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Abstract

Additively homomorphic encryption is a public-key primitive allowing a sum to be computed

on encrypted values. Although limited in functionality, additive schemes have been an essen-

tial tool in the private function evaluation toolbox for decades. They are typically faster and

more straightforward to implement relative to their fully homomorphic counterparts, and more

efficient than garbled circuits in certain applications. This thesis presents a novel method for

extending the functionality of additively homomorphic encryption to allow the private evalua-

tion of functions of restricted domain. Provided the encrypted sum falls within the restricted

domain, the function can be homomorphically evaluated “for free” in a single public-key oper-

ation. We will describe an algorithm for encoding private functions into the public-keys of two

well-known additive cryptosystems.

We extend this scheme to an application in the field of pharmacogenomics called Similar

Patient Query. With the advent of human genome project, there is a tremendous availability

of genomic data opening the door for a possibility of many advances in the field of medicine.

Precision medicine is one such application where a patient is administered drugs based on their

genetic makeup. If the genomic data is not kept private, it can lead to several information

frauds, so it needs to be encrypted. To tap the full potential of the encrypted genomic data,

we need to perform computations on it without compromising its security. For SPQ, we pick

a query genome and compare it across a hospital data base, to find patients similar to that of

the query and use the information to apply precision medicine, all of this is carried out under

privacy preserving settings in the presence of a semi-honest adversary in a single transaction.

Keywords: Secure Function Evaluation, Public Key Cryptosystem, Homomorphic En-

cryption, Prime Number Generation, Genomic Data, Secure Genomic Computations, Similar

Patient Query
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Summary For Lay Audience

In an increasingly data driven world, information availability and its distribution are explod-

ing exponentially. The access to personal information has also invited a lot of threats such as

hacking, denial of service attacks, injecting malicious code or gaining illegal access to con-

fidential information. As these threats are becoming a matter-of-course with ever increasing

sophistication- planning, implementing and maintaining information security systems at any

organization is becoming a challenging task. There are a lot of systems in place to protect data

at various levels such as physical, application, network and cloud. There are also myriad legal

regulations and compliances that help the organizations to improve their security strategy by

providing guidelines depending on the type of data these organizations are handling with. Vio-

lating these standards can result in severe penalties such as fines and law suits, or even worse,

personal information breach. The most challenging aspect of information security thus lies in

making the best possible use of available data while ensuring privacy.

One of the popular approaches of storing information securely is to encrypt it or convert it

into random looking numbers so when hackers have access to it, they will not be able to figure

out what the data is about. Now, it is hard to perform computations on this random looking

numbers. If we need to make use of the full potential of the data, we need to decode those

random looking numbers. Nonetheless, there are methods in the field of computer science and

pure math that enable us to perform analysis without breaking this data. To make the best

use of data in an encrypted form, we use concepts from math and design functions in such a

way that, we can perform computations on the encrypted data without having to decode. Our

thesis presents one of such algorithms which help us perform computations without decoding

the data. Once we perform computations and decode this data, we get the results in the same

way as if we would get if the computations on plain text data.

We use these algorithms for applications in the field of medicine to conduct search across

genomic data bases. Genomic databases are stored in a secure way to avoid leaking any sensi-

tive information. Using our algorithms, we can search across these databases without decoding

the data. We perform some mathematical functions and retrieve similarity scores and obtain

similar records to that of our search query. This is used in the field of precision medicine

where, we administer medication or therapy to a patient based on their genetic make up. Since

iii



not all databases are available openly, the medical practitioners cannot tap the full potential of

genomic data. Using our algorithm, we help the medical practitioners to access across all the

databases even if encrypted, giving them tremendous potential to make advances in the field of

precision medicine.
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Chapter 1

Introduction

In an increasingly data-driven world, information availability and its distribution are surging

exponentially. The access to personal information has also invited a lot of threats such as hack-

ing, denial of service attack, injecting malicious code, or gaining illegal access to confidential

information. These threats are becoming a matter-of-course with ever-increasing sophistica-

tion due to which planning, implementing, and maintaining information security systems at

any organization is becoming a challenging task. There are many systems in place to protect

data at various levels like physical, application, network, and cloud. The myriad legal regula-

tions and compliances help the organizations to improve their security strategy by providing

guidelines depending on the type of data these organizations are handling. Violating these

standards can result in severe penalties such as fines and lawsuits, or even worse, personal in-

formation breach. The most challenging aspect of information security thus lies in making the

best possible use of available data while ensuring privacy.

The basic components of information security are often abbreviated as the CIA triad[22],

which can be described as:

• Confidentiality of data is achieved only when the people who are authorized to access

the data can do so.

• Integrity is the maintenance of data in its original state without modifying it uninten-

tionally or maliciously.

• Availability is just a mirror image of Confidentiality, as confidentiality aims to hide

1



2 Chapter 1. Introduction

the message from unauthorized users, availability property ensures that the message is

available to the authorized users.

While ensuring these basic components, the information security is maintained in various ways

through physical, application and operational security. The most popular way of maintaining

data security is through Cryptography, where we perform data encryption. Encryption is the

method by which a message is converted into a secret code by hiding the original message.

With respect to a protocol that uses data encryption, the letter A in CIA triad will be defined

as Authenticity as opposed to availability. Authenticity means the ability to prove that the

message is coming from the original sender. Sticking to the goals of Confidentiality, Integrity

and Authenticity, data encryption is carried out by various cryptographic protocols, out of

which this thesis deals with asymmetric or public key encryption. In public key encryption,

we use mathematical concepts from number theory and convert the plain text message into

some random looking numbers. Many researches have been conducted to make the best use of

encrypted data without having to convert them to their original plain text format.

1.1 Motivation

The ability to perform computations on encrypted data has always been one of the most sought

after challenges in the field of cryptography. Private computations on data are becoming in-

creasingly significant as they have applications in many fields such as privacy preserving ma-

chine learning [54], private information retrieval [12], similarity search in private databases

such as genotype and other medical data [56], online voting [1], auctions [13] and private

credit checking [21]. The key idea behind secure computations is that two parties want to

evaluate some function on their encrypted inputs without leaking any information about their

input. When some special cases require privacy of the function to be evaluated, it is called

private function evaluation (PFE). Generally, when a PFE is carried out, the function will be

a private input of one of the parties and nothing can be leaked about this function to any ad-

versary that does not hold this function. In this thesis, we shall introduce a cryptosystem that

offers a novel approach for secure computations and we can use it for Private Function Evalua-

tion in some limited applications. Current methods used for secure and private function include
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Garbled Circuits Fully HE Partial HE

Speed Very Fast Slow Fast

Re-usability No Yes Yes

Round Complexity Constant Constant Constant

Communication Complexity Proportional to size of the circuit Independent Independent

Table 1.1: Performance Comparison of existing approaches for SFE and PFE

Garbled Circuits and homomorphic encryption schemes. We opted for Partial Homomorphic

Encryption (PHE) to solve the computations on encrypted data due to the several advantages it

offers over Garbled Circuits (GC) and Fully Homomorphic Encryption schemes (FHE). PHE

schemes are generally more efficient because they support only one type of operation: either

addition or multiplication. FHE usually allows us to do unbounded number of homomorphic

operations but it requires an expensive bootstrapping procedure. With respect to Garbled Cir-

cuits, the parties performing Secure or Private Function Evaluation need to interact many times

for a single transaction, which makes them unsuitable for applications that may require min-

imum communication. The table 1.1 summarizes the properties of PHE, FHE and GC. From

these properties, it can be established that Homomorphic Encryption has advantages of being

reusable for any input where as one GC can be used only for one garbled input. Also, the

communication complexity increases in GC with the increase in the depth of circuit function,

whereas HE scheme’s communication complexity remains independent. So despite the speed

advantage offered by GC, we opted for Secure Function Evaluation using HE. In Homomor-

phic Encryption, partial HE is faster and of low cost compared to full HE, which makes it an

ideal choice for Secure Function Evaluation.

1.2 Contributions

This thesis introduces a new framework where certain functions mapping Integer to Boolean co

domain can be privately evaluated. Imagine some organization developed a special algorithm

to identify a patient’s reaction to particular medicine based on their genetic make up. Owing
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to proprietary issues, the algorithm needs to be private. In special cases, some hospitals do

not want to disclose elaborate answers as it may leak sensitive genetic information, rather they

just want the parties to learn some Boolean answers such as “true” or “false”. This is one of

the several applications that the cryptosystem introduced through our research can be used for.

The contributions of the thesis include:

• A new private key-generation algorithm that helps in generation of prime numbers that

contain long, pre-defined sequences of Legendre symbols of integers modulo an odd,

large prime.

• A secure evaluation scheme based on these arbitrary patterns of Legendre symbols that

extends Additively Homomorphic Encryption schemes to privately evaluate functions

with Boolean co-domain.

• A protocol for applying this new scheme by proving that all the evaluations can be per-

formed freely and securely in a single public-key operation.

• Proof of security and hardness for the new scheme.

• Privacy proof for Secure Function Evaluation protocol in a two-party, honest but curious

adversary setting.

• An application based on the new cryptosystem for carrying out Similar Patient Query

using genomic data in a privacy preserving manner.

• Protocol for secure SPQ along with hardness proof, implementation, and results.

1.2.1 Black Box Methodology

The key generation protocol presented in this paper paves a way for a user to implement a

generic methodology to evaluate some functions in a restricted domain without leaking the

output or input. This can be extended across any public key cryptosystem that supports linear

homomorphic encryption operations. To be precise, our scheme can be used like a black box

across these cryptosystems - Okamoto Uchiyama, Paillier, Goldwasser-Micali, and DGK. All

these have different sets of security parameters with respect to public keys, but all of them
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encrypt the plain text messages by raising it to a generator g, which is one of the public key

parameters. Mathematically, cipher texts obtained are in the form gm, along with a hiding

factor that varies from scheme to scheme. All these schemes carry out operations in modulus

n which is a composite number formed as a multiple of two large primes, i.e., n = pq. Our

scheme presents a novel method to generate one of these large primes, p. p is used to eliminate

the hiding factor during decryption. We make use of simple properties from number theory

and helps us generate the prime factor p, which would in no way alter any of the encryption or

decryption steps of the aforementioned cryptosystems. But the special way of prime generation

would help us dive into a new dimension during decryption process where private function

evaluation can be carried out in restricted domains.

1.3 Organization of Thesis

The rest of the thesis is organized as follows:

• Chapter 2 covers background on basics of Secure Multiparty Computation, Secure

Function Evaluation, Private Function Evaluation and secure computation methods. It

goes on to introduce the idea behind existing public key cryptosystems along with an

introduction to Partial Homomorphic Encryption and describes homomorphisms under

these encryption schemes. The last section in this chapter gives the key idea behind the

cryptosystem.

• Chapter 3 talks about important mathematical preliminaries necessary for the cryptosys-

tem with some basic definitions and theorems necessary for prime number generation.

• Chapter 4 focuses on the cryptosystem that is built using the basics from linear func-

tional embeddings. For this, a special key generation algorithm will be provided, the

encryption and decryption schemes will be the same as a standard cryptosystem that we

would like to implement, i.e., either Okamoto-Uchiyama or Paillier.

• Chapter 5 has two parts. The first part discusses the necessary definitions and theorems

necessary to prove the security of our cryptosystem. Second part consists of security and

hardness proofs.
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• Chapter 6 presents the protocol for Secure Function Evaluation introduced in the chap-

ter 4. It also consists of correctness and hardness proofs for this protocol.

• Chapter 7 is about the privacy of the protocol. This chapter consists of definitions nec-

essary to prove protocol privacy and privacy proofs with respect to the parties involved

in the protocol transactions.

• Chapter 8 contains the application for the Secure Function Evaluation protocol intro-

duced in chapter 6. It throws light on details of carrying out Similar Patient Query under

privacy preserving settings. Then we introduce a new algorithm to compute Euclidean

Distance among genomic data under privacy preserving settings. Finally a protocol for

carrying out SPQ will be described.

• Chapter 9 discusses the implementation of our cryptosystem along with the SPQ appli-

cation. The first part introduces algorithms to find the best α, β for prime generation and

prime generation itself based on the required Legendre symbol sequences. The second

part of the chapter talks about the SPQ application. Implementation steps along with

results and analysis for both the processes is provided in this chapter.

• Chapter 10 is a conclusion chapter that presents discussion and scope for future work

on this thesis along with the concluding remarks.



Chapter 2

Background

In this chapter, we go through some basic concepts that are necessary to understand the cryp-

tosystem we developed. It also highlights the literature available in the area of secure multi-

party computation and its related topics. We deal with concepts of Secure Multiparty Computa-

tion where we give a generic overview of the concept and go on to explain about Secure Func-

tion Evaluation and Private Function Evaluation and the terms that can be used interchangeably

depending on the application. We then proceed to explain the existing SMC protocols which

include Yao- based protocols namely Garbled Circuits and Universal Circuits, and the pro-

tocols that are built tapping the mathematical properties of public key cryptosystems namely

Homomorphic encryption schemes. The scope of this thesis is limited to extending additively

homomorphic encryption schemes for secure function evaluation and hence the next sections

deal with the details of these schemes. To give a detailed understanding of how homomorphic

encryption can be used to carry out, we proceed the rest of the chapter with an explanation

on public key cryptosystems. Then we describe two probabilistic cryptosystems, Okamoto-

Uchiyama and Paillier cryptosystems in detail which can be used for applying our scheme. We

discuss the concept of homomorphism and give brief details of partial homomorphism that is

displayed by the probabilistic cryptosystems. Partial homomorphism is exhibited mainly in

case of addition, multiplication and scalar multiplication, so we explain how all of the three

operations work on encrypted data. The last section of this chapter introduces the backbone of

our research- Residues based homomorphic encryption scheme. Its basic idea will be discussed

along with the related work done in this aspect.

7
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2.1 Secure Multiparty Computation

The key idea behind secure multiparty computation, which we shall denote as MPC hereafter,

is that two or more parties collaborate on computing some agreed upon function on their private

inputs. None of the parties in this transaction are allowed to learn about others’ input and by

the end of the transaction only the output of the function is revealed. The security in a MPC

is established by considering a Real-Ideal paradigm. The main aim of cryptography is to build

protocols that secure in the presence of corrupt participants. So the ideal world setting is such

that a secure computation of some function F(x) is carried out by some trusted party T . The

inputs to these function are provided by multi parties Pi. The assumption in this ideal world

is that an adversary can manipulate anyone from Pi but not the trusted party T . This makes it

easier for us to understand security in an ideal world because an adversary learns no more than

F(x) from T . The real world notion is much more complex as there are no trusted parties. All

Pis communicate with each other using some protocol π. An MPC is secure if the π carrying

out the MPC in real world can provide security that is equivalent to that of ideal world.

2.1.1 Secure Function Evaluation

This is a process of calculating a function on inputs of multiple parties without sharing the

inputs of both the parties with each other. This started way back in the 1980s during when it was

used only for theoretical purposes [11]. The first problem was a secure two-party computation

that started with a millionaire’s problem introduced by Andrew Yao [69]. It was generalized

to more generic secure computations in [70] and practical applications were developed at a

later point in time. There is tremendous amount of research conducted in this field to lower

the time and computational complexity required for performing secure function evaluation

cryptographically. The more formal definition for secure function evaluation is explained in

the next paragraph. We first give the notion of secure function evaluation between two parties,

then extend the definition to SFE among multiple parties.

Secure Function Evaluation between two parties can be carried out as follows:

Each party holds inputs {X,Y} respectively. They want to evaluate a function f (X,Y) on their

inputs, without actually sharing their respective inputs with each other. Secure Function Eval-
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uation will be carried out in such a way that upon its completion both the users know F(X,Y)

and nothing about the inputs for X , Y .

