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Abstract 

Bubble formation and dissolution have a wide range of industrial applications, from the 

production of beverages to foam manufacturing processes. The rate at which the bubble 

expands, or contracts has a significant effect on these processes. In the current work, the 

hydrodynamics of an isolated bubble expanding due to mass transfer in a pool of 

supersaturated gas-liquid solution is investigated. The complete scalar transportation 

equation (advection-diffusion) is solved numerically and it has been observed that the 

present model predicted an accurate bubble growth when compared with existing 

approximated models and experiments. The effect of gas-liquid solution parameters such 

as inertia, viscosity, surface tension, diffusion coefficient, system pressure, and solubility 

of the gas has been investigated. It is found that the surface tension and inertia have a very 

minimal effect during the bubble expansion. However, it is observed that the viscosity, 

system pressure, diffusion, and solubility have a considerable effect on bubble growth.  

Keywords 

Bubble hydrodynamics, bubble growth in the foaming process, mass transfer growth, 

supersaturated liquids, inertial growth, numerical solution to advection-diffusion equation, 

moving interface.  
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Summary for Lay Audience 

The current thesis investigates the growth of a single bubble in a mixture of supersaturated 

gas-liquid solution. A solution is said to be supersaturated when the amount of gas 

dissolved in the solution is more than it can hold. The growth and control of bubbles play 

a key role in industrial applications such as bubble column reactors where gas is dissolved 

in the liquid in terms of bubbles, daily consumable beverages where CO2 is suspended as 

bubbles, manufacturing processes where thermoplastic foams are produced using blowing 

agents, and in marine commutators where the collapse of high-pressure bubbles causing 

damage to propeller blades of the ships. In the literature, the governing equation which 

describes the concentration of gas in the liquid is solved with many underlying assumptions 

and simplifications. In the present study, this complete equation is solved numerically and 

compared with the existing theory and experiments. The present numerical approach is 

validated by reproducing the results in the literature. It has been depicted that the present 

theory matched closely with the experiments than the existing theories. 
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Chapter 1 

1 Introduction 

1.1 Introduction to topic 

A gas bubble is formed when an atomically or molecularly dissolved gas becomes 

supersaturated in a liquid solvent as a result of the reduction in imposed gas pressure, or 

change in liquid temperature and or change in solute or solvent character (Rosner and 

Epstein, 1972). The study of the gas bubble is of major interest due to its appearance in 

many real-world problems, where the formation of the bubbles in some applications is 

desired and some of them not. For an instant, the dissolved oxygen in the bioreactors in the 

form of bubbles is the desired process (see the red circle marked in figure 1-1 a), whereas 

the formation of gas bubbles near the propeller blades of the ships is an undesired effect 

(due to which the blades get corroded rapidly (see the red area marked in figure 1-1 b)). 

 

(a) 

 

(b) 

Figure 1-1: Effects of the bubble in a) bioreactors (Hernandez-Alvarado et al., 2017) 

and b) ship propeller blades (PES Solutions, 2014) 
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In the current chapter, we begin by explaining how bubble formation and dissolutions are 

important in various industrial applications. Thereafter, a clear problem description will be 

made followed by explaining the important terms of supersaturation and undersaturation. 

Later in the chapter, an intensive literature survey will be carried out discussing the various 

bubble growth models and highlighting their limitations and assumptions. Finally, the 

chapter will end by briefing the research gaps and thesis outline.  

1.2 Practical Applications  

One of the important applications of bubble hydrodynamic theory is in chemical process 

industries, where the foamed plastics (see figure 1-2) production is one of the major aspects 

(Elshereef et al., 2010). When a gas-generating substance like a blowing agent is mixed 

with the high-pressure molten polymer, the resulting product turns out to be thermoplastic 

(Arefmanesh et al., 1992). In this process, gas bubbles emerge and have a considerable 

effect on product quality. Therefore, it is necessary to understand the behavior of bubbles 

under different process parameter conditions. 

 

Figure 1-2: Plastic Foams (Elshereef et al., 2010) 

High-density foamed thermoplastics, otherwise called as cellular plastics, are used in 

household furniture, transportation, and building products, and on the other hand, low-
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density thermoplastics are frequently used in rigid packing (Lee et al., 1996). Bubble 

hydrodynamics plays a key role in the dry-photography of documents, where the process 

requires the light-scattering bubbles in a plastic medium (Barlow and Langlois, 1962). 

Bubble hydrodynamics plays a vital role in the design and scale-up of a bubble column 

reactors  (Wild, 2003). 

The formation and growth of bubbles due to de-gassing or reduction of pressure in a 

supersaturated gas-liquid solution is observed in a broader spectrum of industrial and 

natural processes. For example, a very well-known process in which de-gassing is observed 

are carbonated beverages, such as beers, gushing in soda, and champagne (Bisperink and 

Prins, 1994; Jones et al., 1999; Barker et al., 2002; Liger-Belair, 2005; Lee et al., 2011; 

Enríquez et al., 2013, 2014). Another example, from the biological perspective, includes 

bubble growth in blood and tissues due to decompression sickness (Chappell and Payne, 

2006). From the environmental perspective, bubble growth due to de-gassing in magmas 

during the volcanic eruption (Sparks, 1978) and while boiling the cryogenic solutions has 

a major impact (Kuni and Zhuvikina, 2002; Zhuvikina and Kuni, 2002; Kuni et al., 2003). 

The study of bubble dynamics is vital in production industries, where molten polymers, 

metals, and glasses are of major interest (Amon and Denson, 1984) and a bubble prediction 

theory is important in the exsolution of gases during oil extraction (Pooladi-Darvish and 

Firoozabadi, 1999). 

The importance of bubble growth in the industrial processes turned the researcher's 

attention to study its behavior and control. But the accurate prediction of this process 

became very complicated because of its complex physics, which requires coupling 

hydrodynamics to the diffusion process. The bubble growth process exhibits different 
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regimes where different flow parameters take control over the growth; for instance, after 

immediate nucleation, surface tension plays a significant role and at initial growth, inertia 

takes the control and at later stages, the bubble evolves due to diffusion process. 

The early analytical models of the bubble growth process in supersaturated solutions were 

developed with many assumptions. Such as, neglecting the inertia of the liquid and 

neglecting the convective effect produced due to motion of the bubble boundary (Epstein 

and Plesset (1950)) and some studies have not prioritized viscosity of the liquid and 

pressure jump across the bubble interface (Scriven (1959)).  

1.3 Problem Description  

When the pressure of the dissolved gas in a liquid solution is decreased to a certain level, 

bubbles tend to nucleate on the surface of cracks, pores in a pool of gas-liquid solution. 

The current study is not focused on the bubble nucleation; rather, it focusses on a single 

gas bubble growth that is previously nucleated in a pool of liquid-gas supersaturated 

solution (see figure 1-3). 
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Figure 1-3: Schematic representation of the problem 

Here 
0c  is the initial or saturation concentration far from the bubble and

0p is its 

corresponding partial pressure. On the other side ( )gp t  is the pressure of the gas inside 

the bubble and ( )Rp t  is the pressure at the interface of the bubble and 
ap  is the external 

pressure on the liquid or pressure of the system ( for example mold pressure in the mold 

injection foaming process). 

The present study emphasis developing a numerical model that comprises all interfacial, 

inertial, and viscous effects and providing a clear insight into the behavior of gas 

concentration in the liquid. Moreover, this study also focuses on including the nonlinear 

convective terms in the diffusion equation which have been neglected by many researchers. 

To understand the bubble growth process, it is important to get an idea of the 

supersaturation and undersaturation process in a gas-liquid solution. In the subsequent 

section, this will be discussed. 
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1.4 Supersaturation and Undersaturation 

When gas is dissolved in the liquid, the liquid reaches its saturation point; i.e. it cannot 

hold more gas after that point. Let the amount of dissolved gas, its partial pressure, and 

temperature at the saturation point be 
0c , 

0p  and 
0T . Now to increase the gas holding 

capacity of the liquid, one can reduce the pressure from the saturation pressure 
0p  to new 

pressure
sp  or increase the temperature from the saturation temperature to a new 

temperature 
sT . At these new conditions where pressure is 

sp  or the temperature is 
sT , 

the liquid holds more gas (
sc )  than at its saturation point. At this point, gas always tries to 

escape from the solution to reach its saturation or equilibrium position 
0c . This new 

condition where liquid holds more gas than its equilibrium or saturation condition is termed 

as supersaturation or over-saturation condition. 

Conversely, one can increase the pressure to 
hp or decrease the temperature 

hT . At these 

conditions, the liquid tries to absorb more gas from its surroundings; this is termed as 

undersaturation. 

The amount of gas that liquid can absorb or release from its surroundings can be determined 

by the dimensionless saturation ratio   (Moreno Soto et al., 2019). 

0 s

s

c c

c


−
=               (1.1) 

In equation (1.1)  0   represents the level of supersaturation and 0   determines the 

level of undersaturation and the saturation or equilibrium condition is represented as 

0. =  In the present study, we focus on the supersaturation level i.e. 1  . 
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1.5 Literature Survey  

In the current section, theoretical and numerical models that were developed in the 

literature for a bounded and unbounded single spherical gas bubble in a supersaturated or 

undersaturated liquid will be detailed. Also, the assumptions, solution producer, numerical 

complications, and solution accuracy challenges in the literature are addressed. 

In many industrial applications, bubble growth is driven by mass transfer (Payvar, 1987; 

Wang and Bankoff, 1991; Bisperink and Prins, 1994; Hey et al., 1994; Jones et al., 1999; 

Barker et al., 2002; Lin et al., 2002; Divinis et al., 2004). Epstein & Plesset, (1950) derived 

an approximate analytical solution to an unbounded single bubble growth/dissolution in a 

gas-liquid solution due to mass transfer for supersaturated and undersaturated conditions. 

Their approximate solution emerges by neglecting a transport term in the advection-

diffusion equation; this transport term results from the boundary motion of the bubble. 

However, the approximate solution procedure which they obtained is a very complicated 

process and for a fast-growing bubble these solution underpredicts the growth.  

