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Abstract

A yield-stress fluid is a material that has properties of both solids and conventional liquids

that only begins to flow when subject to a finite stress. The behaviour of yield-stress fluids is

interesting and important in many applications. It is expected that the rheological properties

of a yield-stress fluid will change when confined to a region with a length scale comparable to

the characteristic scale of its microstructure. The particle size and polydispersity of two yield-

stress fluids, Carbopol and poly(N-isopropylacrylamide), were determined using dynamic light

scattering. A rheological characterization was performed on these two yield-stress fluids. Flow

of water in 1 cm long square microchannels ranging in width from 100 µm to 500 µm was

simulated. Microchannels were fabricated using a soft lithography method and used in micro-

particle image velocimetry experiments to visualize the confined flow of water, Carbopol, and

poly(N-isopropylacrylamide). The flow of Carbopol and poly(N-isopropylacrylamide) was

calculated using an equation for laminar flow of a Herschel-Bulkley fluid in a circular pipe.

This analysis procedure showed that Carbopol experiences a significant increase in yield stress

when confined to microchannels less than 200 µm in width. Time limitations prevented us

from fully characterizing the confinement effects in these materials. Nonetheless the required

experimental techniques and data analysis procedures have been substantially improved over

previous work, paving the way for future research in this area.

Keywords: Rheology, microfluidics, complex fluids, yield stress, confinement, Carbopol,

poly(N-isopropylacrylamide).
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Summary for Lay Audienc

A yield-stress fluid is a material that has properties of both solids and conventional liquids

that only begins to flow when subjected to a finite stress. It is expected that the properties

of these yield-stress fluids with change when confined to a region on the order of its particle

size. The particle size of two yield-stress fluids, Carbopol and poly(N-isopropylacrylamide),

were determined. The flow properties of these fluids were characterized. Microchannels were

fabricated and used in flow visualization experiments. Time prevented a full characterization of

the confinement effects in these materials. Nonetheless the required experimental techniques

and data analysis procedures have been substantially improved over previous work, paving the

way for future research in this area.

ii
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Chapter 1

Introduction

Imagine you’re scooping a spoonful of mayonnaise from a jar. Once you remove your spoon its

shape remains in the mayonnaise for a time. On the other hand, if you take a spoonful of water

from a jar, the surface of the water will quickly return to being flat and uniform. Mayonnaise,

peanut butter, ketchup, and many of the contents in your fridge differ from the well-known

Newtonian fluids like water. These materials are referred to as complex fluids. Complex fluids

have interesting and useful behaviour that is in many ways intermediate between that of solids

and conventional liquids. This is a result of their microstructure. Newtonian fluids contain

molecules - and nothing larger. Mayonnaise is an emulsion of oil droplets suspended in a base

composed of egg yolk and lemon juice or vinegar. Its microstructure is these oil droplets. The

complex fluids discussed in this thesis have a microstructure consisting of nanometer and mi-

crometer sized polymer particles.

In some cases, a material’s microstructure gives it the ability to support a finite shear stress.

Such materials are known as yield-stress fluids. The behaviour of mayonnaise is a result of

its yield stress. When one of these yield-stress fluids is confined to a small region with a

length scale comparable to the characteristic scale of their microstructure, the material can-

not be treated as a continuum in the confinement direction. It is expected that its rheological

1



2 Chapter 1. Introduction

properties will vary in this confined environment. As a result, its flow behaviour is expected to

deviate from that predicted by the rheology measured on the bulk scale.

The confinement of yield-stress fluids is not fully understood. Liu, et al. have done pre-

liminary studies of confinement effects in yield-stress fluids [2]. Their results indicated that the

yield stress of Carbopol vanishes when the material is confined in two dimensions on a scale

smaller than approximately 150 µm. Based on Liu’s work, confinement effects are expected to

become noticeable when the dimensions of the flow become comparable to the characteristic

size scale of the material’s microstructure. The pupose of this thesis is to investigate the efffect

of confinement on the flow of yield-stress fluids in more detail.

1.1 Rheology

Rheology is the science of deformation and flow of fluids [3]. Specifically, it is concerned with

the properties that determine how a material will deform or flow when subjected to an external

force or system of forces [4]. A common rheological test is a flow curve, in which shear stress

is measured as a function of shear rate. Stress is the force per unit area applied to a material,

σ = F
A . Shear is a sliding deformation that occurs when there is movement between layers of a

sample. Consider a slab of material sheared between two parallel plates as seen in Figure 1.1.

Shear is created by applying external forces in the planes of the top and bottom plates and the

resulting shear strain is calculated from the deformation of the material. Strain, γ = ∆x
h , is the

relative deformation of the fluid; the displacement of an element of fluid divided by the height

of the slab. The shear rate, γ̇, is the first derivative of the strain with respect to time.

1.2 Viscoelasticity

Newtonian liquids, like water and alcohol, flow in response to any given stress. A Newtonian

fluid is characterized by a viscosity that is independent of shear stress, shear rate, and flow
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Figure 1.1: A simple illustration of shear. A force F applied parallel to a slab of height h, over
an area A, results in a shear stress σ = F/A, and creates a deformation along the x direction of
∆x, which results in a shear strain γ = ∆x/h.

history at a fixed temperature. The viscosity, η, is defined by Newton’s law of viscosity:

σ = ηγ̇. (1.1)

When a purely viscous fluid is subjected to an applied stress, the strain increases linearly for as

long as the stress is applied. When the stress is removed, the strain remains and the fluid does

not relax [5].

Solids, on the other hand, respond elastically to a small applied force. The elasticity of the

material describes its ability to deform reversibly when subjected to an applied force. For

small shear forces, Hooke’s law applies:

σ = Gγ, (1.2)

where σ is the shear stress, G is the elastic constant, and γ is the strain. When an elastic ma-

terial is subjected to a stress it maintains the resulting elastic strain for as long as the stress is

applied. When the stress is removed, the strain instantaneously vanishes [5].



4 Chapter 1. Introduction

Figure 1.2: Schematic of a dashpot.

Figure 1.3: Schematic of a linear elastic spring.

Complex fluids possess mechanical properties that are intermediate to ordinary liquids and

solids. Solids deform in response to stress, and liquids flow. Many complex fluids will main-

tain their shape on short time scales and flow on long time scales. This property is known as

viscoelasticity [6]. When you throw silly putty against a wall, the time scale is short and the

putty behaves elastically, bouncing like a rubber ball. On the other hand, when silly putty is

slowly stretched it behaves viscously and flows irreversibly. Silly putty is viscoelastic as are

thousands of other materials including nylon, human tissue, and lava [7].

Complex fluids display a combination of viscous and elastic behaviour, and can be described

by combining Newton’s law of viscosity and Hooke’s law. Conceptually, the viscous compo-

nent of a complex fluid’s behaviour can be represented by a viscous dashpot, Figure 1.2, and

the elastic component by an elastic spring, Figure 1.3.

A dashpot is a piston-cylinder arrangement filled with a viscous fluid. A viscous dashpot

responds to an applied stress with a strain rate proportional to that stress,

γ̇ =
1
η
σ. (1.3)
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For a linear elastic spring of stiffness E, on the other hand,

γ =
1
E
σ. (1.4)

In this case, it is the strain that is proportional to the applied stress.

Just as resistors and inductors can be connected in series and in parallel to form electric cir-

cuits, the spring and the dashpot can be connected in series and in parallel to model viscoelastic

behaviour [8]. The Maxwell model connects the spring and dashpot in series, as shown in Fig-

ure 1.4, and the Kelvin-Voigt model connects them in parallel as shown in Figure 1.5.

Figure 1.4: Schematic of the Maxwell model.

Figure 1.5: Schematic of the Kelvin-Voigt model.

In the Maxwell model, one can divide the total strain on the spring-dashpot combination into
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the elastic strain of the spring, γs, and the viscous strain of the dashpot, γd. Equilibrium requires

that the stress be the same in both elements leading to the following three equations:

γs =
1
E
σ

γ̇d =
1
η
σ

γ = γs + γd.

(1.5)

Combining these equations gives a differential equation for the stress in the Maxwell model,

σ +
η

E
σ̇ = ηγ̇. (1.6)

When the Maxwell model is subjected to a stress, the spring will stretch immediately while

the dashpot will deform at a steady rate. When the stress is removed, the spring again reacts

immediately, but the viscous strain in the dashpot does not tend to recover [5].

The Kelvin-Voigt model consists of a spring and a dashpot in parallel. In this case, the strain

is the same across both elements, and the stress is the sum of the viscous stress on the dashpot

and the elastic stress on the spring. Analyzing this system gives the following equations:

γ =
1
E
σs

γ̇ =
1
η
σd

σ = σs + σd.

(1.7)

Rearranging these equations gives the constitutive law for the Kelvin-Voigt model,

σ = Eγ + ηγ̇ (1.8)

[8].
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When a stress is applied to the Kelvin-Voigt model, the spring will want to stretch, but it will

be held back by the dashpot, which cannot react immediately. The stress is initially all in the

dashpot and over time is transferred to the spring. When the stress is removed, the spring will

want to contract, but once again the dashpot holds it back. In time, the spring will eventually

pull the dashpot back to its original zero position and fully recover [5].

Both models are necessary for describing the behaviour of yield-stress fluids. Although real

fluids tend to be more complex than these models, they are a great tool for beginning to un-

derstand the behaviour of yield-stress fluids. Figure 1.6 shows schematic solutions to Maxwell

and Kelvin-Voigt models for stress relaxation and creep tests. The Maxwell model is good at

describing the relaxation behaviour after a stress load is removed. The Kelvin-Voigt model

predicts creep, to be explained below, more realistically than the Maxwell model.

1.3 Rheology of yield-stress fluids

Imagine squeezing toothpaste out of a tube. When you open the tube and turn it upside down

the toothpaste does not flow. Once you squeeze the tube hard enough, however, the toothpaste

flows. This is because toothpaste has a yield stress. When the applied shear stress is smaller

than the yield stress, σy, the toothpaste behaves like a solid and does not flow. For stresses

larger than the yield stress, it flows like a viscous liquid.

For Newtonian fluids, stress is proportional shear rate. Yield-stress fluids, in contrast, are

commonly described using the Herschel-Bulkley model,


σ = σy + kγ̇n σ > σy

γ̇ = 0 σ ≤ σy
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Figure 1.6: Schematic of solutions to Maxwell and Kelvin-Voigt models. a) Stress relaxation
function for the Maxwell model. b) Creep for the Maxwell model. c) Stress relaxation function
for the Kelvin-Voigt model. d) Creep for the Kelvin-Voigt model.
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Figure 1.7: Schematic of the Herschel-Bulkley model. The fluid is shear thickening when
n > 1, shear thinning when n < 1, and Bingham when n = 1.

where k is the consistency index and n is the power index. The Herschel-Bulkley model de-

scribes a non-thixotropic yield-stress fluid in which the viscous contribution is non-linear. The

influence of the power index is displayed in Figure 1.7. When n is greater than one, the fluid is

shear thickening, meaning that once the yield stress is surpassed it begins to flow and becomes

more viscous as shear rate is increased. When n is less than one the fluid is shear thinning.

A shear thinning fluid, just like a shear thickening one, begins to flow once the yield stress is

surpassed but becomes less viscous as shear rate is increased. When n = 1 the fluid is referred

to as a Bingham fluid and displays both a linear relationship between stress and shear rate and

a yield stress.

There are a number of ways of measuring the yield stress of a material. The classical way, and

the way used in this thesis, is to measure shear stress as a function of shear rate and fit the data

to the Herschel-Bulkley model.
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Figure 1.8: Schematic flow curves of a thixotropic fluid measured by first increasing, then
decreasing the shear rate.

1.4 Thixotropy

Figure 1.8 shows schematic flow curves of a thixotropic fluid, measured first by increasing the

shear rate, and then by decreasing it. Thixotropy is revealed by the hysteresis between the two

curves. In thixotropic fluids, like ketchup and paint [9], the rate at which the microstructure

recovers after being disrupted by shear is slower than the rate of the shear itself. This implies

that after a change in shear rate there is an equilibration time over which the fluid properties

adjust. The amount of thixotropy depends on the rate at which the shear rate changes. When

the shear rate is increased slowly, there is less hysteresis because the fluid properties have more

time to adjust to the conditions.
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1.5 Carbopol

Carbopol is a family of commerical polymers frequently employed in the cosmetics, phar-

maceutical, paint, and food industries as a thickening, suspending, dispersing, or stabilizing

agent [10, 11]. Carbopol is transparent, easy to prepare, displays a yield stress, and is insen-

sitive to temperature, making it ideal for a wide variety of rheological studies [10, 12, 13]. Its

properties are tunable by varying concentration and pH. Carbopol is made up of particles of

modified cross-linked poly(acrylic acid), as shown in Figure 1.9. When dry, the polymer par-

ticles are 0.2 µm in average diameter and form a fluffy white powder [14]. When dispersed in

water and pH-neutralized, the particles swell up to 1000 times their former volume [12, 15].

Unmodified, Carbopol has a pH of approximately 3. A neutralizing agent, commonly sodium

hydroxide, is added to increase the pH. When neutralized, the osmotic pressure of the sodium

ions causes the cross-linked polymer network to swell, creating what is known as a polymer

microgel.

1.6 Poly(N-isopropylacrylamide)

Poly(N-isopropylacrylamide) (PNIPAM) is a transparent intramolecularly cross-linked micro-

gel. PNIPAM is made by crosslinking a monomer, N-isopropylacrylamide (NIPAM), with

N,N’-methylenebisarcylamide (BIS) using emulsion polymerization [16]. The resulting pow-

der is dissolved in distilled water to form a solution of nanometer sized spherical microgel

particles. PNIPAM is a thermosensitive yield-stress fluid. As temperature increases the mi-

crogel particles decrease in size, and the effective particle volume fraction decreases [17].

