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Abstract
In movie-activation fMRI, intersubject correlation (ISC) indicates a functional correspon-

dence across viewers. Brains di↵er in shape; spatial normalization and smoothing enhance
inter-subject functional overlap. We compare three normalization methods and six smoothing
levels to discover which method yields the best functional overlap, indexed by ISC. This is
key to optimizing data analysis in clinical studies using movie-activation fMRI in future. In
a 3T scanner, 44 healthy subjects watched an 8-min movie. Both normalization and smooth-
ing a↵ected the strength and extent of the ISC. ISC values were more robust for ANTs and
DARTEL than for SPM12 and were (asymptotically) the strongest at 12mm smoothing. When
image data are preprocessed with high-dimensional volumetric spatial registration methods,
such as ANTs, and 12mm smoothing, the sensitivity of the movie-fMRI paradigm will be op-
timal for detecting abnormalities in presurgical evaluation of neurological patients, providing
less variable and more reliable ISC measures.

Keywords: fMRI, Naturalistic Stimulation, Intersubject Correlation, Spatial Smoothing,
Spatial Registration, Normalization
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Summary for lay audience
Almost two in every 1000 of the world population has a neurologic disorder that requires brain
surgery. E↵ective surgical treatment requires that the lesion be localized precisely, and re-
section does not result in unexpected cognitive decline. It is usually accomplished through
preoperative assessment of patients using implanted electrodes or functional MRI (fMRI).

Current methods are not very sensitive to abnormalities in cognitive function. We propose
to use fMRI to rapidly and noninvasively identify and map brain function. When neurologi-
cally healthy individuals watch an engaging film while undergoing fMRI (movie-driven fMRI),
reliable and distinctive time-locked fluctuations in fMRI signals are observed throughout the
brain. These fluctuations are di↵erent in di↵erent brain regions, reflecting the perceptual and
cognitive demands of the film, but are very similar across people without neurological disorders
(controls). The degree to which a patient’s data matches predictions derived from control data
can be tested statistically, region by region, to reveal functionally important cortex and local
abnormalities of brain function. Because di↵erent brains di↵er in shape and size they should
be registered to a standard template for comparison. The way the patient’s data is registered to
the template a↵ects the sensitivity of the method to abnormalities.

We asked people without any neurological disorder to watch a short, suspenseful movie
while they underwent a functional brain scan. We - for the first time - evaluated three di↵er-
ent ways to register the movie-driven fMRI data. We found that the registration method that
uses more points in data to match it with the template was more sensitive to fluctuations of the
fMRI signal and as a result more sensitive to abnormalities. We also compiled this data set as
a normative pattern of activity in a neurologically healthy population.

Movie-driven fMRI and this method of registration may be a valuable adjunct assessment
method in the presurgical evaluation of neurologic patients. Future studies can compare the
fMRI data from any individual patient with a neurologic disorder, such as focal epilepsy, with
this normative pattern of brain signal fluctuation.
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Chapter 1

Introduction

Surgery is a promising treatment option for a significant number of patients with brain tumours
or focal drug-resistant epilepsy [2]. Assessment of cortical function before surgery can aid
in surgical planning in a number of ways - for example, by helping to localize dysfunctional
cortex or to identify dysfunctional networks, and/or assess functional plasticity. Presurgical
assessment of cortical functioning plays a critical role in minimizing postoperative morbidity
and improving surgical outcomes for these patients [2]. MRI is commonly used to identify and
localize any focal abnormality, which in about one-third of surgical candidates is subtle and not
evident on clinical MRI [3]. More sensitive tools for identification of abnormality, potentially
using functional criteria, are needed. In this thesis I focus on optimizing registration of data
between an individual and a template. Optimizing the registration maximizes sensitivity of the
movie-fMRI paradigm. So, this novel method of detailed functional mapping of the brain can
be used for presurgical assessment in epilepsy. This study is the first study that uses a movie-
fMRI paradigm to evaluate di↵erent registrations.

1.1 Presurgical assessment in Epilepsy

Epilepsy is a disorder characterized by at least one of the following conditions: “1) at least two
unprovoked or reflex seizures more than 24 hours apart, 2) one unprovoked or reflex seizure
and a probability (60%) of having another seizure similar to the general recurrence risk after
two unprovoked seizures over the next 10 years, or 3) diagnosis of an epilepsy syndrome”[4].
Epilepsy is considered drug-resistant (DRE) when at least two categories of anti-epileptic med-
ication are tried and tolerated on an appropriate schedule, but the patient still experiences
seizures [5]. In DRE patients due to an abnormality in a discrete region (the epileptogenic
focus), surgical removal of the focus can be an e↵ective treatment [6] [7].

During a surgical resection for the treatment of epilepsy, surgeons try to remove as much
diseased tissue as possible while preserving normal brain function. Careful localization of the
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2 Chapter 1. Introduction

pathological tissue and comprehensive cognitive assessment are essential parts of the presur-
gical assessment. The former leads to a better medical prognosis (e.g., greater likelihood of
seizure freedom in patients with refractory epilepsy), and the latter allows for better prognosti-
cation of likely cognitive deficits after surgery. The risk of an undesired e↵ect must be weighed
against the potential benefits of surgery, and the surgical team must predict the functional out-
come based on the regions of the cortex to be resected.

The epileptogenic focus is localized by obtaining the neurological and general medical his-
tory, through electroencephalography (EEG) and through video EEG which reveals semiology
at seizure onset, with potentially localizing significance. Brain imaging using magnetic res-
onance imaging (MRI) to detect structural abnormalities is also essential. Positron Emission
Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are also
often used to visualize changes in cerebral metabolism [2]. In up to one-third of patients being
considered for surgery, these investigations do not definitively locate the focus of abnormal ac-
tivity. In this case, patients undergo invasive procedures like intracranial EEG (iEEG), which
involves direct recording from the pial surface of the brain, to locate the focus of abnormal
electrical activity. Monitoring brain activity through iEEG is not only invasive and needs hos-
pital admission, but also expensive and carries risks [8].

In order to avoid undesirable cognitive changes postoperatively, and have a qualitative base-
line measure of cognitive function, the language and memory functions are often characterised
neuropsychologically, and sometimes evaluated using functional MRI and/or amytal hemi-
spheric anesthesia (Wada test) during presurgical evaluation [9] [10]. Wada test is operationally
defined by injection of sodium amytal into the internal carotid artery to induce hemianesthesia
temporarily [11]. Due to the high possibility of some degree of brain reorganization of cogni-
tive function in people with epilepsy, particularly those with seizures dating from birth or early
life, individual functional mapping is desirable for many patients [12]. Wada and fMRI are typ-
ically used to characterize memory function, and to lateralize language. My project is focused
on optimizing volume-based preprocessing of imaging data for a new method of presurgical
functional assessment using neuroimaging.

1.2 Functional Magnetic Resonance Imaging

Functional MRI is a non-invasive neuroimaging method sensitive to brain activity, based on
blood oxygen level-dependent (BOLD) signal changes. Magnetic susceptibility to alterations
in the concentration of deoxyhemoglobin, blood flow, blood volume and the venous reservoir
of the local brain tissue is the basis of BOLD- contrast imaging [13]. In fMRI experiments,
di↵erent stimuli are used to elicit hemodynamic activity, which is then captured by the scan-
ner as a proxy measure for neuronal activation. Any neuronal activity results in recruitment of
oxygenated blood, which results in an increase in the concentration of local oxyhemoglobin rel-
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ative to local deoxyhemoglobin. Since deoxyhemoglobin is strongly paramagnetic, and causes
magnetic field distortions, the decreased proportion results in a more uniform magnetic field
strength, and therefore increased signal on an image [13].

There are two general protocols for fMRI. In resting-state fMRI (rs-MRI) brain dynamics
are captured while subjects are at rest in the scanner. In task-based fMRI individuals are not
simply resting, but are typically engaged in some kind of cognitive task. Verb generation and
verbal fluency are the most common fMRI paradigms for presurgical mapping of language
[9][14]. However, these paradigms generally focus on single aspects of cognition, and do not
reflect the richness of everyday language processing and cognition. As a result, they o↵er an
incomplete view of cortical functioning. In addition, sometimes, the amount of movement in
the scanner is too high to be corrected when preprocessing the data for analysis [14].

1.2.1 Movie-fMRI

To gain a more comprehensive view of cognitive function presurgically, and to reduce move-
ment, we present engaging movies. The movie-fMRI paradigm resembles a natural viewing
experience [1]. Because the task is simple and enjoyable, this paradigm can also be used e↵ec-
tively with children. Any silent movie or movie that contains audio can be selected based on
the study’s goal. For instance, if investigating the auditory cortex is desired the movie should
contain audio and if the focus is explicitly investigating the visual cortex employment of a
silent movie might be necessary. Previous studies have shown that participants move less in
movie fMRI paradigms compared to resting-state paradigms [1].

1.3 Inter-subject correlation basics

When healthy individuals watch a naturalistic stimulus like a movie, extensive cortical areas
(60 % of brain cortex) show robust hemodynamic activity that is time-locked to the content of
the movie, and is synchronous across individuals [1]. Measuring this synchrony by means of
fMRI, through the correlation of the BOLD signal time course in homologous voxels across
viewers, is the basis of inter-subject correlation (ISC) analysis [15], which reveals that large
regions of cortex exhibit high correlation in healthy individuals. ISC o↵ers a way of quantify-
ing the reliability of cortical activation across healthy individuals at the voxel level, with higher
ISC values suggesting a more predictable time course of activation.

ISC analysis was initially proposed by Uri Hasson [15] for use with fMRI data from natu-
ralistic stimulation paradigms such as movies. In ISC analysis, the time course of activation in
each voxel of a given subject is correlated with the time course of activation of the correspond-
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ing voxel in all other subjects, and then the correlation values are averaged. This is repeated
for all subjects, and a grand average correlation is calculated [16].

