦̂𝐷𝑇𝑘(𝑦̂𝑈) − 𝐷𝑇𝑘−1(𝑦̂𝑈).      (A.20) 

Let, the derivative of Chebyshev polynomial is given by 
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𝐷𝑇𝑘(𝑦̂𝑈(𝑥)) = ∑ (𝑑𝑈)𝑘
(𝑚)

𝑒𝑖𝑚𝛼𝑥∞
𝑚=−∞ .          (A.21) 

Drawing analogy from equation (A.21) and applying that in equation (A.20) gives: 

∑ (𝑑𝑈)𝑘+1
(𝑚)

𝑒𝑖𝑚𝛼𝑥∞
𝑚=−∞  =  2∑ (𝑤𝑈)𝑘

(𝑚)
𝑒𝑖𝑚𝛼𝑥∞

𝑚=−∞  +

 2∑ 𝐴𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥∞
𝑛=−∞ ∑ (𝑑𝑈)𝑘

(𝑚)
𝑒𝑖𝑚𝛼𝑥𝑚=∞

𝑚=−∞  − ∑ (𝑑𝑈)𝑘−1
(𝑚)

𝑒𝑖𝑚𝛼𝑥.∞
𝑚=−∞    (A.22) 

Performing the multiplication of two Fourier expansions in equation (A.22) can be 

written as: 

2∑ 𝐴𝑈
(𝑛)

𝑒𝑖𝑛𝛼𝑥∞
𝑛=−∞ ∑ (𝑑𝑈)𝑘

(𝑚)
𝑒𝑖𝑚𝛼𝑥𝑚=∞

𝑚=−∞  =  2∑ ∑ 𝐴𝑈
(𝑛)(𝑑𝑈)𝑘

(𝑚−𝑛)
𝑒𝑖𝑚𝛼𝑥∞

𝑛=−∞
∞
𝑚=−∞ .  

           (A.23) 

Combining equation (A.22) and (A.23): 

∑ (𝑑𝑈)𝑘+1
(𝑚)

𝑒𝑖𝑚𝛼𝑥∞
𝑚=−∞  =  2∑ (𝑤𝑈)𝑘

(𝑚)
𝑒𝑖𝑚𝛼𝑥∞

𝑚=−∞  +

 2∑ ∑ 𝐴𝑈
(𝑛)(𝑑𝑈)𝑘

(𝑚−𝑛)
𝑒𝑖𝑚𝛼𝑥∞

𝑛=−∞
∞
𝑚=−∞  − ∑ (𝑑𝑈)𝑘−1

(𝑚)
𝑒𝑖𝑚𝛼𝑥∞

𝑚=−∞   

∑ (𝑑𝑈)𝑘+1
(𝑚)

𝑒𝑖𝑚𝛼𝑥∞
𝑚=−∞  =  ∑ {2 (𝑤𝑈)𝑘

(𝑚)
+  2∑ 𝐴𝑈

(𝑛)(𝑑𝑈)𝑘
(𝑚−𝑛)

 −∞
𝑛=−∞

∞
𝑚=−∞

(𝑑𝑈)𝑘−1
(𝑚)

} 𝑒𝑖𝑚𝛼𝑥.          (A.24) 

Separating for each Fourier mode above equation can be written as: 

(𝑑𝑈)𝑘+1
(𝑚)

 =  2 (𝑤𝑈)𝑘
(𝑚)

+  2∑ 𝐴𝑈
(𝑛)(𝑑𝑈)𝑘

(𝑚−𝑛)
 − (𝑑𝑈)𝑘−1

(𝑚)∞
𝑛=−∞ .    (A.25) 
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Appendix B: Evaluation of Innerproducts of Chebyshev 

polynomials and their derivatives   

This section will describe the evaluation of the Innerproducts of Chebyshev polynomials 

and their derivatives. Definition of the inner product of two Chebyshev polynomials can 

be given by as follows 

⟨𝑇𝑗(𝑦̂), 𝑇𝑘(𝑦̂)⟩
𝜔

= ∫ 𝑇𝑗(𝑦̂)𝑇𝑘(𝑦̂)𝜔(𝑦̂)𝑑
1

−1
𝑦̂,     𝜔(𝑦̂) = √1 − 𝑦2̂ ,      (B.1) 

 here 𝜔  is the weight function. 

By orthogonality properties of Chebyshev Polynomials, simple solutions for the above 

integral can be presented as  

⟨𝑇𝑗 , 𝑇𝑘⟩ =
𝜋

2
𝐶𝑘𝛿𝑗,𝑘  = 𝜋,       𝑗 = 𝑘 = 0          (B.2) 

          = 
π

2
,      𝑗 = 𝑘 ≥ 1 

       = 0 ,    𝑗 ≠ 𝑘 

where 𝛿𝑗,𝑘 is the Kroneckerdelta and 𝐶𝑘 is defined as  

𝐶𝑘 = 2,  𝑘 = 0                (B.3) 

      = 1,     𝑘 ≥ 1 

Chebyshev polynomials can be used to express the first derivative of Chebyshev 

polynomial as follows: 
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𝐷𝑇𝑘 = 2𝑘 ∑
1

