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Abstract

This thesis examines the presence and strength of predictive causal relationship between re-
newable energy prices and economic growth. We look for evidence by investigating the cases
of Norway, New Zealand, and Canada’s two provinces of Alberta and Ontario. The usual vector
autoregressive model (VAR) and its various improved versions still assume constant parameters
over time. We devise a Markov-switching VAR (MS-VAR) model in order to accommodate
the observed time-dependent causal relation changes. Our proposed modelling approach is in-
duced by the hidden Markov model methodologies in terms of an online parameter estimation
through recursive filtering. The parameters of the MS-VAR model are governed by a hidden
Markov chain, which in turn allows causal relationship to vary amongst different economic
regimes. A unidirectional causal link, going from economic growth to the prices of renewable
energy in New Zealand, Alberta, and Ontario, is demonstrated by our empirical findings. In
particular, the causality emerges in the cases of New Zealand and Ontario during periods of
high economic growth while it appears in the case of Alberta during periods of low economic
growth.

Keywords: Regime-switching dynamics, Hidden Markov model, Vector autoregressive
model, Economic growth, Renewable energy, Causality
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Lay Summary

The importance of energy is underscored by its continuing demand to power up economic
activities, enable technology performance and meet other energy-dependent needs of the pop-
ulation’s households. Non-renewable-energy sources are limited in supply as it would take
a considerably long time for them to be replenished. As a consequence, many developed,
emerging and transitioning economies have undergone a relatively rapid shift of tapping re-
newable energy-source alternatives. With a nation’s competitiveness and prosperity go hand
in hand with sustainable economic growth, this thesis investigates the causal relationship be-
tween renewable energy prices and economic growth in Norway, New Zealand, and Canada’s
two provinces of Alberta and Ontario. Our results show that economic growth brings more
renewable-energy investments that strengthen renewable-energy technologies, eventually low-
ering renewable-energy prices. Thus, policy makers could introduce incentives that will attract
more renewable-energy investments. Although the impact of renewable-energy prices to eco-
nomic growth is not seen within the examined data sets, policies supporting renewable energy
may help in achieving a stable energy sector as fossil-based fuels, with considerable price risk,
are gradually phased out.
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Chapter 1

Introduction

1.1 Background of world energy

Energy is one of the most essential components of economic infrastructure. It fuels the econ-
omy and sustains many of the services that people depend on. There are various sources of
energy but they could be classified into two main categories: non-renewable and renewable.
Non-renewable energy sources have the advantages of affordability, storage, and consistency.
Examples of non-renewable sources are oil, natural gas, coal, and nuclear fuels (i.e., uranium
and plutonium). However, they produce greenhouse gases such as carbon dioxide, methane,
and nitrous oxide, which are causing climate change and global warming, which in turn affect
ecosystems, economies, and human health. In contrast, renewable-energy sources based on
hydro, wind, and solar emit no greenhouse gases into the air; although we do acknowledge that
there are debates highlighting their associated ecological conservation issues.

To mitigate the drawbacks brought about by non-renewable sources, many countries be-
gan adopting renewable energy and others are progressively shifting from conventional-energy
systems to renewable-energy systems. According to the World Energy Outlook 2018 by Inter-

national Energy Agency (IEA) [25], the demand for renewable energy has doubled from 662
million tonnes (Mtoe) of oil equivalent in 2000 to 1334 Mtoe in 2017. There has been no
change on the share of fossil-based energy in the world’s primary demand over the past two
decades.

With the development of new technologies, the cost of installing renewable-energy systems
has continued to decrease and the low cost potentially makes the transition to renewable-energy
systems more accessible. The IEA [26] reported that renewable energy will have the fastest
growth in the electricity sector and would provide 30% of power demand by 2023; this power
demand was 24% in 2017. Certainly, the future landscape of the energy industry is altering,
and most likely renewable energy will replace fossil fuel and dominate the worldwide-energy

1



2 Chapter 1. Introduction

mix.

1.2 Previous related studies

The relationship between economy and energy has pre-occupied economists for the past decades
because it has considerable implications to governments, policy makers and other stakehold-
ers. There have been numerous studies on the nexus between economic growth and energy
consumption in the past. A large number of these studies probed the connection between
economic growth and electricity consumption. Some researchers analysed the link between
economic growth and consumption of various energy such as non-renewable, renewable, and
nuclear types. Nuclear energy is renewable because there is no emission of greenhouse gasses,
hence no air pollution. Nonetheless, the by-products of nuclear fission, which is the process in
the creation of nuclear energy, are radioactive and toxic waste materials. Also, to generate this
type of energy, power plants need radioactive metals (Plutonium-239 or Uranium-235) whose
supply is extremely limited, making it non-renewable.

There was, however, no consensus on the causal relationship between economic growth
and energy consumption in these previous studies. Specifically, there are four hypotheses of
energy-growth nexuses that were previously established: growth hypothesis, conservation hy-
pothesis, feedback hypothesis, and neutrality hypothesis.

The growth hypothesis posits a unidirectional causality from energy consumption to eco-
nomic growth. This implies that economic consumption has an important impact on the eco-
nomic growth; in other words, an increase (fall) in energy consumption leads to increase (fall)
in the gross domestic product (GDP). The conservation hypothesis presupposes a unidirectional
causality from economic growth to energy consumption. This means that energy consumption
has no effect on economic growth, but the GDP growth causes energy consumption growth.
The feedback hypothesis conjectures a bidirectional causality from economic growth to energy
consumption. This indicates that both energy consumption and economic growth influence
each other simultaneously. Lastly, the neutrality hypothesis postulates that there is no causality
running from either direction of economic growth and energy consumption. That is to say that
there is an absence of relationship between energy consumption and economic growth.

The literature on the link between renewable energy and economic growth is expanding.
The main focus though has been on the question of whether renewable-energy consumption
causally relates to economic growth. Some of the empirical studies concentrate predominantly
on the nexus in one country. Utilising the vector error correction model (VECM), Pao and Fu
[40] investigated the causal relationships between real GDP and four energy consumption (non-
hydro renewable, total renewable, non-renewable, and total primary energy) in Brazil for the
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period 1980-2010. They found evidence that buttressed the feedback hypothesis on the linkage
between total renewable energy and economic growth in the long run. Dogan [8] explored
the causal relationships between renewable-/non-renewable-energy consumption and economic
growth in Turkey in the years 1988-2012 by using an autoregressive distributed lag (ARDL)
model with a structural break. The findings in [8] supported the conservation hypothesis in
the short run and the feedback hypothesis in the long run. Most recently, Lee and Jung [30]
analyzed the causal relationship between renewable-energy consumption and economic growth
in South Korea for the period 1990-2012 by employing the ARDL bounds test and VECM. The
study in [30] revealed manifestations in favour of the conservation hypothesis in both the short
and long run.

Some researchers tested the causality on panel data sets. Using the data from 1985 to
2005 on 20 member countries of the Organisation for Economic Co-operation and Develop-
ment, Apergis and Payne [1] explored the presence of causal relationship of renewable-energy
consumption and the economic growth within a multivariate framework; it was shown that a
bidirectional causality between the two variables existed, which in turn reinforced the feed-
back hypothesis. Tugcu et al. [49] analyzed the causal relationships between renewable, non-
renewable energy, and GDP of the G7 countries covering the 1980-2009 period via the ARDL
model. The neutrality hypothesis was supported for the cases of France, Italy, Canada and
the US; the feedback hypothesis was validated by the cases of England and Japan; and the
conservation hypothesis was bolstered by Germany’s case.

Bhattacharya et al. [3] used the panel technique and the fully modified ordinary-least-
squares model in the analysis of the top 38 renewable-energy consumption countries, which
were looked into separately, for the period 1991-2012. It was concluded that renewable-energy
consumption has a positive effect on the economic growth for 57% of the countries included in
their analysis. Employing the panel ECM, Fotourehchi [16] addressed the causal-relationship
question between the renewable-energy consumption and the economic growth of 42 develop-
ing countries based on a 1990-2012 data set. The outcome of the examination in [16] beefed
up the growth hypothesis in the said 42 developing countries.

As the results of empirical studies vary depending on methodologies applied and data sets
collected, there is no consensus on the findings and implications of the above empirical studies.
To a large extent, related research in this area shed light on the causalities between economic
growth and renewable energy (e.g., [1, 3, 8, 16, 27, 30, 37, 49]); aggregate energy consumption
(e.g., [2] [5], [42]); and CO2 emission (e.g., [24, 35]). A quite exhaustive survey in [47], which
encompassed a 36-year period and covered many regions and countries worldwide, concen-
trated on research progress that probed causality (a) between economic growth and energy-use
variables (electrical, nuclear, renewable and non-renewable); (b) between economic growth
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and environment; and (c) between two variables that can be formed as a pair from the three
variables of economic growth, energy use and environment. The results were conflicting as to
which energy consumption could boost economic growth; furthermore, environmental draw-
backs could be precipitated by some of these energy-use variables. Such causal relations in this
survey were closely monitored because of their immediate relevance to policies that impact en-
ergy alongside ecological and economic initiatives by the government and other stakeholders.
Another comprehensive survey is [39] on the energy-growth nexus. It stressed that most em-
pirical studies aimed to find what role energy (electricity) does have in stimulating economic
growth and if there is also a reverse relation between these two variables.

It is important to note that most of the studies hitherto conducted did not consider the struc-
tural breaks in the data sets under a dynamic parameter-estimation setting. Many structural-
form models do include regime-switching characteristics but they still depend on static-parameter
estimation. Economies have gone through several structural changes over the past decades due
to, for example, energy crises, financial turmoils, and technological change, amongst other
reasons. Thus, empirical studies that do not take into account the dynamic evolution of pa-
rameters’ dynamic structural changes in data sets might lead to inadequate or even flawed
conclusions.

1.3 Motivation

As sources of renewable energy expand and in an effort to mitigate negative environmental
effects, the production of conventional energy has been gradually shrinking. Conventional-
energy resources are being replaced progressively by hydropower and ocean resources, wind,
solar, geothermal, solid biomass, biogas, and liquid biofuels as basic inputs to economic ac-
tivities. Nonetheless, as pointed out by the Natural Resources Canada, biomass resources are
renewable only if its rate of regeneration surpasses the rate of consumption.

The price of renewable energy hugely impacts the outputs of the manufacturing sector
and also affects directly the demand for energy of the residential sector. Thus, investigat-
ing the causal relationship between the price of renewable energy and economic growth is of
paramount importance. Our investigation will be facilitated by a regime-switching model. As
previously acknowledged, structural breaks could be problematic; and so, Dogan [8] utilized
the modified unit root, cointegration, and causality tests with a structural break to deal with
this issue. However, the power of the causality test, when there are structural break manifes-
tations, depends on the data size. The results of the test could be misleading if the data size is
small. A natural way to resolve this structural-break issue is by incorporating regime-switching
dynamics into the vector autoregressive (VAR) model. The model’s regime-switching capabil-
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ity would enable us to identify the economic states in different regimes. For example, an
economy may have two regimes (bust and boom), or have three regimes (bust, normal, and
boom). Fallahi [14] analysed the causal relationship between energy consumption and GDP
by a Markov-switching model combined with vector autoregressive models (MS-VAR) in the
US with the aid of a data set spanning the years 1960-2005. In the MS-VAR setting, the re-
lationship between energy consumption and GDP is time-dependent. The Markov-switching
model detected the economic regimes, and VAR was used to delve into the causal relationships
in each regime. The investigation’s outcome sustained the feedback hypothesis in one regime
that includes the energy crisis in the 1970s, and the neutrality hypothesis in the other regime.
Similarly, by using the VAR, Kilic and Cankaya [28] studied the Granger causality between oil
prices and economic activities in the BRICS-member countries (Brazil, Russia, India, China,
and South Africa characterized as major emerging national economies) and the G7 (Group of
Seven countries consisting of Canada, France, Germany, Italy, Japan, the United Kingdom, and
the United States constituting - in a worldwide scale - the largest IMF-advanced economies).
The VAR results in [28] were robustified with the use of an MS-VAR model, and such results
showed that Granger causalities vary by different countries and different economic activities.

This thesis extends the MS-VAR model under the hidden Markov model (HMM) set up de-
signed primarily to process evidence of the causal relationship between the price of renewable
energy and economic growth using the data sets as study cases for Norway, New Zealand, and
two provinces of Canada (Alberta and Ontario). Our inference approach in the examination of
causality follows similar idea to Fallahi’s [14], i.e., checking each individual parameter’s level
of significance.

