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Abstract 

The seismic ground motions are nonstationary stochastic processes and vary from site to 

site.  The time histories of synthetic ground motions are used for nonlinear inelastic structural 

dynamic analysis since the historical records are limit or unavailable for a particular scenario 

seismic event.  This is especially the case for structures with multiple supports.  The 

characteristics of the nonstationary stochastic ground motions depend on the earthquake 

magnitude, fault mechanism, source-to-site distance, and local site conditions.  The 

characteristics could be represented by time-frequency (dependent) power spectral density 

(TFPSD) and coherence functions.  The assessment of such power spectral density and 

coherence functions are presented by using historical records and the S-transform – a Fourier 

transform with time localized and frequency-dependent windows – is carried out.  New 

models of the TFPSD function and coherence function are presented.  Also, new time-

frequency spectral representation methods (TFSRMs) to simulate nonstationary stochastic 

processes are proposed.  The TFSRM is developed by taking the advantages of the 

orthonormal basis functions in the discrete orthogonal S-transform (DOST) and the refined 

time-frequency representation obtained by using the S-transform.  TFSRM can be used to 

simulate ground motions at a single site or multiple sites.  They can also be used to simulate 

seismic ground motions conditioned on observed ground motions.  TFSRM can cope with the 

time-varying lagged coherence function; this is not the case with the well-known spectral 

representation method (SRM). 

Similar to the SRM, the direct use of TFSRM leads to Gaussian processes (stationary or 

nonstationary).  However, there is indicates that the seismic ground motions may not be 

Gaussian.  A new iterative power and amplitude correction algorithm is proposed to simulate 

nonstationary non-Gaussian stochastic processes.  This procedure is successfully 

implemented and illustrated by numerical examples. 

Keywords 

Nonstationary; non-Gaussian; stochastic processes; earthquake ground motion; spatial-

varying; S-transform; discrete orthonormal S-transform; simulation; time-dependent 

coherence; time-dependent power spectral density function  
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Summary for Lay Audience 

Large earthquakes are rare but very destructive.  The recorded ground motions during 

large earthquakes are scarce.  The amplitude of ground movements in an earthquake is time-

varying.  Also, the frequency of the ground movement changes over time.  The 

characteristics of the intensity and frequency contents for a ground motion record impact 

their destructiveness.  This study is focused on the characterization of the frequency-

dependent time-varying intensity.  By using the identified characteristics, a new ground 

motion model is proposed.  Also, new methods and algorithms are developed to generate 

synthetic ground motions that can be used to evaluate the response of structures subjected to 

severe earthquake excitations. 
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Chapter 1  

1 Introduction 

1.1 Background 

The evaluation of the seismic responses of structures and infrastructure systems 

subjected to earthquake excitation can be carried out by using the nonlinear inelastic 

dynamic analysis (i.e., the time-history analysis).  The necessary input for such an 

analysis is the ground motion time history.  The ground motion time history varies from 

seismic event to seismic event and from site to site.  This variability is modeled by using 

a stochastic process (Newmark and Rosenblueth 1971; Zerva 2009).  As the 

characteristics of the ground motions within a record vary in time, the motions are 

nonstationary.  The nonstationary characteristics of the motions depend on the earthquake 

magnitude, fault mechanism, source-to-site distance, and local site conditions (Boore 

2003; Sabetta and Pugliese 1996; Bozorgnia et al. 2014).  A particular class of 

nonstationary stochastic processes, known as the evolutionary process (Priestley 1965), is 

commonly adopted to represent the ground motions. 

For a given structure or infrastructure system with multiple supports, the ground 

motion time history for the nonlinear inelastic dynamic analysis may be selected from a 

database containing historical ground motion records.  However, the available records are 

limited for a given combination of the magnitude, fault mechanism, source-to-site 

distance, and local site conditions.  In some cases, no historical ground motion records 

may be available, and simulated records are used.  Moreover, since the actual ground 

motion records that match the configuration of the multiple supports of a structure, such 

as a bridge and a latticed shell structure (Zanardo et al. 2002; Lupoi et al. 2005; Zerva 

2009; Li et al. 2014), are unavailable, simulated seismic ground motions are required as 

well. 

A target power spectral density (PSD) function or the evolutionary PSD (EPSD) 

function needs to be specified for simulating the ground motions for a single site.  The 

commonly used PSD and EPSD models include the Kanai-Tajimi model, the Clough-
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Penzien model, and the model given by Sabetta and Pugliese (1996).  The assessment of 

the PSD or EPSD function is often carried out based on the ordinary Fourier transform or 

the short-time Fourier transform (STFT).  A well-known drawback of STFT is that its 

application is associated with energy leakage.  A narrow-width window results in a better 

resolution in the time domain but a reduced resolution in the frequency domain, and vice 

versa (Cohen 1995).  As will be seen throughout the present thesis, this can be overcome 

by using the S-transform (Stockwell et al. 1996), which is a hybrid of STFT and wavelet 

transform.  The S-transform provides the time-frequency resolution rather than the time-

scale resolution offered by the continuous wavelet transform.  It provides good resolution 

at lower frequency and time localization of the energy at high frequencies.  Besides, the 

discrete orthonormal S-transform (Stockwell 2007) can be considered because of its 

orthogonal property. 

Given the EPSD function, the simulation of ground motion record for a site can be 

carried out using the spectral representation method (SRM) (Shinozuka and Jan 1972; 

Shinozuka and Deodatis 1991; Liang et al. 2007).  The method essentially represents the 

samples of the stochastic process by using the superposition of sine and cosine functions 

with an amplitude determined based on EPSD function and random phase angle.  For the 

simulation of ground motions at multiple supports (or sites), in addition to the target 

EPSD function, the target spatial lagged coherence function needs to be specified.  There 

are several well-known empirical spatial lagged coherence models proposed in the 

literature for ground motions, including the ones given by Luco and Wang (1986), 

Harichandran and Vanmarcke (1986), Hao et al. (1989) and Abrahamson et al. (1991).  A 

review and discussion of the popular coherence models are given in Hong and Liu 

(2014), Konakli et al. (2014), and Liu and Hong (2015, 2016).  The majority of the 

models were developed based on the records from the dense arrays in Taiwan (i.e., 

Lotung Large Scale Seismic Test (LSST) Array and Strong Motion Array in Taiwan 

(SMART)).  It was shown that given the EPSD and the time-independent coherence, the 

simulation of records at multiple support could be carried out by using the SRM as well 

(Deodatis 1996). 
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It is noted that all the mentioned coherence models are time-independent, although 

there are indicates that the coherence may likely depend on the amplitude of the ground 

motion (Qiao et al. 2020).  In such a case, SRM is no longer applicable since it was 

shown in Priestley and Tong (1973) that the coherence between two evolutionary 

processes is time-independent.  As studies on the vector processes with time-dependent 

coherence function for ground motions are scarce, the development of a time-dependent 

coherence model is required.  Furthermore, the development of simulation algorithms for 

vector processes with a prescribed time-dependent coherence is needed. 

It should be noted that the application of SRM leads to a Gaussian stochastic process.  

However, the Gaussian assumption of the ground motions was questioned in Kafali and 

Grigoriu (2003), and Radu and Grigoriu (2018).  Radu and Grigoriu (2018) analyzed a 

large number of ground motion records and concluded that the marginal probability 

distribution of the amplitude of ground motions is highly non-Gaussian.  Therefore, the 

non-Gaussian aspect needs to be considered in simulating ground motions as well. 

A simple and straightforward approach to simulate the stationary non-Gaussian 

process is based on SRM and the probability distribution mapping (i.e., translation 

process) (Grigoriu 1998).  One of the drawbacks of the approach is that the PSD of the 

simulated process may deviate from the target PSD function because of the probability 

distribution mapping.  Several algorithms (Yamazaki and Shinozuka 1988; Gurley and 

Kareem 1997; Deodatis and Micaletti 2001; Masters and Gurley 2003) are proposed to 

correct this deviation.  The iterative spectral correction algorithm proposed by Masters 

and Gurley (2003) is efficient; it is similar to the iterative amplitude adjusted Fourier 

transform (IAAFT) algorithm (Schreiber and Schmitz 1996, 2000), which is designed to 

generate surrogate for a given signal for statistical hypothesis testing.  A clear difference 

between these two algorithms is how the prescribed target PSD function and cumulative 

distribution function (CDF) are calculated or assigned.  The extension of IAAFT 

algorithm for generating a vector of surrogates is given in Schreiber and Schmitz (2000).  

The translation process has been extended for the nonstationary non-Gaussian process 

(Ferrante et al. 2005; Shields and Deodatis 2013, Wu et al. 2018).  However, again, 

possible time-dependent coherence cannot be taken into account because the algorithm is 
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based on the evolutionary processes.  It would be valuable to explore the possibility of 

extending the IAAFT algorithm to simulate the nonstationary non-gaussian vector 

processes.   

1.2 Objective and thesis organization 

The thesis is focused on developing new power spectral density models for ground 

motion records by considering time-frequency representation and new algorithms to 

simulate the nonstationary non-gaussian process and vector processes with time-

dependent coherence.  For the time-frequency representation of the ground motions, the 

S-transform, as well as the discrete orthonormal S-transform, will be used because of 

their excellent properties mentioned in the previous section.  

