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Abstract 

Iron is an essential nutrient for the bacterium Staphylococcus aureus. Wild-type S. aureus utilizes 

various iron acquisition systems to support growth in iron deplete conditions. S. aureus small 

colony variants (SCVs) are associated with chronic infections, yet the mechanisms by which these 

variants acquire iron are unknown. Mutation of hemB, involved in heme biosynthesis, generated a 

stable SCV that was auxotrophic for hemin and formed small colonies on solid media. To support 

growth under iron deplete conditions, my data revealed that S. aureus hemB synthesizes the 

siderophore staphyloferrin B, but not staphyloferrin A, although both siderophores could be 

utilized by the hemB mutant if provided exogenously. Additionally, I demonstrated that the hemB 

mutant, in comparison to wild-type S. aureus, was defective for xenosiderophore utilization, 

including the clinically approved drug Desferal. This study yields important insight into the 

mechanisms by which S. aureus SCVs acquire iron to cause persistent infection. 
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Summary for Lay Audience 

Staphylococcus aureus is a serious threat to human health and can take on a small colony variant 

(SCV) form. S. aureus SCVs grow slowly and express genes differently than normal S. aureus 

because of an altered metabolism. SCVs have been linked to chronic S. aureus infections that are 

difficult to treat. To cause these infections, S. aureus SCVs must get iron from the host because it 

is an essential nutrient. S. aureus has evolved several ways to acquire iron in the host, such as the 

use of siderophores which bind iron strongly and carry it into the cell. While the iron acquisition 

strategies of normal S. aureus have been studied, it is unknown how S. aureus SCVs acquire iron. 

Here, the iron acquisition strategies of a stable S. aureus SCV, the hemB mutant, were investigated. 

The S. aureus hemB mutant was found to have a defect in the production of one of the two 

staphylococcal siderophores, which was related to differences in its metabolism. The hemB mutant 

used both staphylococcal siderophores, but could not use siderophores from other organisms, 

unlike like normal S. aureus. Siderophores were not important for the S. aureus hemB mutant in a 

mouse model of infection and SCVs were less infective than normal S. aureus. This study 

contributes to our understanding of how S. aureus SCVs acquire iron to cause lasting infections.  
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Chapter 1 

1 Introduction 

1.1 Staphylococcus aureus 

The notorious pathogen Staphylococcus aureus is a Gram-positive, coagulase-positive bacterium 

that is spherical in shape and forms grape-like clusters. S. aureus asymptomatically colonizes 

several sites of the human body, with nasal carriage being most prevalent1,2. Indeed, approximately 

30% of the human population are intermittent nasal carriers and about 20% are persistent nasal 

carriers2. The widespread prevalence of S. aureus is concerning, as individuals colonized by S. 

aureus are at an increased risk of infection by the opportunistic pathogen3–5. Importantly, S. aureus 

is a significant cause of morbidity and mortality, which is emphasized by reports that invasive S. 

aureus infections contribute to more deaths in the United States than HIV6. Owing to its ability to 

colonize virtually every tissue of the human body, S. aureus causes a wide range of infections 

including skin and soft tissue infections (SSTIs), bacteremia, pneumonia, endocarditis, and 

osteomyelitis6–8. 

The ability of S. aureus to acquire antibiotic resistance is a major clinical concern, as it 

complicates treatment of S. aureus infection. Notably, S. aureus developed resistance to penicillin 

and methicillin within two years of introduction of each of these antibiotics in the mid-1900s9–11. 

Methicillin-resistant S. aureus (MRSA) spread globally and was initially considered a nosocomial 

pathogen, until the emergence of community-associated MRSA (CA-MRSA) strains shifted this 

view within the last two decades12,13. Unlike hospital associated MRSA (HA-MRSA) strains that 

opportunistically infect immunocompromised patients, the newly emerged and genetically distinct 

CA-MRSA strains can infect otherwise healthy individuals12,13. Importantly, while CA-MRSA 

typically manifests as SSTIs, it can also cause more severe, and even lethal, infections such as 

necrotizing pneumonia and necrotizing fasciitis in diverse, otherwise healthy populations8,12,14. 

The most predominant CA-MRSA strain in North America is USA300 and, therefore, USA300 is 

often used in laboratories that study the molecular pathogenesis of S. aureus15,16. Investigation of 

S. aureus pathogenesis is critical to help identify novel therapeutic targets that, if perturbed, could 

ameliorate treatment of antibiotic-resistant S. aureus infection. 
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1.2 S. aureus pathogenesis 

The success of S. aureus as a pathogen is dependent on its ability to evade the host immune system 

and acquire or synthesize essential nutrients. For this, S. aureus employs an armamentarium of 

virulence factors (summarized in Fig. 1). Importantly, S. aureus coordinates the expression of its 

virulence factors by sensing environmental cues and a complex network of transcription 

regulators17. The details of each of these virulence factors is beyond the scope of this project but 

have been reviewed extensively17–21. Briefly, an important facet of innate immunity, the host’s 

first line of defense against invading pathogens, are professional phagocytes such as macrophages 

and neutrophils. These leukocytes target and eliminate invading pathogens, using a variety of 

antimicrobial effectors such as lysozyme, cationic antimicrobial peptides, and reactive oxygen 

species (ROS)18,22. Phagocytosis is facilitated by opsonization of pathogens through deposition of 

C3b – the resulting effector of the activated classical complement pathway – on the bacterial 

surface or binding of IgG to antigens on the cell surface20. However, S. aureus thwarts efficient 

phagocytosis by expressing virulence factors that interfere with opsonization, such as extracellular 

fibrinogen binding protein (Efb) which binds fibrinogen and masks C3b binding, and protein A 

which binds IgG in the incorrect orientation for phagocytosis23,24. Remarkably, phagocytosed S. 

aureus survive within leukocytes25–27, avoiding phagocyte-mediated killing by evading 

antimicrobial defenses18,22. In fact, work by the Heinrichs lab has characterized the replication of 

S. aureus within the phagolysosome of macrophages28. In addition to evasion of the host immune 

cells, S. aureus secretes effectors that target and kill cells, causing tissue damage and enabling 

dissemination throughout the host. Secreted toxins by S. aureus include bi-component leukocidins, 

α-toxin, and phenol soluble modulins (PSMs) which form pores and damage the membranes of 

host cells thereby evoking cell death29–31. Moreover, S. aureus utilizes microbial surface 

components recognizing adhesive matrix molecules (MSCRAMMs) adhesin proteins to adhere to 

host extracellular matrix factors, which facilitate invasion of endothelial and epithelial cells and 

contribute to immune evasion20. In summary, S. aureus uses a plethora of virulence factors which 

enables the pathogen to prevail against host immune defences and to cause infections in host 

tissues. 
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Figure 1. S. aureus virulence factors. Schematic of the various virulence factors employed by S. 

aureus to evade the host immune response, disseminate throughout host tissue, and acquire 

essential nutrients. Figure courtesy of D.E. Heinrichs.  

 

 In addition to immune evasion, S. aureus must acquire essential nutrients within the host, 

such as iron, in order to proliferate during infection. To overcome nutritional deficiencies, S. 

aureus expresses amino acid, oligopeptide, and iron transporters to import critical nutrients from 

the environment32,33. Notably, S. aureus is particularly adept at acquiring iron and staphylococcal 

iron acquisition strategies have been an ongoing research interest of the Heinrichs lab for the past 

two decades. This project focuses on staphylococcal iron acquisition strategies, but through a new 

lens – that of S. aureus small colony variants (SCVs), which had not been studied prior to this 

project. Staphylococcal iron acquisition strategies and S. aureus SCVs will be described in detail 

following background information about iron and host iron homeostasis. 
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1.3 Iron 

1.3.1 Iron is an essential nutrient 

As mentioned, iron is an essential nutrient for S. aureus, but it is also indispensable for almost all 

lifeforms, with Borrelia burgdorferi and Lactobacillus spp. among notable exceptions34,35. Iron is 

involved in many fundamental cellular processes, including DNA replication, amino acid 

synthesis, and cellular respiration36. Specifically, iron functions as a versatile catalyst because it 

readily alternates between the ferrous (Fe2+) and ferric (Fe3+) oxidation states through single 

electron transfers. Thus, iron participates in electron transfer and oxidation reactions and is an ideal 

cofactor for metalloproteins36. Therefore, invading pathogens such as S. aureus and the host both 

require iron to maintain cellular function and must compete for this important nutrient. 

Unsurprisingly, there exists an evolutionary arms race for the battle for iron with an important 

caveat: excess iron is toxic. 

   

1.3.2 Iron toxicity 

The same chemical properties that enable iron as a redox-active catalyst can promote the 

unfavourable generation of intracellular ROS through Fenton chemistry and the Haber-Weiss 

reaction37,38: 

Fe3+ + •O2
- → Fe2+ + O2 (slow) 

Fe2+ + H2O2 → Fe3+ + •OH + OH- (Fenton reaction; fast) 

Net reaction: 

•O2
- + H2O2 → O2 + •OH + OH- 

ROS, such as the hydroxyl radicals generated here are powerful oxidizing agents that intoxicate 

cells through damage of nucleic acids, proteins, and lipids which can ultimately result in cell death 

unless they are neutralized39,40. Thus, while iron is essential for life, an excess is detrimental. In 

addition to ROS generated by excess iron, if too much iron is present in the blood or in tissues, it 

can form toxic ferric hydroxide precipitates, which are detrimental for the host41. These ferric 

hydroxide precipitates form because of the insolubility of ferric iron (Fe3+) under physiological 

conditions – an aerobic environment with neutral pH41,42. Aerobic organisms must therefore 

maintain a delicate balance, limiting the amount of free iron through strict regulation of its 

acquisition and sequestration to avoid toxicity caused by ROS and ferric hydroxide precipitates.  
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1.3.3 Iron bioavailability is limited 

Iron is one of the most abundant elements on Earth, but it is distinct from all the other nutrients 

required by pathogens, because it is the only nutrient not freely accessible from host tissue42. The 

insolubility of iron under physiological pH reduces the concentration of free Fe2+ to roughly 10-9 

M43. Further limitation of the availability of iron is essential for the host to mitigate against the 

harmful effects of free iron. Therefore, the host strictly regulates iron metabolism and sequesters 

iron (outlined in the next section) to reduce the concentration of free iron to as low as 10-24 M33. 

Low concentrations of free iron also protect the host from invading microbes, which must acquire 

iron from the host environment. Approximately 10-6 M iron is required to support bacterial growth, 

which is much higher than what is freely available33. Thus, sequestration of free iron by the host 

starves invading pathogens of this essential nutrient thereby curtailing bacterial growth. This 

represents an important facet of the host’s innate immune defense termed “nutritional immunity”. 

More specifically, nutritional immunity is defined as the process of actively starving pathogens of 

essential nutrients, such as iron, to promote bacteriostasis36,44. However, successful pathogens have 

evolved mechanisms to circumvent the host’s withholding strategies and still attain this essential 

nutrient under iron deplete conditions. Indeed, there exists an evolutionary arms race between hosts 

and pathogens, where invading microbes must employ a multitude of iron acquisition mechanisms 

to overcome host nutritional immunity to successfully colonize the host. An understanding of these 

iron acquisition mechanisms, such as those employed by S. aureus, will identify potential drug 

targets that, when perturbed, could limit nutrient acquisition and colonization by this invading 

pathogen that is difficult to treat through traditional antibiotic therapies. 

 

1.4 Host iron homeostasis 

To understand iron acquisition strategies employed by invading pathogens, such as S. aureus, it is 

important to first understand the tight regulation of iron within the host. It is essential for hosts to 

maintain homeotic iron concentrations within the body, as imbalances impact health and 

susceptibility to microbial infections45. Indeed, humans have several complex mechanisms to 

maintain incredibly low free iron levels that include regulation of iron absorption, iron storage and 

release from host cells, and scavenging of extracellular iron. This regulation begins in the proximal 

duodenum, where dietary iron absorption by enterocytes occurs, and is limited by the amount of 

iron stores within the body, to maintain a homeostatic level of total body iron45,46. Dietary iron is 
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either organic (heme iron) or inorganic (non-heme iron)46–48. The specialized transporters heme 

carrier protein-1 (HCP-1) and divalent metal transporter 1 (DMT1) on the surface of the 

enterocytes mediate the uptake of heme iron and Fe2+, respectively47,49,50. Prior to DMT1-mediated 

uptake into enterocytes, Fe3+ is first reduced to Fe2+ by duodenal cytochrome B (Dcytb), a ferric 

reductase enzyme47,51. The absorbed dietary iron can either be used in cellular processes by the 

enterocytes, stored intracellularly, or transported out of the cell by ferroportin (Fpn)46,47,52. 

Critically, when Fe2+ exits cells through Fpn, it is oxidized by ceruloplasmin and Fe3+ is 

rapidly bound by transferrin (Tfn)45,48. Tfn is a host glycoprotein that reversibly binds Fe3+ with 

high affinity, scavenging free iron to prevent its accumulation in the blood and restricting Fe3+ 

access to invading pathogens45. Tfn also plays a critical role as a host iron transporter, delivering 

iron to target cells through Tfn receptor 1 (TfR1) or Tfn receptor 2 (TfR2) binding, triggering 

receptor-mediated endocytosis45,53. Fe3+ bound to Tfn is released by acidification of the endosome 

and is then reduced to Fe2+ by the ferrireductase STEAP345,54. Next, DMT1 transports Fe2+ to the 

cytoplasm, where it can be utilized for cellular processes or stored intracellularly, as ferritin or 

hemosiderin45,48. The human body contains roughly 4 g of iron and the majority of it is stored 

within cells45,46. Roughly 29% of total body iron is stored as ferritin and hemosiderin55. Of the 

remaining 71%, approximately 70% is complexed to heme moieties in hemoglobin (Hb) usually 

contained within erythrocytes55. Scavenging host proteins haptoglobin (Hp) and hemopexin (Hx) 

rapidly bind free Hb and heme, respectively, because high levels of free heme can be toxic and 

stimulate growth of invading pathogens like S. aureus that can use heme as an iron source33,45. 

Lactoferrin (Lfn) is another host glycoprotein that, like Tfn, scavenges free Fe3+, but Lfn is 

predominantly found in mucosal secretions45. Furthermore, iron metabolism is regulated 

systemically by the peptide hormone hepcidin46–48. Hepcidin is secreted by hepatocytes in response 

to excess iron levels and in the event of an infection as part of the immune response46–48. Hepcidin 

functions to reduce iron levels by regulating the internalization and degradation of Fpn46–48. 

Ultimately, this leads to decreased uptake of dietary iron by enterocytes and reduced iron release 

from host cells46–48. 

