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Abstract 

The presence of neuronal cytoplasmic inclusions (NCIs) composed of RNA-binding proteins 

(RBPs) and neurofilaments is considered to be ALS’s neuropathological hallmark. RGNEF has 

been previously shown to interact with TDP-43 and to have a regulatory effect on the expression 

levels of NEFL mRNA and NFL protein in vitro. Here, I examined the mechanism of the 

RGNEF N-terminus, leucine-rich domain (LeuR) domain’s interaction with TDP-43.  I observed 

that the minimal domain required is 110 amino acids (LeuR110), that the Ankyrin domain 

adjacent to LeuR110 does not participate, and that LeuR110 forms of a high molecular weight 

complex with TDP-43 in vitro consistent with the co-aggregation of LeuR242 and TDP-43 in 

double transgenic drosophila melanogaster. I also observed that RGNEF interacts directly with 

and destabilizes the TARDBP mRNA 3’UTR. These findings support that RGNEF interacts with 

TDP-43 through the formation of a high molecular weight complex and the down-regulation of 

its expression. 
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Summary for Lay audience 

 

Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult-onset disease characterized by the 

degeneration of motor neurons. In the cytoplasm of neuronal cells, the buildup of RNA-binding 

proteins (RBPs), neurofilaments and other proteins are considered to be the disease’s hallmark. 

Among these proteins, Rho guanine nucleotide exchange factor (RGNEF) has been identified as 

a key element in the development of ALS, where it accumulates in the cytoplasm of motor 

neurons. Previously, RGNEF has been shown to interact with another protein TDP-43 and to 

regulate a neurofilament protein NFL. Here, I focused on the mechanism of interaction between 

TDP-43 and a region of RGNEF, leucine-rich (LeuR). I observed that a minimal domain of LeuR 

interacts with TDP-43 by forming a complex of proteins, consistent with our observations in the 

brain and eye tissue of an ALS fly model. In addition to the interacting mechanism, I studied the 

role of RGNEF in the regulation of TDP-43. I observed that in the presence of the LeuR, there is 

a downregulation in TDP-43 levels. By defining the role of the interaction between two ALS-

associated RBPs, RGNEF and TDP-43, we can get a step further into identifying a potential 

therapeutic target in ALS. 
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Chapter 1 

1.1  Clinical aspects of ALS  

1.1.1 History and description of ALS 

Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease 

first described by French neurologist Jean-Martin Charcot in 1869 (Charcot & Joffroy, 1869). 

Considered the founder of modern neurology, he revolutionized the field by coupling clinical 

observations and pathological findings associated with various neurological diseases that would 

allow for a more accurate classification. Through studies conducted on the first ALS cases 

from1865 to 1869, alongside his pupil then colleague Alix Joffroy, Charcot observed that lesions 

of the anterior horn of the spinal cord resulted in paralysis accompanied by atrophy of muscle, 

whereas the lesions in the lateral column of the spinal cord resulted in progressive paralysis and 

no atrophy of muscles, thus establishing  clinicopathological correlate of lower motor neuron 

(LMN) vs upper motor neuron (UMN) pathology (Charcot & Joffroy, 1869).  

These observations supported Charcot’s hypothesis that the various clinical outcomes of 

this motor neuron disease are a result of the location of the lesions. It wasn’t until 1874 that the 

name amyotrophic lateral sclerosis was associated with motor neuron disease in Charcot’s 

publication “Œuvres complètes” in which he described the unique features of ALS. Firstly, he 

noted that the paralysis of the upper limbs occurred without loss of sensation, shortly thereafter 

the legs became affected with atrophy of the muscles of the paralyzed limbs.  With disease 

progression, these features worsened and were accompanied by the apparition of bulbar 

symptoms. The progress of the pathology through each phase was rapid and death occurred 2 to 

3 years from the onset of the bulbar symptoms on average (Charcot, 1874). 

Since then, neurologists around the world still rely on similar clinical features when 

describing patients with ALS (Rowland & Shneider, 2001) (Brown & Al-Chalabi, 2017) such 

that the progressive loss of upper (UMN) and lower (LMN) motor neurons in the brain and the 

spinal cord is a defining characteristic of the pathology.  
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1.1.2 Diagnosis and epidemiology 

Over the past two decades, physicians have been using El Escorial Criteria and its revised 

version as a diagnostic tool (Brooks, 1994) (Brooks, Miller, Swash, & Munsat, 2000). These 

criteria are based on a combination of features and an algorithm for diagnostic certainty. Core 

features of the criteria include the history, physical and neurological examinations supported by 

electrophysiological studies to assess the degree of LMN involvement, and neuroimaging when 

appropriate to exclude other diseases and neuropathology. The concept of progression is also 

critical (Brooks, 1994). These criteria were subsequently modified to increase the sensitivity of 

ALS diagnosis (Carvalho, et al., 2008). These revised criteria (the Awaji criteria) increased the 

weighting applied to the neurophysiological data alongside the clinical observations as a single 

dataset to decrease the number of ALS false positives (Zarei, et al., 2015). This modification 

increased the sensitivity of probable or definite ALS diagnoses by over 20% (Costa, Swash, & 

Carvalho, 2012). 

Because the initial symptoms of ALS are highly nonspecific and can mimic those of other 

muscle wasting diseases, misdiagnosis in early stages of the disease is very common and often 

leads to delays in ALS diagnosis. Since there are no valid diagnostic ALS biomarkers, the 

diagnosis remains based on clinical symptoms and electrophysiology that require spreading over 

time (Longinetti & Fang, 2019).  

While the clinical presentation of ALS is heterogenous because of the various motor 

neuron populations involved, typically patients present with motor neuron lesions serving bulbar 

functions and limbs (Zarei, et al., 2015) (Brown & Al-Chalabi, 2017). Typically, these lesions 

result in weakness of the limbs and bulbar musculature. In general, most patients show an initial 

limb-onset (Brooks, 1996) with features including muscle stiffness and spasticity, fasciculation, 

weight loss, muscle cramps and as the degeneration progresses, muscle atrophy (Brown & Al-

Chalabi, 2017) (Magnussen & Glass, 2017). The pathology later progresses toward the bulbar 

regions (Brooks, 1996). However, about a third of ALS cases have an early bulbar-onset, where 

the affected regions have a predominantly LMN involvement and the patients present with 

symptoms such as difficulty swallowing, chewing and speaking (Brown & Al-Chalabi, 2017) 

(Grad, Rouleau, Ravits, & Cashman, 2017). The disease progresses as the motor neurons of the 

brain and the spinal continue to degenerate affecting muscles of the limbs, oropharynx, tongue 

and eventually the diaphragm. In the later stages of ALS, the respiratory muscles are weakened, 
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which eventually leads to respiratory failures (Zarei, et al., 2015). However, ALS does not seem 

to affect the oculomotor neurons or those of Onuf’s nucleus supplying bladder function (Brown 

& Al-Chalabi, 2017).  

While the presence of motor dysfunction remains core to the diagnosis of ALS, there is 

an increasing awareness of nonmotor manifestations of the disease. The finding was first 

highlighted in the early 1980s by Arthur J. Hudson who noted that a proportion of ALS patients 

also demonstrated other neurological disorders including dementia, Parkinson’s and other 

behavioral deficits (Hudson, 1981). Since then, the more contemporary literature has been 

defining ALS as a multisystem disorder with a subgroup of ALS patients showing symptoms of 

frontotemporal dementia (FTD) (Strong, et al., 2009) (Strong, et al., 2017). A prospective study 

conducted by the Miller group on 2002 show that 14% of patients diagnosed with FTD were later 

diagnosed with ALS whereas 36% presented with features of ALS and then developed ALS 

(Lomen-Hoerth, Anderson, & Miller, 2002). The pathological characterization of FTD in ALS 

patients shows frontal and temporal cortical degeneration with neuronal loss and spongiform 

degeneration (Hudson, 1981). The behavioral syndrome associated with FTD detected in ALS 

patients includes significant alterations of personality and social conduct while the memory is 

relatively spared (Strong, et al., 2009) (Strong, et al., 2017). 

The average lifespan from disease onset is 3 to 5 years with respiratory failure as the most 

common cause of death (Yedavalli, Patil, & Shah, 2018). The incidence rate is estimated at 

1.8/100,000 people per year with a mean prevalence of 3.4/100,000 in North America (Grad, 

Rouleau, Ravits, & Cashman, 2017). While over ninety percent of ALS cases are classified as 

sporadic (sALS), two other variants of ALS exist and are classified as follows: familial ALS 

(fALS) linked to specific genetic inheritance of multiple ALS-associated genes and a previously 

hyperendemic focus in the Kii Peninsula, Guam and Papua New Guinea known as the Western 

Pacific variant (Sorarù, et al., 2009). 

1.2  ALS-associated genes 

While over 90% of ALS cases are classified as sporadic, approximately 10% are associated with 

a family history.  Approximately half of these have an autosomal dominant transmission, while 

recessive (Andersen & Al-Chalabi, 2011) or X-linked (Kennedy, Alter, & Sung, 1968) (Harding, 

Thomas, Bradbury, Morgan-Hughes, & Ponsford, 1982) are less common. However, a clear 
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distinction between these two variants of ALS remains controversial if we follow the Mendelian 

inheritance definition. Indeed, the gene mutations identified in fALS cases have also been 

observed in sALS (Al-Chalabi, et al., 2013). 

Although not all causative, mutations in over 25 genes have been associated with ALS 

(Andersen & Al-Chalabi, 2011). A genome-wide association study looking into the whole exome 

sequencing of a vast number of individuals allowed scientists to create a database of ALS genes 

with their corresponding clinical phenotype (Abel, Powell, Andersen, & Al-Chalabi, 2012). 

Amongst those genes known to be causative of ALS, a subset are more commonly observed, 

including superoxidase dismutase 1 (SOD1) (Rosen et al., 1993), TAR DNA-binding protein 43 

(TARDBP) (Sreedharan, et al., 2008) (Davidson, et al., 2016), fused in sarcoma (FUS) (Deng, et 

al., 2010) and Chromosome 9 open reading frame 72 (C9orf72) (DeJesus-Hernandez, 

Mackenzie, Boeve, & al., 2011) (Renton, et al., 2011). 

As indicated in table 1, there are also an increasing number of genetic mutations observed 

in association with ALS in which the mutation is considered to be rare or not causative, but 

rather disease modifying. Among those, mutations are observed in optineurin (OPTN) 

(Maruyama, et al., 2010), TATA-binding protein-associated factor 15 (TAF-15), Ewing sarcoma 

breakpoint region 1 (EWSR1) (Couthouis J. , et al., 2012),  rho guanine nucleotide exchange 

factor (RGNEF) (Keller, et al., 2012) (Droppelmann, et al., 2013) (Droppelmann, Keller, 

Campos-Melo, Volkening, & Strong, 2013), and intermediate filaments (neurofilament NEFH 

and peripherin) (Al-Chalabi, et al., 1999) (Wong, He, & Strong, 2000) (Gros-Louis, et al., 2004). 

While the pathobiology of ALS is complex and heterogenous, the study of its genetic 

variants helped identify three molecular categories through which the disease is induced. These 

include alterations in protein homeostasis, cytoskeletal dynamics and RNA homeostasis (Brown 

& Al-Chalabi, 2017). In the next section, I will discuss the major ALS-associated proteins 

identified in the literature and their role in the pathobiology of ALS. 
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Table 1. ALS-associated genes  

ALS pathology 

process 

ALS-associated 

gene 

Inheritance Disease 

causative 

Reference 

RNA 

metabolism 

TARDBP Dominant Yes (Sreedharan, et al., 2008) 

FUS Dominant 

and 

Recessive 

Yes (Kwiatkowski, et al., 2009) 

(Mackenzie, Rademakers, & 

Neumann, 2010) 

TAF15 Dominant 

and 

Recessive 

 (Ticozzi, et al., 2011) 

EWSR1 Inconclusive  (Couthouis J. , et al., 2012) 

ANG Dominant  (Greenway, et al., 2004) 

(Greenway, et al., 2006) 

SETX Dominant Yes (Chen, et al., 2004) 

hnRNPa1 Dominant Yes (Kim, et al., 2013) 

MATR3 Dominant  (Johnson, et al., 2014) 

ARHGEF28 Unknown  (Droppelmann, et al., 2013) 

(Ma, et al., 2014) 

Proteinopathy C9orf72 Dominant Yes (Renton, et al., 2011) 

(DeJesus-Hernandez, 

Mackenzie, Boeve, & al., 

2011) 

OPTN Dominant 

and 

Recessive 

Yes (Maruyama, et al., 2010) 

UBQLN2 Dominant Yes (Deng, et al., 2012) 

Enzymatic 

activity 

SOD1 Dominant 

and 

Recessive 

Yes (Rosen, et al., 1993) 

Cytoskeletal NEFH Dominant  (Al-Chalabi, et al., 1999) 
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Dynamics PRPH Sporadic  (Gros-Louis, et al., 2004) 

DCTN1 Dominant  (Munch, et al., 2004) 

(Vilariño-Güell, et al., 2009) 

Others ALS3 Unknown  (Hand, et al., 2002) 

ERBB4 Dominant  (Takahashi, et al., 2013) 

ALS7 Dominant Yes (Sapp, et al., 2003) 

Gene abbreviations: ANG = Angiogenin; ARHGEF28 = Rho Guanine Nucleotide 

Exchange Factor; C9orf72 = Chromosome 9 Open Reading Frame 72; DCTN1 = Dynactin 1; 

ERBB4 = erb-b2 receptor tyrosine kinase 4; EWSR1 = Ewing Sarcoma Breakpoint Region 1; 

FUS/TLS = Fused in Sarcoma/Translocated in Liposarcoma; hnRNPa1 = Heterogeneous Nuclear 

Ribonucleoprotein A1; MATR3 = Matrin 3; NFH = High Molecular Weight Neurofilament; 

OPTN = Optineurin; PRPH = Peripherin; SETX = Senataxin; SOD1 = Superoxide Dismutase 1; 

TAF15 = TATA-Binding Protein Associated Factor 2N; TARDBP = TAR DNA-Binding Protein 

of 43 kDa; UBQLN2 = Ubiquilin 2. 
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1.2.1 Protein homeostasis 

Neuronal cytoplasmic inclusions (NCIs) identified in ALS post-mortem tissues are 

predominantly skein-like inclusions or Lewy-body like hyaline inclusions that are ubiquitinated 

(Haegawa, et al., 2008) (Robinson, et al., 2013). In fact, ubiquitinated inclusions are the most 

abundant form of inclusions detected in ALS motor neurons, in which ubiquitin binds and marks 

misfolded and abnormal proteins for proteasomal degradation. ALS motor neurons are unable to 

activate the proper pathways for protein degradation, resulting in the accumulation of 

ubiquitinated proteins in aggregates (Basso, et al., 2009) (Bendotti, et al., 2012). Researchers 

have identified various ALS-associated proteins linked to loss of protein homeostasis in ALS and 

they include SOD1, C9ORF72 and OPTN. 