1.4 “Bang You’re Dead!”

For this project, the naturalistic stimulus that we selected was an eight-minute long edited ver-
sion of a black-and-white television episode, entitled “Alfred Hitchcock presents: Bang You’re
Dead!”(1961). According to previous studies [1][17] this movie is capable of robustly activat-
ing more than 60% of the brain cortex synchronously across individuals (resulting in high ISC
values), including in areas of the brain that are not reliably activated by other movie stimuli
(e.g., prefrontal cortex)(Figure1.1) [1].

Figure 1.1: A) ISC in typical slices through the brain at each of the three cardinal orientations
for the movie clip “Alfred Hitchcock presents: Bang you’re dead!”B) The extent of ISC evoked
by four di↵erent films: Alfred Hitchcock presents: Bang you’re dead!”(green), Sergio Leone's
The Good, the Bad and the Ugly (blue), Larry David's Curb Your Enthusiasm (red), and the
unedited, one-shot segment-of-reality video filmed in Washington Square Park (orange). Mod-
ified from [1].

In this project, we used movie-driven fMRI to functionally map the cortex in healthy par-
ticipants. This dataset can serve as a normative sample, against which to compare data from
individual patients. Among individuals with neurological disorders, we can search for voxels
that do not show the expected time course of activation, suggesting a focal functional or net-
work abnormality. In individuals with neurologic disorders, identifying voxels or regions with
a di↵erent signal pattern, as a result of focal functional impairments or functional reorganiza-
tion, may help guide the health care team to the pathological areas. This technique may be
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particularly valuable in cases of non-lesional epilepsy, in whom the structural neuroimaging is
unremarkable [3] [18].

1.5 Anatomical variability and processing of the fMRI data

There are normal variations in human brains in the size and shape and in the minute detail
of sulci and gyri arrangement [19]. For example, the primary auditory cortical receiving area
(from thalamus) is always found on Heschl's gyrus on the superior temporal plane. In some
people there is only one Heschl's gyrus in each hemispheres. Other individuals may have
up to three separate Heschl's gyri, in either or both hemispheres [20]. These variations com-
plicate the voxel-wise correlation across individuals and can significantly reduce correlation
values [21] [22]. These challenges can be mitigated by normalization and spatial smoothing.
Normalization algorithms that can accommodate the detailed anatomical morphology of indi-
vidual brains have been shown to reduce variability, and as a result improved the anatomical
alignment across groups [22] [23]. Enhancement in structural overlap may increase functional
overlap: it improves overlap in resting state networks across individuals [23], and in activation
clusters in primary sensory areas [24]. This overlap may also enhance intersubject correlation
(as we examine here) .

In the preprocessing of fMRI (1) brains are registered to standard space (spatial normaliza-
tion) to reduce the variability across people [25], and (2) data are spatially filtered (smoothed)
to maintain a balance between data resolution and signal sensitivity and anatomical correspon-
dence across individuals [26][21]. These preprocessing steps should improve reliability across
subjects and statistical power, so that, when used as a norm against which to compare patients
(assuming grossly normal brain morphology), we will be more sensitive to abnormality.

Normalization and smoothing render anatomically di↵erent brains more comparable. Nor-
malization registers brains together in a standard space, so that an individual patient brain
corresponds to that of a normative template.

Spatial smoothing works to diminish residual anatomical variability after normalization, at
the cost of degrading spatial resolution. According to theory of matched filters, the optimal
amount of spatial smoothing that maximizes the signal to noise is that which matches the size
of the activated region [27].

I aim to enhance the strength of fMRI-derived ISC to improve the sensitivity of noninvasive
presurgical evaluation procedures to detect focal functional abnormalities, with the ultimate
goal of reducing the need for invasive procedures.
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ISC values are influenced by multiple factors including sample size [28], level of spatial
smoothing [21], and variations in brain morphology [29]. Optimizing any of these factors
would probably enhance the strength of the ISC values and the consequent sensitivity of this
method to brain functional abnormality. In this study, I use movie-driven fMRI to evaluate the
registration algorithms and smoothing level that yields greatest overlap in individuals, indexed
as ISC values. The three di↵erent normalization toolboxes are open-source and include the
regular normalization algorithm of the commonly used image processing toolbox, SPM [30]
version 12, developed in the Wellcome Trust Centre for Neuroimaging, University College
London, UK; the DARTEL [31] toolbox; and the ANTs toolbox, developed by members of
PENN image Computing and Science Lab (PICSL) and other institutions led by Brian Avants
at University of Pennsylvania, Philadelphia, PA, US [32]. I use volumetric normalization here
and did not attempt surface based registration, for reasons that I explain in the Discussion. In
the following sections, spatial normalization and spatial smoothing will be discussed in detail.

1.6 Normalization

In order to compare the ISC of di↵erent brains of di↵erent sizes and morphology, they should
be brought into a standard space [33]. The spatial transformation of data images into a stan-
dardized template is called“individual registration”[33] or spatial normalization. During nor-
malization, the high-resolution anatomical image is registered to the template of choice. Trans-
formation parameters derived from this registration, which are discussed later in this section in
more detail, are then applied to each functional image volume. Several normalization proce-
dures are available.

Di↵erent normalization methods are categorized based on whether they are volume-based
or surface-based normalization. The volume-based normalization involves registration of a
three-dimensional volume of the whole brain into a standard template [34], based on the dif-
ferences in the intensity of data [35]. Surface-based normalization involves segmenting brain
images and virtually flattening cortex, then registering cortical maps onto a set of two dimen-
sional standard templates. Because surface- based normalization is not used in this thesis, it
will not be discussed in detail. In this work, we compare three volumetric template-based nor-
malization methods.

The registration algorithms di↵er based on whether the registration requires a standard ref-
erence template (such as the MNI-ICBM 152 template [36] ) or involve registering all images
together in a single procedure (groupwise registration ).

Normalization methods are categorized into a�ne transformations and non-a�ne non-
linear transformations. A�ne transformations applied to the whole brain volume (either with
a reference template or among a group of volumes) consist of rigid-body transformations, in-
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cluding rotations (yaw, pitch, and roll) and translations in three main axes (x, y and z) for each.
A�ne non-rigid-body transformations include scaling and shearing (skewing): these are typi-
cally also applied to data on top of the rigid body transformation parameters .

Non-a�ne non-linear transformations, if performed, generally follow linear and nonlinear
a�ne transformations. In contrast to the a�ne transformations, the non-a�ne nonlinear trans-
formations di↵er in di↵erent regions of the brain. These can be either smoothly nonlinear, with
a low number of degrees of freedom: in such cases, nonlinear warpings are applied on rela-
tively large regions of tissue. Alternatively, these may be highly nonlinear, with a large number
of degrees of freedom, enabling one brain to be warped to be almost identical to another at
a relatively fine anatomical scale. High-dimensional nonlinear transformations are useful for
minimizing individual anatomical variability among brains. It is unclear to what extent such
transformations maximize functional overlap among individuals, however, since function does
not necessarily follow form, particularly in frontal and parietal regions [29] [37]. I will uti-
lize both low-dimensional and high-dimensional nonlinear normalization methods, and assess
whether a measure of functional alignment, ISC, is more widespread after the latter than the
former.

All three volume-based normalization toolboxes apply the non-linear approach in the reg-
istration of image data, but they vary in the degree of transformation that they implement.
The SPM toolbox implements a smoothly non-linear algorithm with low degrees of freedom
(around 1K). DARTEL uses larger deformations (more degrees of freedom (6.4 M)) than the
conventional SPM normalization [37] [38]. ANTs is a robust nonlinear registration toolbox
that applies nonlinear transformation parameters (stretching and squeezing) at an even finer
spatial scale (28 million degrees of freedom), so that the transformed image is more similar to
the template [37].

1.6.1 Registration templates

Di↵erent versions of the MNI-ICBM template generated by researchers at the Montreal Neu-
rological Institute (MNI) under the aegis of the International Consortium for Brain Map-
ping (ICBM) [36] are the standard templates of choice for most of the normalization tool-
boxes [39]including Statistical Parametric Mapping (SPM) and Advanced Normalization Tools
(ANTS) [32]. The MNI-ICBM template was first created in 1992 out of an average of T1
weighted data images of 305 normal brains [40]. Currently, more updated versions of this tem-
plate are available with di↵erent voxel size resolutions. The MNI-ICBM-152 is the one imple-
mented in SPM 12 and in the ANTs pipelines. These templates are generated from a population
of healthy young individuals; thus, they might not represent changes in brain morphology for
individuals of di↵erent ages or from various ethnicity groups. In contrast, groupwise normal-
ization optimizes the match among all the brain volumes in a given sample, and thus is more



8 Chapter 1. Introduction

robust to alterations. The DARTEL toolbox uses a groupwise template created by simultane-
ously registering all the constituent images together. This theoretically eliminates bias caused
when samples used to create a standard reference template are di↵erent (e.g., younger) than
those in the experimental sample.

1.6.2 Normalization toolboxes:

1.6.2.1 SPM

SPM has been designed for the investigation of multiple modalities of brain imaging data [30].
The latest version (12th) of the software was released in 2014. SPM is designed for the analysis
of fMRI, EEG, PET, SPECT, and MEG. SPM incorporates many routines for the processing
of brain imaging data. Here, we concern ourselves with the normalization algorithm, which is
a voxel-based, low dimensional (1K degrees of freedom) [37], volume-based registration [37].
The SPM algorithm minimizes the voxel-wise squared di↵erence between the volume images
and a template volume, which is MNI-152 standard template [37]. The standard SPM non-
linear normalization involves application of two main steps: 12- parameter a�ne registration
(translations, scaling and shears in x y and z, and pitch, roll, and yaw) followed by the applica-
tion of a weighted sum of cosine basis functions [41] [42].