Epstein and Plesset (1950) solved the one-dimensional advection-diffusion equation 

without an advection term, which is analogous to the one-dimensional transient heat 

conduction equation and is given by 

 

2

2

2c c c
D

t r r r

   
= + 

   
.            (1.2) 

Note that the variables or parameters with the bar represent the dimensional number. Here 

( ),c r t  is the gas concentration in the liquid, r  is the radial position and D is the 
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diffusion coefficient of gas.  Epstein and Plesset (1950) used the Carslaw (1945) solution 

of 1d heat conduction problem (equation (1.2)) which is written as  

 ( ) ( )
( ) ( )

2 2

0

0

, exp exp
4 42

Rc c
c t R d

Dt DtDt

   
  



      − +−      = + − − − 
        

 , 

    (1.3) 

here ( )r R t = −  is the transformed coordinate used in the solution procedure. Here 

( )R t  is the bubble radius, 
0c , 

Rc  are the saturation concentration and interface 

concentrations respectively. Epstein and Plesset used equation (1.3) to determine the 

concentration at the interface of the bubble as  

( )0

1 1
R

R

c
c c

r R Dt

   
= − +   

   
.          (1.4) 

Equation (1.4) is the key finding of Epstein and Plesset, which describes the bubble growth 

as a function of the boundary layer around the bubble which has a thickness equal to 

Dt . The final form of the Epstein and Plesset equation is written as  

( )
( )00 0

2
1

2 2

RR R

g g g

D c cc c c c
R t t

  

     −− −  + +           

.       (1.5) 

Equation (1.5) describes a pure diffusive bubble growth in a supersaturated solution whose 

density of the gas is g , with initial equilibrium concentration being 
0c  and the 

supersaturated concentration being 
Rc (at the interface the magnitude of the concentration 
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is equal to supersaturation concentration). Epstein’s formulation suggests that the bubble 

grows as the square root of time i.e R t . 

The study of bubble dynamics is not only important in the pure mass transfer phenomenon 

but also plays a vital role in nucleate boiling processes (Plesset and Zwick, (1954); Birkhoff 

et al., (1958); Scriven, (1959); W.Zijl, D.Moalem, (1977); Prosperetti and Plesset, (1978); 

Verhaart et al., (1980)). Scriven (1959) derived an approximate solution for the bubble 

growth in the boiling process; they included the convective term in the diffusion equation 

which was neglected by Epstein and Plesset (1950). However, Scriven made the following 

assumptions: 

1. Neglected the viscosity effect of the liquid on the bubble growth stating that it only 

plays important role at initial stages, 

2. Omitted the inertial and interfacial effect of liquid on bubble growth. 

Scriven's (1959) bubble dynamics formulations are quite complicated and have many 

underlying assumptions. However, the present thesis does not deal with the boiling process; 

this information is provided only to understand the broader perspective of bubble 

dynamics. 

 Barlow and Langlois (1962) investigated a bubble expanding in a Newtonian liquid due to 

the diffusion of nitrogen gas from vinylidene chloride-acrylonitrile copolymer. They 

introduced a very complicated Integro-differential equation based on a thin shell 

assumption that describes the combined hydrodynamic and diffusion growth of the bubble. 

They had analyzed the bubble growth in two extreme conditions, one of them being the 

very slow diffusion of gas in the bubble where they neglected inertia of liquid and 
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developed an asymptotic solution for bubble growth and the other being the rapid diffusion 

process, where the pressure in the bubble remains almost constant and is controlled by pure 

hydrodynamics.  

Barlow and Langlois (1962) concluded that their approximate solutions at the initial and 

final stages will be applicable for a bubble that grows at a very short period (less than 2 

seconds). They also admitted that solving their system of equations is computationally very 

expensive and needs a lot of arithmetic operations to predict small bubble growth. 

However, Barlow and Langlois (1962) were the first to combine the hydrodynamics and 

diffusion effects. Their model is complicated and time expensive to use for the larger 

bubble growth rates. 

Rosner and Epstein (1972) laid a strong fundamental pavement in the field of diffusive 

controlled bubble growth. They developed a hydrodynamic formulation based on the 

moment integral method. Their investigation accounts for the ratio of the density of the gas 

to the density of the liquid 
g

L





 
 
 

that appears in the kinematic condition at the interface 

and the convection part in the diffusion equation which is induced by the motion of the 

bubble interface. However, they assumed the pressure inside the gas bubble to be constant. 

Rosner and Epstein (1972) assumed a parabolic concentration profile in a thin boundary 

layer to generate an approximate solution of the diffusion equation. This work has been 

adopted by many researchers starting from Patel (1980), Han and Yoo (1981) to Elshereef 

et al., (2010). Rosner has investigated the effects of interface kinetics, solute diffusion, and 
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surface tension on the bubble growth and concluded that bubble growth depart from 

classical behavior R t .  

Bubble formation in the manufacturing processes of foaming material is one of the 

foremost interests among the researchers. When a molten polymer is injected with high 

pressure inside the mold, the bubble nucleates and starts expanding. Patel, (1980) 

developed a bubble growth model in a supersaturated Newtonian liquid. The main idea 

behind Patel's bubble growth model is to make the formulations simple compared to 

Barlow et al. (1962) and Rosner et al. (1971). He focused on a single gas bubble that is 

nucleated in a pool of liquid with the following assumptions:  

1. The liquid is Newtonian with constant viscosity, 

2. The process is isothermal and always exits a thermodynamic equilibrium at the gas-

liquid interface which obeys Henry’s law, 

3. The liquid is stagnant and of infinite extent, 

4. A large pool of liquid is available, and gas is abundant, 

5. A thin boundary layer   is formed around the bubble in which the variation of gas 

concentration is observed,  

6. The ratio of the boundary layer   to the instant bubble radius ( )R t  is very small 

i.e 1
R


 , 

7. The gas concentration after the immediate vicinity to the boundary layer is equal to 

the saturated concentration. 
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Patel’s boundary layer thickness   emerges by solving the diffusion equation analytically 

with the help of Rosner and Epstein's (1971) parabolic concentration profile assumption. 

Note that the explicit derivation of boundary layer thickness and the approximate solution 

to the advection-diffusion equation is detailed in chapter two.  

The molten polymer in the foaming process exhibits viscoelastic behavior (Arefmanesh 

and Advani, 1991; Khayat and Garcia-Rejon, 1992; Venerus and Yala, 1997; Venerus et 

al., 1998; Allen and Roy, 2000; Feng and Bertelo, 2004; Brujan and Williams, 2005; 

Jiménez-Fernández and Crespo, 2005; Xu et al., 2005). The formation of bubbles is often 

observed in the foaming manufacturing process. As discussed earlier, Barlow et al., (1962) 

and Patel (1980) developed models for pure Newtonian fluid cases, hence neglected the 

effect of the elastic nature of the polymer. To fill this gap, Han and Yoo (1981) introduced 

a model that includes the effect of elasticity of the fluid (polymer). They also 

experimentally studied the bubble growth when a gas-charged molten polymer is injected 

into the mold cavity in the mold injection process.  

Han and Yoo used sodium bicarbonate as a blowing agent, which generates carbon dioxide 

(CO2) gas in the molten polymer. They experimented at isothermal conditions keeping the 

fluid properties constant while varying injection rates. They noticed that bubble formation 

is observed at a particular injection rate. To incorporate the effect of elasticity they used a 

viscoelastic model represented by DeWitt. The Stress relaxation, diffusion, and interfacial 

effects were incorporated in their theoretical model; therefore, the hydrodynamic equation 

of Han and Yoo is given as  
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( ) ( )
23 2

2
2

rr
L g a rr rr R

R

RR R p p dr
R r

  
  





− 
+ = − − + − + 

 
 .      (1.6) 

Here 
L  and   are density and surface tension of the liquid, 

rr and 
  are normal stress 

in radial and angular direction and their behavior is given by the DeWitt Model which are 

represented as 

2rr rr
rr

u
u

t r r

 
  

   
+ + = 

   
,           (1.7) 

2 u
u

t r r

 


  
 

  
+ + = 

  
,                      (1.8) 

With   being the stress relaxation term,   being the viscosity of the liquid, and u is the 

radial velocity.  

Han and Yoo determined 
gp  in the equation (1.6) with the same approach followed by 

Patel (1980). Note that in the absence of stress relaxation term  , Han and Yoo's model 

reduces to the Newtonian hydrodynamic model. 

The stress builds up in the polymer during its injection in the mold has a significant effect 

on bubble formation and bubble growth. This is one of the key observations presented by 

Han and Yoo. At low injection pressure, they observed that the elasticity of the polymer 

melt helps in bubble growth, whereas at high injection pressure the bubble growth is highly 

retarded. Therefore, the rate of bubble growth depends on the elasticity of the melt and the 

injection pressure. 
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Polymer foams material has abundant importance in the commercial industries starting 

from high thermal insulators like glass fibers to high rigid material in structural 

maintenance (Amon and Denson, 1984).  These polymers can be produced with a wide 

range of manufacturing processes like injection molding to extrusion (Harris, 1976). In all 

these manufacturing processes a common phenomenon of formation and growth of bubbles 

is observed. Amon and Denson (1984) investigated the bubble growth theoretically in the 

foaming process. 

To this point in our survey, researchers have investigated the bubble dynamics in a pool of 

liquid based on the abundant gas availability assumption. This assumption is adequate for 

the bubbles separated by a larger distance. On the other hand, when bubbles are formed in 

closed proximity, i.e. the distance between the bubbles is smaller than their radius, the 

infinite availability of gas assumption will no longer hold (Amon and Denson 1984). 

