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Abstract 

Estimation of the bearing capacity and deformations of large shallow foundations under 

combined loadings can be of great significance. Classical bearing capacity theories, which 

have been widely used in current geotechnical practice, may not be accurate enough and 

may not be conservative for some cases. Some geotechnical design guidelines recommend 

the failure load envelope method as an alternative to conventional theories for ultimate 

limit state analysis. Although many investigations of this method can be found in the 

literature, these studies focus primarily on undrained failure envelopes using unlimited-

tension interfaces. However, zero-tension interfaces that are more appropriate for onshore 

foundations have not been well investigated. In addition, less work is available on drained 

failure envelopes. For serviceability limit states, the majority of approaches used are based 

on uncoupled, isotropic assumptions. Further work needs to be done on more appropriate 

elastic solutions for combined loadings. As the wind industry develops, the geotechnical 

challenges for larger wind turbines and less strong soils will increase. New tools for 

optimizing foundation design are required for economic construction of these facilities. 

General VHMT (combined vertical, horizontal, moment and torsional loading) failure 

envelopes for circular foundations under undrained and drained soil conditions have been 

investigated using finite element analysis. The effects of soil strength heterogeneity, 

foundation embedment and surficial crustal layer have been examined for undrained soil 

conditions. The results showed that torsional loads can reduce the VHM capacity for 

circular foundations and foundation embedment can significantly increase the VHMT 

capacity. Moreover, neglecting the contribution of the crustal soil layer may significantly 

underestimate the bearing capacity for large shallow foundations. In addition, cohesive-

frictional soils have been considered for drained soil conditions. The results showed that 

drained failure envelopes gradually expand with the soil weight parameter and 

exponentially expand with the soil friction angle. In comparison, classical bearing capacity 

theories appear to be rather conservative for combined loadings. 
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To estimate the deformations of large shallow foundations under complex climate and 

environmental loads, researchers have proposed many analytical isotropic elastic solutions 

based on idealized soil conditions, which are often adopted in existing design guidelines. 

However, many natural soils will be anisotropic or at least transversely isotropic (cross-

anisotropic) due to their deposition and complex stress history. This research has 

investigated the coupled elastic stiffnesses for circular foundations founded in cross -

anisotropic soils. 

The elastic analyses showed that the coupling between the horizontal and moment 

responses is minimally affected by the soil anisotropic parameter. In addition, Gibson and 

embedment correction factors have been derived to account for the effects of soil stiffness 

non-homogeneity and foundation embedment. The results indicated that a higher Gibson 

modulus can increase the vertical, horizontal and moment stiffnesses, while it does not 

affect the coupling stiffness. 
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Summary for Lay Audience 

Large onshore and offshore foundations are often subjected to complex environmental and 

climate loadings. To ensure the safety of structures, these foundations are designed to 

satisfy various criteria, but two of the most critical are: (1) the foundation capacity is larger 

than the possible maximum loading and (2) the foundation deformations under working 

loads are within given tolerances. This thesis has developed new methods for estimating 

the capacity and deformations of large circular foundations. 

To estimate the capacity for circular foundations, the failure load envelope, which defines 

the failure load surface for combined vertical, horizontal, moment and torsional loading, 

have been investigated. Practical foundations are often designed to be embedded and many 

soils exhibit increasing strength with depth and have a thin layer of stiff crust; the effects 

of foundation embedment, increasing soil strength and surficial crust on the foundation 

capacity have been examined. This method should aid the capacity assessment for large 

shallow circular foundations and lead to cost savings. 

To assess foundation deformations, the foundation stiffness, which is defined as the ratio 

of load and resulting displacement, is often adopted. This research has investigated the 

stiffness for circular foundations. Many natural soil deposits exhibit some degree of 

directionally dependent stiffness anisotropy due to their complex deposition history, where 

the soil has different mechanical properties in the vertical and horizontal planes. The 

developed approach should aid the deformation assessment for large shallow circular 

foundations and lead to more economic foundation construction. 
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1 Introduction 

1.1 Background 

Estimation of the bearing capacity and deformations of large shallow foundations under 

combined loadings is of great significance, particularly for onshore and offshore structures, 

such as oil and gas platforms, wind turbines, transmission towers, masts and other tall 

structures, due to their significant climate and environmental loadings. Apart from the 

vertical load due to the self-weight of the superstructure (V), horizontal loads (H) caused 

by wind, wave and ice can be substantial and a large structural height can lead to significant 

moment loading (M) of the foundation. In addition, other causes (e.g. accidental ‘snag’ 

occurrences) can add torsional loads (T) to the load combination. 

This chapter briefly reviews the methods for bearing capacity and deformation assessments 

of large shallow foundations for onshore and offshore structures under combined loadings. 

The emphasis is on shallow foundations for onshore wind turbines, which are the primary 

focus of this thesis. In common with other cyclically loaded structures, onshore wind 

turbine foundations are designed based on ultimate, serviceability and fatigue limit states. 

Since wind turbine foundations are subjected to considerable moment loading due to large 

horizontal loading and structural height, the rocking behavior of wind turbine foundations 

is considered to be a critical design parameter (Lang, 2012). In addition, the ultimate limit 

state of wind turbine foundations is also significant, and an accurate assessment of bearing 

capacity is required. Commonly-used geotechnical design guidelines for wind turbine 

foundations in North America include DNV (2016), API (2011) and ISO (2016). Given the 

relatively immature nature of the wind industry, optimization of the design methods for 

these structures is still required and this thesis aims to address some of these gaps.  

The assessments of bearing capacity and deformation for shallow foundations are generally 

separately considered. The bearing capacity calculation often treats the soil as an 

elastoplastic material and can directly provide the bearing pressure without considering 

load-displacement behavior. The deformation estimation normally considers the elastic 

behavior of a soil-foundation system. However, some more advanced methods, for 
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example, the macro-element approach (e.g. Houlsby and Cassidy, 2002; Cremer et al., 

2001) and the nonlinear Winkler approach (e.g. Allotey and El Naggar, 2003, 2008a, 

2008b), are able to capture the complete foundation response. The macro-element approach 

is based on foundation action bounding/yield surfaces and can account for the coupling 

between responses in different directions. The nonlinear Winkler model idealizes the soil 

as a system of springs and can be used for the analysis of soil-foundation interaction 

problems, including horizontal, vertical and rotational responses. These advanced models 

can also predict the cyclic foundation behaviors and have significant potential for the 

future. In this chapter, the commonly-used methods for separately assessing the bearing 

capacity and deformation of large shallow foundations are discussed. 

1.1.1 Bearing capacity of shallow foundations 

1.1.1.1 Classical bearing capacity theory 

The ultimate bearing capacity is referred to the average bearing pressure that can be 

provided by a geostructure without failure occurring. Traditionally, foundation capacity 

based on classical solutions for the uniaxial vertical bearing capacity of shallow strip 

foundations is often adopted (Terzaghi, 1951). The contributions of soil cohesion, soil unit 

weight and surcharge to the bearing capacity are taken into consideration in an uncoupled 

manner. The effects of load inclination and eccentricity are considered by introducing a 

load inclination factor and the effective foundation area. To account for the effects of 

foundation shape and embedment, shape and embedment factors are also used. Large 

onshore shallow wind turbine foundations are typically circular (or have forms that can be 

approximated as circular) and have dimensions of 15-20 m diameter and 2-3 m thickness. 

The classical bearing capacity approach has been widely used by geotechnical design 

guidelines for wind turbine foundations, such as DNV (2016), API (2011) and ISO (2016). 

The effective area principle for circular and octagonal foundations provided by DNV 

(2016) is schematically illustrated in Figure 1.1. An equivalent inscribed circular 

foundation is recommended to accommodate for the octagonal shape. The effective area 

shaded with stripes (i.e. double circle segment area) is determined based on load 
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eccentricity (e = M/V), and is represented by a rectangle (with dimensions L'×B') for 

capacity assessment. 

B'
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L
'

L
e

A
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Figure 1.1: Effective area principle (DNV, 2016) 

The general form of the bearing capacity equation (BCE) is given by (Meyerhof, 1963): 

𝑞𝑢 = 𝑐′𝑁𝑐 ∙ 𝑠𝑐𝑖𝑐𝑑𝑐 + 0.5𝛾′𝐵′𝑁𝛾 ∙ 𝑠𝛾 𝑖𝛾𝑑𝛾 + 𝑞𝑁𝑞 ∙ 𝑠𝑞𝑖𝑞𝑑𝑞 (1.1) 

where Nc, Nγ and Nq are dimensionless bearing capacity factors accounting for soil 

cohesion, c', soil effective unit weight below foundation level, γ', and surcharge pressure 

at foundation level, q, respectively; sc, sγ and sq are dimensionless shape factors; ic, iγ and 

iq are dimensionless inclination factors; dc, dγ and dq are dimensionless embedment factors; 

and B' is the effective foundation width accounting for load eccentricity. For undrained soil 

conditions with φ = 0, the general BCE reduces to: 

𝑞𝑢 = 𝑠𝑢𝑁𝑐 ∙ 𝑠𝑐 𝑖𝑐𝑑𝑐 + 𝑞 (1.2) 

Analytical expressions of the bearing capacity factors are often functions of the soil friction 

angle, φ'. For example, exact formulae for Nc and Nq (pertain to weightless soils) for a 

rough strip foundation were provided by Prandtl (1920): 

𝑁𝑐 = (𝑁𝑞 − 1) cot𝜑′

𝑁𝑞 = e𝜋 tan𝜑′
∙ tan2 (

𝜋

4
+

𝜑′

2
)
 (1.3) 
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Eq. (1.3) reduces to Nc = π+2 and Nq = 1 under undrained soil conditions. However, there 

is no consensus on the expression of Nγ due to the complexities introduced by the inclusion 

of soil self-weight. A variety of solutions for Nγ can be found in the literature (Chen, 2013). 

The expression recommended by DNV (2016) is shown by Eq. (1.4). Recent studies (e.g. 

Perkins and Madson, 2000; Cerato and Lutenegger, 2007; Kumar and Khatri, 2008; 

Loukidis and Salgado, 2011; Conte et al., 2013) also indicate that the effects of foundation 

size, relative density and stress levels of sands also influence the bearing capacity factors 

due to strain softening and progressive failure. 

𝑁𝛾 = 1.5(𝑁𝑞 − 1) tan 𝜑′ (1.4) 

Many empirical and semi-empirical expressions for the modification factors (i.e. shape, 

inclination and embedment factors) under undrained and drained soil conditions have been 

proposed. Some of the expressions are summarized by Hansen (1970) and Zadroga (1994). 

Since the effects of load inclination and eccentricity are separately considered, this semi-

empirical modification of the conventional theories may sometimes be insufficiently 

accurate (Gourvenec, 2007). Figure 1.2 shows typical experimental results of the failure 

load combinations (horizontal and moment loads) for shallow foundations under undrained 

and drained soil conditions, along with the failure envelopes fitted by experimental results. 

It is apparent that the classical BCE does not provide satisfactory predictions against the 

experimental results in certain cases and this simple approach is not conservative for all 

the possible load combinations. 
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(a) Undrained soil conditions (Martin, 1994) (b) Drained soil conditions (Cassidy, 1999) 

Figure 1.2: M-H failure envelopes for shallow foundations at V/Vult = 0.50 (after 

Tapper, 2013): (a) Undrained soil conditions (Martin, 1994) and (b) Drained soil 

conditions (Cassidy, 1999) 

Moreover, variations in soil strength with depth are difficult to include in the BCE and non-

standard foundation shapes (e.g. octagons) cannot easily be incorporated into this method; 

an approximate inscribed circle of a double symmetrical polygon is recommended by DNV 

(2016). The effective area method also does not consider the tensile stress at the soil-

foundation interface, which is of great significance for offshore foundations, such as 

suction caissons. In addition, this approach cannot incorporate the effects of torsional loads, 

which can be significant for onshore and offshore foundations (Bienen et al., 2007). DNV 

(2016) introduces an equivalent horizontal load to account for torsional loading, but this 

form of approximation is not straightforward. 

1.1.1.2 Failure envelope approach 

The failure envelope approach is a more recently introduced method, which can explicitly 

incorporate the load interaction effects of the various load components (Shen et al., 2017). 

It has been recommended as an alternative to conventional theories in API (2011) and ISO 

(2016). For a given three-dimensional VHM failure envelope, VHM load combinations 

within this failure envelope have a safe design capacity, whist load combinations located 

on or outside this failure envelop are considered to be unsafe. 

The shape and size of failure envelopes depends on many factors, such as foundation shape, 

foundation embedment, soil strength heterogeneity, soil drainage conditions, soil-

foundation interface conditions. A number of studies have been undertaken to investigate 

the failure envelope for strip, rectangular and circular foundations. The VHM failure 

envelopes for hybrid monopile-footing foundations have also been investigated by El-

Marassi et al. (2008), El-Marassi (2011) and Stone et al. (2010). Undrained failure 

envelopes have mostly determined using numerical and theoretical methods (e.g. Taiebat 

and Carter, 2002; Gourvenec and Randolph, 2003; Gourvenec, 2007; Feng et al., 2014; 
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Shen et al., 2016), while drained failure envelopes are relatively sparse and primarily 

derived based on experimental approaches (e.g. Nova and Montrasio, 1991; Butterfield and 

Gottardi, 1994; Bienen et al., 2006). 

Gourvenec (2007) investigated foundation shape effects on undrained failure envelopes 

under combined VHM loading. The results show that the shape of foundations considerably 

affects the size of the failure envelope, while the shapes of the failure envelopes remain 

generally similar, as shown in Figure 1.3. 

 

Figure 1.3: Effect of foundation shape on undrained MH failure envelopes under 

unlimited-tension interface conditions (Gourvenec, 2007) 

The tensile strength for the soil-foundation interface plays an important role in the 

development of failure envelopes. The extreme cases are unlimited-tension and zero-

tension interfaces. An unlimited-tension interface is often assumed for offshore 

foundations, particularly for the case of skirted foundations, while onshore shallow 

foundations can uplift and separate from the soil under large overturning moments, because 

the soil-foundation interface is unable to resist tensile loads. El-Marassi (2011) investigated 

the undrained VHM failure envelopes of hybrid monopile-footing foundations for both 

unlimited- and zero-tension interface conditions using finite element analysis. The results 

show that the vertical resistance does not depend on the soil-foundation interface 

conditions, while the lateral and rocking capacities are highly affected by the interface 

conditions. Taiebat and Carter (2010) numerically studied the three-dimensional undrained 



7 

 

VHM failure envelopes for circular foundations under unlimited-tension and zero-tension 

interface conditions (see Figure 1.4). The primary differences are: (i) an unlimited-tension 

interface can sustain moment at V = 0; and (ii) The M-H cross section for a zero-tension 

interface is almost symmetric about H = 0, while the M-H envelope for an unlimited-

tension interface is asymmetric and the apex of the M-H envelope is located in the positive 

M-H quadrant (i.e. +M, +H). 

   

 (a) Unlimited-tension interface (b) Zero-tension interface 

Figure 1.4: Effect of foundation interface conditions on undrained VHM failure 

envelopes (Taiebat and Carter, 2010): (a) Unlimited-tension interface and (b) Zero-

tension interface 

Foundation embedment (denoted by foundation embedment ratio, d/D, with d being the 

foundation embedment depth and D being the diameter of circular foundations) and soil 

strength heterogeneity (represented by soil strength heterogeneity ratio, κ = kD/su0, with k 

being the strength increase per depth and su0 being the undrained shear strength at 

foundation level) are also important parameters causing differences in the foundation 

failure envelopes. The effects of foundation embedment and soil strength heterogeneity 

can be two-fold. Firstly, they can dramatically increase the bearing capacity of foundations 

(i.e. the size of the failure envelope), and secondly the shape of the failure envelope can 

also change with increasing foundation embedment and soil strength heterogeneity. Vulpe 

et al. (2014) has shown that the undrained failure envelope for circular foundations 

considerably expands with d/D and κ, and the obliqueness of the M-H failure envelopes 

increases with d/D and κ due to the cross-coupling between the horizontal and moment 

loading modes, as shown in Figure 1.5. 
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 (a) Effect of foundation embedment (b) Effect of soil strength heterogeneity 

Figure 1.5: Effects of foundation embedment and soil strength heterogeneity on 

undrained M-H failure envelopes (Vulpe et al., 2014): (a) Effect of foundation 

embedment and (b) Effect of soil strength heterogeneity 

Drained failure envelopes normally consider a zero-tension interface, since tensile stress at 

the soil-foundation interface is unlikely to be generated due to the drained soil conditions. 

Butterfield and Gottardi (1994), Martin (1994) and Byrne (2000) experimentally 

investigated the VHM failure envelope for offshore foundations (e.g. suction caissons and 

spudcans). The schematic VHM failure envelope is shown in Figure 1.6 (Tapper, 2013). 

The drained failure envelope has been approximated using parabolic expressions in H-V 

and M-V loading space, and elliptical equations in M-H loading space. It should also be 

noted that the elliptical M-H envelope tends to be oblique to the negative (+M, -H) load 

combinations (e.g. positive eccentricity), which differs from the undrained failure envelope 

(see Figure 1.2). 

 

Figure 1.6: Drained VHM failure envelope (Tapper, 2013) 
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However, numerical analysis of drained failure envelopes is relatively sparse compared 

with undrained soil conditions. Marassi et al. (2008), Stone et al. (2010) and Marassi et al. 

(2017) numerically studied the drained VHM failure envelopes for hybrid monopile-

footing foundations. However, these failure envelopes are limited to some special cross-

sections of the global failure surface and torsional loading was not considered. Hjiaj et al. 

(2004) evaluated the lower and upper bounds of the bearing capacity for strip foundations 

on cohesive-frictional soils under non-eccentric inclined loads using numerical limit 

analysis, while the non-eccentric loading cannot account for the effect of moment loading. 

Loukidis et al. (2008) undertook finite element analysis to investigate the drained VHM 

failure envelope for strip foundations on purely frictional sands, and similar oblique 

elliptical M-H envelopes (see Figure 1.7) have been found. However, the failure envelope 

concept is not fully adopted and only a combined inclination-eccentricity factor was 

proposed for the classical bearing capacity theory. 

 

Figure 1.7: Drained M-H failure envelope (Loukidis et al., 2008) 

For comparison, the schematics of undrained and drained failure envelopes are compared 

in Figure 1.8. 
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(b) Undrained soil conditions & unlimited-tension interface 
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(c) Drained soil conditions 

Figure 1.8: Schematics of failure envelopes: (a) Undrained soil conditions & zero-

tension interface; (b) Undrained soil conditions & unlimited-tension interface and 

(c) Drained soil conditions 

Although a number of studies of undrained failure envelopes can be found in the literature, 

many of them are constrained to unlimited-tension interface conditions for offshore 

foundations and some scenarios for zero-tension interface conditions that are more suitable 

for onshore foundations have been ignored, such as circular embedded foundations with 

zero-tension interfaces. Furthermore, current studies have been primarily limited to a single 

soil layer with a uniform or linearly increasing undrained shear strength profile. However, 

onshore clay deposits often have a thin layer of stiff crust with a relatively high undrained 

shear strength developed from weathering, desiccation and chemical process (Lutenegger, 

1995). The effect of a surficial crust on the failure envelope for shallow foundations is still 

not well investigated. 

In contrast to undrained soil conditions, studies of drained failure envelopes are relatively 

sparse and most of them have been developed using experimental results. Numerical 

analyses of drained failure envelopes that involve high soil friction angles often converge 
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rather slowly, particularly for cases using a non-associated flow rule (much slower 

convergence rate than an associated-flow rule and convergence issues always occur). 

Numerical studies of drained failure envelopes available in the literature are confined to 

strip foundations and purely frictional sands in the absence of soil cohesion. However, the 

drained failure envelope for cohesive-frictional soils, such as over-consolidated clays, has 

not been addressed. 

In addition, current studies of the failure envelope focus primarily on load combinations of 

vertical (V), horizontal (H) and moment (M) loads. However, environmental loads on 

structures are often not co-planar, and transverse loads can also induce torsional effects on 

the foundation (Bienen et al., 2007). Thus, the influence of torsional loads (T) should not 

be ignored for failure envelopes of shallow foundations. Although the torsional loading 

effects were investigated by some workers previously (e.g. Abyaneh et al., 2015; Feng et 

al., 2017; Shen et al., 2017), those studies are limited to rectangular foundations under 

undrained soil conditions using unlimited-tension interfaces. 

1.1.2 Elastic behavior of shallow foundations 

Estimation of the serviceability limit state of shallow foundations under working loads can 

also be of great significance, particularly for large onshore and offshore structures, such as 

wind turbines and oil and gas platforms. For example, the rocking stiffness of wind turbine 

foundations in particular is considered to be a critical design parameter,  since it controls 

the location of the center of gravity with respect to the foundation of the turbine (Lang, 

2012). As mentioned above, these shallow foundations are generally subjected to combined 

VHMT loads induced by environmental and structural effects. 

A variety of analytical solutions for elastic foundation stiffnesses (Reissner and Sagoci, 

1944; Spence, 1968; Gerrard and Harrison, 1970; Poulos and Davies, 1974) have been 

derived based on theories that assume homogeneous elastic half -spaces subjected to 

uniaxial vertical, horizontal, moment and torsional loads, as shown by Eq. (1.5). 

𝐾𝑉 =
4

1 − 𝜇
(1 +

𝑑

𝐷
) (1.5) 
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θM 

𝐾𝐻𝐻 =
8

2 − 𝜇
(1 +

4𝑑

3𝐷
) 

𝐾𝑀𝑀 =
8

3(1 − 𝜇)
(1 +

4𝑑

𝐷
) 

𝐾𝑇 =
16

3
(1 +

16𝑑

3𝐷
) 

where KV, KHH, KMM and KT are the vertical, horizontal, moment and torsional foundation 

stiffness coefficients, respectively; μ is the Poisson’s ratio of soil; d is the foundation 

embedment depth; and D is the foundation diameter. 

Bell (1991) demonstrated with finite element analysis that the cross-coupling effects 

between the vertical, horizontal and rocking behavior can be expressed in a matrix form 

(Eq. (1.6)). The sign conventions for the loads and deformations are shown in Figure 1.9. 

Original position

Displaced position

V MH

uV

uH

R

LRP

 

Figure 1.9: Sign conventions for loads and deformations (Osman et al., 2007) 

[
 
 
 
 
 

𝑉

𝐺𝑅2

𝐻

𝐺𝑅2

𝑀

𝐺𝑅3]
 
 
 
 
 

= [

𝐾𝑉 0 0
0 𝐾𝐻𝐻 𝐾𝐻𝑀

0 𝐾𝑀𝐻 𝐾𝑀𝑀

] ∙ [

𝑢𝑉
𝑅⁄

𝑢𝐻
𝑅⁄

𝜃𝑀

] (1.6) 

where uV, uH and θM are the vertical, horizontal and rotational deformations, respectively; 

and R is the foundation radius. KMH and KHM are equal, and represent the cross-coupling 

effects between the horizontal and rotational degrees of freedom. The stiffness coefficients 

are nonlinear functions of  the foundation embedment ratio (i.e. d/D), soil Poisson’s ratio, 
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foundation embedment conditions and foundation geometry (Doherty and Deeks, 2003). 

Despite the availability of these coupled solutions (e.g. Gazetas, 1983; Gazetas, 1991), 

uncoupled foundation stiffness methods still predominate in most guidelines used for 

shallow wind turbine foundation design, such as DNV (2016), API (2011) and ISO (2016). 

Although many studies of the uncoupled and coupled foundation stiffness are available in 

the literature, the soil is always treated as an idealized isotropic material. However, many 

natural soils have been known to be anisotropic or at least transversely isotropic (cross-

anisotropic) due to their deposition and complex stress history (Bishop and Hight, 1977). 

Graham and Houlsby (1983) and Yang et al. (2008) demonstrated that both granular soils 

and clays at small strains exhibit stiffness anisotropy that can be satisfactorily described 

with cross-anisotropic elasticity. Given the ubiquity of high-quality site investigation data, 

the effects of soil stiffness anisotropy on the foundation stiffnesses for shallow foundations 

may also be evaluated. In addition, studies of torsional foundation stiffness are relatively 

sparse, since it is often considered as a constant regardless of soil Poisson’s ratio. Given 

that this is included as a load combination case in some of the design guidelines, more 

accurate estimation of the torsional foundation stiffness, accounting for foundation 

embedment, soil stiffness heterogeneity and anisotropy, would also be a useful analytical 

tool for industry. 

