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Abstract 
Pollination by animals is an important ecosystem service that contributes to the reproduction 

of many angiosperms. Climate change may alter this mutualism by affecting floral traits that 

are important to pollinators. Using Cucumis sativus, I tested the effects of experimentally 

elevated temperature and CO2 concentration on flowering onset, flower number, flower size, 

and floral rewards. Additionally, to better understand plant carbon balance and investment in 

reproduction, I measured biomass partitioning and leaf carbon fluxes of plants under their 

growth conditions. Carbon dynamics were similar across treatments, and plants grown under 

high [CO2] and temperature showed similar biomass production/allocation to control 

plants. Despite these similarities, both factors altered floral traits in ways that could affect 

plant-pollinator relationships. However, temperature effects were common, while CO2 effects 

were not, suggesting that studies focusing on elevated [CO2] may be less valuable than 

studies focusing on elevated temperature or the interaction between [CO2] and temperature.  
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Summary for Lay Audience 

Pollination is vital for the reproduction of many plants, and by supporting plant reproduction, 

pollination maintains food production and wild plant communities. Due to human activities, 

we are experiencing factors of climate change, such as increased temperature and amounts of 

carbon dioxide in the atmosphere. These increases in temperature and carbon dioxide 

concentrations may alter the ways that pollinators interact with the plants they pollinate by 

changing plant traits that pollinators rely on, such as the number and size of flowers, or the 

amount of pollinator food plants produce. To test the effects of climate change on these plant 

traits, and to determine if changes in plant physiology might explain changes in plant traits, I 

grew cucumber plants at different carbon dioxide concentrations and temperatures. I then 

measured flower traits that are important to pollinators (e.g., time to flowering, number of 

flowers, flower size, and amount of pollinator food) and aspects of plant physiology (e.g., the 

amount of carbon taken up by leaves and plant size) at two different plant stages. I found that 

increased carbon dioxide levels and temperature altered flower traits in ways that could affect 

how pollinators interact with plants, but these trait changes did not seem to be related to 

changes in plant physiology. Warming generally had negative effects on plant traits (e.g., 

flowers were smaller), while higher amounts of carbon dioxide reduced the negative effects 

of warming on floral traits, but only at very high temperatures. Interestingly, I also found that 

temperature affected more traits than carbon dioxide, suggesting that warming might be more 

important than carbon dioxide when trying to predict how plants will respond to climate 

change. Furthermore, male and female flowers responded differently to the treatments, and 

plants at later stages tended to have lower trait values and less response to the treatments. To 

get a better sense of plant-pollinator interactions under future climates, studies including 

more plant traits, and pollinator behaviour in response to these trait changes, would be useful. 
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1 Introduction 

1.1 Climate change  

Since the Industrial Revolution, anthropogenic activities, such as fossil fuel use and land 

use change, have dramatically increased the concentration of CO2 ([CO2]) in the 

atmosphere from 280 ppm to 415 ppm (IPCC, 2014; USDC, 2020). By 2100, 

atmospheric [CO2] could be from 750-1300 ppm without mitigation (IPCC, 2014). As a 

result of increases in [CO2] and other greenhouse gases, global mean annual surface 

temperatures could increase by 2.5 - 7.8 °C over the same time span, with the degree of 

warming dependent on mitigation strategies by humans to slow climate change (IPCC, 

2014). 

The Intergovernmental Panel on Climate Change (IPCC) assesses and synthesises 

published research to produce reports detailing our current knowledge of climate change, 

as well as the potential future impacts of, and strategies for adaptation and mitigation to, 

climate change. In order to make recommendations about climate change, the IPCC has 

designated four representative concentration pathways (RCPs). These RCPs make 

assumptions about the extent of future climate drivers, such as emission levels or 

greenhouse gas concentrations, and range from a best case/high mitigation scenario 

(RCP2.6), to stabilising scenarios (RCP4.5 and RCP6), to a worst case/little to no 

mitigation scenario (RCP8.5) (Cubasch et al., 2013). The set [CO2] used for these RCPs 

are 421 ppm (RCP2.6), 538 ppm (RCP4.5), 670 ppm (RCP6.0), and 936 ppm (RCP8.5) 

(Cubasch et al., 2013). Using information from RCP2.6, RCP4.5 and RCP8.5, the Ontario 

Ministry of Natural Resources and Forestry summarised IPCC findings for Ontario in 

2014 (McDermid et al., 2014). Based on this report, mean annual air temperature in the 

Great Lakes Basin (where this research was conducted) is expected to warm between 2.4 

- 4.1 °C under RCP2.6, 3.9 - 5.8 °C under RCP4.5, and between 6.7 - 9.0 °C under 

RCP8.5 by the end of this century (McDermid et al., 2014). 
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Increases in [CO2] and temperature are not the only characteristics of climate change. We 

can also expect more frequent extreme weather events, rising sea levels, and increasingly 

melted glaciers (IPCC, 2014). However, in this thesis I focus on [CO2] and temperature 

impacts for two reasons: first, because temperature and [CO2] are driving the 

aforementioned events, and second, because they are pervasive across the globe. In 

actuality, these [CO2] and temperature changes are already having widespread effects on 

biological processes, including altering plant traits that are important for plant-pollinator 

interactions (e.g., Parmesan, 2007). 

1.2 Plant-pollinator interactions  

1.2.1 Background 

Pollination is the process by which male gametophytes (pollen grains) are transferred 

from the anthers of a plant’s stamen to the stigma of a plant’s pistil (Figure 1.1), this 

facilitates pollen germination, fertilisation, and seed production so that plants can 

reproduce (Willmer, 2011).  

 

 

 

 

 

 

Figure 1.1. Diagram of pollination on a perfect flower (containing both male and 

female reproductive organs). Circles represent pollen grains and the red arrow 

represents pollination. Illustrated by Amy McDonald. 
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Pollination is an important ecosystem service given its roles in agricultural production, 

biodiversity maintenance, and general ecosystem function (Costanza et al., 1997; Eilers et 

al., 2011; Gallai et al., 2009; Klein et al., 2007; Potts et al., 2016). In terms of agricultural 

production, pollination precedes the development of seeds and fruits that are utilised by 

humans. Additionally, for biodiversity maintenance, pollination contributes to both the 

insurance and productivity benefits of biodiversity by allowing outcrossing within plant 

species and maintaining plant populations (Heal, 2001; Potts et al., 2016). Specifically, 

maintenance of biodiversity via pollination provides both managed and wild plant 

populations with increased resilience to stochastic events (e.g., disease or pest outbreaks), 

affording ‘insurance’ for ecosystem services and food production (Heal, 2001). 

Furthermore, more diverse systems can increase productivity via niche differentiation, 

such that resources are more efficiently used by a wider variety of organisms (Heal, 

2001). At the same time, pollination in both anthropogenic and natural ecosystems affects 

habitat structure and food supplies for wildlife, which can indirectly benefit humans via 

recreation and esthetics (Potts et al., 2016).  

As sessile organisms, plants require a vector to complete the transfer of their genetic 

material. Vectors of pollination can be abiotic, such as wind and water, but the majority 

of pollination is carried out by animals (Willmer, 2011). In fact, it is estimated that 

around 85% of angiosperms rely on pollination via animals to at least some extent 

(Ollerton et al., 2011). Animal pollination is also estimated to provide as much as $774 

billion CAD annually in global food production value (Lautenbach et al., 2012; Potts et 

al., 2016), and this value is further increased because animal-pollinated species provide 

essential vitamins and nutrients to the human diet (Eilers et al., 2011). For instance, 

plants reliant on animal pollination produce 90% of vitamin C (Eilers et al., 2011). The 

most common animal pollinators are insects, such as bees or flies (Renner & Ricklefs, 

1995), and within insect pollinators, managed honey bees, such as Apis mellifera, are 

perhaps the most important in terms of direct value to humans.  

Animal pollinators are enticed to provide their pollination services by the promise of 

floral rewards, including products such as pollen and nectar (Willmer, 2011). For bees, 

pollen and nectar are converted into bee bread and honey, which are essential sources of 
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carbohydrates, proteins, and lipids that support survival and reproduction (Nicolson, 

2011). Pollination also relies on a suite of cues at the whole plant and individual flower 

level, including characteristics such as the onset of flowering, flower number, and flower 

size, which can influence pollinator attraction and the efficiency of pollination (Willmer, 

2011).  

1.2.2 Floral traits and plant-pollinator interactions 

The general ways that floral traits influence plant-pollinator interactions are related to 

advertisement, attraction, and efficiency. These can apply at any point along the visitation 

sequence including initial attraction, visitation (e.g., number of flowers visited, duration 

of visit), or departure of the pollinator (Willmer, 2011). In order to be able to compare 

my results to those of other researchers, I selected the commonly measured floral traits 

flowering onset, flower size, flower abundance, and floral rewards to evaluate. In the 

following subsections I cover the ways in which these floral traits have been found to 

influence plant-pollinator dynamics. Due to the importance of bee pollination (from both 

wild and domesticated species), and the abundance of literature on this subject, I 

concentrate largely on bee pollination throughout this thesis. 

1.2.2.1 Onset of flowering 

The timing of flowering onset is important for plant-pollinator interactions to ensure that 

receptive flowers are available when pollinators are foraging (Ramos–Jiliberto et al., 

2018). From the plant perspective, initiating flowering when pollinators are not available 

could be a waste of resources, since plants risk missing pollination entirely and 

insufficient pollination can lead to decreased plant productivity (Kudo & Cooper, 2019). 

To some extent, the risk of insufficient pollination depends on a plant’s reproductive 

strategy; for instance, an absence of pollinators can be particularly problematic if plants 

produce a limited number of flowers over their lifetime or if they flower for a short 

period of time. Furthermore, from the pollinator perspective, mismatched flowering time 

and insect foraging could lead to a significant lack of food resources during critical life 

history stages, such as larval rearing (Brodschneider & Crailsheim, 2010). 
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1.2.2.2 Flower abundance 

The number of flowers that plants produce influences plant-pollinator interactions in two 

main ways. First, the number of open flowers at a given time (display size) influences a 

plant’s advertising ability, with more flowers offering greater advertisement to 

pollinators; this also affects the amount of rewards available in a particular window of 

time (Conner & Rush, 1996). Second, the number of flowers that plants produce over 

their lifetime influences the amount of available floral rewards over a longer period of 

time, with more flowers providing more opportunities for foraging (Willmer, 2011). 

1.2.2.3 Flower size 

Flower size can affect both visual advertisement to pollinators and the efficiency of 

pollination (Conner & Rush, 1996; Galen & Newport, 1987). Larger flowers are 

generally more appealing to pollinators because they are bigger advertisements (Conner 

& Rush, 1996). At the same time, changes in whole flower size can alter the ‘functional 

fit’ between plants and pollinators (the morphological relationship between a pollinator 

and floral sexual organs). Altering the functional fit between plants and pollinators 

affects which pollinators can access resources, and also influences how much energy 

must be expended to forage on a particular flower (Harder, 1986). Morphological 

changes may also be detrimental for plants via direct effects on pollen deposition and 

subsequent seed set (Galen & Newport, 1987; Solís-Montero & Vallejo-Marín, 2017).  

1.2.2.4 Floral rewards 

Floral rewards are essential components of plant-pollinator relationships and the primary 

rewards produced by plants are pollen and nectar (Brodschneider & Crailsheim, 2010). 

For bees, pollen is an important source of protein, lipids, and micronutrients for larval 

growth and sexual maturation, and nectar is an essential source of water and 

carbohydrates for energy metabolism (Nicolson, 2011).  

The dietary value of pollen and nectar depends on the amount of these rewards that is 

available and the concentration of nutritional components in the reward (Brodschneider 
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& Crailsheim, 2010; Nicolson, 2011). Both production and concentration of rewards can 

vary substantially between individuals and species (Pacini et al., 2003; Roulston & Cane, 

2000). In fact, pollen protein levels can be anywhere between 2% and 60% (Roulston et 

al., 2000), while carbohydrate concentrations in nectar have been found to range from 6 

to 85% (Pamminger et al., 2019). The concentration of sugars also alters nectar viscosity, 

and thus the rate of nectar uptake by pollinators (Pivnick & McNeil, 1985). 

Pollen and nectar mainly function as pollinator attractants, but they may also manipulate 

pollinator behaviour during and after foraging based on nutritional information obtained 

from these rewards (Pyke, 2016). Pollinators may use a combination of visual, olfactory, 

and gustatory sensing to assess the quantity and quality of floral rewards, although there 

is still some debate about how, or if, some pollinators assess pollen quality (Muth et al., 

2016; Nicholls & Hempel de Ibarra, 2017; Scheiner et al., 2013). In general, bumble bees 

show a preference for pollen that is high in protein and may prefer pollen with greater 

concentrations of essential amino acids (Cook et al., 2003; Hanley et al., 2008). For 

nectar, the preference in bees appears to be for higher sugar concentrations, with 

concentrations around 50-60% generally providing the fastest rate of energy uptake 

(Roubik & Buchmann, 1984). During foraging, the nutritional information gleaned from 

rewards may affect the decision of pollinators to continue feeding on the same flower 

(Pyke, 2016). After feeding, the nutritional value of pollen and nectar may affect the 

decision to forage on the same plant, another member of the same species, or a different 

species altogether, with corresponding impacts on plant productivity (Pyke, 2016).  

