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Abstract 

Reliable estimation of precipitation, as the most important variable in hydrological modelling, 

is crucial for water resources management. Rain gauges that provide precipitation 

measurements at point scale have inherent limitations and difficulties in remote regions and 

complex terrains due to accessibility, gauge undercatch, among others. Alternatively, satellite 

and radar precipitation data can estimate precipitation at high spatial and temporal resolution 

by utilizing several types of space and ground-borne sensors. However, due to the indirect 

estimates of precipitation by remotely sensed products, their measurements are subject to 

systematic biases and are required to be evaluated and bias-adjusted before using at a specific 

area.  

This study investigates the performance of multiple high-resolution remotely sensed 

precipitation estimates at hourly and daily time scales over Canada for 2014-2018. Four 

products of the recently released Integrated Multi-satEllite Retrievals for Global precipitation 

measurement (IMERG-V06) and the Multi-Radar Multi-Sensor (MRMS) Precipitation Rate 

data for different seasons are analyzed. Evaluations are based on a suite of metrics to assess 

different characteristics of precipitation estimates using quality-controlled hourly gauge data 

considered as the truth. The results suggest that Calibrated precipitation (PrCal) outperforms 

the other IMERG products and estimates the amount of precipitation relatively well particularly 

over the Prairies and during fall and summer. Over the western and eastern coastal regions, 

IMERG tends to overestimate precipitation intensities by around 25%. The discrepancy 

between satellite and ground-based data is higher for more intense precipitation events. Further 

analyses indicate that while MRMS tends to overestimate the amount of precipitation, it 

outperforms the IMERG products based on several metrics, especially in detecting the 

occurrence of precipitation over the eastern coastal regions. Overall, the study of IMERG V06 

and MRMS precipitation estimates at a relatively high temporal resolution indicates that both 

products have the potential to complement ground-based observations over Canada.  

Further, a regression quantile mapping method is developed to adjust the systematic spatial and 

temporal biases of IMERG PrCal across Canada. For this purpose, several climatic and 

topographic explanatory variables are resampled and applied in the regression-based model to 

extend satellite bias correction over the ungauged pixels. The proposed method shows 

promising results by reducing RBias (by ~32%) and increasing correlation values (by ~ 0.31). 

The bias-corrected precipitation product (for 2014-2018) can be applied by researchers and 
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various stakeholders, across Canada, for the analysis of extreme precipitation events, water 

resources management, design of infrastructure, among others.  

Finally, the application of daily IMERG data in streamflow simulation is demonstrated by 

using the original data to drive the calibrated Raven rainfall-runoff model over the Bathewana 

watershed in southern Ontario for 2001-2015. By comparing with the observed flow, the 

obtained results indicate that IMERG tends to underestimate the streamflow, however, it is able 

to preserve its temporal variation reasonably well. Overall, results suggest that further 

improvements of IMERG data should be considered by its algorithm developers to enhance the 

quality of this product in cold weather conditions.   

Keywords 

Precipitation, IMERG V06, MRMS, QPE Evaluation, Remotely Sensed Data, Regression 

Quantile Mapping, Covariate, Interpolation, Clustering, Hydrological Model, Raven, Canada. 
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Lay Summary 

Precipitation is the most important component in hydrological applications. Therefore, reliable 

measurement of precipitation is crucial for having more accurate monitoring of water resources 

supplies and forecasting extreme weather events such as floods. However, due to the high 

spatiotemporal variability of precipitation, its accurate estimation is a challenging task 

especially over complex terrain where the ground-based rain gauges are either sparse or 

nonexistent. Recently for dealing with the limitations of ground-based stations availability, 

remotely sensed algorithms that use satellite and radar data have been developed to estimate 

precipitation. Nevertheless, the remote sensing-based data need to be evaluated before using 

due to the indirect nature of their estimates. The most well-known and recently released 

satellite-based precipitation products named Integrated Multi-satEllite Retrievals for Global 

precipitation measurement (IMERG-V06) and the Multi-Radar Multi-Sensor (MRMS) data are 

evaluated in this study to investigate the performance of such a high spatiotemporal resolution 

precipitation data over Canada. Although the findings of this study indicate the promising value 

of satellite and radar precipitation over most parts of the country, it still shows bias in some 

regions. Therefore, a Regression-based Quantile Mapping (RQM) method is developed to 

correct the biases associated with the IMERG data spatially and temporally over the entire 

country. The proposed framework can significantly improve the IMERG data in different 

regions during the study period (2014-2018) and provide a high quality of precipitation data 

over Canada. In addition to statistical evaluations and bias correction, the ability of IMERG 

precipitation in daily streamflow simulation is assessed by forcing it in a calibrated 

hydrological model. For this purpose, the Raven model calibrated by using the ground-based 

rainfall data over the Batchawana as a small watershed (1280 km2) located in the southern part 

of Ontario, Canada is selected. Due to the error of input IMERG precipitation as well as the 

uncertainty of the calibrated Raven model, the output simulated streamflow is not promising. 

However, simulated streamflow by forcing IMERG data can capture the trend of observed 

discharge reasonably. Overall this study provides insights into remotely-sensed data over 

Canada and helps to have a high spatiotemporal resolution of precipitations.    
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Chapter 1

1.Thesis Overview 

1.1. Background 

Precipitation is the key input variable to hydrological models and plays an important role in 

water resource planning including flood and drought analysis, monitoring, and forecasting. 

However, its accurate estimation is challenging particularly in areas with sparse observations 

and regions with complex terrains. Although direct precipitation measurements using rain 

gauges are considered as the most accurate observations (Petersen et al., 2005, Singh and 

Najafi, 2020), there are limitations associated with the at-point representation of an entire 

domain, and inability to capture precipitation variability at high resolution (Villarini et al. 

2008). Therefore, there is considerable interest to use indirect Remotely Sensed Estimate (RSE) 

data such as radar and satellite products as they provide fine-scale representations of the 

amount, frequency, and distribution of precipitation (Sungmin et al., 2017; Sun et al. 2018; 

Wen et al. 2018).  

Flooding is the most common natural disaster in Canada and among the costliest according to 

Public Safety Canada. Many historical flood events in major river systems and populated areas 

across Canada are associated with heavy rain and subsequent excessive runoff (Lemmen et al. 

2016). Therefore, reliable precipitation data with high spatial and temporal resolution are 

essential for flood risk mitigation and water resources management particularly in mountainous 

regions with limited accessibility. Nonetheless, Canada like many other countries suffers from 

a lack of dense network of gauges especially in remote areas such as the Arctic and high 

elevation zones (Mekis et al., 2018). The existing point coverage of gauge measurements may 

not represent the highly variable spatial distribution of precipitation properly (Martinaitis et al., 

2015). The RSE products can address these limitations by providing high spatial and temporal 

coverage of precipitation that can be used to detect storm events, assess flooding, and develop 

mitigation measures. 

https://www.thecanadianencyclopedia.ca/en/article/rain/
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It is worth mentioning that, RSEs due to the indirect nature of precipitation estimates are 

subject to the systematic biases which can propagate into hydrological models and lead to 

uncertainty in streamflow prediction. Therefore, these datasets are required to be corrected 

before using at each specific region.  

Over Canada, only a few studies have analyzed RS data and analysis of most recent products 

at high spatial and temporal resolution is lacking. In addition, although several methods have 

been developed to adjust satellite biases, the challenges of improving this data spatially and 

temporally still remain.  

1.2. Research Objectives 

The overall objective of this research is to develop a reliable precipitation product based on 

remotely sensed precipitation estimates at a high spatiotemporal resolution over Canada. 

Therefore, the first objective is to evaluate the biases associated with two widely used and most 

well-known RSE datasets including Integrated Multi-satEllite Retrievals for Global 

precipitation measurement (IMERG-V06) and the Multi-Radar Multi-Sensor (MRMS) 

products across Canada using ground station rain gauges. The second objective is to correct 

the bias of IMERG data as a product covering the entire country of Canada and useful in areas 

with sparse ground observations. For this purpose, in addition to rain gauge data, several other 

reanalysis covariates are extracted and utilized. Finally, the third objective considers the 

application of satellite rainfall data in the hydrology field by using a calibrated rainfall-runoff 

hydrological model over a small watershed located in southern Ontario. In this study, 

evaluations of the RSE products are performed using available rain gauge records across 

Canada, which has a diverse hydroclimate due to its extensive geographical features, latitudinal 

extent, and variations in topography 

1.3. Research Questions 

The following are the research questions addressed in the study.  

(1) What are the characteristics of RSE biases in comparison with ground station data?  
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(2) To what extent are satellite and radar precipitation data reliable over different parts of 

Canada? 

(3)  How to correct the bias of satellite gridded data by using a sparse network of ground 

truth rain gauges?  

(4) How to correct the bias of satellite gridded data over the ungauged area?  

(5) To what extent can satellite precipitation data predict streamflow in small basins? 

 1.4. Summary of Chapters 

This thesis consists of six chapters. After an overview in chapter one, the background literature 

is presented in chapter 2. It provides a summary of previous studies regarding the evaluation 

as well as the application of different satellite and radar precipitation products over several 

regions around the world. In this chapter in addition to introducing different satellite and radar 

precipitation products, the robustness of these data in different climatic conditions is discussed 

and their applications in hydrological modeling are summarized. Having more information 

concerning RSE precipitation products and their potential performances provides hydrological 

and meteorological modelers with higher quality data which can be useful in more accurate 

predictions of future rainfall, streamflow, and floods.  

Chapter 3 discusses the evaluation of four products of the most recently released satellite 

IMERG version 6 as well as a combined radar data named MRMS over their entire coverage 

in Canada. Here, the systematic bias of both datasets is extracted at hourly time scale for 

different climatic regions. Several metrics are calculated and the distribution of fundamental 

bias indices are provided spatially and temporally over the study area. The performance of 

different products and their variations due to the inherent uncertainty in different climatic and 

topographic conditions are quantified and discussed in detail. It is worthwhile to mention that, 

for the first time MRMS as the most high quality integrated radar precipitation data is assessed 

over its domain covering the southern part of Canada. This gridded precipitation QPEs data 

help to have a better understanding of extreme rainfall events as gauges and satellite-borne 

systems, providing a gap in knowledge of extreme precipitation (Lengfeld et al. 2020).   
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Chapter 4 as another main chapter of the thesis, proposes a framework for spatiotemporal bias 

correction of satellite IMERG daily data over the entire country of Canada considering areas 

where no ground observation exists. The method is based on both quantile mapping and 

regression between precipitation as the dependent variable and several independent predictors 

at each pixel resolution. By extracting, preprocessing, and providing required data including 

reanalysis climatic covariates, ground observations and satellite estimates during five years 

from 2014 to 2018, the methodology is developed and applied first over gauged pixels. After, 

the parameters computed as the output of the quantile regression model at each gauged pixel 

are interpolated and distributed over all other ungauged pixels and imply into the covariates to 

extract the bias-corrected satellite data at those ungauged pixels. A combination of various 

statistical techniques is utilized in this chapter to make a more reliable method of bias 

correction.  

As the last main section, chapter 5 provides a hydrological evaluation of IMERG data in a 

small basin in southern Ontario. By using IMERG precipitation data to drive the Raven 

hydrological model, the performance of this satellite product in hydrological simulation is 

assessed. Raven is a robust and flexible hydrological modeling framework that can be as simple 

as a single watershed lumped model with only a handful of state variables to a full semi-

distributed system model with physically-based infiltration, snowmelt, and routing. In this 

study, the calibrated semi-distributed Raven model using ground station rain gauge is used and 

just the input precipitation data is replaced by original satellite data to characterize the 

uncertainty associated with IMERG rainfall product in the hydrological application.  

Finally, chapter 6 provides the concluding remarks and proposes future research in the field of 

remotely sensed precipitation data.  
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Chapter 2  

2. Background Literature 

2.1. Satellite Precipitation Products  

Quantitative precipitation information is primarily derived from rain gauges, weather radar, 

and satellite measurements. The rain gauge directly measures the precipitation and is still 

deemed as the most accurate means for observing rainfall, but it has accuracy limitations due 

to measuring rainfall at a point scale (Zhang et al., 2018). Another challenge is related to 

distinguishing between different precipitation phases (liquid and solid) particularly by 

conventional ground stations. Therefore, considering the limitations associated with rain 

gauges, remotely sensed precipitation products that provide higher spatial resolution can be 

utilized. In general, there are two types of remotely sensed data for estimating precipitation; 

weather radar provides precipitation occurrence and amount at the relatively high 

spatiotemporal resolution, however, global weather radar coverage is poor with sparse 

distribution over most parts of the world, especially in developing countries and ocean areas 

(Zhang et al., 2019). With advanced infrared (IR) and microwave (MW) instruments, satellite 

observations make up for these deficiencies by providing coverage that is more spatially 

homogeneous and temporally complete for vast areas of the globe (Sun et al., 2018). Currently, 

satellites can provide precipitation estimates globally by using three different categories of 

sensors including visible/IR (VIS/IR) sensors on geostationary (GEO) and low Earth orbit 

(LEO) satellites, passive MW (PMW) and active MW sensors on LEO satellites (Sun et al., 

2018). A GEO satellite is an earth-orbiting satellite, placed at an altitude of approximately 

35,800 kilometers directly over the equator that revolves in the same direction the earth rotates. 

On the other hand, an LEO satellite is an Earth-centered orbit with an altitude of 2,000 km or 

less (approximately one-third of the radius of Earth) with at least 11.25 periods per day 

(an orbital period of 128 minutes or less) (Sampaio et al., 2014). It is also noted that IR sensors 

can estimate precipitation based on the cloud top temperature and its link with the probability 

and intensity of rainfall at the ground, however, PMW radiometer provides a more direct 

measurement of precipitation as the PMW radiation can sense through clouds and is sensitive 

to precipitation-sized droplets (Sun et al., 2018). As IR sensors onboard GEO satellites provide 

higher temporal resolutions (30 min), and PMW sensors onboard LEO satellites provide more 

https://en.wikipedia.org/wiki/Geocentric_orbit
https://en.wikipedia.org/wiki/Altitude
https://en.wikipedia.org/wiki/Earth_radius
https://en.wikipedia.org/wiki/Orbital_period
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accurate data, usually combining both sensors would increase the spatiotemporal accuracy and 

coverage of precipitation data (Sorooshian et al. 2002).  

National Aeronautics and Space Administration (NASA) and the Japan Aerospace and 

Exploration Agency (JAXA), the Tropical Rainfall Measurement Mission (TRMM) and Global 

Precipitation Measurement (GPM) mission have built unprecedented international cooperation 

in space asset sharing and scientific collaboration to advance precipitation estimation from 

space for research and applications. A consortium of international partners provides consistent 

precipitation estimates from a constellation of satellites combined active/passive sensor 

measurements. The GPM “Core” satellite is carried by NASA and JAXA, however, it is an 

international satellite mission, specifically designed to unify and advance precipitation 

measurements from research and operational microwave sensors for delivering next-generation 

global precipitation data products.  

Through bilateral agreements with either NASA or JAXA, GPM achieves global coverage with 

a high sampling frequency by relying on both existing satellite programs and new mission 

opportunities from its partners. Each constellation member may have its unique scientific or 

operational objectives but contributes microwave measurements to GPM for the generation and 

dissemination of uniform global precipitation products for worldwide user communities. 

In addition to the DPR and GMI (GPM Microwave Imager (GMI) and Dual-frequency 

Precipitation Radar (DPR) instruments) on the GPM Core Observatory, the GPM constellation 

satellites have the following groups of conical-scanning microwave imagers: 

Special Sensor Microwave Imager/Sounder (SSMIS) instruments on U.S. Defense 

Meteorological Satellite Program (DMSP) satellites, 

The Advanced Microwave Scanning Radiometer-2 (AMSR-2) on JAXA’s Global Change 

Observation Mission - Water 1 (GCOM-W1) satellite, 

The Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel 

microwave humidity sounder (SAPHIR) on the Megha-Tropiques satellite provided by the 

Centre National D’Etudies Spatiales (CNES) of France and the Indian Space Research 

Organisation (ISRO), 

The Microwave Humidity Sounder (MHS) instrument on the National Oceanic and 

Atmospheric Administration (NOAA)-19 satellite, 

https://gpm.nasa.gov/education/glossary#precipitation
https://gpm.nasa.gov/education/glossary#satellite
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MHS instruments on the MetOp series of satellites launched by the European Organisation for 

the Exploitation of Meteorological Satellites (EUMETSAT), 

The Advanced Technology Microwave Sounder (ATMS) instruments on the National Polar-

orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), 

ATMS instruments on the upcoming NOAA-NASA Joint Polar Satellite System (JPSS) 

satellites, 

A microwave imager planned for the Defense Weather Satellite System (DWSS), 

(http://pmm.nasa.gov/GPM/constellation-partners) 

Some of the widely used satellite precipitation products (SPPs) are now operationally available 

including Precipitation Estimation from Remotely Sensed Information Using Artificial Neural 

Networks (PERSIANN; Sorooshian et al. 2000; AghaKouchak et al. 2012; Hossain and 

Huffman 2008), the National Oceanic and Atmospheric Administration (NOAA)’s Climate 

Prediction Center (CPC) morphing technique (CMORPH; Joyce et al. 2004; Stampoulis and 

Anagnostou 2012; Gumindoga et al., 2019), the Tropical Rainfall Measuring Mission (TRMM) 

Multi-satellite Precipitation Analysis (TMPA; Huffman et al. 2007; Villarini and Krajewski 

2007; Tian et al. 2007; Habib et al. 2009; Yong et al. 2015; Mei et al. 2016; Moazami et al. 

2014, 2016), and the Global Satellite Mapping of Precipitation (GSMaP; Kubota et al. 2007 

and 2009). These satellite products have some limitations associated with the spatial and 

temporal resolution of precipitation due to the number of IR and MW based sensors utilized. 

To provide more accurate precipitation estimates at fine spatiotemporal scales, NASA and 

JAXA launched the GPM mission in February 2014, called the Integrated Multi-satellitE 

Retrievals for GPM (IMERG) with a temporal resolution of 30 min and spatial resolution of 

0.1° as a successor to TRMM (Hou et al. 2014; Liu, Z 2016; Tang et al. 2016). The DPR, the 

first of its kind, was incorporated in the GPM core observatory to improve the reliability of 

IMERG compared to other SPPs (Anjum et al., 2019). 

The record for IMERG V05 (previous version) begins in March 2014 with coverage between 

±60° latitudes, while IMERG V06 (last version) extends this record back to June 2000 

(eventually to January 1998) with global coverage (90°N/S). IMERG has three runs: Early, 

Late, and Final to accommodate different user requirements for latency and accuracy. This 

study uses the gauge‐adjusted estimates from the Final runs of IMERG V06B, the latest version 

of V06. A quasi‐Lagrangian interpolation (known as “morphing”) is applied to the 0.1° gridded 

http://pmm.nasa.gov/GPM/constellation-partners
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PMW estimates to fill in gaps in the field using motion vectors computed from total precipitable 

water vapor from numerical models in V06. The morphed precipitation is further 

supplemented, via a Kalman filter approach following Joyce and Xie (2011), with microwave‐

calibrated IR precipitation estimates using the PERSIANN‐Cloud Cluster System algorithm 

(PERSIANN-CCS; Hong et al., 2004; Nguyen et al., 2018). IMERG masks PMW and morphed 

estimates over frozen surfaces, resulting in the use of IR precipitation within 60°N/S and 

missing values at high latitudes. The merged satellite estimates are then calibrated by the 

monthly surface gauge analyses from the Global Precipitation Climatology Centre (GPCC; 

Schneider et al. 2014, 2015) following the approach employed by Huffman et al. (2007) for the 

TRMM-TMPA (Tan et al., 2019).  

Several currently available satellite precipitation datasets are summarized in Table 1. In this 

table, Global Precipitation Climatology Project (GPCP) is a monthly precipitation analysis that 

merges gauge observations with LEO satellite MW data and GEO satellite IR data and is one 

of the most popular products used in climate studies (Adler et al., 2003). 
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Table 1. Summary of Major Satellite-Related Precipitation Products Currently Available (Sun et al., 2018) 

 

 

   

Dataset Spatial 

Res. 

Temporal Res. Coverage Period Data source Reference 

GPCP 2.5o Monthly Global 1979-

Present 

GPI, OPI, SSM/I scattering, 

SSM/I emission, TOVS 

(Adler et al., 2003) 

TRMM-3B43 0.25o Monthly 50°S–

50°N 

1998-

Present 

TMI, TRMM Combined Instrument, 

SSM/I, SSMIS, AMSR-E, AMSU-B, 

MHS, and GEO IR 

(Huffman et al., 2007) 

TRMM 3B42 0.25o 3 h/Daily 50°S–

50°N 

1998-

Present 

TMI, TRMM Combined Instrument, 

SSM/I, SSMIS, AMSR-E, AMSU-B, 

MHS, and GEO IR 

(Huffman et al., 2007) 

GSMaP 0.1o 1 h/Daily 60°S–

60°N 

2002-2012 TMI, AMSR-E, AMSR-E, SSM/I, 

multifunctional transport satellites 

(MTSAT), Meteosat-7/8, GOES 

11/12 

(Ushio et al., 2009) 

PERSIANN-CCS 0.04o 30 min/3, 6 h 60°S–

60°N 

2003-

Present 

Meteosat, GOES, GMS, SSM/I, 

polar/near polar precipitation 

radar, TMI, AMSR 

(Sorooshian et al., 2000) 

PERSIANN-CDR 0.25o 3, 6 h/Daily 60°S–

60°N 

1983-

Present 

GOES 8, GOES 10, GMS-5, Metsat-

6, 

and Metsat-7, TRMM, NOAA 15, 16, 

17, DMSP F13, F14, F15 

(Ashouri et al., 2015) 

CMORPH 0.25o/8 km 30 min/ 3 h/Daily 60°S–

60°N 

2002-

Present 

TMI, SSM/I, AMSR-E,AMSU-B, 

Meteosat, 

GOES, MTSAT 

(Joyce et al., 2004) 

GPM 0.1o 30 min/ 3 h/Daily 90°S–

90°N 

2000-

Present 

GMI, AMSR-2, SSMIS, Madaras, 

MHS, 

Advanced Technology Microwave 

Sounder 

(Hou et al., 2008, 2014) 
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2.2. Radar Precipitation Data  

Satellites use cloud information for estimating precipitation, however, radar can measure the 

precipitation by sending radio waves and receiving their reflectance back to the transmitting 

point. On the other hand, rain gauges record the precipitation reaching the ground surface.    

Similar to SPPs, radar precipitation data provide real-time estimates of rain and snow rates at 

relatively fine spatial and temporal scales, however, indirect measurements based on radar 

reflectivity can cause errors (Rodriguez et al. 2019). Radar precipitation estimates are 

influenced by ground clutter (e.g. dust, bugs, birds, and particulates) and other non-

meteorological echoes, beam blockage, and bright banding in the melting layer (occurring due 

to the higher reflectivities associated with snow that is melting as it is falling aloft) (Martinaitis 

et al. 2017). The Canadian Weather Radar Network (CWRN) consists of 31 weather radars, 29 

of which are owned and operated by ECCC and two by Department of National Defence 

(DND). Coverage is nominal to a range of 256 km for non-Doppler data and 120 km for 

Doppler data, but some areas within that nominal range, where the radar beam is blocked by 

topography, buildings, etc., may be unavailable (Mekis et al. 2018). 

Multi-radar integration can mitigate such deficiencies in the single-radar framework. The 

integration of several radars with a set of sensors provides more accurate diagnoses of 

atmospheric physical processes than using radar data alone (Zhang et al., 2016). For this 

purpose, the National Centers for Environmental Prediction (NCEP) implemented the Multi-

Radar Multi-Sensor (MRMS) system, which integrates multiple overlapping radars with other 

in situ and remote sensing (satellite) observations and Numerical Weather Prediction (NWP) 

model output. MRMS currently uses 176 operational radars across the conterminous United 

States (CONUS) (146 S-band dual-polarization Weather Surveillance Radar-1988 Doppler 

(WSR-88D) radars) and southern Canada (30 C-band single-polarization weather radars) at 

very high spatial (1 km) and temporal (2 min) resolution (Zhang et al. 2016). MRMS provides 

four types of Quantitative Precipitation Estimation (QPE) products: 1) radar-based QPE (radar-

only) with a vertical profile of reflectivity (VPR) correction, 2) gauge-based QPE (gauge-only), 

3) local gauge and VPR bias-corrected QPE, and 4) gauge-and-precipitation-climatology-
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merged QPE (Mountain Mapper QPE designed for the mountainous areas in the western US 

and Canada but is generated for the entire MRMS domain) (Zhang et al. 2016). MRMS system, 

as a high-quality QPE product, has been recently used over several parts of CONUS and shows 

the mitigation of radar beam overshoot primarily via the use of multiple radar inputs for a given 

grid point (Cocks et al. 2017). The accuracy of the MRMS products over CONUS has led 

researchers to use them as reference data for evaluating other QPEs like IMERG and TRMM 

(Gebregiorgis et al. 2018). Note that, although MRMS provides the spatial coverage over 

southern (south of 55°N) part of Canada, to date there has not been reported any evaluation of 

it across the country. 