By performing “unified segmentation”[43], according to a tissue probability map, the im-
age data[43] are segmented into the six di↵erent tissues of white matter (WM), gray matter
(GM), cerebrospinal fluid (CSF), bone, soft tissue, and background. The segmented tissues
are then used to determine the deformation parameters by warping the template data to match
an individual’s data. Finally, each subject's images are spatially warped, using the inverse of
previously defined deformation parameters [43] [37] [38].

1.6.2.2 DARTEL

The Di↵eomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL)
toolbox is a volume-based normalization choice in SPM packages. This was proposed by
Ashburner in 2007 and is a di↵eomorphic image registration method. The di↵eomorphic trans-
formations, are defined as “topology preservation”, which is crucial when mapping cognitive
function to cortex [44]. DARTEL is a high dimensional( 6.4 million degrees of freedom) [37],
non-linear spatial registration toolbox, which exploits groupwise registration.

Similar to the SPM registration algorithm, DARTEL applies tissue segmentation. The av-
erage intensity of the WM and GM comprises the initial template in DARTEL. The initial
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template is updated repeatedly until a sharp, spatially precise template is built for the subject
group. The final average template is used for registration of each subject's dataset.

1.6.2.3 ANTs

The registration algorithm in the ANTs software package is a high dimensional (28 million de-
grees of freedom) [37], non-linear, di↵eomorphic, volume-based normalization that registers
image data to the standard MNI-152 template [32]. The ANTs algorithm has been compared to
other normalization methods in previous work, and has performed the best among 14 registra-
tion algorithms based on di↵erent measures, including “volume and surface overlap, volume
similarity, and distance measures”[37].

We used version 2.2.0 of this software package for spatial normalization of the data [32].
The most common non-linear registration algorithm in ANTs software package is normaliza-
tion” (SyN) [37]. Like other normalization toolboxes, segmentation is a necessary step before
normalization, and this is accomplished via FSL [45]. Then for each individual, spatial nor-
malization to the MNI-ICBM 152 template was performed using ANTs' antsRegistration in
a multiscale, mutual-information based, nonlinear registration scheme [32]. The deformation
parameters derived for the structural were then applied to coregistered functional data [32].

1.7 Spatial smoothing

Spatial smoothing involves blurring signal across adjacent voxels. Spatial smoothing is com-
monly performed using a three-dimensional Gaussian filter. The degree of smoothing is pro-
portional to the full width at half maximum (FWHM) of the Gaussian distribution, and this,
together with the voxel resolution, determines the spread of the signal over voxels. Smoothing
is performed for three main reasons. It decreases the e↵ect of anatomical variability across sub-
jects, and therefore increases overlap in functional activation across participants, it increases
signal to noise ratio, and it is essential in some types of statistical analysis when the assump-
tions of random field theory (RFT) need to be met to correct for multiple comparisons [19].
When RFT is required, the appropriate level of smoothing is two or three times the voxel size
[21]. As mentioned earlier, in theory, the optimal amount of spatial smoothing is that which
matches the size of the activated region [27], but since this is rarely known in advance, smooth-
ing between 6 and 12 mm is typical, depending on the goal of the study [46][19].

In movie-fMRI, ISC analysis instead of conventional general linear model (GLM), is the
analysis method of choice, and RFT is not required. Pajula and his colleagues showed that
when conducting an ISC based analysis on fMRI data, applying a kernel filter with the size
of 8 to 12 mm FWHM, produced the highest number of voxels exhibiting a significant cor-
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relation value, and generally higher correlation values [19][21]. However, spatial smoothing
degrades functional resolution, and the function relating improvement in correlation values to
smoothing kernel size is typically compressive, yielding progressively smaller improvements.
In this work, we will attempt to find the optimal smoothing level. We expect to find that high
smoothing levels will lead to stronger, more reliable correlations, but will attempt to identify
the smoothing level at which improvements in correlation diminish for increasing filter widths,
so as not to compromise spatial resolution unduly.

The application of spatial smoothing will a↵ect both the apparent spread of synchroniza-
tion of the brain signal activity and the magnitude of (peak) synchronization. In fact, smoothing
will confound magnitude with extent. With smoothing, an intense but focal peak will become
smeared, and indistinguishable from a less focal peak of lower magnitude. Thus, one must
be cautious when interpreting proportions of voxels exhibiting correlation above a particular
threshold, across di↵erent levels of smoothing. This proportional value will increase with in-
creased smoothing. For this reason, the extent of correlation clusters is not a su�cient measure
– the peak correlation value must also be considered, and the proportion of voxels exhibiting
relatively high correlation. In our study, six di↵erent levels of spatial smoothing (8mm,10mm,
12mm, 14mm,16mm and 20mm FWHM) were applied to the data, after normalization.

1.8 Intersubject correlation toolbox

In this project, a commonly used open-source MATLAB-based ISC toolbox designed by the
Department of Computer Science and Helsinki Institute of Information and Technology (HIIT)
University of Helsinki, Helsinki, Finland is employed. For each subject, the ISC toolbox cal-
culates the Pearson correlation coe�cient – ISC - of the fMRI time courses, in corresponding
regions (voxels). ISC values were determined separately based on the data output from each
of the di↵erent normalization toolboxes per level of smoothing. Then the ISCs were evaluated
based on the proportion of voxels with ISC values exceeding the defined threshold of 0.15 (or
the average of ISC values across voxels for each individual) [47]. By identifying the normal-
ization method and the level of smoothing that reliably yields the strongest ISC, with a robust
spread, I will identify the optimized combination for the most sensitive ISC.

The current study used a movie-fMRI paradigm and applied an ISC based analysis to iden-
tify the combination of spatial registration and spatial smoothing (using three di↵erent volu-
metric normalization algorithms and six di↵erent levels of spatial smoothing) that maximizes
the magnitude and extent of ISC in the brain. The analysis is conducted on two independent
samples – one of university students, and one of community-dwelling adults matched in age
to a clinical population – to examine the reliability and generalizability of the results. The
pattern of ISC resulting from the combination of choice for the preprocessing of movie-driven
fMRI data, particularly in the community sample, can serve as a normative pattern of activity,
and the normalization/smoothing combination identified here will be used in the presurgical as-
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sessment of patients with neurological disorders, to ensure that sensitivity is as high as possible.
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Method

In this section, I first describe participants, the study procedure, and then the image acquisition
settings. The preprocessing and registration steps are explained separately for each toolbox
SPM, DARTEL, and ANTs. Finally, the intersubject correlation analysis (ISC) and other sta-
tistical analyses are discussed.

2.1 Participants

Forty-four neurologically healthy individuals (age range = 17 - 61 years old; mean = 29.4
years; 28 females; 4 left-handed), participated in the study. General inclusion and exclusion
criteria were assessed at a pre-screen phone interview.

Participants were recruited as two subgroups (n=22) of the “community” group (age range
= 17 - 61 years old; mean = 35.7 years; 14 females; 4 left-handed) and the “junior” group (age
range = 18 - 30 years old; mean = 23.2 years; 14 females; all right handed). The “commu-
nity”group were recruited from the University of Western Ontario (UWO) and greater London
community through flyers and advertisement in clinics, the “junior”group were recruited from
among the undergraduate population at University of Western Ontario. The two groups of par-
ticipants were analyzed separately so that I could assess the reliability and generalizability of
the results.

All subjects were fluent in English and able to understand and follow a narrative audiovisual
movie clip. They were comfortable lying in the scanner for approximately half an hour. None
reported claustrophobia or any other contraindication to being exposed to a strong magnetic
field, based on the MR safety screening form, and no participant regularly used medication
that alters one's mental status or level of consciousness such as benzodiazepines or opioids.

12
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Whole data Community data Junior data
N 44 22 22
Sex (F:M) 28:16 14:8 14:8
Age (M ±S D) 29.4 ±12.4 35.7 ±14.9 23.2 ±3.2
Handedness (R:L) 40:4 18:4 22:0

Table 2.1: Participants characteristics. Abbreviations: F = female; M = male; R = right; L =
left.

Details of the procedure were explained to participants. Informed consent was obtained
prior to the study. Ethical approval was obtained from the Health Sciences Research Ethics
Board of the University of Western Ontario (Appendix G).These data were part of a larger neu-
ropsychological study, which also involved taking a general medical and medication history,
and collecting psychological measures including Beck's depression inventory, measures of anx-
iety, depression, sleep quality, quality of life and measures of verbal and nonverbal memory
(WMS-III) [48]. These measures will not be discussed in the current work.

2.2 Procedure

After 30 minutes of pretesting in which the psychological measures mentioned above were ad-
ministered, individuals who needed correction for visual acuity were provided with corrective
lenses mounted on an MRI compatible frame according to their prescription values and com-
fort level and made comfortable in the 3 Tesla Siemens Prisma MR imaging scanner system.

Participants were asked to simply relax in a supine position, and stay still, while they were
scanned. Two di↵erent MRI protocol sequences were followed: a) the “community” group
protocol : T1-weighted structural MRI, fluid attenuation inversion recovery (FLAIR), di↵usion
tensor images (DTI) and fMRI. Functional MRI included a 6 minute, 33-second resting-state
scan (with eyes closed) that was acquired before the movie acquisition for further possible
analysis, b) the “junior” group protocol: T1-weighted structural MRI and fMRI. Functional
MRI included two sets of two di↵erent audiovisual movie clips, 8 minutes long each, and 12
minutes of resting-state scan (with eyes closed) that was acquired in between the two movie
acquisitions for further possible analyses.