There are two main reasons for selecting the three above-mentioned countries. Firstly, they
have relatively high shares of renewable electricity output with respect to total electricity pro-
duction. Norway is the top-world-ranking nation in terms of share of renewable energy in
electricity generation, and it is followed by New Zealand. In 2018, the proportions of electric-
ity generated from renewable energy in Norway, New Zealand, and Canada are 97.9%, 83.1%,
and 65.9%, respectively. With electricity’s making up the bulk (i.e., high shares) of renewable
energy produced, it is reasonable to proxy the price of renewable energy by the price of elec-
tricity. Secondly, data on electricity prices in Norway, New Zealand, Alberta, and Ontario are
readily available as these four regions all have market-based systems. For these markets, the
supply and demand largely dictate the electricity price, and such a price is more likely to be
influenced quite freely by economic forces. Although some other countries or regions have a
higher share capacity than Canada for renewable energy, they, unfortunately, still operate under
regulated markets with massive oversight and control by their governments or very few organ-
isations. We shall evaluate how both the price and share of renewable energy in electricity
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generation (i.e., energy mix) could affect economic growth.
In the existing literature, the efficient and dynamic estimation procedure for MS models

has relied heavily on the the Expectation-Maximisation (EM) algorithm proposed by Hamil-
ton [22]. In Cappé [4], the idea of online EM algorithm for HMMs was explored further.
However, such an online EM approach was not tailored to dovetail with the technique of ref-
erence probability measure. So, we followed Elliott et al. [9], who introduced the change-of-
measure method in combination with the EM algorithm. Under the HMM setting, the dynamic-
estimation technique in [9] leads to a self-tuning model; that is, when new information arrives,
parameter values are updated automatically. Hidden Markov model found important applica-
tions in the fields of finance (e.g., Date et al. [7], Rydén et al. [41], Srivastava et al. [44],
Tenyakov and Mamon [45]), insurance (e.g., Elliott et al. [10], Frees and Wang et al. [15],
Gao et al. [19], Mamon et al. [34]); economics (Grimm et al. [18], Gregoir and Lenglart [20],
Song [43], Xi and Mamon [52]), related areas (Erlwein et al. [12], Xiong and Mamon [51]);
and other fields of the natural and social sciences (e.g., Netzer et al. [36], Kundu et al. [29]).

The remaining parts of this thesis is organized as follows. Chapter 2 presents the formula-
tion of our HMM-modulated vector autoregression. The HMM-EM estimators of our proposed
model, harnessing the power of the change-of-measure technique, are also given. In Chapter
3, we describe the salient features of our data sets in the context of our empirical analysis.
The numerical implementation is executed in Chapter 4 with the results laid out. Chapter 5
discusses policy implications and pertinent insights gained from our results. Finally, Chapter 6
concludes.



Chapter 2

Model description

In this Chapter, we work out the details of constructing an unrestricted VAR model with exoge-
nous variables. The VAR model is the generalisation of the univariate AR model. In the VAR
model, each variable is a linear function of the past lags of itself and the past lags of the other
variables; this is a common econometric tool to find out causal relationships between variables.

The VAR model has two inherent assumptions:

(a) All variables have to be of the same order of integration.
(b) The error terms have

(b.i) a zero mean,
(b.ii) a positive semi-definite covariance matrix, and
(b.iii) no serial correlation.

The order of integration, denoted by I(d), is the minimum number d of differences needed to
produce a covariance-stationary time series.

The goal of this research is to investigate the causality between economic growth and cer-
tain aspects of renewable energy via the VAR model. More specifically, we shall explore
dynamic causalities under different economic statuses. Enabling the VAR model’s coefficients
to change under different economic regimes will reflect different causalities. Our mechanism
to do this is the MS-VAR model whose advantages include easy interpretation and a handy
online-parameter estimation compatible with our formulation. In particular, a hidden Markov
chain is embedded into the unrestricted VAR model to yield an MS-VAR model. Following
the convention in linear algebra, vectors will be denoted by bold lowercase English or Greek
letters, and matrices will be denoted by bold capitalized English or Greek letters.

7



8 Chapter 2. Model description

2.1 Unrestricted VAR model with exogenous variables

In some circumstances, the value of a variable is not only dependent on the variables inside the
model. The variables outside the model (called exogenous variables) may also have an impact
on the variable under scrutiny. A system of unrestricted VAR model with exogenous variables
(VARX(p,q)) has the representation

yt = µ +

p∑
k=1

Ψkyt−k +

q∑
k=0

Φkxt−k + σε t, (2.1)

where yt = (y1,t, y2,t, ..., yg,t)>; xt = (x1,t, x2,t, ..., xw,t)>; µ = (µ1, µ2, ..., µg)>;σ = (σ1, σ2, ..., σg)>;
> stands for the transpose of a vector; and Ψk and Φk are the respective g × g and w × w coef-
ficient matrices. In this formulation, the variables in y are not only affected by the variables in
the VAR model, but also by other variables x outside the model. A model with two variables
and two exogenous variables VARX(p,q) model is written in matrix form asy1,t

y2,t

 =

µ1

µ2

 +

p∑
k=1

ψ11,k ψ12,k

ψ21,k ψ22,k

 y1,t−k

y2,t−k

 +

q∑
k=0

φ11,k φ12,k

φ21,k φ22,k

 x1,t−k

x2,t−k

 +

σ1ε1,t

σ2ε2,t

 . (2.2)

Remark 1. In a statistical model, an endogenous variable has its value determined by other

variables within the model. On the other hand, an exogenous variable has its value determined

by other variables outside of the model. More specifically, in Equation (2.1), the vector y is

an endogenous variable because its value is dependent on both x’s and y’s. However, x is an

exogenous variable since its value cannot be obtained from factors inside the model. A control

variable is a factor, which could have an impact on the outcome of the regression and could be

either endogenous or exogenous.

In this research, the vector y in Equation (2.2) consists of economic-growth and renewable-
energy components. The exogenous variables are the oil price and short-term interest rate,
which will be encapsulated in vector x. The following are considerations when applying the
VAR model.

(a) All variables must be of the same order of integration; this could be checked via the
unit-root test for stationarity in time series. If all variables are non-stationary, a coin-
tegration test is performed. If the variables are cointegrated, a vector error correction
model (VECM), which is a restricted VAR model, is used to deal with the non-stationary
series. If the variables are not cointegrated, differencing the variables is undertaken.
Then, the unit-root tests are employed to check the stationarity of the differenced series.
If the differenced series is still non-stationary, we repeatedly difference the series until
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stationarity is achieved. VAR variables must be stationary; otherwise, differenced vari-
ables should be employed instead. Having non-stationary time series as inputs in VAR
will end up in getting spurious-regression relation.

(b) The optimal lag length of the VAR model is chosen based on some information criteria
(e.g., Akaike information criterion (AIC) or the Hanan-Quinn criterion).

(c) There are two ways to assess the presence of a causal relation. The first one is through
a significance test of the individual parameters. The second strategy is by checking the
joint effects of all lags in the variables of interest with the utility of a likelihood-ratio test.

2.2 A Markov-chain driven VAR model

As mentioned above, it would be realistic for the parameters of the VAR model to be time-
dependent. Hamilton [23] pointed out that, by and large, economic variables have time-
dependent behaviour. For example, the growth rate of GDP fluctuates at various phases of
a business cycle (expansion, peak, contraction, and trough). Moreover, many empirical stud-
ies took into consideration structural breaks characterized by parameters of economic-variable
models that keep changing through time; see Dogan [8] in the context of causal-relation be-
tween economic growth and energy use. Similarly, Fallahi [14] utilized the MS-VAR model
and showed that causality between economic growth and energy use could change as time
progresses.

To equip a modelling approach that can adapt to time dependence, a hidden Markov chain is
incorporated into the VAR model. Our use of an HMM-embedded algorithm is an improvement
to Fallahi’s approach [14] of adopting the Expectation-Maximization (EM) algorithm proposed
by Hamilton in estimating the MS-VAR model. The essential technique used throughout this
thesis is the change of reference-probability measure. Under the real-world probability P, the
observations are not independent and identically distributed (IID). So, the calculations of the
filters under P are difficult. A new probability measure, say P̃, equivalent to P is constructed
such that under the new measure P̃, the observations are IID. The calculations of the filters
are then facilitated by this ideal setting of P̃, where with the use of Fubini’s Theorem, the
interchange of expectations and summations are permitted. The optimal filters under the real-
world P are obtained via the reverse change of probability measure. The visualization of these
concepts and their interconnection are schematically diagrammed in Figure 2.1
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Figure 2.1: A portrayal of the idea behind the change of reference probability measure in filtering

The HMM algorithm in this thesis is more customizable than other HMM algorithms built-
in software packages. For example, our HMM algorithm can work in high dimensions, an
important functionality that is lacking in some packages. In addition, our change-of-measure
methodology uses previously estimated parameter as initial values to process the next batch of
data. Compared with other filtering algorithms, which rely on forward-backward algorithm,
our approach requires much less computing memory; this is beneficial in the analysis of big
data sets. Tenyakov et al. [46] pointed out that the Hamilton algorithm needs to be rerun
whenever there are new data. In contrast, the HMM algorithm using the change-of-measure
technique is computationally less costly; there is no need to store past data and prior estimates.
The calculation is quick because processing targets only the newly available information. In
addition, our HMM-recursive filtering algorithms naturally yields an online estimation of pa-
rameters. Each time a new point data or a batch of data arrives the parameters are automatically
updated instantly.

In particular, the parameters of the VAR model are governed by a Markov chain zt, with
a finite-state space, in discrete time t, for t=0, 1, . . . T . The state of the Markov chain reflects
the regime of an economy. To facilitate subsequent algebraic computations, we set a one-
to-one correspondence between the state space and the canonical basis {e1, e2, . . . , en}, where
ei = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rn with 1 in its i-th position and 0 elsewhere. The Markov chain
zt has a semi-martingale representation

zt+1 = Πzt + vt+1, (2.3)

where Π = (πi j) is a transition matrix, πi j = P(zt+1 = ei|zt = e j); vt+1 is a martingale increment
with E[vt+1|F

z
t ] = 0; and F z is the filtration generated by z1, z2, . . . , zt.

Note that µg = (µ(1)
g , µ(2)

g , . . . , µ(n)
g )>, ψi j,k = (ψ(1)

i j,k, ψ
(2)
i j,k, . . . , ψ

(n)
i j,k)
>, φi j,k = (φ(1)

i j,k, φ
(2)
i j,k, . . . , φ

(n)
i j,k)
>,

and σg = (σ(1)
g , σ(2)

g , . . . , σ(n)
g )> are all vectors in Rn. With our formulated bijection between

zt’s state space and the basis of Rn, we obtain a simple representation of the time-dependent
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parameters as µg(zt) = 〈µg, zt〉, ψi j,k(zt) = 〈ψi j,k, zt〉, φi j,k(zt) = 〈φi j,k, zt〉, and σg(zt) = 〈σg, zt〉.
Here, 〈·, ·〉 denotes the Euclidean scalar product in Rn. Also, the subscripts g, i, and j are the
position locations of the parameters as described in Equation (2.2) with g, i, and j ∈ {1, 2};
the subscript k refers to the k-th lag with k ∈ {1, 2, . . . , p}; and the symbol (m) stands for the
parameter in the m-th regime for m = 1, . . . , n. The VAR model in Equation (2.2), enriched by
zt−1, is expressed as

y1,t

y2,t

 =

µ1(zt−1)
µ2(zt−1)

 +
∑p

k=1

ψ11,k(zt−1) ψ12,k(zt−1)
ψ21,k(zt−1) ψ22,k(zt−1)

 y1,t−k

y2,t−k

 +
∑q

k=0

φ11,k(zt−1) φ12,k(zt−1)
φ21,k(zt−1) φ22,k(zt−1)

 x1,t−k

x2,t−k

 +

σ1(zt−1)ε1,t

σ2(zt−1)ε2,t

 . (2.4)

Remark 2. As a clarification, each regression equation in the VAR model assumes that inputs

(variables’ original or differenced levels) are stationary. Due to economic structural changes,

the Markov chain drives the random switching between regression equations having dynamic

parameter values as time unfolds.