2.3. Statistical Evaluation of QPEs  

For having reliable hydrological simulation as well as better estimation of water resources 

conditions, accurate estimates of precipitation as the key variable in water application is 

required. In the case of a sparse and unreliable network of ground rain gauges, particularly over 

complex terrain and remote areas, satellite and radar QPEs product are widely used in 

hydrological applications (Jiang et al. 2019). However, QPEs, due to their indirect nature of 

precipitation estimations are subject to error and uncertainty and need to be evaluated before 

utilizing in water resources models (Moazami et al. 2014). Several studies regarding the 

statistical and hydrological evaluation of IMERG and MRMS as the objective products of this 

research have been conducted in recent years.   

Huang et al., 2018 evaluated the performance of IMERG in depicting the spatial-temporal 

characteristics of precipitation variations over Taiwan at multiple (including annual, seasonal, 

intraseasonal, diurnal, and semidiurnal) timescales. The results obtained from this study 

showed that, quantitatively, IMERG underestimated the magnitude of precipitation over most 

of Taiwan for all the examined timescales; spatially, the bias in variability was larger over the 

mountainous areas than over the plain areas; temporally, the bias in variability was larger in 

the warm seasons than in the cold seasons. Despite these differences, IMERG was able to keep 

the variation of precipitation, especially the peak values qualitatively. Sungmin et al. 2017, 

compared IMERG version 3 Early, Late, and Final (IMERG-E, IMERG-L, and IMERG-F) 

half-hourly rainfall estimates with gauge-based gridded rainfall data from the WegenerNet 

Feldbach region (WEGN) high-density climate station network in southeastern Austria. Results 
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showed that IMERG-F rainfall estimates are in the best overall agreement with the WEGN 

data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. Both 

studies indicated the better performance of IMERG during warm seasons. On the other hand,  

Gebregiorgis et al., 2018 during the assessment over CONUS, illustrated that IMERG is more 

consistent with the reference data for all seasons, except for a slight underestimation over 

Florida and the southeast coastal region of the CONUS during fall. They also concluded that 

the inclusion of IR data into IMERG algorithms results in overestimation in all seasons except 

winter. Although several studies have indicated that IMERG outperforms other SREs globally 

(Gebregiorgis et al. 2018, Zhang et al. 2019) due to the marked improvement of IR precipitation 

retrieval by implementing CMORPH-KF (Kalman-filter) and PERSIANN-CCS, evaluation of 

IMERG estimates over several regions around the globe has reported different level of 

uncertainties associated with this product that may limit its direct use in practical applications 

(Sungmin et al. 2017; Tang et al. 2017; Wang et al. 2018; Asong et al. 2017; Tan et al. 2019). 

Thus, the accuracy of IMERG precipitation products needs to be assessed against in situ 

observations. 

Tan et al., 2016 evaluated IMERG against a dense network of gauges in the mid-Atlantic region 

of the United States. In their approach, ancillary variables leveraged in IMERG to attribute the 

errors to the individual instruments or techniques within the algorithm. They concluded that as 

a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate 

estimates tend to overestimate drizzle and underestimate heavy rain with considerable random 

error. They also mentioned that the most reliable IMERG estimates come from passive 

microwave satellites, but infrared estimations perform poorly. On the other hand, Asong et al., 

2017 evaluated GPM version 03 IMERG Final Run product against ground-based reference 

measurements (at the 6-hourly, daily, and monthly time scales) over different terrestrial 

ecozones of southern Canada within a 23-month period from 12 March 2014 to 31 January 

2016. They concluded that IMERG and ground-based observations show similar regional 

variations of mean daily precipitation, while IMERG tends to overestimate median to heavy 

precipitation amounts over the Pacific Maritime ecozone. These two performed assessments of 

IMERG in two different regions indicate contrary findings regarding over/underestimates for 

heavy rainfall which makes the necessity of evaluating the performance of this data in each 

specific area before using in hydrological applications. By reviewing the kinds of literature 
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concerning the evaluation of satellite precipitation data over different regions around the globe, 

it can be realized that most studies have limitations of using the number of statistical metrics, 

time scale (mostly considered daily or monthly scales), diversity of study region. For filling 

these gaps and having a comprehensive evaluation of the most recent high-resolution satellite 

and radar precipitation products, this study aims to assess hourly IMERG V06 and MRMS at 

hourly time scale over diverse climatic and topographic zones (cold, mountainous, coastal, and 

plain regions) by using a complete list of statistical and categorical metrics.    

2.4. Bias Correction of Satellite Precipitation Products 

Due to inherent error and uncertainty associated with QPEs, this study aims to develop a 

framework for bias correction of satellite IMERG precipitation products. Therefore, in this 

section some recently published studies regarding SPPs bias correction are summarized. By 

using ground-based precipitation measurement obtained from CPC daily gridded as a true data 

over the southwestern United States, Boushaki et al., 2009 used a merging methodology to 

adjust the bias of PERSIANN-CCS in hourly temporal and 0.04-degree spatial resolution. They 

first adjusted the bias at daily temporal and 0.25 degree spatial according to the original CPC 

data resolution, then downscaled 0.25 degree to 0.04 degree and redistributed the daily bias 

proportionally to the hourly rainfall estimates. The results indicated that the method can 

improve satellite estimates on a daily scale effectively, however, on the sub-daily scale a 

limited improvement was noticed. This simple scaling method has limitations as it needs 

simultaneous reference data and cannot take advantage of historical data (Yang et al. 2016). 

As a powerful method in reducing the systematic bias of regional climate model precipitation 

estimates, Quantile Mapping (QM) has shown the best skill in several studies (Cannon et al. 

2015, Ajaaj et al. 2016, Yang et al. 2016, Ringard et al. 2017). Ringard et al. 2017, used the 

QM to correct the daily TRMM-TMPA-3B42V7 data and found that this technique can reduce 

the bias up to 70% for rainfall intensities less than 25 mm/d, but it performs weakly to correct 

the higher intensities. Yang et al. 2016, proposed a coupled nonparametric QM and Gaussian 

weighting (GW) interpolation scheme to adjust biases of PERSIANN-CCS over Chile.  

The bias correction approaches developed in these studies can be categorized in two main 

groups. The first group uses the rain gauge data directly to correct the bias of SPPs in a specific 

time scale (daily, monthly, etc.) to remove the mean bias value during the considered time, 
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which does not capture the inter-time variability or may not remove the higher-order moments. 

The second group uses QM for correcting the biases based on the differences between quantiles 

of SPPs and ground truth data. This technique can effectively capture the evolution of the mean 

and the variability of precipitation while matching all statistical moments (Ajaaj et al., 2016); 

however, there is no adjustment to the temporal structure of precipitation it is unable to capture 

wet and dry spell lengths. To address these limitations, we correct the associated biases in the 

IMERG PrCal product spatially and temporally through a novel statistical approach. The 

detailed explanation regarding the method developed in this study are provided in Chapter 4.  

2.5. Hydrological Evaluation of QPEs 

The high spatial and temporal resolution of IMERG satellite precipitation has motivated 

hydrologists to apply this data in hydrological models. Indeed, droughts and floods can be 

monitored by high-resolution satellite-based products (AghaKouchak et al., 2015; 

AghaKouchak & Nakhjiri, 2012; Wu et al., 2014; Yilmaz et al., 2010). However, as mentioned 

before, SPPs contain uncertainties in retrieving precipitation characteristics and so the 

reliability of hydrologic predictions based on satellite-derived precipitation data need to be 

evaluated.  

Several studies have been conducted by using a variety of lumped, semi-distributed and 

distributed hydrological models over different basins. Yuan et al., 2018 evaluated IMERG 

Final Run version 05 precipitation and TRMM-TMPA-3b42v7 products in daily and 3-hourly 

streamflow simulations by utilizing the grid-based Xinanjiang (GXAJ) hydrological model as 

a lumped, conceptual hydrological model calibrated with the gauge-based precipitation over 

Yellow River source region (YRSR), a mountainous Alpine region in northwestern China. 

IMERG with the Nash Sutcliffe Efficiency (NSE) coefficient of 0.810 demonstrated a good 

performance compared with the gauge-based simulation with NSE of 0.807, while for 3B42V7 

data the NSE is 0.792. The disadvantage of this study was using a lumped model where the 

parameters were estimates to be spatially uniform, which may not sufficiently represent the 

hydrological features in the study area with complex climate and terrain.  
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In the hourly scale of hydrological assessment of IMERG, Li et al. 2017 applied the Coupled 

Routing and Excess Storage (CREST) distributed hydrological model over the Ganjiang River 

basin as the seventh-largest branch of the Yangtze River in the Jiangxi province of China. This 

study concluded that the hourly IMERG product can be used to simulate streamflow well based 

on the parameters calibrated by gauge (NSE= 0.7) and radar (NSE = 0.72) over Ganjiang River 

basin, although the parameters calibrated by IMERG is unusable (NSE = -2). The main 

advantage of this model was enforcing it with high spatiotemporal quality of radar QPE data 

that led to more reliable of IMERG precipitation products; however, the CREST model is 

complex and needs several physical and theoretical parameters for calibration (for more detail 

about this model see Wang et al., 2011).  

Falck et al., 2015 investigated the applicability of error correction to satellite-based 

precipitation products in streamflow simulations over the 19 sub-basins of the Tocantins–

Araguaia basin in the center-north region of Brazil. Four satellite products including TRMM-

TMPA-3B42RT (Real-Time version of TMPA), CMORPH, GSMaP, and NOAA 

Hydroestimator (HYDRO-E) were evaluated. In order to analyze the uncertainty of simulated 

streamflow, they used Ensemble streamflow simulations of a distributed hydrological model 

developed by the Brazilian National Institute (MHD-INPE) (a grid-based model, Rodriguez 

and Tomasella, 2015; Mohor et al., 2015) by enforcing satellite rainfall products corrected 

using a two-dimensional stochastic satellite precipitation data (SREM2D, Hossain and 

Anagnostou, 2006). The findings of this study showed that SREM2D is able to correct for 

errors in the satellite precipitation data by pushing the modeled streamflow ensemble closer to 

the reference river discharge when compared to the simulations forced with uncorrected rainfall 

input. Ensemble streamflow error statistics (MAE and RMSE) depicted a decreasing trend as 

a function of the catchment area for all satellite products. As the main advantage of this study, 

Streamflow ensemble simulations reduced the error in CMORPH-, HYDRO-E-, and GSMaP-

forced simulations when compared to the corresponding reference statistics for basins larger 

than 25,000 km2, showing that SREM2D was able to correct the error in the forcing rainfall in 

terms of both MAE and RMSE. Nevertheless, No remarkable difference among the different 

satellite products was observed at smaller basin scales, where SREM2D seems to consistently 

increase uncertainty in terms of MAE and RMSE to the simulated streamflow concerning the 

reference values.  
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Over the mid-size Illinois River basin, Behrangi et al., 2011 evaluated TMPA-RT, TMPA-V6, 

CMORPH, PERSIANN, and PERSIANN-adj) as forcing data in SACramento Soil Moisture 

Accounting (SACSMA) model for streamflow simulations at 6-h and monthly time scales. The 

calibration of the hydrological model is conducted for each satellite product separately. The 

SACSMA model was considered as a lumped model and the Shuffled Complex Evolution-

Univ. of Arizona (SCE-UA; Duan et al., 1992) algorithm in conjunction with the Multi-step 

Automatic Calibration Scheme (MACS; Hogue et al., 2000) was used to calibrate the model 

parameters. The SCE-UA is a robust and efficient optimization algorithm for calibration of 

complex conceptual hydrologic models. The results indicated that satellite products are able to 

capture the streamflow pattern at both 6-h and monthly time series reasonably; however, they 

overestimated/underestimated both precipitation and simulated streamflow over warm/cold 

months significantly.  

In order to well capturing of streamflow spatially over large basins, applying a distributed 

hydrological model with bias-adjusted SPPs input data, can be more useful. Sun et al., 2016, 

evaluated bias-corrected CMORPH (CMORPH-CRT), CMORPH satellite–gauge merged 

product (CMORPH-BLD), combined CMORPH RAW data with the daily precipitation from 

2400 ground weather stations over Mainland China (CMORPH-CMA), and TMPA-3B42V7 

into the distributed Variable Infiltration Capacity (VIC) model over the Huaihe River basin to 

simulate both long-term streamflow and extreme flood events. Among the three CMORPH-

based QPEs, CMORPH-CMA matched the best with the observed, followed by CMORPH-

BLD. They also found that over western China with sparse gauges, CMORPH-CMA is more 

reasonable than the gauge-based precipitation product. Therefore, CMORPH CMA could serve 

as an alternative high-quality QPE in China to evaluate the global satellite QPEs. 

The abovementioned studies, all proved the key role of SPPs into well-calibrated distributed 

hydrological models in reliable streamflow prediction. Therefore, in this study, we evaluate the 

performance of IMERG PrCal product in streamflow simulation by enforcing it into the Raven 

hydrological model over a small basin.  
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Chapter 3 

3. Evaluation of remotely sensed precipitation products across 

Canada 

3.1. Introduction  

Evaluating RSEs has been an important task to improve the quality of these datasets and their 

use in several hydrological and meteorological applications (Gebregiorgis at al., 2017). The 

superior advantages associated with RSEs to rain gauge data such as continuous high spatial 

resolution, coverage over remote/complex areas, and easy accessibility make them an 

appropriate resource for estimating precipitation, particularly over ungauged regions. The 

specific data of RSEs are provided by either satellite or radar which uses IR- and MW-based 

radiowaves to estimate the precipitation amount and frequency. Due to the number of IR and 

MW based sensors utilized, RSEs indicate different levels of spatial and temporal uncertainties 

which are not constant over different climatic and topographic regions. As previously 

mentioned in Chapter 2, IMERG among other global SPPs by using an enhanced technique of 

combining more number of IR- and MW-based sensors as well as CMORPH algorithms, 

provides more accurate precipitation estimates at fine spatiotemporal scales. Despite the quality 

of IMERG, different levels of uncertainty have been reported for this data in several recent 

publications (Sungmin et al. 2017; Tang et al. 2017; Wang et al. 2018; Asong et al. 2017; Tan 

et al. 2019). Thus, the accuracy of IMERG precipitation products needs to be assessed against 

in situ observations at each specific region.  

In addition to SPPs, radar precipitation data provides fine spatial and temporal estimates that 

can be used in remote areas and also as real-time input data in the hydrological models for 

flood prediction. The limitation concerned with the radar data is its influence by ground clutter 

(e.g. dust, bugs, birds, and particulates) and other non-meteorological echoes, beam blockage, 

and bright banding in the melting layer (Martinaitis et al. 2017). Although MRMS by 

integrating multiple radars has reduced the uncertainties, it still shows errors especially for cold 

seasons and over mountainous regions. Also, the coverage of MRMS is limited to the CONUS 

and the southern part of Canada. By considering the advantages and limitations regarding 

satellite and radar precipitation datasets as well as the lack of a dense ground observed network 
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across Canada, this chapter aims to perform the first comprehensive analysis of MRMS over 

the southern part of Canada (south of 55°N) and the latest version of IMERG (V06) 

precipitation products at relatively high temporal resolution (hourly and daily) with complete 

coverage (90°S to 90°N) across the country. The performance of both RSEs in representing 

different characteristics of precipitation is evaluated using a set of 15 statistical and categorical 

metrics. The main objectives of this chapter can be categorized as follows: 

(1) Evaluate the performance of different IMERG V06 products (PrCal, PrUncal, PrIR, 

PrHQ) at hourly temporal resolution over Canada. 

 

(2) Evaluate the performance of MRMS data at hourly temporal scale over the southern 

parts of Canada as the coverage of radar data is limited to this area. 

 

(3) Identify climatic and topographic conditions as well as different cold/warm seasons, 

across Canada, in which these products provide reliable precipitation estiamtes 

3.2. Study Area  

The study area in this research is Canada as the second-largest country in the world with an 

area of 9.9 million km2. Canada is surrounded by the Oceans of Pacific in the west, Atlantic in 

the east, and the Arctic in the north. The country has a diverse hydroclimate due to its extensive 

geographical features, latitudinal extent, and topographic variations. Polar and Arctic climate 

is dominant in the northern parts and regions on the west experience temperate climate with 

heavy precipitation associated with air currents from the Pacific while the east coast has less 

rainfall. The presence of the Great Lakes can moderate the weather in southern parts of Ontario 

and Quebec with hot, humid summers and cold, snowy winters (Asong et al. 2017, Singh et al. 

2019). By having these diverse climatic conditions as well as extreme weather events 

experienced over most parts of the country each year (Singh and Najafi, 2020), the necessity 

of reliable precipitation measurements is of great importance. However, Canada like several 

other countries suffer from a low density of in-situ precipitation stations and also unevenly 

distributed data over the country. I addition, other problems with ground-based data such as a 

gap in the measurements, the quality control process, and susceptibility of the error have been 

reported (Mekis et al., 2018, Singh and Najafi, 2020). These limitations lead to low spatial and 
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temporal resolutions of precipitation measurements across the country. Figure 1 shows the 

hourly rain gauges distributed as well as seven study zones over Canada. The reason for taking 

the seven zones is the different time that each zone has to better match the hourly local time 

rain gauges with the corresponding UTC-based (Coordinated Universal Time) satellite data. 

 

Figure 1. The location of hourly rain gauges across the study area. AB: Alberta, BC: British 

Columbia, MA: Manitoba, NB: New Brunswick, NL: Newfoundland and Labrador, NT: 

Northwest Territories, NS: Nova Scotia, NU: Nunavut, ON: Ontario, PE: Prince Edward 

Island, QC: Quebec, SK: Saskatchewan, YT: Yukon Territories 

3.3. Data  

3.3.1. Ground-Based Observations 

We assess the amount of precipitation total at daily and hourly time scales. The hourly ground-

based precipitation records are available from the automatic station network operated by 

Environment and Climate Change Canada (ECCC). The network consists of 585 fully 

automated stations, including both Surface Weather and Reference Climate Stations (RCS). 

Parameters that are typically observed at these locations are air temperature, humidity, 

precipitation accumulation, precipitation intensity, snow depth, air pressure, and wind speed 

https://www.alberta.ca/office-statistics-information.aspx
http://www.bcstats.gov.bc.ca/
http://www.bcstats.gov.bc.ca/
http://www.gov.mb.ca/mbs/
http://www2.gnb.ca/content/gnb/en/departments/finance.html
http://www.stats.gov.nl.ca/
http://www.statsnwt.ca/
http://www.novascotia.ca/finance/statistics/
http://www.stats.gov.nu.ca/en/home.aspx
http://www.fin.gov.on.ca/en/index.html
http://www.gov.pe.ca/pt/esaffr-info/dg.inc.php3
http://www.gov.pe.ca/pt/esaffr-info/dg.inc.php3
http://www.stat.gouv.qc.ca/default_an.html
http://www.saskatchewan.ca/government/government-data/bureau-of-statistics
http://www.eco.gov.yk.ca/stats/
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and direction. Three types of instruments are used for automatic measurement of total 

precipitation amount in Canada, namely weighing gauges, Tipping Bucket Rain Gauges 

(TBRGs), and optical sensors (Mekis et al. 2018). The total hourly precipitation is estimated 

as the sum of the four 15-minute precipitation amounts for minutes 00 through 60, inclusive. 

Precipitation amounts are stored in mm with a resolution of 0.1 mm. The quarter-hour total 

precipitation amounts are derived over 15-minute intervals (00-15, 15-30, 30-45, 45-60) by 

taking the difference of the gauge weight between the end and start of each period (Technical 

Documentation Digital Archive of Canadian Climatological Data, ECCC). ECCC operates 

several quality control checks to correct the existing errors in the RCS hourly weather stations 

after 2014, however before this year quality checks were not implemented at the ingest stage 

(Technical Documentation Digital Archive of Canadian Climatological Data, ECCC, 2018).  

In this study, we select 530 hourly station records (assigned as HLY01 total precipitation in 

digital archive) with less than 10% missing data in each month over the five years starting from 

2014 to the end of 2018. For daily evaluations of IMERG, 325 quality controlled daily station 

records provided by ECCC (download link: https://climate-change.canada.ca/climate-

data/#/daily-climate-data) with less than 10% missing data in each month are collected. This 

data has been assigned as DLY02 in digital archive and has received some level of QC. Since 

the source of daily data provided by ECCC is different from the hourly data, we aggregated the 

corresponding hourly stations with daily ones to check the consistency between two data sets 

and found that more than 70 percent of hourly stations are in agreement with the daily data. As 

shown in Figure 1, rain gauges are not evenly distributed across Canada and the density is 

higher in southern parts of the country.  

The reliability of automatic precipitation instruments for solid precipitation measurement can 

be undermined due to the blockage of the orifice by snow capping the gauge or accumulating 

on the side of the orifice walls, wind undercatch of snow due to the formation of updrafts over 

the gauge orifice, the unknown role of turbulence on gauge catch, and the large variability in 

gauge catch efficiency for a given gauge and wind speed (Rasmussen et al. 2012). Because of 

the highly variable nature of snow depth and the unreliability of measurements, direct snowfall 

observation is no longer derived from ECCC automatic stations since December 2013 until 

further improvements are developed for this parameter (Merkis et al. 2018).  

https://climate-change.canada.ca/climate-data/#/daily-climate-data
https://climate-change.canada.ca/climate-data/#/daily-climate-data
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3.3.2. IMERG Satellite Data 

In this study, the recently released (June 2019) version (V06B) of IMERG mission Final Run 

with high spatial (0.1°) and temporal (30 min) resolution is analyzed for 2014 to 2018. The 

IMERG algorithm is intended to inter-calibrate, merge, and interpolate “all” satellite 

microwave precipitation estimates, together with microwave-calibrated infrared satellite 

estimates, and monthly precipitation gauge records (Huffman et al. 2019a). The IMERG V06 

data are available globally from -90° S to 90° N latitude with three Early (~4 hours after 

observation time), Late (~14 hours after observation time), and Final (~3.5 months after the 

observation time) runs to accommodate different user requirements for latency and accuracy 

(Tan et al. 2019). The post-real-time Final Run uses the Global Precipitation Climatology 

Center (GPCC) monthly precipitation gauge analysis and the European Centre for Medium-

Range Weather Forecasts (ECMWF) ancillary data for calibration. Therefore, this product is 

expected to provide the most reliable estimates that are suited for research works (Huffman et 

al. 2019a). In order to create the final half-hourly calibrated IMERG precipitation estimates, 

the ratio between the monthly accumulation of half-hourly multi-satellite-only fields and the 

monthly satellite-gauge field (satellite calibrated with monthly gauges) is computed. Next, each 

half-hourly field of multi-satellite-only precipitation estimates in the month is multiplied by 

the ratio field (Huffman et al. 2019a). It should be stated that, ~90% of gauges considered in 

this study have not been used for IMERG calibration (Mekis et al. 2018). In addition, the 

applied ratio does not remove biases at sub-monthly scales (i.e. hourly and daily).  