1.2.1.1 Cu/Zn Superoxide dismutase 1 (SOD1) 

Cu/Zn Superoxide dismutase 1 (SOD1) is a 153 amino acid homodimer ubiquitously-expressed 

protein composed of two subunits with a stabilizing zinc and a catalytic copper ion in each 

subunit. SOD1 is an abundant cytoplasmic enzyme present in all cells in almost all organisms 

and is a highly conserved protein (Lui, et al., 2004). The primary function of SOD1 is to remove 

superoxide generated by the cells to reduce the generation of reactive oxygen species (Bendotti 

& Carrì, 2004).  

SOD1 was the first gene to be linked to ALS (Rosen et al., 1993).  There are currently 

over 150 SOD1 mutations associated with fALS, accounting for 15 - 20% of fALS cases and 

approximately 3% of sALS cases (Anderson, 2006) (Ghasemi & Jr., 2018). Most mutations are 

missense mutations present across the coding sequence resulting in an exchange of amino acids 

without altering the size of the protein (Cleveland & Rothstein, 2001) (Andersen, et al., 2003) 

(Lui, et al., 2004). The rest of the mutations associated with ALS are nonsense mutations 

resulting in the alteration of the length of the final protein, silent mutations conserving both the 

length and the sequence of the protein, and nonpathogenic intronic mutations found in ALS cases 

and controls (Restagno, et al., 2005). In the case of many pathogenic SOD1 mutations, little to 

no effect has been observed on their enzymatic activity which excludes a loss of function 

mechanism. Indeed, the available evidence points to a gain of toxic function linked to the 

mutated SOD1 that results in motor neuron degeneration (Gurney, et al., 1994). Of relevance to 
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our understanding of ALS, neuropathological studies have demonstrated SOD1 immunoreactive 

neuronal cytoplasmic inclusions in cortical and spinal cord tissue of ALS patients with and 

without SOD1 mutations (Forsberg, et al., 2019). 

In contrast, our group previously examined the expression of SOD1 using 

immunohistochemistry in three variants of ALS: familial, sporadic and mtSOD1 cases compared 

to healthy controls (Keller, et al., 2012). The results showed the specific expression of SOD1 in 

diffuse cytoplasmic inclusions in motor neurons of mtSOD1 cases only, suggesting that the 

mtSOD1-ALS variant possesses a unique pathological signature that distinguishes it from other 

variants of ALS. Among the possible mechanisms, cf mtSOD1 toxicity, our lab demonstrated the 

interaction of mtSOD1 with human NEFL mRNA and its effect on the RNA stability (Ge, 

Strong, Laystra-Lantz, & Strong, 2005) (Volkening, Leyster-Lantz, Yang, Jaffee, & Strong, 

2009). By destabilizing NEFL mRNA, the stoichiometry of NF expression is altered in a manner 

that leads to the formation of NCIs (Ge, Leystra-Lantz, Wen, & Strong, 2003).  

1.2.1.2 Chromosome 9 open reading frame 72 (C9orf72) 

An autosomal dominant variant of ALS has been identified in association with genetic mutation 

on chromosome 9q21 encoding C9orf72 protein (Vance, et al., 2006) (Renton, et al., 2011) 

(DeJesus-Hernandez, Mackenzie, Boeve, & al., 2011). The number of hexanucleotide sequence 

repeats in C9orf72 ranges from 0 to 22. In ALS patients, the mutation detected is a massive 

intronic hexanucleotide repeat expansion (GGGGCC) (DeJesus-Hernandez, Mackenzie, Boeve, 

& al., 2011) and the number of repeats ranges from 30 to several thousand (Renton, et al., 2011). 

The pathological expansion of hexanucleotide repeats in C9orf72 is the most frequent 

genetic mutation causing ALS and frontotemporal dementia (FTD) in European and North 

American population, accounting for 11.7% of familial FTD cases and 23.5% of fALS cases 

(DeJesus-Hernandez, Mackenzie, Boeve, & al., 2011). It was also determined as a genetic cause 

in 5.1% of sporadic FTD patients and 5.9% of sporadic ALS patients (Blitterswijk, DeJesus-

Hernandez, & Rademakers, 2012).  

Previous findings related to non-coding repeat expansion disorders showed that by the 

formation of RNA foci in the nucleus and/or cytoplasm, RNA-binding proteins are sequestered 

which leads to the dysregulation of alternative mRNA splicing (Miller, et al., 2000) (Sofola, et 

al., 2007) (White, et al., 2010). Initial reports of RNA foci in patients with C9orf72 repeat 
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expansions demonstrated their presence in approximately 25% of the cells in the frontal cortex 

and the spinal cord. Indeed, analyses of the brain tissue of patients with C9FTD/ALS showed the 

presence of sense and antisense RNA foci C9orf72 positive (DeJesus-Hernandez, Mackenzie, 

Boeve, & al., 2011). Previous findings showed that the most pathological feature of C9orf72 is 

the presence of RNA-binding protein TDP-43 positive inclusions in neurons of ALS cases with 

C9orf72 mutations (Davidson, et al., 2016).  

Interestingly, despite their location in non-coding regions, C9orf72 repeat expansions are 

capable of starting their own translation through a non-canonical mechanism known as repeat-

associated non-ATG (RAN) translation (Zu, et al., 2011). This leads to the formation of neuronal 

inclusions containing dipeptide repeat proteins (DRPs) generated through RAN translation 

(Mori, et al., 2013).  

As evidenced by the data from numerous studies on the role of C9orf72 repeat 

expansions in ALS and other neurodegenerative diseases, three possible mechanisms seem to be 

involved in the pathogenesis of C9orf72-associated ALS and these include a loss of function of 

C9orf72 protein, the gain of toxic function caused by the sense and antisense C9orf72 repeat 

expansions, or a direct toxicity of the DRPs (Balendra & Isaacs, 2018). Which of these proposed 

mechanisms is the dominant one remains to be determined. 

1.2.1.3 Optineurin (OPTN) 

Optineurin is a highly conserved protein that is involved in several cellular processes, including 

the inflammatory response, autophagy and vesicular transport. It is ubiquitously expressed in 

many tissues including the eye, kidney, heart, liver and brain (Rezaie & Sarfarazi, 2005) (Rezaie, 

Waitzman, Kaufman, & Sarfarazi, 2005). 

OPTN is considered to be an ALS-associated gene for which greater than 20 mutations 

have been described (Li, et al., 2015). The identified mutations in a Japanese cohort of familial 

and sporadic ALS predicts that the recessive mutation causing ALS is a loss of function 

mechanism on the one hand and on the other hand, the upregulation and distribution of mutated 

OPTN causes a disruption in neuronal functions alongside the formation of inclusions in sporadic 

ALS (Ying & Yue, 2016). OPTN has been found in pathological structures in ALS (Maruyama, 

et al., 2010) where pathological skein-like inclusions immunoreactive for ubiquitin and TDP-43 

are also immunoreactive for OPTN (Maruyama, et al., 2010) (Osawa, et al., 2011). A semi-



 10 

quantitative analysis performed on different variants of ALS spinal cord tissues in our lab 

showed that while OPTN immunoreactive NCIs are not present in healthy controls, they are 

observed in the spinal cord of a wide range of ALS variants including sALS, mtC9orf72-ALS, 

fALS, mtFUS-ALS and mtTDP-43 ALS patients (Keller, et al., 2012). 

While specific mutations of OPTN have been determined to cause ALS in various studies 

(Maruyama, et al., 2010) (Fifita, et al., 2017), the specific role of OPTN in the pathogenesis of 

ALS pathology remains unclear. In fact, dysfunctions in various cellular mechanisms have been 

linked to the protein including endoplasmic reticulum stress (Vaibhava, et al., 2012), autophagy 

(Bansal, et al., 2018) and neuroinflammation (Sako, et al., 2012). The mechanism by which 

OPTN regulates neurodegeneration in ALS is however unknown. 

1.2.2 Cytoskeletal dynamics 

Cortical and spinal motor neurons are polarized cells with a soma, dendrites and extended axons 

allowing them to participate in the directional flow of information from the central nervous 

system to the rest of the body systems. (Lambrechts, Robberecht, & Carmeliet, 2007) (Rolls & 

Jegla, 2015). To maintain its polarity and therefore function, the cytoskeletal organization of the 

motor neurons is critical. The main components of the cytoskeleton consist of a dynamic and 

complex network of protein filaments, including microtubules and intermediate filaments. The 

involvement of neuronal intermediate filaments in ALS has been determined in 

immunohistochemical studies identifying the presence of neurofilament subunits and peripherin 

in which defects in their metabolism resulted in the loss and degeneration of upper and lower 

motor neurons (Munoz, Green, Perl, & Selkoe, 1988) (Troost, Smith, Jong, & Swaab, 1992). 

1.2.2.1 Intermediate filaments  

Early studies of axonal transport identified three neuronal intermediate filament proteins of 

different molecular size 200kDa, 160kDa and 68kDa (Hoffman & Lasek, 1975) that further 

biochemical studies confirmed as the three subunits of the neurofilament (NF), the light (NFL), 

the medium (NFM) and the heavy (NFH) weight neurofilament (Liem, Yen, Salomon, & 

Shelanski, 1978). Together with the intermediate filament α-internexin, these make up for the 

primary neuronal intermediate filaments of the CNS (Pachter & Liem, 1985). In the peripheral 

nervous system (PNS), the fourth subunit constituting the NFs rather than internexin is 

peripherin (Portier, de Néchaud, & Gros, 1983). 
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In vivo studies on transgenic mice and in vitro studies in cells showed that in healthy 

neurons, neurofilaments are generated by the stoichiometric heteropolymerization of the NF 

subunits NFL and α-internexin/peripherin with NFM and/or NFH (Lee, Xu, Wong, & Cleveland, 

1993) (Ching & Liem, 1993) (Yuan, et al., 2006) (Beaulieu, Robertson, & Julien, 1999). The 

stoichiometric co-assembly of these subunits into a filamentous structure is responsible for the 

axon caliber and cell integrity (Elder, et al., 1998). 

Neurofilament accumulations are found in NCIs of both sALS and fALS and studies on 

in vivo models show that the overexpression of neurofilament proteins leads to alterations in the 

three subunits stoichiometry resulting in the disruption of axonal transport of NFs in motor 

neurons (Al-Chalabi & Miller, 2003). To better understand the correlation between the 

stoichiometric composition of the NFs and the ALS-related neuronopathy, the Julien group 

developed transgenic mice models expressing the human NEFH gene (Côté, Collard, & Julien, 

1993). The results showed that, even with a modest overexpression of NFH subunit, the mice 

exhibited a progressive degeneration of their motor functions causing tremors and progressive 

signs of weakness like those observed in ALS patients. These features were accompanied by the 

presence of an abnormal accumulation of neurofilaments in the perikaryal and proximal axons of 

motor neurons of the anterior horn, similar to the neuronal swellings found in the motor neurons 

of ALS patients (Hirano, Donnenfeld, Sasaki, & Nakano, 1984). 

Therefore, maintaining the NFs stoichiometry by controlling the expression levels of NF 

subunits is critical since alterations in the stoichiometry result in the formation of NF aggregates. 

1.2.3 RNA homeostasis 

The discovery of alterations in the metabolism of RNA-binding proteins (RBPs) in ALS, 

typically manifested as intracellular inclusions, provided a contemporary approach to the 

development of in vivo and ex vivo models of the disease process. Subsequent studies have 

supported the hypothesis that RNA dysmetabolism plays a critical role in the pathogenesis of 

ALS including impacts on transcription, alternative splicing, microRNA biogenesis, mRNA 

stability, mRNA compartmentalization and axonal transport of translationally quiescent mRNA 

(Strong, 2010). 
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1.2.3.1 TAR DNA-binding protein of 43kDa (TDP-43) 

TDP-43 is a nucleic acid binding protein primarily localized in the nucleus with a small fraction 

localized in the cytoplasm. It has two highly conserved domains, RNA-recognition domains 1 

and 2 (RRM1 and RRM2), allowing the protein to bind to highly (UG)n enriched sequences 

(Lukavsky, et al., 2013). Its amino-terminal and carboxy-terminal ends are mainly responsible 

for protein-protein interactions involving TDP-43 (Budini, Baralle, & Buratti, 2014). In normal 

conditions, TDP-43 can shuttle between the nucleus and cytoplasm, mediated by a nuclear 

localization signal (NLS) located in the N-terminus region and the nuclear export signal (NES) in 

RRM2. It is involved in numerous RNA processes including transcription, splicing, RNA 

stability, transport, localization and stress granule (SG) formation (Buratti, 2015). 

The observation of ubiquitin and TDP-43 immunoreactive neuronal cytoplasmic and glial 

inclusions in the spinal cord tissue of ALS patients, consisting of hyperphosphorylated TDP-43 

provided the first evidence supporting the potential role of altered RNA homeostasis in the 

pathogenesis of ALS (Arai, et al., 2006). At the same time, Neumann et al (2006) observed 

similar TDP-43 immunoreactive inclusions in both frontotemporal lobar degeneration (FTLD) 

and ALS (Neumann, et al., 2006). Immunohistochemistry results from hippocampus, frontal and 

temporal cortex of ALS patients showed that the pathologic TDP-43 protein is ubiquitinated, 

hyperphosphorylated and cleaved resulting in the generation of toxic C-terminal fragments 

(Neumann, et al., 2006). 

An additional breakthrough in understanding ALS pathogenesis was the discovery of 

dominant causative mutations on the encoding gene TARDBP in both fALS and sALS cases 

(Sreedharan, et al., 2008). The identified TARDBP mutations include missense, truncations and 

insertion/deletion, collectively accounting for about 5% of fALS cases (Buratti, 2015).  