When the solution is heated above the lower critical solution temperature (LCST), which is

approximately 32◦C - 33◦C [16–19], PNIPAM shows a reversible chain collapse as it becomes

thermodynamically more favourable for the polymer to associate with itself than with water.

This means that PNIPAM chains dissolved in the solution will spontaneously phase separate

as temperature increases beyond the LCST.
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Figure 1.9: a) The chemical reaction of poly(acrylic acid) with a neutralizing agent such as
sodium hydroxide. b) Crosslinkers are added to form a network of polymer chains intercon-
nected via cross-linking. This dry cross-linked polymer gets hydrated and swells.
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Figure 1.10: Schematic illustration of the structural change of PNIPAM across the LCST. The
blue circles are representative of water molecules and the black lines are representative of the
PNIPAM polymer chains. The right hand side of the figure showcases how water is expelled
outside of the PNIPAM chains when temperature is heated to the LCST or beyond.

1.7 Confinement Effects

When a complex fluid is confined to a geometry with a length scale comparable to the mate-

rial’s microstructure, the material can no longer be treated as a continuum in the confinement

direction and the details of its microstructure become important. As a result, its flow behaviour

is expected to deviate from that predicted based on the rheology measured on the bulk scale.

Jofore, et al. measured the flow curve of three concentrations of Carbopol in a flexure-based

micro-gap rheometer with a gap ranging 5 to 100 µm. At large gaps all three concentrations

generally agreed with the bulk data. When the width of the shearing gap was reduced to a value

on the order of the average dimension of a particle, the yield stress was increased by a factor

of 4 [20].

Yan, et al. measured the flow curve of Carbopol using squeeze flow rheometry. They found

that the flow properties began to differ significantly from the bulk rheology measurements at a
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gap of 200 µm, one to two orders of magnitude larger than the particle size. They observed

a significant increase in yield stress here. After the transition, however, the yield stress gradu-

ally decreased with decreasing separation, but was still greater than the bulk yield stress at the

smallest gap of 70 µm [21].

Geraud, et al. used parallel-plate rheometry to study the flow properties of Carbopol for dif-

ferent gap sizes. They saw an increase in yield stress when the gap was decreased to approxi-

mately 500 µm. In addition, they studied the flow of Carbopol in a glass channel 1 mm x 116

µm x 45 mm in size at pressures ranging from 0.15 bar to 1 bar. The resulting maximum veloc-

ity was 60-70% higher than expected based on the bulk rheology [13], suggesting an increase

in wall slip and/or a decrease in the yield stress.

Liu, et al. studied the confinement of Carbopol in square microchannels ranging from 50 µm

to 500 µm in width. In larger channels, the velocity profiles agreed well with predictions based

on the bulk rheology of Carbopol, and no effects of confinement were observed. In smaller

channels, however, the velocity profiles deviated substantially from the bulk-scale predictions

and could not be fitted by a model with a yield stress [2, 22]. These results indicated that the

yield stress of Carbopol vanishes when the material is confined in two dimensions on a scale

smaller than approximately 150 µm, which is about 3 times the maximum particle size for Car-

bopol found by Lee, et al [12].

It has recently been demonstrated that the size and polydispersity of the particles in a Carbopol

solution depend on the amount of shear applied during mixing and that this in turn affects the

rheology of the fluid [23]. The yield stress and viscosity decrease with increased stirring time

and a hysteresis loop becomes more pronounced. Dinkgreve states “the extent of the hysteresis

loop depends exactly on the type of stirrer, its size, the volume of the container with respect to

the stirred region, etc.; it is therefore very difficult to perform a systematic study on the effect
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of stirring” [23].

We expect confinement effects to become important when the dimensions of the flow chan-

nel become comparable to the characteristic scale of the material’s microstructure. For this

reason, it is important that we characterize the microstructure of our Carbopol samples at the

same time that we study their flow behaviour; this was not done in the study of Liu, et al. [2,22].

For this reason, this thesis explores the effects of confinement on the flow behaviour of Car-

bopol while characterizing its microstructure. In addition, PNIPAM is studied in the same

form as a control experiment. Because PNIPAM has a particle size significantly smaller than

Carbopol, it is not expected to show confinement effects in the channels used. In this case, the

results would further support the argument that the onset of confinement effects are correlated

to particle size.
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Experimental Procedures

2.1 Carbopol

Carbopol solutions were prepared by dispersing a measured amount of dry Carbopol 940 (Lu-

brizol) powder in deionized water at room temperature while stirring with a propeller-blade

mixer at 250 rpm for 24 hours to ensure it was completely dissolved. When the powder was

initially dissolved in water, the solution had a pH of approximately 3. A benchtop pH meter

(Fisher Scientific Accument AE150) was used to monitor the pH as 25% NaOH was added,

while mixing, to raise the pH to 6.00 ± 0.01, resulting in the expansion of the microgel par-

ticles and the formation of a stiff gel. The stirring was continued for an additional 24 hours

to prepare what are referred to below as “vigorously” mixed samples and 1 hour for “lightly”

mixed samples. 0.52 µm fluorescent microsphere particles (ThermoScientific) were mixed by

hand into the solution at an approximate volume fraction of 0.3% to serve as tracer particles in

the flow velocimetry experiments described below.

2.2 PNIPAM

PNIPAM was synthesized using the method described in [16]. The components, N-isopropylacrylamide

(NIPAM), N,N’-methylenebisacrylamide (BIS), potassium peroxodisulfate (KPS), and sodium

16
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Table 2.1: Compositions for the synthesis of PNIPAM microgels.

Sample NIPAM (g) BIS (g) SDS (g) K2S2O8 (g)
Low BIS 7.85 0.065 0.15 0.32

Medium BIS 7.87 0.15 0.15 0.30
High BIS 7.89 0.57 0.16 0.33

dodecyl sulfate (SDS) were all obtained from Alfa Aesar. Emulsion polymerization was done

in a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a gas inlet. The

amounts of NIPAM, BIS, and SDS given in Table 2.1 were dissolved in 450 ml of Milli-Q

water under stirring. The initiator KPS was dissolved in 50 ml of water. Both solutions were

bubbled with nitrogen for 30 minutes. After heating the NIPAM mixture to 70◦C, the initiator

solution was added. Polymerization took place for 8 hours while the mixture was stirred at

300 rpm using a magnetic stir plate. The resulting dispersion was cooled to room temperature

and filtered through glass wool. Further purification was done by extensive dialysis against

water three times until a conductivity meter measured 1 µS/cm. The polymers were isolated by

freeze-drying to form a white powder which was stored in glass jars until needed. To prepare

solutions for use in our experiments, a measured amount of dried PNIPAM was dispersed in

deionized water at room temperature while stirring with a magnetic stir bar at 72 rpm until fully

disolved. Fluorescent microsphere particles (0.52 µm) were mixed by hand into the solution

at an approximate volume fraction of 0.3% to serve as tracer particles in the flow visualization

experiments described below.

2.3 Light Scattering

Dynamic light scattering is a technique used to determine the size distribution of small particles

in suspension or polymers in solution. The ALV / CGS-3 compact goniometer used in this work

is a self-contained system with 22 mW helium-neon laser, ALV-proprietary optical fiber based
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detector, APD-based single photon detector, ALV/LSE-5003 electronics and ALV-5000/EPP

correlator [24]. Using this instrument, the size distribution of dissolved Carbopol and PNIPAM

particles was measured by scattering light at an angle of 30°. A circulating water bath was used

to control the temperature. The ALV system outputs the intensity autocorrelation function of

the scattered light as a function of delay time. The size distribution of the suspended particles

was calculated from this using a regularized inverse Laplace transform method [25, 26] based

on the MATLAB function RILT [27].

2.4 Rheometry

The viscous and elastic properties of fluids and soft solids can be measured using a rheome-

ter. In this work, an Anton Paar MCR302 rotational shear rheometer, Figure 2.1, was used to

measure the rheological properties of the Carbopol and PNIPAM solutions without tracer par-

ticles at 20°C. This is a strain-controlled rheometer, which works by confining a fluid within a

geometry, applying a strain, and measuring the resulting stress. The measuring geometry was

a cone-and-plate with a 50 mm diameter and 4◦ cone angle. 600-grit sandpaper was affixed to

the surfaces of both the cone and the plate with double-sided tape to minimize wall slip. An

environmental housing with an atmosphere saturated with water vapour surrounded the tool to

minimize evaporation over the duration of the measurements.

Viscosity was determined from measurements of shear stress as a function of shear rate. At

20°C, shear rate was increased in logarithmically spaced steps from 0.01 s-1 to 100 s-1. After

each step, the shear stress was measured after a wait time long enough that the fluid properties

have time to reach a steady state. We used wait times ranging from 180 s at low shear rates to

10 s at high shear rates. From there, viscosity was determined using the ratio of shear stress

over shear rate, η = σ
γ

.
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Figure 2.1: Benchtop rheometer (Anton Paar MCR302) used to to obtain the measurements in
Section 3.2 [1].

The viscous and elastic moduli, G′′ and G′ respectively, were determined using small-amplitude

oscillatory shear measurements. An amplitude sweep was performed by applying a sinu-

soidally varying strain at a constant frequency of 1 s-1 as the strain amplitude was increased

from 0.01% to 1000%. This measurement determines the fluid’s linear viscoelastic regime, in

which the moduli are independent of the strain amplitude. The linear viscoelastic regime indi-

cates the range in which oscillatory strain can be applied without destroying the microscopic

structure of the sample. A strain within this regime was used for measurements of the moduli

as a function of frequency.

A frequency sweep was then performed using a strain amplitude within the viscoelastic regime.

A strain amplitude of 1% was used for lightly mixed Carbopol samples and a strain amplitude

of 0.2% was used for vigorously mixed Carbopol samples. The storage and loss modulus

were measured while increasing angular frequency in logarithmically spaced steps from 0.1 to

100 s-1.
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The final test performed to characterize Carbopol and PNIPAM was a creep test. A constant

stress was applied to the fluid for 333 s followed by a constant stress of 0 Pa for another 333

s. The resulting strain was measured as a function of time. When a constant stress is applied

to a sample, the strain increases. For an elastic solid, the strain reaches a constant value. For

a viscous liquid, the strain increases linearly with time. When the applied stress is removed,

the elastic part of the strain recovers, but the viscous part does not. A creep test can be used to

determine the yield stress of a material. The yield stress will lie somewhere between the high-

est applied stress that shows solid behaviour and the lowest applied stress that shows liquid

behaviour.

2.5 Fabrication of Microfluidic Devices

Square microchannels 1 cm in length were fabricated from an acrylic mould using poly-

dimethylsiloxane (PDMS, SYLGARD 184 silicone elastomer, Dow Chemical Co.). The mould

was designed with SolidWorks, a 3D CAD software [28], by The University of Western On-

tario’s Physics and Astronomy machine shop. The CAD file was then uploaded using a tool-

path generating software, Mastercam [29], to a micro mill. Using this file, the mould was

machined from a piece of acrylic. Each mould incorporated three independent straight mi-

crochannels with independent inlets and outlets as shown in Figure 2.2.

PDMS base was mixed with a cross-linker in a 10:1 ratio, then degassed in a vacuum chamber.

The mould was mounted in a plexiglass cylinder, the degassed PDMS was cast onto the mould,

degassed a second time, and allowed to cure at room temperature. After 48 hours, the PDMS

chamber was fully cured. The mould and PDMS chamber were removed from the cylinder by

screwing a screw into a threaded hole at the bottom of the cylinder to push the mould out of the

cylinder. The PDMS chamber was gently peeled away from the mould until it was completely

removed. The chamber was then placed on the sticky side of a length of packing tape to main-
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Figure 2.2: (a) The Plexiglas mould used to form the microchannels. The diameter of the
mould is 1.7 cm. (b) The PDMS that was cast into the mould shown in (a) is bonded to a 5 cm
glass-bottom culture dish with a partially cured layer of PDMS, and polyethylene tubes are
inserted into the inlet and outlet reservoirs to form the full microchannel assembly [22].

tain a clean surface during storage.

The bottom of the channels were made by spin-coating PDMS to the bottom of a 5 cm glass-

bottom culture dish (MatTek Corporation, Part No. P50G-0-30-F) for 10 seconds at 500 rpm

followed by 60 seconds at 3000 rpm. The coated culture dish was placed in a microwave beside

a beaker of 400 ml of water and partially cured for 20-22 minutes at 540 W. The PDMS cham-

ber was then removed from the packing tape and lightly pressed into the partially cured PDMS

layer on the dish. Air bubbles were removed by pressing gently on the top chamber, working

from the centre of the device outwards. To irreversibly bond the chamber to the PDMS-coated

glass substrate, the assembly was left at room temperature for 24 hours to allow the PDMS to

fully cure. 23.5 gauge needles (outer diameter of 0.59 mm) were attached to teflon tubing with

an inner diameter of 0.56 mm and an outer diameter of 1.1 mm. The tubing was inserted into

the inlets and outlets of the channels, and bonded using Lepage 5 minute epoxy.