The four different precipitation fields of IMERG data are categorized as Calibrated 

precipitation (precipitationCal), which represents records after the final post-processing step 

described above, Uncalibrated precipitation (precipitationUncal), which is recorded data before 

the final post-processing step (precipitationCal and precipitationUncal fields are identical for 

the Early and Late Runs, as there are no additional corrections applied), Infrared (IR) 

geostationary satellite precipitation data (IRprecipitation), and precipitation extracted from 

merging High-Quality Passive Microwave (PMW) sensors (HQprecipitation), which only 

includes microwave data and has significant gaps. PrecipitationCal is considered as the most 

reliable IMERG precipitation estimate (Huffman et al. 2019b).  
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IMERG V06 has some major improvements over previous versions. First, to drive the 

morphing scheme it uses total precipitable water vapor from reanalysis data. However, 

previous versions of IMERG adopt geostationary infrared (GEO-IR) data to calculate the 

motion vectors of precipitation systems, which leads to the mismatch between IR-based cloud-

top motions and surface precipitation motions. Second, passive microwave estimates are 

morphed at high latitudes to reduce spatial gaps (Huffman et al. 2019b; Tang et al. 2020). Third, 

the latest version of the Goddard Profiling Algorithm (GPROF2017) ingested in IMERG V06 

retrieves total hydrometeor mass in the atmospheric column, except for the conical-scan imager 

PMW retrievals, which only considers total solid hydrometeor mass over land and coast and 

then implicitly correlates it to surface precipitation in any phase including rain, drizzle, snow, 

and hail (Huffman et al. 2019b). Further, IMERG V06 includes a new data field called the 

probability of liquid precipitation, which provides different phases of the precipitation (i.e., 

liquid, solid, or mixed). In this study, we evaluate the total precipitation amounts derived from 

IMERG V06 retrieval products. Analysis of different phases of precipitation will be considered 

in future studies.    

3.3.4. MRMS Product 

The radar-based precipitation data utilized in this study are derived from a product of MRMS 

named Surface Precipitation Rate (SPR). SPR uses a quality-controlled reflectivity product 

called the Seamless Hybrid Scan Reflectivity (SHSR) mosaic and Surface Precipitation Type 

(SPT) field to compute instantaneous rain rates in mm h-1 (Zhang et al. 2016). SHSR is first 

derived from single radar polar grids, and then mosaicked onto the MRMS national Cartesian 

grid (Grams et al 2014). The MRMS domain extends from 20°N to 55°N latitude and from 

130°W to 60°W longitude with a horizontal resolution of 0.01°×0.01° (Figure 1 in Zhang et al. 

2016). MRMS ingests 3D volume scan data from 146 S-band dual-polarization WSR-88D in 

the US and 30 C-band single-polarization weather radars operated by ECCC in Canada. The 

gauge quality-controlled data of MRMS is integrated with atmospheric environmental data 

(such as surface and wet-bulb temperatures, wind and relative humidity extracted from NWP 

model), lightning, and rain gauge observations to generate a suite of severe weather and QPE 

products (Zhang et al. 2016).  

https://vlab.ncep.noaa.gov/web/wdtd/-/seamless-hybrid-scan-reflectivity-shsr-
https://vlab.ncep.noaa.gov/web/wdtd/-/surface-precipitation-type-sp-1
https://vlab.ncep.noaa.gov/web/wdtd/-/surface-precipitation-type-sp-1
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In this study, the total precipitation amount extracted from MRMS SPR product as radar-only 

QPE (not bias corrected by local gauges) is used to avoid errors associated with the limitations 

of rain gauge measurements and interpolation method applied in the local gauge bias-corrected 

product. The misrepresentation of ground-based winter precipitation can influence local bias 

correction values (Martinaitis et al. 2015). The SPR data is available from November 1st, 2014 

till present at a temporal resolution of 2-minutes. We perform the evaluations for the time 

period of 2015 until the end of 2018.  

There are several factors that can increase the uncertainties in radar precipitation estimations 

particularly during cold season. Radar variables are indirect measurements of precipitation 

rates (R), therefore empirical relationships between radar reflectivity (Z) and (R) are developed 

to derive radar QPE. Different empirical relationships are required for different precipitation 

phases and regimes. An automated surface precipitation classification is employed in MRMS 

such that appropriate relationships may be applied. Some major uncertainties of radar QPE 

products are associated with improper calibration and limited operational Z–R and Z–S (liquid 

equivalent snowfall rate) relationships due to differing snowfall properties. Also, highly 

variable falling speeds of snow can introduce spatial and temporal uncertainties in winter 

precipitation estimation. This can cause significant elapsed time between radar detection aloft 

and ground measurement (Martinaitis et al. 2015). In addition, the VPR correction applied in 

the SHSR field for mitigating radar errors does not work when the surface temperature is below 

0°C and hence is not useful in snow detection. Further, the correction usually works better on 

flat land than on complex terrain, where orographic forcing modulates precipitation 

distributions (Zhang et al. 2016). Similar to IMERG, we analyze the ability of MRMS in 

detecting the total amount of precipitation across the Canadian domain.   

 3.4. Methodology 

This section describes the evaluation procedure of multiple IMERG V06B satellite 

precipitation products and MRMS at different temporal scales across Canada. The IMERG data 

are compared against rain gauge records at two temporal scales: 1) hourly- that analyses 

precipitation estimates from four products including precipitationCal (hereafter PrCal), 

precipitationUncal (PrUncal), HQprecipitation (PrHQ), and IRprecipitation (PrIR) obtained 

from different IR and PMW sensors and 2) daily- that is performed for the widely-used PrCal 
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dataset. For both (hourly and daily) analyses, the half-hourly IMERG data are aggregated and 

matched with the local hourly/daily gauge records. The UTC-based (Coordinated Universal 

Time) satellite data is processed to be consistent with local records considering the seven 

different time zones corresponding to different rain gauges across Canada as well as daylight 

saving times for almost half of the year in many parts of the country.  

Evaluation of the MRMS product (with a 2min/1km temporal and spatial resolution) is 

performed at hourly timescale using gauges that cover up to 55o N latitude. All analyses are 

performed by evaluating the gridded RSEs at locations where there are rain gauges available. 

A direct comparison between gauge points and their corresponding satellite/radar pixels is 

conducted at each given time separately. Therefore, no transformation and interpolation from 

the points to areal precipitation data are made to prevent the uncertainty associated with the 

spatial estimates of precipitation, especially for the areas with fewer gauges. To have a more 

reliable assessment of the IMERG and MRMS precipitation estimates the corresponding biases 

are characterized for different seasons, winter (DJF), spring (MAM), summer (JJA), and fall 

(SON). Several continuous and categorical evaluation metrics are used to assess the ability of 

RSE to detect rainfall occurrence and amount. 

3.4.1. Continuous Verification Metrics 

Continuous indices are used to measure the accuracy of the estimated precipitation magnitudes 

from IMERG and MRMS data. The widely used metrics including root mean square error 

(RMSE), mean absolute error (MAE), relative bias (Rbias), and Pearson correlation coefficient 

(CC) are applied. In addition, four statistical indices namely hit bias (Hbias), miss bias (Mbias), 

false bias (Fbias), and correct negative bias (CNbias) are considered to quantify the error 

characteristics of RSE associated with detectability performance. The equations and a brief 

description of these metrics are listed in Table 2. Rbias describes the systematic biases of RSEs, 

MAE is used to represent the overall errors of the QPEs without considering their directions, 

RMSE is used to measure the average error magnitude, which gives greater weights to the 

larger errors relative to MAE, and CC characterizes the degrees of consistencies in temporal 

variabilities. Hbias, Mbias, Fbias, and CNbias display the systematic biases of RSEs associated 

with hit, miss, false, and non- events, respectively. Hit events refer to hourly/daily records 

where both RSE and ground-based precipitation values are more than 0.1 mm h-1. Miss events 

correspond to gauge records more than 0.1 mm h-1, while RSEs are less than 0.1 mm h-1. 
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Contrary to the miss events, false events are associated with higher than 0.1 mm h-1 of rain 

detected by satellite/radar while no precipitation has been recorded by rain gauges. Finally, 

non-events represent the conditions when both satellite/radar and gauge records show 

precipitation values less than 0.1 mm h-1. The range of R, H, M, F, and CN bias is between -∞ 

and +∞ with the optimal value of 0. MAE and RMSE vary between 0 to +∞, and CC ranges 

from -1 to +1. Larger errors are associated with larger Rbias, MAE, RMSE, Hbias, Mbias, 

Fbias, and CNbias values. 
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Table 2. List of the continuous verification metrics used to evaluate the error characteristics 

of IMERG and MRMS products. 𝑷𝑺𝒊
 is the value of RSE for the ith hourly/daily record, 𝑷𝑶𝒊

 

is the value of ground-based precipitation observation for the ith hourly/daily record, 𝑵 is the 

total number of records, �̄�𝑺 is the average value of RSEs for N hourly/daily records over each 

grid cell, and �̄�𝑶 is the average value of rain gauge observations for N records over each cell. 

The superscripts H, M, F, and NO represent precipitation estimates for hit, miss, false, and 

non-events, respectively 

Continuous metrics Equation Perfect value Description 

Rbias ∑ (𝑃𝑆𝑖
− 𝑃𝑂𝑖

)𝑁
𝑖=1

∑ 𝑃𝑂𝑖
𝑁
𝑖=1

 × 100% 
0 Percentage difference between 

gauge observations and RSEs for 

all events 

Rbias > 0: overestimation; 

Rbias < 0: underestimation 

 

MAE 

 
1

𝑁
× ∑|𝑃𝑂𝑖

− 𝑃𝑆𝑖
|

𝑁

𝑖=1

 

0 Mean absolute error between 

ground-based observations and 

RSEs 

 

RMSE 

 √∑ (𝑃𝑂𝑖
− 𝑃𝑆𝑖

)
2𝑁

𝑖=𝐼

𝑁
 

0 Root mean square error between 

gauge observations and RSEs 

CC ∑ (𝑃𝑂𝑖
− 𝑃𝑂

̅̅ ̅)(𝑃𝑆𝑖
− 𝑃�̅�)𝑁

𝑖=1

√∑ (𝑃𝑂𝑖
− 𝑃𝑂

̅̅ ̅)
2

∑ (𝑃𝑆𝑖
− 𝑃�̅�)

2𝑁
𝑖=1

𝑁
𝑖=1

 
1 Pearson correlation 

coefficient that measures 

linear correlation between gauge 

observations and RSEs 

Hbias ∑ (𝑃𝑆𝑖

𝐻 − 𝑃𝑂𝑖

𝐻 )𝑁
𝑖=1

∑ 𝑃𝑂𝑖
𝑁
𝑖=1

 × 100% 
0 Percentage difference between 

gauge observations and RSEs for 

hit events 

Hbias > 0: overestimation; 

Hbias < 0: underestimation 

 

Mbias ∑ (𝑃𝑆𝑖

𝑀 − 𝑃𝑂𝑖

𝑀)𝑁
𝑖=1

∑ 𝑃𝑂𝑖
𝑁
𝑖=1

× 100% 
0 Percentage difference between 

gauge observations and RSEs for 

miss events by RSEs 

Mbias > 0: overestimation; 

Mbias < 0: underestimation 

 

Fbias ∑ (𝑃𝑆𝑖

𝐹 − 𝑃𝑂𝑖

𝐹 )𝑁
𝑖=1

∑ 𝑃𝑂𝑖
𝑁
𝑖=1

 × 100% 
0 Percentage difference between 

gauge observations and RSEs for 

false events by RSEs 

Fbias > 0: overestimation; 

Fbias < 0: underestimation 

 

CNbias ∑ (𝑃𝑆𝑖

𝑁𝑂 − 𝑃𝑂𝑖

𝑁𝑂)𝑁
𝑖=1

∑ 𝑃𝑂𝑖
𝑁
𝑖=1

 × 100% 
0 Percentage difference between 

gauge observations and RSEs for 

non-events by RSEs 

 

 

https://en.wikipedia.org/wiki/Correlation
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3.4.2. Categorical Verification Metrics  

To measure the ability of RSE data to detect rain/no rain events (based on a threshold of 0.1 

mm h-1), seven categorical metrics listed in Table 3 are utilized, which include hit (H), miss 

(M), false (F), and correct negative (CN) fractions, as well as the probability of detection 

(POD), false alarm ratio (FAR), and critical success index (CSI).  

 

Table 3. List of categorical metrics used to evaluate the error characteristics of IMERG and 

MRMS products. 𝒏𝑯 is the number of hit events (both the observed and estimated 

precipitation values are equal to or more than 0.1 mm h-1), 𝒏𝑴 represents the number of miss 

events (observed data show precipitation events > 0.1 mm h-1 but the RSE data miss them), 

𝒏𝑭 denotes the number of false events (non-event based on the observed data, however 

satellite/radar detects precipitation), 𝒏𝑵𝑶 indicates the number of non-events (none of the 

observed and estimated precipitation values are equal to or more than 0.1 mm h-1) 

Categorical metrics Formula Perfect value Description 

Hit fraction 𝑛𝐻

𝑛𝐻 + 𝑛𝑀 + 𝑛𝐹 + 𝑛𝑁𝑂

 × 100%    Hit + Correct Negative 

fractions = 100% 

Fraction of correctly 

detected events by SREs 

relative to all rainfall 

events 

 

Miss fraction 𝑛𝑀

𝑛𝐻 + 𝑛𝑀 + 𝑛𝐹 + 𝑛𝑁𝑂 
× 100% 

0 Fraction of missed 

rainfall events by SREs 

relative to all rainfall 

events 

 

False fraction  𝑛𝐹

𝑛𝐻 + 𝑛𝑀 + 𝑛𝐹 + 𝑛𝑁𝑂 
× 100% 

0 Fraction between false 

alarm events by SREs 

and all rainfall events 

 

Correct Negative fraction 𝑛𝑁𝑂

𝑛𝐻 + 𝑛𝑀 + 𝑛𝐹 + 𝑛𝑁𝑂

 × 100% 
Hit + Correct Negative 

fractions = 100% 

Fraction of correctly 

detected non-events by 

SREs relative to all 

rainfall events 

 

POD 𝑛𝐻

𝑛𝐻 + 𝑛𝑀

 
1 Fraction of gauge 

observed events that 

were correctly detected 

by SREs 

 

FAR 𝑛𝐹

𝑛𝐻 + 𝑛𝐹

 
0 Fraction of detected 

events by SREs that 

were not observed by 

gauges 

 

CSI 𝑛𝐻

𝑛𝐻 + 𝑛𝑀 + 𝑛𝐹

 
1 Fraction of gauge 

observed events that were 

correctly detected by 

SREs with no 

consideration of correct 

negative events 
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The optimal performance corresponds to M and F fraction values of 0. Values of the H and CN 

fractions depend on the number of rain/no-rain events, however, their optimal sum is 100%. 

POD, FAR, and CSI range between 0 and 1 with the optimal values of 1, 0, and 1, respectively. 

POD is sensitive to hits, but ignores false alarms, while FAR is sensitive to false alarms and 

ignores misses. POD and FAR are both very sensitive to the climatological frequency of the 

event and should be used in conjunction. CSI is sensitive to hits and penalizes both misses and 

false alarms. It also depends on climatological frequency of events (poor scores for rare events) 

since some hits can occur purely due to random chance.   

 3.5. Results  

The evaluation results of GPM-IMERG V06 and MRMS SPR products based on ECCC’s rain 

gauge records are presented. First, we assess the performance of IMERG PrCal at daily, and 

then the four IMERG products and MRMS at hourly timescales. 

3.5.1. Evaluation of GPM-IMERG V06 at Daily Timescale 

Figure 2 shows the RMSE (a measure of bias) and CC (representing consistencies in temporal 

variations) values corresponding to the IMERG PrCal product at daily timescale for each 

season across Canada. Results are shown for the 10 km pixels that include ground-based 

observations for the five-year period of 2014 to 2018. Overall, the biases (based on RMSE) are 

lower in the Prairie provinces including Manitoba, Saskatchewan, Alberta (zones-3-5) and 

eastern parts of British Columbia (zone-6). Although the temporal variations of the IMERG 

estimated precipitation are more consistent with gauge data records over the east coast, the 

corresponding magnitudes are less accurate compared to other regions. RMSE and CC values 

vary across seasons. During fall and summer, the accuracy of IMERG is relatively high in 

several sites, while winter shows weaker performance with lower correlations between IMERG 

and ground observations, which was expected as discussed in the Data section. 
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Figure 2. Spatially distributed biases of daily IMERG V06 across 325 sites based on RMSE 

(mm d-1) (left) and correlation (right) for different seasons, and during the entire five-year 

period (Total Year)  
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The overall (five-year) and seasonal performance of daily IMERG precipitation estimates are 

evaluated based on Rbias, MAE, RMSE, and CC in Figure 3. Box-and-whisker plots show the 

first (Q1) and third (Q3) quartiles (i.e. Interquartile Range), maximum (Q3 + 1.5×IQR) – 

minimum (Q1-1.5×IQR) values (whiskers), and the medians of the metrics between all sites 

across Canada. Positive values of Rbias indicate the tendency of IMERG to overestimate 

precipitation, which is more considerable in winter (Rbias varies between 10%-50%) compared 

to the other seasons (5%-25%), as expected. MAE and RMSE (which emphasizes on biases in 

extremes) values are consistent across seasons with larger variations in winter. The MAE 

ranges between 1.4-3.1 mm d-1 (interquartile range) and RMSE ranges from ~3.5 to ~6.5 mm 

d-1 across all sites. The best agreement between IMERG estimates and the observed data, 

according to the CC index, is in the fall and summer with average values ranging between 0.5 

to 0.7.    

  

  

Figure 3. Performance evaluation of IMERG V06 at daily timescale based on Rbias, MAE, 

RMSE, and CC; Box-and-whisker plots show the first (Q1) and third (Q3) quartiles (i.e. 

Interquartile Range), maximum (Q3 + 1.5×IQR) – minimum (Q1-1.5×IQR) values 

(whiskers), and the medians of the metrics between all sites across Canada 
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The performance of IMERG in detecting the occurrence of precipitation is evaluated using 

POD, FAR, and CSI (Figure 4). Overall, the results are promising given that the median values 

of POD and CSI are mostly above 0.75 and 0.5, respectively indicating that the precipitation 

occurrence is often captured by satellite records. FAR values (~0.3 – 0.5 varying between 

locations and seasons) imply that the RSE product incorrectly shows the occurrence of 

precipitation in about 35% (median) of non-events. IMERG performance is best in the summer 

with POD ~ 0.78 – 0.88 and FAR ~ 0.35 – 0.45, and worst in the winter with POD ~ 0.5 – 0.75 

and FAR ~ 0.22 – 0.6.   

 
Figure 4. Evaluation of IMERG V06 based on POD, FAR, and CSI 

We perform further analysis of IMERG biases using metrics that quantify the misrepresentation 

of the amounts of precipitation (Figure 5). The IMERG product has the highest hit, miss, and 

false biases in winter compared to the other seasons indicating its worst performance during 

the cold season, while it shows better performance in warmer periods (i.e. summer). Positive 

values of the hit bias indicate that IMERG overestimates the observed precipitation amount by 

~10% on average, which is in agreement with the results from other metrics such as Rbias, 

MAE, and RMSE. ~30% of all days (averaged across all sites) within the five-year period 

experienced more than 0.1 mm d-1 of precipitation, which is correctly detected by the IMERG 
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V06 PrCal product (Figure 6). In addition, IMERG represents ~40% of no-precipitation days 

and hence it detects ~70% of all events, accurately. The product, however, does not capture 

~11% of the total events (> 0.1 mm h-1) while it provides false detection in ~20% of the total 

number of events.  

 

Figure 5. Barplot comparison of daily IMERG and ground-based observations based on 

hbias, mbias, fbias, and cnbias across Canada for 2014-2018 

 
Figure 6. Fractions of daily hit, miss, false and correct negative events for the IMERG PrCal 

product averaged over the study area 

Figure 7 evaluates the performance of IMERG in representing the “true” precipitation at 

different quantiles. For this purpose, the satellite and ground-based precipitation quantiles (1% 

to 99%) are found using the five-year daily data record at each site for different seasons, and 

the average values of each quantile across all sites (represented by red dots in Figure 7) are 
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taken. Results show that overall, IMERG tends to overestimate light to moderate precipitations 

(lower quantiles) particularly during summer. 

 

 
 

Figure 7. Comparison between the spatially averaged quantiles of the true precipitation and 

IMERG PrCal values (mm d-1) for 2014-2018 (x and y axes are in log space) 

 

3.5.2. Evaluation of IMERG V06 and MRMS at Hourly Timescale 

Investigating intense rainfall events over short durations is critical for flood risk analysis 

particularly over urban areas. We evaluate precipitation estimates from four IMERG satellite 

products as well as the MRMS radar data at hourly timescale using ECCC’s ground-based 

observations. This is the first analysis of the IMERG (latest product) and MRMS data over 

Canada at a relatively high temporal resolution. As mentioned before, MRMS collects the base 

level data from all radars in a network and processes them at a centralized location to produce 

high 1-km spatial and 2-min temporal resolution Quantitative Precipitation Estimates (QPEs). 

This allows for easy integration of multi-sensor data and provides enhanced QPE products 

(Zhang et al. 2016). Both IMERG and MRMS products are aggregated to hourly timescale to 

perform the evaluations. 
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The spatial distributions of RMSE and CC corresponding to four different IMERG products 

over the five-year period of 2014-2018 are shown in Figure 8. Overall, PrCal and PrUncal have 

more accurate estimates with lower RMSE and higher CC values compared to those of PrIR 

and PrHQ. All products show better performance in the Prairie provinces (Saskatchewan and 

Alberta) and regions on the west (British Columbia) with RMSE values ranging between 0.25-

0.75 mm h-1 for PrCal, PrUncal, and PrIR. IMERG data can represent the temporal variability 

of the ground-based observations relatively well as suggested by CC values ~ 0.4 and above, 

particularly in eastern and western coasts and parts of central Canada.  

Similar assessments are conducted for the MRMS precipitation rates across the coverage area 

for radar network, which includes regions that lie within 42°-55° latitude. Figure 9 represents 

the spatially distributed RMSE and CC values corresponding to the MRMS precipitation 

product for the entire period and different seasons during 2015-2018. According to both 

metrics, MRMS shows a satisfactory performance particularly over the regions in the east 

(including southwest Ontario) and Prairies with RMSE values ranging from 0.2 to 0.5 and CC 

values from 0.6 to 0.9 in all seasons. In fall and spring, MRMS data are more consistent with 

gauge records in most parts of the country. However, during winter the performance is 

relatively weak with RMSE values consistent with those of the other seasons but low 

correlations. Contrary to the MRMS performance in winter, the assessments show relatively 

high CC values and high RMSEs during summer. This is partly because of false estimates of 

the radar in no rain conditions (resulting in high RMSE), while it can detect rain events well 

resulting in relatively high CC values.  
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Figure 8. Spatially distributed biases of four hourly IMERG V06 products across 530 sites 

based on RMSE (mm h-1) (left) and correlation (right). The products include PrCal (calibrated 

based on monthly gauge data), PrUncal (satellite only data), PrIR (Infrared-based sensor 

data), and PrHQ (High-Quality Passive Microwave based sensors data)  
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Figure 9. Spatially distributed biases of hourly MRMS data across 505 sites based on RMSE 

(mm h-1) (left) and correlation (right) for different seasons  
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Further, we perform a regional evaluation of the four IMERG products as well as the MRMS 

precipitation estimates at hourly timescale for the seven zones defined in Figure 1. The results 

based on RBias, MAE, and CC for zone-1 to 7 are shown in Figure 10. MRMS shows the best 

performance in almost all zones and over the four seasons, although with relatively large 

uncertainties. Except for zone-1 where MRMS underestimates the precipitation amount, with 

Rbias ranging between -35% and 0, it shows overestimated values in all other zones. MRMS 

QPEs are most reliable in fall, spring, and summer in all zones. For example, in zone-1, best 

estimates are found in spring with median Rbias ~ -10%, MAE ~ 0.12 mm h-1, and CC ~ 0.7, 

and in zone-2, fall shows the best estimates with Rbias, MAE, and CC of 5%, 0.1 mm h-1, and 

0.73, respectively. Winter shows the weakest correlations. Further, MRMS data have relatively 

strong linear association with the gauge data (CC~ 0.6-0.8) in zone-1, whereas the values of 

CC vary between 0.5 to 0.75 in other zones, except for winter in zones-4 and 5 in which they 

range between 0.3 and 0.5. 

PrCal outperforms the other IMERG products in most cases, with PrUncal following closely 

in terms of MAE and CC. However, PrUncal shows larger overestimations compared to PrCal. 

