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Abstract

Diffusion MRI is used to non-invasively characterize the microstructure of the brain. However,

the accuracy of the characterization is difficult to verify because no other non-invasive imaging

modality provides the same information. This thesis presents a novel 3D printed axon-mimetic

(3AM) diffusion MRI phantom, a synthetic object designed to mimic the brain’s microstruc-

ture.

The phantoms were characterized using microscopy, synchrotron micro-computed tomog-

raphy, and diffusion MRI, and found to have sufficiently axon-mimetic properties to be useful

as diffusion MRI phantoms. A set of phantoms designed to have anatomically realistic and

complex fibre structures was used to test the response of diffusion MRI models of white matter

to fibre orientation dispersion. All tested models were found to respond to orientation disper-

sion, but some robust metrics were identified. The studies in this thesis demonstrate that 3AM

phantoms are a novel, flexible, and inexpensive tool for validating diffusion MRI models of

white matter.

Keywords: Diffusion MRI, Diffusion MRI Modeling, Phantoms, Validation, MRI, Neuro-

science

ii



Summary for Lay Audience

Magnetic resonance imaging, or MRI, is often used to generate images that we can use to safely

investigate the brain. To answer some questions about the brain and how its different regions

are interconnected, we need more detail than standard MRI can provide. In these cases, we

can use diffusion MRI, which is sensitive to the way water molecules randomly move around.

Axons, the connections between brain cells, are shaped like tubes, so it is easier for water

molecules to move along the axons than across them.

We can use models, which mathematically describe what we understand about how axons

change the motion of water molecules, to make predictions about the brain from diffusion MRI

images. However, there is no other safe way to make the same kinds of predictions about a

brain, so it is difficult to know how accurate the predictions from diffusion MRI are. What

we can do to assess diffusion MRI model predictions is create artificial objects made of tube-

shaped structures that mimic axons. If we make the objects and control the same properties

that we investigate in the brain, we can use diffusion MRI models to ask questions about the

phantoms, the answers to which we already know. If the diffusion MRI models make accurate

predictions about a phantom, they probably also make accurate predictions about real brains.

This thesis presents a new kind of diffusion MRI phantom that is produced by 3D printing

with a special material. Part of the 3D printed material forms fibres that dissolve in water,

leaving behind holes that are tube-shaped like axons. In the thesis, we show that the tube-

shaped holes are small enough to convincingly mimic axons. We then use the phantoms to

show that diffusion MRI models do not always make consistent predictions when axons bend

and cross.

The phantoms presented in this thesis are inexpensive and make it easier for researchers to

make sure diffusion MRI models make accurate predictions even in complex parts of the brain.

This will help make diffusion MRI as useful as possible for investigating the brain.
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Chapter 1

Introduction

The brain is one of the most important organs of the human body, but it is also poorly under-

stood. A “comprehensive structural description of the network of elements and connections

forming the human brain”, referred to as the human connectome [3], would be an immensely

useful tool to advance the understanding of the brain’s function in sickness and health. Devel-

oping a non-invasive imaging modality capable of precisely resolving and accurately charac-

terizing individual neurons or neural pathways is a critical step in the process of assembling

the human connectome. Furthermore, an understanding of how neuronal structure changes in

pathology may help understand and treat that pathology. Standard magnetic resonance imaging

(MRI) produces more detailed images of the brain than any other conventional modality, but

its nominal resolution of about one millimetre is much too coarse to track individual neurons,

which typically have sizes on the scale of micrometres. [4]

1.1 Diffusion MRI

Diffusion MRI (dMRI) is a technique that addresses the coarse resolution of standard MRI by

using an MRI sequence that is sensitive to the diffusion of water molecules in the brain. [4]

Axons, the neural structures that form the pathways that connect multiple neurons in the brain,

have a tube-like structure that can hinder or restrict diffusion perpendicular to their path. Re-

1



2 Chapter 1. Introduction

stricted diffusion refers to a situation in which the diffusion of water molecules is obstructed

by a barrier that cannot be passed by taking another path, as is the case within axons. Hin-

dered diffusion refers to a situation in which the diffusion of water molecules is obstructed by

barriers that can be bypassed by an indirect path, as is the case between axons in a bundle. Dif-

fusion MRI signal reflects these patterns of diffusion within voxels, providing microstructural

information that is not available from standard structural MRI.

Diffusion MRI is conducted with a standard MR scanner, which applies a constant magnetic

field (B0) along the bore of the scanner. When a subject is placed in a scanner, the magnetic

fields of protons (hydrogen atoms) in the subject tend to align with the static field produced

by the scanner [1]. This tendency of individual protons to align their magnetization with the

B0 field produces a bulk magnetization aligned with the B0 field. If the magnetization of the

protons is tipped out of alignment with the B0 field, the bulk magnetization will precess around

the B0 field, spiraling about the field until it returns to alignment, as illustrated in Figure 1.1.

The frequency of this precession is known as the Larmor frequency ω, and is determined by

the product of the strength of the field, B0, and a constant γ called the gyromagnetic ratio. As

an equation:

ω = γB0. (1.1)

The standard structural MRI sequence used to produce structural images is known as a spin

echo (SE) sequence. A spin echo sequence works by applying radio frequency (RF) pulses to

the subject, tuned to the Larmor frequency, that allow the bulk magnetization of the subject’s

protons to be tipped away from the B0 field. In each cycle of a spin echo sequence, a 90° pulse

is applied to tip the magnetization perpendicular to the B0 field, then a 180° pulse is applied

shortly after. In the time between the 90° pulse and the 180° pulse, the spins that produce the

bulk magnetization dephase due to local variations in the magnetic field. The same amount

of time after the 180° pulse, the spins come back into phase, producing an echo of the signal

produced by the 90° pulse, as illustrated in the top row of Figure 1.2. The amount of time



1.1. DiffusionMRI 3

Figure 1.1: An illustration of proton precession forming bulk magnetization. From refer-
ence [1] with permission from John Wiley and Sons. (a) Protons have spin, generating a
magnetic field that is more likely to to align with the B0 field than in any other direction.
(b) If tipped away from the B0 field with an RF pulse, a proton will precess at the Larmor fre-
quency ω. (c) In a group of protons in a B0 field, more will align with the field than against it,
generating a bulk magnetization that will precess at the Larmor frequency if tipped away from
the B0 field.

between the 90° pulse and the echo is the echo time (TE), and the amount of time between

successive 90° pulses is the repetition time (TR). This echo becomes the signal which forms

the MR image, and SE sequences can be tuned to be sensitive to different relaxation times,

which characterize the process by which the bulk magnetization returns to alignment with the

B0 field. These relaxation times form the basis of standard structural MRI.

To achieve diffusion weighted MR signal, spin echo sequences are extended to pulsed gra-

dient spin echo (PGSE) sequences. In PGSE, a gradient that modulates the B0 field along a

single direction is applied before the 180° pulse, and another gradient with the same polarity

is applied after the 180° pulse, as illustrated in Figure 1.2. The first gradient pulse causes

precession of protons along the specified direction to dephase. The second gradient pulse has

the opposite effect due to the 180° pulse, rephasing the precession of those protons. However,

protons in water naturally diffuse, or randomly move, including along the direction specified

by the gradient pulses. Any protons that diffused along that direction end up out of phase,

reducing the measured signal relative to what it would have been without the gradient pulses.

Effectively, this weights the corresponding PGSE acquisition according to the direction and

strength of the gradient pulses.



4 Chapter 1. Introduction

Figure 1.2: The radio frequency and diffusion gradient pulses used in the pulsed gradient spin
echo sequence. Adapted from reference [2], with permission under the Creative Commons
Attribution License.

The strength of the diffusion weighting depends on the gyromagnetic ratio (γ), the magni-

tude (G) and duration (δ) of the gradient pulses, and the time interval between the two gradient

pulses (∆). Put together, these factors produce the b-value, which reflects the overall diffusion

weighting of a given PGSE acquisition. The b-value is measured in s/mm2 and is defined as

follows:

b = γ2G2δ2(∆ − δ/3). (1.2)

The diffusion behaviour of a uniform, isotropic medium can be summarized with a single

metric, its diffusivity (D), measured in mm2/s. Given this diffusivity, the signal S measured

from a diffusion-weighted scan with b-value b of a region can be related to the signal from an

identical acquisition with no diffusion weighting (S 0), by the following equation:

S = S 0e−bD (1.3)

To accurately characterize non-isotropic media like tissue with dMRI, multiple diffusion-
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weighted images (DWI) can be generated by repeating this PGSE process several times with

different gradient directions and b-values. [5] The resulting dMRI scan data are 4-dimensional,

where the first three dimensions are spatial, and each element in the fourth dimension corre-

sponds to a volume with a single gradient direction and b-value. A set of DWIs of a subject

therefore reflect the complex diffusion behaviour within each voxel of that and is a rich source

of information, but requires analysis and simplification to interpret.

1.2 Diffusion MRI models of white matter

An ongoing challenge in diffusion MRI is to develop a model that accurately describes the

received dMRI signal in terms of the underlying brain physiology. A set of DWIs of a subject

contains data that reflects the subject’s diffusion behaviour, but each spatial voxel has a set of

values, each associated with one of the dMRI acquisitions. This multiplicity of data makes it

difficult for a human to analyze a set of DWIs as a whole and draw accurate conclusions about

the underlying microstructure. Instead, we can apply an understanding of diffusion MRI to

mathematically represent the data in a more compact and apparently meaningful form. Further,

we can apply a theory of the subject’s microstructure to build a model that explicitly represents

the dMRI signal in terms of that microstructure [6]. Such a model that successfully describes

brain microstructure would enhance the clinical utility of dMRI.

Once a mathematical signal representation or model is described, it is applied to a dataset,

typically at a voxel-wise level, by finding the parameters of the representation that best describe

the signal at each voxel. This is an optimization problem, where the goal is to minimize the er-

ror between the signal predicted by the representation and the measured signal. This process is

called “fitting” the model to the data. The method used to fit a given model to a dataset depends

on the form of the model. For relatively simple or fundamental representations, the model fit

can be posed as a linear system of equations, allowing an optimal fit to be found in closed form

using the linear least squares method. To fit more complex representations, including most mi-
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crostructural models, a nonlinear optimization procedure is required [7]. Typically, nonlinear

optimization procedures have no closed-form solution and are computationally intensive, so

fitting more complex representations can result in less precise results and can take longer than

simpler representations.

1.2.1 Diffusion tensor imaging

Diffusion Tensor Imaging (DTI) is a simple, widely used dMRI signal representation. DTI

extends the model of signal attenuation in an isotropic medium (S/S 0 = e−bD) by replacing

the single diffusivity D with 3 × 3 diffusion tensor D, which allows anisotropic diffusion [8].