The abovementioned methods for estimating the foundation bearing capacity and 

deformation are all for static load cases. It should be noted that wind turbine foundations 

are primarily subjected to cyclic loading induced by wind and the foundation of a wind 

turbine will experience millions of load cycles. Cyclic loading can lead to the reduction in 

soil strength and foundation stiffness and may cause resonant vibration (Gazetas, 1991; EI 

Naggar, 2001), therefore, these cyclic loading effects should also be included for the design 

of this type of foundations. 

1.2 Objectives of the research 

The overall aim of this work was to create appropriate ultimate limit and serviceability 

limit state design tools for large onshore shallow foundations of wind turbines. The specific 

objectives can be summarized as follows: 
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• To investigate the general coupled VHMT load failure envelope of circular 

foundations subject to a zero-tension interface for undrained soil conditions, and to 

examine the effects of soil strength heterogeneity and foundation embedment on 

the VHMT load failure envelope. 

• To evaluate the effects of a surficial crust layer of the soil on the undrained VHMT 

load failure envelope for circular surface foundations. 

• To study the drained VHMT load failure envelope for circular surface foundations 

on cohesive-frictional soils. 

• To assess the coupled elastic stiffness coefficients for circular surface and 

embedded foundations resting on cross-anisotropic soils with linearly increasing 

stiffness with depth under combined VHMT loads. 

1.3 Thesis outline 

In line with the aforementioned research aims, this thesis has been divided into six chapters. 

Except for the introductory and concluding chapters, each chapter has its own introduction, 

literature review and list of references due to the integrated-article format. This thesis has 

been organized as follows: 

• Chapter 1: Provides an overview of the methods for bearing capacity and 

deformation assessments of large shallow wind turbine foundations. The classical 

bearing capacity method and the failure envelope approach are separately reviewed. 

The foundation stiffness method available in the literature is summarized and the 

background on the cross-anisotropic elastic soil is provided. A rationale for the 

research conducted is provided. The objectives and structure of the thesis are also 

included in this chapter. 

• Chapter 2: Investigates the full VHMT failure envelope of circular foundations 

under a zero-tension interface for undrained soil conditions. The effects of soil 

strength heterogeneity and foundation embedment on the VHMT failure envelope 

have been separately studied. A full 4-D VHMT failure envelope is estimated using 

the finite element method. 
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• Chapter 3: Evaluates the effects of a surficial crust layer (thickness and strength) 

on the undrained VHMT failure envelope for circular surface foundations. 

Undrained conditions have been considered for both the crustal layer and the 

underlying soil. The general expression of the 4-D VHMT failure envelope is 

derived. 

• Chapter 4: Presents the drained VHMT failure envelope for circular surface 

foundations on cohesive-frictional soils under a zero-tension interface. The effects 

of the soil friction angle and soil self-weight on the VHMT failure envelope have 

been studied. Analytical equations for the drained 4-D VHMT failure envelope are 

estimated. 

• Chapter 5: Obtains the coupled elastic foundation stiffness coefficients for circular 

foundations resting on cross-anisotropic soils under combined VHMT loads. A 

three-parameter cross-anisotropic model has been used to model the elastic soil 

behavior. Foundation stiffnesses accounting for the effects of foundation 

embedment, soil stiffness non-homogeneity and anisotropy have been estimated 

using finite element analysis. 

• Chapter 6: Provides an example of the application of the failure envelope and 

foundation stiffness approaches for a shallow foundation of a typical Canadian 

wind turbine. The main findings of this research, along with recommendations for 

further related studies, are also summarized. 
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2 Undrained capacity of circular shallow foundations under 
combined VHMT loading 

2.1 Introduction 

Shallow foundations have been extensively used to support large onshore and offshore 

structures, such as wind turbines, oil and gas platforms, transmission towers and masts. For 

many of these structures, the load-bearing capacity of their foundations under combined 

loadings is particularly important due to the complex environmental loads. For example, 

the horizontal loads on a wind turbine caused by combined wind, waves and current can 

be substantial and a large tower height can lead to significant moment loading on the 

foundation. Traditional analytical methods for these types of structure are based on 

classical solutions for the uniaxial vertical bearing capacity of shallow foundations. To 

account for the effect of load inclination and eccentricity, the load inclination factor and 

the effective foundation area are introduced to the conventional method, as recommended 

by some geotechnical design guidelines (e.g. DNV, 2016). However, these simple, 

traditional methods may not be accurate enough in some cases, because the load inclination 

and eccentricity effects are separately considered (Gourvenec, 2007). In general, this 

approach can be conservative for combined V-H-M loading cases (Taiebat and Carter, 

2002), while it has been shown to be non-conservative for strip foundations on soils with 

shear strength increasing with depth (Ukritchon et al., 1998). 

A more recent design approach is the failure envelope method, which explicitly 

incorporates the load interaction effects of the various load components (Shen et al., 2017). 

This method has been recommended as an alternative to conventional theory in API (2011) 

and ISO (2016). Failure envelopes under undrained conditions for different types of 

foundations (e.g. strip (Bransby and Randolph, 1998), rectangular (Gourvenec and 

Randolph, 2003) and circular (Shen et al., 2016) foundations), homogeneous (Taiebat and 

Carter, 2010) or non-homogeneous (Feng et al., 2014) soils, and zero-tension (Shen et al., 

2016) or unlimited-tension (Gourvenec and Randolph, 2003) interface conditions have 

been previously studied. These studies focus primarily on load combinations of vertical 

(V), horizontal (H) and moment (M) loads. However, environmental loads on the structure 



22 

 

are often not co-planar, and transverse loads can also induce torsional effects on the 

foundation (Bienen et al., 2007). Thus, the influence of torsional loads should not be 

ignored for failure envelopes of shallow foundations. Although the torsional loading effects 

were investigated by some workers previously (e.g. Shen et al., 2017; Abyaneh et al., 2015; 

Feng et al., 2017), those studies are limited to rectangular foundations using an unlimited-

tension interface. This form of interface is often assumed for offshore structures, 

particularly for the case of skirted foundations, However, the reliability of under-base 

suction in offshore environments can be conditional (Sheng et al., 2016). Moreover, 

onshore shallow foundations can uplift and separate from the soil under large overturning 

moments, because the soil-foundation interface is unable to resist tensile loads. Since many 

of the aforementioned studies have concentrated on offshore cases with unlimited-tension 

interfaces, this interface condition has been generally ignored. 

To address these omissions in the literature, the object of this study is to investigate the full 

VHMT failure envelope of circular foundations under a zero-tension interface for 

undrained soil conditions. The effects of soil strength heterogeneity and foundation 

embedment on the VHMT failure envelope have been separately studied. A full 4-D 

VHMT failure envelope is estimated using the finite element (FE) method. 

2.2 Method – finite element analysis 

In this paper, the effects of soil strength heterogeneity and foundation embedment have 

been separately studied using: (i) surface foundations on heterogeneous soils and (ii) 

embedded foundations in homogeneous soils. 

2.2.1 Material models and interface conditions 

A linear elastic perfectly plastic constitutive relationship with a Mohr-Coulomb (M-C) 

failure criterion was used to model the soil behavior. The M-C criterion devolves to the 

Tresca criterion under undrained soil conditions, which is defined by three soil parameters: 

the undrained Young’s modulus, Eu, Poisson’s ratio, µ, and the undrained shear strength, 

su. To study the effect of the soil strength heterogeneity, the undrained soil shear strength 

was considered to linearly increase with depth from the ground surface (see Figure 2.1): 
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𝑠u = 𝑠u0 + 𝑘𝑧 (2.1) 

where su0 is the undrained shear strength at foundation level; k is the strength increase per 

depth. For the analyses, su0 was held constant at 100 kPa and the Poisson’s ratio of the 

undrained soil was taken as 0.495. The dimensionless soil strength heterogeneity ratio 

defined by κ = kD/su0 (Gourvenec and Randolph, 2003) was taken as 0 (homogeneous), 2, 

6 and 10. A sufficiently large Eu/su0 ratio of 10000 was selected to minimize mesh distortion 

(Abyaneh et al., 2015). The foundation was assumed to act as a rigid body. A load reference 

point (LRP) attached to the center of the base of foundation was utilized to apply prescribed 

displacements or loads, as shown in Figure 2.1. 
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Figure 2.1: Sign conventions and soil strength profile 

Similar to Shen et al. (2016), the FE analyses considered a zero-tension rough base that 

allows separation of the foundation from the soil. The zero-tension rough base can be 

modelled using a Coulomb friction with a friction coefficient of 20 (Shen et al., 2016). For 

embedded foundations, a reduced interface shear strength (i.e. intermediate roughness) for 

side and top interfaces is always recommended due to installation or in-service loading 

processes (Gourvenec et al., 2011; Deshpande, 2016). In this analysis, smooth side and top 

conditions (i.e. an interface adhesion factor α = 0 and the shear strength on the interface 

αsu = 0) for the embedded foundations were considered to provide more conservative 

estimations. The same consideration was also made by Gourvenec and Mana (2011).  

2.2.2 Geometry and mesh 

The FE analysis was conducted using the software ABAQUS (Dassault Systèmes, 2016). 

The diameter (D) and thickness (t) of the circular foundation used in this paper are 19 m 
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and 3 m, representing typical dimensions for current onshore wind turbines used in North 

America. The embedment depth ratio, d/D (d is the foundation embedment depth), was 

taken as 0, 0.16, 0.30 and 0.50 to span cases of practical interest. To avoid the effects of 

the model boundaries on the development of failure mechanisms, the mesh length, L, and 

mesh height, H, were taken as 120 m and 50 m, following the recommendations of 

Deshpande (2016). 

 

Figure 2.2: Mesh convergence study for a homogeneous soil 

L

H

 

(a) Surface foundation 

 

(b) Embedded foundation (d/D = 0.50) 

Figure 2.3: Half-view of the FE mesh: (a) Surface foundation and (b) Embedded 

foundation (d/D = 0.50) 
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A mesh convergence study was carried out for a number of cases and a typical result is 

shown in Figure 2.2. The difference between the ultimate vertical loads using Mesh 2  

(39000 elements) and 3 (100000 elements) is about 2%. However, the model solution with 

Mesh 3 takes about 6 times longer than that using Mesh 2. Therefore, Mesh 2 was adopted 

in the analysis. Figure 2.3 shows the three-dimensional half model using Mesh 2. The mesh 

was composed of around 39000 brick elements (i.e. first-order, 8-noded brick element with 

reduced integration and hourglass control). To capture the intense stress concentration 

close to the foundation edge and the large plastic shear strains at the interface, the soil 

regions in the vicinity of the foundation edge and the horizontal thin soil layer close to the 

interface were carefully refined (Gourvenec and Randolph, 2003). The cylindrical 

circumference of the soil was constrained to prevent out-of-plane translations, and the 

bottom of the soil domain was fixed in the three orthogonal directions. 

2.2.3 Sign conventions and loading paths 

The sign conventions for the loads are also shown in Figure 2.1. In the analyses, the 

horizontal and moment loads were considered to be in the same plane. 

Probe tests and swipe tests were employed to detect the failure envelopes under various 

load conditions. In a probe analysis, a fixed-ratio of displacement is imposed to the 

foundation to track the failure point on the failure envelope (for M-H, H-T and M-T failure 

envelopes, a vertical load is first applied at the LRP of the foundation). A probe test can 

only obtain a single point on a failure envelope. 

The swipe test brings the foundation to a collapse state in coordinate direction 1 first 

(displacement-controlled), followed by a displacement applied in coordinate direction 2, 

during which the increment of the displacement in coordinate direction 1 remains zero 

(Gourvenec and Randolph, 2003). For some cases the swipe test cannot capture the entire 

failure envelope due to convergence issues, hence additional probe tests were carried out 

to facilitate the analysis. Three typical failure envelopes obtained using both swipe and 

probe tests are shown in Figure 2.4. However, swipe tests can considerably underestimate 

the failure envelopes for embedded foundations (Gourvenec and Randolph, 2003). 
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Therefore, swipe tests were performed only for surface foundations and probe tests were 

utilized for embedded foundations. 

   

 (a) H-V (b) M-V 

 

(c) M-H at V/Vult = 0.50 

Figure 2.4: VHM failure envelopes of a surface foundation for κ = 0: (a) H-V; (b) M-

V and (c) M-H at V/Vult = 0.50 

2.3 Surface foundations on non-homogeneous soils 

For VHM loading, Shen et al. (2016) has numerically studied the failure envelopes for 

circular surface foundations on non-homogeneous soils under a zero-tension interface. 

These envelopes have been confirmed during the current study and for reasons of brevity 
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only a few cases are shown in Figure 2.4. There is an excellent match between the two sets 

of envelopes and this also provides validation of the methods used herein. In this section, 

the effects of torsion on the more general VHMT failure envelopes are assessed and 

discussed. The FE results and the corresponding closed-form equations for torsion-vertical 

(T-V), horizontal-torsion (H-T) and moment-torsion (M-T) envelopes are presented. 

2.3.1 Pure uniaxial capacity 

The ultimate loads for vertical, horizontal and torsional modes are referred to as the 

corresponding uniaxial load-carrying capacities in the absence of other loading modes. As 

the foundation with a zero-tension interface cannot resist moment loading without vertical 

loads, the ultimate moment capacity is referred to as the maximum moment load under 

vertical loading (Shen et al., 2016). The uniaxial bearing capacity factors are defined as: 

𝑣0 = 𝑉ult (𝐴𝑠u0)⁄

ℎ0 = 𝐻ult (𝐴𝑠u0)⁄

𝑚0 = 𝑀ult (𝐴𝐷𝑠u0)⁄

𝑡0 = 𝑇ult (𝐴𝐷𝑠u0)⁄

 (2.2) 

where A is the soil-foundation contact area. The estimated values of v0, h0, m0 and t0 for 

soils with different heterogeneity ratios are summarized in Table 2.1. 

Table 2.1: Uniaxial bearing capacity factors for soils with various soil strength 

heterogeneity ratios 

κ v0 h0 m0 t0 

0 6.00 1.00 0.62 0.33 

2 7.51 1.00 0.74 0.33 

6 9.59 0.99 0.91 0.33 

10 11.29 1.00 1.03 0.34 

The values of v0, h0 and m0 summarized in Table 2.1 generally agree with the results of 

Shen et al. (2016) (with difference less than 3%). Similar to the horizontal bearing capacity, 
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the torsional bearing capacity exhibits independence from the heterogeneity ratio (He and 

Newson, 2019), as the failure state for horizontal and torsional modes is reached only when 

the shear stress of su0 is fully developed. 

2.3.2 Torsion-Vertical loading 

The T-V failure envelopes for soils with different soil heterogeneity ratios are shown in 

Figure 2.5. Figure 2.5(b) indicates that the T-V envelopes normalized by the corresponding 

ultimate capacities collapse into a narrow band regardless of the heterogeneity ratios.  

Feng et al. (2014) provided an expression for the normalized T-V failure envelopes for 

rectangular foundations with an unlimited-tension interface, which was then used by Shen 

et al. (2017) to apply to a zero-tension interface: 

𝑇 𝑇ult⁄ = [1 − 4(𝑉 𝑉ult⁄ − 0.5)2]0.4, 𝑉 𝑉ult⁄ > 0.5 

(2.3) 

𝑇 𝑇ult⁄ = 1, 𝑉 𝑉ult⁄ ≤ 0.5 

Abyaneh et al. (2015) proposed a similar equation for circular foundations under an 

unlimited-tension interface condition: 

𝑉 𝑉ult⁄ = 0.5 + 0.5[1 − (𝑇 𝑇ult⁄ )2.5]0.3, 𝑉 𝑉ult⁄ > 0.5 

(2.4) 

𝑇 𝑇ult⁄ = 1, 𝑉 𝑉ult⁄ ≤ 0.5 

  

 (a) Dimensionless (b) Normalized 

Figure 2.5: T-V failure envelopes: (a) Dimensionless and (b) Normalized 
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Eqs. (2.3) and (2.4) are presented in Figure 2.5 for comparison. This shows that Eq. (2.4) 

can provide a reasonable approximation, although it was developed for an unlimited-

tension interface. In contrast, Eq. (2.3) gives more conservative results compared with the 

FE-calculated curves. Traditional methods from DNV (2016) using the concept of the 

effective foundation area are also compared in Figure 2.5. The results from the traditional 

methods lies entirely inside the FE-calculated failure envelopes and are more conservative 

than the two equations. 

2.3.3 Horizontal-Torsion loading 

Figure 2.6 presents the H-T failure envelopes normalized by the corresponding maximum 

values for V/Vult = 0.25, 0.50 and 0.75. It can be seen that the H-T failure envelopes are 

independent of the soil strength heterogeneity ratio, since the failure mechanisms under 

horizontal and torsional loading involve only the interface strength. Finnie and Morgan  

(2004) proposed Eq. (2.5) to model the H-T relationship without moment: 

(𝐻 𝐻max⁄ )𝑙 + (𝑇 𝑇max⁄ )𝑛 = 1 (2.5) 

where Hmax and Tmax are the maximum horizontal and torsional loads for a given V/Vult. 

As shown before, for V/Vult ≤ 0.50, Hmax = Hult and Tmax = Tult (see Eq. (2.3)). For V/Vult > 

0.50, Tmax can be calculated from Eq. (2.3) as: 

𝑇max = [1 − (2 𝑉 𝑉ult⁄ − 1)3.33]0.4 ∙ 𝑇ult (2.6) 

Hmax for V/Vult > 0.50 can be evaluated using Green’s original solution (Green, 1954; Sheng 

et al., 2016) as 𝐻max = [1 − (2 𝑉 𝑉ult⁄ − 1)2] ∙ 𝐻ult. 

The dimensionless powers, l and n in Eq. (2.5), depend on the foundation geometry. Yun 

et al. (2009) recommended l = n = 1.75 based on the FE analysis of circular and square 

foundations with an unlimited-tension interface. 

The curves of the traditional methods (DNV, 2016) and Eq. (2.5) with l = n = 1.75 are also 

presented together with the FE-calculated results in Figure 2.6. It shows that Eq. (2.5) with 

l = n = 1.75 can be considered to be an acceptable choice to fit the H-T failure envelopes, 
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although it provides relatively reduced results than the current study under the condition of 

V/Vult = 0.75. In contrast, for all the levels of vertical load mobilizations, the traditional 

method results in more conservative failure envelopes. The failure curves for V/Vult = 0.50 

and 0.25 are almost the same due to the fact that the maximum horizontal or torsional forces 

that can be mobilized for a surface foundation under undrained conditions depend only on 

the interface resistance under a condition of V/Vult ≤ 0.50. 

   

 (a) V/Vult = 0.75 (b) V/Vult = 0.50 

 

(c) V/Vult = 0.25 

Figure 2.6: H-T failure envelopes: (a) V/Vult = 0.75; (b) V/Vult = 0.50 and (c) V/Vult = 

0.25 
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2.3.4 Moment-Torsion loading 

The ultimate load-carrying capacity under combined moment and torsional loading at V/Vult 

= 0.25, 0.50 and 0.75 for the four soil strength heterogeneity ratios is compared in Figure 

2.7. The dimensionless failure envelopes in Figure 2.7(a) shows the expansion of curves 

with the soil strength heterogeneity ratio. It can be seen that the M-T failure envelopes 

normalized by the corresponding maximum loads (see Figure 2.7(b) ~ (d)) fall into a tight 

band for all the levels of vertical load mobilizations, which eliminates their dependence on 

the soil heterogeneity ratio. 

Shen et al. (2017) proposed a M-T relationship for rectangular foundations under a zero-

tension interface condition: 

(𝑀 𝑀max⁄ )𝑝 + (𝑇 𝑇max⁄ )𝑞 = 1, for 𝑉 𝑉ult⁄ ≤ 0.5 and 0 ≤ 𝜅 ≤ 10 (2.7) 

where p and q are dimensionless parameters. Shen et al. (2017) suggested p = 1.5 and q = 

2.0. Based on the results of rectangular foundations with an unlimited-tension interface, 

Feng et al. (2014) obtained two different powers: p = 6.0 and q = 2.0. 

The calculation of Tmax also follows Eq. (2.3). Mmax for different vertical load mobilizations 

can be evaluated based on the relationship proposed by Gourvenec (2007): 

𝑀 𝑀ult⁄ = 4[𝑉 𝑉ult⁄ − (𝑉 𝑉ult⁄ )2] (2.8) 

The analytical relationship (i.e. Eq. (2.7)) and the results from the conventional methods 

are also shown in Figure 2.7 against the FE-calculated failure envelopes. It can be seen that 

the curves produced with p = 1.5 and q = 2.0 (i.e. Shen et al., 2017) always lie inside the 

failure envelopes, while the case of p = 6.0 and q = 2.0 (i.e. Feng et al., 2014) predicts 

envelopes that go significantly beyond the FE-calculated results. To gain better predictions 

of the current study, p and q of Eq. (2.7) can be adjusted. As shown in Figure 2.7, the case 

of p = 2.5 and q = 2.0 can provide more satisfactory predictions. In contrast, the failure 

envelopes derived from DNV (2016) appear to be approximately linear relationships 

between T/Tult and M/Mult and lie entirely inside the FE-calculated failure envelopes for 

various vertical load levels. 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 2.7: M-T failure envelopes: (a) Dimensionless, V/Vult = 0.50; (b) Normalized, 

V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) Normalized, V/Vult = 0.25 

2.4 Embedded foundations in a homogeneous soil 

2.4.1 Pure uniaxial capacity 

The depth correction factor, dc, is defined as the ratio of the dimensionless capacity for 

embedded foundations (i.e. d/D > 0) to that for surface foundations (i.e. d/D = 0), i.e. 

𝑑𝑐 =
𝑁𝑑 𝐷⁄

𝑁𝑑 𝐷⁄ =0
 (2.9) 
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where 𝑁𝑑 𝐷⁄ =
𝑉ult

𝐴∙𝑠u
 for the vertical capacity, 𝑁𝑑 𝐷⁄ =

𝐻ult

𝐴∙𝑠u
 for the horizontal capacity and 

𝑁𝑑 𝐷⁄ =
𝑀ult

𝐴∙𝐷∙𝑠u
 for the moment capacity. For embedded foundations, the torsional capacity 

is related only to the base interface (side and top interfaces are smooth), therefore, the 

embedment ratio does not affect the torsional capacity. 

The relationships between the depth factors and embedment depth ratios are shown in 

Figure 2.8 along with results from design guidelines and previous results. Since the 

capacity factors for surface foundations are used for normalization, the depth factors 

always start from 1 at d/D = 0. Since DNV (2016) does not provide the embedment factor 

for the traditional method, the embedment factors recommended in DNV (2017) and ISO 

(2016) are applied. The FE results of Gourvenec (2008) for an embedded strip foundation 

with unlimited-tension interfaces are also compared in Figure 2.8 to show the difference 

between unlimited-tension and zero-tension interface conditions. Compared with the 

current FE results, DNV (2017) provides considerably conservative results with 

differences of about 22% and 47% for the vertical and moment depth factors, respectively. 

Comparable results can be seen for the vertical capacity, while the current depth factors for 

horizontal and moment capacities are relatively smaller than those of Gourvenec (2008) 

due to the assumption of unlimited tension interfaces. Since DNV (2017) does not consider 

the embedment effect for horizontal capacity, ISO (2016) is used for comparison. The total 

horizontal capacity given by ISO (2016) is equal to the base friction (i.e. Abase×su) plus the 

additional side resistance due to the difference between active and passive resistance which 

is related to the vertical projected area of the foundation in the direction of sliding (i.e. 

foundation diameter × thickness). Therefore, the horizontal capacity estimated by ISO 

(2016) remains constant when the foundation is fully embedded in the soil (i.e. embedment 

depth = foundation thickness), as shown in Figure 2.8(b). Thus, this calculation is more 

conservative for embedded foundations. However, due to the possible side gap between 

foundation and soil caused by installation disturbance and possible cyclic loading process, 

this approach appears to be reasonable in practice. 
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 (a) Vult (b) Hult 

 

(c) Mult 

Figure 2.8: Depth correction factors of uniaxial capacities for embedded 

foundations: (a) Vult; (b) Hult and (c) Mult 

2.4.2 Horizontal-Vertical loading 

Figure 2.9 shows the H-V failure envelopes for each embedment ratio considered. 

Dimensionless loads shown in Figure 2.9(a) represent the absolute size of the failure 

envelopes and normalized failure envelopes shown in Figure 2.9(b) are more appropriate 

for developing analytical equations. 