Our objective is to detect the causality between the renewable-energy price (EP) and eco-
nomic growth (EG). The variables EP and EG are endogenous to the VARX(p,q) system. Two
variables, namely the oil price (OP) and short-term interest rates (IR) are included as the sys-
tem’s control variables. We would like to see the effects of OP and IR on EG. Control variables
are introduced to avoid spurious causality if we concentrate on EP and EG. It may be possible
that the relationship found between EP and EG is actually caused by the other variables not yet
considered. In microeconomics, EG is often linked with IR. In general, when IR level is low,
the economy will tend to grow; and conversely, when IR level is high, the economy will tend
to slow down. As argued in Elliott and Mamon [11], this could be attributed to the mean re-
version of interest rates, which is supported by the supply-and-demand analysis. It is observed
that when interest rates are low, there is more borrowing that stimulates economic activities.
The high demand for funds will cause interest rates to rise. When interest rates are high, de-
mand for funds will decrease and with less spending the economy will tend to slow down. The
variable OP is used as a proxy for the price of conventional-energy sources. Evidently, OP is
employed for the purpose of comparison with EP.

Thus, it is reasonable to include OP and IR in EG’s dynamics in Equation (2.4). However,
as far as we are aware, there is no empirical finding that could vouch for the impact of IR on
EP. Excluding IR, being viewed as an insignificant causal factor for EP, enables us to work on
a manageable VAR system. That being said, we shall ignore the effects of IR on EP but focus
instead on the effects of OP on EP. Therefore, φ22,k is assigned the value 0 for all k. Furthermore,
σ will be treated as constant. To confirm that this is a reasonable assumption, a univariate
model with switching intercept and sigma was fitted to our four data sets. The regime-switching
characteristic of the data is significantly pinned down by the switching intercept and not by
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the sigma. For many economic variables, it is the intercept that drives the regime-switching
movement. The standard deviation stays the same even in different regimes. For example, the
economic-growth rate has high and low growth periods. Yet, the variations (measured by the
standard deviation) would be almost identical for both high and low periods even for a time
horizon of two years.

Consequently, the model that we shall identify simplifies to

EGt

EPt

 =

µ1(zt−1)
µ2(zt−1)

 +
∑p

k=1

ψ11,k(zt−1) ψ12,k(zt−1)
ψ21,k(zt−1) ψ22,k(zt−1)

 EGt−k

EPt−k

 +
∑q

k=0

φ11,k(zt−1) φ12,k(zt−1)
φ21,k(zt−1) 0

 OPt−k

IRt−k

 +

σ1ε1,t

σ2ε2,t

 . (2.5)

Let (Ω,Ft,P) be the probability space providing the background for all stochastic processes in
our modelling set up. In this framework, Ft = F z

t ∨F EP
t ∨F EG

t is the global filtration; and
F EP

t and F EG
t are the filtrations generated by {EPt} and {EGt}, respectively. In Equation (2.5),

{ε1,t} and {ε2,t} are sequences of IID standard normal random variables. Consequently,

EGt|Ft ∼ N
(
µEG, σEG

)
with µEG = µ1(zt−1) +

∑p
k=1

(
ψ11,k(zt−1)EGt−k + ψ12,k(zt−1)EPt−k

)
+

∑q
k=0

(
φ11,k(zt−1)OPt−k + φ12,k(zt−1)IRt−k

)
σEG = σ1

and
EPt|Ft ∼ N

(
µEP, σEP

)
with µEP = µ2(zt−1) +

∑p
k=1

(
ψ21,k(zt−1)EGt−k + ψ22,k(zt−1)EPt−k

)
+

∑q
k=0 φ21,k(zt−1)OPt−k

σEP = σ2

2.3 Change of reference probability measure

With their observed values as sample path’s realisations, neither {EGt} nor {EPt} is a sequence
of independent random variables under the real-world probability measure P. We shall change
our reference-probability measure to P so that under this new measure, both {EGt} and {EPt}

are sequences of IID random variables; P coincides with the generic P̃ measure in Figure
2.1. This will, in turn, make the evaluation of conditional expectations of a product easy.
Furthermore, the calculations of filters, which are merely conditional expectations, will be
straightforward under P. The filters computed under P are related back to the measure P,
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without any difficulty, through the use of Bayes’ theorem for conditional expectation. To define
a measure P equivalent to P, we construct a Radon-Nikodym derivative

Λt =
P
P

∣∣∣∣∣
Ft

=

t∏
k=1

λ(EG)
k λ(EP)

k ,

for t ≥ 1, Λ0 = 1,

λ(EG)
t = σEGexp

{
−

1
2

(
EGt

2 −
(EGt − µEG

σEG

)2
)}

and
λ(EP)

t = σEPexp
{
−

1
2

(
EPt

2 −
(EPt − µEP

σEP

)2
)}
.

Suppose the vector p̃t is the conditional expectation of zk under P. To be concise,

p̃t = ( p̃(1)
t , p̃(2)

t , . . . , p̃(n)
t )> ∈ Rn and p̃(i)

t = P(zt = ei|Ft) = E[〈zt, ei〉|Ft].

Write
Λt := Λ−1

t

for the inverse of Λt. With the aid of Bayes’ theorem,

p̃t = E[zt|Ft] =
E[Λtzt|Ft]

E[Λt|Ft]
. (2.6)

Write ξt := E[Λtzt|Ft]. Noting that
n∑

i=1

〈zt, ei〉 = 1,

E[Λt|Ft] = E
[
Λt

( n∑
i=1

〈zt, ei〉

)∣∣∣∣∣Ft

]
=

n∑
i=1

E
[
〈Λtzt, ei〉

∣∣∣Ft
]

=

n∑
i=1

〈E[Λtzt|Ft], ei〉 =

n∑
i=1

〈ξt, ei〉.

Thus, Equation (2.6) has the compact form

p̃t =
ξt∑n

i=1〈ξt, ei〉
. (2.7)
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2.4 Filters and parameter estimates

In this subsection, we outline the derivation of the optimal estimators of the model parameters.
Although the maximum-likelihood-estimation (MLE) method is a common approach to com-
pute the parameters of a probability distribution, such a method is not straightforward to apply
for a more elaborate model. We invoke the EM algorithm as an iterative technique to obtain
the local maxima. We first consider and calculate the following Markov-dependent quantities:

J(s j)
t =

t∑
l=1

〈zl−1, e j〉〈zl, es〉, (2.8)

O( j)
t =

t∑
l=1

〈zl−1, e j〉, (2.9)

and T ( j)
t ( f ) =

t∑
l=1

〈zl−1, e j〉 f (·, ·). (2.10)

The respective scalar quantities in Equations (2.8), (2.9) and (2.10) refer to the number of
jumps from state j to state s in time t; the amount of time z spent in state j up to time t; and
an auxiliary process that depends on the function f (·, ·), where f is a function taking the forms
xt−k, xt−kxt−h, and xt−kyt−h; the x and y represent the variables EG, EP, IR, and OP; and the k

and h denote the lags with k, h = 0, 1, ..., p. Define the diagonal matrix Dt as

Dt =


dt,1

dt,2
. . .

dt,n


,

with diagonal elements
dt, j = λ

(EG)
t, j λ

(EP)
t, j . (2.11)

In Equation (2.11),

λ
(EG)
t, j =

1
σ1

exp
(
−

1
2

(β(EG)
t, j

2
− EGt

2)
)
,

β(EG)
t, j =

EGt − µ1, j −
∑p

k=1

(
ψ11,k, jEGt−k + ψ12,k, jEPt−k

)
−

∑q
k=0

(
φ11,k, jOPt−k + φ12,k, jIRt−k

)
σ1

,

λ
(EP)
t, j =

1
σ2

exp
(
−

1
2

(β(EP)
t, j

2
− EPt

2)
)
,

and β(EP)
t, j =

EPt − µ2, j −
∑p

k=1

(
ψ21,k, jEGt−k + ψ22,k, jEPt−k

)
−

∑q
k=0 φ21,k, jOPt−k

σ2
,
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where j is the parameter at the j-th regime. For any process Ct, by the Bayes’ theorem again,

E[Ct|Ft] =
E[CtΛt|Ft]

E[Λt|Ft]
=

E[CtΛt|Ft]∑n
i=1〈ξt, ei〉

. (2.12)

If we define γ(Ct) := E[CtΛt|Ft] then γ(Ct) = γ(Ct〈zt, 1〉) = γ(〈Ctzt, 1〉) = 〈γ(Ctzt), 1〉. Equa-
tion (2.12) has the usable representation

E[Ct|Ft] =
E[CtΛt|Ft]∑n

i=1〈ξt, ei〉
=
〈γ(Ctzt), 1〉
〈ξt, 1〉

.

By taking advantage of the semi-martingale representation in (2.3), it may be shown (see
Mamon et al. [32] and Elliot et al. [9]) that the vector processes ξt, J(s j)

t zt, O( j)
t zt, and T ( j)

t (g)zt

have the recursions

ξt = ΠDtξt−1, (2.13)

γ(J(s j)
t zt) = ΠDtγ(J(s j)

t−1 zt−1) + dt, j〈ξt, e j〉πs jes, (2.14)

γ(O( j)
t zt) = ΠDtγ(O( j)

t−1zt−1) + dt, j〈ξt, e j〉Πe j, (2.15)

and γ(T ( j)
t ( f )zt) = ΠDtγ(T ( j)

t−1( f )zt−1) + f (·)dt, j〈ξt, e j〉Πe j. (2.16)

To estimate the parameters of our MS-VAR model, the EM algorithm is utilized. In
the E-step, the conditional expectation of the log-likelihood function is formulated, which is

E

log
dPθ̂

dPθ

∣∣∣∣∣Ft

, where θ is the parameter of interest. In the M-step, we maximize the expression

obtained in the E-step by differentiating with respect to the parameter of interest. Appendices 1
and 2 demonstrate how the EM algorithm is executed. The EM-based estimators for the model
parameters are

π̂s j =
Ĵ(s j)

t

Ô( j)
t

, (2.17)

ψ̂11,k, j =

Γ̂t, j(EGt−kEGt) −
∑p

l,k ψ̂11,l, jΓ̂t, j(EGt−kEGt−l) −
∑p

l=1 ψ̂12,l, jΓ̂t, j(EGt−kEPt−l)
−

∑q
l=0 φ̂11,l, jΓ̂t, j(EGt−kOPt−l) −

∑q
l=0 φ̂12,l, jΓ̂t, j(EGt−kIRt−l) − µ̂1, jΓ̂t, j(EGt−k)


Γ̂t, j(EG2

t−k)
, (2.18)

ψ̂12,k, j =

Γ̂t, j(EPt−kEGt) −
∑p

l=1 ψ̂11,l, jΓ̂t, j(EPt−kEGt−l) −
∑p

l,k ψ̂12,l, jΓ̂t, j(EPt−kEPt−l)
−

∑q
l=0 φ̂11,l, jΓ̂t, j(EPt−kOPt−l) −

∑q
l=0 φ̂12,l, jΓ̂t, j(EPt−kIRt−l) − µ̂1, jΓ̂t, j(EPt−k)


Γ̂t, j(EP2

t−k)
, (2.19)

φ̂11,k, j =

Γ̂t, j(OPt−kEGt) −
∑p

l=1 ψ̂11,l, jΓ̂t, j(OPt−kEGt−l) −
∑p

l=1 ψ̂12,l, jΓ̂t, j(OPt−kEPt−l)
−

∑q
l,k φ̂11,l, jΓ̂t, j(OPt−kOPt−l) −

∑q
l=0 φ̂12,l, jΓ̂t, j(OPt−kIRt−l) − µ̂1, jΓ̂t, j(OPt−k)


Γ̂t, j(OP2

t−k)
, (2.20)
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φ̂12,k, j =

 Γ̂t, j(IRt−kEGt) −
∑p

l=1 ψ̂11,l, jΓ̂t, j(IRt−kEGt−l) −
∑p

l=1 ψ̂12,l, jΓ̂t, j(IRt−kEPt−l)
−

∑q
l=0 φ̂11,l, jΓ̂t, j(IRt−kOPt−l) −

∑q
l,k φ̂12,l, jΓ̂t, j(IRt−kIRt−l) − µ̂1, jΓ̂t, j(OPt−k)


Γ̂t, j(IR2

t−k)
, (2.21)

ψ̂21,k, j =

̂Γt, j(EGt−kEPt) −
∑p

l,k ψ̂21,l, jΓ̂t, j(EGt−kEGt−l) −
∑p

l=1 ψ̂22,l, jΓ̂t, j(EGt−kEPt−l)
−

∑q
l=0 φ̂21,l, jΓ̂t, j(EGt−kOPt−l) − µ̂2, jΓ̂t, j(EGt−k)