The final audio-visual movie clip in both protocols was an eight-minute edited version of
the 1961 TV episode “Bang You’re Dead!” from the TV series “Alfred Hitchcock Presents!”,
which was originally 22 minutes long [17] [49]. I analyzed data from the “Bang you’re dead!”
clip, using the acquired T1-weighted structural MRI for image registration and localization.
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Stimulus presentation was controlled by a custom MATLAB version 2015b script, (http://
mathworks.com), and the movies were back-projected onto a screen behind participants' heads
and reflected o↵ mirrors into the participants' eyes. Noise cancelling, MR-compatible head-
phones (Sensimetrics, S14; www.sens.com) were used for sound delivery. Hearing comfort
level was tested before starting the experiment and sound was presented at that comfortable
level. Following the scan, volunteers were asked to recall the movie narrative, and then respond
to some questions about the details of the movie [50]. Overall, the MR scan and memory tests
took about one hour and 20 minutes of participants' time. The memory data are not analyzed
here.

2.3 Relevant image acquisition

Only the data acquisition parameters relevant to this project are provided. The anatomical data
were captured using a T1-weighted 3D rapid acquisition gradient echo (MPRAGE) sequence (
32 channel coil, 1 x 1 x 1 mm voxel size, matrix size 240 x 256 x 192, 2300.0 ms repetition time
(TR), 2.98 ms echo time (TE) and 9 degrees flip angle (FA)). Functional data were obtained
using gradient echo (GRE) echo-planar imaging (EPI) (33 slices, voxel size 3 x 3 x 3mm,
matrix size 192 x 192 x 123, interslice gap of 25%, 2000 ms repetition time (TR), 30 ms
echo time (TE), and 75 degrees flip angle (FA), multi- band accelerator factor 2, Generalized
Autocalibrating Partial Parallel (GRAPPA) for Parallel Acquisition Techniques (PAT) mode).
Movie scans consisted of 246 volumes.

2.4 Preprocessing and Spatial Registration (Normalization)

In the following sections, I will first describe the initial preprocessing then I will detail how
three di↵erent normalization methods were applied to the data. Lastly, I will describe the di↵er-
ent levels of spatial smoothing and the intersubject correlation (ISC) analysis that I conducted.

All analysis steps were performed on a Linux operating system Ubuntu 16.04, LTS, Intel R�
Core i7-6700 CPU @ 3.40GHz 8, with 62.8 GiB memory and 8.8 TB disk capacity unless
stated otherwise. A custom MATLAB 2017b (http://mathworks.com) software program was
used for calling modules and performing the analysis.

The following preprocessing steps were applied on data for SPM12 and DARTEL tool-
boxes: Both the anatomical T1-weighted (T1w) images and functional BOLD images within
the input data set of each subject were visually inspected for quality and the position of the
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image origin. They were reoriented manually where necessary. If the origin of the data was
3-5 mm away from the anterior commissure of the brain (coordinates 0,0,0), the image volume
was reoriented using the SPM toolbox. All images were then corrected for motion, realigned
and resliced to correct the slice timing di↵erence using the 'Realign: Estimate and Reslice'
function of SPM12 [43]. The T1w images were coregistered to the corresponding functional
data using 'coregister estimate and reslice' [43].

For the ANTs toolbox, all the preprocessing of the data and spatial registration were per-
formed using fMRIPrep 1.1.8 [45], a robust, automated preprocessing workflow, designed by
the Department of Psychology at Stanford University, California, USA, which is based on
Nipype 1.1.3 [51] [52].

2.4.1 SPM12

Spatial registration of both T1w and BOLD data to the MNI-152 was performed using the
'normalization batch: estimate and write' module [43], as discussed in the introduction chapter.
Using the 'check reg' utility of SPM12, and comparing multiple corresponding points such as
ventricle borders or anterior and posterior borders of the corpus collosum, the quality of the
spatial normalization was assessed against the MNI-152 template for quality control of the
normalization step.

2.4.2 DARTEL

Normalization in DARTEL [31] comprised three separate steps: a) tissue segmentation for
DARTEL import, b) template creation, and c) data registration [43].

The coregistered T1w images were segmented into di↵erent tissue classes within the fol-
lowing order: grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), bone, soft
tissue and air/background, according to a standard tissue probability map (tpm/TPM.nii) [43].

A set of template files were generated out of the segmented grey matter and white matter
data of all subjects. As the registration progressed, the newly built templates became progres-
sively sharper [43]. Finally, all the functional data were registered to the final custom template.
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2.4.3 ANTs

For anatomical data the following preprocessing was applied. The T1-weighted (T1w) image
was corrected for intensity non-uniformity [32], and used as T1w-reference throughout the
workflow. The T1w-reference was then skull-stripped.

Spatial normalization to the MNI- ICBM 152 Nonlinear Asymmetrical template version
2009c [53] was performed through nonlinear registration (ANTs 2.2.0) [32]. Brain tissue seg-
mentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was per-
formed on the brain-extracted T1-weighted volume (FSL 5.0.9) [39].

For each of the BOLD runs per subject, the following preprocessing was performed. First,
a reference volume and its skull-stripped version were generated (FMRIPrep) [45]. The BOLD
reference was then co-registered to the T1w reference (FreeSurfer) [54]. Co-registration was
configured with nine degrees of freedom to account for distortions remaining in the BOLD
reference. BOLD runs were slice-time corrected [55]. The BOLD time-series were resampled
onto their original, native space correcting for head-motion and susceptibility distortions, and
resampled to the MNI152 standard space. Confounds in the time-series were calculated based
on the preprocessed BOLD, and removed [56] [57]. The BOLD time-series were resampled to
volumes using 'antsApplyTransforms' (ANTs) [32].

2.5 Spatial smoothing

The 'Smooth' module of the SPM12 was used to implement spatial smoothing at six di↵er-
ent levels for SPM12 and ANTs warped image data: Gaussian kernels of 8mm,10mm, 12mm
(four times our voxel size), 14mm, 16mm, and 20mm full width at half-maximum (FWHM).
The smoothing kernels of 8 through 12mm FWHM were chosen in agreement with [21]. The
14, 16 and 20mm FWHM filters were applied to investigate the e↵ect of smoothing kernels
beyond the previously investigated filtering levels. By including smoothing levels higher than
optimal (and larger than the veridical size of underlying functional areas) , it should be easier
to identify the smoothing level that yields maximal ISC, assuming that matched filter theory
applies to our data.

In the DARTEL algorithm, because a Gaussian kernel of 8mm FWHM of spatial smooth-
ing was applied on data as part of the default setting parameter in the registration step [43],
the FWHM of smoothing kernels were calculated accordingly. The final filter level (S) is the
square root of the sum of the square of the two filter kernels (s1 and s2) :
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S=
p

(s1)2 + (s2)2

To achieve 10mm FWHM, a kernel of 6mm FWHM was applied on data; applying 8.94 mm
FWHM resulted in 12mm FWHM; applying 11.49 mm FWHM resulted in 14mm FWHM; per-
forming 13.85 mm FWHM and 18.33 mm FWHM gave us 16 and 20mm FWHM of smoothing
respectively.

2.6 Inter-subject correlation analysis

In order to find the areas with the highest degrees of shared hemodynamic activity, ISC analysis
was performed using a MATLAB-based ISC toolbox developed by the Department of Com-
puter Science and HIIT, University of Helsinki, Helsinki, Finland [16]. This ISC toolbox is
designed to analyze fMRI data captured under naturalistic complex stimuli such as the movie
we use here. Basic ISC analysis was performed on nifti output on each pair of participants,
within each normalization method and each level of smoothing.

This involves calculating Pearson's correlation coe�cients voxelwise between hemody-
namic time series between pairs of participants [16]. Then, correlations across all pairs were
averaged together voxelwise. This generated an average correlation map (nifti image) for each
normalization method and each level of smoothing, creating 18 maps in total.

2.7 Dice Similarity Coe�cient

I measured the spatial similarity of ISC patterns across normalization methods and smoothing
levels, separately for the two subsamples of data (n= 22 subjects each) using dice similar-
ity coe�cient (DSC). The DSC index is a measure of spatial similarity of two binarized and
thresholded maps. This will reveal whether di↵erent normalizations (and or di↵erent levels of
smoothing) result in di↵erent ISC in di↵erent brain regions.
Using the 'ImCalc' module of the SPM12 toolbox, the ISC maps were binarized. A voxel's
value was ascribed as one if the correlation value passed the threshold and otherwise as zero.
The DSC was calculated using MATLAB 2017b (http:// mathworks.com).

The DSC is defined as:

(2 * A \B)/(A + B)

Where A represents the binarized and thresholded first image (ISC map) and B represents
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the binarized and thresholded second image (ISC map). The DSC index varies between 0, indi-
cating no anatomical overlap between the two binarized images, and 1, demonstrating complete
overlap (highest level of similarity) [58], or “Almost Perfect” agreement based on the Landis
and Koch measure of agreement for categorical data [59].
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Results

The fMRI image data for all 44 subjects were included in the analysis. For each subject, the
movie-driven functional data consisted of 241 volumes, after discarding the first five dummy
files. In what follows, to ensure that my results are consistent, I first analyse the data from the
22-person “junior” group, and then examine whether the results replicate in the independent,
22-person “community” group. If they do, I conclude that the results are robust and at least
somewhat generalizable.

In our study, the ISC was calculated by “computing the voxelwise correlation between each
possible subject pair in the group of subjects ”[28], the method that is implemented in the ISC
toolbox [16]. For each voxel, the individual's Pearson's correlation coe�cient of the fMRI time
series was calculated pairwise, and then these were averaged, similar to the method used by
Pajula and his colleagues [28].

We first calculated the total number of voxels in ISC maps across the brain for every pro-
cessing condition (Appendix A-C), so that we could then express the voxels exhibiting elevated
correlation as a proportion of this value. In ISC map images, all voxels with absolute Pearson’s
correlation value larger than zero were counted across the brain mask. In all processing condi-
tions, the ANTs toolbox yielded the largest number of brain voxels compared to the other two
toolboxes (DARTEL and SPM12), across all smoothing conditions (see Table 3.1).