Therefore, Amon and Denson's theoretical model incorporates the effect of available gas 

from the surrounding bubbles. Their analysis is developed on a cell model assumption, 

where they have considered the foam as a summation of an equal microscopic unit of 

spherical cells with a constant mass in it and every cell has a spherical gas bubble that 

grows by diffusion of gas from the microscopic unit ( see figure 1.4).  
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Figure 1-4: Schematic view of a unit cell (Amon and Denson 1984) 

The non-inertial isothermal theoretical model of Amon and Denson (1984) in terms of 

volume of the shell is written as 

( )( )
3

2
4

s
g a

dR V R
p t p R

dt V




+
 = − −
  ,                     (1.9) 

Here sV is the volume of the shell. Amon and Denson captured the transient behaver of 

( )gp t   by solving the advection-diffusion equation (see equation (2.28)) numerically. In 

the current thesis work, a similar methodology of Amon and Denson is adopted for the 

solution ( )gp t .  

 Following Han and Yoo, Ramesh et al., (1991) investigated the bubble hydrodynamics in 

the thermoplastics. Their study comprises of experimentation and theoretical model 

development.  Ramesh et al., (1991) primarily focused on studying the effect of saturation 

pressure, blowing agent, the temperature of a gas, and molecular weight of the gas on 

bubble growth. They modified an existing Newtonian hydrodynamic formulation (see 
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equation 1.6) of a single bubble growing in an infinite polymer solution to account for the 

non-Newtonian effect by considering the polymer as a power-law fluid which is written as 

( )
( )1

2
4 2 33 2

2

n
n

L g a

K R
RR R p p

R n R




−

  
+ = − − −   

   
,     (1.10) 

In equation (1.10) K  and n are the power-law parameters and have different values for a 

different type of polymers. And the pressure inside the bubble 
gp  in the equation (1.10) is 

calculated similarly to that of Patel and Han and Yoo. However, in chapter two, the 

complete details are discussed on the formulation of 
gp  which depends on the 

concentration of gas in the liquid side.  

The second part of their investigation is to compare the power-law model with the 

viscoelastic model. Ramesh et al. adopted the viscoelastic model developed by Arefmanesh 

and Advani (1990), which is based on Amon and Denson's (1984) cell model. Therefore, 

according to Ramesh, the noninertial momentum equation in the radial direction is given 

as  

( )
2

2

S

rr
g a

R

p t p dr
R r

  −
− = −  ,        (1.11) 

Here, S  being the outer shell thickness of the bubble. The equation (1.11) requires the 

unknowns ( )gp t  , 
rr  and 

  to determine the bubble radius. Therefore as per Ramesh 

et al., the Arefmanesh and Advani’s viscoelastic model that solves for the  
rr  and 

  are 

mathematically given as 
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2 2

3 3

1 4 4rr
rr

d R R R R

dt y R y R

 


 

 
+ + = − 
 + + 

,       (1.12)  

2 2

3 3

1 2 2d R R R R

dt y R y R




 


 

 
+ − = 
 + + 

.        (1.13) 

Here, y  represents the transformed coordinate in the Ramesh et al. formulation. Note that 

( )gp t in the equation (1.11) is calculated in a similar method to that of the power-law 

model. 

Ramesh et al.’s (1991) experimental and theoretical findings show that bubble growth 

depends on the type of blowing agent used, saturation pressure, the temperature, and the 

molecular weight of the gas. They insisted that the power-law and Newtonian law model 

underpredicts the bubble growth with experiments, however, they suggested that the 

viscoelastic model was slightly better in predicting the experimental results. 

A lot of research has been carried out to understand the bubble dynamics in a supersaturated 

liquid, among them Elshereef, Vlachopoulos and Elkamel, (2010) compared two popular 

bubble growth models. The first model is known as Patel model or single bubble growth 

model which is developed on assumption that a single bubble grows in a pool of liquid with 

infinite availability of gas, and the second model is called a cell model or Amon and Denson 

model which is developed by incorporating the finiteness of gas availability and 

considering the proximity of gas bubbles. 

The main motive of the Elshereef et al., (2010) investigation is to compare these two 

models in terms of numerical implementations and accuracy in bubble growth prediction. 
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In this regard, they compared the models with Han and Yoo’s experimental findings. The 

non-inertial single gas bubble model (Patel’s model) represented by Elshereef takes the 

form 

( ) 2 /

4

g ap t p RdR
R

dt





 − −
=  

 
.         (1.14) 

For ( )gp t  in the equation (1.1), the following explicit equation is represented by 

Elshereef. This equation is developed based on the thin boundary layer around the liquid. 

A detailed methodology for the derivation of this equation is stated in chapter two and is 

given as 

( ) ( )

( ) ( )

2
2 2 2 2

0

2 3 3

0 0

6
3

g gg L g h

g

g g

p p R tdp D R T k R
p

dt M p t R t p R R

    −
 = −  

  −   

,    (1.15) 

with 
gR  being the universal gas constant, T  being the temperature of the gas,

hk being 

Henry’s law constant, M being the molecular weight of the gas, 
0gp  and 

0R  being the 

initial pressure inside the gas bubble and initial bubble radius.  

Similarly, the second non-inertial bubble growth model (Amon and Denson Model) 

represented by Elshereef takes the form 

( ) ( )
( ) ( )

3

3 3

2 /

4

g ap t p R S tdR
R

dt S t R t





  − −
=   

−  
.      (1.16) 
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Here, ( )S t  is the instantaneous outer shell thickness. The equation to calculate the ( )S t   

and pressure inside the bubble ( )gp t  are given by R. Elshereef as 

( ) ( )( )
1/3

33 3

0 0S t S R t R= + − ,         (1.17) 

Here 
0S  is the initial shell thickness, 

( )23
3

g L g

g

r R

dp D R TR t dc R
p

dt M dr R



=

  
= −        

.       (1.18) 

In equation (1.18), Elshereef calculated the gradient at the interface by solving the 

advection-diffusion equation numerically. However, the author lacks in providing a clear 

methodology of solving the equation numerically and the study of diffusion in the vicinity 

of the bubble is ignored. 

For a better understanding, the important models are tabulated as shown in the table (1-1). 

The overview of the models is presented based on the solution procedure of the advection-

diffusion equation, the type of fluid used, and based on confinement of the bubbles. 

Table 1-1: Assumptions made in the different models 

Model Liquid Solving 

Diffusion 

equation 

Availability 

of 

experimental 

data 

Availability 

of gas in the 

liquid 

Bubble  

confinement 

Model 

1 -Patel 

1980 

Newtonian Boundary layer 

assumption to 

get the 

approximated 

No infinite No 
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solution to the 

diffusion 

equation 

Model 

2 -

Amon 

and 

Denson 

1984 

Newtonian Numerical No finite yes 

Han 

and 

Yoo 

1981 

Viscoelastic Boundary layer 

assumption to 

get the 

approximated 

solution to the 

diffusion 

equation and 

also presented 

the viscoelastic 

effect in the 

model 

yes infinite No 

Present 

model 

Newtonian Numerical No infinite No 

 

1.6 Research Gaps  

Although researchers have done ample work in understanding the hydrodynamics of the 

bubbles in different processes, a clear insight into the diffusion process and explanation of 

numerical procedures are lacking. The current work emphasizes solving the diffusion 

process numerically and studying the different flow parameters affecting the 

hydrodynamics of bubble growth. The current thesis also focuses on comparing the present 
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work with the different models Elshereef eta al. (2010) and experimental data of Han and 

Yoo. 

1.7 Thesis Outline  

In the second chapter, a detailed mathematical model will be developed that describes the 

hydrodynamics of bubbles from the fundamentals of mass and momentum equations. 

Thereafter, an approximate solution to the advection-diffusion equation that is extensively 

used in the literature is rederived. The present developed model is non-dimensionalized 

using appropriate scales and finally, a detailed numerical approach to the developed model 

will be discussed. 

Chapter three is dedicated to results and discussions. Where we start by validating the 

present numerical approach by reproducing the noninertial growth results of Elshereef et 

al., (2010). Then we discuss the results obtained by adding inertia into their formulation. 

Thereafter, the approximated analytical solution to the advection-diffusion equation is 

compared with the present numerical model, followed by comparisons of the present 

numerical model with available theory and experiments. The second part of chapter three 

will be focused on the parametric study, which includes the study of viscosity, surface 

tension, system pressure, Henry’s constant, and diffusion coefficient effects on the bubble 

growth. 

The final chapter of the thesis will present the conclusions and briefs on future 

developments that can be done on the existing work. 
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Chapter 2 

2 Governing Equations of Bubble Growth 

The hydrodynamics of an isolated spherically symmetrical gas bubble whose radius is 

( )R t  in an incompressible gas-liquid solution is described by the conservation of mass 

and momentum equations.  

The problem is modeled in spherical ( r , , ) space. The growth of the bubble is 

induced by the pressure and concentration gradients. It is assumed that the partial pressure 

of the gas at infinity (far away from the bubble) is constant and equal to an equilibrium 

pressure 0p . The pressure  ( )Rp t  and ( )gp t  are the pressures experienced at the 

interface and inside the gas bubble respectively. ( ),c r t  being the concentration of gas in 

the liquid at a given time and position. The equilibrium concentration of the gas in the 

solution is denoted as 0c , whereas the concentration at the interface of the bubble is 

( )Rc t . Figure (2-1) represents the schematic view of the problem, note that the terms 

interface velocity and fluid velocity will be introduced with their definitions in the 

subsequent sections of the current chapter.  
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Figure 2-1: Schematic diagram of a single bubble in a liquid-gas solution 

2.1 Conservation of Mass   

Let u , u  and ru  be the velocity components in the spherical r , and  space. Let r  

be any radial position from the center of the bubble., The general continuity equation in 

spherical coordinates for Newtonian liquid of density L  takes the form 

( ) ( )2

2

1 1 1
sin 0

sin sin

L
L r

u
r u u

t r r r r






 

   

   
+ + + = 

    
.      (2.1) 

Assuming that the bubble changes its dimension only in the radial direction r , the non-

radial velocity components u  and u  are neglected. Therefore, for an incompressible 

liquid, the equation (2.1) takes the final form     

( )2

2

1
0rr u

r r


=


.             (2.2) 
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 2.1.1 Kinematic Boundary Condition  

The kinematic boundary condition states that the difference in normal velocities of the fluid 

particle and the moving surface which are in contact equals to zero. In this case, let the 

velocity of the fluid particle at the interface is Ru  and the velocity of the bubble surface is 

the rate of change of bubble radius
dR

dt
( see figure 2-1). Therefore, the kinematic boundary 

condition at the interface takes the form  

R

dR
u

dt
= .              (2.3) 

 2.1.2 Fluid Velocity 

For convenience, the radial component of velocity ru  will now simply be written as u  

and differentiation is represented by a dot.  