The present thesis contains seven chapters and is organized according to the integrated 

manuscript format specified by the School of graduate and post-graduate studies.  The 

subsequent six chapters are organized as follows. 

Chapter 2 describes a model and method to simulate nonstationary ground motions at 

a site based on discrete orthonormal S-transform (DOST) for a given seed record or a 

given target time-frequency (dependent) PSD (TFPSD) function.  The work is aimed at 

having a model and method that is bounded by the assumptions associated with the 

evolutionary process.  The adequacy of the model and the simulation method is assessed 

in terms of the energy distribution in the time-frequency domain and in terms of the 

resulting response spectrum.  

In Chapter 3, the modeling technique based on DOST proposed in Chapter 2 is 

extended to vector processes.  Two methods are proposed to simulate nonstationary 

processes.  The use of one of the methods to conditionally simulate ground motions is 

elaborated.  Also, the incorporation of the time-frequency representation obtained from 

the S-transform in simulating nonstationary processes is presented and discussed so to 

increase the fidelity of the time-frequency representation.   

Chapter 4 is focused on developing the TFPSD function for scenario seismic events 

and site conditions.  More than 1500 historical ground motion records for strike-slip 
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records are used as the basis for the development.  The proposed model requires 10 

model parameters.  Probabilistic models for the model parameters are proposed based on 

statistical analysis by considering both the inter- and intra-event variability. 

In Chapter 5, the assessment of coherence is carried out using the records from the 

dense arrays (i.e., LSST and SMART).  The assessment is focused on the time-

dependency.  It is shown that the coherence depends on the amplitude of the acceleration 

time history.  A new time-dependent coherence model is proposed.  The use of the 

proposed model to simulate nonstationary vector processes is illustrated. 

Chapter 6 is concentrated on the characterization and simulation of the non-Gaussian 

aspect of the nonstationary process.  In particular, an iterative power and amplitude 

correction algorithm is proposed to simulate the nonstationary non-Gaussian vector 

processes.  The algorithm can be viewed as the extension of IAAFT and spectral 

correction algorithms.  The extension incorporates the essential features of the IAAFT 

algorithm for generating a vector of surrogates.  It considers both the time-independent 

coherence and time-dependent coherence.  The algorithm is verified and illustrated by 

numerical examples. 

Finally, a summary of the findings is presented.  In addition, possible future research 

topics on the topic dealt with in this thesis are briefly highlighted. 

1.3 Format of the thesis 

This thesis is prepared in a manuscript format as specified by the School of Graduate 

and Postdoctoral Studies at the University of Western Ontario. Each chapter, except 

Chapters 1 and 7, is presented in a manuscript format with its own list of notations and 

references. 
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Chapter 2  

2 Use of discrete orthonormal S-transform to simulate 
earthquake ground motions 

2.1 Introduction 

The seismic ground motions are nonstationary.  A popular model for the ground 

motions is based on the uniformly modulated evolutionary process (Priestley 1965, 

1981).  The modulation function could be assessed based on the time-varying energy 

distribution.  It involved in selecting records to be considered and choosing the best 

parametric or nonparametric model in the least-squares sense.  The frequency 

characterization of the motions can be determined based on Fourier transform, leading to 

the average spectral composition and the power spectral density function.  The model is 

practical as the simulation of the ground motions within such a modeling framework can 

be carried out using the spectral representation method (SRM) (Shinozuka and Jan 1972; 

Shinozuka and Deodatis 1991; Liang et al. 2007), where the phase angle is considered to 

be uniformly distributed.  The amplitude modulation is used in the stochastic point source 

method and the stochastic finite-fault method (Atkinson et al. 2009; Boore 2009).  

However, there are indications that the frequency content varies with time (i.e., the 

instantaneous frequency is a function of time).  To cope with the time-varying frequency 

content, Yeh and Wen (1990) considered the use of the time transformation together with 

an evolutionary process to represent the ground motions and assumed that the time 

transformation can be determined based on the zero-crossing rate from the recorded 

ground motions.  This results in that the instantaneous frequency of the ground motions is 

directly proportional to the time derivative of the time transformation function.  Other 

nonstationary models for the modeling and simulating ground motions include those 

developed based on short-time Fourier transform (Liang et al. 2007), the Hilbert-Huang 

transform (Wen and Gu 2004; Gu and Wen 2007) and discrete wavelet transformation or 

wavelet packet transform (Iyama and Kuwamura 1999; Gurley and Kareem 1999; 

Yamamoto and Baker 2013).  These simulation procedures can be viewed as record-

based procedures.  The use of the seed record based simulation technique to assess seismic 
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hazard was elaborated and shown in Gu and Wen (2007).  For the hazard assessment at a 

site of interest, a seismic scenario event in an earthquake historical or synthetic catalogue 

that is applicable to the site is sampled, and the ground motion record is simulated based on 

a randomly selected seed record having the earthquake magnitude and epicentral distance 

matching the scenario event.  This random selection of scenario event and ground motion 

simulation is repeated for each event within the catalogue, and the response spectrum for 

each simulated record is calculated and used to estimate the uniform hazard spectra.  The 

use of the Hilbert-Huang transform takes advantage of the orthogonal basis formed by the 

intrinsic mode functions (IMFs) that are obtained based on the empirical mode 

decomposition.  Each IMF appears as an amplitude modulated and frequency modulated 

signal.  Some of the drawbacks of the empirical mode decomposition are discussed in 

Rato et al. (2008).  The use of the short-time Fourier transform (STFT) that partitions the 

record into blocks of equal length, and then carries out Fourier transforms on each block is 

with leakage (Cohen 1995).  The discrete wavelet transform (Daubechies 1992) provides 

good time resolution, but different dilations lead to overlapping spectral responses. 

Instead of using the above-mentioned methods, one can use the S-transform (or 

Stockwell-transform) developed by Stockwell et al. (1996) (see also Pinnegar and 

Mansinha 2003; Stockwell 2007) to analyze the recorded ground motions.  Differences 

among the S-transform to the Fourier transform, STFT, and wavelet transform are 

extensively discussed and illustrated in Stockwell et al. (1996), Stockwell (2007), and 

Ventosa et al. (2008).  These references show that the S-transform provides frequency-

dependent resolution with absolutely referenced phase information (i.e., the phase 

information refers to the argument of the cosinusoid at zero time as it is the case for 

Fourier transform) and the time average of the coefficients of the S-transform equals the 

Fourier coefficients.  Unlike the continuous wavelet transform, the S-transform produces 

a time-frequency representation instead of a time-scale representation.  The difference 

between the S-transform and STFT is that the window in STFT is independent of the 

frequency.  However, similar to continuous wavelet transform and STFT, the S-

transformation is a redundant representation in the time-frequency plane.  A more 

efficient transform called discrete orthonormal S-transform (DOST) that localizes the 
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spectrum and retains the advantageous phase properties of the S-transform was proposed 

in Stockwell (2007). 

In this chapter, a procedure to simulate nonstationary ground motions based on DOST 

is proposed based on a seed record or a given target amplitude of DOST coefficients.  

The adequacy of the simulated records is assessed in terms of the power distributed in 

time and frequency and the response spectrum.  The basic formulation for the S-

transform and DOST is summarized in the following section.  This is followed by the 

numerical evaluation using DOST and the S-transform, showing the time-frequency 

decomposition and the phase angle of ground motions.  Statistics of the amplitude of 

coefficients of the DOST, Fourier amplitude, time-varying power distribution and 

response spectrum of the simulated records are compared with those of seed records. 

2.2 The S-transform and discrete orthonormal S-transform 

The S-transform for a signal, x(t), such as a ground motion record, is defined as 

(Stockwell et al. 1996; Pinnegar and Mansinha 2003; Stockwell 2007), 

2( , ) ( ) ( , ) i ftx f x t w f t e dt 



−

−

= −S , (2-1) 

where ( , )x f S  is the coefficient of the S-transform of x(t), f and t are the frequency and 

time, and  is the center of the window function ( , )w f t − .  The frequently selected 

window is the Gaussian one, 

2 2

2
( , ) exp

22

f f t
w f t



 
= − 

 
, (2-2) 

where  a parameter that controls the number of oscillations in the effective width of the 

window.  The use of this window with  not equal to one in Eq. (2-1) is sometimes 

referred to as the generalized S-transform.  The window for a given  width is inversely 

proportional to the frequency. 
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The S-transform has several interesting properties as shown in Stockwell et al. (1996), 

Pinnegar and Mansinha (2003) and Stockwell (2007).  Eq. (2-1) can be expressed in 

terms of the Fourier transform of x(t), ˆ( )x f , resulting in 

2 2 2

2

2
 

2ˆ( , ) ( ) ifx f x f e e d

  

  

 −

−

= +S , (2-3) 

where, 

2ˆ( ) ( ) i ftx f x t e dt



−

−

=  . (2-4) 

For x(t) that is evenly spaced in time with sampling interval T, the discretized version 

of ( , )x f S  can be written as, 

( )

2 2 2

2

2
 1

2

0

1
ˆ( , )

j

p j q

f
N

f i f t

p q j p

jT

x f t e x f e
N

 





−−

+

=

= S , (2-5) 

where ( )
1

2

0

ˆ ( ) p j

N
i f t

p T j

j

x f x t e



−

−

=

=  , j Tt j= , / ( )p Tf p N= , 0,1,..., 1p N= − , q Tt q=  

and 0,1,..., 1p N= − .  ( , )p qx f tS  is referred to as a voice for a constant frequency fp.  The 

discrete equation to reconstruct the signal is given by, 

( )
1 1

0 0

2
( ) ( , ) cos 2 ,

N N

j p q p j p q

p q

x t x f t f t f t
N

 
− −

= =

 = +
  S . (2-6) 

where ( , )p qx f tS  and ( ),p qf t  are instantaneous amplitude (or DOST spectrum) and 

phase angle of ( , )p qx f tS .  Since ( ),p qf t  varies in time, x(tj) shown in Eq. (2-6) is not 

expressed in terms of orthogonal basis functions.  It must be emphasized that, at present, 

a record-based simulation algorithm with a theoretical foundation to generate ground 

motions by using the coefficients from the S-transform is unavailable.  One may assume 

that the ground motions can be modeled as an evolutionary process with an amplitude 
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modulation defined by ( , )p qx f tS .  However, this is not advisable as will be illustrated 

using numerical examples in the following sections. 