Rbias values corresponding to PrCal range between 10% and 25% in zones-2-5, however, in 

zone-1 and zone-6 PrHQ shows better performance in terms of Rbias (0-15% and -5% to 35%, 

respectively). In addition, PrCal has more accurate estimates for different seasons across all 

zones, except for fall and spring in zone-1 and winter and summer in zone-2 in which PrHQ 

shows better results. Based on MAE, PrCal has lower bias and outperforms the other products 

across all zones and during different seasons. In zones-1 to 5 the variations of MAEs are minor, 

as represented by relatively short boxplots, indicating less variability in the estimates across 

sites. In western areas close to the Pacific (zone-6), however, boxplots are wider indicating 

more variability in biases between sites. MRMS outperforms all IMERG products to a large 

degree based on the CC metric.  
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(Zone-1) 

 
(Zone-2) 
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(Zone-3) 

 
(Zone-4) 
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(Zone-5) 

 
(Zone-6) 
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(Zone-7) 
 

Figure 10. Performance evaluation of IMERG V06 (four products) and MRMS at hourly 

timescale based on Rbias (%), MAE (mm h-1), and CC for different seasons over seven zones 

The capability of the IMERG and MRMS products to detect the occurrence of precipitation is 

further assessed for each zone across the study area for the four seasons. Figure 11 shows 

boxplots of the three categorical statistics (i.e. POD, FAR, and CSI) corresponding to all 

products at hourly timescale. Overall, MRMS outperforms other products particularly over 

eastern and western coasts and during warm periods, with CSI values around 0.5. PrHQ follows 

MRMS closely as both products are microwave-based and can observe hydrometeor profiles 

relatively accurately (Huffman et al. 2019b). PrHQ shows the best performance in detecting 

precipitation events among other IMERG products with the highest values of POD (~ 0.65-

0.75), and CSI (~ 0.45-0.55) corresponding to zones-1 and 6, and zones-2 to 5, respectively. It 

also has the lowest values of FAR among the other products across all zones and all seasons.   
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(Zone-1) 

 

   

 
(Zone-2) 
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(Zone-3) 

 

    

 
(Zone-4) 
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(Zone-5) 

 

    

 
(Zone-6) 
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(Zone-7) 
 

Figure 11. Evaluation of the IMERG V06 and MRMS products based on POD, FAR, and 

CSI; the lengths of boxplots represent the range of performance across different sites for 

seven zones 

The hbias, mbias, fbias, and cnbias performance metrics corresponding to the IMERG and 

MRMS precipitation products are presented in Figure 12. The hit bias, where both satellite and 

observed data show precipitation values above 0.1mm h-1, ranges between -10% and 10% for 

the PrCal product. It shows underestimations during summer and overestimations during other 

months. Analyses show relatively large false and miss biases for all products and during all 

seasons. The false (and miss) biases for PrCal are 50% (-40%) during all seasons of the study 

period, which reaches up to 170% (-80%) during winter. Overall, among the IMERG products, 

PrHQ shows the lowest false and miss biases (except for winter), and PrCal has the best 

performance based on the hit bias. Additionally, these bias metrics are relatively lower in the 

fall compared to the other seasons. MRMS shows lower miss and hit biases compared to the 

IMERG products.  
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The PrIR and MRMS estimates are not available for regions above 60°N and 55°N respectively 

(including the gauges in zone-7). Therefore these products are not shown in Figure S1 and S2 

for zone-7. Note that the PrCal and PrUncal products of Version 06 IMERG precipitation 

estimates mask out observed passive microwave estimates over snowy/icy surfaces, so outside 

the latitude band 60°N-S, where IR estimates are not available, precipitation estimates over 

non-snowy/icy surfaces are recorded as missing. On the other hand, the merged microwave 

estimate (“HQ”) field of Version 06 IMERG precipitation estimates has values across all 

swaths at the higher latitudes , so PrHQ product is available outside the latitude band 60°N-S 

(Huffman et al. 2019b). In addition, only the PrHQ shows estimation during winter.  

   

  

  

Figure 12. Performance of the hourly IMERG and MRMS products based on hbias, mbias, 

fbias, and cnbias over 2015-2018 
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Figure 13 represents the percentage of hit, miss, false, and correct negative events for both 

IMERG and MRMS. All products show almost similar performance particularly PrCal and 

PrUncal, except for PrHQ, which has a relatively large false fraction value indicating that it 

tends to overestimate precipitation. Around 90% (86.7% correct negative and 3.2% hit 

fractions) of all events are accurately detected by PrCal with only ~10% error (5.5% false and 

4.6% miss fractions). MRMS shows lower miss fractions compared to the ones corresponding 

to the IMERG products and has a larger hit fraction than PrCal, PrUncal, and PrIR. The 

relatively larger false fraction value (7.1%) suggests that MRMS tends to overestimate 

precipitation.  

 

Figure 13. Fractions of hourly hit, miss, false and correct negative events for the IMERG and 

MRMS products averaged over the study area 

Further, we compare the spatially averaged hourly precipitation estimates from IMERG and 

MRMS with those of the ground-based records across Canada. The corresponding density color 

scatterplots over the five-year period (2014-2018) for the IMERG products and four-year 

period (2015-2018) for MRMS are shown in Figure 14. PrCal and PrUncal outperform the 

other IMERG products but show slight overestimations, while PrHQ has the worst performance 

and significantly overestimates precipitation. The Q-Q plots of the hourly quantiles averaged 

over the study sites across the country (Figure 15) indicate that IMERG products, except for 
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PrHQ which shows significant overestimations at almost all quantiles, tend to slightly 

overestimate intense precipitation events (i.e. values corresponding to higher quantiles) and 

underestimate light precipitation (lower quantiles), which is in agreement with the findings of 

Sunilkumar et al. (2019). MRMS follows the straight line in high quantiles, while it 

overestimates low and middle quantiles.  

 

   
 

    
 

   
 

Figure 14. Scatterplots of the spatially averaged true (ground-based) precipitation and 

IMERG and MRMS precipitation products (mm h-1) at hourly timescale (the blue line is slope 

one line with an intercept equal to zero)   
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Figure 15. Comparison between the spatially averaged quantiles of the true precipitation and 

IMERG and MRMS precipitation products (mm h-1) (x and y axes are in log space, (the blue 

line is slope one line with an intercept equal to zero)   

 

Figures 16 and 17 depict the performance of IMERG at hourly and daily and MRMS ar hourly 

time scale in capturing the time series pattern against ground observed data.  These time series 

are created based on the spatially averaged value of precipitation over the study area. 
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Figure 16. Comparison between spatially averaged IMERG PrCal product and gauge data 

records at daily timescale  
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Figure 17. Comparison between spatially averaged IMERG and MRMS products and gauge 

data records at hourly timescale  
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 3.6. Discussion 

We perform a comprehensive analysis of IMERG and MRMS products at hourly and daily 

time scales over Canada. Overall, the evaluation results show promising performance of these 

remotely sensed data in representing local precipitation at high spatial and temporal resolution. 

The PrCal product, which provides a combination of both PMW and IR estimates represent the 

best regional performance among available IMERG products across Canada with an average 

Rbias value of 20%, MAE value of 0.15mm h-1, and correlation of 0.45 over 2014-2018. In 

contrast, the two products of PrIR and PrHQ are relatively less reliable as the former shows 

low correlation coefficients over the country and the latter indicates high values of RMSE. 

The findings of this research regarding IMERG performance agree with the other studies in 

terms of overall overestimations, better detection capability over plains, and less uncertainty 

during warm months. Tan et al. (2019) provided the first analysis of IMERG V06 and showed 

its improved performance in depicting the diurnal cycle of precipitation around the world 

compared to the previous version (IMERG V05). Their evaluations against the U.S. ground-

based observations showed extensive agreements in capturing summertime diurnal peak of 

precipitation in the central United States by IMERG. Evaluating the IMERG hourly 

precipitation product against hourly ground-based observations showed slight overestimations 

over Mainland China in a study conducted by Tang et al. (2017). Also, comparisons between 

IMERG V03, V04 and V05 Final run products over the globe at 0.1° × 0.1° spatial and daily 

temporal resolution conducted by Wang et al. (2018) indicated that all IMERG versions tend 

to overestimate precipitation by about 12%.  

As depicted in Figure 8, RMSE values are lower over central Canada versus the coastal regions, 

which are characterized by heavy precipitation. This can be attributed to the precipitation 

estimations from IMERG being influenced by topographic conditions, sea and land locations 

(Xu et al. 2019). Further, our analyses showed that while in several instances PrHQ slightly 

outperforms PrCal in maintaining the correlation between QPEs and gauge data (Figures 10, 

and S1), the PrIR product, which estimates precipitation from empirical cloud top temperature 

and rainfall relationships performs worst. This is because the infrared wave-based sensor does 

not capture microwave brightness temperatures of hydrometeor profiles and hence cannot 

detect the precipitation droplets, accurately. In addition, the correlation values significantly 



 

57 
 

drop in winter because of changes in the precipitation regime (i.e. snowfall) over zones-1 to 5. 

The Pacific region (zone-6) shows fewer changes in the correlation values between seasons 

(with larger variations in winter).  

The performance of the IMERG products in representing the occurrence of precipitation is 

higher over the east and west coasts, based on CSI values. Nonetheless, the uncertainties are 

relatively high in zone-6 indicating larger variations across this area because of its diverse 

topographic and climatic conditions. Satellite sensors have difficulties in detecting low-level 

orographic rainfall events that often occur at elevations higher than 3000m elevations (Chen et 

al. 2019), such as parts of the Rocky Mountains in the west of Canada (zone-6). The PMW-

based data (PrHQ) that are derived based on sensors with higher frequency range display more 

stable performance at high elevations as expected (Chen et al. 2019).  

The performance of all products is mostly consistent during fall, spring, and summer, with 

weaker performance in winter. One source of uncertainty in winter precipitation estimation is 

the lack of reliable ground-based precipitation observations during cold seasons. As mentioned 

in the data section, precipitation gauges across most parts of Canada show poor performance 

in solid precipitation measurement. In addition, previous studies have shown problems 

associated with satellite snowfall estimates because of PMW sensors used in satellite products. 

Chen et al. (2019) argued that the PWM retrieval, which is in contact with the precipitation 

particles, has problems in distinguishing between precipitation and frozen surface. Further, the 

IR input that utilizes the morphing technique is directly inferred from cloud top temperature 

and is less affected by the impact of seasonal variation on retrieval results. Huffman et al. 2019 

stated that, all merged PMW estimates have low accuracies in regions with frozen or icy 

surfaces. Thus, PrHQ has relatively low/high uncertainties in summer/winter, while IR input 

looks more stable and smoother across time. Currently, IMERG classifies rainfall and snowfall 

using wet-bulb temperature with a uniform temperature threshold, over the globe. It is 

necessary to acquire a spatially distributed map of temperature thresholds for more precise 

rainfall and snowfall separation (Tang et al. 2020).  

The MRMS data performs relatively well across southern Canada but with uncertainties 

associated with false and miss estimates. This is partly because precipitation features are 
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detected aloft and evaporating before reaching the surface. Furthermore, while the MRMS 

domain covers southern Canada to 55°N latitude, the 30 Canadian radars ingested by MRMS 

do not cover the entire domain. This could potentially influence some of the statistics used in 

these analyses. In addition, the results of MRMS in this study indicate its low performance 

during winter which is in agreement with the findings of Cocks et al. (2016). They assessed the 

performance of MRMS radar-only QPE for the cold season over the United States and found 

that it has a distinct negatively biased QPE during the cold season. They argued that during the 

cool season radar beam overshoot is more common because of shallower precipitation systems 

and lower cloud bases. 

3.7. Summary and Conclusion 

This study evaluates the most recent satellite and radar (i.e. IMERG-V06 and MRMS) 

precipitation estimates using ground-based observations across Canada. A suite of performance 

metrics is used to assess various characteristics of the RSE products seasonally at daily and 

hourly timescales over 2014-2018 for IMERG and 2015-2018 for MRMS.  

The hourly evaluations suggest that PrCal outperforms other IMERG products in estimating 

the precipitation amount. Although PrHQ (the microwave-based product) shows large biases 

in the intensity, it detects the occurrence of precipitation more accurately. The robustness of 

such sensors to detect precipitation suggests that they can be used to improve PrCal estimates. 

As expected, IMERG performs better at daily timescale compared to the hourly based on all 

metrics. For example, the median Rbias and CSI of daily PrCal are 13% and 52% respectively, 

which reduce to 18% and 25% at hourly scale.  

Overall, IMERG better represents the ground-based precipitation amounts over most parts of 

the interior plains compared to the rest of the country with lower Rbias and RMSE values. 

Nonetheless, higher POD and lower FAR values indicate that precipitation occurrence is best 

captured over the west and east coasts. Based on the seasonal assessments, IMERG provides 

more reliable precipitation estimates during warm months especially in summer according to 

correlation coefficients and categorical indices. This is in agreement with the findings of Asong 

et al. 2017. 
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In addition, although IMERG is capable of representing the temporal and spatial variations of 

precipitation over most parts of Canada, it tends to overestimate the moderate to heavy 

precipitation events and shows relatively weak performance during the cold season. 

Assessments of MRMS, as the first study of such high-resolution radar-based precipitation 

estimates across Canada, show the overall satisfactory performance of this product throughout 

its coverage area in the southern parts of the country. In addition to maintaining the spatial 

variations of precipitation in accordance with ground observations, MRMS exhibits a higher 

average CC value (~ 0.6) than PrCal from IMERG (~ 0.4) and better CSI values over all 

regions. MRMS, however, tends to underestimate precipitation in the eastern and western parts 

of Canada and overestimates it in the interior plains. Similar to PrHQ, MRMS can detect 

precipitation occurrence relatively well as they are both microwave-based products. Further, 

MRMS has better coverage over the southern parts of Canada with higher spatial and temporal 

resolution than PrHQ, which has several gaps.  

The first comprehensive analysis of the most recent QPE products across the entire ground 

network stations of Canada suggests that both IMERG and MRMS have considerable 

capabilities in representing precipitation estimates particularly in the interior and over the east 

and west coasts, respectively. However, there are systematic and random biases and 

uncertainties associated with both products that should be adjusted before driving hydrological 

models or performing risk analyses, among others. A combination of both products can result 

in more accurate estimations especially for short duration events and in areas that have sparse 

rain gauges.     
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Chapter 4 

4. Bias correction of satellite IMERG data 

4.1. Introduction 

As mentioned in the previous chapters, although satellite-based precipitation products provide 

reasonably well estimates at high spatiotemporal resolution, the measurements indicate 

systematic biases due to inherent uncertainty related to remotely sensed data. It is noted that 

two types of errors are associated with SPPs named random and systematic errors 

(AghaKouchak et al., 2012). Systematic errors that are consistent and predictable come from 

the sensors and devices that satellite algorithms use in precipitation estimates, however, 

random errors as unpredictable errors are related to the spatial and temporal sampling. Previous 

studies have attempted to evaluate and correct the systematic biases by comparing the SPPs 

with the most reliable ground-based (gauge and radar) precipitation observations. For 

correcting this type of error, at first, understanding the error characteristics and its variation 

over different regions are important which was performed in Chapter 3 of this study. Therefore, 

in this chapter, a method to adjust the bias of IMERG PrCal product as the most applicable and 

reliable data at daily temporal and 0.1º spatial scales is developed over the entire study area 

including gauged and ungauged locations. This method is based on a variety of processes that 

are explained in detail in the methodology section of this chapter.  

In recent decades the use of satellite precipitation estimates has increased dramatically over 

different parts of the globe, while studies regarding the uncertainty analysis and bias correction 

of these useful products have conducted. As the satellite data are grid-based and in contrast, 

the ground-based true data are provided in point scales, comparison between two datasets and 

consequently bias correction of satellite areal data have some challenges (Tang et al., 2018). A 

simple approach is correcting the spatially averaged bias over the interested region (Seo et al., 

1999). However, these methods may not be suitable for large-scale basins (> 5000 km2) where 

rainfall varies in space significantly (Habib et al., 2014).   

Some other bias correction techniques consider spatially distributed patterns in bias and attempt 

to adjust them (Yang et al., 2016; Lu et al., 2019). These methods use different regression-
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based techniques such as stepwise regression (STEP) and geographically weighted regression 

(GWR) to find a relation between satellite precipitation and other covariates, as well as 

interpolation techniques such as inverse distance weighting, nearest neighbor, and kriging to 

correct the biases, especially at ungauged pixels. Müller and Thompson (2013) applied such a 

method in Nepal and concluded that space-variant correction schemes are effective in reducing 

the bias for CMORPH and TRMM. However, the limitation of this method is that they can not 

capture the time variation of true data and adjust the biases in timing of the events (Ajaaj et al, 

2016). Furthermore, interpolation techniques lead to additional uncertainties, and the quality 

of interpolated precipitation in grid pixels without gauges is typically lower than that in grid 

pixels with gauges (Tang et al., 2018). In the following, more details regarding some of the 

widely-used bias correction methods with their main advantages and disadvantages are 

provided.  

Mean bias removal technique  

In this technique the mean bias is estimated at each year by calculating the difference between 

observed and estimated rainfall as follows:  

𝐵𝑖𝑎𝑠 =
∑ (𝑃𝑂𝑖

−𝑃𝑆𝑖
)𝑁

𝑖=1

𝑁
   (4.1) 

where 𝑃𝑂𝑖
 is mean monthly observed precipitation at year i, and 𝑃𝑆𝑖

 is satellite precipitation at 

year i, N is the number of years. This ‘mean bias’ is then applied to uncorrected satellite data 

at each month for a given year to get the corrected precipitation in that year (Davis, 1976; 

Kharin and Zwiers, 2002). The main advantage of this method is its simplicity, however, it 

does not capture the climate pattern and does not remove the bias that is associated with higher 

precipitation rate (Alharbi, 2019). 

Multiplicative shift technique 
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At first the ratio between observed (𝑃𝑂𝑖
) and satellite estimates (𝑃𝑆𝑖

) for each year is obtained 

by  

𝑚 =  
∑ 𝑃𝑂𝑖

𝑁
𝑖=1

∑ 𝑃𝑆𝑖
𝑁
𝑖=1

        (4.2) 

The value m should be calculated using cross-validation (1 year among the total dataset is 

withdrawn for ‘test’ and the remaining dataset is used as the ‘training’ dataset, which has been 

used for calculation of all statistics). It is then multiplied by the original estimated value for 

generating bias-corrected data (Ines and Hansen, 2006; Acharya et al., 2013). It can remove 

the bias from mean monthly rainfall and it can be used for correcting daily rainfall. In this 

method biases will remain in rainfall intensity and frequency specifically for dry periods. It 

also fails to correct year to year variations in rainfall intensities (Ajaaj et al., 2016). 

Linear regression (R) 

In this technique, the general linear regression equation is used at the monthly time scale, which 

is given by: 

𝑅𝑡 = 𝑎0 + 𝑎𝑡 × 𝐹𝑡   (4.3) 

where 𝑎0 and 𝑎𝑡 are called the constant and coefficient of the linear regression data and 𝑅𝑡 is 

the corrected estimated satellite precipitation (Hay et al., 2000; Lafon et al., 2013). The 

coefficients of the linear fit can be evaluated using the least square estimates as follows. 

𝑎𝑡 = 𝐶𝑜𝑣 (𝑌, 𝐹)/𝑉𝑎𝑟(𝐹)    (4.4) 

𝑎0 = 𝑌 − 𝑎𝑡 × 𝐹 (4.5) 



 

67 
 

Where 𝐶𝑜𝑣 (𝑌, 𝐹) is the covariance for the observed (Y) and the estimated (F) precipitation, 

respectively. 𝑉𝑎𝑟(𝐹) is the variance of the estimated (F) data.  

This method is simple, but it may not capture inter-monthly variability and possibly affect 

moments of the probability distribution of daily precipitations (Diaz-Nieto and Wilby 2005). 

Nonlinear correction method  

The linear bias correction methods work by correcting the bias in the mean without correcting 

the bias in the variance. Therefore, the non-linear bias correction approach that has an 

exponential form 

𝑃𝐵𝐶 = 𝑎. 𝑃𝑏  (4.6) 

shown by Equation 4.6, is used to correct the variously estimated precipitations by SPPs. In 

Equation 4.6, 𝑎 and 𝑏 are scale factors, and P is the original precipitation rate that is estimated 

by SPP. 𝑃𝐵𝐶  is the bias-corrected rate. The parameter 𝑏 can be estimated iteratively by matching 

the monthly coefficient of variations of the bias-corrected SPPs with the monthly coefficient 

of variations of the ground observations.  The non-linear bias correction works by matching 

the mean and variance of ground observations (Alharbi, 2019).  This technique is simple and 

just needs monthly observed statistics, however, biases associated with the higher-order 

moments may not be removed by this method (Ajaaj et al., 2016). 

Stochastic modeling 

This method was developed by Müller and Thompson in 2013 to spatially aggregate and 

interpolate the parameters of gauge data that describe the frequency and intensity of the rainfall 

observed at the satellite grid resolution. The resulting gridded parameters were then used to 

adjust the probability density function of satellite rainfall observations at each grid cell, 

accounting for spatial heterogeneity. The procedure for this method is as follows: 
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1. Extracting rainfall frequency and intensity parameters. For rainfall frequency parameters 

the authors used a first-order Markov chain model which characterized the probability of 

a rainy day conditional on the previous day being dry or rainy. For rainfall intensity 

parameters, they used a gamma distribution with shape and rate parameters to describe the 

probability distribution of daily rainfall depths on those rainy days. These Stochastic 

Model Parameters (SMPs) are directly related to a range of relevant metrics that describe 

rainfall distribution and can thus be used to evaluate the bias adjustment method.  

2. Aggregating the SMPs observed at the gauges to the resolution of satellite pixels.  

3. Interpolating the aggregated SMPs from the gauged to the ungauged pixels, labeled as 

SMPpix. 

4. Interpolating the SMPs obtained for satellite data at the gauged pixels to the ungauged 

pixels, labeled as SMPsat. 

5. Computing the biases of SMPsat at ungauged pixels by subtracting the result of step 2 

(SMPpix) to the result of step 3 (SMPsat). 

6. Finally, biases are adjusted by subtracting the modeled bias (SMPsat) from original bias 

(SMPosat), the local SMPs of sat is calculated as SMPadjusted = SMPosat - ΔSMPsat  

                                                                                                = SMPosat - (SMPsat - SMPpix).  

The main advantage of this method is considering the biases of both frequency and intensity of 

satellite products and correct them simultaneously. Besides, it can correct the biases at the 

satellite pixels devoid of gauges. Nevertheless, it still suffers from incapability to capture the 

time variation of precipitation data particularly for small scale rainfall features.  

Quantile mapping method 

Quantile Mapping (QM) (also referred to as quantile matching, cumulative distribution 

function matching, quantile-quantile transformation) attempts to find a transformation,  

𝑃𝑜 = ℎ(𝑃𝑚)                              (4.7) 



 

69 
 

of a modeled variable 𝑃𝑚 such that its new distribution equals the distribution of the observed 

variable 𝑃𝑜 . If the distribution of the variable of interest is known, the transformation ℎ is 

defined as  

𝑃𝑜 = 𝐹𝑂
−1(𝐹𝑚(𝑃𝑚))                 (4.8) 

 where 𝐹𝑚 is the CDF of 𝑃𝑚 and 𝐹𝑂
−1 is the inverse CDF (or quantile function) corresponding 

to 𝑃𝑜 (Gudmundsson et al., 2012). 

QM can be achieved by using theoretical distributions to solve Eq. (4.8). For this purpose, 

different parametric distributions such as Gamma, Bernoulli, and Weibull can be used to model 

the precipitation characteristics (occurrence and intensity). The parameters of the distributions 

can be estimated by maximum likelihood methods for both observed and modeled data. 

A common approach, that is also applied in this study, to solve Eq. (4.8) is the empirical CDF 

of observed and modeled values instead of assuming parametric distributions. The empirical 

CDFs are approximated using tables of the empirical percentiles. Values in between the 

percentiles are approximated using linear interpolation (Gudmundsson et al., 2012). 