DTI relates the applied gradients to the signal attenuation observed in each acquisition by the

following equation:

S/S 0 = e−bĝT Dĝ (1.4)

where ĝ is a unit vector that encodes the direction of the applied diffusion gradient. The

diffusion tensor is symmetric, so it has seven independent parameters to estimate. By observing

ln(S/S 0) = −bĝT Dĝ is a linear system of equations, we see that we can fit DTI using a linear

least squares method. To summarize the diffusion pattern described by DTI, we can find the

eigenvalues and eigenvectors of the diffusion tensor by diagonalizing the 3 × 3 matrix that

forms the tensor. Each eigenvalue corresponds to the estimated diffusivity in one of three

perpendicular directions, and each eigenvector indicates the principal direction associated with

its corresponding eigenvalue.

Four metrics are typically extracted from DTI. Axial diffusivity (AD) is simply the largest

eigenvalue, and describes the diffusivity along a primary axis of diffusion. Radial diffusivity

is the mean of the two smaller eigenvalues, and indicates the tendency of water to diffuse

perpendicular to the central axis of diffusion. Mean diffusivity (MD) is the mean of the three

eigenvalues, and indicates the overall ability of water to diffuse in a voxel. Finally, fractional
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anisotropy (FA) is a metric that indicates the tendency of water to diffuse along one central

axis, rather than diffuse isotropically. FA is defined by:

FA =

√
3((λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2)

2(λ2
1 + λ2

2 + λ2
3)

, (1.5)

where λ1, λ2, and λ3 are the three eigenvalues of the diffusion tensor. FA is measured from

zero to one, where an FA of zero indicates perfectly isotropic diffusion, and an FA of one

indicates diffusion only in one direction.

1.2.2 Diffusion kurtosis imaging

DTI and metrics derived from it have been applied clinically, but it breaks down in voxels

where multiple fibres interact and when a high diffusion weighting is used in a scan. [6] Diffu-

sion Kurtosis Imaging (DKI) extends DTI to describe non-Gaussian diffusion patterns [9, 10],

which are typically observed when high diffusion weightings are used in non-homogeneous en-

vironments, like human white matter. To quantify non-Gaussian diffusion, DKI adds a kurtosis

term to the one-dimensional diffusion described by Equation 1.3:

ln(S/S 0) = −bD +
1
6

b2D2K, (1.6)

where K is the diffusional kurtosis [9], which describes the degree of deviation from free

Gaussian diffusion. Like DTI, DKI extends this equation into 3D by forming a kurtosis tensor.

The kurtosis tensor is a symmetric 3×3×3×3 tensor, with 15 independent elements. The DKI

representation also forms a system of linear equations that can be solved with a linear least

squares method, but requires a dataset with more acquisitions than are necessary for DTI, and

requires some of those acquisitions to have a higher b-value than that necessary for DTI.

In addition to the four DTI metrics, DKI adds three analogous metrics that describe the

directional kurtosis in a voxel. Axial and radial kurtosis (AK and RK) describe the kurtosis

of the diffusion pattern along and perpendicular to the central axis of diffusion, respectively.
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Mean kurtosis (MK) describes the overall amount of kurtosis in a voxel.

1.2.3 Ball and stick

The ball and stick representation is one of the simplest compartment-based representations of

dMRI signal [11]. It decomposes dMRI signal into two compartments: the “ball” compartment,

which contains isotropically diffusing water with the same diffusion behaviour described by

Equation 1.3, and the “stick” compartment, which is composed of a zero-radius cylinder that

only allows diffusion in one direction. The parameters of the model are then the diffusivity of

the two compartments, the volume fraction of one of the compartments, and the direction in

which the stick compartment is oriented. Depending on the application, some of the parameters

(typically the diffusivities) may be fixed before the model fit, making an assumption of a typical

value to increase the stability of the fit.

1.2.4 NODDI

Neurite orientation dispersion and density imaging (NODDI) [12] is another compartment

model that includes three compartments: intra-axonal space, extra-axonal space, and CSF.

The CSF compartment is represented as isotropic diffusion, exactly like the ball compartment

in the ball and stick model. The intra- and extra-axonal space are represented as distributions of

fibres, rather than one or more individual fibre populations, each oriented in its own direction,

like the stick compartment in the ball and stick model. NODDI uses the Watson distribution,

which describes an isotropically decreasing orientation density about a mean orientation on the

unit sphere, to model its fibres. The intra-axonal space is represented by a Watson distribution

of zero-radius cylinders, and the extra-axonal space is represented by a Watson distribution of

cyclindrically symmetric diffusion tensors.

NODDI fixes the assumed diffusivities of each of its compartments to biologically plausible

values, leaving five parameters to be estimated in each voxel: the intra-cellular and isotropic

volume fractions, two direction parameters to specify the mean orientation, and the concentra-
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tion parameter of the Watson distribution, which specifies how broad the distribution is. The

concentration parameter is usually mathematically transformed to an orientation dispersion in-

dex (ODI), which describes the amount of orientation dispersion from zero to one. NODDI’s

parameter set therefore aims to describe both the microstructure and orientation of the neurites

in a given voxel.

Bingham-NODDI [13] is a variant of NODDI that uses the Bingham distribution instead of

the Watson distribution, as illustrated by Figure 1.3. The Bingham distribution allows a differ-

ent amount of dispersion in perpendicular directions relative to the mean orientation. Instead

of a single ODI like NODDI, Bingham NODDI has a primary ODI (ODIP) and a secondary

ODI (ODIS). Practically, this allows Bingham-NODDI to represent patterns of diffusion that

NODDI struggles with, in particular patterns where diffusion is limited to a single plane.

Figure 1.3: Probability plots for the Bingham and Watson distributions. Adapted from Ref-
erence [13], with permission under the Creative Commons Attribution License. (a) Isotropic
dispersion about the central orientation, which can be modeled with the Watson or Bingham
distributions. (b) Anisotropic dispersion about the central orientation, which can only be mod-
eled by the Bingham distribution. (c) Maximally anisotropic dispersion about the central ori-
entation, which can only be modeled by the Bingham distribution.

1.3 Diffusion MRI phantoms

The wealth of available models offers the ability to estimate many quantitative characteristics

of the brain, but a major obstacle to the widespread adoption of any model in the research and
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clinical communities is a lack of evidence that they accurately estimate a given quantity [14].

Diffusion MRI is the only imaging modality that can safely make these microstructural predic-

tions on a living human, so there is no “ground truth” value to compare with each estimation.

To obtain this ground truth, parameter estimates from dMRI scans of animals can be com-

pared to ex vivo histology of the same animals. The major advantage of this approach to

validating dMRI models of white matter is that all the data comes from brain tissue, so it is

as realistic as possible. However, brain tissue changes as it is prepared for histology, and in

particular has been observed to shrink as it is prepared, so the correspondence between the

histological ground truth and the scan data is not guaranteed to be perfectly valid. [15] Further-

more, control of fibre orientation in the sample is limited to choosing areas of interest, unlike

synthetic samples that can be designed to answer a specific question about a dMRI model.

Another common technique for diffusion MRI model validation is the use of Monte Carlo

simulations of axonal fibres, also referred to as numerical phantoms. The primary advantage

of numerical phantoms is that they allow fine-grained control and precise understanding of the

tissue properties and diffusion behaviour under investigation, so they can be used to answer

specific questions about a dMRI model’s response to a well-understood sample with a very

precise ground truth. However, the synthetic nature of the data means that its fidelity depends

on an accurate model of both the sample in question and dMRI scanning procedure to produce

accurate data. It is difficult to capture all of the involved complexity, so numerical phantoms

often use relatively simple models of straight cylinders as the sample, and struggle to capture

scanning complexities like inhomogeneity in the static magnetic field. Finally, performing

the involved simulation can be computationally expensive, especially as the involved models

increase in complexity and realism. [16]

Instead of histology or numerical phantoms, physical phantoms can be used to provide

a ground truth for validation of diffusion MRI models. A physical phantom is a synthetic

object designed to mimic the dMRI characteristics of the brain when used as a dMRI subject.

By undergoing dMRI scans, physical phantoms offer data that incorporate the complexities
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inherent to a diffusion MRI scan, unlike synthetic phantoms. Physical phantoms are also more

easily characterizable by complementary imaging modalities than living tissue. Like numerical

phantoms, but less completely, some properties of physical phantoms can be controlled when

they are designed, tuning a phantom to answer a specific question. To characterize uncontrolled

microstructural properties, a physical phantom can be imaged by modalities like micro-CT

without being damaged by the high dose of ionizing radiation required. Physical phantoms

offer more control over the ground truth than tissue samples, but less than numerical phantoms.

Physical phantoms typically offer more realistic scan data than numerical phantoms, but less

realistic scan data than tissue samples.

1.3.1 Diffusion MRI phantom requirements

To accurately mimic the microstructure of white matter, dMRI phantoms contain an MR-visible

liquid (often water) and solid fibrous structures that hinder or restrict the diffusion of that liq-

uid. [16] The fibres must have a similar scale and configuration to the neurons in the brain to

modulate diffusion in a way that produces a realistic dMRI signal. Beyond accurately mimick-

ing white matter’s diffusion behaviour, dMRI phantoms should be convenient to manufacture

and produce consistent data when scanned at different times or on different hardware.

Axonal fibres in the brain have very small diameters, typically from 0.5 µm to 1 µm [17],

that are arranged in complex configurations. In designing a physical phantom, both of these

properties of axonal fibres are difficult to mimic, and it is even more difficult to mimic both

in the same phantom. To quantify the extent to which a phantom meets these fundamental

requirements, the inner and outer diameters, as applicable, of its fibrous structures can be

measured with a non-dMRI modality. A dMRI phantom should also be able to represent as

many types of complex orientations as possible. Tournier et al. identify four types of complex

orientations [18]: bending fibres, fanning fibres, interdigitating fibres, and adjacent fibres. An

ideal phantom would be able to reproduce all four of these fibre configurations.

A dMRI phantom that successfully mimics the microstructure of the brain should also
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produce similar dMRI signal to that produced by the brain. To assess the similarity of signal

from a phantom and signal from the brain, a widely-used signal representation should be fit to

the data, allowing the metrics to be compared. DTI and DKI are both widely used and stable

in their fit, so they work well for this purpose. To minimize the effect of orientation dispersion,

a straight region of a phantom should be compared to a straight region of the brain. FA is a

particularly relevant metric for this purpose because the hindering and restriction of diffusion

in white matter tracts tends to produce highly anisotropic diffusion. [19] However, the error in

all DTI and DKI metrics are useful to indicate differences in diffusion between a phantom and

the brain, and together they provide a good set of summary statistics for validating a phantom.