An extension of the S-transform, the DOST is defined as (Stockwell 2007), 

1

[ ]

0

( , ) 1/ ( ) ( ; , )
N

p q k k p q

k

x f t N x t D t f t

−

=

= DS , (2-7) 

where,  

2 ( / / )( /2 1/2) 2 ( / / )( /2 1/2)

[ ]

{ }
( ; , )

2sin[ ( / / )]

i q i k N q p i k N q p

k p q

ie e e
D t f t

k N q

      


 

− − − − − − − + −−
=

−
 (2-8) 

are the basis functions, and  indicates the width of the frequency band centred at the 

frequency indexed by p (i.e., fp).  The detail on the derivation of the basis functions is 

given in Stockwell (2007).  As can be observed that the phase angle is absolutely 

referenced which distinguishes these basis functions from wavelets.  The 1/   is 

necessary to ensure orthonormality of the basis functions.  As indicated in Stockwell 

(2007) that rules must be applied to the sampling of the time-frequency space to ensure 

orthogonality.  The suggested rules are that q = 0, 1,…, β -1, and p and β must be selected 

so each Fourier frequency sample is used once and only once.  Such rules are satisfied by 

using the octave sampling (which is similar in discrete wavelet transform) resulting in the 

orthonormal basis functions given by Eq. (2-7) with, 

( )-1 2 1 -1( ; ; ) =  2 2 ;  0,1,...,2 1;  2m m m mp q  − −+ − , for m = 2, …, log2(N)-1; (2-9) 

and p = 0, q = 0 and  = 1 for m = 0; and p = 1, q = 0 and  = 1 for m =1.  An illustration 

of a few selected basis functions is shown in Figure 2.1.  As can be observed from the 

figure, the basis functions in DOST are not dilations nor translations of a single function. 
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Figure 2.1: A few selected basis functions (N discrete points with time step T = 0.01s) 

based on the octave sampling.  

 

The equation to reconstruct x(tk) is simply given by, 

[ ]

for feasible ,

( ) ( , ) ( ; , ),   0,..., 1k k p q

p q

x t x p q D t f t k N= = − DS , (2-10) 

where p and q are assigned as shown in Eq. (2-9).  The use of the Fourier transform as 

well as fast Fourier transform for their evaluation that is given in Wang and Orchard 

(2009), Yan and Zhu (2011) and Battisti and Riba (2016) is employed in the thesis for the 

numerical analysis. 

Given a ground motion record, x(tk), its coefficients of DOST can be calculated using 

Eq. (2-7).  Since the octave sampling ensures the basis functions to be orthonormal, it is 
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proposed that a model to simulate the stochastic ground motions, X(t), based on a seed 

record or target DOST spectrum can be written as, 

[ ]

for feasible ,

( ) Re 2 ( , ) ( ; , ) pqi

k p q k p q

p q

X t x f t D t f t e




 
=  

 
 DS , (2-11) 

where pq are independent uniformly distributed between 0 to 2 and Re[ ] denotes the 

real part of its argument.  Because of the orthogonality, the expected value of X(t), 

( ( ))kE X t , is given by, 

( )[ ]

for feasible ,

( ( )) Re 2 ( , ) ( ; , ) 0pqi

k p q k p q

p q

E X t x f t D t f t E e




 
= = 

 
 DS , (2-12) 

and covariance ( ( ) ( ))j kCov X t X t , 

( )
2

[ ] [ ]

for feasible ,

( ( ) ( ))

( , ) ( ; , ) ( ; , ) cos ( ; , ) ( ; , )

j k

p q j p q k p q j p q k p q

p q

Cov X t X t

x f t D t f t D t f t t f t t f t   

=

− DS

 (2-13) 

in which ( ; , )k p qt f t  is the time-varying phase angle of the basis function [ ]( ; , )j p qD t f t

.  The variance is given by Eq. (13) by letting tj = tk.  This results in 

2

for feasible ,

( , )p q

p q

x f t DS  equals 
1

2

0

(1/ ) ( )
N

k

k

N x t
−

=

  so it is consistent with the seed record. 

 

Table 2.1: Considered recorded horizontal ground motions from large earthquakes 

Record # Earthquake Date 
Moment 

magnitude 
Station Name 

1 Loma Prieta, U.S. 1989.10.18 6.9 Gilroy Array #1 

2 Kobe, Japan 1995.01.16 6.9 KJMA 

3 Kocaeli, Turkey 1999.08.17 7.6 Gebez 

4 Michoacán, Mexico 1985.09.19 8.0 CU 

5 Wenchuan, China 2008.05.12 7.9 Qingping 
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2.3 Application of S-transform and DOST to ground motion 
records 

Five real records from large earthquakes are selected and listed in Table 2.1.  Each 

record listed in the table is used as the seed record to test the proposed model.  By 

applying the S-transform and DOST, the obtained amplitude and phase angle of the 

coefficients of the S-transform and of DOST are shown in Figures 2.2 to 2.6.  For the S-

transform,  = 1 is considered.  As can be observed that the time-frequency resolution 

obtained from the DOST is coarse as compared to that obtained using the S-transform 

because of the octave sampling used in DOST.  The areas where the amplitudes of the 

coefficients of DOST attain their large values are almost the same as those of the S-

transform.  The time-frequency characteristics of the seed records differ. 

As mentioned previously, although the theoretical foundation for a simple to use 

simulation algorithm based on the S-transform is unavailable, one may assume that X(t) 

can be modeled as an evolutionary process with an amplitude modulation defined by 

( , )p qx f tS .  This and the use of SRM lead to, 

( )
1

0

( ) Re 2 ( , ) 2 cos 2
N

p q p p

p

x t x f t f f t  
−

=

= + S , (2-14) 

where fp is uniformly distributed between 0 to 2. 

By using this model, and ( , )p qx f tS  shown in Figure 2.2, 50 ground motion records 

are simulated.  The mean of ( , )p qx f tS  obtained by using the S-transform and the 

amplitude of the Fourier transform for the simulated records are shown on the left and 

middle plots in Figure 2.7.  In addition, the response spectra of the simulated and the seed 

records are calculated and shown on the right plot in Figure 2.7.  A comparison of the 

results shown in Figure 2.7 to that presented in Figure 2.2 indicates that the mean of 

( , )p qx f tS  from the simulated records deviates from ( , )p qx f tS  of the seed record.  The 

middle plot implies that there is energy deficiency in the simulated records as compared 

to the seed record while the right plot indicates that the mean of the response spectra for 



17 

 

the simulated records is smaller than that of the seed record.  Therefore, the usefulness of 

taking ( , )p qx f tS  as the amplitude modulation function is questionable.  Note that there 

is large variability in the Fourier amplitude of the simulated records.  This is a typical 

feature of the SRM and is consistent with that observed in Liu and Hong (2015) 

The observed deficiency is likely due to the neglect of the time and frequency-

dependent phase angle or the time-varying instantaneous frequency.  The time-dependent 

frequency could be taken into account using time transformation (i.e., uniformly 

modulated frequency).  In such a case, the simulation must take into account the effect of 

time transformation on the frequency (Yeh and Wen 1990; Hong 2016) in order to use 

SRM to simulate records.  Assessment of the time transformation based on the zero-

crossing rate is extensively discussed in Yeh and Wen (1990) and Alamilla et al. (2001). 

2.3.1 Simulated records and their characteristics based on DOST 

Using the proposed simulation procedure and considering each record listed in Table 

2.1 as the seed record, a sample of simulated record and its corresponding amplitude of 

the coefficients of DOST are presented in Figure 2.8.  Comparison of the simulated 

records to the seed records shown in Figures 2.2 to 2.6 and 2.8 indicates that in all cases, 

the simulated follows the time-varying amplitude of the ground motions closely.  A 

comparison of results shown in Figures 2.2 to 2.6 and 2.8 also indicates that the 

amplitude of the coefficients of DOST of the simulated records follows that of seed 

records.  Note that the plots shown in Figure 2.8 show that the amplitude of DOST 

coefficients (or DOST spectrum) of the sampled records vary in time and frequency.  

