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Abstract 

Previously, pharmacological activation of Wnt-signaling in human bone marrow-derived 

multipotent stromal cells (hMSC) generated conditioned media (CM) that promoted β-cell 

regeneration in streptozotocin-treated mice. Ductal-derived endocrine progenitors, which have 

been shown to generate β-cells following pancreatic injury, represent a candidate for the ‘signal-

receiving cell’. Ductal (CK19+) cells from mice pancreata obtained by purification of live 

Dolichos Biflorus Agglutinin lectin+ cells and cultured in minimal media supplemented with 

Untreated, Wnt-activated, or Wnt-inhibited CM demonstrated a significantly increased proportion 

of EdU+/CK19+ cells following 48-hours of supplementation but no endocrine phenotype 

acquisition. Lineage-tracing CK19-CreERT;Ai9(RCL-tdT) mice treated with tamoxifen (single 

dose) demonstrated specific labeling of pancreatic CK19+ cells. Streptozotocin treatment (60 

mg/kg/day, 5 days) resulted in decreased β-cell mass, islet density, and insulin+ cell frequency, as 

well as impaired glucose tolerance and increased pancreatic leukocyte infiltration. This model will 

be used in future studies to lineage-trace CK19+ cell contribution during hMSC CM-induced islet 

regeneration. 

 

Keywords: Multipotent Stromal Cell, Conditioned Media, Cell-free Therapy, Islet Regeneration, 

Diabetes, Cytokeratin 19, Ductal Cell, Lineage Tracing, Streptozotocin. 
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Summary 

Type 1 diabetes is characterized by the destruction of insulin-producing β-cells in pancreatic islets, 

leaving patients unable to control their blood glucose. Regeneration of lost β-cells represents a 

promising treatment strategy. Our lab pioneered the use of transplanted human bone-marrow 

derived mesenchymal stem cells (MSC) to stimulate islet regeneration in mice with β-cell 

destruction. Pharmacological activation of the Wnt-pathway in MSC cultures generated a 

concentrated protein mixture (CM) that consistently reduced blood glucose levels in mice with 

diabetes. However, the identity of signal-receiving cells that mediate islet regeneration within the 

pancreas remains unknown. Recently, regeneration of β-cells from pancreatic duct cells has been 

demonstrated. Treating isolated pancreatic duct cells with MSC CM increased their replication 

compared to minimal culture conditions but did not stimulate expression of other pancreatic cell 

proteins. We also characterized a specialized mouse model designed to follow the fate of duct 

cells. This model will be used in future studies to investigate ductal cell contribution to islet 

regeneration following CM injection. These studies contribute to the development of ‘cell-free’ 

regenerative medicine therapies for diabetes. 
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1.1 Functions of the Pancreas 

The pancreas, a digestive organ located in the upper left abdominal cavity, is composed of 

exocrine and endocrine tissue. Exocrine cells, including acinar and ductal cells, aid in the digestion 

of food passing from the stomach into the small intestine. Acinar cells synthesize proenzymes, 

which become activated in the duodenum to break down proteins, carbohydrates, and lipids. Ductal 

cells secrete bicarbonate to neutralize acidic chyme from the stomach as it passes into the 

duodenum. Endocrine cells, organized in clusters called islets of Langerhans, synthesize and 

secrete hormones via the portal vein system to regulate glucose homeostasis1. 

 

1.1.1 Human Pancreas Development 

 During human fetal development, the pancreas arises from interactions between the 

endodermal epithelium and surrounding mesenchyme2. Pancreatic organogenesis begins with the 

formation of the pancreatic and duodenal homeobox 1 (Pdx1)- and pancreas-specific transcription 

factor (Ptf1a)-expressing dorsal and ventral buds from the endoderm-derived primitive gut 

epithelium at gestational day 263–5. Subsequently, fusion of these buds forms the definitive 

pancreas with an interconnected ductal network3. As the left ventral bud regresses, later becoming 

the inferior head of the pancreas, the right ventral bud fuses with the dorsal bud during gut rotation 

at 6-7 weeks of gestation, giving rise to the majority of the pancreas4. Between gestational days 45 

and 47, the pancreatic epithelium undergoes active growth, proliferation, and branching 

morphogenesis into the surrounding mesenchyme, controlled by NOTCH, fibroblast growth factor 

(FGF), and epidermal growth factor (EGF) signaling3,4. Compartmentalization of the pancreatic 

tip and trunk occurs at around gestational week 7, with proacinar/tip cells expressing GATA4 and 

bipotent endocrine/ductal progenitor cells expressing Sox9, NK6 homeobox 1 (Nkx6.1), 

hepatocyte nuclear factor 1 homeobox B (Hnf1)b, and Pdx14,6,7. 
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Exocrine tissue, comprised of acinar and ductal cells, makes up >95% of the pancreas8. 

Acinar-specific gene expression of digestive enzyme precursors and other factors mark a distinct 

commitment at around gestational weeks 11-15, including chymotrypsinogen, trypsinogen, 

protease, elastase 1, and subsequently amylase after gestational week 234. Acinar cells are 

connected to ductal tissue through centroacinar cells/terminal duct cells8. Duct cells transport these 

pancreatic zymogens and secrete bicarbonate to neutralize gastric acid into the duodenum8. 

Continued expression of Sox9 and Hnf1b and expression of differentiated ductal cell markers 

including cytokeratin 19 (CK19), carbonic anhydrase 1, mucin 1, and cystic fibrosis membrane 

conductance regulator mark ductal commitment from trunk progenitors at gestational week 114,8. 

However, it remains unclear whether differentiated ductal cells retain the ability to give rise to 

endocrine cells that bipotent trunk precursor cells possess. 

 

The endocrine compartment, which makes up 2-3% of the pancreas, is composed of 

hormone-secreting cells including insulin-secreting β-cells (65-80%), glucagon-secreting α-cells 

(15-20%), somatostatin-secreting δ-cells (3-10%), polypeptide (PP)-secreting PP cells (3-5%), and 

ghrelin-secreting ε-cells (<1%)9–14. Transient expression of the transcription factor Neurogenin 3 

(Ngn3) and paired box (PAX)6 expression mark commitment of bipotent trunk progenitors to an 

endocrine lineage fate3,10,15. As endocrine cells commit to their specific lineages, each cell type 

expresses a unique set of transcription factors. When endocrine cells commit to an α-lineage, they 

express aristaless related homeobox (ARX) and glucagon, but not paired box 4 (PAX4) or PDX115. 

On the other hand, β-cells express PDX1, NKX6.1, v-maf musculoaponeurotic fibrosarcoma 

oncogene homologue (MAF)A, PAX4, and insulin, but not ARX15. It is thought that reciprocal 

inhibition between ARX and PAX4 expression may mark a key checkpoint in specification 

between α- and β-cell identity, respectively16–19. The first endocrine cell type to appear is insulin-

expressing cells at gestational week 7.5, followed by glucagon- and somatostatin-expressing cells4. 

Differentiated endocrine cells migrate away from the ductal epithelium and organize into clusters 

called islets of Langerhans which form during gestational week 10 and obtain a vascular network 

by gestational week 144,8. The majority of α-, β-, and δ-cells within the human pancreas are single 

hormone expressing after birth4. Bi-hormonal expression of insulin and glucagon in approximately 

20-40% of α- and β-cells has been noted between gestational week 9 and 16, which significantly 

declined by gestational week 21 and was predominantly undetectable in the adult pancreas4,15. 
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1.1.2 Glucose Homeostasis and Regulation of Insulin Secretion 

 The human body requires a consistent supply of glucose during all states: well-fed, 

starvation, exercise, rest, or stress20. For example, the human brain requires 6 grams of glucose per 

hour to maintain basic function20. The islets of Langerhans play a crucial role in maintaining 

normoglycemia through secretion of antagonistic hormones, insulin and glucagon, to prevent 

deleterious consequences of hyperglycemia and hypoglycemia. After a meal, absorption of 

carbohydrates causes blood glucose levels to rise. In response to elevated exogenous glucose 

concentrations, circulating blood glucose is taken up from capillaries within and surrounding islets 

by the low affinity facultative glucose transporter (GLUT) 2 (Km=17 mmol/l), located on 

pancreatic β-cells14,21,22. Upon entry into the cell, this glucose enters glycolysis to increase the ratio 

of adenosine triphosphate (ATP) to adenosine diphosphate (ADP)14. An increased ATP/ADP ratio 

leads to closure of ATP-sensitive potassium (K+)-channels and subsequent depolarization of the 

β-cell membrane14. Upon depolarization, voltage-dependent calcium (Ca2+) -channels facilitate the 

influx of Ca2+ ions, which triggers fusion of insulin-containing vesicles with the plasma membrane 

and release of vesicle contents into the blood in a biphasic manner14,23. Circulating insulin is taken 

up primarily by the liver, muscle, and adipose tissue to facilitate insulin-dependent uptake of 

exogenous glucose via GLUT4 from the blood, promoting anabolic processes such as glycogenesis 

and lipogenesis14,24–26. Conversely, when blood glucose levels are low, such as during a fasting 

state, α-cells secrete glucagon which signals hepatocytes to mobilize glucose via glycogenolysis 

to restore normoglycemia. 

 

 Insulin secretion is affected by additional external regulators. Incretin hormones, including 

glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic peptide (GIP) amplify 

insulin secretion27. GLP-1 and GIP are released by enteroendocrine L-cells and K-cells, 

respectively, following nutrient entry into the intestine following oral ingestion28–33. Pancreatic β-

cells can increase the rate of insulin translation in response to the presence of nutrients, regulated 

in part by pancreatic endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor 2a22,34–

36. Conversely, short-chain fatty acids exhibit an inhibitory effect on insulin secretion as a result 

of reduced ATP/ADP ratio following oxidation14,37. The stress hormone norepinephrine also 

inhibits insulin secretion by binding to G-protein coupled receptor (GPCR)-linked α2-adrenergic 

receptors, causing hyperpolarization of β-cells38–40. Proper regulation of insulin secretion and 
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function is critical for energy homeostasis. β-cell dysfunction, a hallmark of diabetes mellitus 

(DM), leads to aberrant glucose homeostasis and long-term complications. 

 

β-cell mass can be dynamic to meet bodily demands and maintain glucose homeostasis 

during pregnancy and weight gain. Studies have shown a linear correlation between β-cell mass 

and body weight and/or body mass index in mice, rats, and humans41–44. β-cell mass is dictated by 

the balance between β-cell production (through replication or neogenesis), β-cell death, and β-cell 

volume changes (hypertrophy or atrophy)44. 

 

1.2 Diabetes Mellitus 

The earliest known report of DM dates back to 1552 BC when Egyptian physician Hesy-

Ra described a disease characterized by frequent urination and rapid weight loss45. Between the 

fifth and sixth centuries, Sushrant recorded an association of these symptoms with sweet-tasting 

urine in Indian literature46. Since then, the emergence of chemical analysis as a diagnostic tool and 

the study of endocrinology have improved our understanding of diabetes pathology46. 

 

Diabetes results from the destruction of insulin-producing β-cells in the pancreas as a 

consequence of autoimmune attack (Type 1) or insulin insensitivity (Type 2), leaving patients 

unable to control blood glucose47. The International Diabetes Federation (IDF) the prevalence of 

diabetes in adults to be 463 million in 2019, which is projected to increase to 700 million by 204548. 

The annual economic burden of diabetes and its cardiovascular co-morbidities has been estimated 

at $825 billion in a systematic review by the Non-communicable Diseases Risk Factor 

Collaboration49. This load is placed on patients and their families, their health infrastructures, and 

national economies49. Thus, there exists an irrefutable need to develop curative therapies for 

diabetes. 

 

1.2.1 Type 1 Diabetes 

Type 1 diabetes (T1D) is an autoimmune disease resulting in the selective destruction of 

pancreatic β-cells by T-lymphocytes22. Typically diagnosed in juvenile patients, T1D is 

characterized by the inability to synthesize and secrete insulin endogenously50. The extent of β-
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cell loss at the presentation of clinical symptoms varies between individuals and is dependent on 

age and cellular pattern of infiltrating cells during insulitis51–54. T1D accounts for <15% of total 

DM cases, with a worldwide prevalence of 1.1 million in children aged 0-19 in 201948,55. The 

worldwide incidence of T1D has been estimated to increase 3% annually, with the greatest increase 

observed in children aged 0-455. 

 

Apoptosis of β-cells in T1D results from immune antibody binding and cellular reactivity 

to endogenous islet antigens. T-cell and macrophage islet infiltration and subsequent release of 

inflammatory cytokines, including interleukin-1β (IL-1β), interferon-γ (IFN-γ), and tumor necrosis 

factor-α (TNF-α), result in T-cell activation and β-cell destruction22,56–61. Following autoantibody 

generation, cluster of differentiation (CD) 4+ naïve T helper (Th) 0 cells polarize towards an 

inflammatory Th1 phenotype. Th1 cells presented with islet self-antigens by antigen presenting 

cells promotes β-cell destruction through release of cytokines and subsequent recruitment of pro-

inflammatory (M1) macrophages and CD8+ cytotoxic T-lympocytes22,62–66. Activated T-

lymphocytes then mediate direct β-cell destruction through the pore-forming perforin-dependent 

pathway or induce apoptosis via Fas/Fas ligand interactions67. Mutations in the human leukocyte 

antigen (HLA) gene, encoding cell surface antigens that facilitate interaction with immune cells, 

correlate to an increased risk in developing T1D68–70. Environmental factors including infant 

nutrition, vitamin D deficiency, gut microbiota, and viral infections may contribute to the 

development of T1D in individuals with genetic predispositions71. Our understanding of the 

underlying causes and progression of T1D is growing with use of advanced technologies including 

artificial intelligence, however, characterization of the disease in humans is complicated by the 

latency between the onset of the autoimmune disease process and presentation of clinical 

symptoms, as well as limited availability of human pancreas tissue for study72–74. 

 

1.2.2 Type 2 Diabetes 

 Glucose homeostasis in the body depends on insulin secretion by pancreatic β-cells and 

normal body cell responses to insulin receptor binding and subsequent glucose uptake75. During 

Type 2 diabetes (T2D) pathogenesis, the response to insulin becomes defective, leading to 

dysregulated glucose balance and metabolism. Of the 463 million people estimated to have 

diabetes by the IDF, individuals aged 20-79 with T2D overwhelmingly dominate this estimation48. 
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Approximately 50% of adults living with diabetes are unaware of their condition because there is 

a long pre-detection period (3-7 years) during which blood glucose levels are elevated but 

symptoms are not clinically diagnosed48,55. Thus, early detection is crucial in improving outcomes 

associated with T2D and associated complications48,55. In developed countries, the annual 

incidence of T2D is estimated at 6.7-7 per 1000 individuals per year55. 

 

 Also termed non-insulin-dependent diabetes, the development and progression of T2D is 

marked by deterioration in the ability to respond to elevated blood glucose levels over several 

years. Progression towards a diabetic state is characterized by a reduction in insulin sensitivity, 

leading to decreased glucose uptake by effector cells76. When the energy balance in the body is 

chronically skewed towards excess calories, fat accumulates in subcutaneous tissue77. When the 

storage capacity of this tissue is exceeded, fatty acids are stored in tissues such as the liver, 

muscles, and in the pancreas77. Fat accumulation in liver and muscle tissue contributes to impaired 

glucose uptake in response to insulin as a result of impaired insulin receptor tyrosine kinase 

activity, while fat in the pancreas contributes to further β-cell dysregulation77–79. Studies suggest 

that this impaired insulin response also stems from dysfunctional glucose storage processes, 

including decreased skeletal muscle glycogenesis and increased gluconeogenesis despite 

hyperinsulinemia76,77,79. Following initial insulin resistance, compensatory mechanisms in 

response to the increased metabolic load, including β-cell mass expansion and increased secretion 

of insulin by β-cells will occur but cannot be sustained over time77,80. Chronic hyperglycemia 

depletes insulin-containing vesicles, reducing the capacity of β-cells to respond to new glucose. 

Glucotoxicity, which is correlated with an increase in reactive oxidative species (ROS), also causes 

stress on β-cells, subsequently leading to β-cell hypertrophy and increased risk of apoptosis81. As 

T2D  progresses, the rate of β-cell apoptosis exceeds the rate of β-cell replication and neogenesis, 

leading to a decline in total β-cell mass80. 
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 Aberrant innate immunity activation also plays a role in the progression of T2D. Increased 

levels of circulating innate immune acute-phase circulating factors, including C-reactive protein, 

serum amyloid A, α-1-acid glycoprotein, sialic acid, and IL-6,  have all been observed in T2D 

patients82. Increased circulating inflammatory cytokines can exacerbate insulin resistance. For 

example, TNF-α activates c-Jun NH2-terminal kinase which inhibits insulin signaling through 

serine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 and stimulation of 

suppressor of cytokine signaling proteins, which bind and facilitate degradation of IRS-1 and IRS-

283. 