To assess how consistent the data a phantom produces is, several specifications can be taken

into account. First, the phantoms should be manufactured reproducibly, so the coefficient of

variation in mean FA of any five phantoms manufactured under the same conditions should

be as low as possible. Second, the phantoms should be stable over time, so it should take as

long as possible for the percent change in FA of a single phantom to exceed 5%. [20] Finally,

susceptibility differences between the liquid and solid in a phantom should be as low as possible

to minimize artifacts.

To assess how convenient a phantom is to produce, the cost and time to manufacture it

should be measured. Both the one-time cost of equipment and the recurring cost of materials

to produce a single phantom should be minimized. The total time to manufacture a phantom

should also be minimized. These metrics are not widely reported in the literature, but are of

practical importance to researchers who would like to perform a phantom validation of a dMRI

model of white matter.

1.3.2 Existing Phantoms

A wide range of materials have been used to produce the fibrous structures required by a dMRI

phantom. Existing phantoms use rigid capillaries, glass capillary arrays, two types of hollow

fibres, and several classes of plain fibres. Each type of phantom makes trade-offs to serve a
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specific purpose and fulfills the general requirements for dMRI phantoms to a different extent.

Phantoms made with rigid capillaries use capillaries with micrometre-scale inner diameters,

typically made from glass, to anisotropically restrict diffusion within the cylinders and hinder

diffusion between the cylinders. The primary benefit of these phantoms is that they can be

manufactured at very small sizes while representing both intra- and extracellular space. The

primary drawback of rigid capillaries is that their rigidity makes it difficult to produce phantoms

with complex orientations; the most complex orientation that has been demonstrated with this

type of phantom is layers representing interdigitating fibres. [21]

Glass capillary arrays are small wafers of glass with holes that act as capillaries, restricting

water diffusion. [22, 23] Like glass capillaries, the holes in glass capillary arrays are straight,

limiting the orientational complexity they can achieve. Their primary application has been

evaluating diffusion MRI models that estimate axon diameters. Only the spaces within the

capillaries contain water, so only intracellular diffusion is represented by these phantoms.

Hollow fibres are flexible and polymeric, representing intra- and extracellular space when

packed densely enough. Two techniques have been reported for manufacturing hollow fibres

for diffusion MRI phantoms: melt-spinning extrusion [24] and coaxial electrospinning. [25]

Melt-spinning extrusion works by melting polypropylene chips and extruding the molten poly-

mer through C-shaped dies to form hollow fibres with diameters on the order of 12 µm. The

resulting fibres have been packed tightly enough to achieve a very high FA but have higher

diameters than electrospun fibres. Electrospinning works by applying a high voltage between

a needle filled with a liquid polymer and a flat collector some distance away. The buildup of

charge in the liquid forces it to erupt from the needle in a jet and hit the collector. A variant of

this procedure that uses two coaxial needles [26] can be used to create membranes of hollow

fibres with customizable and small diameters.

Other phantoms use plain (i.e. not hollow) fibres, packed tightly to hinder diffusion, rep-

resenting only extra-axonal space. Dyneema, a polymeric fibre with favourable magnetic sus-

ceptibility, has been identified as a useful material for this purpose. [20] The primary difference
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between different types of plain fibre phantoms is the fixation method that determines the ge-

ometry of each phantom. Shrink tubes [27, 28] compressing bundles of fibres have been shown

to be effective, and capable of representing crossing fibres. However, the fibre density of plain

fibres in shrink tubes is difficult to precisely control. Winding plain fibres around a spindle

is an effective way to pack fibres very densely, and arranges fibres in a bending pattern [29].

Finally, winding plain fibres around a custom 3D printed support with sections that produce

different fibre densities and orientations has been shown to be a useful, if labour-intensive,

technique [30].

1.4 Thesis Outline

Existing dMRI phantoms trade off between cost and ease of use, microstructural similarity to

white matter, and orientational complexity. Their costs and ease of use are not consistently

reported, but none are both easily produced and able to produce complex orientations. A

phantom that filled this niche would be a practical tool for assessing the response of dMRI

models of white matter to orientational complexity.

This thesis considers a 3D printed axon-mimetic (3AM) diffusion MRI phantom that is

produced by fused deposition modeling (FDM) 3D printing with an experimental filament [31].

The filament consists of an elastomeric matrix filled with pockets of polyvinyl alcohol (PVA).

When the 3D printer melts the filament and extrudes it into narrow lines, the pockets of PVA

stretch into fibres along the direction of motion of the print head. If a phantom composed

of layers of these lines is immersed in water, the PVA fibres dissolve, leaving behind fibrous

pores that modulate diffusion anisotropically, forming the fibrous structures necessary for a

dMRI phantom to mimic the diffusion behaviour of axonal fibres. Conventional 3D printers

are inexpensive, easy to use, and highly configurable, and the material used to produce 3AM

phantoms is also inexpensive. Therefore, 3AM phantoms have the potential to be a useful

tool for validating diffusion MRI models of white matter. The first objective of this thesis is
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to characterize 3AM phantoms according to the requirements laid out above, validating them

as appropriate for use as dMRI phantoms. The second objective of this thesis is to use a

set of dMRI phantoms to characterize the effect of orientation dispersion on a set of dMRI

representations and models of white matter, demonstrating their utility.

Chapter 1 presented diffusion MRI as an imaging modality, introduced dMRI modeling

techniques and some common dMRI signal representations, and described the requirements of

dMRI phantom with a survey of existing dMRI phantoms.

Chapter 2 presents a characterization of the microstructural and diffusion characteristics of

3AM phantoms. The objective of the Chapter is to validate 3AM phantoms’ appropriateness

and effectiveness for use in validating diffusion MRI models of white matter. A version of

this Chapter entitled “Microstructural characterization and validation of a 3D printed phantom

for diffusion MRI” was submitted for publication in Magnetic Resonance in Medicine in July

2020.

Chapter 3 presents the characterization of the response of diffusion MRI models of white

matter to fibre curvature and crossing fibres using a set of 3AM phantoms with complex fibre

configurations.

Chapter 4 summarizes the contributions and limitations of this project, and lays out poten-

tial future steps for the project.



Chapter 2

Validation of a 3D printed phantom for

diffusion MRI

2.1 Introduction

Diffusion magnetic resonance imaging (dMRI) produces images by sensitizing the MRI signal

to the random motion of water molecules on a micrometre scale. This sensitivity means that

dMRI signal reflects patterns of water diffusion in the brain imposed by brain microstructure.

To interpretat of dMRI signal, signal representations like diffusion kurtosis imaging (DKI) [32]

have been developed. By fitting raw dMRI data to mathematical representations whose param-

eters describe general features of the underlying diffusion, this technique produces metrics that

are related to the microstructure and structural connectivity of the brain [32]. However, a limi-

tation of this approach to characterizing brain microstructure is that there is typically no in-vivo

ground truth to validate the findings of a given study.

A number of techniques have been used to produce data for the validation of dMRI models,

including numerical phantoms [33, 34], ex-vivo brain samples [35, 36], in-vivo studies [37],

and physical phantoms [22, 38]. Numerical phantoms are simulations of diffusion behaviour

under explicitly defined conditions and geometries. They allow precise experimental control,

16
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but do not reproduce all the complexity inherent to a real scan. Ex-vivo studies are performed

by imaging animal brains in vivo, then sacrificing animals and analysing histological sections

of the animals’ brains to validate the findings of the imaging study [39]. These methods provide

data directly from a real brain, but histology is a time-consuming and costly approach that

covers a limited region of interest in the brain that is difficult to register to a dMRI scan. Further,

there may be microstructural changes in the tissue due to histological preparation/fixation.

Physical phantoms are artificial objects designed to mimic the diffusion characteristics of the

brain, producing dMRI scan data similar to that seen from real brains. Physical phantoms

occupy a middle ground between the two ends of a spectrum defined by numerical and ex-vivo

studies: they produce real scan data with a well-known microstructural ground truth, but are

not as customizable as numerical phantoms or as true to the structure of the brain as ex-vivo

samples.

Several types of physical phantoms have been previously proposed. Glass capillaries [40]

provide reliably anisotropic diffusion in a pattern that is straightforward to characterize, but

cannot mimic some complex geometric fibre configurations that are observed in the brain.

Straight fibres can be produced with axon-scale diameters to mimic hindered diffusion be-

tween axons, but are difficult to arrange with the geometric complexity of some brain regions.

Extruded or electrospun hollow fibers [41] mimic axonal diffusion patterns well, but are ex-

pensive and time-consuming to produce. As such, the development of dMRI phantoms in-

volves trade-offs between the cost of materials and equipment, ease of production, the ability

to achieve accurate brain-mimetic microstructure, and geometric complexity. Using existing

procedures to produce a physical phantom with biologically plausible microstructure and geo-

metric complexity is expensive and time-consuming, so an alternative that is both adequately

brain-mimetic and easy to produce is needed.

Fused Deposition Modeling (FDM) 3D printing is an inexpensive and flexible manufac-

turing technique that enables repeatable production of custom parts. FDM works by melting

a polymeric filament and depositing the molten material one line at a time in a sequence of
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layers. FDM can control the physical properties of printed objects by changing parameters like

the temperature of the print head and speed at which material is deposed. It also allows the

within-layer print path to be designed to adjust the overall material properties of the finished

product. Given the flexibility and low cost of FDM, it would be advantageous to apply it to the

production of physical dMRI phantoms.

For the FDM production of 3D-printed Axon Mimetic (3AM) phantoms, we propose the

use of a dual component “porous filament” material [31]. In this work, we utilized “GEL-LAY”

(LAY Filaments, Cologne, Germany), which is composed of an elastomeric matrix infused with

pockets of polyvinyl alcohol (PVA). When 3D printed, the PVA forms long fibres within each

line of printed composite material. PVA is water-soluble, so when this 3D printed material

is immersed in water, the PVA fibres dissolve, leaving behind microscopic fibrous pores, as

illustrated in Figure 2.1a. The anisotropic structure of these fibrous pores mimic the anisotropic

shape of axonal fibres and modulate diffusion in a similar way, allowing 3D printed porous

filaments to form the basis of a phantom that can validate dMRI [42].

For 3AM phantoms to be useful, their pores’ size should be as close as possible to axon

diameters seen in the human brain, which are typically on the order of 0.5 µm to 1 µm. Fur-

thermore, the pores’ orientations must be well-known and should be controllable. The overall

T1 and T2 relaxation times modulate the achievable SNR in a scan of the phantoms [16], so

phantom materials should shorten relaxation times as little as possible. A dMRI scan of a 3AM

phantom should show diffusion characteristics as similar to those seen in the human white

matter as possible. Any dependence of those diffusion characteristics on 3D print parameters

should be identified to facilitate customization of individual phantoms. Finally, 3AM phan-

toms’ diffusion characteristics should be consistent from print to print and should be as stable

as possible over time.