However, similar to the plots for the seed records shown in Figures 2.2 to 2.6, the 

variation of the frequency content does not follow a simple identifiable pattern, 

suggesting the non-stationarity of ground motions in both amplitude and frequency. 
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Figure 2.2: Time and frequency varying amplitude and phase angle of coefficients 

calculated by using the S-transform and DOST for a record from the Loma Prieta 

earthquake.  Rows 1 to 3 show the record, the results from the S-transform and the results 

from DOST.  The same plotting format is used for Figures 2.3 to 2.6). 
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Figure 2.3: Time and frequency varying amplitude and phase angle of coefficients 

calculated by using the S-transform and DOST for a record from the Kobe earthquake. 
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Figure 2.4: Time and frequency varying amplitude and phase angle of coefficients 

calculated by using the S-transform and DOST for a record from the Kocaeli earthquake. 
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Figure 2.5: Time and frequency varying amplitude and phase angle of coefficients 

calculated by using the S-transform and DOST for a record from the Michoacán 

earthquake. 
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Figure 2.6: Time and frequency varying amplitude and phase angle of coefficients 

calculated by using the S-transform and DOST for a record from the Wenchuan 

earthquake. 
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Figure 2.7: Calculated mean of ( , )p qx f tS , Fourier amplitude and response spectrum of 

the simulated records are shown in the plots from left to right. 

 

To quantify the differences between the simulated records and the seed records, 50 

records are simulated for each seed record.  The statistics of the amplitude of the 

coefficients of DOST and the Fourier amplitude spectra of the simulated records as well 

as the time-varying square root of energy distribution, denoted as A(t), are presented in 

Figure 2.9.  The Figure shows that the mean of ( , )p qx f tDS  for the simulated records 

agrees well with those of the corresponding seed records.  Also, on average, the mean of 

the amplitude of Fourier coefficients of the simulated records agrees well with those of 

the corresponding seed records.  However, there is a clear difference between the mean of 

the Fourier amplitude of the simulated records and that of the seed records as well.  The 

former tends to remain constant for segments of frequencies which is attributed to the use 

of octave sampling in the DOST.  The magnitude of coefficient of variation (COV) of 

( , )p qx f tDS  is similar to the COV values of Fourier coefficients that can be inferred from 

the plots.  The magnitude of the COV is also similar to that of Fourier coefficients of 

simulated records that is observed in the literature (Liu and Hong 2015, 2016) if the 

ground motions are modeled as a uniformly modulated evolutionary process and SRM is 

used for simulation – such a large COV is also observed in Figure 2.7 when the SRM is 

used.  The mean of the time-varying power distribution of the simulated records follows 

closely to those of seed records. 
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Figure 2.8: Samples of simulated records and their corresponding instantaneous 

amplitude. 
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Figure 2.9: Statistics of the amplitude of the DOST and Fourier transform of the 

simulated records.  Columns 1 to 4 show the mean of ( , )p qx f tDS , the cov of 

( , )p qx f tDS , Fourier spectrum and A(t) of the simulated 50 records. Rows 1 to 5 

correspond to the use of Records 1 to 5 as the seed record. 
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Figure 2.10: Comparison of response spectra of simulated and seed records. 

 

Table 2.2: Information of Mexican interplate earthquakes at CU station, UNAM. 

Event No. Date M H (km) Lat. N. Long. W. 

1 14/03/1979 7.6 28 17.49 101.26 

2 25/04/1989 6.9 19 16.60 99.40 

3 31/05/1990 6.1 16 17.11 100.89 

4 07/06/1982 7.0 24 16.26 98.51 

5 14/09/1995 7.3 22 16.31 98.88 

6 19/09/1985 8.0 15 18.08 102.94 

7 24/10/1993 6.7 19 16.54 98.98 

8 29/11/1978 7.8 19 16.00 96.69 

9 11/12/2012 6.5 58 17.84 99.98 
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Since the simulated records are used for structural analysis, the response spectra of the 

simulated and seed records are calculated and presented in Figure 2.10.  The Figure 

indicates that, on average, the response spectra of the simulated records follow those of 

the seed records. 

To further test the proposed model for simulating ground motions based on a target 

DOST spectrum, consider a set of records listed in Table 2.2.  These records are from 

interpolate seismic events and recorded at the CU station, UNAM, Mexico.  First, the 

time-varying variance of the horizontal record components is calculated.  Based on the 

calculated values, each record is time-shifted such that the maximum value of the time-

varying variance is aligned at 20 s as shown in Figure 2.11.  The DOST is applied to the 

time-shifted records, the obtained DOST spectrum is then standardized with respect to its 

corresponding total energy ET.  The average of the standardized DOST spectrum, 

0( , )p qx f t−DS , as well as the ET of each horizontal record component is also presented in 

Figure 2.11, where ET represents the mean of ET.  Using 0( , )ET p qx f t −DS  as the target 

DOST spectrum and Eq. (2-11), a typical simulated record is shown in Figure 2.11 as 

well, illustrating the time-varying characteristics. 

By simulating 200 records and applying the DOST to the simulated records, the 

obtained mean of DOST spectrum (or amplitude of the DOST coefficients) is shown in 

Figure 2.12.  The calculated mean agrees well to the target 0( , )ET p qx f t −DS  which is 

shown in Figure 2.11.  Also shown in Figure 2.12 are the COV value of DOST spectrum 

for the simulated records and the response spectrum of the simulated records.  Again, the 

magnitude of the coefficient of variation is consistent with those observed Figures 2.7 

and 2.9. 

It must be emphasized that although the development of an earthquake magnitude and 

epicentral distance dependent ground motion model for the DOST spectrum is beyond the 

scope of this chapter, such a model together with the proposed model for simulating 

stochastic ground motions can be valuable to assess seismic hazard and risk.  The model 

development could be carried out following similar steps given in Sabetta and Pugliese 

(1996) and in Alamilla et al. (2001). 
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Figure 2.11: Time-shifted horizontal record components for the records listed in Table 

2.2, the total energy of each record component ET, average of the standardized amplitude 

of DOST coefficient, and a typical simulated record by using Eq. (2-11).  The time shift 

is to ensure that the maximum value of the time-varying variance is aligned at 20 s. 

 

 

Figure 2.12: Mean and coefficient of variation of the DOST amplitude of 200 simulated 

ground motion records. 
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2.4 Conclusion 

A very simple to use record-based approach to simulate ground motion records based 

on the DOST is proposed.  It is shown that although the time-frequency resolution 

obtained from DOST for the recorded ground motions is coarse as compared to that 

obtained using the S-transform, its use clearly identifies the energy distribution in time 

and frequency.  The time-frequency representation instead of a time-scale representation 

obtained from wavelet transformation facilitates the understanding of the ground motion 

records. 

The comparison of the time-frequency resolution, Fourier spectrum, time-varying 

power distribution and response spectrum of the simulated and seed records indicates that 

the proposed simulation equation is useful for practical applications. 

Numerical results also show that representing the ground motions as an evolutionary 

process with the amplitude modulation function equal to the amplitude of the coefficients 

of the S-transform has questionable value. 

2.5 Data and Resources 

There five records listed in Table 2.1.  Records 1 to 3 are from obtained from 

https://ngawest2.berkeley.edu, Record 4 and those shown in Table 2.2 are obtained from 

http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Inicio.aspx, and Record 5 is 

obtained from http://www.csmnc.net.  They are last access on May, 2019. 
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Chapter 3  

3 Time-frequency spectral representation models to 
simulate nonstationary processes and their use to generate 
ground motions 

3.1 Introduction 

Many of the models used to model and simulate the nonstationary stochastic processes 

are based on the evolutionary spectral theory advanced by Priestley (1965, 1981) and 

Priestley and Tong (1973).  In such a case, the nonstationary stochastic process is known 

as the evolutionary stochastic process and is characterized by the evolutionary power 

spectral density function.  Such a spectral function, at least, requires the assignment of 

the amplitude modulation function.  The evolutionary stochastic process is often used to 

represent the seismic ground motions (Newmark and Rosenblueth 1971; Clough and 

Penzien 2003), winds (Simiu and Scanlan 1996) and waves (Ochi 2005).  Simulation of 

an evolutionary stochastic process can be conveniently carried out using the spectral 

representation method (SRM) (Shinozuka and Jan 1972; Shinozuka and Deodatis 1996; 

Liang et al. 2007).  Although the use of time-frequency dependent amplitude modulation 

function is considered in the context of an evolutionary stochastic process, the potential 

frequency modulation (i.e., modulating the frequency) is often neglected even though 

there is evidence that the instantaneous frequency of ground motions varies with time 

(Grigoriu et al. 1988; Yeh and Wen 1989; Alamilla et al. 2001).  Yeh and Wen (1989) 

proposed a model by considering frequency modulation, where the modulation function 

is assessed based on time-varying zero-crossing rate.  The model is attractive for its 

simplicity, but its extension and use to non-uniform frequency modulation could be 

difficult.  The application of this model results in that the recorded ground motions with a 

constant sampling time interval becomes a time series with unevenly spaced time step in 

the new timescale.  It seems that the evaluation of the power spectral density function 

using the (ordinary) Fourier transform by considering this aspect is not fully addressed in 

the mentioned references.  Other models include the one proposed by Conte and Peng 

(1997), where the superposition of several amplitude-modulated stochastic processes is 
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used to represent the seismic ground motions. 