 

 Genetic predispositions also predict susceptibility to T2D. As a polygenic disease, in which 

single mutations can have protective or deleterious effects, scientists have been working to identify 

candidate genes to characterize the genetic components in patients with T2D84. Single nucleotide 

polymorphisms in genes including peroxisome proliferator-activated receptor γ (PPARG), 

potassium inwardly rectifying channel subfamily J member 11 (KCNJ11), Wolfram syndrome 1 

(WFS1) gene, and HNF1b are associated with development of T2D84. In individuals with genetic 

predispositions, environmental factors including high-fat diet, reduced physical activity, age, 

pollutants, and exposure to a diabetic environment in utero contribute to an increased risk of 

T2D85–87. Consequences of chronic hyperglycemia and fat accumulation in organ tissues include 

cardiovascular disease, retinopathy, and neuropathy88. 
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1.2.3 Animal Models to Study Diabetes 

 Animal models of diabetes allow for study of spontaneous or induced pathology that 

resembles one or more aspects of the disease in humans89. Both T1D and T2D are multifactorial 

diseases in which polygenic and environmental components contribute to disease progression. 

 

1.2.3.1 Models for T1D 

 To study autoimmune T1D, the non-obese diabetic (NOD) mouse is commonly used. In 

NOD mice, insulitis starts at approximately 4-5 weeks of age with lymphocytes surrounding islets 

followed by infiltration of an unusually high number of CD4+ and CD8+ T-cells89. Immune cell 

influx ultimately results in destruction of >90% of β-cells and hyperglycemia by weeks 24-30 of 

age89. As in humans, NOD mice develop autoantibodies to insulin, glutamic acid decarboxylase, 

and the tyrosine phosphatase ICA51289. Major histocompatibility complex (MHC) alleles are also 

important factors in disease progression in these mice, similar to humans89. Although clinical 

symptoms typically present in human patients, including hyperglycemia, glycosuria, polydipsia, 

and polyuria, manifest in NOD mice, they have a higher resistance to ketoacidosis and can survive 

up to 2-4 weeks without exogenous insulin89. 

 

 The Diabetes-prone biobreeding (BB) rat has MHC gene susceptibility to autoimmune 

diabetes and develops islet-specific and glutamic acid decarboxylase autoantibodies89,90. Insulitis 

within this rat model is similar to human pathogenesis with Th1-lymphocytes predominating 

infiltration91. At 8-16 weeks of age, rats become hyperglycemic, lack insulin, and exhibit polyuria 

and polydipsia89. Similar to humans, BB rats are prone to ketoacidosis and need exogenous insulin 

treatments to survive91. However, this rat model has depressed levels of CD4+ T-cells and almost 

non-existent CD8+ T-cells91, which compromises its acceptability as a model for human T1D 

diabetes. 

 

 Chemical agents have also been used to model diabetes. Streptozotocin (STZ) and alloxan 

(AX) target pancreatic β-cells via GLUT2 transporter specificity and mediate β-cell death through 

ROS and free radical mechanisms89. STZ, a nitrosourea related antibiotic and antineoplastic agent 

produced by Streptomyces achromogenes, induces DNA alkylation and fragmentation within β-
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cells, leading to β-cell destruction and insulin-dependent diabetes89. Although these chemical 

agents cause hyperglycemia and insulinopenia, they do not recapitulate the autoimmune aspects 

of T1D89,92–94. 

 

1.2.3.2 Models for T2D 

 Spontaneous mouse models of T2D contain genetic mutations that make mice susceptible 

to the development of diabetic-like symptoms. Among these are the ob/ob and db/db mouse strains 

with mutations in the leptin and leptin receptor genes, respectively89. The ob/ob genotype is 

characterized by excessive appetite, low energy expenditure, and obesity starting at approximately 

4 weeks of age89. Following insulin resistance from hyperphagia and obesity, hyperinsulinemia 

ensues89,95. Ob/ob mice derived from the C57BL/6J strain develop mild hyperglycemia, while 

similar mice derived from the C57BL/KS strain develop severe diabetes which may be lethal89,95. 

Db/Db mice also develop hyperphagia, obesity, insulin resistance, and hyperinsulinemia before 

developing hyperglycemia by 8 weeks of age as a result of β-cell failure89,96. 

 

 Non-spontaneous models of T2D include C57BL/6J mice fed a high-fat diet (HFD). HFD 

induces system metabolic alterations consistent with T2D. Disease progression is marked by 

obesity, insulin resistance, subsequent hyperglycemia, and lipid accumulation97. ROS production 

as a result of chronic hyperglycemia causes apoptosis of β-cells and subsequent reduction in β-cell 

mass98,99. Mice fed a HFD also exhibit increased systolic blood pressure compared to those fed a 

low-fat diet100. Similar to human T2D pathogenesis, low level chronic inflammation, including 

within the cardiovascular system, has been identified in HFD mice, which has been attributed to 

immune responses that are more often Th1-mediated99. However, a standardized protocol for this 

model has yet to be established. 
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1.3 Therapeutic Approaches to Treat Diabetes Mellitus 

Scientific and technological advances have played a critical role in developing effective 

treatments for diabetes. Identifying targets and strategies for long term, sustainable treatments has 

been crucial in the advancement of patient care. Treatments for diabetes have primarily focused 

on insulin therapy, gene therapy, cell replacement, and regenerative approaches. Before these 

treatments became available, physicians promoted fasting and calorie-restricted diets for diabetes 

to improve glucosuria and acidosis, and delay negative outcomes in children with diabetes101,102. 

Starting with the discovery of insulin in 1920, finding a curative therapy for diabetes has seemed 

more within reach102. 

 

1.3.1 Drug Treatments 

 Exogenous insulin therapy has become a common treatment for patients with T1D and for 

some with T2D. In 1920, Frederick Banting, an orthopedic surgeon, had the idea to isolate pancreas 

extracts to treat depancreatized dogs that developed diabetes102. Following intravenous injection 

of what Banting and Charles Best termed ‘isletin’, the blood glucose levels of these dogs 

decreased102. After J.B. Collip joined the group in 1921, the team purified isletin for human use, 

and the first injection was given to a 14-year-old boy in 1922102. Improvements in methodology 

for purification over the ensuing years has led to consistent positive clinical outcomes. Subsequent 

development of more potent insulin and short- and long-acting analogs, has led to improved 

physiological control of diabetes symptoms and reduced complications102. Today, insulin therapy 

is given through injections or via an insulin pump and can either be used alone or alongside other 

oral medications to control symptoms. There are many different types of exogenous insulin 

available with differing pharmacokinetic properties, as well as various delivery methods, so 

finding the most suitable therapy for each patient is paramount in maintaining their health. 

However, patients on insulin therapy must continuously monitor their blood glucose and injections 

must be given on a regular basis lifelong. 
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Other pharmacological agents and combination therapies have also been used to control 

blood glucose and other symptoms in patients with diabetes. Metformin is a biguanide that 

increases insulin sensitivity by phosphorylating GLUT-enhancer factors and inhibits hepatic 

gluconeogenesis103,104. Additionally, in combination with an effective treatment plan, metformin 

has been shown to help with weight loss as well as serum triglyceride and low density lipoprotein 

level reduction105. However, it does not affect the activity of β-cells. Sulfonylureas act on the ATP-

sensitive potassium channels of β-cells to trigger insulin secretion106. Efficacy of sulfonylureas 

require the presence of residual β-cell mass and may contribute to exhaustion and death of those 

remaining β-cells103. While there has been tremendous progress in developing pharmacological 

therapies to manage diabetes, they cannot fully recapitulate the refined and complex processes of 

blood glucose homeostasis in healthy persons. Moreover, the cost of medication for patients 

represents a major hurdle for adherence to treatment107. 

 

1.3.2 Gene Therapy 

 Gene therapy refers to the replacement or silencing of dysfunctional genes to treat or 

prevent disease. Gene vectors in the form of lentiviruses, adenoviruses, liposomes, and naked DNA 

have been used for delivery of the insulin gene into various body tissues, including pancreatic, 

liver, fat, and muscle103. One genetic approach to delay the progression of autoimmune diabetes 

and destruction of β-cells targets the immune system itself. Inducing expression of proinsulin 

under control of the MHC class II promoter has been shown to prevent onset of T1D in NOD 

mice108. However, this strategy relies on early detection of immune reactivity to β-cells before 

clinical presentation of symptoms. 

 

 Another gene therapy approach has been the reprogramming of non-β-cells to replace lost 

β-cells through induced expression of β-cell specific transcription factors. For example, 

recombinant-adenovirus-mediated gene transfer of Pdx-1 to hepatocytes of STZ-treated mice 

considerably increased biologically active plasma insulin content and reduced hyperglycemia109. 

Pdx-1 is a crucial regulator in early pancreas morphogenesis and plays an important role in 

controlling glucose-dependent insulin expression in β-cells110. Reprogramming of pancreatic cells 

has also shown some success in recovering β-cell mass. In vivo delivery of adenoviral vectors 

carrying Ngn3, Pdx1, and MafA preferentially reprogrammed pancreatic exocrine cells into β-like 
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cells with indistinguishable morphology and gene expression from endogenous β-cells that could 

ameliorate STZ-induced hyperglycemia111. Pdx1 and MafA-carrying adeno-associated virus 

cassettes administered through the pancreatic duct reprogrammed α-cells into insulin-expressing 

β-cells to restore normoglycemia in in AX-treated or autoimmune NOD mice112. However, long-

term effectiveness of cell reprogramming would have to be combined with treatment strategies to 

combat ongoing autoimmunity or increased metabolic load to improve survival of newly formed 

β-cells. 

 

1.3.3 Cell Replacement Strategies 

 In 2000, James Shapiro and his team published their success in helping seven consecutive 

patients with T1D achieve insulin independence a year after islet transplantation via the Edmonton 

Protocol combined with glucocorticoid-free immunosuppressive therapy to reduce chances of graft 

rejection113. Islets isolated from multiple cadaveric donors matched for blood type and 

lymphocytotoxic antibodies were transplanted to recipients via the hepatic portal vein113. The 

immunosuppressive regimen included long-term sirolimus and tacrolimus use in combination with 

short-term dacluzimab administration113. However, ongoing autoimmunity, graft rejection, and 

adverse responses to immunosuppressive drugs ultimately contributed to rejection of donor 

islets114115. Since then, intensive research has focused on improving outcomes and graft survival 

for patients who have received islet transplants. Data from the Collaborative Islet Transplantation 

Registry indicates a 44% success rate in achieving insulin independence 3 years after surgery116. 

While there have been positive results in the field of allogeneic islet replacement therapy in 

controlling blood glucose and improving glycated hemoglobin levels in diabetic patients via the 

Edmonton Protocol113, shortages of cadaveric donor islets117–119, the necessity for lifelong 

immunosuppressive drugs117–121, and modest success achieving long-term insulin 

independence118,120 have proven to be major barriers to this treatment strategy.  
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 To address the challenge of donor tissue availability, scientists have investigated alternate 

sources of β-cells for transplantation. One attractive source under investigation is pluripotent stem 

cells, including human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC). 

hESC, first derived from the inner cell mass of blastocysts by James Thompson and his team in 

1998, can give rise to any cell type found in the body when given the appropriate signals116,122. 

iPSC, first described by Shinya Yamanaka in 2006, are reprogrammed adult fibroblast or somatic 

cells that have been reverted to a pluripotent state through introduction of factors including the 

transcription factors Oct3/4, Sox2, c-Myc, and Klf4 in culture116,123. Under stepwise differentiation 

protocols, iPSC can be pushed towards a β-cell lineage that express maturity markers (e.g. insulin, 

MafA, Nkx6.1, Pdx1) through guidance following developmental specification124–128. However, 

of the differentiated endocrine cells generated  in culture, many are polyhormonal and lack 

glucose-dependent insulin secretory ability116. These cultures also contain other pancreatic cell 

types from various developmental stages116. While there has been success in reducing 

hyperglycemia in mice with chemically ablated β-cells, challenges in the application of this 

approach in clinical trials include immune response towards the encapsulation device129,130, 

hypoxia following implantation129–132, and impaired insulin release kinetics132. Ongoing research 

focussed on more efficient generation of insulin-producing β-like cells and encapsulation 

strategies to promote survival have been undertaken by companies such as Semma Therapeutics 

and ViaCyte133. 

 

1.3.4 Endogenous Regeneration of β-cells 

Another strategy under investigation to restore β-cell mass focuses improvement of the 

microenvironment that causes β-cell death. Normally, the adult pancreas exhibits low rates of cell 

turnover and limited response to injury compared to other organs such as the liver or small 

intestine134–136. However, increased β-cell mass in response to pregnancy or obesity suggests that 

the endocrine pancreas may be stimulated to heal under diabetic conditions in the presence of a 

microenvironment that favours regeneration over destruction134,137,138. 

 

One method has targeted regulation of pathways that affect β-cell proliferation. Early in 

life, the primary mechanism of β-cell expansion is through self-replication139,140. However, the 

proliferative capacity of β-cells declines in an age-dependent manner with negligible detectable 
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levels in adults over 30 years old141. One goal within this field is to identify key regulators of β-

cell proliferation that mediate this observed decrease in proliferation over time. An increase in 

expression of p16Ink4a, a cyclin-dependent kinase inhibitor encoded by the Cdkn2a gene, in β-cells 

is strongly correlated with increased age118,142. P16Ink4a expression is inhibited by the epigenetic 

regulator histone-lysine N/methyltransferase enzyme encoded by enhancer of zeste 2 polycomb 

repressive complex 2 (Ezh2), which decreases its expression with age143. Increasing Ezh2 

expression in a transgenic mouse model through direct upregulation or by indirectly targeting 

platelet-derived growth factor receptor (Pdgfr) signaling has shown success in achieving β-cell 

mass expansion through replication143,144. However, translation of findings in regulation of cell 

cycle proteins in humans is difficult, as cell-cycle proteins in rodent islets are different from those 

identified in human islets. High-throughput screens have identified compounds that can stimulate 

β-cell proliferation in human islets such as 5-iodotubercidin, harmine, and WS6145–147. While there 

has been progress in elucidating β-cell regulatory pathways and identifying stimulators of 

proliferation, clinically relevant β-cell mass restoration by β-cell replication alone has proven 

difficult to attain136,148. 

 

Another strategy to stimulate β-cell regeneration focusses on conversion of non-β-cells to 

β-cells in situ. Single-cell ribonucleic acid sequencing (RNA-seq) of human pancreata has revealed 

heterogeneity within cell populations with indication of intermediate stages between lineages, 

which could indicate potential plasticity within the human pancreas149–152. Investigation of this 

potential plasticity has been conducted by the Collombat, Herrera, and Bonner-Weir groups, 

among others18,19,44,153–160. Differentiation studies demonstrated induction of islet-derived 

fibroblast-like cells to hormone-expressing cells in vitro and transition between α- and β-cells 

following induction of lineage specific transcription factors in mouse models, suggesting 

previously unrecognized plasticity between mature endocrine cell types16,18,19,159,161. Expression of 

MafA and Pdx1 in Nng3+/glucagon+ cells resulted in their transition to β-cells in transgenic 

mice159. Following Pax4-mediated α- to β-cell transition, Hnf1β+ duct-lining cells demonstrated 

transient activation of Neurogenin 3, an endocrine progenitor marker, before adopting an α- then 

β-cell phenotype and function19,154,156. Misexpression of Ngn3 in ductal cells stimulated 

reactivation of the endocrine lineage specification pathway, resulting in their transition into 

functional β-like cells in mice154. Supporting the hypothesis that β-cells can be generated from 
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ductal cells in the adult pancreas, 15% of insulin-expressing β-cells, which were not associated 

with other islet cells, have been found in or budding from ductules, paralleling β-cell lineage 

specification processes in the developing pancreas162. These findings have generated interest in 

stimulating islet regeneration during diabetes if we can identify clinically relevant stimuli to 

modulate these regulatory pathways. While Ben-Othman et al. reported that long term gamma-

aminobutyric acid exposure155 and Li et al. reported artemether163 could modestly induce α- to β-

cell transition, subsequent studies have failed to replicate their results164,165. 

 

1.4 Multipotent Stromal Cells 

Stem and progenitor cells from various lineages have been highly studied as a promising 

source of therapeutic properties. Multipotent stromal cells (MSC), also referred to as mesenchymal 

stem cells, have received a high degree of attention in recent years due to their wide range of 

therapeutic actions. The first descriptions of MSC appeared in the 1970s by Friedenstein and his 

team166. Since then, investigation into the therapeutic potential of MSC has been of high interest 

based on their multipotency, secretory, and immunomodulatory functions. Derived from various 

sources within the body, MSC have been considered for therapies for a wide array of diseases 

including myocardial infarction, liver fibrosis, osteoarthritis, and diabetes, among others. 