As shown in Figure 2.9(a), the failure envelope expands with the increase of the 

embedment ratio. Compared with the failure envelopes for a strip foundation with an 
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unlimited-tension interface developed by Gourvenec (2008) (see Figure 2.9(a)), a circular 

foundation with a zero-tension interface has relatively larger vertical capacities but smaller 

horizontal capacities due to the friction on the foundation top surface and the developed 

tension stresses on the side of the foundation for an unlimited-tension interface. As can be 

seen from Figure 2.9(b), the failure envelopes normalized by their corresponding ultimate 

capacities fall into a tighter band than those of Gourvenec (2008), whilst DNV (2017) lies 

slightly inside the current envelopes. A curve fit using Green’s solution, which is widely 

used to describe H-V envelopes (see Eq. (2.10)), can also provide a satisfactory simulation 

for the current FE results, as shown in Figure 2.9(b). 

𝑉 𝑉ult⁄ = 0.5 + 0.5√1 − 𝐻 𝐻ult⁄  (2.10) 

   

 (a) Dimensionless (b) Normalized 

Figure 2.9: H-V failure envelopes: (a) Dimensionless and (b) Normalized 

2.4.3 Moment-Vertical loading 

Figure 2.10(a) and (b) show the dimensionless and normalized failure envelopes of 

embedded foundations under combined moment and vertical load (no horizontal load). 

However, the current study shows different patterns of M-V envelopes compared with those 

obtained by Gourvenec (2008). This is because the unlimited-tension interface used by 

Gourvenec (2008) can result in consistently increasing moment capacity with the decrease 

of vertical load, while the reduction of moment occurs for a no-tension interface owing to 
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the separation of foundation from the soil under relatively small vertical loads. Figure 

2.10(b) shows that DNV (2017) just provides M-V failure envelopes that resemble the 

current failure envelope for a surface foundation irrespective of embedment ratios. In 

contrast, the FE results show that embedded foundations can sustain increasing moments 

with depth at zero vertical load. This is because the side and top soil (i.e. soil above the 

foundation base) can provide additional resistance even in the absence of vertical loads. As 

shown Figure 2.10(b), due to the non-zero intercepts with the moment axis (i.e. at V/Vult = 

0), the fitted equation for a circular surface foundation under a no-tension interface (see 

Eq. (2.11)) cannot be directly extended to the embedded cases, therefore, a more 

generalized form of equation should be developed to account for the embedment effect.  

𝑀 𝑀ult⁄ = 4[𝑉 𝑉ult⁄ − (𝑉 𝑉ult⁄ )2] (2.11) 

Figure 2.10(b) shows that the M-V failure envelopes for embedded foundations appear to 

still follow parabolic forms (e.g. Eq. (2.11)), although they are not complete curves. To 

transform these incomplete envelopes into the same form to create a complete surface that 

passes through the origin, the failure envelopes shown in Figure 2.10(a) can be shifted to 

the right along the x axis (see in Figure 2.10(c)), which is equivalent to: 

𝑉′ = 𝑉 + ∆𝑉 and 𝑉ult
′ = 𝑉ult + ∆𝑉 (2.12) 

where ΔV represents the amount of offset and can be defined as ΔV = Vult·f(d/D), where 

f(d/D) is a function of the embedment ratio. Curve fitting shows that 𝑓(𝑑 𝐷⁄ ) =

0.74(𝑑 𝐷⁄ )2 + 0.12 𝑑 𝐷⁄  can be a satisfactory prediction. New normalized failure 

envelopes (i.e. 𝑀 𝑀ult⁄ ~ 𝑉′ 𝑉ult
′⁄ ) can then be obtained based on the modified failure 

envelopes, as shown in Figure 2.10(d). The figure also shows that Eq. (2.11) can still be 

used to model the modified curves. 
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 (a) Dimensionless (b) Normalized 

   

 (c) Dimensionless, modified (d) Normalized, modified 

Figure 2.10: M-V failure envelopes: (a) Dimensionless; (b) Normalized; (c) 

Dimensionless, modified and (d) Normalized, modified 

2.4.4 Torsion-Vertical loading 

Figure 2.11 shows the dimensionless and normalized T-V failure envelopes for embedded 

circular foundations. Similar shapes of the failure envelopes can be observed from Figure 

2.11(a). Normalized failure envelopes in Figure 2.11(b) show that DNV (2017) 

significantly underestimates the torsional bearing capacity under the condition of V/Vult > 

0.50. The analytical equation (see Eq. (2.4)) for a circular foundation under an unlimited-

tension interface condition proposed by Abyaneh et al. (2015) is also compared in Figure 
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2.11(b). Although slight discrepancies between the equation and FE results can be 

observed, this equation can still provide reasonable and conservative predictions regardless 

of the embedment ratios. 

   

 (a) Dimensionless (b) Normalized 

Figure 2.11: T-V failure envelopes: (a) Dimensionless and (b) Normalized 

2.4.5 Moment-Horizontal loading 

Figure 2.12 shows the dimensionless and normalized M-H failure envelopes at V/Vult = 

0.25, 0.50 and 0.75 for embedded foundations. Only dimensionless envelopes at V/Vult = 

0.50 are presented (see Figure 2.12(a)) to show the evolution of the absolute size of the 

envelopes. As shown in Figure 2.12(a), the failure envelops for a strip foundation with an 

unlimited-tension interface obtained by Gourvenec (2008) are consistently larger than the 

current FE results and the difference gradually increases with the embedment ratio due to 

different foundation geometries and interface conditions. It should also be noted that the 

failure envelope for a surface foundation is almost symmetric about H = 0, however, the 

foundation embedment gradually increases the degree of asymmetry (i.e. obliquity of the 

failure envelope), which means that the M-H capacity in the (+M, +H) region is larger than 

that in the (+M, –H) region. This phenomenon is due to the cross-coupling effect between 

horizontal loads and moments. In practice, (+M, +H) is always the case for onshore and 

offshore structures, therefore, embedded foundations appear to be a better option for 
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structures subjected to large lateral loads and moments, such as wind turbines and 

transmission towers. 

Figure 2.12(b) ~ (d) shows the M-H failure envelopes normalized by the corresponding 

maximum horizontal load and moment (i.e. intersections of the failure envelopes with the 

horizontal load and moment axes) along with the failure envelopes provided by DNV 

(2017). The failure envelopes given by DNV (2017) are more conservative and symmetric 

about the moment axis regardless of embedment ratios, indicating that no coupling effects 

are taken into consideration in DNV (2017). The form of equation for M-H failure 

envelopes accounting for the effect of foundation embedment can be expressed as: 

(𝐻 𝐻max⁄ )2 + (𝑀 𝑀max⁄ )2[1 − ℎ(𝐻 𝐻max⁄ )] = 1 (2.13) 

where h is a function of d/D, i.e. ℎ(𝑑 𝐷⁄ ) = 1.46(𝑑 𝐷⁄ ) − 0.14. The comparison between 

the calculated and estimated M/Mmax shown in Figure 2.13 indicates a good fit. 

   

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 2.12: M-H failure envelopes: (a) Dimensionless, V/Vult = 0.50; (b) Normalized, 

V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) Normalized, V/Vult = 0.25 

 

Figure 2.13: Fitting of the probe values of M-H failure envelopes 

2.4.6 Horizontal-Torsional loading 

Figure 2.14 shows the dimensionless and normalized failure envelopes under horizontal 

and torsional loads (zero moment). Figure 2.14(a) exhibits the expansion of the absolute 

size of the H-T failure envelopes with the foundation embedment ratio. To describe these 

curves using a unique expression irrespective of vertical load levels and foundation 

embedment ratios, the corresponding maximum horizontal and torsional loads are adopted 
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for normalization, as shown in Figure 2.14(b) ~ (d). The comparison shows that the 

traditional approach consistently leads to more conservative H-T failure envelopes and the 

embedment effect has no influence on the traditional H-T failure envelope after 

normalization. In contrast, the FE result shows that the embedment of foundations 

considerably affects the H-T failure envelope even after normalization although this effect 

gradually decreases with the foundation embedment ratio. 

Due to the dispersion of the normalized curves caused by foundation embedment, the 

embedment effect needs to be taken into consideration in developing analytical 

expressions. The general form of formula for H-T failure envelopes can be taken as: 

(𝑇 𝑇max⁄ )1.5 + (𝐻 𝐻max⁄ )𝑓 = 1 (2.14) 

where f is a function of the embedment ratio. Curve-fitting shows that 𝑓(𝑑 𝐷⁄ ) =

−7.74(𝑑 𝐷⁄ )2 + 13.5 𝑑 𝐷⁄ + 1.83 is a good approximation. The analytical curves of Eq. 

(2.14) are also compared in Figure 2.14, where reasonable predictions can be observed 

apart from slight overestimations for embedded foundations at V/Vult = 0.25. 

  

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 2.14: H-T failure envelopes: (a) Dimensionless, V/Vult = 0.50; (b) Normalized, 

V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) Normalized, V/Vult = 0.25 

2.4.7 Moment-Torsional loading 

The dimensionless and normalized failure envelopes for M-H loading are shown Figure 

2.15. Similar to the H-T failure envelopes in Section 2.4.6, a significant expansion of the 

size of the curves with the embedment ratio can be found from Figure 2.15(a). The failure 

envelopes obtained by the conventional approach (DNV, 2017) lie significantly inside 

those derived by FE analysis, as shown in Figure 2.15(b) ~ (d). Foundation embedment 

also affects the normalized M-T failure envelope, however, unlike H-T failure envelopes, 

M-T failure envelopes for different embedment ratios mix together and no consistent trend 

with the embedment ratio can be observed. This feature does not easily lend itself to any 

simple form of expression that can account for the embedment effect. As a first 

approximation, a unique equation, which follows the overall trend of the failure envelopes, 

is also recommended: 

(𝑇 𝑇max⁄ )1.5 + (𝑀 𝑀max⁄ )3.55 = 1 (2.15) 

As compared in Figure 2.15, this expression can provide relatively reasonable fits although 

it is slightly unconservative for a surface foundation under the condition of V/Vult > 0.40. 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 2.15: M-T failure envelopes: (a) Dimensionless, V/Vult = 0.50; (b) Normalized, 

V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) Normalized, V/Vult = 0.25 

2.5 Full 4-D failure envelope in VHMT loading space 

This section derives the analytical 4-D expression for the failure envelope in VHMT 

loading space. Three sets of notation are defined: (1) Vult, Hult, Mult, Tult – uniaxial ultimate 

capacity; (2) Hmax, Mmax, Tmax – maximum capacity at a given level of the vertical load 

without other load components; (3) H'max, M'max – reduced maximum capacity at a given 

level of the vertical load with a non-zero torsional load (T ≠ 0). 
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Based on the above notations and the patterns of equations used in the previous sections, 

the general forms of all the equations are summarized in Table 2.2. Specific expressions of 

these failure envelopes for different soil and foundation conditions can be found in the 

previous sections. 

Table 2.2: Summary of FE-calculated failure envelopes 

Failure envelope Conditions Analytical form 

H-V M = 0 & T = 0 
𝐻max

𝐻ult
= 𝑓ℎ (

𝑉

𝑉ult

) (2.16) 

M-V H = 0 & T = 0 
𝑀max

𝑀ult
= 𝑓𝑚 (

𝑉

𝑉ult

) (2.17) 

T-V M = 0 & H = 0 
𝑇max

𝑇ult
= 𝑓𝑡 (

𝑉

𝑉ult

) (2.18) 

M-H V ≠ 0 & T = 0 𝑓𝑚ℎ (
𝐻

𝐻max
,

𝑀

𝑀max
 ) = 1 (2.19) 

H-T V ≠ 0 & M = 0 (
𝐻max

′

𝐻max

)

𝑐

+ (
𝑇

𝑇max

)
𝑑

= 1 (2.20) 

M-T V ≠ 0 & H = 0 (
𝑀max

′

𝑀max

)

𝑒

+ (
𝑇

𝑇max

)
𝑓

= 1 (2.21) 

Eq. (2.19) for the M-H failure envelope in Table 2.2 is taken as the basic function. Due to 

the very similar shape of the M-H failure envelope (only the sizes are different), it is 

reasonable to assume that Eq. (2.19) is still applicable for the M-H failure envelope under 

the condition of T ≠ 0 when normalized by the corresponding maximum values, H'max and 

M'max (these reduce to Hmax and Mmax in Eq. (2.19) if T = 0). An example of the M-H 

envelope at non-zero torsional loading is shown in Figure 2.16, indicating a good fitting. 

Therefore, Eq. (2.19) can be replaced by a more generalized form: 
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𝑓𝑚ℎ (
𝐻

𝐻max
′ ,

𝑀

𝑀max
′  ) = 1 (2.22) 

 

Figure 2.16: M-H envelope for a circular surface foundation on a homogeneous soil 

at V/Vult = 0.50 for T ≠ 0 

Mathematical manipulations allow the formulation of an analytical 4-D expression for the 

failure envelope in VHMT loading space in terms of V/Vult, H/Hult, M/Mult, and T/Tult: 

𝑓𝑚ℎ

(

 
 
 𝐻 𝐻ult⁄

[1 − (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)

𝑑

]

1
𝑐

∙ 𝑓ℎ(𝑉 𝑉ult⁄ )

,

𝑀 𝑀ult⁄

[1 − (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)

𝑓

]

1
𝑒

∙ 𝑓𝑚(𝑉 𝑉ult⁄ )

 

)

 
 
 

= 1 

(2.23) 

In practical design, the design loads (factored loads and materials), VHMT, can be directly 

substituted into the left-hand side of Eq. (20); values less than 1 represent a sufficient 

ultimate limit design and vice versa. For embedded foundations, it should be noted that the 

design vertical load, V, should be reduced by 𝛾𝑑 ∙ 𝐴 to account for the additional surcharge 

caused by the soil above foundation base. 
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As an example, the full 4-D expression of the failure envelope for a surface foundation on 

non-homogeneous soils (Section 2.3) is shown. The equations for the H-V, M-V and M-H 

failure envelopes have been given by Shen et al. (2016) and the expressions for the T-V, 

H-T and M-T failure envelopes can be found in Section 2.3, as summarized in Table 2.3. 

Table 2.3: Failure envelopes for a surface foundation on non-homogeneous soils 

Failure envelope Conditions Analytical equation 

H-V M = 0 & T = 0 

𝑉

𝑉ult
= 0.5 + 0.5√1 −

𝐻max

𝐻ult
  for 

𝑉

𝑉ult
> 0.5 

𝐻max

𝐻ult
= 1  for 

𝑉

𝑉ult
≤ 0.5 

M-V H = 0 & T = 0 
𝑀max

𝑀ult
= 4 [

𝑉

𝑉ult
− (

𝑉

𝑉ult

)
2

] 

T-V M = 0 & H = 0 

𝑉

𝑉ult
= 0.5 + 0.5[1 − (

𝑇max

𝑇ult

)
2.5

]

0.3

 for 
𝑉

𝑉ult
> 0.5 

𝑇max

𝑇ult
= 1  for 

𝑉

𝑉ult
≤ 0.5 

M-H V ≠ 0 & T = 0 (
𝐻

𝐻max

)
2

+ (
𝑀

𝑀max

)
1.5

= 1 

H-T V ≠ 0 & M = 0 (
𝐻max

′

𝐻max

)

1.75

+ (
𝑇

𝑇max

)
1.75

= 1 

M-T V ≠ 0 & H = 0 (
𝑀max

′

𝑀max

)

2.5

+ (
𝑇

𝑇max

)
2

= 1 

To visualize the shape of the full 4-D failure surface, three special 3-D failure surfaces in 

terms of V/Vult, H/Hult, M/Mult, and T/Tult (i.e. VHM failure surface at T = 0, VHT failure 

surface at M = 0 and VMT failure surface at H = 0) are presented in Figure 2.17. The 
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specific curves listed in Table 2.3 are also shown for comparison. The shape of the 3-D 

VHM failure surface (for T = 0) that is shown in Figure 2.17(a) is similar to that obtained 

by Taiebat and Carter (2010) using a semi-analytical FE approach. For the VHT and VMT 

failure surfaces, the portion of T < 0 is also incorporated due to the symmetry about the 

plane of T = 0. 

   

 (a) VHM at T = 0 (b) VHT at M = 0 

 

(c) VMT at H = 0 

Figure 2.17: 3-D failure surfaces for a circular surface foundation on non-

homogeneous soils: (a) VHM at T = 0; (b) VHT at M = 0 and (c) VMT at H = 0 
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2.6 Conclusions 

The general VHMT failure envelopes of circular foundations under a zero-tension interface 

for undrained soils have been studied using FE analysis. For surface foundations on a non-

homogeneous soil, the analytical V-T and H-T and M-T failure envelopes have been 

provided considering four soil strength heterogeneity ratios. The results indicate that 

torsional loads can reduce the VHM capacity of circular foundations. The cases of 

embedded foundations in a homogeneous soil with four embedment depths were also taken 

into consideration. The effect of foundation embedment on the VHMT failure envelopes 

was studied and analytical formulas have been proposed. As expected, foundation 

embedment can significantly increase the capacity of circular foundations under combined 

VHMT loading. To facilitate the design application of the failure envelope method, a full 

4-D analytical expression for the VHMT failure envelope was derived based on the six 

calculated VHMT failure envelopes (i.e. V-H, V-M, V-T, V-M-H, V-H-T and V-M-T). These 

approaches should aid the assessment of the ultimate limit states of shallow circular 

foundations under combined VHMT loading conditions. 
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3 Undrained capacity of circular surface foundations on 
two-layer clays under combined VHMT loading 

3.1 Introduction 

Estimation of the bearing capacity of shallow foundations under combined loadings can be 

of great significance. This is particularly important for large onshore structures, such as 

wind turbines, transmission towers and masts, due to their complex environmental loading. 

The majority of offshore foundations are circular or close to circular in form. Apart from 

the vertical load due to the self-weight of the superstructure, horizontal loads of an onshore 

wind turbine caused by wind can also be substantial and a large structural height can further 

lead to significant moment loading of the foundation. Moreover, environmental loads on 

the structure are often not co-planar and transverse loads can therefore induce torsional 

effects on the foundation (Bienen et al., 2007). 

Traditionally, this type of design is based on classical solutions for the uniaxial vertical 

bearing capacity of shallow strip foundations using the superposition principle (Terzaghi, 

1951). The effects of load inclination and eccentricity are taken into consideration by 

introducing the load inclination factor and the effective foundation area (e.g. DNV, 2016). 

Since load inclination and eccentricity effects are separately considered, this semi-

empirical modification of the conventional theory may sometimes be insufficiently 

accurate for practical design (Gourvenec, 2007) and it has also been shown that this simple 

approach is non-conservative for strip foundations on soils with shear strength increasing 

with depth (Ukritchon, 1998). This approach is still common for onshore shallow wind 

turbine foundation design. 

The failure envelope method has been recommended as an alternative to conventional 

theories in some geotechnical design guidelines (particularly those focused on offshore 

geotechnics), such as API (2011) and ISO (2016), due to the load interaction effect between 

various load components (i.e. combined vertical, horizontal, moment and torsional loads) 

being explicitly incorporated (Shen et al., 2017). Failure envelopes for different types of 

foundations (e.g. strip (Bransby and Randolph, 1998), rectangular (Gourvenec and 
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Randolph, 2003) and circular (Shen et al., 2016) foundations), homogeneous (Taiebat and 

Carter, 2010) or non-homogeneous (Feng et al., 2014) soils, and zero-tension (Shen et al., 

2016) or unlimited-tension (Gourvenec and Randolph, 2003) interface conditions have 

been previously investigated under undrained conditions. These studies of the failure 

envelope method have been primarily confined to a single layer soil with a uniform or 

linearly increasing undrained shear strength profile. However, onshore clay deposits often 

have a thin layer of stiff crust with a relatively high undrained shear strength developed 

from weathering, desiccation and chemical process (Lutenegger, 1995). The shear strength 

of the upper crustal layer can be more than 10 times that of the underlying clay (Lee and 

Park, 1999). Nakase et al. (1978) and Sagaseta and Arroyo (1982) have demonstrated that 

the undrained shear strength profile of the crust strongly affects stability analysis of shallow 

foundations and embankments because a substantial portion of the failure surface under 

the structure can be located within the crust. Understanding the effect of a surficial crust 

on the bearing capacity of shallow foundations is therefore important for optimal design. 

However, existing design standards (e.g. DNV, 2016) predict the bearing capacity of 

shallow foundations under idealized soil conditions without considering the existence of 

the surficial crust. Moreover, the effects of torsional loads are not explicitly taken into 

consideration (DNV, 2016). 

Studies available in the literature that account for the effect of high strength surficial layers 

on bearing capacity are still sparse. Merifield et al. (1999) evaluated the undrained bearing 

capacity of a centrally, vertically loaded surface strip foundation on a two-layer clay 

deposit using numerical upper and lower bound analysis. The values of a modified bearing 

capacity factor N*
c  were calculated for various thickness ratios (H/B = thickness of upper 

layer / foundation width) and undrained shear strength ratios (su1/su2 = undrained shear 

strength of upper layer / undrained shear strength of bottom layer). Both strong-over-soft 

(i.e. su1/su2 > 1) and soft-over-strong (i.e. su1/su2 < 1) cases were accounted for. Recently, 

the same cases for square and circular foundations were further investigated by Merifield 

and Nguyen (2006) using finite element (FE) analysis. However, this considers only 

vertical bearing capacity in the absence of horizontal, moment and torsional loads. Park et 

al. (2010) determined the bearing capacity factor Nc of strip and circular foundations resting 

on a non-homogeneous crust overlying a uniform soil, but the failure envelope under 
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combined loadings was not addressed. Feng et al. (2015) studied the failure envelope of a 

rectangular foundation founded on a crustal layer overlying a normally consolidated clay 

using an unlimited-tension soil-foundation interface. However, unlike skirted shallow 

foundations of offshore structures, onshore shallow foundations can uplift and separate 

from the soil under a large overturning moment because the soil-foundation interface 

cannot provide tensile resistance (i.e. zero-tension interface). 

The object of this paper is to investigate the VHMT failure envelope for circular 

foundations founded on a surficial crust underlain by a uniform soil under a zero-tension 

interface condition using finite element analysis. Undrained conditions have been 

considered for both the crustal layer and the underlying soil. The effects of this surficial 

crust on the VHMT failure envelope have been studied. A full 4-D VHMT failure envelope 

expression is also derived in this paper. 

3.2 Method – finite element analysis 

3.2.1 Material models and interface conditions 

A linear elastic perfectly plastic constitutive relationship with a Mohr-Coulomb (M-C) 

failure criterion was used to model the soil behavior. For undrained conditions, the M-C 

criterion degenerates to the Tresca criterion, which can be defined by three soil parameters: 

the undrained Young’s modulus, Eu, Poisson’s ratio, µ, and undrained shear strength, su. 

O
su

z

sutsu0

tc

 

Figure 3.1: Soil profile with a surficial crust 

As shown in Figure 3.1, two fundamental parameters may affect the bearing capacity of a 

surface foundation on a crusted soil: the averaged undrained shear strength of the surficial 
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crust layer, sut, and the crust thickness, tc. As suggested by Lee and Park (1999), in some 

cases the average shear strength of the upper crust layer can be more than 10 times that of 

the underlying clay. In this paper, the ratio, su0/sut (su0 refers to the undrained shear strength 

of the underlying soil), has been varied from 0.2 to 1.0 (i.e. 0.2, 0.4, 0.6, 0.8 and 1.0), to 

represent a typical range of soil profiles. This approach also addresses cases of strong-over-

soft clays adopted by Merifield et al. (1999). The special case of su0/sut = 1 relates a 

homogeneous soil. As shown by Bjerrum (1973), the thickness of a crust layer will usually 

range from 1 to 8 m depending on the hydrogeology (i.e. well-drained versus poorly 

drained). In eastern Canada, the thickness of the upper crust is generally 1 to 5 m and is 

often of the order of 3 m (Lefebvre et al., 1987). Typically, the diameter (D) of an onshore 

wind turbine foundation is very large (> 15 m), and these foundations are getting larger 

with increases of power output and tower height. The diameter of the shallow foundation 

used in this paper is 19 m, representing the typical dimension for current wind turbines in 

North America. Therefore, this study has considered models with tc/D ranging from 0.1 to 

0.3 (i.e. 0.1, 0.2 and 0.3) to span most cases of practical interest. This range also covers 

that used by Feng et al. (2015). The designed FE cases are summarized in Table 3.1 below. 