Four different sizes of microchannels, ranging in width from 100 µm to 500 µm, were used

in our experiments. All channels were 1 cm in length. The actual dimensions of the channels
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Table 2.2: Dimensions of the microchannels based on an average of 4 positions along the
channel each.

mold width (µm) 500 300 200 100
channel width (µm) 564 ± 5 293 ± 4 137 ± 2 68 ± 1
channel height (µm) 572 ± 3 258 ± 4 177 ± 2 103 ± 3

were slightly different than those of the positive mould, and were determined from measure-

ments made with an inverted microscope (Olympus IX71) with a 40× objective (20× for the

500 µm channel), at four positions along the length of the channels. The mean and standard

deviation of these measurements are shown in Table 2.2.

2.6 Numerical Modeling

Ansys Fluent software [30] was used to simulate the flow of water in microchannels, and to

predict the velocity profiles in the channels. A density of 1 g·ml-1 and a constant viscosity of

1.003 mPa·s was used. Figure 2.3 displays the computational domain used to simulate the 500

µm channel. Since a parabolic flow profile is expected for water, a uniform square mesh was

used with 200 nodes along the 1 cm channel length and 25 nodes across the channel width for

the 500 µm channel, 20 nodes across the channel width for the 300 and 200 µm channels, and

15 nodes across the channel width for the 100 µm channel.

2.7 Particle Image Velocimetry (PIV)

Particle image velocimetry (PIV) is a non-intrusive laser optical measurement technique that

determines the velocity field of a flowing fluid by tracking the motion of tracer particles sus-

pended in the flow. In this work, micro-PIV (µPIV) was used to measure the velocity fields

of our experimental fluid flowing in the microchannels, which were mounted on an Olympus
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Figure 2.3: Computational domain used to simulate the 500 µm channel.

Figure 2.4: Computational mesh for water in a 500 µm channel.

IX71 inverted fluorescent microscope. Fluorescent polymer microspheres 0.52 µm in diameter

(0.52 µm, Fluoro-Max red fluorescent polymer microspheres, ThermoScientific, Fermont, CA,

USA) were added to the fluid with an approximate volume fraction of 0.3%. The fluid was

pumped into the channel from a 1 mL syringe through a length of tubing by a low pressure ne-

MYSYS 290N syringe pump [31] at flow rates ranging from 0.1 to 250 µL/hr. The neMYSYS

pump is computer controlled and provides accurate pulsation-free flow. To avoid having the

height of the pump influence velocity, the pump was set up with two syringes, one to inject

fluid and one to withdraw it at the same rate.
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The fluorescent particles were illuminated with green light using an X-Cite 120Q light source

and imaged in the red. They were visualized using a high-speed camera (Metek Vision Re-

search Phantom VEO 340L) connected to the microscope, at frame rates ranging from 32 to

806 frames per second. A 40× objective was used to image all the channels with the exception

of the 500 µm channel, for which a 20× objective was used.

A time series of images like the one shown in Figure 2.5 was taken with the microscope fo-

cused at the bottom of the channel. Using the microcope’s focus knob to adjust the position

of the focal plane, this was repeated for 8 more evenly spaced planes spanning the channel’s

height. The images were cross-correlated in LaVision’s DaVis software [32] to give a velocity

field as seen in Figure 2.6. The velocity data were extracted and plotted using the in-house

MATLAB code pivplot3davg.m (Appendix A).

Figure 2.5 displays an image of lightly mixed 0.3 wt% Carbopol flowing in a 500 µm chan-

nel at a rate of 100 µL/hr, as imaged by the PIV system. The bright dots are images of the

fluorescent microspheres that were mixed into the fluid. Cross-correlation involves comparing

two sequential images and noting how far and in what direction the particles moved between

images. From this information the DaVis software calculates the velocity of the particles at

each point along the channel and displays it using a colour map. An example velocity field

calculated by the software is shown in Figure 2.6.
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Figure 2.5: An example of a fluorescent particle image from a time series used in the PIV
measurements. Lightly mixed 0.3 wt% Carbopol flowing at 100 µL/hr through a 500 µm
channel. The bright points are images of the 0.52 µm fluorescent tracer particles suspended
in the Carbopol.

Figure 2.6: Velocity field measured for water flowing through a 500 µm channel at 100 µL/hr.
The velocity ranges from 0 µm/s (light blue) at the wall to 135 µm/s in the centre (red).
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Results

The size of Carbopol and PNIPAM microgel particles was characterized using dynamic light

scattering. Rheological parameters of all experimental fluids were measured. These parameters

were also used in simulations of the flow of water in 1 cm long square microchannels ranging

in width from 100 µm to 500 µm. The effect of microchannel size on fluid flow behaviour was

studied experimentally by injecting the fluids into microchannels that were fabricated using a

soft lithography method. The resulting velocity profiles were compared to one another. The

profiles of water were compared to the numerical simulations and the profiles of Carbopol and

PNIPAM were analyzed using approximate calculations.

3.1 Dynamic Light Scattering

Dynamic light scattering (DLS) was performed using an ALV / CGS-3 compact goniometer

with a 22 mW helium-neon laser to measure the average hydrodynamic radius of dissolved

particles in dilute Carbopol and PNIPAM solutions at an angle of 30°. PNIPAM and pH 6

Carbopol were diluted with deionized water to ensure that the dynamic light scattering mea-

surements were not influenced by multiple scattering of light.

26



3.1. Dynamic Light Scattering 27

3.1.1 Carbopol

The output of the ALV system is the intensity autocorrelation function of the scattered light

as a function of correlator delay time. Figure 3.1 shows the correlation functions obtained for

lightly and vigorously mixed 2.80 × 10-2 wt% Carbopol at 20°C. At long times, the data were

strongly influenced by slow drifts in electronics and the environment. At short times, the data

were noisy. For this reason, the data at high and low times were discarded. The red points

represent the data used to determine the particle size and the blue points represent the data that

were discarded. If the scattering particles were monodisperse, the correlation function would

decay exponentially, with the decay time being related to the mobility, and thus the size, of the

particles. In reality the decay is non-exponential and represents a convolution of the decays

due to a distribution of particle sizes.

The correlation function describes how much scattered light is being detected over time. The

larger the particle, the slower it moves and there are slower fluctuations in the scattered light.

When a particle is small it moves quickly and the fluctuations in the detected intensity are rapid.

Where the correlation function drops off indicates the exponential decay time. The exponential

decay time is the time associated with the most common particle size.

Using a regularized inverse Laplace transform method, the correlation function was used to

determine the particle radius distribution function. The distribution function was normalized

so that it peaks at a value of one. Examples of the distribution function calculated for Carbopol

are shown in Figure 3.2. The first moment of the distribution gives the mean hydrodynamic

radius of the particles. The square root of the second moment gives the standard deviation. The

standard deviation is a measure of the polydispersity of the particles.

Using the first and second moments of Figure 3.2, the hydrodynamic radius was found to be 19

± 16 µm for lightly mixed Carbopol and 4 ± 1 µm for vigorously mixed Carbopol. Vigorously
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Figure 3.1: Autocorrelation function of the scattered light intensity for 2.80 × 10-2 wt% (a)
lightly mixed and (b) vigorously mixed Carbopol solution at 20°C and an angle of 30°. The
correlation function was measured using dynamic light scattering and is shown as a function
of delay time. The blue points indicate data that were discarded and the red points indicate the
data included in the determination of the particle size distribution.

mixed Carbopol displayed a second peak at a much larger particle size. This second peak could

be due to dust or a cluster of particles, or long-term drifts in the electronics. Because scattering

intensity increases with particle radius r roughly as r6, this peak represents a very small number

of large scatterers and so can be ignored. Comparing lightly and vigorously mixed Carbopol

shows that mixing time had a significant impact on the size and polydispersity of Carbopol 940

particles. Particles of vigorously mixed Carbopol are both smaller and less polydisperse than

particles of lightly mixed Carbopol.

Using dynamic light scattering measurements on a different type of Carbopol (Ultrez U10),

Dinkgreve, et al. also found a significant size difference when mixing time was increased.

They found a lightly mixed sample to have a particle size of approximately 10 µm and a vigor-

ously mixed sample to have a particle size of approximately 1 µm [23]. Dinkgreve, et al. also

used confocal microscopy to observe smaller and less polydisperse particles in the vigorously

mixed sample [23]. Using confocal micrscopy, Lee et al. found that stirring Carbopol (ETD
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Figure 3.2: Particle radius distribution function of (a) lightly mixed and (b) vigorously mixed
Carbopol solution. The width of the distribution function spans the size of the microgel parti-
cles and reflects polydispersity.

2050) for 24 hours gave a particle size of approximately 3 µm while an unstirred Carbopol

solution had an approximate particle size of 6 µm [12].

3.1.2 PNIPAM

Three samples of PNIPAM were prepared using the compositions in Table 2.1. Using the same

DLS method as Carbopol, the particle size distribution function of 5 × 10-3 wt% Medium BIS

and 6.24 × 10-3 wt% High BIS PNIPAM were measured over a temperature range of 15°C to

40°C. The temperature of the diluted PNIPAM was initially set to 20°C and data were collected

as the sample was heated in steps to higher temperatures with a wait time of at least 10 minutes.

The sample was then cooled back down to 20°C then further cooled to collect data at lower

temperatures.

The correlation functions of Medium BIS PNIPAM at 15, 20, 35, and 40°C are shown in

Figure 3.3. As above, data at high and low delay times were discarded.
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Figure 3.3: Autocorrelation function of the scattered light intensity for 10 wt% Medium BIS
PNIPAM at (a) 15°C, (b) 20°C, (c) 35°C, and (d) 40°C. The correlation function was measured
using dynamic light scattering and is shown as a function of delay time. The blue points indi-
cate data that were discarded and the red points indicate the data included in the determination
of the particle size distribution.

Using a regularized inverse Laplace transform method, the correlation function was used to

calculate the particle radius distribution function, Figure 3.4. The first and second moments

of the distribution function were used as the hydrodynamic radius and its standard deviation,

respectively. The hydrodymic radius is plotted as a function of temperature in Figure 3.5 and

the standard deviation is shown using error bars.

As Figure 3.5 shows, the radius of the PNIPAM particles decreased monotonically as temper-
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Figure 3.4: Particle radius distribution function of 10 wt% Medium BIS PNIPAM at (a) 15°C,
(b) 20°C, (c) 35°C, and (d) 40°C. The width of the distribution function gives the size of the
solution’s particles and its polydispersity.

ature increased, experiencing a significant drop between 25 and 35°C. The error bars indicate

the polydispersity of PNIPAM, which has no systematic dependence on temperature. There

was, however, a dependence on BIS concentration. Medium BIS PNIPAM has a BIS concen-

tration of 1.87 wt% and High BIS PNIPAM a concentration of 6.74 wt%. At 20°C, the same

temperature used for the Carbopol measurements, Medium BIS PNIPAM has a particle size of

190 ± 40 nm and High BIS PNIPAM a particle size of 140 ± 20 nm, indicating that the greater

the BIS concentration the smaller the mean particle size is. Medium BIS PNIPAM consistently

has a larger particle size than High BIS PNIPAM across the temperature range, however the

size ratio is not consistent. The mean particle size of both PNIPAM samples is significantly

smaller than the mean particle size of Carbopol.

Our PNIPAM was prepared by closely following the polymerization method laid out by Senff

and Richtering in [16]. Senff and Richtering also performed DLS experiments on PNIPAM
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Figure 3.5: Mean radii of dissolved (a) Medium BIS and (b) High BIS PNIPAM particles
measured by dynamic light scattering according to our measurements and measurements by
Senff and Richtering [16], plotted as a function of temperature. The error bars represent the
standard deviation.

using an ALV goniometer. Their results for the hydrodynamic radius, extracted from [16], are

also plotted in Figure 3.5. They also found that the hydrodynamic radius decreased as temper-

ature increased, with a significant drop occurring between 25 and 35°C. Senff and Richtering

found the same dependence of BIS concentration on particle size, increasing the BIS concen-

tration results in a decrease in mean particle size.

The temperature range at which we see a significant drop in the hydrodynamic radius is con-

sistent with the value of the LCST, 31 - 34°C, measured by [16–19]. Although we followed

the same synthesis procedure for PNIPAM, there is a significant difference between our values

of the hydrodynamic radius measured and those measured by Senff and Richtering [16]. Our

values, for both samples, are, on average, a factor of 1.4 larger than those measured by Senff

and Richtering. This discrepency could be a result of differences in sample preparation, or may
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indicate that our solutions were not dilute enough and that our data are affected by multiple

scattering.

3.2 Rheology

3.2.1 Carbopol

Flow Curves

The flow curves of Carbopol and PNIPAM were measured using an Anton Paar MCR302 shear

rheometer with a 4° cone-and-plate tool. 600 grit sandpaper was affixed to both the rheometer

tool and the bottom plate. The temperature was set to 20°C for Carbopol, while the temperature

was varied from 5°C to 40°C for PNIPAM. The shear rate was increased in steps from 0.01 s-1

to 100 s-1 and then immediately decreased in steps to 0.01 s-1 to test for hysteresis. The resulting

shear stress was measured with a wait time varying from 180 s at low shear rates down to 10 s

at high shear rates.

The data was fit to the Herschel-Bulkley model, σ = σy + kγ̇n, to give the yield stress, σy, con-

sistency index, k, and flow index, n. The uncertainties given below are the standard deviations

in the parameters as determined by the fitting routine.

The flow curves for Carbopol are shown in Figure 3.6 along with the fits. The fit parameters

are given in Table 3.1. The fits show that yield stress increases with concentration, as expected.