 

1.4.1 Properties and Characterization 

 The clear definition and criteria of MSC has long been debated. Many investigators have 

reported different methods for isolation, expansion in culture, and criteria for characterizing MSC, 

making comparison and applications of studies in different contexts difficult167. In response, the 

International Society for Cellular Therapy (ISCT) published their minimal criteria for defining 

MSC in 2006167. Their criteria include: plastic adherence; expression of cell surface markers 

CD105, CD73, and CD90 in ≥ 95% of cells in culture, as well as negative expression of CD45, 

CD34, CD14, CD11b, CD19 and HLA isotype DR in ≤ 2% of cells; and the capacity to 

differentiate into bone, fat, and cartilage in vitro167. MSC can be isolated from various human adult 

tissues, including bone marrow168–170, adipose tissue169,171, peripheral blood172,173, lung tissue174,175, 

and muscle tissue176,177. In response to the various tissue sources from which MSC can be derived, 

the ISCT recommended that descriptions of MSC be supplemented by the tissue origin as cells 
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from different tissues exhibit varied phenotype, functions, and secretory profiles178. For example, 

expression of Sox2, a marker associated with the maintenance of multipotency, self-renewal, and 

neurogenesis in early embryonic development, has only been associated with MSC derived from 

bone marrow179. MSC are highly proliferative in vitro, and those isolated from human bone 

marrow have been shown to maintain expression of the stem cell markers Oct-4, Rex-1, and Sox-

2 for at least 10 passages177. However, differences in MSC properties are donor dependent. Among 

different bone marrow donors of varying ages, there are differences in growth kinetics, 

osteogenesis, alkaline phosphatase activity, and secretory profiles180–183. With donor and tissue 

source variability, research geared towards more thorough characterization of MSC, including cell 

subpopulations, is ongoing. 

 

1.4.2 MSC-Mediated Repair 

 MSC have shown great promise as a therapeutic tool for a wide range of diseases and 

disorders. As previously mentioned, one of the criteria for defining MSC is their multipotency. 

When MSC are placed in induction medias supplemented with specific factors, they can be pushed 

down osteogenic, chondrogenic, or adipogenic lineages, which has stimulated interest in tissue 

replacement strategies184–186. While these cells possess the capacity for in vitro multipotency under 

appropriate culture conditions, in vivo engraftment studies have been largely disappointing187–189. 

 

The benefits of MSC cell treatments have predominantly been attributed to indirect or 

paracrine mechanisms. MSC secrete a wide array of factors into the surrounding environment. The 

MSC secretome, which can be concentrated to generate conditioned media (CM), is comprised of 

soluble factors and extracellular vesicles, which together make up a regenerative 

microenvironment containing immunomodulatory, anti-apoptotic, pro-angiogenic, proliferative, 

and growth factors that facilitate tissue repair187,190–192. Important for tissue regeneration, the 

secretome has been shown to include anti-apoptotic growth factors including insulin-like growth 

factor 1 (IGF-1), tissue inhibitor of metalloproteinases 1 and 2, growth hormone, EGF, hepatocyte 

growth factor (HGF), and nerve growth factor (NGF)180. Immunomodulatory functions of MSC 

include promotion of a pro-regenerative macrophage phenotype, mobilization of macrophages to 

the site of injury, limiting degranulation of mast cells, inhibition of lymphocyte proliferation, 

decreasing lymphocyte proinflammatory cytokine synthesis, and increasing lymphocyte anti-
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inflammatory cytokine synthesis180. MSC secrete vascular endothelial growth factor (VEGF) 

which stimulates migration and proliferation of endothelial cells to facilitate the formation of blood 

vessels180,193,194. Treatment using MSC CM has demonstrated regenerative effects in disease 

models including intervertebral disc injury, myocardial infarction, and neuronal damage in a 

preclinical setting, and bone regeneration and alopecia in clinical trials195. Key advantages of this 

approach include: (1) avoidance of immune incompatibility and tumorigenicity associated with 

stem cell administration, (2) MSC CM can be assessed for efficacy, safety, and dosage similarly 

to other pharmaceuticals, and (3) MSC CM can be stored long term without compromising 

effectiveness187. Use of CM also provides the opportunity to engineer production of specific 

factors through modulation of signaling pathways. 

 

1.4.3 MSC as a Therapeutic Option for Diabetes 

 As documented in other tissues, MSC may have the ability to facilitate regeneration of 

pancreatic endorcrine tissue. MSC isolated from human bone marrow have been shown to reduce 

hyperglycemia, increase serum insulin, and stimulate islet regeneration following intravenous 

injection or intracardiac infusion in STZ-treated mice196–200. The immunomodulatory functions of 

MSC have also been shown to delay the onset of hyperglycemia and β-cell loss in mouse models 

of T1D201. Intravenous injection of bone marrow-derived human MSC (hMSC) also improved 

blood glucose levels and ameliorated insulin resistance by increasing GLUT4 expression in a rat 

model of T2D202. However, the mechanisms that mediate these therapeutic actions remain unclear. 

While focusing on the transdifferentiation potential of MSC initially sparked optimism in 

generating insulin-producing cells, low transdifferentation efficiency and engraftment rates have 

limited clinical feasibility exploiting this uncommon property203. Thus, many current studies 

investigating the therapeutic abilities of MSC for treating diabetes focus on paracrine factors. 

Paracrine factors secreted by MSC have been shown to modulate β-cell signalling pathways to 

promote survival and improve glucose-dependent insulin secretion204–206. 

 

 Clinical trials using MSC to treat diabetes have focused primarily on harnessing their 

immunomodulatory properties. Clinically, these cells are an attractive therapeutic option because 

they can be isolated relatively non-invasively from various adult tissues including bone marrow 

and adipose tissue, or from perinatal tissues often discarded, such as the umbilical cord or placenta. 
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Additionally, their rapid expansion in vitro without significant loss in secretory regenerative ability 

add to their clinical applicability203. A number of these studies resulted in reduced insulin 

requirement, increased fasting C-peptide levels, and/or improved HbA1c with few reports of 

adverse events following transplantation into patients203. Some studies have also shown 

improvement of donor islet graft survival when transplanted in combination with MSC203. 

 

 We have previously shown that transplantation of culture-expanded bone marrow-derived 

hMSC also demonstrated the capacity to reduce hyperglycemia and increase β-cell mass by 

stimulating the formation of small ductal-associated islet clusters via paracrine signals in mice 

with STZ-mediated β-cell ablation198–200. The modest short-lived increase in β-cell replication 

could not account for the robust increase in β-cell mass199,200,207. However, regenerative capacity 

was donor-dependent199,200,208,209 and decreased with prolonged expansion199,200. Comparative 

global secretome analyses by mass spectrometry revealed regenerative hMSC (hMSCR) 

exclusively secreted proteins associated with active canonical Wnt/β-catenin signaling, a pathway 

implicated in cell growth, proliferation, and differentiation208. In contrast, non-regenerative 

secretome samples (hMSCNR) contained increased levels of Wnt-pathway inhibitors Dickopf-

1/3208.  

The canonical Wnt/β-catenin signaling pathway has various functions in embryonic 

development and adult homeostasis, including involvement in cell proliferation, polarity, and 

differentiation210. The primary role of this pathway is to regulate nuclear levels of the 

transcriptional co-activator β-catenin. In the absence of signaling ligands, cytoplasmic β-catenin 

is constantly degraded by a destruction complex comprised of Axin, adenomatous polypsosis coli 

gene product (APC), casein kinasae 1 (CK1), and glycogen synthase kinase 3 (GSK3)210. CK1 and 

GSK3 phosphorylate β-catenin for ubiquitination and degradation by proteasomes210. This 

effectively prevents β-catenin from reaching the nucleus and target genes are repressed by the 

DNA-bound T cell factor/lymphoid enhancer factor (TCF/LEF) protein family210. On the other 

hand, activation of this pathway is achieved when a Wnt ligant binds to a Frizzled receptor and 

co-receptor, low-density lipoprotein receptor related protein 6/5210. Subsequent recruitment of 

Dishevelled results in inhibition of the aforementioned destruction complex, preventing 

phosphorylation of β-catenin210. Cytosolic β-catenin accumulates and travels to the nucleus where 

it interacts with TCF/LEF proteins to activate expression of target genes210. Apart from its 
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signalling functions, β-catenin also plays an important role in in cell-cell adhesions211. To assess 

the relevance of the Wnt-pathway to the regenerative capacity of hMSC, Wnt-pathway activation 

was mimicked in hMSCNR cultures using treatment with the glycogen synthase kinase-3β inhibitor 

CHIR99021 for 24 hours in serum-free media before CM collection and concentration207,208. In the 

absence of Wnt ligands, GSK3 marks β-catenin for degradataion212 (Fig. 1.1). Conversely, Wnt-

pathway inhibition was achieved using IWR-1, which stabilizes Axin in the β-catenin inhibition 

complex and ultimately facilitates its degradation213,214.  

 

 

 

 

 
Figure 1.1 CHIR99021 and IWR-1 can be used to stimulate or inhibit the canonical Wnt/β -catenin pathway, respectively. 

Figure 1.1 CHIR99021 and IWR-1 can be used to stimulate or inhibit the canonical Wnt/β-

catenin pathway, respectively. When Wnt ligands bind to their appropriate Frizzled family 

receptor on the plasma membrane, an intracellular signal causes destabilization of the glycogen 

synthase kinase-3β (GSK3)/Axin/Adenomatous Polyposis Coli (APC) inhibition complex, 

preventing the ubiquitination and degradation of cytosolic β-catenin and permitting its 

translocation into the nucleus to affect transcription of genes involved in cell growth, proliferation, 

and differentiation. CHIR99021, a GSK3 inhibitor, activates the Wnt pathway by destabilizing the 

GSK3/Axin/APC inhibition complex, and facilitating nuclear translocation of β-catenin. IWR-1 

stabilizes Axin, and by extension the GSK3/Axin/APC inhibition complex, to promote 

ubiquitination and degradation of cytosolic β-catenin. 
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When co-cultured with human islets for 7 days, Wnt-stimulated (Wnt+) CM enhanced β-

cell survival and proliferation compared to Untreated CM or basal Roswell Park Memorial Institute 

media208. After injection into the pancreas of STZ-treated mice, Wnt+ CM consistently induced 

reversal of hyperglycemia, increased β-cell mass, and improved glucose tolerance compared to 

unconditioned media or Wnt-inhibited (Wnt-) CM injection following intrapancreatic (iPan) 

injection in STZ-treated mice207.  

 

While iPan-injection of Wnt+ hMSC CM reliably rescues hyperglycemia and β-cell mass, 

the identity of ‘signal-receiving cells’ within the pancreas that mediate islet regeneration remains 

unknown. Elucidation of the islet regenerative pathway and identification of the essential effectors 

that stimulate β-cell mass recovery will provide the foundation for a testable cell-free therapy and 

delivery method to reliably induce β-cell regeneration. hMSCR CM contains pro-angionenic 

factors, including FGF7, PDGF, and VEGF-A, which could produce a regenerative 

microenvironment that promotes islet vascularization208. Additionally, hMSCR secrete 

immunomodulatory factors, including TGF-β and stromal cell-derived factor 1 (CXCL12), 

compared to hMSCNR, which secrete elevated levels of pro-inflammatory cytokines, including IL-

1β, IL-6, and IL-8208. Collectively, iPan injection of Wnt+ hMSC CM creates a microenvironment 

that accelerates islet regeneration through its immunomodulatory, anti-apoptotic, pro-angiogenic, 

proliferative, and growth factors that facilitate tissue repair187,190–192. Proteomic analyses and RNA-

sequencing of hMSC CM may prove to be useful tools in elucidating the key factors that 

differentiate regenerative versus non-regenerative samples. Treatment efficacy in strong pre-

clinical models, including NOD mice or db/db mice, will direct future studies in clinical trials. 

 

1.4.4 Elucidating the Islet Regenerative Cascade Induced by hMSC CM 

Analyses of human pancreas donations from healthy and diabetic individuals have revealed 

that insulin-expressing cells budding from pancreatic ducts was more common than observation 

of enlarged islets, indicating more putative regions suggesting neogenesis compared to areas of β-

cell replication or hypertrophy43,44,215. Additionally, expansion of islet-depleted ductal tissue in 

vitro in 3D Matrigel resulted in glucose responsive insulin secreting islet-like clusters budding 

from ductal clusters160,216. Lineage tracing studies have demonstrated transition of duct cells to 

functional β-like cells following transcription factor misexpression, β-cell ablation, or pancreatic 
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injury153,154,156,217,218. This proposed model suggests that ductal cells may act as facultative 

progenitors that contribute to β-cell neogenesis upon experience of stressful conditions. Following 

a dedifferentiation event including epithelial-to-mesenchymal transition (EMT) and transient re-

expression of Ngn3, it is proposed that these cells transition to an α-cell phenotype before 

transitioning to β-like cells153,154,156,217 (Fig. 1.2). Additionally, the Medalist Study, which followed 

411 patients with T1D for ≥ 50 years, showed that 63.4% had C-peptide levels within the minimal 

or sustained range219. Furthermore, during a mixed-meal tolerance test, over half of individuals 

with C-peptide levels ˃0.17 nmol/l responded with a two-fold or greater increase compared to 

fasting levels219. Histological analyses of pancreatic sections from individuals who had passed 

away during the course of the study revealed steady state insulin+ β-cell proliferation219. These 

data support residual β-cell function in patients who have had T1D long-term. Thus, β-cell 

regeneration may be mediated by multiple cell populations, including pre-existing β-cells and 

facultative progenitors within the pancreas. 

 

Following iPan injection, Wnt+ hMSC CM induced a regenerative cascade resulting in the 

emergence of neoislets associated with the ductal epithelium 4 days post-transplantation207. 

Histological analyses revealed detection of glucagon+ cells co-localized with β-cell markers 

insulin, MafA, or Nkx6.1207. Nuclear expression of Nkx6.1 and MafA in newly formed insulin+ 

islets suggested proper β-cell maturation207. Additionally, vimentin+ cell hyperplasia surrounding 

the ductal epithelium was observed following STZ-treatment with or without subsequent hMSC 

CM injection, which is consistent with a model of EMT by the ductal epithelium proposed by other 

groups156,207,220. However, the rate of β-cell proliferation could not account for the robust increase 

in β-cell mass. To address the question of whether these neoislets originate from ductal facultative 

progenitors following Wnt+ CM injection, we proposed to use a lineage tracing mouse model to 

follow the fate of pancreatic CK19-expressing ductal cells. 

 

These lineage tracing mice have a Cre recombinase fused to a murine estrogen receptor 

ligand binding domain inserted upstream of the initiation sequence of the CK19 gene221. 

Expression of CK19, an intermediate filament protein, can ben seen in the adult lung, oral cavity, 

stomach, small intestines, and within the pancreatic, renal, and hepatic ducts221. Following 

administration of tamoxifen, which binds to the fused estrogen receptor, Cre recombinase can 
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access the nuclear compartment of cells to facilitate excision of the loxP-flanked STOP cassette 

flanking the Gt(ROSA)26SOR locus221,222. This permits robust tdTomato fluorescence in cells that 

express CK19, permanently labeling these cells222. This allows for fate-mapping of CK19-

expressing cells through hMSC CM-induced islet regeneration to investigate their contribution to 

the new β-cell population. 

 

 
Figure 1.2. Proposed mechanism for islet cell regeneration in hyperglycemic mice following Wnt+ hMSC CM iPan injection. 

Figure 1.2 Proposed mechanism for islet cell regeneration in hyperglycemic mice following 

Wnt+ hMSC CM iPan injection. We hypothesize iPan injection of Wnt+ hMSC CM will 

stimulate β-cell regeneration from ductal derived facultative precursors following EMT in 

hyperglycemic mice. 
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1.5 Hypothesis and Objectives 

 The overall objective of my thesis was to develop and characterize a model for assessing 

the contribution of CK19-expressing pancreatic duct cells in hMSC Wnt+ CM induced islet 

regeneration.  

 

Based on the recent recognition of islet cell plasticity, we hypothesized Wnt+ hMSC CM 

would stimulate β-cell regeneration from ductal-derived precursor cells after direct injection into 

the pancreas of hyperglycemic mice. 

 

To address this, the following aims were proposed: 

 

(1) To compare the regenerative functions of hMSC CM on isolated CK19-expressing ductal 

cells in vitro. 

 

(2) To characterize a lineage tracing model to assess the contribution of CK19+ ductal cells in 

islet regenerative mechanisms induced by hMSC CM. 
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2.0 Cytokeratin 19-expressing cells as a potential target for islet 

regeneration 
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2.1 Introduction 

 Allogeneic bone marrow transplantation is used to treat hematological cancers, including 

acute myeloid leukemia, to replace unhealthy, cancerous stem cells with healthy ones that 

regenerate the blood system223. The human bone marrow also hMSC, commonly referred to as 

mesenchymal stem/progenitor cells, that serve as long-term precursors for bone, cartilage, fat, and 

muscle cells224. Aside from the support of the self-renewing properties of hematopoietic progenitor 

cells in the bone marrow, MSC also secrete immunomodulatory, anti-apoptotic, pro-angiogenic, 

proliferative, and growth factors187,190–192. The pioneering work by Hess et al.198 has shown that 

transplantation of bone marrow-derived progenitor cells of hematopoietic and mesenchymal 

lineages improved serum insulin levels and reduced hyperglycemia via paracrine mechanisms in 

STZ-treated mice199,200,207,225,226. Follow-up studies have supported the regenerative paracrine 

properties of bone marrow-derived hematopoietic and mesenchymal progenitor cell subtypes that 

stimulate β-cell proliferation or neoislet formation, respectively199,200. Circumventing the 

complications of cellular transplantation, intrapancreatic injection of human bone marrow-derived 

MSC CM has also shown the potential to stimulate islet regeneration and rescue hyperglycemia in 

STZ-treated mice207. 