To find the expression for the radial velocity u  one can immediately integrate equation 

(2.2) in the radial direction and get the equation 

( )
2

f t
u

r
= .              (2.4) 

 The time-dependent function in the equation of velocity (2.4) can be obtained by applying 

the kinematic boundary condition (2.3), which results in  

2( )f t RR= ,              (2.5) 
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by substituting equation (2.5) in (2.4) yields to the expression for radial velocity, in terms 

of bubble growth rate, its radius, and position ( see figure 2-1) 

2

2

RR
u

r
= .              (2.6) 

2.2 Conservation of Momentum  

 The radial motion of the fluid can be described by the radial momentum equation. Gravity 

does not paly much importance in the analysis, therefore, the conservation of momentum 

equation in terms of pressure and stress without the gravitational force is expressed as  

 

2rr rr
L

u u p
u

t r r r r r

   


+    
+ = − + + − 

    
,        (2.7) 

where rr , ,    are the non-zero normal stress components of the stress tensor in radial, 

angular, and azimuthal directions respectively, and p  is the pressure. 

knowing the fact that some of the diagonal components of a stress tensor are zero (Fogler 

and Goddard, 1970) ( 0rr    + + = ), we can express   +  in terms of rr , or by 

spherical symmetricity, we can express 
  in terms of   as   = (Han and Yoo, 

1981). Both assumptions result in the same results. In the next section, we apply spherical 

symmetricity to the equation (2.7) and see that in the resulting equation, viscosity vanishes 

after replacing the velocity in terms of bubble growth rate and its radius in the equation.  



26 

 

 

 2.2.1 Spherical Symmetricity of the Bubble 

According to Han and Yoo, (1981), applying spherical symmetricity i.e.   =  to the 

momentum equation (2.7) results in   

2 2rr rr
L

u u p
u

t r r r r r

  


    
+ = − + + − 

    
,                    (2.8) 

We can replace rr  and    in equation (2.8)  by using the definition of  stress. For a 

Newtonian fluid normal stress equals to the viscosity of the liquid   multiplied by its 

velocity gradient and given as        

2rr

u

r
 


=


,                (2.9) 

2
u

r
   = = ,                (2.10) 

replacing rr and     with equation (2.9) and (2.10) in (2.8) results in the following form 

of momentum equation. 

2

2 2

2 2
2L

u u p u u u
u

t r r r r r r
 

      
+ = − + + −  

       
      (2.11) 

 Form the expression of velocity (2.6), one can differentiate the partial derivatives of u  

with respect to time and position and yields the following equations 

2 2

2 2

1 2u R
RR R

t r r


= +


,          (2.12) 
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2

3

2u RR

r r

 −
=


,           (2.13) 

2 2

2 4

6u RR

r r


=


,              (2.14) 

by substituting equations (2.12) -(2.14) in equation (2.11) one can obtain the following 

equation, without the viscous term 

2 2 2 4

2 2 5

2 2
L

RR R R R R p

r r r r

 − 

+ + = − 
   

.        (2.15) 

The equation (2.15) is also true for the condition of Fogler and Goddard, (1970) which says 

the diagonal components of a stress tensor equal to zero ( 0rr    + + = ). The final 

form of the equation which describes the hydrodynamics of the bubble can be obtained by 

integrating equation (2.15) with respect to r  from bubble interface R  to infinity   and 

by rearranging the terms yields to 

23

2
L R aRR R p p
 

+ = − 
 

,         (2.16) 

note that the pressure at infinity   is the surrounding pressure of the liquid and is equal 

to 
ap and is called as system pressure. The system could be anything starting from a 

beverage bottle to mold in the injection pressure foaming process.  
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 2.2.2 Dynamic Condition  

Let RT   be the stress tensor in the liquid side,
gT  be the stress tensor on the gas side of the 

interface, and let   , n are the surface tension in the liquid and the unit normal vector. The 

dynamic boundary condition states that stress at the interface has to be continuous., 

Mathematically the normal stress balance across the interface is represented as 

 ( ) ( )R gn T T n n − =  .         (2.17) 

When a vector is dotted with the tensor, the resultant would be the vector, therefore from 

the equation (2.17) the normal vector dotted with tensor will give the normal force vector 

as follows. 

Therefore, for the liquid side it is written as 

 Rn T  = R rrRp − +  ,                (2.18) 

Similarly, for the gas side it is given as 

gn T = g rrgp − +  .           (2.19) 

And the divergence of the normal vector is related to the mean curvature of the interface, 

which takes the form. 

 
2

n
R

  = .            (2.20)    

Here rrR  is the normal stress component at the interface in the liquid side and 
rrg  is the 

normal stress component in the gas side (see figure (2-2)). 
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Figure 2-2: Dynamic condition at the interface 

Assuming that the effect of normal stress on the gas side is zero i.e 0rrg =  and 

substituting equation (2.18)-(2.20)  in (2.17)  and  replacing the partial derivative of rrR  

with bubble radius and its velocity (2.6) results in the following condition    

    

2 4
g R

R
p p

R R

 
= + + ,          (2.21) 

from equation (2.21) Rp  can be substituted in equation (2.16) which results in  

23 2 4

2
L g a

R
RR R p p

R R

 

 

+ = − − − 
 

.       (2.22) 

Equation (2.22) is called as a Rayleigh-Plesset hydrodynamics equation for bubble growth 

inside a liquid whose viscosity is   and surface tension is  . Here, the growth of the 

bubble is dictated by pressure difference g ap p−  where g ap p . 
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2.3 Bubble Growth due to Mass Transfer 

 In a supersaturated liquid, bubbles grow due to diffusive mass transfer across its interface 

from its surroundings. Therefore, one can say that the mass flux diffusing across the 

interface is equal to the rate of change of mass inside the gas bubble. 

Let the mass of the gas at the interface is 
Rm , according to Fick's first law, the mass flux 

at the interface of a spherical bubble has the value 

24R L

R

c
m R D

r
 

 
=  

 
,          (2.23) 

here,

R

c

r

 
 
 

is the concentration gradient of the gas at the interface and D  is the diffusion 

coefficient of the gas-liquid solution. 

Similarly, let the mass of the gas inside the bubble be 
gm and its density be

g . Then the 

rate of change of mass inside the spherical bubble whose volume is 
34

3
gV R= has the 

value  

24
3

g

g g

dm R
R R

dt
  

 
= + 

 
,         (2.24) 

assuming, that the gas inside the bubble follows ideal gas law, the density of the gas (
g ) 

in the bubble can be replaced with pressure (
gp ), which is given as  

g

g

g

p M

R T
 = .            (2.25) 
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Here gR  is the universal gas constant, T  is the temperature of the gas and M  is the molar 

gas weight. Substitution of equation (2.25) in equation (2.24) yields to 

21
4

3

g

g g

g

dm R
R p R p

dt R T


 
= + 

 
 .        (2.26) 

Now by applying the conservation of mass at the interface i.e., g

R

dm
m

dt
= , one can get the 

expression for the variation of pressure with time inside the gas bubble as follows 

3
3

g g L

g

R

dp R T D c R
p

dt M R r R

   
= −        

.        (2.27) 

Equation (2.22) and (2.27) can be coupled and solved simultaneously for the bubble growth 

and pressure variation inside the bubble. However, to solve the equation (2.27) one has to 

know the concentration gradient at the interface, therefore in the next section, a scalar 

advection-diffusion equation is introduced.  

2.3.1 Advection-Diffusion Equation  

 The concentration of gas in the liquid ( ),c r t  can be described by the scalar transport 

advection-diffusion equation which is given as 

2

2

2c c c c
u D

t r r r r

    
+ = + 

    
,          (2.28) 

here, u  can be replaced in terms of bubble radius and interface velocity using equation 

(2.8), and this way equation (2.28) is also coupled with a hydrodynamic equation and can 

be written as 
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2 2

2 2

2c RR c c c
D

t r r r r r

    
+ = + 

    
,         (2.29) 

the coupled Equations (2.22), (2.27), and (2.29) need to be solved simultaneously to get 

the bubble growth, pressure variation inside the bubble, and concentration of gas in the 

liquid. 

Equation (2.27) is similar to the equation (50) in the Elshereef et al. 2010 formulation. 

However, he used an approximate analytical solution to the equation (2.29) to calculate the 

concentration gradient that appears in equation (2.27). The approximate solution was 

originally derived by Patel, (1980) using a thin boundary layer approach, which is going to 

be discussed later in the following sections. In this thesis, one of the main goals is to solve 

the (2.29) equation numerically using a finite difference approach and compare it with the 

approximated analytical results. 

The boundary and initial conditions to the equation (2.29) are related to the concept of 

Henry’s law, therefore, in the immediate next section, a detailed explanation is given to the 

concept of Henry’s law. 

 2.3.2 Henry’s law  

For diffusive growth bubbles, the pressure at the interface is always in thermodynamic 

equilibrium with the pressure inside the gas bubble. This equilibrium relation can be 

described using Henry’s law.  
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Henry’s law states that at constant temperature T, the equilibrium concentration, c , of 

dissolved gas in a liquid is directly proportional to its partial pressure p , multiplied with 

a constant known as Henry’s constant. Mathematically it is given as  

( )hc k T p= .            (2.30) 

Where hk  is Henry’s constant and it is a constant for a given liquid-gas solution 

2.4 Initial and Boundary Conditions  

Equation (2.22) is a non-linear second-order ordinary differential equation in time; 

therefore, it requires two initial conditions. The first initial condition comes from the 

assumption that that the bubble is nucleated prior and has an initial finite radius 0R  and for 

the second initial condition, it is assumed that, initially the interface of the bubble is at rest. 