Under pathological conditions, TDP-43 accumulates in the cytoplasm in inclusions 

accompanied by TDP-43 clearing from the nucleus; the latter being proposed to cause a loss of 

the nuclear functions of TDP-43 (Ederle & Dormann, 2017). The formation of TDP-43 

pathological inclusions is associated with extensive post-translational modifications including 

ubiquitination, phosphorylation, formation of C-terminal fragments and acetylation, that 

promotes the aggregation process and toxicity (Igaz, et al., 2009) (Buratti, 2018). The presence 

of TDP-43 protein inclusions in brain and spinal cord tissue are a signature of ALS pathology. 
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As previously demonstrated by our group, TDP-43 is an NEFL mRNA binding protein (Strong, 

et al., 2007) alongside mutant and wild type SOD1 (Ge, Strong, Laystra-Lantz, & Strong, 2005) 

and rho guanine nucleotide exchange factor (RGNEF) (Volkening, Leystra-Lantz, & Strong, 

2010) (Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 2013). In vitro data show that 

the presence of a unique UG motif at the 3‘UTR of NEFL mRNA allows the RRM1 and RRM2 

domains of TDP-43 to specifically interact with this mRNA (Volkening, Leyster-Lantz, Yang, 

Jaffee, & Strong, 2009). In ALS, TDP-43 co-localizes with an array of RNA granules including 

transport granules (Staufen-1 immunoreactive), stress granules (TIA 1 immunoreactive), 

processing granules (XRN1 immunoreactive). This suggest that TDP-43 may be sequestrated in 

RNA granules in ALS, thus impacting their role in modulating RNA stability.  

TDP-43 has also been determined to have many splicing targets including FUS/TLS and 

its own 3’ untranslated region (UTR) (Polymenidou, et al., 2011), as well as playing a role in 

microRNA metabolism (Buratti, et al., 2010). 

1.2.3.2 Fused in sarcoma/translocated in liposarcoma (FUS/TLS) 

FUS/TLS (commonly abbreviated as FUS) is a DNA/RNA-binding protein mainly localized in 

the nucleus where it participates in various cellular processes including transcription and splicing 

(Ling, Polymenidou, & Cleveland, 2013). It is an hnRNP protein and belongs to the FET protein 

family that includes TAF15 and EWS (Morohoshi, Arai, Takahashi, Tanigami, & Ohki, 1996).  

The protein structure of FUS consists of an amino-terminal transcription activation domain - the 

Gln-Gly-Ser-Tyr (QGSY)-rich region, a highly conserved domain RNA recognition motif 

(RRM) and three Arg-Gly-Gly (RGG)-repeat regions, a zinc finger motif and a highly conserved 

carboxy-terminal region implicated in RNA binding (Iko, et al., 2004). FUS is heavily involved 

in transcription regulation, facilitated by the role of the amino-terminal region in FUS 

dimerization and binding to chromatin. Moreover, FUS is responsible for the phosphorylation of 

RNA polymerase II (RNA-polII) during transcription and therefore in regulating its activity. 

About 5% of fALS cases occur in association with mutations in the FUS gene. The most 

abundant missense/deletion mutations identified in ALS occur in the carboxy-terminal region 

containing the nuclear localization signal where they have been shown to lead to an abnormal 

distribution of mutant FUS in the cytoplasm (Kwiatkowski, et al., 2009). In the presence of FUS 

ALS-associated mutations, the transcription activity of RNA-polII and FUS leads to a down-
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regulation of the RNA species (Yang, Gal, Chen, & Zhu, 2014) (Masuda, et al., 2015). FUS is 

among the proteins identified in pathological NCIs in ALS motor neurons in both mutant FUS-

linked fALS and sALS (Deng, Gao, & Jankovic, 2014). 

Among the proposed mechanisms by which FUS causes the disease is a toxic gain of 

function. In fact, a homozygous FUS knockout mouse model demonstrated that the dysfunction 

of FUS led to a behavioral phenotype distinct from ALS suggesting that a loss of function alone 

is not enough for FUS to trigger ALS pathology (Kino, et al., 2015). On the other hand, results 

from transgenic mice overexpressing human FUS show an increase in the expression of 

cytoplasmic FUS present in globular and skein-like FUS-positive inclusions. Moreover, the 

homozygous animals developed an aggressive phenotype with pathological features like those 

seen in ALS patients (Mitchell, et al., 2013). 

1.2.3.3 TATA box-binding protein-associated factor 15 (TAF15) and Ewing sarcoma b1 

(EWS)............................. 

TATA box-binding protein (TBP)- associated factor 15 and Ewing sarcoma b1 (EWS) are RBPs 

that belong to the FET family of heterogenous nuclear ribonucleoparticle proteins (hnRNPs). 

They are predominantly expressed in the nucleus. Both TAF15 and EWS are capable of shuttling 

from the nucleus to the cytoplasm and participate in transcription and alternative splicing 

(Morohoshi, Arai, Takahashi, Tanigami, & Ohki, 1996) (Couthouis J. , Hart, Shorter, & al, 

2011). TAF15 has been shown to have unique intronic binding patterns in which it preferably 

binds to GGUA motifs in RNA (Kapeli, et al., 2016). However, TAF15 affects only a small 

number of alternative splicing events. It plays a more significant role in the stability of 

significant mRNA populations (Kapeli, et al., 2016) where TAF15 has been reported to recruit 

RNA polymerase II to sites of active transcription in complex with transcription factor II D 

(TFIID) (Bertolotti, Lutz, Heard, Chambon, & Tora, 1996) (Kwon, et al., 2013). In sALS 

patients, mislocalization of TAF15 to the cytoplasm in motor neurons is evident (Couthouis J. , 

Hart, Shorter, & al, 2011). Because of the presence of prion-like domains and its low-complexity 

feature it is prone to aggregation (Kwon, et al., 2013). 

Of note, EWS mutations have only been detected in sALS patients, including three 

missense variants which were determined to be involved in the mislocalization of EWS in motor 

neurons (Couthouis J. , Hart, Shorter, & al, 2011) (Couthouis J. , et al., 2012). In vivo analysis of 
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the effects of EWS in transgenic flies expressing human EWS is associated with degeneration in 

the eye of the fly, a shortened life span and progressive loss of motor functions (Couthouis J. , et 

al., 2012). While these observations provided a new insight regarding EWS properties in ALS, 

the role of the protein in the pathogenesis of ALS awaits further investigation.  

1.2.3.4 Rho Guanine Nucleotide Exchange Factor (RGNEF) 

RGNEF is a 190 kDa RNA-binding protein, part of the diffuse B-cell lymphoma (Dbl) family of 

guanine exchange factors (GEFs). Its murine homologue was first cloned from the mouse brain 

cDNA library as p190rhoGEF (murine isoform). The activation of Rho GTPases leads to the 

activation of various cellular responses including cell adhesion, motility, transcription activation 

and cell cycle progression (Mackay & Hall, 1998). p190RhoGEF is a specific activator of RhoA 

that can interact with microtubules through its carboxy-terminal region (van Horck, Ahmadian, 

Haeusler, Moolenaar, & Kranenburg, 2001). In addition to its microtubule domain located within 

the carboxy-terminal end, RGNEF also has a focal adhesion kinase (FAK) domain. Located in a 

coil-coiled domain, it facilitates the direct interaction with FAK (Zhai, et al., 2003); which is in 

turn involved in cell adhesion to the extracellular matrix (ECM) (Kornberg, Earp, Parsons, 

Schaller, & Juliano, 1992). However, a dysregulation of these cell-matrix contact sites leads to a 

dysregulation in cell migration resulting in cancer cell growth and proliferation (Guan & 

Shalloway, 1992).   

RGNEF has five important domains: a leucine-rich domain (LeuR) and a cysteine-rich 

Zn-binding domain in the amino terminal half of the protein; a Dbl homology domain (DH), a 

Pleckstrin homology domain (PH) and an RNA-binding domain in the carboxy-half of the 

protein (Cañete-Soler, Wu, Zhai, Shamim, & Schlaepfer, 2001) (Droppelmann, Campos-Melo, 

Volkening, & Strong, 2014) (Cheung, et al., 2017).  
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Figure 1. Structure of full length RGNEF. RGNEF is 1731 amino acid protein with eight 

putative domains: a leucine-rich domain (LeuR), an Ankyrin repeat domain overlapping with 

LeuR and a cysteine-rich Zn-binding domain in the amino terminal half of the protein ; a Dbl 

homology domain (DH), a Pleckstrin homology domain (PH), an RNA-binding domain, a FAK 

binding domain overlapping with the RBD and a microtubule binding domain overlapping with 

the RBD and extending to the amino acid 1731 in the carboxy-half of the protein  (Droppelmann, 

Campos-Melo, Volkening, & Strong, 2014). 
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RGNEF is the only known RNA-binding protein to be also identified as a GEF protein 

with the capacity to activate RhoA. Our lab and others have observed mutations in the gene 

encoding RGNEF, ARHGEF28, in both sALS and fALS (Droppelmann, et al., 2013) (Song, et 

al., 2020). These mutations are predicted to generate either a frameshift mutation or a splicing 

mutation resulting in a truncated RGNEF of 319 or 259 amino acids (Fig. 2). The single 

nucleotide deletion detected results in the generation of a massively smaller protein compared to 

the normal 1731 amino acid RGNEF (Droppelmann, et al., 2013). 

Schlaepfer and colleagues have demonstrated the critical role of RGNEF in the spread of 

colon carcinoma and fibroblast cell motility (Miller, Lawson, Chen, Ssang-Taek, & Schlaepfer, 

2012). Their results suggest that RGNEF has a scaffolding role in the localization and activation 

of FAK (Miller, et al., 2013) in addition to its GEF activity regulating RhoA in control of cell 

migration (Miller, Lawson, Chen, Ssang-Taek, & Schlaepfer, 2012). 
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Figure 2. Frameshift mutation in RGNEF in a case of fALS. (A) Sequence profile showing 

the mutation and the single nucleotide deletion at the exon-intron 6 boundary found in ALS-5. 

These mutations are predicted to generate a frameshift mutation with premature truncation, 

namely K280M>fs40X (B) or a splicing mutation at the exon 6/intron 6 splice junction, namely 

intron 6, >1 delG (GT>TT) (C), which would cause exon 6 skipping. (D) Predicted protein 

products of frameshift mutation compared with full length RGNEF (Droppelmann, et al., 2013). 



 19 

Under normal physiological conditions, RGNEF is mainly localized in the cytoplasm 

with moderate nuclear levels of expression (Droppelmann, Keller, Campos-Melo, Volkening, & 

Strong, 2013). RGNEF forms pathological NCIs in motor neurons in both sporadic and familial 

ALS forms (Keller, et al., 2012) (Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 

2013). Further RGNEF co-localizes with the RNA-binding proteins TDP-43 and FUS within 

motor neuron NCIs in ALS. We have also observed an interaction between full length RGNEF 

and TDP-43, further supporting the pathogenic role of RGNEF in ALS (Keller, et al., 2012). 

In a murine model of neuronal stress (proximal sciatic axotomy), RGNEF is significantly 

upregulated, suggesting it acts as stress and survival factor (Cheung, et al., 2017). This was 

confirmed in vitro in HEK 293T cells in which RGNEF increased cell survival following 

exposure to oxidative or osmotic stress (Cheung, et al., 2017). In the same study, we observed 

the colocalization of RGNEF with Staufen-1 in SGs. The murine homologue of RGNEF, 

p190RhoGEF has been observed to interact with a destabilizing region in the 3’ untranslated 

region (UTR) domain of murine NEFL mRNA in order to stabilize its transcript (Cañete-Soler, 

Wu, Zhai, Shamim, & Schlaepfer, 2001). Further studies looking into the aggregation process of 

NFL protein, showed that in an established cellular model, Neuro2a cells, p190RhoGEF co-

localized with NFL protein aggregates and not with NFL subunit. Additionally, NFL protein 

aggregation was associated with the co-aggregation of p190RhoGEF in motor neurons in a 

transgenic mouse model of motor neuron disease (Lin, Zhai, & Schlaepfer, 2005). In our lab, we 

have shown that the RNA-binding domain of RGNEF, interacts with NEFL mRNA (Volkening, 

Leystra-Lantz, & Strong, 2010).  However, in contrast to the stabilizing effect of p190RhoGEF 

on murine NEFL mRNA, RGNEF destabilizes human NEFL mRNA via its 3’UTR 

(Droppelmann et al. 2013) 

Recently, we have examined the formation of micronuclei in ALS in response to stress 

(Droppelmann, Campos-Melo, Moszczynski, Amzil, & Strong, 2019). Despite the limited studies 

on micronuclei in neurodegeneration and ALS in particular, it has previously been noted that 

these structures are present in peripheral blood lymphocytes of Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) patients (Migliore, Cappodè, Fenech, & Thomas, 2011). Using lactate 

stress-induced HEK 293T cells, we observed the formation of micronuclei, containing both TDP-

43 and LeuR, the latter being a protein containing leucine repeats within the first 242 amino 

acids of RGNEF. In addition, we have observed that TDP-43 and LeuR co-immunoprecipitate in 
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a high molecular weight complex. These observations suggest a role for the LeuR in the co-

aggregation of RGNEF and TDP-43 (Droppelmann, Campos-Melo, Moszczynski, Amzil, & 

Strong, 2019). The presence of micronuclei-like structures was also confirmed in the 

hippocampus and spinal cord of ALS patients with TDP-43 pathology. 

1.3  Leucine-Rich Repeat protein family 

Leucine Rich Repeats (LRR) are present in many proteins in humans and are one of the most 

conserved domain repeats across species (Matsushima, et al., 2007). Early studies looking into 

the structure of the porcine ribonuclease inhibitor enabled researchers to model other LRR 

proteins and their ligand complexes (Kobe & Deisenhofer, 1993). LRR are generally composed 

of 20 to 29 residues repeat in tandem containing a conserved 11-residue segment with a 

consensus sequence LxxLxLxxNxL (L= leucine; x= any amino acid; N= asparagine, cysteine, 

threonine or serine). The repeated tandems are grouped into highly conserved segments (HCS) 

and variable segments (VS) and are known to form a continuous superhelix (Kobe & Kajava, 

2000) (Table 2).  They have been shown to play a critical role in protein-protein interaction and 

other cellular processes such as neural development and modulation of different growth factor 

pathways (Ghiglione, et al., 1999).  