 

1.4.1 Diseases caused by iron homeostasis imbalance 

The importance of the maintenance of host iron homeostasis is underscored by the impact on health 

and vulnerability to bacterial infection of iron deficiency or iron overload. For instance, anemia is 
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largely caused by iron deficiency, affects nearly one quarter of the global population, and is a 

significant cause of morbidity and mortality in young children and pregnant women55,56. Anemia 

is characterized by decreased concentration of erythrocytes, thus impaired ability to transport 

oxygen56. Furthermore, hereditary hemochromatosis (HH) is a prevalent autosomal recessive 

genetic disorder among individuals of Northern European descent57,58. HH is characterized by 

deregulation of iron absorption thus, increased iron levels within the body57,58. The majority of HH 

cases are associated with mutations of the human homeostatic iron regulator protein (HFE)59. HFE 

is thought to regulate the intestinal absorption of iron by regulation of hepcidin through its 

interaction with TfR1, but the exact mechanism of action is still unknown59. Iron overload caused 

by HH results in a multitude of clinical syndromes such as organ failure and increases host 

susceptibility to infectious disease due to saturation of Tfn36,57,59. Treatment of HH includes 

phlebotomy and iron chelation therapy59. One of the iron chelators used to treat iron overload is 

deferoxamine mesylate (DFO), which is particularly relevant for this study because S. aureus can 

utilize DFO as a source of iron60–62. DFO will be discussed in future sections, but it is important 

to note that treating iron overload using chelation therapy is complicated by pathogenic bacteria. 

However, while iron overload increases risk of infection, successful pathogens like S. aureus have 

evolved highly specialized iron acquisition mechanisms that allow for their nutritional 

requirements to be met, even in healthy individuals where iron homeostasis is maintained, and 

available iron is scarce. 

 

1.5 S. aureus iron acquisition 

As mentioned, to cause infection, S. aureus must evade the host immune system and meet its 

nutritional requirements. Indeed, S. aureus is a highly specialized pathogen and employs a vast 

array of virulence factors to effectively colonize virtually every tissue of the human body. Several 

of these virulence factors allow S. aureus to overcome nutritional immunity and acquire iron. The 

ability of S. aureus to meet iron nutritional requirements in a host where free extracellular iron is 

extremely scarce is dependent on sensing environmental signals, such as iron status, which results 

in expression of genes regulated by the ferric uptake regulator (Fur)33,63.  
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1.5.1 Fur regulation of virulence factors 

Fur mediates the S. aureus response to iron restricted conditions by causing a dramatic change in 

protein expression64–66. When iron is available, Fur dimerizes and binds Fur boxes, the consensus 

DNA sequence upstream of Fur-regulated genes and represses gene expression33,63. When 

intracellular concentrations of iron are low, iron dissociates from Fur, enabling expression of genes 

negatively regulated by Fur33,63. Interestingly, heart and kidney abscesses of S. aureus infected 

mice are likely iron restricted, as Fur-regulated genes are expressed in these niches67,68. Moreover, 

a S. aureus fur mutant was found to be attenuated in vivo, highlighting the importance of 

appropriate Fur regulation65. Studies that examined the protein profiles of S. aureus and an 

isogenic fur mutant identified a multitude of genes regulated by Fur66,69. These Fur-regulated genes 

included iron acquisition systems (with identified upstream Fur boxes) and virulence factors such 

as hemolysins that lyse erythrocytes to liberate heme iron (for which upstream Fur boxes could 

not be identified)63,66,69. Moreover, several proteins involved in metabolic processes were 

differentially expressed in the fur mutant69. Thus, Fur mediates a metabolic shift under iron 

starvation by downregulating expression of tricarboxylic acid (TCA) cycle genes and upregulating 

expression of glycolysis and fermentation enzymes69. Furthermore, Fur was found to positively 

regulate genes involved in biofilm formation and immunomodulation66,70. Therefore, Fur has a 

profound effect on the protein expression profile and potentiates S. aureus infection. This project 

focuses on several Fur-regulated proteins involved in the acquisition of iron. 

 

1.5.2 Heme iron acquisition 

As discussed, host iron is predominantly stored intracellularly as heme iron within erythrocytes. 

Interestingly, heme-iron is the preferred source of iron for S. aureus and it employs several 

virulence factors to access the heme iron pool71. Indeed, S. aureus expresses hemolysins, such as 

α-toxin, in response to limited iron availability to lyse heme-rich erythrocytes66. Lysed 

erythrocytes release Hb, which can be used by S. aureus as a source of iron72. Specifically, S. 

aureus uses a high-affinity heme iron acquisition system, the iron-regulated surface determinant 

(Isd) pathway, to capture heme-iron72. The Isd heme-iron uptake system is Fur-regulated and 

encoded by five operons: isdA. isdB, isdCDEFsrtBisdG, isdH, and orfXisdI63,73. The structural 

arrangement proposed for the Isd system resembles a funnel, which allows for heme complexed to 

iron to be brought in into the cell, crossing the cell wall and membrane33. IsdH, IsdB, and IsdA are 
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covalently anchored to the peptidoglycan by sortase A (SrtA) and IsdC is embedded in the cell 

wall by sortase B (SrtB)72,73. To capture heme-iron from the extracellular milieu, S. aureus utilizes 

IsdH, which binds Hp-Hb or Hb, and IsdB, which binds Hb74,75. Both proteins extract heme from 

Hb and heme is subsequently transported through the cell wall by IsdA and IsdC76,77. Next, IsdE 

and IsdF, components of an ABC transporter purportedly transfer heme across the cell membrane 

in an energy dependent manner63,72,78. Finally, IsdG and IsdI degrade internalized heme, releasing 

Fe2+ for use by S. aureus67,79. 

 While the S. aureus Isd pathway for heme iron uptake has been well documented, it has 

been proposed that another mechanism for heme iron uptake exists33. Importantly, heme iron 

acquisition is not inhibited in Isd deletion mutants80. Moreover, the effect of Isd is masked by 

concentrations of heme that exceed 50 nM, presumably due to action of an unidentified low-

affinity heme transporter33. It was previously speculated that the heme transport system (Hts) is 

involved in heme transport, as its name implies, but this theory has since been proven unlikely as 

Hts was found to be implicated in non-heme iron uptake71,81,82. Another potential heme iron 

transporter under investigation are the S. aureus proteins FepABC, which bear homology to the 

elemental ferrous uptake system (EfeUOB) of Escherichia coli83,84. In any case, Isd is the only S. 

aureus heme iron uptake system known to date. 

 

1.5.3 Non-heme iron acquisition 

In addition to capturing heme iron to meet its nutritional iron requirements, S. aureus is highly 

specialized to acquire non-heme iron. As mentioned, the host glycoproteins Tfn and Lfn scavenge 

free extracellular Fe3+ as a strategy to limit iron availability to invading pathogens. However, S. 

aureus utilizes siderophores to gain access to this pool of non-heme iron. Siderophores are low-

molecular-weight molecules that bind Fe3+ with very high affinity and can effectively steal iron 

away from the host glycoproteins33. The use of siderophores to acquire free extracellular Fe3+ is 

not unique to S. aureus. A multitude of pathogens produce their own siderophores, each with 

varying affinity for Fe3+ 33,45. Importantly, S. aureus produces two of its own siderophores, 

staphyloferrin A (SA) and staphyloferrin B (SB)81,85–87. Moreover, S. aureus can utilize 

xenosiderophores – siderophores generated by other organisms – to meet its nutritional iron 

requirements61,88,89. The non-heme iron acquisition strategies employed by S. aureus are 

summarized in Fig. 2. 
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Figure 2. Non-heme iron transport in S. aureus. To meet nutritional iron requirements, S. aureus 

synthesizes and secretes two siderophores, SA and SB. These siderophores are taken up by the Hts 

and Sir transporters, respectively. S. aureus can also utilize hydroxamate-type and catechol-type 

siderophores through uptake by the Fhu and Sst transporters, respectively. Figure from Sheldon et 

al.90.  

 

1.5.4 Staphyloferrin A and staphyloferrin B 

To acquire non-heme when intracellular iron levels are deplete, S. aureus produces SA and SB, 

two α-hydroxycarboxylate type siderophores33. Proteins responsible for the production and export 

of SA and SB are encoded in the Fur-regulated loci sfaABCD and sbnABCDEFGHI, 

respectively81,85–87. The importance of SA and SB for growth of S. aureus is highlighted by the 

significant growth defect of in vitro growth under iron restricted conditions when both loci are 

mutated89,91,92. However, SA and SB utilization is masked in vivo, as bacterial loads recovered 

from mice infected with S. aureus deficient for SA and SB utilization did not differ from those 

recovered from wild-type (WT) infected mice89. SA is comprised of two citrate units linked by a 

D-ornithine backbone81,85,93. Citrate for SA biosynthesis is solely derived from the TCA cycle 

citrate synthase, CitZ92. SfaC, a putative racemase, is believed to catalyze the formation of D-

ornithine from L-ornithine, while SfaB and SfaD catalyze the assembly of the siderophore81,85. 

Following assembly, apo-SA is secreted by the efflux protein SfaA91. SB is chemically distinct 

from SA, as it is comprised of one citrate unit, one unit of α-ketoglutarate (α-KG), and two units 
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of L-2,3-diaminopropionate (L-Dap)86. Briefly, SbnA and SbnB function together, generating L-

Dap and α-KG, and SbnG catalyses the formation of citrate86,92,94,95. Alternatively, citrate 

generated by CitZ can also be used for SB biosynthesis92. Furthermore, SbnCEFH function in the 

assembly of SB86. Therefore, the sbn locus encodes enzymes to generate all three SB precursor 

molecules and to assemble the siderophore. Export of apo-SB is mediated by the efflux protein 

SbnD91. Interestingly, SA but not SB biosynthesis is dependent on citrate derived from CitZ 

because SB biosynthesis can utilize citrate generated by SbnG92. Therefore, TCA cycle activity is 

critical for the generation of SA92. When S. aureus is iron starved, TCA cycle activity is decreased 

through Fur regulation69. Therefore, it stands to reason that in cells where TCA cycle activity is 

downregulated, for instance, in the event of nutrient deplete conditions, SB is more likely to 

contribute to the acquisition of non-heme iron. 

 Both endogenous siderophores produced by S. aureus function to solubilize and bind iron 

ferric hydroxide precipitates or to steal iron from Tfn or Lfn33. Ferrated SA and SB are internalized 

by S. aureus through dedicated ABC-type transporters HtsABC and SirABC, respectively81,96. 

Transcription of the SA and SB transporters occurs differentially from their associated siderophore 

biosynthetic genes, despite their adjacent localization81,96. HtsA and SirA are lipoproteins that bind 

Fe3+-SA and Fe3+-SB, respectively, in shallow, basic binding clefts33. The high specificity and 

affinity of HtsA and SirA binding pockets for their respective siderophore enables high affinity 

acquisition of low concentrations of extracellular SA and SB and provides a competitive advantage 

over other pathogens attempting to capture S. aureus siderophores82,97. Transport of Fe3+-

siderophore complexes across the membrane by the heterodimeric permeases HtsBC and SirBC is 

an energetic process powered by the genetically unlinked ATPase, FhuC81,98. 

 

1.5.5 Xenosiderophores 

In addition to the endogenous siderophores SA and SB, S. aureus utilizes xenosiderophores to 

acquire iron within the host61,88,89. Importantly, S. aureus must compete with not only the host, but 

also other microorganisms for the limited quantities of available iron. Many of these 

microorganisms generate their own siderophores, which S. aureus has evolved to appropriate to 

meet its own nutritional requirements61,88,89. The appropriation of non-endogenous siderophores, 

such as hydroxamate and catechol-type siderophores by S. aureus is mediated by specialized 

uptake systems61,88,89.  
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Specifically, S. aureus does not synthesize hydroxamate-type siderophores, but it can 

utilize them through the ferric hydroxamate uptake (Fhu) system61,88. The Fhu system is comprised 

of two integral transmembrane proteins, FhuBG, the FhuC ATPase, and two paralogous Fe3+-

hydroxamate binding lipoproteins, FhuD1 and FhuD2
61,88. A multitude of hydroxamate-type 

siderophores such as ferrichrome, coprogen, and aerobactin are taken up by Fhu and promote 

growth of S. aureus88. Notably, desferrioxamine B is a hydroxamate-type siderophore generated 

by Streptomyces pilosus that is utilized by S. aureus through the Fhu transport system62,99. The 

drug DFO, which is sold by Novartis under the name Desferal and is widely used in iron chelation 

therapy to treat iron overload caused by HH, is the mesylate salt of desferrioxamine B60,99. 

Importantly, previous work by the Heinrichs lab has demonstrated that S. aureus uses DFO as a 

source of iron and treatment of S. aureus infected mice with DFO exacerbates infection, as 

indicated by higher bacterial burdens in the kidneys and liver and increased abscess formation 

relative to the control treated mice61,88,99. 

Moreover, S. aureus expresses the staphylococcal siderophore transport system (Sst) which 

allows the appropriation of catechol-type siderophores such as enterobactin and catecholamine 

stress hormones as sources of iron89. Catecholamine stress hormones, such as epinephrine and 

norepinephrine, reduce Fe3+ bound to Tfn, thereby liberating Fe2+ and can subsequently form 

complexes with the released iron89,100. Uptake of ferrated stress hormones and catechol-type 

siderophores in S. aureus is mediated by the SstA and SstB transmembrane proteins, SstC ATPase, 

and catechol binding lipoprotein, SstD89,101. Interestingly, the affinity of SstD for its ligands is low 

compared to HtsA and SirA, but this sacrifice likely allows for a greater diversity of ligands82,89,97. 

Work by the Heinrichs lab has shown that expression Sst contributes to virulence of S. aureus in 

a murine model of systemic infection89. Specifically, mice infected with a S. aureus mutant 

deficient for Sst, Sir and Hts had reduced bacterial burdens in the heart, liver, and kidneys relative 

to mice infected with the S. aureus mutant deficient for Sir and Hts alone89. Thus, it appears that 

the combination of each of these iron transport systems is essential for full fitness of S. aureus in 

vivo. 

 

1.6 S. aureus small colony variants 

S. aureus infections are difficult to treat and can persist despite administration of antibiotic therapy 

that should normally resolve infection102. Notably, S. aureus SCVs were first linked to persistent 
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infections in 1995 and have since become an important area of research103. An understanding of S. 

aureus SCVs is essential for the development of novel therapeutics that specifically target and 

eliminate persistent populations of S. aureus. 

 As their name implies, S. aureus SCVs form small colonies – roughly one-tenth of the size 

of WT S. aureus – when grown on solid media104. S. aureus SCVs represent a slow-growing 

subpopulation of S. aureus that have increased resistance to antibiotics and persistence within the 

host102,104. Interestingly, formation of SCVs is not unique to S. aureus. Indeed, Salmonella enterica 

serotype Typhi SCVs were first identified over a century ago and SCVs have been described for 

many other bacterial genera and species, such as E. coli and Pseudomonas aeruginosa104–106. Thus, 

SCV formation seems to be a common survival strategy employed by bacteria. 

The clinical relevance of S. aureus SCVs is underscored by the routine isolation of SCVs 

from patients with persistent S. aureus infections103,107. Particularly, S. aureus SCVs are highly 

prevalent among cystic fibrosis (CF) patients with chronic recurrent lung infections and are 

associated with worse clinical outcomes107,108. Clinical isolates of S. aureus SCVs are unstable and 

have a high frequency of reversion to the normal colony phenotype103. S. aureus SCVs often arise 

in response to environmental stressors, such as exposure to aminoglycosides, other antimicrobials, 

and acidic pH109–111. However, the spontaneous emergence of S. aureus SCVs in the absence of 

any selective pressure has been characterized112. Therefore, S. aureus SCVs are considered a 

normal part of the S. aureus life cycle112. 