 

 Diabetes, which is associated with autoimmune β-cell attack (T1D) or insulin resistance 

resulting in β-cell dysfunction (T2D), results in β-cell destruction leaving patients unable to control 

blood glucose levels. With the prevalence of diabetes steadily rising48, and the occurrence of severe 

cardiovascular comorbidities associated with hyperglycemia, investigation into novel curative 

therapies to rescue β-cell mass in patients with T1D and late-stage T2D is highly sought. Currently, 

reduced serum insulin and hyperglycemia are treated with exogenous insulin administration and 

other pharmacological agents to improve glycemic control103. However, these treatments do not 

recapitulate the fine-tuned physiological responses set in motion following nutrient intake and 

patients remain at risk for extreme peaks and troughs in blood glucose levels. Consequently, 

comorbidities are highly prevalent in patients with T2D (>95%), the most common of which are 

severe cardiovascular complications including hypertension, critical limb ischemia, heart attack, 

and stroke227. While islet replacement strategies via the Edmonton Protocol have shown promise 

in helping patients control blood glucose113, shortages of donor tissue117–119, the necessity for 

lifelong immunosuppressive drugs117–121, and compromised long-term success islet survival and 
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sustaining insulin secretion118,120 remain major for islet transplantation. However, β-cell mass 

expansion during pregnancy and obesity suggests β-cells can either proliferate in situ or 

differentiate from progenitor cells upon the generation of a regenerative microenvironment228,229. 

Identification of pathways that regulate β-cell proliferation and/or neogenesis is highly sought in 

regenerating β-cell mass. While β-cell proliferation is the primary driver of neonatal β-cell 

expansion, the proliferative capacity of adult β-cells sharply declines with age141. Although 

targeting pathways that mediate this decline have been of high interest, clinically applicable 

stimulation of β-cell proliferation using biological or pharmacological stimuli has been difficult to 

achieve136,148. Thus, investigation into the regeneration of β-cells from non-β-cell sources remains 

highly relevant. Endocrine cell plasticity has been reported through lineage tracing studies in mice 

whereby non-β-cells, including α-cells or ductal cells, have demonstrated the capacity to transition 

towards the β-cell lineage16,18,19,154,156,157,159,161,230. Because endocrine cells arise from bipotent 

endocrine/ductal trunk cells during embryonic development, it has been hypothesized that 

facultative progenitors reside in the ductal epithelium4,6,7. Thus, a clinically applicable 

stimulator(s) of this dormant β-cell regenerative remains an elusive target in the search for a 

curative therapy for diabetes. 

 

 The regenerative secretome of bone marrow-derived hMSC represent a promising, readily 

available biotherapeutic agent to mediate β-cell mass rescue. hMSC can be rapidly expanded ex 

vivo, and the secretome containing regenerative and immunomodulatory stimuli can be 

concentrated to generate cell-free CM. Although the islet regenerative capacity of hMSC is donor 

dependent after transplantation and diminishes with prolonged culture199,200,207,208, the activity of 

the canonical Wnt/β-catenin signaling pathway has been identified as a key regulator of islet 

regenerative capacity207,208. Small molecule stimulation of the Wnt pathway using the GSK3 

inhibitor CHIR99021 with low-passage hMSC in vitro generated CM that reliably rescued 

glycemia and β-cell mass in hyperglycemic mice. Although increased survival and proliferation of 

human β-cells was observed207,208, neoislets and insulin+ cell clusters were highly localized 

adjacent to ductule regions, and glucagon+ cells within islets co-localized with β-cell markers 

Nkx6.1, MafA, and insulin198–200,207. Thus, harnessing pancreatic plasticity using cell-free hMSC 

CM represents an attractive approach to modulate β-cell mass. While iPan-injection of Wnt+ 
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hMSC CM reliably rescues hyperglycemia and β-cell mass, the identity of ‘signal-receiving cells’ 

within the pancreas that mediate islet regeneration remains unknown. 

 

 To investigate the identity of the ‘signal-receiving’ cell within the pancreas during hMSC 

CM induced islet regeneration, we developed a model to focus on CK19-expressing ductal cells. 

We hypothesized that hMSC CM supplementation in vitro would increase proliferation of murine 

CK19+ pancreas cells and stimulate proliferation. Additionally, we hypothesized that CK19-

CreERT;Ai9(RCL-tdT) mice would reliably label CK19+ cells within the pancreas following 

tamoxifen administration and become hyperglycemic following STZ treatment. CK19-expressing 

cells cultured with hMSC CM exhibited increased proliferation in vitro. However, neither 

epithelial-to-mesenchymal transition nor transition towards an endocrine phenotype were 

observed in vitro following hMSC CM supplementation. Additionally, we characterized a lineage 

tracing mouse model [CK19-CreERT;Ai9(RCL-tdT)] that reliably labelled CK19-expressing cells 

within the pancreas. This model also exhibited hyperglycemia, impaired glucose tolerance, and 

reduced β-cell mass following STZ treatment (60 mg/kg/day x 5 days). These data showcase the 

preparation and optimization of a model that can be confidently used in subsequent experiments 

to assess the contributions of CK19-expressing cells during hMSC CM induced islet regeneration. 
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2.2 Methods 

2.2.1 Assessing pancreatic phenotypic changes in STZ-treated Non-

Obese Diabetic/Severe Combined Immunodeficient (NOD/SCID) mice 

Mice (8-10 weeks old) were administered 35 mg/kg/day STZ by intraperitoneal (i.p.) injection 

for 5 consecutive days. STZ was solubilized in sodium citrate buffer at pH 4.5 and injected into 

mice within 15 min of preparing the mixture. Mice were monitored for non-fasting blood glucose 

and body weight at Days 0, 1, 5, and 10. At each timepoint, pancreata were dissected from 

euthanized mice and digested using collagenase V and trypsin-EDTA. Cells were fixed and 

permeabilized using 10% formalin and 1% Triton X-100. Single cell suspensions were assessed 

for DBA lectin (Vector Laboratories, Burlington, ON) uptake, CK19 (Abcam, Cambridge, UK), 

CD45 (BioLegend, San Diego, CA), and F4/80 (BioLegend) expression by flow cytometry on an 

LSRII flow cytometry machine (BD Biosciences, Mississauga, ON). Flow cytometry data were 

analyzed using FlowJo software (Treestar, Ashland, OR, USA). 

 

2.2.2 Validating the effects of CHIR99021 and IWR-1 on intracellular β-

catenin in hMSC 

Human bone marrow was obtained with informed consent from healthy donors at the London 

Health Sciences Centre (London, ON, Canada). hMSC were purified using density gradient 

centrifugation and cultured in supplemented AmniomaxTM media (Invitrogen, Carlsbad, CA) for 

expansion199,200. Low passage (P3-P4), 80% confluent hMSC cultures were washed with 

phosphate-buffered saline (PBS) to remove serum and growth factors, then cultured in serum-free 

basal AmniomaxTM media supplemented with increasing concentrations of CHIR99021 (0 µM, 5 

µM, 10 µM, 15 µM, 20 µM; AbMole Bioscience, Houston, TX) or IWR-1 (0 µM, 10 µM, 20 µM, 

30 µM, 50 µM, Sigma-Aldrich, St. Louis, MO). In cell cultures without CHIR99021 or IWR-1, 

dimethyl sulfoxide (DMSO) was added as a vehicle control. Cells were fixed in 10% formalin and 

permeabilized using 1% Triton X-100. hMSC were assessed for survival [(7-Aminoactinomycin 

D, 7-AAD (BioLegend)], apoptosis [(Annexin V (BD Biosciences)], and β-catenin (Invitrogen) 

expression by flow cytometry at the London Regional Flow Cytometry Facility and analyses were 

performed using Flowjo software. 
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2.2.3 Generating hMSC CM 

Low passage (P4), 80% confluent hMSC were washed with PBS to remove serum and growth 

factors and cultured in serum-free basal AmniomaxTM media supplemented with either DMSO 

(vehicle control), 10 µM CHIR99021, or 20 µM IWR-1 for 24h to generate Untreated, Wnt+, and 

Wnt- CM, respectively. CM was collected and concentrated ( 40-fold) by centrifugation at 4,100 

g for 75 minutes using 3 kDa filter spin columns. Secreted contents ˃3 kDa separated by the filter 

were collected and the CM protein concentration was quantified using a NanoDrop analyzer. 

 

2.2.4 Murine ductal cell culture and hMSC CM supplementation 

Pancreata from healthy or STZ-treated adult mice (8-10 weeks old) were purified using 

fluorescence activated cell sorting (FACS) at the London Regional Flow Cytometry Facility 

(London, ON) to obtain 7AAD-/Dolichos Bifluorus Agglutinin (DBA) lectin+ cells following 

collagenase V and trypsin EDTA-mediated tissue digestion according to the protocol previously 

outlined by Reichart et al231 (Fig. 2.1). 7-AAD marks dead cells with compromised membrane 

integrity by intercalating double-stranded DNA232. DBA lectin has carbohydrate specificity toward 

α-linked N-acetylgalactosamine common on ductal epithelial cells233. DBA lectin+ cell cultures 

were first established in complete pancreatic ductal cell (PDC) media [Dulbecco-s Modified Eagle 

Medium/Ham’s F-12 (DMEM/F-12) + 5% Nu Serum, 25 μg/ml bovine pituitary extract, 0.5% 

ITS+ (insulin, human transferrin, selenous acid) Premix, 20 ng/ml epidermal growth factor, 1μM 

dexamethasone, 5 mg/ml glucose, 1.22 mg/ml nicotinamide] for 24 hours before replacing media 

with either complete PDC media, basal DMEM/F-12, or DMEM/F-12 supplemented with 

Untreated, Wnt+, or Wnt- hMSC CM (protein dose of 8µg/ well for approximately 8,000 cells) for 

2 or 5 days at 37℃ + 5% CO2. Cell cultures were assessed for proliferative response using 

ethynyldeoxyuridine (EdU) incorporation following 24h pulse label at 50 μM, and phenotype 

transition (vimentin, insulin, glucagon expression) was assessed by immunofluorescence. Ductal 

cell phenotype was verified using CK19 labeling. 
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Figure 3Figure 2.1 Fluorescence-activated cell sorting (FACS) strategy to isolate murine 7-AAD-/DBA lectin+ cells. 

Figure 2.1 Fluorescence-activated cell sorting (FACS) strategy to isolate murine 7-AAD-

/DBA lectin+ cells. (A) Representative photomicrograph of a mouse pancreas section for DBA 

lectin showed cellular co-localization with CK19. Pancreata from mice (8-10 weeks old) were 

digested and single cell suspension was purified by FACS with a strategy for (B) live (7-AAD-) 

cells, (C) setting a gate for DBA lectin using unstained samples, and (D) sorting for DBA lectin+ 

cells. 
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2.2.5 Optimization of STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice 

CK19-CreERT;Ai9(RCL-tdT) mice (8-12 weeks old) [breeding CK19-CreERT mice (Jackson 

Labs, Bar Harbor, Maine, USA) with Ai9(RCL-tdT) mice (Jackson Labs, Bar Harbor, Maine, 

USA)] were treated with increasing concentrations of STZ (40 mg/kg/day, 50 mg/kg/day, 60 

mg/kg/day, or 65 mg/kg/day) dissolved in citric acid buffer (CAB) for 5 consecutive days by i.p. 

injection and assessed for non-fasting blood glucose and body weight at Days 0, 7, 10, and 14.  

 

2.2.6 Islet size, number, and β-cell mass quantification 

Pancreata from STZ-treated CK19-CreERT;Ai9(RCL-tdT) mice sacrificed at Day 14 were frozen 

in optimal cutting temperature media and sectioned (12 μm) so each of the 3 sections per slide 

were >150 μm apart. Sections were fixed in formalin, blocked with peroxidase block and horse 

serum, and stained for insulin using a mouse insulin primary antibody (Sigma) and detected using 

a peroxidase anti-mouse secondary antibody (Vector Laboratories).  ImmPACT™ DAB (Vector 

Laboratories) staining was performed to detect antibody binding, followed by hematoxylin 

counterstain and mounting in Vectamount (Vector Laboratories). A minimum of 10 clustered 

insulin+ cells was required to be classified as an islet. Islet number and size were quantified using 

light microscopy and ImageScope x64 software, counting all islets within 3 sections per mouse. 

β-cell mass was calculated by: 

 

β cell mass =
𝛽 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
𝑥 𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 

 

2.2.7 Glucose tolerance test 

CK19-CreERT;Ai9(RCL-tdT) mice treated with 60 mg/kg/day of STZ (Days 1-5) and CAB 

control mice were fasted for 3 hours on Day 14 before receiving bolus glucose (2 mg/kg) by i.p. 

injection. Blood glucose was assessed at 0, 5, 10, 15, 30, 45, 60, 90, and 120 minutes. 
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2.2.8 Assessing pancreatic phenotypic changes in STZ-treated CK19-

CreERT;Ai9(RCL-tdT) mice 

Mice (8-10 weeks old) were administered 6 mg tamoxifen dissolved in corn oil by oral gavage. 

After 7 days of rest, mice were treated with 60 mg/kg/day STZ by i.p. injection for 5 consecutive 

days. Mice were monitored for non-fasting blood glucose and body weight at Days 0, 1, 7, and 

14. At each timepoint, pancreata were dissected and digested using collagenase V and TrypLE 

(Thermo Fisher). Cells were fixed and permeabilized using 10% formalin and 1% Triton X-100. 

Single cell suspensions were assessed for tdTomato, CK19 (Abcam), insulin (BD Biosciences), 

and CD45 (BioLegend) expression by flow cytometry. Data were analyzed using FlowJo 

software. 

 

2.2.8 Statistical Analysis 

All data was expressed as mean ± standard deviation (SD) unless otherwise stated. Analysis was 

performed by a two-way analysis of variance (ANOVA) for blood glucose curves, and by one-

way ANOVA followed by Tukey’s multiple comparison test for all other analyses, unless 

otherwise stated. 
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2.3 Results 

2.3.1 STZ treatment induced systemic hyperglycemia and increased the 

frequency of DBA lectin+ cells within the pancreas 

To investigate the effects of STZ on mouse CK19, CD45 (pan-leukocyte marker), DBA lectin 

(binds to the α-linked N-acetylgalactosamine carbohydrate moiety), and F4/80 (mouse 

macrophage marker) expression, NOD/SCID mice were injected with 35 mg/kg/day of STZ for 5 

consecutive days and mouse pancreata were harvested and assessed for the frequency of CD45+, 

CK19+, and DBA lectin+ expression at Days 0, 1, 5, and 10 (Figure 2.2D-I). Mice demonstrated 

increased non-fasting blood glucose levels at Day 10 compared to Days 0, 1, and 5 (Figure 2.2A). 

Additionally, the proportion of insulin+ cells was significantly decreased at Days 1 and 10, while 

the proportion of glucagon+ cells did not change across time (Figure 2B,C). While the proportion 

of CD45+ and CK19+ within the pancreas did not change over time, the proportion of DBA lectin+ 

cells was significantly increased at Day 10 compared to Day 0 (Figure 2.2J and K). While CK19 

expression is commonly used as a pancreatic ductal marker, it requires cell fixation and 

permeabilization for detection234. However, to purify viable ductal cells for subsequent culture, 

identification of a live cell marker was required. Various studies have cited DBA lectin as a ductal 

epithelial marker within the pancreas231,233,235–240. However, DBA lectin can also bind non-

specifically to some hematopoietic cells including macrophages241–244. Within the DBA lectin+ 

cell population, the proportion of CK19+ cells was enriched two-fold compared to ungated cells 

(≈ 40% vs. ≈ 20%, respectively)(Figure 2.2 H). In contrast, the proportion of CD45+ cells within 

DBA lectin+ cells did not change compared to ungated cells. Although the DBA lectin+ cell 

population was comprised of 20% hematopoietic cells, isolation of live DBA lectin+ cells by 

FACS followed by 24-hour culture in complete PDC media resulted in 83% CK19+ cell purity 

(CK19+/DAPI+ cells). Therefore, isolation of pancreatic DBA lectin+ cells followed by culture in 

complete PDC media represents a purification strategy for murine CK19+ ductal epithelial cells. 
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Figure 4 Figure 2.2 STZ treatment induced systemic hyperglycemia and increased the proportion of DBA lectin+ cells within the 
pancreas. 