Based on this definition, we give a more formal definition for secure function evaluation

that involves multiple number of users. Let n be the number of users, u be the number of

inputs possessed by each individual user. These users want jointly evaluate some function F :

{0, 1}un 7→ {0, 1}m. Each ith user possesses an xi ∈ {0, 1}u. Secure Function Evaluation will be

carried out in such a way that upon its completion all the n users will receive F(x1, x2, x3, ..., xn)

and nothing about the x j for j , i. Secure Function Evaluation can be carried out under

three adversary settings: Honest-but-curious, Malicious and dynamic. More formal notions

of these adversaries are discussed in chapter 6. The tools used for secure function evaluation are

discussed under secure computation methods. Mostly SFE is used interchangeably with secure

computation or private function evaluation. But there are some subtle differences between PFE

and SFE, which will become clearer with the upcoming sections.

2.1.2 Private Function Evaluation

As discussed earlier, Private Function Evaluation is a special case of Multiparty computation.

The difference between PFE and SFE is that in SFE, the function F need not be hidden and only

the respective inputs are hidden from each other, whereas in PFE, while the security constraints

of SFE are maintained, it also hides F. In [41] it was highlighted that, while the function to

be computed will be a private input of one of the parties in secure multiparty computation

process, the key security requirement is that the only information an adversary who does not

control F can learn is about the size of the circuit and nothing else about F. Here, size of

the circuit indicates the number of gates and distinct wires in the circuit. The circuits used in

Private Function Evaluation are called as Universal Circuits, and more details about these are

discussed in the next section. Formally, we can define Private Function Evaluation as:

Given n users, with u inputs, let an user p hold F : {0, 1}un 7→ {0, 1}m as one of their inputs.

PFE is carried out in such a way that upon completion users will only learn the outputs and no

information will be revealed about F and x j for j , i. Any adversary trying to control p cannot

learn anything about F other than its depth.
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2.1.3 Secure Computation Protocols

The two most popular approaches for secure multiparty computations are using Homomorphic

Encryption and Garbled circuits. Homomorphic Encryption often requires little interaction but

is computationally complex. Garbled Circuits make efficient use of symmetric key operations

but require multiple interactions between the two parties. Both the methods work by involving

a trade-off between communication and computational complexity. Some applications require

minimum communications between the parties involved, which is why they cannot rely on

Garbled Circuits. And for those operations that can be implemented using unbounded num-

ber of additions and scalar multiplications, Additively Homomorphic Cryptosystems are more

suitable than their Fully Homomorphic Counterparts as they are relatively fast and straight-

forward to implement. The upcoming subsections survey some of the secure computation

protocols. Any secure computation protocol can be viewed as a form of computation carried

out under encryption.

Garbled Circuits

These were initially proposed by Yao [69] for solving the Millionaire’s problem. We convert

the input function into a Boolean circuit, where each input into this circuit will be encrypted

by two separate keys. These encrypted values are then added to a truth table by randomly

permuting them- also known as ”garbling”. This truth table will be exchanged between the

parties using oblivious transfer, where in the sender transfers many pieces of information to the

receiver, but remains oblivious to what piece of information has been received. Then an eval-

uation will be applied to extract the output from the key information obtained in OT protocol.

There are many different types of garbled circuits available for secure function evaluation, but

Yao’s garbled circuit is a classical approach and rest of the garbled circuits such as point and

permute [6], free XOR [35], Garbled row reductions [43] [52], fleXOR [34], half gates [72],

and garbled gadgets [5] are optimizations to Yao’s circuit. Whatever the scheme may, the

functionality remains constant with following steps:

• A garbling step, where a security parameter is provided, along with the function that

needs to be evaluated and returns a garbled circuit as an output along with information
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about encoding and decoding. This garbled circuit, encoding and decoding information

will be used in the upcoming steps.

• Encoding information will be used to garble an input.

• Garbled circuit will take the garbled input and returns a garbled output. This step is

called evaluation.

• The final step would be where decoding information will be used to decode the garbled

output to plain text output.

Homomorphic Encryption

Apart from garbled circuits, Homomorphic encryption is another type of protocol which is used

to carry out secure computations under private settings. Homomorphic encryption is a form of

encryption that allows a user to perform computations on encrypted data. The result of homo-

morphic encryption will be another encrypted text which when decrypted will match results of

operations as if they were carried out on plain text. Homomorphic encryption schemes allowed

for a wide range of applications that require privacy preserving computations such as outsourc-

ing cloud storage and predictive analytics on encrypted data to name a few. A lot of secure

function evaluation schemes have been proposed by [26] [66] [51] [37] [17] [9] which deal

with homomorphic encryption scheme. Broadly, there are two types of HE schemes namely

partial HE and fully HE, which will be discussed briefly in the next sections.

Partial Homomorphic Encryption

The rest of our thesis will deal with the cryptosystem based on Partial Homomorphic Encryp-

tion scheme. So, this section will highlight some generic aspects with existing literature in

PHE that deals with secure function evaluation. The technical aspects of PHE are discussed

through various sections across this thesis. A PHE based scheme usually performs limited

mathematical operations on encrypted data, which is why we use PHE for some linear Secure

Function Evaluation protocols that mostly rely on either simple Addition or multiplication. It

is difficult to carry out multiple operations using a simple PHE scheme, which is why they
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have less computational complexity. [51] [37] and [17] tried to extend simple PHE schemes

to support multiple operations such as addition, multiplication, exponentiation and natural log.

Nonetheless, a variety of health care data analytics which do not have too many computations

or rely only on linear operations like additions and scalar multiplications, have a tremendous

amount of potential in resorting to partial homomorphic encryption schemes.

Fully Homomorphic Encryption

Since PHE has a potential to perform limited number of computations on encrypted data, re-

searches were conducted to explore the possibilities of performing multiple computations on

encrypted data. It began with [25] developing a HE scheme using lattice based cryptography.

Later, several schemes were introduced to carry on complex operations like multiplication and

other complex arithmetic circuit operations. Though there are many sub-types in case of HE

schemes, we just broadly consider them as partial or full depending on the linearity of the com-

putations the schemes perform. Nonetheless, Fully homomorphic encryption is the strongest

notion of homomorphic encryption there is, as it is supposed to allow unbounded number of

arithmetic circuit operations. This way, secure function evaluation can be carried out in an easy

way with FHE. But the computational complexity is too high for FHE, making PHE a more

suitable option for real time applications.

Universal Circuits

These are a special type of arithmetic circuits specifically dealing with Private Function Eval-

uation. Since PFE involves hiding the function to be evaluated, generic SFE techniques may

become too simple for usage. Let there be two parties P1 and P2 such that P1 holds input x and

P2 holds a circuit that represents the function f that needs to be evaluated. From the definition

of PFE, we need the f to remain private. This implies that the circuit C f holding f , itself should

remain private. PFE stands in contrast to an SFE meaning that in SFE for inputs x, y, we take

an f which is agreed upon previously by the participants. Now we calculate f (x, y) using an

agreed upon C f without knowing the inputs. In case we need to hide this C f , we try to develop

some Universal Circuit Un with n gates such that U(C, x) = Cn(x). This notion of Universal

Circuits have been used in the literature by [36] [57] [49]. The implementations are tedious,
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error prone, and challenging when it comes to writing code for Universal Circuits. Certain op-

timizations have also been introduced in [33] [41], but the computational complexity is always

dependent on the depth of the circuit making it very complex for real time applications.

2.2 Public Key Cryptography

The idea of public key cryptography is to share secrets over a public network or platform. The

participants in a transaction done using public key cryptosystem have never met to exchange

the secret key. It uses a pair of keys: Public and Private, where the public key is distributed to

everyone trying to encrypt using the cryptosystem and private key is known solely to the owner.

The hardness of the breaking up a public key cryptosystem is based on the mathematical prob-

lems that help us to produce one-way. Basically we take up some hardness assumptions from

mathematics and use them to build public key cryptosystems that are hard to break using a poly-

nomial time algorithm. The most widely used hardness assumptions are Discrete Logarithm

problem [30], Quadratic Residuosity Problem introduced by [24] and applied by cryptosystems

like Goldwasser-Micali [27], Decisional composite residuosity assumption [48], higher Resid-

uosity Problem [73], and Integer Factorization problem [55]. Based on these hardness assump-

tions many public key cryptosystems were designed. To apply our scheme, we need the public

key schemes that support Additive Homomorphism, which include Goldwasser-Micali [27],

Paillier [48], Okamoto-Uchiyama [47], DGK [14], and Exponential ElGamal [19]. The scope

of this thesis is limited to applying Okamoto-Uchiyama and Paillier Cryptosystem for secure

function evaluation. A detailed description of these two cryptosystems is given in the coming

subsections. Any cryptosystem usually contains three parts: a key generation algorithm, an

encryption step, and a decryption step. Our description for all the cryptosystems in this thesis

follow the same steps. Also, we use M as a message space of size Zk, where k denotes the

number of bits of prime p. One of the greatest advantages in using these cryptosystems is that

both of them are probabilistic. When we say a scheme is probabilistic, it indicates that each

message encrypts into different cipher text. In fact, same message is encrypted into different

cipher text each time as we encrypt due to the presence of a random factor. This makes these

cryptosystems suitable for limited message spaces like {0, 1}n or {0, 1, 2}, as we may need to
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encrypt the same number multiple times. If we use a non-probabilistic cryptosystem like RSA

to encrypt these message spaces, an attacker can easily figure out the plain text messages by

using the cipher text that is published.

Before proceeding further we would like to give some basic definitions that are necessary

to understand the cryptosystems we are going to discuss next.

Group A group is an algebraic structure that has two components- set of elements G and a

binary operator (∗). These groups display the following properties:

• Closure Property: ∀a, b ∈ G, (a ∗ b) ∈ G

• Associative Property: ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Identity Property: ∃i ∈ G | ∀a ∈ G, (i ∗ a) = a, where i is identity element

• Existence of Inverse: ∀a ∈ G,∃b ∈ G | a ∗ b = i, where i is the identity element

• Some groups called Abelian Groups have a property called Commutative Property which

ensures that ∀a, b ∈ G, a ∗ b = b ∗ a

Cyclic Group A cyclic group is an abelian group that can be generated from a single ele-

ment. These elements are called generators of the group and form the backbone of public

key cryptography. For example, if G is a cyclic group with some generator g, this implies

that every element in G is equal to gk for some k ∈ Z. For groups with finite order n we can

have k ∈ {0, 1, 2, 3, ..., n − 1}, in these cases we can have more than one generators. These

generators form the base of the probabilistic cryptosystems which perform encryption using

exponentiation of plain text message.

2.2.1 Okamoto-Uchiyama Cryptosystem

Developed by Tatsuaki Okamoto and Shigenori Uchiyama in 1998 [47], this cryptosystem de-

pends on the hardness assumption called p-subgroup assumption which is discussed later in

chapter 5. We tried to apply our secure function evaluation protocol for the case of Okamoto-

Uchiyama cryptosystem. It works for integers in the multiplicative subgroup of integers
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(mod n). The decryption of this cryptosystem relies on the group homomorphism of the type:

L : Γ 7→ Zp which is given by L(xp + 1) = x, which can be re written as L(x) =
x − 1

p
.

Encryption

The encryption and decryption functions are implemented same way as described in [47]. For

a plain text message m ∈ M, public key PK = {n, g, h} where:

• n = p2q, (p, q are two large primes)

• Select a g ∈ Z∗n and gp−1 . 1 (mod p2).

• This implies the encryption base B = {g ∈ Z∗n | ordp2(g (mod p2))p−1 = p}.

• [47] proves that if g
R
←− Z∗n, then g ∈ B with overwhelming probability.

• h ≡ gn (mod n).

We generate a ciphertext C by applying the Encryption function Enc(M, PK) = C

c ≡ gmhr (mod n).

Decryption

To decrypt a ciphertext C we use the private keys S K = {p, q}. We compute:

a = L(cp−1 (mod p2)) =
(cp−1 (mod p2)) − 1

p
.

b = L(gp−1 (mod p2)) =
(gp−1 (mod p2)) − 1

p
.

Using Extended Euclidean algorithm we compute:

b
′

= b−1 (mod p).

Finally giving:

m = ab
′

(mod p).
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2.2.2 Paillier Cryptosystem

This cryptosystem considers n = pq where p, q are large primes ∈ Zk. It was developed

by Pascal Paillier in 1999 and relied on the hardness assumption that computing nth residue

classes is computationally difficult. As described in [48], this probabilistic public key scheme

displays additive homomorphism.

Encryption

Public key = n, g where:

• n = pq.

• select some g ∈ Z∗n2

This gives: c ≡ gmrn (mod n2).

Decryption

The private (decryption) keys are λ and µ where

λ = LCM(p − 1, q − 1).

µ = (L(gλ (mod n2)))−1 (mod n).

m = L(cλ (mod n2)).µ (mod n).

where L is a function of the form L(x) =
x − 1

n
In other words, consider two groups G and H:

G = {x = gmhr (mod n) for m ∈ Zp and h ∈ Zn}.

H = {x = hn (mod n) for y ∈ G}.

The p-subgroup problem is to distinguish elements of H from elements of G\H.
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2.3 Partial Homomorphic Encryption

Of all the secure computation methods discussed in section 2.1, we decided to develop a cryp-

tosystem based on Partial Homomorphic Encryption properties keeping in mind the time and

computational complexities. As discussed earlier, PHE encompasses evaluation of a single

type of computation: either addition or multiplication. Additionally, we can also perform scalar

multiplication along with addition in some cryptosystems that use a generator g and raise the

plain text m to g to form a cipher-text. The method to carry out addition and multiplication in

these type of cryptosystems is discussed in the following sections.

2.3.1 Addition

Additive homomorphism is displayed by the cryptosystems that generate cipher text of the

form c = gm. This is the case with cryptosystems discussed in the previous sections namely,

Paillier, Okamoto-Uchiyama, DGK, and exponential El-Gamal. Let n, g be public keys and

m1, m2 be plain text messages1, then additive homomorphism can be expressed as follows:

Enc(m1) · Enc(m2) = gm1gm2 (mod n)

= gm1+m2 (mod n)

= Encm1 + m2).

Goldwasser-Micali

Given n, a, m, r, where
(a
n

)
is a quadratic non-residue, r

R
←− Zn and m ← {0, 1}, Enc(b) =

amr2 (mod n). The addition in this cryptosystem results in a XOR function, i.e., an addition

(mod 2). Mathematically:

Enc(m1) · Enc(m2) = am1 · am2 · r2
1 · r

2
2 (mod n)

= a(m1+m2) · (r1 · r2)2 (mod n)

= Enc(m1 ⊕ m2).

1for the ease of explanation, we are using the common expressions from the cryptosystems by avoiding the

hider h and randomizer r
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2.3.2 Scalar Multiplication

For the same settings as discussed above, let k be some constant, then homomorphism for

scalar multiplication can be expressed as follows:

Enc((m)k) = (gm)k (mod n)

= (g)mk (mod n)

= Enc(km).

2.3.3 Multiplication

Multiplicative homomorphism is displayed by the cryptosystems which produce c = gm. In

this case, multiplication between encrypted m1 should be carried out like scalar multiplication

by raising the cipher-text to plain text m2. A different set of cryptosystems where we do not

use exponentiation to obtain cipher text, specifically whose security dependent on the hardness

of Discrete Logarithm Problem [30] can perform multiplication on two cipher texts. These are

unpadded RSA and El-gamal. Multiplication for exponentiation based cryptosystem can be

expressed as follows:

Enc(m1)(m2) = (gm1)m2 (mod n)

= gm1m2 (mod n)

= Enc(m1 · m2).

Unpadded RSA

Recall the basic RSA cryptosystem where, n is the public key modulus, e is the exponent

and Enc(m) = me (mod n). The homomorphism in this cryptosystem can be expressed for

messages m1,m2 as:

Enc(m1).Enc(m2) = (m1)e · (m2)e (mod n)

= (m1 · m2)e (mod n)

= Enc(m1 · m2).
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ElGamal

This cryptosystem, proposed in [19], uses a generator g, h = gx such that x is the secret key,

for some random number r ∈ ordg the cipher text is formed as Enc(m) = (gr,m.hr). For this,

the multiplicative homomorphism is calculated as:

Enc(m1).Enc(m2) = (gr1 ,m1hr1)(gr2 ,m2.hr2)

= (gr1+r2 , (m1 · m2)hr1+r2)

= Enc(m1 · m2).