The fits also show that the yield stress of the vigorously mixed samples is significantly larger

than the yield stress of the lightly mixed samples of the same concentration. Dinkgreve, et

al. measured flow cruves for 0.6 wt% Carbopol Ultrez U10, a different kind of Carbopol, for

stirring times of 2 hours, 10 hours, and 20 hours at 2000 rpm. In contrast to our results, they

showed that increasing stirring time decreases the yield stress [23]. This discrepency is un-
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Figure 3.6: Shear stress vs. shear rate of Carbopol samples fitted to the Herschel-Bulkley
model. The circles represent the data measured and the lines are the Herschel-Bulkley fit. a)
lightly mixed 0.14 wt% Carbopol, b) vigorously mixed 0.14 wt% Carbopol, c) lightly mixed
0.3 wt% Carbopol, d) vigorously mixed 0.3 wt% Carbopol, e) lightly mixed 1 wt% Carbopol,
f) vigorously mixed 1 wt% Carbopol.
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Table 3.1: Fit parameters determined by fitting the flow curve of Carbopol samples to the
Herschel-Bulkley model, σ = σy + kγ̇n. Measurements were done with shear rate increasing
from low to high and decreasing from high to low. Uncertainties are the standard deviations
determined by the fitting routine. “Light” refers to samples that were mixed for 1 hour after
NaOH was added and “vigorous” refers to samples that were mixed for 24 hours after NaOH
was added.

Sample Yield Stress, Consistency Index, Flow Index,
σy (Pa) k (Pa · sn) n

Increasing
0.14 wt% Carbopol, light 4.4 ± 0.1 1.9 ± 0.1 0.48 ± 0.01

0.14 wt% Carbopol, vigorous 12.9 ± 0.4 4.0 ± 0.4 0.42 ± 0.02
0.3 wt% Carbopol, light 9.57 ± 0.08 5.15 ± 0.07 0.458 ± 0.003

0.3 wt% Carbopol, vigorous 18.8 ± 0.1 11.90 ± 0.09 0.424 ± 0.002
1 wt% Carbopol, light 24.6 ± 0.2 12.1 ± 0.2 0.488 ± 0.003

1 wt% Carbopol, vigorous 104 ± 2 43 ± 2 0.377 ± 0.007
Decreasing

0.14 wt% Carbopol, light 3.1 ± 0.2 2.2 ± 0.2 0.46 ± 0.02
0.14 wt% Carbopol, vigorous 11.3 ± 0.3 4.0 ± 0.3 0.43 ± 0.01

0.3 wt% Carbopol, light 9.2 ± 0.1 5.3 ± 0.1 0.454 ± 0.004
0.3 wt% Carbopol, vigorous 18.7 ± 0.1 10.9 ± 0.1 0.442 ± 0.002

1 wt% Carbopol, light 23.8 ± 0.2 12.3 ± 0.2 0.486 ± 0.003
1 wt% Carbopol, vigorous 98 ± 1 39 ± 1 0.404 ± 0.005
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expected, but may relate to differences in sample preparation or the difference in the type of

Carbopol.

As seen in Figure 3.6 and Table 3.1, the rheological parameters measured for increasing and

decreasing strain rate are significantly different for the 0.14 wt% samples and vigorously mixed

1 wt%. Although Carbopol is widely regarded as a simple yield-stress fluid with no hystere-

sis [33–40], there have been studies that show that Carbopol does not always behave as a simple

yield-stress fluid and can display hysteresis [41].

Hysteresis is an indication of thixotropy. A fluid is considered thixotropic when its viscosity

is time dependent. The increasing flow curve was always measured first. As the applied shear

rate increased the viscosity of the fluid decreased. The decreasing flow curve was measured

immediately following the increasing. Since the viscosity took time to recover, the decreasing

flow curve was always less than the increasing curve.

Amplitude Sweeps

The storage and loss moduli of Carbopol were measured as a function of frequency under

small-amplitude oscillatory shear. To determine the extent of the linear viscoelastic regime of

Carbopol, a constant frequency of 1 s-1 was applied as the amplitude of the oscillating strain

was increased from .01% to 1000%.

Results from the amplitude sweeps, shown in Figure 3.7, are consistent with what is expected.

Each graph in the figure can divided into 3 regions: the linear viscoelastic regime, the yielding

regime, and the non-linear regime. The linear viscoelastic regime occurs at low strain am-

plitudes and is characterized by constant values of the viscous and elastic moduli. Here the

strain being applied is small in comparison to the strain needed to disrupt the interactions be-

tween Carbopol particles. In this regime, the storage modulus is greater than the loss modulus,
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indicating that Carbopol displays a primarily elastic behaviour at low strain amplitudes. The

yielding region is located around the crossover point. Here the structure of the sample begins to

break down. The nonlinear region begins after the crossover point. Here the storage modulus

is decreasing much faster than the loss modulus and material is more viscous than elastic [10].

These results are consistent with other rheological characterizations of Carbopol [10, 11].

Figure 3.7: The storage (G′) and loss modulus (G′′) of Carbopol as a function of the ampli-
tude of the applied oscillatory strain. a) Lightly mixed 0.14 wt% Carbopol, b) Vigorously
mixed 0.14 wt% Carbopol, c) Lightly mixed 0.3 wt% Carbopol, d) Vigorously mixed 0.3 wt%
Carbopol, e) Lightly mixed 1 wt% Carbopol, f) Vigorously mixed 1 wt% Carbopol.
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Frequency Sweeps

A frequency sweep was used to measure the storage and loss modulus as angular frequency was

increased from 0.01 to 1000 s-1 at a constant strain rate that was within the linear viscoelastic

regime. A strain of 1% was used for lightly mixed Carbopol samples and a strain of 0.2%

was used for vigorously mixed Carbopol samples. The frequency sweeps, Figure 3.8, reveal

that the storage modulus remains essentially constant and larger than the loss modulus for the

bulk of the frequency range, which is what is expected for crosslinked macromolecules like

Carbopol [42, 43] and is consistent with other rheological characterizations of Carbopol [10,

11].

Figure 3.8: The storage (G′) and loss modulus (G′′) of Carbopol as a function of angular
frequency. a) lightly mixed 0.14 wt% Carbopol, b) vigorously mixed 0.14 wt% Carbopol, c)
lightly mixed 0.3 wt% Carbopol, d) vigorously mixed 0.3 wt% Carbopol, e) lightly mixed 1
wt% Carbopol, f) vigorously mixed 1 wt% Carbopol.
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Creep Tests

In a creep test, a constant shear stress is applied to a previously unstrained fluid and the time

evolution of strain is recorded. Here, the desired stress was applied to the Carbopol samples for

333 s followed by a constant stress of 0 Pa for another 333 s. The resulting strain was measured

over time. Figure 3.9 shows the results of creep tests for the Carbopol samples. Initially the

strain increases at a rapid rate. As the applied stress is increased beyond the yield stress, a

creep test reveals an increasingly more linear behaviour. Recovery from the stress begins once

the applied stress is removed. Here stored elastic stresses relax and the elastic deformation of

the sample is able to recover fully. The yield stress lies between the highest applied stress that

gives a profile with a constant strain and the lowest applied stress that gives a profile with a

linear behaviour. The range where the yield stress lies is given in Table 3.2.

Table 3.2: Yield stresses obtained from flow curves and creep tests. The values from the flow
curves were obtained by fitting the data to the Herschel-Bulkley model. The uncertainties are
the standard deviations. The yield stresses from the creep tests are given as a range indicating
the stress between the highest applied stress that gives a profile with a constant strain and the
lowest applied stress that gives a profile with a linear behaviour.

Test 0.14 wt% (Pa) 0.3 wt% (Pa) 1 wt% (Pa)
Light Creep Test 4-5 20-30

Increasing Flow Curve 4.4 ± 0.1 9.57 ± 0.08 24.6 ± 0.2
Decreasing Flow Curve 3.13 ± 0.2 9.2 ± 0.1 23.8 ± 0.1

Vigorous Creep Test 12-13 17-18 100-110
Increasing Flow Curve 12.9 ± 0.4 18.8 ± 0.1 104 ± 2
Decreasing Flow Curve 11.3 ± 0.3 18.7 ± 0.1 98 ± 1

A creep test gives what is referred to as the static yield stress. The yield stress obtained from

fitting the Herschel-Bulkley model to a flow curve is referred to as the dynamic yield stress.

Generally, these two yield stresses are distinct from one another, with the dynamic yield stress

being smaller than the static yield stress [44]. The values of the dynamic yield stress obtained

from increasing and decreasing flow curves are within or close to the range found for the static

yield stress range.
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Figure 3.9: Creep tests of a) lightly mixed 0.14 wt% Carbopol, b) vigorously mixed 0.14
wt% Carbopol, c) vigorously mixed 0.3 wt% Carbopol, d) lightly mixed 1 wt% Carbopol, e)
vigorously mixed 1 wt% Carbopol. The labelled shear stress was applied for 333 s followed by
0 Pa being applied for 333 s. The yield stress of each sample lies between the highest applied
stress that gives a profile with a constant strain and the lowest applied stress that gives a profile
with a linear behaviour.

3.2.2 PNIPAM

Flow Curves

Three samples of PNIPAM were prepared using the compositions in Table 2.1. Flow curves

of 10 wt% PNIPAM were measured for a temperature range of 5 to 40°C. Data for selected

temperatures are plotted in Figure 3.10. Often the flow curves show the decreasing curve lying

slightly above the increasing one, suggesting that some evaporation occured during the test. At

40 °C the PNIPAM sample was well above its LCST and could no longer be fit to the Herschel-

Bulkley model. The Herschel-Bulkley parameters obtained from fits to the data at these and

other temperatures are plotted as functions of temperature in Figure 3.11.
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Figure 3.10: Shear stress vs. shear rate of 10 wt% PNIPAM, with 3 different BIS concentra-
tions, for 10, 20, and 30°C fitted to the Herschel-Bulkley model. Measurements were done
with shear rate increasing from 0.01 s-1 to 100 s-1 in steps and decreasing from 100 s-1 to 0.01
s-1 in steps. The circles represent the data measured and the lines are the Herschel-Bulkley fit.

Low BIS PNIPAM flow curves did not have much curvature making it hard to fit to the

Herschel-Bulkley model. This resulted in relatively large uncertainties in the parameters and

likely contributed to the significant difference between parameters for increasing and decreas-

ing flow curves shown in Figure 3.11. Medium BIS and High BIS PNIPAM show a decrease in

yield stress and consistency index as temperature increases, while the power law index remains

relatively constant. At 10°C, High BIS PNIPAM displays a lower yield stress than at 15°C.

This is unexpected and worth revisiting.

Temperature Sweeps

At a constant shear rate of 50 s-1, the temperature of 10 wt% PNIPAM, with 3 different BIS

concentrations, was increased constantly from 5°C to 40°C at a rate of 0.25°C per minute for

each sample. The resulting stress is related to viscosity by Newton’s law of viscosity, σ = ηγ̇.
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Figure 3.11: Herschel-Bulkley parameters for 10 wt% PNIPAM, with 3 different BIS concen-
trations, for increasing and decreasing flow curves at temperatures ranging 5 to 35°C. First
row shows Low BIS, the middle row Medium BIS, and the last row High BIS. a) Low BIS
yield stress, b) Low BIS consistency index, c) Low BIS power law index, d) Medium BIS yield
stress, e) Medium BIS consistency index, f) Medium BIS power law index, g) High BIS yield
stress, h) High BIS consistency index, i) High BIS power law index.

Low BIS PNIPAM displayed the highest viscosity at low temperatures and High BIS PNIPAM

displayed the lowest viscosity. As displayed in Figure 3.12, the viscosity of 10 wt% PNI-

PAM decreases approximately linearly with temperature until around 25°C, where there is a

change in slope and a nonlinear temperature dependence. Above 33°C, the LCST, the viscosity

approaches a constant value.



3.2. Rheology 43

Figure 3.12: Viscosity of 10 wt% PNIPAM, with 3 different BIS concentrations, at a constant
shear rate of 50 s-1 as a function of temperature.
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3.3 Numerical Modeling

Ansys Fluent software was used to simulate the velocity profiles of water in 1 cm long square

microchannels ranging in width from 100 µm to 500 µm. Flow rates ranging 0.1 µL/hr to 250

µL/hr were used in each channel. The velocity across the channel width was taken at half the

height, known as the mid-plane, and half the length of the channel.

Figure 3.13 shows the results of water flowing in a 500 µm channel at selected flow rates.

Similar profiles were determined for each flow rate and channel studied. The maximum veloc-

ity of each profile is shown in Table 3.3. The maximum velocity increased with channel size

and with flow rate as expected for a Newtonian fluid.

Figure 3.13: Results of Ansys Fluent simulations for water in a 500 µm square channel with a
flow rate of (a) 100, (b) 25, (c) 5, and (d) 0.1 µL/hr. Flow is displayed for the mid-plane, half
way along the 1 cm channel.
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3.4 Micro-Particle Image Velocimetry

The fluid samples with 0.52 µm flourescent microspheres added were injected into the mi-

crochannels at flow rates ranging from 0.1 µL/hr to 250 µL/hr. Images were collected at nine

evenly spaced planes spanning the height of each channel. The images for each plane were

cross-correlated using LaVision’s DaVis software to give the velocity as a function of position

in each plane. A MATLAB code was developed to export and plot the data. The code produced

velocity profiles like those shown in Figure 3.14. This figure illustrates the shape of the flow

profiles observed for each fluid. Water shows an approximately parabolic profile, while the

yield-stress fluids, Carbopol and PNIPAM, display a plug in the centre of the channel.

Figure 3.14: Velocity profile of a) water, b) vigorously mixed 0.3 wt% Carbopol, and c) 10
wt% High BIS PNIPAM in a 500 µm square channel at a flow rate of 50 µL/hr.