Table 3.1: FE cases for crusted soils under undrained conditions 

su0/sut 

tc/D 
0.2 0.4 0.6 0.8 

1.0 

(Homogeneous) 

0.1 (C11) (C12) (C13) (C14) (C15) 

0.2 (C21) (C22) (C23) (C24) (C25) 

0.3 (C31) (C32) (C33) (C34) (C35) 

In the analysis, su0 was held constant at 100 kPa and the Poisson’s ratio of the undrained 

soils was taken to be 0.495. A sufficiently large Eu/su0 ratio equal to 10000 was selected to 

minimize mesh distortion (Abyaneh et al., 2015). The foundation was assumed to be a rigid 

body. A load reference point (LRP) was used to apply prescribed displacements or loads, 

located at the bottom center of the foundation. 
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Similar to Shen et al. (2016), the FE analyses considered a zero-tension, rough base that 

allows separation of the foundation from the soil. The zero-tension rough base can be 

modelled using a Coulomb model with a friction coefficient of 20 (Shen et al., 2016).  

3.2.2 Geometry and mesh 

The analysis in this paper was conducted using the finite element software ABAQUS 

(Dassault Systèmes, 2016). To avoid the effects of the model boundaries on the 

development of failure mechanisms, the mesh length, L, and mesh height, H, were taken 

as 120 m and 50 m, following the recommendations of Deshpande (2016). 

 

Figure 3.2: Mesh convergence study of Case C31 

H

L  

Figure 3.3: Half-view of the FE mesh 

A mesh convergence study was carried out for a number of cases. A typical outcome is 

shown in Figure 3.2. The difference between the ultimate vertical loads using Meshes 2 

and 3 is around 2%. However, the model solution with Mesh 3 takes about 6 times longer 
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than that using Mesh 2. Thus, Mesh 2 was adopted in the analysis. Figure 2.3 shows the 

half-model of the three-dimensional model using Mesh 2. This mesh was composed of 

approximately 36000 8-noded brick elements (i.e. first-order, ABAQUS C3D8R). To 

capture the intense stress concentration close to the foundation edge and the large plastic 

shear strains at the interface, the soil regions in the vicinity of the foundation edge and the 

horizontal thin soil layer close to the interface were carefully refined (Gourvenec and 

Randolph, 2003). The cylindrical circumference of the soil was constrained to prevent out-

of-plane translations and the bottom of the soil was fixed in the three orthogonal directions. 

3.2.3 Sign conventions and loading paths 

The sign conventions for the loads are shown in Figure 2.1. The horizontal and moment 

loads were considered to be in the same plane. 

t
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z

M

H
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Figure 3.4: Sign conventions 

Probe tests and swipe tests were employed to detect the failure envelopes under various 

load conditions. For a displacement probe analysis, a vertical load is first applied at the 

LRP of the foundation and remains constant. A fixed-ratio of displacement is then imposed 

to the foundation to track the failure point on the failure envelope (Gourvenec and 

Randolph, 2003). One probe test can only provide a single point on a failure envelope. The 

swipe test, which was introduced by Tan (1990), brings the foundation to a collapse state 

in coordinate direction 1 first (displacement-controlled), followed by a displacement 

applied in coordinate direction 2, during which the increment of the displacement in 

coordinate direction 1 remains zero (Gourvenec and Randolph, 2003). Two typical failure 

envelopes obtained using the swipe and probe tests are shown in Figure 3.5. 
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 (a) M-H (b) H-T 

Figure 3.5: M-H and H-T failure envelopes for a uniform soil at V/Vult = 0.50: (a) M-

H and (b) H-T 

3.3 Finite element results 

The overall strategy for assessing the undrained bearing capacity of a shallow foundation 

under combined VHMT loads using the FE method can be decomposed into three steps: 

(i) determining uniaxial ultimate capacities, e.g. Vult, Hult, Mult and Tult (Section 3.3.1); (ii) 

normalizing H-V, M-V and T-V failure envelopes with the corresponding uniaxial ultimate 

capacities (Sections 3.3.2 ~ 3.3.4); and (iii) normalizing M-H, H-T and M-T failure 

envelopes with the corresponding maximum values (Sections 3.3.5 ~ 3.3.7). Using the 

results of these different steps, a full 4-D VHMT failure envelope can be derived. 

3.3.1 Pure uniaxial capacities 

The ultimate loads for vertical, horizontal and torsional modes are referred to as the 

corresponding uniaxial load-carrying capacities in the absence of the other loading modes. 

As a foundation with a zero-tension interface cannot resist any moment loading without 

vertical loads, the ultimate moment capacity is represented by the maximum moment load 

under vertical loading only. Since horizontal and torsional capacities of a surface 

foundation are purely related to the undrained shear strength of the surface soil (i.e. sut), 

only the vertical and moment capacities have been investigated in this section. 
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The crust correction factor, scr, defined as the ratio of the dimensionless capacity for a 

crusted soil (i.e. su0/sut ≠ 1) to that of a uniform soil (i.e. su0/sut = 1), is introduced to 

characterize the effect of a surficial crust: 

𝑠𝑐𝑟 =
𝑁𝑠u0 𝑠ut⁄

𝑁𝑠u0 𝑠ut⁄ =1
 (3.1) 

where 𝑁𝑠u0 𝑠ut⁄
𝑣 =

𝑉ult

𝐴∙𝑠ut
 for the vertical capacity and 𝑁𝑠u0 𝑠ut⁄

𝑚 =
𝑀ult

𝐴∙𝐷∙𝑠ut
 for the moment 

capacity. 

The variations of scrv and scrm with regard to su0/sut and tc/D are shown in Figure 3.6. The 

vertical and moment factors significantly increase with su0/sut and gradually converge to 

unity as su0/sut approaches unity. A quadratic polynomial equation with respect to su0/sut, is 

proposed to estimate the relationships: 

𝑠𝑐𝑟 = 𝑓 ∙ (
𝑠u0

𝑠ut

)
2

+ 1.3 (
𝑠u0

𝑠ut

)− [𝑓 + 0.3] (3.2) 

The coefficient, f, is a function of tc/D, defined as 𝑓(𝑡𝑐 𝐷⁄ ) = −0.97 𝑡𝑐 𝐷⁄ − 0.27 for the 

vertical capacity and 𝑓(𝑡𝑐 𝐷⁄ ) =
−1.18𝑡𝑐 𝐷⁄

𝑡𝑐 𝐷⁄ +0.18
 for the moment capacity. As seen in Figure 3.6, 

the curve fitting is in close agreement with the FE results. 

   

 (a) Vult (b) Mult 

Figure 3.6: Crust correction factors of uniaxial capacities: (a) Vult and (b) Mult 
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To better understand the effects of su0/sut and tc/D on the collapse mechanism under purely 

vertical loads, the contours of the maximum plastic shear strain increment are illustrated in 

Figure 3.7. The geometry of the collapse mechanism can be effectively visualized using 

the maximum plastic shear strain increment (Loukidis et al., 2008): 

∆𝛾max
p

= √(∆𝜀𝑥𝑥
p

− ∆𝜀𝑦𝑦
p )

2
+ (∆𝜀𝑥𝑥

p
− ∆𝜀𝑧𝑧

p )
2
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+ (∆𝛾𝑥𝑦

p )
2
+ (∆𝛾𝑥𝑧
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+ (∆𝛾𝑦𝑧

p )
2
 

(3.3) 

where ∆𝜀𝑥𝑥
p

, ∆𝜀𝑦𝑦
p

, ∆𝜀𝑧𝑧
p

, ∆𝛾𝑥𝑦
p

, ∆𝛾𝑥𝑧
p

 and ∆𝛾𝑦𝑧
p

 are the plastic normal and shear strain 

increments in Cartesian coordinates. 

As shown in Figure 3.7(a), the failure mechanism for a uniform soil compares well with 

that of general shear failure (white dashed lines) found from the method of characteristics 

(Martin, 2003). The comparison between the three cases in Figure 3.7 shows that the depth 

of the active triangular zone (just beneath the foundation) remains almost the same, 

although the active triangular zone for Case C21 is slightly curved. However, the shear fan 

zone for Case C21 extends to a depth of 1D, but ends at the base of the crust. In addition, 

Case C21 has no passive zone close to the ground surface, indicating a local shear failure 

mode. This is because the relatively strong top crust acts as rigid column that restricts both 

upward and lateral deformations within the crustal layer, while this restriction in turn 

increases the depth of the failure zone within the bottom layer. A partial shear failure 

mechanism also appears to be initiating in the lower layer for the two crusted cases. This 

phenomenon was also observed for both square and circular foundations by Merifield and 

Nguyen (2006). Figure 3.7(c) shows that the failure mechanism for Case C33 lies in 

between Figure 3.7(a) and (b), since Case C33 has a moderately strong surficial crust. 
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(a) Uniform soil

(b) C21: tc/D = 0.2, su0/sut = 0.2 (c) C33: tc/D = 0.3, su0/sut = 0.6
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Figure 3.7: Collapse mechanisms under purely vertical loads 

3.3.2 Horizontal-Vertical loading 

Figure 3.8 shows the effects of su0/sut on the dimensionless and normalized H-V failure 

envelopes using the cases of su0/sut = 0.2 ~ 1.0 and tc/D = 0.2 (i.e. Cases C21~ C25). The 

dimensionless failure envelopes shown in Figure 3.8(a) exhibit an expansion of the curves 

with increasing su0/sut. It should also be noted that a stiffer H-V failure envelope can be 

observed for a smaller value of su0/sut (i.e. a greater shear strength difference between the 

two soil layers), i.e. a lower su0/sut ratio corresponds to a larger normalized H-V failure 

envelope, as shown in Figure 3.8(b). For rectangular foundations on a soil with a crust 

under an unlimited-tension interface, Feng et al. (2015) proposed an analytical equation 

(see Eq. (3.4)), that is a function of the loading angle, θ. The curves with θ = 0 and 90° are 

compared in Figure 3.8(b). A curve fit using Green’s solution (see Eq. (3.5)) is also widely 

used to describe H-V envelopes. It can be seen that Eq. (3.4) with θ = 0 and Eq. (3.5) can 

provide conservative predictions of the FE results. For simplicity, Eq. (3.5) can be 

considered to model the H-V failure envelopes ignoring the slight dependence on su0/sut. 

𝑉 𝑉ult⁄ = 0.4 + 0.6√1 − (𝐻 𝐻ult⁄ )2.5−cos2𝜃 , for 𝑉 𝑉ult⁄ ≥ 0.40 (3.4) 
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𝐻 𝐻ult⁄ = 1, for 𝑉 𝑉ult⁄ < 0.40 

𝑉 𝑉ult⁄ = 0.5 + 0.5√1 − 𝐻 𝐻ult⁄ , for 𝑉 𝑉ult⁄ ≥ 0.50 

𝐻 𝐻ult⁄ = 1, for 𝑉 𝑉ult⁄ < 0.50 

(3.5) 

   

 (a) Dimensionless (b) Normalized 

Figure 3.8: H-V failure envelopes for su0/sut = 0.2 ~ 1.0 & tc/D = 0.2: (a) 

Dimensionless and (b) Normalized 

The cases of su0/sut = 0.6 and tc/D = 0.1 ~ 0.3 (i.e. Cases C13 ~ C33) are presented in Figure 

3.9 to show the effect of normalized crust thickness tc/D on the H-V failure envelopes. As 

shown in Figure 3.9(a), the size of the H-V failure envelope also increases with tc/D, but 

the rate of increase appears to gradually decrease. For the normalized curves shown in 

Figure 3.9(b), the case of tc/D = 0.1 is close to the case with a uniform soil and the cases 

of tc/D = 0.2 and 0.3 are almost the same. It can also be seen that Eq. (3.5) can also provide 

a relatively conservative evaluation of the normalized H-V curves, although dispersion of 

the curves caused by tc/D can be observed. 
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 (a) Dimensionless (b) Normalized 

Figure 3.9: H-V failure envelopes for su0/sut = 0.6 & tc/D = 0.1 ~ 0.3: (a) 

Dimensionless and (b) Normalized 

3.3.3 Moment-Vertical loading 

Figure 3.10 shows the effects of su0/sut and tc/D on the failure envelopes under combined 

vertical and moment loading in terms of dimensionless and normalized loads. Significant 

expansion of the failure loci in vertical : moment space with increasing su0/sut and tc/D (see 

Figure 3.10(a) and (c)) is observed, although the rate of expansion gradually decreases with 

greater su0/sut. The failure envelopes in terms of loads normalized by their ultimate values 

in Figure 3.10(b) and (d) fall in a very tight band, with the shape following the parabolic 

function given by Eq. (3.6). 

𝑀 𝑀ult⁄ = 4[𝑉 𝑉ult⁄ − (𝑉 𝑉ult⁄ )2] (3.6) 

The equation proposed by Feng et al. (2015) for rectangular foundations on a soil with a 

crust under an unlimited-tension interface is also compared in the figure, however, this is 

quite different from the current FE results due to the unlimited-tension interface used. 
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 (a) su0/sut = 0.2 ~ 1.0 & tc/D = 0.2 (b) su0/sut = 0.2 ~ 1.0 & tc/D = 0.2 

   

 (c) su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 (d) su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 

Figure 3.10: M-V failure envelopes: (a) Dimensionless, su0/sut = 0.2 ~ 1.0 & tc/D = 0.2; 

(b) Normalized, su0/sut = 0.2 ~ 1.0 & tc/D = 0.2; (c) Dimensionless, su0/sut = 0.6 & tc/D 

= 0.1 ~ 0.3 and (d) Normalized, su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 

Figure 3.11 shows the collapse mechanisms at Mult (V/Vult = 0.50) for a uniform soil, and 

Cases C21 and C33. For the uniform soil, a combined scoop-wedge mechanism is observed 

(similar to that found by Bransby and Randolph, 1998). Compared with the uniform soil 

case, the failure zone for Case C21 is primarily confined to the underlying layer and the 

crust behaves as a rigid column due to the relatively high strength. A wedge mechanism 

still exists on the right handside of the foundation, but the scoop seems to have been 

suppressed. Moreover, the depth of failure zone for Case C21 is about two times that for 
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the uniform soil and the failure pattern for Case C33 lies in between those of the uniform 

soil and Case C21. Therefore, the main effect of a crustal layer on the collapse zone is 

suppression of the surface failure and the scoop portion of the mechanisms, and an increase 

of the depth of the failure zone within the underlying layer. 
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Figure 3.11: Collapse mechanisms at Mult 

3.3.4 Torsion-Vertical loading 

Figure 3.12 shows the effects of su0/sut and tc/D on the dimensionless and normalized T-V 

failure envelopes. Similar to the horizontal capacity, the torsional capacity is also 

determined only by the surface soil strength, therefore, the T-V envelopes share similar 

features with increasing su0/sut and tc/D to the H-V failure envelopes shown in Figure 3.8. 

Generally, the T-V failure envelope shows stiffer variations than the H-V failure envelope 

under the same conditions. The analytical equations proposed by Feng et al. (2014) (see 

Eq. (3.7)), Abyaneh et al. (2015) (see Eq. (3.8)) and Feng et al. (2015) (see Eq. (3.9)) are 

compared with the FE result in Figure 3.12(b) and (d). It can be seen that the formula of 

Abyaneh et al. (2015) gives reasonable and conservative predictions for the T-V envelopes. 

𝑇 𝑇ult⁄ = [1 − 4(𝑉 𝑉ult⁄ − 0.5)2]0.4, 𝑉 𝑉ult⁄ > 0.50 

(3.7) 

𝑇 𝑇ult⁄ = 1, 𝑉 𝑉ult⁄ ≤ 0.50 



65 

 

𝑉 𝑉ult⁄ = 0.5 + 0.5[1 − (𝑇 𝑇ult⁄ )2.5]0.3, 𝑉 𝑉ult⁄ > 0.50 

(3.8) 

𝑇 𝑇ult⁄ = 1, 𝑉 𝑉ult⁄ ≤ 0.50 

𝑉 𝑉ult⁄ = 0.4 + 0.6√1 − (𝑇 𝑇ult⁄ )3.5, 𝑉 𝑉ult⁄ > 0.40 

(3.9) 

𝑇 𝑇ult⁄ = 1, 𝑉 𝑉ult⁄ ≤ 0.40 

  

 (a) su0/sut = 0.2 ~ 1.0 & tc/D = 0.2 (b) su0/sut = 0.2 ~ 1.0 & tc/D = 0.2 

  

 (c) su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 (d) su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 

Figure 3.12: T-V failure envelopes: (a) Dimensionless, su0/sut = 0.2 ~ 1.0 & tc/D = 0.2; 

(b) Normalized, su0/sut = 0.2 ~ 1.0 & tc/D = 0.2; (c) Dimensionless, su0/sut = 0.6 & tc/D 

= 0.1 ~ 0.3 and (d) Normalized, su0/sut = 0.6 & tc/D = 0.1 ~ 0.3 
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3.3.5 Moment-Horizontal loading 

The effects of su0/sut and tc/D on the failure envelopes for M : H loading at V/Vult = 0.25, 

0.50 and 0.75 are shown in Figure 3.13 and Figure 3.14, respectively. The equation 

proposed by Feng et al. (2015) for rectangular foundations on a soil with a crust under a 

unlimited-tension interface is also compared in the figures. Figure 3.13(a) and Figure 

3.14(a) shows the dimensionless failure envelopes under the vertical load level of V/Vult = 

0.50. With the increase of su0/sut and tc/D, expansion of the failure envelopes can be 

observed, but a similar shape of the curves is expressed. This feature may assist in 

eliminating the dependence on su0/sut, tc/D and V/Vult levels by normalizing the failure 

envelopes by their corresponding maximum values, as shown in Figure 3.13(b) ~ (d) and 

Figure 3.14(b) ~ (d). Moreover, the current M-H curves are almost symmetrical about H=0, 

while the curve proposed by Feng et al. (2015) is oblique due to the effect of the unlimited-

tension interface. A unique equation, expressed as: 

(𝐻 𝐻max⁄ )2 + (𝑀 𝑀max⁄ )1.6 = 1 (3.10) 

can be used to simulate the normalized FE results. As shown in Figure 3.13(b) ~ (d) and 

Figure 3.14(b) ~ (d), this simple expression gives reasonable fits for various su0/sut, tc/D 

and V/Vult levels, although a small over-prediction can be observed in the region of H/Hmax 

= 0 ~ 0.60 for the vertical load level of V/Vult = 0.25. 

   

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.13: M-H failure envelopes for su0/sut = 0.3 ~ 1.0 & tc/D = 0.2: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 

   

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.14: M-H failure envelopes for su0/sut = 0.6 & tc/D = 0.1 ~ 0.3: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 

3.3.6 Horizontal-Torsional loading 

Figure 3.15 and Figure 3.16 show the effects of su0/sut and tc/D on the dimensionless and 

normalized failure envelopes in the H-T loading space (zero moment) at V/Vult = 0.25, 0.50 

and 0.75. The dimensionless H-T failure envelopes at V/Vult = 0.50 shown in Figure 3.15(a) 

and Figure 3.16(a) exhibit a high similarity regardless of the values of su0/sut and tc/D. As 

shown in Figure 3.15(b) ~ (d) and Figure 3.16(b) ~ (d), the equation proposed by Feng et 

al. (2015) lies slightly inside the normalized FE results. Eq. (3.11) proposed by Finnie and 

Morgan (2004) can also be considered to fit the H-T failure envelopes for crusted soils. 

The dimensionless powers, l = 1.5 and n = 1.95, in Eq. (3.11) yield satisfactory fits, as 

compared in Figure 3.15(b) ~ (d) and Figure 3.16(b) ~ (d). 

(𝐻 𝐻max⁄ )𝑙 + (𝑇 𝑇max⁄ )𝑛 = 1 (3.11) 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.15: H-T failure envelopes for su0/sut = 0.2 ~ 1.0 & tc/D = 0.2: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.16: H-T failure envelopes for su0/sut = 0.6 & tc/D = 0.1 ~ 0.3: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 

3.3.7 Moment-Torsional loading 

The effects of su0/sut and tc/D on the ultimate load-carrying capacity under moment and 

torsional loading at V/Vult = 0.25, 0.50 and 0.75 are shown in Figure 3.17 and Figure 3.18. 

As shown in Figure 3.17(a) and Figure 3.18(a), unlike the H-T failure envelope at V/Vult = 

0.50 (see Figure 3.15(a) and Figure 3.16(a)), the absolute size of the dimensionless failure 

envelopes at V/Vult = 0.50 expands with increasing su0/sut due to the increase of the 
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maximum moment. Normalization by the corresponding maximum values of moments and 

torsional loads can also make these curves to fall into a relatively narrow band. The 

expression given by Feng et al. (2015) seems to be unconservative for V/Vult = 0.50 and 

0.25. Similar to Eq. (3.11), the analytical relationship of Eq. (3.12) with the two 

dimensionless parameters equal to 2 (i.e. a unit circle) is also compared with the FE result 

in Figure 3.17(b) ~ (d) and Figure 3.18(b) ~ (d). Favorable predictions can be observed 

apart from slight over-predictions in the region of T/Tult = 0.40 ~ 0.80 at V/Vult = 0.25. 

(𝑀 𝑀max⁄ )𝛼 + (𝑇 𝑇max⁄ )𝛽 = 1 (3.12) 

  

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.17: M-T failure envelopes for su0/sut = 0.2 ~ 1.0 & tc/D = 0.2: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 3.18: M-T failure envelopes for su0/sut = 0.6 & tc/D = 0.1 ~ 0.3: (a) 

Dimensionless, V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 

0.50 and (d) Normalized, V/Vult = 0.25 

3.4 Full 4-D failure envelope in VHMT loading space 

This section derives a 4-D expression for the failure envelope in VHMT loading space. 

Three sets of notation are defined: (1) Vult, Hult, Mult, Tult – uniaxial ultimate capacity 

defined in Section 3.3.1; (2) Hmax, Mmax, Tmax – maximum capacity at a given level of the 

vertical load without other load components; (3) H'max, M'max – reduced maximum capacity 

at a given level of the vertical load with a non-zero torsional load (T ≠ 0). 
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Based on the above notation and the forms of equation used in the previous sections, the 

general forms of all of the equations are summarized in Table 3.2. fh, fm, and ft are functions 

of the vertical load level. Specific expressions for these failure envelopes can be found in 

the previous sections. 

Table 3.2: Summary of FE-calculated failure envelopes 

Failure envelope Conditions Analytical form 

H-V M = 0 & T = 0 
𝐻max

𝐻ult
= 𝑓ℎ (

𝑉

𝑉ult

) (3.13) 

M-V H = 0 & T = 0 
𝑀max

𝑀ult
= 𝑓𝑚 (

𝑉

𝑉ult

) (3.14) 

T-V M = 0 & H = 0 
𝑇max

𝑇ult
= 𝑓𝑡 (

𝑉

𝑉ult

) (3.15) 

M-H V ≠ 0 & T = 0 (
𝐻

𝐻max

)
𝑎

+ (
𝑀

𝑀max

)
𝑏

= 1 (3.16) 

H-T V ≠ 0 & M = 0 (
𝐻max

′

𝐻max

)

𝑐

+ (
𝑇

𝑇max

)
𝑑

= 1 (3.17) 

M-T V ≠ 0 & H = 0 (
𝑀max

′

𝑀max

)

𝑒

+ (
𝑇

𝑇max

)
𝑓

= 1 (3.18) 

Eq. (3.16), which describes the M-H failure envelope under the condition of T = 0, is taken 

as the basic function. However, a more generalized equation for the M-H failure envelope 

under the condition of T ≠ 0 is required for deriving the final 4-D expression. Due to the 

very similar shape of the M-H failure envelope (only the sizes are different), it is reasonable 

to assume that under the condition of T ≠ 0, Eq. (3.16) is still applicable for the M-H failure 

envelope normalized by the corresponding maximum values, H'max and M'max (reduce to 

Hmax and Mmax in Eq. (3.16) if T = 0). Therefore, Eq. (3.16) can be replaced by a more 

generalized form: 
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(
𝐻

𝐻max
′

)
𝑎

+ (
𝑀

𝑀max
′

)
𝑏

= 1 (3.19) 

Mathematical manipulations of Eqs. (3.13), (3.14), (3.15), (3.17), (3.18) and (3.19) allow 

the formulation of an analytical 4-D expression for the failure envelope in VHMT loading 

space in terms of V/Vult, H/Hult, M/Mult, and T/Tult, as shown in Eq. (3.20). 