Protein-protein interactions are involved in most biological processes of a cell in both 

normal and pathological conditions. Given the role of protein misfolding, aggregation and 

degradation in neurodegenerative disease, researchers are using interaction proteomics in order 

to establish the interacting partners of established neurodegenerative disorders-associated 

proteins, and by identifying binding partners, determine their potential functions (Hosp, et al., 

2015). 

The amino-terminal region of RGNEF contains an atypical leucine rich motif located 

between the amino acids 97 and 206 (Table 2). While the structure of full length RGNEF is still 

not known, a software analysis of the LeuR242 sequence predicts the presence of alpha helices 

(Fig. 3) comparable to the structure of other leucine rich repeats in the literature (Dolan, et al., 

2007). 
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Table 2. Identified subfamilies of Leucine Rich Repeat sequences. LRR conserved consensus 

sequences by Kobe and Kajava (Kobe & Deisenhofer, 1993) (Kobe & Kajava, 2000) and an 

identified atypical LeuR sequence of RGNEF. 

Subfamily Conserved consensus sequence 

Ribonuclease inhibitor LxxLxLxxN/CxL 

SD22-like LxxLxLxxNxL 

Cys-containing LxxLxLxxcx-x 

Bacterial LxxLxVxxNxL 

Plant specific LxxLxLxxNxL 

Typical LxxLxLxxNxL 

TpLRR LxxIxLx-xxLx 

Atypical LeuR LxxLLxxxxNxL 

Abbreviations:SD22= G-type lectin S-receptor-like serine/threonine-protein kinase; Cys= 

cysteine; TpLRR= T. pallidum leucine-rich repeat; L= leucine; x= any residue; N= asparagine; -

= possible insertion site.
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Figure 3. Prediction of secondary structure of the LeuR domain of RGNEF.  The model was 

created using I-Tasser (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) based on the sequence 

of LeuR242 amino acids 1 to 242. The modelling shows the presence of nine α-helices ranging 

from amino acids 95 through 220 in the middle of the leucine-rich domain of RGNEF. Pink 

indicates α-helix structure; yellow indicates β-unit structure. 

 

 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Our group has previously demonstrated that when the full-length protein was truncated 

into various domains, the Leucine-Rich (LeuR) region proved to be critical for its cytoprotective 

effect under osmotic stress conditions (Cheung, et al., 2017). In addition, under stress, RGNEF 

co-localizes with Staufen-1 positive granules. Moreover, in unpublished observations, we have 

found that LeuR confers a protective effect in vivo against the toxicity of TDP-43 in a double 

transgenic LeuR;TDP-43 drosophila melanogaster model, improving the flies’ lifespan, motor 

functions and the eye degeneration observed in single transgenic flies TDP-43 (Droppelmann, 

unpublished results). 

1.4  Rationale and hypothesis 

ALS is a progressive, adult-onset disease characterized by the degeneration of motor neurons. 

The presence of neuronal cytoplasmic inclusions (NCIs) composed of RNA-binding proteins, 

neurofilaments and other proteins, is considered to be the disease’s neuropathological hallmark. 

Amongst ALS-associated proteins, RGNEF has been identified as a novel protein involved in the 

pathogenesis of ALS as it has been observed to co-aggregate with RNA-binding proteins TDP-

43 and FUS within motor neuron NCIs in ALS. RGNEF is a 190 kDa RNA-binding protein with 

five important domains including a leucine-rich region (LeuR) domain in the amino terminal half 

of the protein. Given previous data demonstrating the interaction of RGNEF  and the LeuR 

domain of RGNEF with TDP-43 and considering that RGNEF has been observed to regulate the 

levels of NEFL mRNA and NFL protein in vitro, I hypothesize that there is a functional and 

biochemical interplay between RGNEF and TDP-43 in which RGNEF can regulate the 

levels of TDP-43 and where the interaction between these two proteins is regulated by a 

minimal domain contained within the LeuR region of RGNEF. 

1.5  Significance and impact of the research  

This work will help elucidate the role of RGNEF in regulating the ALS-related protein TDP-43 

and how a small domain contained in the LeuR region of RGNEF is critical for the physical 

interaction between RGNEF and TDP-43. Since the fly model used in this study shows a 

protective effect of LeuR over the toxic phenotype induced by TDP-43 overexpression, the data 

generated from immunostainings of brain and eye tissue from the flies will help us understand 
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how aggregates containing LeuR and TDP-43 could be a possible mechanism of protection 

against TDP-43 toxicity. By defining the role of the minimal domain of interaction between two 

ALS-associated RBPs, RGNEF and TDP-43, we can get a step further into identifying a potential 

therapeutic target in ALS.  
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Chapter 2 

2.1  Specific aims 

2.1.1 Aim 1: To determine the minimal domain of interaction between LeuR242 and TDP-

43............... 

The first aim was to determine the minimal domain of interaction between the LeuR242 region 

(Fig. 4) and TDP-43. The predictive structure of full length RGNEF suggests the presence of an 

atypical LeuR motif in the amino-terminal region of the protein. Given the role of the Leucine-

Rich repeat proteins in protein-protein interaction, I hypothesized that within LeuR242, a smaller 

fragment is required for the interaction with TDP-43. Previous results from a crosslink 

immunoprecipitation showed the presence of an interaction between LeuR242 and TDP-43 in a 

high molecular weight complex (Droppelmann, Campos-Melo, Moszczynski, Amzil, & Strong, 

2019). Since the LeuR242 construct generated in our lab contains the leucine-rich motif, from 

amino acids 97 to 206, and sequences of RGNEF on both its amino and carboxy-terminal ends, 

we generated various constructs of LeuR242 in order to determine the minimal domain critical for 

the protein-protein interaction observed. 

2.1.2 Aim 2: To study the regulation of ALS-related protein TDP-43 by full length RGNEF 

and different RGNEF constructs (ΔLeuR and ΔCOOH) designed to elucidate the role 

of LeuR242 

The second aim was to study the regulation of ALS-related proteins by full length RGNEF and a 

variety of RGNEF constructs (ΔLeuR and ΔRBD) designed to elucidate the role of RGNEF. 

Given that RGNEF is an RNA-binding protein and given the role of these proteins on ALS-

related proteins, such as TDP-43, I hypothesized that the amino-terminal region of RGNEF 

contains a domain responsible for the regulatory effect observed over TDP-43 in vitro. 

Considering that RGNEF has been observed to regulate the levels of NEFL mRNA and NFL 

protein, I investigated the regulatory effect of RGNEF over the mRNA stability and protein 

levels of TDP-43. 
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2.1.3 Aim 3: To determine the interaction between TDP-43 and LeuR242 in vivo in a 

drosophila melanogaster model of TDP-43 toxicity. 

The third aim was to determine how the LeuR242 region modifies TDP-43 pathology in vivo. 

Preliminary experiments conducted in our lab have demonstrated that both RGNEF and LeuR242 

are critical modulators of the toxicity of wild-type TDP-43 drosophila melanogaster models with 

a significant protective effect on both survival and motor functions. To better understand the 

protective role of the LeuR242 region against the TDP-43 toxicity in the flies, I analyzed the 

pathology of TDP-43 toxicity in the absence or presence of LeuR242 using IHC on the brain and 

eye tissue of Elav-TDP-43 flies and Elav-LeuR242;TDP-43 flies. 
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Figure 4. Schematic showing the LeuR region flag-tagged constructs used to study the 

minimal domain of interaction with TDP-43. flag-LeuR242: previously characterized in the 

interacting complex with TDP-43 and the LeuR region flag-tagged constructs used to study the 

minimal domain of interaction with TDP-43; flag-LeuR110: containing only the LRR (amino 

acids 97-206), flag-ANK: containing only the ANK repeat, including a small fragment of the C-

terminal LRR (amino acids 162-229). 
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2.2  Methods 

2.2.1 Constructs elaboration 

The constructs, LeuR110 and ANK domains, were generated by PCR amplification using Phusion 

polymerase (Invitrogen, ThermoFisher Scientific) and primers specifically designed for each 

construct (Table 3). All the constructs created contain a flag-tag sequence on their amino-

terminal region, which allows the detection of the proteins expressed using an anti-flag antibody. 

The PCR products used as insert were run on a 1% agarose gel at 90V for 60 minutes, purified 

by gel extraction using a NuceloSpin Gel Extraction Kit (Macharey-Nagel Inc) and quantified 

using a Nanodrop spectrophotometer (ThermoFisher Scientific). Each fragment insert was then 

inserted into a pcDNA3.0 vector using the restriction enzymes KpnI and XhoI, after a 15 minutes 

digestion at 37°C (Anza system, Invitrogen, ThermoFisher Scientific). The digested plasmids 

and inserts were then ligated overnight at room temperature using T4 DNA ligase (Promega) at 

3:1 molar ratio of insert:vector, and transformed afterwards using chemically competent cells 

DH5α E.Coli per manufacturer’s protocol (Invitrogen, ThermoFisher Scientific). The 

transformation was then plated onto a selective agar plate containing 100μg/ml ampicillin and 

incubated overnight at 37°C. The obtained colonies were picked from the plate and grown in LB 

broth containing 100μg/ml ampicillin overnight at 37°C with shaking at 225rpm. The next day, 

DNA plasmids of each construct were obtained using PureLink Quick Plasmid Miniprep Kit per 

manufacturer’s protocol (Invitrogen, ThermoFisher Scientific). The purified plasmids were first 

screened through a 15minute enzymatic digestion at 37°C using Anza KpnI and XhoI, following 

which they were run on a 1% agarose gel for 60 minutes at 90V and compared to a control 

plasmid. 1Kb Plus molecular ruler (Bio-Rad) was used to determine the size of the plasmids on 

the agarose gel. Afterwards, the plasmids observed at the expected size were sent for sequencing 

(DNA Sequencing Facility - Robarts Research Institute) for confirmation before transiently 

transfecting HEK 293T cells.  
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Table 3. Primers used in PCR amplification to generate different constructs of LeuR 

 *Restriction site sequences are underlined: KpnI = GGTACC; XhoI = CTCGAG 

 

Name 

Forward or 

Reverse 

primer 

 

DNA sequence (5’ - 3’) 

pcDNA3.0_flag-LeuR110 Forward GTAGGTACCCACCATGGACTACAAGGACGAC

GATGACAAGCTGGCTCGTCTGCTGGTGAC 

pcDNA3.0_ Leur110 Reverse ACACTCGAGTTATAAAGCTAAGTCTAATGGT

GTGGCAC 

pcDNA3.0_flag-ANK Forward GTAGGTACCCACCATGGACTACAAGGACGAC

GATGACAAGCACAGAGAATCTCTTCTACAC 

pcDNA3.0_ ANK Reverse ACACTCGAGTTAGAAGCTTGGGGACCATCTG

CCCTGAA 
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2.2.2 Cell culture 

HEK 293T cells were used for all in vitro experiments because of their amenability to 

transfection, their neuronal-like properties (Shaw, Morse, Arabat, & Graham, 2002) and their 

endogenous expression of TDP-43.  They were maintained in Dulbecco’s modified eagle’s 

medium (Gibco, ThermoFisher Scientific) supplemented with 10% fetal bovine serum and kept 

in a water-jacketed incubator at 37°C, 5%CO2 (ThermoFisher Scientific).  

2.2.3 Transfections 

For the in vitro experiments in aim 1 looking to determine the minimal domain of interaction of 

LeuR with TDP-43, the cells were transiently transfected with flag-tagged plasmid constructs of 

LeuR inserted in the pcDNA3.0 backbone vector or TDP-43 plasmid inserted in a 

pcDNA3.1(+)/myc-His, each validated through sequencing (DNA Sequencing Facility - Robarts 

Research Institute) and purified using the PureLink Midiprep kit according the manufacturer’s 

protocol (Invitrogen, ThermoFisher Scientific). For the crosslink experiments of aim 1, the cells 

were seeded in 10cm dishes at 1,000,000 cells/dish and the transient transfections was performed 

using lipofectamine 2000 per the manufacturer’s protocol (ThermoFisher Scientific). The cells 

were left to grow for 48h to attain a 70% confluency before transfection. Cells were transfected 

with 15μg of DNA at a 2.5μL lipofectamine 2000 per 1μg DNA ratio and per manufacturer’s 

protocol, cells were incubated with the complex lipofectamine 2000 -DNA in OPTIMEM media 

(Invitrogen, ThermoFisher Scientific) for 3h. Afterwards, the cells were incubated in DMEM 

complete media for 36h for recovery before protein lysis. 

For the in vitro experiments in aim 2 looking to study the regulation of endogenous TDP-43, 

HEK 293T cells were transiently transfected with RGNEF constructs previously generated in our 

lab by C. Droppelmann (Cheung, et al., 2017). The following constructs, inserted in a 

pcDNA3.1(+)/myc-His backbone vector, were used: full length RGNEF, RGNEF-ΔLeuR; and 

RGNEF-ΔCOOH (Fig. 5). HEK 293T cells were seeded in 6-well plates (200,000 cells per well) 

or 96-well plates (9,000 cells per well) and left to grow for 48 hours and 24 hours, respectively, 

until they reach 70% confluency. Afterwards, cells were transfected using lipofectamine 2000 

with 2.5μg of plasmid DNA in 6-well plates or 120ng of plasmid DNA in 96-well plates, at a 

2.5μL lipofectamine per 1μg DNA ratio and per manufacturer’s protocol (Invitrogen, 

ThermoFisher Scientific). Figure 6 illustrates the steps followed for each transfection.
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(A) 

 

(B) 

 

Figure 5. RGNEF constructs used to study the effect of its putative regions on the 

endogenous expression of TDP-43 in vitro. (A) Aligned protein sequences of RGNEF 

constructs full length RGNEF, RΔLeuR and RΔCOOH: --- indicates deleted amino acids in 

RΔLeuR and RΔCOOH; green indicated the leucine rich domain; yellow indicates the cysteine-
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rich Zn-binding domain; red indicates the Dbl homology domain (DH); blue indicates the 

Pleckstrin homology domain (PH) and orange indicates the RNA-binding domain. (B) Scheme 

of the RGNEF constructs used in transiently transfected HEK 293T cells to determine the 

regions of RGNEF involved in the regulation of endogenous TDP-43. 
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Seed 200000 cells in 6 well plates and incubate 48h 

at 37°C before transfection.

Transfect cells with pcDNA3.1(+)/myc-His or 

RGNEF constructs using the lipofectamine 2000.