Besides the use of the results from the Fourier transform to characterize the ground 

motions, the use of other signal processing techniques such as the short-time Fourier 

transform (STFT) (Cohen 1995), wavelet transform (Daubechies 1992) and Hilbert-

Huang transform (Huang and Wu 2008; Wen and Gu 2004) in dealing with the seismic 

ground motions have been considered in the literature.  For example, Liang et al. (2007) 

compared the time-frequency characteristics of the ground motions obtained by using the 

STFT and other transforms.  Basu and Gupta (1998), Iyama and Kuwamura (1999), 

Gurley and Kareem (1999), Spanos and Failla (2004), Hancock et al. (2006) and 

Yamamoto and Baker (2013) employed the continuous wavelet transform, discrete wavelet 

transform, and wavelet packet transform to described the ground motions in time-scale 

representation.  The application of the continuous wavelet transform leads to the time-scale 

representation with high fidelity.  The representation, however, is highly redundant, and the 

decomposed signal is not presented in an easy to use superposition in terms of orthogonal 

basis functions for simulation.  The use of discrete wavelet transform and wavelet packet 

transform has lead to simulation models for nonstationary processes (Gurley and Kareem 

1999; Spanos and Failla 2004; Yamamoto and Baker 2013).  The feasibility to extend 

some of the mentioned models to simulate nonstationary ground motions at multiple-

support with time-frequency dependent coherence is not explored. 

The advantages and shortcomings of the STFT and wavelet transform are well 

discussed in Cohen (1995), Daubechies (1992), Percival and Walden (2000) and 

Stockwell (2007).  For example, the use of STFT is associated with leakage (Cohen 

1995).  The use of discrete wavelet transform with different dilations has overlapping 

spectral responses, and the function of the phase in the wavelet representation is not well 

understood as compared to that in the Fourier transform (Stockewell 2007).  Instead of 

using the mentioned transforms, an alternative transform, the S-transform (or Stockwell-

transform) (Stockwell et al. 1996; Pinnegar and Mansinha 2003) and discrete 

orthonormal S-transform (DOST) (Stockwell 2007) can be considered.  These transforms 

differ from the STFT and wavelet transform (Stockwell et al. 1996; Stockwell 2007; 

Battisti and Riba 2016).  The application of these transforms to records or signals 
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provides a time-frequency representation, which is in contrast to the application of the 

wavelet transform resulting in a time-scale representation.  The S-transform provides 

frequency-dependent resolution with the phase angle referring to the argument of the 

sinusoid at zero time that is consistent with the Fourier transform.  The S-transform leads 

to a redundant representation in the time-frequency plane, which is similar to the 

continuous wavelet transform and STFT.  DOST is an efficient transform that localizes 

the spectrum and retains the advantageous phase properties of the S-transform.  Its 

application results in that the signal can be represented as the superposition of scaled 

orthonormal basis functions. 

In this chapter, two simulation models within the framework of the time-frequency 

spectral representation method are proposed to simulate nonstationary stochastic 

processes.  The models are based on the DOST and S-transform.  One of the models 

considers the phase angles are uncertain, while the second one considers the amplitudes 

associated with real and imaginary parts of the orthonormal basis functions are uncertain.  

Both models are simple to use.  The first one is simple to interpret and implement.  The 

second one can be used for conditional simulation.  The advantages of the proposed 

models are that they implicitly include the amplitude and frequency modulations for the 

nonstationary stochastic process, hence avoid the difficulty in assessing non-uniform 

amplitude modulation and frequency modulation to be used with the application of the 

evolutionary stochastic process.  The incorporation of the time-frequency representation 

obtained from the S-transform in the model is elaborated so to increase the fidelity of the 

time-frequency representation.  Throughout this chapter, the exposition and use of the 

proposed models are focused on the seismic ground motions at the single and multiple-

support, although the models can be applied to nonstationary processes such as the winds 

and waves as well.  The adequacy of the models is shown through theoretical derivation 

and numerical examples. 

The development of the proposed models is given after a quick summary of the S-

transform and DOST in the next section.  The parallel between the models developed 

based on the (frequency) spectral representation method (Shinozuka and Jan 1972; 

Shinozuka and Deodatis 1991; Kameda and Morikawa 1994; Liang et al. 2007, Chen et 
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al. 2018) and the proposed models in this chapter is drawn.  The incorporation of time-

frequency representation obtained from the S-transform to enhance the proposed models 

is elaborated and illustrated by numerical examples. 

3.2 The S-transform and discrete orthonormal S-transform 

In this section, a summary of the S-transform (ST) and DOST is presented.  ST 

proposed by Stockwell et al. (1996) is, 

2( , ) ( ) ( , ) i ftx f x t w f t e dt 



−

−

= −S
, (3-1) 

where ( , )x f S  denotes the ST coefficient of x(t), f and t are the frequency and time 

similar in the Fourier transform, and  is the center of the window function ( , )w f t − , 

which will be discussed further.  The transform provides a time-frequency representation 

of the signal x(t).  The signal can be reconstructed using, 

2( ) ( , ) i ftx t x f d e df 

 

− −

 
=  

 
  S

. (3-2) 

Similar to the continuous wavelet transform, ST provides a redundant representation 

which is inefficient.  The time-frequency power spectral density (TFPSD) function can be 

defined based on ( , )x f S .  However, an algorithm to simulate signals such that their 

expected TFPSD function equal to that obtained from ( , )x f S  of a seed signal or a 

target TFPSD is unavailable at present.  This perhaps is partly due to that the use of ST 

does not lead to x(t) that is expressed as the sum of the product of ( , )x f S  and the 

orthogonal basis functions. 

To achieve maximum representation efficiency, DOST that takes a time series of N 

points to the time-frequency representation with N points was proposed in Stockwell 

(2007).  DOST is based on N orthonormal basis functions, [ ]( ; , )kD t p q , and is given by, 
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( )
1

[ ]

0

( , ) 1/ ( ) ( ; , )
N

k k

k

x p q N x t D t p q

−

=

= DS , (3-3) 

where ( , )x p qDS  is the DOST coefficient, x(tk) denotes the sampled x(t) at the discrete 

points kt k= , p is an index of the center of a frequency band fp = p/(N), q is an index 

for the time localization tq = q, 

2 ( / / )( /2 1/2) 2 ( / / )( /2 1/2)

[ ]

{ }
( ; , )

2sin[ ( / / )]

i q i k N q p i k N q p

k

ie e e
D t p q

k N q

      


 

− − − − − − − + −−
=

−
, (3-4) 

and  indicates the width of the frequency band centred at the frequency indexed by p 

(i.e., fp).  For [ ]( ; , )kD t p q  to be orthogonal, Stockwell (2007) suggested that q = 0, 1,…, 

β -1, and p and β must be selected so each Fourier frequency sample is used once and 

only once, which can be achieved by using the octave sampling.  This lead to, 

( )( ; ; ) =  0;  0;  1p q  , for m = 0; (3-5) 

( )( ; ; ) =  1;  0;  1p q  , for m = 1; (3-6) 

and, 

( )-1 2 1 -1( ; ; ) =  2 2 ;  0,1,...,2 1;  2m m m mp q  − −+ − , for m = 2, …, log2(N)-1. (3-7) 

where m is the octave number.  Unlike in the continuous wavelet transform, the basis 

functions in DOST are not dilations nor translations of a single function.  An illustration 

of some of the basis functions is presented in Figure 3.1.  According to Eqs. (3-5) to (3-

7), there are N1 = N/2 basis functions.  Wang and Orchard (2009) showed that if the same 

τ value is used, the basis function for p is conjugate symmetric to that for -p.  The DOST 

coefficients for a real-valued signal are conjugate symmetric about p = 0.  Therefore, x(tk) 

can be reconstructed using, 

[ ]

for feasible ,

( ) ( , ) ( ; , ),   0,..., 1k k p q

p q

x t x p q D t f t k N= = − DS , (3-8) 
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where the asterisk denotes the complex conjugate; p and q are assigned as shown in Eqs. 

(3-5) to (3-7) and p can be both positive and negative.  The DOST coefficients and the 

basis functions in this equation are presented in double-indexed (i.e., matrix form).  To 

simplify the notation, and to consider the mapping of the indices between j (1 ≤ j ≤ N/2) 

and (p, q; ) with p ≥ 0 shown in Table 3.1.  Due to the complex conjugate property of 

the basis functions with respect to p, the complex conjugate property of basis function 

about j = N/2+1 can also be used for obtaining the basis function with j from N/2+2 to N 

and the basis function of j = N/2+1 is identical to that of j = 1.  Eq. (8) is rewritten as, 

1

*

1 1

1

( ) 2 Re ( ) ( ; ) ,   0,..., 1
N

k k

j

x t x j D t j k N
=

 = = −  DS , (3-9) 

where 1 ( ) 2 ( , )x j x p q=DS DS  and 
* *

1 [ ]( ; ) ( ; , )k kD t j D t p q=  are used to present the basis 

functions in a single-index or vector form.  It is emphasized that the mapping between j 

and (p, q; ) is not unique and is used to simplify the notation only.  Throughout the 

remaining part of this chapter, the single- or double-indexed presentations are used 

interchangeably to facilitate the exposition of the derivation and results.  The use of the 

Fourier transform as well as the fast Fourier transform to evaluate the ST, DOST and 

their inverses is given in Wang and Orchard (2009), Yan and Zhu (2011) and Battisti and 

Riba (2016). 