3.1 Evaluating suprathreshold voxels

We took the rather arbitrary value of 0.15 to serve as our threshold for meaningful correlation.
Evaluating maps for statistically significant correlation would require a separate set of analyses
involving correction for non-independence [60]. Since the goal here was simply to identify the

19
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Normalization Whole data Community group Junior group
DARTEL 220118 220118 227441
ANTs 219093 198971 220600
SPM12 196765 221062 211800

Table 3.1: Total number of brain voxels. Label abbreviations: ANTs- Advanced Normalization
Tools; SPM- Statistical Parametric Mapping; DARTEL- Di↵eomorphic Anatomical Registra-
tion Through Exponentiated Lie Algebra.

combination of normalization and smoothing that yields highest correlation values (regardless
of actual significance; which depends on sample size and a host of other factors), we worked
with this arbitrary value.

To evaluate the e↵ect of di↵erent kernels of smoothing on ISC analyses, the proportion of
voxels (relative to the total number of voxels in the brain) exhibiting correlation values larger
than the threshold (r=0.15) in four di↵erent ranges of correlation ( r-value) (between 0.15 and
0.20; between 0.20 and 0.25; between 0.25 and 0.30; and higher than 0.30) were compared at
di↵erent levels of smoothing.

In the “junior” group, the relative proportion of voxels demonstrating suprathreshold cor-
relation increased as smoothing increased across all normalization packages (Figure3.1). The
pattern of increase in voxel count was in accordance with other studies [21], in which an in-
crease in smoothing expanded the activation sites and strengthened the synchronization level;
as a result, the correlation values ( r) rose [21] (Appendix D, E, and F; Figure3.1). The slope
of the increase was compressive, with the asymptote at approximately 12-14mm. ANTs and
DARTEL seemed to yield somewhat higher proportions of voxels than SPM12 at the lower lev-
els of smoothing (8-14 mm). No statistical analysis is possible here since there is only a single
observation of proportion in each cell, but the di↵erence between the proportions yielded by
ANTs and DARTEL on the one hand, and SPM on the other, is approximately 20% at 8 and 10
mm of smoothing.

In the “community” group, similar to the “junior” group, the proportion of voxels increased
steadily as smoothing kernel increased (see Figure 3.2). Again, the asymptote occurred at
approximately 12-14 mm of smoothing. The overall proportions in this group were lower:
at most 75% those of the “junior ” group. Furthermore, in this group, a much more marked
di↵erence among normalization methods was observed, with ANTs yielding values almost
200% higher than SPM12 and DARTEL.

We next examined how the distribution of correlations di↵ered as a function of smoothing
and normalization method. In the “junior” group, the highest proportion of voxels was ob-
served at the lowest ISC value category (0.15 < r < 0.2) (Figure 3.3), not surprisingly. The
proportion of brain voxels generally dropped as the correlation values increased across all nor-
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Figure 3.1: Proportion of voxels with ISC (r- value) > 0.15, for the “junior” group as a function
of smoothing kernel width. There are no error bars, since there is a single observation for each
of the 22 conditions. Label abbreviations: ISC-intersubject correlation; ANTs- Advanced Nor-
malization Tools; SPM- Statistical Parametric Mapping; DARTEL- Di↵eomorphic Anatomical
Registration Through Exponentiated Lie Algebra.

malization toolboxes and smoothing kernels (Figure 3.3). There was a consistent tendency for
SPM12 to yield a lower proportion of high correlation (>0.3) values compared to the other two
normalization types.

The community group showed a broadly similar pattern to the junior group, with the pro-
portion of brain voxels dropping as correlation values increased (see Figure 3.4). This group,
however, appeared to di↵er from the junior group in how normalization a↵ected the distribution
of correlations over bins: ANTs yielded a higher proportion of voxels with correlation values
over 0.15 at all smoothing levels in the “community ” sample.

3.2 Evaluating high ISC values

Reviewing the proportion of brain voxels with ISC values ( r) larger than 0.3, it was obvious
that across all kernels of the smoothing, in both the “junior” group and the “community” group,
the ANTs toolbox almost always outperformed DARTEL and SPM12 toolbox in that it reliably
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Figure 3.2: Proportion of voxels with ISC (r- value) > 0.15, for the “community” group. There
are no error bars, because there is a single observation for each of the 22 conditions. La-
bel abbreviations: ISC-intersubject correlation; ANTs- Advanced Normalization Tools; SPM-
Statistical Parametric Mapping; DARTEL- Di↵eomorphic Anatomical Registration Through
Exponentiated Lie Algebra.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Proportion of brain exhibiting ISC higher than the threshold in the “junior ” group
for the three di↵erent types of registration tools (SPM12, DARTEL and ANTs) when a)8mm
FWHM, b)10mm FWHM, c)12mm FWHM, d)14mm FWHM, e)16mm FWHM and f)20 mm
FWHM smoothing was applied. There are no error bars, because there is a single observation
per data point. Label abbreviations: ISC-intersubject correlation; ANTs- Advanced Normal-
ization Tools; SPM- Statistical Parametric Mapping; DARTEL- Di↵eomorphic Anatomical
Registration Through Exponentiated Lie Algebra.

yielded higher proportions of voxels exhibiting these high correlation values, particularly in the
“community” group.

In the “junior ” group, the highest magnitude of the correlation value( r) was 0.67, seen in
the data warped by ANTs toolbox at 12mm FWHM smoothing. Likewise, in the“community”
data the largest magnitude of the correlation value, although smaller than the “junior” group
(0.62) was seen in the data warped by ANTs toolbox at 12mm FWHM smoothing.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Proportion of brain exhibiting ISC higher than the threshold in the “community ”
group for the three di↵erent types of registration tools (SPM12, DARTEL and ANTs) when
a)8mm FWHM, b)10mm FWHM, c)12mm FWHM, d)14mm FWHM, e)16mm FWHM and
f)20 mm FWHM smoothing was applied. ANTs yielded a higher proportion of voxels with
correlation values over 0.15 at all smoothing levels. There are no error bars, because there is
a single observation per data point. Label abbreviations: ISC-intersubject correlation; ANTs-
Advanced Normalization Tools; SPM- Statistical Parametric Mapping; DARTEL- Di↵eomor-
phic Anatomical Registration Through Exponentiated Lie Algebra.

3.3 Evaluating the pattern of intersubject correlation

To evaluate the pattern of the intersubject correlation across the brain, we compared the mean
correlation maps, warped using the three di↵erent volume-based normalization methods: ANTs,
SPM12, and DARTEL. The images were thresholded at r = 0.15, using visu-GUI of the ISC
toolbox [16]. Consistent with previous literature [17] [1] [61], the voxel-wise correlation maps
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of our study demonstrated widespread, synchronous, hemodynamic cortical activity [1] (Fig-
ures 3.5 and 3.6).

The pattern of the distribution of the hemodynamic signal activity was consistent among all
three types of software, and the same in the “junior” group and the “community” group. Cor-
relation clusters were significant in temporal, occipital, parietal, and frontal lobes (Figures3.5
and 3.6). The correlation values were high (between 0.45 and 0.67) in the superior and middle
temporal region bilaterally similar to previous works [1] [62].

The maximum correlations (peaks) were consistently located in the superior temporal gyrus
bilaterally across all three normalization toolboxes, possibly reflecting responses to the sound-
track of the movie, (Figures 3.5 and 3.6). Besides the superior temporal gyrus, including
planum temporale (Wernicke's area) and auditory cortex (Heschl's gyri), the areas with high
ISC in the temporal lobe covered most of the anterior temporal pole, medial temporal gyrus
and inferior temporo-occipital cortex and temporoparietal junction bilaterally.

In the occipital lobe, we saw high correlation values in medial and lateral visual areas, lin-
gual gyrus, cuneus and precuneus. In the parietal lobe, we detected suprathreshold ISC values
across all parietal lobe including, postcentral gyrus, superior and inferior parietal lobules, an-
gular gyrus, and supramarginal gyrus.

In the prefrontal region, the correlation values were lower than other areas (between 0.05
-0.14), and they were lower than the average of 0.24 that was reported in previous work [1].
Correlation values were suprathreshold in lateral areas of the frontal pole bilaterally, right su-
perior frontal gyrus, medial side of the precentral gyrus in frontoparietal regions (more in the
right frontal cortex than the left frontal cortex).

Figure 3.5 represents a sample of the correlation at 12mm FWHM smoothing. The 12mm
FWHM was chosen because the highest correlation values were detected at this filtering level
(Appendix A-C). Figure 3.6 represents di↵erent sagittal, axial and coronal sections of the brain,
demonstrating widespread cortical synchronous brain activity in di↵erent coordinates when
data were warped with the ANTs toolbox and smoothed at 12mm FWHM. Colored regions
demonstrate the location of areas in which the mean correlation values exceeded the threshold
(r= 0.15).
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Figure 3.5: Three cross-sections of the mean ISC values generated using three di↵erent reg-
istration techniques (ANTs, SPM12 and DARTEL ) shown at x=60, y= -26, and z=4 in the
MNI coordinate frame when 12mm kernel of smoothing was applied. Data are thresholded at a
correlation value of r = 0.15. The left column corresponds to mean ISC values generated when
data were normalized using DARTEL toolbox, the middle column demonstrates ANTs warped
data and the right column demonstrates SPM12 warped data. As is shown, the region of high-
est correlation is around the superior temporal gyrus, bilaterally in all cross-sections. Label
abbreviations: ANTs- Advanced Normalization Tools; SPM- Statistical Parametric Mapping;
DARTEL- Di↵eomorphic Anatomical Registration Through Exponentiated Lie Algebra
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3.4 Investigating the similarity in patterns of correlation across
normalization methods

In order to compare the spatial similarity of correlation maps from the three types of normaliza-
tion (separately for each degree of smoothing), I calculated Dice Similarity Coe�cients (DSC)
pairwise on binarized mean ISC maps. I binarized the correlation maps at an r-value of 0.15
using the ImCalc module of SPM12, turning all values over 0.15 to “1”, and zeroing all other
values. The MATLAB version 2019b script, (http://mathworks.com) was used for calculating
the DSC indices [63] to compare between SPM12 and DARTEL, DARTEL and ANTs, and
SPM12 and ANTs, at smoothing kernels of 8, 10, 12, 14, 16 and 20 mm FWHM.