Lyse the cells 36-48h post transfection for protein 

or RNA extraction for TDP-43 protein and mRNA 

quantification, using western blot analysis and an 

RT-PCR respectively.

Seed 9000 cells in 96 well plates and incubate 24h 

at 37°C before transfection.

Co-transfect cells with a renillaluciferase coding 

sequence tagged to exogenous RGNEF and a 

fireflyluciferase coding sequence tagged to TDP-

43 3’UTR or FUS 3’UTR  using the lipofectamine 

2000.

Treat the cells 24h post-transfection and proceed to 

the readings in Promega luminometer to measure 

the luciferase activity of TDP-43 3’UTR in the 

presence of exogenous RGNEF constructs.

Transient transfection of HEK293T cells in normal conditions

 

Figure 6. Flow chart describing the transfection conditions in HEK 293T cells used to study 

the regulation of TDP-43. 
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2.2.4 Dual-luciferase reporter assay 

To determine the role of RGNEF in the regulation of TARDP 3’UTR mRNA, a dual-luciferase 

reporter assay was used on transiently co-transfected HEK 293T cells. The reporter plasmids, 

previously generated in our lab by D. Campos-Melo, were constructed by inserting TARDBP 

mRNA 3’UTR, or FUS mRNA 3’UTR in the pmirGLO vector (Promega) downstream of the 

firefly luciferase gene. HEK 293T cells were co-transfected with 2.83fmol of RGNEF-myc or 

pcDNA3.1 and 3.47fmol of pmirGLO-TARDBP 3’UTR; pmirGLO-FUS 3’UTR or pmirGLO 

using lipofectamine 2000 (Invitrogen, ThermoFisher Scientific) per the manufacturer’s 

instructions. The total amount of DNA transfected was maintained at 120ng per well by adding 

an empty vector. Each condition was replicated in six wells and the mean luciferase activity was 

used. The experiment was performed in triplicate. 

24 hours post-transfection, cells were treated with a luciferase assay buffer (Dual-

Luciferase Reporter Assay, Promega) and the firefly luciferase activity was measured using a 

Luminometer (Turner Biosystems Luminometer, Promega) according to the manufacturer’s 

protocol, following which the cells were treated with Stop & Glo reagent (Dual-Luciferase 

Reporter Assay, Promega) and the Renilla luciferase activity was measured using a Luminometer 

(Turner Biosystems Luminometer, Promega) according to the manufacturer’s protocol. Using the 

normalization protocol previously reported from our lab (Campos-Melo, Droppelmann, 

Volkening, & Strong, 2014), the measured firefly luciferase activity was normalized to measured 

Renilla luciferase activity to account for the variations from transfection efficiency. The 

luciferase activity from RGNEF over TARDBP 3’UTR or FUS 3’UTR was normalized against 

the luciferase activity from RGNEF over mRNA without 3’UTR to determine the specific effect 

of RGNEF on the luciferase activity of TARDBP 3’UTR and FUS 3’UTR. 

2.2.5 Protein lysates 

Protein lysates from HEK 293T transfected cells were obtained after lysing cells on ice using the 

following lysis buffer: phosphate-buffered saline (PBS) pH 7.2 with 1% Nonidet P-40(NP-40) 

and cOmplete protease inhibitor cocktail (Roche). After the cells were washed with PBS pH 7.2, 

to each well and 10cm dish, 200μl and 1000μl of lysis buffer were added respectively and 

scraped using a cell scraper. The lysed cells were then sonicated to homogenize (Sonifier Cell 

Disruptor Vibracell, Sonics and Material Inc.), centrifuged at 10,000g, 4°C for 10 minutes to 
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pellet cell debris and the supernatant with the proteins was extracted and stored at -20°C. The 

quantification of the proteins in lysates were quantified using the Promega protein assay 

according to the manufacturer’s protocol and the colorimetric analyses were measured using a 

Nanodrop (ThermoFisher Scientific) reading at 600nm.  

2.2.6 Crosslinking experiment 

To determine the minimal domain of interaction between LeuR242 and TDP-43, the chemical 

crosslinker dithiobis(sulfosuccinimidylpropionate) (DTSSP) was used in the presence of protein 

lysates from HEK 293T transfected cells. A total of 500μg protein was used for the crosslinking, 

combining 250μg of protein lysate from TDP-43-myc HEK 293T transiently transfected cells 

and 250μg of protein lysate from flag-LeuR110 or flag-ANK HEK 293T transiently transfected 

cells. The lysates were incubated at room temperature for 15 minutes before adding 10mM of 

DTSSP for a final concentration of 1.2mM in a final volume of 500μl. The mixture was 

incubated at room temperature for 30 minutes and the crosslinking reaction was stopped 

afterward by adding 25μl of 1M Tris pH 7.5 for a final concentration of 50mM.  

2.2.7 Immunoprecipitation 

Immunoprecipitation was performed after the crosslinking using the Dynabeads Protein G IP Kit 

(Invitrogen, ThermoFisher Scientific). IP experiments were performed by incubating 50μl of 

protein G beads with 2μg of IP antibodies (Table 3) for 15 minutes on a rotator (Tube Revolver, 

ThermoFisher Scientific) at room temperature. Afterwards, the antibody-conjugated beads were 

washed and incubated with 500μg of previously crosslinked protein lysates for 15 minutes on a 

rotator (Tube Revolver, ThermoFisher Scientific) at room temperature. The magnetic beads-

antigen-antibody complex were then washed according to the manufacturer’s protocol 

(Dynabeads Protein G IP Kit, ThermoFisher Scientific), eluted in PBS pH 7.2 and loading buffer 

(0.32M Tris-HCl, 10% SDS, 50% glycerol, bromophenol blue). At this step, two different 

elution conditions were used: non-reducing conditions to detect the complex of interacting 

proteins and reducing conditions to detect the proteins after the complex was cleaved at the di-

sulfide bond of DTSSP. In the case of non-reducing conditions, the beads were eluted in PBS 

with 5X loading buffer, while in reducing conditions the beads were eluted in PBS with 5X 

loading buffer and 0.68M β-mercaptoethanol. Samples were then heated at 94°C for 4 minutes 

and placed on a magnet to separate the beads-antigen-antibody complex.  
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2.2.8 Western blots  

To complete the crosslink IP in aim 1, the supernatant containing the antigen-antibody complex 

was loaded onto a gradient sodium dodecyl(lauryl) sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) (4-20% Mini-PROTEAN TGX precast protein gels, Bio-Rad). To study the 

regulation of endogenous TDP-43 in the presence of various constructs of RGNEF, a total of 

15μg of protein lysate in lysis buffer mixed with 5X loading buffer and 0.68M β-

mercaptoethanol was loaded onto a 10% SDS-PAGE gel. 

The gels were run on a constant of 100V for approximately 90 minutes, until the loading 

dye reached the bottom edge of the gel in a running buffer containing 50mM TRIS base, 200mM 

glycine, 2mM glycine in deionized water. Afterwards, the gels were transferred 

electrophoretically to a nitrocellulose membrane at a constant 300mA for 90 minutes. To ensure 

the transfer was successful, the nitrocellulose membranes were incubated with Ponceau-S red 

solution (0.1%(w/v) Ponceau S in 5%(v/v) acetic acid) for a few minutes after the transfer. Once 

confirmed, they were submerged in blotto solution (50mM TRIS base, 100mM NaCl, 1% 

Tween-20 pH 7.2), at 4°C overnight. The nitrocellulose membranes were first blocked using 

blocking solution (5% fat-free milk in blotto) for 60 minutes at room temperature on an orbital 

shaker (ThermoFisher Scientific), then primary antibodies were diluted in blocking solution 

afterwards, added to the membranes and incubated for 60 minutes at room temperature on an 

orbital shaker (ThermoFisher Scientific). Afterwards, the nitrocellulose membranes were washed 

three time in blocking solution 5 minutes each and then incubated with secondary antibodies 

diluted in blocking solution. The list and quantities of antibodies used are listed in Table 4.  

After secondary antibody incubation, the membranes were washed with blotto for 10 minutes 

each at room temperature on an orbital shaker (ThermoFisher Scientific). After the final wash, 

they were incubated in PBS pH 7.2 for 5 minutes at room temperature, and in Western Lightning 

ECL reagents (PerkinElmer) for 3 minutes at room temperature in order to generate a 

chemiluminescence signal. The signal was detected using ChemiDoc XRS+ system and 

visualized using Image Lab software (Bio-Rad). 
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Table 4. Antibodies used for western blot experiments 

Primary 

antibody 

Species 

 

Dilution Manufacturer Secondary antibody 

Anti-myc Mouse 1:2500 Cederlane Goat α-mouse, linked to 

horseradish peroxidase (titre: 

1:3000) (Bio-Rad) 

Anti-TDP-43 Rabbit 1:5000 ProteinTech Goat α-rabbit, linked to horseradish 

peroxidase (titre: 1:5000) 

(Invitrogen, ThermoFisher 

Scientific) 

Anti-flag Rabbit 1:4000 ThermoFisher 

Scientific 

Goat α-rabbit, linked to horseradish 

peroxidase (titre: 1:5000) 

(Invitrogen, ThermoFisher 

Scientific) 

Anti-GAPDH Rabbit 1:2500 Abcam Goat α-rabbit, linked to horseradish 

peroxidase (titre: 1:5000) 

(Invitrogen, ThermoFisher 

Scientific) 
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2.2.9 RNA extraction  

To study the regulation of TARDBP mRNA levels in the presence of the individual RGNEF 

constructs, RNA was extracted from transiently transfected HEK 293T cells in order to make 

cDNA and quantify TARDBP mRNA expression levels. After gently washing the cells with PBS, 

they were lysed by adding 400μl of Trizol (Ambion, ThermoFisher Scientific), homogenized and 

incubated for 5 minutes at room temperature in order to allow for complete disassociation of 

nucleoprotein complexes. Afterwards, 80μl of chloroform (ThermoFisher Scientific) was added 

to the homogenate, vigorously mixed, incubated for 2 minutes at room temperature and 

centrifuged for 15 minutes at 12,000g, 4°C. After separating the aqueous phase into a fresh tube, 

the RNA was precipitated using 200μl of isopropanol, incubated for 10 minutes at room 

temperature and centrifuged for 10 minutes at 12,000g, 4°C. The pelleted RNA was then washed 

with 400μl 75% ethanol and centrifuged for 5 minutes at 7,500g, 4°C. After discarding the 

supernatant, the pellet was dried at room temperature and resuspended in 20μl UltraPure RNAse-

free distilled water (Invitrogen, ThermoFisher Scientific). The resuspended RNA in the pellet 

was then incubated for 15 minutes at 60°C, quantified using a Nanodrop (Nanodrop 1000, 

ThermoFisher Scientific) and frozen at -80°C for storage.  

2.2.10 Reverse transcription (RT) 

 The extracted RNA from HEK 293T transiently transfected cells was reverse transcribed using 

the SuperScript II Reverse Transcriptase system (Invitrogen, ThermoFisher Scientific). First, 2μg 

of total RNA was incubated for 15 minutes at room temperature with 2μl of DNAse I (1U/μl) 

(Invitrogen, ThermoFisher Scientific) and 2μl of 10X DNAse I Buffer in 20μl Ultrapure RNAse-

free distilled water (Invitrogen, ThermoFisher Scientific). 2μl of 25mM EDTA was then added to 

the DNAse treated RNA and incubated for 10 minutes at 65°C. Afterwards, 1μl of random 

primers (3μg/μl) (Invitrogen, ThermoFisher Scientific) was added, incubated for 5 minutes at 

70°C and immediately placed on ice. Subsequently, 8μl of 5X first strand buffer, 1μl of 25mM 

dNTPs, 1μl of RNAseOUT ribonuclease inhibitor (40U/μl) (Invitrogen, ThermoFisher 

Scientific), 0.5μl of 100mM DTT, 5.5μl of Ultrapure RNAse-free distilled water and lastly 1μl of 

SuperScript Reverse Transcriptase (200U/μl) were added to the DNAse treated RNA, incubated 

for 90 minutes at 42°C and for 15 minutes at 70°C afterwards. After the last incubation, the 
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cDNA was placed on ice until it was ready to use for the PCR reaction or kept at -80°C for 

storage. 

2.2.11 Polymerase chain reaction (PCR) 

The PCR reactions were performed using the Platinum Taq DNA polymerase (Invitrogen, 

ThermoFisher Scientific), TARDBP primers to quantify the expression of TARDBP mRNA and 

the 18S internal standard (QuantumRNA Universal 18S Internal Standard, Invitrogen, 

ThermoFisher Scientific) used as an internal control for quantitative RNA analysis. The PCR 

master mix used to amplify the cDNA and the incubation reactions performed on a thermal 

cycler (Bio-Rad) are listed in Table 5, while the list of primers used for the quantitative RNA 

analysis of TARDBP expression is detailed in Table 6. The PCR products were run on an agarose 

gel containing 1% of ultrapure agarose dissolved in 1X Tris-acetate-EDTA (TAE) buffer and 

RedSafe reactive (iNtRON Biotechnologies) at a 5μl:100ml ratio. The samples with 5X Orange 

G loading buffer were then loaded on the gel in a wide mini-sub cell GT system (Bio-Rad) and 

run at 100V for 60 minutes. The gel was observed under UV light and 1Kb plus molecular ruler 

(Bio-Rad) was used to detect the amplicons from the PCR reaction. 
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Table 5. PCR master mix components and incubation protocol in a thermal cycler. 
P

C
R

 m
ix

 

Reactive Volume 

10X PCR Buffer 5μl 

50mM MgCl2 1μl 

2.5mM dNTPs (each) 5μl 

10μM Primers 1.2μl 

18S Primer:Competimer (ratio 2:8) 0.2μl:0.8μl 

cDNA 2μl 

Taq Polymerase 0.2μl 

Ultrapure RNAse-free distilled water Up to 50μl 

P
C

R
 i

n
cu

b
a
ti

o
n

 p
ro

to
co

l 
in

 a
 t

h
er

m
a
l 

cy
cl

er
 

Stage 1 1 cycle 

94°C 3 minutes 

Stage 2 28 cycles 

94°C 30 seconds 

62°C 30 seconds 

72°C 30 seconds 

Stage 3 1 cycle 

72°C 5minutes 

Stage 4 1 cycle 

4°C ∞ 

* Stage 1= initial denaturation; Stage 2 = Denaturation, Annealing, Extension; Stage 3 = Final 

extension; Stage 4 = Hold 

 

Table 6. Primers used in PCR to quantify TARDBP mRNA in transiently transfected HEK 293T 

cells. 