 

Table 3.1: Mapping between j and (p, q; ). 

M ( , ; )j p q ⎯→  

0 1 (0,0;1)⎯→  

1 2 (1,0;1)⎯→  

2 3 (3,0;2)⎯→  4 (3,1,2)⎯→  

3 5 (6,0;4)⎯→  6 (6,1;4)⎯→  7 (6,2;4)⎯→  8 (6,3;4)⎯→  

… 
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Figure 3.1: Illustration of a few selected basis functions (for N discrete points with time 

step  = 0.01s) for DOST. 

 

The one-sided TFPSD function of x(t) based on the DOST coefficients is defined as, 

*( , ) 2 ( , ) ( , )S p q x p q x p q= DS DS , (3-10a) 

or, 

2*

1 1 1( ) ( ) ( ) ( )S j x j x j x j= =DS DS DS , (3-10b) 

where ( ) ( , )S j S p q  represents the one-sided TFPSD function for the center of the 

frequency band fp and the time localization tq; the relation between j and (p, q; ) is the 
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same as shown in Table 3.1.  Eq. (10b) indicates that the amplitude of the DOST 

coefficient, 1 ( )x jDS , equals ( )S j . 

3.3 Two new time-frequency spectral representation 
models for nonstationary processes 

In this section, two models that can be used to model and simulate nonstationary 

stochastic processes are described.  These models are based on the orthonormal basis 

function used in DOST.  Given that the target DOST coefficients or DOST coefficients of 

an actual record x(tk), a model to simulate the nonstationary stochastic ground motions, 

X(t), was proposed in Chapter 2.  The model according to the above-adopted notation is 

written as, 

1

( )

1

1

( ) 2 ( ) Re ( ; )e ,   0,..., 1
N

i j

k k

j

X t S j D t j k N

=

 = = −  , (3-11) 

where (j) is independent and uniformly distributed between 0 to 2, and Re( ) denotes 

the real part of its argument.  The use of 
1D  or 

*

1D  in Eq. (3-11) is equivalent in terms of 

simulation.  The model, which will be referred to as Model-1, takes advantage of the 

orthonormal basis functions associated with octave sampling.  Adequacy of the model 

was assessed by comparing the coefficients of DOST, Fourier coefficients, the energy 

distribution in time, TFPSD function and response spectrum of the seed and the simulated 

records. 

To better understand the format of the model shown in Eq. (3-11), it is noteworthy that 

the format presented in Eq. (3-11) is similar to one of the formats used in SRM 

(Shinozuka and Jan 1972), which is expressed as the sum of 

2 ( )2 ( ) Re ji f t i j

F jS f f e e
   

  , where SF(f) is the (one-sided) power spectral density 

function obtained from the ordinary Fourier analysis and fj are non-negative frequencies 

in Hz.  The orthogonal basis functions in SRM are 
2 ji f t

e


 and in Model-1 are 1( ; )kD t j .  

However, it must be emphasized that exp( 2 )ji f t  represents stationary oscillatory 
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behaviour and 1( ; )kD t j  provides nonstationary characteristics as illustrated in Figure 3.1.   

It is straightforward to show that the expectation of X(tk), ( ( ))kE X t , is given by, 

( )
1

( )

1

1

( ( )) 2 ( ) Re ( ; ) 0
N

i j

k k

j

E X t S j D t j E e 

=

 = =  , (3-12) 

and the covariance ( ( ) ( ))j kCov X t X t  by considering (j) that are independent and 

uniformly distributed between 0 to 2 is, 

( )
1

1 2 1 2 1 21 1

1

( ( ) ( )) ( ) ( ; ) ( ; ) cos ( ; ) ( ; )
N

k k k k k k

j

Cov X t X t S j D t j D t j t j t j 
=

= − , (3-13) 

in which E( ) denotes the expectation, 
( )

( )
11

1

Im ( ; )
( , ) tan

Re ( ; )

k

k

k

D t j
t j

D t j

−
 

 =   
 

 is the time and 

frequency-dependent phase angle and Im( ) denotes the imaginary part of its argument.  

The variance can be obtained from Eq. (3-13) by letting 
1 2k kt t= .  This results in 

1

( )
N

j

S j
=

  

which equals 
1

2

0

(1/ ) ( )
N

k

k

N x t
−

=

  based on the Parseval theorem.  Therefore, on average, the 

simulated records are consistent with the seed record.  In addition, it can be shown that by 

letting 
1 ( )X jDS  representing the DOST coefficients of X(tk), it can be shown that (see 

Eq. (A7) in Appendix A), 

 *

1 1( ) ( ) ( )E X j X j S j=DS DS , (3-14) 

which indicates that the expectation of the TFPSD function of the sampled records from 

Model-1 equals the target TFPSD function S(j). 

The model presented in Eq. (3-11) is very simple to use.  However, similar to the case 

of SRM, it is difficult, if not impossible, to extend it to conditionally incoherent simulate 

multiple stochastic processes.  To formulate a model for the conditional simulation of 
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ground motions at multiple-support, it is noted that the model based on SRM for such a 

purpose is represented by the sum of ( ) ( )cos 2 sin 2j j j ja f t b f t +  (Kameda and 

Morikawa 1994), where aj and bj are considered to be zero-mean normal variates with the 

standard deviation equal to ( )F jS f f , where SF(f) is one-sided PSD function and f is 

a frequency increment.  The above and Eq. (9) suggests that by using the basis functions 

in DOST the following model, referred to as Model-2, could be considered to simulate 

nonstationary ground motions, 

 
1

1 1

1

( ) Re ( ; ) Im ( ; )
N

k j k j k

j

X t A D t j B D t j
=

= +       , (3-15) 

where Aj and Bj are independent zero-mean normal variates with the standard deviation 

equal to ( )S j .  Also, E(AjAk), E(BjBk), E(AjBk) and E(BjAk) are assumed to be equal to 

zero if j is not equal to k.  The mean and covariance of X(t) modeled by this model, are 

given by, 

1

1 1

1

( ( )) Re ( ; ) Im ( ; ) 0
N

k j k j k

j

E X t E A D t j B D t j
=

 
= + =       

 
 , (3-16) 

and, 

( )

1

1 1 1 1

1

1 2
1

2 2 2 2

2

1

1 2 1 2

1 1 1 1

1

1 2 1 2

1

1 1

1

Re ( ; ) Im ( ; )

( ( ) ( ))

Re ( ; ) Im ( ; )

( ) ( ; ) ( ; ) cos ( ; ) ( ; )

N

j k j k

j

k k
N

j k j k

j

N

k k k k

j

A D t j B D t j

Cov X t X t E

A D t j B D t j

S j D t j D t j t j t j 

=

=

=

  
   +     

  
=  

  
    +     

  

= −







, (3-17) 

which is the same as Eq. (3-13).  Similar to the case for Model-1, it can be shown that the 

expectation of the TFPSD function of the records sampled according to Model-2 equals 

the target TFPSD function S(j) (see Eq. (A8) in Appendix A).  The above mathematical 

proofs show that the expectation of the simulated signal by using the proposed models 
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equals zero and the expectation of the TFPSD function of the simulated signal equals its 

target.  Moreover, based on the central limit theorem X(tk) presented in Eqs. (3-11) and 

(3-15) is Gaussian. 

3.4 Estimation of coherence and models to simulate 
multiple-support ground motions 

The procedure to assess lagged coherence and extension of the two models described 

in the previous section to model and simulate coherent nonstationary stochastic processes 

are presented in this section.  Moreover, the use of Model-2 for conditional simulation is 

also formulated. 

Given two records 
1
( )nx t  and 

2
( )nx t  for the same seismic event with wave passage 

effect removed (Der Kiureghian 1996), their DOST coefficients, denoted as 
11 ( )nx jDS  and 

21 ( )nx jDS  (i.e., 
1

( , )nx p qDS  and 
2

( , )nx p qDS ), can be evaluated.  Similar to the definition 

of the TFPSD function (see Eqs. (3-10a) and (3-10b)), its crossed version for two 

processes 
1
( )nx t  and 

2
( )nx t , 

1 2
( )n nS j  (i.e., 

1 2
( , )n nS p q ), is defined as, 

1 2 1 2

*

1 1( ) ( ) ( )n n n nS j x j x j= DS DS . (3-18) 

1 1
( )n nS j  and 

2 2
( )n nS j  are defined analogously.  The coherence is then defined as, 

1 2

1 2

1 1 2 2

( )
( )

( ) ( )

n n

n n

n n n n

S j
j

S j S j


 
 

=
   
   

S

S S
, (3-19) 

where  S  denotes the smoothing operator, 
1 2

( )n n j  is known as lagged coherence, 

and  

( )
( )

1 2

1 2

1 2

1
Im ( )

( ) tan
Re ( )

n n

n n

n n

j
j

j

−
 
 =
 
 

 , (3-20) 

is the phase spectrum.  The smoothing is necessary and the reason is similar to that for 
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the analysis based on Fourier transform, where the calculated coherence equals one if no 

smoothing is applied (Zerva 2009).  The same issue and the need for smoothing also arise 

in the use of the wavelet transform (Torrence and Compo 1998).  For simplicity of the 

implementation of the smoothing, the smoothing operation can be carried out based on 

the double-indexed representation of the TFPSD function 
1 2

( , )n nS p q  rather than single-

indexed 
1 2

( )n nS j . 