 Importantly, characterization of clinically isolated S. aureus SCVs has determined that 

many SCVs arise from mutations in hemin or menadione biosynthetic genes, resulting in bacteria 

that are auxotrophic for these metabolites (i.e. the SCV is unable to synthesize a particular 

metabolite and must therefore acquire it from the environment)104,113,114. Indeed, provision of 

hemin (ferric chloride heme) or menadione was found to stimulate growth of hemin- or 

menadione-auxotrophs, respectively103,104. Interestingly, studies that examined the origin of 

menadione-auxotrophic SCVs isolated from patient samples identified mutations in several genes 

of the men operon, implicated in the menadione biosynthetic pathway, that can result in the 

formation of SCVs115,116. For instance, Lannergård et al. found three S. aureus SCVs that resulted 

from a single base pair substitution that introduced an early stop codon, from deletion of a 9 base-

pair sequence, or from a frame shift mutation in menB116. Moreover, they determined that the 

genetic basis of SCV reversion to the normal colony phenotype was either directly by reversion to 
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the WT sequence, amino acid substitution, an additional mutation, or deletion of the mutated 

residues116. An earlier study by Schaff et al. also identified mutations associated with the 

spontaneous formation of SCVs when WT S. aureus was exposed to a sub-minimal inhibitory 

concentration (MIC) of the aminoglycoside gentamicin117. While other mutations have been linked 

to the formation of SCVs, such as those involved in RNA processing, my project focuses on a S. 

aureus hemB mutant102.  

The hemB gene encodes δ-aminolevulinic acid (ALA) dehydratase that catalyzes the 

synthesis of porphobilinogen (PBG) as part of the hemin biosynthetic pathway, encoded in part by 

the hemAXCDBL operon118. Thus, mutation of hemB results in deficient hemin biosynthesis and 

hemin auxotrophy113. Importantly, S. aureus SCVs isolated from patients are often hemin 

auxotrophs103,104,114. Moreover, it has been shown that site-directed mutagenesis of the hemB gene 

generates a stable S. aureus SCV113. The use of genetically engineered SCVs is paramount for the 

characterization of S. aureus SCVs, as clinical isolates have a high rate of reversion to the normal 

colony phenotype103,107. Indeed, various studies have made use of the S. aureus hemB mutant, as 

an archetype for the characterization of SCVs. For instance, a S. aureus hemB mutant was 

employed in a murine model of osteomyelitis to examine fitness of SCVs in vivo119. Interestingly, 

this study revealed that the hemB mutant had reduced fitness relative to WT S. aureus, but the SCV 

established an infection, as indicated by bacterial burdens recovered from infected femurs and 

bone destruction119. 

Notably, S. aureus auxotrophic for hemin manifest as SCVs due to aberrant electron 

transport104. Hemin is involved in the biosynthesis of the cytochrome component of the electron 

transport chain (ETC)104. Thus, S. aureus hemB mutants have a defective ETC leading to reduced 

membrane potential and capacity to synthesize ATP104,113. Importantly, this metabolic defect 

causes a dramatic shift in the gene expression and phenotypic changes characteristic of S. aureus 

SCVs113,120–123. As mentioned, S. aureus SCVs display slow growth and small colony size on solid 

media due to decreased metabolic activity104. S. aureus SCVs also have increased biofilm 

formation, adhesion, and are reported to persist within host cells which enables host immune 

evasion and protects against antimicrobials102,124,125. Moreover, changes in membrane potential 

contribute to resistance to cationic antimicrobials such as aminoglycosides, while decreased cell 

wall synthesis provides resistance against β-lactam antibiotics104,123. Furthermore, SCVs have 

decreased pigmentation and hemolytic activity compared to WT S. aureus103,104. The basis behind 
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differential virulence factor expression of SCVs is related to changes in regulation by the 

alternative transcription factor sigma B (SigB) and the accessory gene regulator (agr) system102,126. 

RNAIII is the effector molecule of the S. aureus agr quorum-sensing system127. RNAIII 

upregulates the expression of extracellular virulence factors, like hemolysins and proteases, and 

downregulates the expression of cell-wall associated proteins such as adhesins127. Studies have 

identified that virtually no RNAIII is detectable in S. aureus SCVs, likely due to increased RNAIII 

degradation by the RNA degradasome102,123,124. Thus, a defect in agr RNAIII expression may 

contribute to the downregulation of toxin expression in S. aureus SCVs, and the upregulation of 

adhesins. However, Vaudaux et al. suggested that increased adhesin expression of the S. aureus 

hemB mutant was agr-independent124. Indeed, Mitchell et al. postulated that elevated SigB activity 

in S. aureus SCVs has a more profound effect on the expression of virulence factors than the agr 

system, especially in biofilm formation126. Regardless, SigB and agr are interconnected and part 

of the complex regulatory networks that govern S. aureus SCV virulence factor expression17. In 

addition to altered virulence factor expression, a metabolic shift away from oxidative 

phosphorylation occurs in response to defective hemin biosynthesis, as enzymes involved in the 

TCA cycle are downregulated, and enzymes of the glycolytic and fermentation pathways are 

upregulated120,128. In summary, S. aureus SCVs have decreased metabolic activity and an altered 

gene expression profile compared to WT S. aureus, which results in a dramatically different 

phenotype. 

 

1.7 Project rationale and hypothesis 

Over the last two decades, many of the iron acquisition strategies employed by S. aureus have 

been uncovered. Remarkably, S. aureus is highly specialized to acquire iron and has evolved many 

strategies to gain access to this essential nutrient in the host, enabling infection. As mentioned, the 

generation of SA by S. aureus requires TCA cycle activity and ATP hydrolysis is required for the 

transport of all siderophores utilized by S. aureus into the cell. While the iron acquisition strategies 

employed by WT S. aureus have been well characterized, it is unknown how S. aureus SCVs 

acquire iron. S. aureus SCVs are linked to chronic recurrent infections that are difficult to treat 

because SCVs may persist intracellularly, evading the host immune system and have decreased 

susceptibility to therapeutic treatments. Importantly, S. aureus SCVs drastically differ from WT 

S. aureus, as they exhibit altered metabolic activity, morphology, and gene expression. It remains 
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unknown whether these factors affect the acquisition of iron by S. aureus SCVs, as nothing is 

known about S. aureus SCV iron acquisition mechanisms. Due to the fact that SCVs are infectious, 

I hypothesized that S. aureus SCVs must utilize one or more of the S. aureus iron acquisition 

systems to acquire iron and sustain growth. 

 

1.8 Research objectives 

To address my hypothesis, the following research objectives were pursued: 

1. Characterize the S. aureus USA300 hemB::Sp mutant and define conditions for the in vitro 

study of iron acquisition strategies employed by SCVs. 

2. Determine which of the iron acquisition systems active in WT S. aureus are important for 

in vitro growth of S. aureus SCVs. 

3. Determine the contribution of these iron acquisition systems to S. aureus SCV virulence in 

a murine model of infection. 

  



17 

 

Chapter 2 

2 Materials and Methods 

2.1 Bacterial strains, plasmids and growth media 

All bacterial strains and plasmids used in this study are listed in Table 1. S. aureus USA300 LAC 

cured of its endogenous antibiotic resistance plasmid served as the WT staphylococcal strain for 

this study. E. coli DH5α was used for cloning purposes and was cultured in Luria-Bertani broth 

(LB; Difco). S. aureus strains were grown in either Tryptic Soy broth (TSB; Wisent) or Tris 

Minimal Succinate (TMS). TMS was made as previously described129: 20 mL of a 25x Tris 

minimal salts stock (145 g of NaCl, 92.5 g of KCl, 27.5 g of NH4Cl, 3.55 g of Na2SO4, 6.8 g of 

KH2PO4 dissolved in 1 L H2O) was added to 6.05 g of Tris base, 8.3 g of sodium succinate, 5 g of 

casamino acids (Difco), and 450 mL H2O, then pH was adjusted to 7.4 before autoclaving. Prior 

to use, 10 μL of a filter-sterilized additives mixture of 1 mL of tryptophan (10 mg/mL), 1 mL of 

cysteine (11 mg/mL), and 0.5 mL volumes of thiamine (16.9 mg/mL), nicotinic acid (1.23 mg/mL), 

pantothenic acid (0.5 mg/mL), biotin (0.01 mg/mL), MgCl2 (95.3 mg/mL), and CaCl2 (11.1 

mg/mL) was incorporated for each millilitre of TMS. Media were prepared using water purified 

with a Milli-Q water filtration system (EMD Millipore, Billerica, MA). Bacterial strains were 

stored in 15% (v/v) glycerol at -80˚C and streaked out on solid media as needed. LB agar and TSB 

agar (TSA) were prepared by the addition of 1.5% (w/v) Bacto agar (Difco). The antibiotics 

spectinomycin (Sp; 300 µg/mL), chloramphenicol (Cm; 12 µg/mL), tetracycline (Tc; 4 µg/mL), 

and kanamycin (Km; 50 µg/mL) were added to media as required for S. aureus; ampicillin (Amp; 

100 µg/mL) was added where required for E. coli. Bacteria were incubated at 37˚C, with constant 

shaking (225 rpm) where required, unless indicated otherwise. 
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Table 1. Bacterial strains and plasmids used in this study. 

Strain or 

Plasmid 

Descriptiona Source or 

Reference 

E. coli 
  

DH5α F- Φ80 dLacZΔM15 recA1 endA1 gyrA96 thi-1 hsdR17 

(rk
–, mk

+) supE44 relA1 deoR Δ(lacZYA-argF)U169phoA 

Promega 

S. aureus 
  

H2 RN4220 rk
– mk

+; accepts foreign DNA Lab stock 

H114 RN2564; (Φ80α) Ω25 [Tn551] pig-131 Lab stock 

H2508 USA300 LAC; cured of antibiotic resistance plasmid Lab stock 

H627 Newman; WT clinical osteomyelitis isolate Lab stock 

H2993 USA300 sfa::Km 130 

H2936 USA300 sbn::Tc 130 

H2949 USA300 sfa::Km sbn::Tc 130 

H2533 USA300 ∆hts Lab stock 

H803 Newman sirA::Km 96 

H3044 USA300 fhuD1::Km fhuD2::Tc 99 

H2935 USA300 hemB::Sp This study 

H3716 USA300 hemB::Sp sfa::Km This study 

H3802 USA300 hemB::Sp sbn::Tc This study 

H3717 USA300 hemB::Sp sfa::Km sbn::Tc This study 

H4104 USA300 hemB::Sp ∆hts This study 

H4105 USA300 hemB::Sp sirA::Km This study 

H4102 USA300 sfa::Km ∆sbnG This study 

H4103 USA300 hemB::Sp sfa::Km ∆sbnG This study 

Plasmids   

pALC2073 Shuttle vector; AmpR in E. coli; CmR in S. aureus 131 

phemB pALC2073 derivative for expression of hemB; CmR This study 

pcitZ pALC2073 derivative for expression of citZ; CmR 92 

pKOR1∆sbnG pKOR1 derivative for in-frame, markerless deletion of sbnG; CmR 92 
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a. Km; kanamycin resistance determinant, Tc; tetracycline resistance determinant, Sp; 

spectinomycin resistance determinant, AmpR; ampicillin-resistant, CmR; chloramphenicol-

resistant. 

 

2.2 General molecular genetic methodologies 

2.2.1 S. aureus chromosomal DNA isolation 

A single colony of S. aureus was picked off a TSA plate and grown overnight in TSB. Then, 500 

μL of the overnight culture was pelleted, resuspended in 200 μL of sodium chloride-Tris-EDTA 

buffer (STE; 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl pH 7.5), and 25 μL STE-lysostaphin 

(50 μg lysostaphin dissolved in 200 μL STE) was added. The sample was incubated at 37°C for at 

least 1 h, to allow lysis of S. aureus cells. Next, 20 μL of 10% (w/v) sodium dodecyl sulfate (SDS) 

and 20 μL Proteinase K (20 mg/mL) were added and the sample was incubated for at least 2 h at 

55°C. Then, 80 μL 5M NaCl and 320 μL 25:24:1 phenol:chloroform:isoamyl alcohol (IAA) were 

added to the sample, which was mixed by inversion and spun at 19,000 × g 10 min before the 

aqueous layer was removed and added to a new 1.5 mL microcentrifuge tube. Next, 300 μL 24:1 

chloroform:IAA was added, the sample was mixed by inversion, and spun at 19,000 × g for 10 

min before the aqueous layer was removed and added to a new tube. To precipitate the genomic 

DNA, 400 μL isopropanol was added and the sample was gently mixed by inversion. DNA pellets 

were spun at 19,000 × g for 10 min, isopropanol was removed, and pellets were washed with 70% 

ethanol (stored at -20°C). DNA pellets were fully dried before resuspension in in H2O. 

 

2.2.2 Plasmid DNA purification 

Plasmid DNA was purified using a E.Z.N.A. Plasmid Mini Kit (Omega Bio-tek) according to the 

manufacturer’s instructions. To prepare plasmid DNA from S. aureus, 250 μL of Solution I-

lysostaphin (50 μg lysostaphin dissolved in 1 mL Solution I) was added to each sample and 

samples were incubated at 37°C for a minimum of 1 h, until cells were lysed. Plasmids used are 

listed in Table 1. 
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2.2.3 Polymerase chain reaction (PCR) 

PCR was performed using Taq polymerase (New England Biolabs) or Phusion polymerase 

(Thermo Fischer Scientific) according to manufacturer’s instructions. Primers were designed using 

MacVector software (MacVector Inc. Apex, NC) and the published S. aureus USA300 FPR5737 

genome132. Primers used in this study are summarized in Table 2. PCR products were run on 1% 

(w/v) agarose gels in 1 × TAE (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA (pH 8.0)) with 

1 kB DNA ladder (FroggaBio) to analyze amplicon size.  

 

2.2.4 Restriction digest and ligation reactions 

Restriction digests were performed using SacI and KpnI enzymes purchased from New England 

Biolabs according to manufacturer’s instructions. Linear DNA fragments were purified directly 

from restriction reactions using the E.Z.N.A. Gel Extraction Kit (Omega Bio-tek) as per 

manufacturer’s instructions. Ligation of linear DNA fragments was performed using T4 DNA 

ligase (New England Biolabs). 

 

2.2.5 Colony PCR 

Toothpick aliquots of patched colonies were resuspended in 50 μL of lysis buffer with lysostaphin 

(LBL; 50 μg lysostaphin resuspended in 1.25 mL of lysis buffer (25 mM Tris-HCl, 50 mM glucose, 

150 mM NaCl, 10 mM EDTA; pH 8.0)). Samples were incubated at 37°C for 1 h before 50 μL 

H2O and 2 μL of 10% (w/v) SDS were added. Samples were heated to 95°C for 10 min, then 

cooled at room temperature (RT) for 10 min. Next, 102 μL 25:24:1 phenol:chloroform:IAA was 

added and samples were incubated at RT for 30 min. Samples were centrifuged at 19,000 × g for 

10 min and 10 μL was removed from the aqueous layer, which was diluted in 90 μL water. The 

diluted sample was used as the template for PCR. 
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Table 2. Oligonucleotides used in this study. 