Γ̂t, j(EG2

t−k)
, (2.22)

ψ̂22,k, j =

̂Γt, j(EPt−kEPt) −
∑p

l=1 ψ̂21,l, jΓ̂t, j(EPt−kEGt−l) −
∑p

l,k ψ̂22,l, jΓ̂t, j(EPt−kEPt−l)
−

∑q
l=0 φ̂21,l, jΓ̂t, j(EPt−kOPt−l) − µ̂2, jΓ̂t, j(EPt−k)


Γ̂t, j(EP2

t−k)
, (2.23)

φ̂21,k, j =

̂Γt, j(OPt−kEPt) −
∑p

l=1 ψ̂21,l, jΓ̂t, j(OPt−kEGt−l) −
∑p

l=1 ψ̂22,l, jΓ̂t, j(OPt−kEPt−l)
−

∑q
l,k φ̂21,l, jΓ̂t, j(OPt−kOPt−l) − µ̂2, jΓ̂t, j(OPt−k)


Γ̂t, j(OP2

t−k)
, (2.24)

µ̂1, j =

̂Γt, j(EGt) −
∑p

l=1 ψ̂11,L, jΓ̂t, j(EGt−l) −
∑p

l=1 ψ̂12,l, jΓ̂t, j(EPt−l)
−

∑q
l=0 φ̂11,l, jΓ̂t, j(OPt−l) −

∑q
l=0 φ̂12,l, jΓ̂t, j(IRt−l)


Ôt, j

, (2.25)

and µ̂2, j =
Γ̂t, j(EPt) −

∑p
l=1 ψ̂12,L, jΓ̂t, j(EGt−l) −

∑p
l=1 ψ̂22,l, jΓ̂t, j(EPt−l) −

∑q
l=0 φ̂21,l, jΓ̂t, j(OPt−l)

Ôt, j

. (2.26)

The proof of (2.17) is similar to that in Mamon et al. [32]. The derivations of Equations
(2.18)-(2.26) are given in Appendices 1 and 2. As established in van der Vaart [50], the MLE
estimators are consistent and follow an asymptotically normal sampling distribution.

The estimation of the parameter σ is not calculated through the EM-based procedure. The
number of variables included in the MS-VAR system is already too many, and this number
becomes overwhelmingly large particularly when the lags of the MS-VAR system are long into
the past. As a result, the estimation of σ is not only unwieldy but also unstable. A simple
device to circumvent this issue is through the use of the estimators

σ̂1 =

√√√√√√∑N
j=1

∑T
t=1

(
EGt − µ̂1, j −

∑p
k=1 ψ̂11,k, jEGt−k −

∑q
k=0

(
ψ̂12,k, jEPt−k + φ̂11,k, jOPt−k + φ̂12,k, jIRt−k

))2

NT − 1
,

and

σ̂2 =

√√√√√√∑N
j=1

∑T
t=1

(
EPt − µ̂2, j −

∑p
k=1 ψ̂22,k, jEPt−k −

∑q
k=0

(
ψ̂21,k, jEGt−k + φ̂11,k, jOPt−k

))2

NT − 1
.

The rationale for the above estimator is consistent with the assumption in Equation (2.5)
that σ is assigned a constant value; that is, σ is the same in all regimes. Each equation in
the VAR system is a linear regression, with σ being the residual term. Once the coefficients
are estimated through the EM-based procedure, the residuals, together with their means and
squares, are readily generated for each individual state.
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In order to determine the causality between EGt and EPt, it is essential to compute the
Fisher information of every parameter. In Equation (2.5), if any of the coefficients ψ̂12,k are
significantly different from zero, then we conclude that EPt−k causes EGt. If any of the coef-
ficients of ψ̂21,k is significantly different from zero, then we conclude that EGt−k causes EPt.
The same principle applies to the causality between OP and IR. To test the significance of a
variable in the regression, a hypothesis test is required. The null hypothesis, which asserts that
the coefficient of the variable is not different from zero, is paired with the alternative hypothesis
stating that the coefficient is different from zero.

There are various ways to compute the Fisher information for EM algorithm. Louis [31],
under an incomplete-data setting, developed a procedure for extracting the observed Fisher-
information matrix when the EM algorithm is applied to find the MLEs. In this study, the Fisher
information I(θ) is calculated with the use of the HMM algorithm. For a generic parameter θ,
the expressions for the pertinent I(̂θ) are

I(ψ̂11,k, j) =
Γ̂t, j(EG2

t−k)

σ̂2
1, j

, I(φ̂12,k, j) =
Γ̂t, j(IR2

t−k)

σ̂2
2, j

, I(ψ̂12,k, j) =
Γ̂t, j(EP2

t−k)

σ̂2
1, j

, I(ψ̂22,k, j) =
Γ̂t, j(EP2

t−k)

σ̂2
2, j

,

I(φ̂11,k, j) =
Γ̂t, j(OP2

t−k)

σ̂2
1, j

, I(φ̂21,k, j) =
Γ̂t, j(OP2

t−k)

σ̂2
2, j

, I(φ̂12,k, j) =
Γ̂t, j(IR2

t−k)

σ̂2
2, j

.

(2.27)

The derivations of the expressions in Equation in (2.27) are relegated to Appendices 3 and 4.
As per Toda and Peter [48], the examination of causality in a VAR model makes use of the

Wald test, which involves the Fisher information of each parameter through the p-value

2

1 − Φ


∣∣∣∣∣∣∣ θ̂

1/
√
I(θ)

∣∣∣∣∣∣∣
 , (2.28)

where Φ is the cumulative distribution function of the standard normal distribution. In this
case, Φ(·) has the range [0.5, 1.0] due to its argument constrained by the absolute value. The
p−value is our tool in gauging whether or not the distance between the coefficient estimate θ̂
and 0 is statistically significant.



Chapter 3

Data overview

The data sets used in this study consist of five variables (viz. wholesale electricity price (EP),
share of renewable energy in electricity generation (REG), volume index of real GDP, Brent
oil price (OP), and short-term interest rate (IR)); three of these (i.e., EP, OP and REG) are
economic indicators from the energy sector and the remaining two (i.e., GDP and IR) measure
economic performance. In this study, two MS-VAR models are estimated using the data sets
for each of the four regions. The first model deals with two endogenous variables (GDP and
EP) and two exogenous variables (IR and OP). The second model focuses on two endogenous
variables (GDP and REG) and two exogenous variables (IR and OP).

The central concern of this thesis is the examination of the nexus between the price of re-
newable energy and economic growth. Unlike non-renewable resources (e.g., coal, petroleum,
natural gas, etc), there is no tangible price or direct index for renewable sources. Given that
a huge portion of renewable sources are harnessed to primarily produce electricity, especially
in the four regions of our case study, it makes the electricity price to be a rational substitute
for the price of renewable energy. In the past, a majority of the empirical investigations were
devoted to probing, by and large, the effects of renewable-energy output on economic growth.
Therefore, for the purpose of comparison, we also delve into the share of renewable energy in
electricity generation (REG). The volume index of real GDP is used as a proxy for economic
growth. Furthermore, it is plausibly deemed that the price of conventional-energy sources, to
some extent, impacts economic growth along with renewable energy. Thus, the Brent oil price
(OP) is taken to assume the role of conventional energy. Oil price is a macroeconomic-activity
variable and akin to this, the short-term interest rate is part of our data set to boot.
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Figure 3.1: Proportion of renewable sources used in electricity generation in year 2018 for the top 10 countries

Our data sets include the time series data of three countries that belong to the top 10 in
terms of the share of renewable sources in electricity generation. Figure 3.1 depicts the top ten
countries in the world in reference to their renewable resources utilisation to produce electric
power.

We selected three countries (Norway, New Zealand, and Canada) in our analysis because
these countries have very high shares of renewable energy in the production of electricity. On
account of this, the electricity price is regarded as a satisfactory proxy for renewable-energy
price. The said three countries were also specifically chosen in view of data availability and
reliability. Each country has their own regulatory framework for the electricity market. Nor-
way, New Zealand, and the two provinces of Canada (Alberta and Ontario) deregulated their
electricity markets at different levels of liberalisation in the last decade, allowing a healthy mar-
ket competition in the electricity-generation sector. These regions operate their own electricity
markets: Norway’s Nord Pool, New Zealand Electricity Market (NZEM), Alberta Electric Sys-
tem Operator (AESO), and Ontario Independent Electricity System Operator (IESO), whereby
firms buy and sell wholesale electricity. Whereas, the electricity markets in Brazil, Colombia,
and others are heavily regulated and do not allow market competition; as such, there are no
wholesale electricity price data for these countries. The variables in each country included in
our data sets together with their descriptions are listed in Table 3.1.

The GDP volume index data for Norway and New Zealand were collected from the OECD
statistics. For Alberta, the annual real GDP data (in $ billion) were compiled by the Govern-
ment of Alberta, while for Ontario the quarterly real GDP data were gathered by the Ontario
Ministry of Finance. The Canadian real GDP data are publicly accessible. The GDP series
is transformed into a GDP volume index by using 2015 as the base year. The monthly aver-
age wholesale electricity prices for Norway, New Zealand, Alberta, and Ontario were obtained
from Statistics Norway, Electricity Authority, AESO, and IESO, respectively. The price data
are then homogenized into prices on a quarterly basis by recording only the last value for each
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quarter. The time series data on the shares of renewable energy utilized for electricity gen-
eration were acquired from Enerdata Global Energy Yearbook for Norway and New Zealand.
The Alberta’s and Ontario’s REG data were separately obtained from Statistics Canada and
IESO. The short-term interest rates, proxied by appropriate yield rates of T-bill instruments in
each region, were taken from the OECD statistics for all countries; for emphasis, Alberta and
Ontario share the same Canadian short-term interest rates.

We sourced out the quarterly Brent oil prices (in $ per barrel), keeping only the last value of
each quarter, from the U.S. Energy Information Administration (EIA). For certain variables on
a yearly basis, they were converted into quarterly series by using the quadratic match method
noted for its convenient operational scheme.

Table 3.1: Description of variables for the four regions

Region Variable Definition Time Source

Norway GDP GDP volume index with 2015 as base year 1998Q1-2019Q3 OECD statistics
EP Wholesale electricity price in $ per KWh 1998Q1-2019Q3 Statistics Norway
REG Share of renewable energy in electricity generation (%) 1998-2018 Enerdata Global Energy Statistical Yearbook
IR Short-term interest rates 1998Q1-2019Q3 OECD statistics

New Zealand GDP GDP volume index with 2015 as base year 1996Q4-2019Q3 OECD statistics
EP Wholesale electricity price in $ per MWh 1996Q4-2019Q3 Electricity Authority
REG Share of renewable energy in electricity generation (%) 1996-2018 Enerdata Global Energy Statistical Yearbook
IR Short-term interest rates 1996Q4-2019Q3 OECD statistics

Alberta GDP GDP volume index with 2015 as base year 2000-2018 Government of Alberta
EP Wholesale electricity price in $ per MWh 2000Q1-2018Q4 Alberta Electric System Operator
REG Share of renewable energy in electricity generation (%) 2005-2016 Statistics Canada
IR Short-term interest rates 2000Q1-2018Q4 OECD statistics

Ontario GDP GDP volume index with 2015 as base year 2002Q3-2019Q3 Ontario Ministry of Finance.
EP Wholesale electricity price in $ per MWh 2002Q3-2019Q3 Independent Electricity System Operator
REG Share of renewable energy in electricity generation (%) 2003-2019 Independent Electricity System Operator
IR Short-term interest rates 2002Q3-2019Q3 OECD statistics

All OP Brent oil price 1996Q1-2019Q3 U.S. Energy Information Administration

The original data sets for each region are shown in Figures 3.2-3.5. The GDP time series in
the four regions have general upward trends. The EP dynamics in the four regions as well as the
movements of the OP keep fluctuating. With the exception of Norway, the REG data in New
Zealand, Alberta, and Ontario have progressively increased over time. For the IR numbers in
all regions, they remained at a high level before 2010 but were relatively stable at a low level
thereafter.
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Figure 3.2: Original time-series data for Nor-
way

Figure 3.3: Original time-series data for New
Zealand

Figure 3.4: Original time-series data for Al-
berta

Figure 3.5: Original time-series data for On-
tario

Since we use the MS-VAR model, it is assumed that all the variables in the model are
stationary. For compatibility with this assumption, all the variables are converted to percent-
age change over the previous quarter. After this data transformation, the magnitudes of some
transformed variables are no longer comparable with the other transformed variables. The
transformed GDP and REG scales are very small; therefore, a multiplier of 100 is initiated to
make them at comparable levels with others. Figures 3.6-3.9 display the the percentage-change
time-series plots for each region.
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Figure 3.6: Time-series data (in % change)
for Norway

Figure 3.7: Time-series data (in % change)
for New Zealand

Figure 3.8: Time-series data (in % change)
for Alberta

Figure 3.9: Time-series data (in % change)
for Ontario
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Empirical investigation

As discussed in Chapter 3, two different models are estimated with one of the endogenous
variables being replaced. The two models are:
Model I

• Endogenous variable: ∆GDP and ∆EP

• Control variable: ∆OP and ∆IR

Model II

• Endogenous variable: ∆GDP and ∆REG

• Control variable: ∆OP and ∆IR

The use of the difference operator ∆ above is necessary to achieve stationary of input variables.
As noted above, we now deal with the variables’ percentage change and the resulting series are
stationary at this level.