First, by considering the time-frequency dependent coherence, Model-1 shown in Eq. 

(3-11) is extended to simulate multiple-support ground motions.  To model the 1n  vector 

of stochastic processes, X(t), representing the ground motions at n supports or recording 

stations, the n×n TFPSD  matrix S(j) with the (n1,n2)-th element 
1 2

( )n nS j  is decomposed 

into L(j)LH(j) based on Cholesky decomposition where L(j) is the lower triangle matrices 

and the superscript denotes the conjugate transpose (i.e., Hermitian matrix).  This leads to 

that the n1-th element of the stochastic process within X(t) is given by, 

1 1

1 1

( )

1

1 1

( ) 2 Re ( ) ( ; ) e   m

n N
i j

n k n m k

m j

X t L j D t j


= =

 =   , (3-21) 

where 1 1,...,n n= , 
1n mL  denotes the (n1, m)-th element of the lower triangle matrix L(j) and 

m(j) are independent and uniformly distributed between 0 and 2.  Sampling m(j), hence 

1
( )n kX t , by using Eq. (3-21), is a straight forward task. 

It can be shown that the mean of 
1
( )n kX t  equals zero and that the expectation of the 

TFPSD function of the simulated records is the same as their targets (see Appendix B). 

By considering Model-2 shown in Eq. (3-15), the n1-th element of the stochastic 

process is given by, 

1 1 11 1

1

( ) Re ( ; ) Im ( ; )
N

n k n j k n j k

j

X t A D t j B D t j
=

= +       , (3-22) 

where 
1n jA  and 

1n jB  are model parameters.  Let 
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1 1 1 1 1 1 1

T

1 2 1 2[ , ,..., , , ,..., ]n n n n N n n n NA A A B B B=F  and 
T

1 2[ , ,..., ]T T T

n=F F F F , where the 

n×(2N1) variables in F are zero mean correlated normal variates and the superscript T 

denotes the transpose.  The covariance matrix of F, CFF, is formed by n×n submatrices

1 2n nF FC ,
1 2, 1,...,n n n= , where 

1 2 1 2

1 2

1 2 1 2

n n

 
=  

  

n n n n

n n n n

A A A B

F F

B A B B

C C
C

C C
 is a 

1 12 2N N  matrix.  In CFF, 

( ) ( )
1 2 1 2 1 1 2 2 1 2

2 ( ) 2 ( ) ( )n j n j n j n j n n n n n nE A A E B B S j S j j   = =    S S , and the remaining 

elements are equal to zero.  Since the mean of each element in F equals zero, and the 

covariance matrix of F is known, the elements in F can be simulated based on the 

Gaussian properties (Anderson 2003).  Using the simulated values of 
1n jA  and 

1n jB , a 

sample of nonstationary ground motions 
1
( )n kX t  can be calculated using Eq. (3-22). 

If nob processes, Xob(t), within X(t) are already observed while the remaining ones in 

Xun(t) are to be simulated (i.e., X(t) = [(Xob(t))
T, (Xun(t))

T]T), let F = [Fob
T,Fun

T]T, where 

T

1 2[ , ,..., ]
ob

T T T

ob n=F F F F  and 
T

1 2[ , ,..., ]
ob ob

T T T

un n n n+ +=F F F F .  The matrix CFF is partitioned 

accordingly as, 

oo 
=  

 

F Fou

FF

Fuo Fuu

C C
C

C C
, (3-23) 

with the sizes 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

2 2 2 ( ) 2

( ) 2 2 ( ) 2 ( ) 2

ob ob ob ob

ob ob ob ob

n N n N n N n n N

n n N n N n n N n n N

     −  
 

−    −   −  
.  CFoo in 

Eq. (23) consists of nob×nob submatrix 
j kF FC , , 1,..., obj k n= , and, CFou, CFuo, and CFuu are 

defined analogously.  The coefficients in 
obF , 

T

1 2[ , ,..., ]
ob

T T T

ob n=f f f f , are calculated 

using the observed records and according to Eq. (3-14).  The variables in 
unF  

conditioned on Fob = fob, un ob
F , are also jointly Gaussian distributed with the mean 

un ob


F
 

and the covariance matrix 
un ob


F

 given by (Anderson 2003), 

1

uo oo obun ob

−= F FF
C C f , (3-24) 
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and, 

1

uu uo oo ouun ob

−= − F F F FF
C C C C . (3-25) 

Using the simulated coefficients A and B (with subscripts) in Fun according to this joint 

probability distribution, samples of the stochastic processes Xun(t) can be evaluated using 

Eq. (3-22).  It is emphasized again that similar to the case by using the SRM, the 

extension of Model-1 for conditional simulation is unavailable 

3.5 Numerical assessment of time-frequency 
representation and simulation of ground motions 

Numerical examples are presented in the following subsections to illustrate the time-

frequency representation of recorded ground motions based on DOST.  Examples by 

using the TFPSD functions obtained from the records as the target TFPSD function to 

generate synthetic ground motions are also presented. 

3.5.1 Evaluation of the time-frequency representation of recorded 

ground motions 

For the numerical analysis and illustration, six records from three earthquakes listed in 

Table 3.2 are considered.  By applying DOST, the time-frequency representation of the 

records are presented in Figures 3.2 to 3.4 in terms of amplitude and phase angle of the 

DOST coefficients. 

These figures show that the amplitude of the DOST coefficient, which equals the 

square-root of the TFPSD function as mentioned earlier, varies in time and frequency.  In 

Figure 3.2, the large values of ( , )x p qDS  occur around 10 s which coincides with the 

large amplitude of the recorded ground motions.  The energy concentration around 32 s 

coincides with the second group of the large amplitudes of waves shown in the time 

history.  Such identification of energy concentration in time is lost if the ordinary Fourier 

analysis is carried out.  Also, the Figure shows that the energy concentration is around 2 

Hz.  Similarly, the time-frequency region where the energy concentration or large 
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( , )x p qDS  values are localized can be identified from Figures 3.3 and 3.4 for each 

considered record.  In other words, the energy concentration can be clearly identified by 

using DOST, although the resolution by using DOST is not as refined as those that could 

be obtained by using the S-transform which will be discussed shortly.  A comparison of 

the results presented in Figures 3.2 to 3.4 indicates that the energy distribution in time 

and frequency differs from record to record and earthquake to earthquake.  In all cases, 

no clear pattern can be identified from the plots of the phase angle of the DOST 

coefficients. 

 

Table 3.2: Selected records. 

Record Event name, and date Station name Moment magnitude 

1 Wenchuan, China 2008.05.12 Wolong 7.9 

2 Tohoku, Japan 2011.03.11 Hitachi 9.0 

3 

SMART-1, 1986.11.14 

C00 

6.10 
4 I01 

5 I02 

6 M01 
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Figure 3.2: Time and frequency varying amplitude and phase angle of the DOST 

coefficients for a record from the Wenchuan earthquake (Record 1 shown in Table 3.1). 
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Figure 3.3: Time and frequency varying amplitude and phase angle of the DOST 

coefficients for a record from the Tohoku earthquake (Record 2 shown in Table 3.1). 
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Figure 3.4: Recording sites and time and frequency varying amplitude and phase angle of 

the DOST coefficients for records from Smart-1 arrays (see Table 3.1 for the considered 

records). 
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The results presented in Figure 3.4 indicate that there are similarities of the time-

frequency representation of the closely spaced records from the same earthquake.  This 

similarity is quantified by using the coherence calculated by using Eq. (3-19).  The 

obtained lagged coherence and the phase angle are shown in Figures 3.5 and 3.6, 

respectively.  For the calculation, similar to Torrence and Compo (1998), the box window 

is used along the frequency index by considering immediate neighbouring frequency 

indices and the Gaussian window with a standard deviation of 1 is used along the time 

index by considering up to the third-order neighbours.  The plots in Figure 3.5 indicate 

that lagged coherence varies in both time and frequency.  The lagged coherence within 

the time interval of 10 to 20 s is greater as compared to those for the remaining time 

interval.  This time interval is associated with more intense ground motions as shown in 

Figure 3.4 and the region with a large amplitude of the DOST coefficients.  This 

observed trend cannot be detected based on results from the Fourier transform.  As the 

separation or frequency increases the lagged coherence decreases.  This observation is 

consistent with the results obtained based on the Fourier analysis (Harichandran and 

Vanmarcke 1986; Hao et al. 1989; Zerva 2009; Hong and Liu 2014; Liu and Hong 2016). 

Results in Figure 3.6 indicate that the phase angle of coherence varies significantly in 

time and frequency, especially as frequency increases.  However, it seems that for a very 

short separation and low frequency, the phase angle is nearly zero. 
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Figure 3.5: Estimated lagged coherence (the separation distance (d) increases from left to 

right and from the first row to second row). 