In climate change analyses to bias correct General Circulation Models (GCMs), QM equates 

cumulative distribution functions (CDFs) 𝐹𝑜,ℎ and 𝐹𝑚,ℎ of observed data 𝑥𝑜,ℎ denoted by the 

subscript o, and modeled data 𝑥𝑚,ℎ, denoted by the subscript m, in a historical period, denoted 

by the subscript h, respectively. This leads to the following transfer function, 

𝑥𝑚,𝑝(𝑡) =  𝐹𝑜,ℎ
−1{𝐹𝑚,ℎ[𝑥𝑚,ℎ(𝑡)]}        (4.9)  

where 𝑥𝑚,𝑝(𝑡) is a bias-corrected value at time t within some projected (future) period, denoted 

by the subscript p. F-1 denotes the Inverse CDF (ICDF) of observed data. If CDFs and inverse 

CDFs (i.e., quantile functions) are estimated empirically from the data, the algorithm can be 

illustrated with the aid of a quantile–quantile plot, which is the scatterplot between empirical 
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quantiles of observed and modeled data. In this case, QM amounts are found by interpolating 

between points in the CDF plot of the observed data. The transfer function is constructed using 

information from the observed gauges. QM, like all statistical post-processing algorithms, 

relies strongly on an assumption that the climate model biases to be corrected are stationary 

(i.e., that characteristics in the historical period will persist into the future) (Cannon et al., 2015; 

Najafi et al., 2016 and 2017). 

As the most widely recognized and recent technique in bias correction of SPPs, QM has been 

used in several studies (Zhang and Tang, 2015; Yang et al., 2016; Gumindoga et al., 2019; 

Alharbi, 2019). In the field of SPPs the Eq. 4.9 will be changed slightly. In this case 

 𝑃�̂� = 𝐹𝑂
−1(𝐹𝑠(𝑃𝑠))                      (4.10) 

 where 𝐹𝑠 is the CDF of 𝑃𝑠 (satellite precipitation), 𝐹𝑂
−1 is the inverse CDF of 𝑃𝑜 (observed 

precipitation), and 𝑃�̂� is bias-corrected satellite precipitation. There are several statistical 

transformations related to the QM method for modeling the CDFs. The distribution-derived 

transformation uses theoretical distribution to solve Eq. 4.10. Parametric transformations are 

used directly to model the quantile-quantile relationship 

𝑃𝑜 = ℎ(𝑃𝑠)                                 (4.11) 

Instead of assuming parametric distributions, nonparametric transformations use empirical 

CDFs to solve Eq. 4.10 or nonparametric regressions such as cubic smoothing splines (e.g. 

Hastie et al., 2001) to solve Eq. 4.11. The smoothing spline is only fitted to the fraction of the 

CDF corresponding to observed wet days and modeled values below this are set to zero. The 

nonparametric QM approach is highly valued for bias adjustment, because it does not rely on 

any predetermined function and as such provides more flexibility. The main advantage of QM 

method is that it can effectively capture the evolution of mean and variability of estimated data 

(SPPs) while matching all statistical moments (Cannon et al., 2015). However, it may not 

capture the occurrences of the daily precipitation (Ajaaj et al., 2016). Beside, QM is unable to 
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correct estimated values outside the codomain of the observed period (Passow and Donner, 

2020).  

Regression Quantile Mapping (RQM) method 

RQM is a bias correction approach based on (linear) regression models which allow to design 

of transfer functions over ungauged sites and adjust the biases of temporally and spatially 

(Passow and Donner, 2019). In this study, the RQM method is used for bias correcting of SPP, 

which is explained in detail in the methodology section.  

4.2. Data  

In this chapter, the bias correction technique is applied on the daily IMERG PrCal product 

aggregated from half hourly original data. Also, daily in situ rain gauge data aggregated from 

hourly are used as reference true data in bias correction of satellite estimates. These two 

datasets have already been explained in detail in previous chapter. In this section the NARR 

covariate data sources required for implementing the regression-based bias correction method 

are described.    

4.2.1. NCEP North American Regional Reanalysis: NARR 

Reanalysis a systematic approach to produce data sets for climate monitoring and research. 

Reanalyses are created via an unchanging ("frozen") data assimilation scheme and model(s) 

which ingest all available observations every 6-12 hours over the period being analyzed. This 

unchanging framework provides a dynamically consistent estimate of the climate state at each 

time step. The one component of this framework which does vary are the sources of the raw 

input data. This is unavoidable due to the ever-changing observational network which includes, 

but is not limited to, radiosonde, satellite, buoy, aircraft, and ship reports (Dee et al., 2014). 

The NARR project is an extension of the NCEP Global Reanalysis which is run over the North 

American Region. It covers 1979 to near present and is provided in gridded output at ~32 km 

(0.3°) resolution at three-hourly, daily, and monthly on a Northern Hemisphere Lambert 

Conformal Conic grid for all variables. The NARR model takes in, or assimilates, a great 
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amount of observational data to produce a long-term picture of weather over North America. 

The data that are assimilated in order to initialize the model to real-world conditions are 

temperatures, winds, and moisture from radiosondes as well as pressure data from surface 

observations. Also included in this dataset are dropsondes, pibals, aircraft temperatures and 

winds, satellite radiance (a measure of heat) from polar (orbiting Earth) satellites, and cloud 

drift winds from geostationary (fixed at one location viewing Earth) satellites. 

In this study we used two different types of NARR variables, first, daily time-varying variables 

in order to apply as covariates in regression quantile mapping which help to predict bias-

corrected satellite estimates over both gauged and ungauged pixels. Second, the longterm 

monthly mean variables that are utilized to calculate the climatic distance between satellite 

pixels used in the interpolation process of bias-corrected data. The first group of covariates 

includes 1) daily accumulated total precipitation, the daily mean of 2) air temperature, 3) 

convective potential energy, 4) non-convective cloud cover, 5) dew point temperature at 2m, 

6) specific humidity at 2m, 7) pressure at mean sea level, 8) pressure vertical velocity. This 

group of variables is selected based on some criteria examined (explained in the methodology 

chapter) in order to make sure that there is a relationship between them as independent variables 

and gauge/satellite precipitation data as the dependent variable. The second group of variables 

includes 1) invariant parameters such as elevation (the elevation in this study is provided from 

Canadian Digital Elevation Model (CDEM) which has the 20 meter base spatial resolution and 

then is resampled to 10 km (consistent with IMERG spatial resolution) using nearest neighbor 

resampling technique in GIS software), and the long-term monthly mean of 2) total 

precipitation, 3) convective potential energy, 4) non-convective cloud cover, 5) dew point 

temperature at 2m, 6) specific humidity at 2m, 7) Shortwave Radiation Flux, 8) Geopotential 

Height, 9) Vegetation Index. 

Some of the abovementioned variables are defined as follows: 

Convective potential energy:  

In meteorology, convective available potential energy (commonly abbreviated as CAPE), is 

the integrated amount of work that the upward (positive) buoyancy force would apply on a 

given mass of air (called an air parcel) if it rose vertically through the entire atmosphere. 

Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel 

https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Air_parcel
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to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric 

sounding, a necessary condition for the development of cumulus and cumulonimbus clouds 

with attendant severe weather hazards (Barry and Chorley, 1998). 

Shortwave Radiation Flux: 

Shortwave flux is a result of specular and diffuse reflection of incident shortwave radiation by 

the underlying surface. This shortwave radiation, like solar radiation, can have a profound 

impact on certain biophysical processes of vegetation, such as canopy photosynthesis and land 

surface energy budgets, by being absorbed into the soil and canopies.[4] As it is the main 

energy source of most weather phenomena, the solar shortwave radiation is used extensively 

in numerical weather prediction (Kantha and Clayson, 2000). 

Geopotential Height: 

Geopotential height approximates the actual height of a pressure surface above mean sea-level. 

Therefore, a geopotential height observation represents the height of the pressure surface on 

which the observation was taken. Since cold air is denser than warm air, it causes pressure 

surfaces to be lower in colder air masses, while less dense, warmer air allows the pressure 

surfaces to be higher. Thus, heights are lower in cold air masses, and higher in warm air 

masses. (Hofmann-Wellenhof and Moritz, 2005). 

Vegetation Index: 

A vegetation index is a single number that quantifies vegetation biomass and/or plants vigor 

for each pixel in a remote sensing image. The index is computed using several spectral bands 

that are sensitive to plant biomass and vigor (Huete et al., 2002). Vegetation affects rainfall 

through the process of transpiration. When plants convert carbon dioxide and sunlight into 

carbohydrates via photosynthesis, they lose water through their leaves. 

https://en.wikipedia.org/wiki/Atmospheric_instability
https://en.wikipedia.org/wiki/Atmospheric_sounding
https://en.wikipedia.org/wiki/Atmospheric_sounding
https://en.wikipedia.org/wiki/Cumulus_cloud
https://en.wikipedia.org/wiki/Cumulonimbus_cloud
https://en.wikipedia.org/wiki/Severe_weather
https://en.wikipedia.org/wiki/Radiative_flux#cite_note-4
https://en.wikipedia.org/wiki/Numerical_weather_prediction
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4.3. Methodology 

As in this study, bias correction of daily SPP is investigated, the original half-hourly PrCal 

product of IMERG and corresponding hourly ground observed data are both aggregated to 

daily time series during the 5-year study period from 2014 to 2018.  

Considering previously mentioned limitations of several bias correction methods, in this study 

a more reliable model that corrects biases of satellite precipitation data spatially and temporally 

at gauged as well as ungauged sites is developed. The fundamental of the proposed framework 

is based on RQM that is explained as follows.  

4.3.1. Regression Quantile Mapping 

At first, the linear quantile regression is described.  

Linear quantile regression 

Given a desired probability 𝜏 and n random continuous variables 𝑌𝑖 (i= 1, …, n) with CDF 

𝐹𝑌𝑖
(𝑦) = 𝑃(𝑌𝑖 ≤ 𝑦), the 𝜏-th quantile 𝑄𝑌𝑖

(𝜏) of 𝑌𝑖 is defined as 

 𝑄𝑌𝑖
(𝜏) =  𝐹𝑌𝑖

−1(𝜏) = 𝑖𝑛𝑓{𝑦𝜖ℝ: 𝜏 ≤  𝐹𝑌𝑖
(𝑦)}     (4.12) 

where the infimum (𝑖𝑛𝑓) is the greatest element in {𝑦𝜖ℝ} that is less than or equal to all 

elements of {𝑦𝜖ℝ: 𝜏 ≤  𝐹𝑌𝑖
(𝑦)} 𝑓𝑜𝑟 𝜏𝜖[0,1] and 𝐹𝑌𝑖

−1 is the quantile function, i.e., the inverse 

CDF, of 𝑌𝑖. In linear quantile regression (QR), 𝑄𝑌𝑖
 is assumed to depend linearly on a vector 

of predictor variables 𝑋𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝)
𝑇
such that 

𝑄𝑌𝑖
(𝜏|𝑋𝑖) = 𝑋𝑖

𝑇 . 𝛽𝜏                                       (4.13)  

https://en.wikipedia.org/wiki/Greatest_element
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where 𝛽𝜏 = (𝛽𝜏,1, . . . , 𝛽𝜏,𝑝)
𝑇
 is a vector of unknown regression parameters estimated by solving 

the minimization problem 

�̂�𝜏 = 𝑎𝑟𝑔 ∑ 𝜌𝜏(𝑌𝑖 − 𝑋𝑖
𝑇𝑛

𝑖=1 𝛽𝜏)
𝛽𝜖𝑅𝑝

𝑚𝑖𝑛
            (4.14)  

where 𝜌𝜏(. ) is the check function given by 

 𝜌𝜏 (𝑒) = 𝜏𝑒𝐼[0,∞)(𝑒) − (1 − 𝜏)𝑒𝐼(−∞,0)(𝑒) 

                         = 𝑒 (𝜏 − 𝐼(−∞,0)(𝑒)) =  [
1

2
+ (𝜏 −

1

2
)  𝑠𝑔𝑛 (𝑒)] |𝑒|       (4.15) 

with 𝐼𝐴(. ) as the indicator function of some interval A and sgn (.) is the sign function.  

In most practical applications of QR, one is interested in the full conditional distribution of the 

𝑌𝑖. Hence, QR is not only used to estimate the conditional sample quantile 𝑞𝜏 for a single 𝜏, but 

rather to estimate a full set of 𝑞𝜏1
, . . . , 𝑞𝜏𝑘

 for various 𝜏1, . . . , 𝜏𝑘  values. However, since Eq. 

(4.15) is solved separately for each desired 𝜏, the estimated quantile functions may commonly 

intersect with each other. In such a case, a quantile of a higher order switches places with a 

quantile of a lower order. This undesired phenomenon is called quantile crossing (QC) and is 

a well-known problem of QR. Several approaches are possible to prevent QC; here, a 

smoothing spline is used to smooth the conditional distribution which is initially estimated 

independently for each 𝜏 (See section 4.3.2).  

Regression quantile mapping 

The procedure of bias correction of satellite data is based on the true value obtained from 

ground stations observed records. Thus, at first satellite pixels where there is at least one rain 

gauge located inside them are determined and their biases are corrected using the method 

developed here. Then, biases of other ungauged pixels are adjusted.  
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RQM is an extension of QM which uses conditional inverse CDFs instead of usual inverse 

CDFs. In this case, in addition to removing the systematic biases, time or state-dependent 

characteristics reflected by time or other climate variables as covariates (e.g., long term trends 

or the annual cycle) and the response of the climate variable to changes in associated climate 

predictors (here denoted as X) are also adjusted. Thus, the equation is provided as: 

�̂�𝑠  = 𝐹𝑦𝑜|𝑋
−1 (𝐹𝑦𝑠|𝑋

(𝑦𝑠))                           (4.16) 

where 𝑦𝑠 is the quantile of original satellite data, 𝐹𝑦𝑠|𝑋
 is the CDF of satellite original data 

conditional on covariate X, 𝐹𝑦𝑜|𝑋
−1  is the inverse CDF (or quantile function) of the observations 

𝑦𝑜 conditional on the covariates X, and �̂�𝑠 is the bias-corrected satellite data.  

In this study the linear QR is used as we assume a simple linear relationship between the 

predictors (covariates) and precipitation (dependent variable). It is noted that RQM algorithm 

requires the predictive modeling of CDFs and therefore the QR approach and regression model 

should be selected with respect to the intrinsic properties of the climate variable and predictors 

considered (e.g., for modeling seasonality, a harmonic regression function concerning time 

varying covariate might be an appropriate choice) (Passow and Donner, 2020). As in this study, 

the aim is bias correcting of daily time series of SPP, so various covariates at daily scale as 

independent variables have been selected and applied for developing the regression model (See 

section 4.2).  

There are different ways in which the CDFs can be approximated, including both parametric 

and nonparametric methods. A common approach is to estimate empirical CDFs as an initial 

approximation. Since these CDFs are step functions, piecewise linear interpolation is used to 

estimate probabilities and quantiles for values in between. 

For the approximation of the conditional CDFs and inverse CDFs we combine QR with a 

nonparametric smoothing spline (see next section) estimator. Let 𝜏1, . . . , 𝜏𝑘 be a set of 

probabilities, where 𝜏𝜖[0,1] and 𝜏1 < . . . < 𝜏𝑘. QR is applied to each time series (𝑦𝑜 𝑎𝑛𝑑 𝑦𝑠) to 

estimate the regression parameters  
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 �̂�𝜏𝑧 = (�̂�𝜏1,𝑧, . . . , �̂�𝜏𝑘,𝑧)
𝑇
     (4.17)  

for the observation (z=o) and the satellite data (z=s) for each 𝜏i separately.  

With the linear QR parameters known, we can use the corresponding QR model (Eq. 4.11) to 

predict quantile curves 𝑞𝜏 for each time point t in the study period of interest (Tp) with respect 

to the predictors 𝑋𝑝 of that period and time-dependent (linear) effect of the predictors (i.e., 

�̂�𝜏𝑜 𝑎𝑛𝑑 �̂�𝜏𝑠) as  

�̂�𝜏,𝑧(𝑡) = 𝑋𝑝. �̂�𝜏,𝑧 ∀ 𝑡 ∈ 𝑇𝑃   (4.18) 

In Eq. (4.18), two different sets of quantile curves (�̂�𝜏,𝑜𝑎𝑛𝑑 �̂�𝜏,𝑠) are obtained, which are 

estimated based on the same set of predictors (𝑋𝑝) and can be evaluated over the same period 

(Tp). The difference between them only being the regression coefficients �̂�𝜏,𝑧 . [The actual 

quantile matching (Eq. 4.16) performed in a later step of the algorithm will make use of these 

�̂�𝜏,𝑧 .] Therefore, RQM is the only bias correction method in which all necessary CDFs and 

inverse CDFs are defined for Tp.  

At this point, the �̂�𝜏,𝑧 still resemble step functions of 𝐹𝑦𝑜|𝑋
−1  and are therefore not suitable for 

distribution mapping. To obtain a continuous approximation of 𝐹𝑦𝑜|𝑋
−1  we use the smoothing 

spline estimator to provide estimates for the unknown quantile values. 

4.3.2. Smoothing Spline 

In mathematics, a spline is a special function defined piecewise by polynomials. The term 

"spline" is used to refer to a wide class of functions that are used in applications requiring data 

interpolation and/or smoothing. The data may be either one-dimensional or multi-dimensional.  

The B-spline basis is a commonly used spline basis that is based on a special parametrization 

of a cubic spline. The B-spline is based on the knot sequence (De Boor, 1978 ). Cubic splines 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Piecewise
https://en.wikipedia.org/wiki/Polynomial


 

78 
 

are created by using a cubic polynomial in an interval between two successive knots. A spline 

of order n is a piecewise polynomial function of degree n-1 in a variable x. The values of x 

where the pieces of the polynomial meet are known as knots denoted 𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑛 and sorted 

into non-decreasing order. When the knots are distinct, the first n-2 derivatives of the 

polynomial pieces are continuous across each knot. When r knots are coincident, then only the 

first n-r-1 derivatives of the spline are continuous across that knot. 

In this study “create.bspline.basis” function in R is used to make a connection between known 

quantiles and estimate unknown ones by computing the appropriate linear combination. 

Functional data objects are constructed by specifying a set of basic functions and a set of 

coefficients defining a linear combination of these basis functions. The B-spline basis is used 

for non-periodic functions. B-spline basis functions are polynomial segments jointed end-to-

end at argument values called knots, breaks, or join points. The segments have specifiable 

smoothness across these breaks. B-splne basis functions have the advantages of very fast 

computation and great flexibility (Ramsay et al. 2009). 

In this study RQM is developed by fitting the linear model between precipitation and some 

time-varying predictors as independent variables at each quantile. For selecting predictors, the 

main part is checking the multicollinearity and the strength of the correlation between multiple 

independent variables. Multicollinearity occurs when independent variables in 

a regression model are correlated. Fortunately, there is a simple test to assess multicollinearity 

in the regression model. The variance inflation factor (VIF) identifies the correlation between 

independent variables and the strength of that correlation. Statistical software calculates a VIF 

for each independent variable. VIFs start at 1 and have no upper limit. A value of 1 indicates 

that there is no correlation between this independent variable and any others. VIFs between 1 

and 5 suggest that there is a moderate correlation, but it is not severe enough to warrant 

corrective measures. VIFs greater than 5 represent critical levels of multicollinearity where the 

coefficients are poorly estimated, and the p-values are questionable. Therefore, among around 

15 climatic variables, just 6 of them which had more correlation with satellite and observed 

precipitations individually as well as a reasonable VIF value (the VIF value for each of those 

six variables was about 1.5), have been selected for fitting the RQM model. It is also 

worthwhile to mention that, the original gridded covariates have been provided in ~32 km, so, 

https://en.wikipedia.org/wiki/Piecewise
https://en.wikipedia.org/wiki/Polynomial
https://statisticsbyjim.com/glossary/predictor-variables/
https://statisticsbyjim.com/glossary/regression-analysis/
https://statisticsbyjim.com/glossary/factors/
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before using, they are resampled to ~10 km in order to be matched with satellite pixels’ 

resolution.  

4.3.3. Clustering 

One objective of this chapter is to correct the bias over ungauged pixels. For this purpose, we 

use the parameters extracted from RQM developed at gauged pixels, then interpolate them over 

ungauged pixels. In order to have more reliable interpolation over the entire study area (Canada 

wide) with diverse climatic conditions, we clustered the area based on the climatic distance 

between satellite pixels. Then, the information of gauged pixels at each cluster is used to be 

interpolated over ungauged pixels within that cluster. In the following the clustering methods 

utilized in this study are explained.  

 K-means Clustering method 

A cluster refers to a collection of data points grouped because of certain similarities. 

At first, a target number k, which refers to the number of centroids needed in the dataset is 

defined. A centroid is the imaginary or real location representing the center of the cluster. Every 

data point is allocated to each of the clusters by reducing the in-cluster sum of squares. 

K-means clustering is an extensively used technique for data cluster analysis. It is easy to 

understand and delivers training results quickly. The K-means algorithm identifies k number 

of centroids, and then allocates every data point to the nearest cluster while keeping the 

centroids as small as possible. The ‘means’ in the K-means refers to averaging of the data; that 

is, finding the centroid. To process the learning data, the K-means algorithm in data mining 

starts with the first group of randomly selected centroids, which are used as the beginning 

points for every cluster, and then performs iterative (repetitive) calculations to optimize the 

positions of the centroids. It halts creating and optimizing clusters when either: 

The centroids have stabilized — there is no change in their values because the clustering has 

been successful. 

The defined number of iterations has been achieved. 
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However, slight variations in the data could lead to high variance. Furthermore, clusters are 

assumed to be spherical and evenly sized, something which may reduce the accuracy of the K-

means clustering (Amorim and Hennig, 2015) 

 Hierarchical Clustering method 

Hierarchical clustering is an alternative approach to k-means clustering for identifying groups 

in the dataset. It does not require to pre-specify the number of clusters to be generated as is 

required by the k-means approach. Furthermore, hierarchical clustering has an added advantage 

over K-means clustering in that it results in an attractive tree-based representation of the 

observations, called a dendrogram.  

Hierarchical clustering can be divided into two main types: agglomerative and divisive. 

Agglomerative clustering: It’s also known as AGNES (Agglomerative Nesting). It works in 

a bottom-up manner. That is, each object is initially considered as a single-element cluster 

(leaf). At each step of the algorithm, the two clusters that are the most similar are combined 

into a new bigger cluster (nodes). This procedure is iterated until all points are member of just 

one single big cluster (root) (see figure below). The result is a tree which can be plotted as a 

dendrogram. 

Divisive hierarchical clustering: It is also known as DIANA (Divise Analysis) and it works 

in a top-down manner. The algorithm is an inverse order of AGNES. It begins with the root, in 

which all objects are included in a single cluster. At each step of iteration, the most 

heterogeneous cluster is divided into two. The process is iterated until all objects are in their 

own cluster (Figure 22). 

Note that agglomerative clustering is good at identifying small clusters. Divisive hierarchical 

clustering is good at identifying large clusters. For both K-means and Hierarchical, we measure 

the (dis)similarity of observations using Euclidean distance (i.e. climatic distance) measure. In 

R, the Euclidean distance is used by default to measure the dissimilarity between each pair of 
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observations. However, to measure the dissimilarity between two clusters of observations, we 

used the Ward method in this study. Ward’s minimum variance method minimizes the total 

within-cluster variance. At each step, the pair of clusters with minimum between-cluster 

distance are merged (Ward, 1963).  

It is noted that to perform cluster analysis, generally, the data should be prepared as follows: 

Rows are observations (individuals) and columns are variables. Any missing value in the data 

must be removed or estimated. The data must be standardized (i.e., scaled) to make variables 

comparable. Standardization consists of transforming the variables such that they have mean 

zero and standard deviation one. 

In this study, a number of nine covariates for each month at a given pixel are utilized to 

calculate the climatic distance between that pixel and other pixels. The climatic distance is then 

used between covariates for clustering the study area. It should be noted that all processes of 

bias correction are conducted at each month of the study period separately, so the long term 

monthly covariates of NARR data are utilized which give a unique value at each month for a 

given pixel. These values have been provided in the monthly mean from 1979 to 2019. Having 

the all information at each resampled 0.1-degree pixel makes it possible to implement 

clustering techniques for classifying all satellite pixels in several groups.  

Both K-means and Hierarchical methods were used to select the best number of clusters. 

However, differences were negligible between two methods and based on “silhouette” criterion 

for obtaining the optimal number of clusters, nine clusters were selected. Silhouette refers to a 

method of interpretation and validation of consistency within clusters of data. In this study, the 

silhouette is calculated with the Euclidean distance which is a metric for measuring the 

"ordinary" straight-line distance between two points. The silhouette ranges from −1 to +1, 

where a high value indicates that the object is well matched to its own cluster and poorly 

matched to neighboring clusters. If most objects have a high value, then the clustering 

configuration is appropriate (for more detail and equations see Rousseeuw, 1987). Figure 18 

shows the average value of 0.52 for all clusters which means a reasonable structure has been 

found (Rousseeuw, 1987). 