In general, the ISC maps across all three types of normalization were highly similar, with
most of DSC indices in “almost perfect agreement”(defined as between 0.81 and 1.00 by Lan-
dis and Koch [59]. This pattern was evident in both subgroups, suggesting that the results were
reliable (Table3.2). In the “community” group the DSC indices were slightly weaker, com-
pared to the DSC indices of the “junior” group but were still in the category of “almost perfect
agreement ”(Table 3.2).

As smoothing increased, so did the similarity between correlation maps in both “junior”
and “community” samples. These results suggest that the three normalizations operate quite
similarly, although ANTs, and then DARTEL, seem to yield the strongest similarity, consistent
with them being the most nonlinear, with the smoothly nonlinear SPM12 yielding consistently
less similar patterns (Table3.2), in both the “junior ” and the “community ” samples.
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Smoothing (FWHM) ANTs-DARTEL ANTs-SPM12 DARTEL-SPM12
Whole data 8mm 0.98 0.95 0.97

10mm 0.98 0.96 0.98
12mm 0.99 0.96 0.98
14mm 0.99 0.97 0.98
16mm 0.99 0.97 0.98
20 mm 0.99 0.97 0.98

Junior group 8mm 0.98 0.97 0.98
10mm 0.99 0.98 0.98
12mm 0.99 0.98 0.99
14mm 0.99 0.98 0.99
16mm 0.99 0.99 0.99
20mm 0.99 0.99 0.99

Community group 8mm 0.97 0.95 0.97
10mm 0.98 0.96 0.97
12mm 0.98 0.97 0.97
14mm 0.98 0.97 0.98
16mm 0.99 0.98 0.97
20 mm 0.99 0.98 0.98

Table 3.2: The Dice Similarity Coe�cient for the binarized ISC maps, SPM12-ANTs, SPM12-
DARTEL and ANTs-DARTEL at kernels of 8, 10, 12, 14, 16 and 20 mm FWHM of smoothing.
The largest similarity index is between ANTs and DARTEL (higher than between ANTs and
SPM12, and SPM12 and DARTEL) at 20 mm FWHM smoothing, for the “junior” group,
and this pattern is evident in the “community”, suggesting that the results are reliable. La-
bel abbreviations: ISC-intersubject correlation; ANTs- Advanced Normalization Tools; SPM-
Statistical Parametric Mapping; DARTEL- Di↵eomorphic Anatomical Registration Through
Exponentiated Lie Algebra.
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Discussion

4.1 Discussion and conclusion

In this study, we investigate the degree to which various volumetric normalization methods
achieve overlap across subjects when preprocessing fMRI data from a naturalistic movie-driven
protocol. We use intersubject correlation (ISC), a robust phenomenon observed when di↵erent
individuals watch the same engaging movie, to quantify functional overlap. The ISC is our
dependent variable. Since ISC indicates consistency across individuals (manifesting as higher
correlation values), we can use it to measure the degree to which 3 types of nonlinear volu-
metric normalization achieve functional overlap across people. In addition, because we want
to maximize sensitivity for future clinical use, we also evaluated ISC across several di↵erent
levels of smoothing.

To our knowledge, this is the first application of intersubject correlation in movie-driven
fMRI to evaluate registration algorithms and levels of smoothing. We sought to identify the
normalization algorithm that yields maximal functional overlap across individuals. Stronger
ISC values will enable enhanced sensitivity to abnormality, when comparing activity evoked
by the movie-fMRI paradigm in individuals with suspected brain damage, compared to a group
of healthy controls. Higher ISC values mean more synchronous brain cortical activity and less
variability across normal participants. Reduced variability in a normal sample renders abnor-
malities in those with neurological abnormalities easier to detect.

We compared three di↵erent volumetric registration methods: ANTs, DARTEL and SPM12.
At the time we did not have a way to compute ISC on surfaces, and so I was not able to com-
pare these volumetric registrations with a surface-based registration method such as Freesurfer.
(see Limitations, below).

30



4.1. Discussion and conclusion 31

In addition, we investigated the e↵ect of six levels of spatial smoothing. Spatial smoothing
increases functional overlap, but reduces spatial resolution, so finding the minimum degree
of spatial smoothing that produces asymptotically high e↵ect sizes was desired. I aimed to
identify the normalization method and smoothing combination that yields maximum overlap
(most widespread high intersubject correlation values) with the lowest degree of smoothing.
Using this processing strategy will help us to maximize the sensitivity of clinical tests using
movie-driven fMRI in the future.

The movie-fMRI paradigm is a non-invasive, reliable and fast method to acquire brain data
relevant to cortical organization of function [62][17]. Watching a movie was a pleasant experi-
ence for participants and took less than 10 minutes. Patterns of intersubject correlations were
reliable across normalization methods and quite reliable across the smoothing filter widths
typically used for fMRI data (8-12mm), and were consistent across two subgroups of our par-
ticipants’ data.

We compared the ISC values of di↵erent conditions by assessing the voxel-wise frequency
of higher ISC values (r) and by using the Dice Similarity Coe�cient (DSC), which is a measure
of spatial overlap between two images (in this case, thresholded maps of intersubject correla-
tion). Our results demonstrated that the dimensionality of the normalization toolbox (number
of degrees of freedom) and the size of the smoothing kernel directly influenced the magnitude
and extent of obtained ISC.

Reviewing the ISC maps results of all 18 di↵erent conditions (three types of registration
method, six kernels of spatial smoothing for each toolbox) revealed that the pattern of corti-
cal areas in which ISC was detected across the whole brain was similar compared to previous
studies using the same movie [17] [1] [61] and other movies [64][60]. The correlation clusters
covered most of the temporal and occipital lobes bilaterally. The parietal and frontal lobes
showed synchronous, although weaker compared to temporal and occipital lobes, cortical ac-
tivity across participants as well, in keeping with previous literature [60][1][17].

Most of the DSC indices were in the “almost perfect agreement” category of Landis and
Koch [59] (0.8- 1) demonstrating that the spatial patterns of ISC were quite similar across
all three normalizations. The patterns were most similar between ANTs and DARTEL, with
SPM12 yielding reliably less similar patterns (but only modestly) compared to the other two
normalization methods.

We may not have observed as much ISC in frontal regions as previous studies for a couple
of reasons. In [17], independent components analysis (ICA) was used for the evaluation of
synchronous brain cortical activity, not ISC. Although strong synchronization was reported in
the prefrontal areas, the numbers were not statistically comparable to our study, because the
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analysis method was di↵erent. In our study, the average mean intersubject correlation value
(almost 0.09) in frontal lobe was less than the correlation value in similar studies (0.24 in [62]).
Comparing the study conducted by Hasson et al. [62] with our study, the following di↵erences
were noted: 1) a smaller sample size: while in [62] study the ISC was calculated based on the
BOLD signal activity of 8 participants, in our study the number of participants were 44, more
than five times of their sample size. More extreme values are possible when sample sizes are
small. 2) a di↵erent process of calculating the ISC: in [62] they divided the subjects into two
groups, “averaged the response time courses in each group, then computed the correlation co-
e�cients between the two resulting response time courses at each cortical location”[62]. In our
study, however, for each voxel, the individual's Pearson's correlation coe�cient of the fMRI
time series was calculated pairwise, and then these were averaged. Averaging the time course
responses before calculation of correlation may have enhanced the resulting correlation coe�-
cients. Either or both of these di↵erences may explain the higher correlation value observed in
the frontal region in previous work using this movie [62] compared to mine.

Reviewing the voxel-wise ISC frequencies demonstrated that high dimensional volumet-
ric registration algorithms such as ANTs and DARTEL yielded larger ISC values, indicating
stronger correspondence across neurologically normal participants. Spatial normalization of
fMRI data with these algorithms reduced inter-subject variability in structure, and also in func-
tion, relative to the lower dimensional but commonly used algorithm, SPM12. Our study in-
dicates that although SPM12, is popular, it may not be the best choice for normalization of
movie-driven fMRI data for mapping of cortical brain function [37]. Furthermore, using a
di↵erent functional metric (ISC instead of resting state connectivity or activation cluster sig-
nificance) we have observed that higher-dimensional normalization of structural data enhances
overlap of coregistered functional data [23] [22] [24].

The magnitude of the intersubject correlation is a measure of overlap across individuals. In
any particular brain area with higher ISC value (r ), compared to the areas with lower ISC, we
have more functional consistency across individuals at that brain location. By evaluating dif-
ferent kernels of spatial smoothing, keeping an eye on the magnitude of the ISC values as well
as the extent, we verified that applying a Gaussian filter of 12 mm FWHM on movie-driven
fMRI data resulted in the highest correlation values between participants across the brain [21].
A Gaussian kernel of 12 mm FWHM consistently outperformed smaller filter widths for de-
tection of high ISC values. This degree of spatial smoothing was in agreement with previous
work [21] demonstrating that at the filter of 12mm FWHM, the degree of ISC index was the
highest. Regarding the total number of detected voxels with a suprathreshold ISC value, the
12mm FWHM was consistently the start of an asymptote for the highest proportion of detected
significant voxels across all normalization methods.