Rewards can also influence plant attractiveness and pollinator behaviour to varying 

degrees depending on the pollinator in question. This is because pollinators vary in their 

sensory abilities, the floral cues they focus on, and in their nutritional requirements 

(Wester & Lunau, 2017). For example, honey bees have approximately 150 olfactory 

receptors (Robertson & Wanner, 2006), while hummingbirds are estimated to have 

around 50 (Steiger et al., 2008).  
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1.2.2.5 Other floral traits 

Other floral traits can also influence plant-pollinator relationships. The complex and 

tightly linked evolutionary history of plants and pollinators has resulted in a multitude of 

traits that are important to this mutualism. As just a few examples, flower colour, scent, 

and shape can also play a role in plant-pollinator interactions (summarised in Willmer, 

2011). Flower colour can act as an advertisement when pollinators are farther away and 

because pollinators see different wavelengths of light than humans, visual cues, like 

nectar guides, can orient pollinators during visitation (Pye, 2018). Flower scent can 

attract pollinators while deterring herbivores and can aid in proper pollinator entrance and 

orientation. Finally, flower shape affects the functional fit between plants and pollinators 

and pollinator visitation time. While these floral metrics were not assessed in this study, 

for more information on floral traits that influence plant-pollinator relationships see 

Willmer (2011). 

1.3 Climate change impacts on plant-pollinator interactions 

Climate change can directly or indirectly affect plant-pollinator interactions via both 

insect and plant responses (Scaven & Rafferty, 2013). Throughout this thesis I focus on 

the consequences of [CO2], temperature, and their interaction from the perspective of the 

plant, and, consequently, insect responses are not covered here in great detail.  

Plants have to invest resources in floral cues and rewards in order to attract pollinators 

and ensure efficient pollination; this can sometimes be costly. For instance, plant 

investment in nectaries can be as much as 37% of daily photosynthesis (Pyke, 1991; 

Southwick, 1984), and allocation of biomass to reproductive structures is estimated to be 

as much as 60% (Bazzaz et al., 1987). The common currency for plant growth and 

metabolism is carbon. In plants, photosynthesis, photorespiration, and respiration 

represent the major carbon fluxes, and the balance between these processes affects the 

resources available for plant growth and development (plant carbon balance). These 

fluxes have been shown to respond to changes in [CO2] and temperature (Dusenge et al., 

2019), and any [CO2]- or temperature-induced change in carbon fluxes can cascade 
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throughout the plant, producing secondary effects on plant physiology, growth, and floral 

traits. Here I provide an overview of photosynthesis, photorespiration, and respiration. I 

also review the main effects of [CO2], temperature, and their interaction on these 

processes, and discuss the effects of changing [CO2] and temperature on plant growth and 

floral traits.  

1.3.1 C3 photosynthesis  

Photosynthesis is the process by which plants harvest and use energy from light in order 

to synthesise carbohydrates from water and CO2 (Taiz & Zeiger, 2002). The 

carbohydrates produced can then be used to fuel cellular processes. For eukaryotic 

photosynthetic organisms, photosynthesis takes place in the chloroplasts and consists of 

two processes: the ‘light reactions’ (light harvesting and the production of chemical 

energy), and the ‘dark reactions’, aka the Calvin-Benson cycle (carbon fixation) (Taiz & 

Zeiger, 2002).   

1.3.1.1 Light reactions 

The light reactions take place in the thylakoid membranes of chloroplasts and function to 

generate energy in the form of adenosine triphosphate (ATP), and reducing power in the 

form of nicotinamide adenine dinucleotide phosphate (NADPH) (Johnson, 2016; Taiz 

and Zeiger, 2002) (Figure 1.2). The first step in the light reactions is the absorption of 

light by chlorophyll pigments. Within the thylakoid membrane, there are two pigment-

protein complexes that harvest incoming solar radiation: photosystem II (PSII), and 

photosystem I (PSI) (Taiz & Zeiger, 2002). PSII and PSI each consist of several light 

harvesting complexes (aggregates of pigments and membrane-embedded proteins), which 

act as antenna complexes to transfer energy from photons towards the reaction centers 

(RCs) of the photosystems, and towards the ‘special pair’ of chlorophyll molecules 

contained therein (Johnson, 2016). The RCs of each photosystem reach peak absorption 

at different wavelengths of light. The RC of PSII peaks at 680 nm (red light), while the 

RC of PSI peaks at 700 nm (far-red light), thus, the initial electron donors for each 

photosystem are referred to as P680 and P700, respectively (Johnson, 2016).  
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Light energy funnelled to the RC of PSII excites an electron within P680 producing 

P680* (excited state of the first electron donor of PSII) (Johnson, 2016). The energy of the 

excited electron can then be dissipated in one of three ways: it can be released as heat, 

emitted via fluorescence, or used in photochemistry (Taiz & Zeiger, 2002). In 

photochemistry, redox reactions pass the electron down an electron transport chain to 

PSI, generating P680+ (oxidized form of the first electron donor of PSII) in the process. 

First, the excited electron from P680* is passed to plastoquinone (PQ) via pheophytin, 

then it is passed from PQ to the cytochrome b6f complex (cyt b6f). From cyt b6f the 

Figure 1.2. Schematic representation of the light reactions of photosynthesis. Light 

energy excites the specialized chlorophyll (P680) in the reaction center of photosystem II 

(PSII). This excites an electron (e-), which travels along an electron transport chain 

through a series of redox reactions. The movement of the electron generates a proton 

gradient across the thylakoid membrane and allows the production of NADPH and ATP, 

which can be used in the Calvin-Benson cycle. H+ = proton, PQ = plastoquinone, Cyt b6f 

= cytochrome b6f, PC = plastocyanin, PSI = photosystem I, P700 = specialized 

chlorophyll in PSI, Fd = ferredoxin, NADP+/NADPH = nicotinamide adenine 

dinucleotide phosphate, ADP = adenosine diphosphate, Pi = inorganic phosphate, ATP = 

adenosine triphosphate. Based on information from Taiz and Zeiger (2002). 



10 

 

electron is passed to plastocyanin (PC), and on to PSI where another photon is absorbed 

to re-excite the electron (Johnson, 2016; Taiz & Zeiger, 2002). At PSI, ferredoxin (Fd) 

then reduces NADP+ to NADPH. At PSII, the oxygen evolving complex oxidizes water, 

producing O2 and an electron from water is passed to P680+ to generate P680 (Johnson, 

2016). The oxidation of water and PQ, and the corresponding deposition of protons in the 

thylakoid lumen, contribute to the establishment of a proton gradient across the thylakoid 

membrane (Taiz & Zeiger, 2002). The protons then move down their concentration 

gradient to the stroma via ATP-synthase, thus generating ATP from adenosine 

diphosphate (ADP) (Taiz & Zeiger, 2002). 

1.3.1.2 Calvin-Benson cycle 

The Calvin-Benson cycle takes place in the chloroplast stroma and utilises the ATP and 

NADPH generated from the light reactions to fix CO2 into carbohydrates (Johnson, 2016; 

Taiz & Zeiger, 2002) (Figure 1.3). In the initial step of the Calvin-Benson cycle, ribulose 

1,5-bisphosphate (RuBP) is combined with CO2 to produce two molecules of 3- 

phosphoglycerate (PGA), and this reaction is catalysed by the enzyme ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) (Taiz & Zeiger, 2002). The PGA is then  

converted stepwise to 1,3-bisphosphoglycerate (BPG) using ATP, and glyceraldehyde-3-

phosphate (G3P) using NADPH (Taiz & Zeiger, 2002). Most of the produced G3P is 

directed back into the Calvin-Benson cycle to regenerate RuBP using ATP, while the rest 

is processed into sucrose or starch (Taiz & Zeiger, 2002) 
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Figure 1.3. Schematic representation of the Calvin-Benson Cycle. In the chloroplast 

stroma, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the 

production of 3-phosphoglycerate (PGA) from carbon dioxide and Ribulose 1,5-

bisphosphate (RuBP). PGA is then converted to 1,3-bisphosphoglycerate (BPG) and 

glyceraldehyde-3-phosphate (G3P) using products from the light reactions. Some G3P is 

used to produce sucrose and starch and some is used to regenerate RuBP. Redrawn and 

modified from Taiz and Zeiger (2002). NADP+/NADPH = nicotinamide adenine 

dinucleotide phosphate, ADP = adenosine diphosphate, ATP = adenosine triphosphate, Pi 

= inorganic phosphate. Based on information from Taiz and Zeiger (2002). 
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1.3.1.3 Modelling photosynthesis 

In the literature, photosynthesis is often reported in terms of Anet (the net rate of CO2 

assimilation), which is the difference between the rate of total CO2 assimilation (i.e., the 

rate of gross photosynthesis) and the rate of CO2 release in photorespiration and 

respiration. Farquhar et al. (1980) proposed a biochemical model of photosynthesis that is 

still commonly used today (the FvCB model). This model outlines two main processes 

that underlie the responses of Anet to intercellular [CO2] (Ci): Rubisco carboxylation 

capacity and RuBP regeneration capacity. Under low [CO2] Rubisco carboxylation 

capacity is often limiting for photosynthesis based on the low availability of CO2 as a 

substrate. However, when [CO2] increases, the ability of the Calvin-Benson cycle to 

regenerate RuBP becomes limiting for Anet, as this regeneration depends on the 

availability of NADPH and ATP produced by the electron transport chain. Ultimately, the 

FvCB model characterises photosynthetic net CO2 uptake as the lowest rate between 

these two processes, and these are the most common biochemical limitations to net 

photosynthesis seen under natural conditions.  

When Anet is measured as a function of Ci, producing an A/Ci curve, the aforementioned 

model can be fit to the measurements and two parameters of photosynthetic capacity can 

then be estimated: the maximum rate of Rubisco carboxylation (Vcmax) and the maximum 

rate of electron transport (Jmax) (Farquhar et al., 1980). For an example of an A/Ci curve 

using my own data see Figure 1.4. 
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1.3.1.4 Effects of CO2 on photosynthesis  

Short term 

Rubisco is a dual function enzyme that can catalyze both the carboxylation of RuBP 

using CO2, and the oxygenation of RuBP using O2 (Peterhansel et al., 2010). The 

oxygenation of RuBP is the first step in the process of photorespiration. In contrast to 

photosynthesis, photorespiration produces one PGA molecule and one molecule of toxic 

2-phosphoglycolate (PG). The generation of PGA from PG requires the utilisation of 

ATP and NADPH, and releases previously fixed CO2 (Taiz & Zeiger, 2002). This has led 

to the conjecture that photorespiration is ‘wasteful’ compared to the use of CO2 in 

Figure 1.4. Example A/Ci curve (net CO2 assimilation rate vs. intercellular CO2 

concentration). The red line (Ac) represents the Rubisco carboxylation-limited region of 

the curve and the blue line (Aj) represents the RuBP regeneration-limited region of the 

curve. The black line shows the lowest rate of these two limitations across a range of 

intercellular [CO2]. Black circles are data from Cucumis sativus modelled in R using the 

Plantecophys package (Duursma 2015). 
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photosynthesis. However, photorespiration also provides photoprotection and is involved 

in plant nitrogen cycling (Peterhansel et al., 2010). 

In response to elevated [CO2] alone, plants generally show increased Anet, which may, in 

turn, increase the carbon available for growth and reproduction. This is brought about via 

two main mechanisms: first, elevated [CO2] provides more substrate to Rubisco, thus 

allowing increased carboxylation rates, and second, elevated [CO2] reduces the 

occurrence of the oxygenation reaction of Rubisco, which decreases carbon and energy 

consumed in photorespiration (Long et al., 2004). As one example of the effects of 

elevated [CO2] on photosynthesis, Ainsworth and Rogers (2007) found that across a suite 

of Free-Air CO2 Enrichment (FACE) studies, C3 plants displayed a 31% stimulation in 

Anet compared to control plants.  

Long term 

Initial stimulation of Anet under higher [CO2] is not constant over time (Drake et al., 

1997). With increased photosynthesis, the carbohydrate concentration of leaves also 

increases (Drake et al., 1997), and in the absence of adequate sink capacity, these 

carbohydrates can accumulate (Long et al., 2004). Accumulated leaf carbohydrates can 

then negatively feed back onto the expression of genes related to photosynthesis, 

resulting in lower investment in Rubisco and reduced photosynthetic capacity (Long et 

al., 2004). However, although photosynthesis is not continually stimulated to the same 

extent under elevated [CO2], plants reared in high CO2 conditions do still tend to show 

greater Anet than their low CO2 counterparts when measured at their respective growth 

conditions, potentially meaning great greater availability of photosynthate to invest in 

plant processes (Leakey et al., 2009). 

1.3.1.5 Effects of temperature on photosynthesis 

Short term 

In response to elevated temperatures, Anet tends to increase up to a temperature optimum 

(Topt), but declines at temperatures beyond this point (Taiz & Zeiger, 2002). Initial 

increases in Anet in response to warmer temperature can be explained by accelerated 
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enzymatic activity under higher temperatures (Arcus et al., 2016). Temperature effects on 

the enzyme Rubisco activase may also explain photosynthetic declines above Topt. 

Rubisco activase ‘primes’ Rubisco to produce PGA and has been shown to be thermally 

labile at moderately high leaf temperatures (Salvucci et al., 2001). As such, under high 

temperatures, Rubisco activase may not be able to maintain an adequate Rubisco 

activation state (Salvucci et al., 2001). On the other hand, photosynthetic declines above 

the Topt might also be explained by declines in the rate of electron transport, and thus 

declines in the production of chemical energy (Yamori et al., 2008).  

Temperature also affects the occurrence of photorespiration by influencing both Rubisco 

specificity and the relative amounts of substrate. Under higher temperatures, Rubisco has 

a higher affinity for O2, thus resulting in more oxygenation reactions (Jordan & Ogren, 

1984; Ku & Edwards, 1977a). At the same time, elevated temperatures result in a greater 

amount of O2 in the chloroplast than CO2 due to the solubility of O2 decreasing more 

slowly with temperature than the solubility of CO2 (Ku & Edwards, 1977b). By 

stimulating photorespiration, high temperatures negatively affect plant carbon balance.  