Primer pair Sequencea Application 

hemB-F-SacI 

 

and 

hemB-R-KpnI 

TTTTTTGAGCTCTTATTTATCTAAATAGCG 

ACAAATGTC 

 

TTTTTTGGTACCGATTTTAGAAAGTAGGGGC 

Confirmation of the 

hemB::Sp mutation; 

complementation of the 

hemB::Sp mutant 

sfa-F-AgeI 

 

and 

sfa-R-AgeI 

TTTTTTACCGGTTGCAAAGCATATGTAGTA 

TAACTTGTCAACTTAG 

 

TTTTTTACCGGTGTATAGATTGTATTTAAT 

AAGTTAATGTAATC 

Confirmation of the 

sfa::Km mutation 

sbn-F 

and 

sbnC-R 

or 

sbn-R 

TAGCCTCCTTCGTGATGTAT 

 

ACTGCTCTGACATCACAAAA 

 

GATGCCTATCCAAATTGCTA 

Confirmation of the 

sbn::Tc mutation 

hts-F 

and 

hts-R 

AAGCCTGTGCCGCTTCAGGT 

 

ACGTTATTGCGTACGCCTGCCA 

Confirmation of the 

∆hts mutation 

sirA-F 

and 

sirA-R 

AGTAGCATCGTAAAACTCCT 

 

TAATTCATACTAAATCGTGATAATGAT 

Confirmation of the 

sirA::Km mutation 

sbnG-F 

and 

sbnG-R 

TTAAAGGCATCATCGAGGC 

 

TTCACCTTGAGATGCAACTT 

Confirmation of the 

∆sbnG mutation 

a. Restriction enzyme recognition sites are underlined 
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2.3 Phage transduction 

2.3.1 Isolation of phage (Φ80α) 

A single colony of S. aureus RN2564 (carrying Φ80α) was picked off a TSA plate and grown 

overnight in TSB. The overnight culture was sub-cultured in 25 mL TSB to an optical density at 

600 nm (OD600) of 0.01 and grown until an OD600 of 0.3 was reached (~2.5 h). For induction of 

Φ80α, mitomycin C (2 μg/mL) was added and the culture was incubated for 3-4 h at 32ºC with 

slow shaking (80 rpm) until complete lysis occurred. Finally, the culture was filtered through a 0.2 

μm filter and the Φ80α stock was stored at 4ºC. 

 

2.3.2 Preparation of a transducing lysate 

A single colony of the donor S. aureus strain carrying the desired mutation was picked off a TSA 

plate and grown overnight in TSB with 0.5 mM CaCl2. The overnight culture was sub-cultured in 

10 mL TSB with 0.5 mM CaCl2 starting at an OD600 of 0.1 and the culture was grown at 37ºC with 

shaking to an OD600 of 0.7-1.0. Then, dilutions of Φ80α stock were prepared with phage buffer 

(0.1 M MgSO4, 0.4 M CaCl2, 2.5 M Tris pH 7.8, 5.9 g/L NaCl, 1.0 g/L gelatin) and 200 μL S. 

aureus was combined with 100 μL of phage for each of the phage dilutions. No bacteria (phage 

only) and no phage controls were run to ensure sterility. After a 5 min incubation at RT, the phage-

bacteria mix was added to melted top agar (0.8% (w/v) TSB agar) and poured on top of TSA plates 

containing 4 mM CaCl2 for each dilution of phage. After an overnight incubation at 37°C, phage 

buffer was added to the plate with the phage dilution where Φ80α almost completely cleared the 

lawn of bacteria. The selected plate was incubated for ~4 h on a rocker at RT, then the top agar 

was collected, agar was broken up by pipetting, and the mixture was centrifuged at 3,000 × g for 

15 min. Finally, the supernatant was filter sterilized twice, first with a 0.45 μm filter followed by 

a 0.2 μm filter and the donor phage lysate was stored at 4ºC. 

 

2.3.3 S. aureus phage transduction 

A single colony of the recipient S. aureus strain was picked off a TSA plate and grown overnight 

in TSB with 0.5 mM CaCl2. The overnight culture was sub-cultured in 10 mL TSB with 0.5 mM 

CaCl2 at an OD600 of 0.1 and the culture was grown at 37ºC to an OD600 of 0.7-1.0. Dilutions of 

the donor phage lysate were prepared in phage buffer. Then, 600 μL S. aureus was spun down 
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(19,000 × g for 2 min) for each dilution of phage, the supernatant was removed, and pellets were 

resuspended in 600 µL phage dilution. No bacteria (phage only) and no phage controls were run 

to ensure sterility. After a 5 min incubation at RT, 1.5 mL TSB with 0.5 mM CaCl2 was added to 

the phage-bacteria mix and samples were incubated at 37 ºC for 20 min. Then, 1 mL of 2 mM 

sodium citrate was added to stop the reaction and samples were centrifuged at 3,000 × g for 15 

min. Pellets were resuspended in 100 µL 0.2 mM sodium citrate and plated on TSA plates 

containing 2 mM sodium citrate and the antibiotic to select for the desired mutation. Plates were 

incubated at 37 ºC for at least 24 h, then colonies were screened for the desired mutation. 

 

2.4 Cloning and mutagenesis of S. aureus 

2.4.1 Complementation of the hemB::Sp mutant 

The hemB gene was PCR amplified using Phusion polymerase, S. aureus USA300 genomic DNA 

as template, and the hemB-F-SacI and hemB-R-KpnI primer pair (Table 2), designed for cloning 

the hemB gene into pALC2073. The resulting 999 base pair PCR product and pALC2073 were 

restriction digested with SacI and KpnI. Then, an enzymatic purification was performed and the 

hemB PCR product and pALC2073 were ligated with T4 ligase. The ligation mixture was 

transformed into E. coli DH5α and transformants were selected on LB agar containing ampicillin. 

E. coli colonies carrying plasmids encoding the hemB gene were identified through colony PCR 

using the hemB forward and reverse primers. 

Plasmids with the correct insert were isolated from E. coli and subjected to restriction 

analysis to verify the presence of the hemB gene and the size of the cloned DNA fragment. Three 

randomly selected plasmids encoding hemB were transformed into S. aureus RN4220 by 

electroporation. Plasmids modified by S. aureus RN4220 were then extracted and transformed by 

electroporation into the hemB::Sp mutant. In parallel, the hemB::Sp mutant was also transformed 

with the empty vector control pALC2073. Transformants showing hemB complementation were 

selected for by resistance to chloramphenicol and for having an increased colony size compared 

to transformants carrying empty pALC2073. 
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2.4.2 Construction of a S. aureus mutant dependent on TCA cycle citrate for 

staphyloferrin biosynthesis 

An in-frame, markerless deletion of sbnG in the USA300 sfa::Km mutant was generated using 

pKOR1∆sbnG, as previously described92,133. Briefly, pKOR1∆sbnG plasmid DNA was isolated 

from RN4220(pKOR1∆sbnG) grown overnight at 30˚C in TSB with chloramphenicol. The 

plasmid was introduced into the recipient strain, USA300 sfa::Km, by electroporation. USA300 

sfa::Km(pKOR1∆sbnG) was grown overnight in TSB with chloramphenicol at 30˚C, sub-cultured 

the next day and grown for 6 h at 30˚C, and then overnight at 42˚C. Dilutions of the overnight 

culture were plated on TSA plates containing chloramphenicol and incubated overnight at 42˚C. 

From these plates, 2-3 of the large colonies were picked and grown overnight at 30˚C in a single 

tube of TSB without antibiotics. The next day, this culture was diluted and plated on TSA plates 

containing anhydrotetracycline (250 ng/mL). Plates were incubated at 30˚C, and the big colonies 

that arose were patched onto TSA plates with and without chloramphenicol. Successful USA300 

sfa::Km ∆sbnG mutants were screened through sensitivity to chloramphenicol, which indicated 

loss of the pKOR1 backbone, and confirmed through PCR, using Taq polymerase and the sbnG 

primer pair (Table 2). 

 

2.4.3 Generation of hemB::Sp staphyloferrin biosynthetic and uptake mutants 

To generate hemB::Sp staphyloferrin biosynthetic and uptake mutants, several phage transductions 

were performed. Specifically, a hemB::Sp donor phage lysate was prepared from USA300 

hemB::Sp and this donor lysate was used to transduce the hemB::Sp mutation into the USA300 

sfa::Km, USA300 sbn::Tc, USA300 sfa::Km sbn::Tc, USA300 ∆hts, and USA300 sfa::Km ∆sbnG  

recipient backgrounds. To screen for the hemB::Sp mutation, colonies with resistance to 

spectinomycin, small colony size, and increased growth on TSA plates supplemented with 2 µM 

hemin were selected for, since disruption of hemB::Sp was shown to generate an SCV (section 

3.1). To generate the hemB::Sp sirA::Km mutant, a donor phage lysate had to be prepared from S. 

aureus Newman sirA::Km. The sirA::Km donor phage lysate was prepared and used to transduce 

the sirA::Km mutation into the USA300 hemB::Sp recipient background. Colonies were screened 

by resistance to kanamycin. Confirmation of all the transduction mutants was through PCR, using 

Taq polymerase and the respective primer pair (Table 2). 
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2.5 Preparation of hemin 

Hemin stocks were prepared by dissolving 0.0033 g/mL bovine hemin (Sigma) in 0.1 N NaOH. 

The solution was diluted 1000-fold in 0.1 N NaOH, and the absorbance at 385 nm (A385) was 

determined. To determine the concentration of the hemin stock, the molar extinction coefficient 

for hemin in 0.1 N NaOH at 385 nm (58400 cm-1 M-1) was used. The hemin stock was sterilized 

by filtration through a 0.2 µm filter. Hemin aliquots of either 10 µL or 100 µL were prepared and 

frozen at -20˚C. Before use, 10 µL hemin stocks were diluted 1:10 by addition of 90 µL of the 

growth medium. 

 

2.6 Growth assays 

2.6.1 TSB growth assays 

Growth of the hemB::Sp mutant relative to WT (carrying the empty vector pALC) and hemB::Sp 

phemB was assessed in  TSB, a rich growth medium. Single isolated colonies were picked from 

TSA plates and used to inoculate 5 mL TSB tubes. Overnight cultures of bacteria were washed 

twice with sterile 0.9% (w/v) saline and normalized to an OD600 of 0.1. TSB tubes were inoculated 

with diluted S. aureus to give a starting OD600 of 0.001. After 24 h of incubation, bacterial growth 

was assessed by measuring the endpoint OD600. 

 

2.6.2 Assessment of hemin auxotrophy on TSA plates 

Phenotypic assessment of the hemB::Sp mutant, relative to WT USA300 (carrying the empty 

vector pALC) and the hemB-complemented strain (containing phemB) was performed on TSA 

plates supplemented with either 0 μM or 2 μM hemin. Briefly, single isolated colonies were picked 

from TSA plates and used to inoculate 5 mL TSB tubes. Overnight cultures of bacteria were 

washed twice with sterile 0.9% (w/v) saline and normalized to an OD600 of 0.1. This resuspension 

was serially diluted 10-fold through to 10-4 and 10 μL of each dilution was drop plated on TSA 

plates with either 0 μM or 2 μM hemin. Plates were incubated at 37°C for 48 h and representative 

images were taken. 
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2.6.3 TMS growth assays 

For initial growth assessment of the hemB::Sp mutant relative to WT and the hemB-complemented 

strain (containing phemB) in the minimal media TMS, single colonies were picked from TSA 

plates and grown overnight in TSB. Overnight cultures of bacteria were washed twice with sterile 

0.9% (w/v) saline and normalized to an OD600 of 0.1. Next, 14 mL round-bottom polypropylene 

tubes with 1 mL TMS were inoculated with diluted S. aureus to give a starting OD600 of 0.001. 

After 24 h of incubation, bacterial growth was assessed by measuring the endpoint OD600. 

 All subsequent TMS growth assays were performed as described above, with the exception 

that TMS was supplemented with a minimal amount of hemin (0.2-0.4 µM hemin), unless 

otherwise indicated, to enable growth of hemB::Sp SCV bacteria. The amount of hemin added to 

media was specified for each experiment. Moreover, in all future experiments, overnight cultures 

were grown in TMS supplemented with minimal hemin rather than TSB. 

 Where specified, Tris-maleic acid buffered TMS at pH 7.4 or pH 6.0 was used in place of 

regular TMS. Briefly, TMS was prepared as described, except 6.05 g Tris base and 450 mL H2O 

was replaced with an equal volume of Tris-maleic acid buffer (6.06 g Tris base and 5.80 g maleic 

acid dissolved in 500 mL H2O).  

 

2.6.4 Bacterial growth curves 

Growth of the hemB::Sp mutant over time relative to WT (carrying the empty vector pALC) and 

the hemB-complemented strain (containing phemB) was assessed in TMS supplemented with 0.2 

µM hemin. Bacteria were prepared in the same way as with the TMS growth assays and TMS was 

inoculated to give a starting OD600 of 0.001, but rather than incubating cultures in 14 mL round-

bottom polypropylene tubes, three 200 μL aliquots for each biological replicate were prepared. 

Cultures were grown in a Bioscreen C machine (Growth Curves USA, Piscataway, NJ) at 37°C 

with continuous shaking at medium amplitude, and OD600 was measured every 30 min for 48 h. 

For graphical clarity, bacterial growth was illustrated at 4 h intervals for the first 24 h. 

 

2.6.5 Assessment of siderophore utilization 

To assess siderophore utilization of hemB::Sp bacteria, an iron restricted condition had to be 

established in TMS supplemented with minimal hemin. Fetal bovine serum (FBS; Wisent) and 

horse serum (HS; Sigma), heat inactivated by incubation at 55˚C for 1 h, and human apo-Tfn 
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(Sigma) were assessed for their ability to restrict iron in TMS. Iron restriction in media was 

alleviated by the addition of ferrous ammonium sulfate (FAS; VWR), which was a source of free 

Fe3+ or Fe2+ (at pH 7.4 or 6.0, respectively). Moreover, to assess the ability of S. aureus hemB::Sp 

bacteria to utilize siderophores, SA (Indus Biosciences Private Limited), DFO (Hospira; obtained 

from the London Health Sciences Centre), or epinephrine (Sigma) were added to iron restricted 

media. The concentration of iron-restricting agent, FAS, and siderophore added was specified for 

each experiment. 

 

2.7 Western blots 

To examine expression of S. aureus siderophore-binding lipoproteins SirA, HtsA, and FhuD2 by 

hemB::Sp bacteria, Western blot analyses were performed. S. aureus strains were grown overnight 

in TMS supplemented with minimal hemin, overnight cultures were washed twice with 0.9% (w/v) 

saline, normalized, and used to inoculate 3 mL TMS supplemented with minimal hemin and either 

additional Fe3+ (in the form of FAS) or Tfn to give an initial OD600 of 0.001. Cultures were grown 

for 24 h, normalized to an OD600 of 1.0, and pelleted by centrifugation (19,000 × g for 2 min). To 

prepare cell lysates, bacterial pellets were resuspended in 75 µL LBL and incubated at 37˚C for 1 

h. After lysis, 25 µL 4 x Laemmli buffer (240 mM Tris-HCl, pH 6.8, 8% (w/v) SDS, 40% (v/v) 

glycerol, 0.04% (w/v) bromophenol blue) was added and S. aureus samples were boiled for 10 

min. Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% 

polyacrylamide gel. After electrophoresis, standard protocols were followed to transfer proteins to 

a nitrocellulose membrane. The membrane was blocked with 8% (w/v) skim milk for 3 h before 

addition of primary antibody (rabbit anti-SirA, rabbit anti-HtsA, or rabbit anti-FhuD2 antiserum 

(diluted 1:1000)). Membranes were incubated with primary antibody overnight at 4˚C before 

addition of secondary antibody (donkey anti-rabbit IgG antibody, DyLight 800 conjugated (diluted 

1:20,000); Rockland Immunochemicals, Inc., Limerick, PA). An Odyssey CLx Imaging System 

and LI-COR Image Studio 4.0 software (LI-COR Biosciences) were used to image the membranes. 