Given that the registration algorithms with higher degrees of freedom yielded stronger
anatomical overlap across individuals, a gaussian filter of 12mm FWHM (with a voxel size
of 3mm) may sound unnecessarily high. While high anatomical alignment across subjects
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yields strong functional overlap in primary sensory/ motor areas [24], such alignment yields
less (and perhaps no) benefit in higher-order, association, cortices [24]. It is not clear how to
compensate for normal, albeit marked, variations in the macroanatomical structure of cortex
across individuals. For example, in the case of Heschl’s gyrus mentioned in the introduction,
should the normalization squeeze all three gyri in one person to match the single gyrus of an-
other person, or should only the anteriormost gyrus of the two individuals be aligned, with
more posterior transverse temporal gyri of Heschl normalized with the planum temporale?. It
is not currently clear what method would yield the best functional overlap. Higher smoothing
allows us to overcome such residual variability in anatomy, even after high-dimensional nor-
malization.

To assess the generalizability and replicability of our results, we conducted the voxelwise
ISC analysis on two independent sets of data: the “community” group and the “junior” group.
Both the proportion of brain voxels exhibiting robust synchronous hemodynamic activity, and
the spatial patterns of this intersubject correlation as indicated by the DSC measures, were
consistent across those groups, which showed the consistency of the results and reproducibility
of the method.

4.2 Limitations

The age range of participants in our samples was wide, and di↵ered between the textquot-
edblleft junior” data and “community” groups. This might be the reason for the di↵erences
observed between the results in the “junior” data and “community” samples. Because the cor-
relation in movie-fMRI paradigms is dependent on the participant’s perception and comprehen-
sion of the contents of the movie, future studies of this kind would benefit from categorizing
the subjects according to demographic and some social criteria, including, but not limited to,
age, educational background and ethnicity.

My analysis was largely qualitative, and reliability was assessed by comparing results
across independent samples. Although the results were reliable across participant groups, it
would be useful in future to quantify, and test, whether ANTs normalization with 12 mm of
smoothing provides a statistically significant improvement in the magnitude of ISC, or the ex-
tent of clusters exhibiting ISC, relative to other normalization methods and smoothing levels.

In terms of software and computational limitations, we encountered frequent incompatibil-
ities between di↵erent image processing toolboxes, analysis software packages, and visualiza-
tion tools. Investigating the ISC maps with image viewers other than the “visu-GUI” of the
ISC toolbox [16] was not technically possible. The functionality of the ISC toolbox was lim-
ited. As a result, determining the exact correlation value of single coordinates was not possible.
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Additionally, because of multiple factors including, but not limited to, the total number of
volumes per subject, the small size of voxels and the high number of iterations (100 million)
[28] in calculation of the ISCs, the correlation coe�cient matrices were very large and running
the MATLAB based analyses required a powerful computational system. In order to smoothly
run the analyses and have a systematic system and memory backup, we used a large random
access-memory (RAM)(62 GB) desktop computer with a large disk memory that was gradually
increased to 8 TB.

4.3 Future directions

The combination of processing steps identified here as optimal will be employed in the next
stage of the project (not included in this thesis) in which ISCs of individual patients with tem-
poral lobe epilepsy will be compared to the ISC in a group of demographically matched healthy
participants.

Although we show that high-dimensional volumetric normalizations like DARTEL and
ANTs are better than another common normalization tool – SPM12 – they may not be as
sensitive as surface-based registration algorithms such as FreeSurfer [54], which may provide
more precise intersubject registration [65]. It would also be interesting to compare our results
other commonly used volumetric registration toolboxes like FSL [66].

Giving the diversity of the age and gender of the participants, particularly in the “com-
munity” sample, which was collected to match the demographic characteristics of presurgical
candidates with epilepsy, the pattern of cortical brain activity in this group can serve as a nor-
mative sample to evaluate the normality of whole-brain dynamic activity in demographically
matched patients with neurologic disorders, as they watch the same movie.

The movie-driven fMRI paradigm is advantageous in that it reflects realistic cognitive func-
tions, in normal individuals and those with neurologic disorders. Given the possibility of func-
tional reorganization in patients, a paradigm that maps cognitive functional e�ciently, such as
a naturalistic movie paradigm, may be helpful. For example, the time series of activity in a
given cluster in an individual patient can be compared to time series (via correlation) across
various clusters in a normative sample, in order to identify how functionally similar activity is
organized in a patient relative to the neurologically normal brain, thus providing a window on
functional plasticity. This paradigm may be a strong and reliable adjunct method in presurgical
and intraoperative cognitive assessment, potentially leading to better treatment and improved
outcomes.
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T. Salo, K. Jordan, M. Goncalves, M. Waskom, D. Clark, J. Wong, F. Loney, M. Modat,
B. E. Dewey, C. Madison, M. di Oleggio Castello, M. G. Clark, M. Dayan, D. Clark,
A. Keshavan, B. Pinsard, A. Gramfort, S. Berleant, D. M. Nielson, S. Bougacha, G. Varo-
quaux, B. Cipollini, R. Markello, A. Rokem, B. Moloney, Y. O. Halchenko, W. Demian,
M. Hanke, C. Horea, J. Kaczmarzyk, G. de Hollander, E. DuPre, A. Gillman, D. Mordom,
C. Buchanan, R. Tungaraza, W. M. Pauli, S. Iqbal, S. Sikka, M. Mancini, Y. Schwartz,
I. B. Malone, M. Dubois, C. Frohlich, D. Welch, J. Forbes, J. Kent, A. Watanabe,
C. Cumba, J. M. Huntenburg, E. Kastman, B. N. Nichols, A. Eshaghi, D. Ginsburg,
A. Schaefer, B. Acland, S. Giavasis, J. Kleesiek, D. Erickson, R. KÃttner, C. Hasel-
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: Frequency of detected voxels for different norm
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oothing condition, based on correlation value (r ) for the 
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unity group; A- AN
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12 toolbox; D
- D

AR
TEL toolbox. 

N
um

bers correspond to the sm
oothing kernel in m

m
 FW

H
M

. 
 



45

S
m

oo
th

in
g 

 
(m

m
 F

W
H

M
) 

N
or

m
al

iz
at

io
n 

0.
15

 �
 U 

< 
0.

2 
 

0.
2�

 U 
< 

0.
25

  
0.

25
 �

 U 
< 

0.
3 

 
U �

 0
.3

 

8 
D

A
R

TE
L 

0.
06

06
67

46
 

0.
03

03
15

55
8 

0.
00

89
04

31
5 

0.
01

25
70

53
 

 
A

N
TS

 
0.

07
01

20
90

8 
0.

04
23

33
62

1 
0.

01
83

30
11

6 
0.

01
79

78
67

 
 

S
P

M
 1

2 
0.

06
26

73
74

8 
0.

02
30

93
53

8 
0.

00
70

49
01

8 
0.

01
18

11
04

 
10

 
D

A
R

TE
L 

0.
07

04
71

29
3 

0.
03

85
29

33
4 

0.
01

29
74

85
9 

0.
01

64
36

64
 

 
A

N
TS

 
0.

07
83

68
54

7 
0.

05
03

25
66

1 
0.

02
40

71
96

9 
0.

02
34

10
15

 
 

S
P

M
12

 
0.

07
50

03
17

6 
0.

03
48

99
49

9 
0.

00
98

54
39

5 
0.

01
57

85
33

 
12

 
D

A
R

TE
L 

0.
07

74
22

11
 

0.
04

26
18

05
 

0.
01

48
42

03
9 

0.
01

82
49

3 
 

A
N

TS
 

0.
08

32
34

06
 

0.
05

63
00

29
3 

0.
02

72
71

52
4 

0.
02

66
32

53
 

 
S

P
M

12
 

0.
08

42
68

03
5 

0.
04

09
21

91
2 

0.
01

20
14

33
2 

0.
01

83
87

42
 

14
 

D
A

R
TE

L 
0.

08
20

06
01

5 
0.

04
54

43
80

7 
0.

01
42

96
87

7 
0.

01
93

16
91

 
 

A
N

Ts
 

0.
08

75
60

99
 

0.
05

99
92

78
8 

0.
02

85
26

69
9 

0.
02

77
05

13
 

 
S

P
M

12
 

0.
09

04
02

25
6 

0.
04

40
88

12
5 

0.
01

28
17

32
 

0.
01

99
27

32
 

16
 

D
A

R
TE

L 
0.

08
60

35
67

2 
0.

04
57

84
53

4 
0.

01
27

61
33

7 
0.

01
95

98
58

 
 

A
N

Ts
 

0.
09

22
25

67
6 

0.
06

13
71

19
9 

0.
02

83
80

64
2 

0.
02

73
21

73
 

 
S

P
M

12
 

0.
09

53
01

50
2 

0.
04

47
13

23
7 

0.
01

20
54

98
9 

0.
02

06
28

67
 

20
 

D
A

R
TE

L 
0.

09
23

45
92

4 
0.

03
85

15
70

5 
0.

00
97

67
48

8 
0.

01
84

17
39

 
 

A
N

Ts
 

0.
10

13
99

86
2 

0.
06

20
14

76
1 

0.
02

30
67

83
 

0.
02

43
23

 
 

S
P

M
12

 
0.

10
27

82
50

7 
0.

03
70

89
93

 
0.

01
06

31
97

2 
0.

01
96

52
89

 
  

A
pp

en
di

x 
D

: P
ro

po
rti

on
 o

f v
ox

el
s 

ex
hi

bi
tin

g 
co

rr
el

at
io

n 
va

lu
e 

(r 
), 

ab
ov

e 
0.

15
 fo

r t
he

 W
ho

le
 d

at
a.

 A
bb

re
vi

at
io

ns
: A

N
Ts

- A
dv

an
ce

d 
N

or
m

al
iz

at
io

n 
To

ol
s;

 S
P

M
- S

ta
tis

tic
al

 P
ar

am
et

ric
 M

ap
pi

ng
; D

A
R

TE
L-

 D
iff

eo
m

or
ph

ic
 A

na
to

m
ic

al
 R

eg
is

tra
tio

n 
Th

ro
ug

h 
E

xp
on

en
tia

te
d 

Li
e 

A
lg

eb
ra

.  