Using another MATLAB code, the maximum of the velocity profile for water in the channel’s

midplane was determined by fitting a parabola to the curve. For a given channel, the maximum

velocity was found to increase as flow rate increased while for a given flow rate, the maxi-

mum velocity increased as channel size decreased, as shown in Table 3.3. Since the mean flow

velocity is given by vavg =
Q
A , where vavg is the average velocity, Q is flow rate, and A is the

cross-sectional area of the channel this behaviour is in agreement with expectations. Generally,

the experimental values agreed, within uncertainty, with that predicted by simulations in Ansys

Fluent, bearing in mind that the actual values of the channel dimensions may be different than

the nominal values. Table 3.3 shows that slightly higher vmax were consistently seen with µPIV

compared to the simulations, suggesting the actual channel dimensions were smaller than the
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nominal.

Table 3.3: Maximum velocities of water in the mid-plane approximately half way along the
1 cm long channel.

Flow Rate 500 µm 300 µm 200 µm 100 µm
(µL/hr) vmax (µm/s) vmax (µm/s) vmax (µm/s) vmax (µm/s)

Ansys Fluent
250 577 1600 3600 14200
100 231 641 1440 5670
50 115 320 720 2830
25 57.7 160 360 1420
10 23.1 64.1 144 567.0
5 11.5 32.0 72.0 283.0

µPIV
250 580 ± 20 1800 ± 200
100 240 ± 10 750 ± 40

50 132 ± 8 350 ± 20 800 ± 70
25 65 ± 3 183 ± 8 410 ± 30
10 27 ± 2 150 ± 20 700 ± 200
5 11.8 ± 0.8 80 ± 10 240 ± 70

For laminar flow in a circular pipe, the ratio of vmax/vavg is expected to be 2, where vmax is the

maximum velocity and vavg is the average velocity [45]. vavg was found using vavg =
Q
A . Using

the results for vmax obtained from the Ansys Fluent simulations, we find vmax/vavg is equal to

2.08 in the simulations. This is not surprising considering that the simulations were done for a

rectangular channel and not a circular pipe. The same ratio was calculated for the PIV data and

is given in Table 3.4. We find the average value of vmax/vavg from the experiments to be 2.2 ±

0.2, which agrees with the simulations within the uncertainty.

The flow of Carbopol displayed a plug in the centre of the channel as seen in Figure 3.14b. This

plug spanned two directions, across both the width and the height of the channel, giving a flow

profile with a constant velocity for most of the channel but sharply dropping off at the channel

edges. Within the plug, the Carbopol is unyielded, since the shear stress here is smaller than the
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Table 3.4: vmax/vavg of water in microfluidic channels derived from vmax measured for µPIV
and vavg calculated from the flow rate and nominal channel dimensions.

Flow Rate (µL/hr) 500 µm (µm/s) 300 µm (µm/s) 200 µm (µm/s) 100 µm (µm/s)
250 2.11 2.38
100 2.14 2.44
50 2.39 2.27 2.30
25 2.37 2.37 2.36
10 2.48 2.21 2.04
5 2.13 2.18 1.73

yield stress. A MATLAB code was written to find the average velocity in the plug region and

the width of the plug by fitting a line to the plug as illustrated in Figure 3.15. The average of

this line was taken to be the plug velocity, and the plug region was taken to be the region over

which the velocity remained within 1 standard deviation of the fitted plug velocity. The plug

velocities are shown as a function of flow rate for the different microchannels in Figure 3.16.

For the 0.14 and 0.3 wt% concentrations, we find that the lightly mixed samples for a given

concentration in a given channel at a given flow rate have lower average velocity in the plug

region than the vigorously mixed. For the 1 wt% samples, while the plug velocities are similar

between the two samples.

Liu et al. studied the flow for vigorously mixed 0.14 wt% Carbopol in 1 cm long square mi-

crochannels. In a 500 µm channel, they measured a plug velocity of approximately 90 µm/s for

55 µL/hr and approximately 120 µm/s for a flow rate of 70 µL/hr [2]. In contrast, in a 500 µm

channel, we measured the plug velocity to be 63 ± 1 µm/s for a flow rate of 50 µL/hr and a plug

velocity of 111.3 ± 0.3 µm/s for a flow rate of 100 µL/hr. There are differences between our

fluids and our experimental methods. Our Carbopol has a yield stress of 12.9 ± 0.4 Pa, and Liu,

et al.’s Carbopol had a yield stress of 10.5 ± 0.2 Pa. For the experiments here a computer con-

trolled dual syringe pump ideally suited for creating extremely uniform and pulsation-free flow
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Figure 3.15: Flow profile of vigorously mixed 0.3 wt% Carbopol flowing at 50 µL/hr in a 500
µm channel. The black points are the data, the blue line is the mean measured flow profile, and
the red line is a straight line fit to the centre portion of the profile. The average of this straight
line is taken as the plug velocity.

was used and the microchannel moulds were fabricated using a more precise milling procedure.

Table 3.5 gives the plug width averaged over the flow rates for each fluid in each channel.

The width of the plug did not depend systematically on flow rate, nor did it depend on concen-

tration, but it did depend on preparation method. The plugs observed in lightly mixed Carbopol

were, on average, 13% wider than the vigorously mixed samples.

Similar experiments were performed with Medium BIS and High BIS 10 wt% PNIPAM as

shown in Figure 3.17. PNIPAM was analyzed the same way as Carbopol, and the measured

plug velocities were on the same order as Carbopol. Both samples were tested in a 300 µm

channel. Here Medium BIS PNIPAM displayed a plug velocity approximately 20% greater
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Figure 3.16: Average plug velocities of Carbopol samples in each channel at the mid-plane,
approximately half way along the channel. a) lightly mixed 0.14 wt% Carbopol, b) vigorously
mixed 0.14 wt% Carbopol, c) lightly mixed 0.3 wt% Carbopol, d) vigorously mixed 0.3 wt%
Carbopol, e) lightly mixed 1 wt% Carbopol, f) vigorously mixed 1 wt% Carbopol.

than High BIS PNIPAM for flow rates above 25 µL/hr. At flow rates between 25 and 5 µL/hr,

Medium BIS PNIPAM displayed a plug velocity approximately 50% lower than High BIS PNI-

PAM. At 1 µL/hr, Medium BIS PNIPAM displayed a plug velocity 72% lower than High BIS

PNIPAM.

Like Carbopol, the plug width for PNIPAM remained fairly consistent across flow rates and

showed no significant difference between the two samples used. The average plug width across

flow rates are shown in Table 3.5. PNIPAM had a plug width similar to the lightly mixed Car-

bopol samples.
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Figure 3.17: Average plug velocities of PNIPAM samples in each channel at the mid-plane,
approximately half way along the channel. a) Medium BIS and b) High BIS.

Table 3.5: Width of plug averaged over flow rates displayed by Carbopol and PNIPAM samples
at the mid-plane, approximately half way along the channel.

Sample 500 µm 300 µm 200 µm 100 µm
Plug Width (µm) Plug Width (µm) Plug Width (µm) Plug Width (µm)

Carbopol
0.14 wt%, light 460 ± 20 220 ± 5 144 ± 9 71 ± 2

0.14 wt%, vigorous 410 ± 40 198 ± 10 130 ± 10
0.3 wt%, light 470 ± 10 248 ± 6 91 ± 6

0.3 wt%, vigorous 370 ± 20 192 ± 8 200 ± 20
1 wt%, light 430 ± 40

1 wt%, vigorous 400 ± 40
10 wt% PNIPAM

Medium BIS 200 ± 20 130 ± 10 70 ± 10
High BIS 320 ± 20 180 ± 10

Average % of 81% 69% 76% 77%
Channel Width
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3.4.1 Analysis

Simulations of Carbopol and PNIPAM were attempted using Ansys Fluent. Fluent’s implemen-

tation of the Herschel-Bulkley model is regularized by assuming a constant viscosity ηr =
σy

γ̇r

for stresses lower than σy and shear rates lower than a user-specified critical shear rate, γ̇r. We

found that the results of the simulations depended greatly on the choice of γ̇r but did not have

a dependence on yield stress. This was unexpected and clearly incorrect. In lieu of simulations

we have fit the velocity profiles of Carbopol and PNIPAM to an equation by Escudier and Presti

for the flow of a Herschel-Bulkley fluid in a circular pipe [46],

v(r) =
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)
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, (3.1)

where

n = power law index from rheological experiments,

σw = stress at the walls,

k = consistency index from rheological experiments,

R = 1
2 channel width,

σy = yield stress from rheological experiments,

r = location within channel.

.

Values for the parameters of the fit to the Herschel-Bulkley model from Table 3.1 were used

for σy, k, and n. σw was adjusted iteratively until v in the plug region matched the plug velocity

found using µPIV within 4 significant figures. σw was always greater than the yield stress,

increased as channel size decreased, and increased as flow rate increased.

An example of a plot of equation 3.1 is shown in Figure 3.18 with the mean µPIV data for

Carbopol plotted overtop. The equation predicts a smaller plug region than that measured by
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µPIV. This difference is possibly a result of the equation being for a circular channel whereas

the experiments were performed in square channels. Despite this, the experimentally measured

velocity profile is qualitatively similar to that predicted by equation 3.1.

Figure 3.18: Plot of equation 3.1 for vigorously mixed 0.3 wt% Carbopol flowing at 50 µL/hr in
a 500 µm channel, overlayed with the mean µPIV data. The black circles represent equation 3.1
when r >> σy

σw
· R, the red circles represent the equation otherwise, and the blue line represents

the µPIV data.

A straight line was fit to a logarithmic plot of flow rate versus σw − σy. σy was adjusted man-

ually so that the data appeared linear on this plot. Data for lightly mixed 0.14 wt% Carbopol

in a 500 µm channel are shown in Figure 3.19. The best value of σy in this case was 4.7 ± 0.2

Pa. This is very close to the yield stress of 4.4 ± 0.1 Pa measured for this sample using the

rheometer. The yield stress that gave the best fit for each sample are shown in Table 3.6. The

slope of the fit is equal to the inverse of the power law index, n. The values of n obtained from

the fit are shown in Table 3.7. There is no systematic variation in n with channel size. In the

case of lightly mixed 0.14 wt% Carbopol there appears to be an increase in n in the smaller
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channels, but it is necessary to observe more fluids in the smaller channels to make a definite

conclusion.

Figure 3.19: Logarithmic plot of flow rate versus σw −σy lightly mixed 0.14 wt% Carbopol in
a 500 µm channel using a yield stress of 4.7 Pa.

In the 500 and 300 µm channels, the yield stress found by fitting the µPIV data was always

slightly higher than that found by the rheometer, but the results were consistent between the

channels. In the 200 µm channel, lightly mixed 0.14 wt% Carbopol gave a yield stress con-

sistent with the value found in the larger channels, vigorously mixed 0.14 wt% Carbopol gave

a slightly higher yield stress than it did in the larger channels, and vigorously mixed 0.3 wt%

Carbopol gave a yield stress slightly lower than it did in the larger channels. There was, how-

ever, a significant increase in yield stress in the 100 µm channel from that found in the larger

channels. Lightly mixed 0.14 wt% Carbopol was 68% larger, and lightly mixed 0.3 wt% Car-

bopol was 35% larger in the 100 µm channel than in the larger channels. Jofore et al. [20]
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Table 3.6: Yield stresses that resulted in the best fit for a logarithmic plot of σw − σy vs. flow
rate.

Rheometer 500 µm 300 µm 200 µm 100 µm
Sample σy (Pa) σy (Pa) σy (Pa) σy (Pa) σy (Pa)

Carbopol
light 0.14 wt% 4.4 ± 0.1 4.7 ± 0.2 4.7 ± 0.2 4.7 ± 0.2 7.9 ± 0.4

vigorous 0.14 wt% 12.9 ± 0.4 13.0 ± 0.8 13.9 ± 0.3 15.1 ± 0.3
light 0.3 wt% 9.57 ± 0.08 11.2 ± 0.2 11.0 ± 0.5 15 ± 2

vigorous 0.3 wt% 18.8 ± 0.1 20 ± 2 10 ± 10 8 ± 8
light 1 wt% 24.6 ± 0.2 27.4 ± 0.4

vigorous 1 wt% 104 ± 0.2 126 ± 2
10 wt% PNIPAM at 20 °C

Medium BIS 38 ± 2 63 ± 3 30 ± 30
High BIS 13 ± 1 36 ± 2 75 ± 5 60 ± 60

and Yan et al. [21] also found an increase in yield stress of Carbopol in confined geometries,

in agreement with the present results. Liu, et al., on the other hand, who performed similar

microchannel experiments, found a decrease in yield stress of Carbopol when it was confined

to channels smaller than 150 µm [2], which was consistent with work by Geraud, et al. [13].

A similar analysis was carried out for the µPIV data obtained with PNIPAM flowing in the

microchannels. In contrast to what was found for Carbopol, there was no change in yield stress

between the 200 and 100 µm channel as shown in Table 3.6. This is expected since, as seen in

our dynamic light scattering data, PNIPAM has a signifcantly smaller particle size than Car-

bopol. In a 100 µm channel, vigorously mixed Carbopol has a mean particle size to channel

size ratio of 1.9 × 10−1 and lightly mixed Carbopol has a ratio of of 4 × 10−2. PNIPAM, on the

other hand, has a particle size to channel size ratio of 1.4× 10−3 for Medium BIS PNIPAM and

1.9 × 10−3 for High BIS PNIPAM.
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Table 3.7: Inverse of slope values of a logarithmic plot of flow rate versus σw − σy, which is
equivalent to the power law index, n.