 

2.8 Murine model of systemic infection 

All animal experiments were performed in compliance with guidelines set out by the Canadian 

Council on Animal Care. All animal protocols (#2017-028) were reviewed and approved by the 

University of Western Ontario Animal Use Subcommittee, a subcommittee of the University 
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Council on Animal Care. Six-week-old female BALB/c mice (Charles River laboratories) were 

injected via tail vein with 100 µL of bacterial culture, containing approximately 7 × 106 – 1 × 107 

colony-forming units (CFU) of S. aureus bacteria. To prepare the bacteria, strains were grown to 

OD600 2-2.5 in TSB, washed twice with phosphate buffered saline (PBS) and resuspended to OD600 

0.2 in PBS, corresponding to a cell density of approximately 7 × 107 – 1 × 108 CFU/mL. Mice 

were weighed at the time of infection and infections were allowed to proceed for 48 h before 

animals were euthanized, reweighed, and organs were aseptically harvested in ice-cold PBS + 

0.1% (v/v) Triton X-100 (Thermo Fischer Scientific). Extracted organs were homogenised in a 

Bullet Blender Storm (Next Advance, Troy, NY) using metal beads, serially diluted, and plated on 

TSA for enumeration of bacterial burden, presented as log10 CFU per organ.  

For animal experiments involving DFO treatment, 100 µL of a 10 mg/mL solution of DFO 

(suspended in sterile PBS) were administered intraperitoneally, one dose at the time of bacterial 

challenge, and a second dose 24 h post-infection. For the no treatment group, 100 µL PBS (vehicle 

control) was administered intraperitoneally, in parallel to DFO injection. The dose of DFO 

administered over the course of the two first days of infection was the same as previously employed 

by Arifin et. al99 and corresponded to approximately 50 mg/kg/day which is comparable to the 

weight-adjusted dose recommended for use in humans (Hospira). 

 

2.9 Statistical analysis 

All statistical analyses and graph production were performed using GraphPad Prism software 

(GraphPad Software, La Jolla, CA). 
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Chapter 3 

3 Results 

3.1 The S. aureus USA300 hemB::Sp mutant is a stable SCV that is 

auxotrophic for hemin. 

To investigate the iron acquisition strategies employed by S. aureus SCVs, it was necessary to 

genetically engineer a stable SCV because clinically isolated SCV strains are known to 

spontaneously revert to WT state103. Clinical SCVs are often auxotrophic for hemin, thus have 

deficient electron transport103. Previous studies have shown that genetic mutation of hemB in S. 

aureus generates the electron-transport-deficient SCV phenotype113. S. aureus hemB mutants have 

been utilized by various research groups to study aspects of SCV pathogenesis, such as 

intracellular survival113. Therefore, I employed the S. aureus USA300 hemB::Sp mutant to study 

S. aureus SCV iron acquisition strategies. First, I characterized in vitro growth of the hemB::Sp 

mutant to confirm that it is indeed a SCV that is auxotrophic for hemin. When grown in liquid 

TSB, a nutrient rich medium, the hemB::Sp mutant grew after 24 h, however growth was 

significantly reduced compared to WT, S. aureus USA300 (Fig. 3A). Provision of hemB in trans, 

on the plasmid phemB, restored growth of hemB::Sp bacteria to WT levels, irrespective of the 

growth medium (Fig. 3). When grown on TSA, hemB::Sp bacteria formed slow-growing colonies 

that were smaller in size and less pigmented when compared to WT colonies, characteristic of 

electron-transport-deficient SCVs (Fig. 3B). Importantly, providing hemB::Sp bacteria with 

additional hemin increased colony size and restored colony pigmentation of the SCV bacteria, 

indicating that hemB::Sp bacteria are indeed auxotrophic for hemin (Fig. 3B).  

To study the iron acquisition strategies employed by S. aureus, the Heinrichs lab often uses 

the minimal medium TMS because iron content can be controlled91,92,99,134. As expected, WT grew 

in TMS but the hemB::Sp mutant was unable to grow, indicating that TMS lacks sufficient hemin 

to support growth of a hemin auxotroph (Fig. 3C). Therefore a condition that could allow hemB::Sp 

bacteria to grow yet still behave as an SCV as compared to WT bacteria (i.e. demonstrate reduced 

growth) had to be established to permit characterization of SCV iron acquisition mechanisms. 

Supplementation of TMS with a minimal concentration of hemin of 0.2 µM was found to permit 

slow growth of hemB::Sp, however this hemin concentration did not restore growth to WT levels, 

indicated by the early plateau of the growth curve after 24 h (Fig. 3D). Therefore, the S. aureus 
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hemB::Sp mutant is a SCV that is auxotrophic for hemin, and a condition in TMS was established 

for growth of hemB::Sp. 

 

 

Figure 3. S. aureus hemB::Sp is a SCV auxotrophic for hemin. (A) Growth in TSB after 24 h. 

(B) Representative image depicting growth on TSA plates without hemin or with 2 µM hemin after 

48 h. (C) Growth in TMS after 24 h. (D) Growth over 24 h in TMS supplemented with 0.2 µM 

hemin. Data are plotted as mean ± SEM, three biological replicates. Three measurements per 

replicate were performed in (D). **** p<0.0001, one-way ANOVA with Tukey’s post test (A, C), 

two-way ANOVA with Tukey’s post test (D). 

 

3.2 Growth promotion and restriction of the S. aureus hemB::Sp mutant by 

two different sera. 

Next, I sought to establish an iron restricted growth condition to allow the study of iron acquisition 

mechanisms utilized by S. aureus SCVs. Previous studies characterizing iron acquisition in S. 
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aureus have routinely used serum, which contains transferrin, to restrict iron availability91,130. 

Therefore, I examined the ability of fetal bovine serum (FBS) and horse serum (HS) to restrict iron 

when added to TMS supplemented with a minimal amount of hemin. These experiments revealed 

that there was a massive difference between the sera, as the addition of 20% (v/v) FBS improved 

growth of hemB::Sp bacteria to WT levels, but the addition of 20% (v/v) HS completely abolished 

growth of hemB::Sp bacteria (Fig. 4A). In all the conditions tested, hemB::Sp bacteria carrying the 

phemB complementation plasmid grew the same as WT indicating that the observed defects were 

hemB-dependent (Fig. 4A). FBS was without effect on the growth of WT and hemB::Sp(phemB) 

S. aureus, while HS reduced growth (Fig. 4A). Previous work by the Heinrichs lab has shown that 

a S. aureus sfa::Km sbn::Tc mutant, deficient for SA and SB biosynthesis, has a severe growth 

defect in iron-restricted media91,92. Therefore, I employed this staphyloferrin deficient mutant as a 

control for my study as impaired growth of this strain would indicate the media is indeed iron 

restricted. As expected, growth of the staphyloferrin deficient mutant was abolished upon addition 

of 20% (v/v) HS to TMS supplemented with minimal hemin (Fig. 4B). Importantly, when Fe3+ in 

the form of FAS was added to media containing HS, growth of the staphyloferrin deficient strain 

was completely restored, indicating the growth defect was indeed due to iron starvation (Fig. 4B). 

Interestingly, growth of the hemB::Sp SCV was also abolished in HS, however Fe3+ did not restore 

growth (Fig. 4B). To determine whether the attenuated growth of the hemB::Sp mutant in the iron 

restricted condition was due to limited iron availability rather than a contaminant within HS, 

growth of hemB::Sp bacteria in neutral and acidic media was compared. At neutral pH, iron exists 

in the Fe3+ oxidized state which is readily bound by serum transferrin whereas at acidic pH iron is 

reduced to the Fe2+ state which does not bind transferrin. Interestingly, at neutral (pH 7.4) and 

acidic (pH 6.0) pH, growth of hemB::Sp bacteria in TMS supplemented with 0.2 µM hemin and 

HS was significantly impaired (Fig. 4C). Moreover, growth was not improved upon addition of 

iron to the media (Fig. 4C). Taken together, these data indicate that a factor other than iron 

restriction was suppressing growth of hemB::Sp bacteria in a HS dependent manner. Therefore, 

while HS has previously been used in the Heinrichs lab to restrict iron91,130, it was not suitable for 

growth analyses of hemB::Sp SCV bacteria. 
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Figure 4. Growth of hemB::Sp bacteria in media containing serum. Growth in TMS 

supplemented with 0.2 µM hemin after 24 h. (A) No serum, 20% (v/v) FBS, or 20% (v/v) HS was 

added to the media. (B) No serum, 20% (v/v) HS, or 20% (v/v) HS and 10 µM FAS was added to 

the media. (C) Tris-maleic acid buffered TMS at pH 7.4 or pH 6.0 was used in place of regular 

TMS. No serum, 20% (v/v) HS, or 20% (v/v) HS and 10 µM FAS was added to the media. Data 

are plotted as mean ± SEM, three biological replicates. ** p<0.01, *** p<0.001, **** p<0.0001, 

one-way ANOVA with Tukey’s post test. 

 

3.3 Transferrin restricts growth of the S. aureus hemB::Sp mutant in an iron-

dependent manner. 

To study the iron acquisition strategies of S. aureus SCVs, suitable iron restricted conditions 

needed to be established. Therefore, I assessed the ability of purified Tfn to restrict iron in TMS 

supplemented with minimal hemin. Through titration of the amount of Tfn added to the culture 

medium, I established that 1.25 µM Tfn was the minimal amount of Tfn that could abolish growth 

of siderophore deficient S. aureus, which served as a positive control to indicate iron restriction 

(Fig. 5A-B). Importantly, growth of the staphyloferrin mutant was recovered upon addition of Fe3+ 

to the iron-restricted medium (Fig. 5B). Growth of the hemB::Sp mutant was also significantly 

reduced upon Tfn addition however growth was not restored upon addition of free Fe3+ (Fig. 5B). 

Given that 0.2 µM hemin was the absolute minimum concentration of hemin required for growth 

of hemB::Sp bacteria in TMS, it was possible that Tfn or a contaminant of Tfn affected the ability 

of hemB::Sp bacteria to attain this critical nutrient, thereby impeding growth of the hemin 

auxotroph. To test this notion, the concentration of hemin used to supplement TMS was increased 

2-fold from 0.2 µM to 0.4 µM hemin, and growth was reassessed. Under these conditions, the 

hemB::Sp mutant still grew poorly as compared to non-SCV S. aureus in the absence of Tfn, 

indicating 0.4 µM hemin can be used to permit SCV growth without completely complementing 

the hemin auxotrophy (Fig. 5C). Using these conditions, growth of hemB::Sp bacteria was 

restricted when Tfn was added and excess Fe3+ fully restored hemB::Sp growth (Fig. 5C). 

Importantly, staphyloferrin deficient S. aureus remained unable to grow in TMS supplemented 

with 0.4 µM hemin and Tfn unless excess Fe3+ was added (Fig. 5C). Therefore, Tfn-dependent 

iron depleted growth conditions, to permit characterization of iron acquisition systems in SCV 

bacteria, were established. 
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Figure 5. Growth of the hemB::Sp mutant in media containing Tfn. (A) Growth of 

staphyloferrin deficient S. aureus in TMS supplemented with 0.2 µM hemin and increasing 

concentrations of Tfn after 24 h. (B-C) Growth in TMS after 24 h with 0.2 µM hemin (B) or 0.4 

µM hemin (C). No Tfn, 1.5 µM Tfn, or 1.5 µM Tfn and 10 µM FAS was added to the media. Data 

are plotted as mean ± SEM, three biological replicates (A, B) or six biological replicates (C). *** 

p<0.001, **** p<0.0001, one-way ANOVA with Tukey’s post test. 

 

3.4 The hemB::Sp mutant uses SB but not SA to support its growth in iron 

deplete media. 

Having established the appropriate culture conditions, I next compared the growth of WT S. aureus 

to the hemB::Sp mutant and the complemented strain under iron depleted conditions. This analysis 

revealed that in media supplemented with 0.4 µM hemin, the hemB::Sp mutant displayed reduced 

growth relative to WT and the complemented strain in the absence of transferrin (Fig. 6). In the 

presence of transferrin, WT S. aureus retained most of its ability to proliferate, whereas hemB::Sp 

bacteria demonstrated a 3-fold growth reduction compared to the no Tfn condition (Fig. 6). The 

complemented strain hemB::Sp(phemB) grew comparable to WT in all conditions examined (Fig. 

6). Interestingly, under conditions of iron restriction, growth of hemB::Sp bacteria was reduced 

but not completely abolished (Fig. 6). The addition of excess Fe3+ in the form of FAS restored the 

growth of each strain to the no Tfn condition, indicating the apparent growth defects were due to 

iron restriction (Fig. 6). In each experiment, the sfa::Km sbn::Tc mutant was employed as a 

positive control strain that would show growth defects under iron restriction. Use of this mutant 

revealed that SA and/or SB production was essential for S. aureus growth in iron deplete media, 

as demonstrated by the inability of this strain to grow in the presence of Tfn (Fig. 6). Furthermore, 

the fact that the hemB::Sp mutant grows in in the presence of Tfn, albeit to reduced levels, suggests 

this SCV must produce SA and/or SB to support the level of growth achieved (Fig. 6). 
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Figure 6. Growth of hemB::Sp in iron deplete media. Growth in TMS supplemented with 0.4 

µM hemin after 24 h. No Tfn, 1.5 µM Tfn, or 1.5 µM Tfn and 10 µM FAS was added to the media. 

Data are plotted as mean ± SEM, at least six biological replicates. * p<0.05, ** p<0.01, **** 

p<0.0001, one-way ANOVA with Tukey’s post test. 

 

To investigate whether hemB deficient S. aureus utilizes SA and/or SB, I generated single 

and double mutants of the SA and SB biosynthetic loci, sfa and sbn, respectively, in the hemB::Sp 

mutant background. Growth of hemB::Sp single and double staphyloferrin biosynthetic mutants 

was examined in the established iron restricted condition. Mutation of staphyloferrin biosynthesis 

in the hemB::Sp background did not affect growth in media where iron was freely available (Fig. 

7A). In contrast, mutation of both staphyloferrin biosynthetic loci in the hemB::Sp background 

eliminated growth under iron restricted conditions, consistent with the idea that hemB S. aureus 

makes siderophore (Fig. 7A). Interestingly, SA deficient hemB::Sp mutants displayed no growth 

defect relative to parental hemB::Sp. In contrast, SB deficient hemB::Sp bacteria were attenuated 

for growth under iron restricted conditions and displayed the same level of growth as the 

siderophore deficient hemB strain (Fig. 7A). From these observations, it can be inferred that SA 

biosynthesis and/or utilization is insufficient to support growth of hemB::Sp when iron is limited. 