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Peter_J._Rousseeuw
https://en.wikipedia.org/wiki/Peter_J._Rousseeuw


 

82 
 

 

Figure 18. The average silhouette width of all nine clusters over the study area 

4.3.4. CDF Segmentation 

The idea of using partitioned CDF in this study came from Grillakis et al. 2013 who presented 

an improved quantile mapping based bias correction method named multi-segment statistical 

bias correction (MSBC) quantile mapping for general circulation model (GCM) simulated 

daily precipitation. The method used different instances of gamma function that were fitted on 

multiple discrete segments on the precipitation cumulative distribution function (CDF), instead 

of the common quantile-quantile approach that uses one theoretical distribution to fit the entire 

CDF. This improved the ability of the method to better transfer the observed precipitation 

statistics to the raw GCM data (Grillakis et al. 2013) 

In the proposed RQM method of this study, we split the precipitation CDF into five equal, 

discrete, sequential segments from 0 to 0.2, 0.21 to 0.4, 0.41 to 0.6, 0.61 to 0.8, and 0.81 to 1. 

Then RQM is performed at each segment separately to correct the CDF of satellite data in the 

range of that segment. For example, at first, the data with CDF between 0 and 0.2 is corrected, 

then the data with CDF between 0.2 and 0.4, etc. Also, the procedure is applied for each 

calendar month separately. 
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4.3.5. Interpolating/Extrapolating by IDW 

In this research, we use the Inverse Distance Weighted (IDW) interpolation method to obtain 

the parameters of the developed RQM model at gauged pixels over ungauged ones. IDW is a 

deterministic spatial interpolation approach to estimate an unknown value at a location using 

some known values with corresponding weighted values. The basic formula can be seen in 

equation 4.17. x* is unknown value at a location to be determined, w is the weight, and x is 

known point value. The weight is inverse distance of a point to each known point value that is 

used in the calculation. Simply the weight can be calculated using equation 4.20. 

𝑥∗ =
𝑤1𝑥1+𝑤2𝑥2+ ...+𝑤𝑛𝑥𝑛

𝑤1+𝑤2+ ...+𝑤𝑛
       (4.19) 

𝑤𝑖 =
1

𝑑
𝑖𝑥∗
𝑝                                     (4.20) 

 where P variable stands for Power. There is no particular rule in defining the P value, but from 

the equation, we can see that the higher P value will give lower weight. An experiment is 

suggested in defining the optimum P value. It could be done by taking a small portion of 

sample point as testing/validation dataset. Then start with a small P value, do the IDW 

interpolation and calculate the RMSE between the interpolation result and the actual sampling 

value. Iterate by increasing the P value step by step and calculate the RMSE. The lowest RMSE 

is the optimum P value which is given the smallest error between the interpolation and actual 

value. Here P value of 2 with minimum RMSE was selected. Also, in this study, d is the 

distance between ungauged pixel and gauged one and x is the covariates of ungauged pixel.  

4.3.6. Validation using Bootstrap Technique 

In this research to validate the performance of bias correction method implemented over the 

ungauged pixels, the bootstrap technique is used. Because at ungauged pixels there is no gauge 

to compare the bias-corrected satellite precipitation with the observed data directly, we assume 

some gauged pixels at each cluster as ungauged, then validate the bias correction model at these 

pixels. For taking samples of gauged pixels (considering as ungauged) and to make sure that 
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the samples are randomly selected over each cluster bootstrap can be used an appropriate 

technique. Bootstrap is a resampling technique used to estimate statistics on a population by 

sampling a dataset with replacement. 

This procedure is summarized as follows: 

 Draw a number of samples with replacement with the chosen size 

 Calculate the statistic on the samples 

 Calculate the mean of the calculated sample statistics 

In this study, we validate the proposed bias correction method over the 10% of gauged pixels 

at each cluster by using the bootstrap sampling technique. For this purpose, we consider each 

cluster separately and take 10% of gauged pixels assumed as ungagged in a given cluster. Then, 

the bias-corrected parameters extracted from that 90% gauged pixels are interpolated over the 

taken 10% assumed ungauged pixels. Afterward, by applying the covariates into interpolated 

parameters, the bias-corrected satellite data is obtained for 10% pixels. By comparing the bias-

corrected data with observed gauge records, the statistics of RBias, RMSE, and CC are 

calculated for those 10% pixels. By iterating the sampling of 10% pixels for 1000 times by 

bootstrapping (sampling a dataset with replacement), each pixel may select several times. 

Therefore, the mean metrics values of each pixel are calculated and considered as statistic 

indices of validation the bias correction method.  

4.3.7. Methodology Overview 

To summarize the methodology of bias correction used in this study the outlines of all 

previously explained steps are provided as follows: 

 Aggregating half-hourly satellite data and hourly ground gauges to daily 

 Assigning satellite pixels containing gauges  

 Extracting gridded daily time series of covariates and resampling them at each 

satellite pixel resolution 
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 Extracting and resampling long term monthly covariates at each satellite pixel 

(during the long term period from 1979 to 2019 for each month there is just one 

value)  

 Extracting and resampling invariant covariates (e.g. elevation) at each satellite 

pixel 

 Clustering all satellite pixels using K-means and Hierarchical methods based on 

the climatic distance calculated between pixels by utilizing invariant covariates  

 Partitions the CDF of observed data of gauged pixels into discrete segments   

 Applying RQM  method at gauged pixels to each CDF segment separately  

 Performing smoothing spline to smooth the conditional distribution initially 

estimated independently for each quantile 

 Extracting the parameters of RQM at all bias-corrected gauged pixels 

 Interpolating/extrapolating the parameters over ungauged pixels for each cluster 

separately using the IDW method (the weights are calculated based on the 

distance between gauged pixels and ungauged ones inside each cluster) 

 Applying the interpolated bias-corrected parameters to the time-varying covariates 

at each ungauged pixel in order to obtain bias-corrected satellite estimates at those 

pixels 

 Validation of the results by comparing the obtained bias-corrected satellite 

estimates at some random selected gauged pixels put aside in previous steps 

(assumed as ungauged pixels) with observed data at those pixels using a bootstrap 

sampling technique  

4.4. Results and Discussion  

The obtained results of the bias correction technique are presented in two sections, first, for 

gauged pixels where there is at least one rain gauge inside each pixel. Second, for ungauged 

pixels by interpolating parameters obtained from implemented RQM in gauged pixels. These 

results are extracted for each cluster separately. Table 4 lists the information for each cluster. 

As shown in this table the number of pixels at each cluster and a corresponding number of 

gauged pixels varies and they are not equal. The reason is that we generated nine clusters based 

on nine climatic and topographic covariates (previously explained) dissimilarity in the K-means 

clustering method (Figure 19). So, each cluster contains a different number of gauged pixels 

that can affect on the interpolation of bias-corrected parameters. Further explanations are 
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provided under the specific results of this section. Figures 20 to 28 provide the spatial patterns 

of covariates over the study area.  As displayed, the classified study area (Figure 19) is a 

combination of those nine figures (Figures 20-28). The correlation coefficient between nine 

covariates is provided in Table 5. As depicted the highest correlation is between “Specific 

Humidity” and “Dew Point Temperature” with a value of 0.98 and the lowest correlation is 

between “Non-Convective Cloud Cover” and “Dew Point Temperature” with a value of -0.03.  

 

Figure 19. Clusters pattern of the study area by K-means ((a) represents cluster no.1 and (i) 

represents cluster no.9) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) (h) 

(i) 
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Table 4.  Covariates averaged at each cluster 

 

 

 

 

Table 5. Correlation Coefficient between covariates  

Covariates Elevation 

 

Precipitation  Specific 

Humidity  

Dew Point 

Temperature  

Convective 

Potential 

Energy  

Non-Convective 

Cloud Cover  

 

Shortwave 

Radiation 

Flux  

Geopotential 

Height  

Vegetation 

Index  

 

Elevation 1 -0.21 -0.45 -0.55 -0.29 -0.04 0.62 0.1 -0.12 

Precipitation  -0.21 1 0.68 0.63 0.6 0.24 -0.33 0.31 0.15 

Specific Humidity -0.45 0.68 1 0.98 0.87 -0.1 -0.4 0.55 0.45 

Dew point 

Temperature 

-0.55 0.63 0.98 1 0.8 -0.03 -0.54 0.44 0.44 

Convective 

Potential Energy  

-0.29 0.6 0.87 0.8 1 -0.22 -0.21 0.52 0.33 

Non-Convective 

Cloud Cover  

-0.04 0.24 -0.1 -0.03 -0.22 1 -0.47 -0.43 -0.15 

Shortwave 

Radiation Flux  

0.62 -0.34 -0.4 -0.54 -0.22 -0.47 1 0.43 0.02 

Geopotential Height 0.1 0.31 0.55 0.44 0.52 -0.43 0.43 1 0.66 

Vegetation Index  -0.12 0.15 0.45 0.44 0.33 -0.15 0.02 0.66 1 

Cluster 
No. 

Number 
of Pixels 

Number of 
Gauged Pixels 

Elevation 
(m) 

Precipitation 
(mm/month) 

Specific 
Humidity 

(g/m^3) 

Dew Point 
Temperatur

e (°C) 

Convective 
Potential Energy 

(J/Kg) 

Non-Convective 
Cloud Cover  

(%) 

Shortwave 
Radiation Flux 

(W/m^2) 

Geopotential 
Height (m) 

Vegetation 
Index  

(%) 

1 15363 42 255 30.6 2.84 -5.4 5.34 58.3 62 9674 29.6 

2 14448 102 248 32 3.2 -3.67 7.81 57.7 69 10033 42.7 

3 13128 29 294 31 2.58 -7.15 4.4 63.3 60 9595 30 

4 13226 86 375 42.5 3.0 -4.8 4.3 64.7 53 9819 38.8 

5 11507 32 1525 25.5 2.5 -8.1 6.5 56.8 50 9236 24.5 

6 13534 26 402 21.3 2.15 -9.6 2.15 56.9 45 9120 17.8 

7 5871 55 803 86 3.3 -3.84 14.36 60.6 59 9857 42.4 

8 11901 111 1603 43 3.3 -3.67 14.05 55.4 65 9881 36.22 

9 11131 103 518 22.1 3.23 -3.8 11.55 54.8 67 9874 26.5 
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Figure 20. Elevation map of the study area 

 

 

Figure 21. Monthly mean precipitation from 1979 to 2019  

 



 

89 
 

  

Figure 22. Monthly mean vegetation index from 1979 to 2019   

 

Figure 23. Monthly mean specific humidity from 1979 to 2019   

 

 

Figure 24. Monthly mean dew point from 1979 to 2019   
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Figure 25. Monthly mean convective potential energy from 1979 to 2019   

 

Figure 26. Monthly mean non-convective cloud cover from 1979 to 2019   

 

Figure 27. Monthly mean downward shortwave radiation flux at the surface from 1979 to 

2019    
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Figure 28. Geopotential height  

4.4.1. Results of Bias Correction at Gauged Pixels 

The first result in this part is the comparison of time series between ground observed, original 

(hereafter Ori), and bias-corrected (hereafter BC) IMERG precipitation at daily scale averaged 

over each cluster of the study area separately. It is worth noting that, this part presents the 

evaluation results of the bias-adjusted IMERG PrCal product over the gauged pixels by using 

the RQM model proposed in this study. Then, in the next part, the evaluation results of BC data 

over some randomly samples ungauged pixels obtained by the interpolation technique of 

parameters extracted from the RQM developed model at gauged pixels in the previous step are 

depicted. 

4.4.1.1. Time Series Evaluation 

The time series here are presented at both mean daily and mean monthly scales over five years 

from 2014 to 2018 at gauged pixels. In Figure 29 while the original IMERG indicates 

overestimates/underestimates, the bias-corrected data shows better performance over all 

months. However, at some clusters (e.g. no.5 and 6 (Figures 29(e) and (f)), BC tends to 

underestimate the ground observation especially during cold months (November of April). To 

have a clear comparison, we aggregated the daily precipitation to monthly plotted in Figure 30.  
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(g) 

(h) 
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Figure 29. Spatial average of daily precipitation series of gauge observation, IMERG-Ori, 

and IMERG-BC at gauged pixels over the nine evaluation clusters ((a) represents cluster no.1 

and (i) represents cluster no.9) 

As seen in Figure 30, at all clusters BC data can reasonably capture the monthly variation of 

gauge-observed precipitation. Although the improvement of BC to Ori data is obvious, it still 

displays underestimation. In the following sections by using more statistical metrics the 

differences between original and bias-corrected data are explained and discussed.  

 

 

(a) 

(b) 
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Figure 30. Spatial average of monthly precipitation series of gauge observation, IMERG-Ori, 

and IMERG-BC at gauged pixels over the nine evaluation clusters ((a) represents cluster no.1 

and (i) represents cluster no.9) 

 Statistical Evaluation 

For analyzing the results in more detail, Figures 31-33 represent the evaluation metrics of CC, 

RBias, and RMSE respectively and for each cluster at each month separately. These metrics 

are calculated based on the equations provided in Table 2 of Chapter 3. According to the 

obtained metrics, the performance of the bias correction method is significant for cluster no.1 

with improving the CC value from 0.49 to 0.85 and RMSE from 2.9 to 1.5 mm/d (average 

value of all months). This is a more promising finding as in the cold months where the 

performance of IMERG is weak with lower CC and higher biases, the BC data can be used 

instead of Ori biased data. An appropriate BC results over cluster no.2 (east southern part of 

the country) are produced by the proposed bias correction method. In this area after bias 

correction, the CC value is improved from 0.55 to 0.88 and RMSE from 8.2 to 4.6 mm/d.  For 

other clusters, the same metrics, as well as RBias, are listed in Table 6. In this table, all metrics 

have been provided based on the daily mean value of all gauged pixels located within the given 

cluster for each month separately. We stated in the previous chapter that raw IMERG product 

has more problems in winter with the lowest precision, as also can see here over the all clusters, 

the lower performance of IMERG happens during the cold months. Therefore, it provides more 

room for bias correcting that leads to the largest improvements. For example, the average value 

of CC over the clusters during the cold months from November to March is improved overall 

by 267% (from 0.3 to 0.8), however, during warm months from April to October the 

improvement ranges by 150% (from 0.6 to 0.9). As in the proposed method of bias correction 

(i) 
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in this study, the different levels of precipitation based on CDF segmentation are considered 

and corrected separately, the rate of precipitation doesn’t have a considerable effect on the 

correction. In terms of RBias, as listed in Table 6, over clusters no.2, 5, 6, and 8, the mean 

value of all months indicates the better performance of Ori to BC data, however, considering 

Figure 32, the depicted boxplots clarify that the reason is due to the variation of RBias values 

from negative to positive ranges which generally leads to the less mean value.   

 

    

  

   

(e) (f) 

(c) (d) 

(a) (b) 
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Figure 31. CC (correlation) between spatially averaged daily of IMERG-Ori and IMERG-BC 

against gauge observation at gauged pixels over the nine evaluation clusters ((a) represents 

cluster no.1 and (i) represents cluster no.9) (green dots in boxes indicate the median value)   

   

(a) 

(i) 

(h) (g) 

(b) 
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Figure 32. Spatially averaged daily RBias of IMERG-Ori and IMERG-BC against gauge 

observation at gauged pixels over the nine evaluation clusters ((a) represents cluster no.1 and 

(i) represents cluster no.9) (green dots in boxes indicate the median value) 

 

 

  

    

(c) (d) 

(e) (f) 

(a) (b) 
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Figure 33. Spatially averaged daily RMSE of IMERG-Ori and IMERG-BC against gauge 

observation at gauged pixels over the nine evaluation clusters ((a) represents cluster no.1 and 

(i) represents cluster no.9) (green dots in boxes indicate the median value) 

 

 

 

(g) (h) 

(i) 
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Table 6. Mean statistics value at gauged pixels over each cluster 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

Time Statistics Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC 

January 

CC 0.28 0.83 0.4 0.87 0.34 0.87 0.53 0.92 0.07 0.66 0.03 0.61 0.48 0.88 0.1 0.68 0.15 0.76 

RMSE 3.4 1.84 8.36 4.6 9.2 4.6 10.4 3.23 1.18 0.8 5 4.6 12.08 4.09 2.9 1.85 3.73 1.83 

RBias 0.49 -0.24 0.37 -0.2 0.73 -0.18 0.39 -0.1 -0.8 -0.4 -0.83 -0.42 0.77 -0.16 0.43 -0.43 0.7 -0.3 

February 

CC 0.25 0.77 0.36 0.84 0.28 0.82 0.9 0.45 0.03 0.57 0.07 0.78 0.52 0.9 0.13 0.81 0.21 0.78 

RMSE 2.55 0.45 10.4 5.55 9.4 5.3 9.96 3.17 1.57 1.36 7.29 5.46 10.56 3.17 2.7 1.53 3.96 1.49 

RBias 0.72 -0.31 0.14 -0.23 0.1 -0.18 0.35 -0.1 -0.88 -0.56 -0.88 -0.24 0.75 -0.14 0.25 -0.28 0.35 -0.29 

March 

CC 0.5 0.87 0.5 0.88 0.28 0.87 0.42 0.9 0.003 0.76 0.02 0.64 0.5 0.89 0.35 0.85 0.31 0.91 

RMSE 2.2 0.85 9.02 6 5.25 2.25 8.4 2.77 0.95 0.59 4.35 3.9 8.5 2.7 2.24 1.08 4.5 2.02 

RBias 0.35 -0.23 0.1 -0.2 0.22 -0.2 0.23 -0.1 -0.82 -0.33 -0.75 -0.42 0.58 -0.14 0.29 -0.23 0.37 -0.16 

April 

CC 0.5 0.87 0.57 0.92 0.52 0.92 0.56 0.92 0.015 0.75 0.02 0.7 0.55 0.92 0.58 0.88 0.48 0.89 

RMSE 1.55 0.68 7.34 4.31 6.15 2.13 8.1 3.3 0.59 0.39 3.4 3.02 7 2.59 2.53 1.3 1.92 0.84 

RBias 0.18 -0.27 0.11 -0.14 0.12 -0.09 0.2 -0.1 -0.6 0.34 -0.75 -0.35 0.54 -0.13 0.2 -0.2 0.24 -0.25 

May 

CC 0.74 0.91 0.66 0.9 0.65 0.92 0.6 0.95 0.31 0.85 0.35 0.75 0.64 0.92 0.69 0.89 0.59 0.9 

RMSE 2.37 1.08 6 3.62 5.1 2.18 7.18 2.05 1.59 0.62 1.78 1.04 5.4 1.8 3.27 1.87 2.54 1.15 

RBias 0.2 -0.17 0.16 -0.17 0.09 -0.11 0.22 -0.07 1.98 -0.33 0.04 -0.36 0.47 -0.18 0.2 -0.2 0.19 -0.2 

Jun 

CC 0.7 0.89 0.66 0.9 0.6 0.91 0.64 0.93 0.53 0.91 0.61 0.9 0.63 0.88 0.7 0.89 0.66 0.9 

RMSE 4.7 2.55 7.03 4 5.15 2.15 6.7 2.5 3.15 1.05 3.52 1.42 5.83 2.65 4.6 2.35 3.65 1.92 

RBias 0.17 -0.19 0.07 -0.16 0.17 -0.13 0.16 -0.1 2.5 -0.17 0.46 -0.21 0.44 -0.22 0.12 -0.2 0.12 0.21 

July 

CC 0.64 0.86 0.63 0.88 0.6 0.92 0.58 0.9 0.62 0.92 0.64 0.9 0.61 0.84 0.67 0.85 0.69 0.88 

RMSE 5.3 3.55 8.1 4 4.94 2.3 6.1 3.04 3.21 1.21 2.9 1.47 6.4 3.04 4.47 2.8 3.54 2.1 

RBias 0.13 -0.23 0.125 -0.21 0.16 -0.17 0.19 -0.19 0.45 -0.18 0.37 -0.26 0.4 -0.24 0.17 -0.27 0.2 -0.29 

August 

CC 0.7 0.83 0.64 0.9 0.65 0.9 0.6 0.91 0.65 0.92 0.65 0.9 0.71 0.88 0.7 0.86 0.64 0.85 

RMSE 3.15 2 8.3 4.2 6.23 3.05 9 4 3.03 1.4 2.54 1.26 5.17 2.89 3.56 2.6 2.5 1.69 

RBias 0.26 -0.3 0.13 -0.2 0.26 -0.17 0.16 -0.15 0.53 -0.21 0.32 -0.2 0.65 -0.23 0.17 -0.28 0.17 -0.29 

September 

CC 0.7 0.88 0.68 0.9 0.66 0.93 0.66 0.94 0.73 0.95 0.52 0.84 0.66 0.92 0.7 0.92 0.75 0.94 

RMSE 4.4 2.41 6.17 3.4 5.9 2.58 9.5 2.5 1.8 0.61 1.96 0.98 7.04 2.83 3.37 1.73 2.63 1.1 

RBias 0.18 -0.18 0.17 -0.17 0.17 -0.09 0.23 -0.1 0.08 -0.14 0.46 -0.3 0.48 -0.13 0.17 -0.16 0.26 -0.16 

October 

CC 0.57 0.89 0.63 0.93 0.68 0.95 0.61 0.96 0.23 0.79 0.29 0.78 0.7 0.92 0.63 0.87 0.61 0.91 

RMSE 2.43 1.13 8.6 4.03 6.46 2.32 9.9 2.4 2.05 1.21 1.45 0.68 10.67 3.15 2.63 1.58 4.07 1.94 

RBias 0.23 -0.1 0.13 -0.2 0.17 -0.07 0.38 -0.06 -0.37 -0.28 0.003 -0.3 0.48 -0.1 0.08 -0.2 0.1 -0.18 

November 

CC 0.17 0.86 0.52 0.87 0.52 0.91 0.53 0.94 0.007 0.75 0.16 0.7 0.58 0.91 0.32 0.84 0.17 0.85 

RMSE 1.8 0.59 9.9 5.85 6.83 2.63 10.3 2.5 1.08 0.71 4.9 4.4 13.41 3.62 3.05 1.65 5.6 1.64 

RBias 0.52 -0.22 0.13 -0.11 0.19 -0.08 0.27 -0.07 -0.78 -0.28 -0.77 -0.26 0.5 -0.1 0.1 -0.23 0.34 -0.23 

December 

CC 0.19 0.76 0.36 0.84 0.59 0.91 0.6 0.94 -0.02 0.63 0.015 0.68 0.51 0.91 0.12 0.74 0.07 0.74 

RMSE 1.34 0.53 9.6 5.7 8.7 3.9 9.5 3.15 0.67 0.49 0.64 0.42 13.31 2.87 2.41 1.37 4.58 2.04 

RBias 0.44 -0.32 0.27 -0.23 0.085 -0.09 0.32 -0.07 -0.75 -0.4 -0.75 -0.3 0.93 -0.12 0.4 -0.38 0.76 -0.35 
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 Spatial Pattern Evaluation 

The more visual comparison between BC and Ori-IMERG is demonstrated in Figures 34-37, 

where each figure compares the relevant metric at gauged pixels for original and bias-corrected 

IMERG during each season separately. The spatial variation distributed over the study area 

indicates significant improvements, especially in interior plains where Ori-IMERG is 

characterized by lower performance. Figure 34 shows the RMSE value over the study area. As 

seen here and also explained before, the bias correction method has potentially improved the 

original IMERG especially over the west and east coasts where there was more room for 

enhancement (the difference between Ori-IMERG and observed data is higher). Considering 

seasonally evaluation, one can observe that the pattern of bias-corrected performance follows 

the original data, while it displays better results. For example, both have higher/lower RMSE 

values during summer/winter. 

In terms of CC depicted in Figure 35, the improvement is notable as over all sites it indicates 

values approximately more than 0.7. The main advantage of the BC-IMERG is its promising 

value during winter where Ori-IMERG expresses a very low correlation with the observed data.   