Rheometer 500 µm 300 µm 200 µm 100 µm
Sample n n n n n

Carbopol
light 0.14 wt% 0.48 ± 0.01 0.40 ± 0.08 0.48 ± 0.07 0.9 ± 0.1 0.69 ± 0.08

vigorous 0.14 wt% 0.42 ± 0.02 0.28 ± 0.05 0.43 ± 0.04 0.44 ± 0.03
light 0.3 wt% 0.458 ± 0.003 0.46 ± 0.06 0.36 ± 0.04 0.40 ± 0.06

vigorous 0.3 wt% 0.424 ± 0.002 0.36 ± 0.06 0.21 ± 0.04 0.20 ± 0.04
light 1 wt% 0.488 ± 0.003 0.47 ± 0.02

vigorous 1 wt% 0.377 ± 0.007 0.44 ± 0.03
10 wt% PNIPAM at 20 °C

Medium BIS 0.424 ± 0.006 0.47 ± 0.09 0.14 ± 0.04
High BIS 0.377 ± 0.006 0.48 ± 0.03 0.35 ± 0.03 0.3 ± 0.1



Chapter 4

Discussion and Conclusions

In this thesis we have presented the measurements of the rheological behaviour and particle

size of Carbopol and PNIPAM. We have also presented a study of the flow of water, Carbopol,

and PNIPAM in square microchannels. The flow of water was simulated using Ansys Fle-

unt. The flow of Carbopol and PNIPAM was analyzed using an equation for laminar flow of a

Herschel-Bulkley fluid in a circular pipe [46].

Dynamic light scattering was used to characterize the particle size of Carbopol and PNIPAM.

The measurements revealed that increasing mixing time decreased the mean particle size and

polydispersity of Carbopol. This is in agreement with the work of Dinkgreve, et al. and Lee, et

al, who both found that increasing mixing time decreases the particle size of Carbopol [12,23].

The measurments also revealed that PNIPAM has a mean particle size on the order of 100

nanometers, significantly smaller than Carbopol which has a mean particle size of a few mi-

crometers. Increasing the crosslinker concentration of PNIPAM was shown to decrease the

mean particle size and polydispersity. This is in agreement with the work done by Senff and

Richtering [16]

We performed four rheological tests on Carbopol: flow curves, amplitude sweeps, frequency

56
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sweeps, and creep tests. The flow curves showed that the yield stress of vigorously mixed sam-

ples was significantly larger than the yield stress of lightly mixed samples. Flow curves were

measured for both increasing and decreasing shear rates. 0.3 wt% and lightly mixed 1 wt%

Carbopol samples showed no hysteresis, however 0.14 wt% and vigorously mixed 1 wt% Car-

bopol did. Although Carbopol is widely regarded as a simple yield-stress fluid with no hystere-

sis [33–40], studies have shown that Carbopol does not always behave as a simple yield-stress

fluid and can display hysteresis [41]. Dinkgreve, et al., using a different form of Carbopol

(Ultrez U10), found that vigorously mixed samples showed hysteresis but lightly mixed did

not [23]. The emergence of hysteresis in our data could be attributed to differences in the type

of Carbopol used and differences in preparation method.

All amplitude and frequency sweeps were in excellent agreement with previous measurements

on Carbopol [10, 11]. We determined the yield stress of Carbopol samples using creep tests.

The yield stresses determined from the creep tests were in good agreement with those deter-

mined from the flow curves.

Three samples of PNIPAM were prepared using the compositions in Table 2.1. Increasing

and decreasing flow curves were also performed on 10 wt% PNIPAM at temperatures rang-

ing from 5°C to 40 °C. The flow curves for Low BIS PNIPAM did not have much curvature,

making it hard to fit the data to the Herschel-Bulkley model. Medium and High BIS PNIPAM

showed a decrease in yield stress and consistency index as temperature increased, while the

power law index remained relatively constant. This decrease in yield stress is due to the in-

crease in particle size that occurs as PNIPAM is heated.

The viscosity of PNIPAM was measured at a fixed shear rate as a function of temperature.

Viscosity decreased linearly with temperature until around 25°C where there was a change

in slope and a nonlinear temperature dependence. Above 33°C, the LCST, the viscosity ap-
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proached a constant value. Low BIS PNIPAM displayed the highest viscosity at low temper-

atures and High BIS PNIPAM displayed the lowest viscosity. This correlates to High BIS

PNIPAM having a smaller mean particle size than Medium BIS PNIPAM and the particle size

of each decreasing as the temperature increases. At a given concentration, smaller particles are

further apart in the solution resulting in weaker hydrodynamic interactions and less dissipation.

The result is a smaller viscosity.

Flow of water in 1 cm long square microchannels ranging in width from 100 µm to 500 µm

was simulated using Ansys Fluent. The simulation results for water were as expected, with an

approximately parabolic profile and the maximum velocity increasing with channel size and

with flow rate. The ratio vmax/vavg was consistently equal to 2.08. For laminar flow in a circular

pipe, the ratio of vmax/vavg is expected to be 2. This difference is not surprising considering we

used square and not circular channels.

Using micro-particle image velocimetry, the flow of the fluids was visualized in 1 cm long

square microchannels ranging in width from 100 µm to 500 µm. These experiments improved

on previous work by Liu, et al. [2] by using new microchannel moulds that were manufac-

tured using a more precise milling machine giving smoother channels, a computer controlled

dual syringe pump giving more accurate and pulsation-free flow rates, and by taking velocime-

try measurements at multiple heights throughout the channel giving a quasi-three-dimensional

measurement of the flow profile.

Velocity profiles measured for water were approximately parabolic and the maximum velocity

increased linearly with flow rate and with channel size as expected. Experimental velocity pro-

files of water had an average vmax/vavg of 2.2 ± 0.2. This agrees with those of the simulations.

The fact that the experimental results for water were in agreement with our simulations, and

that both displayed the expected dependence on channel size and flow rate, gives us confidence
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that our experimental and analysis methods are accurate.

The velocity profiles for Carbopol and PNIPAM displayed a plug in the centre of the chan-

nel, as expected for a yield-stress fluid [47]. For 0.14 and 0.3 wt%, vigorously mixed Carbopol

samples had greater average velocities in the plug region than the lightly mixed. Meanwhile

the 1 wt% Carbopol samples showed similar plug velocities. Using the same type of Carbopol,

Liu et al. studied vigorously mixed 0.14 wt% Carbopol in 1 cm long square microchannels. In

a 500 µm channel, they measured a plug velocity of approximately 90 µm/s for a flow rate of

55 µL/hr and approximately 120 µm/s for a flow rate of 70 µL/hr [2]. In contrast, in a 500 µm

channel we measured the plug velocity to be 63 ± 1 µm/s for a flow rate of 50 µL/hr and 111.3

± 0.3 µm/s for a flow rate of 100 µL/hr.

There is a difference in yield stress between our Carbopol and that of Liu, et al. Our 0.14

wt% vigorously mixed Carbopol had a yield stress of 12.9 ± 0.4 Pa while the sample used

by Liu, et al. displayed a yield stress of 10.5 ± 0.2 Pa. This may at least partly explain the

difference in measured plug velocities. Oddly though, we found that the plug velocity of 0.14

and 0.3 wt% Carbopol, for a given flow rate in a given channel, increased as yield stress in-

creased. The difference in the plug velocity measured by Liu. et al and the work here may

also be partly due to differences in experimental procedures. Since the work done by Liu, et

al. we have made several improvements to our experimental methods. A computer controlled

syringe pumps ideally suited for creating extremely uniform and pulsation-free flow was used.

In addition, the microchannel moulds were fabricated using a more precise milling procedure.

For our experimental conditions, the average plug width measured for Carbopol did not de-

pend on concentration, but it did depend on preparation method. On average, the plug width

measured for lightly mixed Carbopol was 13% larger than the width measured for vigorously

mixed Carbopol. This difference is consistent with the difference measured in yield stress: the
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lightly mixed samples have a lower yield stress than the vigorously mixed samples of the same

concentration. Oddly, this is the opposite of what we expect for a correlation between plug

width and yield stress.

Medium and High BIS PNIPAM were used in µPIV experiments. Both samples displayed

plug velocities on the same order as those observed in Carbopol. Like Carbopol, the width of

the plug for PNIPAM remained fairly consistent as a function of flow rates and no significant

difference between the two samples was observed. The plug width measured for PNIPAM was

similar to that measured for lightly mixed Carbopol samples.

In lieu of simulations we fit the velocity profiles of Carbopol and PNIPAM to an equation

by Escudier and Presti for the flow of a Herschel-Bulkley fluid in a circular pipe [46]. In

the larger channels, fitting a straight line to a logarithmic plot of flow rate versus σw − σy

by manually adjusting σy gave a σy slightly higher than the yield stress found by fitting the

Herschel-Bulkley model to flow curve measurements. For Carbopol in a 100 µm channel using

this method the yield stress is significantly higher than it is for the same sample in larger chan-

nels. This change may be due to effecs of confinement becoming significant in the 100 µm

channel. If so, this would indicate that Carbopol begins to display confinment effects when

the width of the channel is between the 200 and 100 µm. This agrees with the work by Liu,

et al who observed confinement effects in square microchannels below 150 µm in width [2].

We observed an increase in yield stress in the 100 µm channel, which is in direct opposition to

the measurements by Liu, et al. [2] and Geraud et al. [13], but in a agreement with some other

studies on confinement [20, 21].

Using the analysis method with equation 3.1, a change in the yield stress was not observed

for PNIPAM in the channels studied. This is presumably due to the fact that the PNIPAM

particles are still much smaller than the channel width, even in the smallest channels studied.
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Unfortunately due to the COVID-19 pandemic my time in the lab was cut short and I was

unable to perform µPIV experiments on all fluids in all the channels. In order to make a strong

conclusion about confinement effects I would have collected data for all my fluids in 100 and

50 µm channels.

Manufacturing 50 µm channels using our soft lithography method proved to be a challenge.

It is unlikely that quality 50 µm channels are possible using current soft lithography methods,

however, they are possible using photolithography. Based on the data we do have, it is expected

that confinement effects would be present for all Carbopol samples, but not PNIPAM, in both

100 and 50 µm channels. We were able, with the data collected, to see a dependence on the

concentration of Carbopol used and its preparation method.

In the future, to understand confiment effects all concentrations and preparation methods of

Carbopol and PNIPAM should be studied in smaller microchannels. To further understand the

polydispersity of the fluids, fluroescent confocal microscopy could be used for imaging. It

would be interesting to see how temperature affects the flow of PNIPAM in microchannels.

Temperature-controlled microchannels could be fabricated using a method called microwiring.

PDMS would be cured around three parallel microwires at very small intervals. Two of the

microwires would be removed, the middle one and one on the edge. Flow would happen in the

middle channel while nitrogen is blown through the other hollow channel to cool the channel.

The remaining microwire would be connected to an electrical source to heat the microchannel.

Overall, in this thesis we have characterized the rheology and particle size of Carbopol and

PNIPAM and their flow when injected into microchannels. We demonstrated that preparation

method has an effect on the properties of Carbopol in all the experimental methods used. We

also demonstrated that the crosslinker (BIS) concentration used for the synthesis on PNIPAM
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has an effect on its viscosity and particle size. Our µPIV experiments provided some evidence

that Carbopol begins to display confinement effects in square microchannels less than 200 µm

in width, although the increase in yield stress observed in our experiments is different from the

decrease in yield stress observed in previous microchannel flow experiments conducted in our

laboratory. We did not observe confinement effects in PNIPAM, indicating that confinement

effects are dependent on particle size. It would be beneficial to perform similar experiments

with these fluids in smaller channels to further quantify confinement effects.
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Appendix A

MATLAB Codes

pivplot3Davg.m

Figure A.1: pivplot3Davg.m GUI.

The program pivplot3Davg.m was used to obtain the flow profiles shown in Figure 3.14. The

program pivplot3Davg.m is a graphical user interface (GUI) that imports text files that have

been exported by LaVision’s DaVis software, converts it into a format that MATLAB will plot,

and plots a three-dimensional graph of velocity, height, and width of the channel. The velocity

69
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and the width come from the data exported from Davis. The height, on the other hand, is set to

increase from zero in increments of the channel width divided by the number of slices, nine, so

that the final height is the same as the channel width. Upon pressing the save button the figure

is saved in multiple formats, as the figure as seen on the GUI, as only the average velocity

values, as a surface plot, and as individual plots of the average velocity for each slice.

1 function varargout = pivplot3davg(varargin)

2 % PIVPLOT3DAVG MATLAB code for pivplot3davg.fig

3 % PIVPLOT3DAVG , by itself, creates a new PIVPLOT3DAVG or raises the existing

4 % singleton*.

5 %

6 % H = PIVPLOT3DAVG returns the handle to a new PIVPLOT3DAVG or the handle to

7 % the existing singleton*.

8 %

9 % PIVPLOT3DAVG(’CALLBACK’,hObject,eventData ,handles ,...) calls the local

10 % function named CALLBACK in PIVPLOT3DAVG.M with the given input arguments.

11 %

12 % PIVPLOT3DAVG(’Property’,’Value ’,...) creates a new PIVPLOT3DAVG or raises the

13 % existing singleton*. Starting from the left, property value pairs are

14 % applied to the GUI before pivplot3davg_OpeningFcn gets called. An

15 % unrecognized property name or invalid value makes property application

16 % stop. All inputs are passed to pivplot3davg_OpeningFcn via varargin.

17 %

18 % *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

19 % instance to run (singleton)".