Conversely, these data indicate that SB must enable hemB::Sp bacteria to acquire iron and sustain 

growth when free iron is not readily available. 
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To examine whether hemB::Sp bacteria express the SirA receptor required for SB 

utilization in a Fur-dependent manner, I performed Western blots assessing SirA expression. When 

iron is freely available, SirA expression by S. aureus is downregulated by Fur, however, expression 

of SirA is upregulated in conditions where iron is restricted which enables SB utilization. 

Therefore, I prepared whole cell lysates of S. aureus grown in TMS supplemented with either iron 

in the form of FAS or Tfn, where expression of SirA should be minimal or significantly 

upregulated, respectively. S. aureus Newman (NWMN) and an isogenic sirA::Km mutant served 

as positive and negative controls, respectively, for expression of SirA (Fig. 7D). Western blots 

were performed using anti-SirA antiserum and demonstrated that WT, hemB::Sp and 

hemB::Sp(phemB) S. aureus all expressed SirA in an iron-dependent manner, as indicated by 

increased protein from bacteria grown in the iron-starved (Tfn) condition (Fig. 7D). Thus, Fur-

dependent gene regulation of SirA was normal in a S. aureus hemB::Sp mutant, which is required 

for SB utilization. 

To further investigate SA and SB utilization by hemB::Sp bacteria, mutagenesis of the 

dedicated SA uptake locus and SB receptor, hts and sirA, respectively, was performed in the 

hemB::Sp mutant background to create SCV strains that can either not utilize SA or that cannot 

utilize SB. Under iron replete conditions, the hemB::Sp mutants deficient for staphyloferrin 

utilization grew similar to parental hemB::Sp bacteria (Fig. 7B). In contrast, under conditions of 

iron restriction inactivation of sirA, which would render hemB::Sp S. aureus unable to utilize SB, 

abolished growth of hemB::Sp while inactivation of the hts operon required for SA utilization was 

without effect (Fig. 7B). Moreover, mutation of SA uptake did not affect growth of hemB::Sp 

bacteria in the iron deplete condition (Fig. 7B). These observations are consistent with the 

interpretation of the data presented in Fig. 5A and indicate that hemB deficient S. aureus utilize 

SB and not SA for growth when iron was depleted in the medium. To ensure that SCV bacteria 

were not growing to WT levels and that iron was restricted when Tfn was added, WT S. aureus 

and the siderophore deficient mutant were again used as controls (Fig. 7C). Indeed, growth of non-

SCV bacteria was approximately double that of SCV bacteria, and growth of the S. aureus 

siderophore deficient mutant was abolished when iron was restricted (Fig. 7A-C). Taken together, 

these data provide strong evidence that the hemB::Sp mutant has a defect in SA utilization, and 

relies on SB alone to support growth where iron is not freely available. 
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Figure 7. hemB::Sp uses SB to support growth in iron deplete media. (A-C) Growth in TMS 

supplemented with 0.4 µM hemin after 24 h. No Tfn, 1.5 µM Tfn, or 1.5 µM Tfn and 10 µM FAS 

was added to the media. Data are plotted as mean ± SEM of twelve (A), four (B), or sixteen (C) 

biological replicates. **** p<0.0001, one-way ANOVA with Tukey’s post test. (D) Western blot 

for detection of SirA (37 kDa) in whole cell lysates prepared from cultures grown for 24 h in TMS 

supplemented with 0.4 µM hemin and either FAS (30 µM) or Tfn (1.5 µM). 

 

3.5 S. aureus hemB::Sp bacteria can utilize exogenously provided SA. 

Given that the growth data presented above indicated that the hemB::Sp mutant had a defect in SA 

utilization, I next investigated the mechanisms underlying this defect. First, I examined the 

expression of HtsA, the Fur-regulated SA receptor required for uptake81, in hemB::Sp bacteria. To 

test this, Western blots of whole cell lysates from bacteria that were grown in media with excess 

iron or Tfn were probed with anti-HtsA antiserum. A ∆hts mutant was employed as a negative 

control for expression of HtsA (Fig. 8A). Comparable to the Western blot for SirA expression, WT 

S. aureus expressed HtsA in an iron-dependent manner, indicated by an increase protein when iron 

was restricted in the medium by Tfn (Fig. 8A). Notably, the hemB::Sp and hemB::Sp(phemB) 

mutants also displayed normal Fur-regulated expression of HtsA (Fig. 8A). Therefore, it is unlikely 

that SA uptake is defective in hemB::Sp bacteria. 

 To test directly whether hemB::Sp bacteria can indeed take up SA, growth experiments 

were performed as previously described, however, purified SA was also added to media containing 

Tfn and growth was analyzed. As previously shown, growth of the hemB::Sp mutant was 

significantly reduced in the presence of Tfn, but the SCV still demonstrated growth presumably 

due to SB utilization (Fig. 8B). Interestingly, the addition of Fe3+ restored growth of hemB::Sp 

bacteria back to the levels seen in the absence of Tfn, however the addition of SA was without 

effect (Fig. 8B). The purified SA was indeed functional, as it completely restored normal growth 

to siderophore deficient S. aureus (Fig. 8B). WT and hemB::Sp(phemB) bacteria grew to 

approximately the same extent in all the conditions (Fig. 8B). To eliminate background SB-

dependent growth of hemB::Sp bacteria and investigate only SA-dependent growth, hemB S. 

aureus deficient for staphyloferrin biosynthesis was employed. Interestingly, the hemB::Sp 

sfa::Km sbn::Tc mutant recovered a minimal amount of growth upon addition of SA and reached 

the same level of growth as hemB::Sp bacteria using SB to support growth in the presence of Tfn 
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(Fig. 8B). These data suggest that SA uptake is not completely defective in hemB::Sp bacteria and 

that dependence on SB for growth in iron deplete media by the hemB::Sp mutant was likely due to 

a defect in SA biosynthesis. 

 

 

Figure 8. SA utilization by S. aureus hemB::Sp. (A) Western blot for detection of HtsA (31 kDa) 

in whole cell lysates prepared from cultures grown for 24 h in TMS supplemented with 0.4 µM 

hemin and either FAS (30 µM) or Tfn (1.5 µM). (B) Growth in TMS supplemented with 0.4 µM 

hemin after 24 h. No Tfn, 5 µM Tfn, 5 µM Tfn and 30 µM FAS, or 5 µM Tfn and 100 µM SA was 

added to the media. Data are plotted as mean ± SEM, six biological replicates. **** p<0.0001, 

one-way ANOVA with Tukey’s post test. 
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3.6 SB production by hemB::Sp bacteria is highly dependent on the SbnG 

citrate synthase. 

I next sought to identify a potential cause for defective SA biosynthesis in hemB::Sp S. aureus. SA 

and SB are both comprised of citrate85,86,135, and previous work by the Heinrichs laboratory has 

shown that S. aureus uses citrate generated by the TCA cycle enzyme citrate synthase CitZ for 

both SA and SB biosynthesis92. Notably, S. aureus expresses a second citrate synthase, SbnG, 

which produces citrate that is incorporated exclusively into SB, but not SA92. Thus, TCA cycle 

activity is essential for generation of SA. Interestingly, the expression of citZ and other TCA cycle 

genes is downregulated in hemB::Sp SCV bacteria120,121,128. Therefore, it is likely that 

downregulation of citZ limits the availability of citrate for SA production by hemB::Sp bacteria. 

To determine experimentally whether decreased citZ expression causes SA biosynthesis defects, I 

assessed whether overexpression of citZ could improve growth of hemB::Sp bacteria where iron is 

restricted. To do this, I transformed hemB::Sp bacteria with the empty vector, pALC2073, or a citZ 

expression vector pcitZ and analyzed their growth in the presence of Tfn. This analysis revealed 

that irrespective of the culture conditions there was no difference in growth between these 

transformants (Fig. 9A). Furthermore, I transformed hemB::Sp S. aureus deficient for SB with 

pALC2073 and pcitZ to eliminate SB-dependent growth of hemB::Sp bacteria in iron-restricted 

media and investigate only how citZ expression affects SA-dependent growth. Preliminary data 

from growth experiments with the resulting SB-deficient transformants revealed that citZ provided 

in trans conferred no growth advantage over bacteria carrying the empty vector in iron deplete 

media (data not shown). Thus, an alternative strategy for determining whether downregulation of 

citZ in electron-transport-deficient S. aureus SCVs affects SA biosynthesis had to be examined. 

I decided to assess availability of TCA cycle citrate, synthesized by CitZ, for staphyloferrin 

biosynthesis by generation of sfa::Km ∆sbnG mutants in the WT and hemB::Sp backgrounds. The 

resulting mutants are entirely dependent on citrate derived from the TCA cycle for generation of 

SB. If TCA cycle-derived citrate is available, SB synthesis should occur and sfa::Km ∆sbnG 

mutants will grow when iron is restricted. In contrast, if TCA cycle citrate is unavailable, sfa::Km 

∆sbnG mutants will not be able to produce SB and will have a growth defect in iron deplete media. 

Growth of sfa::Km ∆sbnG  and hemB::Sp sfa::Km ∆sbnG was assessed in iron deplete and replete 

media, as previously described. There was no difference in growth between the non-SCV sfa::Km 

and sfa::Km ∆sbnG mutants in all the conditions, indicating that TCA cycle-derived citrate was 
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available for SB biosynthesis and was sufficient to support growth of sfa::Km ∆sbnG in iron 

deplete media (Fig. 9B). In contrast, the hemB::Sp sfa::Km ∆sbnG mutant had a significant growth 

defect relative to the hemB::Sp sfa::Km mutant in iron-restricted media, which implies defective 

SB biosynthesis (Fig. 9B). In fact, growth of the hemB::Sp sfa::Km ∆sbnG mutant in the iron 

deplete condition was not significantly different than growth of S. aureus deficient for SA and SB 

(Fig. 9B). Thus, deletion of sbnG in hemB::Sp bacteria deficient for SA biosynthesis essentially 

eliminated SB biosynthesis. These data reiterate that hemB::Sp bacteria synthesize SB to support 

growth in iron deplete media, but demonstrate that SB biosynthesis is highly dependent on citrate 

generated by SbnG, the second S. aureus citrate synthase. Non-SCV S. aureus did not require 

expression of sbnG for SB production because CitZ, the TCA cycle citrate synthase, must have 

generated sufficient citrate for biosynthesis of SB to overcome any deleterious effects of the sbnG 

mutation. Therefore, SCV bacteria presumably have limited CitZ-dependent citrate available for 

the synthesis of SB. Limited TCA cycle citrate for SB production is an indirect indication of finite 

citrate for SA production, which requires TCA cycle-derived citrate. Thus, defective SA 

biosynthesis by hemB::Sp bacteria can likely be explained by limited citrate production by CitZ. 
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Figure 9. SB biosynthesis by hemB::Sp heavily relies on SbnG. (A-B) Growth in TMS 

supplemented with 0.4 µM hemin after 24 h. No Tfn, 5 µM Tfn, or 5 µM Tfn and 30 µM FAS was 

added to the media. Data are plotted as mean ± SEM, nine (A) or three (B) biological replicates. 

** p<0.01, **** p<0.0001, one-way ANOVA with Tukey’s post test. 
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3.7 hemB::Sp bacteria do not utilize staphyloferrin to support growth in vivo. 

To determine whether hemB::Sp utilizes SA and/or SB in vivo, a murine model of systemic 

infection was used. Here, we infected mice with the hemB::Sp mutant, and siderophore 

biosynthesis mutants derived from the hemB SCV background. Compared to hemB::Sp bacteria, 

there was no significant difference in the percent weight loss or the bacterial loads in the kidneys 

and liver for the hemB::Sp staphyloferrin mutants at 48 h post-infection (Fig. 10A-C). These 

observations suggest that staphyloferrin is not required for growth by hemB::Sp bacteria in vivo 

despite the hemB::Sp sbn::Tc mutant demonstrating significant growth impairment in vitro when 

iron was restricted (Fig. 7A). Interestingly, the hemB::Sp sbn::Tc mutant had a significant increase 

in bacterial load in the liver of infected mice (Fig. 10C). However, it is unclear why higher bacterial 

counts were only observed in the livers of mice infected with the hemB::Sp sbn::Tc mutant. Growth 

of siderophore deficient hemB S. aureus was not attenuated in vivo, suggesting hemB::Sp bacteria 

do not require staphyloferrin biosynthesis to support growth in vivo. 
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Figure 10. hemB::Sp bacteria do not utilize staphyloferrin to support growth in vivo. (A) 

Percent weight loss over 48 h of S. aureus SCV infected mice. (B) Bacterial burden in kidneys 

after 48 h. (C) Bacterial burden in liver after 48 h. Limit of accurate detection is indicated as a 

dashed line. Data are plotted as a mean ± SEM, at least seven animals per group. ** p<0.01, one-

way ANOVA with Tukey’s post test. 

 

3.8 Hydroxamate-type siderophore utilization by hemB::Sp bacteria is 

dependent on hemin availability. 

To investigate whether hemB::Sp bacteria utilize hydroxamate-type siderophores such as DFO, 

growth experiments with the previously described iron deplete and replete conditions were 

performed with DFO also added to media supplemented with Tfn. Growth of S. aureus in iron 

deplete and replete media mirrored prior results (Fig. 11A). Interestingly, the addition of DFO to 

hemB::Sp bacteria grown under iron restriction had no effect on growth (Fig. 11A). In contrast, 

DFO completely restored growth of the staphyloferrin deficient S. aureus mutant that was used as 

a control indicating DFO could function as a siderophore (Fig. 11A). Therefore, these observations 

indicated that hemB::Sp bacteria exhibit a defect in DFO utilization. Next, I considered whether 

these bacteria express FhuD2, a component of the receptor required for hydroxamate-type 

siderophore (i.e. DFO) utilization. Whole cell lysates of S. aureus grown in media with excess iron 

or in the presence of Tfn were subject to Western blot analysis. A fhuD1::Km fhuD2::Tc mutant 

served as a negative control for expression of FhuD2 (Fig. 11D). Importantly, WT, hemB::Sp, and 

hemB::Sp(phemB) bacteria all expressed FhuD2 in an iron-dependent manner when bacteria were 

grown in the presence of Tfn compared to media supplemented with excess iron (Fig. 11D). These 

data indicate that hemB::Sp bacteria likely still express the transport machinery for DFO uptake. 

To examine whether DFO utilization by hemB::Sp bacteria was masked by SB utilization, 

I also examined DFO utilization by the hemB::Sp mutant deficient for staphyloferrin. A non-SCV 

staphyloferrin deficient mutant was used as the media control, to ensure iron restriction in the 

media and functionality of DFO (data not shown). As in previous experiments, the addition of Tfn 

eliminated growth of the hemB::Sp mutant with defective staphyloferrin biosynthesis and this 

growth defect was rescued by the addition of free iron in the form of FAS (Fig. 11B). Importantly, 

growth of the hemB:Sp sfa::Km sbn::Tc mutant was not recovered upon the addition of DFO to 

the iron-deplete media (Fig. 11B). In contrast, growth of the control S. aureus siderophore deficient 
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mutant fully recovered when growth media were supplemented with DFO as in Fig. 11A (data not 

shown). Therefore, hemB::Sp SCV bacteria appear to have a defect in DFO utilization. 