46 Chapter 5. Appendix

S
m

oothing  
(m

m
 FW

H
M

) 
N

orm
alization 

0.15 � U < 0.2  
0.2� U < 0.25  

0.25 � U < 0.3  
U � 0.3 

8 
D

A
R

TE
L 

0.08349418 
0.05153424 

0.030544185 
0.028921786 

 
A

N
TS

 
0.08615141 

0.05714869 
0.03057117 

0.030448776 
 

S
P

M
 12 

0.0853966 
0.05151086 

0.025873466 
0.02213881 

10 
D

A
R

TE
L 

0.09526866 
0.0590263 

0.037482248 
0.037851575 

 
A

N
TS

 
0.0950136 

0.06269266 
0.038558477 

0.039247507 
 

S
P

M
12 

0.09905571 
0.0616289 

0.034457035 
0.030901794 

12 
D

A
R

TE
L 

0.10437432 
0.06366926 

0.040546779 
0.041325003 

 
A

N
TS

 
0.10094288 

0.06692656 
0.043000907 

0.044582956 
 

S
P

M
12 

0.10972616 
0.06848442 

0.038966006 
0.036246459 

14 
D

A
R

TE
L 

0.11066167 
0.06785496 

0.041821835 
0.041667949 

 
A

N
Ts 

0.10542158 
0.07045331 

0.045140526 
0.046368994 

 
S

P
M

12 
0.11711992 

0.07377715 
0.041430595 

0.037875354 

16 
D

A
R

TE
L 

0.11518592 
0.0713064 

0.041623982 
0.039469577 

 
A

N
Ts 

0.10954669 
0.07297824 

0.04582049 
0.045625567 

 
S

P
M

12 
0.12284703 

0.07762984 
0.042398489 

0.036779981 

20 
D

A
R

TE
L 

0.12374638 
0.07579988 

0.036198399 
0.032500736 

 
A

N
Ts 

0.11776519 
0.07672257 

0.043118767 
0.040045331 

 
S

P
M

12 
0.13124174 

0.08391407 
0.036208687 

0.032365439 
Appendix E: Proportion of voxels exhibiting correlation value (r ), above 0.15 for the junior group. Abbreviations: AN

Ts- Advanced         
N

orm
alization Tools; SPM

- Statistical Param
etric M

apping; D
AR

TEL- D
iffeom

orphic Anatom
ical R

egistration Through 
Exponentiated Lie Algebra; N

A
- N

ot applicable. 



47

S
m

oo
th

in
g 

 
(m

m
 F

W
H

M
) 

N
or

m
al

iz
at

io
n 

0.
15

 �
 U 

< 
0.

2 
 

0.
2�

 U 
< 

0.
25

  
0.

25
 �

 U 
< 

0.
3 

 
U �

 0
.3

 

8 
D

A
R

TE
L 

0.
03

74
29

92
4 

0.
01

17
93

67
4 

0.
00

55
37

93
9 

0.
00

75
55

04
 

 
A

N
TS

 
0.

06
13

53
82

8 
0.

03
06

06
79

8 
0.

01
25

66
61

 
0.

01
45

75
1 

 
S

P
M

 1
2 

0.
03

16
07

62
1 

0.
00

99
00

94
 

0.
00

56
28

96
1 

0.
00

69
65

84
 

10
 

D
A

R
TE

L 
0.

04
85

28
51

7 
0.

01
68

50
05

3 
0.

00
64

32
91

3 
0.

01
11

25
85

 
 

A
N

TS
 

0.
07

13
32

92
9 

0.
03

83
96

46
8 

0.
01

67
37

38
6 

0.
01

88
99

68
 

 
S

P
M

12
 

0.
04

41
37

08
5 

0.
01

41
12

60
9 

0.
00

63
97

91
7 

0.
01

10
36

78
 

12
 

D
A

R
TE

L 
0.

05
60

24
49

6 
0.

01
95

44
06

3 
0.

00
70

46
22

1 
0.

01
31

33
86

 
 

A
N

TS
 

0.
07

93
26

16
2 

0.
04

36
66

48
3 

0.
01

92
38

94
7 

0.
02

12
20

29
 

 
S

P
M

12
 

0.
05

41
58

64
6 

0.
01

70
57

76
2 

0.
00

72
77

44
2 

0.
01

34
69

3 

14
 

D
A

R
TE

L 
0.

06
20

16
73

6 
0.

02
01

43
74

1 
0.

00
73

96
03

3 
0.

01
43

42
31

 
 

A
N

Ts
 

0.
08

45
19

27
5 

0.
04

71
36

09
8 

0.
02

02
07

00
1 

0.
02

22
65

25
 

 
S

P
M

12
 

0.
06

20
94

47
6 

0.
01

81
48

37
3 

0.
00

78
65

46
8 

0.
01

49
26

8 

16
 

D
A

R
TE

L 
0.

06
63

68
94

8 
0.

01
90

07
98

7 
0.

00
77

23
13

 
0.

01
43

01
42

 
 

A
N

Ts
 

0.
08

88
34

80
7 

0.
04

88
09

83
6 

0.
01

99
40

10
7 

0.
02

21
06

92
 

 
S

P
M

12
 

0.
06

73
91

73
 

0.
01

75
00

03
8 

0.
00

81
67

01
9 

0.
01

56
10

32
 

20
 

D
A

R
TE

L 
0.

06
70

64
02

9 
0.

01
43

28
67

8 
0.

00
83

68
23

9 
0.

01
40

96
98

 
 

A
N

Ts
 

0.
09

51
04

54
1 

0.
05

00
58

35
5 

0.
01

44
25

81
7 

0.
02

16
31

94
 

 
S

P
M

12
 

0.
06

87
23

58
3 

0.
01

49
01

66
9 

0.
00

89
00

79
5 

0.
01

50
37

37
 

A
pp

en
di

x 
F:

 P
ro

po
rti

on
 o

f v
ox

el
s 

ex
hi

bi
tin

g 
co

rre
la

tio
n 

va
lu

e 
(r

 ),
 a

bo
ve

 0
.1

5 
fo

r t
he

 c
om

m
un

ity
 g

ro
up

. A
bb

re
vi

at
io

ns
: 

   
   

   
   

   
   

  A
N

Ts
- A

dv
an

ce
d 

N
or

m
al

iz
at

io
n 

To
ol

s;
 S

P
M

- S
ta

tis
tic

al
 P

ar
am

et
ric

 M
ap

pi
ng

; D
A

R
TE

L-
 D

iff
eo

m
or

ph
ic

 
   

   
   

   
   

   
  A

na
to

m
ic

al
 R

eg
is

tra
tio

n 
Th

ro
ug

h 
Ex

po
ne

nt
ia

te
d 

Li
e 

A
lg

eb
ra

; N
A

- N
ot

 a
pp

lic
ab

le
. 



48 Chapter 5. Appendix



49



50 Chapter 5. Appendix



Curriculum Vitae

Name Nargess Ghazaleh

Post-Secondary Education and Degrees Hamadan University of Medical Science
Hamedan, Iran
1998- 2006 M.D.

The University of Western Ontario,
London, ON
2016 - 2020 (pres) M.Sc.

Publications:

1. Ebrahimi-Rad R, Omrani-Nava M, Molla M, Abdollahpour M, Ghazaleh N. Compar-
ison of Antibody Against Chlamydophila pneumoniae in Patients with Brain Ischemic
Stroke. Advanced Studies in Medical Sciences. 2014;2: 79-85 (Peer reviewed)

2. Haddadinezhad S, Ghazaleh N, Razavi Z. E↵ect of L-Carnitine on Glycemic Control
and C-peptide in Patients with type 2 Diabetes Mellitus. Turkish Journal of Endocrinol-
ogy and Metabolism. 2008; 12(1):1-3(Peer reviewed)

3. Ghazaleh N, Haddadinezhad S, Jafari M. Fine Needle Aspiration Cytology of Thyroid
Nodules: Correlation with Surgical Histopathology. Turkish Journal of Endocrinology
and Metabolism. 2008;12(3):73-74(Peer reviewed)

4. Haddadinezhad S, Ghazaleh N. Relation of Fasting and Postprandial Plasma Glucose to
Glycosylated Hemoglobin in Diabetics patients. Rawal Medical Journal. 2008; 33(1):
12-14.(Peer reviewed)

5. Jafari M, Ghazaleh N, Haddadinezhad S. FNA as the Best and Cost-Benefit Method in
Managing Thyroid Nodules and Comparing the Cytology Results with Pathology Re-
sults. In: Proceeding of the 2nd congress of Iranian Cancer Association, 8th congress of
Iranian Society of Pathology. Tehran, Iran;2006.

51


	Optimizing Preprocessing of fMRI Data to Maximize Correspondence of Functional Anatomy Across Individuals
	Recommended Citation

	Abstract
	Summary for lay audience
	Acknowledgements
	Dedication
	List of Abbreviations
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Presurgical assessment in Epilepsy
	Functional Magnetic Resonance Imaging
	Movie-fMRI

	Inter-subject correlation basics
	“Bang You’re Dead!”
	Anatomical variability and processing of the fMRI data
	Normalization
	Registration templates
	Normalization toolboxes:
	SPM 
	DARTEL
	ANTs


	Spatial smoothing 
	Intersubject correlation toolbox

	Method
	 Participants
	Procedure
	Relevant image acquisition
	Preprocessing and Spatial Registration (Normalization)
	 SPM12
	 DARTEL
	 ANTs

	 Spatial smoothing
	 Inter-subject correlation analysis
	 Dice Similarity Coefficient

	Results
	Evaluating suprathreshold voxels
	Evaluating high ISC values
	Evaluating the pattern of intersubject correlation 
	Investigating the similarity in patterns of correlation across normalization methods

	Discussion
	Discussion and conclusion
	Limitations
	Future directions

	Bibliography
	Appendix
	Appendix
	Curriculum Vitae