𝑓 (
𝑉

𝑉ult
,

𝐻

𝐻ult
 ,

𝑀

𝑀ult
,

𝑇

𝑇ult

)

=

(

 
 
 𝐻 𝐻ult⁄

[1 − (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)
𝑑

]

1
𝑐

∙ 𝑓ℎ(𝑉 𝑉ult⁄ )
)

 
 
 

𝑎

+

(

 
 
 𝑀 𝑀ult⁄

[1 − (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)
𝑓

]

1
𝑒

∙ 𝑓𝑚(𝑉 𝑉ult⁄ )
)

 
 
 

𝑏

= 1 

(3.20) 

In practical design, the design loads (factored loads and materials), VHMT, can be directly 

substituted into the left-hand side of Eq. (3.20); values less than 1 represent a sufficient 

ultimate limit design and vice versa. 

As an example, the full 4-D expression of the failure envelope for Case C24 (i.e. su0/sut = 

0.6 and tc/D = 0.2) is presented. To visualize the shape of the full 4-D failure surface, three 

3-D failure surfaces in terms of V/Vult, H/Hult, M/Mult, and T/Tult (i.e. VHM failure surface 

at T = 0, VHT failure surface at M = 0 and VMT failure surface at H = 0) are presented in 

Figure 3.19. The specific curves obtained from the FE results in the previous sections are 

also incorporated for comparison. For the VHT and VMT failure surfaces, the portion of T 

< 0 is also incorporated due to the symmetry about the plane of T = 0. 
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 (a) VHM at T = 0 (b) VHT at M = 0 

 

(c) VMT at H = 0 

Figure 3.19: 3-D failure surfaces for Case C24 (i.e. su0/sut = 0.6 and tc/D = 0.2): (a) 

VHM at T = 0; (b) VHT at M = 0 and (c) VMT at H = 0 

3.5 Conclusions 

The VHMT failure envelopes of circular foundations resting on a stiff crust which overlies 

the main soil deposit under undrained conditions have been studied using FE analysis. A 

zero-tension interface condition was considered. Cases with five values of su0/sut and three 

values of tc/D have been utilized to investigate the effects of su0/sut and tc/D on the failure 

envelopes of shallow foundation. For the uniaxial vertical and moment capacities, crust 

correction factors have been introduced to account for the effects of su0/sut and tc/D. 

Analytical equations of the crust correction factors, which are functions of su0/sut and tc/D, 
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were also proposed. su0/sut exhibits a significant influence on the normalized H-V failure 

envelopes. The same forms of equation that are used for uniform soils, but with different 

parameters can provide good fits for the VHMT failure envelopes for a soil with a surficial 

crust. To facilitate the application of the failure envelope method in practical foundation 

design, a full 4-D analytical expression for the VHMT failure envelope was derived based 

on the calculated VHMT failure envelopes. 
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4 Drained bearing capacity of circular surface foundations 
under combined VHMT loading 

4.1 Introduction 

The bearing capacity of shallow foundations under combined loading conditions can be of 

great significance, particularly for large onshore and offshore structures, such as wind 

turbines, oil and gas platforms, transmission towers and masts, due to their complex 

environmental and climate loadings. The majority of large wind turbine shallow 

foundations are circular or close to circular in form. These wind turbine foundations are 

generally subjected to combined loadings that includes: vertical loads due to the self -

weight of the structure (V), horizontal loads (H) caused by environmental conditions, 

overturning moments (M) due to the horizontal loading and structural height, and torsional 

loads (T) induced by wind and structural effects (Bienen et al., 2007). 

Traditional analytical methods for these types of structures are based on classical solutions 

for the uniaxial vertical bearing capacity of strip shallow foundations using the 

superposition principle (Terzaghi, 1951). The contributions of soil cohesion, soil unit 

weight and surcharge to the bearing capacity are taken into consideration in an uncoupled 

manner. The effects of load inclination and eccentricity are accounted for by introducing 

the load inclination factor and the effective foundation area (e.g. DNV, 2016; API, 2011). 

For a circular foundation on the surface of a cohesive-frictional soil in the absence of 

surcharge, the general bearing capacity equation reduces to (Hansen, 1970; DNV, 2016): 

𝑞𝑢 = 𝑐′𝑁𝑐𝑠𝑐 𝑖𝑐 +
1

2
𝛾′𝐷′𝑁𝛾𝑠𝛾𝑖𝛾 (4.1) 

where Nc and Nγ are the bearing capacity factors accounting for the cohesion and the self-

weight of the soil, respectively; c' is the soil cohesion; γ' is the effective unit weight of the 

soil; sc and sγ are the dimensionless shape factors; ic and iγ are the dimensionless inclination 

factors; and D' is the effective foundation width accounting for the load eccentricity. In 

general, this approach can be conservative, while it has been shown to be non-conservative 

for strip foundations on soils with strength increasing with depth (Ukritchon et al., 1998). 
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The failure envelope method has been recommended as an alternative to more conventional 

theories in some geotechnical design guidelines (particularly those focused on offshore 

geotechnics), such as API (2011) and ISO (2016), since this method explicitly accounts for 

the load interaction effect between the various load components (Shen et al., 2017). Many 

researchers have studied failure envelopes under undrained soil conditions by considering 

different foundation shapes (e.g. Bransby and Randolph, 1998; Gourvenec and Randolph, 

2003; Shen et al., 2016), soil strength heterogeneity (e.g. Feng et al., 2014) and interface 

conditions (e.g. Shen et al., 2016; Gourvenec and Randolph, 2003). 

Some investigations on failure envelopes for drained soil conditions can also be found in 

the literature. These studies focus primarily on foundations on sands subjected to centric 

vertical loads (e.g. Saran et al., 1971), eccentric vertical loads (e.g. Purkayastha and Char, 

1977; Zadroga, 1994) and combinations of these two types of loads (e.g. Loukidis et al., 

2008; Saran and Agarwal, 1991; Georgiadis and Butterfield, 1988), which can be 

transformed to V-H, V-M and M-H failure envelopes, respectively. These studies also focus 

mainly on combinations of vertical, horizontal and moment loads. However, environmental 

loads on structures are often not co-planar, and transverse loads can also induce torsional 

effects on the foundation (Bienen et al., 2007). Thus, in many cases the influence of 

torsional loads should not be ignored for failure envelopes of shallow foundations. 

However, the aforementioned studies are confined to purely frictional soils in the absence 

of soil cohesion, ignoring the more general c-φ problem. Overconsolidated clays and 

intermediate soils under drained conditions will often exhibit both cohesion and friction 

angles ranging from 20° to 30° (Soderman and Quigley, 1965). Cox (1962) discussed the 

pure vertical capacity of circular foundations on cohesive-frictional soils using the theory 

of axially symmetric plastic deformations. Hjiaj et al. (2004) evaluated the lower and upper 

bounds for the bearing capacity of strip foundations on cohesive-frictional soils under non-

eccentric inclined loads using numerical limit analysis; although the failure envelope 

approach was not adopted and the non-eccentric loading could not account for the effects 

of moment loading. Moreover, the aforementioned studies on drained failure envelopes are 

limited to some special cross-sections of the global failure surface, such as the H-V cross-

section in the absence of moment and torsional loads, M-V cross-section in the absence of 
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horizontal and torsional loads, and M-H cross-section under specific vertical load levels in 

the absence of torsional loading. Therefore, to apply the failure envelope metho d to 

practical foundation design, a more general analytical expression of the failure surface in 

VHMT loading space is required. 

To address these omissions in the literature, the object of this study is to investigate the full 

VHMT failure envelope of circular surface foundations on cohesive-frictional soils under 

a zero-tension interface for drained soil conditions. The effects of the friction angle and 

self-weight of the soil on the VHMT failure envelope have been studied. A full 4-D VHMT 

failure envelope is estimated using the finite element (FE) method. 

4.2 Method – finite element analysis 

4.2.1 Material models and interface conditions 

The constitutive relationship used to model the soil behavior was a linear elastic perfectly 

plastic model following a Mohr-Coulomb (M-C) failure criterion characterized by 

cohesion, c', and friction angle, φ'. The associated flow rule (i.e. the friction angle equal to 

the dilatancy angle) was considered for the analyses. It is known that the bearing capacity 

of a circular surface foundation is related not only to the soil properties (i.e. effective unit 

weight γ', cohesion c' and friction angle φ'), but also to the foundation dimensions (i.e. 

diameter D). Cox (1962) and Hjiaj et al. (2004) showed theoretically that the bearing 

capacity of a circular surface foundation on a general M-C material without surcharge 

depends only on two dimensionless numbers involving the aforementioned parameters, i.e. 

the friction angle φ' and the weight parameter defined by G = γ'D/2c'. 

The effective unit weight of soil was taken as 8.0 kN/m3. The diameter (D) and thickness 

(t) of the shallow circular foundation used in the analyses were 19 m and 3 m, representing 

typical dimensions for current large wind turbines in North America. Values of φ' = 0, 10°, 

20°, 30°, 35°, 40° and G = 0.5, 1.0, 2.0, 3.0 (corresponding to c' = 25 ~ 150 kPa) were used 

to span most soils of practical interest, which is similar to the ranges adopted by Hjiaj 

(2004). It has been demonstrated that the Young’s modulus, Poisson’s ratio and earth 

pressure coefficient of the soil affect the evolution of load-displacement curves, but have 

little influence on the collapse loads (Potts et al., 2001; Lee and Salgado, 2005). The 



82 

 

Poisson’s ratio (μ') of the soil was taken as 0.35 and a sufficiently large Young’s modulus 

(E') equal to 6×106 kPa was chosen to minimize mesh distortion. The foundation was 

assumed to act as a rigid body. A load reference point (LRP) attached to the center of the 

base of foundation was utilized to apply prescribed displacements or loads. For drained 

soil conditions, the FE analyses considered a zero-tension rough base that allows separation 

of the foundation from the soil. 

4.2.2 Geometry and mesh 

The FE analyses were conducted using the software ABAQUS (Dassault Systèmes, 2016). 

To avoid the effects of model boundaries on the development of failure mechanisms, a soil 

model diameter of 6.5D and a depth of the soil of 3.25D was adopted, following the model 

dimensions of Erickson and Drescher (2002) and Achmus et al. (2013). A mesh 

convergence study was carried out for a number of cases and that for G = 2 & φ' = 20° is 

shown in Figure 4.1. Preliminary analyses show that the rate of convergence considerably 

decreases with increase of φ' and second-order elements (i.e. ABAQUS 20-noded C3D20R 

elements) can yield faster convergence than first-order elements (i.e. ABAQUS 8-noded 

C3D8R). In addition, second-order elements can provide higher accuracy and capture stress 

concentrations more effectively. The difference between the ultimate vertical loads using 

Mesh 2 (14000 elements) and 3 (20000 elements) is about 1%. However, the model 

solution with Mesh 3 takes about 3 times longer than that using Mesh 2. Therefore, Mesh 

2 was adopted in the analysis. To capture the intense stress concentration close to the 

foundation edge and the large plastic shear strains at the interface, the soil regions in the 

vicinity of the foundation edge and the horizontal thin soil layer close to the interface were 

carefully refined. The cylindrical circumference of the soil domain was constrained to 

prevent out-of-plane translations, and the bottom of the soil domain was fixed in the three 

orthogonal directions. 
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Figure 4.1: Mesh convergence study for the case of G = 2 & φ' = 20° 

4.2.3 Sign conventions and loading paths 

The sign conventions for the loads are shown in Figure 4.2. In the analyses, the horizontal 

and moment loads were considered to be in the same plane. 

t

R

LRP

y

x

z

M

H

V

T

 

Figure 4.2: Sign conventions 

Swipe tests and probe tests were used to detect the failure envelopes under various load 

conditions. The swipe test brings the foundation to a collapse state in coordinate direction 

1 first, followed by a displacement applied in coordinate direction 2, during which the 

increment of the displacement in coordinate direction 1 remains zero (Gourvenec and 

Randolph, 2003). In a probe analysis, a vertical load is first applied at the LRP of the 

foundation and remains constant. A fixed-ratio of displacement is then imposed to the 

foundation to detect the failure point on the failure envelope. A probe test can only obtain 
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a single point on a failure envelope. Two typical failure envelopes obtained using both the 

swipe and probe tests are shown in Figure 4.3. 

   

 (a) M-V (b) M-H at V/Vult = 0.50 

Figure 4.3: M-V and M-H failure envelopes for the case of G = 2 & φ' = 20°: (a) M-V 

and (b) M-H at V/Vult = 0.50 

4.3 Finite element results 

4.3.1 Validation 

Following Hjiaj et al. (2004), the vertical uniaxial bearing capacity factor can be defined 

as: 

𝑣0 = 𝑉ult (𝐴 ∙ 𝑐′)⁄  (4.2) 

where Vult is the vertical uniaxial bearing capacity and A is the soil-foundation contact area. 

Table 4.1 summarizes the values of v0 for two sets of cases resulting from the present FE 

analyses and the method of characteristics (MOC). The exact solutions based on the MOC 

are calculated using the ABC program (Martin, 2003), which has also been validated by 

other studies (e.g. Smith, 2005; Lyamin et al., 2007). As can be seen from Table 4.1, the 

present values agree well with the MOC results for various values of φ' and G (maximum 

difference less than 4.82%), supporting the validity of the present FE model.  
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Table 4.1: Values of v0 resulting from FE analyses and the method of characteristics 

Cases 

G=2.0 φ'=20° 

φ'=0 φ'=10° φ'=20° φ'=30° φ'=35° φ'=40° G=0.5 G=1.0 G=2.0 G=3.0 

Current 

study 
6.04 12.18 30.60 103.14 218.88 547.21 25.18 27.18 30.60 34.65 

Martin 

(2003) 
6.05 12.67 32.15 107.94 228.38 549.09 26.01 28.17 32.15 35.86 

4.3.2 Pure uniaxial capacities 

Accurate determination of the uniaxial capacities is important for the failure envelope 

method, since they control the absolute size of the failure surface. For a zero-tension 

interface under drained soil conditions, the foundation, in the absence of vertical loads, 

cannot resist moment loading and only small horizontal and torsional loads (contributed by 

soil cohesion) can be mobilized. Therefore, unlike undrained uniaxial capacities defined 

by the ultimate loads in the absence of other loading modes (Shen  et al., 2016), drained 

uniaxial capacities for horizontal, moment and torsional modes are referred to as the 

corresponding maximum loads under vertical loading. Following Eq. (4.2), the uniaxial 

bearing capacity factors for horizontal, moment and torsional modes are defined as: 

ℎ0 = 𝐻ult (𝐴 ∙ 𝑐′)⁄

𝑚0 = 𝑀ult (𝐴 ∙ 𝐷 ∙ 𝑐′)⁄

𝑡0 = 𝑇ult (𝐴 ∙ 𝐷 ∙ 𝑐′)⁄
 (4.3) 

where Hult, Mult and Tult are the uniaxial bearing capacities, respectively. 

Figure 4.4 shows the values of the bearing capacity factors plotted against G and φ'. The 

ultimate limit state design for shallow foundations using the traditional method (i.e. DNV, 

2016) is also compared in Figure 4.4. Hjiaj et al. (2004) evaluated the lower and upper 

bounds of the bearing capacity for strip footings on cohesive-frictional soils using 

numerical limit analysis. Since only non-eccentric inclined loads were investigated by Hjiaj 

et al. (2004), only these vertical and horizontal modes are compared. 
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Figure 4.4(a) ~ (d) shows that the bearing capacity factors exponentially increase with φ', 

which agrees with the overall trends provided by the traditional method and Hjiaj et al. 

(2004). However, compared with the FE results, the traditional method considerably 

underestimates the values for φ' > 20° and the differences between them significantly 

increase with φ'. Specifically, t0 at φ' = 40° calculated by the FE method is around 8 times 

greater than that predicted by the traditional method. The primary reason for the dramatic 

discrepancy is the equivalent horizontal load used in the traditional method to account for 

torsional effects. Figure 4.4(a) and (b) also shows that the results for strip foundations lie 

in between the FE results and those estimated by the traditional method. Moreover, the 

current bearing capacity factors are fitted using exponential equations with regard to tanφ', 

as compared in Figure 4.4(a) ~ (d). The comparison shows a satisfactory agreement. 

The bearing capacity factors for cases of G = 0.5 ~ 3 and φ' = 20° are shown in Figure 

4.4(e) ~ (h) along with the traditional method and Hjiaj et al. (2004). The figure shows that 

the bearing capacity factors appear to linearly increase with G. The traditional method 

consistently provides much more conservative predictions than the FE method. In addition, 

the slopes of the lines provided by the traditional method are smaller than those predicted 

by the FE method and Hjiaj et al. (2004). The results of Hjiaj et al. (2004) are still smaller 

than the FE results, but present very similar slopes for v0 and h0, as shown in Figure 4.4(e) 

and (f). Linear equations with regard to G are used to fit the FE results and favorable 

predictions can be observed. 

   

 (a) Vult; G = 2 & φ' = 0 ~ 40° (e) Vult; G = 0.5 ~ 3 & φ' = 20° 
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 (b) Hult; G = 2 & φ' = 0 ~ 40° (f) Hult; G = 0.5 ~ 3 & φ' = 20° 

   

 (c) Mult; G = 2 & φ' = 0 ~ 40° (g) Mult; G = 0.5 ~ 3 & φ' = 20° 

   

 (d) Tult; G = 2 & φ' = 0 ~ 40° (h) Tult; G = 0.5 ~ 3 & φ' = 20° 
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Figure 4.4: Ultimate capacity factors: (a) Vult; G = 2 & φ' = 0 ~ 40°; (b) Hult; G = 2 & 

φ' = 0 ~ 40°; (c) Mult; G = 2 & φ' = 0 ~ 40°; (d) Tult; G = 2 & φ' = 0 ~ 40°; (e) Vult; G = 

0.5 ~ 3 & φ' = 20°; (f) Hult; G = 0.5 ~ 3 & φ' = 20°; (g) Mult; G = 0.5 ~ 3 & φ' = 20° and 

(h) Tult; G = 0.5 ~ 3 & φ' = 20° 

4.3.3 Horizontal-Vertical loading 

Figure 4.5 shows the effects of φ' and G on the dimensionless and normalized H-V failure 

envelopes. Results of Hjiaj et al. (2004) derived from inclined loads for strip foundations 

(φ' = 0 is unavailable) are also compared. For the dimensionless envelopes shown in Figure 

4.5(a) and (c), as expected, the initial slopes of the curves (i.e. at V = 0) are equal to the 

corresponding values of tanφ', which can also be confirmed from the curves of Hjiaj et al. 

(2004). Specifically, the initial slopes of the failure envelopes in Figure 4.5(c) remain the 

same due to the same value of φ'. The dimensionless curves also show that the absolute 

size of the H-V failure envelope gradually increases with G (see Figure 4.5(c)), but 

dramatically expands with increasing φ' (see Figure 4.5(a)). Moreover, strip foundations 

exhibit much smaller H-V envelopes than circular foundations and the difference between 

them increases with φ', as shown in Figure 4.5(a). 

For the normalized envelopes shown in Figure 4.5(b) and (d), the traditional method 

provides conservative estimations for V/Vult > 0.50, while unconservative predictions can 

be observed for V/Vult ≤ 0.50. Due to the different initial slopes caused by values of φ', the 

normalized curves shown in Figure 4.5(b) do not fall into a narrow band for V/Vult ≤ 0.50, 

while this is not the case for curves in Figure 4.5(d) (with the same value of φ'). Since the 

normalized envelopes for V/Vult > 0.50 in Figure 4.5(b) still lie in a relatively narrow band, 

a piecewise function is proposed to fit the H-V failure envelope. The curves for V/Vult > 

0.50 can be reasonably well fitted by Eq. (4.4): 

𝐻 𝐻ult⁄ = 4[𝑉 𝑉ult⁄ − (𝑉 𝑉ult⁄ )2]    for V/Vult > 0.50 (4.4) 

The curves for V/Vult ≤ 0.50 can be approximated by a polynomial: 

𝐻 𝐻ult⁄ = 𝑎1(𝑉 𝑉ult⁄ )3 + 𝑏1(𝑉 𝑉ult⁄ )2 + 𝑐1(𝑉 𝑉ult⁄ ) + 𝑑1    for V/Vult ≤ 0.50 (4.5) 
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with the coefficients being functions of tanφ': 

𝑐1 = (𝑉ult 𝐻ult⁄ ) ∙ tan𝜑′

𝑑1 = e−0.57𝑐1

𝑎1 = 4 ∙ (𝑐1 + 4𝑑1 − 4)

𝑏1 = 4 ∙ (−𝑐1 − 3𝑑1 + 3)

 (4.6) 

Reasonable comparisons between the proposed expression and the FE results can be 

observed in Figure 4.5(b). It can also be seen that the proposed equation with φ' = 20° 

shows a good agreement with the failure envelopes in Figure 4.5(d). 

  

 (a) Dimensionless; G = 2 & φ' = 0 ~ 40° (b) Normalized; G = 2 & φ' = 0 ~ 40° 

   

 (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° (d) Normalized; G = 0.5 ~ 3 & φ' = 20° 

Figure 4.5: H-V failure envelopes: (a) Dimensionless; G = 2 & φ' = 0 ~ 40°; (b) 

Normalized; G = 2 & φ' = 0 ~ 40°; (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° and (d) 

Normalized; G = 0.5 ~ 3 & φ' = 20° 
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4.3.4 Moment-Vertical loading 

Figure 4.6 shows the M-V failure envelopes for cases with various φ' and G. Similar to the 

H-V failure envelopes, the size of the M-V envelopes gradually increases with G, but 

exponentially expands with φ', as shown in Figure 4.6(a) and (c). Figure 4.6(b) and (d) 

shows the failure envelopes normalized by their corresponding uniaxial bearing loads. The 

results estimated with the traditional method satisfactorily compare with the FE results. 

Furthermore, the normalized curves appear to be independent of φ' and G, and can be 

approximated by a commonly-used envelope equation form used for undrained soil 

conditions (Shen et al., 2016): 

𝑀 𝑀ult⁄ = 4[𝑉 𝑉ult⁄ − (𝑉 𝑉ult⁄ )2] (4.7) 

   

 (a) Dimensionless; G = 2 & φ' = 0 ~ 40° (b) Normalized; G = 2 & φ' = 0 ~ 40° 

   

 (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° (d) Normalized; G = 0.5 ~ 3 & φ' = 20° 
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Figure 4.6: M-V failure envelopes: (a) Dimensionless; G = 2 & φ' = 0 ~ 40°; (b) 

Normalized; G = 2 & φ' = 0 ~ 40°; (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° and (d) 

Normalized; G = 0.5 ~ 3 & φ' = 20° 

4.3.5 Torsion-Vertical loading 

Figure 4.7 shows the effects of φ' and G on the dimensionless and normalized T-V failure 

envelopes. Since the torsional capacity for surface foundations is related only to the 

frictional force at the interface, the T-V failure envelopes exhibit similar features to the H-

V envelopes. The initial slopes of the T-V envelopes are associated with tanφ' by k = T/(VD) 

= tanφ' / 3, which can be derived by integrating the torsional force at an infinitesimal area 

(denoted by dA), dT, over the entire base area of the circular foundation, A: 

𝑇 = ∬ d𝑇 = ∬ 𝑉𝑟 (
d𝐴

𝐴
) tan 𝜑′ = ∫ ∫ 𝑉𝑟 (

𝑟d𝑟d𝜃

𝜋𝑅2
) tan𝜑′

2𝜋

0

𝑅

0
=

tan 𝜑′

3
𝑉𝐷  (4.8) 

As shown in Figure 4.7(b) and (d), the traditional method provides conservative predictions 

for V/Vult > 0.50 but unconservative results for V/Vult ≤ 0.50. Moreover, the normalized 

curves for V/Vult ≤ 0.50 in Figure 4.7(b) are similar to the H-V envelopes due to the φ'-

related initial slopes of the curves. Contrary to the normalized H-V curves, the normalized 

T-V curves for V/Vult > 0.50 show a strong dependence on φ'. However, the normalized 

curves seem to be independent of G, as shown in Figure 4.7(d). Similar to the H-V 

envelopes, a piecewise function is also employed to fit the normalized T-V failure 

envelopes. The normalized curves for V/Vult > 0.50 can be favorably approximated by: 

𝑇 𝑇ult⁄ = [1 − (2 ∙ 𝑉 𝑉ult⁄ − 1)𝑝]0.6    for V/Vult > 0.50 (4.9) 

with the coefficient, p, being a function of tanφ': 

𝑝 = 3.67 ∙ e−3tan 𝜑′
+ 1.47 (4.10) 

The expression of the curves for V/Vult ≤ 0.50 is a polynomial: 

𝑇 𝑇ult⁄ = 𝑎2(𝑉 𝑉ult⁄ )3 + 𝑏2(𝑉 𝑉ult⁄ )2 + 𝑐2(𝑉 𝑉ult⁄ ) + 𝑑2    for V/Vult ≤ 0.50 (4.11) 
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where a2, b2, c2 and d2 are functions of tanφ': 

𝑐2 = (𝑉ult𝐷 𝑇ult⁄ ) ∙ tan 𝜑′ 3⁄

𝑑2 = e−0.90𝑐2

𝑎2 = (0.55𝑐2 + 2𝑑2 − 2) 0.17⁄

𝑏2 = (−𝑐2 − 0.91𝑎2) 1.1⁄

 (4.12) 

It is evident from Figure 4.7(b) that the proposed expression compares favorably with the 

FE results and this expression with φ' = 20° also shows a satisfactory agreement with the 

envelopes in Figure 4.7(d). 