To investigate whether the availability of hemin affects DFO utilization, a similar growth 

experiment with exogenously provided DFO was performed, but TMS was now supplemented 

with 2 µM hemin, a concentration previously found to increase growth rate, colony size, and 

pigmentation of hemB::Sp bacteria (see Fig. 3B and 11C). When additional hemin was added to 

the media, the hemB::Sp mutant grew to the same extent as WT bacteria in iron replete media, 

indicating that the additional hemin complemented the hemin auxotrophy, similar to 

complementation with phemB (Fig. 11C). Surprisingly, when Tfn was added to TMS 

supplemented with 2 µM hemin, hemB::Sp bacteria still had a significant growth defect, as growth 

in iron deplete media was comparable to the S. aureus staphyloferrin deficient mutant (Fig. 11C). 

Thus, hemin supplementation may affect staphyloferrin utilization by hemB::Sp bacteria. 

However, provision of additional hemin enabled the utilization of DFO by the hemB::Sp mutant, 

as indicated by fully restored growth when the DFO was exogenously added to the media (Fig. 

11C). Therefore, hydroxamate-type siderophore utilization by hemB::Sp bacteria is directly related 

to hemin availability. 
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Figure 11. DFO utilization by hemB::Sp is dependent on hemin availability. Growth in TMS 

supplemented with either (A, B) 0.4 µM hemin or (C) 2 µM hemin after 24 h. No Tfn, 5 µM Tfn, 

5 µM Tfn and 30 µM FAS, or 5 µM Tfn and 100 µM DFO was added to the media. Data are 

plotted as mean ± SEM, at least four biological repeats (A,C) or sixteen biological repeats (6 

individual experiments) (B). **** p<0.0001, one-way ANOVA with Tukey’s post test. (D) 

Western blot for detection of FhuD2 (34 kDa) in whole cell lysates prepared from cultures grown 

for 24 h in TMS supplemented with 0.4 µM hemin and either FAS (30 µM) or Tfn (1.5 µM). 

 

3.9 Niche-specific utilization of DFO in vivo by hemB::Sp bacteria. 

Previous work by the Heinrichs lab demonstrated that DFO augmented S. aureus USA300 

virulence in a murine model of systemic infection99. To examine whether a S. aureus hemB::Sp 

mutant utilizes DFO in vivo, systemic infections were performed where mice were infected with 

WT and hemB::Sp bacteria. At the time of infection and at 24 h post-infection, 100 µL of DFO (10 

mg/mL) or vehicle control was administered intraperitoneally. Infections were terminated at 48 h 

post-infection because WT infected mice that received DFO treatment met humane endpoint 

criteria at this timepoint. Compared to WT infected mice, hemB::Sp infected mice retained 

significantly more weight indicating that hemB::Sp bacteria were attenuated in vivo (Fig. 12A). 

Remarkably, administration of DFO only enhanced this effect and caused WT infected mice to 

lose significantly more weight as compared to WT infected animals without DFO and hemB::Sp 

infected animals with DFO (Fig. 12A). These observations indicated that hemB::Sp bacteria were 

attenuated in vivo and their pathogenic potential was not increased upon DFO administration. 

 At 48 h post-infection the bacterial burden in the hearts, kidneys, and livers of infected 

mice was also determined (Fig. 12B-D). In the hearts of infected animals, it was evident that the 

addition of DFO significantly enhanced the bacterial burden for WT bacteria but was without effect 

on hemB::Sp bacteria which only poorly colonized the heart (Fig. 12B). Furthermore, DFO 

treatment was without effect on the bacterial burden in the livers of hemB::Sp infected mice (Fig. 

12B). In contrast, livers of WT infected mice had significantly increased bacterial burdens when 

animals received DFO (Fig. 12D). Remarkably, in the kidneys, DFO was used by WT and 

hemB::Sp bacteria in contrast to all other organs examined (Fig. 12C). Therefore, it is possible that 

there exists a niche-specific effect, where hemB::Sp bacteria have access a pool of hemin that 

enables DFO utilization in the kidneys. While these data demonstrated that DFO dramatically 
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increased virulence of WT bacteria in vivo, the same massive impact of DFO was not observed for 

hemB::Sp SCV bacteria. Therefore, it appears that hemB::Sp bacteria have a reduced ability to 

utilize DFO in vivo.  

 

 

Figure 12. In vivo DFO utilization by WT and hemB::Sp bacteria. (A) Percent weight loss over 

48 h of S. aureus SCV infected mice. (B-D) Bacterial burden in heart (B), kidneys (C), or liver (D) 

after 48 h. Limit of accurate detection is indicated as a dashed line. Data are plotted as a mean ± 

SEM, at least fifteen animals per group. * p<0.05, ** p<0.01, *** p<0.001, ****, p<0.0001, one-

way ANOVA with Tukey’s post test. 
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3.10 The hemB::Sp mutant has a defect in catechol-type siderophore 

utilization. 

Stress hormones such as epinephrine have been shown to act as siderophores that support the 

growth of S. aureus in iron restricted environments89. To determine whether SCV bacteria can also 

utilize epinephrine, which is transported via the Sst siderophore uptake system, I examined 

whether epinephrine could promote growth of S. aureus hemB::Sp bacteria in the presence of Tfn. 

Growth of all the strains in the presence and absence of Tfn was comparable to previous 

experiments (Fig. 13). Importantly, epinephrine was found to be a functional siderophore because 

it recovered growth of the S. aureus staphyloferrin deficient mutant (Fig. 13). Remarkably, the 

addition of epinephrine to iron deplete media further inhibited growth of the hemB::Sp mutant 

(Fig. 13). Therefore, the addition of epinephrine negatively impacted growth of hemB::Sp bacteria. 

Furthermore, epinephrine did not rescue growth of the hemB::Sp mutant deficient for 

staphyloferrin biosynthesis (Fig. 13). Thus, epinephrine does not promote growth of hemB::Sp 

bacteria and utilization of catechol-type siderophores appears to be defective in S. aureus SCVs. 

 

 

Figure 13. Epinephrine utilization by hemB::Sp. Growth in TMS supplemented with 0.4 µM 

hemin after 24 h. No Tfn, 5 µM Tfn, 5 µM Tfn and 30 µM FAS, or 5 µM Tfn and 100 µM 

epinephrine (Epi) was added to the media. Data are plotted as mean ± SEM, six biological 

replicates. **** p<0.0001, one-way ANOVA with Tukey’s post test.  
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Chapter 4 

4 Discussion and Future Directions 

S. aureus is an opportunistic pathogen that colonizes roughly one third of the human population2. 

Alarmingly, S. aureus can display antibiotic resistance and cause severe, life-threatening infections 

in otherwise healthy individuals12. Consequently, S. aureus needs to acquire or synthesize essential 

nutrients within the host to proliferate during infection. Iron is one such nutrient but is unique as 

it is scarcely available, despite its abundance, due to its insolubility at biological pH and 

sequestration by the host, thereby preventing toxic effects of free iron and impeding growth of 

invading pathogens42. The iron acquisition strategies employed by WT S. aureus to overcome host 

sequestration of iron have been studied at length33,63. However, the mechanisms by which S. aureus 

SCVs acquire iron have not been explored despite the clinical relevance of SCVs. Therefore, this 

study aimed to gain insight into which S. aureus iron acquisition strategies are utilized by S. aureus 

SCVs.  

 Owing to the propensity of S. aureus SCVs isolated from clinical samples to revert to the 

WT phenotype, a genetically engineered stable SCV was generated. The S. aureus hemB mutant 

is an SCV that has been extensively described and implemented as a prototypic SCV for 

characterization of S. aureus SCVs because clinically isolated SCVs are often auxotrophic for 

hemin103,113. Therefore, a hemB mutant was used here to characterize the iron acquisition strategies 

of S. aureus SCVs. Consistent with the literature, mutation of hemB in the S. aureus USA300 

background generated a stable SCV auxotrophic for hemin. Inactivation of hemB generates an 

SCV because hemB encodes the enzyme ALA dehydratase, which is essential for hemin 

biosynthesis in S. aureus118. The requirement for hemin biosynthesis is not unique to S. aureus, 

and other bacteria including Gram-negative organisms such as E. coli require hemin biosynthesis 

for optimal fitness105,136. Notably, hemB also encodes ALA dehydratase and catalyzes the same 

step of the hemin biosynthetic pathway in E. coli137. Moreover, inactivation of hemB in E. coli also 

results in an SCV phenotype due to the fact that hemin is an integral component of cytochromes 

in the ETC105. Consequently, hemin auxotrophs have deficient electron transport and a reduced 

capacity to synthesize ATP through oxidative phosphorylation104. Not surprisingly, hemB mutants 

are SCVs that display altered patterns of gene expression and the characteristic phenotypic switch 

to a slow growing bacterium that forms small colonies on solid media104,113,121. SCVs have also 
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been described for P. aeruginosa, a Gram-negative pathogen, and are associated with persistent 

lung infections in patients with CF, like S. aureus SCVs138,139. While the hemB gene of P. 

aeruginosa also encodes ALA dehydratase, and can complement an E. coli hemB mutant, a role 

for inactivation of hemB has not been attributed in P. aeruginosa SCV formation140. Instead, P. 

aeruginosa SCV formation has been associated with cyclic-di-GMP signalling pathways among 

other signaling systems138. Nevertheless, the S. aureus hemB mutant is as an archetypal SCV that 

has been used to characterize S. aureus SCVs. 

 Consistent with previous studies, the S. aureus hemB::Sp mutant could utilize exogenously 

provided hemin to overcome hemin auxotrophy. Provision of minimal hemin permitted reduced 

growth of SCV bacteria as compared to WT S. aureus in minimal medium, enabling the 

characterization of SCV iron acquisition mechanisms, and higher concentrations of hemin reverted 

growth of the hemB::Sp mutant to WT levels. Interestingly, utilization of hemin was independent 

of iron starvation, as hemin was utilized in iron replete medium. Expression of the Isd heme 

transport system is Fur dependent thus, active in iron-limited conditions72. Therefore, import of 

exogenous hemin is likely facilitated by an unidentified staphylococcal heme transport system 

independently of Fur regulation. Indeed, a study by Wright and Nair made use of a hemB mutant 

and determined that IsdE, the lipoprotein component of the Isd pathway, is dispensable for 

utilization of exogenously provided hemin80. Moreover, the role of HtsA in heme transport was 

investigated and also found dispensable for hemin utilization by a hemB mutant80. Since HtsABC 

is implicated in SA uptake, and specificity of HtsA for SA has been described, it is unlikely that 

the Hts transport system plays a role in heme transport, contrary to previous suggestion71,81,82. 

Thus, S. aureus must utilize at least one uncharacterized heme transport system. The S. aureus 

FepABC proteins, which bear homology to the E. coli EfeUOB system and are Fur-regulated, are 

under investigation for heme iron utilization83,84. EfeUOB-like systems are widespread in bacteria 

and have been implicated in iron utilization83. A study that cloned fep genes from S. aureus into 

an E. coli mutant lacking its own heme utilization systems determined that FepA and FepB enabled 

heme iron utilization83. However, the role of FepABC in S. aureus remains unknown and requires 

further examination. The study of heme iron utilization by S. aureus is complicated by expression 

of the Isd heme uptake system and by biosynthesis of heme. Therefore, I propose mutation of 

fepABC in the hemB mutant background lacking isd to characterize the role of these proteins in S. 

aureus. Furthermore, to elucidate the unidentified heme transport system that is uncoupled from 
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Fur regulation, I propose generation of a random transposon mutant library in the hemB mutant 

lacking isd, and identification of transposon mutants that have decreased heme utilization, as 

indicated by impeded reversion of the SCVs to the WT phenotype upon provision of exogenous 

hemin. Use of a hemB mutant to identify novel heme iron utilization mechanisms could enable a 

better understanding of the strategies employed by S. aureus to acquire heme iron, the preferred 

iron source of S. aureus, during infection71. 

 In attempt to establish iron deplete conditions for the study of iron acquisition strategies 

employed by S. aureus SCVs using serum, I determined that FBS and HS should not be used in 

the characterization of hemB mutants. FBS was found to stimulate growth of hemB::Sp SCV 

bacteria to WT levels and therefore, hemB mutants are no longer SCVs in the presence of FBS. 

Importantly, FBS is routinely used to supplement cell culture media, despite being chemically 

undefined and poorly regulated141. In fact, studies that utilized a hemB mutant to characterize the 

intracellular survival of S. aureus SCVs in a variety of cell types supplemented their cell culture 

media with FBS113,142,143. While these studies reported differences among the WT strain and the 

isogenic hemB mutant, my work suggests that some skepticism should be applied when 

interpreting the results from studies that used FBS in their cell culture media. Indeed, recent work 

by the Heinrichs laboratory has demonstrated that extracellular content that is pinocytosed by 

macrophages is delivered to phagolysosomes, where phagocytosed S. aureus reside and begin to 

replicate28,144. Thus, it stands to reason that if FBS is added to cell culture media, hemin from the 

FBS would be delivered to the phagolysosome and would supplement the hemin auxotrophy of 

phagocytosed S. aureus hemB mutants, reverting the SCV phenotype. Future studies that aim to 

characterize intracellular survival or replication of hemB SCVs should therefore practice the use 

of serum free medium. In contrast, I found that HS impeded growth of the hemin auxotroph. While 

HS has previously been used to restrict iron in media, thereby impeding growth of the S. aureus 

staphyloferrin deficient mutant, the growth inhibition of hemB::Sp bacteria in the presence of HS 

was unrelated to iron availability91,130. It is possible that a contaminant of HS such as Hx, a heme 

binding serum protein that has been quantified from the sera of other animals, quenched the 

minimal hemin added that is required for growth of the hemB::Sp SCV145. Consequently, instead 

of using HS which contains Tfn, purified human apo-Tfn was used to chelate iron and establish an 

iron restricted condition, enabling the study of S. aureus SCV non-heme iron acquisition strategies. 
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 Surprisingly, hemB::Sp bacteria were found to utilize SB, but not SA to support growth in 

iron deplete media, as indicated by abolished growth of SB biosynthetic and uptake mutants. In 

contrast, WT S. aureus utilizes both SA and SB when iron is limited, and it has been determined 

that mutation of SB biosynthesis or uptake results in growth delay, not growth abolishment, as SA 

compensates for the loss of SB. However, the S. aureus hemB::Sp mutant was found to use 

exogenously provided SA, indicating that defective SA utilization was due to aberrant SA 

biosynthesis rather than uptake. Indeed, the basis of deficient SA biosynthesis by hemB::Sp 

bacteria was found to be related to decreased availability of TCA cycle-derived citrate. It is known 

that S. aureus can only utilize TCA cycle-derived citrate for the biosynthesis of SA92. Thus, 

requirement of TCA cycle activity, specifically CitZ, the TCA cycle citrate synthase, for 

generation of SA has been established92. Moreover, it is known through studies of the 

transcriptional profile of S. aureus SCVs that TCA cycle activity is downregulated120,121,128. A 

transcriptome study of the S. aureus hemB mutant even reported downregulation of citZ120. 