Figure 2.2. STZ Treatment induced systemic hyperglycemia and increased the proportion of DBA lectin+ cells within the  
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Figure 2.2 STZ treatment induced systemic hyperglycemia and increased the proportion of 

DBA lectin+ cells within the pancreas. NOD/SCID mice (8-10 weeks old) were treated with 35 

mg/kg/day STZ for 5 days (Days 1-5). At Day 0 (n=3-4), Day 1 (n=4), Day 5 (n=4), and Day 10 

(n=7) mouse pancreata were assessed for insulin+, glucagon+, DBA lectin+, CK19+, and CD45+ 

cell frequencies by flow cytometry. (A) At Day 10 mice demonstrated significantly increased non-

fasting blood glucose levels compared to all other timepoints. (B) The proportion of insulin+ β-

cells was significantly decreased at Days 1 and 10 compared to Day 0. (C) The proportion of 

glucagon+ α-cells did not change across time. Representative plots for DBA lectin+, CK19+, and 

CD45+ cells are shown at (D-F) Day 0 and (G-I) Day 10. (J) The proportion of DBA lectin+ cells 

was significantly increased at Day 10 compared to Day 0 (*p<0.05). The proportions of CK19+ 

and CD45+ cells showed no change with time. (I) Within the DBA lectin+ cell population, the 

proportion of CK19+ cells was enriched two-fold compared to ungated cells. In contrast, the 

proportion of CD45+ cells within DBA lectin+ cells did not change compared to ungated cells. 

Data represent mean ± SD compared using a one-way ANOVA followed by Tukey’s multiple 

comparison test. (**p<0.01, ***p<0.001) 
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2.3.2 STZ treatment increased the proportion of F4/80+ cells within 

CD45+ and CK19+ cells within the pancreas 

To assess potential  macrophage infiltration in response to STZ treatment, mouse pancreata were 

assessed for F4/80+ expression, a widely used mouse macrophage marker245–247 (Figure 2.3 A-D). 

At Day 10, increased hematopoietic macrophage infiltration was observed, as there was an increase 

in the proportion of F4/80+ cells within the pancreas and within the CD45+ cell compartment 

compared to Day 0 (Figure 2.3E,F). Within the CK19+ cell population, the proportion of F4/80+ 

cells was increased at Day 5 compared to Day 1 (Figure 2.3G). Within DBA lectin+ cells, the 

proportion of F4/80+ cells remained unchanged with time (Figure 2.3H). Collectively, these data 

suggest that macrophage infiltration was observed following STZ treatment, which may play a 

role in islet destruction. 
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Figure 5Figure 2.3 STZ treatment increased the proportion of F4/80+ cells within CD45+ and CK19+ cell populations within the 
pancreas. 2.3. STZ treatment increased the proportion of F4/80+ cells within CD45+ and CK19+ cell populations within the  
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Figure 2.3 STZ treatment increased the proportion of F4/80+ macrophages within CD45+ 

and CK19+ cell populations within the pancreas. NOD/SCID mice (8-10 weeks old) were 

treated with 35 mg/kg/day STZ for 5 days (Days 1-5). At Day 0 (n=3-4), Day 1 (n=4), Day 5 (n=4), 

and Day 10 (n=7), mouse pancreata were assessed for DBA lectin+, CK19+, CD45+, and F4/80+ 

cell frequencies by flow cytometry. (A) Representative dot plots showing the overall proportion 

of F4/80+ macrophages in the pancreas at each timepoint are shown. (B) Representative dot plots 

showing the proportion of F4/80+ cells within CD45+ leukocytes at each timepoint are shown. (C) 

Representative dot plots showing the proportion of F4/80+ macrophages within CK19+ ductal 

cells at each timepoint. (D) Representative dot plots showing the proportion of F4/80+ cells within 

DBA lectin+ cells at each timepoint. (E) The proportion of F4/80+ macrophages in the pancreas 

was significantly increased at Day 10 compared to Day 0. (F) The proportion of F4/80+ 

macrophages within CD45+ leukocytes was significantly increased at Day 10 compared to Day 0. 

(G) The proportion of F4/80+ macrophages within the CK19+ ductal cell population was 

significantly increased at Day 5 compared to Day 1. (H) The proportion of F4/80+ macrophages 

remained unchanged within the DBA lectin+ cell population over the 10-day time course. Data 

represent mean ± SD compared using a one-way ANOVA followed by Tukey’s multiple 

comparison test (*p<0.05). 
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2.3.3 Treatment of hMSC with CHIR99021 increased intracellular β-

catenin and did not affect cell survival 

As the GSK3 inhibitor CHIR99021 promotes destabilization of the β-catenin destruction complex, 

increasing intracellular stores of β-catenin which affects transcription of factors implicated in cell 

growth, proliferation, and differentiation208. Therefore, we sought to titrate CHIR99021 treatment 

concentration to optimally stimulate the Wnt pathway in cultured hMSC, measured by intracellular 

β-catenin levels208,248,249. Following 24-hour treatment, hMSC treated with 10 μM, 15 μM, or 20 

μM CHIR99021 in serum-free basal AmniomaxTM media showed significantly increased mean 

fluorescence intensity (M.F.I.) of intracellular β-catenin by flow cytometry compared to the 

DMSO control (0 μM) and 5 μM treatment (***p<0.001)(Figure 2.4). Treatment with 5 μM 

showed no difference in β-catenin M.F.I. compared to the DMSO control. There were no 

significant differences in the frequency of dead cells (7AAD+/Annexin V+) or apoptotic cells 

(7AAD-/Annexin V+) between any of the treatment conditions (Figure 2.5). Thus, 10 μM 

CHIR99021 was chosen to optimally stimulate the canonical Wnt/β-catenin pathway in hMSC. 

 

2.3.4 Treatment of hMSC with IWR-1 did not affect intracellular β-

catenin or cell survival 

In contrast, IWR-1 stabilizes Axin, and by extension promotes the intracellular destruction of β-

catenin resulting in the blockade of canonical Wnt/β-catenin signaling. Next, we sought to titrate 

the optimal IWR-1 treatment concentration to inhibit the Wnt-pathway in cultured hMSC, as 

measured by intracellular β-catenin levels208,214,249. Following 24-hour treatment, hMSC treated 

with 10 μM, 20 μM, 30 μM, or 50 μM IWR-1 in basal AmniomaxTM media surprisingly showed 

no significant difference in intracellular β-catenin M.F.I. by flow cytometry compared to the 

DMSO control (0 μM) (Figure 2.6). In addition, here were also no significant differences in the 

frequency of dead cells (7AAD+/Annexin V+) or apoptotic cells (7AAD-/Annexin V+) between 

the treatment conditions (Figure 2.7). These results contradict previous findings which identified 

20 μM IWR-1 treatment to optimally inhibit the Wnt/β-catenin pathway207,208. 
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Figure 6 2.4 Treatment of hMSC with CHIR99021 increased intracellular β-catenin. 

Figure 2.4 Treatment of hMSC with CHIR99021 increased intracellular β-catenin. Low 

passage (P3-P4), 80% confluent hMSC (N=5) were treated with 5 μM, 10 μM, 15 μM, or 20 μM 

of CHIR99021 or DMSO (0 μM) for 24 hours in basal Amniomax™ media and assessed for 

intracellular β-catenin M.F.I. by flow cytometry. (A-E) Representative β-catenin vs. SSC-A dot 

plots for 0 μM, 5 μM, 10 μM, 15 μM, and 20 μM treatments with CHIR99021 are shown. (F) 

Treatment with 10 μM, 15 μM, and 20 μM of CHIR90021 significantly increased β-catenin M.F.I. 

compared to the DMSO control (***p<0.001). Data represent mean fold change ± SD compared 

using a one-way ANOVA followed by Tukey’s multiple comparison test. Means with different 

letters represent significantly different values. 
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Figure 72.5 Treatment with CHIR99021 did not affect hMSC survival or apoptosis. 

Figure 2.5 Treatment with CHIR99021 did not affect hMSC survival or apoptosis. Low 

passage (P3-P4), 80% confluent hMSC (N=5) were treated with 5 μM, 10 μM, 15 μM, or 20 μM 

of CHIR99021 or DMSO (0 μM) for 24 hours in basal Amniomax™ media and assessed for cell 

death (7-AAD+) and apoptosis (Annexin V+) by flow cytometry. (A-E) Representative dot plots 

for 7-AAD and Annexin V for 0 μM, 5 μM, 10 μM, 15 μM, and 20 μM treatment with CHIR99021 

are shown. Treatment with CHIR99021 did not alter (F) cell death (proportion of 7-

AAD+/Annexin V+ cells) or (G) apoptosis (7-AAD-/Annexin V+ cells). Data represents mean ± 

SD compared using a one-way ANOVA. 
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Figure 82.6 Treatment of hMSC with IWR-1 did not affect intracellular β-catenin levels. 

Figure 2.6 Treatment of hMSC with IWR-1 did not affect intracellular β-catenin levels. 

Low passage (P3-P4), 80% confluent hMSC (N=4) were treated with 10 μM, 20 μM, 30 μM, or 

50 μM of IWR-1 or DMSO (0 μM) for 24 hours in basal Amniomax™ media and assessed for 

intracellar β-catenin M.F.I. by flow cytometry. (A-E) Representative β-catenin vs. SSC-A dot 

plots for 0 μM, 10 μM, 20 μM, 30 μM, and 50 μM IWR-1 are shown. (F) Treatment with IWR-1 

did not alter β-catenin M.F.I. compared to DMSO (0 μM) control. Data represent mean fold 

change ± SD compared using a one-way ANOVA. 
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Figure 92.7 Treatment with IWR-1 did not affect hMSC survival or apoptosis. 

Figure 2.7 Treatment with IWR-1 did not affect hMSC survival or apoptosis. Low passage 

(P3-P4), 80% confluent hMSC (N=3) were treated with 10 μM, 20 μM, 30 μM, or 50 μM of IWR-

1 or DMSO for 24 hours in basal Amniomax™ media and assessed for cell death (7-AAD+) and 

apoptosis (Annexin V+) by flow cytometry. (A-E) Representative dot plots for 7-AAD and 

Annexin V are shown for 0 μM, 10 μM, 20 μM, 30 μM, and 50 μM IWR-1. Treatment with IWR-

1 did not alter the proportion of (F) dead cells (7-AAD+/Annexin V+) or (G) apoptotic cells (7-

AAD-/Annexin V+) compared to DMSO (0 μM). Data represents mean ± SD compared using a 

one-way ANOVA. 
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2.3.5 hMSC CM stimulated proliferation of CK19+ cells in vitro 

To investigate the effects of hMSC CM supplementation on cultured CK19-expressing cells, 

FACS isolated 7-AAD-/DBA lectin+ cells from healthy or STZ-treated (35 mg/kg/day) 

NOD/SCID mice (8-10 weeks old) were cultured in complete PDC media for 24 hours to facilitate 

cell adhesion. Cell media was then replaced either with complete PDC media, basal DMEM/F-12, 

or DMEM/F-12 supplemented with Untreated, Wnt+, or Wnt- hMSC CM. After 2 or 5 days, 

CK19+ cells were assessed for proliferation (24-hour EdU pulse label). After 2 days in culture, 

DBA lectin+ cells isolated from healthy mice supplemented with Untreated, Wnt+, or Wnt- CM 

showed significantly increased frequencies of proliferating CK19+ cells compared to basal 

DMEM/F-12 (Figure 2.8F). Ductal cell cultures with bovine serum albumin (BSA) showed no 

significant change in proliferation frequency, indicating that hMSC CM benefits were not a result 

of generic protein supplementation in culture. After 5 days culture, there was no significant 

difference in the frequencies of proliferating CK19+ cells between hMSC CM supplemented and 

basal DMEM/F-12 conditions. DBA lectin+ cells isolated from STZ-treated mice showed no 

difference in the frequency of proliferating CK19+ cells after 2 or 5 days in culture (Figure 2.8G). 

Additionally, DBA lectin+ cells purified from STZ-treated mice exhibited decreased frequencies 

of EdU+/CK19+ cells compared to cells isolated from healthy mice after 2 days culture (Figure 

2.9). 
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2.3.6 Epithelial-to-mesenchymal transition and endocrine phenotype 

acquisition were not observed in DBA lectin+ cells exposed to hMSC CM 

in vitro 

While hMSC CM supplementation increased CK19-expressing cell proliferation in vitro, the next 

point of interest was whether hMSC CM affected cell phenotype and differentiation. FACS 

purified 7AAD-/DBA lectin+ cells from healthy or STZ-treated mice cultured in complete PDC 

media, basal DMEM/F-12, or DMEM/F-12 supplemented with Untreated, Wnt+, or Wnt- hMSC 

CM for 2, 4, or 7 days did not show colocalization of vimentin and CK19, suggesting no EMT was 

observed in vitro. Similarly, endocrine phenotype transition was not observed, as colocalization of 

glucagon or insulin with CK19 was not identified at each of these timepoints (Figure 2.10). Thus, 

mesenchymal or endocrine phenotype transition were not observed under these culture conditions, 

future studies can look at earlier markers of mesenchymal or endocrine phenotype, including 

mRNA or transcription factor changes. 
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Figure 102.8 Treatment with hMSC CM increased the frequency of proliferating CK19+ cells in vitro. 
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Figure 2.8 Treatment with hMSC CM increased the frequency of proliferating CK19+ cells 

in vitro. FACS isolated 7-AAD-/DBA lectin + cells from healthy or STZ-treated 8-10 week-old 

mice were cultured in (A) complete PDC media, (B) basal DMEM/F-12, or DMEM/F-12 

supplemented with (C) Untreated, (D) Wnt+, or (E) Wnt- hMSC CM (N=4). After 2 or 5 days, 

CK19+ cells were assessed for proliferation [EdU incorporation following 24h pulse label (50 

μM)]. Arrows indicate DAPI+/CK19+/EdU+ cells. (F) DBA lectin+ cells from healthy mice 

cultured in DMEM/F-12 supplemented with Untreated, Wnt+, or Wnt- hMSC CM showed 

significantly increased frequencies of EdU+/CK19+ cells after 2 days of culture compared to DBA 

lectin+ cells cultured in basal DMEM/F-12. After 5 days culture, there was no significant 

difference in the frequency of EdU+/CK19+ cells between CM supplemented cultures and culture 

in basal DMEM/F-12. (G) DBA lectin+ cells isolated from STZ-treated mice showed no 

significant difference in the frequency of proliferating CK19+ cells after 2 or 5 days in culture. 

Data represent mean ± SD compared using a one-way ANOVA followed by Tukey’s multiple 

comparison test comparing back to DMEM/F-12 for each timepoint (*p<0.05, **p<0.01). 
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Figure 112.9 STZ treatment decreased DBA lectin+ pancreatic cell proliferation in vitro. 

Figure 2.9 STZ treatment decreased DBA lectin+ pancreatic cell proliferation in vitro. FACS 

purified 7-AAD-/DBA lectin+ pancreatic cells from 8-10 week-old healthy or STZ-treated mice 

were cultured in complete PDC media, basal DMEM/F-12 media , or DMEM/F-12 supplemented 

with Untreated, Wnt+, or Wnt- hMSC CM for 2 or 5 days. DBA lectin+ cells purified from STZ-

treated mice exhibited decreased frequencies of EdU+/CK19+ cells compared to cells isolated 

from healthy mice at (A) 2 days or (B) 5 days of culture (N=2-4). Data represent mean ± SD 

compared using a two-way ANOVA followed by Tukey’s multiple comparison test (**p<0.01, 

***p<0.001). 
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Figure 122.10 Epithelial-to-mesenchymal transition and endocrine phenotype acquisition were not observed in DBA lectin+ cells 
exposed to hMSC CM in vitro. 

Figure 2.10 Epithelial-to-mesenchymal transition and endocrine phenotype acquisition were 

not observed in DBA lectin+ cells exposed to hMSC CM in vitro. FACS purified 7-AAD-/DBA 

lectin+ cells from healthy or STZ-treated mice were cultured in complete PDC media, basal 

DMEM/F-12 media, or DMEM/F-12 supplemented with Untreated, Wnt+, or Wnt- hMSC CM in 

DMEM/F-12 for 2, 4, or 7 days. Representative photomicrographs of (A) mouse islets and (B) 

DBA lectin+ cells (cultured in DMEM/F-12 supplemented with Wnt+ CM) stained for vimentin 

and CK19. No co-localization of vimentin and CK19 was observed. Representative 

photomicrographs of (C) a mouse pancreas section and (D) DBA lectin+ cells (cultured in 

DMEM/F-12 supplemented with Wnt+ hMSC CM) showed no co-localization of glucagon or 

insulin (not shown) with CK19. 
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2.3.7 STZ Treatment (60 mg/kg/day x 5 days) induced hyperglycemia in 

CK19-CreERT;Ai9(RCL-tdT) mice 

To assess the optimal STZ dose to induce hyperglycemia and reduce β-cell mass, CK19-

CreERT;Ai9(RCL-tdT) mice (8-12 weeks old) were treated with 40, 50, 60, or 65 mg/kg/day STZ 

for 5 consecutive days (Days 1-5). On Days 0, 7, 10 and 14, mice were assessed for non-fasting 

blood glucose and body weight. Treatment with 60 mg/kg/day of STZ resulted in significantly 

increased non-fasting blood glucose levels at Day 14 compared to Day 0 and Day 7 (Figure 2.11A). 

Treatment with 40, 50, or 65 mg/kg/day showed no differences in non-fasting blood glucoses over 

time. There were no significant differences in the area under the curve (A.U.C.) for blood glucose 

between Days 0 and 14 for STZ-treated mice compared to CAB control mice (Figure 2.11B). 