20 %

21 % See also: GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the response to help pivplot3davg

24

25 % Last Modified by GUIDE v2.5 30-Mar-2020 16:01:45

26

27 % Begin initialization code - DO NOT EDIT

28 gui_Singleton = 1;

29 gui_State = struct(’gui_Name’, mfilename , ...

30 ’gui_Singleton’, gui_Singleton , ...

31 ’gui_OpeningFcn’, @pivplot3davg_OpeningFcn , ...

32 ’gui_OutputFcn’, @pivplot3davg_OutputFcn , ...

33 ’gui_LayoutFcn’, [] , ...

34 ’gui_Callback’, []);
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35 if nargin && ischar(varargin{1})

36 gui_State.gui_Callback = str2func(varargin{1});

37 end

38

39 if nargout

40 [varargout{1:nargout}] = gui_mainfcn(gui_State , varargin{:});

41 else

42 gui_mainfcn(gui_State , varargin{:});

43 end

44 % End initialization code - DO NOT EDIT

45

46 % --- Executes just before pivplot3davg is made visible.

47 function pivplot3davg_OpeningFcn(hObject, eventdata , handles, varargin)

48 handles.output = hObject;

49 set(handles.folder,’String’,’C:\Users\tamie\Documents\Thalia\data - thalia3’);

50 guidata(hObject, handles);

51

52 % --- Outputs from this function are returned to the command line.

53 function varargout = pivplot3davg_OutputFcn(hObject, eventdata , handles)

54 varargout{1} = handles.output;

55

56 % --- Executes on button press in pickafolder.

57 function pickafolder_Callback(hObject, eventdata , handles)

58 path = uigetdir;

59 set(handles.folder,’String’,path);

60

61 function folder_Callback(hObject, eventdata , handles)

62 set(handles.folder,’String’,get(hObject,’String’));

63 guidata(hObject, handles);

64

65 % --- Executes during object creation, after setting all properties.

66 function folder_CreateFcn(hObject, eventdata , handles)

67 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

68 set(hObject,’BackgroundColor’,’white’);

69 end

70

71 function prefix_Callback(hObject, eventdata , handles)

72 set(handles.prefix,’String’,get(hObject,’String’));

73 guidata(hObject, handles);

74

75 % --- Executes during object creation, after setting all properties.
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76 function prefix_CreateFcn(hObject, eventdata , handles)

77 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

78 set(hObject,’BackgroundColor’,’white’);

79 end

80

81 function channelsize_Callback(hObject, eventdata , handles)

82 set(handles.channelsize ,’String’,get(hObject,’String’));

83 guidata(hObject, handles);

84

85 % --- Executes during object creation, after setting all properties.

86 function channelsize_CreateFcn(hObject, eventdata , handles)

87 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

88 set(hObject,’BackgroundColor’,’white’);

89 end

90

91 function xlower_Callback(hObject, eventdata , handles)

92 set(handles.xlower, ’String’, get(hObject, ’String’));

93 guidata(hObject, handles);

94

95 % --- Executes during object creation, after setting all properties.

96 function xlower_CreateFcn(hObject, eventdata , handles)

97 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

98 set(hObject,’BackgroundColor’,’white’);

99 end

100

101 function xupper_Callback(hObject, eventdata , handles)

102 set(handles.xupper, ’String’, get(hObject, ’String’));

103 guidata(hObject, handles);

104

105 % --- Executes during object creation, after setting all properties.

106 function xupper_CreateFcn(hObject, eventdata , handles)

107 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

108 set(hObject,’BackgroundColor’,’white’);

109 end

110

111 function ylower_Callback(hObject, eventdata , handles)

112 set(handles.ylower, ’String’, get(hObject, ’String’));

113 guidata(hObject, handles);

114

115 % --- Executes during object creation, after setting all properties.

116 function ylower_CreateFcn(hObject, eventdata , handles)
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117 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

118 set(hObject,’BackgroundColor’,’white’);

119 end

120

121 function yupper_Callback(hObject, eventdata , handles)

122 set(handles.yupper, ’String’, get(hObject, ’String’));

123 guidata(hObject, handles);

124

125 % --- Executes during object creation, after setting all properties.

126 function yupper_CreateFcn(hObject, eventdata , handles)

127 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

128 set(hObject,’BackgroundColor’,’white’);

129 end

130

131 % --- Executes on button press in figure_check.

132 function figure_check_Callback(hObject, eventdata , handles)

133

134 % --- Executes on button press in flip.

135 function flip_Callback(hObject, eventdata , handles)

136

137 % --- Executes on button press in plotbutton.

138 function plotbutton_Callback(hObject, eventdata , handles)

139 tic

140 ’Plotting...’

141 cla

142 path = get(handles.folder,’String’);

143 prefix = get(handles.prefix, ’String’);

144 dirinfo = dir(path);

145 dirinfo(˜[dirinfo.isdir]) = []; %remove non-directories

146 count = 0;

147 for K = 1 : length(dirinfo)

148 thisdir = dirinfo(K).name;

149 if startsWith(thisdir, prefix) == 1

150 count = count + 1;

151 subdirinfo{count} = dir(fullfile(path, thisdir, ’*.txt’));

152 foldernames{count} = thisdir;

153 end;

154 end

155

156 for i = 1:length(subdirinfo)

157 files(i,:) = {subdirinfo{1}.name};
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158 end;

159

160 [numfolders numfiles] = size(files);

161

162 for j = 1:numfolders % typically 9

163 for u = 1:numfiles %typically 9

164 fullfilename = [path ’\’ char(foldernames{j}) ’\’ char(files(j,u))];

165 % Read file in as a series of strings

166 fid = fopen(fullfilename , ’rb’);

167 strings = textscan(fid, ’%s’, ’Delimiter’, ’’);

168 fclose(fid);

169

170 % Replace all commas with decimal points

171 decimal_strings = regexprep(strings{1}, ’,’, ’.’);

172

173 % Convert to doubles and join all rows together

174 data = cellfun(@str2num , decimal_strings , ’uni’, 0);

175 data = cat(1, data{:});

176

177 % Store data in array

178 alldata(j,u) = {data};

179

180 % Convert to matrix

181 datamat = cell2mat({data});

182

183 % Get x and y data

184 x = datamat(:,2);

185 y = datamat(:,3);

186 x = x.*10ˆ(3);

187 y = y.*10ˆ6;

188 xdata{u} = x;

189 ydata{u} = y;

190 end;

191

192 % Because the settings for my folder are for 40x magnification and I do my

193 % 500 um channel in 20x everything needs to be doubled. -Thalia

194 if str2num(get(handles.channelsize ,’String’)) >400

195 C = 2;

196 else

197 C = 1;

198 end;
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199

200 if get(handles.flip, ’Value’) == 1

201 K = -1;

202 else

203 K = 1;

204 end;

205

206 % Find Average values

207 xavg = K*C.*mean(cell2mat(xdata),2);

208 yavg = K*C.*mean(cell2mat(ydata),2);

209

210 % Remove zero values

211 indices = find((yavg)<=str2num(get(handles.ylower, ’String’)));

212 yavg(indices) = [];

213 xavg(indices) = [];

214 indices = find((yavg)>=str2num(get(handles.yupper, ’String’)));

215 yavg(indices) = [];

216 xavg(indices) = [];

217

218 [lines, ˜, subs] = unique(xavg); %lines = unique values of xavg, ˜ = location of those

unique values in xavg, subs = where each value in lines in located in xavg

219 ymeanperline = accumarray(subs, yavg, [], @mean);

220

221 xavg = xavg - min(xavg);

222 indices5 = find((xavg)>=str2num(get(handles.xupper, ’String’)));

223 yavg(indices5) = [];

224 xavg(indices5) = [];

225 indices6 = find((xavg)<=str2num(get(handles.xlower, ’String’)));

226 yavg(indices6) = [];

227 xavg(indices6) = [];

228

229 xavg = xavg-str2num(get(handles.xlower, ’String’));

230

231 [lines, ˜, subs] = unique(xavg); %lines = unique values of xavg, ˜ = location of those

unique values in xavg, subs = where each value in lines in located in xavg

232 ymeanperline = accumarray(subs, yavg, [], @mean);

233

234 height = [];

235 for v = 1:length(xavg)

236 height(v) = (j-1)*str2num(get(handles.channelsize ,’String’))/(numfolders -1);

237 end;
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238

239 width = xavg;

240 velocity = yavg;

241 if get(handles.figure_check , ’Value’) == 1

242 figure

243 end;

244 scatter3(width,height,velocity ,’.’,’k’);%3D plot

245 xlabel(’Width of Channel (um)’)

246 ylabel(’Height of Channel (um)’)

247 zlabel(’Velocity (um/s)’)

248 hold on

249

250 % Find and plot average

251 [lines, ˜, subs] = unique(xavg); %lines = unique values of xavg, ˜ = location of those

unique values in xavg, subs = where each value in lines in located in xavg

252 ymeanperline = accumarray(subs, yavg, [], @mean);

253 height2 = [];

254 for w = 1:length(lines)

255 height2(w) = (j-1)*str2num(get(handles.channelsize ,’String’))/(numfolders -1);

256 end;

257 plot3(lines,height2,ymeanperline ,’b’,’LineWidth’,5);

258 if j ˜= 1

259 if length(storelines)>length(lines)

260 net = length(storelines) - length(lines);

261 arr = zeros(net,1);

262 lines = [lines;arr];

263 height2 = [height2,transpose(arr)];

264 ymeanperline = [ymeanperline;arr];

265 end

266 end;

267 storelines(j,:) = lines;

268 storeheight(j,:) = height2;

269 storeymeanperline(j,:) = ymeanperline;

270 end;

271 handles.lines = storelines;

272 handles.height = storeheight;

273 handles.ymeanperline = storeymeanperline;

274 ’Done’

275 toc

276 beep on

277 pause(1)
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278 beep

279 guidata(hObject, handles);

280

281 % --- Executes on button press in savebutton.

282 function savebutton_Callback(hObject, eventdata , handles)

283 answer = {[get(handles.prefix,’String’) ’_3D’]};

284 myfolder = [’C:\Users\tamie\Documents\Thalia\data - thalia3\Images\’ answer ’\’];

285 mkdir(cell2mat(myfolder))

286

287 temp = figure;

288 set(gcf, ’Units’, ’Normalized’, ’OuterPosition’, [0.1 0.2 0.5 0.9]);

289 copyobj(handles.axes2,temp)

290 saveas(temp, cell2mat([myfolder char(answer) ’.png’]));

291 saveas(temp, cell2mat([myfolder char(answer) ’.fig’]));

292

293 temp2 = figure;

294 lines = handles.lines;

295 height = handles.height;

296 ymeanperline = handles.ymeanperline;

297 plot3(lines, height, ymeanperline ’,’.’, ’Color’, ’k’);

298 xlabel([’Width of Channel (um)’])

299 ylabel([’Height of Channel (um)’])

300 zlabel([’Velocity (um/s)’])

301 saveas(temp2, cell2mat([myfolder char(answer) ’_mean’ ’.png’]));

302 saveas(temp2, cell2mat([myfolder char(answer) ’_mean’ ’.fig’]));

303

304 temp3 = figure;

305 s = surf(lines, height, ymeanperline);

306 s.EdgeColor = ’none’;

307 xlabel([’Width of Channel (um)’])

308 ylabel([’Height of Channel (um)’])

309 zlabel([’Velocity (um/s)’])

310 saveas(temp3, cell2mat([myfolder char(answer) ’_surf’ ’.png’]));

311 saveas(temp3, cell2mat([myfolder char(answer) ’_surf’ ’.fig’]));

312

313 T = [];

314 temp4 = figure;

315 for i = 1:9

316 plot(lines(i,:), ymeanperline(i,:));

317 xlabel(’Width of Channel (um)’)

318 ylabel(’Velocity (um/s)’)
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319 saveas(temp4, cell2mat([myfolder char(answer) ’_’ num2str(i) ’.png’]));

320 saveas(temp4, cell2mat([myfolder char(answer) ’_’ num2str(i) ’.fig’]));

321 clf

322 end

323

324 close(temp4)

325 close(temp3)

326 close(temp2)

327 close(temp)

plug.m

Figure A.2: plug.m GUI.

The program plug.m was used to find the average velocity of the plug region for Carbopol and

PNIPAM flow profiles. The results of this data was used to form Figure 3.15.

1 function varargout = plug(varargin)

2 % PLUG MATLAB code for plug.fig

3 % PLUG, by itself, creates a new PLUG or raises the existing

4 % singleton*.

5 %

6 % H = PLUG returns the handle to a new PLUG or the handle to

7 % the existing singleton*.
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8 %

9 % PLUG(’CALLBACK’,hObject,eventData ,handles ,...) calls the local

10 % function named CALLBACK in PLUG.M with the given input arguments.

11 %

12 % PLUG(’Property’,’Value ’,...) creates a new PLUG or raises the

13 % existing singleton*. Starting from the left, property value pairs are

14 % applied to the GUI before plug_OpeningFcn gets called. An

15 % unrecognized property name or invalid value makes property application

16 % stop. All inputs are passed to plug_OpeningFcn via varargin.

17 %

18 % *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

19 % instance to run (singleton)".

20 %

21 % See also: GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the response to help plug

24

25 % Last Modified by GUIDE v2.5 30-Mar-2020 14:36:33

26

27 % Begin initialization code - DO NOT EDIT

28 gui_Singleton = 1;

29 gui_State = struct(’gui_Name’, mfilename , ...

30 ’gui_Singleton’, gui_Singleton , ...

31 ’gui_OpeningFcn’, @plug_OpeningFcn , ...