2.4 Residues Based Homomorphic Evaluation

The homomorphism presented in this thesis is based on an Evaluation Function which is dis-

cussed later in section 4.3, where we evaluate the functions of the form Z 7→ {0, 1}`. The basic

idea for this cryptosystem is derived from [20]. Identifying patterns in the runs of consecutive

Quadratic Residues and Non residues (mod p) has always intrigued number theorists. If we

consider Legendre Symbols of a sequence of numbers of the form {x, x + 1, x + 2, ..., x + n}

(mod p), the pattern looks very random. In [20] an interesting pattern was identified with re-

spect to distribution of quadratic residues. They seem to imitate threshold functions which are

of the form:

T (x) =


1 if x > threshold

0 Otherwise.

Let QRp(x) be a function representing Quadratic Residuosity of an integer x ∈ Z. It can be

defined as:

QRp(x) =


1 if x is a quadratic residue mod p

0 Otherwise.

Combining both, the threshold function can be privately evaluated during decryption as fol-

lows:

QRp(x + f ) = T (x).

The limitation with the above idea is that, a search based approach should be used in identifying

the required patterns for Legendre Symbols (mod p). In other words, the domain for the
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function to be evaluated will be taken, say the domain is f (x) = {1, 1, 1, 0, 0, 0}. This f(x) will

be used to search for same length of Residues and Non-residues iteratively across a range of

prime numbers, because remember a Residue (mod p) = 1 and Non-Residue (mod p) = 0.

This search based approach is difficult as the search needs to be carried out iteratively across

each prime ∈ P until the required pattern is found. This would become very difficult to find

larger runs of consecutive Residues and Non-Residues in the polynomial time as the domain

size of the function increases.

Many researches [68] [50] [31] [16] [8] [7] have been conducted in identifying patterns in

consecutive runs of Quadratic Residues. Although these studies were able to establish certain

bounds on the length of the sequences found, they only deal with consecutive residues or non

residues, but not arbitrary patterns where we can expect a combination of both residues and

non-residues. In fact, it is this randomness in occurrence of R and N is what makes it useful

for a wide range of applications in cryptography.

Our idea is that, instead of looking for arbitrary patterns in consecutive set of Rs and Ns,

we can go for numbers (mod p) by taking a random step size or go for arithmetic sequences

of fixed form. This may help us to find out the prime that has required patterns in Rs and

Ns. As opposed to applying a search across infinitely many numbers, it is easier to pick a

sequence and use the sequence to generate the necessary primes. This helped us in building a

new cryptosystem altogether, which can now be extended to privately evaluate functions with

a domain size up to 512 − bits. The functions that can be evaluated privately using this special

type of cryptosystems are of the following form:

f : Z+ 7→ {0, 1}`

Every function has an input set and target set. We define this input set as Domain. The function

performs certain operations on the input set, which produce the output that belongs to the

target set. The target set is known as co-domain. In the current scenario, we are looking

at functions whose domain X falls in a set of sequence of integers that can be expressed as

(αi + β) | α, β ∈ Z, i ∈ {0, 1, 2, ..., n}. The co-domain f (x) belongs to the message space of

{0, 1}n. The Boolean Function is chosen as co-domain because, the Legendre Symbols symbols

as defined above merely represent Boolean values indicating whether the given number is a
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quadratic residue (mod p) or not. Finding the apt α, β forms the heart of our scheme because,

these values determine the start of the required sequence of Quadratic Residues.



Chapter 3

Mathematical Preliminaries

This chapter deals with some definitions, mathematical basics required to discuss our cryp-

tosystem used for Secure and Private Function Evaluation. The definitions in the first section

will help us understand the type of functions that we are going to deal with for function evalu-

ation under privacy preserving settings. These definitions will be used to prove two theorems

that are the basic foundation for the key generation described in section 4.1. The theorems

stated are presented along with their proofs built using basics from number theory. We use the

same notations for the functions and other elements used in PFE throughout the thesis. For

example β denotes the beginning of the sequence used for prime generation and α is the step

size of the sequence.

3.1 Basic Definitions

Before proceeding with basic definitions, please note that the function g discussed in the fol-

lowing sections is different from the generator g ∈ Zn that used for encryption. The generator

g is an integer which will be used as a base for encryption of plain-text messages. Where as

function g : Z 7→ {0, 1} denotes a linear embedding function upon which we carry out our

secure function evaluation.

Quadratic Residues A number n ∈ Zp is called a Quadratic Residue mod p, where p is an odd

22
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prime ⇐⇒ there exists some x such that:

n ≡ x2 (mod p).

Otherwise n is a non-residue.

Properties of Quadratic Residues Quadratic Residues (QR) and Non-Residues (NR) have

the following properties:

QR · NR = NR

QR · NR = QR

NR · NR = QR.

Legendre Symbol The Legendre symbol is a function of a and p and is defined as:

(
a
p

)
≡


1 if a is quadratic residue (mod p)

−1 if a is quadratic non residue (mod p)

0 if a ≡ 0 (mod p).

Relatively Prime Integers Two integers are said to be relatively prime to each other or Co-

prime integers if they do not have a common factor other than 1. Mathematically, let a, b ∈ Z |

a , 0, b , 0, then a, b are co-prime ⇐⇒ gcd(a, b) = 1. As a corollary, every distinct pair of

prime numbers are relatively prime to one another.

Chinese Remainder Theorem Let p1, p2 be pairwise co-prime. Then the system of equa-

tions:

a ≡ b1 (mod p1)

a ≡ b2 (mod p2)

has a solution in a.

Quadratic Reciprocity Law The Quadratic Reciprocity Law states that:

(
a
p

)
≡



( p
a

)
if a or p ≡ 1 (mod 4)

−

( p
a

)
if a, p ≡ 3 (mod 4).

(3.1)
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Euler’s Criterion For an odd prime p and an integer a ∈ {1, p − 1}:

a
p−1

2 ≡


1 if a is quadratic residue (mod p)

−1 if a is quadratic non residue (mod p).

Function A function is rule established between two sets such that it assigns each element of

the first set to exactly one element in the second set. These two sets are also otherwise known

as input and target sets respectively. Consider two sets X, Y such that:

f : X → Y

From the above, we can define the input set X as domain and the target set Y as co-domain.

Functional Embedding Let f : Z∗p → {0, 1} and g : Zk → {0, 1} with k ≤ p. We say function

g is embedded in a function f if there exists a domain mapping function h : Zk → Z∗p such that

for all i ∈ Zk,

f
(
h(i)

)
= g(i).

Linear Embedding We say function g is linearly embedded in the function f if the domain

mapping function h is linear i.e., there exists an α, β such that,

f (αi + β) = g(i).

Dirichlet’s theorem Also known as Dirichlet’s prime number theorem, this theorem states

that for any two positive integers a, d that are co-prime, there exist infinitely many primes of

the form ka + d, where k is a positive integer. Simply put, there are infinitely many primes that

are congruent to a (mod d).

3.2 Linear Embeddings in Residue Symbol Sequences

The central idea of our method is to find linear embeddings of Boolean functions using the

sequence of Legendre symbols modulo a prime p. Let g : Zk → {0, 1} be a Boolean function.

Let f : Z∗p → {0, 1} be the Legendre symbol of an integer 0 < x < p mapped to the Boolean

domain, i.e.,

f (x) =

(
i
p

)
+ 1

2
.
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Finally, let the linear domain mapping function h : Zk → Zp be defined as

h(i) = αi + β.

for some prime p and 0 < α, β < p such that

f
(
h(i)

)
= g(i).

Using this approach we can implement Boolean function g as a linear embedding within the

sequence of Legendre symbols modulo prime p. With the following two theorems we prove

that such a p, α and β exist for all Boolean functions g.

3.2.1 A new technique for Prime Number Generation

Theorem 3.2.1 Consider a list of k distinct primes {a1, . . . , ak} and a list of residue symbols

{`1, . . . , `k} where `i ∈ {−1, 1}. For all 1 ≤ i ≤ k, there exists a prime p such that(
p
ai

)
= `i.

Proof The proof proceeds in two parts. In the first part, we prove the existence of some integer

p′ that satisfies these conditions. In the second part, we prove the existence of a p′ implies the

existence of a prime p with the same properties. For each `i and ai, pick some 0 < bi < ai such

that (
bi

ai

)
= `i.

A solution for all `i ∈ {−1, 1} is guaranteed to exist given there exist both (ai − 1)/2 quadratic

residues and non-residues modulo ai. Let p′ be defined by the following system of equations:

p′ ≡ b1 (mod a1)
...

≡ bk (mod ak)

Because each ai is prime, each 0 < bi < ai is to be co-prime to ai. Therefore a solution for p′

exists via the Chinese remainder theorem. Since(
bi

ai

)
= `i,
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and p′ ≡ bi (mod ai), then for each 1 ≤ i ≤ k we have(
p′

ai

)
= `i.

Now we show the existence of an integer p′ implies the existence of a prime p with the same

congruences. Let A =
∏

ai and p = kA + p′ for some integer k ≥ 0. Since p ≡ p′ (mod A),

and therefore p ≡ bi (mod ai), then (
p
ai

)
= `i.

Finally, since p′ is relatively prime to A, Dirichlet’s theorem guarantees there are infinitely

many primes of the form kA + p′.

Theorem 3.2.2 For all k > 0 and all functions g : Zk → {0, 1} there exists a prime p and two

integers 0 < α, β < p such that for all 0 ≤ i < k,(
αi + β

p

)
+ 1

2
= g(i).

Proof Let α, β, k be positive integers such that αi + β is prime for all 0 ≤ i < k. The existence

of such an α, β is guaranteed for all k > 0 by the theorem due to Green and Tao [28] which

proves the primes contain arbitrarily long arithmetic sequences, and, therefore, there exists an

α, β for all k > 0 such that αi + β is prime for all 0 ≤ i < k. Given such a linear sequence

of prime valued 1 (αi + β)’s, theorem 3.2.1 guarantees there exists a prime p such that for all

0 ≤ i < k, (
p

αi + β

)
= 2g(i) − 1.

Suppose there existed a p such that p ≡ 1 (mod 4). Then by the law of quadratic reciprocity,(
αi + β

p

)
=

(
p

αi + β

)
= 2g(i) − 1,

and therefore,

g(i) =

(
αi + β

p

)
+ 1

2
.

1Requiring all (αi+β) be prime is only done to facilitate the existence proof. In practice, Algorithm algorithm 2

can generates suitable primes p in the presence of composite (αi + β).
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In the alternate case where all such primes p were congruent to 3 (mod 4), Theorem 1 also

guarantees there exists a prime p such that

(
p

αi + β

)
=


2g(i) − 1 if αi + b ≡ 1 (mod 4)

1 − 2g(i) if αi + b ≡ 3 (mod 4).

For all αi + β ≡ 1 (mod 4), quadratic reciprocity again gives us(
αi + β

p

)
=

(
p

αi + β

)
= 2g(i) − 1.

Finally, for all αi + β ≡ 3 (mod 4),(
αi + β

p

)
= −

(
p

αi + β

)
= −(1 − 2g(i)) = 2g(i) − 1.

Therefore

g(i) =

(
αi + β

p

)
+ 1

2
(3.2)

for all 0 ≤ i ≤ k.



Chapter 4

Our Cryptosystem

This chapter presents a public-key method for homomorphically evaluating functions of the

form f : Z→ g(i), where g(i) is a linear embedding found in f . Based on the fundamentals of

public key cryptosystem,let us define this cryptosystem as CS = {Gen,Enc,Dec}. The three

components indicate:

• Gen - Key generation algorithm

• Enc - Encryption function

• Dec - Decryption function

Apart from these three components, we add a fourth functionality to our cryptosystem and label

it as an evaluation function. This evaluation function enables us to successfully perform secure

function evaluation in a unique way upon decryption of the ciphertext. In some scenarios,

we do not need to read the components of the second party to perform the secure function

evaluation due to the presence of this unique evaluation function described in section 4.3.

4.1 Key Generation

This section describes the key generation algorithm which is developed using the mathematical

preliminaries presented in the chapter 3. We are trying to generate p, which is one of the large

prime factors of the composite modulus n | n = pq. p is also a private key used for decryption

28
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si Factors

31 31

1969 11 · 179

3907 3907

5845 5 · 7 · 167

7783 43 · 181

9721 9721

11659 89 · 131

13597 13597

15535 5 · 13 · 239

17473 101 · 173

19411 7 · 47 · 59

Table 4.1: First 10 elements in a sequence length of 512 with at least one unique factor for

α = 1938 and β = 31

in various public key cryptosystems, so once generated, this p remains a secret. Depending on

the length of g(i) to be evaluated, we pick the α, β values such that f (αi + β) = g(i).

• Two parties that want to securely evaluate some function of the form g : Z 7→ {0, 1}`

agree upon a fixed co-domain f (αm + β), such that for some plain text message m
R
←− Zk,

f (αm + β) 7→ g(m).

• Based on the length of the linear embedding g(m) which is required to evaluate f (m),

we generate an arithmetic sequence of numbers S such that, each si ∈ S has at-least one

unique factor, i.e., si−1 = p1 · p2 and si = p1 · p3 and so on. As we proceed through

the set of arithmetic sequences, each new element must have at-least one new factor.

So to evaluate a g(m) of length 10, we need a sequence of 10 elements with atleast one

unique factor. An example for the first 10 elements of such sequence along with their

factorizations is displayed in table 4.1.

• Now we find bi using theorem 3.2.1 to match our required sequence. In order for this to
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work, not only does ai need to have the matching symbols but the unutilized primes in

the sequence need to remain as QRs so they don’t affect the overall Legendre Symbol of

si. This is established from the properties described in section 3.1.

• Once we find bi, we recursively apply Chinese Remainder Theorem to until we find a

prime p which is guaranteed as per theorem 3.2.2.

• To get
(
ai

p

)
≡ `i (mod p), depending on section 3.1 we find primes of the form p ≡ 1

(mod 4). Detailed steps of key-generation algorithms are discussed in section 9.1.1

4.2 Encryption and Decryption

Encryption and decryption mostly follow the same procedure as outlined in Chapter 2.2.1.

We can use both Okamoto-Uchiyama and Paillier cryptosystems in case of encryption

scheme. Remember both of them have n, which is a product of two large primes as public

key modulus where, n = pq in case of Paillier and n = p2q in case of Okamoto-Uchiyama.

Once we generate p using the key generation algorithm Gen, we can apply it in these cryp-

tosystems and generate the required n. It does not affect the encryptions scheme on the whole.

Depending on the cryptosystem used to carryout the encryption function, decryption will

be carried out in the final step of the transaction. Both Paillier and Okamoto-Uchiyama cryp-

tosystem use p as private key for their decryption. As stated earlier, since p is common, this

makes our key generation scheme Gen suitable for both the cryptosystems without having to

modify too much while decrypting.

4.3 Evaluation Function

This function is used to homomorphically evaluate any Boolean function within the restricted

domain which will be pre-specified. It is defined as follows:

Eval(PK, c): Given ciphertext c = Enc(m) and random cipher text blinding factor rc ∈ Zk, α, β

from the prime generation algorithm, we compute

c
′

= Eval(c) = ((cα) · β)r2
c .
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Since our scheme supports only scalar multiplication and homomorphic addition, we use plain-

text α and Enc(β) for computing the evaluation function.

4.3.1 Proof of Correctness

Theorem 4.3.1 For m ∈ Zk, Dec(Eval(c)) homomorphically evaluates m to g(m), where g(m)

is the linear embedding of a function that we are trying to evaluate such that g : Zk 7→ 0, 1`

Please note that the linear embedding g is different from the generator g used for encryption of

a plain text message.

Proof For Enc(β) = β′, expanding Eval(c) we have:

Eval(Enc(m)) = ((gmhr)α) · β′)r2
c

= ((gm)α) · β′)r2
c · (hr′)

= Enc((αm + β′) · r2
c ).

Upon decryption and applying definition from section 3.2 we get:

Dec(c
′

) = (αm + β) · r2
c ).