Assessing differences between the effects of STZ administration in males vs. females on blood 

glucose, male mice administered 60 mg/kg/day exhibited significantly increased non-fasting blood 

glucose levels at Day 14 compared to Day 7 (Figure 2.11C). No differences over time were 

observed in other male/female groups administered STZ. There were no significant differences in 

A.U.C. for blood glucose between males/females administered STZ compared to CAB control 

mice (Figure 2.11D). Mice treated with 50, 60, or 65 mg/kg/day of STZ demonstrated weight loss 

(D14/D0) compared to CAB control mice, which should be monitored upon further 

experimentation and extension of the model (Figure 2.11E). Among STZ-treated mice, those 

administered 60 mg/kg/day produced the highest proportion (30%) of mice with non-fasting blood 

glucose levels ≥15 mmol/l at Day 14 (Figure 2.11F). Mice deemed hyperglycemic and suitable for 

hMSC CM transplantation should have non-fasting blood glucose between 15 and 25 

mmol/l199,200,207,225,226. 
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Figure 132.11 STZ treatment (60 mg/kg/day x 5 days) of CK19-CreERT;Ai9(RCL-tdT) mice resulted in elevated glyemia (>15 mmol/l) 
at Day 14. 
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Figure 2.11 STZ treatment (60 mg/kg/day x 5 days) of CK19-CreERT;Ai9(RCL-tdT) mice 

resulted in elevated glycemia ( ≥ 15 mmol/l) at Day 14. CK19-CreERT;Ai9(RCL-tdT) mice 

(8-12 weeks old) administered 40, 50, 60, or 65 mg/kg/day STZ for 5 consecutive days were 

assessed for non-fasting blood glucose and body weight at Days 0, 7, 10, and 14. (A) Treatment 

with 60 mg/kg/day of STZ (n=10) resulted in significantly increased non-fasting blood glucose 

levels at Day 14 compared to Day 0 and 7 values (*p<0.05 and **p<0.01, respectively). 

Treatment with 40 (n=4), 50 (n=7), or 65 mg/kg/day of STZ (n=13) showed no difference in 

non-fasting blood glucoses levels over time. (B) There were no significant differences in the 

areas under the curve between different concentrations of STZ administered compared to the 

CAB control. (C) Male mice administered 60 mg/kg/day STZ (n=5) had significantly increased 

non-fasting blood glucose levels at Day 14 compared to Day 7 (*p<0.05). There were no 

differences in non-fasting glucose levels for 40 mg/kg/day Males (n=4), 50 mg/kg/day Females 

(n=4), 50 mg/kg/day Males (n=3), 60 mg/kg/day Females (n=5), 65 mg/kg/day Females (n=4), 

and 65 mg/kg/day Males (n=9) over time. (D) There were no significant differences in the areas 

under the curve between each of the treatment concentrations (categorized by sex) compared to 

the CAB control. (E) Mice treated with 50 mg/kg/day, 60 mg/kg/day, or 65 mg/kg/day STZ 

exhibited weight loss (D14/D0) compared to CAB control mice. (F) Treatment with 60 

mg/kg/day of STZ resulted in the highest proportion (30%) of mice with non-fasting blood 

glucose ≥ 15 mmol/l at Day 14. Data represent mean ± standard error of the mean (SEM) for 

A.U.C. graphs and mean ± SD for all remaining data. Non-fasting blood glucose curves were 

compared using a repeated measures two-way ANOVA followed by Tukey’s multiple 

comparison test. Areas under blood glucose curves and changes in body weight were compared 

using a one-way ANOVA followed by Tukey’s multiple comparison test (*p<0.05, **p<0.01, 

***p<0.001). 
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2.3.8 STZ treatment reduced β-cell mass and islet number in CK19-

CreERT;Ai9(RCL-tdT) mice 

While STZ treatment seemed to modestly induce hyperglycemia in CK19-CreERT;Ai9(RCL-tdT) 

mice, histological analysis of the pancreas gives a better indication of β-cell death. CK19-

CreERT;Ai9(RCL-tdT) mice treated with 40, 50, 60, or 65 mg/kg/day (Days 1-5) of STZ exhibited 

decreased β-cell mass and islet number (per mm2) at Day 14 compared to mice that did not receive 

STZ (Figure 2.12 F, G). Additionally, treatment with 60 mg/kg/day of STZ resulted in significantly 

fewer islets per mm2 compared to treatment with 50 mg/kg/day. STZ treatment did not affect islet 

circumference compared to control mice (Figure 2.12 H). Based on the effects of 60 mg/kg/day 

STZ treatment on non-fasting blood glucose and β-cell mass, we decided this dose would be 

optimal for administration in CK19-CreERT;Ai9(RCL-tdT) mice prior to hMSC CM iPan 

injection. 

 

2.3.9 Glucose tolerance was impaired in STZ-treated CK19-

CreERT;Ai9(RCL-tdT) mice 

Based on the collective effects of STZ treatment on non-fasting blood glucose, β-cell mass, and 

islet density, we chose 60 mg/kg/day as our optimal dose. A glucose tolerance test gives a better 

indication of real-time β-cell function in controlling blood glucose. CK19-CreERT;Ai9(RCL-tdT) 

mice treated with 60 mg/kg/day of STZ (Days 1-5) and CAB control mice were fasted for 3 hours 

on Day 14 before receiving bolus glucose (2 mg/kg) by i.p. injection. Blood glucose was assessed 

at 0, 5, 10, 15, 30, 45, 60, 90, and 120 minutes. STZ-treated mice demonstrated significantly 

increased blood glucose levels 120 minutes after bolus injection compared to CAB control mice 

(Figure 2.13A). STZ treated mice had significantly increased A.U.C. for blood glucose compared 

to CAB control mice, indicating impaired glucose tolerance (Figure 2.13B). 
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Figure 142.12 STZ treatment in CK19-Cre-ERT;Ai9(RCL-tdT) mice decreased β-cell mass and islet number. 

Figure 2.12 STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice decreased β-cell mass and 

islet number. CK19-CreERT;Ai9(RCL-tdT) mice (8-12 weeks old) were treated with 40 (n=4), 

50 (n=7), 60 (n=10), or 65 (n=13) mg/kg/day of STZ by i.p. injection (Days 1-5). (A-E) 

Representative photomicrographs of frozen pancreas sections at Day 14 are shown. STZ treatment 

resulted in significantly decreased (F) β-cell mass and (G) number of islets per mm2 compared to 

no STZ control mice. Treatment with 60 mg/kg/day resulted in significantly fewer islets per mm2 

compared to treatment with 50 mg/kg/day. (H) STZ treatment did not affect islet circumference 

compared to no STZ control mice. Data represent mean ± SD compared using a one-way ANOVA 

followed by Tukey’s multiple comparison test (**p<0.01, ***p<0.001). 
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Figure 152.13 Glucose tolerance was impaired in STZ-treated CK19-CreERT;Ai9(RCL-tdT) mice. 

Figure 2.13 Glucose tolerance was impaired in STZ-treated CK19-CreERT;Ai9(RCL-tdT) 

mice. CK19-CreERT;Ai9(RCL-tdT) (8-12 weeks old) were treated with 60 mg/kg/day of STZ 

(n=7) or CAB (n=4) for 5 consecutive days. On Day 14, mice were fasted for 3 hours before 

receiving bolus glucose (2 mg/kg) by i.p. injection and blood glucose was assessed at 0, 5, 10, 15, 

30, 45, 60, 90, and 120 minutes. (A) STZ-treated mice had significantly increase blood glucose 

levels 120 minutes after bolus injection compared to mice injected with CAB. (B) STZ-treated 

mice demonstrated impaired glucose tolerance compared to mice injected with CAB. Data 

represent mean ± SD compared using a two-way ANOVA followed by Tukey’s multiple 

comparison test for the glucose tolerance time course. A.U.C. data represents mean ± SEM 

compared using a student’s t-test to compare area under the curve (*p<0.05). 
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2.3.10 tdTomato labels CK19-expressing cells in the pancreas of CK19-

CreERT;Ai9(RCL-tdT) mice following tamoxifen administration 

To assess whether this model specifically labels CK19+ cells and quantify labeling efficiency, 

CK19-CreERT;Ai9(RCL-tdT) mice were administered 6 mg tamoxifen by oral gavage 7 days 

before 60 mg/kg/day STZ treatment by i.p. injection for 5 consecutive days. Mouse pancreata were 

harvested at Days 0, 1, 7, and 14 and assessed for tdTomato and CK19 expression by flow 

cytometry and fluorescent microscopy. Mice treated with CAB (vehicle control) were euthanized 

on Day 14. Gated based on F.M.O. samples, live tdTomato+ cells labelled CK19-expressing 

pancreas cells at all timepoints in STZ-treated and CAB-treated mice (Figure 2.14A-D). To assess 

tdTomato labelling efficiency within the CK19+ population, live CK19+ cells were assessed for 

tdTomato expression based on the tdTomato FMO. tdTomao expression was observed in 

approximately 20% of CK19-expressing cells at each timepoint (Figure 2.14E-H). Future studies 

to optimize tamoxifen administration may improve CK19+ cell labeling efficiency, as the 

administered dose and repeated injection frequency may increase the efficiency of Cre 

recombinase activation in CK19-expressing cells250. tdTomato expression was not detected 

(<0.001%) when mice were administered corn oil without tamoxifen. 

 

2.3.11 Pancreatic insulin expression diminished following STZ treatment 

in CK19-CreERT;Ai9(RCL-tdT) mice 

While CK19-CreERT;Ai9(RCL-tdT) mice exhibited decreased β-cell mass and impaired glucose 

tolerance following STZ treatment, the proportion of insulin+ cells during STZ treatment is an 

important indicator of the effectiveness of STZ treatment. Mice were treated with 6 mg Tamoxifen 

followed by 7 days of rest. Mice were subsequently treated with 60 mg/kg/day of STZ (Days 1-5). 

At Days 0, 1, 7, and 14, pancreatic insulin expression was assessed by flow cytometry. Non-fasting 

blood glucose at Day 14 was not significantly increased compared to Day 0 (Figure 2.15C). The 

total proportion of insulin-expressing cells within the pancreas was significantly decreased at Days 

7 and 14 compared to Day 0 (Figure 2.14A, D). Insulin expression within tdTomato+ cells was 

significantly reduced at Day 14 compared to Days 0 and 1 (Figure 2.15B,E). 
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Figure 162.14 tdTomato labeled CK19-expressing cells in the pancreas following tamoxifen treatment in CK19-CreERT;Ai9(RCL-
tdT) mice. 

Figure 2.14 tdTomato labeled CK19-expressing cells in the pancreas following tamoxifen 

treatment in CK19-CreERT;Ai9(RCL-tdT) mice. CK19-CreERT;Ai9(RCL-tdT) mice were 

treated with 6 mg Tamoxifen by oral gavage. After 7 days rest, mice were administered 60 

mg/kg/day STZ by i.p. injection for 5 consecutive days. Mouse pancreata were harvested at Days 

0, 1, 7, and 14 and assessed for tdTomato and CK19 expression by flow cytometry (n=4-7) and 

fluorescent microscopy. Mice treated with CAB (vehicle control) instead of STZ were sacrificed 

14 days after the first day of treatment (n=4). (A) Live (Zombie-) tdTomato+ cells were assessed 

for CK19 expression based on the CK19 F.M.O samples. (B) Representative dot plot of CK19 

expression vs. SSC-A (gated on live tdTomato+ cells). (C) Representative photomicrograph of 

tdTomato and CK19 expression. (D) tdTomato labelled CK19-expressing pancreatic ductal cells 

at all timepoints in STZ-treated and CAB mice. To assess tdTomato labelling efficiency within the 

CK19+ ductal population, live CK19+ cells were assessed for tdTomato expression based on the 

(E) tdTomato FMO. (F) Representative dot plot showing tdTomato expression in live CK19+ cells. 

(G) Representative photomicrograph showing CK19 and tdTomato expression in a duct. (H) 

tdTomato expression was observed in approximately 20% of CK19+ ductal cells at each timepoint. 
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Figure 172.15 STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice decreased the proportion of insulin-expressing cells within the 
pancreas. 

Figure 2.15 STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice decreased the proportion 

of insulin-expressing cells within the pancreas. CK19-CreERT;Ai9(RCL-tdT) mice were treated 

with 6 mg Tamoxifen by oral gavage. After 7 days rest, mice were treated with 60 mg/kg/day STZ 

by i.p. injection for 5 consecutive days. At Days 0, 1, 7, and 14, pancreatic insulin expression was 

assessed by flow cytometry (n=4-7). (A) Representative dot plots for insulin vs. SSC-A (gated on 

live cells) at each timepoint and CAB control mice are shown. (B) Representative dot plots for 

insulin vs. SSC-A (gated on live tdTomato+ cells) at each timepoint and CAB control mice are 

shown. (C) Non-fasting blood glucose at Day 14 was not significantly different compared to Day 

0. (D) Insulin-expressing β-cells at Days 7 and 14 were significantly decreased compared to Day 

0. (E) Within tdTomato+ cells, the proportion of insulin+ β-cells was significantly decreased at 

Day 14 compared to Days 0 and 1. Data represent mean ± SD compared using a one-way ANOVA 

followed by Tukey’s multiple comparison test (*p<0.05, **p<0.01). 
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2.3.12 STZ treatment increased the proportion of infiltrating CD45+ cells 

in the pancreas of CK19-CreERT;Ai9(RCL-tdT) mice 

To further investigate whether leukocyte infiltration plays a role in STZ-mediated injury, pancreata 

from CK19-CreERT;Ai9(RCL-tdT) mice treated with Tamoxifen 7 days before STZ treatment 

(Days 1-5) were assessed for CD45 expression, a pan-leukocyte marker251,252, by flow cytometry. 

The proportion of CD45+ cells in the pancreas was significantly increased at Days 1 and 7 

compared to Day 0 (Figure 2.16A,D). Within CK19+ cells, the proportion of CD45+ cells was 

significantly increased at Day 7 compared to Days 0 and 14 (Figure 2.15B,E). Within the 

tdTomato+ cell population, the proportion of CD45+ cells was significantly increased at Day 7 

compared to Day 0 (Figure 2.16C,F). 
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Figure 182.16 STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice increased the proportion of CD45+ cells in the pancreas. 

Figure 2.16 STZ treatment in CK19-CreERT;Ai9(RCL-tdT) mice increased the proportion 

of CD45+ cells in the pancreas. CK19-CreERT;Ai9(RCL-tdT) mice were treated with 6 mg 

Tamoxifen by oral gavage. After 7 days rest, mice were treated with 60 mg/kg/day STZ for 5 days. 

At 0, 1, 7, and 14 after STZ treatment, pancreatic CD45 expression was assessed by flow cytometry 

(n=4-7). (A) Representative dot plots for CD45 vs. SSC-A (gated on live cells) at each timepoint 

and for CAB control mice are shown. (B) Representative dot plots for CD45 vs SSC-A (gated on 

live CK19+ cells) at each timepoint and for CAB control mice are shown. (C) Representative dot 

plots for CD45 vs. SSC-A (gated on live tdTomato+ cells) at each time point and for CAB control 

mice are shown. (D) CD45+ leukocytes within the pancreas were significantly increased at Days 

1 and 7 compared to Day 0. (E) Within CK19+ ductal cells, the proportion of CD45+ leukocytes 

was significantly increased at Day 7 compared to Days 0 and 14. (F) Within tdTomato+ cells, the 

proportion of CD45+ cells was significantly increased at Day 7 compared to Day 0. Data represent 

mean ± SD compared using a one-way ANOVA followed by Tukey’s multiple comparison test 

(*p<0.05, ***p<0.001). 
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2.4 Discussion 

 These studies demonstrated that hMSC CM increased CK19+ cell proliferation in vitro and 

characterized a lineage tracing mouse model to follow CK19+ cell fate following STZ-induced β-

cell ablation followed by hMSC CM intrapancreatic injection in hyperglycemic mice. We utilized 

DBA lectin expression followed by serum supplemented culture as methodology to purify and 

culture viable cells enriched for CK19 expression231. hMSC CM supplementation increased 

proliferation rates of CK19-expressing cells in vitro, although indication of mesenchymal or 

endocrine phenotype transition were not observed. We also characterized a lineage tracing mouse 

model that labels CK19-expressing cells in the pancreas following tamoxifen administration. Low-

dose STZ treatment for 5 days induced hyperglycemia and diminished the insulin+ population 

within the pancreas. Collectively, these data suggest that hMSC CM positively impacts the growth 

kinetics of CK19-expressing cells in vitro and that CK19-CreERT;Ai9(RCL-tdT) mice may be 

used in future experiments to assess the contribution of CK19-expressing cells during islet 

regeneration following hMSC CM intrapancreatic injection in hyperglycemic mice. 