32 ’gui_OutputFcn’, @plug_OutputFcn , ...

33 ’gui_LayoutFcn’, [] , ...

34 ’gui_Callback’, []);

35 if nargin && ischar(varargin{1})

36 gui_State.gui_Callback = str2func(varargin{1});

37 end

38

39 if nargout

40 [varargout{1:nargout}] = gui_mainfcn(gui_State , varargin{:});

41 else

42 gui_mainfcn(gui_State , varargin{:});

43 end

44 % End initialization code - DO NOT EDIT

45

46

47 % --- Executes just before plug is made visible.

48 function plug_OpeningFcn(hObject, eventdata , handles, varargin)
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49 handles.output = hObject;

50 %set(handles.folder,’String’,’C:\Users\tamie\Documents\Thalia\data - thalia3 ’);

51 guidata(hObject, handles);

52

53 % --- Outputs from this function are returned to the command line.

54 function varargout = plug_OutputFcn(hObject, eventdata , handles)

55 varargout{1} = handles.output;

56

57

58 % --- Executes on button press in pickafolder.

59 function pickafolder_Callback(hObject, eventdata , handles)

60 path = uigetdir(’C:\Users\thali\Documents\Research\mid plane data’);

61 set(handles.folder,’String’,path);

62

63 function folder_Callback(hObject, eventdata , handles)

64 set(handles.folder,’String’,get(hObject,’String’));

65 guidata(hObject, handles);

66

67 % --- Executes during object creation, after setting all properties.

68 function folder_CreateFcn(hObject, eventdata , handles)

69 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

70 set(hObject,’BackgroundColor’,’white’);

71 end

72

73 function channelsize_Callback(hObject, eventdata , handles)

74 set(handles.channelsize ,’String’,get(hObject,’String’));

75 guidata(hObject, handles);

76

77 % --- Executes during object creation, after setting all properties.

78 function channelsize_CreateFcn(hObject, eventdata , handles)

79 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

80 set(hObject,’BackgroundColor’,’white’);

81 end

82

83 function xlower_Callback(hObject, eventdata , handles)

84 set(handles.xlower, ’String’, get(hObject, ’String’));

85 guidata(hObject, handles);

86

87 % --- Executes during object creation, after setting all properties.

88 function xlower_CreateFcn(hObject, eventdata , handles)

89 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))
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90 set(hObject,’BackgroundColor’,’white’);

91 end

92

93 function xupper_Callback(hObject, eventdata , handles)

94 set(handles.xupper, ’String’, get(hObject, ’String’));

95 guidata(hObject, handles);

96

97 % --- Executes during object creation, after setting all properties.

98 function xupper_CreateFcn(hObject, eventdata , handles)

99 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

100 set(hObject,’BackgroundColor’,’white’);

101 end

102

103 function ylower_Callback(hObject, eventdata , handles)

104 set(handles.ylower, ’String’, get(hObject,’String’));

105 guidata(hObject, handles);

106

107 % --- Executes during object creation, after setting all properties.

108 function ylower_CreateFcn(hObject, eventdata , handles)

109 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

110 set(hObject,’BackgroundColor’,’white’);

111 end

112

113 function yupper_Callback(hObject, eventdata , handles)

114 set(handles.yupper, ’String’, get(hObject, ’String’));

115 guidata(hObject, handles);

116

117 % --- Executes during object creation, after setting all properties.

118 function yupper_CreateFcn(hObject, eventdata , handles)

119 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

120 set(hObject,’BackgroundColor’,’white’);

121 end

122

123 % --- Executes on button press in plotbutton.

124 function plotbutton_Callback(hObject, eventdata , handles)

125 cla

126 path = get(handles.folder,’String’);

127 dirinfo = dir(path);

128 count = 1;

129 for K = 3: length(dirinfo)

130 thisdir = dirinfo(K).name;
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131 subdirinfo{count} = dir(fullfile(path, thisdir));

132 files(count ,:) = {subdirinfo{1}.name};

133 count = count + 1;

134 end;

135

136 [numfolders numfiles] = size(files);

137

138 for u = 1:numfiles %typically 9

139 fullfilename = [path ’\’ files{u}];

140 % Read file in as a series of strings

141 fid = fopen(fullfilename , ’rb’);

142 strings = textscan(fid, ’%s’, ’Delimiter’, ’’);

143 fclose(fid);

144

145 % Replace all commas with decimal points

146 decimal_strings = regexprep(strings{1}, ’,’, ’.’);

147

148 % Convert to doubles and join all rows together

149 data = cellfun(@str2num , decimal_strings , ’uni’, 0);

150 data = cat(1, data{:});

151

152 % Convert to matrix

153 datamat = cell2mat({data});

154

155 % Get x and y data

156 x = datamat(:,2);

157 y = datamat(:,3);

158 x = x.*10ˆ(3);

159 y = y.*10ˆ6;

160 xdata{u} = x;

161 ydata{u} = y;

162 end;

163

164 % Because the settings for my folder are for 40x magnification and I do my

165 % 500 um channel in 20x everything needs to be doubled. -Thalia

166 if str2num(get(handles.channelsize ,’String’)) >400

167 C = 2;

168 else

169 C = 1;

170 end;

171
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172 if get(handles.flip, ’Value’) == 1

173 K = -1;

174 else

175 K = 1;

176 end;

177

178 % Find Average values

179 xavg = K*C.*mean(cell2mat(xdata),2);

180 yavg = K*C.*mean(cell2mat(ydata),2);

181

182 % Remove zero values

183 indices = find((yavg)<=str2num(get(handles.ylower, ’String’)));

184 yavg(indices) = [];

185 xavg(indices) = [];

186 indices = find((yavg)>=str2num(get(handles.yupper, ’String’)));

187 yavg(indices) = [];

188 xavg(indices) = [];

189

190 [lines, ˜, subs] = unique(xavg); %lines = unique values of xavg, ˜ = location of those unique

values in xavg, subs = where each value in lines in located in xavg

191 ymeanperline = accumarray(subs, yavg, [], @mean);

192

193 xavg = xavg - min(xavg);

194 indices5 = find((xavg)>=str2num(get(handles.xupper, ’String’)));

195 yavg(indices5) = [];

196 xavg(indices5) = [];

197 indices6 = find((xavg)<=str2num(get(handles.xlower, ’String’)));

198 yavg(indices6) = [];

199 xavg(indices6) = [];

200

201 xavg = xavg-str2num(get(handles.xlower, ’String’));

202

203 width = xavg;

204 velocity = yavg;

205

206 scatter(width,velocity ,’.’,’k’);%3D plot

207 xlabel(’Width of Channel (um)’)

208 ylabel(’Velocity (um/s)’)

209 hold on

210

211 % Find and plot average
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212 [lines, ˜, subs] = unique(xavg); %lines = unique values of xavg, ˜ = location of those unique

values in xavg, subs = where each value in lines in located in xavg

213 ymeanperline = accumarray(subs, yavg, [], @mean);

214 plot(lines, ymeanperline ,’b’,’LineWidth’,5);

215 hold off

216 handles.data = [ymeanperline lines];

217 ’Plotted’

218 guidata(hObject, handles);

219

220 % --- Executes on button press in flip.

221 function flip_Callback(hObject, eventdata , handles)

222

223 % --- Executes on button press in tolerance.

224 function tolerance_Callback(hObject, eventdata , handles)

225 set(handles.tolerance , ’String’, get(hObject,’String’));

226 guidata(hObject,handles);

227

228 % --- Executes during object creation, after setting all properties.

229 function tolerance_CreateFcn(hObject, eventdata , handles)

230 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

231 set(hObject,’BackgroundColor’,’white’);

232 end

233

234 % --- Executes on button press in analyze.

235 function analyze_Callback(hObject, eventdata , handles)

236 channelsize = str2num(get(handles.channelsize , ’String’));

237 data = handles.data;

238 ydata = data(:,1);

239 xdata = data(:,2);

240 tol = str2num(get(handles.tolerance ,’String’));

241 count = 0;

242 for i = 2:length(ydata)

243 if abs(ydata(i,1)-ydata(i-1,1)) < tol

244 count = count + 1;

245 result(:,count) = [ydata(i,1) xdata(i,1)];

246 end

247 end

248 result

249 len = length(result);

250 set(handles.startnum, ’String’, result(2,1));

251 set(handles.endnum, ’String’, result(2,len));
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252 avg = mean(result(1,:));

253 stdev = std(result(1,:));

254 pluglen = result(2,len)-result(2,1);

255 err = channelsize/length(ydata);

256 set(handles.velocity, ’String’, avg);

257 set(handles.std, ’String’, stdev);

258 set(handles.pluglen, ’String’, pluglen);

259 set(handles.err, ’String’, err);

260 startnum = result(2,1); %Where my program determined the start of the plug to be

261 endnum = result(2,len);

262 xplug = xdata;

263 yplug = ydata;

264 indstart = find(xplug<startnum);

265 xplug(indstart) = [];

266 yplug(indstart) = [];

267 indend = find(xplug>endnum);

268 xplug(indend) = [];

269 yplug(indend) = [];

270 f = fit(xplug,yplug,’poly1’)

271 %figure(1)

272 hold on

273 h = plot(f,xplug,yplug)

274 set(h,’LineWidth’,2)

275 xlabel([’Width of Channel (’ char(181) ’m)’])

276 ylabel([’Velocity (’ char(181) ’m/s)’])

277 b = gca; legend(b,’off’);

278 hold off

279

280 count2 = 0;

281 standev = std(yplug);

282 indend = find(xdata>endnum);

283 m = 2;

284 n = length(xplug);

285 result2=[];

286 for i = m:n

287 if abs(ydata(i,1)-ydata(i-1,1)) > 0.1*standev

288 count2 = count2 + 1;

289 result2(count2 ,:) = [ydata(i,1);xdata(i,1)];

290 end

291 end

292 result2
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293 ’Analyzed’

294 guidata(hObject,handles);

295

296 function startnum_Callback(hObject, eventdata , handles)

297 set(handles.startnum, ’String’, get(hObject, ’String’));

298 guidata(hObject, handles);

299

300 % --- Executes during object creation, after setting all properties.

301 function startnum_CreateFcn(hObject, eventdata , handles)

302 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

303 set(hObject,’BackgroundColor’,’white’);

304 end

305

306 function endnum_Callback(hObject, eventdata , handles)

307 set(handles.endnum, ’String’, get(hObject, ’String’));

308 guidata(hObject, handles);

309

310 % --- Executes during object creation, after setting all properties.

311 function endnum_CreateFcn(hObject, eventdata , handles)

312 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

313 set(hObject,’BackgroundColor’,’white’);

314 end

315

316 function pluglen_Callback(hObject, eventdata , handles)

317 set(handles.pluglen, ’String’, get(hObject, ’String’));

318 guidata(hObject, handles);

319

320 % --- Executes during object creation, after setting all properties.

321 function pluglen_CreateFcn(hObject, eventdata , handles)

322 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

323 set(hObject,’BackgroundColor’,’white’);

324 end

325

326 function err_Callback(hObject, eventdata , handles)

327 set(handles.err, ’String’, get(hObject, ’String’));

328 guidata(hObject, handles);

329

330 % --- Executes during object creation, after setting all properties.

331 function err_CreateFcn(hObject, eventdata , handles)

332 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

333 set(hObject,’BackgroundColor’,’white’);
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334 end

335

336 function velocity_Callback(hObject, eventdata , handles)

337 set(handles.velocity, ’String’, get(hObject, ’String’));

338 guidata(hObject, handles);

339

340 % --- Executes during object creation, after setting all properties.

341 function velocity_CreateFcn(hObject, eventdata , handles)

342 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

343 set(hObject,’BackgroundColor’,’white’);

344 end

345

346 function std_Callback(hObject, eventdata , handles)

347 set(handles.std, ’String’, get(hObject,’String’));

348 guidata(hObject, handles);

349

350 % --- Executes during object creation, after setting all properties.

351 function std_CreateFcn(hObject, eventdata , handles)

352 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

353 set(hObject,’BackgroundColor’,’white’);

354 end

355

356 % --- Executes on button press in savebutton.

357 function savebutton_Callback(hObject, eventdata , handles)

358 temp = figure;

359 set(gcf, ’Units’, ’Normalized’, ’OuterPosition’, [0.1 0.2 0.9 0.9]);

360 copyobj(handles.axes2,temp)

361 prompt = {’Enter figure name’};

362 dlgtitle = ’Figure Name’;

363 dims = [1 35];

364 answer = inputdlg(prompt,dlgtitle,dims);

365 saveas(temp, [char(answer) ’.png’]);

366 close(temp)

367 % endnum = str2num(get(handles.endnum, ’String ’));

368 % startnum = str2num(get(handles.startnum, ’String ’));

369 % pluglen = endnum-startnum;

370 % data = handles.data;

371 % ydata = data(:,1);

372 % xdata = data(:,2);

373 % indstart = find(xdata<startnum);

374 % xdata(indstart) = [];
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375 % ydata(indstart) = [];

376 % indend = find(xdata>endnum);

377 % xdata(indend) = [];

378 % ydata(indend) = [];

379 % velocity = mean(ydata)

380 % set(handles.velocity, ’String’, velocity);

381 % set(handles.pluglen, ’String’, pluglen);

382 % T = [{get(handles.folder,’String ’)}, velocity ,...

383 % get(handles.std, ’String ’), pluglen ,...

384 % get(handles.err, ’String ’)];

385 % xlsappend(’C:\Users\thali\Documents\Research\plug results.xlsx’, T, 1);

386 ’Saved’
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