Recall from definitions 1,2 and 3 that

f (r2
c ) =

(
r2

c

p

)
+ 1

2

= 1.

Therefore applying the f -function to the decryption result we have

f ((αm + β) · r2
c ) = g(m) · f (r2

c )

= g(m).
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Security of our Cryptosystem

The security of any cryptosystem is often established by showing that breaking them is harder

than the mathematical problems which are generally considered difficult.This difficulty is gen-

erally proven using two notions: one-way encryption and semantic security. We establish these

notions by starting with some relevant definitions. If we assume the functions chapter 3 defined

in as problems, the following definitions indicate what problems are hard. For implementation

we used Okamoto-Uchiyama cryptosystem, so the security proof of CS = GEN,ENC,DEC is

based on the semantic security of Okamoto-Uchiyama Cryptosystem. We define the necessary

terms for security proof using them we establish that Okamoto-Uchiyama cryptosystem is se-

mantically secure and then prove that CS is also semantically secure by extension. The proof

of Okamoto-Uchiyama cryptosystem security is based on the proof described in [47] and [32].

5.1 Basic Definitions

Negligible Function A function is negligible with respect to some k ∈ N if for all c ∈ N there

exists some M ∈ Z such that f (k) <
1
kc whenever k > M

Intractable Function A function f : X 7→ Y is intractable with respect to x ∈ Xi if for all

algorithms A, when the inputs in {X j| j , i} are held fixed, the probability function

Px[A(x) ∈ P(x)].

is non-negligible with respect to x ∈ Xi

32
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One-way encryption It is the computational problem of computing a plain text message m

from public key parameters- n, g and the cipher text c = Enc(m). If inverting the encryption is

intractable, the encryption is called a one-way function.

Semantic Security For b = 0, 1, let E0 and E1 be two experiments; let m0, m1 be two plain

text messages and A be an adversary(algorithm) that is trying to break into the system. We

have a challenger who outputs m0 in E0 and m1 in E1. We define the advantage of adversary

outputting the same values for both the experiments as:

Adv[A, E] = |Pr[w0] − Pr[w1]| ∈ [0, 1]].

where wb defines that an experiment b returned 1.

Now, E is semantically secure if for all efficient adversaries, the Adv[A,E] is negligible, mean-

ing no efficient adversary can distinguish the encryption of m0 from encryption of m1.

Factoring Problem It is the problem of computing factors p and q of the composite modulus

n.

Sylow’s Theorems Let G be a finite group. Let p be a prime dividing |G| such that G = pkm

with k > 1 and p - m [23]

• First Theorem There is a subgroup H ⊆ G of order pk, it is called Sylow p-Subgroup.

• Second Theorem Any two Sylow p-Subgroups are conjugate, there is an element g ∈ G

such that g−1Hg = K.

• Third Sylow Theorem Let np be the number of Sylow p-Subgroups then:

– np | m

– np ≡ 1 (mod p)

– np = |G|/|NG(H)|, where H is a Sylow p-Subgroup and NG(H) denotes the normal-

izer of H, i.e., the largest subgroup of G in which H is normal.
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5.2 One-way Function

Theorem 5.2.1 If the factoring problem is intractable, then the encryption is a one-way func-

tion.

Proof The encryption function of this cryptosystem is same as that of Okamoto-Uchiyama

cryptosystem. The proof works out by verifying that the distribution of the ciphertext in the

cryptosystem can be simulated by an algorithm.We take two algorithms A1 and A2. A1 in-

verts the encryption with a non-negligible probability and A2 is a factoring algorithm. From

section 4.2 we know that C = gm (mod n). We omit hr for the time being from encryption

function for the sake of convenience. Now we construct the algorithm A2 as follows:

Choose g′
R
←− Zn

Choose z
R
←− Zn

Compute C′ = gz (mod n)

Compute m = A1(n, g′,C′)

Compute d = gcd(z − m, n)

if
√

d ∈ Z then

d =
√

d

end if

if d < 2k then return (d,
n
d

)

end if

It is easy to establish that the distributions of g′,C′ are similar to g, c detailed proofs can

be found from [47].This implies A1 returns the m corresponding to C′ with a non-negligible

advantage.

Further, gz ≡ gm (mod n) so gz ≡ gm (mod p2). As we know ordp2g = p, it gives us

m ≡ z (mod p). Now z ≡ m (mod p) implies z = m which occurs with a negligible probability.

This implies n - z − m giving us a gcd(z − m, n) = γ, where p | γ. But we already known -

γ, implying the d from algorithm A2 may be one among{p, p2, q} breaking the factoring

assumption altogether. Therefore, if A2 is tractable, A1 is easy to achieve making its converse

is also true.
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5.3 Semantic Security

Theorem 5.3.1 The encryption scheme CS presented in chapter 4 is semantically secure under

chosen plain text attack.

The proof for this theorem works in two parts.First we prove that the Okamoto-Uchiyama

cryptosystem [47] is semantically secure chosen plain text attack. Second we extend the proof

to our cryptosystem.

Given only n and g where n = p2q such that p - q − 1 , g ∈ Zn and order of gp−1 (mod p2)

is p, we know that the order of Z∗n = Z∗p2q = (p − 1) · (q − 1) · (p). Recall that by Sylow’s

First theorem [23] Z∗n has exactly one p-subgroup, let us indicate this p-subgroup as Ω, where

Ω = {ypq + 1|y ∈ Zp}. Consider some element x , 1 ∈ Z∗n. We can know whether x ∈ Ω by

verifying if order of x ∈ Z∗n divides p or ap ≡ 1 (mod n). Since p is prime, this is possible only

if |x| = 1, but this contradicts our assumption, so |x| = p.

Definition Let X
R
←− {Ω,Z∗n}. The p-subgroup problem is a decisional problem of given n and

x
R
←− X, deciding whether X = Ω or X = Z∗n \Ω.

Lemma 5.3.2 The Okamoto-Uchiyama cryptosystem is semantically secure ⇐⇒ p-subgroup

problem is intractable.

Proof p-subgroup problem is equivalent to distinguishing between the valid encryptions of

0 and 1.The proof for this equivalence with respect to Okamoto-Uchiyama cryptosystem is

illustrated in [29]. To prove theorem 5.3.2, we need to understand the relationship between Ω

and B. If x ∈ Ω, then xx−1 cannot have order p in Z∗n =⇒ xx−1 < B. Similarly, if x ∈ B and

x ∈ Γ\1, then xx−1 ∈ B because if xx−1 < B then x(x−1)(p−1) ≡ 1 (mod n) =⇒ p|x − 1 which

contradicts our assumption.

Based on these relations, consider a semantic security algorithm A = (A1, A2) with non-

negligible advantage. Here A1 is used to get m0,m1 and A2 returns whether x
R
←− X belongs to

Ω or Z∗n \Ω. Here we compute g = xx−1 (mod n). If x ∈ Ω then g < B, giving A2 negligible

advantage over guessing. This results in the probability of B giving x = Ω is negligible.

Similarly if x ∈ Z∗n\Ω, then x ∈ B with overwhelming probability, giving A2, in turn B an
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overwhelming advantage over guessing.By combining these, the overall probability of A2 being

correct is non-negligible.

Proof of theorem 5.3.1 We begin with assumption that Okamoto-Uchiyama cryptosystem is

semantically secure. Suppose there existed an algorithm A′ that accepts some element x
R
←− X,

where X
R
←− {Ω,Z∗n} and public key parameters of Okamoto-Uchiyama cryptosystem (n, g, h).

For breaking CS , A′ needs to guess whether x ∈ Ω or x ∈ Z∗n\Ω.

By theorem 5.3.2 we proved that Okamoto-Uchiyama system is semantically secure if there

is an algorithm that reveals whether x ∈ Ω or x ∈ Z∗n\Ω.Since we assumed Okamoto-Uchiyama

is semantically secure, it implies that no such algorithm exists, which in turn proves that A′

also does not exist.



Chapter 6

Secure Function Evaluation using our

Cryptosystem

This chapter introduces the protocol developed for secure function evaluation based on our

cryptosystem CS = (Gen,Enc,Dec). It is structured by describing the required input for the

protocol and expected outputs once the protocol is finished. Let Alice and Bob be the par-

ticipants involved in this transaction. The communication carried out between Alice and Bob

for successful completion of protocol are indicated in the form of steps. One of the key re-

quirements to keep any Multiparty Computation secure would be to keep the communication

between the involved parties as minimal as possible. The design of our protocol aims for the

same where the transactions between Alice and Bob happen only twice - one forward and one

backward message exchange. Alice sends the encrypted text along with public key parameters

to Bob. Bob homomorphically evaluates the function using the available information and sends

the encryption of the end result back to Alice. The next sections in the chapter discuss about

the correctness of the protocol and the hardness proof. Correctness of the protocol enables us

to understand that even if the entire computation is carried out under encryption, the end re-

sult is the same as if it were carried under plain text settings. Hardness proof on the other hand

deals with the proof that the protocol is difficult to break. The hardness of our protocol depends

on the blinding hiding properties of our evaluation function, so we proceed the discussion by

understanding these properties and developing the proof of hardness based on these properties.

37
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6.1 Protocol

This protocol specifies how we can apply our CS = (Gen,Enc,Dec) for secure function evalu-

ation in restricted domains. There are many public key approaches for secure function evalua-

tion, however, we are able to make a more efficient approach for this by exploiting the additive

homomorphic properties of CS .

Public: Composite modulus n | n = p2q, generator g ∈ Z∗n, sequence initial value and

step size α, β

Private Keys: p generated by Alice based on the co-domain of g(i) : Z 7→ {0, 1}`

Inputs: Alice- x, Bob- y | x, y ∈ Z2k

Output:Alice and Bob want to evaluate a function g where g is the required linear

embedding function such that, g : Z 7→ 0, 1` on their inputs. Alice will either learn

g(m) | m = x + y or the truth condition of some function where χ(x, y) : Z 7→ Z, which

is in turn evaluated using g : Z 7→ 0, 1`. Bob outputs ⊥

1. Alice encrypts x as cA, β as β′ and sends {c, α, β′, n, g, h} to Bob. Bob encrypts

y with the provided public key.

2. Bob computes χ(x, y) homomorphically tapping the additive and scalar multiplica-

tive properties of the given public key cryptosystems as cB. Or Bob encrypts m as

cB.

3. Now, given rc ∈ Zk, Bob computes c
′

= ((cB)α · β
′

)r2
c .

4. Alice decrypts c′ using the decryption algorithm. Even after decrypting, Alice will

not recieve the plain text χ(x, y) or m, rather Alice receives some random number

of the form m′ = (α · χ(x, y) + β) · r2
c (or m′ = (αm + β) · r2

c )as hidden by r2
c .

5. Alice computes the Legendre Symbol of m′ giving us 0 or 1 depending on the

plain text value of the function.
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6.1.1 Correctness of the protocol

We wish to prove that the protocol introduced in this section correctly evaluates a function

of the form Z 7→ 0, 1` during the final step. From theorem 4.3.1 we established that Dec(c
′

)

returns g(m). Replace m with χ(x, y) which gives us

Dec(c
′

) = g(χ(x, y)).

6.2 Blinding Hiding Properties of Evaluation Function

The security of our evaluation depends on the blinding hiding properties of evaluation function.

During evaluation we hide our ciphertext using the square of a random element rc
R
←− Z2k . To

establish security, we need to prove that, given the decryption of cipher text hidden by r2
c it is

hard to tell whether it belongs to the set of QR or NR. Mathematically, we rely on the decisional

problem of given c′ and the public elements, it is hard to decide whether Dec(c′) = QR or

Dec(c′) = NR, where QR indicates the set of Quadratic residues (mod p) and NR indicates

the set of Non-Residues (mod p). If we can establish that this decisional problem is hard,

then the blinding hiding property of Evaluation function is established.

6.2.1 Hardness Proof

Theorem 6.2.1 Given rc
r
←− Zk, h(x) = αx + β and c

′

, Dec(c
′

) is uniform across the set of

Quadratic Residues (mod p) if h(χ(x, y)) is a Quadratic Residue and Dec(c
′

) is uniform across

the set of Non-Residues (mod p) otherwise.

Proof From the section 3.2 we know f (x) , 0 (mod p). Let us assume that after applying key

generation algorithm from section 4.1 we get p which is of the form 2ki+1 for some odd i. This

implies the prime p consists of two subgroups G2k and Gi with orders 2k and i and generators

gk and gi respectively. Now, for some 0 ≤ y < 2k and 0 ≤ z < i, any element a ∈ Zp will be of

the form

a = gy
k · g

z
i (mod p).
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Applying this to Dec(c
′

) we get the following set of equations:

h(χ(x, y)) = gy1
k · g

z1
i (mod p).

rc = gy2
k · g

z2
i (mod p).

This gives us

h(χ(x, y)).r2
c = (gy1

k · g
z1
i ) · (gy2

k · g
z2
i )2 (mod p)

= (g(y1+2y2)
k · g(z1+2Z2)

i ) (mod p).

We know since r2
c

UR
←−− Z2k , and 2z2

UR
←−− Zi which implies z1 + 2z2

UR
←−− Zi. Similarly, since

2y2
UR
←−− Z2k , y1 + 2y2 is uniformly random in the set of even numbers modulo 2k ⇐⇒ y1

is even and y1 + 2y2 is uniformly random in the set of odd numbers modulo 2k ⇐⇒ y1 is

odd.



Chapter 7

Privacy of the Secure Function Evaluation

Protocol

This chapter will throw a light on the privacy of the secure function evaluation protocol in-

troduced in chapter 6. A private protocol ensures that the computation takes place correctly

while protecting the information of the parties that are involved. We begin with introducing

various adversary models present in a security setting. We then carry out our privacy proofs

under Semi-Honest Adversary setting also known as Honest-But-Curious Model. We then pro-

vide the basic definitions necessary to discuss our privacy proofs. We relied on simulation

based proofs for the privacy of protocols both in Alice and Bob’s perspectives. The last sec-

tion focuses on the privacy proofs for protocol by considering Alice and Bob’s data privacy

separately.

7.1 Adversary Models

Apart from defining the essential components that constitute any Secure Function Evaluation,

it is important to define the settings under which these properties will hold true. There are

many models that exist in literature depending on the honesty level exercised by the adversary.

Defining these honesty levels will change the definitions of the privacy expected under these

settings.There are two main types of adversaries, which are discussed below along with what

are the pre-requisites for privacy under these adversaries.
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Semi-Honest Adversary

This adversary adheres to all the steps specified in the protocol, but looks for any information

that may be leaked in the intermediate steps. These adversaries are assumed to be selfish,

meaning they will take any steps to benefit themselves from the advantageous information

leaked during the intermediary processes.

Malicious Adversary

This adversary is assumed to deviate anytime from the protocol as per their benefit. Deviation

includes many aspects as mentioned in [61] such as proving deceptive values, aborting a

protocol in their own time and taking any action that helps the achieve the desired results.

It is difficult to achieve security against these kind of adversaries. Hence, it can be easily

stated that any system that is secure against malicious adversaries is secure against semi honest

adversaries.

Now, let us assume there are n number of users. Each ith user possesses some xi such that:

xi 7→ Z

In order to calculate a function Fi which in our case Fi : Z 7→ (0, 1)n. Our goal is to construct

a protocol such that each of the user knows F(x1, x2, ..., xn) but none of them knows anything

more about x j for j , i. Based on the privacy for both the adversary models described above

can be defined.

7.2 Basic Definitions

Privacy of the protocol Perfect Privacy under semi honest adversary can be achieved by hid-

ing all the intermediate data and processes to other party. Also known as Honest But Curious

adversary model, privacy under this model assumes that all the n users follow the protocol.

Now, the protocol is k private, if any of the k parties collude with each other learn nothing

more than the outputs.

Privacy under Malicious Adversary Under this setting, the adversary will control k users.

This implies the rest of the n-k users will continue to remain honest. Now the protocol under
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Malicious Adversary will be k private if the adversary does not learn anything from the parties

that they do not control; i.e., the inputs of the n-k users will not be learnt at all. But the

adversary may learn about the outputs of the corrupt parties.