Long term 

Plants acclimate their photosynthetic processes to changes in growth temperature, with 

greater Vcmax and shifts to a higher Topt when plants are grown under higher temperature 

conditions allowing plants to maintain their performance (reviewed by Dusenge et al., 

2019). However, the degree of photosynthetic acclimation varies across species and 

environmental conditions.  

1.3.1.6 Interactive effects of CO2 and temperature on photosynthesis 

Stomatal conductance (gs) also influences the ability of plants to photosynthesize and 

both [CO2] and temperature affect stomatal function (summarised in Taiz & Zeiger, 

2002). In general, plants experience trade-offs between maintaining photosynthetic rates 

by opening their stomata and limiting water loss by stomatal closure (Medlyn et al., 

2001). Stomatal conductance responds to vapour pressure deficit (VPD) (the difference 

between the maximum moisture holding capacity of the air and the current moisture in 
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the air), which tends to increase with temperature (Taiz & Zeiger, 2002). When VPD is 

high, plants may experience increased water loss via transpiration (Taiz & Zeiger, 2002). 

However, when under elevated [CO2], plants are able to take up the carbon necessary for 

photosynthesis while maintaining lower stomatal conductance, and therefore can limit 

transpirational water losses (Taiz & Zeiger, 2002). This may improve plant responses to 

drought conditions. As one example of the effects of elevated [CO2] on stomatal 

conductance, Ainsworth and Rogers (2007) found that C3 plants exhibited 22% lower 

stomatal conductance at high [CO2] than at current [CO2] across a set of FACE studies. 

Conversely, at the same time as reduced water loss, low stomatal conductance limits the 

ability of plants to take up CO2 (Franks & Farquhar, 1999). This limitation on CO2 

uptake may offset some of the photosynthetic gains obtained from increased 

carboxylation discussed previously and may reduce the photosynthate available for 

investment in plant tissues, such as flowers (Franks & Farquhar, 1999). Moreover, 

reduced stomatal conductance may lead to increased leaf temperatures, which then 

stimulates photorespiration (Kimball & Bernacchi, 2006). 

As mentioned previously, photorespiration is affected by both [CO2] and temperature. 

More specifically, higher [CO2] reduces the occurrence of photorespiration by favouring 

Rubisco carboxylation, while higher temperatures favour the oxygenase function of 

Rubisco (Taiz & Zeiger, 2002). In future conditions of higher [CO2] and temperature, 

elevated [CO2] is expected to repress photorespiration, counteracting temperature-

induced stimulations of photorespiration (Jordan & Ogren, 1984; Long, 1991). In fact, 

studies show that elevated [CO2] stimulates photosynthesis more when temperatures are 

high (Long, 1991). Elevated [CO2] also shifts the thermal optimum of photosynthesis to 

higher temperatures by reducing the occurrence of photorespiration (Sage & Kubien, 

2007; Way et al., 2015). This might mean that with elevated [CO2], plants could 

experience greater photosynthetic gains under temperature conditions that would be 

detrimental if [CO2] were at ambient levels (Way et al., 2015). Thus, warmed plants 

might have comparatively more photosynthate to invest in growth and reproduction when 

grown at elevated [CO2]. 
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1.3.2 Cellular respiration  

Aerobic respiration is the process by which the stored chemical energy of a substrate 

(usually glucose) is released in the form of ATP (Taiz & Zeiger, 2002). The energy 

released by respiration is essential for plant growth and maintenance, and CO2 is released 

as a by-product (Taiz & Zeiger, 2002). Respiration consists of three main processes: 

glycolysis (in the cytosol), the tri-carboxylic acid (TCA) cycle (in the mitochondrial 

matrix) (Figure 1.5), and oxidative phosphorylation (in the inner mitochondrial 

membrane) (Figure 1.6) (Taiz & Zeiger, 2002). 

Glycolysis functions to convert glucose into pyruvate, producing ATP and nicotinamide 

adenine dinucleotide (NADH) in the process (Taiz & Zeiger, 2002). Pyruvate is then 

converted into Acetyl coenzyme A (Acetyl-CoA) to be used in the TCA cycle, and 

through this conversion NADH and CO2 are produced (Taiz & Zeiger, 2002). In the TCA 

cycle, Acetyl-CoA is combined with oxaloacetate to produce citrate and, through several 

other steps, oxaloacetate is eventually regenerated so the cycle can repeat (Taiz & Zeiger, 

2002). Throughout this stepwise series, CO2, NADH, flavin adenine dinucleotide 

(FADH2), and some ATP are released (Taiz & Zeiger, 2002). Finally, to produce greater 

amounts of ATP to power cellular processes, the reducing power generated through 

glycolysis and the TCA cycle is used in oxidative phosphorylation (Taiz & Zeiger, 2002). 

Oxidative phosphorylation takes place in the inner mitochondrial membrane, and the 

chemical energy from glycolysis and the TCA cycle is used to produce ATP via an 

electron transport chain (Taiz & Zeiger, 2002). The components of the electron transport 

chain, in order, are NADH dehydrogenase, succinate dehydrogenase, cytochrome b61, 

cytochrome oxidase, and ATP synthase (Taiz & Zeiger, 2002). 
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Figure 1.5. Schematic representation of glycolysis and the tricarboxylic acid (TCA) 

cycle. Glycolysis converts glucose to pyruvate. Pyruvate then is converted into Acetyl 

CoA, which is used in the TCA cycle to generate reducing power in the form of NADH 

and FADH2 (highlighted in yellow). Acetyl CoA = Acetyl Coenzyme A, NAD+/NADH = 

nicotinamide adenine dinucleotide, FAD/FADH2 = flavin adenine dinucleotide, ADP = 

adenosine diphosphate, Pi = inorganic phosphate, ATP = adenosine triphosphate. Based 

on information from Taiz and Zeiger (2002). 
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1.3.2.1 Effects of CO2 on respiration 

Short term 

In general, elevated [CO2] has little effect on dark respiration (RD) in the short term (i.e., 

seconds to hours) (Amthor, 2000).  

Long term 

In contrast to short-term effects on respiration, over the long term, the effects of [CO2] 

are variable (reviewed by Way et al., 2015). Several studies show increased RD when 

plants were grown at higher [CO2] (Davey et al., 2004; Markelz et al., 2014; Shapiro et 

Figure 1.6. Schematic representation of oxidative phosphorylation. Reducing power 

from glycolysis and the tricarboxylic acid cycle is used in oxidative phosphorylation to 

support production of adenosine triphosphate (ATP) by ATP synthase by moving an 

electron down an electron transport chain and generating a proton gradient across the 

inner mitochondrial membrane. H+ = proton, NAD+/NADH = nicotinamide adenine 

dinucleotide, UQ = ubiquinone, FAD/FADH2 = flavin adenine dinucleotide, Cyt c = 

cytochrome c, ADP = adenosine diphosphate, Pi = inorganic phosphate, ATP = adenosine 

triphosphate. Based on information from Taiz and Zeiger (2002). 
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al., 2004), potentially mediated by increased leaf carbohydrate content (substrate for 

respiration), or greater numbers of mitochondria (Griffin et al., 2001). However, several 

studies have also shown no change in rates of respiration in response to high [CO2] 

(Ayub et al., 2011, 2014; Crous et al., 2012), and some show reduced respiration rates 

(Gifford et al., 1985), possibly linked to lower leaf nitrogen concentrations, and thus 

lower metabolic rates (Ainsworth & Long, 2005).  

1.3.2.2 Effects of temperature on respiration 

Short term 

Temperature has a greater effect on respiration than does [CO2]. In the short-term, higher 

temperatures increase respiration rates by stimulating enzyme function. Thus, plants may 

be expected to burn through their carbon supplies more quickly in warmed conditions, 

with less available for plant processes, such as growth and reproduction. However, these 

temperature-driven exponential increases in respiration occur up to a temperature 

optimum of ~50 °C (reviewed by Way et al., 2015).  

Long term 

Over longer periods of time, plants acclimate their respiratory processes to increased 

temperatures. This may be due to reductions in the temperature sensitivity of respiration 

(i.e., Q10, the change in the rate of respiration for a 10 °C increase in temperature), or 

reduced respiration rates at low temperatures (Atkin & Tjoelker, 2003; Dusenge et al., 

2019). Acclimation often helps maintain homeostasis, whereby plants grown under 

different thermal conditions have the same respiration rate at their respective growth 

temperatures (Slot & Kitajima, 2015), thus improving the plant carbon balance in a 

warmer environment. So far, the mechanisms underlying respiratory acclimation to 

temperature are unclear (Dusenge et al., 2019).   

1.3.2.3 Interactive effects of CO2 and temperature on respiration 

Temperature effects tend to dictate respiratory changes when plants are grown at both 

elevated [CO2] and temperature (Dusenge et al., 2019). For instance, Tjoelker et al. 
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(1999) found that trees grown under elevated [CO2] and temperature had few [CO2]-

mediated effects on respiration, while higher temperature treatments tended to decrease 

respiration rates (i.e., induce acclimation). 

1.3.3 Development and biomass production 

Plant carbon balance, the initiation of plant organs, and the expansion of plant organs are 

the main factors influencing plant biomass production and allocation to different tissues 

(Morison & Lawlor, 1999). More available carbon associated with an increasingly 

positive plant carbon balance allows increased production of ATP, which can be used in 

plant growth and development and can stimulate plant growth rates or biomass 

production, as well as providing greater C availability for building material (Morison & 

Lawlor, 1999). In addition, the rate of organ initiation influences the number of organs 

that are produced, while the rate and duration of organ expansion influence the final size 

of plant organs (Morison & Lawlor, 1999).  

1.3.3.1 Effects of CO2 on development and biomass production 

A common outcome from increased photosynthetic rates at elevated [CO2] is greater 

biomass production, or the so-called ‘CO2 fertilisation effect’. So far, there is evidence of 

enhanced biomass production under elevated [CO2] in both wild plants and crop species. 

With elevated [CO2], wheat aboveground biomass increased 25% (Broberg et al., 2019), 

rice biomass increased 21% (Ainsworth, 2008), and soybean shoot biomass increased 

25% (Kimball, 2016). Similarly, biomass in natural systems has increased with higher 

[CO2] as well. Elevated [CO2] enhanced grassland biomass production by 30% when 

nutrients and water were not limiting (Reich et al., 2014) and aboveground biomass of 

trees at the Duke FACE site increased 21-27% when exposed to elevated [CO2] from 

1996 to 2010 (Kim et al., 2020). 

Elevated [CO2] has also been shown to affect individual plant organs. Leaves under high 

[CO2] tend to be larger, which can be attributed to greater cell production or cell 

expansion (Gray & Brady, 2016). Elevated [CO2] may also increase total leaf area via the 

total number of leaves, individual leaf size, or the duration of leaf expansion (Morison & 
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Lawlor, 1999). For roots, elevated [CO2] tends to increase biomass production, which 

may be attributed to longer, or more branched roots (Gray & Brady, 2016). Elevated 

[CO2] may also affect the rate of organ expansion in plants, with higher [CO2] generally 

increasing expansion rates (Morison & Lawlor, 1999). As one example, Populus spp. 

grown under elevated [CO2] had faster leaf expansion rates than their counterparts grown 

under ambient [CO2] (Taylor et al., 2001). Additionally, in Arabidopsis, elevated [CO2] 

resulted in greater root expansion rates (Crookshanks et al., 1998). 

1.3.3.2 Effects of temperature on development and biomass production 

While responses of overall biomass to [CO2] are relatively well-established and 

consistent, the effect of temperature increases on biomass production varies with both 

geographic location and species (Gray & Brady, 2016). As discussed previously, in the 

short-term, high temperatures will likely reduce stomatal conductance, prevent the 

maintenance of Rubisco in an active state, favour photorespiration, and stimulate 

respiration via greater enzymatic rates, thus decreasing a plant’s carbon balance (Arcus et 

al., 2016; Salvucci et al., 2001; Taiz & Zeiger, 2002). In addition, accelerated initiation 

and expansion of organs, but a shorter duration of development in response to higher 

temperatures, can decrease biomass production (Morison & Lawlor, 1999). This is 

attributed to shorter development times leading to less biomass accumulation time for 

plants (Hatfield & Prueger, 2015; Morison & Lawlor, 1999). Some general effects are 

also observed for particular plant organs. For leaves, higher temperatures tend to increase 

rates of production in terms of both initiation and expansion (Gray & Brady, 2016). 

Similarly, in roots, higher temperatures accelerate rates of growth (up to a point) and can 

also influence root architecture (Gray & Brady, 2016). For instance, Nagel et al. (2009) 

found that when plants were exposed to a gradient of soil temperatures along their root 

depth, they tended to produce more roots at depths near their temperature optima.   
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1.3.3.3 Interactive effects of CO2 and temperature on development and 

biomass production 

Temperature and [CO2] effects on biomass production may ‘balance each other out’ in 

some cases (Way et al., 2015). This is because some aspects of plant carbon fluxes 

respond more strongly to [CO2], while others respond more strongly to temperature, 

potentially leading to similar carbon fluxes in plants grown under varied temperatures 

and CO2 concentrations (Way et al., 2015). For example, Benlloch-Gonzalez et al. (2014) 

found that higher [CO2] increased the aboveground and belowground growth of wheat, 

but under both higher temperatures and [CO2] these benefits were reduced. Similarly, 

Oryza sativa grown under 664 µmol mol-1 [CO2] produced greater biomass than plants 

under ambient [CO2], but this effect was weakened under elevated temperatures (Ziska et 

al., 1996). In terms of development, there are not yet clear interactions between [CO2] 

and temperature on either the initiation or expansion of organs in plants (Morison & 

Lawlor, 1999). 