   

 (a) Dimensionless; G = 2 & φ' = 0 ~ 40° (b) Normalized; G = 2 & φ' = 0 ~ 40° 

   

 (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° (d) Normalized; G = 0.5 ~ 3 & φ' = 20° 

Figure 4.7: T-V failure envelopes: (a) Dimensionless; G = 2 & φ' = 0 ~ 40°; (b) 

Normalized; G = 2 & φ' = 0 ~ 40°; (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° and (d) 

Normalized; G = 0.5 ~ 3 & φ' = 20° 
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4.3.6 Moment-Horizontal loading 

Figure 4.8 shows the dimensionless and normalized M-H failure envelopes at V/Vult = 0.50 

along with the results estimated by the traditional method. A significant size expansion of 

the dimensionless envelopes with φ' can be observed from Figure 4.8(a). The M-H 

envelope is approximately symmetric about H = 0 for the case of φ' = 0, while the curves 

gradually become asymmetric and skewed to the left with increases of φ'. The asymmetry 

of the M-H envelopes is primarily attributed to the coupling effects between horizontal and 

moment modes. Figure 4.8(c) shows that M-H envelopes gradually expand with increases 

of G, but remain the same shape. The traditional method consistently provides conservative 

predictions. It should also be noted that the curves estimated with the traditional method 

are symmetric about H = 0. 

To further eliminate the dependence on the vertical load level (V/Vult = 0.75, 0.50 and 0.25 

are used), the M-H envelopes are normalized by their corresponding maximum values 

rather than the uniaxial ultimate loads, as shown in Figure 4.9. The FE data points for M < 

0 are also incorporated using f(–M, ±H) = f(+M, ∓H). As adopted by most researchers (e.g. 

Gottardi and Butterfield, 1993; Loukidis et al., 2008), the equation of an ellipse is used to 

fit the normalized M-H failure envelopes: 

(
𝐻

𝐻max

)
2

+ (
𝑀

𝑀max

)
2

+ 𝐶 (
𝐻

𝐻max

)(
𝑀

𝑀max

)= 1 (4.13) 

where Hmax and Mmax are the maximum horizonal and moment loads under a given value 

of V/Vult, and can be calculated using the analytical equations for the normalized H-V and 

M-V envelopes in Sections 4.3.3 and 4.3.4. The best fitted values of the fitting coefficient 

C are 0.36 and 0.40 for cases of G = 2 & φ' = 0 ~ 40° and cases of G = 0.5 ~ 3 & φ' = 20°, 

respectively. For simplification, the average value of C = 0.38 is employed, as compared 

in Figure 4.9. 
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 (a) Dimensionless; G = 2 & φ' = 0 ~ 40° (b) Normalized; G = 2 & φ' = 0 ~ 40° 

   

 (c) Dimensionless; G = 0.5 ~ 3 & φ' = 20° (d) Normalized; G = 0.5 ~ 3 & φ' = 20° 

Figure 4.8: M-H failure envelopes at V/Vult = 0.50: (a) Dimensionless; G = 2 & φ' = 0 

~ 40°; (b) Normalized; G = 2 & φ' = 0 ~ 40°; (c) Dimensionless; G = 0.5 ~ 3 & φ' = 

20°; and (d) Normalized; G = 0.5 ~ 3 & φ' = 20° 
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(a) G = 2 & φ' = 0 ~ 40° 

 

(b) G = 0.5 ~ 3 & φ' = 20° 

Figure 4.9: Fitting of M-H envelopes: (a) G = 2 & φ' = 0 ~ 40° and (b) G = 0.5 ~ 3 & 

φ' = 20° 
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4.3.7 Horizontal-Torsional loading 

The effects of φ' and G on the dimensionless and normalized H-T failure envelopes under 

V/Vult = 0.75, 0.50 and 0.25 are shown in Figure 4.10 and Figure 4.11, respectively. The 

dimensionless failure envelopes shown in Figure 4.10(a) and Figure 4.11(a) exhibit a 

dramatic expansion with φ' and a gradual increase with G (with almost the same shape). 

As shown in Figure 4.10(b) ~ (d) and Figure 4.11(b) ~ (d), the traditional method 

consistently underestimates the H-T envelopes. Similar to the M-H failure envelopes, the 

H-T failure envelopes normalized by the corresponding maximum values can enable the 

elimination of the dependence on φ', G and V/Vult. The normalized H-T failure envelopes 

can be fitted using the following equation: 

(𝐻 𝐻max⁄ )𝑐 + (𝑇 𝑇max⁄ )𝑑 = 1 (4.14) 

with c = 1.85 and d = 1.5. This comparison shows a good agreement. 

   

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 4.10: H-T failure envelopes for G = 2 & φ' = 0 ~ 40°: (a) Dimensionless, V/Vult 

= 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) 

Normalized, V/Vult = 0.25 

   

 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 
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 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 4.11: H-T failure envelopes for G = 0.5 ~ 3 & φ' = 20: (a) Dimensionless, 

V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) 

Normalized, V/Vult = 0.25 

4.3.8 Moment-Torsional loading 

The effects of φ' and G on the dimensionless and normalized M-T failure envelopes under 

V/Vult = 0.75, 0.50 and 0.25 are presented in Figure 4.12 and Figure 4.13. The dimensionless 

M-T envelopes exhibit similar expansions to the H-T envelopes, as shown in Figure 4.12(a) 

and Figure 4.13(a). It can also be seen that the curves provided by the traditional method 

are almost linear and lie significantly inside the FE results. The normalized M-T failure 

envelopes can be approximated using: 

(𝑀 𝑀max⁄ )𝑒 + (𝑇 𝑇max⁄ )𝑓 = 1 (4.15) 

with e = f = 2.0 (i.e. a unit circle). The comparison indicates favorable predictions.  
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 4.12: M-T failure envelopes for G = 2 & φ' = 0 ~ 40°: (a) Dimensionless, V/Vult 

= 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) 

Normalized, V/Vult = 0.25 
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 (a) Dimensionless, V/Vult = 0.50 (b) Normalized, V/Vult = 0.75 

   

 (c) Normalized, V/Vult = 0.50 (d) Normalized, V/Vult = 0.25 

Figure 4.13: M-T failure envelopes for G = 0.5 ~ 3 & φ' = 20°: (a) Dimensionless, 

V/Vult = 0.50; (b) Normalized, V/Vult = 0.75; (c) Normalized, V/Vult = 0.50 and (d) 

Normalized, V/Vult = 0.25 

4.4 Full 4-D VHMT failure envelope in VHMT loading space 

Three sets of notation are defined: (1) Vult, Hult, Mult, Tult – uniaxial ultimate capacity 

defined in Section 4.3.2; (2) Hmax, Mmax, Tmax – maximum capacity at a given level of the 

vertical load without other load components and (3) H'max, M'max – reduced maximum 

capacity at a given level of the vertical load with a non-zero torsional load (T ≠ 0). 



101 

 

Using the above notations, the general forms of the FE-calculated failure envelopes are 

summarized in Table 4.2. fh, fm, and ft are functions of the vertical load level. Specific 

expressions for these functions can be found in the previous sections. 

Table 4.2: Summary of FE-calculated failure envelopes 

Plane Conditions Analytical form 

H-V M = 0 & T = 0 𝐻max 𝐻ult⁄ = 𝑓ℎ(𝑉 𝑉ult⁄ ) (4.16) 

M-V H = 0 & T = 0 𝑀max 𝑀ult⁄ = 𝑓𝑚(𝑉 𝑉ult⁄ ) (4.17) 

T-V M = 0 & H = 0 𝑇max 𝑇ult⁄ = 𝑓𝑡(𝑉 𝑉ult⁄ ) (4.18) 

M-H V ≠ 0 & T = 0 
(𝐻 𝐻max⁄ )2 + (𝑀 𝑀max⁄ )2

+ 𝐶(𝐻 𝐻max⁄ )(𝑀 𝑀max⁄ ) = 1 
(4.19) 

H-T V ≠ 0 & M = 0 (𝐻max
′ 𝐻max⁄ )𝑐 + (𝑇 𝑇max⁄ )𝑑 = 1 (4.20) 

M-T V ≠ 0 & H = 0 (𝑀max
′ 𝑀max⁄ )𝑒 + (𝑇 𝑇max⁄ )𝑓 = 1 (4.21) 

Eq. (4.19) (i.e. M-H envelope under the condition of T = 0) is considered as the basic 

function. To derive the final 4-D expression, a more generalized equation for the M-H 

failure envelope under the condition of T ≠ 0 is needed. Due to the similar shapes of the 

M-H failure envelopes (only the sizes are different), it is reasonable to assume that under 

the condition of T ≠ 0, Eq. (4.19) is still applicable for the M-H envelope normalized by 

the corresponding maximum values, H'max and M'max (which reduce to Hmax and Mmax in 

Eq. (4.19) if T = 0). Therefore, Eq. (4.19) can be replaced by a more generalized form: 

(𝐻 𝐻max
′⁄ )2 + (𝑀 𝑀max

′⁄ )2 + 𝐶(𝐻 𝐻max
′⁄ )(𝑀 𝑀max

′⁄ ) = 1 (4.22) 

Mathematical manipulations of Eqs. (4.16), (4.17), (4.18), (4.20), (4.21) and (4.22) allow 

the formulation of an analytical 4-D expression for the full VHMT envelope in terms of  

V/Vult, H/Hult, M/Mult, and T/Tult: 
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𝑓(𝑉 𝑉ult⁄ ,𝐻 𝐻ult⁄  , 𝑀 𝑀ult⁄ , 𝑇 𝑇ult⁄ )

=

(

 
 
 𝐻 𝐻ult⁄

[1− (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)
𝑑

]

1
𝑐

𝑓ℎ(𝑉 𝑉ult⁄ )
)

 
 
 

2

+

(

 
 
 𝑀 𝑀ult⁄

[1− (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)

𝑓

]

1
𝑒

𝑓𝑚(𝑉 𝑉ult⁄ )
)

 
 
 

2

+ 𝐶

(

 
 
 𝐻 𝐻ult⁄

[1 − (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)
𝑑

]

1
𝑐

𝑓ℎ(𝑉 𝑉ult⁄ )
)

 
 
 

(

 
 
 𝑀 𝑀ult⁄

[1− (
𝑇 𝑇ult⁄

𝑓𝑡(𝑉 𝑉ult⁄ )
)

𝑓

]

1
𝑒

𝑓𝑚(𝑉 𝑉ult⁄ )
)

 
 
 

= 1 

(4.23) 

For practical design applications, the combined design loads with the appropriate partial 

factors, VHMT, can be directly substituted into the left-hand side of Eq. (4.23); values less 

than 1 represent a sufficient ultimate limit design and vice versa. 

To visualize the shape of the full 4-D failure surface, three 3-D failure surfaces (i.e. VHM 

failure surface at T = 0, VHT at M = 0 and VMT at H = 0) for the case of G = 2 & φ' = 20° 

are shown in Figure 4.14. The portion of T < 0 for the VHT and VMT surfaces is also 

incorporated due to the symmetry about the plane of T = 0. The specific curves obtained 

from the FE results are also compared. 

An associated flow rule (friction angle = the dilation angle) has been used for the soil model 

in the present study. It should be noted that a non-associated flow rule (friction angle > the 

dilation angle) can provide more realistic behaviors of certain soils and states. Loukidis et 

al. (2008) and EI-Marassi (2011) demonstrated that the absolute size of the V-H, V-M and 

M-H envelopes for strip surface foundations increases with the dilation angle, whilst the 

size and shape of the normalized envelopes appears to be independent of the dilation angle. 

Therefore, the 4-D analytical expression for the normalized VHMT failure envelope (see 

Eq. (4.23)) derived using the associated flow rule should also be usable for the non-

associated flow case with some appropriate consideration of the soil properties. Since the 

uniaxial bearing capacities (i.e. Vult, Hult, Mult and Tult) depend on the dilation angle, further 

numerical analyses using the non-associated flow rule would be required for confirmation, 

which is beyond the scope of the present study. 



103 

 

  

 (a) VHM at T = 0 (b) VHT at M = 0 

 

(c) VMT at H = 0 

Figure 4.14: 3-D failure surfaces for a circular surface foundation with G = 2 & φ' = 

20° under drained soil conditions: (a) VHM at T = 0; (b) VHT at M = 0 and (c) VMT 

at H = 0 

4.5 Conclusions 

The general VHMT failure envelopes for circular surface foundations under a zero-tension 

interface for drained soil conditions have been investigated using finite element analysis. 

Two dimensionless numbers, the friction angle φ' and the weight parameter G = γ'D/2c', 

have been considered for parametric study proposes. The results show that the uniaxial 

bearing capacities increase with φ' exponentially and with G linearly. In addition, the 

calculated failure envelopes gradually expand with G and exponentially expand with φ'. 
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The traditional method consistently provides conservative predictions of the bearing 

capacity under combined loads. Analytical expressions have also been proposed to 

approximate the calculated VHMT failure envelopes. To facilitate the application of the 

failure envelope method for design, a full 4-D analytical expression for the VHMT failure 

envelope was derived based on the calculated VHMT failure envelopes. 
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5 Effects of soil stiffness anisotropy on elastic solutions of 
circular foundations under combined VHMT loading 

5.1 Introduction 

Estimation of the serviceability limit state of shallow foundations under working loads can 

be of great significance. This is particularly important for large onshore and offshore 

structures, such as wind turbines (WTs) and oil and gas platforms. The majority of large 

shallow WT foundations are circular or close to circular in form. These shallow 

foundations are generally subjected to combined loadings: vertical loads due to the self-

weight of the structure (V), horizontal loads (H) caused by environmental conditions, 

overturning moments (M) due to the horizontal loading and structural height, and torsional 

loads (T) induced by wind and structural effects. The rocking stiffness of WT foundations 

in particular is considered to be a critical design parameter, since it controls the location of 

the center of gravity with respect to the foundation of the turbine (Lang, 2012). 

Available analytical solutions for estimating the elastic response of surface-based rigid 

circular footings are based on theories that assume homogeneous elastic half -spaces 

subjected to uniaxial vertical, horizontal, moment and torsional loads. Various solutions 

can be found in the literature, e.g. Spence (1968), Gerrard and Harrison (1970), Poulos and 

Davies (1974) and Reissner and Sagoci (1944), as shown below: 

𝐾𝑉 =
4 ln(3 − 4𝜇)

1 − 2𝜇
 

𝐾𝐻𝐻 =
8

2 − 𝜇
 

𝐾𝑀𝑀 =
8

3(1 − 𝜇)
 

𝐾𝑇 =
16

3
 

(5.1) 

where KV, KHH, KMM and KT are vertical, horizontal, moment and torsional elastic stiffness 

coefficients and µ is the Poisson’s ratio of the soil. Kausel et al. (1978) proposed 

approximate solutions for embedded circular foundations using the direct finite element 
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(FE) procedures. Extending this concept, Bell (1991) demonstrated with finite element 

analysis that the cross-coupling effects for structures subjected to simultaneous vertical, 

horizontal and moment loading can be characterized in a matrix form: 

[
 
 
 
 
 

𝑉

𝐺𝑅2

𝐻

𝐺𝑅2

𝑀

𝐺𝑅3]
 
 
 
 
 

= [

𝐾𝑉 0 0
0 𝐾𝐻𝐻 𝐾𝐻𝑀

0 𝐾𝑀𝐻 𝐾𝑀𝑀

] ∙ [

𝑢𝑉
𝑅⁄

𝑢𝐻
𝑅⁄

𝜃𝑀

] (5.2) 

where uV, uH and θM are the vertical, horizontal and rotational deformations; and R is the 

foundation radius. KMH = KHM represent the cross-coupling between the horizontal and 

rotational degrees of freedom. Note that torsion was not addressed by this study. 

Stiffness coefficients have also been found to depend on the foundation embedment ratio, 

soil Poisson’s ratio, foundation embedment conditions and foundation geometry. Doherty 

and Deeks (2003) further developed coupled VHM foundation stiffness coefficients 

considering the effects of foundation embedment and soil non-homogeneity (i.e. using a 

power law variation of shear modulus with depth). However, it should be noted that the 

solutions of Bell (1991) and Doherty and Deeks (2003) are all for isotropic conditions. In 

addition, despite the availability of coupled solutions (e.g. Gazetas, 1983; Gazetas, 1991), 

uncoupled foundation stiffness methods still predominate in most guidelines used for 

shallow foundation design, such as DNV (2016) and ISO (2016). 

Although the aforementioned literature treats the soil as an isotropic material, many natural 

soils will be anisotropic or at least transversely isotropic (cross-anisotropic) due to their 

deposition and complex stress history (Bishop and Hight, 1977). Burland et al. (1977), 

González-Hurtado (2019) and Korobova et al. (2019) have shown that the effects of soil 

stiffness anisotropy on foundation responses can be significant and should not be ignored. 

Gazetas (1981) analytically investigated the vertical, horizontal and rocking responses of 

surface-based rigid strip foundations on cross-anisotropic soils; however, the foundation 

stiffness cannot be explicitly derived due to analytical complexities. As demonstrated by 

Yang et al. (2008) and Graham and Houlsby (1983), both granular soils and clays exhibit 
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stiffness anisotropy that can be satisfactorily described with cross-anisotropic elasticity. 

The relationship between the increments of effective stress and strain for a cross -

anisotropic soil can be described by (Lings et al., 2000): 

[
 
 
 
 
 
 
𝛿𝜀𝑥𝑥

𝛿𝜀𝑦𝑦

𝛿𝜀𝑧𝑧

𝛿𝛾𝑦𝑧

𝛿𝛾𝑧𝑥

𝛿𝛾𝑥𝑦 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸ℎ
−

𝜇ℎℎ

𝐸ℎ
−

𝜇𝑣ℎ

𝐸𝑣
∙ ∙ ∙

−
𝜇ℎℎ

𝐸ℎ

1

𝐸ℎ
−

𝜇𝑣ℎ

𝐸𝑣
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−
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𝐸𝑣
−

𝜇𝑣ℎ

𝐸𝑣

1
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∙ ∙ ∙
1

𝐺𝑣ℎ
∙ ∙

∙ ∙ ∙ ∙
1

𝐺𝑣ℎ
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∙ ∙ ∙ ∙ ∙
1
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∙
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𝛿𝜎𝑥𝑥

′

𝛿𝜎𝑦𝑦
′

𝛿𝜎𝑧𝑧
′

𝛿𝜏𝑦𝑧
′

𝛿𝜏𝑧𝑥
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𝛿𝜏𝑥𝑦
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 (5.3) 

The subscripts used in Eq. (5.3) follow those adopted by Pickering (1970). The stresses 

and strains are referred to three Cartesian axes with x and y being horizontal axis and z 

being the vertical axis of symmetry. Love (2013) showed that only five independent 

parameters are required to fully describe a cross-anisotropic elastic soil, i.e. Young’s 

modulus in the horizontal direction, Eh; Young’s modulus in the vertical direction, Ev; 

Poisson’s ratio for horizontal strain due to vertical strain, μvh; Poisson’s ratio for horizontal 

strain due to horizontal strain, μhh and shear modulus in the vertical plane, Ghv (Ghv = Gvh). 

The remaining parameters can be related to these five parameters using: 

𝐺ℎℎ =
𝐸ℎ

2(1 + 𝜇ℎℎ)
 (5.4) 

𝜇ℎ𝑣

𝐸ℎ
=

𝜇𝑣ℎ

𝐸𝑣
 (5.5) 

Eq. (5.4) assumes that the horizontal plane is a plane of isotropy and thermodynamic 

considerations require Eq. (5.5) to ensure the symmetry of the elastic compliance matrix; 

Eq. (5.5) has been used in the derivation of Eq. (5.3). 
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Since thermodynamic considerations require the strain energy of an elastic material is 

positive, some bounds on the values of the five independent parameters also need to be 

satisfied. Pickering (1970) demonstrated that Eh, Ev and Ghv must always be positive, and 

inequalities (5.6) and (5.7) should also be satisfied. Raymond (1970) has showed that Ghv 

is confined by inequality (5.8). 

−1 < 𝜇ℎℎ < 1 (5.6) 

𝐸𝑣

𝐸ℎ

(1 − 𝜇ℎℎ)− 2𝜇𝑣ℎ
2 ≥ 0 (5.7) 

𝐺ℎ𝑣 ≤
𝐸𝑣

2𝜇𝑣ℎ(1 + 𝜇ℎℎ)+ 2√(
𝐸𝑣

𝐸ℎ
) ∙ (1 − 𝜇ℎℎ

2 )(1 −
𝐸ℎ

𝐸𝑣
∙ 𝜇𝑣ℎ

2 )

 
(5.8) 

Graham and Houlsby (1983) proposed a simplified cross-anisotropic model consisting of 

only three independent parameters defined as: (i) modified Young’s modulus: E* = Ev; (ii) 

anisotropy factor: 𝛼 = √𝐸ℎ 𝐸𝑣⁄ ; and modified Poisson’s ratio: μ* = µhh. 

All of the five cross-anisotropic elastic parameters can therefore be computed using these 

three independent parameters: 

𝐸𝑣 = 𝐸∗; 𝐸ℎ = 𝛼2𝐸∗ 

𝐺𝑣ℎ = 𝐺ℎ𝑣 =
𝛼𝐸∗

2(1 + 𝜇∗)
; 𝐺ℎℎ =

𝛼2𝐸∗

2(1 + 𝜇∗)
 

𝜇ℎℎ = 𝜇∗; 𝜇𝑣ℎ = 𝜇∗ 𝛼⁄ ; 𝜇ℎ𝑣 = 𝛼𝜇∗ 

(5.9) 

Substituting Eq. (5.9) into (5.7) yields -1< μ*=µhh ≤0.5; therefore, 0.5 is an upper bound of 

µhh for this three-parameter model. 

As a special case of drained conditions, the undrained condition can be accounted for by 

mapping the drained parameters to undrained parameters. As given by Ratananikom et al. 

(2013) and Lings (2001), the undrained Young’s modulus and shear modulus of the three-

parameter model can be expressed in Eq. (5.10) and other equations shown in Eqs. (5.4) 

and (5.5) are still applicable. 
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𝐸𝑣
𝑢 = 𝐸∗ ∙ [

4𝛼𝜇∗ + 2𝜇∗ − 2 − 𝛼2

2(𝜇∗ + 1)(2𝜇∗ − 1)
] 

𝐸ℎ
𝑢 = 𝛼2𝐸∗ ∙ [

4𝛼𝜇∗ + 2𝜇∗ − 2 − 𝛼2

2𝛼𝜇∗(𝜇∗ + 1) + (𝜇∗2 − 1)(𝛼2 + 1)
] 

𝐺ℎℎ
𝑢 = 𝐺ℎℎ;        𝐺ℎ𝑣

𝑢 = 𝐺ℎ𝑣 

(5.10) 

Following Bell (1991) and Doherty and Deeks (2003), the stiffness of a circular foundation 

on a cross-anisotropic soil subjected to combined VHMT loads can therefore be expressed 

in a matrix form as: 

[
 
 
 
 
 
 
 
 

𝑉

𝐺ℎ𝑣𝑅
2

𝐻

𝐺ℎ𝑣𝑅
2

𝑀

𝐺ℎ𝑣𝑅
3

𝑇

𝐺ℎ𝑣𝑅
3]
 
 
 
 
 
 
 
 

= [

𝐾𝑉 0 0 0
0 𝐾𝐻𝐻 𝐾𝐻𝑀 0
0 𝐾𝑀𝐻 𝐾𝑀𝑀 0
0 0 0 𝐾𝑇

] ∙

[
 
 
 
 
𝑢𝑉

𝑅⁄
𝑢𝐻

𝑅⁄

𝜃𝑀

𝜃𝑇 ]
 
 
 
 

 (5.11) 

The objective of this paper is to obtain the coupled elastic stiffness coefficients for circular 

surface and embedded foundations resting on cross-anisotropic soils with linearly 

increasing stiffness with depth under combined VHMT loads. The three-parameter cross-

anisotropic model has been used to model the elastic soil behavior. Foundation stiffness 

accounting for the effects of foundation embedment, soil stiffness non-homogeneity and 

anisotropy have been estimated using finite element analysis. 