Zero Knowledge Proofs These are protocols by which one party can prove to another party

that it has the knowledge of x without letting the other party know anything about x, other than

the fact that the knowledge of x is true.

View We define a view to work under semi-honest setting. Let χ be a function evaluated by a

protocol π. A view of a party can be defined as the set of elements that can be seen by the party

during the execution of π. Let X, r,Y be inputs,random values and outputs exchanged during

the complete transaction of π. We define views with respect to each parties as :

ViewAlice = (XA, rA,YA).

ViewBob = (XB, rB,YB).

7.3 Privacy Proofs for π

We now prove that π performs secure function evaluation under semi-honest adversary using

a simulation based approach. The key idea behind this simulation is to create a protocol view

of the parties, without the knowledge of any keys. To prove the security of the π, we establish

that the distribution of the resultant protocol view Viewπ and π are indistinguishable. This is

equivalent to the cipher-text indistinguishability of a cryptosystem. Based on section 7.2 the

privacy in a two party setting in the presence of a semi-honest adversary is established if neither

Alice nor Bob do not learn anything other than the intended outputs YB and YA respectively. Our

proofs are divided into two parts: Alice’s privacy, demonstrated by simulating [ViewBob,YA]

and Bob’s privacy demonstrated in the applications where Bob outputs ⊥ and Alice only learns

the truth value, which will be done by simulating [ViewAlice,⊥].

7.3.1 Alice’s Privacy

Theorem 7.3.1 (Alice’s privacy) There exists polynomial time algorithm AB such that it sim-

ulates View∗Bob whose distribution is indistinguishable from that of original view.
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Proof The proof of Alice’s privacy is simple because Bob only receives the cipher-text c =

Enc(x), i.e., YA = c. This implies, the indistinguishability of distribution of ViewAlice is equiv-

alent to the cipher-text indistinguishability of the cryptosystem itself. Since the cryptosystem

is semantically-secure as established in theorem 5.3.1, the ciphertext is also indistinguishable

from any random number. The view of YA can be simulated by simply choosing any random

number rn
R
←− Z∗n. Due to semantic security of the cryptosystem itself, the advantage of an

adversary guessing whether it is rn or YA is negligible.

7.3.2 Bob’s Privacy

Theorem 7.3.2 (Bob’s privacy) There exists polynomial time algorithm AA such that it simu-

lates View∗Alice whose distribution is indistinguishable from that of the original view= [ViewAlice,⊥

].

Proof The privacy of Bob’s output, c
′

, relies on the hider rc
R
←− Zk where k is the bit-size of the

prime p. Alice decrypts c
′

and receives m′ = h(χ(x, y))r2
c . Now, AA picks some mr

R
←− Zp, as

Alice has access to the private key. Applying f (x) from section 3.2 to mr we get g(mr) which

may be either a Quadratic Residue or a Non-Residue depending on the value of mr. Apply-

ing theorem 6.2.1, we have that Dec(c
′

) is uniformly distributed among the set of Quadratic

Residues and Non-Residues modulo p, which implies it is hard to distinguish between mr and

m
′

.



Chapter 8

Application of our Protocol to Privacy

Preserving Similar Patient Query

This chapter introduces a medical application called Similar Patient Query, which is based

on our CS = { Gen, Enc, Dec}. The increase in the availability of genomic data holds a great

promise for the advancement of personalized medicine. The approach in personalized medicine

relies on understanding how the genetic make up of each person impacts their reaction to

different medications and makes them susceptible to certain diseases. Even though genomic

data is not intrinsically exceptional, there is a belief that it needs to be handled with care

because it has a lot of features that make it extremely useful in a wide range of applications.

The privacy issues associated with genomic data are quite complex due to this very reason. The

problem here is, the breach of genomic data can reveal more information than the information

from which the genome was sequenced. A genomic data can link a whole family tree or

populations together. This will result in information about diseases that a person or an entire

community is susceptible to, garnering unnecessary attention from insurance companies and

scientific research communities. There are numerous researches conducted in the aspect of

genomic data privacy by [63] [62] [39] [15] [44][4]. In fact, [46] conducted a detailed survey on

the issues and concepts related to privacy in the era of genomic data explosion emphasizing the

need for having privacy preserving mechanisms for secure handling, storage and computations

on genomic data. Similar Patient Query (SPQ) is one such privacy preserving application that

involves performing Secure Multiparty Computations on Genomic data. The coming sections
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focus on the basics of SPQ, previous related work in this field, limitations of the existing

approaches, system model, similarity measures, protocol for secure computation of Euclidean

distance and finally, we present a protocol to apply our cryptosystem introduced in the previous

chapters to perform Similar Patient Query and its advantages.

8.1 Similar Patient Query

Imagine there is a doctor that wants to compare an individual patient’s data, let us call it a

query, across a whole database DB that consists of individual genomic sequences that are

labelled with their medical history. Now the doctor wants to find out which of the sequences

in the database are similar to the query sequence. The result is a set of similar patients whose

genomic sequences resemble the query sequence. The doctor can use this information either

to estimate the possible disease onset, reactions to medications, and a wide range of other

medical applications. In short, Similar Patient Query can be defined as a query carried out by

some client/ user over a server which is a database of patients. The SPQ can also be carried

out between two different individuals, the comparison need not be between just a query and

database. This sort of applications are extremely useful in identifying cancer sub types as

they are unique. SPQ will help in recognizing the mutations behind these cancers and also the

related reactions for the treatments offered. That way, the doctor will know in which direction

they can proceed to treat the patient. The similar patient query need not be restricted to medical

setting alone, it an be used for other applications such as exchanging genomic data between

different research groups and private genetic testing companies.

The most popular measures for calculating similarity between two patients’ genomic data

are Euclidean distance, Pearson correlation, and edit distance. There are several privacy im-

plications related sending the patients’ DNA as a query in plain text. Hence, SPQ needs to be

carried out under private settings. Thus most of the literature surrounds around formulating

efficient methods to calculate the similarity measures privately. In our research, we used a spe-

cial technique to calculate Euclidean distance in a privacy preserving manner, which will be

discussed in the coming sections.
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8.1.1 Related Work

Similar Patient Query under privacy preserving settings has been extensively researched in [10]

[3] [67] [58] [38]. The key observation is that all of these studies focus on calculating similarity

between two genomes by taking the overall genomes into consideration. This can adversely

affect the time and computational complexity. The major idea for this application was drawn

from [56], where similarity in genotype data is calculated only by focusing on particular loci

in the chromosomes as opposed to the entire genome. As discussed earlier, alleles present in

this loci have a tremendous impact on patients’ response to a treatment. To establish similarity

in the genotype data many have been conducted to calculate Euclidean distance and Pearson

correlation in privacy preserving manner by [53] [65] [42] [71] [18] [56]. Several other studies

such as [3] [74] [2] [67] computed Edit distance as a similarity measures in privacy preserving

settings. Our protocol only relies on Euclidean Distance as it allows secure computation of

similarity in a much simpler way contrary to the approaches mentioned in the existing studies.

8.1.2 Disadvantages of Existing Approaches

In Similar Patient Query, there are two parties in picture: User who poses the query and a

Database held by the hospital. So privacy for a simple Secure computation can be established

by considering two scenarios : User privacy and database privacy. All the studies discussed in

section 8.1.1 ensure user privacy completely, as it is dependent on the cryptosystem itself. This

topic is discussed in detail in chapter 7 while working out Alice and Bob’s privacy proof’s with

respect to our protocol. Assume here that Alice the user is holding the query and Bob holds

the hospital database. Coming to Bob’s privacy, the existing protocols return similarity scores

once Alice decrypts them. Now, the data held by Bob may not be leaked directly, but there

is a potential risk of inferring the database contents from the similarity scores. Two potential

attacks that can be carried out using similarity scores have been discussed by [60]. These

attacks include Regression attack and illegal query attack.

Under Regression attack, the similarity score between some data point and a target can

be used to identify the contents of a target. As the number of these data points increase, the

probability of identifying the target content will also increase accordingly. For example if
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Bob returns the exact value of Euclidean distance each time Alice sends a query, it can be

eventually narrowed down to finding out what exactly was Bob’s data using multiple attempts.

Hence, it is important to give out as minimum information as possible from Bob’s side to avoid

regression attacks. Similarly, illegal query attack can cause Bob’s response to keep varying

with increasing queries. These variations can again be used to retrieve the target data.

8.2 System Model

Our protocol for SPQ assumes that the two parties involved in the setting are Hospital and

User. Here the Hospital possess the database related to multiple patients’ genome. In practice

there could be any number of hospitals and the entity need not be a hospital at all, it can

be any organization or research institute that can collect and store genomic data. User could

be a doctor or some researcher, who holds a query sequence which has information about: the

location on the genome which they want to compare. Here we are aiming to calculate similarity

between two sets of data. Hospital holds the data about few patients and the user holds data

about some particular patient. The hospital cannot learn about User’s data and vice versa. So

in our current setting, Hospital receives encrypted User’s data which is semantically secure.

User receives only the truth condition of the similarity measure. Please note that sometimes

the terms User and Querier are used interchangeably for this protocol.

The threshold function is similar to the one discussed in section 2.4. Given similarity

measure s and threshold value t, we try to return 0/1 depending on the value of s. The prime

number generation will also be modified according to t because, based on t the domain of

g(i) shall become something like {0, 0, 0, 0, ..., 1, 1, 1, 1}. The protocol is discussed in detail

in section 8.5. Ultimately, we are trying to establish that due to the application of evaluation

function from section 4.3 the application of SPQ is semantically secure against a Honest but

curious user or in a setting of semi-honest adversary.
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8.3 Similarity Measures for SPQ using Genomic Data

Extensive research has been conducted in the area of conducting Similar Patient Queries using

Genomic data in privacy preserving settings by [67] [3] [45]. But these researches concentrate

on finding the similarity between two organisms by comparing the genome as a whole. In real-

ity, the whole genome need not be compared because if we take the case of human genome, 99

percent of the humans are similar. It is the mutations at particular locations on a chromosome

that make the humans different. Each organism consists of a gene, also known as genotype, at

a specific location on their genome called locus. The variations in these loci cause variation in

the physical traits, also known as phenotype, of the organism. These variations are called as al-

lelic variations, where alleles are the variant form of a gene. These alleles represent mutations

at the same locus, which are usually two or more versions. Different populations consist of

different alleles, so we use something called allele frequency to measure the relative frequency

a particular allele at that locus in a given population.

Whole genome sequencing has enabled researchers to identify that there is a relation be-

tween a myriad number of diseases and the genetic variations at a particular locus in an or-

ganism. They are known to affect diseases like diabetes, cancer and other cardio vascular

disorders. Hence, it becomes easier to compare patients using specific variants at a given locus

rather than comparing two whole genomes that contain about 3 billion base pairs. This func-

tionality is useful in various areas such as patient’s response to treatments or onset of a disease

to name a few. For example, the application using Similar Patient Query based on comparing

genotype variants only can typically work on a query like: “What is the reaction of an HIV

patient to the medicine abacavir with a genotype variant HLA-B*5701?” Research has estab-

lished that HIV patients with HLA-B*5701 gene variant indeed have a hypersensitive reaction

to abacavir than those patients that do not possess this gene variant. So it is important to find

out the similarity across the loci where these variants occur.

To calculate similarity, we use Euclidean distance. Let I define the set of all the loci that a

user is interested to compare. x, y are the vectors for which we want to calculate the similarity.

So the Euclidean distance can be represented as:∑
i∈I

(xi − yi)2
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Technically, the actual Euclidean distance is the square root of the value stated above. But we

establish similarity between two patients only if the Euclidean Distance between them is less

than or equal to some predefined threshold value. So, it suffices to square the threshold value

and use it for comparison.

8.4 Protocol for Secure Computation of Euclidean Distance

In this section we describe a protocol for secure computation of Euclidean Distance denoted as

SecED. As we discussed in the previous section, we calculate similarity between two patients

by taking on specific loci on the genomes. For obtaining variant data, we use genomic data

from a file format called as Variant Call Format denoted as VCF. Homozygous allele means

the chromosome has two same copies of the same trait (dominant or recessive) and Heterozy-

gous allele has two different copies. In these files, the genotype variants at specific loci are

primarily of three types : Homozygous Dominant, Homozygous recessive and Heterozygous

alleles which are indicated as 0, 1, 2 respectively. Dominant or recessive alleles indicate the

type of trait. So we convert the data into a new message space : {0, 1, 2}n. n indicates the

number of locations at which the genotype data will be compared.

Since the message space is limited, we pre-build a look-up table that consists of various

combinations of xi, yi from the formula for Euclidean distance. Note that our cryptosystem

only supports Partially Homomorphic Encryption scheme which supports addition and scalar

multiplication. Since Euclidean distance is a sum of squares, we try to pre-calculate all the

possible squares and encrypt them newly for each string, so that hospital only needs to perform

homomorphic addition to calculate similarity. Let ` be the length of user’s query. The look

up table would be as shown in table 8.1. The user encrypts each string separately in order

to maintain the semantic security. And each time the user wants to conduct SPQ, they will

send 3` combinations of data as opposed to ` for each number, so that the hospital will pick

the encryption accordingly to calculate the summation for Euclidean distance. For example,

in case the user wants to send hospital an encryption of {1, 1, 2}, the user will start creating

an array of encryptions for each element in the query string. For the first element in query

string user picks up row related to 1 as shown in fig. 8.1 and encrypts each element from the
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Genotype 0 1 2

0 (0 − 0)2 (0 − 1)2 (0 − 2)2

1 (1 − 0)2 (1 − 1)2 (1 − 2)2

2 (2 − 0)2 (2 − 1)2 (2 − 2)2

Table 8.1: Lookup table

Figure 8.1: Choice of row for string 1

row separately. For the second element in the query string, user chooses the same row and

performs the encryption for the second time. Due to the probabilistic nature of the schemes

used for encryption, we get different encryptions for {(1− 0)2, (1− 1)2, (1− 0)2} each time they

are encrypted. Similar process is applied for the third element 2 in the input sequence string.

Overall 9 encryptions are sent as opposed to 3.

User sends the 9 encryptions by indexing them for the hospital. Let us denote the notations

for an encrypted string as shown in fig. 8.2, double braces indicate the encryption of the string

which is a random number. Let the hospital hold a string {0, 0, 1}, so they will choose from the

received encryptions as shown in fig. 8.3. Once all the encryptions are received the next step is

just to calculate the summation over the relevant encryptions. Since the scheme we are using is



52 Chapter 8. Application of our Protocol to Privacy Preserving Similar Patient Query

Figure 8.2: Hospital’s view of encrypted string

Figure 8.3: Encryption chosen by the hospital

additively homomorphic, it is easy to calculate summation of all the bits by simply multiplying

all the encrypted outputs. Once decrypted, this results in a plain text sum as per the properties

of additive homomorphism.

8.5 Private SPQ Protocol

This protocol specifies how we can apply our CS = (Gen,Enc,Dec) for carrying out Simi-

lar Patient Query. Here, hospital and user want to calculate a function to find the similarity

between the patients. The user inputs the query string for which they want to calculate the sim-

ilarity. The query string is drawn from message space {0, 1, 2}n. The user follows the protocol

for secure calculation of Euclidean distance and then carries the complete transaction similar

to the protocol introduced in section 6.1. The complete steps in the protocol along with the

input and expected output are described in fig. 8.4.

8.5.1 Advantage of using Our Approach

Let us assume the case where we do not apply the Evaluation Scheme from section 4.3. This

would imply, hospital will omit step 4 from the Private SPQ protocol and sends the result cal-

culated from step 3. In other words, the user would directly receive the encryption of Euclidean

Distance. As the User applies decryption, they receive: Dec(Enc(ED)) = ED. For each indi-

vidual Query, qi, User receives a corresponding EDi. If User can collect enough EDis, they
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Public: Composite modulus n ∈ Z, generator g ∈ Z∗n

Private Keys:The Boolean co-domain is predetermined based on the threshold value.

User will generate the large prime number p, according to the section 4.1.