Therefore, the two initial conditions associated with equation (2.22) are written as  

( ) 00R t R= = ,           (2.31) 

( )0 0R t = = . .          (2.32) 

Similarly, equation (2.27) requires an initial condition to solve for the pressure variation 

inside the bubble and it originates from the thermodynamic equilibrium at the interface. It 

is assumed that after the nucleation, the pressure inside the bubble is in equilibrium with 

the initial saturation pressure 0gp  and given as 

( ) 00g gp p= .           (2.33) 
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The initial condition for the equation (2.29) comes from the assumption that, after the 

nucleation of the bubble, concentration is uniformly distributed in the liquid and it is equal 

to the dissolved concentration 0c . Therefore, it is written as     

( ) 0,0c r c= .                     (2.34) 

The remaining two boundary conditions for the equation (2.29) are the equilibrium 

condition of the concentration at the interface, which is described by Henry’s law, and the 

concentration far away from the bubble which is assumed to be equal to the saturation 

concentration 

( ) ( ) ( ), t R h gc r R c t k p t= = = ,          (2.35) 

( ) 0, tc r c=  = .           (2.36) 

2.5 Concentration Gradient Approximation at the Interface 

The approximate parabolic concentration profile assumed by Rosner and Epstein, (1972)  

to the diffusion equation (2.29) is very well known in the literature for the diffusive bubble 

growth problems. This profile is used by several authors starting from Patel, (1980), Han 

and Yoo, (1981) to Elshereef et al. (2010) to determine the approximate solution to the 

diffusion equation. To appreciate and see the physical significance of parameters, the 

approximated solution of Patel (1980) is rederived in this section with the concentration 

profile assumption by Rosner and Epstein (1972). 
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Patel (1980) assumed a very thin boundary layer ( )t ( see figure (2-3)) that changes with 

the time and also assumed a parabolic concentration profile of Rosner and Epstein (1972)  

in the boundary layer region and given as 

( ) ( )
( )

( )

2

0 0, 1R

r R t
c r t c c c

t

 −
= − − − 

 
.       (2.37) 

 

 

Figure 2-3: Boundary layer around a bubble 

 

To get the concentration gradient at the interface, one can differentiate equation (2.37) with 

respect to r and evaluate the derivative at r = R and get the equation   

( )
( )

02 R

r R

c cc

r t=

− 
= 

 
.          (2.38) 

In the equation (2.38), Patel approximated ( )t  by integrating the diffusion equation 

from R  to ( )R t+  with the help of conservation of mass at the interface and assumed 
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parabolic concentration profile. He also assumed that  
( )

1
t

R

 
 

 
 which made him 

drop the terms that are the order 
( )

2

t
O

R

 
 
 

and arrived the equation for the boundary 

layer ( )t  which is given as 

( )
( ) ( )

( ) ( )

3 3

0 0

2

0

g g

L g R

p t R t p RM
t

R T c c R t




 −
=   − 

.       (2.39) 

One can substitute the boundary layer thickness equation (2.39) into equation (2.38)  and 

can obtain the equation for concentration gradient at the interface, which is in terms of 

bubble gas pressure, bubble radius, and concentration 

( ) ( )
( ) ( )

2 2

0

3 3

0 0

2L g R

r R g g

R T c c R tc

r M p t R t p R



=

− 
= 

 − 
,       (2.40) 

  substitution of equation (2.40) in the (2.27) to yields to  

( ) ( )
( ) ( )

22 2 2

0

2 3 3

0 0

6
3

g L g R

g

g g

dp D R T c c R t R
p

dt M p t R t p R R

    −
= −   

  −   

.     (2.41) 

To make the equation (2.41) in terms of pressure, the initial dissolved concentration and 

concentration at the interface are replaced with initial pressure and pressure inside the 

bubble, which yields to the following first-order Ordinary differential equation  

( ) ( )

( ) ( )

2
2 2 2 2

0

2 3 3

0 0

6
3

g gg L g h

g

g g

p p R tdp D R T k R
p

dt M p t R t p R R

    −
 = −  

  −   

.                 (2.42) 
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Equation (2.42) is the same equation (50) in Elshereef, Vlachopoulos and Elkamel, (2010), 

but in the equation (2.42) there is ( )R t  appearing in the numerator, whereas in the 

Elshereef et al. (2010), it is missing. However, equation (2.42) is dimensionally correct and 

the missing ( )R t  in Elshereef et al. (2010) is considered as typing mistake.  

One can solve the coupled equations (2.22) and (2.42) simultaneously for the bubble 

growth and pressure variation inside the bubble subjected to the initial conditions (2.31) to 

(2.33).  

2.6 Domain Mapping  

The interface of the bubble changes with time which makes the numerical procedure for 

solving the concentration distribution in the liquid more complicated and time-consuming. 

One of the methods which track the interface of the bubble with time is to re-mesh the 

computational domain at each time step, which not only costs computational time but also 

leads to computational errors. 

An effective way to tackle this problem is to transform the coordinate such that the interface 

in the transformed coordinate is fixed. Therefore, the new coordinate is written as 

( ) ( ),x r t r R t= − .                     (2.43) 

With the help of equation (2.43), the partial derivatives in the advection-diffusion equation 

are changed from r to new coordinate x as  

c c

r x

 
=

 
,            (2.44) 
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2 2

2 2

c c

r x

 
=

 
,            (2.45) 

c c c
R

t t x

  
= −

  
.           (2.46) 

Substituting in the equations (2.43-2.46) in (2.29) yield to  

 

( ) ( )

2 2

2 2

2c c RR c c
R D

t x x xx Rx R

      
 + − = + 

      ++   

.      (2.47) 

Similarly, the transformed equation (2.27) which describes the variation of pressure inside 

the gas bubble and the boundary conditions written as 

0

3
3

g g L

g

x

dp R T D c R
p

dt M R x R



=

  
= −        

,                (2.48) 

  ( ) 0,0c x c=  ,                   (2.49)

( ) ( ) ( )0, t R h gc x c t k p t= = = ,                                                     (2.50) 

( ) 0, tc x c=  = .           (2.51) 

2.7 Problem Non-Dimensionalization  

It is convenient to use the non-dimensional form of equations rather than dimensional form. 

Non-dimensional form of equations will give insights to the magnitude of a group of 

physical parameters, which will help to see which physical parameter dominates than 

others.  
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 Here the velocity is scaled with the characteristic velocity whose magnitude is 

( )0g a

L

p p



−
 , the radial position and the bubble radius is scaled with an initial bubble 

radius 0R  and it is convenient to scale the concentration with equilibrium concentration 0c

. And the time is scaled with the reference time scale whose magnitude is the ratio of initial 

bubble radius to characteristic velocity 0
ref

R
t

V
= . Note that the nondimensional quantities 

are represented by dropping the bar on it and are mathematically given as  

0

r
r

R
= ,   

0

c
c

c
= , 

ref

t
t

t
= , 

0

R
R

R
= , 

0g

p
p

p
= .                          (2.52) 

After rescaling the governing equations there are five non-dimensional groups, three of 

these are the familiar  Reynolds number Re, capillary number Ca, and Peclet number Pe  

and their definitions are given as 

0Re L

L

VR


=  , 

2

0LV R
Ca




= , 

0VR
Pe

D
= .                      (2.53a-c) 

 The additional two new non-dimensional numbers are named as Z  and I , which take 

the forms 

0

2

g

L

p
Z

V 
= , and  

L g hR Tk
I

M


= .                                                                (2.54a-b) 

Here Reynolds weighs between the inertia of the liquid to its viscosity and on the other 

hand, capillary number assesses between the surface tension and inertia of the liquid, 
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whereas the Peclet number competes between the convective mass transfer and diffusive 

mass transfer. The new number Z  balance between the saturation pressure and inertia of 

the liquid and finally the non-dimensional number I  compares between the solubility of 

the gas to its molecular weight. 

Therefore, the momentum equation (2.22) after scaling is written as  

( )23 2 4

2 Re
g a

R
RR R Z p p

RCa R
+ = − − − .       (2.55) 

Similarly, equation (2.48) and (2.42) which describes the pressure variation in the bubble 

takes the form 

0

3
3

g

g

x

dp I c R
p

dt RPe x R=

  
= −   

   
,              (2.56)

( )
( )

2
2

0

3

0 0

6
3

g gg

g

g g

p p Rdp I R
p

dt Pe Rp R p R

 −  
 = −  
 −  
 

.                                                 (2.57)    

And finally, the scalar diffusion equation (2.47) is scaled and takes the form 

( )

2 2

2 2

1 2c c RR c c
R

t x Pe x R x xx R

      
+ − = +      +  +   

.      (2.58)        

The rescaled boundary conditions subjected to (2.55), (2.56), and (2.58) are given as  

( )0 1R t = = ,            (2.59) 

( )0 0R t = = ,           (2.60) 
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( )0 1gp = ,            (2.61) 

( ),0 1c x = ,                                                        (2.62) 

( ) ( ) ( )0

0

0, t
h g

R g

k p
c x c t p t

c
= = = ,        (2.63) 

( ), t 1c x =  = .           (2.64)    

2.8 Numerical Implementation 

The equation (2.55) is a non-linear second order ODE which describes the bubble growth. 