In addition to the RMSE and CC, two other categorical metrics named POD and FAR (see 

Table 3 of Chapter 3) are provided in Figures 36 and 37, respectively. POD related to BC data 

with values more than 0.8 over the most pixels is in good agreement with the gauge-observed 

during all seasons, nevertheless, Ori data as discussed further in Chapter 3 performs unreliable 

results in detecting the precipitation events, particularly within the cold seasons. Regarding 

FAR, again, we can see reasonable values (less than 0.2) associated with BC data for all 

seasons, while for Ori data it is more than 0.4 that indicates large errors in detecting 

precipitation events falsely.  

Overall, the bias correction technique used in this study not only able to improve the estimates 

of precipitation intensity but can also detect the precipitation occurrence over the study area 

remarkably.   
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Figure 34. The spatial pattern of RMSE for IMERG-Ori (Ori, left) and IMERG-BC (BC, 

right) against gauge observation at gauged pixels over the study area based on different 

seasons  
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Figure 35. The spatial pattern of CC for IMERG-Ori (Ori, left) and IMERG-BC (BC, right) 

against gauge observation at gauged pixels over the study area based on different seasons  
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Figure 36. The spatial pattern of POD for IMERG-Ori (Ori, left) and IMERG-BC (BC, right) 

against gauge observation at gauged pixels over the study area based on different seasons  
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Figure 37. The spatial pattern of FAR for IMERG-Ori (Ori, left) and IMERG-BC (BC, right) 

against gauge observation at gauged pixels over the study area based on different seasons
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4.4.2. Results of Bias Correction at Ungauged Pixels  

In this part, the performance of the bias-corrected IMERG product over the ungauged pixels 

by using the obtained parameters from the developed regression model over those gauged 

pixels is represented. The approach for comparing the bias-corrected with the raw data is based 

on the cross-validation by sampling some gauged pixels (10%) at each cluster randomly using 

the bootstrapping technique for 1000 times and considering the selected pixels as ungauged. 

Then, the bias correction model is developed over that other 90% of gauged pixels and 

parameters are calculated and interpolated over 10% assumed ungauged pixels. During 1000 

times of repeating this step, we can make sure that all gauged pixels participate in the validation 

process and the obtained results can cover the entire cluster zone spatially. The following 

results are the average value of that 10% assuming ungauged pixels (hereafter named validation 

pixels).  

 Time Series Evaluation 

Figure 38 displays the mean monthly time series of precipitation obtained over the validation 

pixels at each cluster separately. Although the plots show a reasonable capturing of observed 

precipitation trend by BC and better performance than Ori data over all clusters, it still is not 

in good agreement with the gauge-observed during some months. For having a more detailed 

evaluation, some statistical metrics are provided in Figures 39 to 42. 
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Figure 38. Spatially averaged monthly precipitation time series of gauge observation, 

IMERG-Ori, and IMERG-BC at validation pixels over the nine evaluation clusters ((a) 

represents cluster no.1 and (i) represents cluster no.9) 

 Statistical Evaluation  

Figure 39(a-i) compares the mean CC values of original and bias-corrected data calculated 

against the gauge observed data over different clusters for validation pixels. Figure 39(a) 

(cluster no.1) depicts the lower performance of BC in May, July, and August. For cluster no.2 

(Figure 39(b)), also from May to September, the Ori data shows slightly higher CC values. In 

cluster no.3 (Figure 39(c)) just for Jun and August, the Ori data indicates slightly better values 

of CC. The worst performance is associated with the clusters no.5 and 6 (Figures 39(e) and 

39(f)) where the value of CC related to BC is less than Ori over 6 and 5 warm months 

(h) 

(i) 
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respectively, while the best CCs of BC is obtained in clusters no.4 and 7 (Figures 39(d) and 

39(g)) with just less value than Ori in one month. Clusters no.8 and 9 ((Figures 39(h) and 39(i)) 

with approximately the same performance indicate more reasonable improvements of BC than 

Ori. Generally, it is worth mentioning that the mean value of CC associated with BC over all 

clusters is higher than Ori CCs and the corresponding improvement rates are 36%, 15%, 35%, 

39%, 27%, 18%, 5%, 40%, and 69%.  

 

   

  

 

(a) (b) 
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Figure 39. CC (correlation) spatially averaged daily of IMERG-Ori and IMERG-BC against 

gauge observation at validation pixels over the nine evaluation clusters ((a) represents cluster 

no.1 and (i) represents cluster no.9)  

In terms of RBias, it can be seen in Figure 40 that the BC data outperforms Ori in most cases 

especially for the clusters no.1, 2, 5, 6, 7, and 9 where about 70% of months have less value of 

RBias related to BC. However, clusters no.3, 4, and 8 have a lower performance with higher 

RBias in almost 50% of months. There is not any consistency between CC and RBias as the 

underestimation/overestimation of both Ori and BC data leads to negative/positive value of 

RBias which may decrease/increase its mean value. Generally, 32% of improvement is obvious 

considering the entire regions and all months (mean RBias of BC data is 0.0211, and CC data 

is -0.065). In clusters no.1, 5, 6, 7, 8, and 9 the BC implies lower RBias of 0.035, 0.017, 0.0187, 

0.107, -0.34, and 0.09, respectively, while for Ori the corresponding values are 0.22, -0.325, 

0.325, 0.24, -0.4, and -0.14. In three other clusters of no.2, 3, and 4, the Ori shows better RBias 

with values of -0.017, 0.0008, and 0.16 against BC values of -0.03, -0.0275, and 0.32.  

(g) (h) 

(i) 
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Figure 40. Spatially averaged daily RBias of IMERG-Ori and IMERG-BC against gauge 

observation at validation pixels over the nine evaluation clusters ((a) represents cluster no.1 

and (i) represents cluster no.9)   

 

Figure 41 displays the RMSE as a powerful metric for evaluating the performance of BC 

against Ori data. In cluster no.1 the mean value of RMSE over all months is improved by 25% 

(from 1.4 in Ori to 1.05 in BC). Also, for clusters no.2, 3, 4, 6, and 7 the rate of improvements 

by BC are respectively 23%, 25%, 22%, 7%, and 34%. In contrast, clusters no.5, 8, and 9 

indicate higher RMSE of BC with rates of 28%, 10%, and 19% respectively. Overall, it can be 

concluded that RMSE is improved by 9% for all clusters.  
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Figure 41. Spatially averaged daily RMSE (mm/day) of IMERG-Ori and IMERG-BC against 

gauge observation at validation pixels over the nine evaluation clusters ((a) represents cluster 

no.1 and (i) represents cluster no.9)   

 

Table 7 lists the mean values of three above-explained metrics at validation pixels for each 

cluster separately which provides more detailed information quantitatively. In addition to the 

statistical metrics for evaluating the performance of the bias correction method developed in 

this study especially over the ungauged pixels, in the following the comparison of quantiles 

related to Ori and BC data against gauge observed precipitation is presented. In terms of 

quantile values as depicted in Figures 42(a)- (i), at all clusters after bias correction the satellite 

estimates become in agreement with the observed data perfectly despite the 

underestimations/overestimations of the raw data. These findings are obvious, as the model of 

bias correction is based on the quantile mapping which fits different quantile levels of satellite 

with the gauge observed data.  
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Figure 42. Spatially averaged daily Q-Q plot of IMERG-Ori and IMERG-BC against gauge 

observation at validation pixels over the nine evaluation clusters ((a) represents cluster no.1 

and (i) represents cluster no.9) (unit is mm/day) 

(g) (h) 

(i) 
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Table 7. Mean statistics value at validation pixels over each cluster 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

 

Time Statistics Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC Ori BC 

 

January CC 0.48 0.88 0.1 0.68 0.15 0.76 0.28 0.83 0.4 0.87 0.34 0.87 0.53 0.92 0.07 0.66 0.03 0.61 

RMSE 12.08 4.09 2.9 1.85 3.73 1.83 3.4 1.84 8.36 4.6 9.2 4.6 10.4 3.23 1.18 0.8 5.0 4.6 

RBias 0.77 -0.16 0.43 -0.43 0.7 -0.3 0.49 -0.24 0.37 -0.2 0.73 -0.18 0.39 -0.1 -0.8 -0.4 -0.83 -0.42 

February CC 0.52 0.9 0.13 0.81 0.21 0.78 0.25 0.77 0.36 0.84 0.28 0.82 0.9 0.45 0.03 0.57 0.07 0.78 

RMSE 10.56 3.17 2.7 1.53 3.96 1.49 2.55 0.45 10.4 5.55 9.4 5.3 9.96 3.17 1.57 1.36 7.29 5.46 

RBias 0.75 -0.14 0.25 -0.28 0.35 -0.29 0.72 -0.31 0.14 -0.23 0.1 -0.18 0.35 -0.1 -0.88 -0.56 -0.88 -0.24 

March CC 0.5 0.89 0.35 0.85 0.31 0.91 0.5 0.87 0.5 0.88 0.28 0.87 0.42 0.9 0.003 0.76 0.02 0.64 

RMSE 8.5 2.7 2.24 1.08 4.5 2.02 2.2 0.85 9.02 6.0 5.25 2.25 8.4 2.77 0.95 0.59 4.35 3.9 

RBias 0.58 -0.14 0.29 -0.23 0.37 -0.16 0.35 -0.23 0.1 -0.2 0.22 -0.2 0.23 -0.1 -0.82 -0.33 -0.75 -0.42 

April CC 0.55 0.92 0.58 0.88 0.48 0.89 0.5 0.87 0.57 0.92 0.52 0.92 0.56 0.92 0.015 0.75 0.02 0.7 

RMSE 7.0 2.59 2.53 1.3 1.92 0.84 1.55 0.68 7.34 4.31 6.15 2.13 8.1 3.3 0.59 0.39 3.4 3.02 

RBias 0.54 -0.13 0.2 -0.2 0.24 -0.25 0.18 -0.27 0.11 -0.14 0.12 -0.09 0.2 -0.1 -0.6 0.34 -0.75 -0.35 

May CC 0.64 0.92 0.69 0.89 0.59 0.9 0.74 0.91 0.66 0.9 0.65 0.92 0.6 0.95 0.31 0.85 0.35 0.75 

RMSE 5.4 1.8 3.27 1.87 2.54 1.15 2.37 1.08 6.0 3.62 5.1 2.18 7.18 2.05 1.59 0.62 1.78 1.04 

RBias 0.47 -0.18 0.2 -0.2 0.19 -0.2 0.2 -0.17 0.16 -0.17 0.09 -0.11 0.22 -0.07 1.98 -0.33 0.04 -0.36 

Jun CC 0.63 0.88 0.7 0.89 0.66 0.9 0.7 0.89 0.66 0.9 0.6 0.91 0.64 0.93 0.53 0.91 0.61 0.9 

RMSE 5.83 2.65 4.6 2.35 3.65 1.92 4.7 2.55 7.03 4.0 5.15 2.15 6.7 2.5 3.15 1.05 3.52 1.42 

RBias 0.44 -0.22 0.12 -0.2 0.12 0.21 0.17 -0.19 0.07 -0.16 0.17 -0.13 0.16 -0.1 2.5 -0.17 0.46 -0.21 

July CC 0.61 0.84 0.67 0.85 0.69 0.88 0.64 0.86 0.63 0.88 0.6 0.92 0.58 0.9 0.62 0.92 0.64 0.9 

RMSE 6.4 3.04 4.47 2.8 3.54 2.1 5.3 3.55 8.1 4.0 4.94 2.3 6.1 3.04 3.21 1.21 2.9 1.47 

RBias 0.4 -0.24 0.17 -0.27 0.2 -0.29 0.13 -0.23 0.125 -0.21 0.16 -0.17 0.19 -0.19 0.45 -0.18 0.37 -0.26 

August CC 0.71 0.88 0.7 0.86 0.64 0.85 0.7 0.83 0.64 0.9 0.65 0.9 0.6 0.91 0.65 0.92 0.65 0.9 

RMSE 5.17 2.89 3.56 2.6 2.5 1.69 3.15 2.0 8.3 4.2 6.23 3.05 9.0 4.0 3.03 1.4 2.54 1.26 

RBias 0.65 -0.23 0.17 -0.28 0.17 -0.29 0.26 -0.3 0.13 -0.2 0.26 -0.17 0.16 -0.15 0.53 -0.21 0.32 -0.2 

September CC 0.66 0.92 0.7 0.92 0.75 0.94 0.7 0.88 0.68 0.9 0.66 0.93 0.66 0.94 0.73 0.95 0.52 0.84 

RMSE 7.04 2.83 3.37 1.73 2.63 1.1 4.4 2.41 6.17 3.4 5.9 2.58 9.5 2.5 1.8 0.61 1.96 0.98 

RBias 0.48 -0.13 0.17 -0.16 0.26 -0.16 0.18 -0.18 0.17 -0.17 0.17 -0.09 0.23 -0.1 0.08 -0.14 0.46 -0.3 

October CC 0.7 0.92 0.63 0.87 0.61 0.91 0.57 0.89 0.63 0.93 0.68 0.95 0.61 0.96 0.23 0.79 0.29 0.78 

RMSE 10.67 3.15 2.63 1.58 4.07 1.94 2.43 1.13 8.6 4.03 6.46 2.32 9.9 2.4 2.05 1.21 1.45 0.68 

RBias 0.48 -0.10 0.08 -0.2 0.1 -0.18 0.23 -0.1 0.13 -0.2 0.17 -0.07 0.38 -0.06 -0.37 -0.28 0.003 -0.3 

November CC 0.58 0.91 0.32 0.84 0.17 0.85 0.17 0.86 0.52 0.87 0.52 0.91 0.53 0.94 0.007 0.75 0.16 0.7 

RMSE 13.41 3.62 3.05 1.65 5.6 1.64 1.8 0.59 9.9 5.85 6.83 2.63 10.3 2.5 1.08 0.71 4.9 4.4 

RBias 0.5 -0.1 0.1 -0.23 0.34 -0.23 0.52 -0.22 0.13 -0.11 0.19 -0.08 0.27 -0.07 -0.78 -0.28 -0.77 -0.26 

December CC 0.51 0.91 0.12 0.74 0.07 0.74 0.19 0.76 0.36 0.84 0.59 0.91 0.6 0.94 -0.02 0.63 0.015 0.68 

RMSE 13.31 2.87 2.41 1.37 4.58 2.04 1.34 0.53 9.6 5.7 8.7 3.9 9.5 3.15 0.67 0.49 0.64 0.42 

RBias 0.93 -0.12 0.4 -0.38 0.76 -0.35 0.44 -0.32 0.27 -0.23 0.085 -0.09 0.32 -0.07 -0.75 -0.4 -0.75 -0.3 
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 CDF Evaluation at Ungauged Pixels 

In this section of validation, the bias correction method, the Empirical Cumulative Distribution 

Function (ECDF) associated with the observed data is compared with their corresponding Ori 

and BC IMERG estimates. Figures 43(a)-(i) illustrate the ECDFs extracted from the mean daily 

precipitation during five years of the study period at cluster no.1 to 9, respectively. It is 

presented that the CDFs of the two observed and BC data sources for all clusters except in 

cluster no.5 which BC shows underestimation are relatively close to each other, indicating 

improvement of the systematic bias in Ori estimation after bias correction. However, Ori tends 

to systematically overestimate daily precipitation over clusters no.1 to 5 and 8, and 

underestimate it over clusters no.6, 7, and 9 respectively. 

 

 

(a) (b) 

(c) (d) 



 

123 
 

 

 

 

 

Figure 43. Spatially averaged daily CDFs of gauge, original, and bias-corrected IMERG 

estimations at validation pixels for the nine evaluation clusters ((a) represents cluster no.1 and 

(i) represents cluster no.9) 

4.5. Summary and Conclusion  

In this chapter, a method for bias correction of satellite IMERG PrCal product that showed the 

best performance among those other products (PrUncal, PrIR, and PRHQ) was developed 

aiming to introduce a more reliable remotely-sensed of high spatiotemporal resolution 

precipitation data over Canada. For this purpose, in addition to IMERG and ground-based 

(g) (h) 

(i) 

(e) (f) 
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precipitation data, a set of invariant and time-varying reanalysis predictors resampled over the 

satellite pixel spatial resolution (0.1°) and was considered as independent variables for 

constructing the regression-based quantile mapping model. K-means and hierarchical 

clustering techniques were further used for categorizing the study area based on the climatic 

similarities between the satellite pixels as well as the spatial distribution of rain gauges. First, 

the method of bias correction was implemented at each cluster separately and the related 

parameters obtained over the gauged pixels for different quantile levels of precipitation data. 

Then, by using IDW, the parameters interpolated over the ungauged pixels inside the 

corresponding cluster. In the IDW technique here, the distance was defined as the climatic 

distance, not geographical distance. In the end, by applying the reanalysis covariates at each 

ungauged pixel in the interpolated model parameters of that pixel the bias-corrected satellite 

data was obtained.  

For validation of the developed model at ungauged pixels, the bootstrap technique was used. 

By bootstrapping some gauged pixels (10% of total gauged pixels in each cluster) were selected 

randomly and assumed as the ungauged pixels in which have not been participating in the 

parameter estimating procedure of the proposed model. These pixels named as validation pixels 

and they were tested for assessing the model performance.  

Overall the obtained results for both gauged and validation pixels indicated a major 

improvement in the IMERG estimates after bias correcting for both terms of precipitation 

intensity and occurrence especially over the regions where the original data had lower 

performances (west and coast parts of the country). In addition, the trend of precipitation time 

series can be captured by the bias-corrected data reasonably. However, at clusters no.5 and 6 

(Figure 19), the RMSE and CC metrics were not improved after bias correcting. The reason is 

that due to the lower numbers and unevenly distributed of gauged pixels, the interpolation 

cannot be implemented perfectly over those ungauged pixels. Besides, the diversity in 

topographic and climatic conditions in these regions, makes it challenging to find an accurate 

climatic distance between the pixels. Further analysis needs to be performed by using more 

accurate covariates over such sparse-data areas. 
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Considering the errors in IMERG products discussed in Chapter 3 of this study, the findings of 

this chapter which correct the biases spatially and temporally are useful especially over the 

satellite pixels where there is no rain gauge for estimating the direct bias.  
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Chapter 5 

5. Hydrological Evaluation of Daily IMERG Data 

5.1. Introduction  
 

Hydrological modeling is being used to forecast streamflow and flood for years. Precipitation 

is the key variable in the hydrological models and accurate precipitation input is important to 

rainfall-runoff models for rationally simulating the hydrological processes at the regional and 

basin scales. Over the remote areas and complex terrain with sparse ground-based rain gauges, 

developing a hydrological model would be challenging and its output may not be reliable (Tang 

et al., 2016; Yuan et al., 2018). Three ways to measure precipitation include rain gauges, 

weather radars, and satellite-based sensors (Li et al. 2013). As mentioned before, rain gauges 

are not available sufficiently over most of the basins and they are also subject to the impact of 

topography on precipitation pattern, and the wind-induced undercatch, with an increasing 

fraction of solid precipitation (Schwarb, 2000; Sevruk, 1997; Sevruk et al., 2009). The weather 

radar can detect and estimate precipitation with relatively higher temporal and spatial 

resolutions, however, it is often subject to signal blockage, attenuation by rain, and vertical 

variability of reflectivity which reduces its quality of data (Dinku et al. 2002; Tian and Peters-

Lidard, 2010). Currently, satellite-based precipitation products as an alternative source are able 

to provide high-quality data to employ in hydrological models especially over complex terrain 

and data-sparse or ungauged basins. However, due to the indirect nature of precipitation 

estimates by satellite algorithms as discussed in previous chapters of this study, they are subject 

to uncertainty and errors that need to be evaluated before using in hydrological processes.  

By increasing the use of SPPs in recent years, assessment of the performance of these kinds of 

data in hydrological applications has been conducted in several studies (Hao et al., 2014; Jiang 

et al., 2016; Su et al., 2017; Meng et al., 2014). Among the most widely-used SPPs containing 

TRMM-TMPA, PERSIANN, CMORPH, and IMERG, the last one indicates higher 

performance as input data into different hydrological models over different basins (Wang et 

al., 2017; Yuan et al., 2018; Su et al., 2019). However, considering that IMERG was released 

only six years ago, few studies have focused on the hydrological utilities of IMERG products 
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at basin scales with no study over a basin in Canada. Therefore, in this study, the main objective 

is to evaluate the IMERG skills as enforcing data into a hydrologic model over a small basin 

in Canada. For this purpose, the last version (V06) of IMERG PrCal at daily scale during 15 

years from 2001 to 2015 is applied in Raven as a robust and flexible hydrological modelling 

framework over Batchawana River Watershed (BRW) in central Ontario, Canada.  

A few previous studies have focused on the hydrological simulations using IMERG products 

in other basins in the world. Tang et al, 2016 assessed the Day 1 IMERG Final Run product by 

using the CREST hydrological model over the midlatitude Ganjiang River basin in southeast 

China and found that IMERG is consistent with the gauge-observed data in daily streamflow 

simulations with NSE of 0.68.  In the Beijiang River basin in China, Wang et al., 2017 

expressed that daily streamflow simulations using the VIC model enforced by the Day 1 

IMERG Final Run product present a reasonable hydrological performance with NSE of 0.742. 

Zubieta et al. (2017) indicated that IMERG is as useful as 3B42V7 and 3B42RT in modeling 

streamflows in southern regions of the Peruvian–Ecuadorian Amazon basin, but these data sets 

fail to properly simulate streamflows in northern regions. As a suitable product for hydrological 

applications, IMERG can use for simulating streamflow and flood in daily and sub-daily time 

scales over different basins where local rain gauge networks are sparse (Tang et al. 2016; He 

et al., 2017; Zubieta et al. 2017; Wang et al., 2017; Yuan et al., 2018). Therefore, this chapter 

is also pursuing the advantages of this most recent well-known precipitation data in a calibrated 

hydrological model as a first and preliminary study over a basin in the southern part of Ontario, 

Canada. It can be of great importance as flood damage has become a growing problem in 

Ontario (Environment and Climate Change Canada, Pirani and Najafi, 2019). Besides, the 

study region suffers from high quality of ground-based rain gauges which leads to unreliable 

streamflow/flood simulations. 

It is worth mentioning that, in Chapters 3 and 4 of this thesis the comprehensive statistical 

evaluation of IMERG precipitation data followed by developing a spatiotemporal bias 

correction technique was presented. Then in this chapter by assessing the ability of IMERG-

V06 in streamflow simulation, can provide a secondary check of this new product, particularly 

for hydrologic applications. 

The chapter consists of 6 sections. Section 2 and 3 describe the study area and data respectively. 

Section 4 explains the hydrologic model. Section 5 outlines the results and discussion of 

findings. Finally, concluding remarks are presented in Section 6. 
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5.2. Study Area 

The Batchawana River Watershed (BRW), which drains into Batchawana Bay on the eastern 

shore of Lake Superior, is approximately 1280 km2 and is located in central Ontario, Canada 

(Figure 44). It is in a transition zone between the Great Lakes-St. Lawrence Forest to the south 

and the Boreal Forest to the north. Three distinct vegetation zones exist within the BRW. The 

climate in the BRW is continental, with precipitation being influenced by the lake effect caused 

by Lake Superior to the west of the basin, and local orographic effects in areas of high relief. 

The mean annual precipitation for the Montreal Falls meteorological station during 1977-2011 

was 1180 mm, ranging from 763 to 1554 mm in any given year (Sanford et al., 2007).  

5.3. Data  

5.3.1. Precipitation Data 

Precipitation data used in this chapter contains 1) satellite IMERG PrCal product that 

previously explained in “Data” section of Chapter 3 of this thesis, 2) daily rain gauge 

observation data. Based on the drainage area of the watershed (1280 km2) and also considering 

the spatial resolution of IMERG product (10×10 km), the study area is covered by a number of 

16 satellite pixels that each of them has its precipitation amount aggregated from half-hourly 

to daily time scale during 2001-2018. In contrast, there is just one rain gauge (Montreal Falls) 

inside the watershed providing daily data from 1977 to 2011. Therefore, the similar time scale 

for comparing the two sources of precipitation is from 2001 to 2011 (11 years), however, as 

the daily streamflow station is available during 1967-2015 (next section), it is possible to 

calibrate the model based on the sufficient period of gauge observations (35 years). It also 

should be noted that all 16 satellite pixels are interpolated by using IDW over the basin to create 

one precipitation time series corresponding to the rain gauge data. 