Inputs: User’s input is query sequence, Hospital inputs the database. Both

x, y ∈ {0, 1, 2}n

Output: User wants to find out if the query matches with any sequence from DB by

securely evaluating the encrypted Euclidean Distance. Hospital outputs ⊥

1. For each character in a string, user makes use of table 8.1, and sends three encryp-

tions from first row for 0, second row for 1 and third row for 2.The encryption

will carried out separately each time, so that semantic security is ensured. Let us

assume the string sent by the user is cU . So the transaction would involve in the

transfer of {cU , α,Enc(β) = β′, n, g, h} to the Hospital.

2. The hospital picks the suitable encryption depending on the value they are holding

from the column in table 8.1 and forms a new cipher text cH.

3. The hospital computes Enc(ED) =
∑

cH

4. Now, given rc ∈ Z2k , hospital computes c
′

= ((Enc(ED))α · β
′

)r2
c .

5. User decrypts c′ using the decryption algorithm Dec. Even after decrypting, User

will not recieve the plain text ED, rather Alice receives some random number of

the form (α · (ED) + β) · r2
c as hidden by r2

c .

6. User can find out g(i) depending on the above decrypted value. If the patients are

similar, then g(i) = 0 otherwise it would return 1

Figure 8.4: Private SPQ Protocol
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can easily use the data to extrapolate and find out the accurate data points that hospital owns.

This is where applying evaluation function will eliminate the possibility of carrying out these

type of regression attacks. From the blinding hiding properties of evaluation function, we can

establish that multiplying r2
c to the cipher text can actually hide the calculated EDi. The evalu-

ation function will only display the truth value for similarity. To explain it mathematically, let

t be a threshold value used to express the similarity between two patients such that if EDi ≥ t

the patients are similar otherwise they are not similar. So our Evaluation function Eval shall

display a 0 for ED ≤ t and 1 for ED > t.

8.6 Computational Hardness of SPQ protocol

We would like to establish that the protocol described in section 8.5 is difficult to break. The

entire protocol has the following steps:

• Encrypted query from the user, that uses Secure Computation of Euclidean Distance

protocol

• Homomorphic addition by the hospital

• Decryption and Evaluation of Euclidean distance by the user

The hardness of second and third steps from the protocol have already been established. They

are the same as the privacy proofs worked out using simulation technique with respect to Al-

ice and Bob’s view of the protocol in chapter 7. If we are able to establish that the Secure

Computation of Euclidean Distance protocol is hard to break, then it is automatically implied

that the SPQ protocol itself is difficult to break using a polynomial time algorithm. So our

proof for hardness of SPQ protocol is established by proving the hardness of SecED described

in section 8.4. SecED is performed on three plain text elements
R
←− {0, 1, 4}, which are the

final values of the combinations presented in table 8.1. As discussed earlier,the elements are

encrypted freshly every time a transaction takes place. Due to the probabilistic nature of the

cryptosystem, the encryptions generated will be random each time, making it difficult to break

the protocol and ensuring semantic security.
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Implementation

This chapter talks about the implementation of the key generation, or generation of p and the

protocol introduced in chapter 8. For p generation, we used Sage math environment, which

is an open source library based on python. The entire cryptosystem depends on basics from

number theory such as primality testing, CRT and testing for Legendre symbols. All of these

have been constructed as separate functions as described in the algorithms. We analyse the

performance of our cryptosystem by comparing it with the cryptosystem introduced in [20].

For the second part of implementation, we show the application of Similar Patient Query.

One of the crucial aspects with respect to handling computations on genomic data is under-

standing the genomic data set. So, a subsection is dedicated to briefly describing how a ge-

nomic database looks like and how to read its contents. Even though the data set reading in

plain text is done by the individual parties before the transaction is carried out, it is important

that both the parties understand the features associated with it.

9.1 Experiments and Results for p generation

This section discusses about the backbone of our cryptosystem, which is the key generation.

These are dependent on the basics introduced in chapter 3. The first algorithm produces suitable

α, β such that sequences of the form (αi+β) have elements in them, when factorized, the factors

do not repeat. Based on this sequence, we produce p in the second subsection.
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9.1.1 Picking the best α and β

From the theorem 3.2.1 and theorem 3.2.2, we can conclude that in order to develop this new

cryptosystem, we need an efficient algorithm to generate the following: α, β, p. We discuss

two separate algorithms: section 9.1.1 for α, β generation and algorithm 2 for p. The key

idea behind Section 9.1.1 is to find the starting number and step size for a sequence where

maximum number of values contain unique factors as we factorize. While discussing theorem

2, we assumed all the sequence elements would be prime valued. But this algorithm will also

consider a generic case, where the sequence can be prime or composite. For this, a simplistic

approach has been applied, where a random α, β ∈ Z are picked. A sequence will be generated

with α as the beginning value and β as step size. The length of sequence is equal to the length

of the required Linear Embedding Function to be evaluated. Now we traverse through each

element si ∈ Sequence, we pick only those factors that are not squares to decide the Legendre

symbol.

We use a Boolean variable named new factor seen and set it to true as a new factor is noticed

in the list every time. Every time a new element is found, it will be added to the list named

factors. Then a counter is updated to check for the current size of the list. The list will be exited

as soon as the current size will stop changing. Once exited, all the variables are set back to

their default values. This way Algorithm 1 can be implemented for a wide range of α, β ∈ Z.

In order to implement this, the simplest way is to use a nested for loop and iteratively check

across various combinations of α, β and pick the ones that produce the primes of reasonable

bit-size for a given Boolean function that needs to be evaluated.
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Input: Size of the Quadratic Residue Function- i, a,b

Output: For a random length of QRF upto i their respective α, β, bit-size of the prime p

function Searchloop(α, β)

sequence← 0

i← Length(QRF)

for k ∈ {0, i} do

sequence← αi + β

end for

f actors← [ ]

j← 0

for si ∈ sequence do

y← Factorization(si)

currentsize = length( f actors)

lengtho f f actor ← length( f actors)

new f actorseen← False

for f act ∈ y do

if f act , square then

if f act < f actors and new f actor = False then

f actors.append( f act)

j = j + 1

new f actorseen = True

end if

end if

if length( f actors) ≯ currentsize then

Exit

end if

end for

end for

end function

Algorithm 1: Finding α, β
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9.1.2 Key Generation Implementation

Input: For a random length k of QRF upto i their respective k, α, β, required QRF `i

Output: Prime factor p

for i ∈ 1, k do

2: sequence = αi + ·β

end for

4: function systemofcongruences(sequence)

M ← MatrixS pace(GF(2))

6: Prime f actor = f actorize(si)

for si ∈ sequence do

8: Mrows← si

if Prime f actor ∈ si then

10: Mcolumns← 1

end if

12: end forreturn M

end function

14: M′ ← EchelonForm(M)

for row ∈ M′ do

16: check for consistency of the system

if Consistent then

18: return True

end if

20: end for

Algorithm 2: Finding p
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B← {}

22: for ai ∈ Prime f actors do

bi ∈ 1, ai − 1

24: if legendre(bi, ai) = `i then return bi

end if

26: B.append(bi)

end for

28: function ComputeP(B, Prime f actors)

p = CRT (B, Prime f actors)

30: A = prod(Prime f actors)

while not prime(p) or p . 1 (mod 4) do

32: p = p+A

end while

34: return p

end function

Algorithm 2 shows a novel method for prime generation, which forms the backbone of the new

cryptosystem we are trying to build. Once the client gives out the Boolean Function domain to

be evaluated, we apply theorem 3.2.1 and theorem 3.2.2 to find the required prime number. In

order for the CRT to work efficiently, we need a consistent system of linear congruences. To test

for consistency, we use the Matrix space and convert them into echelon form. Using matrices

to solve the system of congruences improves the performance of a system with respect to time

and computational complexity, the detailed steps to which are explained in the next section.

Using Matrix Space for the linear system

This section explains how we use a matrix space to test for the consistency of the linear sys-

tem of congruences we are trying to develop using the key generation algorithm developed in

section 4.1.

Inconsistent or Consistent Systems A system of equations is called inconsistent if it has no

solution. A system which has a solution is called consistent.
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si Factors

23 23

27 3 · 3 · 3

31 31

35 5 · 7

39 3 · 13

43 43

47 47

51 3 · 17

55 5 · 11

59 59

Table 9.1: Sequence of elements for α = 4 and β = 23

Once we find a sequence of elements with each of them having at least one unique factor, we

build a matrix where each row represents the sequence number and each column represents

the prime factor. Let us consider a sequence formed with α = 4, β = 23 that consists of 10

elements having at least one unique factor each. We then proceed to following steps:

• Step 1 Generate the sequence of elements and factorize each element to compute all the

unique factors present in the sequence. The sequence with its factorizations is presented

in table 9.1.

• Step 2 The rules for forming a factor base are as follows:

– Even powered factors are omitted out, i.e., for some factor a, {a2, a4, a6, ..} need not

be considered because based on the definitions of Quadratic Residues and Legendre

symbols, they do not affect the Legendre symbol of the sequence element.

– We add every factor to the factor base if it has not appeared previously, so only

unique factors are considered by avoiding repetitions.

– Do not consider a sequence that may consist of 2 in its factor base, as having 2 can

lead to inconsistencies in solving the Chinese Remainder Theorem.
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Based on these rules we obtain the factor base as:

[23, 3, 31, 5, 7, 13, 43, 47, 17, 11, 59].

• Step 3 We convert it into a matrix space in Galois Field, GF(2) such that the matrix

consists of all the elements (mod 2). The rows of the matrix represent the elements of

the sequence and the columns represent prime factors from the factor base list. A 0 or 1

indicates the absence or presence of the factor in the sequence elements respectively. So

the matrix for the sequence elements from table 9.1 and factor base displayed in step 3

looks as follows:

23 3 31 5 7 13 43 47 17 11 59



23 1 0 0 0 0 0 0 0 0 0 0

27 0 1 0 0 0 0 0 0 0 0 0

31 0 0 1 0 0 0 0 0 0 0 0

35 0 0 0 1 1 0 0 0 0 0 0

39 0 1 0 0 0 1 0 0 0 0 0

43 0 0 0 0 0 0 1 0 0 0 0

47 0 0 0 0 0 0 0 1 0 0 0

51 0 1 0 0 0 0 0 0 1 0 0

55 0 0 0 1 0 0 0 0 0 1 0

59 0 0 0 0 0 0 0 0 0 0 1

As per the algorithm, we append the required function to be evaluated as the last column

in the matrix. For example, we would like to evaluate a threshold function, with t = 0.5

for SPQ whose co-domain would look like:

[0, 0, 0, 0, 0, 1, 1, 1, 1, 1].
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In other words, we are looking for a prime p such that

(
23
p

)
= 1(

27
p

)
= 1(

31
p

)
= 1(

35
p

)
= 1(

39
p

)
= 1(

43
p

)
= −1(

47
p

)
= −1(

51
p

)
= −1(

55
p

)
= −1(

59
p

)
= −1.
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So the matrix would be represented as:

A =

23 3 31 5 7 13 43 47 17 11 59 g(i)



23 1 0 0 0 0 0 0 0 0 0 0 0

27 0 1 0 0 0 0 0 0 0 0 0 0

31 0 0 1 0 0 0 0 0 0 0 0 0

35 0 0 0 1 1 0 0 0 0 0 0 0

39 0 1 0 0 0 1 0 0 0 0 0 0

43 0 0 0 0 0 0 1 0 0 0 0 1

47 0 0 0 0 0 0 0 1 0 0 0 1

51 0 1 0 0 0 0 0 0 1 0 0 1

55 0 0 0 1 0 0 0 0 0 1 0 1

59 0 0 0 0 0 0 0 0 0 0 1 1

• Step 4 We need to convert matrix A into a row reduced echelon form (RREF) based

on [64] to test for consistency by performing certain elementary row operations. The

requirements for a matrix to be in REF are as follows:

– The first non-zero number entry of the first row should be 1, this is the leading entry

of the row present in the matrix position (1, 1).

– The second row should also have 1 as its leading entry, but this entry should be

further to the right of leading entry in the first row. Similar process is repeated

for every subsequent row, where the first non-zero number in every row is 1 and is

placed further to the right of the leading entry of previous row.

– The leading entry of each row must be the only entry of its column.

– Any non-zero rows are usually placed at the bottom of the matrix.

Keeping these requirements in mind, we try to obtain the matrix in RREF using the

following steps:

– We begin with finding the pivot row, i.e., from the matrix A we identify the first

non-zero entry in the first column of the matrix. This is present in the first row
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itself and the leading element is 1, i.e., the first row itself is pivot row with leading

entry as 1. So we do not need to pivot.

– We repeat pivot for the remaining rows by ignoring the previous ones by continuing

the process until no more pivots are left. For the row where element = 39, where the

row is R5 we perform a operation such that the first entry would be in 5th column.

So we apply row operations and carry on the same procedures for the rest of the

rows.

– We check if all the elements of the rows are zero, except the last column, if that is

the case, then the system is inconsistent. The complete row operations are present

in chapter A.

• Step 5 We check for consistency of the equations in this step. Matrix A in echelon form

would be represented as:

Aechelon =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1


If a system is inconsistent, the REF matrix obtained will consist of a row of the form

{0, 0, 0, ...., 1}, i.e., will have a leading 1 in its right most column. Such a row corresponds

to an equation of the form:

0x1 + 0x2 + 0x3 + ... + 0xn = 1.

which definitely has no solution. Since the matrix Aechelon has no such rows, the system

of equations are consistent and certainly have a solution.
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• Step 6 We take the Aechelon matrix and traverse through it row wise and check for each

non-zero row.The leading entry of each of these rows indicate the “deciding factors”. So

the Legendre symbol of the sequence element is decided by the factors represented in

these leading entries. The remaining entries can be categorized as “Unutilized factors”

as they do not impact the overall Legendre symbol of the sequence element. We convert

the last column in these rows to Legendre symbols such that 0 7→ 1 and 1 7→ −1. So the

matrix Aechelon looks as follows now:

Aechelon =

23 3 31 5 7 13 43 47 17 11 59 LS



1 1 0 0 0 0 0 0 0 0 0 0 1

2 0 1 0 0 0 0 0 0 0 0 0 1

3 0 0 1 0 0 0 0 0 0 0 0 1

4 0 0 0 1 0 0 0 0 0 1 0 −1

5 0 0 0 0 1 0 0 0 0 1 0 −1

6 0 0 0 0 0 1 0 0 0 0 0 1

7 0 0 0 0 0 0 1 0 0 0 0 −1

8 0 0 0 0 0 0 0 1 0 0 0 −1

9 0 0 0 0 0 0 0 0 1 0 0 −1

10 0 0 0 0 0 0 0 0 0 0 1 −1

The last element in each row represents the required Legendre symbol for each unique

factor of the sequence. In other words, all the leading entries of each row, the “deciding

factor” of each row is assigned with the Legendre Symbol from the last element of the

row. All the remaining elements called “Unutilized factors” receive Legendre symbol 1.

To explain further, let us examine each row from the Aechelon displayed above. The first

element has one factor 23, the last column has Legendre Symbol 1, this implies 23 needs

symbol 1. Similarly, the next row has only 3 as factor and 3 needs symbol 1. Let LS

denote Legendre symbol, we repeat the same observations across all the rows and we get

the following results:

– The third row has one deciding factor 31, 31 needs LS 1
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– Fourth row has 5 and 11. Now due to row operations, 11 is not deciding factor so,

11 can be assigned LS 1, based on the last column 5 gets −1.

– Fifth row has 7 as leading entry, it receives LS −1. 11 has already been assigned 1.

– Sixth row has 13 as the main factor, which receives 1 as LS based on the last column

value.

– Seventh row has 43 which gets LS −1

– In Eighth row 47 gets −1

– Ninth row has 17 as deciding factor which gets LS −1

– Tenth row has 59 which receives −1

Let us group all the factors into one list called A. This A has all the deciding factors in

the leading entries and unutilized factors are added towards the end of the list. So our A

can be represented as:

{23, 3, 31, 5, 7, 13, 43, 47, 17, 59, 11}.