4.1 Unit root tests

As previously emphasized, one important consideration for the unrestricted VAR is that all
series in the VAR should be stationary. Before fitting our MS-VAR models, the augmented
Dickey-Fuller (ADF) and Phillips-Perron (PP) tests are performed first to ascertain the station-
arity of the original variables. Table 4.1 reports the results of the unit-root tests applied to the
differenced time-series data. For the ADF test of each differenced series, the lag length p must
be assigned when applying the test to allow for higher-order AR processes. The optimal lag
lengths were selected with the use of the AIC.

An AR model of order p (AR(p)) can be written as

yt = α + βt +

p∑
i=1

φiyt−i + εt, (4.1)

23
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where α is the intercept term and βt is the time trend. To perform the ADF unit-root test on an
AR(p) process, we re-write Equation (4.1) as

∆yt = α + βt + γyt−1 +

p∑
i=1

δi∆yt−i + εt,

where γ = 1 − φ1. The p lagged-difference terms capture the serial correlation . If γ = 0 (or
φ1 = 1), the AR(p) process is a random walk process, which is a non-stationary series. The
existence of non-stationarity causes the potential issue of spurious regression.

A time series is trend-stationary if it has no unit root (γ < 0) and β , 0. With other
terms remaining unchanged, yt increases with time t at the rate β. The Dickey-Fuller (DF) test
statistic is computed as

DF =
γ̂

s γ̂

.

The coefficient sγ̂ represents the standard deviation of the estimated γ. The DF statistic follows
an asymptotic t-distribution.

Unlike the ADF test, which uses a parametric autoregressive structure in capturing serial
correlation, the PP test uses a non-parametric method to deal with serial correlation. The PP
test involves fitting the regression

yt = α + βt + φyt−1 + εt.

The null hypothesis is φ = 1, which means the series is non-stationary. For the alternative
hypothesis, φ < 1 indicating stationarity. A modification to account for serial correlation leads
to the test statistic

ADF =

√
σ̂2

λ̂2

φ̂ − 1
sφ̂
−

1
2

 λ̂2 − σ̂2

λ̂2

 (nsφ̂
σ̂2

)
,

λ̂2 = γ̂0 + 2
q∑

j=1

(
1 −

j
q + 1

)
γ̂ j, where

γ̂ j =
1
n

n∑
i= j+1

ε̂i ε̂i− j,

σ̂2 =
1
n

n∑
i=1

ε̂2
i .

(4.2)

In Equations (4.2), n is the number of observations of the series and q is the number of lags
determined by the Newey-West estimator introduced by Newey and West [38]. It is advisable
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to make several tests and see if the results reconcile. Before we test for the stationarity of the
time series, we recall that there are three specifications for the unit-root test:

(a) Trend and intercept components in the test equation (i.e., α , 0 and β , 0);
(b) An intercept only in the test equation (i.e. α , 0 and β = 0); and
(c) Neither trend nor intercept is in the test equation (i.e. α = 0 and β = 0). The steps to

choose the appropriate specification is outlined below.
(c.i) Plot the data and check the resulting graph for presence of deterministic regressor.

If there is a time trend, both trend and intercept are included in the test equation. If
no time trend is observed, we estimate the model with the intercept only.

(c.ii) After the model with intercept is estimated, we check whether the intercept co-
efficient is significant. If the intercept is significant, we include intercept in the
model. If the intercept is not significant, we estimate the model with no trend and
no intercept.

From Figures 3.6-3.9, there is no clear time trend in all time series. So, the model with intercept
is estimated for all time series. The results show that the intercepts of GDP and EP in all four
regions are significant. REG and IR in all four regions have no trend and no intercept. OP
has intercept in Alberta and Ontario, but has no trend and no intercept in New Zealand and
Norway.

The conclusions of both the ADF and PP tests are in agreement. The null hypothesis of
non-stationarity is rejected for all variables at the 5% significance level, and hence also at the
1%-significance level. All variables are, therefore, stationary, i.e. I(0) as well. We can now
proceed to the identification or parameter estimation of the MS-VAR model.

4.2 Numerical implementation

In implementing our HMM algorithm to find the parameters of the MS-VAR model, we must
decide on the number of lags and the number of regimes of the MS-VAR model. Note that the
number of coefficients increase dramatically with the increase in the number of lags and the
number of regimes. As each country’s data set used here is of relatively small size, it is reason-
able to keep the lag length and number of regimes small to make the estimation manageable.
We choose p = 2 and q = 1 and the number of regimes is set to 2. Hence, we include GDPt−1,
GDPt−2, EPt−1, and EPt−2 for the endogenous variables and OPt, OPt−1, IRt, and IRt−1 for the
control variates.

The implementation of the HMM algorithm requires initial values. There are several meth-
ods to find the initial parameters. These methods are discussed in Erlwein and Mamon [13],
Erlwein et al. [12], and Date and Ponamareva [6]. Unlike the aforesaid techniques for initial-
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Table 4.1: Outcome of the ADF and PP unit-root tests. The values reported are the ADF and
PP test statistics. The symbols ∗∗ and ∗∗∗ signifies rejection of the null hypothesis of a unit root
at the 0.05- and 0.01-significance levels, respectively.

∆GDP ∆EP ∆REG ∆IR ∆OP
Norway data
ADF -11.781∗∗∗ -9.783∗∗∗ -4.327∗∗∗ -4.657∗∗∗ -7.908∗∗∗

PP -11.821∗∗∗ -13.194∗∗∗ -4.405∗∗∗ -4.455∗∗∗ -10.420∗∗∗

New Zealand data
ADF -9.812∗∗∗ -10.312∗∗∗ -3.431∗∗∗ -4.902∗∗∗ -8.057∗∗∗

PP -9.186∗∗∗ -12.088∗∗∗ -6.801∗∗∗ -5.077∗∗∗ -10.489∗∗∗

Alberta data
ADF -4.122** -8.796∗∗∗ -2.024∗∗ -4.537∗∗∗ -8.439∗∗∗

PP -4.200∗∗∗ -13.172∗∗∗ -2.109∗∗ -4.599∗∗∗ -8.452∗∗∗

Ontario data
ADF -5.775∗∗∗ -7.036∗∗∗ -2.215∗∗∗ -4.560∗∗∗ -7.077∗∗∗

PP -5.830∗∗∗ -11.353∗∗∗ -4.669∗∗∗ -4.292∗∗∗ -8.447∗∗∗

value determination under some stochastic process modelling set up, our initial-value search is
conducted in the context of regression models. In particular, we estimate the parameters of the
Markov-switching regression, and use these parameters as initial-value benchmarks; they are
presented in Appendix 6.

As previously stated, the data sets were collected and quoted on a quarterly basis. A win-
dow size of 2 points is used for each data set of the four regions. In other words, the model
parameters and filtered probabilities are updated every half a year. The HMM algorithm starts
by running the recursive Equations (2.13)-(2.16) on the data set. The processing of one batch
of data constitutes the so-called one algorithm step or an algorithm pass. In every pass, 2
vectors of data points, i.e., the data in t − 1 and t, are processed to estimate the Markov-chain-
dependent processes (2.8)-(2.10). When each pass is completed, updated parameter estimates
are generated by Equations (2.17)-(2.26). The filtered probabilities are updated by Equation
(2.7). This is followed by the next algorithm pass, which processes the next batch of data via
the filtering recursions, and the results are used as inputs for the initial values of the subsequent
data processing. The HMM estimation continues through the passes until the last batch of data
is processed exhaustively. The Fisher information could be calculated through Equation (2.27),
which is useful not only for the computation of the standard errors (SE) accompanying each
estimate but also - as Equation (2.28) shows - for the p-value in testing the null hypothesis that
the coefficient is equal to zero. A low p-value indicates that the coefficient is different from
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zero.

4.3 Empirical analysis

The estimates of the HMM-driven parameters based on the data for all four regions are reported
in Tables 4.2-4.9. Regime 1 is identified by the set of parameters with a higher intercept term,
and regime 2 is associated with the set of parameters with a lower intercept term. On this
account, regime 1 corresponds to a high-economic-growth period, and regime 2 is assigned to
the period of low-economic-growth period. The numbers in parentheses are the p-values of the
corresponding estimated parameters. If the p-value is very small, there is strong evidence to
reject the null hypothesis that the coefficient is equal to zero. The filtered probabilities for each
model are presented in Appendix 6.

Remark 3. To avoid clutter of numbers, the standard errors (SEs) of the estimated parameters

in Tables 4.2-4.9 are not shown. The histogram of the SEs are rightly skewed and almost all of

them lie in the interval [0.034, 0.473].

Remark 4. To address the adequacy of the estimated models, a residual analysis is conducted.

We calculate the pooled standardized residuals. Quantile-quantile plots are obtained to eval-

uate the normality of the pooled residuals. The autocorrelation and partial autocorrelation

functions of the residuals are also analysed to assess the independence of residuals. The re-

sults show that the residuals are independent and normally distributed.

Now, the models with the estimated parameters are ready for use to find out the causal
relationship between the variables. We customize the regression equation (2.2) to our study,
and consider

EGt

EPt

 =

µ1(zt−1)
µ2(zt−1)

 +
∑2

k=1

ψ11,k(zt−1) ψ12,k(zt−1)
ψ21,k(zt−1) ψ22,k(zt−1)

 EGt−k

EPt−k

 +
∑1

k=0

φ11,k(zt−1) φ12,k(zt−1)
φ21,k(zt−1) 0

 OPt−k

IRt−k

 +

σ1ε1,t

σ2ε2,t

 , (4.3)

and

 EGt

REGt

 =

µ1(zt−1)
µ2(zt−1)

 +
∑2

k=1

ψ11,k(zt−1) ψ12,k(zt−1)
ψ21,k(zt−1) ψ22,k(zt−1)

  EGt−k

REGt−k

 +
∑1

k=0

φ11,k(zt−1) φ12,k(zt−1)
φ21,k(zt−1) 0

 OPt−k

IRt−k

 +

σ1ε1,t

σ2ε2,t

 . (4.4)

Remark 5. We shall call Equations (4.3) and (4.4) Models I and II, respectively.

As an illustration, if the estimated coefficients of a variable other than those of the GDP are
statistically different from zero, a causal relationship is established from such a variable to the
GDP. Likewise, a causal relationship could be examined between other endogenous variables
and their control variables.
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In this thesis, our analysis also categorically focuses on Granger causality, which is a sta-
tistical concept of causality drew upon prediction. Through the utility of linear-regression
modelling of stochastic processes, Granger [17] laid out the mathematical formulation for this
type of causality. To be precise, a signal A “Granger-causes” a signal B means that the past
values of A contain information that enables the prediction of B above and beyond the infor-
mation contained in the past values of B alone. The null hypothesis of the Granger causality is
“variable/signal A does not Granger-cause variable/signal B”, which means the coefficients of
the model for A and its lag terms are all equal to zero. The alternative hypothesis is “at least
one coefficient of the model for A and its lag terms is not equal to zero”. The distribution of
the Granger-causality test statistic follows an F-distribution. If the p-value of the F-statistic is
small (at most 5%), the null hypothesis of no Granger-causality is rejected; and so A Granger-
causes B. The strength of the Granger causality is measured by the p-value of the F-statistic.
If the p-value is 1% or below (10% or above), the causality is very strong (very weak).