If the pressure in the bubble is constant, one can solve the equation (2.55) for the bubble 

growth ( )R t and its interface velocity ( )R t , with the use of any readily available 

numerical time integration solver like Ode45 in MATLAB. Ode45 is a nonstiff solver 

which uses Runge-Kutta 4th and 5th order to evaluate the future time derivative value. But 

the difficulty arises when the pressure inside the bubble varies with time, and it then needs 

to be coupled with the scalar diffusion equation to solve for the concentration gradient at 

the interface. Also, the scalar diffusion equation (2.58) contains a highly non-linear 

convective term in terms of bubble radius and its interface velocity. This combination 

makes the equations stiffer and requires a solution of the hydrodynamic equation (2.55), 

the pressure variation in the bubble (2.56), and the diffusion equation (2.58) 

simultaneously. Therefore, solving the highly stiff equation with Ode45 takes a very long 

time. Instead of Ode45, a variable order of accuracy solver Ode15s is used to integrate the 

equations. Here Ode15s uses 1st to 5th orders, it changes the orders as and when required 

and takes much less time compared to the Ode45 solver. 
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Now to solve these two equations simultaneously, the second-order hydrodynamic 

equation (2.55) primarily needs to be converted into the system of first-order ODE’s by 

letting 1R y= . Therefore, the system of 1st order ODE’s are given as, 

2

dR
y

dt
= ,            (2.65) 

( ) 22 2
2

1 1 1

1 2 4 3

y Re 2
g a

dy y
Z p p y

dt y y Ca

 
= − − − − 

 
.      (2.66) 

This way, when equation (2.66) is integrated one can get 2y , which is bubble interface 

velocity, and similarly equation (2.65) is integrated to get 1y  which is the bubble radius. 

Since the equation (2.58) is partial in time and space, one can approximate either time or 

space using the finite difference methods. For convenience, the space partial derivative is 

approximated with finite-difference, up to the second-order accuracy.  

Let i  be the node position, and N be the total number of nodes (see figure (2-4)) in the gas-

liquid solution starting from the interface x=0 to the infinity. The central difference scheme 

is adopted for the derivates. Therefore, the finite difference approximation for the first and 

second-order derivatives with central difference schemes are written as 

1 1

2

i ic c c

x dx

+ − −
=


,            (2.67)   

 
2

1 1

2 2

2i i ic c c c

x dx

+ − − +
=


.                   (2.68) 
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The discretized form of the scalar diffusion equation using equations (2.67) and (2.68) 

takes the form 

 
( ) ( )

2

1 1 1 1 1 1

22

21 2

2 2

i i i i i i i i

i i

dc c c c c c c c RR
R

dt Pe x R dx dx dx x R

+ − + − + −
  − − + −     

= + − −          +       +   

, 

  (2.69) 

the discretized form of diffusion equation (2.69) needs to be solved at N-2 (1 i N  ) 

nodes starting from i=2 to i=N-1. Whereas at the interface, i.e. at i=1, the boundary 

condition (2.63) can be written in terms of ODE as 

 
01

0

h g gk p dpdc

dt c dt

 
=  
 

,                                           (2.70) 

And the final node serves as a boundary and the value of concentration is known from the 

boundary condition (2.64), therefore at i = N,  

1Nc = .            (2.71) 

 

Figure 2-4: Numerical domain 

Similarly, the concentration gradient at the interface in the equation (2.56) is discretized 

using the Forward finite difference scheme and is given as  
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1i ic c c

x dx

+ −
=


,                                  (2.72) 

the substitution of equation (2.71) in (2.56) results in 

13
3

g i i
g

dp I c c R
p

dt RPe dx R

+
 − 

= −   
   

.        (2.73) 

To be consistent with the notation used for the hydrodynamic ODE’s (2.65) to (2.66), the 

equations from (2.69) to (2.73) are rewritten in terms of y as follows. 

Therefore equation (2.73) in terms of y takes the form 

3 5 4 2
3

1 1

3
3

dy I y y y
y

dt y Pe dx y

 − 
= −   

   
.                                                    (2.74) 

Similarly, equations (2.69) to (2.71) are written as follows. 

At the interface ( )1i =  

3 0 3

0

y i h g
dc k p dy

dt c dt

+  
=  
 

,          (2.75) 

from node (1 i N  ), 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

2
33 1 3 1 3 1 3 1 3 1 3 13 2 1

222

1 1

21 2

2 2

ii i i i i ii

i i

y y y y y y ydy y y
y

dt Pe x y dx dx dx x y

++ + + − + + + − + + + −+
  − − +  −     

= + − −               + +        

                           (2.76) 

and at the final boundary node i N=  
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3 1Ny + = .            (2.77) 

Therefore, the total (N+3) equations starting from (2.65) to (2.66) and equations (2.74) to 

(2.76) are the final system of ODE’s that are solved simultaneously subjected to the 

boundary conditions (2.59) to (2.64). 

2.9 Summary 

In summary, a mathematical model is developed from the governing mass and momentum 

equations in a spherical system. The spherical symmetricity to the bubble is applied and 

justified how viscosity initially vanishes in the hydrodynamic equations. The equation for 

the variation of pressure inside the bubble which couples with diffusion equation and 

hydrodynamic equations is developed from the interface mass transfer phenomenon. An 

analytical solution to the diffusion equation is rederived to understand the importance of 

hydrodynamic parameters.  

The chapter is completed by introducing the nondimensional form of the developed 

equation and discussing the numerical procedure to solve the differential equations.  
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Chapter 3 

3 Results and Discussion 

This chapter starts by discussing the results obtained by the non-inertial bubble growth 

formulation presented by Elshereef et al., (2010) who used an approximate analytical 

solution to the diffusion equation developed by Patel (1980). Secondly, inertia is included 

in Elshereef et al. formulation and the results are compared with the non-inertial case. 

Thereafter, the results of the present developed numerical model are compared with 

experiments and existing theory, and finally, a detailed parametric study is carried out with 

the present developed bubble growth model.  

 3.1 Non-inertial Bubble Growth Model. 

In this section, we start by reproducing the non-inertial bubble growth results from 

Elshereef et al. (2010). To do so we neglect inertia in the hydrodynamic equation (2.55) 

and use Patel’s approximated concentration gradient (see equation (2.40)) in the equation 

(2.56). Therefore, after neglecting the left part (inertia) of equation (2.55), one can obtain 

the following first-order ordinary differential equation, which is presented as  

( )
Re Re

4 2
g a

ZR
R p p

Ca
= − − .           (3.1) 

The non-dimensional equation (3.1) is equivalent to Elshereef et al. (2010) equation 

number (38). This equation along with the equation (2.57), which is similar to Elshereef et 

al. (2010) equation number (50) can be integrated with respect to time, subjected to initial 
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conditions (2.59) and (2.61) to get the instantaneous bubble growth and pressure variation 

inside the bubble.  

 

Table 3-1: Flow parameters 

Parameters values 

Type of gas in the bubble 
2CO  

The molecular weight of the gas M  0.04401 kg/mol 

Initial radius 0R  
610−  m 

Initial pressure inside the bulb 0gp  4.7 atm 

Ambient pressure 
ap  1.01 atm 

Dynamic viscosity of the liquid 
L  4000  Pa. s 

The surface tension of the liquid   22.8 10−  N/m 

The density of the liquid 
L  880  kg/m3 

Ambient Temperature T  473  K 

Henry’s law constant 
hk  94.26 10−   m2/N 

Diffusion coefficient D  
105.5 10−    m2/s 

 

Since the equation (3.1) and (2.57) are in non-dimensional form, one can use the foaming 

process flow parameters presented by Elshereef et al. (2010) and Han and Yoo’s (1981) 

(see table (3.1)) to calculate the non-dimensional numbers that appear in our equations. 

These are calculated as Re = 64.5 10− , Ca = 13.17 , Z=1.27 , I =0.3 , and Pe= 43.7 10  
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respectively. It has been noticed that the equation (2.57) encounters singularity at t = 0, 

which creates initial complications in the numerical simulation. To avoid this problem the 

initial pressure (i.e. at t=0) 0gp  is considered lesser than unity but almost close to unity (

0 0 0.9999 1gp ). 

The results reproduced using equation (3.1) and (2.57) match with the Elshereef et al., 

(2010) bubble radius data qualitatively and quantitatively (see Figure (3-1)). The non-

dimensional interface velocity and pressure variation inside the gas bubble are shown in 

figures (3-2) and (3-3) respectively. From the plots, it is observed that the interface velocity 

of the bubble elevates to the peak in a short period and starts decreasing with time for the 

rest of bubble growth period, which indicates that the growth of the bubble is rapid at initial 

stages and decreases with time in the later stages. The same behavior can be observed from 

the pressure variation inside the bubble, where the pressure of the gas inside the bubble 

drops sharply at a small-time interval and remains nearly constant with time. This type of 

behavior suggests a diffusive dominant growth. However, due to the lack of results for the 

bubble interface velocity and bubble pressure variation in Elshereef et al., (2010), a 

comparison has not been made. 
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Figure 3-1: Bubble growth with time, reproduced results of Elshereef et al., (2010) 

 

 

Figure 3-2: Pressure variation inside the bubble 
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Figure 3-3: Bubble interface velocity 

 

3.2 Including Inertia in the Bubble Growth Model. 

In this section, the effect of liquid inertia from the surroundings on the bubble is explored. 

Inertia has been neglected in the literature because the effect of it on the bubble growth is 

negligible compared to concentration gradients (Elshereef et al. (2010)). However, it is 

interesting to see the effect of inertia together with diffusion on this type of problem (in 

polymers).  

Therefore, one can solve the complete coupled second-order ordinary differential equation 

(2.55) and (2.57) subjected to the initial conditions (2.59-2.61). The magnitudes of the non-

dimensional numbers remain the same as in the non-inertial case i.e. Re = 64.5 10− , Ca = 

13.17 , Z=1.27 , I = 0.3 , and Pe= 43.7 10 . The comparison between the non-dimensional 

magnitudes i.e. Reynolds number and Peclet number justifies the reason for neglecting the 

inertia of the polymer solution where the magnitude of the Reynolds number is no nearer 

to the Peclet number.  
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The comparisons of non-dimensional bubble radius, bubble interface velocity, and pressure 

variation inside the bubble with time are shown in Figure (3-4) to (3-6) respectively. As it 

was discussed in the above paragraph, these figures show that the effect of inertia is 

negligible in the case of polymers. This suggests that the bubble growth is rather dominated 

by the diffusion process rather than inertia. 

In Figure (3-5), the initial velocity of the bubble interface for the non-inertial case has 

nonzero value and on the other side, for inertial growth, the imposed initial value is zero. 

Yet, the overall trend and the peak magnitudes are the same for both cases. This suggests 

that the magnitude of the initial velocity of the bubble does not affect the overall bubble 

growth process.  