 

While DBA lectin+ cells exhibited ~40% CK19 expression as assessed by flow cytometry, 

subsequent culture in complete PDC media further enriched for CK19 expression within this 

population (≈ 83% purity). Thus, this purification and culture process represents a reliable 

methodology to culture viable mouse pancreatic cells enriched for CK19 expression. hMSC CM 

supplementation into the culture media of DBA lectin+ cells isolated from healthy mice increased 

their proliferative response at 2 days, but no difference was observed at 5 days. This increase in 

proliferation was not observed in cell cultures from STZ-treated mice. The MSC secretome, 

comprised of soluble factors and extracellular vesicles, contains immunomodulatory, anti-

apoptotic, pro-angiogenic, proliferative, and growth factors that facilitate tissue repair187,190–192. 

hMSC CM has previously been shown to improve viability and migratory capacity of a human 

proximal tubular epithelial cell line following toxic chemical exposure, showcasing its protective 

effects on cells exposed to harsh environments including chemical treatment and cell culture 

assays253. Protective effects of hMSC CM, including enhanced survival, proliferation, or 

immunodulatory effects, has also been observed in endothelial cell, synovial explant, and 

microglia cultures254–256. Interestingly, cultured CK19+ cells isolated from healthy mice exhibited 

higher rates of proliferation compared to cells isolated from STZ-treated mice. While the effects 
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of STZ treatment on pancreatic β-cells have been well characterized, phenotypic and functional 

changes in non-endocrine pancreatic cells, including the duct and acinar cells, and the ability of 

STZ to indirectly impact islet regeneration following β-cell destruction has not been reported. 

Further characterization of these phenotypic changes on non-endocrine cell populations, such as 

the expression of cell cycle regulators or EMT markers, could reveal additional cellular targets 

that contribute to pancreatic repair in hyperglycemic mice.  

 

Mesenchymal or endocrine phenotype transition was not observed in cultures of DBA 

lectin+ cells from healthy or STZ-treated mice after 2, 4, or 7 days of cultured with hMSC CM. 

Further evaluation of phenotypic changes should be conducted in a 3-dimensional culture 

environment (e.g. cells suspended in collagen spheres) and transcriptome analysis of cell cycle, 

mesenchymal, and endocrine cell regulators should be investigated. Evidence for MSC CM 

modulation of differentiation following culture supplementation has been reported. hMSC CM has 

previously been shown to enhance chondrogenic, osteogenic, and hematopoietic differentiation in 

hESC cultures257,258. Culture supplementation with MSC CM also upregulated expression of 

cardiomyocyte-related genes in cardiac progenitor cells259. 

 

To evaluate the contribution of CK19-expressing cells in hMSC CM induced islet 

regeneration, we first aimed to develop and characterize a model to follow the fate of CK19-

expressing cells within the pancreas. We used CK19-CreERT;Ai9(RCL-tdT) mice, which utilize 

tamoxifen pulse-chase labelling of CK19+ cells221,222. A single tamoxifen treatment (6 mg) was 

sufficient to induce specific labelling of CK19-expressing cells in the pancreas one-week post-

administration. Absence of tdTomato detection following corn oil vehicle control administration 

indicated that the CK19-CreERT promoter was not leaky. tdTomato labelling efficiency of CK19+ 

cells was approximately 20% across time. Further optimization of tamoxifen dosage (e.g. multiple 

administrations) may increase labeling efficiency. tdTomato labelling and promoter leakiness 

should also be assessed over a long-term period (e.g. 42 days) when characterizing hMSC CM-

induced islet regeneration in these mice. 
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As CK19-CreERT;Ai9(RCL-tdT) mice possess active DNA-dependent protein kinase 

(DNA-PK), a DNA repair enzyme which is truncated and inactive in NOD/SCID mice260,261, we 

hypothesized that a higher STZ dose would be required to induce hyperglycemia and loss of β-cell 

mass compared to the 35 mg/kg/day administered to NOD/SCID mice, as greater STZ sensitivity 

has been reported in NOD/SCID mice which lack functional T-cells262. Consistent induction of 

severe hyperglycemia was difficult to achieve in CK19-CreERT;Ai9(RCL-tdT) mice. Treatment 

with 60 mg/kg/day for 5 consecutive days caused the greatest proportion of mice to become 

hyperglycemic (≥15 mmol/l non-fasting blood glucose) by Day 14. These mice exhibited 

decreased β-cell mass and islet density with no change in islet circumference, compared to control 

mice, and demonstrated impaired glucose tolerance following glucose bolus injection. Similarly, 

pancreatic biopsies from patients with T1D exhibit decreased islet density, while islet size was 

maintained compared to healthy subjects263. While there were some mice who did not become 

hyperglycemic, those considered suitable for hMSC CM injection will have non-fasting blood 

glucose levels between 15 and 25 mmol/l at Day 14. 

Along with pancreatic β-cell loss, insulin+ cells within the pancreas were significantly 

decreased at Days 7 and 14. Similarly, within the tdTomato+ cell population, the frequency of 

insulin+ cells was diminished over time and were rare at Day 14 (<0.5%). This indicates that STZ 

treatment was successful in mediating β-cell destruction, and that emergence of insulin-expressing 

tdTomato+ cells following hMSC CM iPan injection, if absent in vehicle control mice, could truly 

be attributed to the regenerative microenvironment of the hMSC secretome in future experiments. 

Additionally, STZ treatment induced leukocyte infiltration in mice. While NOD/SCID 

mice treated with 35 mg/kg/day STZ demonstrated a stable proportion of CD45+ cells within the 

pancreas, F4/80 upregulation at Day 10 indicated macrophage differentiation in response to 

increased β-cell apoptosis. Within CK19+ cells, an increase in F4/80+ cells on the last day of STZ 

treatment (Day 5) may indicate macrophage infiltration in response to pancreatic injury. Treatment 

of CK19-CreERT;Ai9(RCL-tdT) mice with 60 mg/kg/day of STZ induced pancreatic infiltration 

of CD45+ cells at Days 1 and 7. Within CK19+ and tdTomato+ cells, CD45+ leukocyte infiltration 

at Day 7 was observed, indicating possible interactions between leukocytes and pancreatic 

epithelial cells in response to STZ treatment. Future studies investigating leukocyte subpopulation 

breakdowns (e.g. macrophages, T-cells) during STZ-induced CD45+ cell infiltration will provide 
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insight into cellular phenotypes mediating the immune response. Macrophage and T-cell islet 

infiltration and subsequent release of inflammatory cytokines, including IL-1β, IFN-γ, and TNF-

α, mark key steps in diabetes pathogenesis resulting in β-cell destruction22,56–61. Macrophages play 

a crucial role in tissue repair in response to injury or stress. During inflammation, macrophages 

secrete chemotactic factors to recruit immune cells and clear cellular debris from apoptotic cells 

via phagocytosis264. Evidence for pancreatic macrophage infiltration following STZ treatment has 

been reported265–267. While macrophages normally play an anti-inflammatory role in tissue repair, 

phagocytosis of apoptotic β-cells and elevated blood glucose levels promote a proinflammatory 

macrophage phenotype, potentially tipping the balance to favour β-cell destruction over 

regeneration268,269. T-cell dependent Class II MHC antigen expression and subsequent pancreatic 

T-cell infiltration has been demonstrated in mice following multiple low dose STZ treatment270,271. 

Infiltrating T-cells increase INF-γ release, further mediating inflammation and destruction within 

the pancreas271. Thus, macrophages and T-cells represent key targets in attenuating inflammation 

and destruction in response to β-cell injury, and their regulation may play an important role in 

developing a regenerative microenvironment to promote islet regeneration. 

In summary, these studies show increased proliferation of hMSC CM supplemented murine 

ductal cells in vitro and provide proof-of-concept characterization of CK19-CreERT;Ai9(RCL-

tdT) mice during STZ treatment in vivo. The CK19-CreERT;Ai9(RCL-tdT) mouse model 

represents a valuable tool that required characterization prior to use in future studies to follow the 

fate of CK19-expressing cells during hMSC CM induced islet regeneration. Future studies, 

including optimization of tamoxifen treatment and in-depth characterization of pancreatic 

leukocyte infiltration in response to STZ treatment, will further solidify CK19-CreERT;Ai9(RCL-

tdT) mice as a sound model for CK19+ cell lineage tracing and identify additional potential cellular 

targets to maximize islet regeneration, respectively. These studies ultimately aid in developing a 

cell-free regenerative therapy to stimulate islet regeneration to treat patients with diabetes. 
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3.0 Discussion 
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3.1 Summary 

 The primary objective of this research was to determine the effects of hMSC CM on murine 

ductal cells in vitro and to characterize a lineage tracing mouse model for the future assessment of 

CK19-expressing cell contribution to hMSC CM stimulated islet regeneration in vivo. We have 

previously shown that iPan injection of Wnt+ hMSC CM reliably reduces systemic blood glucose 

and rescues β-cell mass in hyperglycemic mice by stimulating the formation of small ductal-

associated islet clusters via paracrine signals in mice with STZ-mediated β-cell ablation198–200,207. 

Bone marrow-derived hMSC (P4, 80% confluent) were cultured in serum-free media for 24h to 

generate Untreated, Wnt+, or Wnt- CM using pharmacological small molecule treatment. CK19+ 

cells from mouse pancreata, purified by DBA lectin+ FACS were cultured in basal DMEM/F-12 

media supplemented with hMSC CM. CK19+ cells from healthy mice exhibited increased 

proliferation at 2 days in culture with either Untreated, Wnt+, or Wnt- hMSC CM compared to 

basal media alone. Although proliferation was diminished at 5 days after hMSC CM 

supplementation, we found that hMSC CM, irrespective of Wnt-pathway stimulation, secreted 

regenerative stimuli that support short-term proliferation of CK19+ cells in vitro. Notably, CK19+ 

cells isolated from STZ-treated mice did not exhibit increased proliferation compared to basal 

DMEM/F-12 at 2 or 5 days of culture. Indeed, CK19+ cells isolated from STZ-treated mouse 

pancreata exhibited less proliferation in culture compared to cells from healthy mice, suggesting 

STZ treatment changes CK19+ cell growth rates in subsequent culture. Finally, evidence of 

epithelial-to-mesenchymal transition and endocrine phenotype acquisition were not observed in 

hMSC CM supplemented cultures with or without STZ treatment. 

 

 Next, characterization of CK19-CreERT;Ai9(RCL-tdT) lineage tracing mice was 

conducted. A single dose of tamoxifen (6 mg) induced specific labeling (tdTomato+) of CK19+ 

cells within the pancreas. The labelling efficiency of CK19+ cells with tdTomato was 

approximately 20%. Low dose STZ treatment (60 mg/kg/day) for 5 consecutive days induced 

hyperglycemia by Day 14 and insulin+ cells within the pancreas were also diminished at Day 14, 

with a corresponding decrease in β-cell mass. Reduced islet density was observed, while average 

islet circumference remained unchanged after STZ treatment. STZ treatment also stimulated 

pancreatic infiltration of leukocytes, which was also reflected within the CK19+ and tdTomato+ 

cell populations as there was a higher proportion of CD45+ cells. This may indicate immune cell 
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targeting of these populations as an indirect consequence of STZ treatment. Similarly, treatment 

of NOD/SCID mice with low dose STZ (35 mg/kg/day for 5 consecutive days) also resulted in 

macrophage (F4/80+) infiltration into the pancreas. Collectively, these findings suggest that 

CK19-CreERT;Ai9(RCL-tdT) mice represent a suitable model to characterize CK19+ cell 

contribution to islet regeneration following iPan injection of hMSC CM in STZ-treated mice. 

 

3.2 hMSC CM improved proliferation of murine CK19+ cell in vitro, 

irrespective of Wnt-pathway stimulation or inhibition 

 As observed by Kuljanin et al.208, treatment of hMSC with CHIR99021 (≥ 10 μM) 

increased intracellular β-catenin levels without impacting hMSC viability, indicating Wnt-

pathway stimulation was achieved. However, hMSC treatment with IWR-1 did not reduce 

intracellular β-catenin levels, contrary to previous observations using exclusively regenerative 

hMSC samples208. Low baseline levels of β-catenin/Wnt-pathway signaling in these non-

regenerative hMSC samples may possibly contribute to this lack of observed downregulation and 

suggests that the Wnt-pathway was not active in all cultured hMSC samples. 

 

 Isolation of DBA lectin+ cells from mouse pancreata, followed by culture in complete PDC 

media proved effective in purifying viable CK19+ cells (~83% CK19+/DAPI+). As CK19 is an 

intracellular marker requiring antibody labeling, cells must be fixed and permeabilized to visualize 

or isolate CK19+ cells. As a surrogate marker for viable CK19+ ductal epithelial cells240,272, DBA 

lectin, which specifically labels the α-linked N-acetylgalactosamine carbohydrate moiety, enriched 

2-fold for viable CK19+ cells233. Further purification was achieved by culturing DBA lectin+ cells 

in complete PDC media as outlined by Reichert et al231. While supplementation of DBA lectin+ 

cells with hMSC CM, irrespective of Wnt-pathway stimulation or inhibition, improved 

proliferation of CK19+ cells at Day 2 compared to basal DMEM/F-12, this proliferative effect was 

diminished at Day 5. hMSC CM supplementation of DBA lectin+ cells isolated from STZ treated 

mice did not significantly change CK19+ cell proliferative frequencies. hMSC CM contains a 

combination of secreted factors and extracellular vesicles that commonly exhibit proliferative, pro-

survival, and immunomodulatory effects to facilitate tissue repair187,190–192. Previous studies have 

shown that the hMSC secreted factors, such as PDGF-β, IL-6, Erk1/2 pathway activators, VEGF, 



69 
 

 

and monocyte chemotactic protein 1, can contribute to enhanced proliferation in co-culture with 

multiple cell types273–275. hMSC CM supplementation can increase survival and  proliferation in 

endothelial cell, synovial explant, and microglia cell cultures254–256. hMSC CM supplementation 

has also been reported to improve culture efficiency of epithelial cells from the human proximal 

tubule and increased cell viability and migratory capacity following toxic chemical exposure253. 

Interestingly, pancreatic ductal cell proliferation rate is increased in obese individuals and in 

patients with T2D 10-fold and 4-fold, respectively276. Based on our previous observations of 

increased islet/ductal association after intrapancreatic hMSC CM injection207, this compensatory 

proliferative mechanism, stimulated by the presence of regenerative effectors, may contribute to 

murine islet regeneration in situ.  Interestingly, CK19+ cells isolated from STZ-treated mouse 

pancreata exhibited less proliferation compared to cells from healthy mice across conditions. 

While the effects of STZ treatment on pancreatic β-cells have been well characterized, phenotypic 

and functional changes in nearby pancreatic cells, including the duct and acinar cells, and the 

ability of STZ to indirectly impact islet regeneration following β-cell destruction has not been 

reported. Further characterization of these phenotypic changes on non-endocrine cell populations, 

such as the expression of cell cycle regulators or EMT markers, could reveal additional cellular 

targets that contribute to pancreatic repair in hyperglycemic mice. 

 

 Studies conducted by the Collombat and Bonner-Weir groups suggest that islet 

regeneration involves EMT of duct-associated facultative progenitors followed by α- then β-cell 

endocrine transition18,19,148,153,154,156,160,277,278. To investigate whether hMSC CM could stimulate 

phenotype transition of murine CK19+ cells in vitro, we looked for evidence of vimentin or 

glucagon/insulin expression during short-term cell culture. CK19 and vimentin co-localization was 

not observed 2, 4, or 7 days after hMSC CM supplementation. Additionally, CK19+ cells with 

glucagon or insulin co-localization was also not observed at each timepoint. Further evaluation of 

phenotypic changes should be conducted in a 3-dimensional culture environment (e.g. cells 

suspended in collagen spheres), which more closely mimics native tissue metabolic responses279. 

Transcriptome analyses of cell cycle, mesenchymal, and endocrine cell regulators should also be 

investigated in future studies. Evidence of hMSC CM-directed differentiation has been previously 

observed. hMSC CM has been shown to enhance differentiation of undifferentiated hESC into 

chondrogenic, osteogenic, and hematopoietic lineages257,258. Evidence of enhanced cardiac 
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progenitor cell differentiation into cardiomyocytes based on upregulation of lineage-specific genes 

has also been reported259. Additionally, further investigation into hMSC-mediated improvement 

of functional outcomes in models of central nervous system injury through trophic effects revealed 

that hMSC culture supplementation selectively promoted neuronal stem cell differentiation into 

neurons and oligodendrocytes280. Thus, enhanced differentiation of a putative, pancreas-derived, 

facultative stem cell population in vivo following tissue injury seems plausible given regenerative 

signals provided by hMSC CM. While we have previously shown that Wnt+ hMSC CM reliably 

rescues hyperglycemia and β-cell mass following STZ-mediated ablation, the contribution of β-

cell proliferation alone could not explain this robust improvement, while neoislet budding from 

pancreatic ducts seemed common207. Given this evidence, it is plausible that hMSC CM may 

stimulate differentiation of facultative progenitors within the pancreas, and cells within the ducts 

(CK19+) represent a strong candidate. While differentiation of CK19+ cells into endocrine cells 

was not observed in vitro following hMSC CM supplementation, evaluation of their contribution 

to islet regeneration in their native tissue environment in vivo will provide deeper insight into 

whether this population represents a cell responsive to hMSC secreted signals. 