4.3.1 The case of Norway

Tables 4.2 and 4.3 give the respective Model I’s and II’s parameter estimates in the case of
Norway. These estimated parameters, as per Equations (4.3) and (4.4), are the coefficients of
the regressors (ψ’s and φ’s) and the intercepts (µ′is). In Model I, except for the intercept and
GDP terms, the differences between zero and the estimated coefficients of other variables are
not statistically significant. This evinces no causal relationship between any variables in Model
I. To that end, there is no significant relationship between the price of renewable energy and
the economic growth in Norway.

In Model II, no causality is found between the GDP and REG in either regime. The neu-
trality hypothesis is supported in both regimes in the case of Norway. However, we observe
that the two control variables OP and IR have an impact on GDP and REG. There is a unidirec-
tional causality running from IR to GDP in the first regime. There is a unidirectional causality
as well running from OP to REG in the first regime. In regime 2, there exists a unidirectional
causality running from OP to GDP. The results of the linear Granger-causality test for Norway
are summarized in Table 4.4, showing no causal relation between the variables in both models.
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Table 4.2: Parameter estimates based on the Norway data under Model I. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 1.093∗∗∗ (0.000) 0.125? (0.098) 0.615∗∗∗ (0.000) 0.123∗∗ (0.005)
∆GDPt−1 -0.518∗ (0.038) -0.070 (0.281) -0.211 (0.167) -0.032 (0.418)
∆GDPt−2 -0.754∗∗ (0.003) -0.048 (0.466) -0.214 (0.155) -0.057 (0.143)
∆EPt−1 -0.169 (0.849) -0.124 (0.594) -0.416 (0.374) -0.199 (0.102)
∆EPt−2 -0.217 (0.811) -0.070 (0.767) -0.747 (0.109) -0.189 (0.118)
∆OPt 1.703 (0.281) -0.252 (0.54) 0.332 (0.692) 0.044 (0.838)
∆OPt−1 0.267 (0.864) 0.037 (0.927) 0.682 (0.416) -0.003 (0.988)
∆IRt 0.197 (0.934) 2.047 (0.118)
∆IRt−1 -3.768 (0.106) -1.230 (0.349)

p11 0.805
p22 0.939
σGDP 1.340
σEP 0.348

Table 4.3: Parameter estimates based on the Norway data under Model II. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 1.021∗∗∗ (0.000) -0.036 (0.382) 0.662∗∗ (0.004) -0.015 (0.765)
∆GDPt−1 -0.440∗∗ (0.005) 0.051 (0.136) -0.387? (0.079) 0.014 (0.772)
∆GDPt−2 -0.538∗∗ (0.001) 0.052 (0.118) -0.268 (0.224) 0.037 (0.431)
∆REGt−1 1.891 (0.136) 0.658∗ (0.016) 0.458 (0.486) 0.302∗ (0.033)
∆REGt−2 -0.805 (0.560) 1.203∗∗∗ (0.000) -0.369 (0.567) 0.200 (0.149)
∆OPt 0.007 (0.995) 0.006 (0.981) 0.661 (0.540) -0.029 (0.899)
∆OPt−1 -0.724 (0.509) -0.491∗ (0.037) 1.799? (0.088) 0.019 (0.932)
∆IRt -3.657∗ (0.026) 2.025 (0.204)
∆IRt−1 0.853 (0.596) -0.290 (0.861)

p11 0.920
p22 0.873
σGDP 1.318
σREG 0.284
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Table 4.4: Results of the Granger’s linear-causality test for the Norway data

Null hypothesis F-statistic p-value

Model I
∆EP does not Granger cause ∆GDP 3.042 0.219
∆OP does not Granger cause ∆GDP 0.698 0.706
∆IR does not Granger cause ∆GDP 0.942 0.624

∆GDP does not Granger cause ∆EP 2.523 0.283
∆OP does not Granger cause ∆EP 0.067 0.967

Model II
∆REG does not Granger cause ∆GDP 3.120 0.210
∆OP does not Granger cause ∆GDP 1.304 0.521
∆IR does not Granger cause ∆GDP 1.190 0.552

∆GDP does not Granger cause ∆REG 3.291 0.193
∆OP does not Granger cause ∆REG 3.216 0.200

4.3.2 The case of New Zealand

The respective sets of parameter estimates under Models I and II in the case of New Zealand
are displayed in Tables 4.5 and 4.6. From the results using Model I, we find evidence of a
unidirectional causality going from GDP to EP in regime 1. Nonetheless, the same causality
does not hold in regime 2. In the high-economic-growth period, the GDP has a significant
effect on the price of renewable energy. Furthermore, a unidirectional causality is discernible
from IR to GDP in regime 2.

Based on Model II’s results, no link is found between the GDP and REG. Accordingly, there
is no prevailing relationship between the share of renewable energy and economic growth. In
both regimes, the New Zealand data gives credence to the neutrality hypothesis. The results
of the Granger’s linear-causality test for the New Zealand data are shown in Table 4.7. A
unidirectional causality running from OP to EP is unveiled in Model I while a unidirectional
causality is seen in Model II running from REG to GDP. Finally, each of IR and OP individually
causes GDP in the second regime under Model II.
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Table 4.5: Parameter estimates based on the New Zealand data under Model I. Numbers in
parentheses are p-values of the corresponding estimated parameters. Each parameter is indi-
cated as significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗),
at the 5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.866∗∗∗ (0.000) 0.089 (0.467) 0.377∗∗ (0.008) 0.228∗ (0.018)
∆GDPt−1 -0.093 (0.542) 0.225∗ (0.030) 0.143 (0.259) 0.112 (0.193)
∆GDPt−2 -0.090 (0.547) 0.028 (0.785) 0.233? (0.072) -0.064 (0.466)
∆EPt−1 0.011 (0.960) -0.100 (0.503) -0.063 (0.738) -0.291∗ (0.023)
∆EPt−2 0.194 (0.38) -0.127 (0.396) -0.072 (0.703) -0.283∗ (0.027)
∆OPt 1.070 (0.295) 0.747 (0.281) 0.623 (0.369) 0.532 (0.258)
∆OPt−1 -0.141 (0.892) -0.176 (0.803) -0.23 (0.742) 0.364 (0.442)
∆IRt -0.722 (0.762) -2.622? (0.060)
∆IRt−1 -1.503 (0.544) 0.474 (0.725)

p11 0.852
p22 0.906
σGDP 1.051
σEP 0.713

Table 4.6: Parameter estimates based on the New Zealand data under Model II. Numbers in
parentheses are p-values of the corresponding estimated parameters. Each parameter is indi-
cated as significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗),
at the 5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 0.906∗∗∗ (0.000) 0.045 (0.896) 0.435? (0.051) 0.980∗ (0.035)
∆GDPt−1 0.008 (0.955) 0.000 (0.999) 0.198 (0.290) -0.475 (0.222)
∆GDPt−2 -0.137 (0.334) 0.051 (0.862) 0.400∗ (0.041) -0.107 (0.793)
∆REGt−1 -0.103 (0.114) 0.237? (0.079) -0.129 (0.120) 0.206 (0.233)
∆REGt−2 0.034 (0.606) 0.268? (0.053) 0.094 (0.202) 0.211 (0.166)
∆OPt -0.065 (0.942) -1.131 (0.542) -2.255∗ (0.041) -2.146 (0.351)
∆OPt−1 -0.784 (0.366) -1.796 (0.320) -1.799 (0.123) 2.241 (0.356)
∆IRt -1.237 (0.513) -2.871 (0.160)
∆IRt−1 -0.506 (0.76) 6.912∗∗ (0.007)

p11 0.888
p22 0.782
σGDP 1.229
σREG 2.559
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Table 4.7: Results of the Granger’s linear-causality test for the New Zealand data

Null hypothesis F-statistic p-value

Model I
∆EP does not Granger cause ∆GDP 0.590 0.744
∆OP does not Granger cause ∆GDP 1.100 0.577
∆IR does not Granger cause ∆GDP 0.193 0.908

∆GDP does not Granger cause ∆EP 2.680 0.262
∆OP does not Granger cause ∆EP 0.089 0.957

Model II
∆REG does not Granger cause ∆GDP 6.929 0.031
∆OP does not Granger cause ∆GDP 1.966 0.374
∆IR does not Granger cause ∆GDP 0.548 0.760

∆GDP does not Granger cause ∆REG 3.389 0.184
∆OP does not Granger cause ∆REG 0.802 0.670

4.3.3 The case of Alberta

For the Alberta data, the model-parameter estimates are recorded in Tables 4.8 and 4.9. There
exist, under the framework of Model I but in regime 2 only, two unidirectional casual relation-
ships running from GDP and OP to EP. Contrary to what was discovered in the New Zealand
data, the effect of economic growth on the price of renewable energy is present on the low
economic growth period. Additionally, the GDP is caused by two control variables, namely,
the IR and OP, in the first regime.

In Model II, a unidirectional causality running from REG to GDP is substantiated under
regime 1. This signifies that the share of renewable energy has a significant effect on the eco-
nomic growth in the high-economic-growth period. Both the growth and neutrality hypotheses
are sustained in regimes 1 and 2. Moreover, the same casualties in Model I are also observed.
The two control variables, IR and OP, in the first regime cause the GDP. As per the results of the
linear-Granger-causality test for the Alberta data, depicted in Table 4.10, there is no causality
between the variables for either model.
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Table 4.8: Parameter estimates based on the Alberta data under Model I. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.486∗ (0.023) 0.230∗ (0.040) 0.251 (0.295) 0.273∗ (0.030)
∆GDPt−1 0.674∗∗∗ (0.000) 0.071 (0.406) 0.252 (0.168) -0.262∗∗ (0.007)
∆GDPt−2 1.221∗∗∗ (0.000) 0.048 (0.578) 0.374∗ (0.036) 0.358∗∗∗ (0.000)
∆EPt−1 0.136 (0.628) -0.562∗∗∗ (0.000) -0.209 (0.554) -0.798∗∗∗ (0.000)
∆EPt−2 0.057 (0.835) -0.501∗∗∗ (0.000) -0.425 (0.237) -0.759∗∗∗ (0.000)
∆OPt -1.391 (0.179) 0.362 (0.506) 1.229 (0.415) 1.479? (0.062)
∆OPt−1 -5.321∗∗∗ (0.000) 0.591 (0.284) 0.378 (0.797) 0.561 (0.468)
∆IRt -6.891∗∗∗ (0.000) -0.036 (0.978)
∆IRt−1 1.265 (0.295) 0.397 (0.759)

p11 0.928
p22 0.917
σGDP 1.352
σEP 0.712

Table 4.9: Parameter estimates based on the Alberta data under Model II. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 2.071? (0.079) 0.022 (0.977) 0.067 (0.927) 0.516 (0.272)
∆GDPt−1 -5.269∗∗∗ (0.000) 0.652 (0.201) -0.018 (0.971) -0.030 (0.927)
∆GDPt−2 3.379∗∗∗ (0.000) -0.091 (0.856) 0.703 (0.159) 0.118 (0.713)
∆REGt−1 0.180 (0.515) 0.217 (0.224) -0.071 (0.766) 0.458∗∗ (0.003)
∆REGt−2 -0.822∗∗ (0.002) 0.386∗ (0.027) 0.066 (0.797) 0.647∗∗∗ (0.000)
∆OPt 8.542 (0.154) 3.142 (0.417) 4.067 (0.263) 1.784 (0.448)
∆OPt−1 23.409∗∗∗ (0.000) -3.390 (0.391) 1.966 (0.600) -0.386 (0.873)
∆IRt 21.277∗∗ (0.001) 1.666 (0.645)
∆IRt−1 -7.418 (0.213) -1.415 (0.700)

p11 0.827
p22 0.946
σGDP 4.105
σREG 2.653
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Table 4.10: Results of the Granger’s linear-causality test for the Alberta data

Null hypothesis F-statistic p-value

Model I
∆EP does not Granger cause ∆GDP 0.778 0.678
∆OP does not Granger cause ∆GDP 1.205 0.547
∆IR does not Granger cause ∆GDP 0.044 0.978

∆GDP does not Granger cause ∆EP 3.364 0.186
∆OP does not Granger cause ∆EP 3.077 0.215

Model II
∆REG does not Granger cause ∆GDP 0.030 0.985
∆OP does not Granger cause ∆GDP 3.906 0.142
∆IR does not Granger cause ∆GDP 0.217 0.897

∆GDP does not Granger cause ∆REG 0.400 0.819
∆OP does not Granger cause ∆REG 3.297 0.192

4.3.4 The case of Ontario

Tables 4.11 and 4.12 set out the estimates of model parameters for the Ontario data. In Model I,
we found evidence of a unidirectional causality from GDP to EP in regime 1; but this causality
does not, however, materialize in regime 2. Economic growth has a significant impact on
the price of renewable energy in the high-economic-growth period. A unidirectional causality
running from OP to GDP appears in regime 2.