𝐶𝑥

𝑘−1
𝑥=0 𝑇𝑥,                       𝑘 − 𝑥 = 𝑜𝑑𝑑,         𝑘 ≥ 𝑥 + 1              (B.4)  

Taking the inner product of this derivative with Chebyshev polynomial Tj gives 

⟨𝑇𝑗 , 𝐷𝑇𝑘⟩ = 2𝑘 ∑
1

𝐶𝑥
⟨𝑇𝑗, 𝑇𝑥⟩

𝑘−1
𝑥=0 ,  𝑘 − 𝑥 =  odd,         𝑘 ≥ 𝑥 + 1   

By inserting (B.2) in the above equation the relation for inner product of a Chebyshev 

polynomial of j-th order and its first derivative of k-th order can be obtained as follows 

⟨𝑇𝑗 , 𝐷𝑇𝑘⟩ = 𝑘π,                               𝑘 − 𝑗 =  odd ,       𝑘 ≥ 𝑗 + 1       (B.5) 

The expression for the second derivative of a Chebyshev polynomial is given by 

𝐷2𝑇𝑘 = ∑
1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2)𝑇𝑥,  𝑘 − 𝑥 =  even,          𝑘 ≥ 𝑥 + 2       (B.6) 

Multiplying (B.6) by Chebyshev polynomial Tj and integrating between -1 and +1 results 

in 

⟨𝑇𝑗 , 𝐷
2𝑇𝑘⟩ = ∑

1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2)⟨𝑇𝑗 , 𝑇𝑥⟩,  𝑘 − 𝑥 =  even,     𝑘 ≥ 𝑥 + 2    

By substituting (B.2) in the above equation a suitable relation for inner product of a 

Chebyshev polynomial of j-th order and its second derivative of k-th order is obtained as 

follows  

⟨𝑇𝑗 , 𝐷
2𝑇𝑘⟩ = 𝑘(𝑘2 − 𝑗2)

π

2
 ,  𝑘 − 𝑗 =  even,  𝑘 ≥ 𝑗 + 2       (B.7) 

By differentiating (B.6) with respect to 𝑦̂ a similar relation for the third derivative of 

Chebyshev polynomial can be obtained as: 
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𝐷3𝑇𝑘 = 𝐷(𝐷2𝑇𝑘) = ∑
1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2)𝐷𝑇𝑥 ,  𝑘 − 𝑥 =  even, 𝑘 ≥ 𝑥 + 2  

Substituting (B.4) in the above equation, the following equation for the third derivative of 

a Chebyshev polynomial can be obtained 

𝐷3𝑇𝑘 = ∑
1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2) [2𝑥 ∑

1

𝐶𝑧

𝑥−1
𝑧=0 𝑇𝑧]          (B.8) 

where, 𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛, 𝑘 ≥ 𝑥 + 2 ;          𝑥 − 𝑧 = 𝑜𝑑𝑑,      𝑥 ≥ 𝑧 + 1 

Taking the inner product of (B.8) with Tj and using (B.2), a suitable relation for inner 

product of a Chebyshev polynomial of j-th order and its third derivative of k-th order can 

be obtained as follows: 

⟨𝑇𝑗 , 𝐷
3𝑇𝑘⟩ = ∑

1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2)(π𝑥)          (B.9) 

𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛, 𝑘 ≥ 𝑥 + 2 ;     𝑥 − 𝑗 = 𝑜𝑑𝑑, 𝑎𝑛𝑑   𝑥 ≥ 𝑗 + 1  

By differentiating (B.6) twice, the fourth derivative of Chebyshev polynomial is obtained 

as follows: 

𝐷4𝑇𝑘 = 𝐷2(𝐷2𝑇𝑘) = ∑
1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2)𝐷2𝑇𝑥,  𝑘 − 𝑥 =  even, 𝑘 ≥ 𝑥 + 2        

By using (B.6) for D2Tx in the above equation a relation for the fourth derivative of a 

Chebyshev polynomial is obtained as follows 

𝐷4𝑇𝑘 =
𝑑2

𝑑𝑦2
(𝐷2𝑇𝑘) = ∑

1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2) [∑

1

𝐶𝑧

𝑥−2
𝑧=0 𝑥(𝑥2 − 𝑧2)𝑇𝑧]     (B.10) 

𝑘 − 𝑥 = even,   𝑘 ≥ 𝑥 + 2;  𝑥 − 𝑧 = even,  𝑥 ≥ 𝑧 + 2 
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By taking the inner product of Chebyshev polynomial with this function the following is 

obtained 

⟨𝑇𝑗 , 𝐷
4𝑇𝑘⟩ = ∑

1

𝐶𝑥

𝑘−2
𝑥=0 𝑘(𝑘2 − 𝑥2) [𝑥(𝑥2 − 𝑗2)

π

2
]       (B.11) 

𝑘 − 𝑥 =  even, 𝑘 ≥ 𝑥 + 2 ≥ 𝑗 + 4 ;  𝑥 − 𝑗 =  even , 𝑥 ≥ 𝑗 + 2 
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