 

 

 

Figure 3-4: Bubble growth comparison for inertial and non-inertial case 



52 

 

 

 

Figure 3-5: Bubble interface velocity comparison with inertial and non-inertial cases 

 

Figure 3-6: Comparison of pressure variation inside the bubble for inertial and non-

inertial cases. 
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3.3 Numerical Solution to the Scalar Advection-Diffusion 

Equation  

This section starts primarily with a grid convergence test to the scalar advection-diffusion 

equation (2.58). After that, the numerical results from the present model are compared with 

the Elshereef et al. (2010) bubble growth models. Thereafter, a clear insight into the 

concentration of gas in the liquid is given and finally, we end this section by comparing the 

present developed numerical model with the experiment and other bubble growth models. 

 3.3.1 Grid Independence Test  

For the numerical simulations, the infinite spatial domain is assumed to be 10 times the 

maximum radius of the bubble. And the maximum radius of the bubble is anticipated from 

Figure (3-1) and dimensionally it is 250 µm. This suggests that the physical infinity of the 

domain is 25010=2500 µm and in terms of x  it is 2250 (Note that ( )x r R t= − ).  

Grid independence test resolves the potential numerical errors associated with the grid 

spacing. The idea of this test is to make the numerical solution independent of the grid 

space. Figure (3-7) shows the grid converges with increasing the number of divisions. It is 

seen that between the 100 and 1000 divisions there is a larger amount of variation in the 

magnitude of bubble radius i.e. 
1000 100

1000

15%
R R

R

 −
 

 
 , further refinement of the domain from 

1000 to 3000 grid cells, the radius of the bubble converged and the margin of error is 

calculated less than 2%. Therefore, to achieve accurate results in the numerical simulations, 

the domain is equally discretized with 3000 nodes. 
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Figure 3-7: Grid Independence Test of the Diffusion equation 

 

 3.3.2 Comparison of Present Numerical Model with the 

Approximate Solution 

Until now, the bubble growth dynamics were studied based on the approximate solution to 

the diffusion equation. In this section, the developed numerical model results (equation 

2.55,2.56 and 2.58) are compared with the results of the Elshereef et al. (2010) models 

which comprise of the equations (2.55) and (2.57). 

From Figure (3-8), it is seen that the growth rate of the bubble is predicted higher with the 

numerical model than the approximated analytical model. The numerical model predicts 

the bubble radius close to 300 µm. On the other hand, the approximated analytical model 

predicts the maximum radius of 230 µm. The difference in the growth behavior can be 

understood from Figure (3-9), where initially the interface velocity of the bubble for the 

numerical model is comparatively higher than the analytical model. This behavior signals 
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that at the initial stage’s diffusion of gas into the bubble is underestimated by the 

approximated diffusion solution.  

 

Figure 3-8: Bubble growth comparison between present and approximated model. 

 

 

Figure 3-9: Bubble interface velocity comparison between present and 

approximated models 
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3.3.3 Concentration in the Liquid 

So far in the literature, the variation of concentration of gas in the liquid side has not been 

reported and investigated properly. For instance, Elshereef et al., (2010) reported that his 

second comparison model which is developed by Amon and Denson (1984) has solved the 

advection-diffusion equation using finite difference approximation. However, the 

concentration profiles in the boundary layer on the liquid side have not been reported. In 

this section, we present the concentration profile of the gas in the liquid explicitly.  

In Figure (3-10), the concentration profiles with time at different locations starting from 

the interface to a position x=400 are shown. Here x= 400 represents the end of the boundary 

layer. The boundary layer length is the space between the interface and the position x where 

the concentration gradients can be observed. 

Similarly, in Figure (3-11) the variation of the concentration profile with space at different 

time steps is shown.  From the numerical results, it has been noted that the non-dimensional 

distance from the interface to the position where the concentration gradient no longer exists 

is 399.13, which is 3.9913 410− m in dimensional length. 

It is expected that as we move further away from the interface towards infinity, the 

concentration gradient will be decreasing, and this trend can be observed from Figure (3-

10). One can find the cumulative boundary layer length (399.13) from Figure (3-9). To find 

the instantaneous boundary layer thickness, one has to subtract the bubble radius at that 

instance from the cumulative boundary layer length.   
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Figure 3-10: concentration profiles reported at different positions with time 

 

Figure 3-11: Concentration profiles reported in the liquid at different time values 

 

 3.3.4 Concentration Profile & Boundary Layer Comparison   

As discussed earlier in section 2.5, a parabolic profile in the boundary layer thickness (see 

equation 2.37) was assumed in the literature to find the approximate solution to the 

diffusion equation. In this context, a comparison is made between the classical 

concentration profile that has been reported in the literature and the concentration profile 
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that has been obtained in the current study. To do so, the concentration profile equation 

(2.37) in non-dimensional form and in terms of x coordinate takes 

( ) ( )
2

0 0x, 1R

x
c t c c c



 
= − − − 

 
.                       (3.2) 

Figure (3-12) shows the concentration profiles at different times, between the current 

numerical study (solid lines) and the assumed concentration profile (dashed lines). It is 

found that the equation (3.2) deviates from its square form when it is compared with the 

numerical solutions. The numerical profile turned out to be much steeper than the 

approximated profile, and the numerical data fits with power 5.5 rather than power 2 in the 

equation (3.2). Therefore, the obtained numerical concentration profile takes the form 

( ) ( )
5.5

0 0x, 1R

x
c t c c c



 
= − − − 

 
.          (3.3) 

In Figure (3-13), a single profile comparison is made at t = 20 sec to emphasize the 

difference between the equation (3.2) and (3.3). It is noticeably evident that the 

approximate solution underpredicted the concentration of gas diffusing through the 

interface into the bubble. 

To supplement the above statement, a boundary layer comparison is made between the 

numerical study and literature. According to Moreno Soto et al., (2019) a diffusive 

boundary layer is developed around the bubble as it expands and has the value  

Dt = .                 (3.4) 
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Note that the equation (3.4) does not account for the convection and inertia that caused due 

to movement of the interface of bubble. Figure (3-14) and Table (3-2) show the 

dimensional boundary layer plot and values between the current study, equation (2.39), and 

(3.4) respectively. It has been observed that the numerical simulation ( red line) has 

predicted a larger boundary layer around the bubble than the others. The results seem 

convincing because in the numerical investigation the full equation is solved whereas in 

the literature convection part of the diffusion equation is neglected. 

 

Figure 3-12: Concentration profile comparisons 
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Figure 3-13: Concentration profile variation with literature assumed profile 

 

Table 3-2: Values of boundary layer thickness comparison 

Time 

t sec 

Boundary layer 

thickness 

Numerical   

Approximated 

  

Theory 

  

5sec 5.7e-04 1.35e-04 9.7e-05 

10 8.8e-04 1.83e-04 1.34e-05 

14 sec 1.0e-03 2.22e-04 1.55e-04 

20 sec 1.3e-04 2.6e-04 1.85e-04 
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Figure 3-14: Boundary layer thickness comparisons 

 

 

 3.3.5 Comparison with Existing Experiments and Theory 

A thorough analysis of the bubble hydrodynamics has resulted in producing promising 

outcomes. The present section focuses on the comparison between the numerical model 

developed in this work with the available theory and experimental data. 

Elshereef et al., (2010) stated that the bubble growth model developed by Patel (1980) and 

the numerical model developed by Amon and Demson (1986) were not able to justify the 

experimental data of Han and Yoo (1981). However, his study shows that Amon and 

Denson's model was able to predict Han and Yoo experiment data much closer than the 

Patel model.  

A comparison was made between the present model and experiment data of Han and Yoo 

(1981) along with the Patel (1980) and Amon and Denson models in Figure (3-15). It is 

evident that from the plot the present numerical model was able to capture the experimental 
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data accurately than the other two models. At the initial stages, it has been observed that 

there is a discrepancy between the bubble growth models when compared to the 

experimental data of Han and Yoo (1981). This type of divergence at the initial stage is 

expected, since the polymer used by Han and Yoo for the experiment exhibits the 

viscoelastic effect, whereas other numerical models stated in the thesis including the 

present numerical model and were developed based on pure Newtonian fluid assumptions. 

Similarly, in Figure (3-15), the present model and experimental data were compared with 

Amon and Denson bubble growth model. It has been observed that at initial stages the trend 

of the model proposed by Patel and Amon and Denson were similar and at later stages, 

Amon and Denson's model deviates from the Patel model and move towards the present 

numerical model. Overall, the present model shows more promising and accurate 

predictions than previous models.  

 

Figure 3-15: Present model comparison with experiment and theory 
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 3.4 Parametric Study of Bubble Growth 

Equations (2.55), (2.56), and (2.58) which constitutes the full bubble growth model 

emphasize that Re, Ca, Pe, Z, and I are the numbers that control the bubble growth. These 

non-dimensional numbers relate to the physical parameters like an initial bubble size, 

viscosity of the liquid, surface tension of the liquid, diffusivity of gas and solubility, etc. A 

small change in these field parameters may affect the bubble growth. In the present section, 

an extensive study is carried out to see the effect of these parameters on bubble growth.  

To do so, we only change a single parameter in non-dimensional numbers which is 

independent of other non-dimensional numbers. For example, to study the effect of 

viscosity of the liquid, we only change the L  parameter in the Reynolds number equation 

(2.53a), and to study the effect of surface tension we only change the  in the Capillary 

number equation (2.53b) and so on. 

To observe the effects of these parameters, we need a primary or base case result to perform 

a relative comparison. Therefore, we consider the present numerical model results shown 

in Figure (3-8) as the primary case. 

 3.4.1 Effect of viscosity on the bubble growth 

To see the effect of viscosity, only Reynolds number is varied, keeping other non-

dimensional numbers constant as we discussed in the earlier section. By the definition of 

Reynolds number (see equation (2.53a)), higher the Reynolds numbers lower the viscosity 

and vice versa. In the base case, the Reynolds number is 4.5 610− , and this number is varied 

as low as 4.5 710−  and high as 4.5 510− .  