1.3.4 Floral traits 

1.3.4.1 Onset of flowering 

Many species have shown altered phenologies in response to climate change. In plants, 

increased [CO2] can accelerate phenological events such as flowering time and bud 

break, while delaying other events, such as senescence (Piao et al., 2019). For flowering 

time, Springer and Ward (2007) conducted a meta-analysis on crop responses to elevated 

[CO2] and found that almost half of the studies recorded evidence of accelerated 

flowering time when [CO2] was increased. However, when flowering time was evaluated 

in more naturally representative FACE experiments, there were few effects of [CO2] on 

floral phenology (Springer & Ward, 2007), and another study actually found flowering 

delays in grasses in response to elevated [CO2] (Cleland et al., 2006). 

Similar to the effects of elevated [CO2], increased temperature and resultant changes in 

spring snowmelt time have accelerated the onset of flowering in many species. Primack 

et al., (2004) found that flowering times noted on herbarium specimens from 1980-2002 
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were 8 days earlier compared to 1900-1920 records. Fitter and Fitter (2002) found that 

flowering time across 385 British plants was around 5 days earlier from 1990-2000 than 

the previous 40 years, and Miller-Rushing and Primack (2008) combined historical and 

more current observations of flowering time, and found that the average date of flowering 

was 7 days earlier from 2004-2006 than it was in 1852-1858.  

Interacting species (i.e., those in symbioses) may respond differently to environmental 

cues in either the direction or extent of their phenological response (Fitter & Fitter, 2002). 

For instance, insect pollinators and plants may both advance their emergence times in 

response to warming, but insect pollinators tend to advance their phenologies to a greater 

extent than plants (Parmesan, 2007). Variation in the phenological responses of 

interacting species can lead to temporal mismatches in the symbiosis, potentially 

disrupting some species’ interactions entirely (Gérard et al., 2020). For instance, in a 

meta-analysis, Parmesan (2007) found that butterfly emergence advanced three times 

more than the start of flowering for plants in the Northern Hemisphere. Gordo & Sanz 

(2005) found that insects and plants in a Mediterranean ecosystem had different degrees 

of phenological change over approximately 50 years, with insects advancing their 

phenologies more. Likewise, Burkle et al. (2013) found that forbs in Illinois bloomed 9.5 

days sooner over 120 years, while bees displayed an 11 day acceleration in their peak 

activity. On the other hand, some studies have found greater phenological shifts for 

plants. For instance, Kehrberger and Holzschuh (2019) showed that the endangered plant 

Pulsatilla vulgaris was more responsive to warming than two co-occurring bee species, 

and Kudo and Cooper (2019) found that 19 years of warming led Corydalis ambigua to 

flower up to one week before bumblebee emergence. Furthermore, in contrast to evidence 

supporting temporal mismatches, a meta-analysis by Bartomeus et al. (2011) found no 

distinguishable differences in plant and pollinator phenologies using reports spanning 130 

years.  

1.3.4.2 Flower abundance 

In response to high [CO2] conditions, flower abundance often increases. Gerbera 

jamesonii grown under high [CO2] produced significantly more flowers than plants at 400 
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µmol mol-1 [CO2] (Xu et al., 2014), as did Vicia faba (Osborne et al., 1997), Parthenium 

hysterophorus (Bajwa et al., 2019), and Solanum lycopersicum (Pazzagli et al., 2016). On 

the other hand, in a different study Solanum lycopersicum had no flowering response to 

high [CO2], and when Capiscum annuum plants were grown under elevated [CO2], they 

produced fewer flowers (Lopez-Cubillos & Hughes, 2016). 

Similar to the effects of elevated [CO2], several studies have found that plants increase 

the number of flowers they produce under warming. Zheng et al. (2002) found that 

Glycine max grown under higher nighttime temperatures had increased flower 

production, and Descamps et al. (2020) found the same result in Echium plantagineum. 

Similarly, in two different tropical forests, Pau et al. (2013) showed that years with 

higher temperatures resulted in greater flower production, and when Betula ermanii 

saplings were grown under higher aboveground temperatures the number of male flowers 

per shoot increased (Nakamura et al., 2016). However, there is variation in these results 

and when warming is more extreme, or applied in shorter bursts, it may lead to flower 

abortion. For instance, Arachis hypogaea exposed to short bouts of daytime heat stress 

produced fewer flowers than plants at ambient temperatures (Vara Prasad et al., 2000), 

and Tanacetum cinerariifolium exposed to high temperature bursts exhibited reduced 

flower production compared to un-warmed plants (Suraweera et al., 2020). 

Furthermore, Warner & Erwin (2005) found that five different herbaceous species 

produced fewer buds per plant under higher temperatures, and Descamps et al. (2018) 

found decreased flower production for Borago officinalis when growth temperatures 

increased. 

There are few studies focusing on flower production in response to both elevated [CO2] 

and temperature, and the results from these studies are inconsistent. Palacios et al. (2019) 

found that Glycine max flower production increased when both [CO2] and temperature 

were elevated (800 µmol mol-1 CO2 and 4 °C of warming). However, Hoover et al. (2012) 

found that elevated [CO2] slightly reduced the positive effects of higher temperature on 

flower production in Cucurbita maxima (700 ppm CO2 and 4 °C of warming). Moreover, 

Balasooriya et al. (2018) found that the stimulatory effects of high [CO2] dominated the 

effects on flower production when Fragaria × ananassa plants were grown under 
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different combinations of [CO2] and temperature (400, 650 or 900 µmol mol-1 CO2 and 

25 or 30 °C of warming). 

1.3.4.3 Flower size 

Flower size generally increases in response to elevated [CO2]. As one example, Brassica 

napus grown under high [CO2] (740 µmol mol-1 CO2) produced flowers with larger petals 

compared to control plants (Qaderi & Reid, 2005). Additionally, compared to plants 

grown under current CO2 levels, Gerbera jamesonii produced larger flowers under 800 

µmol mol-1 CO2 (Xu et al., 2014), a Rosa hybrid grown under 1500-3000 ppm CO2 

produced larger buds (Biran et al., 1973), Heterotheca villosa produced flowers with 

greater petal area under 800 ppm CO2 (Glenny et al., 2018), and Betula papyrifera had 

increased catkin size under 560 ppm CO2 (Darbah et al., 2007). 

In contrast to CO2 effects, increased temperature tends to decrease flower size. One study 

found that higher growth temperatures reduced the flower size of roses (Shin et al., 

2001). Similarly, Viola x wittrockiana plants produced smaller flowers as temperatures 

increased (Pearson et al., 2015), as did Aster spp. (Oren-Shamir et al., 2000), Borago 

officinalis (Descamps et al., 2018), Echium plantagineum, Echium vulgare (Descamps et 

al., 2020), Calendula officinalis, Impatiens wallerana, Mimulua x hybridus, Torenia 

fournieri (Warner & Erwin, 2005), and Chrysanthemum morifolium (Carvalho et al., 

2005). However, the flower size response of C. morifolium varied with the phase at 

which treatment was applied, with earlier phases showing more negative temperature 

effects on floral size (Carvalho et al., 2005).  

When both high temperatures and [CO2] are applied, the effects of temperature seem to 

dominate, and flowers are usually smaller. Hoover et al. (2012) found that Cucurbita 

maxima plants produced smaller flowers when grown at higher temperatures and elevated 

[CO2]. Similarly, Campanula carpatica flowers were smaller with increasing growth 

temperature regardless of [CO2] (Niu et al., 2001). 
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1.3.4.4 Rewards 

Under elevated [CO2], pollen quantity has been found to increase. For example, three 

studies conducted on Ambrosia artemisiifolia found increased pollen production under 

high [CO2] (Kelish et al., 2014; Wayne et al., 2002; Ziska & Caulfield, 2000) and stands 

of Pinus taeda exposed to free-air CO2 enrichment displayed similar increases in pollen 

at elevated [CO2] (Ladeau & Clark, 2006). Additionally, Phleum pretense grown at high 

[CO2] produced more pollen per flower (Albertine et al., 2014). 

Similar to pollen production, nectar quantity shows fairly consistent increases under 

elevated [CO2]. In high [CO2] conditions, increased nectar quantity was found in 

Tropaeolum majus (Lake & Hughes, 1999), Epilobium angustifolium (Erhardt et al., 

2005), Capsicum chinense (Garruña-Hernandez et al., 2012), and Cucumis melo  (Dag & 

Eisikowitch, 2000) compared to those grown at ambient [CO2]. However, Vicia faba 

exposed to high [CO2] showed no significant differences in nectar production compared 

to control-grown plants (Osborne et al., 1997), and Trifolium pratense and Lotus 

corniculatus exhibited little effect on nectar production as well (Rusterholz & Erhardt, 

1998), suggesting that leguminous species may not respond as strongly to elevated [CO2]. 

In addition, Scabiosa columbaria, and Centaurea jacea produced significantly less nectar 

per flower under [CO2] (Rusterholz & Erhardt, 1998). 

In response to elevated temperature, there is some evidence that pollen production 

decreases. For example, in Arachis hypogaea plants grown under elevated temperatures  

pollen production decreased compared to control treatments (Vara Prasad et al., 1999). 

Pollen production also decreased in Lycopersicon esculentum (El Ahmadi & Stevens, 

1979), Cicer arietinum (Devasirvatham et al., 2012), and Oryza sativa (Prasad et al., 

2006) under high temperature. On the other hand, Helianthus annuus displayed a 

unimodal response of pollen production per flower to growth temperature (Astiz & 

Hernández, 2013). Pollen development requires carbohydrate investment and there is 

some indication that decreased pollen production under high temperatures is related to a 

reduced ability of the anthers to utilise carbohydrates under temperature stress (Pressman 

et al., 2002).  
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The effects of temperature on nectar quantity have been proposed to follow a unimodal 

relationship (Petanidou & Smets, 1996). Consistent with this, when temperature increases 

were moderate, nectar production was stimulated in Teucrium divaricatum, and Ballota 

acetabulosa, but at higher temperatures, nectar production declined (Takkis et al., 2015). 

Similar results were seen in other studies (Jakobsen & Kritjánsson, 1994; Petanidou & 

Smets, 1996; Takkis et al., 2018). However, some studies have found different results. 

Garruña-Hernandez et al. (2012) found no significant temperature effect on nectar 

production in Capsicum chinense, nor did Descamps et al. (2020) in Echium vulgare. 

Furthermore, other studies found declines in nectar production with warming (Descamps 

et al., 2018; 2020; Mu et al., 2015). Nectar volume may decline under extreme 

temperatures due to increased transpiration and evaporation.  

Few studies have examined the effects of both elevated [CO2] and temperature on nectar 

and pollen, although both climate change factors change concurrently in nature. For 

pollen, one group explored the effects of UV-B radiation, [CO2], and temperature on 

Glycine max, and found that elevated [CO2] (720 µmol mol-1) increased pollen 

production. However, when temperature was increased with elevated [CO2], pollen 

production was similar to control plants from ambient [CO2] and temperatures (Koti et 

al., 2005). Similarly, elevated [CO2] did not significantly affect the number of pollen 

grains per anther under either ambient or elevated temperature regimes (28/22 °C or 

32/26 °C day/night) for Capsicum annuum plants (Aloni et al., 2001). On the other hand, 

for Sorghum bicolor plants, high temperatures decreased pollen production under both 

current and future [CO2] levels (Vara Prasad et al., 2006), and pollen production was also 

reduced for Phaseolus vulgaris with no significant effect of growth [CO2] (Vara Prasad et 

al., 2002). 

For nectar volume, I am aware of only one study that has looked at the combined effects 

of [CO2] and temperature. Hoover et al. (2012) found that high [CO2] decreased nectar 

produced per flower, while higher temperatures increased nectar production; there were 

no significant interactions observed between [CO2] and temperature. 
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1.4 Study species 

1.4.1 Overview 

Cucumis sativus, or cucumber, was used in this experiment because of its reliance on 

pollination, its high nectar and pollen production, its geographical distribution within the 

study region, and its economic importance. Cucumis sativus is an herbaceous annual in 

the family Cucurbitaceae. Plants grow as a branched, hairy vine and produce numerous 

small, yellow flowers (Pessarakli, 2016). Male flowers produce pollen, while both male 

and female flowers produce nectar. From their flowers, cucumber plants produce long, 

cylindrical fruits that are typically harvested when immature and then eaten.  

1.4.2 Importance 

Cucumbers originated in Nepal, but have been cultivated for thousands of years and can 

now be found across the majority of the world, excluding Antarctica, Greenland, and 

parts of South America and Africa (FAOSTAT, 2016). Estimates for global annual 

production are around 29 million tonnes, with China, Iran, and Turkey listed as the top 

producers (FAOSTAT, 2016).  

In 2017, Canada produced 206,227 metric tonnes of cucumbers via greenhouse 

production, and the estimated farm gate value was $396 million CAD (AAFC, 2019). In 

the same year, cucumber production from field grown varieties was another 61,064 

metric tonnes, with a value of approximately $35 million CAD (AAFC, 2019). The 

majority of cucumber production in Canada takes place in Ontario (AAFC, 2019). 

1.4.3 Biology 

Cucumis sativus is a warm-adapted species and thrives at day temperatures between 20 – 

25 °C (Backlund, 2009), and night temperatures between 18 – 21 °C (Pessarakli, 2016). 

Cucumbers are historically monoecious, having separate male and female flowers on the 

same plant (Pessarakli, 2016). Male flowers generally develop before female flowers and 

in greater numbers to ensure that the pollen supply is adequate and available when female 
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flowers emerge (Pessarakli, 2016). The ratio of male to female flowers is typically 

around 10:1 and male flowers can be distinguished from females by their lack of an ovary 

(Figure 1.7) (McCormack, 2005). In general, flowers last for about one day (Barber et al., 

2011) and male flowers produce less nectar than their female counterparts. One study 

found that average nectar production for male flowers was 0.69 mg, while females 

produced 1.29 mg nectar (Nemirovich-Danchenko, 1964), and another found that males 

produced between 0.9 - 1.6 mg while females produced between 1.1 - 2.4 mg of nectar 

(Kaziev & Seidova, 1965). 