 

3.3 CK19-CreERT;Ai9(RCL-tdT) mice represent a strong model to 

characterize CK19+ cell contribution to islet regeneration 

 Lineage tracing mouse models which use lineage-specific promoters can label and permit 

long-term fate tracking even if phenotype transition or differentiation occurs. We used the CK19-

CreERT;Ai9(RCL-tdT) mouse model to label CK19-expressing cells following tamoxifen 

administration. First described by Means et al., the tamoxifen-inducible Cre-ERT was knocked 

into the CK19 locus221. Tamoxifen administration in postnatal mice induced labeling in a wide 

array of epithelial populations, including pancreatic ducts, hepatic ducts, stomach, and intestinal 

cells221. The reporter Ai9(RCL-tdT) mouse line has shown strong native fluorescence when 

crossed with different Cre lines222. Thus, we bred CK19-CreERT mice with Ai9(RCL-tdT) 

reporter mice to generate a mouse line that would label CK19+ cells with bright tdTomato 

fluorescence following tamoxifen administration. Single dose (6 mg p.o.) tamoxifen treatment 

induced labeling in CK19+ cells within the pancreas at one-week post-administration. Of the 

tdTomato+ cells, >90% were CK19+ by flow cytometry, indicating strong CK19-labeling 
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specificity. Administration of corn oil vehicle control (no tamoxifen) resulted in < 0.001% 

tdTomato+ cell detection, indicating that this Cre recombinase system was not leaky. Of the 

CK19+ cells detected, only 20% were tdTomato+ after a single injection of tamoxifen. Future 

studies to optimize tamoxifen administration may improve CK19+ cell labeling efficiency, as the 

administered dose and repeated injection frequency may increase the efficiency of Cre 

recombinase activation in CK19-expressing cells250. Higher tamoxifen dose, or multiple low doses, 

should maximize labeling in future studies and should permit localization of labelled cells during 

hMSC CM neoislet formation281,282. Whether the CK19+ cell population directly contributes to 

neoislet formation or indirectly facilitates neoislet budding from an alternative lineage, labeling 

studies using this mouse model should be performed to determine the origins of islet regeneration. 

However, tamoxifen toxicity represents a challenge in lineage tracing models. High doses of 

tamoxifen have been shown to cause gastric epithelium and liver damage283,284. Thus, the optimal 

tamoxifen dose should be that which induces maximal Cre activation without injury to the mice. 

Future studies are underway to determine this optimal dose. Additionally, as single-cell 

transcriptome analysis has suggested heterogeneity within the pancreatic ductal cell population, 

further investigation into differential expression of ductal cell markers, including CK19, within 

the tamoxifen labeled population would clarify the presence of a potential progenitor population149. 

 

Another aspect of the model we needed to assess prior to inducing hMSC CM mediated 

islet regeneration was hyperglycemia induction after STZ treatment. Previously, we have shown 

that administration of low dose STZ (35 mg/kg/day) for 5 consecutive days results in 

hyperglycemia (non-fasting blood glucose 15-25 mmol/l) and impaired glucose tolerance at Day 

10 in NOD/SCID mice198–200,207,225,226. Thus, we used a similar strategy administering STZ to 

C57BL/6 CK19-CreERT;Ai9(RCL-tdT) mice. Because CK19-CreERT;Ai9(RCL-tdT) mice are 

immunocompetent and contain intact of DNA-PK, a DNA repair enzyme that confers the SCID 

phenotype when inactivated260,261, we hypothesized that a higher STZ dose would be required to 

induce hyperglycemia, as greater STZ sensitivity has been reported in NOD/SCID mice262. We 

found that 60 mg/kg/day STZ treatment for 5 days induced hyperglycemia and impaired glucose 

tolerance in 1/3 to 1/2 of the mice at Day 14. CAB control mice exhibited normoglycemia and 

normal glucose tolerance at Day 14. While not all the mice were hyperglycemic at Day 14, only 

mice that have non-fasting blood glucose values between 15 and 25 mmol/l will be used for hMSC 



72 
 

 

CM transplantation studies. Mice that received STZ treatment had decreased β-cell mass and islet 

density, while islet circumference remained unchanged. 

 

 Following with the trends seen in decreasing β-cell mass, the proportion of insulin+ cells 

in the pancreas decreased with time during the STZ treatment protocol. At Days 7 and 14 following 

the start of STZ treatment, the proportion of insulin+ cells within the pancreas had significantly 

decreased, indicating that the STZ treatment protocol was effective in achieving β-cell ablation.  

Additionally, insulin+ cells within the tdTomato+ cell population decreased with time following 

STZ treatment. Very low detection levels of insulin+ cells at Day 14 means that any observed 

tdTomato+/insulin+ cells following hMSC CM iPan injection, pending emergence of this 

population is not seen in PBS control mice, could be attributed to the islet regenerative effects of 

the hMSC secretome. Based on studies including those from the Collombat and Bonner-Weir 

groups, there has been growing support that ductal cells, or subpopulations within the ductal 

lineage, may serve as a facultative progenitor population to compensate for pancreatic injury or 

disease44,154,156. In order to investigate whether hMSC CM stimulates this reprogramming, lineage 

tracing models, like the CK19-CreERT;Ai9(RCL-tdT) mice described in this study, will need to 

be utilized to assess the relative contributions of various pancreatic cell populations to islet 

regeneration. This study lays the groundwork to identify key pancreatic target populations to 

increase islet regenerative efficiency. 

 

3.4 Leukocyte infiltration plays a role in STZ-mediated pancreatic injury 

Apoptosis of β-cells in diabetes pathogenesis results from T-cell and macrophage islet 

infiltration and subsequent release of inflammatory cytokines, including IL-1β, IFN-γ, and TNF-

α which activate signalling pathways that mediate cell death22,56–61. Macrophage and T-cell 

pancreatic infiltration has also been reported following STZ treatment265–267,270,271. Treatment of 

NOD/SCID mice with low dose STZ resulted in increased F4/80+ macrophage specification within 

pancreatic CD45+ leukocytes. Additionally, treatment of immunocompetent CK19-

CreERT;Ai9(RCL-tdT) mice with low dose STZ (60 mg/kg/day x 5 days) resulted in increased 

CD45+ leukocyte pancreatic infiltration. Macrophages play a crucial role in mediating tissue repair 

in response to injury or stress. While macrophages normally play an anti-inflammatory role to 

facilitate tissue repair following tissue insult, STZ treatment stimulates phagocytosis of apoptotic 
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β-cells, which polarizes macrophages towards a pro-inflammatory phenotype268,269. Similarly, STZ 

stimulates T-cell pancreatic infiltration in immunocompetent mice and inflammatory cytokine 

release271. Chronic inflammation is associated with the onset of diabetes and its 

complications83,285,286. Upregulation of inflammatory cytokines, including IFN-γ, TNF-α, and IL-

1β are associated with increased reactive oxidative species production that play a significant role 

in β-cell apoptosis286. STZ treatment also increased CD45+ cell co-localization with CK19 and 

tdTomato, indicating that these cells may also be affected by the STZ-mediated inflammatory 

response. Further investigation into the specific leukocyte lineages that drive this observed 

infiltration will provide insight into the inflammatory mechanism at play and identify potential 

targets to prevent the progression of diabetic complications. Trials aimed at attenuating pro-

inflammatory immunity, including anti-CD20 antibody287,288, inflammatory cytokine 

antagonist289,290, and anti-inflammatory pharmacological agent291–295 administration have shown 

some success in attenuating β-cell apoptosis and symptoms. Thus, dampening the pro-

inflammatory immune response mediated by macrophages and T-cells may represent a promising 

approach to slow disease progression in diabetes pathogenesis, reduce complications, and create a 

regenerative microenvironment to facilitate tissue repair. 

 

It is well-established that the hMSC secretome exhibits immunomodulatory properties 

which have shown some success in treating immune disorders, including graft versus host 

disease296–298 and models of multiple sclerosis299–302. Immunomodulatory functions of MSC 

include promotion of as anti-inflammatory macrophage phenotype, macrophage homing to the site 

of injury, limiting mast cell degranulation, inhibition of lymphocyte proliferation, decreasing 

lymphocyte pro-inflammatory cytokine synthesis, and increasing lymphocyte anti-inflammatory 

cytokine synthesis180. While we’ve previously shown that Wnt+ hMSC CM injection provides a 

regenerative microenvironment that stimulates islet regeneration in the NOD/SCID mouse, it is 

possible that the immunomodulatory properties secreted by Wnt+ hMSC may also play a role in 

promoting tissue repair over progressive destruction. Further investigation into the hMSC secreted 

contents that mediate immune modulation may provide insight into strategies to prevent disease 

progression following early diagnosis. 
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3.5 Clinical Implications 

 Our data characterizes an immunocompetent lineage tracing mouse model that can be used 

to determine the contribution of CK19+ ductal cells to hMSC CM stimulated islet regeneration. 

hMSC are readily available and can be expanded efficiently in culture. For hMSC CM to be used 

in a clinical setting, production and expansion of hMSC may need to be scaled up to generate an 

appropriate dose. hMSC CM generated in serum-free culture conditions represents a cell-free 

mixture in which individual factors that are essential for islet regeneration can be identified to 

produce a therapy without the need for cellular purification and expansion. As Wnt-stimulation of 

hMSC in culture generates CM that consistently induces reduced hyperglycemia and β-cell rescue, 

we can circumvent the donor-dependent regenerative variability previously observed by 

pharmacological stimulation of the Wnt-pathway. However, since the hMSC secretome contains 

such a wide variety of factors that may be implicated in islet regeneration and immunomodulation, 

identification of individual essential components may prove to be challenging and labour intensive. 

While a single injection into hyperglycemic mice early in disease progression provides long term 

therapeutic effects, translation to a clinical setting may require multiple treatments. Additionally, 

characterization of β-cell regenerative ability in aged mice (>10 months) will provide further 

insight into hMSC CM clinical potential for older patients with diabetes. 

 

 The CK19-CreERT;Ai9(RCL-tdT) mouse model  described in these studies comes from a 

C57BL/6 background strain. Previously, we have demonstrated islet regeneration in NOD/SCID 

mice, which lack functional T- and B-cells, exhibit low natural killer cell activity, and have reduced 

antigen-presenting cell function303. While NOD/SCID mice previously allowed us to transplant 

cells without immune rejection, now that we are using a cell-free agent, we can use an 

immunocompetent mouse model which is more applicable to the clinical setting. The progression 

of both T1D and T2D involves aberrant immune system activation or inflammation, so an 

immunocompetent model to characterize treatment with hMSC CM alongside the associated innate 

and adaptive immune responses is essential if we are looking towards clinical application. 

Apoptosis of β-cells is mediated by islet infiltration by pro-inflammatory macrophages, as well as 

T-cells in the case of T1D, resulting in cytokine release and phagocytosis22,56–61,304,305. 

Nonetheless, characterizing islet regeneration in CK19-CreERT;Ai9(RCL-tdT) mice will provide 

further insight into response to hMSC CM treatment in the presence of functioning immune cells. 
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 Characterization of CK19-CreERT;Ai9(RCL-tdT) mice as a lineage tracing model to 

determine the contribution of CK19+ cells to islet regeneration following hMSC CM injection will 

aid in elucidating the cellular cascade leading to β-cell mass rescue. RNA-seq of human pancreata 

has revealed heterogeneity and intermediate stages within endocrine cell populations, which could 

indicate potential plasticity within the human pancreas149–152. One hypothesis that has gained 

considerable traction in recent years is the presence of a facultative progenitor cell population 

which resides in the ductal tree44,118,153,154,156. Following Pax4-mediated α- to β-cell transition, 

Hnf1β+ duct-lining cells demonstrated transient activation of Neurogenin 3, an endocrine 

progenitor marker, before adopting an α- then β-cell phenotype and function19,154,156. 

Misexpression of Ngn3 in Hnf1β+ cells stimulated reactivation of the endocrine lineage 

specification pathway, resulting in their transition into functional β-like cells in mice154. Lending 

support to duct cell plasticity, 15% of insulin-expression β-cells, which were not associated with 

other islet cells, have been found in or budding from ductules, paralleling β-cell lineage 

specification processes in the developing pancreas162. Thus, characterization of CK19-

CreERT;Ai9(RCL-tdT) mice, which represents a feasible model to study hMSC CM mediated islet 

regeneration, is a considerable step forward in testing this hypothesis and finding the ‘signal-

receiving cell’. 

 

 Our study has some limitations that need to be addressed as we plan for clinical 

translation22,62–66. Firstly, pathophysiology of T1D involves autoantibodies and autoimmune 

destruction of β-cells. However, our model involves chemical ablation of β-cells to induce 

hyperglycemia. Thus, our model does not address the autoimmune aspects of T1D that may 

actively delete regenerating β-cells. Additionally, this model does not address the obesity-induced 

insulin resistance characteristic of T2D, meaning obesity specific inflammatory cytokines and 

metabolites will not be present throughout our proposed studies. STZ treatment of CK19-

CreERT;Ai9(RCL-tdT) mice results in weight loss compared to control mice, which must be 

monitored closely as hyperglycemia progresses. Additionally, while lineage tracing provides us 

with direct fate-mapping of CK19+ cells with negligible leakiness, increasing labeling efficiency 

to maximize the probability of observing duct-to-β-cell transition requires administration higher 

dosages of tamoxifen, which has the potential to cause gastric and liver complications283,284. 
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3.6 Future Directions 

 This study showed that tamoxifen administration to CK19-CreERT;Ai9(RCL-tdT) mice 

specifically labeled CK19+ cells and that low dose STZ treatment can result in hyperglycemia, 

impaired glucose tolerance, and reduced β-cell mass. Our next steps in this investigation are to 

investigate whether hMSC CM can induce islet regeneration in an immunocompetent host to 

determine the contribution of CK19+ cells to neoislets. This protocol will require treatment with 

tamoxifen followed by a rest period, STZ injection (60 mg/kg/day for 5 days), hMSC CM iPan 

injection, blood glucose monitoring, and histological and flow cytometric analysis according to 

the proposed model and timelines outlined in Figure 3.1. Analysis of tdTomato+ cells by histology 

and flow cytometry during the islet regenerative process will be conducted to determine whether 

they have acquired endocrine phenotype and will provide definitive evidence of any possible 

CK19+ cell contribution to neoislets. Co-localization of tdTomato with β-cell markers including 

insulin, MafA, and Nkx6.1 on a single cell level by flow cytometry and confirmation by confocal 

microscopy would provide strong evidence if this event occurred. tdTomato co-localization with 

other pancreatic cell markers, including those for other endocrine cell types (α-cells, somatostatin 

cells, and PP cells), mesenchymal cells (e.g. vimentin), and acinar cells (e.g. elastase) should also 

be assessed to investigate other avenues of pancreatic plasticity. 
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Figure 193.1 Proposed experimental strategy for assessing ductal cell contribution to β-cell regeneration in CK19-CreERT;Ai9(RCL-
tdT) mice. 

Figure 3.1 Proposed experimental strategy for assessing ductal cell contribution to β-cell 

regeneration in CK19-CreERT;Ai9(RCL-tdT) mice. CK19-CreERT;Ai9(RCL-tdT) mice will 

be used to fate map ductal cells following tamoxifen administration (6 mg per os, Day -21). To 

induce hyperglycemia, mice will be treated with STZ (60 mg/kg/day i.p. injection, Days -14 to -

10), and subsequently receive hMSC CM iPan injection (Untreated, Wnt+, or Wnt-) on Day 0.  

Mice will be monitored twice weekly for non-fasted blood glucose concentrations and euthanized 

at Days 0, 7, and 28 (n=6-8) to assess tdTomato+ cell contribution to β-cell regeneration by 

immunohistochemistry on frozen pancreas sections and flow cytometry on dissociated, fixed, and 

permeabilized pancreatic tissue. EdU will be injected i.p. (200 µg/100 µl) 24h prior to euthanasia 

to assess replication of ductal, α-, or β-cells with or without tdTomato labeling. 
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Whether CK19+ cells contribute to islet regeneration or not, we will subsequently assess 

the contribution of other pancreatic cell types. Based on the hypothesis of ductal-to-α-to-β-cell 

transition18,19,44,154,156, we plan to also use the Glucagon-CreERT2 mouse line crossed with 

Ai9(RCL-tdT) reporter mice to map the fate of α-cells during hMSC CM induced β-cell 

regeneration306.  The experimental strategy and timeline will mirror that presented for CK19-

CreERT;Ai9(RCL-tdT) mice. 

 

 While hMSC CM is a more clinically applicable therapeutic option compared to cellular 

therapies, identification of the specific components of the hMSC secretome that mediate islet 

regeneration would provide further translational ability. Identification and optimization of these 

factors and their relative doses will help ensure uniformity and reproducibility as a treatment 

option to improve outcomes for patients with diabetes. To do this, proteomic analysis and RNA 

sequencing can be used to identify key differences between regenerative and non-regenerative 

hMSC CM and these factors can be modulated to determine whether they are essential to stimulate 

islet regeneration. Further understanding of the islet regenerative cascade leading to β-cell mass 

rescue and the key CM components that mediate this process can be used to generate a cell-free 

therapy, in combination with treatments to combat ongoing autoimmunity in the case of T1D or 

harmful metabolites in the case of T2D, to improve outcomes and β-cell functionality in patients 

with diabetes. 
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