64 

 

 

In Figure (3-16), at higher Reynolds numbers ( 54.5 0Re 1 −=  ), the bubble growth is 

higher and at lower Reynolds numbers ( 7Re 4.5 10−=   ), the bubble growth is slower. 

This type of behavior is predicted because, at lower viscosity, the normal stress in the liquid 

will be lower which results in a faster and higher bubble growth rate. On the other hand, if 

the viscosity is high, the normal stress will be high which retards the bubble growth. This 

behavior can be well understood from Figure (3-17), where the initial interface bubble 

velocity is high at higher Reynolds number, suggesting a rapid bubble growth. And also, 

at lower Reynolds number, retardation of bubble interface velocity is seen, expressing that 

the bubble growth rate is slower.  

The variation of pressure can be noticed between the high and low Reynolds numbers in 

Figure (3-18). Lower the Reynolds number lower the reduction of pressure in the bubble 

which in turn lowers the bubble growth. Consequently, at high Reynolds number, the 

pressure inside the bubble decreases rapidly suggesting that the bubble is grown very 

rapidly. 
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Figure 3-16: Effect of Reynolds number on bubble radius 

 

 

Figure 3-17: Effect of Reynolds number on bubble interface velocity 
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Figure 3-18: Effect of Reynolds number on the pressure inside the gas 

 

3.4.2 Effect of surface tension of the liquid on the bubble 

growth 

The effect of surface tension on the bubble growth is carried out with a similar approach 

that was demonstrated in the previous section. Capillary number is varied from the 

reference number keeping other non-dimensional numbers constant. The reference 

capillary number is 13.17 and is varied in the range of low magnitude (Ca =3) and high 

magnitude (Ca = 23). 

Similar to the varying Re case discussed in the previous section, here, higher the Ca, lower 

the surface tension, and vice versa. It is expected that the interfacial tension tries to retard 

the bubble growth by opposing the motion of the bubble boundary and similar behavior is 

observed from the numerical simulations. 
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From figures (3-19) -(3-21), at higher Ca, a considerable change in the bubble growth has 

not been observed. However, there is evidence that at lower Ca, the bubble growth rate is 

retarded.  

 

 

Figure 3-19: Effect of Ca on Bubble growth 

 

Figure 3-20: Effect of Ca on bubble interface velocity 
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Figure 3-21: effect of Ca on Pressure inside the bubble 

 

3.4.3 Effect of system pressure on bubble growth  

In this section, the effect of system pressure Pa is studied. The system pressure is the 

ambient pressure where growth of the bubble takes place. For instance, in the case of 

foaming, the system pressure is considered as the mold pressure, where bubble growth 

occurs upon injecting polymer melts in it (Han and Yoo 1981). Similarly, in carbonated 

beverages, system pressure can be referred to as the ambient pressure. 

It is important to see how system pressure affects the overall growth of the bubble. 

Therefore, three cases were taken, in which one is the reference case Pa=0.21 (polymer 

mold case), the case of high-pressure Pa =0.31, and the lower pressure case Pa=0.10. Note 

that the initial gas pressure (pg0) in the bubble is kept constant for all the cases.  
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One can see from the equation (2.55) the initial magnitude of ( )g ap p−  defines the rate of 

bubble growth. Since the initial pressure gp = 0gp  is the same for all the cases, and 0gp >

ap , higher the ap , lower will be the pressure difference and lower will be the bubble 

growth. 

There is a clear indication from the Figures (3-22) – (3-24), as the system pressure 

increases, the bubble growth decreases, and vice versa. On decreasing the system pressure, 

it was observed that there was a large deviation between the base case and lower system 

pressure case. On the other hand, while increasing the system pressure, it was observed that 

there was a comparatively smaller deviation between the base case and lower system 

pressure case. 

 

 

Figure 3-22: Effect of system pressure on bubble growth 
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Figure 3-23: Effect of system pressure on bubble interface velocity 

 

Figure 3-24: Effect of system pressure on the gas pressure inside the bubble 
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 3.4.4 Effect of Solubility and Diffusion Parameters on Bubble 

Growth 

Solubility and diffusivity of the gas in the liquid solution plays a major role in the bubble 

growth process. The present part focuses on studying the effect of both parameters. From 

the definition of Peclet number (2.53c), only the diffusion coefficient is varied to maintain 

the other numbers unchanged.  

Therefore, a lower Pe 33.7 10=   (high diffusion coefficient) and higher Peclet number 

Pe 53.7 10=   (low diffusion coefficient) are considered. The magnitudes are compared 

with the base case, whose Peclet number magnitude is 43.7 10 . Figure (3.25) shows 

that at a lower Peclet number, the growth rate of the bubble is higher and at higher Peclet 

number the growth rate is slower. This type of trend is predicted since at a higher diffusion 

coefficient, the rate of gas flow through the interface is high and vice versa.  

Similarly, to see the effect of solubility on the bubble growth, the non-dimensional number 

I (see equation (2.54b) ) which relates to the Henry's constant 
hk  is varied. Here, the non-

dimensional number I increases on increasing hk  and decreases by decreasing the hk . The 

magnitude of the non-dimensional number I for the base case is 0.33 and this is varied 

between the lower number I = 0.1 to a higher number I = 1. 

Figure (3-26) suggests that, on increasing the solubility of a gas in the liquid, the bubble 

growth rate is faster and lower the solubility of the gas in the liquid, lower will be the 

growth rate. This result is close to the physical observations i.e., at higher solubility, the 
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amount of gas available in the liquid will be high, due to which the mass transfer from the 

liquid side to the bubble will be high resulting in a higher bubble growth rate. 

From the results, an interesting phenomenon has been observed i.e. the effect of diffusion 

and solubility are closely related. From Figure (3-27), both the cases of diffusion and 

solubility effects on the bubble growth are shown. It indicates that the effect of these 

parameters is almost similar to overall bubble growth.  

 

Figure 3-25: Effect of diffusion coefficient on bubble growth 

 

Figure 3-26: Effect of Henry's constant on bubble growth 
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Figure 3-27: Relation between diffusion and solubility of a gas in the liquid 

 

3.5 Summary 

To summarize, the numerical approach adopted to solve the system of non-linear coupled 

equations were validated qualitatively and quantitatively by reproducing the results of non-

inertial bubble growth from Elshereef et al. (2010). The numerical solution was carried out 

to the complete scalar advection-diffusion equation and compared with the classical 

approximated solution. It has been observed that the numerical solution predicted higher 

bubble growth. The comparison of present results with the experimental data of Han and 

Yoo (1981) suggested that the present results accurately predicated growth in comparison 

to the available theory. 

 The effect of viscosity, surface tension, system pressure, diffusion, and solubility of the 

gas on the bubble growth was studied. It was observed that surface tension played a 

minimal role in the bubble growth, whereas viscosity and system pressure had a significant 
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effect. The numerical results suggested that the effect of diffusion and solubility contributes 

equally to the bubble growth effect.  
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Chapter 4 

4 Concluding Remarks 

The hydrodynamics of a single bubble in the pool of Newtonian liquid that expands due to 

mass transfer is investigated in the current thesis. This study directly relates to the foaming 

process, carbonated beverages, and any other problem in which the bubble grows due to 

mass transfer.  

Rigorous non-dimensional formulations were derived to incorporate interfacial, viscosity, 

diffusivity and solubility effect on bubble growth. Especially the inertia of the liquid is 

included in the formulation along with the full scalar advection-diffusion. A strong 

numerical approach to the highly non-linear stiff coupled equations was discussed. The 

moving interface of the bubble is tackled by mapping the domain to the new coordinate 

(x).  

The non-inertial hydrodynamic formulation from literature is rederived and the results were 

reproduced to validate the numerical methodology that is adopted for this thesis.  

Thereafter, inertia is added to the literature formulation, in which an approximate solution 

is used for the advection-diffusion equation. An attempt is made to study why inertia does 

not affect bubble growth in highly viscous liquids like polymer melts. 

The results obtained with the present formulation and numerical solution to the advection-

diffusion equation were compared with the Elshereef et al. (2010) models. The present 

numerical model predicts accurate bubble growth in comparison to Elshereef et al. (2010) 

models. These results were validated by comparing with the Han and Yoo (1981) 

experimental data set.  
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It has been never reported in the literature about the behavior of the concentration of gas in 

the liquid. In this thesis, a clear insight is provided on the concentration profiles of gas in 

the liquid and a boundary layer variation around the bubble. A simple numerical 

investigation was conducted to show the variation of the approximated diffusion equation 

results with the present numerical results. It has been shown that the concentration of the 

gas profile in the liquid deviates from equation (3.2). 

With the validated numerical model, an intensive parametric study was carried on the 

bubble growth. The results show that the rate of bubble growth primarily depends on the 

viscosity of the liquid, initial pressure difference, diffusion, and solubility. The effect of 

surface tension has a limited effect on the overall bubble growth process. 

It has been concluded that the higher viscosity of the liquid will lower the bubble growth 

rate and vice versa. The initial pressure difference between the bubble and the system has 

a huge impact on the overall bubble growth process. Higher the initial pressure difference, 

greater is the bubble growth, and with lower initial pressure difference the bubble growth 

is limited. 

The investigation shows that the effect of diffusion and solubility of the gas in the liquid 

plays an important role in the overall bubble growth process. Higher the magnitude of these 

parameters, the higher will be the bubble growth rate, and vice versa. It is concluded that 

these parameters have a similar effect on bubble growth.  

4.1 Future work 

The present thesis can be extended to the process where the bubble expands due to mass 

and heat transfer processes. A similar numerical approach that has been carried out to the 
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advection-diffusion equation can be applied to the energy equation. More accurate 

discretization methods like finite element method, finite volume method, and spectral 

analysis can be adopted to solve the scalar diffusion equation and the one-dimensional 

problem can be expanded to two-dimensional axisymmetric. 

In the present thesis, the effect of the viscoelasticity of the fluid (polymers) is not included 

in the hydrodynamic equation, which can be incorporated in future work.  
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