Applying theorem 3.2.1 from chapter 3, we need to find some list of elements B such

that for some bi ∈ B and some ai ∈ A, for i ∈ row number we have

(
bi

ai

)
≡ LS i.

We computed B =

{8, 1, 19, 3, 5, 12, 26, 23, 12, 39, 1}.

Step 7 This is the final step where we use the B generated and apply theorem 3.2.1 and

theorem 3.2.2 to find p. We first carry on CRT on the list of A, B. Let p′ be some integer
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satisfying the following system of congruences:

p′ ≡ 8 mod 23

≡ 1 mod 3

≡ 19 mod 31

≡ 3 mod 5

≡ 5 mod 7

≡ 12 mod 13

≡ 26 mod 43

≡ 23 mod 47

≡ 12 mod 17

≡ 39 mod 59

≡ 1 mod 11.

Applying the CRT we find p′ = 3693863479318. We use this p′ and add it to a multiple

of the product of all the elements in list A. Let

a =
∏

A′

=
∏
{23, 3, 31, 5, 7, 13, 43, 47, 17, 59, 11}

= 21701118223785.

Finally we search for some prime p of the form

p = ai + p′

= 21701118223785i + 3693863479318

and repeat it until we find some prime p such that p ≡ 1 (mod 4). We find such a value

for i = 27. So the final value of p we obtained for this particular example is:

p = ai + p′

= 21701118223785 · 27 + 3693863479318

= 589624055521513.

Of course if p needs to be larger (e.g. 2048-bits), a larger i can be randomly chosen. For

example setting
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i = 1 017 937 320 413 204 122 451 734 640 586 856 516 712 923 890 121 301 671 467

352 739 768 901 601 034 734 630 832 751 118 559 864 741 589 479 211 939 668 116

999 587 629 431 639 985 506 785 452 222 216 485 698 036 930 569 180 641 349 520

170 764 490 817 745 302 813 311 839 204 222 745 193 307 798 612 603 125 325 657

959 543 903 988 326 984 707 125 038 762 006 839 792 627 761 852 376 498 932 551

558 509 485 925 700 120 315 017 613 219 283 710 374 581 138 546 006 967 575 971

919 007 701 242 921 013 861 469 939 857 529 358 272 079 976 636 646 751 318 293

979 285 823 770 237 152 011 343 977 002 541 605 358 005 041 753 039 635 320 592

260 657 587 613 348 098 464 773 927 971 867 002 193 905 515 488 588 223 518 509

656 791 111 748 877 005 997 426 934 324 370 066 507 793 919 208 324 507 021 187

899 889

yields the 2048-bit prime

22 090 378 134 689 854 668 080 427 282 924 399 061 985 819 057 143 074 636 905

749 502 669 759 243 627 343 109 946 059 649 406 823 888 192 127 133 451 352 131

764 486 660 389 009 911 360 595 055 993 664 603 227 128 050 574 790 768 665 706

293 542 736 860 338 887 946 544 783 444 853 828 040 892 381 096 722 422 382 282

208 703 853 107 887 071 741 270 179 612 861 146 502 611 233 027 524 669 896 250

225 919 308 714 002 851 453 195 821 246 252 248 594 014 614 336 885 721 706 509

818 061 443 476 514 009 134 473 905 290 198 283 343 891 119 346 531 846 306 946

446 935 635 519 599 396 204 634 046 380 053 571 297 272 810 718 798 253 473 115

268 635 805 443 863 703 912 782 069 180 419 966 100 459 558 431 826 475 599 268

846 253 100 958 565 217 359 310 385 285 591 586 732 639 093 868 978 919 193 526

919 403 603 942 139 183.

Finally we can check that p implements the intended function. Recall α = 4, β = 23 and
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the arithmetic sequence generated by it (see table 9.1). We confirm that indeed:

(
23
p

)
= 1(

27
p

)
= 1(

31
p

)
= 1(

35
p

)
= 1(

39
p

)
= 1(

43
p

)
= −1(

47
p

)
= −1(

51
p

)
= −1(

55
p

)
= −1(

59
p

)
= −1.

9.2 Analysis of Results

We generated prime p for various sequence sizes. These sequence sizes are equal to the co-

domain size of the functions to be evaluated. We carry out the comparison of our results

with [20] and analyze out results accordingly. The maximum bit-size achieved for the d-

approximation of threshold functions in [20] was 26. The table 9.2 gives us time values through

important steps while implementing algorithm 2 for a function of sequence size 512.
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Function size (domain cardinality) 512 256 100 50

Converting Congruences to Matrix Space 0.568 0.1756 0.202 0.0675

Test for consistency 1.842 0.653 0.205 0.0401

Finding bi 0.1306 0.034 0.2347 0.078

CRT 130 20 0.9853 0.0653

Table 9.2: Run time for various steps in the the key generation in seconds

For evaluating a 512-element (29-bit) function, we need a sequence with at least 512 number

of elements having unique factors. The α, β of the sequence will be chosen from the pre-

calculated values generated from running section 9.1.1 giving us the value of α = 1938, β = 31.

These values may vary each time we run the algorithm. The same applies for the rest of the

results as well. As we can observe from the results of various sequence sizes, the maximum

time among all the steps is taken by the implementation of Chinese Remainder Theorem. CRT

is an exponential time algorithm that has time complexity of O(S 1 + S 2)2, where si denotes the

number of digits in the modulus we are trying to solve, which is a product of all the moduli

present in the system of congruences. So the larger the number of congruences to be solved,

the greater is its time and computational complexity. Similarly, we produced results for various

sequence sizes and the time taken through various steps of implementation can be observed in

the following plot. Note that the largest sequence of 512 took under 2 minutes to calculate. The

search based approach introduced in [20] takes more than 20 minutes to produce a sequence of

size 26.

Performance Indicator Residue HE introduced in [20] Our Protocol

Highest sequence size 26 512

Evaluation Function Domain {0, 0, 0, .., 1, 1, 1} Any function of the form {0, 1}`

Finding prime for sequence of 20 > 20 minutes 0.003 seconds

Table 9.3: Comparison between protocol introduced in [20] and CS
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Figure 9.1: Run Time for various steps in p generation algorithm

9.3 Performance Evaluation of SPQ

This section describes the implementation process of SPQ. It is divided into two sections- the

first sections contains the description of genomic data and the second section discusses the

actual implementation of the SPQ protocol. The implementation was carried out in Python 3.7

environment. In the given time frame we were able to carry out the implementation only using

Okamoto-Uchiyama cryptosystem. Nonetheless, the implementation using Paillier cryptosys-

tem is likely to yield the same results.

9.3.1 Data set Description and Reading Genomic Data

The data set we used for the development of SPQ application was derived from the human

genome project. All the data were de-identified by removing the information related to the

humans that carry the genome, just leaving the information on the locus of the gene and the

genotype present at the locus. The data is present in Variant Call Format, a file format specifi-

cally used to store information about a particular position on genome. Dealing with VCF files

is difficult, so we try to extract the data from these files into readable format by converting

it to either an Excel or csv. The sample data we deal with looks something like shown in

fig. 9.2 after transformation. The first two columns are patient related information, which are
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Figure 9.2: Head shot of HG00096 genotype data

de-identified. Chromosome and Position locate to the exact position of the genotype. RSID is

a unique ID given to Single Nucleotide Polymorphisms, the ref column indicates the reference

gene at the location and Alt is the alternative polymorphism that could be found at the location,

genotype column refers to the actual genotype found in the individual. As discussed in the

chapter 8, the value 0 for the column named “Genotype” indicates a homozygous dominant

genotype. So if we take the first row from fig. 9.2, the genotype at the given location would be

AA. Similarly, 1 indicates a heterozygous genotype, meaning at the given locus we could find

AG genotype. Finally the value 2 for the genotype column indicates a homozygous recessive

genotype, meaning two copies of alternate alleles can be found in this case we may find the

genotype GG. These numbers were assigned based on a library named “Scikit-Allele” [40]

from python, so the notations may vary depending on the library/programming language used.

9.3.2 SPQ Implementation

To implement the SPQ protocol, we integrated all the functionalities developed from the pre-

vious algorithms. The SPQ protocol’s output will be evaluated such that, let T be the threshold

value,

f (ED) =


0 if ED ≤ T

1 if ED > T.

Depending on the threshold value and the size of the sequence we implement the key generation

algorithm. For example, if the threshold value is 30, then ED ≤ 30 implies that patients are

similar. Let the length of the sequence be 100, then we generate a binary sequence of the form
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:

[0] ∗ 30 + [1] ∗ 70.

We use section 4.1 and algorithm 2 to generate p, which will be the secret key of Okamoto-

Uchiyama cryptosystem. At first the encryption function will be applied directly by the querier

by importing the cryptosystem. Here all the public and private keys are generated before even

running the application. The crucial step in SPQ protocol is implementation of protocol for

secure computation of Euclidean distance. For implementing this, we relied on pandas data

frames in python. The querier’s input will be read iteratively across the entire string and

three encryptions for each string are generated in each iteration. This is sent to the hospital,

which then performs addition homomorphically. Then we multiply it with alpha and add β

homomorphically. The entire result is raised to a random r2
c | rc

R
←− Z2k , which is homomorphic

multiplication that can be evaluated upon decryption.

The protocol implementation has three algorithms:

• section 9.3.2 is the algorithm for User encryption for implementing the protocol for se-

cure computation of Euclidean distance

• In the algorithm presented in section 9.3.2, Hospital chooses the relevant cipher text

based on the indices and performs homomorphic addition, converting the cipher text c to

αc + β and then re-randomizing it by multiplying with r2
c .

• The algorithm displayed in section 9.3.2 consists of User Decryption and applying eval-

uation function to find if Euclidean distance is ≤ threshold value.

User SPQ

In this step the user will contain a plain text query ∈ {0, 1, 2}n. The user will input the query

into algorithm in section 9.3.2. The algorithm will scan across each value in the user’s query

and will encrypt the related bit from table 8.1 , that way for each bit 3 different encryptions are

produced based on the table 8.1. All of these are stored in an array named res. Now the user

sends this res array, along with files containing the public key modulus n, g values the hospital

in separate files as comma separated values.
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Input: Pre-computed Euclidean Distance Values in Plain text, input query sequence,pk,

OkamotoUchiyama.enc

Output: For each bit in query sequence, encrypted Euclidean distance combinations- Encr

Lookup← [[0, 1, 4], [1, 0, 1], [4, 1, 0]]

function spqencrypt(query, pk)

c← OkamotoUchiyama.enc(pk, query) return c

end function

function spquser(query)

for n ∈ query do

d f ← int(n)

end for

res← [[ ]]

for i ∈ d f do

for x ∈ Lookup[i] do

data← spqencrypt(x, pk)

res.append(data)

end for

end for

return res

end function

Algorithm 3: User SPQ

Hospital SPQ

Presented in section 9.3.2, this algorithm the hospital receives three files related to res, n, g and

the RS ID of particular gene locations. Using these files the hospital will now calculate the

Euclidean distance as per the Secure ED protocol. In the first step, the hospital will form an

empty array to store the Encrypted Euclidean Distance values denoted as EED in section 9.3.2.

Now we read across each file in the database held by the hospital. In every single patient file,
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we compile the necessary sequence based on the RS IDs and these sequences will be used for

comparison. For each patient, we pick one sequence. In the beginning of search through every

patient’s sequence we form an empty array titled arr. Now we iterate through every single

sequence and using the sequence value and the iteration step, we form the column and row re-

spectively of the encrypted results. For example if we are in second row and the sequence value

with hospital is 2, we pick the value at location res[2][2] in res array. That way for each se-

quence, we form a complete array filled with differences of squares. Now we homomorphically

sum this array for obtaining the Euclidean distance by taking the prod value of entire array. We

take the encrypted sum for each individual record and blind it by homomorphically multiplying

α and adding β. To do this, we raise the EncryptedSum to plain text α (mod n) using the pow

function in python. This is the fastest implementation of exponentiation (mod n). Where as,

to homomorphically add β, we need to encrypt β first and then perform multiplication of cipher

texts. We then re-randomizing using some r2, where r ∈ Zn. This way, EEDs of all the patients

are sent back to the user.
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Input: RSIDs, res - the Encrypted Euclidean distance combinations that were outputted from

section 9.3.2, n, g, α, β, OkamotoUchiyama.enc, hospital database

Output: Encrypted Euclidean Distance

Encr ← res

function spqhosp(hospdata)

EED← [ ]

for seq ∈ hospdata do

df ← [int(i) for i ∈ seq]

arr ← [[ ]]

for j ∈ len(df ) do

data← encr[ j][d f [ j]]

arr.append(data)

end for

pk ← n, g

EncryptedSum← math.prod(arr)

ct = (EncryptedSum)(α) · (enc(β)) (mod n)

r
R
←− {1, 2, 3, ...., n}

c′ ← ctr2
(mod n)

EED.append(c′)

end for

return EED

end function

Algorithm 4: Hospital SPQ

User Decryption and Evaluation

As presented in section 9.3.2 this is the final step in the protocol where the user receives a file

full of re-randomized Encrypted Euclidean Distance values that were calculated between the

user query and all the patients in the hospital database. User applies Dec and retrieves the plain
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text message that is of the form m′ = ((αED + β) · r2). Now the user applies kronecker symbol

to m′, which returns the Legendre symbol of m′ based on the threshold value of Euclidean

Distance.

Input: c′ from section 9.3.2, sk, g, OkamotoUchiyama.dec()

Output: Similarity of patient

ct ← c′

function spqdec(ct,sk,g)

pt ← OkamotoUchiyama.dec(sk, g, ct)

return pt

end function

function Eval(pt,p)

result ← kronecker(pt, p)

if result == 0 then

return “Patients are Similar”

else

return “Check for next patient”

end if

end function

Algorithm 5: User Decryption and Evaluation

9.4 SPQ Results Analysis

Upon implementing the three algorithms described in the previous section, we obtained the

results pertaining to the time taken to implement various protocols with respect to different

threshold values. Also, we included the accuracy scores and precision scores by comparing

the results from Secure Function Evaluation with Plain Text calculations. We conducted SPQ

across various database sizes ranging from 60,000 records to a few 100 records. The results

are displayed fro 60,000, 1000 and 100 records.



78 Chapter 9. Implementation

Protocol Name 60,000 records 1000 records 100 records

User SPQ 5.45 5.45 5.45

Hospital SPQ 530 0.653 0.205

User Decryption and Evaluation 0.1306 0.034 0.02347

Table 9.4: Results for various steps in the SPQ protocol in seconds

User SPQ takes the same time in all three cases as the input query remains the same irre-

spective of the number of records we are trying to compare. For implementation, we considered

genotype sequences of the size 10, i.e., the query and the hospital database belongs to message

space M
R
←− {0, 1, 2}10. Amongst all the steps, Hospital SPQ happens to be the critical as

the Euclidean distance has to be calculated homomorphically across every single record. The

bigger the size of hospital database, the longer will be time consumed in this aspect. User

decryption and Evaluation process take the least amount of time. The reason is that decryption

is implemented using Extended Euclidean Algorithm and evaluation just carries out symbol

verification.

To test for the efficiency of our matching algorithm, we want to compare it with a Bloom

Filter implementation of Similarity Matching using Euclidean Distance. Bloom Filter Encod-

ings are approximate matching methods introduced by [59] that employ Bloom Filter Data

Structures. They are `-bit vectors with k secret hash functions. An element e ∈ {0, 1}n is in-

serted into the filter by pointing to the outputs of the secret hash-functions. We used precision

scores in similarity matching for carrying out the comparison. We changed threshold values

for Euclidean Distance Comparison each time and carried on the Similar Patient Query. Pre-

cision Scores are in the scale of 0-1 and high precision scores indicate that the false positive

rate is very low. To proceed further with Bloom Filters, we need a special protocol to compute

Euclidean Distance which is described in the next section.

Protocol for Euclidean Distance Computations with Bloom Filters

This segment sketches a secure protocol to compute Euclidean Distance using Bloom filters.