Name Forward or 

Reverse primers 

DNA sequence (5’ to 3’) 

TDP-43 Forward 5’ CAAAGCCATTCAGGGCCTTTGCC 3’ 

Reverse 5’ GATGCTGATCCCCAACCAATTGCT 3’ 
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2.2.12 Generation of transgenic flies 

The transgenic flies used for the immunohistochemistry analysis were generated using the 

GAL4/UAS system (Drosophila Genomic Resource Center). The driver strain parent line 

contains transgenes that express the yeast GAL4 transcription factor in tissue-specific pattern 

Elav, pan-neuronal. The responder parent line express target genes, TARDBP and LeuR, sensitive 

to GAL4 transcription factor. The flies generated from crossing the responder and driver parent 

lines express target genes in a tissue specific pattern (Fig. 7). Single transgenic flies Elav-TDP-

43 and double transgenic flies Elav-LeuR242;TDP-43 were previously characterized by C. 

Droppelmann and B. Withers using genomic analysis (Droppelmann et al., unpublished) 

(Withers, MSc Thesis). Fly stocks were maintained per standard procedures (Bloomington 

Drosophila Stock Center) and their food was provided by Dr Kramer’s lab according to the 

standard fly food recipe (water, yeast, soy fluor, yellow cornmeal, agar, light corn syrup, 

propionic acid). Flies were raised in 25°C, 70% humidity chambers. 
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Elav à pan-neuronal TARDBP

LeuR

Tissue specific

promoter

Driver Strain Parent Responder Parent

Sensitive 

promoter

GAL4 Human gene

GAL4

 

Figure 7. Scheme of the GAL4/UAS system used to generate transgenic drosophila 

melanogaster Elav-LeuR242;TDP-43 and Elav-TDP-43. 
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2.2.13 Fly fixation 

To analyze the brain and eye tissue of transgenic drosophila melanogaster expressing TDP-43 

and LeuR242, immunohistochemistry (IHC) was performed on paraffin embedded sections of 

adult flies following the fixation protocol from the Shcherbata group (Kucherenko, et al., 2010). 

Whole flies in collars were first incubated in Carnoy’s solution containing absolute ethanol, 

chloroform and glacial acetic acid 6:3:1 ratio, overnight at 4°C. The flies in Carnoy’s solution 

were then dehydrated by incubating them in 40% ethanol for 20 minutes, 70% for 20 minutes 

and twice in 100% ethanol for 10 minutes each. Afterwards, they were incubated in 

methylbenzoate (MB) and MB with paraffin solution, 1:1 ratio, for 30 minutes each at 60°C 

following which they were incubated twice in paraffin solution for 60 minutes each at 60°C. The 

flies in paraffin were then allowed to solidify at room temperature overnight before proceeding 

to cutting the paraffin-embedded flies into 7μm sections in the Pathology Core facility (Robarts 

Research Institute). 

2.2.14 Immunohistochemistry (IHC) 

For deparaffinizing and rehydrating, the slide sections of the fly brain and eye tissue were first 

warmed on a slide warmer at 60°C for 30 minutes, then sequentially immersed in xylenes for 15 

minutes, xylenes:ethanol (1:1 ratio) for 10 minutes, 100% ethanol, 95% ethanol, 70% ethanol, 

50% ethanol and Millipore water for 5 minutes each, all at room temperature. Afterwards, the 

slides were incubated in citrate -EDTA buffer pH 6.2, containing 10mM citric acid, 2mM EDTA 

and 0.05% Tween-20, at 100°C for 30 minutes. This antigen retrieval buffer was designed to 

break the protein crosslinks and therefore expose the antigens and epitopes in the paraffin 

embedded tissue sections. Afterwards, the slides were incubated for 60 minutes at room 

temperature in PBS pH 7.2 blocking solution with 5% BSA and 0.3% Triton-X 100, following 

which they were incubated with primary antibodies at 4°C overnight in a humidifying chamber. 

After primary antibody incubation, they were washed three times with PBS pH 7.2 for 5 minutes 

each and then incubated with Alexa Fluor secondary antibodies for 60 minutes at room 

temperature in a humidifying chamber. The dilutions used for primary and secondary antibodies 

are indicated in table 7. The slides were then washed three times with PBS pH 7.2 and to 

visualize nuclei the slides were incubated with 1μg/ml DAPI for 3 minutes. This incubation was 

followed with three consecutive washes with Millipore water following which the slides were 
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incubated with an autofluorescence quenching kit (Vector TrueVIEW, Vector Labs) for 4 

minutes at room temperature. The slides were then washed and left to dry overnight at room 

temperature. Once dry, coverslips were mounted to the slides using a fluorescent mounting 

media (Dako). All the slides were then examined using an SP8 Lightening Confocal microscopy 

system (Leica Microsystems Inc.)  and visualized using the LAS X software (Leica 

Microsystems Inc.) 
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Table 7. Antibodies used for IHC experiments 

Primary 

antibody 

Species 

 

Dilution Manufacturer Secondary antibody 

Anti-TDP-43 Rabbit 1:500 ProteinTech Donkey α-rabbit ALEXA fluor 

555nm (titre: 1:200) (Invitrogen, 

ThermoFisher Scientific) 

Anti-flag Goat 1:400 ThermoFisher 

Scientific 

Donkey α-rabbit, ALEXA fluor 

488nm (titre: 1:200) (Invitrogen, 

ThermoFisher Scientific) 
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2.2.15 Statistical analysis 

The statistical analysis in aim 2 was undertaken using GaphPad Prism 8.3 (GraphPad software 

Inc.). Student’s t-test was used when comparing two groups: the control group transfected with 

the empty vector was compared to the experimental group transfected with the various constructs 

of RGNEF. Statistical analysis was generated and reported as the mean ± (standard deviation) 

SD of the mean and they were considered to be statistically significant when p<0.05. 

Experiments were carried out in triplicate. 
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Chapter 3 

3. Experimental Results 

3.1  Crosslink IPs in transiently transfected cells 

Our lab had previously observed a potential interaction between RGNEF and TDP-43 in vitro 

HEK 293T and in vivo through observing co-aggregation of both proteins in spinal motor 

neurons of ALS patients (Keller, et al., 2012). Because of the presence of an atypical leucine rich 

motif (LRR motif) in the amino-terminal region of RGNEF and given the role of other LRR 

motifs in protein-protein interaction (Kobe & Deisenhofer, 1995), we postulated that the amino-

terminal region of RGNEF is a critical domain mediating the interaction of RGNEF with TDP-

43. This postulate was further supported by the observation that within the amino-terminal region 

of RGNEF, a 242 amino acid segment containing the LRR motif (LeuR242) (Fig. 8A) forms a 

high molecular weight complex of proteins with TDP-43 in HEK 293T cells (Droppelmann, 

Campos-Melo, Moszczynski, Amzil, & Strong, 2019). 

As illustrated in figure 8, LeuR242 is predicted to contain an Ankyrin (ANK) repeat domain 

between the amino-acids 162 and 229 in the amino-terminal region (Fig. 8A). The ANK repeats 

are one of the most abundant protein classes in protein-protein interaction and are involved in 

numerous physiological processes including transcriptional regulation (Li, Mahajan, & Tsai, 

2006). The role of ANK in protein-protein interaction and its localization as part of the LeuR242 

suggests that the ANK domain could be a good candidate for the minimal region involved in the 

interaction between RGNEF and TDP-43. To determine if this was the case, we examined using 

cross-linking studies the ability of various flag-tagged constructs containing either LeuR242 (and 

thus containing both the LRR and ANK domain), LeuR110 (amino acids 97 through 206 

containing only LRR), or ANK (amino acids 162 – 229 and thus containing only ANK as a small 

C-terminus fragment of LRR) (Fig. 8A) to interact with myc-tagged TDP-43. The structure 

prediction of LeuR110 and ANK with the flag-tag was conserved which would not affect the co-

aggregation of each sequence with TDP-43. 

To determine the presence of protein-protein interaction between TDP-43 and LeuR in vitro, 

protein lysates from transiently transfected HEK 293T cells with myc-tagged TDP-43 and flag-
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tagged LeuR110 were used in a chemical DTSSP crosslinking experiment. This water soluble 

crosslinker is characterized by central disulfide bond sensitive to reducing conditions and its 

amine-reactive N-hydroxysulfosuccinimide esters at each end of a 12Å spacer arm that react to 

primary amines and form stable bonds at pH 7-9. While the use of this crosslinker might non-

specifically pull-down other proteins through their amine-reactive-NHS ester ends around the 

12Å spacer arm, the following immunoprecipitation experiment using a monoclonal antibody 

increases the specificity to our protein of interest TDP-43-myc. After running the 

immunoprecipitation pulling down myc-tagged proteins and the western blot detecting flag-

tagged proteins, we observed a high molecular weight complex (>250 KDa) containing myc-

tagged TDP-43 in the presence of flag-tagged LeuR110 in non-reducing conditions. However, in 

the presence of ß-mercaptoethanol, causing the di-sulfide bond of DTSSP to be cleaved, we 

detected the presence of a low molecular weight protein (50kDa) (Fig. 8B). These results suggest 

that the cleavage of the disulfide bond resulted in breaking the complex of proteins in which only 

the flag-tagged protein was detected in the western blot. While the expected size of flag-LeuR110 

is 12kDa, the detected band size in reducing conditions is 40kDa suggesting that while the 

disulfide bond of DTSSP was cleaved, the flag-LeuR110 pulled down was still in a complex with 

other proteins which would explain the difference between the expected and detected protein 

band size. 

To determine if the ANK domain participates in the formation of this high molecular weight 

complex, we conducted the same crosslink IP using protein lysates from transiently transfected 

cells with myc-tagged TDP-43 and flag-tagged ANK. Given the role of the ANK domain in 

protein-protein interaction, we expected the presence of an interaction between ANK and TDP-

43. However, we observed no interaction between flag-tagged ANK and myc-tagged TDP-43 

suggesting that the ANK binding domain does not play a role in the interaction between RGNEF 

and TDP-43.  

This series of experiments indicated that the 110 amino-acids fragment contained in the 

LeuR region is sufficient for the interaction with TDP-43.  In addition, given that the observed 

molecular weight of the immunoprecipitant was > 250 kDA, significantly greater than that which 

would have been predicted if LeuR110 interacted alone with TDP-43 (Fig. 8B), we postulated that 

this interaction is within a larger complex of proteins. These results suggest that the LeuR110 
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sequence contained in the amino-terminal region of RGNEF is the minimal domain of the protein 

required for its indirect interaction with TDP-43.   
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(C) 

Figure 8. flag-LeuR110 and TDP-43-myc form a complex after DTSSP crosslinking 

treatment while flag-ANK and TDP-43-myc do not form a complex. (A) Scheme showing 

LeuR242 previously characterized in the interacting complex with TDP-43 and the LeuR region 

flag-tagged constructs used to study the minimal domain of interaction with TDP-43:  LeuR110 

containing only the LRR (amino acids 97-207), ANK containing only the ANK repeat, including 

a small fragment of the C-terminal LRR (amino acids 162-229). (B) Using DTSSP as the 

crosslinking agent, we observed a high molecular weight complex between myc-tagged TDP-43 

and flag-tagged LeuR110.  This complex could be dissociated with β-mercaptoethanol. The 

immunoprecipitants were run on a gradient (4-20%) SDS-PAGE gel and detected using 

immunoblotting probed with anti-flag antibody (1:4000). (C) In contrast, we failed to observe 

any interaction between flag-tagged ANK and myc-tagged TDP-43.   
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3.2  Endogenous expression of TDP-43 in HEK 293T cells in the presence of 

RGNEF constructs 

To determine the critical domains of RGNEF involved in the regulation of TDP-43, the 

endogenous expression of TDP-43 was measured in transiently transfected HEK 293T cells. 

HEK 293T cell line was chosen because of its amenability to transfection, its neuronal-like 

properties (Shaw, Morse, Arabat, & Graham, 2002) and its endogenous expression of TDP-43. 

The plasmids used were myc-tagged: full length RGNEF, RΔLeuR or RΔCOOH.  The control 

plasmid used was a pcDNA3.1 empty vector. The first experiment conducted was to determine 

the effect of RGNEF on the endogenous expression levels of TDP-43 using a western blot. The 

goal was to determine the endogenous levels of expression of TDP-43 in the presence of various 

constructs of RGNEF. In addition to protein levels, the expression of TARDBP mRNA 

expression levels was also analyzed in the presence of different RGNEF constructs. Finally, 

given the role of RGNEF as a destabilizing factor of NEFL through its 3’untranslated region 

(UTR) (Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 2013), the role of this region 

on the TARDBP mRNA stability was analyzed using luciferase reporter assay in the presence of 

full length RGNEF. The 3’UTR of the ALS-associated gene, FUS was used as control. 

 

3.2.1 Effect of various RGNEF constructs on the endogenous expression of TDP-43 in 

HEK 293T  

Previously our lab has examined the effect of RGNEF on the expression levels of endogenous 

NFL in HEK 293T cells (Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 2013). We 

observed that in the presence of full length RGNEF, the endogenous levels of NFL decreased 

significantly. The effect of RGNEF on NFL expression levels could be normalized in the 

presence of RGNEF knockdown. 

In order to determine whether a similar regulatory effect of RGNEF is present in relationship 

to TDP-43 and to determine if there is a minimal domain involved in its regulation, HEK 293T 

cells were transiently transfected with a pcDNA3.1 empty vector and three different myc-tagged 

constructs full length RGNEF-myc, RΔLeuR-myc and RΔCOOH-myc (Fig. 9A). To do so, 

protein extracts from cell lysates were generated and anti-TDP-43, anti-myc, antibodies for 
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western blotting were used to quantify the endogenous expression of TDP-43. The expression 

levels of TDP-43 were normalized to the housekeeping protein GAPDH and each group from 

cell lysates transfected with RGNEF constructs, was compared to the control transfection 

containing an empty vector. All studies were done in triplicate.  

We observed that the expression levels of TDP-43 were significantly decreased in the 

presence of full length RGNEF and RΔCOOH (fold change: -0.184±0.042; -0.236±0.039; both 

p<0.05; respectively, Fig. 9C). However, in the absence of the amino-terminal region, RΔLeuR, 

there was no significant change in the levels of expression of endogenous TDP-43 in the cells 

(Fig. 9B-C). These results suggest that LeuR242 of RGNEF, is involved in the down-regulation of 

endogenous TDP-43 expression levels of the protein in HEK 293T cells in normal conditions. 