Under Model II, the causality from GDP to REG in regime 1 is unidirectional. But, a bi-
directional causality running from GDP to REG exists in regime 2. The above results affirm
the conservation and feedback hypotheses in regimes 1 and 2, respectively. Added to that, the
GDP is also affected by the IR in regime 2. The standard linear-Granger-causality test’s results
are tabulated in Table 4.13, indicating a bidirectional causality between GDP and REG.
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Table 4.11: Parameter estimates based on the Ontario data under Model I. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.428? (0.056) 0.624∗∗ (0.008) 0.322∗∗ (0.010) 0.146 (0.268)
∆GDPt−1 0.118 (0.551) -0.461∗ (0.027) 0.316∗∗ (0.003) 0.048 (0.668)
∆GDPt−2 0.314 (0.118) 0.448∗ (0.034) 0.380∗∗∗ (0.000) -0.039 (0.729)
∆EPt−1 0.182 (0.361) -0.611∗∗ (0.004) 0.105 (0.598) -0.522∗ (0.013)
∆EPt−2 0.297 (0.134) -0.721∗∗ (0.001) 0.069 (0.732) -0.531∗ (0.013)
∆OPt 0.038 (0.977) -0.710 (0.618) -1.038? (0.096) 0.802 (0.221)
∆OPt−1 -0.334 (0.808) -1.764 (0.221) -0.478 (0.455) 0.342 (0.611)
∆IRt 0.126 (0.945) -0.774 (0.231)
∆IRt−1 -0.112 (0.949) 0.317 (0.625)

p11 0.889
p22 0.965
σGDP 0.890
σEP 0.936

Table 4.12: Parameter estimates based on the Ontario data under Model II. Numbers in paren-
theses are p-values of the corresponding estimated parameters. Each parameter is indicated as
significant at the 0% level (with the symbol ∗∗∗), at the 1 % level (with the symbol ∗∗), at the
5% level (with the symbol ∗) and at the 10% level (with the symbol ?).

Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 0.860∗∗∗ (0.000) -0.001 (0.999) -1.199∗∗∗ (0.000) -0.176 (0.715)
∆GDPt−1 -0.027 (0.890) -0.848∗ (0.020) 0.075 (0.734) 0.697? (0.094)
∆GDPt−2 0.222 (0.260) 1.136∗∗ (0.002) 1.654∗∗∗ (0.000) -0.244 (0.566)
∆REGt−1 -0.085 (0.224) 0.268∗ (0.042) 0.012 (0.924) 0.398? (0.098)
∆REGt−2 -0.057 (0.433) 0.478∗∗ (0.001) 0.177? (0.096) 0.147 (0.466)
∆OPt 1.725 (0.101) -2.777 (0.162) 0.891 (0.567) 1.218 (0.678)
∆OPt−1 -0.643 (0.532) -1.488 (0.444) 0.244 (0.881) -0.924 (0.765)
∆IRt -0.291 (0.787) -3.337? (0.078)
∆IRt−1 -0.533 (0.628) 3.044? (0.089)

p11 0.906
p22 0.858
σGDP 1.369
σREG 2.583
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Table 4.13: Results of the Granger’s linear-causality test for the Ontario data

Null hypothesis F-statistic p-value

Model I
∆EP does not Granger cause ∆GDP 2.010 0.366
∆OP does not Granger cause ∆GDP 0.595 0.743
∆IR does not Granger cause ∆GDP 0.156 0.925

∆GDP does not Granger cause ∆EP 0.545 0.761
∆OP does not Granger cause ∆EP 0.606 0.739

Model II
∆REG does not Granger cause ∆GDP 5.456 0.065
∆OP does not Granger cause ∆GDP 0.918 0.632
∆IR does not Granger cause ∆GDP 1.810 0.405

∆GDP does not Granger cause ∆REG 5.436 0.066
∆OP does not Granger cause ∆REG 2.468 0.291

With the various aspects of our empirical investigation taken into consideration, common
features emerge from the four data sets. It is important to note that economic growth possesses
more impact on the energy variables, whereas the energy variables have less impact on eco-
nomic growth. This is the causality that came out for New Zealand, Alberta, and Ontario, that
is, a unidirectional causal relationship running from the economic growth to the price of renew-
able energy albeit in one of the regimes only. For New Zealand and Ontario, the causality arises
in the high-economic-growth period. For Alberta, the causality surfaces in the low-economic-
growth period. This upshot bespeaks the economic growth’s impact on the price of renewable
energy, in consonance with economic performance. The causality encountered in the Norway
and Ontario data is unidirectional from economic growth to the share of renewable energy; this
causality occurs in different regimes for Norway and Ontario.

On the energy side, there is no causal relation running from the price of renewable energy
to economic growth. The effect of the share of renewable energy on economic growth is ev-
ident only in Alberta and Ontario. The two control variates, interest rate and oil price, have
their importance in certain circumstances. In all four regions studied, there is a presence of
causality from the interest rate to economic growth, confirming the critical role of interest rate
on the economic growth. This reconciles with the monetary policy that economic managers
and regulators typically would adjust short-term interest rate in response to varying economic
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developments and conditions. It has to be noted that oil price, for the most parts, also affects
economic growth; but its effect on the renewable-energy variables is only seen in Norway and
Alberta. For the four regions that we investigated, there are only two Granger-based causalities:
a unidirectional causal relationship running from the share of renewable energy to economic
growth and reverse of this causal relation in the case of Ontario.

Remark 6. In some regimes, the MS-VAR model’s result of no causal relation jibes with those

of the linear VAR model. However, the MS-VAR model captures causality in some regimes that

a linear VAR model simply cannot.

An increase in economic growth rate could imply a rise in renewable-energy infrastructure
investments. New technology development is then strengthened and this could lower down
the cost of adopting renewable energy. Consequently, there may be a reduction in the price
of renewable energy and a continuing enlargement in the share of renewable energy for power
generation. On the other side, the transition from non-renewable energy to renewable energy is
typically a slow progress. Therefore, the impact of the change in the share of renewable energy
on economic growth is not observable in the short-run (e.g., 1 or 2 years). This explains why
the renewable-energy price may not have much impact on economic growth.
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Policy implications

The results of the unit-root test signified that all the variables are integrated of order zero, I(0).
Considering the small sample size of the data set, the lag length for all the variables and the
number of regimes are set to 2. The results from the MS-VAR models were fairly mixed. There
is no causality relationship between the price of renewable energy and the economic growth in
Norway in any economic regime. There are unidirectional causalities running from economic
growth to the price of renewable energy in the high-economic-growth period in New Zealand
and Ontario. The same causality appears in Alberta, but in the low-economic-growth period.
The results on the connection between the share of renewable energy and economic growth are
also mixed. There exists a unidirectional causality going from economic growth to the share
of renewable energy in Norway and Ontario in the low- and high-economic-growth periods,
respectively. A bi-directional causality is found in the low regime in Ontario. The effect of the
share of renewable energy on economic growth only manifested in the high-economic growth
in Alberta. In many cases, there exists causalities running from the short-term interest rate
and oil price to economic growth. However, oil price has causal effect only on the price of
renewable energy and the share of renewable energy in Alberta and Norway, respectively. The
empirical findings of this study have several far-reaching implications.

First, the price of renewable energy and the share of renewable energy play little role on
enhancing economic growth. Despite the share of renewable energy having impact on the
economic growth in the two Canadian provinces, it is impossible to increase further the share
of renewable energy in the short run. To stimulate economic growth, the short-term interest
rate is an efficient and practical tool for the policy makers to use. The GDP is determined
by consumption, investment, government outlays, and net exports. From these determiners,
investment is the most sensitive to changes in interest rate as most investment purchases are
based on bank borrowing. If interest rates fall, the cost of borrowing decreases and more
economic activity will ensue. As a result, more goods are being created. Also, lower interest
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rates lead to lower returns from savings. That is, this situation encourages people to spend
more on goods and services, thereby increasing consumption and GDP. The combined effects
of investment and consumption show that lower interest rates can stimulate economic growth
efficiently.

Second, the fossil-fuel price has a significant impact on economy. The potential episodes
of instability in the conventional energy market make an economy vulnerable. It is, there-
fore, prudent for the government to keep in mind the importance of reducing dependency on
conventional energy and working on energy-conservation policy.

Third, the share of renewable-energy sources in electricity generation improves economic
growth in different regimes for both provinces of Canada. This could be explained by the
fact that their individual share is still relatively small compared to those of New Zealand and
Norway; and the change in share has a bigger impact on economic growth.

A firm recommendation to the Canadian government is to encourage the society to look
for more renewable energy sources. It only not eases the devastating consequences of climate
change, but also fortifies economic stability. Policy makers could design systems, guidance,
and mechanisms to achieve such a goal with the aid of certain financial tools (e.g., increasing
direct investment to renewable-energy sources, providing loans to the private sector, and feed-
in tax incentives).
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Conclusion

Using quarterly data, this research empirically examined the price of renewable energy and its
linkage to the economic growth of the top three countries in terms of their share of renewable
energy in electricity generation. Given the high value of the share of renewable energy in elec-
tricity generation in these three countries, the wholesale electricity price is used as a proxy for
the price of renewable energy. In addition, the causal relation between the share of renewable
energy and economic growth is investigated in these countries. To explore the causality, an
MS-VAR model is employed with two control variables, namely, the short-term interest rate
and Brent oil price. The percentage change of the variables are used in the MS-VAR model.
In contrast to the usual estimation procedure in the EM algorithm proposed by Hamilton, we
developed the HMM algorithm tailored to MS-VAR model in estimating all the parameters.
Using the technique of measure change along with the EM algorithm, the HMM algorithm
spawned a self-calibrating model. The optimal estimates of the model parameters - established
through the EM algorithm - were presented in terms of the various filters involving the Markov
chain.

The causal relation from renewable energy’s consumption and production to economic
growth was examined in various studies. The results of these prior studies vary across differ-
ent countries. Our findings support the heterogeneity in the causal linkage between renewable
energy and economic growth across the four regions. In addition, the causal relation within a
region is not constant, and it changes with different characterisations of economic status.

We recognize the limitation of this study. When the lag length of MS-VAR model increases,
the model could be very unstable to estimate. Also, the parameters of all variables are governed
by one Markov chain only. An immediate enrichment of our model setting could be considered
with the two endogenous variables being governed by two different Markov chains as put
forward in [33]. Although the estimation is expected to be involved, it is envisaged that this
doable with the current computing technologies. In general, this could reduce the number of

40



41

lags and permit the scenario of two variables being in different regimes for a given time period.
Such a new setting will give more insights on how the regimes for each variable are also related.

By applying a modified HMM algorithm, the parameters and filtered probabilities could
be estimated. To this end, the regimes of the two endogenous variables are determined based
on their filtered probabilities. The resulting filtered regimes of the endogenous variables may
be used as dummy variables in a linear model, fortifying a new estimation procedure to be
attainably implementable.

Finally, this study concentrated on renewable-energy development within the industrial sec-
tor only. However, renewable-energy use in the industrial sector for countries like Norway and
New Zealand is already approaching their maximum limits. There is almost no room for more
industrial capacity in these countries in catering for additional renewable-energy initiatives.
With developments in technology, the use of renewable energy in the household sectors starts
increasing; for example, trend in installing rooftop solar panels, procurement of small wind tur-
bines, and exploring the option for electric cars. As in the industrial segment of the economy,
there is a large potential for renewable-energy sources that could be developed and primar-
ily tailored to the household sector. Future research should also consider the advancements
of renewable energy, purpose-built for the household sector taking into account sustainable
economy and environment.
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Appendices

These Appendices provide supplementary materials such as proofs of the main results, values
for the initialisation of the parameter estimation, and additional Figures and Tables to support
empirically the findings of this research. Appendices 1-2 present the proofs of the optimal
HMM-based parameters. The derivation of the pertinent Fisher information is contained in
Appendices 3-4 whilst the dynamic behaviour of filtered probabilities are depicted in Appendix
5. Lastly, we report in Appendix 6 the initial values for the estimation of the two MS-VAR
models.