In this study, we use both fluorescent microscopy and synchrotron phase-contrast micro-

computed tomography, a novel technique that allows exceptionally fine-resolution 3D visual-

ization of soft structures, to characterize and visualize the microstructure of 3AM phantoms,
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assessing their suitability for use as axon-mimetic dMRI phantoms. We examine the effects of

FDM printing parameters on dMRI acquired in the phantoms, and assess the reproducibility

and stability over time of 3AM phantoms’ dMRI characteristics.

2.2 Materials and methods

2.2.1 Phantom preparation

An open protocol for producing 3AM phantoms has been developed and released as part of

an Open Science Framework project (available in the Supplementary Materials and hosted

at osf.io/zrsp6). Required materials include an FDM 3D printer, a dual component “porous

filament” material, a vacuum chamber, and a set of watertight containers. The protocol was

used to produce all phantoms for this study.

All phantoms were designed using the open-source Ultimaker Cura software, and were

printed with an Ultimaker 3 Extended 3D printer (Ultimaker, Geldermalsen, The Netherlands)

loaded with GEL-LAY filament. Unless otherwise noted, phantoms were printed with printing

parameters recommended by the material vendor (Table 2.1), and the same pattern of parallel

lines of material in each layer.

After printing, phantoms to undergo dMRI scanning were immersed in 1L of room tem-

perature water (about 23 °C) for 168 hours, then 20 mL of surfactant was added to decrease

surface tension and allow the water to more easily enter the pores. The container was placed

in a vacuum chamber at 1 bar for 48 hours to remove air bubbles. Finally, the phantoms were

stacked in a test tube with distilled water for imaging (Figure 2.1b-d).

2.2.2 Microscopy

Three block-shaped 3AM phantoms with dimensions 25 mm × 15 mm × 35 mm were printed

with vendor-recommended printing parameters. The blocks were immersed in water for 18
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Figure 2.1: Schematic and photographs of 3AM phantoms. (a) PVA dissolves away when
placed in water leaving microporous structure. (b) 3AM phantom before dissolving. (c) 3AM
phantom after dissolving. (d) Dissolved 3AM phantoms stacked in a test tube with water that
are ready for imaging.

hours to soften by allowing a small portion of the PVA to dissolve. Afterwards, the blocks

were sliced into 50 µm slices using a Shandon Finesse ME+ microtome (ThermoScientific).

The slices were immersed in deionized water for 3 hours to allow the remaining PVA to fully

dissolve. They were then immersed in diluted Rhodamine Beta (Rhodamine B) and placed in

a vacuum chamber at 1 bar for 20 minutes to infuse the dye into the slices and eliminate air

bubbles. The slices were then mounted on positive microscope slides.

Confocal microscopy was performed to obtain high resolution images using a Leica SP5

laser system microscope with a 40X oil-immersion objective lens. Z-stacks of phantom slices

were acquired using 1 µm step size for axial ranges from 5 µm to 17 µm. To qualitatively

visualize the pores in each sample, every z-stack was either averaged across all slices to produce

a 2D image or rendered into 3D volumes using Leica Las X.

Using MATLAB’s image processing toolbox, an averaged z-stack confocal microscopy

image was converted to grayscale, then an adaptive thresholding technique [43] was used to
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compute an initial segmentation of the image. The initial segmentation was opened with a

disc-shaped structuring element of radius 1 pixel to eliminate pixels spuriously identified as

containing material. The resulting segmentation was then morphologically closed using a disc-

shaped structuring element of radius 8 pixels to eliminate small regions spuriously identified

as pores. Finally, the equivalent radius of each region identified as a pore was calculated.

2.2.3 Synchrotron phase contrast micro-CT

A cylindrical phantom with a diameter of 5 mm and height of 4.5 mm was 3D printed, im-

mersed in water for two days, and allowed to dry. A propagation-based phase-contrast micro-

computed tomography (micro-CT) scan was then performed in air at the Biomedical Imaging

and Therapy beamline (05ID-2) at the Canadian Light Source Inc. (Saskatoon, Canada), using

an energy of 30 keV, 3000 projections over 180°, 150 ms exposure time and 700 ms time per

projection, total scan time of 1 hour, FOV=4096 × 4096 × 3456 µm3 (L × W × H), and an

effective isotropic pixel size of 1.65 µm.

2.2.4 MRI scanning and model fitting

Phantoms to undergo dMRI scanning were all scanned with the same parameters. Diffusion

MRI was implemented with a 9.4 T Bruker small animal scanner using a single-shot echo

planar imaging sequence with: 120, 60 and 20 directions at b=2000, 1000, and 0 s/mm2, re-

spectively, TE/TR=37/2500 ms, FOV=200×200 mm2, 0.7 mm isotropic in-plane resolution,

and one 3 mm axial slice per phantom.

For every resulting set of diffusion-weighted images, DiPy [44] was used to compute dif-

fusion kurtosis imaging (DKI) metrics at each voxel with a weighted least squares technique.

A T1-mapping rapid acquisition relaxation enhancement (RARE) scan and a T2-mapping

multi-slice-multi-echo (MSME) scan were performed on a set of eight phantoms with different

3D print parameters (Section 2.6). Both scans were implemented with a 9.4 T Bruker small

animal scanner, FOV=40×40 mm2, 0.3125 mm isotropic in-plane resolution, and one 3 mm
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axial slice per phantom. The T2 mapping scan was performed with 16 echoes having TE

ranging from 6.5 to 104 ms and TR=2000 ms. The T1 mapping scan was performed with TE

= 5.7 ms, TRs of 500, 1000, 1500, 2000, and 3000 ms, and ETL = 2. To assess typical T1 and

T2 values in 3AM phantoms, the mean and standard deviation T1 and T2 were calculated in

the phantom produced with the nominal print parameters recommended by the manufacturer.

2.2.5 Phantoms for assessing the reproducibility of dMRI metrics

Four identical cylindrical 3AM phantoms were prepared with nominal printing parameters fol-

lowing the procedure outlined in Section 2.1. The phantoms were scanned with four axial

slices and a scan time of 8.5 min, and DKI was fit to the scan data, all according to the imaging

protocol outlined in Section 2.4. The coefficient of variation across all voxels in the phantoms

was calculated for each DKI metric to assess the consistency of each metric across phantoms

produced under identical conditions.

2.2.6 Phantoms for assessing stability over time and the effect of print

parameters on dMRI

Eight cylindrical 3AM phantoms were produced according to the 3AM phantom protocol out-

lined in section 2.1, each with a width of 22 mm and height of 4.4 mm, composed of 44 layers

of parallel lines.

Four FDM print parameters were altered across different phantoms to test their effects on

the 3AM phantom’s microstructure. The four altered parameters include the temperature at

which the phantoms are printed, the speed of printhead travel during the 3D print, the thickness

of each layer printed in the phantom, and the infill density, which refers to the proportion of

each layer taken up by material, and is altered by changing the distance between adjacent lines

of material within each layer. One phantom was printed with the nominal print parameters

recommended by the substrate manufacturer, and for each parameter, one phantom was printed
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with that parameter lower than nominal, and one phantom with that parameter higher than

nominal (where applicable), as summarized in Table 2.1.

The eight phantoms were scanned with four axial slices and a scan time of 8.5 min per

each of two dMRI scans to cover the test tube and DKI was fit to the data, all according to the

protocol outlined in Section 2.5. The variation in each DKI metric was then assessed across

the phantoms with each difference in print parameter.

To investigate the phantoms’ stability over longer time periods, identical dMRI scans and

model fitting procedures were performed 25 and 76 days later, and the variations in each DKI

metric in the phantom produced with nominal parameters across time was assessed.

Printing parameter Low setting Nominal setting High setting

Printing temperature (°C) 215 225 235
Printing speed (mm/s) 20 30 50
Layer thickness (mm) 0.06 0.1 0.14
Infill density (%) 75 100 -

Table 2.1: The parameters used to print the phantoms

2.3 Results

2.3.1 Microscopy

Confocal microscopy images revealed two types of pores present in the phantoms: larger pores

(70 µm to 150 µm in diameter) that are believed to have been created by material tearing during

the microscopy preparation process and gaps being left between lines of material (Figure 2.2),

and smaller pores (1 µm to 30 µm in diameter) created by the dissolving of PVA fibres (Fig-

ure 2.3). The images also clearly showed the larger-scale arrangement of each line of material

deposited during the 3D printed process.

Segmentation of individual pores showed that there was a peak in the distribution of cross-

sectional diameters at about 4 µm to 8 µm, with the distribution having a mean of 20 µm, a



24 Chapter 2. Validation of a 3D printed phantom for diffusionMRI

median of 13 µm, and a standard deviation of 20 µm (Figure 2.3).

Figure 2.2: Microscopy images of 3AM phantoms. (a) Confocal microscopy z-stack image
of a stained cross sectional phantom sample, averaged across slices. Elastomeric matrix (red)
and pores (black) are visible. The white outline indicates individual lines of material. (b) 2D
projection of a 3D microscopy volume acquired with confocal microscopy. Regions shown in
red are the matrix of the 3AM phantom that is composed of elastomer while the black regions
are pores. Outlined in yellow are larger pores caused by the printing pattern of the phantom.
In both a and b, the image plane is perpendicular to the long axis of the pores.

2.3.2 Micro-CT

The propagation-based phase-contrast micro-CT image showed anisotropic pores that run par-

allel to the primary travel direction of the 3D print head (Figure 2.4), supporting the findings

of the confocal microscopy. These pores had typical diameters on the order of ten microns and

typical lengths in the hundreds of microns.

2.3.3 Nominal phantom characteristics and reproducibility

The mean T1 and T2 measured in a phantom printed with nominal printing parameters were

3960 ± 425 ms and 119 ± 21 ms, respectively.
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Figure 2.3: Pore segmentation results. (a-c) Confocal microscopy image before (left) and after
(right) performing pore segmentation. (d) normalized histogram of equivalent diameter of pores
obtained from segmentations in a-c and their frequencies (Total N = 1912).

The mean dMRI characteristics across all voxels of the 4 nominal phantoms are summa-

rized in Table 2.2. The axial diffusivity (AD) is close to the diffusivity of pure water at room

temperature (0.0022 mm2/s), and the radial diffusivity (RD) is about half the AD. The ax-

ial kurtosis (AK) is close to zero, and the lack of kurtosis in the axial direction is supported

by a near-linear relationship between ln(S ) and b from acquisitions with diffusion encoding

direction close to the axial direction (Figure 2.5).