Monoecious varieties are beneficial for their prolonged production over the growing 

season, and several monoecious varieties are still cultivated today, such as Marketmore 

76, and Straight 8 (Badgery-Parker et al., 2019). However, new gynoecious cucumber 

varieties are often favoured today due to their increased fruit production (Badgery-Parker 

et al., 2019). This is because gynoecious cucumber plants produce all female flowers and 

can yield many fruits in a short period of time (Badgery-Parker et al., 2019). Other 

available cultivars include parthenocarpic, or seedless, gynoecious varieties, which can 

have decreased fruit quality if pollinated (Pessarakli, 2016).  

 

 

 

 

 

 

 

Despite increased popularity of gynoecious varieties, monoecious varieties are still 

essential as pollen sources for gynoecious plants (Badgery-Parker et al., 2019). In fact, 

Klein et al. (2007) listed the benefit of animal pollination to C. sativus as ‘great,’ 

Figure 1.7. Male and female C. sativus flowers. Female flowers (right) can be 

distinguished from male flowers (left) by their inferior ovary (red arrow). 
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indicating a 40 – < 90% reduction in cucumber value without animal pollination. In 

addition, Stanghellini et al., (1997) found that when pollinators were excluded the 

abortion of cucumber fruits was as much as 100%. Bees, and honey bees in particular, are 

the most common pollinators for cucumbers, and honey bee hives are recommended in 

field at approximately 1 – 2 hives per acre to ensure adequate pollination (McCormack, 

2005). While honey bees typically visit cucumbers to obtain nectar, pollen is also 

collected as a food source, and both pollen and nectar from cucumbers are listed as 

attractive to bees (USDA, 2017). 

1.5 Objectives 

Objective 1: Determine if high [CO2] and/or temperature induces changes in carbon 

fluxes or biomass. 

Predictions: 

1. High [CO2] will increase plant biomass and Anet.  

2. Moderate warming will reduce plant biomass, increase Anet and stimulate RD, 

while extreme warming will reduce plant biomass, suppress Anet and stimulate 

RD.  

3. When combined, high [CO2] and moderate warming will increase plant biomass 

and improve leaf carbon balance, but high [CO2] and extreme warming will 

produce no change in biomass or leaf carbon fluxes compared to control plants. 

Objective 2: Test the effects of elevated [CO2] and/or temperature on floral traits that are 

important to plant-pollinator interactions at multiple time points. 

Predictions: 

1. High [CO2] will promote greater floral trait values, such as flower size, flower 

number, and reward quantity. 

2. High growth temperatures, particularly the highest temperature treatment, will 

negatively affect floral trait values, such as reward quantity, and flower size. 

3. Floral trait responses to combined high [CO2] and temperature will be additive.  
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Objective 3: Investigate if floral trait changes are related to changes in carbon fluxes and 

biomass. 

Predictions: 

1. A greater ratio of Anet:RD will result in increased available resources for 

investment in floral traits.  

2. A reduced ratio of Anet:RD will result in fewer available resources for investment 

in floral traits. 

3. Plants will experience trade-offs between aspects of floral traits (e.g., flower 

number and size). 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

2 Materials and Methods 

2.1 Plant material and growth conditions 

On May 24th, 2019, 78 10-cm diameter pots (0.5 L) were filled with general purpose Pro-

Mix HP growth medium with mycorrhizae (Premier Tech Home and Garden, Rivière-du-

Loup, Quebec, Canada). Prior to potting, Miracle-Gro Shake-N-Feed general purpose 

slow release fertiliser (12-4-8) was mixed with the growth medium according to 

manufacturer’s instructions (The Scotts Miracle Gro Company, Marysville, Ohio, USA). 

After pots were filled, three seeds of C. sativus (Spacemaster trailing variety) were 

planted equidistant from one another in each pot (McKenzie Seeds, Brandon, Manitoba, 

Canada).  

After seeding, pots were haphazardly assigned to one of six experimental glasshouses at 

the University of Western Ontario’s Biotron Centre for Experimental Climate Change 

Research so that each glasshouse contained 13 pots. Glasshouses were subject to natural 

variation in light intensity and photoperiod, while air temperature, CO2 concentration, 

and relative humidity were controlled and measured every minute.  

The treatments in each glasshouse consisted of either current, ambient [CO2] (400 ppm, 

AC), or elevated [CO2] (750 ppm, EC), and temperatures of either an ambient regime 

(0T), 0T+4 °C (4T), or 0T+8 °C (8T). Treatments were applied in a full-factorial design, 

resulting in six climatic regimes: AC0T, AC4T, AC8T, EC0T, EC4T, and EC8T. For 

CO2, the EC regime was based on the IPCC’s ‘business as usual’ projections for 

atmospheric [CO2] in 2100 (IPCC, 2014). For temperature, the 0T regime was based on a 

5-year average (2013-2018) of hourly temperatures taken at the London airport 

meteorological station (ECCC, 2019), and the 4T and 8T treatments were based on 

predicted warming for 2100 under ‘stabilising’ and ‘business as usual’ emission 

scenarios, respectively (IPCC, 2014).  

Across the 14 weeks of the experiment, the mean [CO2] in the AC treatment was 404.52 

± 7.11 ppm (values are means ±SD) and the median value was 403.33 ppm. For the EC 
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treatment, the mean [CO2] was 746.48 ± 1.77 ppm and the median value was 746.33 ppm 

over the experiment. In the temperature treatments, the mean difference from 0T to 4T 

was 4.12 ± 0.56 °C and the median temperature difference was 3.88 °C. Additionally, 

from 4T to 8T, the mean difference in temperature was 4.21 ± 0.53 °C, and the median 

difference was 4.01 °C. 

Each day soil moisture was checked in three haphazardly selected pots per treatment 

using a Delta-T HH2 soil moisture meter, and ML2x probe (Delta-T Devices, Burwell, 

Cambridgeshire, UK). All pots were watered as needed to maintain soil volumetric water 

content between 25-30%. When plants had developed two true leaves (TL), they were 

transplanted to 30 cm diameter (11.35 L) pots containing the same growth medium and 

slow release fertiliser.  

One week after transplanting seedlings to the larger pots, they were thinned to one plant 

per pot. When plants began to flower, 1 L of Growmore 20-20-20 fertiliser was applied 

per plant at a rate of 1.8 g/L each week (Grow More Inc, Gardena, California, USA).  

Higher temperatures can accelerate the development of plants. Therefore, in order to 

prevent the effects of developmental stage from confounding the effects of [CO2] and 

temperature on the measured parameters, I measured variables within specific 

developmental windows from 15-20 true leaves (15-20TL), and 25-30 true leaves (25-

30TL), where applicable. True leaf stage was assessed by counting the number of mature, 

fully expanded leaves. Measuring variables within two developmental windows also 

allowed me to determine how climate change may alter floral metrics at different stages, 

since at 15-20TL plants had just begun to flower, and at 25-30TL plants were well into 

their flowering period. 

2.2 Floral metrics 

Plants were monitored daily for signs of flowering. Each day following the start of 

flowering, true leaf stage and the number of newly opened male and female flowers on 

each plant was recorded until the experimental end date, August 26th. To determine mean 

daily display size for 15-20TL and 25-30TL stages, the number of open flowers per day 
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(male and female summed) was averaged for each plant in each treatment, but separately 

for the two developmental windows. To determine mean lifetime flower production, all 

measures of male and female flower production were summed for each plant in each 

treatment. Flower production was then averaged within each treatment.  

Between 15-20TL and 25-30TL, the length and width of three male flowers and one 

female flower were measured on each plant (Figure 2.1), with the sampling reflecting the 

higher male to female ratio of flower production in monoecious cucumber varieties. The 

geometric mean of these two measurements was used to estimate overall flower size 

while accounting for variations in flower shape (Williams & Conner, 2001). 

  

 

 

 

 

 

 

2.3 Nectar  

2.3.1 Nectar collection 

At both the 15-20 and the 25-30TL stage, the nectar from three male flowers and one 

female flower per plant was harvested using 5 μL microcapillary tubes, again reflecting 

the greater production of male flowers. Nectar was collected between 12:00 and 15:00 

Figure 2.1. Measurements of floral size for C. sativus flowers. Measurements were 

made as indicated by the red lines. 
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each day to minimise the effect of diurnal variation in nectar production (Nicolson et al., 

2007). For each flower, I used as many microcapillary tubes as needed until no more 

nectar was taken up.  

2.3.2 Nectar quantity 

Directly after harvesting, the volume of nectar in each microcapillary tube was calculated 

by measuring the length of the nectar column with calipers. Where multiple 

microcapillary tubes were used to harvest nectar from an individual flower, the nectar 

column values from the same flower were summed. Nectar volume in μL was calculated 

by using equation [1]:  

!"#$%&	()*+,"	(µL) = 	 !"#$%#&'"((&$)	+%(,!-	(/01)	
!"#$%#&'"((&$)	3,4-	(-5637	(!!) ∗ *"!3$ℎ	)5	!"#$%&	#)*+,!	(,,)		                    [1] 

Nectar production was also scaled up to the whole plant level according to equation [2]. 

This was done for each plant in each treatment and ‘mean nectar’ in equation [2] 

represents nectar per flower averaged across the two developmental stages. 

!"#$%&
'(%!$ = [#	%&'(	)'*+(,- ∗ )"%!	)%("	!"#$%&+(,-"& 	]+6#	5",%*"	5*)8"&9 ∗ !-&5	8-!&(-	5-#3&$8(%9-$ :               [2] 

2.4 Pollen  

2.4.1 Pollen collection 

Stamens were harvested from three male flowers per plant between 15-20TL, and again 

between 25-30TL. Stamens from each flower were stored in separate glass vials at -6 °C 

until mounting.  

2.4.2 Pollen quantity 

To visualise pollen grains for counting, basic fuchsin jelly was prepared and stamens 

were semi-permanently mounted in the jelly according to Kearns & Inouye (1993). 

Pollen grains on prepared slides were counted using a modified protocol based on Costa 

& Yang (2009). Where resolution between grains was good, ImageJ was used to 
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automate counts using the ‘Analyze Particles’ function and the parameters ‘pixel 20-800’ 

and ‘circularity 0.5-1’ (Rasband, 2020). Where grains were closer together, counts were 

supplemented by hand using a Leica S4E stereo microscope and a hand clicker. ImageJ 

counts and hand counts were added together for each set of stamens. The number of 

pollen grains per plant was determined using equation [3]. 

',(("!
'(%!$ = [#	%&'(	)'*+(,- ∗ )"%!	!.)/"&	,+	',(("!	0&%1!2+(,-"& 	]                                    [3] 

2.5 Leaf gas exchange measurements 

2.5.1 Light response curves 

Before measuring leaf gas exchange, saturating light values for plants between 25-30TL 

(plants at the same developmental stage) were determined by measuring light response 

curves using a portable LI-6400XT system (Li-Cor Bioscience, Lincoln, Nebraska, 

USA). Plants were exposed to 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 

2000 μmol photons m-2 s-1 and net CO2 assimilation rate (Anet) was measured at each 

value. Saturating light was determined to be 1600 μmol photons m-2 s-1. 

2.5.2 Net CO2 assimilation rate and conductance 

Between August 7th and 9th, gas exchange was measured on the second, fully expanded 

leaf from the top of each of five plants from each treatment. Measured plants were all 

between 25-30TL to minimize the effects of developmental stage on gas exchange, and 

due to logistics only this developmental stage was evaluated. Gas exchange was 

measured to assess how Anet varies with intercellular [CO2] (Ci), thus generating A/Ci 

curves. The Anet was measured at CO2 concentrations of 50, 100, 150, 200, 250, 300, 350, 

400, 600, 800, 1000, 1200, 1400, 1600, and 1800 ppm. Cuvette conditions were 1600 

μmol photons m-2 s-1, 500 μmol s-1 flow, and leaf temperature was set to 23 °C, 27 °C, or 

31 °C (for the 0T, 4T, and 8T treatments, respectively) to assess A/Ci curves at plant 

growth temperatures. Leaf temperature settings were based on midday air temperature 

values in each treatment on August 6th. Cuvette relative humidity was maintained 

between 40 and 70% as needed to prevent stomatal closure. 
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To assess photosynthetic performance under the different growing conditions, Anet values 

at either 400 ppm or 800 ppm CO2 (for AC and EC plants, respectively) were extracted 

from the CO2 response curve data. 

2.5.3 Vcmax and Jmax 

The A/Ci curves were fit with R version 4.0.0 and the Plantecophys package to obtain the 

maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) 

for each measured plant (Duursma, 2015; Farquhar et al., 1980; R core team, 2020) 

2.5.4 Dark respiration 

Between August 13th and 14th, nighttime dark respiration was measured on the same 

leaves used to measure Anet. Plants were left in the dark for one hour after sunset, and 

then point measurements of dark respiration (RD) were recorded using an LI-6400XT 

portable photosynthesis system. All measurements were taken under growth conditions: 

measurement parameters were 0 μmol photons m-2 s-1, 500 μmol s-1 flow, 400 ppm or 800 

ppm reference [CO2] (for AC and EC treatments, respectively), and leaf temperatures of 

22 °C, 26 °C, and 30 °C in each treatment (0T,  4T, and 8T, respectively). Leaf 

temperatures were based on air temperature values in each treatment one hour after 

sunset on August 6th. 

2.6 Biomass production and allocation 

Five random plants from each treatment were selected for biomass measurements. After 

other measurements were completed, the selected plants were separated into leaf, stem, 

and root components, and the roots were carefully washed to remove attached soil. Leaf, 

stem and root components were then dried at 60 °C and weighed.  