However, a connection between decreased citZ expression in S. aureus SCVs and decreased 

biosynthesis of SA was never established. Therefore, my work provides evidence that the altered 

gene expression of SCVs impacts iron acquisition mechanisms utilized by the S. aureus hemB::Sp 

mutant. To support my findings, decreased TCA cycle activity of the hemB::Sp mutant could be 

confirmed by reverse transcription PCR (RT-PCR) of citZ.  

The in vitro data presented here of siderophore utilization by hemB::Sp bacteria suggest 

that SB is salient for non-heme iron acquisition for S. aureus SCVs. Interestingly, SB has been 

speculated to be more important than SA for WT S. aureus virulence33,92. Since biosynthesis of 

SB is independent of TCA cycle activity, production of SB by WT S. aureus is unhindered by the 

paradoxical downregulation of TCA cycle genes by Fur in response to iron limitation, unlike 

SA69,92. Furthermore, all S. aureus genomes contain the SB biosynthetic locus, but it is rarely found 

among coagulase-negative staphylococci (CoNS), which represent a diverse group of 

staphylococcal species that are predominantly part of normal skin flora and are generally 

considered less pathogenic than S. aureus87,146. In contrast, the SA biosynthetic locus is conserved 

among CoNS and coagulase-positive staphylococci (CoPS)81. Taken together, this suggests that 

SB could provide an advantage over SA for WT S. aureus in the context of an infection. However, 

SB biosynthesis is regulated by SbnI, which binds heme and prevents SB production134. Consistent 

with this, the hemB::Sp mutant displayed a growth defect in iron deplete media supplemented with 
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additional hemin (Fig. 11C), presumably because of SbnI inhibition of SB biosynthesis. Therefore, 

the generation of SB by WT and SCV S. aureus could be downregulated in vivo where bacteria 

access sufficient quantities of heme. Moreover, a recent study by Perry et al. used matrix-assisted 

laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry 

(MALDI FT-ICR IMS) to characterize the distribution of SA and SB in heart, liver, and kidney 

abscesses formed during S. aureus infection147. Interestingly, the study found that the distribution 

of SA and SB was heterogenous – certain abscesses were more abundant in SB, no siderophore 

was detected in other foci, and surprisingly, SA was more prevalent than SB at most infection 

sites147. Therefore, it is more likely that SA and SB have niche-specific roles, and both contribute 

to S. aureus infection. 

In the context of S. aureus SCV infections, it was hypothesized that SB utilization would 

be important because SA biosynthesis was impaired in vitro. Moreover, S. aureus SCVs have 

decreased toxin production, and therefore, may not access heme iron captured from lysed 

erythrocytes as efficiently as WT S. aureus104. Surprisingly, hemB::Sp mutants with impaired 

staphyloferrin biosynthesis were not attenuated in the murine model of systemic infection. Thus, 

SA and SB do not contribute to the fitness of S. aureus hemB::Sp bacteria in vivo. In fact, the 

hemB::Sp mutant with disrupted SB biosynthesis, which was severely impaired in vitro, may have 

increased fitness in the liver of infected mice, as indicated by the greater number of bacteria 

recovered. To determine whether impaired SB utilization does indeed improve fitness of the 

hemB::Sp mutant, this experiment should be repeated with the hemB::Sp sirA::Km mutant, which 

has disrupted SB uptake. Notably, WT S. aureus staphyloferrin biosynthetic mutants are similarly 

not attenuated in a murine model of systemic infection, except in the heart, highlighting that in 

vivo iron acquisition by S. aureus is complex and involves several factors including SA and SB89. 

Indeed, the combination of impaired SA, SB, and catechol-type siderophore uptake was required 

for decreased bacterial burdens in the liver and kidneys of S. aureus infected mice89. However, 

unlike WT S. aureus, the hemB::Sp mutant did not use epinephrine, a catechol-type siderophore, 

in vitro. In fact, growth of the hemB::Sp mutant was decreased in iron deplete media upon 

provision of epinephrine, indicating epinephrine impedes SB utilization by competing with SB for 

Tfn-Fe3+. Thus, a role for catechol-type siderophore uptake for S. aureus SCVs in vivo is unlikely. 

Consequently, I propose that heme iron acquisition is critical for S. aureus SCVs during systemic 

infection. As mentioned, Isd remains the only well-characterized S. aureus heme acquisition 
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system. My work suggests that an emphasis should be placed on elucidating alternative heme 

transport mechanisms to understand how WT S. aureus and S. aureus SCVs acquire heme in vivo. 

Moreover, MALDI FT-ICR IMS could be used to identify the presence of staphyloferrin in 

abscesses formed during infection with the S. aureus hemB::Sp mutant before dismissing in vivo 

staphyloferrin utilization by SCVs. 

To investigate hydroxamate-type siderophore utilization by S. aureus SCVs, growth 

promotion by DFO, a clinically relevant iron chelator used to treat iron overload, was examined. 

It was previously shown that DFO is utilized by S. aureus and that DFO exacerbates S. aureus 

virulence in a murine model of systemic infection61,88,99. Consistent with this, WT S. aureus 

infected mice that were treated with DFO in this study lost substantially more weight, and the 

bacterial burdens recovered from the heart, kidneys, and liver were higher. In contrast, the 

hemB::Sp mutant had defective DFO utilization in vitro and in vivo. However, DFO could be 

utilized by S. aureus hemB::Sp bacteria upon provision of additional hemin in vitro. Furthermore, 

a niche-specific increase in the bacterial burden upon DFO treatment was found in the kidneys of 

hemB::Sp infected mice. Therefore, I speculate that the hemB::Sp mutant acquires heme in the 

kidneys upon tissue damage which enables DFO utilization. The heme-dependent use of DFO by 

the hemB::Sp mutant in the kidneys was unexpected given the focus on S. aureus SCV intracellular 

persistence due to decreased expression of toxins, such as α-toxin, in the literature104. Thus, in vivo 

heme utilization and toxin production by the hemB::Sp mutant should be investigated. For this, isd 

and hla (α-toxin) mutants could be generated in the hemB::Sp background and used to infect mice 

to determine whether the Isd system and/or α-toxin contribute to S. aureus SCV pathogenicity. 

Moreover, if any additional heme acquisition systems are identified, they should also be examined 

in the context of S. aureus SCVs. 

Notably, the virulence of the S. aureus SCVs has been studied with various animal models, 

and it has been suggested that the hemB mutant is less virulent than WT S. aureus. Indeed, a hemB 

mutant was attenuated relative to WT S. aureus in a murine model of osteomyelitis119. In a murine 

model of septic arthritis, mice infected with the hemB mutant demonstrated more severe arthritis, 

purportedly due to increased protease production, but had lower bacterial burden in their kidneys 

and joints than mice infected with WT S. aureus148. Furthermore, in a murine mastitis model, the 

hemB mutant had reduced capacity to colonize the mammary glands149. In a rabbit endocarditis 

model, however, bacterial burden of the hemB mutant and WT S. aureus in the kidneys and spleen 
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were not significantly different114. It was theorized that bacterial burdens were similar because of 

increased hemin availability in organs due to tissue damage in the endocarditis model, enabling 

restoration of the WT phenotype114. Consistent with the notion that S. aureus SCVs are attenuated 

relative to WT S. aureus, the data presented here demonstrated that mice infected with the 

hemB::Sp mutant lost significantly less weight than WT S. aureus infected mice. Moreover, the 

hemB::Sp mutant colonized the heart poorly compared to WT S. aureus, and the bacterial burden 

in the kidneys of hemB::Sp infected mice was lower than that of mice infected with WT S. aureus. 

This is indicative of decreased clonal expansion and spread to other organs by SCV bacteria 

following initial capture by the Kupffer cells – the resident liver macrophages – in a systemic 

infection, presumably due to slow growth148,150. Notably, since S. aureus hemB::Sp bacteria were 

recovered from the kidneys, this stipulates that the hemB::Sp mutant replicates in vivo and must 

acquire iron to do so. Interestingly, the bacterial load in the liver was comparable for mice infected 

with the hemB::Sp mutant and mice infected with WT S. aureus. It is possible that hemB::Sp 

bacteria are captured by Kupffer cells equally as well as WT S. aureus and withstand the host 

immune response to prevent clearing and persist within the liver. Thus, future research should 

investigate the intracellular persistence and replication of S. aureus SCVs within macrophages, as 

well as the infection dynamics of S. aureus SCVs. A better understanding of the niches occupied 

by S. aureus SCVs and the progression of infections they cause is necessary to inform the 

development of novel therapeutics specific for treatment of S. aureus SCV infections. 

In my investigation of iron acquisition strategies of S. aureus SCVS, I identified that 

xenosiderophore utilization was defective in the hemB::Sp mutant, however, the reason remains 

unknown. Fur regulated expression of iron regulated genes such as HtsA, SirA, and FhuD2, the 

receptors for SB, SA, and hydroxamate-type siderophores, respectively, was found to be normal. 

Therefore, it is unlikely that SstD, the receptor for catechol-type siderophores, or other iron 

regulated genes are differentially expressed in the hemB::Sp mutant, unless subject to secondary 

regulation as in the case of SbnI regulation of SB biosynthetic genes. I hypothesize that defective 

siderophore utilization is related to decreased energy for siderophore uptake and/or decreased 

ability to extract iron from intracellular siderophore. Siderophore uptake is an energy dependent 

process powered by ATP hydrolysis. The FhuC ATPase is required for SA, SB, and hydroxamate-

type siderophore uptake, while SstC is the ATPase involved in catechol-type siderophore 

uptake81,98,101. S. aureus SCVs have decreased ATP levels due to aberrant ETC activity104,113. 
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Therefore, it stands to reason that siderophore uptake may be negatively impacted. Consistent with 

this notion, there appeared to be a limit on staphyloferrin utilization by the hemB::Sp mutant, 

indicated by a “maximal” level of growth that could be achieved through SB or SA utilization in 

iron deplete media (Fig. 8B). To examine whether ATP levels in the hemB::Sp mutant affect 

xenosiderophore utilization, media supplemented with hexose phosphates and other 

carbohydrates, which enable ATP generation independently of the ETC, could be used to 

investigate DFO and epinephrine utilization by S. aureus hemB::Sp bacteria122. To confirm that 

any differences in siderophore utilization are due to differences in intracellular ATP levels, an ATP 

detection kit could be used to measure intracellular ATP levels of the hemB::Sp mutant with and 

without provision of additional carbon sources. Even if S. aureus SCVs successfully uptake 

siderophore, iron must be freed from the siderophore before it can be utilized. To free iron from 

siderophores, bacteria express enzymes that degrade siderophores or reductases that reduce Fe3+ 

to Fe2+, which has a lower affinity for siderophores130. Although the process of iron extraction 

from siderophores is still poorly understood for S. aureus, iron utilization oxidoreductase (IruO) 

is implicated in iron acquisition from Fe-DFO and NtrA, a nitroreductase, is required for iron 

utilization from Fe-SA130. I speculate that S. aureus SCVs, which have altered metabolism, may 

have decreased levels of nicotinamide adenine dinucleotide phosphate (NADPH), which is 

required for the activity of reductases, potentially limiting iron extraction from siderophores151–153. 

Therefore, the intracellular levels of NADPH in the hemB::Sp mutant should be examined by use 

of a NADPH detection kit. Esterases have been described in other bacterial species for the 

breakdown of catechol-type siderophores, but it is unknown how S. aureus frees iron from 

catechol-type siderophores130,154,155. A better understanding of the strategies S. aureus utilizes for 

iron extraction from catechol-type siderophores is required to determine whether the defective 

utilization of epinephrine by S. aureus SCVs was related to extraction of iron from the siderophore. 

In summary, metabolic and energetic differences of S. aureus SCVs could limit their ability to 

uptake siderophore and extract non-heme iron for utilization. 

While this study focused on the S. aureus hemB::Sp mutant, future investigations should 

examine the iron acquisition strategies employed by other SCVs, such as a menadione auxotroph. 

Notably, mutations in genes part of the men operon have been identified in several S. aureus SCV 

clinical isolates and the S. aureus menD mutant, similar to the hemB mutant, has also been 

extensively described104,115,116. The menD gene encodes an enzyme involved in the biosynthesis of 
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menaquinone, a component of the ETC, thus mutation of menD results in defective oxidative 

phosphorylation, as with the hemB mutant104. I hypothesize a S. aureus menD mutant will also 

have a defect in SA biosynthesis, due to downregulated TCA cycle activity156. Therefore, I propose 

that the iron acquisition strategies employed by a S. aureus ∆menD mutant should be compared to 

those of the hemB::Sp mutant, by repeating the same experiments performed here. Furthermore, 

the iron acquisition strategies of SCVs from another staphylococcal species, such as 

Staphylococcus epidermidis could be examined. S. epidermidis is a CoNS and a notable cause of 

nosocomial infections146. S. epidermidis SCVs are often isolated from prosthetic joint infections, 

thus, must acquire iron to persist in the host157,158. Interestingly, the genome of S. epidermidis does 

not contain the sbn operon, required for SB biosynthesis87. Consequently, growth of S. epidermidis 

in iron deplete media is dependent on SA utilization. Therefore, if S. epidermidis SCVs also have 

a defect in SA biosynthesis, no growth will be observed in iron deplete media. The study of iron 

acquisition mechanisms important for other S. aureus SCVs and other staphylococcal SCVs will 

allow the identification and generalization of the iron acquisition strategies important for SCVs. 

The work presented here provides valuable insight into how the hemB::Sp mutant, a S. 

aureus SCV acquires iron (summarized in Table 3). While S. aureus iron acquisition strategies 

have been studied at length, little was known about how S. aureus SCVs acquire iron. Notably, 

hemB::Sp bacteria sustained growth in iron deplete media due to utilization of SB, but not SA. 

Downregulated TCA cycle activity of S. aureus SCVs was determined to disrupt SA biosynthesis, 

but S. aureus hemB::Sp bacteria could utilize exogenously provided SA. In vivo, SA and SB did 

not contribute to infectivity of hemB::Sp bacteria. Moreover, utilization of DFO and epinephrine, 

hydroxamate-type and catechol-type siderophores, respectively, by hemB::Sp bacteria was 

defective in iron deplete media. Furthermore, DFO did not augment virulence of the hemB::Sp 

mutant in a murine model of systemic infection. Importantly, my work uncovered the impact of 

energetic limitations, metabolic changes, and altered gene expression associated with SCV bacteria 

on iron acquisition strategies employed by S. aureus SCVs. Due to the fact that iron is essential 

for bacterial growth, and S. aureus SCVs cause persistent infections that are difficult to treat, 

insights into the iron acquisition strategies employed by S. aureus SCVs are critical for 

understanding these pathogens, and for the potential identification of novel drug targets that if 

perturbed, could inhibit S. aureus SCV infection. 
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Table 3. Summary of iron acquisition strategies employed by S. aureus SCVs. 

 WT hemB::Sp 

Iron Source Synthesize Utilize Synthesize Utilize 

Heme + + - + 

SA + + - + 

SB + + + + 

DFO N/A + N/A - 

Epinephrine N/A + N/A - 
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