The coefficient of variation (%) for each DKI metric across 4 identical nominal phantoms
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Figure 2.4: Synchrotron micro-CT scan data at two zoom levels, transformed to align lines
of material with the viewing planes. Upper row: View of the entire scan ROI. Lower row:
Detailed view of a short length of five stacked lines of material. The direction of print-head
motion was left-right in the left- and right-most columns, and perpendicular to the image in the
center column.

was calculated as a measure of repeatability. The highest coefficient of variation reported was

13.2% for RD, and the rest were lower than 10.5%.

2.3.4 Metric variation with print parameters

Changes in the mean value of each metric with every print parameter were small for every

print parameter except infill density (Figure 2.6). Excluding infill density, the difference from

the nominal case was less than 16% for all metrics except AK, which had very high percent

differences in some cases due to mean values close to zero. An increase in infill density of the

phantom resulted in an increase in fractional anisotropy and a decrease in radial diffusivity.
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Metric Mean value Standard deviation Coefficient of variation (%)

AD (10−3 mm2/s) 2.13 0.05 3.19
RD (10−3 mm2/s) 1.01 0.08 13.20
MD (10−3 mm2/s) 1.38 0.07 8.78
FA 0.46 0.03 5.24
AK 0.07 0.01 10.10
RK 1.13 0.07 6.31
MK 0.52 0.02 1.86

Table 2.2: Mean dMRI metrics from four phantoms and their coefficient of variation.
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Figure 2.5: Expected signal vs. b-value from the DKI fit in: (a) the axial direction, and (b) the
radial directions.

2.3.5 Metric stability over time

Over the 76 days of study, only small differences in mean value were observed for all metrics

(< 7%, except for AK due to some very small values of AK), as seen in Figure 2.7.

2.4 Discussion

2.4.1 Phantom vs. human microstructural fibre geometry

Microscopy images and synchrotron micro-CT images both indicate the presence of densely

packed fibrous pores within a 3D printed composite material containing PVA within an elas-

tomeric matrix. With typical diameters from 1.5 µm to 8 µm (Figure 2.3), these fibrous pores

are larger than typical axons [17]. However, the fibres are still narrow enough to modulate the

diffusion signal at diffusion times typical for dMRI studies, so they can approximately mimic
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the anisotropic diffusion characteristics of axonal bundles. Notably, there may be smaller pores

present that the confocal microscopy was unable to resolve which may have skewed the his-

togram to larger diameters. Future work could use electron microscopy to resolve such smaller

pores. Nevertheless, the protocol introduced by this study produces long, straight pores that

have a limited effect on diffusion along their path.

2.4.2 Phantom vs. human diffusion characteristics

The observed DKI metrics correspond well to those seen in real white matter but have some no-

table differences. The phantoms were scanned at room temperature, which has a lower diffusiv-

ity of free water (about 0.0022 mm2/s) than human body temperature (about 0.003 mm2/s) [45].

This difference in the diffusivity of free water means that the diffusivity DKI metrics have a

higher maximum possible value in vivo, which should be accounted for when analyzing those
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Figure 2.7: DKI metric stability in a nominal phantom over 76 days. (a) FA. (b) Diffusivities.
(c) Kurtosis.

metrics.

AD in the phantoms was close to the diffusivity of free water at room temperature, while

coherently organized white matter in the brain typically has AD of about 0.001 mm2/s, roughly

a third of the diffusivity of free water at body temperature [46]. This discrepancy indicates

that the uniform fibre orientation and homogeneous microstructure of the phantoms results in

a simpler axial diffusion environment than that observed in the brain. AK in the phantoms was

close to zero, while practically all white matter regions in the brain have non-zero AK. This

finding further supports the conclusion that there is an anatomically unrealistic homogeneity in

the phantoms’ microstructure; real tissue is more heterogeneous and structurally complex than

the 3AM phantoms.

RD in the 3AM phantoms was much lower than the diffusivity of free water at room tem-

perature, indicating that diffusion is hindered and/or restricted perpendicular to the axis of the

pores. The mean RK in the nominal 3AM phantom is non-zero but lower than typical values

in orientationally coherent white matter tracts [47]. This indicates that the fibrous pores of the

3AM phantom restrict diffusion but do not recreate the structural heterogeneity of real white

matter.

MD in the 3AM phantoms was about 63% of the diffusivity of free water at room tempera-
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ture, while MD in real white matter is typically less than 33% of the diffusivity of water at body

temperature. Partially due to the near-total lack of restriction or hindering of diffusion in the

axial direction, there is less restriction/hindering of diffusion overall in 3AM phantoms than

in white matter. MK in the 3AM phantoms was about half the typical values in human white

matter [47], further indicating that 3AM phantoms have less heterogeneous microstructure than

real axonal tracts.

The FA is within the range of typical values observed in the human white matter [46], but

lower than some of those observed in the most coherent regions like the corpus callosum, which

can reach above 0.6 [46]. The micro-CT images show gaps between adjacent lines of material

even at 100% infill density, which leads to a non-negligible free water compartment within

the phantoms. This free water compartment reduces the overall FA due to partial voluming,

which suggests that a higher FA may be achievable with an altered 3D printing process. This

free-water compartment likely also contributes to the relatively low kurtosis values and the

diffusivities being relatively close to the free water value.

2.4.3 Phantom reproducibility and stability

Infill density was the only print parameter that had a large effect on any of the DKI metrics,

with its greatest effect on FA, RD, and RK. The likely explanation for this effect is that a lower

infill density replaces the elastomeric matrix with free water, increasing the effect of partial

voluming between the two components.

The small effect of the other 3D print parameters on the observed DKI metrics suggests

that minor variations in print parameters across different 3D printers should not greatly affect

the characteristics of the phantoms they print. However, this also means that it is likely not

possible to change print parameters to tune a phantom’s diffusion characteristics. That said,

it may be possible to tailor diffusion characteristics using different porous filament materials.

The low coefficient of variation across identical phantoms supports the conclusion that the

3AM phantom production protocol is repeatable, at least across multiple prints on a single
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printer with the same material.

The stability analysis showed only small changes over the time period of 2.5 months. This

demonstrated stability of the phantom microstructure over a relatively long time period sug-

gests that one prepared phantom sample can at least be transported to multiple sites in multi-

centre studies without concern for parameter changes between scans.

2.4.4 Method advantages

The phantoms we have introduced are produced with FDM 3D printing, a widely accessible

and inexpensive production technique. A single spool of printing material (about $50 USD)

can be used to produce hundreds of phantoms. The development of this technique lowers

the barrier to entry for researchers to conduct phantom studies for validation of certain dMRI

models of white matter. Such studies bridge the gap between simulations and studies using

fixed tissue, serving as a useful option for the dMRI modeling community.

The three analyses performed for this study show the existence of axon-mimetic fibrous

pores in 3AM phantoms that modulate dMRI signal to approximate white matter anatomy. By

analyzing the microstructure of the phantoms with both confocal microscopy and phase con-

trast micro-CT, we have confirmed that the fibrous pores in our phantoms are of an appropriate

size and shape to mimic axonal fibres. These findings are supported by the observation of non-

zero FA and RK. Furthermore, the quantitative T1 and T2 scans indicate that the phantoms do

not shorten relaxation times enough to significantly reduce SNR in dMRI scans, and they can

be reduced via doping (e.g., copper II sulphate) to better agree with values found in tissue.

FDM offers the flexibility to alter the print-head direction between layers, which may en-

able the exploration of crossing fibre effects and their associated models. In our preliminary

investigations, FA reductions are observed with increasing fibre crossing angle. Future work

will investigate optimal phantom design for validation of crossing fibre models.
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2.5 Conclusion

In this study we introduce 3AM phantoms, a novel class of dMRI phantoms that are customiz-

able, affordable, and straight-forward to produce. 3AM phantoms mimic the microporous

structure of axon bundles in white matter, and the utilization of 3D printing likely opens the

door for customizability and the production of complex, anatomically accurate phantoms.



Chapter 3

Characterization of fibre geometry’s effect

on diffusion MRI models

3.1 Introduction

Diffusion MRI (dMRI) is an imaging modality that measures signal that is sensitive to the

diffusion of water molecules on a microscopic scale. The dMRI signal in a voxel containing

one or more axonal fibres is determined by both the microstructure and the orientation of the

fibres. Diffusion MRI models of white matter characterize microstructure and orientation with

varying levels of sensitivity and specificity. Discriminating between signal variation caused by

microstructural changes and signal variation caused by orientational changes is difficult, and

dMRI models are known to characterize microstructure less precisely in the presence of orien-

tation dispersion, where fibre segments with different orientations within a single voxel cause

partial volume errors [48]. These complex fibre configurations are widespread in the human

brain [49], so the ideal dMRI model of white matter would characterize both microstructure

and orientation accurately and robustly.

To validate dMRI models of white matter, it would be useful to quantify the effect of ori-

entation dispersion on those models’ estimated parameters. However, it is difficult to perform

33
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that quantification because there is no widely accepted complementary modality to provide a

ground truth of axonal orientation in vivo. Instead, numerical or physical phantoms can provide

that ground truth [16]. Numerical phantoms allow fine-grained control of the sample, but lack

the fidelity of real scan data. Physical phantoms offer real scan data with a ground truth. How-

ever, existing physical fibre-containing phantoms tend to be expensive and time-consuming to

prepare, with limited orientational complexity.

Fused deposition modeling (FDM) 3D printing offers a promising technology for producing

dMRI phantoms, if an appropriate material is used. GEL-LAY (LAY Filaments, Cologne, Ger-

many) is an FDM filament composed of an elastomeric matrix containing pockets of polyvinyl

alcohol (PVA). When 3D printed, the pockets of PVA form fibres with a long axis oriented

along the direction of motion of the print head. When immersed in water, the PVA dissolves,

leaving microscopic fibrous pores that can mimic the diffusion characteristics of axonal fibres,

with known primary directions of diffusion. By 3D printing an object with a known pattern of

fibres, a phantom can be produced that is useful for examining the behaviour of dMRI models

of white matter in the presence of specific fibre configurations [50]. These 3D printed axon-

mimetic (3AM) phantoms are inexpensive and effective, but have not yet been used to produce

a phantom with complexity beyond crossing fibres.

Here, we introduce a custom software extension that enables 3D printers to produce bend-

ing, kissing, and fanning patterns. We then use phantoms 3D printed with this extension to

characterize the effect of those complex geometries on dMRI models.

3.2 Methods

A custom extension to the Ultimaker Cura 3D printer software was developed to allow within-

layer fibre configurations composed of concentric arcs, in addition to the patterns composed of

parallel lines available by default.