2.7 Statistical analysis 

Means, standard deviations, and standard errors were calculated using 

the summarySE function in the package Rmisc (Hope, 2013). The effects 

of growth temperature and [CO2] were analysed using two-way analyses of 
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variance (ANOVA) with [CO2] and temperature treatment as main effects (α = 0.05) and 

using type III sum of squares where sample sizes of groups were unequal. Prior 

to running ANOVAs, Levene’s test was used to verify homogeneity of variance, 

and the Shapiro-Wilk test was used to verify normality. Tukey’s HSD post-hoc test was 

used to test for pairwise differences. All statistics were run in RStudio (version 1.2.5042) 

using R version 4.0.0 and the packages car and lsmeans (Fox & Weisberg, 2020; Lenth, 

2018; RStudio team, 2020; R core team, 2020). 
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3 Results 

3.1 Carbon dynamics 

3.1.1 Net CO2 assimilation and nighttime respiration rates 

There were no significant main effects on Anet. However, the Anet in EC4T plants was 

double that of AC4T plants (Table 3.1; Figure 3.1a). For nighttime dark respiration rates 

there was an interaction between [CO2] and temperature, but no significant effect of 

[CO2] or temperature alone (Table 3.1). The AC plants had similar RD across all the 

temperature treatments, whereas EC plants had declining respiration rates with warming 

(Figure 3.1b).  
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Table 3.1. Summary statistics (F and p-value) of ANOVAs for floral traits, floral 

rewards, plant biomass, and gas exchange parameters measured on C. sativus 

plants. Plants were grown under six climatic treatments: AC0T, EC0T, AC4T, EC4T, 

AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient temperature 

regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. Bold values are significant (a = 0.05). Anet = 

net rate of CO2 assimilation, RD = dark respiration rate, gs = stomatal conductance, Vcmax 

= maximum rate of Rubisco carboxylation, Jmax = maximum rate of electron transport. 
 

CO2 Temperature CO2×Temperature 

Gas exchange p-value F-value p-value F-value p-value F-value 

Anet 0.67 0.19 0.40 0.94 0.08 2.77 

RD 0.35 0.92 0.42 0.91 <0.05 3.87 

Anet:RD 0.82 0.05 0.37 1.06 0.44 0.84 

gs 0.79 0.07 0.06 3.28 0.14 2.13 

Vcmax 0.35 0.91 0.36 1.06 0.63 0.47 

Jmax 0.77 0.09 0.55 0.62 0.35 1.09 

Plant biomass traits 

      

Leaf biomass 0.15 2.23 <0.01 6.26 0.44 0.85 

Stem biomass 0.77 0.09 <0.001 12.43 0.08 2.81 

Root biomass 0.34 0.97 <0.05 4.71 0.36 1.07 

Total biomass <0.0001 24.54 <0.001 9.90 0.19 1.78 

% allocation to leaves 0.92 0.01 0.40 0.94 0.68 0.39 

% allocation to stems 0.10 2.93 0.37 1.05 0.89 0.12 

% allocation to roots 0.69 0.16 0.06 3.08 0.50 0.72 
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Floral metrics         

Flowering onset <0.0001 31.13 <0.0001 109.14 <0.001 8.07 

Daily display size (15-
20TL) 0.94 0.0060 <0.01 7.37 0.83 0.19 

Daily display size (25-
30TL) 0.08 3.10 0.23 1.50 <0.001 10.15 

Male flower production 0.27 1.25 <0.05 4.53 <0.05 3.70 

Female flower 
production 0.78 0.08 <0.0001 13.93 0.23 1.51 

Male flower size (15-
20TL) 0.60 0.28 <0.0001 40.88 0.82 0.20 

Male flower size (25-
30TL) 0.38 0.79 <0.0001 30.77 <0.01 6.31 

Female flower size (15-
20TL) 0.23 1.46 <0.001 8.34 0.15 1.92 

Female flower size (25-
30TL) 0.65 0.20 <0.01 6.19 0.21 1.61 

Floral rewards       

Male nectar/flower (15-
20TL) 0.87 0.03 <0.01 6.52 0.86 0.15 

Male nectar/flower (25-
30TL) 0.22 1.55 <0.05 4.29 0.72 0.33 

Female nectar/flower 
(15-20TL) 0.35 0.90 0.05 3.15 0.12 2.21 

Female nectar/flower 
(25-30TL) 0.56 3.79 <0.01 6.24 0.16 1.86 

Nectar/plant  0.95 0.0032 <0.0001 11.59 <0.0001 15.81 

Pollen/flower (15-20TL) 0.26 1.34 <0.05 5.34 0.23 1.56 

Pollen/flower (25-30TL) <0.05 4.45 <0.01 6.72 <0.05 4.67 

Pollen/plant 0.61 0.26 0.42 0.90 0.45 0.81 
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Figure 3.1. Mean net CO2 assimilation rate (Anet) (±1 SE) (a); and mean nighttime 

respiration rate (RD) (±1 SE) (b) measured on C. sativus plants between 25-30 true 

leaves. Plants were grown under six different climatic treatments: AC0T, EC0T, AC4T, 

EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient 

temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C. Different letters above the points 

indicate significant differences between the six treatments (a = 0.05, n = 4-5). 
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I also compared the ratio of Anet to RD across the treatments as an index of leaf carbon 

balance (Figure 3.2). Despite the treatment effects seen in RD, there were no significant 

differences in the ratio of Anet to RD across the treatments (Table 3.1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2 Stomatal conductance 

There were no significant differences in gs between plants grown in different treatments 

(Table 3.1; Figure 3.3). 
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Figure 3.2. Mean ratio of net CO2 assimilation rates (Anet) to nighttime respiration 

rates (RD) (±1 SE) measured on C. sativus plant between 25-30 true leaves. Plants 

were grown under six different climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, 

and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient temperature regime, 

4T = 0T+4°C, and 8T = 0T+8°C (a = 0.05, n = 4-5).  
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3.1.3 Vcmax and Jmax 

There were no significant differences in photosynthetic capacity (Vcmax or Jmax) between 

plants grown under different treatments (Table 3.1; Figure 3.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. Mean stomatal conductance (gs) (±1 SE) of C. sativus plants between 25-

30 true leaves. Plants were grown under six different climatic treatments: AC0T, EC0T, 

AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient 

temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C (a = 0.05, n = 4-5).  
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Figure 3.4. Mean maximum rates of (a) Rubisco carboxylation (Vcmax) (±1 SE) and 

(b) electron transport (Jmax) (±1 SE) for C. sativus plants between 25-30 true leaves. 

Plants were grown under six different climatic treatments: AC0T, EC0T, AC4T, EC4T, 

AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient temperature 

regime, 4T = 0T+4 °C, and 8T = 0T+8 °C (a = 0.05, n = 4-5).  
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3.2 Biomass production and allocation 

Both temperature and [CO2] had significant effects on total biomass production, but there 

was no significant interaction between the two (Table 3.1). In contrast, for each biomass 

component (leaf, stem, and root), the effect of temperature was significant but there was 

no effect of [CO2] and no interaction between [CO2] and temperature (Table 3.1).  

In general, plants produced less biomass in the warming treatments and greater biomass 

in elevated [CO2], but did not alter their percent allocation to leaf, stem, and root 

components (Table 3.1). The EC treatment increased total biomass in all temperature 

treatments, and plants exhibited a 14% increase in total biomass at 0T, a 41% increase at 

4T, and a 69% increase at 8T compared to AC-grown plants (Figure 3.5). However, 

elevated [CO2] did not affect measurements of leaf, stem or root biomass. In contrast, 

warming reduced total biomass, and also reduced leaf, stem and root biomass (Figure 

3.5). Interestingly, these CO2 and warming effects counterbalanced each other, so that the 

total biomass (Figure 3.5) and biomass allocation patterns (Figure 3.6) of the AC0T and 

EC8T plants were similar.  
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Figure 3.5. Mean biomass (±1 SE) of (a) leaves, (b) stems, (c) roots, and (d) whole C. 

sativus plants. Plants were grown under six different climatic treatments: AC0T, EC0T, 

AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient 

temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. Different letters above the points 

indicate significant differences between the six treatments (a = 0.05, n = 5). 
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Figure 3.6. Mean percent biomass (±1 SE) allocated to (a) leaves, (b) stems, and (c) 

roots of C. sativus plants. Plants were grown under six different climatic treatments: 

AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 

0T = ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C (a = 0.05, n = 5). 
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3.3 Floral metrics 

3.3.1 Flowering onset 

There was a significant interaction between temperature and [CO2] on flowering onset, as 

well as a significant effect of temperature and [CO2] (Table 3.1). In general, warming 

reduced the time to flowering onset (Figure 3.7). The AC4T plants flowered 14% earlier 

than AC0T plants, and the AC8T plants flowered 19% earlier than those from the AC0T 

treatment. Similarly, EC4T plants flowered 8% earlier than EC0T plants, and EC8T 

plants flowered 14% earlier than the EC0T plants (Figure 3.7). In addition, elevated 

[CO2] accelerated flowering onset by 8% in the 0T treatment, though it had little effect on 

flowering onset in the other temperature treatments (Figure 3.7).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3.7. Mean number of days from planting to first flowering (±1 SE) for C. 

sativus plants. Plants were grown under six different climatic treatments: AC0T, EC0T, 

AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient 

temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. Different letters above the points 

indicate significant differences between the six treatments (a = 0.05, n = 13). 
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3.3.2 Flower production 

3.3.2.1 Daily display size 

For plants between 15-20TL, increasing temperature reduced the daily display size 

(number of open flowers on each plant per day), but there was no effect of [CO2] and no 

interaction between [CO2] and temperature (Table 3.1; Figure 3.8). Display size was 

similar between AC- and EC-grown plants at all temperature treatments (Figure 3.8). 

Display size was also similar between 0T and 4T treatments but decreased by 

approximately 50% compared to control temperatures when plants were grown at 8T 

(Figure 3.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8. Average daily display size (±1 SE) produced by C. sativus plants between 

15-20 true leaves. Plants were grown under six different climatic treatments: AC0T, 

EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = 

ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. Different letters above 

the points indicate significant differences between the six treatments (a = 0.05, n = 13). 
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Between 25-30TL, there was no effect of either [CO2] or temperature, but there was a 

significant interaction between temperature and [CO2] on daily display size (Table 3.1). 

AC plants showed similar display sizes across the temperature treatments, whereas EC 

plants produced more open flowers as temperatures increased (Figure 3.9). From 0T to 

4T, EC plants produced 82% more open flowers and from 0T to 8T EC plants produced 

138% more open flowers (Figure 3.9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.2.2 Lifetime flower production 

There was a significant temperature effect and a significant interaction between 

temperature and [CO2] on the number of male flowers produced, however, the effect of 

Figure 3.9. Average daily display size (±1 SE) produced by C. sativus plants between 

15-20 true leaves. Plants were grown under six different climatic treatments: AC0T, 

EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = 

ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. Different letters above 

the points indicate significant differences between the six treatments (a = 0.05, n = 13). 
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[CO2] was not significant (Table 3.1). Both AC and EC plants produced similar numbers 

of male flowers at 0T (Figure 3.10a). Compared to the number male of flowers produced 

at 0T, male flower production in the EC treatment increased by 98% with 4T warming, 

and by 120% with 8T warming (Figure 3.10a). However, in the AC-grown plants, male 

flower production peaked at 4T, with an increase of 57% compared to 0T, and male 

flower production at 8T was similar to both the 0T and 4T values (Figure 3.10a). 

Growth temperature also significantly affected female flower production, but there was 

no effect of [CO2], and no interaction between [CO2] and temperature (Table 3.1). 

Female flower production was similar in the 0T and 4T treatments for both CO2 

treatments, but decreased in the 8T plants by approximately 41% (Figure 3.10b). 
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Figure 3.10. Mean lifetime number of: (a) male and (b) female flowers (±1 SE) 

produced by C. sativus plants. Plants were grown under six different climatic 

treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, EC = 

750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 °C. 

Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, n = 13). 
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3.3.3 Flower size 

In 15-20TL plants, both male and female flower size decreased with warming, but there 

was no effect of either growth [CO2] or the interaction between [CO2] and temperature on 

flower size (Table 3.1; Figure 3.11). Compared to 0T flowers, male flower size decreased 

by 11% when grown at 4T and by 25% when grown at 8T (Figure 3.11a). For female 

flowers, flower size was similar for AC4T plants, but decreased by 13% for EC4T plants 

when compared to 0T flowers (Figure 3.11b). Female flower size also decreased by 20% 

and 18% for the AC8T and EC8T plants, respectively when compared to the 0T flowers 

(Figure 3.11b). 
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Figure 3.11. Mean size (mm) of: (a) male; and (b) female flowers (±1 SE) produced 

by C. sativus plants between 15-20 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C. 

Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, nmale = 13, nfemale = 10-13). 
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In 25-30TL plants, both male and female flower size decreased with warming and there 

was a significant interaction between [CO2] and temperature on the size of male flowers, 

but the effect of [CO2] alone was not significant (Table 3.1; Figure 3.12a). Average male 

flower size was similar between the 0T and 4T treatments (Figure 3.12a). However, when 

plants were grown at 8T, male flower size decreased by 19% and 8% compared to 0T 

flowers (for the AC and EC plants, respectively) (Figure 3.12a). Average female flower 

size also decreased with warming (Table 3.1; Figure 3.12b). At 4T, AC-grown female 

flowers were similar in size to 0T flowers, but EC-grown flowers were 8% smaller than 

0T flowers. At 8T, female flowers were 17% and 10% smaller compared to those under 

control temperature conditions (for the AC and EC plants, respectively) (Figure 3.12b). 
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Figure 3.12. Mean size (mm) of: (a) male; and (b) female flowers (±1 SE) produced 

by C. sativus plants between 25-30 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 

°C. Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, n = 12-13). 
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3.4 Nectar production  

3.4.1 Nectar produced per flower 

For male flowers produced by plants between 15-20TL, there was a temperature effect 

but no effect of [CO2] and no interaction between [CO2] and temperature. In general, 

male nectar produced per flower declined with warming but was similar between [CO2] 

treatments (Table 3.1). Mean nectar produced per male flower declined by 35% at 4T, 

and by 65% at 8T, compared to the 0T flowers (Figure 3.13a). Female nectar production 

in 15-20TL plants was not affected by temperature, [CO2], or the interaction between the 

two factors (Figure 3.13b).  
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Figure 3.13. Mean nectar volume per flower for (a) male; and (b) female C. sativus 

flowers (±1 SE) between 15-20 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C. 

Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, nmale = 8-13, nfemale = 7-13). 
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For 25-30TL plants, both male and female nectar production per flower increased with 

warming, but there was no interaction between [CO2] and temperature and no significant 

effect of [CO2] (Table 3.1; Figure 3.14). Compared to 0T flowers, mean nectar produced 

per male flower increased by 87% and 38% at 4T, and by 67% and 41% at 8T (AC and 

EC respectively) (Figure 3.14a). For female flowers, mean nectar production increased by 

215% and 37% at 4T compared to the 0T plants (AC and EC, respectively). At 8T, 

female nectar production remained similar for AC plants, while nectar production 

increased by 87% for EC plants compared to those at 0T (Figure 3.14b). 
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Figure 3.14. Mean nectar volume per flower for (a) male; and (b) female C. sativus 

flowers (±1 SE) between 25-30 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4 °C, and 8T = 0T+8 

°C. Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, nmale = 12-13, nfemale = 11-13). 
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3.4.2 Nectar produced per plant 

There was a significant interaction between [CO2] and temperature and a significant 

effect of temperature on whole plant nectar production; however, the effect of [CO2] was 

not significant (Table 3.1). Under AC, nectar production per plant was similar in the 0T 

and 8T treatments but was 73% greater than this at 4T. In contrast, in EC plants, nectar 

production per plant increased 71% from 0T to 4T and increased 113% from 0T to 8T. 

Thus, when comparing control plants and the most extreme future climate scenario-

grown plants (i.e., AC0T and EC8T), nectar production per plant approximately doubled 

(Figure 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Mean nectar produced per C. sativus plant (±1 SE). Plants were grown 

under six different climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. 

AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 

0T+4°C, and 8T = 0T+8°C. Different letters above the points indicate significant 

differences between the six treatments (a = 0.05, n = 11-13). 
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3.5 Pollen production 

3.5.1 Pollen produced per flower 

Temperature significantly affected the number of pollen grains that 15-20TL flowers 

produced, but there was no interaction between [CO2] and temperature and no effect of 

[CO2] (Table 3.1). At current temperatures (0T), both AC- and EC-grown plants had 

similar pollen production per flower (Figure 3.16). From 0T to 4T, EC pollen production 

was similar, but AC pollen production decreased by approximately 30%. From 0T to 8T, 

EC pollen production remained similar, and AC pollen production returned to that of the 

control (AC0T) plants (Figure 3.16).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.16. Average number of pollen grains (±1 SE) per flower produced by C. 

sativus plants between 15-20 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C. 

Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, n = 6). 



65 

 

In 25-30TL plants, there was a significant effect of [CO2], temperature, and a significant 

interaction between [CO2] and temperature when looking at pollen production per flower 

(Table 3.1). EC plants showed no significant differences in per flower pollen production 

across the temperature treatments, while AC flowers had similar pollen production in 0T 

and 4T treatments but produced 60% less pollen under 8T compared to control plants 

(Figure 3.17).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17. Average number of pollen grains (±1 SE) per flower produced by C. 

sativus plants between 25-30 true leaves. Plants were grown under six different 

climatic treatments: AC0T, EC0T, AC4T, EC4T, AC8T, and EC8T. AC = 400 ppm CO2, 

EC = 750 ppm CO2, 0T = ambient temperature regime, 4T = 0T+4°C, and 8T = 0T+8°C. 

Different letters above the points indicate significant differences between the six 

treatments (a = 0.05, n = 6). 
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3.5.2 Pollen produced per plant 

Despite the observed effects on the pollen production of individual flowers, when pollen 

production was scaled up to the whole plant level, there were no significant main effects 

and no differences in pollen production between the treatments (Table 3.1; Figure 3.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Average number of pollen grains (±1 SE) produced by C. sativus plants. 

Plants were grown under six different climatic treatments: AC0T, EC0T, AC4T, EC4T, 

AC8T, and EC8T. AC = 400 ppm CO2, EC = 750 ppm CO2, 0T = ambient temperature 

regime, 4T = 0T+4°C, and 8T = 0T+8°C (a = 0.05, n = 6).  
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4 Discussion 

4.1 Temperature effects  

Temperature had little effect on gas exchange parameters or biomass allocation patterns 

in cucumber. But in response to warmer growth temperatures, C. sativus plants produced 

less biomass, and warming also negatively affected floral trait values (Figure 4.1). 

Specifically, high growth temperatures accelerated flowering onset, decreased flower 

size, reduced female flower production, reduced daily display size (for 15-20TL plants), 

reduced nectar per male flower (in 15-20TL plants), and reduced pollen per flower (in 

25-30TL plants). Thus, overall, elevated growth temperatures reduced plant size and 

many reproduction-related traits, but in a manner that appears to be unrelated to measured 

carbon fluxes.  

The effects of high temperature I saw on floral traits of C. sativus are consistent with 

results of other studies. Hoover et al. (2012) also found accelerated flowering time and 

reduced flower size for Curcurbita maxima plants exposed to high temperature 

(comparing plants grown at 19 or 23 °C). Additionally, Descamps et al. (2018 and 2020) 

found that increased temperatures (ranging from 21, 24 and 27 °C) reduced corolla 

surface area, corolla diameter, flower production, and nectar volume for Borago 

officinalis and Echium plantagium.  

High temperatures reduce the duration of the initiation and/or expansion of floral organs 

(reviewed by Morison & Lawlor, 1999). This leaves less time for biomass accumulation 

and ultimately results in smaller plant size (reviewed by Hatfield & Prueger, 2015; 

Morison & Lawlor, 1999). Accelerated development with warming, as evidenced by 

earlier flowering in the warmed treatments, likely underlies the declines in biomass I 

observed in the warm-grown plants in this study and could also explain reduced flower 

sizes. In response to increasing temperature, many species also show augmented growth 

responses up to a species-specific thermal optimum, and above this temperature, growth 

declines rapidly (reviewed by Hatfield & Prueger, 2015). For cucumbers, the optimum 

range of growth  
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Figure 4.1. Summary of the effects of temperature, [CO2], and their interaction on floral traits, gas exchange, and 
biomass of C. sativus. Blue squares = significant [CO2] effect, red squares = significant temperature effect, purple 

squares = significant CO2 x temperature interaction, (+) = positive effect, (-) = negative effect, and (v) = lower at 

moderate temperature, Anet = net rate of CO2 assimilation, RD = dark respiration rate, Vcmax= maximum rate of Rubisco 

carboxylation, Jmax= maximum rate of electron transport. Illustrated by Amy McDonald. 
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temperatures is between 20-25 °C, and temperatures around 35 °C, like those in the 8T 

treatment, can induce heat stress (Backlund, 2009). Plant reproduction is especially 

susceptible to high temperature stress (Sage et al., 2015; Zinn et al., 2010), which could 

explain the declines in reward and flower production with warming.  

High temperatures also affected some traits of male and female flowers differently. With 

warming, the number of male flowers increased while nectar per flower (15-20TL) and 

pollen per flower (25-30TL) tended to decline. In contrast, female flower production 

decreased with warming, while nectar per female flower increased in warm-grown plants 

(25-30TL). Temperature stress has previously been found to affect male and female 

function differently (Herrero, 2003). In stressful conditions, such as low moisture or high 

altitude, studies have observed increased production of male flowers, while less stressful 

conditions (e.g., adequate moisture or lower altitude) tended to favour female flower 

production (Freeman et al., 1981; Pickering & Hill, 2002). Female flowers can be more 

costly than male flowers, since females invest resources in petals, nectar, fruits, and 

seeds, while males invest resources in petals, nectar, and pollen (Obeso, 1997). Thus, 

lower male costs may promote male flower production under stressful conditions and the 

differential responses of floral sexes to stress may be mediated by their respective costs.  

4.2 CO2 effects 

In response to elevated [CO2], C. sativus plants produced more biomass, but had similar 

patterns of biomass allocation, Anet, RD, photosynthetic capacity, and stomatal 

conductance to 0T plants when measured at their respective growth conditions. For floral 

traits, plants tended to exhibit similar trait values at both ambient and elevated [CO2] 

when temperature treatments were less extreme (i.e., 0T and 4T). However, when plants 

were grown under more extreme warming (i.e., 8T), those exposed to elevated [CO2] 

showed increased floral trait values in several instances when compared to their ambient 

[CO2]-grown counterparts at the same temperature. Specifically, at 8T, elevated [CO2] 

promoted greater female flower production, greater daily floral display size (25-30TL), 

larger male flower size (25-30TL), more pollen grains per flower, and more nectar per 
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plant compared to ambient [CO2]-grown plants. Hence, the benefits of elevated [CO2] 

were strongest when growth temperatures were high, and elevated [CO2] alleviated some 

of the negative effects of high temperatures on C. sativus. 

Other studies have also found mitigating effects of elevated [CO2] at high temperatures, 

though most studies to date focus on growth and carbon fluxes, with few evaluating floral 

traits. For example, Song et al. (2014) exposed Poa pratensis to a range of growth 

temperatures (15, 20, 25, 30, and 35 °C) and either 400 or 800 µmol mol-1 [CO2] and 

measured aspects of carbon balance. Higher [CO2] stimulated root growth, shoot growth, 

and Anet in each temperature treatment, and also reduced the negative effects of very high 

temperatures (30 and 35 °C). As a result, plants grown at higher [CO2] generally 

displayed greater trait values, such as root and shoot growth, under very high 

temperatures compared to ambient [CO2]-grown plants. Furthermore, a meta-analysis by 

Wang et al. (2012) studied the effects of elevated [CO2] on plant physiology and growth 

over a range of temperatures. They found that the effects of elevated [CO2] varied with 

plant functional type and photosynthetic pathway, but C3 species in particular had greater 

photosynthesis across a range of temperatures when grown at elevated [CO2]. In addition, 

this beneficial effect of high [CO2] was particularly noticeable when C3 plants were 

grown at very high temperatures or were heat stressed. In this case, the slight recovery in 

trait values observed under elevated [CO2] might be attributed to higher antioxidant 

activity in response to elevated [CO2]. While antioxidant concentrations were not 

assessed in this thesis, high [CO2] might improve the antioxidant defence capacity of 

plants by supplying more carbon for the production of antioxidant molecules (reviewed 

by AbdElgawad et al., 2016), thus improving growth and reproduction under heat stress.  

4.3 The relative importance of climate change drivers 

Across all measured variables, [CO2] significantly affected only total biomass production, 

flowering onset timing, and pollen production from 25-30TL plants (Figure 4.1). On the 

other hand, temperature, or the interaction between [CO2] and temperature, significantly 

affected the majority of variables measured (Figure 4.1). Consistent with these findings, 

Sallas et al. (2003) found that temperature had a greater effect on Pinus sylvestris and 
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Picea abies growth, physiology, and secondary metabolites than [CO2]. Other studies 

have also found that temperature effects were stronger than [CO2] effects (e.g., Dusenge 

et al., 2020; Kroner & Way, 2016). Furthermore, in their recent review, Dusenge et al. 

(2019) highlighted that temperature effects tend to dictate respiratory responses under 

future climate scenarios, and while photosynthetic responses to high [CO2] are fairly 

consistent, photosynthetic responses to temperature are more variable, suggesting that 

temperature effects may be more important than [CO2] when trying to predict plant 

responses to climate change. Similarly, my results suggest that studies focusing on the 

effects of elevated [CO2] alone may not represent climate change impacts as accurately as 

studies considering temperature alone or those incorporating both temperature and [CO2] 

effects. 

4.4  Carbon dynamics 

I expected that changes in [CO2] and temperature would lead to changes in leaf gas 

exchange parameters. Instead, I found that leaf carbon dynamics (measured at growth 

conditions) were largely similar across the different climatic treatments. In fact, the only 

significant treatment effect I found on gas exchange parameters was an interaction 

between [CO2] and temperature on leaf dark respiration (Table 3.1, Figure 4.1). Similar 

gas exchange parameter values in the different climate treatments suggest that these 

plants acclimated both photosynthetic and respiratory processes to changes in [CO2] and 

temperature to maintain homeostasis. Although I did not explicitly measure acclimation 

in this study (which would involve measuring all the plants under common conditions), 

acclimation is very likely considering that the ratios of Anet:RD were not different across 

the treatments despite the well-established effects of [CO2] and temperature on 

photosynthesis and respiration.   

Despite similarities in carbon balance, elevated [CO2], elevated temperature, and their 

interaction did affect plant biomass and floral traits. This is similar to the results of 

Wookey et al. (1994), who found no difference in Anet in response to warming, but 

showed that Polygonum viviparum plants had greater reproductive investment (e.g., 

greater bulb weight, spike length) at higher temperatures. While this disparity could be 
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due to my small sample size for gas exchange, other studies on cucumbers have found 

significant differences in their gas exchange data with similar sample sizes to my study 

(e.g., Ibarra-Jiménez et al., 2008; Xiaotao et al., 2013; Zhou et al., 2011). Another 

possibility is that photosynthesis is not always tightly coupled with plant growth. While 

carbon is the primary resource that plants must allocate to maximise survival and 

reproduction, it is not the only resource that requires tradeoffs: water and nutrient balance 

also influence plant growth and reproduction (Coskun et al., 2016; Flexas et al., 2006). 