5.2 Method – finite element analysis 

5.2.1 Material models and sign conventions 

The soil was modelled as a cross-anisotropic linear elastic material characterized by the 

three-parameter model (see Eq. (5.9)), with isotropy as a special case (i.e. α2 = 1). As 

suggested by Lings (2001), Nishimura (2014) and Yimsiri and Soga (2011), the anisotropic 

ratio α2 typically ranges from 0 to 2. Therefore, values of α2 = 0.2, 0.4, 0.6, 1.0, 1.5 and 2.0 

were used in this study to span most soils of practical interest. Since the typical range of μ* 

is -1< μ* ≤ 0.5 (see Section 5.1), μ* was taken as 0, 0.1, 0.2, 0.3, 0.4 and 0.495. 
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The diameter (D) and thickness (t) of the foundation used in the analysis were D = 19 m 

and t = 3 m, representing typical dimensions for current large WTs in North America. The 

effect of the foundation embedment (d) was studied by varying the embedment ratios from 

0 to 0.16 (i.e. d/D = 0, 0.03, 0.06, 0.09, 0.12 and 0.16). Since most natural deep soil deposits 

exhibit an increase of elastic stiffness with depth (Doherty and Deeks, 2003; Rowe and 

Booker, 1981), the soil was also modelled as a non-homogeneous layer with linearly 

increasing elastic modulus with depth (Gibson, 1967). Different gradients (k) for the non-

homogeneous soil stiffness increase were considered for β (where β = kD/Ev0 is the 

normalized Gibson factor, defined by Carrier and Christian (1973)) varying from 0 to 0.40, 

corresponding to k = 0, 1.0, 2.0, 3.0, 4.0 and 5.0 MPa/m. Ev0 = 237 MPa was used in the 

analysis. Figure 5.1 shows the soil profiles adopted herein. Cases of surface foundations 

on Gibson soils and embedded foundations in homogeneous soils were separately 

considered to study the effects of soil stiffness non-homogeneity and foundation 

embedment. Each case included 36 sub-cases (i.e. six values of α2 × six values of μ*). The 

foundation was assumed to be a rigid body. A load reference point (LRP) was attached to 

the center of the base of foundation to apply prescribed displacements or loads. 

The base contact between the foundation and the soil was chosen to have a rough condition. 

For embedded foundations, a reduced friction coefficient (i.e. partially rough interface) for 

side and top interfaces is always recommended due to installation or in -service loading 

processes (Gourvenec and Mana, 2011). In this analysis, smooth sides and top of the 

embedded foundations were considered to provide more conservative estimations. The sign 

conventions for the loads are shown in Figure 5.1. The horizontal and moment loads were 

considered to be in the same plane. 

Original position

Displaced position

V MH

uV

uH

¦ ÈM

R

LRP

Ev0

z

Ev
O

1

k

Ev=Ev0

Homogeneous soil

Ev=Ev0+kz

T

 

Figure 5.1: Sign conventions & soil profiles (Osman et al., 2007) 
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5.2.2 Geometry and mesh 

A cylinder with finite dimensions was used to simulate the half -space soil. To eliminate 

potential boundary effects, five model domain widths, L, (i.e. L = 5D, 10D, 20D, 50D and 

100D) were examined. These dimensions represent the horizontal distance from the 

foundation edge to either side of the domain and the vertical depth of the soil below the 

foundation. Figure 5.2 shows the effect of model dimensions on KV and KHH for a surface 

foundation on a homogeneous isotropic soil and the results of Bell (1991) for the model 

with a 100D mesh size are also compared. The values of KMH, KMM and KT were also 

investigated and found to be less sensitive with respect to the domain size. It can be seen 

that a domain size of 50D ~ 100D is therefore sufficiently accurate; thus, a model 

dimension of 50D was adopted for the remaining analyses. The cylindrical circumference 

of the soil was constrained to prevent out-of-plane translations, and the bottom of the soil 

was fixed in the three orthogonal coordinate directions. 

   

 (a) KV (b) KHH 

Figure 5.2: Effect of model dimensions on the stiffness coefficients for a surface 

foundation on a homogeneous isotropic soil: (a) KV and (b) KHH 

A mesh convergence study was carried out for a surface foundation on a homogeneous 

isotropic soil with μ = 0.3, as summarized in Table 5.1. It can be seen that the foundation 

stiffnesses calculated using the medium mesh (185000 elements) have very small 

differences compared with those derived from the dense mesh (367000 elements). 
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Therefore, the medium mesh was adopted in the analysis. Figure 5.3 shows the plane view 

of the three-dimensional model using the medium mesh. The mesh was composed of 

approximately 185000 8-noded brick elements (i.e. first-order, ABAQUS C3D8R). To 

capture the intense stress concentration close to the foundation edge and the soil-foundation 

interface, the soil regions in the vicinity of the foundation edge and the horizontal thin soil 

layer close to the interface were carefully refined. 

Table 5.1: Mesh convergence study (surface foundations on a homogeneous soil with 

μ = 0.3) 

Stiffness Coarse (35000 elements) Medium (185000 elements) Dense (367000 elements) 

KV 5.913 5.924 5.924 

KHH 4.787 4.792 4.792 

KMH -0.440 -0.446 -0.446 

KMM 3.916 3.966 3.966 

KT 5.251 5.213 5.305 

x
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Figure 5.3: Mesh representation 

5.3 Finite element results 

5.3.1 Model calibration 

Figure 5.4 shows the comparison between the stiffness coefficients for a surface circular 

foundation on a homogeneous isotropic soil obtained from the current FE analysis, the Bell 
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(1991) solutions and the analytical solutions of Spence (1968), Gerrard and Harrison 

(1970), Poulos and Davis (1974) and DNV (2016). 

The figure shows that the current study compares well (with differences less than 5%) with 

the approximate solutions of KV, KHH, KMH and KMM from Bell (1991). Both the current 

study and Bell’s (1991) results are a little larger than the analytical solutions. However, the 

current study lies closer to the analytical solutions than Bell (1991) due to the much finer 

mesh and improved analytical methods. Moreover, the cross-coupling term obtained from 

Bell (1991) shown in Figure 5.4(c) exhibits a good agreement with that derived from the 

FE analysis. It should also be noted that the current FE results have relatively larger KHH 

and KMM than the analytical solutions, but the difference between them gradually decreases 

with µ. This is mainly because the analytical solutions of KHH and KMM are uncoupled and 

the coupling horizontal and rotational behavior gradually decreases with µ, as shown in 

Figure 5.4(c). Figure 5.4(c) also shows no coupling, when the soil media is incompressible 

(i.e. undrained case: µ = 0.5), which makes the uncoupled analytical solutions of KHH and 

KMM approach the current coupled results. As shown in Figure 5.4(e), the torsional stiffness 

coefficient given by DNV (2016) is invariant with respect to µ, which is slightly larger than 

the FE results. However, the difference between them is less than 1.5%. 

   

 (a) KV (b) KHH 
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 (c) KMH (d) KMM 

 

(e) KT 

Figure 5.4: Stiffness coefficients for a surface circular foundation on a homogeneous 

isotropic soil: (a) KV; (b) KHH; (c) KMH; (d) KMM and (e) KT 

5.3.2 Stiffness equations for surface foundations on homogeneous 
soils 

The various cases of surface foundations on homogeneous soils can be used to obtain the 

basic stiffness equations in the absence of the effects of foundation embedment and soil 

non-homogeneity. Figure 5.5(a) shows the variations of the vertical stiffness coefficient 

with anisotropy factor for different values of μ*. In general, KV gradually increases with the 

increase of μ*, but decreases with increasing α2. This is because the anisotropy factor is 
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defined as α2 = Eh/Ev, and KV relies more on the vertical elastic modulus, Ev. To reduce the 

variability of the values of KV caused by μ*, the term of KV (1.1‒μ*) is introduced, as shown 

in Figure 5.5(b). Figure 5.5(b) shows that the FE results (characterized by the range bars 

showing the mean, lower and upper bounds) fall into a tight band and a single expression 

as a function of α2 is proposed, given by Eq. (5.12) and compared in Figure 5.5(b). Figure 

5.5(b) exhibits a good agreement (with R2 = 0.997) between the FE results and the 

analytical expression below: 

𝐾𝑉(1.1 − 𝜇∗) =
3.20 + 3.14𝛼2

0.33 + 𝛼2  (5.12) 

Eq. (5.12) can be simply manipulated to yield the basic vertical stiffness equation as: 

𝐾𝑉 = (
1

1.1 − 𝜇∗
) ∙ (

3.20 + 3.14𝛼2

0.33 + 𝛼2
) (5.13) 

Isotropy (i.e. α2 = 1.0) reduces Eq. (5.13) to the commonly-used isotropic stiffness equation 

in practical foundation design (e.g. Eq. (5.1)). 

   

 (a) KV ~ α2 (b) KV (1.1‒μ*) ~ α2 

Figure 5.5: Vertical stiffness coefficient for surface foundations on homogeneous 

soils: (a) KV ~ α2 and (b) KV (1.1‒μ*) ~ α2 

Similar to the vertical stiffness equation, the horizontal and rotational stiffness equations 

can be derived in the same way, as given by Eqs. (5.14) and (5.15). The comparison shown 
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in Figure 5.6 also shows satisfactory fits between the FE results and the proposed analytical 

expressions. It should also be noted that KMM decreases with increase of α2, but KHH shows 

an opposite trend. This is because KMM is dominated by the vertical elastic modulus, while 

KHH is influenced more by the horizontal elastic modulus. 

𝐾𝐻𝐻 = (
1

2.4 − 𝜇∗
) ∙ (

6.07 + 15.85𝛼2

1.16 + 𝛼2
) (5.14) 

𝐾𝑀𝑀 = (
1

1.2 − 𝜇∗
) ∙ (

2.43 + 2.40𝛼2

0.34 + 𝛼2
) (5.15) 

   

 (a) KHH(2.4‒μ*) ~ α2 (b) KMM(1.2‒μ*) ~ α2 

Figure 5.6: Horizontal and rotational stiffness coefficients for surface foundations 

on homogeneous soils: (a) KHH(2.4‒μ*) ~ α2 and (b) KMM(1.2‒μ*) ~ α2 

Figure 5.7(a) presents the coupling stiffness coefficients between horizontal and rotational 

behavior for surface foundations on homogeneous soils. In contrast with KV, KHH and KMM, 

KMH appears to be unaffected by the soil anisotropy. Therefore, the coupling stiffness 

coefficients can be simply expressed as a function of μ*: 

𝐾𝑀𝐻 = 𝐾𝐻𝑀 =
−1.28(0.5 − 𝜇∗)

0.87 − 𝜇∗  (5.16) 
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It should also be noted that Eq. (5.16) becomes zero, when μ* is equal to 0.5, indicating no 

coupling effect between horizontal and moment responses. This has also been confirmed 

by Bell (1991). 

The relationship between KT and α2 is presented in Figure 5.7(b). Contrary to KMH shown 

in Figure 5.7(a), KT is affected only by α2, and μ* has no influence on KT. The relationship 

can therefore be estimated using Eq. (5.17) and a good agreement can be observed in Figure 

5.7(b). 

𝐾𝑇 =
3.20 + 8.33𝛼2

1.16 + 𝛼2  (5.17) 

  

 (a) KMH ~ μ* (b) KT ~ α2 

Figure 5.7: Coupling and torsional stiffness coefficients for surface foundations on 

homogeneous soils: (a) KMH ~ μ* and (b) KT ~ α2 

5.3.3 Correction factors for Gibson soils 

Analyses of surface foundations on Gibson soils can account for the effects of soil stiffness 

non-homogeneity (i.e. linearly increasing elastic modulus with depth) on the stiffness of 

shallow foundations. As shown in Eq. (5.18), the Gibson correction factor for vertical 

stiffness, defined as the ratio of KV for a Gibson soil to that for a homogeneous soil, is 

introduced. (Cβ,V – 1) is adopted to make (Cβ,V – 1) ~ β curves start from the origin, as 

shown in Figure 5.8(a). The data points inside the ellipse shown in Figure 5.8(a) represent 
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one case with the same stiffness slope, including 36 points (i.e. six values of α2 × six values 

of 𝜇∗). As shown in Figure 5.8(a), generally, (Cβ,V – 1) gradually increases with the increase 

of β; however, great variations of the results can be observed due to the dependence of 

(Cβ,V – 1) on α2 and μ*. Thus, (Cβ,V – 1) should be a function of α2, μ* and β, which can be 

simply assumed to be the product of three independent functions in terms of α2, μ* and β, 

respectively, as given by Eq. (5.18). 

𝐶𝛽,𝑉 =
𝐾𝑉,Gibson

𝐾𝑉,homo
= 1 + 𝑓1,𝑉(𝜇∗) ∙ 𝑓2,𝑉(𝛼2) ∙ 𝑓3,𝑉(𝛽)  (5.18) 

By using 

𝑓1,𝑉(𝜇∗) =
0.23(1 − 𝜇∗)

0.77 − 𝜇∗  

𝑓2,𝑉(𝛼2) =
0.67 + 0.74𝛼2

0.41 + 𝛼2  

(5.19) 

the relationship between 
𝐶𝛽,𝑉−1

𝑓1,𝑉(𝜇∗)∙𝑓2,𝑉(𝛼2)
 and β is shown in Figure 5.8. It can be seen that 

the dependence on α2 and μ* has been eliminated by dividing 𝑓1,𝑉(𝜇∗) and 𝑓2,𝑉(𝛼2), and 

the remaining function, 𝑓3,𝑉(𝛽), can be satisfactorily fitted using Eq. (5.20), as shown in 

Figure 5.8(b). 

𝑓3,𝑉(𝛽) =
2.99𝛽

0.81 + 𝛽
 (5.20) 

Consequently, the Gibson correction factor for vertical stiffness, Cβ,V, can be expressed 

using Eq. (5.21). 

𝐶𝛽,𝑉 = 1 + (
0.23(1 − 𝜇∗)

0.77 − 𝜇∗
) ∙ (

0.67 + 0.74𝛼2

0.41 + 𝛼2
) ∙ (

2 .99𝛽

0.81 + 𝛽
) (5.21) 
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 (a) (Cβ,V – 1) ~ β (b) (Cβ,V – 1)/f1,V(μhh)/f2,V(α2) ~ β 

Figure 5.8: Gibson correction factor for vertical stiffness: (a) (Cβ,V – 1) ~ β and (b) 

(Cβ,V – 1)/f1,V(μ*)/f2,V(α2) ~ β 

Following the steps developing the Gibson correction factor for vertical stiffness, the 

Gibson correction factors for horizontal, rotational and torsional stiffnesses, Cβ,HH, Cβ,MM 

and Cβ,T, can be estimated with Eqs. (5.22), (5.23) and (5.24), respectively. The comparison 

presented in Figure 5.9 shows a good agreement between the FE results and the proposed 

analytical expressions. 

𝐶𝛽,𝐻𝐻 = 1 + (0.17 − 0.013𝜇∗) ∙ (
0.67 + 0.72𝛼2

0.41 + 𝛼2
) ∙ (

3.30𝛽

0.93 + 𝛽
) (5.22) 

𝐶𝛽,𝑀𝑀 = 1 + (
0.062 − 0.056𝜇∗

0.76 − 𝜇∗
) ∙ (

0.68(1 + 𝛼2)

0.37 + 𝛼2
) ∙ (

11 .10𝛽

4.03 + 𝛽
) (5.23) 

𝐶𝛽,𝑇 = 1 + (
0.030(1 + 𝛼2)

0.35 + 𝛼2
) ∙ (2.54𝛽) (5.24) 
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 (a) KHH (b) KMM 

 

(c) KT 

Figure 5.9: Gibson correction factors for horizontal, rotational and torsional 

stiffness: (a) KHH; (b) KMM and (c) KT 

In contrast, the coupling stiffness coefficient between horizontal and rotational responses 

seems to be unaffected by the stiffness non-homogeneity of Gibson soils, as illustrated in 

Figure 5.10. Therefore, the Gibson correction factor for KMH is equivalent to 1.0, and the 

basic stiffness equation of KMH for homogeneous soils (see Eq. (5.16)) can still be adopted 

to evaluate that for Gibson soils, as compared in Figure 5.10. It should be noted that the 

variation in KMH at μ* = 0.5 is relatively larger. However, the fitted value of KMH = 0 at μ* 
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= 0.5 is close to the mean value and matches the value for a homogeneous soil (see Eq. 

(5.16)). 

 

Figure 5.10: Coupling stiffness coefficient for surface foundations on Gibson soils 

5.3.4 Correction factors for foundation embedment 

The effect of foundation embedment on the stiffness of shallow foundations can be studied 

using the cases of embedded circular foundations founded in homogeneous soils. In 

addition to foundation embedment, the thickness of the foundation also exhibits an 

influence on the foundation stiffness (Doherty and Deeks, 2003). However, its influence is 

negligible compared with that of the foundation embedment, particularly for d/D < 0.5. In 

this study, the assumed foundation embedment depth does not exceed the thickness of the 

foundation (i.e. d ≤ t = 3 m) and the range of the foundation embedment ratio is d/D ≤ 0.16. 

Therefore, the effect of the thickness of foundation is ignored and only the effect of 

foundation embedment is investigated in this section. 

Similar to the definition of the Gibson correction factors, the embedment correction factor 

for vertical stiffness, Cd,V, defined as the ratio of KV for an embedded foundation resting on 

a homogeneous soil to that for a surface foundation founded on a homogeneous soil, is also 

introduced. Figure 5.11(a) shows the variations of (Cd,V – 1) with the embedment ratio, 

d/D. It can be seen that for a given value of d/D, a significant dispersion of the FE results 

can be observed due to the dependence on α2 and μ*. Similar to the analytical expression 

for Cβ,V (see Eq. (5.18)), Cd,V is assumed to follow the same form of equation: 
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𝐶𝑑,𝑉 =
𝐾𝑉,emb

𝐾𝑉,surf
= 1 + 𝑔1,𝑉(𝜇∗) ∙ 𝑔2,𝑉(𝛼2) ∙ 𝑔3,𝑉(𝑑 𝐷⁄ ) (5.25) 

As shown in Figure 5.11(b), the utilization of 𝑔1,𝑉(𝜇∗) =
1.28−1.66𝜇∗

7.45+𝜇∗
 and 𝑔2,𝑉(𝛼2) =

0.59+1.35𝛼2

0.94+𝛼2
 can result in the FE results lying in a relatively narrow band. The remaining 

function, 𝑔3,𝑉(𝑑 𝐷⁄ ), can then be evaluated using 𝑔3,𝑉(𝑑 𝐷⁄ ) =
2.61𝑑 𝐷⁄

0.26+𝑑 𝐷⁄
, which yields the 

embedment correction factor for vertical stiffness to be: 

𝐶𝑑,𝑉 = 1 + (
1.28 − 1.66𝜇∗

7.45 + 𝜇∗
) ∙ (

0.59 + 1.35𝛼2

0.94 + 𝛼2
) ∙ (

2.61 𝑑 𝐷⁄

0.26 + 𝑑 𝐷⁄
) (5.26) 

   

 (a) (Cd,V – 1) ~ d/D (b) (Cd,V – 1)/g1,V(μ*)/g2,V(α2) ~ d/D 

Figure 5.11: Embedment correction factor for vertical stiffness: (a) (Cd,V – 1) ~ d/D 

and (b) (Cd,V – 1)/g1,V(μ*)/g2,V(α2) ~ d/D 

Similar to the embedment correction factor for vertical stiffness, the embedment correction 

factors for horizontal, rotational and torsional stiffness, Cd,HH, Cd,MM and Cd,T, can be 

developed in the same way, as given by Eqs. (5.27), (5.28) and (5.29). Figure 5.12 shows 

that these expressions can provide reasonable predictions compared with the FE results.  

𝐶𝑑,𝐻𝐻 = 1 + (
0.23 − 0.36𝜇∗

0.64 − 𝜇∗
) ∙ (

0.60 + 1.37𝛼2

1.00 + 𝛼2
) ∙ (

2.95 𝑑 𝐷⁄

0.32 + 𝑑 𝐷⁄
) (5.27) 
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𝐶𝑑,𝑀𝑀 = 1 + (0.40 − 0.34𝜇∗) ∙ (
0.71 + 1.60𝛼2

1.32 + 𝛼2
) ∙ (

7.56 𝑑 𝐷⁄

1.04 + 𝑑 𝐷⁄
) (5.28) 

𝐶𝑑,𝑇 = 1 + (
0.20 − 0.27𝜇∗

0.74 − 𝜇∗
) ∙ (

0.44 + 1.15𝛼2

0.55 + 𝛼2
) ∙ (

1.42 𝑑 𝐷⁄

0.068 + 𝑑 𝐷⁄
) (5.29) 

   

 (a) KHH (b) KMM 

 

(c) KT 

Figure 5.12: Embedment correction factors for horizontal, rotational and torsional 

stiffness: (a) KHH; (b) KMM and (c) KT 

Figure 5.13(a) shows the variations of KMH with d/D. Unlike the effect of Gibson soils 

discussed in Section 5.3.3, foundation embedment exhibits a significant influence on the 

coupling stiffness between horizontal and rotational behavior. Generally, the coupling 

gradually increases with increasing the embedment ratio, which is consistent with the 
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numerical findings by Bell (1991). As can be seen from Figure 5.13(a), six clusters of 

curves, corresponding to the six values of μ*, can be clearly observed. It should also be 

noted that KMH at d/D = 0 (i.e. surface foundation) is affected only by μ* without the 

influence of α2. However, with the increase of d/D, the effect of α2 on KMH gradually 

increases and cannot be neglected. Therefore, KMH for embedded foundations should be a 

function of α2, μ* and β. 

Since some values of KMH are close to zero, the vertical, horizontal and rotational 

embedment correction factors defined by ratios (see Eq. (5.25)) may lead to singularity for 

KMH. Therefore, the embedment correction factor for KMH is defined using the difference 

between KMH for an embedded foundation resting on a homogeneous soil and that for a 

surface foundation on a homogeneous soil. It is also assumed to be the product of three 

independent functions of α2, μ* and β, respectively, as expressed by Eq. (5.30). 

𝐶𝑑,𝑀𝐻 = 𝐶𝑑,𝐻𝑀 = 𝐾𝑀𝐻,emb − 𝐾𝑀𝐻,surf = 𝑔1,𝑀𝐻(𝜇∗) ∙ 𝑔2,𝑀𝐻(𝛼2) ∙ 𝑔3,𝑀𝐻(𝑑 𝐷⁄ ) (5.30) 

Using 𝑔1,𝑀𝐻(𝜇∗) =
0.63−0.85𝜇∗

𝜇∗2−1.97𝜇∗+1.21
 and 𝑔2,𝑀𝐻(𝛼2) =

0.75+1.77𝛼2

1.51+𝛼2
, the remaining function, 

𝑔3,𝑀𝐻(𝑑 𝐷⁄ ) =
𝐶𝑑,𝑀𝐻

𝑔1,𝑀𝐻(𝜇∗)∙𝑔2,𝑀𝐻(𝛼2)
 can be fitted by a linear equation, 𝑔3,𝑀𝐻(𝑑 𝐷⁄ ) =

6.27 𝑑 𝐷⁄ , as favorably compared in Figure 5.13(b). 