We used the Cura extension to prepare and 3D print five phantoms (Figure 3.1). The phan-
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toms were cylindrical, with a radius of 11 mm and height of 4.5 mm. Each phantom had a

different pattern of within-layer fibre configurations, where each print layer is 0.1 mm thick.

These phantoms are described in Table 3.1.

Label Phantom description

Bending Every layer has the same pattern of concentric arcs, with a centre 10 mm from
the phantom’s centre.

Straight Every layer has an identical pattern of parallel lines.
Kissing Layers alternate between straight lines and concentric arcs with a centre 6.5 mm

from the phantom’s centre.
Fanning Layers alternate between two patterns of concentric arcs with centres 10 mm

apart.
Crossing Layers alternate between two patterns of parallel lines with perpendicular

directions.

Table 3.1: The phantom fibre configurations.

The three phantoms with spatially heterogeneous fibre configurations (i.e. the bending,

fanning, and kissing phantoms) were printed with a triangular hole to serve as a fiducial.

We performed a dMRI scan of the phantoms using a single-shot echo planar imaging se-

quence with: 20, 50, and 120 volumes acquired at b = 0, 1000, and 2000 s/mm2 respectively,

TE/TR=37/2500 ms, FOV=200×200 mm2, 0.7 mm isotropic in-plane resolution, and 6 axial

slices with a thickness of 3 mm each (one slice per phantom and one slice in water).

For the fanning, bending, and crossing phantoms, we localized the phantom’s centroid and

fiducial in the mean Diffusion Weighted Image (DWI), and used those points to produce ground

truth images of crossing angle or radius of curvature, as appropriate, registered to the captured

image space.

DIPY [44] was used to perform weighted ordinary least squares fits of Diffusion Tensor

Imaging (DTI) [8], using only the acquisitions at b = 0 and 1000 s/mm2; and Diffusion Kurtosis

Imaging (DKI) [9, 10] representations to the DWI’s. Four parameters were then extracted from

the DTI fit: axial diffusivity (AD), which quantifies the estimated diffusivity along a central

axis; radial diffusivity (RD), which quantifies the diffusivity in the directions perpendicular
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Figure 3.1: The five phantom patterns, with alternating layers superimposed on one another,
and a demonstration of the phantoms’ scale. (a) Bending. (b) Straight. (c) Kissing. (d) Fanning.
(e) Crossing. (f) The fanning phantom with a magnified view including the 0.7 mm isotropic
in-plane voxel size superimposed.

to that central axis; mean diffusivity (MD), which quantifies the mean diffusivity across all

directions; and fractional anisotropy (FA), which quantifies the degree to which diffusion in

a voxel is anisotropic. The same four diffusivity-based metrics are extracted from the DKI,
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in addition to three kurtosis metrics, which capture the degree to which diffusion in a voxel

deviates from Gaussianity: axial kurtosis (AK), radial kurtosis (RK), and mean kurtosis (MK).

The Microstructure Diffusion Toolbox (MDT) [7] was used to perform Powell conjugate-

direction optimized fits of ball and stick [11], NODDI [12], and Bingham-NODDI [13] models

to the DWI. All models’ assumed diffusivities were fixed at 2.2 mm2/s, the diffusivity of pure

water at room temperature, based on the DTI diffusivity metrics observed in a straight phan-

tom [50]. The single parameter extracted from the ball and stick model is the relative volume

fraction between the ball compartment and the stick compartment. NODDI and Bingham-

NODDI both produce volume fractions of intra-neurite, extra-neurite, and CSF compartments.

NODDI also produces the orientation dispersion index (ODI), which quantifies from 0 to 1

the dispersion of the Watson distribution that governs the intra- and extra-neurite compart-

ment. Bingham-NODDI splits ODI into a primary ODI (ODIP), and a secondary ODI (ODIS),

quantifying the anisotropic dispersion described by the Bingham distribution.

For each dMRI model parameter, we fit three quadratic regression models: the parameter

vs. radius of curvature in the bending phantom, and the parameter vs. crossing angle in the

kissing and fanning phantoms. The R2 was used to quantify how much dMRI model variance

was accounted for by each regression model.

3.3 Results

We fit each of DTI, DKI, Ball and Stick, NODDI, and Bingham-NODDI to scan data from five

phantoms, each of which represented one of fanning, kissing, bending, crossing, or straight

fibres. The 3D printed phantoms represent a spectrum of fibre geometry complexities, from

straight fibres at simplest, to fanning fibres at most complex. For the three phantoms with

varying degrees of orientation dispersion, we registered a ground truth of either radius of cur-

vature or crossing angle to the scan data. Then, for each dMRI model parameter and orientation

dispersion metric, we performed a quadratic regression with the model parameter as the depen-
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dent variable and the orientation dispersion metric as the independent variable. The results of

this procedure are summarized in Figure 3.2.

Figure 3.2: A summary of the results. From left to right, the columns correspond to the bend-
ing, straight, kissing, fanning, and crossing phantoms. The top row shows the schematic of
each phantom, the second row shows an image of each phantom without diffusion weighting,
the third row shows the ground truth description registered to image space, and the fourth row
shows the DTI-derived FA map of each phantom as an example.

3.3.1 DTI

Figure 3.3 plots the DTI metrics in each phantom against the orientation dispersion in that

phantom. The DTI metrics without dispersion in the straight phantom are consistent, and
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describe a very anisotropic diffusion signal with axial diffusivity of about 2.2 mm2/s, and RD

roughly a third of that, leading to an FA of about 0.65. The DTI metrics in the straight phantom

have less variance than the same metrics in the other phantoms.
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Figure 3.3: DTI metrics vs. orientation dispersion metrics in each of the four phantoms. Each
row depicts the relationship between one metric and orientation dispersion, and each column
depicts the data from one or two phantoms. From left to right, those phantoms are: bending,
straight, fanning and kissing, and crossing.

Arc radius in the bending phantom accounted for some of the variance in all four DTI

metrics. AD appears to increase with arc radius before plateauing at an arc radius of about

5 mm, after which the distribution of AD matches that found in the straight phantom. RD

decreases as arc radius increases. However, RD’s distribution at the highest arc radii in the
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bending phantom remains higher than the distribution in the straight phantom. MD increases

with arc radius until about 5 mm, at which point it begins to decrease. Similarly, FA shows

little variation at lower arc radii but begins to increase with arc radius at about 5 mm.

The fanning and kissing phantoms show stronger relationships between the two primary

DTI diffusivity metrics and crossing angle. AD decreases with crossing angle to about 70%

of its value at zero degrees. At low crossing angles RD is higher than the values seen in the

straight phantom. RD increases further with crossing angle to about 125% of its value at zero

degrees. Crossing angle explains little of the variance in MD. Conversely, crossing angle

explains most of the variance in FA.

In the crossing phantom, the AD distribution largely agrees with the AD at high crossing

angles in the fanning and kissing phantoms. The RD, however, is lower in the crossing phantom

than at high crossing angles.

3.3.2 DKI

The DKI diffusivity metrics show similar patterns to those observed in DTI, but with less

pronounced relationships between diffusivity metrics and orientation dispersion metrics.

In the straight phantom there is little axial kurtosis (AK) and a median radial kurtosis (RK)

of about 1.15 (Figure 3.4). Those metrics combine to produce a mean kurtosis of about 0.55.

Arc radius explains little of the variance in AK in the bending phantom, and there is good

agreement between the AK distributions in the bending and straight phantoms. The bending

phantom demonstrates an increase in RK with increasing arc radius. The highest RK values

in the bending phantom are lower than those seen in the straight phantom. Arc radius also

explains little of MK’s variance in the bending phantom, but the straight phantom has a higher

distribution of MK than the bending phantom.

The fanning and kissing phantoms demonstrate relationships between kurtosis and crossing

angle. AK’s distribution at low crossing angles agrees with the distribution in the straight

phantom, and barely changes below 45 degrees, but does increase with crossing angle beyond
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Figure 3.4: DKI kurtosis metrics vs. orientation dispersion metrics in each of the four phan-
toms. Each row depicts the relationship between one metric and orientation dispersion, and
each column depicts the data from one or two phantoms. From left to right, those phantoms
are: bending, straight, fanning and kissing, and crossing.

that point. In addition, AK’s unexplained variance increases with crossing angle beyond 45

degrees. RK decreases almost linearly with increasing crossing angle from a distribution lower

than that of the straight phantom to a distribution that agrees with the crossing phantom. At low

crossing angles, MK’s distribution is lower than that of the straight phantom, but it plateaus at

about 60 degrees with a distribution that agrees with the crossing phantom.

In the crossing phantom, all three metrics agree with the distribution at higher crossing

angles in the fanning and kissing phantoms. Compared to the straight phantom, the cross-

ing phantom shows a difference in median AK and RK, and more variance in those metrics.

However, the MK distribution is very similar between the two phantoms.
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3.3.3 Ball and Stick

Figure 3.5 shows the ball and stick volume fractions in each phantom. The straight phantom is

assigned a stick volume fraction of about 0.32, roughly half the ball volume fraction.
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Figure 3.5: Ball and stick volume fractions vs. orientation dispersion metrics in each of the four
phantoms. Each row depicts the relationship between one metric and orientation dispersion,
and each column depicts the data from one or two phantoms. From left to right, those phantoms
are: bending, straight, fanning and kissing, and crossing.

In the bending phantom, the stick volume fraction increases from a mean of about 0.25 at

low crossing angles to a mean close to 0.3 at higher crossing angles. The distribution does not

reach the stick volume fraction in the straight phantom.

In the fanning and kissing phantoms, the stick volume fraction decreases from a mean of

about 0.25 to a mean of about 0.2. At low crossing angles, the distribution is lower than in

the straight phantom, and at high crossing angles, the distribution is lower than in the crossing

phantom.

3.3.4 NODDI

Figure 3.6 shows the NODDI parameters for each phantom. In all phantoms, there is a bimodal

distribution of volume fraction assigned to the CSF and the extra-neurite compartments.