Appendix 1. Optimal estimate for ψ in Subsection 2.4

In this Appendix, we detail the estimation procedure for the optimal estimate of ψ11,h, j. The esti-
mation steps for the other ψ’s and φ’s are similar. Considerψ11,h := (ψ11,h,1, ψ11,h,2, . . . , ψ11,h,n)> ∈
Rn. To solve for the estimate ψ̂11,h := (ψ̂11,h,1, ψ̂11,h,2, . . . , ψ̂11,h,n)> ∈ Rn, define a new measure
Pψ̂ through

Pψ̂

Pψ

∣∣∣∣∣
Ft

= Λ
ψ
t =

t∏
l=1

λ
ψ
l ,

where

λψl = exp
{1

2
σ1
−2(zl−1)

[(
EGl − µ1(zl−1) −

p∑
k=1

ψ11,k(zl−1)EGl−k

−

p∑
k=1

ψ12,k(zl−1)EPl−k −

q∑
k=0

φ11,k(zl−1)OPl−k −

q∑
k=0

φ12,k(zl−1)IRl−k

)2

−
(
EGl − µ̂1(zl−1) −

p∑
k,h

ψ11,k(zl−1)EGl−k −

p∑
k=1

ψ12,k(zl−1)EPl−k

−

q∑
k=0

φ11,k(zl−1)OPl−k −

q∑
k=0

φ12,k(zl−1)IRl−k − ψ̂11,h(zl−1)EGl−h

)2
]}
.
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This means that

L(ψ̂11,h) = E
[
log

Pθ̂

Pθ

∣∣∣∣∣Ft

]
= E

[ t∑
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1
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2
11,h(zl−1)EG2

l−h + 2
(
ψ11,h(zl−1)EGl−h

− ψ̂11,h(zl−1)EGl−h
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EGl − µ1(zl−1) −
p∑

k,h

ψ11,k(zl−1)EGl−k −

p∑
k=1

ψ12,k(zl−1)EPl−k

−

q∑
k=0

φ11,k(zl−1)OPl−k −

q∑
k=0

φ12,k(zl−1)IRl−k

)]∣∣∣∣∣Ft

]

= E
[ t∑

l=1

n∑
i=1

〈zl−1, ei〉
1
2
σ1,i

−2
(
− ψ̂2

11,h,iEG2
l−h − 2ψ̂11,h,iEGl−hEGl + 2ψ̂11,h,iµ1,iEGl−h

+ 2
p∑

k,h

ψ̂11,h,iψ11,k,iEGl−hEGl−k + 2
p∑

k=1

ψ̂11,h,iψ12,k,iEGl−hEPl−k

+ 2
q∑

k=0

ψ̂11,h,iφ11,k,iEGl−hOPl−k + 2
q∑

k=0

ψ̂11,h,iφ12,k,iEGl−hIRl−k + R
)∣∣∣∣∣Ft

]
=

n∑
i=1

1
2
σ1,i

−2
(
− ψ̂2
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,

where R is a reminder that does not contain ψ̂11,h,i. Then, we differentiate L(ψ̂11,h) with respect
to ψ̂11,h, j and set the result equal to zero. Thus,

ψ̂11,h, j =

̂Γt, j(EGt−hEGt) −
∑p
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−
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
Γ̂t, j(EG2

t−h)
.

Appendix 2. Optimal estimate for µ in Subsection 2.4

The derivation of the optimal estimate for µ1, j is provided below. Similar steps apply for the
derivation of the optimal estimate for µ2, j. Consider µ1 = (µ1,1, µ1,2, . . . , µ1,n)> ∈ Rn. Solving
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for the estimate µ̂1 = (̂µ1,1, µ̂1,2, . . . , µ̂1,n)> ∈ Rn, we define a new measure Pµ̂ via

Pµ̂
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where
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This tells us that

L(̂µ1) = E
[
log

Pθ̂

Pθ

∣∣∣∣∣Ft

]
= E

[ t∑
l=1

1
2
σ−2

1 (zl−1)
[
µ2

1(zl−1) − µ̂1
2(zl−1) + 2

(
µ1(zl−1) − µ̂1(zl−1)

)(
EGl −

p∑
k=1

ψ11,k(zl−1)EGl−k

−

p∑
k=1

ψ12,k(zl−1)EPl−k −

q∑
k=0

φ11,k(zl−1)OPl−k −

q∑
k=0

φ12,k(zl−1)IRl−k

)]∣∣∣∣∣Ft

]

= E
[ t∑

l=1

n∑
i=1

〈zl−1, ei〉
1
2
σ1,i

−2
(
− µ̂2

1,i − 2µ̂1,iEGl + 2
p∑

k=1

µ̂1,iψ11,k,iEGl−k

+ 2
p∑

k=1

µ̂1,iψ12,k,iEPl−k + 2
q∑

k=0

µ̂1,iφ11,k,iOPl−k + 2
q∑

k=0

µ̂1,iφ12,k,iIRl−k + R
)∣∣∣∣∣Ft

]

=

n∑
i=1

1
2
σ1,i

−2
(
− µ̂2
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ψ11,k,îΓt,i(EGt−k)

−

p∑
k=1
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where the remainder R is free of µ̂1,i. Differentiating L(µ̂1) with respect to µ̂1, j and setting it the
resulting derivative to 0, we get

µ1, j =
Γ̂t, j(EGt)−

∑p
k=1 ψ11,k, jΓ̂t, j(EGt−k)−
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Ôt, j
.
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Appendix 3. Fisher information for ψ in Subsection 2.4

We show the derivation of the Fisher information of ψ11,h, j. The Fisher information of other ψ’s
and φ’s follow similar derivation steps. The log-likelihood of ψ11,h, j is written as

l(ψ11,h, j) =

T∑
t=1

[
〈zt−1, e j〉

(
−

1
2

log(2π) − log(σ1, j) − λψl

)]
.

Consequently, the Fisher information of ψ11,h, j is

I(ψ11,h, j) = −E
[

d2l
dψ11,h, j

2

∣∣∣∣ψ11,h, j

]
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t−h

(σ1, j)2

)∣∣∣∣ψ(1k)
j

]
=

Γ̂t, j(EG2
t−h)

(σ1, j)2 .

Appendix 4. Fisher information for µ in Subsection 2.4

We provide the Fisher information calculation of µ1, j below. The same procedure applies in the
corresponding computation involving µ2, j. The log-likelihood of µ1, j can be written as

l(µ1, j) =

T∑
t=1

[
〈zt−1, e j〉

(
−

1
2

log(2π) − log(σ(1)
j ) − λµl

)]
.

Consequently, the Fisher information of µ(1)
j is

I(µ1, j) = −E
[

d2l

dµ(1)
j

2

∣∣∣∣µ(1)
j

]
= E

[ T∑
t=1

〈zt−1, e j〉

(σ1, j)2
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j

]
=

Ôt, j

(σ1, j)2 .

Appendix 5. Filtered probabilities for Models I and II in Sub-
section 4.3

This appendix presents the plots of the filtered probabilities implied by each region’s data set.
The graph in red indicates the filtered probabilities of being in regime 1, and the graph in green
traces the filtered probabilities of being regime 2.



BIBLIOGRAPHY 51

Figure 6.1: Evolution of the filtered probabilities
under Model I: Norway data

Figure 6.2: Evolution of the filtered probabilities
under Model I: New Zealand data

Figure 6.3: Evolution of the filtered probabilities
under model I: Alberta data

Figure 6.4: Evolution of the filtered probabilities
under Model I: Ontario data
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Figure 6.5: Evolution of the filtered probabilities
under Model II: Norway data

Figure 6.6: Evolution of the filtered probabilities
under Model II: New Zealand data

Figure 6.7: Evolution of the filtered probabilities
under Model II: Alberta data

Figure 6.8: Evolution of the filtered probabilities
under Model II: Ontario data

Appendix 6. Initial values in the model’s implementation de-
scribed in Subsection 4.3

The Tables in this Appendix display the initial values of the parameter estimation procedure
for Models I and II.
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Table 6.1: Initial values for the Norway data

Model I Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.80 -0.01 0.50 1.52
∆GDPt−1 -1.00 -4.50 -0.28 -0.51
∆GDPt−2 -0.43 -2.50 0.27 0.21
∆EPt−1 -0.42 0.59 0.01 0.59
∆EPt−2 -0.19 0.00 -2.00 0.00
∆OPt -6.00 -0.01 5.00 0.15
∆OPt−1 -2.00 -0.04 3.80 -0.04
∆IRt 0.03 -6.61
∆IRt−1 3.09 -1.13

Model II Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 0.54 -0.03 0.64 -0.26
∆GDPt−1 -0.34 0.30 -10.00 0.80
∆GDPt−2 -0.20 0.06 -3.00 0.04
∆REGt−1 3.50 0.63 0.42 0.63
∆REGt−2 -3.50 0.00 -0.51 0.00
∆OPt -2.60 0.02 -0.73 0.04
∆OPt−1 5.40 0.04 -0.53 0.04
∆IRt -10.78 0.94
∆IRt−1 -4.30 1.12
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Table 6.2: Initial values for the New Zealand data

Model I Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept -0.08 -0.01 1.07 0.03
∆GDPt−1 0.01 20.00 -0.29 6.68
∆GDPt−2 0.14 -0.01 0.03 -1.00
∆EPt−1 -0.01 0.40 0.00 0.40
∆EPt−2 -0.01 0.00 0.00 0.00
∆OPt -0.02 -1.00 -0.01 0.06
∆OPt−1 0.01 0.07 0.01 0.07
∆IRt -0.16 0.29
∆IRt−1 -0.39 0.02

Model II Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 0.59 -0.01 0.42 0.03
∆GDPt−1 0.49 5.00 0.33 8.00
∆GDPt−2 0.14 -1.00 -0.31 -1.00
∆REGt−1 -0.75 0.41 -0.50 0.41
∆REGt−2 -0.20 0.00 0.29 0.00
∆OPt -0.20 -1.20 -0.01 0.06
∆OPt−1 0.00 0.07 0.01 0.07
∆IRt -0.12 0.40
∆IRt−1 0.34 -0.57
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Table 6.3: Initial values for the Alberta data

Model I Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.12 42.69 0.33 -2.89
∆GDPt−1 0.65 -12.19 4.20 6.05
∆GDPt−2 0.02 4.69 0.06 -0.87
∆EPt−1 0.01 0.58 0.00 -0.92
∆EPt−2 -0.01 0.72 0.03 -0.79
∆OPt -0.02 -3.80 0.02 -0.09
∆OPt−1 0.00 0.00 0.00 0.00
∆IRt 2.16 -0.10
∆IRt−1 0.00 0.00

Model II Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept -0.70 0.02 0.23 0.06
∆GDPt−1 2.82 -0.01 2.14 0.04
∆GDPt−2 -0.75 0.00 0.34 0.01
∆REGt−1 1.69 0.35 0.14 1.07
∆REGt−2 -0.93 0.16 0.09 0.13
∆OPt -0.04 0.00 0.02 0.00
∆OPt−1 0.00 0.00 0.00 0.00
∆IRt 0.64 -0.35
∆IRt−1 0.00 0.00
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Table 6.4: Initial values for the Ontario data

Model I Regime 1 Regime 2

∆GDP ∆EP ∆GDP ∆EP

Intercept 0.65 0.99 0.54 0.50
∆GDPt−1 1.21 -3.42 5.00 -0.15
∆GDPt−2 -2.00 -0.09 5.00 0.09
∆EPt−1 -0.11 0.39 0.10 0.39
∆EPt−2 0.28 0.00 0.23 0.00
∆OPt 2.94 0.75 -0.15 -0.01
∆OPt−1 2.59 0.14 0.15 0.14
∆IRt -0.04 -0.18
∆IRt−1 -0.09 0.43

Model II Regime 1 Regime 2

∆GDP ∆REG ∆GDP ∆REG

Intercept 0.79 -2.12 0.95 22.27
∆GDPt−1 -20.00 0.33 1.70 4.41
∆GDPt−2 -0.30 0.01 0.01 -0.97
∆REGt−1 -0.24 0.35 -0.05 0.35
∆REGt−2 0.22 0.00 -0.02 0.00
∆OPt 4.00 -0.04 0.55 -0.15
∆OPt−1 0.27 -0.03 0.94 -0.03
∆IRt 4.91 -1.90
∆IRt−1 -0.31 -2.25
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