𝐶𝑑,𝑀𝐻 = 𝐶𝑑,𝐻𝑀 = (
0.63 − 0.85𝜇∗

𝜇∗2 − 1.97𝜇∗ + 1.21
) ∙ (

0.75 + 1.77𝛼2

1.51 + 𝛼2
) ∙ (6.27 𝑑 𝐷⁄ ) (5.31) 

   

 (a) KMH ~ d/D (b) Ce,MH/g1,MH(μ*)/g2,MH(α2) ~ d/D 
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Figure 5.13: Embedment correction factor for coupling stiffness: (a) KMH ~ d/D and 

(b) Cd,MH/g1,MH(μ*)/g2,MH(α2) ~ d/D 

Based on the above analyses, the complete vertical, horizontal, rotational, coupling and 

torsional stiffness equations for circular foundations, including both the Gibson and 

embedment correction factors, are summarized in Eq. (5.32). 

𝐾𝑉 = [(
1

1.1 − 𝜇∗
) ∙ (

3.20 + 3.14𝛼2

0.33 + 𝛼2
)]

∙ [1 + (
0.23(1 − 𝜇∗)

0.77 − 𝜇∗
) ∙ (

0.67 + 0.74𝛼2

0.41 + 𝛼2
) ∙ (

2.99𝛽

0.81 + 𝛽
)]

∙ [1 + (
1.28 − 1.66𝜇∗

7.45 + 𝜇∗
) ∙ (

0.59 + 1.35𝛼2

0.94 + 𝛼2
) ∙ (

2.61 𝑑 𝐷⁄

0.26 + 𝑑 𝐷⁄
)] 

(5.32) 

𝐾𝐻𝐻 = [(
1

2.4 − 𝜇∗
) ∙ (

6.07 + 15.85𝛼2

1.16 + 𝛼2
)]

∙ [1 + (0.17 − 0.013𝜇∗) ∙ (
0.67 + 0.72𝛼2

0.41 + 𝛼2
) ∙ (

3 .30𝛽

0.93 + 𝛽
)]

∙ [1 + (
0.23 − 0.36𝜇∗

0.64 − 𝜇∗
) ∙ (

0.60 + 1.37𝛼2

1.00 + 𝛼2
) ∙ (

2.95 𝑑 𝐷⁄

0.32 + 𝑑 𝐷⁄
)] 

𝐾𝑀𝐻 = 𝐾𝐻𝑀 = [
−1.28(0.5 − 𝜇∗)

0.87 − 𝜇∗
]

+ [(
0.63 − 0.85𝜇∗

𝜇∗2 − 1.97𝜇∗ + 1.21
) ∙ (

0.75 + 1.77𝛼2

1.51 + 𝛼2
) ∙ (6.27 𝑑 𝐷⁄ )] 

𝐾𝑀𝑀 = [(
1

1.2 − 𝜇∗
) ∙ (

2.43 + 2.40𝛼2

0.34 + 𝛼2
)]

∙ [1 + (
0.062 − 0.056𝜇∗

0.76 − 𝜇∗
) ∙ (

0.68(1 + 𝛼2)

0.37 + 𝛼2
) ∙ (

11.10𝛽

4.03 + 𝛽
)]

∙ [1 + (0.40 − 0.34𝜇∗) ∙ (
0.71 + 1.60𝛼2

1.32 + 𝛼2
) ∙ (

7.56 𝑑 𝐷⁄

1.04 + 𝑑 𝐷⁄
)] 
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𝐾𝑇 = [
3.20 + 8.33𝛼2

1.16 + 𝛼2
] ∙ [1 + (

0.030(1 + 𝛼2)

0.35 + 𝛼2
) ∙ (2.54𝛽)]

∙ [1 + (
0.20 − 0.27𝜇∗

0.74 − 𝜇∗
) ∙ (

0.44 + 1.15𝛼2

0.55 + 𝛼2
) ∙ (

1.42 𝑑 𝐷⁄

0.068 + 𝑑 𝐷⁄
)] 

5.4 Conclusions 

The coupled elastic stiffness of circular foundations founded on cross-anisotropic soils 

under combined VHMT loading has been studied using finite element analysis. A three-

parameter cross-anisotropic soil model was adopted with a range of anisotropic parameters 

covering typical soils found in practice. The effect of model dimensions was investigated 

and the results show that a domain width of 50 times the foundation diameter is sufficiently 

accurate for the FE analysis. The stiffness coefficients for surface foundations resting on a 

homogeneous isotropic soil favorably compare with reported literature values. The vertical 

and rocking stiffness decrease with anisotropic parameter α, and the horizontal stiffness 

shows an increasing trend. However, the coupling stiffness is minimally affected by α. To 

account for the effects of soil non-homogeneity and foundation embedment, Gibson soils 

and embedded foundations were also considered. The Gibson and embedment correction 

factors were derived accordingly. The analysis shows that a higher Gibson modulus (β) can 

increase the vertical, horizontal and moment stiffness, while it does not affect the coupling 

between the horizontal and moment responses of a surface foundation. 
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6 Discussions, conclusions and recommendations 

6.1 Discussions 

This thesis has investigated the bearing capacity and foundation stiffness for large circular 

foundations using finite element analysis. Drained and undrained failure envelopes for 

circular foundations under combined vertical (V), horizontal (H), moment (M) and torsional 

(T) loads were derived. Solutions for anisotropic, coupled foundation stiffnesses under 

combined VHMT loadings was also developed. As an example of the application of these 

methods, the ultimate and serviceability limit state design for a shallow foundation of a 

typical Canadian wind turbine is estimated using the developed failure envelope and 

foundation stiffness approaches. 

6.1.1 Ultimate limit state design 

The diameter of the surface circular foundation is assumed to be 19 m and the undrained 

shear strength estimated with a cone penetration test (CPT) is shown in  Figure 6.1. This 

shows a typical profile for Ontario with a strong surficial crust. Due to the existence of 

fissuring and stress-strain compatibility, the high undrained shear strength of  this upper 

crust is unlikely to be fully mobilized at failure (Lefebvre et al. , 1987). Rochelle et al. 

(1974) recommended a comparison between the full (i.e. maximum strength value), mid-

depth (i.e. strength value at mid-depth of the crust) and minimum (i.e. strength value just 

below the crust) strength of the upper crust for limit state analysis. For the su profile shown 

in Figure 6.1, the mid-depth strength is close to the maximum value. Lefebvre et al. (1974) 

adopted the mean value of the maximum strength of the upper crust and the minimum 

strength of the underlying soil. In the analysis for this thesis, the estimates for the 

minimum, maximum and mean undrained shear strength of the crust are compared. The 

minimum strength case reduces the soil to a single-layer material with a uniform strength 

with depth. The assumed undrained shear strength profiles (a), (b) and (c) are shown in 

Figure 6.1. The properties of the soil and the factored ultimate limit state loads from IEC 

DLC 6.1 (2005) are also summarized in Table 6.1. 
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Figure 6.1: Undrained shear strength profile 

Table 6.1: Soil parameters and ultimate design loads 

Soil 

Undrained shear strength of the surficial crust, sut, [kPa] 

(a) Min.: 72 

(b) Mean: 220 

(c) Max.: 368 

Undrained shear strength of the underlying soil, su0, [kPa] 72 

Crust thickness, tc, [m] 6.8 

Factored 

ultimate 

loads 

Vertical load, V, [kN] 21820 

Horizontal load, H, [kN] 1100 

Moment, M, [kN·m] 76200 

Torsion, T, [kN·m] 4400 

The corresponding uniaxial bearing capacities are computed based on the factored 

undrained shear strength (as recommended by DNV (2016), partial safety factor for 
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materials, γm = 1.25, for total stress analysis), as summarized in Table 6.2. The safety check 

of ultimate limit state design using the failure envelope methods shows that the three cases 

all yield acceptable ultimate capacity designs. However, the soil with a surficial crust gains 

significant extra margins of safety compared with the single-layer assumptions. Figure 6.2 

shows the reduced M-H failure envelopes accounting for the design vertical and torsional 

loads, along with an envelope (d) derived from the traditional approach (DNV, 2016) using 

the load inclination factor and the effective foundation area (see Eq. (1.2)) for the case of 

a single-layer material. It can be seen that the traditional approach (d) is more conservative 

than the other failure envelope methods. In addition, the considerable difference in the 

absolute sizes of the three failure envelopes indicates that ignoring the contribution of the 

upper crust may significantly underestimate the bearing capacity and potentially lead to a 

significant overdesign of the foundation. 

Table 6.2: Ultimate limit state design of the foundation 

Soil profile case Ultimate capacity Normalized load Safety check 

(a) Min. 

(i.e. single-layer) 

Vult = 95266 kN V/Vult = 0.229 
𝑓 (

𝑉

𝑉ult

,
𝐻

𝐻ult

 ,
𝑀

𝑀ult

,
𝑇

𝑇ult

) 

= 0.420 < 1 (Safe!) 
Hult = 15878 kN H/Hult = 0.069 

Mult = 187038 kN·m M/Mult = 0.407 

Tult =99553 kN·m T/Tult = 0.044 

(b) Mean Vult = 200097 kN V/Vult = 0.109 
𝑓 (

𝑉

𝑉ult

,
𝐻

𝐻ult

 ,
𝑀

𝑀ult

,
𝑇

𝑇ult

) 

= 0.238 < 1 (Safe!) 
Hult = 49901 kN H/Hult = 0.022 

Mult = 481600 kN·m M/Mult = 0.158 

Tult =312880 kN·m T/Tult = 0.014 

(c) Max. Vult = 271502 kN V/Vult = 0.080 
𝑓 (

𝑉

𝑉ult

,
𝐻

𝐻ult

 ,
𝑀

𝑀ult

,
𝑇

𝑇ult

) 

Hult = 83471 kN H/Hult = 0.013 
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Mult = 692236 kN·m M/Mult =0.110 
= 0.206 < 1 (Safe!) 

Tult = 523362 kN·m T/Tult = 0.0084 

 

Figure 6.2: Design loads compared with the undrained M-H failure envelopes 

For drained soil conditions, the friction angle, cohesion and effective unit weight of the 

soil are assumed to be φ' = 20°, c' = 65 kPa and γ' = 22.0-9.8 = 12.2 kN/m3. The partial 

safety factor for materials is taken as γm = 1.15 for effective stress analysis (DNV, 2016). 

The safety check of ultimate limit state design using drained failure envelopes yields an 

acceptable ultimate capacity design: f(V/Vult, H/Hult, M/Mult, T/Tult) = 0.291 < 1 (Safe!). The 

reduced M-H failure envelopes derived from the failure envelope method and the 

traditional method (DNV, 2016) are compared in Figure 6.3. It can be seen that the 

traditional approach is more conservative than the failure envelope method , which is 

similar to the undrained soil condition shown in Figure 6.2. 
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Figure 6.3: Design loads compared with the drained M-H failure envelope 

6.1.2 Serviceability limit state design 

The foundation responses are also studied based on the stiffness equations from current 

foundation stiffness approaches: DNV (2016), Bell (1991) and Gazetas (1991). For the 

coupled stiffness equations provided by Gazetas (1991), KHM is linearly proportional to 

d/D. For a surface foundation (i.e. d/D = 0), KHM = 0 and the relationship of Gazetas (1991) 

yields the same foundation stiffness as DNV (2016). 

The properties of the circular foundation and the cross-anisotropic soil are summarized in 

Table 6.3. Both surface and embedded foundations have been considered. The factored 

design loads for the foundation will be assumed to be V = 21820 kN, H = 900 kN, M = 

60000 kN·m and T = 7300 kN·m. Note that the shear modulus utilized in the analysis (GR) 

was taken at a depth equal to the foundation radius (R), following the recommendations of 

Whitman (1976) and DNV (1992). 

Table 6.3: Foundation and soil parameters 

α2 μhh Gvh = GR, [MPa] k, [MPa/m] D, [m] d/D 

1.30 0.24 82.0 2 19 0 & 0.16 
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In the absence of other information, DNV (2016) suggests working values of shear strain 

for a wind turbine foundation of 10 -3 to estimate the reduction in soil stiffness, thus 

corresponding to approximately GR/Gmax = 0.3. In order to more accurately assess the site-

specific working value of G, the factored design loads can be applied to the finite element 

model in this study to iteratively calculate the equivalent shear strain (Shrivastava et al., 

2012) and its corresponding value of GR of the soil at the depth of R using the appropriate 

shear modulus degradation curve (González-Hurtado, 2019). This procedure provides 

GR/Gmax = 0.43 at a depth of R, thus an assessment for GR/Gmax = 0.3 can be assumed to be 

conservative. 

The foundation responses for surface and embedded foundations considering GR/Gmax = 

0.3 are compiled in Table 6.4. It can be seen that the vertical settlements, uV, calculated by 

DNV (2016) and Bell (1991) are considerably larger than that obtained by the current 

stiffness equations. The horizontal translation, uH, for the surface foundation considering 

soil anisotropy is overestimated by Bell (1991), while DNV (2016) and Gazetas (1991) 

considerably underestimate (around 21% of the current value) the horizontal deformation 

for the surface foundation due to neglecting the coupling effect between horizontal and 

rotational responses. For the embedded foundation, DNV (2016) provides considerably 

larger values of uH than the current stiffness equations, and Gazetas (1991) considerably 

underestimates uH, which is just about 64% of the uH estimated using the current method. 

Both the rocking and rotational angles for the surface foundation, estimated with the 

current study are smaller than those provided by the other methods, but the rocking angle 

for the embedded foundation is close to those estimated by DNV (2016) and Gazetas 

(1991). Moreover, foundation embedment can significantly reduce foundation responses. 

Table 6.4: Foundation responses for GR/Gmax = 0.3 

Response Current study DNV (2016) Bell (1991) Gazetas (1991) 

uV d/D = 0 11.113 mm +59.63% +49.55% +59.63% 

d/D = 0.16 9.928 mm +54.04% -- +51.94% 
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uH d/D = 0 1.071 mm –20.89% +50.70% –20.89% 

d/D = 0.16 0.397 mm +75.89% -- –64.08% 

θM d/D = 0 3.720×10-2 deg. +24.87% +17.35% +24.87% 

d/D = 0.16 2.713×10-2 deg. +4.40% -- +4.05% 

θT d/D = 0 0.299×10-2 deg. +24.36% -- +24.36% 

d/D = 0.16 0.233×10-2 deg. –13.89% -- –13.94% 

For practical design for large shallow wind turbine foundations, three of the most critical 

limit states are often considered: (i) foundation tilt as a serviceability limit state; (ii) 

foundation rotational stiffness as a serviceability limit state; and (iii) bearing capacity 

(drained and undrained) as an ultimate limit state. Ben Hassine (2018) investigated these 

limit states using a direct reliability-based design (d-RBD) method and found that 

foundation rotational stiffness is the most critical limit state for shallow wind turbine 

foundation design. In addition to ultimate and serviceability limit state design, the dynamic 

behavior of large wind turbine foundations also needs to be assessed. Since current wind 

turbines are often designed to be slender and flexible structures for cost reduction, the 

natural frequencies of the overall structures may be close to the low excitation frequencies 

related to environmental loads from wind and waves (Martins and Mendes, 2016). Static 

foundation stiffnesses are normally employed to formulate the corresponding dynamic 

foundation stiffnesses by deriving the dynamic stiffness and damping coefficients. 

Therefore, further analyses of dynamic foundation stiffnesses for cross-anisotropic soils 

would be required, which is beyond the scope of the present study. 

6.2 Summary and conclusions 

This thesis has investigated the ultimate and serviceability limit states for large onshore 

wind turbine foundations. Compared with the traditional bearing capacity methods, the 

failure envelope approach developed in this thesis is likely to be more accurate and can be 

easily and efficiently utilized in practical foundation design. Practitioners just need to 
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substitute the design loads into the corresponding 4-D analytical VHMT failure envelope 

expression in a simple spreadsheet or Matlab code and this does not require in-depth 

knowledge. Moreover, for an onshore wind turbine foundation, since the foundation 

deformation is often the most critical design factor, the more accurate analytical foundation 

stiffness equations developed in this thesis are necessary for optimal foundation design and 

they can be easily implemented for practical foundation design. Assumed reductions in the 

soil strength and stiffness due to the effects of cyclic loading (dependent on the strain 

range) can be easily incorporated, as is common practice in offshore engineering currently. 

More detailed conclusions of this research drawn from the four linked studies are 

summarized as follows. 

6.2.1 Undrained capacity of circular shallow foundations under 
combined VHMT loading 

Finite element analyses were undertaken to investigate the general VHMT failure 

envelopes of circular foundations under a zero-tension interface for undrained soil 

conditions. The V-T and H-T and M-T failure envelopes for surface foundations on non-

homogeneous soils were derived to evaluate the effects of torsional loads on the failure 

envelope for circular foundations. Embedded foundations in a uniform soil with four 

embedment depths were also taken into consideration to investigate the effects of 

foundation embedment. A full 4-D analytical expression for the VHMT failure envelope 

was derived based on the calculated VHMT failure envelopes. 

The results showed that torsional loads can reduce the VHM capacity of circular 

foundations and cannot be ignored for foundation design. For surface foundations on non-

homogeneous soils, the normalized H-T and M-T envelopes were predicted with existing 

analytical equations, but with some modifications. Analyses of embedded foundations 

indicated that foundation embedment can significantly increase the capacity of circular 

foundations under combined VHMT loading. In addition, embedded foundations can 

sustain increasing moments with embedment depth without vertical loads and foundation 

embedment gradually increases the degree of asymmetry of the M-H failure envelope. It 

was also found that soil strength heterogeneity affects only the size of the failure envelope 
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(its effects on the shape of the failure envelope are minimal), while foundation embedment 

has a significant influence on both the size and shape of the failure envelope. 

6.2.2 Undrained capacity of circular surface foundations on two-layer 
clays under combined VHMT loading 

The VHMT failure envelopes for large circular foundations resting on a stiff crust which 

overlies the main soil deposit were developed using finite element analysis. Undrained 

conditions were considered for both the crustal layer and the underlying soil. The effects 

of the undrained shear strength and thickness of the crustal layer on the failure envelopes 

of circular foundations were investigated. An analytical expression for the VHMT failure 

envelope was developed. 

For the uniaxial vertical and moment capacities, crust correction factors, which are 

functions of the undrained shear strength and thickness of the crustal layer were proposed. 

For a surficial crustal layer with high shear strength, the failure mechanisms showed that 

the relatively strong top crust acts as rigid column that restricts both upward and lateral 

deformations within the crustal layer, and this restriction in turn increases the depth of the 

failure zone within the bottom layer. In addition, the strength of the crustal layer exhibits a 

significant influence on the normalized H-V failure envelopes. Analyses also demonstrated 

that the same forms of equation that are often used for uniform soils, but with different 

parameters can provide good fits for the VHMT failure envelopes for a soil with a surficial 

crust. 

6.2.3 Drained bearing capacity of circular surface foundations under 
combined VHMT loading 

Finite element analyses were undertaken to investigate the general failure envelope for 

large circular surface foundations subjected to combined VHMT loading under drained soil 

conditions. Two dimensionless numbers, the friction angle φ' and the weight parameter G 

= γ'D/2c', have been considered for parametric study proposes. A closed-form equation for 

the drained VHMT failure envelope was derived based on the calculated failure envelopes. 

The finite element results showed that the uniaxial bearing capacities increase with φ' 

exponentially and with G linearly. In addition, the calculated failure envelopes gradually 



140 

 

expand with G and exponentially expand with φ'. Analytical expressions were also 

proposed to approximate the normalized failure envelopes. Compared with the finite 

element results, the traditional method consistently provides conservative predictions of 

the bearing capacity under combined loads. Moreover, the equivalent horizontal load 

accounting for the effects of torsional loading recommended by DNV (2016) significantly 

underestimates the uniaxial torsional capacity. 

6.2.4 Effects of soil stiffness anisotropy on elastic solutions of circular 
foundations under combined VHMT loading 

The coupled elastic stiffnesses for large circular foundations founded on cross-anisotropic 

soils under combined VHMT loading were investigated using finite element analysis. A 

three-parameter cross-anisotropic model with a range of anisotropic parameters covering 

typical soils found in practice was utilized to model the soil behavior. The effect of model 

domains was examined. Gibson soils and embedded foundations were considered to 

investigate the effects of soil stiffness heterogeneity and foundation embedment. 

It is found that a domain width of 50 times the foundation diameter is sufficiently accurate 

for the finite element analysis. The results showed that the vertical and rocking stiffness 

decrease with anisotropic parameter α, and the horizontal stiffness shows an increasing 

trend. However, the coupling between the horizontal and moment responses of a surface 

foundation is minimally affected by α. The analyses also indicated that a higher Gibson 

modulus can increase the vertical, horizontal and moment stiffness, but it does not affect 

the coupling stiffness. To account for the effects of soil stiffness non-homogeneity and 

foundation embedment, Gibson and embedment correction factors were also derived. 

6.3 Limitations and recommendations for future work 

6.3.1 Limitations of current research 

This thesis focuses on the static capacity and deformation for large onshore wind turbine 

shallow foundations. However, it should be noted that the forces acting on these 

foundations are primarily cyclic loads caused by wind. For the ULS and SLS design of 

these foundations, cyclic loading effects should be considered for several reasons. 
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One of the main effects caused by cyclic loading is the degradation of soil strength and 

stiffness. Over the lifetime of a wind turbine, the foundation will experience millions of 

load cycles. Cyclic loading builds excess pore water pressure and causes cyclic shear 

strains to develop with cycling, leading to a loss of soil shear strength and stiffness. 

Moreover, a decrease in the foundation stiffness could shift the natural frequency of the 

structure closer to the excitation frequencies of the loading, leading to more significant 

vibrations (Lombardi et al., 2013). In addition, the dynamic stiffness of shallow 

foundations highly depends on the loading frequency. For circular foundations, the 

dynamic foundation stiffness decreases with loading frequency and a considerable 

reduction may occur for undrained soil conditions (Gazetas, 1991). The inclusion of 

material damping can further reduce foundation stiffness (EI Naggar, 2001). 

The reduction in soil strength can significantly affect the ULS design for onshore wind 

turbine foundations. The reduction in soil stiffness and the change of natural frequency can 

be important factors for foundation SLS design. Therefore, although these cyclic loading 

effects are not investigated in this research, they should still be incorporated for onshore 

wind turbine foundation design. 

6.3.2 Recommendations for future work 

Based on the research presented in this thesis, recommendations for further related research 

are summarized as follows: 

• The numerical analyses performed in this thesis has focused on circular 

foundations. Recently, a number of onshore and offshore structures (e.g. wind 

turbines) have been constructed with foundations that have double symmetrical 

polygon shapes, i.e. octagons (Yilmaz et al., 2014). DNV (2016) recommends 

design of these foundations as an equivalent inscribed circular foundation to 

accommodate for the octagonal shape. To date, there has been no verification of 

this assumption (particularly for the failure envelope method). 

• This work is focused on bearing strata extending to infinity. However, in some 

cases, a thin layer of soil may be underlain by bedrock. This is particularly 

important for future wind turbines with much larger shallow foundations (in order 
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to resist the larger loads induced by higher wind turbine towers and longer blades). 

A larger shallow foundation involves a larger volume of soil (i.e. influence zone) 

below the foundation base, which may be affected by bedrock. Future work could 

be undertaken to investigate the VHMT failure envelopes for circular foundations 

resting on finite soil layers. 

• Chapter 3 investigated the VHMT failure envelope for two-layer clays. However, 

a sand-over-clay or dense-over-loose sand deposit is also a common case for 

foundation design. For heavy structures that need to be constructed over a weak 

deposit, replacing a certain depth of the weak deposit by granular materials is a 

commonly-used ground improvement technique in geotechnical practice. 

Therefore, the failure envelope for circular foundations on a sand-over-clay and 

dense-over-loose sand deposit under combined VHMT loading could also be 

investigated. 

• For dense sands, it has been demonstrated that the relative density and stress levels 

of sands significantly affect the bearing capacity of shallow foundations due to 

strain softening and progressive failure (e.g. Perkins and Madson, 2000; Cerato and 

Lutenegger, 2007; Kumar and Khatri, 2008; Loukidis and Salgado, 2011; Conte et 

al., 2013). Future research could examine the effects of the relative density and 

stress levels of sands on the VHMT failure envelope for circular foundations. 

• The numerical modelling of the foundation stiffness for embedded foundations was 

undertaken on cases of relatively shallow depths for current large onshore wind 

turbines. With the increase of wind turbine towers and blades, wind turbine 

foundations would be more deeply embedded in order to resist larger moments. 

Therefore, further work would be useful to investigate the foundation stiffness for 

foundations with relatively larger embedment depths. 
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