Changes in water or nutrient relations may, in turn, uncouple photosynthesis and growth 

relations. For example, Muller et al. (2011) reviewed literature on water deficits and plant 

carbon balance and found that water deficits often lead to swift declines in plant growth, 

while photosynthesis is maintained over a longer period of time, implying a mismatch in 

the response rates of carbon supply and demand to water stress. Similarly, in the absence 

of adequate nutrients, plant growth may be stunted while photosynthesis may respond 

more slowly (Kirschbaum, 2011). Although my plants were grown under ample water 

and nutrient regimes, those in the 8T treatment likely experienced greater variation in soil 

moisture levels due to high evaporative demand, which could have uncoupled the 

responses of photosynthesis/respiration and growth. 

Another possible explanation for the incongruent responses between leaf carbon 

dynamics and floral traits is that whole plant carbon dynamics may not reflect leaf carbon 

dynamics, such that minor differences in carbon dynamics at the leaf level can scale up to 

produce detectable differences in plant traits (Way et al., 2011). In this experiment, I 

measured leaf net CO2 assimilation rates and respiration rates because the majority of 

carbon uptake takes place in the leaves. However, other plant organs substantially 

influence carbon dynamics as well. Other organs may contribute to carbon fixation, for 

instance, reproductive structures can supply between 2 – 65% of their own photosynthetic 

carbon costs (Aschan & Pfanz, 2003; Bazzaz et al., 1979), and other organs contribute to 

respiration; for instance, stems and roots also respire (Atkin et al., 2007). Ultimately, 

whole plant respiration and photosynthesis are better indicators of plant carbon balance 

than leaf-level measurements alone. 
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4.5 Developmental stage 

Floral traits were measured at two developmental stages to get a more representative 

sense of trait values at different time points. In general, trait values were reduced at the 

later developmental stages and traits appeared less responsive to climatic treatments later 

in development. For instance, at 15-20TL, the largest male flowers had a geometric mean 

size of 50 mm and high growth temperatures reduced this to 37 mm, a 25% decrease. 

However, at 25-30TL, the largest male flowers had a geometric mean size of 41 mm and 

high temperatures reduced this to 35 mm (average of AC and EC values at 8T), which is 

only a 15% decrease in flower size (Figures 5a and 6a, respectively). Other studies have 

also found declining floral trait values with plant age. Williams and Conner (2001) found 

that flower size of Raphanus raphanistrum in the field declined with increasing plant age 

and Devlin et al. (1987) found that nectar production in field-grown Lobelia cardinalis 

decreased as plants got older.  

Over a plant’s lifetime, environmental conditions, such as resource availability or 

temperature, will change, as will patterns of resource allocation and source/sink dynamics 

(Marshall et al., 2010). Changes in these factors could explain changes in floral traits as 

plants mature (Ehlers & Olesen, 2004). For example, as plants grow and use resources in 

their environment, reduced resource availability and corresponding effects on floral traits 

might be expected (Marshall et al., 2010). This effect likely explains reductions in nectar 

production for Lobelia cardenalis (Devlin et al., 1987) and the smaller flowers produced 

by Raphanus raphanistrum (Williams and Conner, 2001) at later ages when measured in 

the field. However, since the plants in my experiment were reared under similar nutrient 

regimes throughout their lifetimes, this is unlikely to explain my results.  On the other 

hand, as plants mature, allocation to fruits and seeds (and the sink strength of these 

organs), as well as the cost of maintenance, may increase relative to allocation of 

resources to flowers (Marshall et al., 2010). As allocation to flowers declines, one might 

expect fewer flowers to be produced or to see a reduction in overall flower size/rewards, 

which is consistent with what I observed for flower size and male nectar production.  
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One exception to reduced trait values with plant age was display size, where 25-30TL 

plants produced more open flowers per day than plants at 15-20TL (Figures 3.3 and 3.2, 

respectively). Others have also found increased reproductive investment with aging. For 

example, Ehlers and Olesen (2004) found that older Corydalis intermedia plants 

produced more flowers than those that were younger under field conditions, and Carroll 

et al. (2001) found that Epilobium angustifolium produced slightly more nectar as plant 

age increased in the field. Generally, mature plants are more likely to have successfully 

reproduced than younger plants, and if a plant has been successful in setting seed, it may 

abort later flowers or fruits. For instance, Vaccinium macrocarpon produces 5-7 flowers 

sequentially, but only 1-3 fruits are ultimately produced (Brown & McNeil, 2006). The 

opposite can also be true, where plants that have not yet been successful in reproducing 

may invest more in reproduction later in life than they typically would. Brown and 

McNeil (2006) conducted an experiment using V. macrocarpon and found that later 

flowers only produced fruit when earlier flowers were unsuccessful/removed, despite 

ensuring adequate pollination for all flowers. In my experiment, C. sativus plants were 

grown in glasshouses without pollinators, so there was little to no chance for successful 

fruit production throughout the growing season, which could explain larger display size 

at 25-30TL. While developmental stage considerations were not a principal driver of this 

thesis, my results suggest that plant developmental stage may play a larger part in plant-

pollinator interactions, and potentially plant carbon dynamics, than is generally 

considered.  

4.6 Future directions  

I found that the majority of floral traits measured were affected by future climate 

scenarios in ways that could influence plant-pollinator relationships. Compared to plants 

grown under current conditions (AC0T), plants grown under future climate conditions 

(EC8T) started to flower about one week earlier, which could affect the synchrony 

between C. sativus and their pollinators (Settele et al., 2016). The EC8T plants also 

produced smaller flowers and less nectar per male flower (15-20TL) than the AC0T 

plants, both of which are likely to increase the energetic costs of foraging for pollinators 

(Harder, 1986). Flower size can also alter the efficiency of pollination via the functional 
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fit between plants and their pollinators with resulting consequences for plant fitness 

(Willmer, 2011), and smaller flowers are generally less attractive to pollinators (Martin, 

2004). On the other hand, I found that the number of male flowers increased with 

warming, which could enhance pollinator attraction, since there is some evidence that bee 

pollinators prefer to forage on male flowers (Huang et al., 2006). Moreover, daily display 

size increased when comparing current and future climatic treatments, which would 

likely increase plant attractiveness to pollinators as well (Hernández-Villa et al., 2020; 

Nattero et al., 2011). 

As previously mentioned, there are many floral traits that can affect plant-pollinator 

relationships. This experiment tested a subset of important traits; however, plant 

pollinator interactions are ultimately determined by assemblages of plant-level and 

flower-level characteristics (Willmer, 2011). If some trait values are enhanced under 

climate change, while others are diminished, the consequences for pollination may be 

complex. For example, I found that whole plant nectar production doubled in response to 

climate change drivers (Figure 3.15), which, theoretically, would be beneficial for 

pollinators. However, if increases in nectar volume are accompanied by unfavourable 

changes in nectar concentration or composition, then pollinators may experience adverse 

effects (Shackleton et al., 2016). To better understand how climate change will influence 

plant-pollinator relationships, a more comprehensive approach to floral trait sampling is 

needed. In particular, there are few studies in the context of climate change that include 

nectar guides, flower colour, floral volatile organic compounds, or flower temperature in 

their sampled floral traits (but see Glenny et al., 2018; Koski & Ashman, 2015; Shrestha 

et al., 2018).  

In addition to quantifying the effects of climate change on a more comprehensive set of 

floral traits, quantifying pollinator behaviour and survival in response to trait changes 

will improve our understanding of the ecological consequences of these floral shifts 

(Scaven & Rafferty, 2013). This is especially true because pollinators may not always 

respond to floral trait changes in the way we might expect. As one example, Hoover et al. 

(2012) looked at the response of Bombus terrestris to nectar produced under nitrogen 

enrichment, elevated [CO2], and high temperature. They found that B. terrestris 
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individuals consumed more nectar from artificial flowers simulating the nectar collected 

from the high nitrogen treatments, and they also tended to visit these flowers more 

frequently. However, the simulated nectar from the high nitrogen treatments reduced bee 

lifespan (Hoover et al., 2012). In addition, despite observed changes in plant size, mean 

petal area, and floral display size, Glenny et al. (2018) found no significant changes in 

pollinator visitation rates for three out of four plant species exposed to increased [CO2] 

and drought.  

Several studies have assessed the effects of [CO2] or temperature on nectar independently 

of pollen (e.g., Dag & Eisikowitch, 2000; Erhardt et al., 2005; Hoover et al., 2012; 

Jakobsen & Kritjánsson, 1994; Lake & Hughes, 1999; Mu et al., 2015; Takkis et al., 

2015, 2018). However, thus far, I am aware of only one other study that has looked at 

both pollen and nectar resources from the same species in the context of climate change, 

and these researchers focused on temperature and drought effects rather than temperature 

and [CO2] (Descamps et al., 2018). Social pollinators often specialize on a particular task 

and, in the case of bees, an individual may specialize on foraging for pollen or nectar 

during a particular foraging bout (Russell et al., 2017). As a result, an individual bee may 

not need to evaluate both pollen and nectar in the same foraging bout. However, pollen 

and nectar may still be collected from the same plant, or different plants of the same 

species. Since notable pollinators, like bees, require adequate quantities and quality of 

both pollen and nectar to grow and reproduce (Nicolson, 2011), considering changes in 

both pollen and nectar in response to climate change may be more critical than evaluating 

changes in either resource alone. 

The consequences of climate change are expected to be pervasive and numerous. In 

addition to [CO2] and temperature changes, models predict rising sea levels, ocean 

acidification, and increased frequency of extreme weather events (Cubasch et al., 2013). 

While this thesis addressed the consequences of elevated [CO2] and temperature, which 

are widespread climate change drivers, plant exposure to extreme events, such as 

heatwaves, could prove to be more important in shaping plant-pollinator interactions than 

sustained growth under higher temperatures or [CO2]. For instance, based on the results 

of this study and previous work, flower production increases when plants are grown at 
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higher temperatures (Nakamura et al., 2016; Pau et al., 2013; Zheng et al., 2002). 

However, when plants are exposed to short-term bursts of heat mimicking heatwave 

conditions, flower production is reduced (Orsenigo et al., 2014; Suraweera et al., 2020). 

Thus, evaluating floral trait responses to sustained elevated [CO2] and temperature, in 

addition to extreme events, could prevent underestimating climate change impacts on 

flowers.   

While I did not evaluate the effects of increased [CO2] and temperature on C. sativus 

yield, I did find that high temperatures reduced female flower production (Figure 7b). In 

addition, I did not find that elevated [CO2] counteracted these female flower declines. 

Since female flowers are fruit producers, declining female flower numbers with warming 

could mean that cucumber yields will be reduced with climate change, which would be 

detrimental for producers. However, considering that the variety used in this experiment 

is monoecious, and that fruit weight and quality were not evaluated, these results should 

be interpreted with caution. A 2018 review on the effects of climate change on vegetable 

production highlighted that there are surprisingly few studies focusing on this area of 

research, although the independent effects of temperature and [CO2] have received 

attention (Bisbis et al., 2018). Thus, this is a promising area for future exploration. 

4.7 Conclusions 

Leaf carbon dynamics were largely homeostatic across an 8 °C growth temperature range 

and a 350 ppm difference in [CO2], and these carbon dynamics were uncoupled from 

growth and floral trait measurements, potentially due to different rates of response 

between photosynthesis and growth (Muller et al., 2011). Despite this, future climate 

scenarios still affected floral traits of C. sativus in ways that could alter their relationship 

with pollinators. Specifically, temperature generally produced negative effects on floral 

traits, including smaller flowers, less nectar per flower (males 15-20TL), and accelerated 

flowering onset. This suggests that higher temperatures may be detrimental to plant-

pollinator interactions in the future. For instance, smaller flower size reduces plant 

advertisement to pollinators, and also has the potential to alter the efficiency of 

pollination and the cost of foraging (Willmer, 2011). On the other hand, higher [CO2] 
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facilitated a recovery of some trait values, which might be beneficial for pollinators and 

alleviate some of the negative effects of warming. For instance, whole plant nectar 

production doubled in the EC8T treatment compared to AC0T. However, the beneficial 

effects of [CO2] only occurred when warming was extreme and were not consistent 

across the measured traits, suggesting more work is needed to evaluate these [CO2] 

effects.  

Additionally, temperature (or the interaction between [CO2] and temperature) had greater 

consequences for plant traits and physiological parameters than [CO2] alone, suggesting 

that temperature effects may dominate plant responses to climate change. The treatments 

also affected male and female flowers differently, potentially due to the distinctive costs 

of male and female function, with females typically requiring increased resource 

investment (Obeso, 1997). In addition, plant developmental stage influenced floral trait 

values and responses to the treatments, with more mature plants generally showing lower 

trait values, and less response to the climatic treatments. These results indicate a need for 

increased sampling over the lifetime of plants to get a better sense of variation in floral 

traits and carbon dynamics as plants age.  

Future studies focusing on a wider range of floral traits, as well as pollinator responses to 

these traits under climate change, are needed to allow researchers to make more informed 

predictions about the effects of climate change on plant-pollinator interactions. In 

particular, more studies evaluating the effects of climate change on the quantity and 

quality of both pollen and nectar resources from the same species are needed to determine 

how these resources change in tandem, since both are important food source for bee 

pollinators, and they may be gathered from the same species. Finally, considering the 

effects of extreme climatic events, such as heatwaves, in addition to chronic climatic 

changes will be important for developing a more complete picture of crop floral 

responses to climate change, since plant responses to prolonged climatic changes likely 

differ from short-term responses. 
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