3.3. Results 43

0.00

0.20

0.40

0.60

0.80

5 10 15

Arc radius (mm)

C
S

F
 V

F

R
2
 = 0.006

0.00

0.20

0.40

0.60

0.80

Straight

0.00

0.20

0.40

0.60

0.80

0 30 60 90

Crossing angle (°)

RK
2
 = 0.02, RF

2
 = 0.002

0.00

0.20

0.40

0.60

0.80

Crossing

0.20

0.25

0.30

0.35

0.40

5 10 15

Arc radius (mm)

In
tr

a
−

n
e

u
ri

te
 V

F

R
2
 = 0.35

0.20

0.25

0.30

0.35

0.40

Straight

0.20

0.25

0.30

0.35

0.40

0 30 60 90

Crossing angle (°)

RK
2
 = 0.04, RF

2
 = 0.007

0.20

0.25

0.30

0.35

0.40

Crossing

0.00

0.20

0.40

0.60

0.80

5 10 15

Arc radius (mm)

E
x
tr

a
−

n
e

u
ri

te
 V

F

R
2
 = 0.00094

0.00

0.20

0.40

0.60

0.80

Straight

0.00

0.20

0.40

0.60

0.80

0 30 60 90

Crossing angle (°)

RK
2
 = 0.01, RF

2
 = 0.002

0.00

0.20

0.40

0.60

0.80

Crossing

0.05

0.10

0.15

0.20

0.25

5 10 15

Arc radius (mm)

O
D

I

R
2
 = 0.27

0.05

0.10

0.15

0.20

0.25

Straight

0.05

0.10

0.15

0.20

0.25

0 30 60 90

Crossing angle (°)

RK
2
 = 0.9, RF

2
 = 0.9

0.05

0.10

0.15

0.20

0.25

Crossing

Fanning Kissing

Figure 3.6: NODDI metrics vs. orientation dispersion metrics in each of the four phantoms.
Each row depicts the relationship between one metric and orientation dispersion, and each
column depicts the data from one or two phantoms. From left to right, those phantoms are:
bending, straight, fanning and kissing, and crossing.

In the bending phantom, Intra-neurite volume fraction increases at higher arc radii, but does

not reach the distribution seen in the straight phantom. ODI decreases as arc radius increases

from about 0 mm to 5 mm, then settles at about 0.4 mm, agreeing with the value in the straight

phantom.

In the kissing and fanning phantoms, any variance in compartment volume fraction caused

by crossing angle is dominated by variance caused by other factors. ODI, however, has a nearly

linear relationship with crossing angle, increasing from about 0.05 at 0 degrees to about 0.24
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at 90 degrees, values which agree with the distributions in the straight and crossing phantoms.

3.3.5 Bingham-NODDI

Figure 3.7 plots the Bingham-NODDI parameters in each phantom against the orientation dis-

persion in that phantom. The secondary orientation dispersion index (ODIS) is about 0.01

across the sample, so it is not plotted.
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Figure 3.7: Bingham-NODDI metrics vs. orientation dispersion metrics in each of the four
phantoms. Each row depicts the relationship between one metric and orientation dispersion,
and each column depicts the data from one or two phantoms. From left to right, those phantoms
are: bending, straight, fanning and kissing, and crossing.

The intra-neurite compartment is consistently assigned a volume fraction close to 0.25. The
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intra-neurite volume fraction appears to increase with higher radii of curvature, but does not

appear to be affected by fibre crossing angle.

Like the NODDI fit, the Bingham-NODDI fit also shows a split in the volume fraction

assigned to the CSF and extra-neurite compartments: in most voxels, the CSF volume fraction

is either zero or close to 0.4. Unlike NODDI, the split appears to be biased by orientation

dispersion: at high crossing angles and low radii of curvature, volume fraction appears more

likely to be assigned to the CSF compartment.

In the crossing phantom, all metrics agree with the distributions in the kissing and fanning

phantoms at high crossing angles. There is a high amount of overlap between the volume frac-

tion distributions of the straight and crossing phantoms. Conversely, there is a large difference

in ODIP between the straight and crossing phantoms.

3.4 Discussion

The results showed how diffusion MRI model parameters respond to fibre curvature and fibre

crossings in five 3D printed phantoms. A number of patterns emerge across the five models

we investigated. Fibre curvature and crossing angle usually both affect model metrics, with de-

creasing radius of curvature and increasing fibre crossing angle changing the metric in the same

direction (but often by a different amount). We can refer to both changes as an increase in fibre

orientation dispersion, as both broaden the number of directions in which water molecules can

diffuse within one voxel without encountering a barrier. Both forms of orientation dispersion

also contradict the idea of a central axis of diffusion assumed by some models, and this affects

the performance of those models in different ways.

In DTI, both forms of orientation dispersion increase RD and decrease AD. In DKI, orien-

tation dispersion increases AK, decreases RK, and increases MK. In the ball and stick model,

orientation dispersion increases the ball volume fraction. In NODDI, orientation dispersion in-

creased the ODI. In Bingham-NODDI, orientation dispersion increased CSF volume fraction,
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decreased, extra-neurite volume fraction, and increased primary ODI.

3.4.1 DTI

In DTI, increased orientation dispersion of either form increases RD and decreases AD, bring-

ing the two metrics closer together and reducing the FA. Fibre crossings have a stronger effect

on these metrics than fibre curvature does, which is consistent with the overall lower levels

of fibre dispersion for bending at the arc radii used here compared to crossing fibres. This

drop in FA between straight and orthogonally crossing fibres observed in physical phantoms

replicates prior simulation findings [48], and shows a linear relationship between crossing an-

gle and FA. MD does not appear to systematically change with fibre crossing angle, which is

expected due to the rotational invariance of MD at both the micro- and macroscopic level. MD

behaves differently with arc radius, increasing with fibre curvature but having little response

to fibre crossings. This behaviour may be due to phantom characteristics at high angles of

curvature; for example, there may be larger gaps between 3D-printing lines at lower arc radii,

which would explain the slightly increased MD.

3.4.2 DKI

DKI’s consideration of non-Gaussian diffusion causes the more subtle changes in diffusivity

metrics in DKI than in DTI; kurtosis metrics account for some of the signal variation with in-

creased orientation dispersion. MK increases with both forms of orientation dispersion, which

is expected given that mean kurtosis increases with orientation dispersion [51]. The directional

kurtosis metrics change more than the MK, which is consistent with the lack of a well-defined

dominant eigenvector as orientation dispersion decreases.
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3.4.3 Ball and stick

Fibre curvature with a radius as high as 18 mm has an effect on the ball and stick model. Fibre

curvature and crossing angle both appear to affect volume fractions in the ball and stick model.

The presence of either form of orientation dispersion decreases stick volume fraction. The

stick compartment represents one central axis in a voxel along which there is a greater amount

of diffusion than in any other direction. In voxels with significant fibre curvature or multiple

fibres, a single central axis of diffusion does not exist, so the stick compartment is assigned less

volume as a result.

3.4.4 NODDI

The 3AM phantoms in this study essentially have two major compartments: space within the

microscopic fibrous pores, which is expected to act like intra-neurite space; and free water

between lines of extruded material. NODDI consistently characterizes the intra-neurite space

with its intra-neurite compartment, but the unstable ratio of volume fraction assigned to the

CSF and extra-neurite compartments suggests that the two compartments describe the free

water space roughly equivalently. This apparent similarity between the two compartments is

partially explained by the tortuosity model included in NODDI: with intra-neurite volume frac-

tions consistently around 0.3, the cylindrically symmetric diffusion tensors that make up the

intra-neurite compartment have a radial diffusivity about 70% of the axial diffusivity, mean-

ing that the tensors are not strongly anisotropic. A phantom with a more structurally com-

plex microstructure including a third compartment may elicit a more consistent response from

NODDI. However, NODDI’s CSF volume fraction has been also been reported to have low

reproducibility in vivo [52].

NODDI’s volume fraction metrics have limited sensitivity to the orientation dispersion pre-

sented by these phantoms, which suggests that large changes in NODDI’s volume fraction

metrics indicate changes to the microstructural fibre composition, as intended. NODDI’s ODI

metric does change reliably with fibre crossing angle, suggesting that it may be a robust indica-
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tor of orientation dispersion. However, the planar patterns of orientation dispersion in the 3AM

phantoms challenge the Watson distribution: to distribute the intra-neurite compartment’s ori-

entation along a plane, it needs to distribute it equally perpendicular to that plane. There is an

inherent trade-off between the accuracy of the predicted diffusion pattern in-plane and out-of-

plane. This trade-off forced by NODDI’s use of the Watson distribution led to the development

of Bingham-NODDI. However, the planar pattern of diffusion in 3AM phantoms does limit

their ability to test NODDI’s response to 3D dispersion, which may occur in the brain.

3.4.5 Bingham-NODDI

While Bingham-NODDI has a similar unstable fit to NODDI, with both the CSF compartment

or the extra-neurite compartment describing the free water in the phantoms approximately

equally precisely, orientation dispersion does affect the balance between the two cases, unlike

NODDI. Regions with less orientation dispersion are more often assigned no volume fraction

of CSF.

The high sensitivity of ODIP to fibre crossing angle demonstrates that the Bingham distri-

bution is able to accommodate the planar patterns of diffusion observed in the 3AM phantoms,

which the Watson distribution cannot do. ODIP spans its entire defined range in the fanning

and kissing phantoms, granting this metric high sensitivity to crossing fibres.

3.4.6 Phantom performance

For this study, the 3D printed phantoms provide a ground truth with consistent microstructure

but controlled orientation dispersion. The design of the 3D printed phantoms used in this

study allowed the effect of fibre curvature to be separated from the effect of crossing fibres.

Both are forms of orientation dispersion observed in the brain, and both have distinct effects

on dMRI models of white matter. The metrics in NODDI and Bingham-NODDI meant to

capture orientation dispersion as a whole showed higher sensitivity to fibre crossings than to

fibre curvature.



3.4. Discussion 49

This work illustrates a physical dMRI phantom that produces a biophysically plausible

ground truth for diffusion signal in the presence of complex fibre configurations like fanning

and kissing fibres. While analyses similar to those presented here were previously available

using simulated data [48], the level of orientational complexity easily achievable with physical

phantoms was more limited. The 3D printed phantoms therefore fill a previously empty niche

in the spectrum of phantoms available for the validation of dMRI, offering a control over the

ground truth greater than that available for ex-vivo tissue and some existing physical phantoms,

along with the fidelity associated with performing a physical scan rather than a numerical

simulation.

The nature of the 3D printing technique used to produce the phantoms left some artifacts

in the phantom. Arcs are printed in short, straight segments, and those segments are long

enough to be individually visible in the shorter arcs. In these cases, the printed pattern is a

poor approximation of an arc. The layer-by-layer 3D printing procedure also means that the

complex geometries are restricted to a single plane. In other words, the diffusion parallel to the

axis of the cylindrical phantoms is constant, regardless of the in-plane print pattern. This limits

the geometric complexity achievable with the 3D printed phantoms.

There is not a complete model of the diffusion signal from the 3D printed phantoms. While

we know in general terms that the material is made up of fibrous pores that restrict diffusion

anisotropically, we do not have a precise characterization of the distribution of those pores’

radii, or the volume fractions of porous space, free water, and elastomeric matrix. With such

a characterization, it would be possible to validate the values of any given dMRI model in

addition to the trend with orientation dispersion, as we did in this work.