Bloom filters are ultimately a data structure for set membership testing, and thus can only
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be applied toward calculating Euclidean distance with some modification. Recall that, when

using Genotype data we are dealing with the character/message space of {0, 1, 2}n. So we

cannot directly apply Euclidean distance computations in the conventional sense as there will

be repetitions of these limited characters across the bloom filters, resulting in poor similarity

matching rates and accuracy scores. To avoid this, we propose a special protocol where instead

of comparing the characters in the sequence, we compare the RSID by forming a bloom filter

based on the genotype character. Recall that before forming the genotype sequences, the user

publicly declares the RSID positions that they want to compare. We gather all these RSID

numbers and pick the related genotype. For this protocol, we pick the RSID numbers instead.

The following are the detailed steps to carry on the protocol:

• We form 3 Bloom Filters based on the three genotype characters and label them as BF0,

BF1 and BF2.

• We take each RSID and insert it into the Bloom filter corresponding to the genotype at

that location. For example rs587697622 has a genotype 0, we apply BF0 to it. We repeat

the same process across all RSID positions.

• Consider two genotype sequences, S eq1 and S eq2, each with three associated Bloom fil-

ters BF0, BF1, BF2. Initialize a counter b ← 0. We can (approximately) compute their

Euclidean distance between S eq1 and S eq2 as follows:

– Compare BF0 of S eq1 with BF1 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 1.

– Compare BF0 of S eq1 with BF2 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 4.

– Compare BF1 of S eq1 with BF2 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 1.

– Compare BF1 of S eq1 with BF0 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 4.
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– Compare BF2 of S eq1 with BF0 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 1.

– Compare BF1 of S eq1 with BF2 of S eq2. For every for each bit position containing

a 1 in both Bloom filters, increment b by 4.

• If b < t for threshold 0 < t, output ‘match.’ Otherwise output ‘non-match’.

Matching Accuracy Comparison Experiment

Implementing and analyzing the heuristic security of a novel Bloom filter construction is out-

side of the scope of this thesis, which we will leave to future work. In this interest of a more

direct-comparison between our system and Bloom filter constructions previously established

in literature, instead of a Euclidean distance measure of sequence similarity/dissimilarity, we

return to the set-similarity approach of [20], and compare the matching accuracy of our scheme

against a Bloom filter approach based on the Dice coefficient.

Without loss of generality, consider an ` = 1000 bit bloom filter, with k = 20 hash func-

tions. For 1 ≤ k ≤ 20 let hk : {0, 1}∗ → {0, . . . , ` − 1} be a set of hash functions. Consider

a genotype sequence of n-characters. Since the genotype alphabet consists of three characters

{0, 1, 2}, if we use bi-grams for hashing, the set of all possible bi-grams has a cardinality of

only 9, meaning two random genotype strings of a relatively short length would be likely to

share all bigrams in common (and therefore look like identical strings in a Bloom filter), even

if the two strings are trivially quite quite dissimilar by any other reasonable metric.

Our approach, therefore, is to use a larger window size. We chose to use 6-gram sequences,

because the set cardinality to 36 = 729 is comparable to the standard use in literature involving

bi-grams of alphabetic characters (i.e., 262 = 676). Additionally we used padding charac-

ters. For example, the genotype sequence ‘2222222222’ has one nominal 6-gram (’222222’).

However with padding, the 6-gram set would look like: [‘ 2’, ‘ 22’, ‘ 222’, ‘ 2222’,

‘ 22222’, ‘222222’, ‘222222’, ‘222222’, ‘222222’, ‘222222’,‘22222 ’, ‘2222 ’, ‘222 ’,

‘22 ’, ‘2 ’], where the ” ” indicates a padding character. We denote a 6-grams as s6g

Next, we define the following experiment:

• Step 1 For a given genotype sequence s, declare a bloom filter b f of 1000 bits with 0s.
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So b f = {0, 0, 0, ..., 0, 0}.

• Step 2 Decompose the genotype sequence s into a set of 6-grams, S .

• Step 3 For each 6-gram s6g ∈ S , insert into the Bloom filter as follows. For each 1 ≤ k ≤

20 hash function hk, compute j = (hk(s6g)) (mod 1000). Set b f [ j] = 1.

• Step 4 Repeat steps 1 − 3 to construct a bloom filter for all the genotypes sequences in

the hospital database.

• Step 5 Given a query bloom filter , compute the Dice coefficient between the query and

each record in the database. The Dice coefficient between two sets a, b is computed as:

Dice(a, b) =
2 · (a ∩ b)
|a| + |b|

where |a| indicates the cardinality of set a.

• Step 6 For threshold t, query sequence query and a single sequence from hospital database

record, If Dice(query, record) ≥ t, return 1. Other wise 0.

• Step 7 For obtaining the truth, we take the 6-grams from plain text data and compute the

Dice coefficient between plain-text query and plain-text records.

• Step 8 We repeat steps 1−7 for rest of the records in the hospital data base. We collect all

the results using Bloom Filters and the plain-text data and compute the precision scores.

• Step 8 We need precision scores because we want to evaluate how the false positive rate

(n.b., P[False Negatives = 0] with Bloom filters) is behaving with respect to Bloom

filters. For a given query, if the ground truth returns a record as a match and the Bloom

Filter also shows it as a match, then it is a True match. In case the ground truth returns

that the query is not a match to the record but the Bloom Filters returns this as a match,

then we see that record as a false match. It is essential to eliminate false positives,

because we would not want the wrong patient data to be returned as a match as it can

have adverse impact with respect to medical information. We compute the precision

scores using the following formula:

Precision =
True Matches
TotalMatches

=
True Matches

True Matches + False Matches
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The value of precision scores range from 0 − 1, a score 1 indicates there are no false

positives.

We carried out the comparison of these similarity results with our SPQ protocol. Our protocol

outperformed Bloom Filters in this aspect with precision scores equal to 1 for threshold values

ranging from 0.50 − 0.90 as displayed in all the results below. This comparison was imple-

mented across 100 records in the hospital database. The precision scores for our SPQ protocol

were also calculated based on the Euclidean Distance scores measured on the plain-text data

set. Where as for Bloom Filters protocol, we calculated the precision scores by comparing

the dice coefficient values on the plain text data. Finally, we took the average of the precision

scores from 100 different runs of the SPQ protocol in Bloom Filters and our protocol. i.e., We

queried 100 different patients data across a database of 100 records. In different implementa-

tions, we varied the query size and the hospital database accordingly. So for example, when

we had to use a query of sequence size 20, we used the database related to sequence size of 20

and vice versa.

The experiments were conducted across different genotype sequence sizes of 10, 12, 15, 20,

25. The graphs are presented in fig. 9.3 indicate that our protocol implements ideal function-

ality. The precision score of 1 means there are no false positives or false negatives and the

transaction carried out to calculate Euclidean Distance is exactly the same the one carried out

under plain text. Note that to generate the prime numbers, the maximum sequence size need

to be disclosed. For example, in the 10-character sequence, the maximum Euclidean Distance

would be ED(2222222222, 0000000000), which is equal to 40, where ED(A, B) =
∑

(a − b)2

for a ∈ A, b ∈ B. So the prime number generated needs to have the linear embedding in the

size of g(i)
R
←− {0, 1}40. Based on the threshold value, we decide on the co-domain order within

this size of 40. So each time we change the threshold value, we had to generate a new prime

depending on the Legendre Symbol sequences.

Coming to bloom filters, we used the same threshold values as that of our protocol for

dice-coefficient calculations. Since the scope of this thesis is limited to our protocol alone, the

parameters from Bloom Filters were chosen based on the industrial standards. Accordingly,

we applied two different bloom filters:



9.4. SPQ Results Analysis 83

1. Bloom Filter of 1000 bits with 20 hash functions

2. Bloom Filter of 2000 bits with 30 hash functions

The results for all the 100 experiments are displayed in the figure shown in fig. 9.3. These

results indicate that the Bloom Filters showed improved performance only with increased bit

sizes and increased number of hash function. Even though Bloom Filter Encodings are known

for their speed in search algorithms, they have a problem of returning large number of false

positives. The precision scores improve in the bloom filters only when the threshold values

keep increasing. However, one should observe that, in case of threshold function at 50% the

in both classes, i.e., above or below threshold has similar distribution. As it keeps increasing

there is skewed distribution. So the change in precision do not reflect the improvement in

performance of bloom filter rather they reflect the fact that the number of hits are easier to

capture for precision at skewed distribution of data. Whereas, our protocol implements ideal

functionality across all sequence sizes and entire range of the threshold values.
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(a) Results for SPQ on genomic sequence size 10
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(b) Results for SPQ on Genomic sequence size 12
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(c) Results for SPQ on genomic sequence size 15
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(d) Results for SPQ on Genomic sequence size 18

50 60 70 80 90
0.4

0.6

0.8

1

Match Threshold

Pr
ec

is
io

n
Sc

or
e

BF-1000
BF-2000

Our SPQ Protocol

(e) Results for SPQ on genomic sequence size 20

50 60 70 80 90

0.4

0.6

0.8

1

Match Threshold

Pr
ec

is
io

n
Sc

or
e

BF-1000
BF-2000

Our SPQ Protocol

(f) Results for SPQ on genomic sequence size 25
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Figure 9.3: Results across experiments on various genotype sequence sizes
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Conclusion and Future Work

This chapter summarizes our thesis and throws a light on the contributions that can be used in

this field. It also examines the limitations of our current research work by highlighting certain

complexities that exist in the implementation of the cryptosystem. This way, the potential

areas for future work can be identified to optimize this cryptosystem further. We stated that the

cryptosystem can be used for private function evaluation for the functions of the form Z 7→ B

and we implemented it on threshold functions. There are still undiscovered functions of this

type to which our cryptosystem can be efficiently extended. We split this chapter into three

sections:

• Section 10.1 summarizes the thesis by briefly restating the key aspects of the research

including the application.

• Section 10.2 presents the contributions of our cryptosystem, and highlights the limita-

tions that we faced through the implementation process.

• Section 10.3 highlights the prospects of our cryptosystem and other applications that it

can possibly extended to. It also highlights the areas where more work needs to be done

to improve the time and computational complexity.

85
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10.1 Summary

This thesis discussed the importance of secure computations and the related work that is car-

ried out in this area. We briefly examined two probabilistic cryptosystems that exhibit additive

homomorphism. Their description was done by examining the three components of any cryp-

tosystem namely:

• Key Generation algorithm- Gen

• Encryption - Enc

• Decryption -Dec

We extended these additive homomorphisms to perform secure or private function evaluation

in a unique way by introducing a new Key Generation algorithm Gen. Precisely, this Gen

presents a unique way of generating prime p, which forms the secret key as it is one of the

factors of n for n = pq. To develop this key generation algorithms, we introduced new form

of functions called functional embeddings and extended this concept of functional embeddings

to Linear embeddings in Residue Symbol sequences. Based on the properties of such linear

embeddings in Quadratic residues and non-residues (mod p), we developed two new theo-

rems along with proofs. The first theorem emphasized the possibility of discovering pattern

of linear embeddings in some modulus and the second theorem discusses on the possibility of

such modulus being a prime number. Using this key generation, we introduced a fourth com-

ponent into the cryptosystem called an evaluation function, indicated as Eval that helps us to

perform secure or private function evaluation in a unique way upon decryption. We then dis-

cussed the security of our cryptosystem by explaining the necessary jargon surrounding these

concepts. We ran through necessary theorems and proofs that help us establish the hardness of

the developed cryptosystem.

We developed a new protocol based on the developed cryptosystem with four steps namely

Gen, Enc, Dec, Eval. The correctness and hardness proof of this protocol were also described

along with it. Then we discussed the privacy of the participants involved in the protocol. Since

we developed two party computation, the privacy is discussed for both of these parties sep-

arately by introducing the concept of view and developing a simulation based privacy proof.
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Then we extended this cryptosystem to an application known as Similar Patient Query. We

discussed the basics of SPQ, the related work done in this field, and a brief description of the

similarity measures used in genomic data. We developed a new protocol for secure computation

of Euclidean distance and used it in the development of SPQ . We highlighted the advantages

of our protocol over the existing systems and also developed a hardness proof alongside with

it. The final chapter threw light on the implementation of the cryptosystem and the application.

We presented the algorithms required for finding α, β required for the generation of prime p

and key generation algorithm itself. We presented the analysis of results in comparison with

previous work in [20]. Implementation of SPQ is also presented by describing the details of

genomic databases, implementing user-spq, hospital-spq, user-decryption and evaluation. We

carried out analysis of results by comparing our protocol to similarity matching using Bloom

Filter Encodings. We also introduced a new methodology to compute accurate Euclidean dis-

tance among genomic data bases using Bloom Filter Encodings. We finally presented the

precision scores for both the protocols.

10.2 Contributions and Scope for Future Work

The main contributions of our thesis are development of a unique way for secure function eval-

uation using the properties from number theory and SPQ application using Euclidean Distance.

We modified the existing probabilistic cryptosystems that display additive homomorphisms in

a way to be able to implement private function evaluation using the possibility of finding arbi-

trary patterns in the runs of Quadratic and Non-Quadratic Residues modulo p. Even though this

property has been described in previous work by [20], the paper used a search based approach.

In search based approach, the prime number with the required Residue and Non-residue se-

quences is iteratively searched. Due to this, the application was limited to threshold function

alone and also the implementation was time consuming. So, we optimized it by generating the

required prime number instead. While cutting down the time required for finding such primes

drastically, we were also able to extend to the functionality to any kind of domain that has a

message space of {0, 1}n where n is the size of the required co-domain.

The prime generation requires finding out sequences that have elements consisting of unique
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factors when factorized. In other words, if we want a function for size of 29 bits, i.e., 512 char-

acters in the co-domain, we need to find a sequence that has 512 elements with each element

consisting at-least one unique factor so we can manipulate its Legendre symbol. To find the

start of such sequence and its relevant step size, we iteratively generate multiple sequences,

factorize each element in this sequence and iterate it until a unique factor is no longer found.

More work can be conducted in this area to develop more optimized algorithms for generation

of such sequences. This can also be extended to find primes of smaller bit lengths. With respect

to practical use for this cryptosystem, we discussed only SPQ application. We believe that the

versatility of this secure function evaluation has not been fully realised. Future researches can

be conducted in this aspect to find out applications for any functions with a co-domain space

of {0, 1}n.

10.3 Conclusion

The increase in the availability and accessibility of personal information is demanding more

sophisticated ways of processing that information while ensuring privacy. The research in the

area of Secure Computations is never ending owing to the increase in applications involving

encrypted data. There is always a scope for improvement in devising Secure and Private Func-

tion Evaluation algorithms that offer lower computational and time complexities. While our

protocol offered a solution to carry out function evaluation for Linearly embedded domains,

continued research in this aspect may improve the scope for evaluating more complex func-

tions using simpler homomorphic encryption schemes and other cryptographic algorithms.
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Appendix A

Row Operations for Matrix A

This appendix presents row operations that were carried on to convert Matrix A from sec-

tion 9.1.2 into row echelon form.

Row Operation 1

Add −1 times the second row to the fifth row:



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r5+(−1)r2
−−−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1


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Row Operation 2

Add −1 times the second row to the eighth row:



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r8+(−1)r2
−−−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1



Row Operation 3

Add −1 times the fourth row to the ninth row:



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r9+(−1)r4
−−−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 −1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1


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Row Operation 4

Interchange the fifth and ninth row



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 −1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r5↔r9
−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1



Row Operation 5

Multiply 5th row by −1



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1



(−1)×r5
−−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1


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Row Operation 6

Interchange 6th row and 9th row



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1



r6↔r9
−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1



Row Operation 7

Interchange 7th row and 9th row



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r7↔r9
−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1


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Row Operation 8

Interchange 8th row and 9th row

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r8↔r9
−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1


Row Operation 9

Add (-1) times the 5th row to the 4th row

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1



r4+(−1)r5
−−−−−−→



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 −1 0 −1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1


The matrix on the right hand side of row operation 9 represents the final matrix in Row-

Reduced Echelon form. Remember, we are doing all the matrix operations in a Galois Field 2,

so in the final matrix presented in chapter 9, all the values are converted into (mod 2). So the

rows with elements −1 will be converted into 1.
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