5.3.2. Streamflow Data 

There is just one hydrometric station operated by Water Survey of Canada (WSC) in the outlet 

of watershed (Figure 44) which provides daily streamflow records from 1967 till the end of 

2015. Based on hydrologic records from the WSC gauging station, peak discharges usually 

occur in either the spring (April –May) or late fall (October –November) in response to 

snowmelt or stormfall, respectively. 
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Figure 44. Batchawana River Watershed as the study area of hydrological modeling 

5.4. Methodology  

Evaluation of IMERG precipitation inputs as the objective of this chapter is performed by using 

the Raven model with respect to the ground-based streamflow observations at the watershed 

outlet.  
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5.4.1. Raven Hydrological Model 

In this study, to identify the ability of IMERG PrCal in streamflow simulation the Raven 

hydrological model is utilized. Raven is a flexible hydrological modeling framework that 

allows for the development of lumped and semi-distributed models. The discretization of land 

into Hydrological Response Units (HRUs) and flexibility of using empirical models or physical 

systems to represent hydrological processes are some of the features of the Raven model 

(Shafii, 2017).  

In this study, two different scenarios are used for hydrological evaluation of IMERG 

precipitation data. In the first scenario, the Raven model is calibrated by using the daily 

precipitation of one rain gauge located within the watershed from 1977 to 2000 (67% of the 

whole period (1977-2011)). The rest of the time series during 2001-2011 (33% of the whole 

period) is considered as the validation period. The model parameters are obtained based on the 

daily observed rain gauge data, then, the daily IMERG PrCal (aggregated from the original 

half-hourly data) during 2001-2015 is employed into the calibrated model without changing its 

parameters. In the second scenario, the model is calibrated based on the IMERG data from 

2001 to 2015, then the performance of simulated streamflow is validated during 2001-2015. It 

is noted that due to the short term of having data (15 years) for IMERG, the total data is 

considered as the calibration period in this scenario.  

The parameterization of the Raven model data is somewhat alleviated through the use of HRU 

classification schemes. Each HRU, in addition to being defined as having a unique 

representative area, centroid, slope, aspect, and elevation, is assumed to belong to a unique set 

of non-overlapping classifications. The benefit of this classification approach is that parameters 

need only be specified on a class-by-class basis rather than an HRU-by-HRU basis, simplifying 

the mechanics of calibration (each parameter shows up once in the model input files), the data 

storage (parameters are linked to class instances rather than directly to the HRU), and 

improving the portability of parameters to ungauged basins (Craig et al., 2020). 

Forcing data (e.g., precipitation, incident radiation, etc.) is distributed to HRUs by using a 

generic form of interpolation between gauge stations. Raw forcing data required by Raven 
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includes, at the very least, time series of total precipitation and minimum/maximum or average 

daily temperature either in gridded netCDF format or at the set of gauges. Raven includes a 

suite of algorithms for determining related forcings (potential evapotranspiration, potential 

melt, shortwave radiation longwave radiation, snow/rain partitioning, cloud cover, relative 

humidity, wind speed, etc.) (Craig et al., 2020). 

5.4.2. Evaluation Metrics 

In this section, just the metrics used for the simulated streamflow evaluation are explained as 

the statistical evaluation metrics of precipitation have already presented in Chapters 3 and 4. 

The performance of the daily streamflow simulations is evaluated using four statistical indices: 

RMSE, Nash-Sutcliffe Efficiency coefficient (NSE), LogNSE, and Kling-Gupta Efficiency 

(KGE). The highest score of NSE is 1. Although the maximum of NSE is a commonly used 

objective function for the optimization of the hydrological model, it indicates better 

performance to high flows, and so the optimized model may not capture low flows accurately. 

Thus, for considering both high- and low-flow processes, the maximum sum of NSE and log-

transformed NSE (LogNSE) are utilized here (Yuan et al., 2018).  

𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑖
𝑜−𝑄𝑖

𝑠)
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                                                          (5.3) 

Where n is the sample size of observed or simulated streamflow time series; 𝑄𝑖
𝑜 is the observed 

streamflow time series at the hydrometric station (m3/s); 𝑄𝑖
𝑠 is the simulated streamflow time 

series by either satellite or rain gauge inputs (m3/s); and 𝑄𝑖
𝑜 and 𝑙𝑜𝑔(𝑄𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represent the mean 

observed streamflow and mean log-transformed observed streamflow at the hydrometric 

station (m3/s), respectively. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                          (5.4) 

𝐾𝐺𝐸 combines the Pearson correlation coefficient r, the bias ratio β, and the variability ratio γ 

into one metric that ranges from -∞ to 1 with 1 being the ideal score (Singh and Najafi, 2020).  
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5.5. Results and Discussions  

The simulated streamflow using the IMERG precipitation inputs is compared with the observed 

streamflow to evaluate the hydrological utility of satellite precipitation products. First, Figure 

45 compares the rain gauge daily observed precipitation used to calibrate the hydrological 

model with the IMERG precipitation data during 2001-2011. Based on the metric of Bias = -

0.44, IMERG indicates a slight underestimation in this watershed. Also, RMSE and CC values 

represent that the IMERG is not reasonably consistent with the ground-based data. So, it is 

expected that the biases associated with the IMERG propagate in the hydrological model and 

affect model output (streamflow). For exploring the extent of bias in the simulated streamflow 

by IMERG inputs, Figure 46 depicts the scatterplots of both simulated and observed 

streamflow against each other at the outlet of the watershed (hydrometric station).  

  

Figure 45. Comparison of the ground-observed (one rain gauge in the study area) and 

IMERG daily precipitation (average value of 16 pixels covered the study area) during 2001-

2011 

Comparing both simulated IMERG- and gauge-based streamflow in Figure (a) proves the 

underestimation of IMERG in streamflow forecasting, however, the correlation between two 

streamflow values (CC= 0.8) is higher than that between two precipitations (CC = 0.5 in Figure 

45). Also with values of NSE = 0.58 and LogNSE = 0.7, IMERG performs better in capturing 

Bias = - 0.44 (mm/d) 

RMSE= 6.35 (mm/d) 

CC = 0.5 
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low flow than high flow. By comparing the gauge-based simulated streamflow and observed 

flow at the hydrometric station in Figure 46 (b), it can be realized that the calibrated model 

forced by rain gauge data does not perform perfectly. Although the NSE and KGE values (0.67 

and 0.74, respectively) are acceptable, they are still indicating the weakness of the calibrated 

model in streamflow simulation accurately. Nevertheless, with the LogNSE value of 0.74, the 

model displays better performance in capturing low flow. Considering both obtained results in 

Figures 46(a) and 46(b), two sources of uncertainties associated with the IMERG precipitation 

forced data and the calibrated model by gauge data are obvious. In this study, as we used the 

calibrated model, analyzing the model structure, its sources of uncertainty, and the performance 

of model parameters are not discussed here and will be considered in future studies.    

The ability of IMERG as forced precipitation data in the hydrological model is further assessed 

in Figure 46(c) and (d), respectively for two scenarios of gauge- and IMERG- calibrated model. 

As see, in the first scenario the IMERG tends to underestimate the streamflow (Bias of - 4.3 

(CMS)) which is in agreement with the precipitation evaluation (Figure 45). Besides, low 

values of NSE and KGE (0.38 and 0.4, respectively) demonstrate that the simulated streamflow 

forced by IMERG doesn’t agree well with the observations. For the second scenario, where the 

model is calibrated based on the IMERG input data, although the simulated streamflow is 

slightly improved (Figure 46 (d)), it still cannot capture the observed streamflow reasonably.    

  

Bias = - 4.5 (CMS) 

RMSE = 16.2 (CMS) 

CC = 0.8 

NSE = 0.58 

LogNSE = 0.7 

KGE = 0.64 

Bias = 0.84 (CMS) 

RMSE = 16.7 (CMS) 

CC = 0.82 

NSE = 0.67 

LogNSE = 0.47 

KGE = 0.74 

 

(a) (b) 
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Figure 46. Comparison of (a): simulated streamflow using IMERG-based and gauge-based 

precipitation, (b): simulated streamflow using gauge-based precipitation and observed 

streamflow, (c):  simulated streamflow using IMERG-based precipitation in scenario 1 and 

observed streamflow, (d): simulated streamflow using IMERG-based precipitation in scenario 

2 and observed streamflow  

 

Figure 47 depicts the daily time series of the observed and gauge-based simulation streamflow 

during 2001-201. As explained in Figure 46 (b) the simulated streamflow forced by rain gauge 

data with minor overestimation can capture the observed flow. The same plot is created for the 

IMERG-based simulation streamflow in Figure 48. This figure compares the simulated with 

the observed streamflow for scenario 1. Also, Figure 49 demonstrates the daily simulated 

streamflow for two scenarios. By comparing these two hydrographs with the observed one, it 

can be seen the improvement of simulation in scenario 2 rather than scenario 1.  

 

Bias = -4.3 (CMS) 

RMSE= 18.7 (CMS) 

CC = 0.65 

NSE = 0.38  

LogNSE = 0.41 

KGE = 0.4 

Bias = 0.4 (CMS) 

RMSE= 17.2 (CMS) 

CC = 0.73 

NSE = 0.47 

LogNSE = 0.3 

KGE = 0.52 

(c) (d) 
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Figure 47. Comparison of the observed and gauge-based precipitation simulated daily 

hydrographs at the hydrometric station during 2001-2011 

 

Figure 48. Comparison of the observed and IMERG-based precipitation simulated daily 

hydrographs in scenario 1 at the hydrometric station during 2001-2011 

 

Scenario 1 
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Figure 49. Comparison of the observed and IMERG-based precipitation simulated daily 

hydrographs in scenarios 1 and 2 at the hydrometric station during 2001-2015 

The more explicit hydrographs are displayed in Figure 50 where the mean daily time series of 

simulated and observed streamflow during 15 years (2001-2015) is depicted. As seen the peak 

daily discharges for simulated and observed flows occur in the spring (April –May) in response 

to snowmelt. Both simulated scenarios can approximately capture the trend of discharge with 

higher performance related to scenario 2. However, they tend to underestimates/overestimates 

during spring/summer significantly.   

The same results are obtained for monthly flow in Figures 51 and 52 which respectively depict 

the monthly hydrograph varying from 2001 to 2015 and the mean monthly hydrograph over 

the 15 years for the simulated and observed streamflows. 
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 Figure 50. Comparison of the observed and IMERG-based precipitation simulated 

mean daily hydrographs in scenarios 1 (black) and 2 (blue) at the hydrometric station 

For a better understanding of the ability of IMERG data in extreme flow simulation, a 

comparison of the discharge-duration curves is performed in Figure 53. This indicates that 

scenario 1 of the simulated streamflow using the IMERG-based data generates the daily 

discharge frequency distributions that agree with the observed data for the quantile level of 0-

75%. Nevertheless, both scenarios remarkably underestimate the quantiles higher than 75% 

and cannot capture the high flow quantiles ≥ 97%. On the other hand, scenario 2 tends to 

overestimate the quantile level of 0-75%.  

RMSE S1 = 13.5 (CMS) 

RMSE S2 = 10.4 (CMS) 
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Figure 51. Comparison of the observed and IMERG-based precipitation simulated monthly 

hydrographs in scenarios 1 and 2 at the hydrometric station during 2001-2015 

 

 

Figure 52. Comparison of the observed and IMERG-based precipitation simulated mean 

monthly hydrographs in scenarios 1 and 2 at the hydrometric station  

RMSE S1 = 320 (CMS) 

RMSE S2 = 260 (CMS) 

 

RMSE S1 = 560 (CMS) 

RMSE S2 = 518 (CMS) 
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Figure 53. Comparison of the observed and IMERG-based precipitation simulated discharge-

duration curves using the IMERG-based precipitation data in scenarios 1 and 2  

 

5.6. Conclusions  

This chapter evaluates the accuracy of the IMERG daily PrCal product in the hydrological 

application by forcing it in a calibrated model. Using the gauge-benchmarked model 

parameters, although IMERG-based data present unreliable simulations of daily streamflow 

over the watershed, it can capture the pattern of time series. Also, this study shows that 

calibrating the hydrological model based on satellite precipitation forcing data can increase the 

performance of simulated streamflow. Concerning the different levels of quantile, it can be 

concluded that the IMERG-based streamflow agrees with the observed one in quantile values 

less than 75% and notably underestimates the higher quantiles.  

The considerable errors associated with the underestimates/overestimates of simulated 

streamflow are related to the systematic biases of satellite precipitation input data and the 

uncertainties of the hydrological model structure and parameters (Yuan et al., 2018). The 

systematic biases of IMERG products have been analyzed and discussed in Chapter 3 in more 

detail. However, at the study area of this chapter, the effects of IMERG systematic biases have 

been shown by capturing the frequency of events but not the precipitation magnitude. 

RMSE S1 = 16 (CMS) 

RMSE S2 = 15.3 (CMS) 
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Moreover, the gridded precipitation data set which is derived from 16 satellite pixels, then 

interpolated over the watershed might not be consistent with the only rain gauge data. 

Therefore, for conducting a more reliable evaluation of satellite gridded data, calibrating a 

distributed model over a denser basin with more ground-based data is proposed. Besides, each 

hydrological model has its own characteristics and procedure for computing the runoff, 

potentially influencing the simulation performance. Thus uncertainty analysis of the model 

structure is further needed to determine the portion of error related to the input precipitation 

data.    

Overall, this chapter performs a preliminary assessment of IMERG precipitation products in 

daily streamflow simulation over a small watershed in the southern part of Ontario, Canada, 

and aims to explore the error propagation into the hydrological model. Indeed, using the 

IMERG data in the data-sparse or ungauged basins will have a more significant value. 

Nevertheless, the IMERG products still need to be improved for replacing the ground 

observations that provide the most accurate hydrological simulations (Su et al., 2019). 
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Chapter 6  

6. Concluding Remarks and Future Work 

Precipitation plays a key role in hydrometeorological modeling, applications. For water 

resources management and accurate flood prediction, reliable quantification of precipitation 

estimation is crucial (Behrangi et al., 2011). However, obtaining high-quality precipitation is a 

challenging task especially in complex topographic and climatic conditions areas where 

ground-based measurement networks are either sparse or nonexistent (Caracciolo et al., 2018). 

Although conventional ground-based rain gauges can provide the most accurate precipitation 

data (Tapiador et al., 2012), alternatively satellite-based retrievals precipitation products have 

significantly considered at global and regional scales in recent decades for dealing with the 

challenges over data-sparse regions. The main advantages of satellite rainfall estimates are their 

global scale coverage, high spatiotemporal resolution, and short-latency which make them 

useful tor the requirements of flood forecasting (Su et al., 2019). Equipped by the latest Dual-

Frequency Precipitation Radar (DPR) and a conical scanning multichannel, GPM Microwave 

Imager (GMI), and the joint application of these sensors have improved the accuracy of 

IMERG in detecting light and solid precipitation (Huffman et al., 2019a). In addition, for 

providing IMERG data, approximately 10 partner satellites are combined (Chapter2, section 

2.1) as co-satellites that have effectively enhanced the spatiotemporal resolution of IMERG 

(Su et al., 2019). These skills lead to that the IMERG precipitation data be more accurate among 

other satellite precipitation products (e.g. TRMM, CMORPH, and PERSIANN). However, due 

to the indirect nature of such a remote sensing-based data estimators, the evaluation is needed 

before using them. 

Similar to satellite, radar-based precipitation data provide real-time estimates of rain and snow 

rates at relatively fine spatial and temporal scales. Further, radar can measure the precipitation 

more directly by sending radio waves and receiving their reflectance back to the transmitting 

point than satellites that use cloud information for estimating precipitation. Nevertheless, radar 

precipitation estimates also have uncertainties due to the influence of ground clutter, beam 

blockage, and bright banding in the melting layer (Martinaitis et al. 2017). MRMS by 
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integrating several radars with a set of sensors can mitigate such deficiencies in the single-radar 

framework and provide more accurate diagnoses of atmospheric physical processes (Zhang et 

al., 2016). 

In this study, in the first main chapter (Chapter 3), a comprehensive evaluation of four products 

(PrCal, PrUncal, PrIR, and PrHQ) of the IMERG latest version (V06) and MRMS precipitation 

data was performed over the entire country of Canada with diverse climatic conditions. To 

better understanding the capability of these products, we assessed them during different seasons 

by using a complete set of statistical and categorical metrics.  

The hourly evaluations resulted in the better performance of PrCal and PrHQ than other 

IMERG products in estimating the precipitation amount and occurrence, respectively. The 

robustness of such sensors to detect precipitation suggests that they can be used to improve 

PrCal estimates. In daily evaluation compared to the hourly, IMERG performed better. For 

example, the obtained median Rbias and CSI of daily PrCal are 13% and 52% respectively, 

while they are 18% and 25% at the hourly scale. Considering spatially and temporally 

assessments, we concluded that IMERG represents better performance in terms of precipitation 

amount over most parts of the interior plains compared to the rest of the country with lower 

Rbias and RMSE values. However, in terms of precipitation occurrence, based on POD and 

FAR values the best capturing was obtained on the west and east coasts. Furthermore, 

according to the seasonal assessments, IMERG provides more reliable precipitation estimates 

during the warm months based on the correlation coefficients and categorical indices. We also 

realized that IMERG tends to overestimate the moderate to heavy precipitation events and 

shows relatively weak performance during the cold season, although it can keep the temporal 

and spatial variations of precipitation over most parts of Canada.  

As the first study of such high-resolution radar-based precipitation estimates across Canada, 

MRMS indicated the overall promising performance of over its coverage area in the southern 

parts of the country. MRMS exhibited a higher average CC value (~ 0.6) than PrCal from 

IMERG (~ 0.4) and better CSI values over all regions. MRMS, however, tends to underestimate 

precipitation in the eastern and western parts of Canada and overestimates it in the interior 
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plains. Although MRMS can detect precipitation occurrence relatively well, it just covers the 

southern parts of Canada and can not be used for latitude higher than 55°N.  

Considering the terms of the error in IMERG products, in the second main chapter of this study 

(Chapter 4), it was decided to propose and implement a framework for correcting the biases 

spatially and temporally. The method is based on the regression quantile mapping (RQM) to 

construct a relation between different quantile levels of precipitation and other dependent 

variables which is useful especially over the satellite pixels where there is no rain gauge for 

estimating the direct bias. This feature can result in bias correction spatially over the study area. 

Further, the developed method here is capable to adjust the different levels of rainfall intensities 

instead of considering just the mean or median values applied before in the conventional 

methods. Also, by using the time-varying covariates in RQM framework in this study, the 

technique can correct the biases temporally. The model parameters first were calculated by 

utilizing the gauged satellite pixels then interpolated over the entire study area.  

The obtained findings of the bias correction method indicated significant improvement in 

IMERG estimates for both terms of precipitation intensity and occurrence especially over the 

regions where the original data had lower performances (west and coast parts of the country). 

The results expressed promising values where the average value of CC during the cold months 

from November to March was improved overall by 267% (from 0.3 to 0.8) and during the 

warm months from April to October by 150% (from 0.6 to 0.9). Capturing the trend of 

precipitation time series, consistency in lower and higher quantiles with the ground observed 

data, and estimating a reasonable data over ungauged regions are the main achievements of the 

opposed approach of bias correction in this research. 

The last main chapter (Chapter 5) investigated the ability of daily IMERG precipitation as 

forced data in a calibrated hydrological model to further assess the performance of this widely-

used remotely-sensed data in streamflow simulation. For this purpose, the Raven model 

calibrated by using the ground-based data over a small watershed (area of 1280 km2) in the 

southern part of Ontario, Canada was selected. Although the simulated streamflow by using 

IMERG forced data was not reliable, it showed a reasonable capturing of the observed 

discharge trend as well as promising values for lower quantiles (less than 75%) of flow. In 
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addition to the systematic error of IMERG forced precipitation data, the uncertainty associated 

with the Raven hydrological model and its parameters resulted in the low quality of simulated 

streamflow.    

It is worth mentioning that the limitations associated with the quality and sufficiency of the 

ground-based rain gauge data may be the main challenge of having more accurate evaluation, 

bias correction, and hydrological assessment of satellite IMERG precipitation products in this 

study. Therefore, by having a high spatiotemporal resolution network of rain gauges the method 

of bias correction can lead to a more accurate result. Also, the technique proposed in this study 

can be implemented over other regions around the globe as it is case sensitive.    

Based on the findings in this research the following future works are suggested.  

 Develop a high quality gridded combination precipitation product of both IMERG and 

MRMS remotely sensed data which can result in more accurate estimations especially for 

short duration events and in areas that have sparse rain gauges.  

 

 Evaluate the ability of IMERG and MRMS in snowfall estimations by using a reliable 

ground-based network of snow data. 

 

 Hydrological evaluations of IMERG and MRMS forced precipitation data in a well-

calibrated distributed hydrological model over different watersheds equipped with a dense 

network of rain gauges and assess the skills of these high-resolution data in flood 

forecasting in Canada.  

 

 Evaluate other global satellite precipitation products (e.g. CMORPH, TRMM, PERSIANN, 

and GsMap) over Canada and compare their results with findings of this study.   

 

 Perform uncertainty analysis of hydrological models forced by the IMERG data to further 

characterize the error propagation of this input data into the hydrological applications.   
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Appendix: List of Acronyms 

 

CC                                          Pearson Correlation Coefficient  

CMORPH                              Climate Prediction Center (CPC) MORPHing technique 

CNbias                                   Correct Negative bias 

CONUS                                  CONterminous United States  

CSI                                         Critical Success Index 

DPR                                        Dual-frequency Precipitation Radar  

DJF                                         December January February 

DPR                                        Dual-Frequency Precipitation Radar  

ECCC                                     Environment and Climate Change Canada  

ECMWF                                 European Centre for Medium-Range Weather Forecasts 

FAR                                        False Alarm Ratio  

Fbias                                       False bias 

GEO-IR                                  GEOstationary InfraRed  

GPCC                                     Global Precipitation Climatology Center  

GPM                                       Global Precipitation Measurement 

GPROF                                   Goddard PROFiling algorithm  

GSMaP                                   Global Satellite Mapping of Precipitation  

Hbias                                      Hit bias 

HQprecipitation       Precipitation extracted from merging High-Quality passive microwave 

sensors  

IMERG-V06            Integrated Multi-satEllite Retrievals for Global precipitation measurement 

Version 6 

IR                                            InfraRed  

IRprecipitation                        InfraRed geostationary satellite precipitation data  

JJA                                          June July August 

JAXA                                      Japan Aerospace and Exploration Agency  
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KGE                                        Kling-Gupta Efficiency 

NASA                                     National Aeronautics and Space Administration  

NCEP                                      National Centers for Environmental Prediction 

NOAA                                     National Oceanic and Atmospheric Administration  

NSE                                         Nash-Sutcliffe Efficiency coefficient   

NWP                                        Numerical Weather Prediction  

MAE                                        Mean Absolute Error 

MAM                                       March April May 

Mbias                                       Miss bias  

MRMS                                     Multi-Radar Multi-Sensor 

MW                                          MicroWave 

PERSIANN   Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks  

PMW                                       Passive MicroWave 

POD                                         Probability of Detection  

PrecipitationCal                       Calibrated Precipitation of IMERG 

PrecipitationUncal                   Uncalibrated Precipitation of IMERG 

PrCal                                        PrecipitationCal  

PrHQ                                        HQprecipitation  

PrIR                                          IRprecipitation  

PrUncal                                    PrecipitationUncal  

QPE                                         Quantitative Precipitation Estimation  

Rbias                                        Relative bias  

RCS                                         Reference Climate Stations  

RMSE                                      Root Mean Square Error  

RSE                                          Remotely Sensed Estimate  

SHSR                                       Seamless Hybrid Scan Reflectivity  

SON                                         September October November 

SPP                                          Satellite Precipitation Product 

SPR                                          Surface Precipitation Rate  

SPT                                          Surface Precipitation Type  

TBRG                                      Tipping Bucket Rain Gauge 

TMPA                                     TRMM Multi-satellite Precipitation Analysis   

TRMM                                    Tropical Rainfall Measuring Mission 

https://vlab.ncep.noaa.gov/web/wdtd/-/seamless-hybrid-scan-reflectivity-shsr-
https://vlab.ncep.noaa.gov/web/wdtd/-/surface-precipitation-type-sp-1
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UTC                                         Coordinated Universal Time 

VPR                                         Vertical Profile of Reflectivity  

WSR-88D                                Weather Surveillance Radar-1988 Doppler 
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