 



 54 

(A)

 

 (B) 

Control RGNEF RΔLeuR RΔCOOH

myc

TDP-43

GAPDH

50kDa

150kDa

37kDa

1             2               3 1             2               3 1             2               3 1             2               3

 

 



 55 

(C) 

C
on

tr
ol

R
G

N
E
F

R
ΔL

eu
R

R
ΔC

O
O

H

0.0

0.5

1.0

1.5

2.0

2.5

T
D

P
-4

3
 r

el
a
ti

v
e 

a
m

o
u

n
t

(n
o
rm

a
li

ze
d

 t
o
 G

A
P

D
H

)
Control

RGNEF

RΔLeuR

RΔCOOH

p = 0.0065

p = 0.0062

 

Figure 9.  TDP-43 protein expression levels are decreased in HEK 293T transfected cells 

expressing full length RGNEF. (A) Aligned protein sequences of RGNEF constructs (RGNEF 

full length, RΔLeuR and RΔCOOH) used to study the effect of putative regions of RGNEF on 

the endogenous expression of TDP-43 in vitro. --- indicates deleted amino acids in RΔLeuR and 

RΔCOOH. Green indicated the leucine rich domain, yellow indicates the cysteine-rich Zn-

binding domain red indicates the Dbl homology domain (DH), blue indicates the Pleckstrin 

homology domain (PH) and orange indicates the RNA-binding domain. (B) The expression level 

of TDP-43 protein was analyzed by western blotting in HEK 293T cells transfected with either 

full length RGNEF, RΔLeuR or RΔCOOH, using the endogenous levels of TDP-43 as the 

control. (C) Expression levels of TDP-43 protein were quantified comparing the TDP-43 protein 

levels between the control and HEK 293T RGNEF-full length, RΔLeuR and RΔCOOH cells. A 

significant reduction in TDP-43 protein levels was only observed in RGNEF-full length and 

RΔCOOH transfected cells. (n=3independent experiments, the results are presented as mean, 

standard deviation of the mean. A student t-test was performed; p-value significant: p<0.05).
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3.2.2 Effect of RGNEF constructs on the endogenous expression of TARDBP mRNA in 

HEK 293T cells 

It has been previously reported that the murine homolog of RGNEF (p190RhoGEF) enhances the 

stability of murine NEFL mRNA through a direct interaction within the hinge domain of NEFL 

mRNA 3’UTR (Cañete-Soler, Wu, Zhai, Shamim, & Schlaepfer, 2001). In contrast, our lab 

observed that RGNEF destabilizes human NEFL mRNA in HEK 293T and that this effect is 

critically dependent on the presence of the N-terminus domain of RGNEF (Droppelmann, Keller, 

Campos-Melo, Volkening, & Strong, 2013). 

Given this and my previously described observation that RGNEF down-regulates the 

expression of TDP-43 in vitro, we further examined the effect of RGNEF on the endogenous 

levels of TARDBP mRNA.  To do so, we undertook transient transfections in HEK 293T cells 

using full length RGNEF or its other constructs (Fig. 10A).  

The endogenous expression of TARDBP mRNA in transiently transfected HEK 293T cells 

was normalized to the housekeeping gene GAPDH. Each group of transfected cells with full 

length RGNEF and its constructs was compared to the control group transfected with an empty 

vector. We observed that in the presence of full length RGNEF and its other constructs there was 

no significant effect on the expression level of endogenous TARDBP mRNA (Fig. 10C). 

Contrary to the significant reduction of endogenous TDP-43 protein levels observed in the 

presence of full length RGNEF and RΔCOOH construct, there was no effect on the endogenous 

expression of TARDBP transcript, which suggests that the down-regulation effect observed at the 

protein level is not a result of a down-regulation of its transcript levels.  
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Figure 10. TARDBP mRNA endogenous expression in the presence of RGNEF constructs. 

(A) Schematic of the RGNEF constructs used in transiently transfected cells to evaluate the 

effect of putative regions of RGNEF on the expression levels of endogenous TARDBP mRNA. 

(B) The expression of TARDBP mRNA in HEK 293T RGNEF-full length, RΔLeuR and 

RΔCOOH cells was analyzed by relative quantitative polymerase chain reaction (RT-PCR) and 

compared with the amount of TARDBP mRNA in control cells. No significant difference was 
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observed between the groups expressing RGNEF constructs and the control group. (C) 

Expression levels of TARDBP mRNA were quantified comparing the TARDBP transcript levels 

between the control and HEK 293T RGNEF-full length, RΔLeuR and RΔCOOH cells. No 

significant effect was observed when comparing TARDBP mRNA of transfected cells with 

RGENF constructs to control cells (n=3independent experiments, the results are presented as 

mean, standard deviation of the mean. A student t-test was performed; ns: not significant, p-

value p>0.05). 

 



 59 

3.2.3 Regulation of TARDBP 3’UTR 

As previously reported, RGNEF interacts directly with NEFL transcript through its 3’UTR 

(Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 2013). We had also observed that 

RGNEF could interact with NEFL mRNA in human lumbar spinal cord homogenates (using 

RNA-IP), but only in homogenates derived from ALS patients (Volkening, Leystra-Lantz, & 

Strong, 2010).  

In order to further explore the genesis of the reduction in TDP-43 protein levels in the 

presence of RGNEF, having failed to observe a reduction in TARDBP mRNA levels in the 

previous experiment, we next examined whether RGNEF has a destabilizing effect on TARDBP 

mRNA.  The 3’UTR of the ALS-associated gene, FUS was used as control. To do this, we used a 

dual luciferase reporter assay measuring the effect of exogenous RGNEF-full length on the 

luciferase activity when linked to the 3’UTR of either FUS or TARDBP. HEK 293T cells were 

transiently transfected with a firefly luciferase pmirGLO linked to the 3’UTR of either FUS, 

TARDBP mRNA or full length RGNEF (Fig. 11A). The controls used for normalizing the assay 

were the pmirGLO and the pcDNA3.1 empty vector and the normalization of the assay was 

calculated as previously described by our group in a comprehensive study using the luciferase-

based reporter gene assay (Campos-Melo, Droppelmann, Volkening, & Strong, 2014). 

In these experiments, we observed a significant down-regulation (-0.047±0.0036, p<0.05) 

(Fig. 11B) in the relative luciferase activity of TARDBP 3’UTR in the presence of full length 

RGNEF. However, we did not observe an effect on the relative luciferase activity of FUS 3’UTR 

when exposed to RGNEF.  

Our previous result from quantifying the endogenous expression of TARDBP mRNA 

showed no significant effect on the endogenous expression of TARDBP mRNA in the presence 

of full length RGNEF. However, the quantification of the endogenous expression of TDP-43 

protein in the presence of full length RGNEF demonstrated a significant down-regulation when 

compared to the control group which suggests that the loss of TDP-43 protein in the presence of 

full length RGNEF is due to a direct destabilizing effect of RGNEF on the TARDP mRNA 

3’UTR.  
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Figure 11. Full length RGNEF destabilizes the luciferase activity of TARDBP 3’UTR. (A) 

Schematic showing the constructs used in the assay: FUS 3’UTR or TARDBP 3’UTR linked 

fireflyluciferase (fLuc) upstream and to renilla luciferase downstream; exogenous full length 

RGNEF or pcDNA3.1 empty vector. (B) Reporter gene assay showing decreased normalized 

luciferase activity in HEK 293T cells co-transfected with pcDNA-RGNEF-myc and pmirGLO 

linked to the 3’ UTR of TARDBP or FUS mRNA. We observed a significant reduction of the 

luciferase activity of TARDBP 3’ UTR in the presence of RGNEF-full length compared to the 

luciferase activity of FUS 3’UTR. A t-test was performed to compare the effect of RGNEF on 

FUS and TARDBP 3’UTRs. p-value (*) = p<0.05; ns = not significant. 
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3.3  The expression of hTDP-43 and flag-LeuR242 in transgenic drosophila 

melanogaster models. 

To study the relationship between TDP-43 and LeuR of RGNEF, our lab in collaboration with Dr 

Kramer’s lab developed drosophila melanogaster in vivo models expressing these particular 

proteins. Preliminary results characterizing the lifespan, motor functions and eye degeneration in 

double transgenic flies Elav-LeuR242;TDP-43 showed a significant improvement when compared 

to single transgenic flies Elav-TDP-43  (Withers, MSc Thesis). While the expression of human 

wild-type TDP-43 showed a dramatic reduction in survival and motor functions, in addition to 

eye degeneration, the co-expression of human wild-type TDP-43 and LeuR242 showed a 

significant improvement in the flies’ lifespan and, motor functions. Similar to our in vitro data 

demonstrating the cytoprotective effect of the amino-terminal region of RGNEF against osmotic 

stress in cells (Cheung, et al., 2017), the in vivo data suggests that the LeuR242 offers a protective 

effect against TDP-43 toxicity in our drosophila melanogaster model (Withers, MSc Thesis). 

We next directed our attention to exploring this effect of RGNEF and LeuR242 in reducing 

the toxicity of TDP-43 in vivo.  As has been described, we have observed that LeuR110 is able to 

interact with TDP-43 through the formation of a high molecular weight complex.  We have 

shown that RGNEF induces a reduction in TDP-43 protein levels and that this effect is 

dependent on the LRR contained within the N-terminus domain of RGNEF.  And we have shown 

that full length RGNEF interacts with the 3’UTR of TDP-43 to induce destabilization of the 

firefly luciferase transcript.  These in vitro data are strongly supportive of a direct effect of 

RGNEF at both the protein and RNA level of TDP-43. 

Given this, and to better understand the protective role of the LeuR242 region in mitigating the 

TDP-43 toxicity observed in the flies, we studied the pathology of TDP-43 toxicity in the 

absence or presence of LeuR242 using fluorescent immunohistochemistry (IHC) of the brain and 

eye tissue of single and double transgenic flies. In the following experiments, the double 

transgenic flies Elav-LeuR242;TDP-43 were generated using the LeuR242 construct only because 

the fly study in the lab started before we determined the LeuR110 as the minimal domain of 

interaction with TDP-43. Since the results from our in vitro study confirmed that the interaction 

with TDP-43 is independent of the ANK domain contained in LeuR242 we used LeuR242 as a 

surrogate for LeuR110 in the in vivo study. All the transgenic flies were generated using the 
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GAL4/UAS system, in which human TDP-43 and flag-tagged LeuR242 were expressed in a tissue 

specific manner. Both Elav-TDP-43 and Elav-LeuR242;TDP-43 fly models express their 

transgenes in neurons. 

In the images of the brain and eye tissue of transgenic flies, we observed the expression of 

TDP-43 in aggregates. In the case of single transgenic flies Elav-TDP-43, these aggregates were 

more condensed, and their size was bigger (Fig. 12C) when compared to TDP-43 aggregates in 

double transgenic flies (Fig. 12F). In the Elav-LeuR242;TDP-43 flies we detected the presence of 

higher number of dispersed punctate aggregates expressing TDP-43 in both the brain and eye 

tissue (Fig. 12G-H), absent in the brain and eye tissue of single transgenic flies Elav-TDP-43 

(Fig. 12D-E). The images from the tissue of Elav-LeuR242;TDP-43, looking into the expression 

of flag-tagged LeuR242 and human TDP-43, showed that both proteins are expressed in 

aggregates (Fig. 13E-F; I-J) where they colocalize (Fig. 13G-L). 

This suggests that the co-aggregation of TDP-43 and the LeuR242 alongside the distribution 

and shape of these aggregates are possible mechanisms of protection against TDP-43 toxicity in 

these fly models. 
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Figure 12. Confocal images show the localization of TDP-43 in the brain and eye tissue of 

single and double transgenic flies. Immunofluorescence using anti-TDP-43 antibody, 

visualized in red, shows the localization of TDP-43 in aggregates in single transgenic Elav-TDP-

43 and double transgenic Elav-LeuR242;TDP43 drosophila melanogaster. Panel (A) shows an 
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overview of the brain and eye anatomy of Elav-LeuR242;TDP43 drosophila melanogaster. Scale 

bar = 100µm. Panel (B) shows a negative control of TDP-43 staining of Elav-LeuR242;TDP-43 

flies. Scale bar = 100µm. Panel (C) shows an overview of the brain and eye tissue of single 

transgenic flies. Scale bar = 20μm. Panels (C and D) show the aggregation of TDP-43 in the 

brain and eye tissue, respectively, of single transgenic flies. Scale bar = 2µm. Panel (E) shows an 

overview of the brain and eye tissue of Elav-LeuR242;TDP43 transgenic flies. Scale bar = 20μm. 

Panels (F and G) show the aggregation of TDP-43 in the brain and eye tissue, respectively, of 

Elav-LeuR242;TDP43 transgenic flies. Scale bar = 2µm. 
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Figure 13. flag-LeuR242 co-aggregates with TDP-43. Immunofluorescence using anti-flag 

antibody visualized in green, and anti-TDP-43 antibody visualized in red, in the brain and eye 
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tissue of Elav-LeuR242;TDP-43 drosophila melanogaster. Panels (A and B) show an overview of 

the brain and eye tissue of double transgenic flies with LeuR242 visualized in green, TDP-43 

visualized in red and the panels (C and D) show the merge of TDP-43 and LeuR242 with their co-

aggregation. Scale bar = 20μm. Panels (E and F; I and J) show the co-aggregation (G and H; K 

and L) of TDP-43 and LeuR242 in the brain and eye tissue, respectively, of double transgenic 

flies. Scale bar = 5µm. Panels (M and N) are a magnification of inset boxes in panels (G and K) 

respectively, and they show the co-aggregation of TDP-43 and LeuR242. Both TDP-43 and 

LeuR242 co-aggregate in the brain and eye tissue of double transgenic flies with a distinctive 

phenotype consisting of dispersed punctate aggregates. Scale bar = 1µm. 