3.4.7 Model Performance

Using these phantoms, we could identify a set of model parameters with the potential to have

particular utility due to invariance or sensitivity to orientation dispersion. Specifically, MD

in DTI and intra-neurite volume fraction in both NODDI and Bingham-NODDI were largely
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invariant to fibre crossing angle. This invariance means that they are potentially robust indi-

cators of microstructural change in the presence of orientation dispersion. Meanwhile, ODI

in NODDI and ODIP in Bingham-NODDI both have strong relationships with fibre crossing

angle, which suggests that they may be good indicators of orientation dispersion. The results

also reveal potential overfitting of the volume fraction assigned to the extra-neurite and CSF

compartments, which has also been observed in vivo [52]. However, some of this overfitting

may also be attributed to the fixed CSF diffusivity being equal to the fixed axial diffusivity in

these phantoms.

Some peculiarities with the phantom print quality led to a relatively low volume fraction

of intra-pore space relative to the volume fraction of free water within the phantoms. While

this structure was practically useful because it allowed water to reach and dissolve pockets of

PVA in the elastomeric matrix more easily, it did seem to decrease the ability of both forms

of NODDI to realistically describe the material. In both cases, volume fraction assigned to

intra-neurite space was low relative to the volume fraction of extra-cellular space. This is not

anatomically realistic, and caused NODDI to assign no volume fraction to CSF, and Bingham-

NODDI to do the same in many voxels.

The design of the bending phantom in this study did not allow it to fully capture the effect

of fibre curvature on model parameters. Several parameters followed a trend toward the dis-

tribution in the straight phantom as arc radius increased, but did not reach that distribution at

the maximum arc radius included in the bending phantom (about 20 mm). Future work should

include another bending phantom with arc radii above 20 mm to more fully explore the effect

of fibre curvature on dMRI models.

3.5 Conclusions

The use of 3D printed phantoms as described in this work is a technique that allows dMRI

model parameters from real data to be related to orientation dispersion without any significant



3.5. Conclusions 51

change in fibre microstructure. We have demonstrated the utility of the phantoms by using

them to reveal existing models’ relationships with fibre curvature and crossing angle. The

phantoms can play a unique role in more in-depth treatments of existing models, and provide

an inexpensive method for validating novel models using physically acquired data.
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Conclusions

We have introduced 3D printed axon-mimetic (3AM) phantoms, a novel class of diffusion MRI

(dMRI) phantom that mimics axonal fibres well enough to draw conclusions about diffusion

MRI models of white matter. 3AM phantoms fill a niche in the spectrum of dMRI phantoms

that was empty. They are among the least expensive dMRI phantoms available to researchers,

but are able to produce complex patterns of diffusion. Before 3AM phantoms, rigid capillaries

or plain fibres were among the most accessible phantoms to researchers, and both are difficult

to arrange in a more complex configuration than crossing fibres. 3AM phantoms can now

become an easily accessible way to perform a phantom study of a dMRI model’s response to

orientation dispersion.

In the field of existing dMRI phantoms, 3AM phantoms are most similar to the membranes

of hollow fibres produced by coaxial electrospinning [25]. Both phantom materials essen-

tially produce fibrous pores that mimic intra-neurite restriction of diffusion, but make different

trade-offs to produce that diffusion behaviour. By changing the parameters of the coaxial elec-

trospinning process, the resulting hollow fibre diameter can be controlled. This is a particular

advantage for assessing models that predict axon diameter, but is also useful for producing

anatomically realistic fibre diameters. However, arranging the resulting membranes into com-

plex fibre structures remains a challenge. The pore size characterization of 3AM phantoms

52
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shown in Figure 2.3 shows that 3AM phantoms have reasonable pore sizes, but changing 3D

print parameters does not have a significant effect on those pore sizes, so they are not customiz-

able. FDM 3D printing is a necessary step for producing 3AM phantoms, which means that

the fibre orientations can be customized in a straightforward way using inexpensive equipment.

Thus, 3AM phantoms are a good choice when effects of orientation dispersion are of greater

interest than effects of microstructural changes, or as an inexpensive first choice for exploratory

phantom studies of dMRI models of white matter.

A limitation of the phantoms is that they have no physical analog to extra-neuronal hinder-

ing of diffusion. The micro-CT and microscopy images of 3AM phantoms shown in Chapter 2

demonstrates that each line of material has small fibrous pores embedded in the elastomeric

matrix, rather than the tightly packed hollow fibres that make up axonal tracts in vivo. This

limitation was made evident by NODDI’s unstable fit to data from 3AM phantoms, as seen

in Figure 3.6. 3AM phantoms have no analog to extra-neuronal space, so NODDI [12] strug-

gles to consistently assign the balance between the isotropic and extra-neurite compartments.

Still, 3AM phantoms compare favourably to other physical dMRI phantoms, and their unique

flexibility enable phantom studies that would be difficult without them.

The study in Chapter 3 would have been difficult to perform with most existing phantoms,

and very labour-intensive to perform with an ex-vivo tissue sample. Previously, this type of

study that compares dMRI model fit to a signal to a ground truth of the fibre configuration that

produced that signal would have been limited by practicality to a numerical phantom simula-

tion. While the precise control of the ground truth offered by numerical phantoms is valuable,

their validity as a prediction of a model’s response to in-vivo data is limited by the validity

of the model used to produce the simulation data. By offering a ground truth of fibre config-

uration associated with a physical object that can be scanned, 3AM phantoms offer scan data

that includes the complexity inherent to a dMRI scan. The validity of the scan data is still

limited by the difference between the 3AM phantom’s fibrous pores and real axonal fibres, but

3AM phantoms can offer a useful complement to studies that would otherwise only have been
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possible with simulations.

In Chapter 3, we demonstrated that utility of 3AM phantoms for characterizing a dMRI

model’s response to orientation dispersion. Every model we assessed was affected by fibre

curvature, fibre crossings, or both, and no model was able to confine that effect to a single

metric. Of the three signal representations under investigation (DTI, DKI, and ball and stick),

only DTI’s MD metric was robust to changes in crossing angle. This finding highlights that

is important to be cognizant of orientational effects when trying to associate changes in dMRI

model metrics with underlying microstructural changes. NODDI was largely successful at

isolating the effect of orientation dispersion to its Orientation Dispersion Index, but it still

saw a decrease in intra-neurite volume fraction with tighter fibre curvature. Fibre curvature is

highly prevalent in the human brain, so this effect must be well understood and described before

models like NODDI can see widespread clinical adoption. The findings presented in Chapter 3

are a useful reference in the development of that understanding, and the 3AM phantom study

procedure could be applied to any number of other dMRI models.

Ultimately, the goal of dMRI research in neuroscience is to use dMRI to develop a better

understanding of the brain’s structure and how changes to that structure affect the function of

the brain. Diffusion MRI signal representations and models of white matter are a critical bridge

between raw dMRI signal and useful insight into the structure of the brain. So, by improving

our understanding of the relation between dMRI model predictions and the underlying neural

microstructure, we strengthen the validity of those predictions. In the broad landscape of tools

for validating dMRI models, the need for a phantom that can flexibly represent a range of fibre

configurations, is acceptably axon-mimetic, and is inexpensive for researchers to adopt is filled

by the 3AM phantoms presented in this thesis.
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4.1 Future work

The analysis performed with 3AM phantoms thus far has mostly been confined to investigating

the effect of orientation dispersion within voxels in small, disc-shaped phantoms. However,

there is significant interest in tractography techniques that map axonal tracts across different

regions of the brain. To evaluate tractography methods, a large phantom composed of plain

fibres compressed in a frame has been used to produce data with a ground truth [53]. A larger

3AM phantom with multiple interacting tracts existing on alternating layers could be produced

with a similar effect, but would allow multiple sites to produce the same phantom without

highly specialized equipment. The production of a large enough phantom for application of

tractography would be a challenge, as regions deeper below the surface of the phantom would

take longer for water to penetrate than any region in phantoms of the size considered in this

thesis.

The 3AM phantoms used in this thesis had relatively low voxel-wise fibre densities, as indi-

cated by intra-neurite volume fractions from 0.25 to 0.35 estimated by NODDI. One reason for

this low fibre density is that even when the 3D printing software was instructed to depose lines

of material directly adjacent to one another, small spaces remained between successive lines, as

is visible in the top row of Figure 2.4. Resolving this issue and increasing the fibre density may

result in higher and more anatomically realistic FA and associated metrics, alleviating some of

the difference between 3AM phantom data and scan data of real tissue.
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Appendix A

3AM Phantom Production Protocol

Materials and equipment

• GEL-LAY filament

• Surfactant

• Test tubes

• Airtight test tube stoppers

• Clear plastic container

• Deionized water

• Phantom cylinder STL file (example available at osf.io/dz8rf/)

• FDM 3D printer (must be compatible with Cura)

• Vacuum chamber

• Cage with individual chambers for each phantom
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Safety

After 3D printing, handle phantoms with gloves at all times.

Storage

• GEL-LAY filament

– The quality of the filament can be affected by moisture in the air. Store the spool of

GEL-LAY according to manufacturer’s recommendations, or in a sealed bag with

packets of silica gel.

• 3AM phantoms

– The phantoms can be immersed in tap water during the dissolving phase, but must

be immersed in distilled water in their final preparation for dMRI scanning.

Preparing phantoms for dMRI scanning

1. For each phantom, use Cura to load the STL file, ensure the nominal print parameters are

selected according to Table A.1, and choose your desired infill pattern.

2. Arrange the phantoms in the cage, recording the position of each phantom.

3. Place the cage filled with phantoms in a clear plastic container filled with room temper-

ature tap water. It may be necessary to place a weight on the cage to prevent it from

floating to the surface.

4. Let the phantoms dissolve for 7 to 10 days, emptying the container and refilling it with

water every day to avoid saturation and PVA build up.

5. Empty the container of tap water and refill it with deionized water.
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6. Add 1/20th part surfactant to the deionized water.

7. Place the plastic container in the vacuum chamber, and run the vacuum pump until the

chamber reaches 1 bar pressure.

8. Leave the container in the vacuum chamber for 48 hours.

9. Prepare the test tubes by labelling them and rinsing them with deionized water.

10. Keeping everything underwater, move the phantoms from the cage into the test tubes,

noting the order in which the phantoms are placed.

11. Seal the test tube with a stopper and remove it from the container.

Note: It is crucial that after the phantoms are removed from the vaccum chamber, they are

kept underwater and make no contact with air.

Printing parameter Nominal value

Printing temperature (°C) 225
Printing speed (mm/s) 30
Layer thickness (mm) 0.1
Infill density (%) 100

Table A.1: Nominal phantom printing parameters



Appendix B

Copyright Permission

See the following images for documentation of the permission referred to in the caption of

Figure 1.1.
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