Panels (O and P) are negative controls for flag and TDP-43 staining respectively in Elav-

LeuR242;TDP-43 flies. Scale = 100μm.  
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Chapter 4 

4. Discussion 

4.1  LeuR110 of RGNEF is critical for the interaction with TDP-43 

While previous data demonstrated the co-aggregation of TDP-43 and RGNEF in motor neurons 

of ALS patients and the interaction between the two proteins in vitro (Keller, et al., 2012), the 

question remains what domain of RGNEF is critical for the interaction. More recent in vitro data 

from our group showed the presence of an interaction between TDP-43 and LeuR242 contained in 

the amino-terminal end of RGNEF (Droppelmann, Campos-Melo, Moszczynski, Amzil, & 

Strong, 2019). The presence of LeuR110 and ANK (Fig. 14A-B) in the LeuR242 sequence and 

their role in protein-protein interaction led us to the hypothesis that there is a functional and 

biochemical interplay between RGNEF and TDP-43 where the interaction between these two 

proteins is regulated by a minimal domain contained within the LeuR region of RGNEF. 

Here were report the presence of high molecular weight complex composed of flag-

LeuR110 and TDP-43-myc through a crosslink experiment using a chemical crosslinker, DTSSP, 

sensitive to reducing conditions. In non-reducing conditions, the size of the detected complex 

(>250kDa) suggests that in addition to TDP-43 and LeuR110, other proteins are present in the 

complex. In reducing conditions, by breaking the disulfide bond of DTSSP, the high molecular 

weight complex was dissociated and only a smaller band was detected at approximately 40kDa 

which suggests that the interaction between LeuR110 and TDP-43 in the complex has been 

broken.  

A software analysis (Fig. 14B-C) of the full length RGNEF predicts the presence of an 

ANK repeat between the amino-acids 162 and 229 contained in the LeuR242 sequence. Given the 

role of the ANK in protein-protein interaction (Li, Mahajan, & Tsai, 2006), we also investigated 

the role of ANK in the interaction with TDP-43. However, under the same experimental 

conditions, we were unable to immunoprecipitate the complex containing ANK and TDP-43. 

These findings suggest that within the LeuR242 sequence, LeuR110 (amino acids 97 through 206) 

is the minimal domain of RGNEF required for the interaction with TDP-43.  
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The leucine-rich repeats are evolutionary conserved in proteins and play a central role in 

protein-protein interaction (Kobe & Deisenhofer, 1995). Their secondary structure consisting of 

repeated structural units, such as α-helix, 310-helix and β-turns, is critical for their role in protein-

protein interaction (Kobe & Kajava, 2000). The unique structure of LeuR110 consisting of eight 

consecutive α-helices (amino acids 97 through 206) (Fig. 14A), is consistent with the role of 

LeuR110 as the minimal domain of RGNEF involved in the interaction with TDP-43. However, 

whether the interaction between TDP-43 and RGNEF is direct or indirect remains unknown. 

While our data demonstrate that within RGNEF, LeuR110 is the minimal domain required for the 

interaction with TDP-43, in which the proteins are interacting in a complex involving at least 

another protein, the nature of the interaction is not clear. 
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(A)        (B)  

         

   

(C)  

 

LeuR110 97  LARLLVTQANRLTACSHQTLLTPFALTAGALPALDEELVLALTHLELPLEWTVLGSSSLEVSSHRESLLHLAM        

ANK 97  -------------------------------------------------------------------------    

LeuR110  171 RWGLAKLSQFFLCLPGGVQALALPNEEGATPLDLAL----------------------              

ANK  171 ---------------------------GATPLDLALREGHSKLVEDVTNFQGRWSPSF 

 

Figure 14. Prediction of secondary structure of LeuR110 and ANK domains of RGNEF. (A) 

Secondary structure of LeuR110 showing the presence of eight α-helices (amino acids 97 through 

206). (B) Secondary structure ANK showing the presence of five α-helices (amino acids 166 

through 221). The model was created using I-Tasser (http://zhanglab.ccmb.med.umich.edu/I-

TASSER/). (C) Aligned protein sequences of LeuR110 (amino acids 97 through 206) and ANK 

(amino acids 162 – 229 a small C-terminus fragment of LRR). -- indicates deleted amino acids in 

ANK; green indicates the leucine rich domain (amino acids 97 through 206). 
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4.2  The co-aggregation of LeuR and TDP-43 in transgenic drosophila 

melanogaster models.....................................  

In human tissue, our lab has previously characterized the co-aggregation of RGNEF and TDP-43 

in motor neurons of ALS patients (Keller, et al., 2012). In vitro data showed that LeuR242 

interacts with TDP-43 (Droppelmann, Campos-Melo, Moszczynski, Amzil, & Strong, 2019). To 

investigate the functional and biochemical interplay between TDP-43 and RGNEF, our lab 

developed drosophila melanogaster transgenic models co-expressing human TDP-43 and flag-

LeuR242 in neuronal cells. Here, by comparing the pathology of TDP-43 in the presence or 

absence of LeuR242 in neuronal cells, we noted that TDP-43 is expressed in neuronal aggregates 

both in the eye and brain tissue. By comparing the brain and eye tissue of Elav-TDP43 flies to 

Elav-flag-LeuR242, we observed a difference in the aggregates’ phenotype containing TDP-43. In 

the presence of LeuR242 there is co-aggregation of TDP-43 with LeuR242 in neurons of the brain 

and eye tissue where the two proteins co-aggregate in small aggregates. These results suggest 

that LeuR242 offers a cytoprotective effect against TDP-43 pathogenicity by sequestering toxic 

TDP-43 in aggregates. In addition to the qualitative data from our histological analysis, 

comparing the aggregates’ phenotype in the absence or presence of LeuR242, a quantitative study 

comparing the size of the aggregates containing TDP-43 in the brain and eye tissue of single 

transgenic versus double transgenic flies would help elucidate the formation of these inclusions 

act as a protective mechanism against TDP-43 toxicity. A crosslink IP experiment using DTSPP 

crosslinker and protein lysates from Elav-LeuR242;TDP-43 double transgenic flies should be used 

to correlate our in vivo observations to the interaction of LeuR with TDP-43 in vitro. 

Previous data from the literature demonstrated the toxic effect of TDP-43, resulting in a 

significant loss of motor functions and a decrease in the flies’ lifespan (Voigt, et al., 2010) 

(Hanson, Wassarman, & Tibbetts, 2010) (Langellotti, et al., 2016) which led to the possibility of 

investigating genetic modifiers of TDP-43 and therefore possible therapeutic targets.  

RGNEF has previously been described to form intracellular inclusions in motor neurons of both 

familial and sporadic ALS patients (Droppelmann, Keller, Campos-Melo, Volkening, & Strong, 

2013). The LeuR242 has been shown to have a cytoprotective effect under osmotic stress 

conditions (Cheung, et al., 2017).  
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Previously, RGNEF has been identified as an ALS-protein where frameshift mutations in 

ARHGEF28 encoding RGNEF are predicted to generate truncated proteins containing the LeuR 

region (Droppelmann, et al., 2013). However, our in vivo model suggests that the expression of 

the LeuR242 offers a protective effect against TDP-43 toxicity (Withers, MSc Thesis). The data 

from a study comparing Elav-TDP-43 flies and D42-TDP-43 to Elav-flag-LeuR242;TDP-43 flies 

and D42-flag-LeuR242;TDP-43 expressing their transgenes in neuronal cells and motor neurons 

respectively illustrate the role of LeuR242 as a modifier of TDP-43 toxicity in vivo.  The co-

expression of LeuR242 and TDP-43 resulted in a significant increase in the lifespan and motor 

functions of double transgenic flies compared to the flies expressing TDP-43 alone. These 

observations alongside the pathology of TDP-43 in the presence LeuR242 in this study reinforces 

the role of LeuR242 as a modifier of TDP-43 toxicity, providing a protective effect in neurons and 

motor neurons. Additionally, the recent data, demontrating the co-aggregation of LeuR with 

TDP-43 in a high molecular weight complex suggest that the protective effect of LeuR against 

TDP-43 toxicity involves at least an additional protein. However, the mechanism underlying the 

protective role LeuR242 against TDP-43 toxicity remains unclear. 

4.3  RGNEF plays a role in the regulation of ALS-associated protein TDP-43 in 

vitro 

For the in vitro study, HEK 293T cell line was chosen because of its neuronal-like properties and 

amenability to transfection. Unlike the human neuroblastoma cell line SH-SY5Y in which the 

efficiency of transient transfection is very low, HEK 293T cells offer a high transfection 

efficiency and transiently maintain a high copy number of transfected plasmid DNA. 

Additionally, given the endogenous expression of RGNEF’s murine homolog p190rhoGEF in 

murine cell line neuro-2a and its stabilizing effect on murine NEFL mRNA (Lin, Zhai, & 

Schlaepfer, 2005), only HEK 293T cells were used to study the role of RGNEF in the regulation 

of endogenous TDP-43. 

RGNEF has previously been reported as destabilizing NEFL mRNA through the 

interaction of RGNEF with NEFL mRNA 3’UTR (Droppelmann, Keller, Campos-Melo, 

Volkening, & Strong, 2013). Here we report the effect of RGNEF on the endogenous expression 

of TDP-43 in HEK 293T cells.  
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While the endogenous expression of TARDBP transcript in cells is not affected by the 

expression of full length RGNEF, the luciferase assay results demonstrate the destabilizing effect 

of full length RGNEF on TARDBP mRNA through its 3’UTR. For my thesis, the endogenous 

TARDBP mRNA expression levels were measured using RT-PCR only. While a more sensitive 

experiment was being set using real-time qRT-PCR, the lab and the university went under 

lockdown for a few months because of the pandemic and consequently only the RT-PCR 

experiment was completed. At the protein level, we note the down-regulatory effect of full length 

RGNEF and RΔCOOH on the expression levels of TDP-43 protein in cells. However, in the 

absence of LeuR242 demonstrated by the expression levels of TDP-43 in HEK 293T cells 

transfected with RΔLeuR, there was no significant effect on the regulation of TDP-43 when 

compared to controls.  Through a dual reporter luciferase assay we measured the effect of full 

length RGNEF only on the luciferase activity of TARDBP mRNA 3’UTR, however our 

conclusions remain incomplete. In addition to full length RGNEF, we need to account for the 

effect of RΔLeuR and RΔCOOH on TARDBP mRNA 3’UTR stability under the same 

experimental conditions. 

Early studies focusing on the role of RGNEF’s murine homologue p190RhoGEF in vivo, 

identified the protein’s interactive properties and its role in post-transcriptional regulation of 

NEFL mRNA (Cañete-Soler, Wu, Zhai, Shamim, & Schlaepfer, 2001). Using transgenic mice 

expressing human NEFL mRNA, Schlaepfer and colleagues showed that the interaction between 

the C-terminal domain of p190RhoGEF and the 3’UTR region of NEFL mRNA resulted in the 

alteration of NEFL mRNA stability which in turn led to the post-transcriptional regulation of 

murine NFL protein. 

With the available data confirming the interaction of TDP-43 with LeuR110 and LeuR242, 

these findings suggest a regulatory mechanism by which the interaction of TDP-43 with RGNEF 

through the LeuR region results in the destabilization of TARDBP mRNA 3’UTR and 

consequently in the down-regulation of endogenous expression of TDP-43.  

The C-terminal region of TDP-43 has been implicated in numerous protein-protein 

interactions (Buratti, et al., 2005) in addition to its role in the autoregulation of its protein levels 

through TARDBP mRNA 3’UTR (Ayala, et al., 2011) (Bhardwaj, Myers, Buratti, & Baralle, 

2013). In vitro data showed that the interaction of C-terminal region of TDP-43 protein with 

TARDBP mRNA 3’UTR resulted in a decreased level of expression of TDP-43. Given our data 
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demonstrating the interaction between LeuR110 and TDP-43 alongside the destabilizing effect of 

RGNEF over TARDBP mRNA 3’UTR and the down-regulation of endogenous levels of TDP-43 

in the presence of the LeuR region of RGNEF, it is possible that by binding the 3’UTR of 

TARDBP mRNA, the LeuR region of RGNEF activates the TDP-43 negative feedback loop 

which in turn leads to the down-regulation of its protein levels.  

Our finding also suggests a possible mechanism by which LeuR acts as a modifier of 

pathogenic TDP-43 in our in vivo model. The co-aggregation of LeuR242 with cytoplasmic TDP-

43 in neuronal cells leads to the down-regulation its expression levels which in turn results in 

reducing the toxic effect of TDP-43 observed in single transgenic flies Elav-TDP-43. 

 

4.4  Future directions 

While our in vitro results identify the LeuR110 as the minimal domain of RGNEF required for the 

interaction with TDP-43, the mechanism by which this interaction occurs remains unclear. Here 

we report that the interaction of TDP-43 and LeuR110 is within a high molecular weight complex 

which suggests the presence of at least another protein in the complex. By using mass 

spectrometry on the purified IP complex, it will be possible to identify the proteins contained 

within this interactive complex therefore elucidating the mechanism by which TDP-43 and 

LeuR110 are brought into the complex. Still the question remains, is the interaction between TDP-

43 and LeuR110 direct or indirect? To answer the question, a crystal structural analysis of this 

protein-protein interaction is necessary. By elucidating the atomic structure of the protein-protein 

interaction through X-ray crystallography and by identifying the proteins contained in the 

complex, we can determine the nature of the interaction between TDP-43 and LeuR110. 

Our in vivo data focusing on the pathology of TDP-43 in the presence of LeuR242, provides 

us with additional evidence regarding the protective effect of LeuR242 where it co-aggregates 

with TDP-43. Additional experiments, analyzing the pathology of TDP-43 in the absence of 

LeuR alongside a biochemical study of the co-aggregation of TDP-43 and LeuR242 are necessary 

to determine if other putative regions of RGNEF act as a modifier of TDP-43 pathogenicity.  

While our findings help elucidate the effect of LeuR242 over the endogenous expression of 

TDP-43, our experiments were limited to normal conditions. Given the cytoprotective role of 

LeuR242 in cells under osmotic stress and its protective effect against TDP-43 toxicity in vivo, it 
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is necessary to investigate the effect of the putative regions of RGNEF beyond LeuR242 under 

osmotic, metabolic and lactic stress conditions. Additionally, while in normal conditions, TDP-

43 is mainly localized in the nucleus where it regulates numerous RNA processing pathways 

(Polymenidou, et al., 2011), under stress conditions TDP-43 aggregates in the cytoplasm 

resulting in cellular toxicity. Therefore, by analyzing the localization of RGNEF and TDP-43 in 

the cells, in addition to evaluating the effect putative regions of RGNEF on TARDBP mRNA and 

TDP-43, we could better understand how RGNEF acts as modifier of TDP-43.  
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