 

Figure 3.6: Estimated phase angle of coherence (the separation distance (d) increases 

from left to right and from the first row to the second row). 
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3.5.2 Simulated records for a single site 

By using the TFPSD function calculated from Eq. (3-10) for the Record shown in 

Figure 3.2 as the target TFPSD function, samples of the ground motion records are 

simulated by using Model-1 shown in Eq. (3-11) and Model-2 in Eq. (3-15).  A typical 

simulated record by using each model is shown in Figure 3.7.  These samples resemble 

well the seed record shown in Figure 3.2.  The process of simulating records is repeated 

50 times.  The DOST coefficients and the response spectrum of the simulated records are 

calculated.  The mean and coefficient of variation (COV) of 1 ( )x jDS  and the response 

spectra are shown in Figure 3.7 as well.  A comparison of the mean of 1 ( )x jDS  to the 

target presented in Figure 3.2 indicates that they are in very good agreement.  The COV 

is within about 0.5.  The plots of the response spectra of the simulated records compared 

to the response spectrum calculated by using the target record presented in Figure 3.2 

indicates that the mean of the former matches well the response spectrum of the target 

record.  A comparison of the results from Model-1 and Model-2 indicates that the 

performance of these two models is very similar and consistent.  The difference in terms 

of the mean of the TFPSD function of the simulated records by using Model-1 and 

Model-2 is practically equal to zero.  The observed variability from a simulated record to 

a simulated record is significant as can be observed from the COV of 1 ( )x jDS  and the 

standard deviation of the response spectra of the simulated records.  Such large variability 

is also observed by using the models based on SRM (Hong and Liu 2014; Liu and Hong 

2016). 

The analysis carried out for the results presented in Figure 3.7 is repeated by using the 

S(j) from the record shown in Figure 3.3 as the target.  In this case, the results are 

presented in Figure 3.8.  The observations made from Figure 3.7 are equally applicable to 

the results presented in Figure 3.8.  
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Figure 3.7: Illustration of typical simulated records, mean and coefficient of variation of 

the amplitude of the DOST coefficients and the response spectrum of the simulated 

records (S(j) from the Wenchuan earthquake record shown in Figure 3.2 is used as the 

target).  The second and third rows are based on Model-1 and Model-2, respectively. 
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Figure 3.8: Illustration of typical simulated records, mean and coefficient of variation 

(COV) of the amplitude of the DOST coefficients and the response spectrum of the 

simulated records (S(j) from Tohoku earthquake record shown in Figure 3.3 is used as the 

target).  The second and third rows are based on Model-1 and Model-2, respectively. 

 

3.5.3 Illustration of simulated records for multiple-support 

Both the proposed Model-1 and Model-2 for the case of multiple-support (see Eqs. (3-

21) and (3-22)) are used to simulate ground motions at multiple-support at site C00, I01, 

I02 and M01 illustrated in Figure 3.4.  By using the TFPSD obtained for Record 3 listed 

in Table 3.2 (i.e., 
2

1 ( )x jDS  where 1 ( )x jDS  is already presented in Figure 3.4) as the 

target TFPSD function and the lagged coherence depicted in Figure 3.5 as the target 

lagged coherence, two sets of typical simulated records are presented in Figures 3.9.  As 
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can be observed, these records mimic the records presented in Figure 3.4 that are used to 

obtain the target TFPSD function.  By carrying out the simulation 50 times using each 

model, and carrying out coherence analysis for the simulated records, the obtained means 

of the lagged coherence are presented in Figure 3.10 if Model-1 is used for simulation 

and in Figure 3.11 if Model-2 is used for simulation.  A comparison of the means shown 

in Figures 3.10 and 3.11 to the target lagged coherence shown in Figure 3.5 indicates that 

the former approximates well to the latter in both time and frequency.  Such a matching 

in time and frequency cannot be achieved based on the evolutionary stochastic process 

and SRM since, according to Priestley and Tong (1973), the lagged coherence of the 

evolutionary processes are time-independent. 

Finally, to illustrate the proposed conditional simulation approach, 1 ( )x jDS  from 

Records 3 and 4 (i.e., at Site C00 and I01 shown in Figure 3.4) are used as the 

conditioning coefficients in Eqs. (3-23) to (3-25), and samples of simulated records at 

Sites I02 and M01 identified in Figure 3.4 are simulated. A typical set of simulated 

records is illustrated in Figure 3.12, indicating that they resemble well the conditioning 

samples.  To save space, no additional statistics of the simulated records are presented. 
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Figure 3.9: Typical samples of simulated records by using Model-1 (left panel) and 

Model-2 (right panel). 
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Figure 3.10: Average of the lagged coherence calculated from 50 sets of simulated 

records using Model-1. 

 

 

Figure 3.11: Average of the lagged coherence calculated from 50 sets of simulated 

records using Model-2. 
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Figure 3.12: Typical samples of simulated ground motions at site I02 and M01 

conditioned on records at sites C00 and I01 (for the site configuration and the 

conditioning records see Figure 3.4). 

 

3.6 Enhancement for increased fidelity in the time-
frequency representation 

In this section, an approach to enhance the fidelity of time-frequency representation of 

the simulated records is proposed.  The approach relies on the use of the ST and its 

inverse, together with the two simulation models described in the previous sections. 

The results presented in Figures 3.2 to 3.4 indicate that the time-frequency 

representation obtained from DOST is relatively coarse because of the use of octave 

sampling.  This problem can be overcome by using ST defined in Eq. (3-1).  The general 

window function ( , )w f t −  suggested for the ST is (Stockewell et al. 1996; Pinnegar and 

Mansinha 2003), 

2 2

2
( , ) exp

22

f f t
w f t



 
= − 

 
. (3-26) 

where  is a parameter for the time- and frequency-dependent window. 
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Figure 3.13: Amplitude of the ST coefficients, ( , )x f S , by considering Records 1 

(left) and Record 2 (right). 

 

By applying  = 1 to Records 1 and 2 listed in Table 3.2, the obtained amplitude of the 

ST coefficients is presented in Figure 3.13.  The results indicate that they provide time-

frequency representation with higher fidelity than those shown in Figures 3.2 and 3.3 that 

are obtained from DOST.  Therefore, it is of interest to develop models such that the 

expectation of the TFPSD function of the simulated records equal to the two-sided target 

TFPSD function that can be obtained by using ST for nonstationary stochastic processes 

of interest.  To achieve this objective, first, note that the target TFPSD function, denoted 

as ( )
2

( , ) ( , ) /T TS f x f D f = S , with the corresponding amplitude of the ST 

coefficients ( , )Tx f S , could be assigned based on the TFPSD function calculated from 

a seed record or the statistics of the TFPSD function from a set of records, and by 

ensuring the energy preservation, where Dk is the energy preserving constant (Hong 

2020).  By partitioning the time-frequency domain according to DOST (see Table 3.1), 

( , )TS f   within each partition is then integrated and used as the modified target TFPSD 

function ( )TS j , where j is defined according to Table 3.1. 

Using ( )TS j  as the target TFPSD function, simulation of the nonstationary stochastic 

processes can be carried out by using Model-1 or Model-2 (i.e., Eq. (11) or (15)).  Based 
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on the derivations and numerical results given in the previous section and in Appendix A, 

it is clear that the mean of the TFPSD function of the simulated records obtained by using 

DOST equals its target but differs from ( , )TS f  .  Several options to enhance the time-

frequency fidelity of the simulated records could be explored to reduce such a difference.  

For example, as Option-A, one could apply ST to the simulated i-th record, xi(tk), leading 

to ( , )ix f S  and its corresponding ( )
2

( , ) ( , ) /i iS f x f D f = S .  By simulating a 

number of records xi(tk), the average of ( , )iS f   of the simulated records, ( , )ESS f  , can 

be evaluated.  By scaling ( , )ix f S  using ( , ) / ( , )T ESS f S f   and using the scaled 

value in Eq. (3-2), the enhanced i-th simulated record is obtained.  A flowchart 

illustrating this procedure is depicted in Figure 3.14.  This can be expressed in the 

following mathematical form, 

( )( ) ( , ) / ( , ) ( ) from Eq. (11) or Eq. (15)k T ES i kx t IST S f S f ST x t  =  
, (3-27) 

where  denotes the point by point multiplication in f- domain, and ST and IST denote 

the ST and inverse ST.  As Option-B, one may iteratively apply Option-A such that the 

time-frequency representation of the (finally) simulated record is within a specified 

tolerance of the target TFPSD function. 

To illustrate the adequacy of using Option-A to simulate records, consider that the 

target TFPSD can be assigned based on those obtained from Record 1 or Record 2, where 

the amplitude of the ST coefficients of these two records is already shown in Figure 3.13.  

Using the target TFPSD function and considering the time-frequency partition according 

to DOST, ST(j) is calculated and shown in Figure 3.13.  Following the flowchart depicted 

in Figure 3.14 (i.e., Eq. (3-27)), records are simulated.  Typical sampled records, the 

means of the amplitude of ST coefficients of simulated records, and response spectra of 

the simulated records are also presented in Figure 3.15 by considering both Model-1 and 

Model-2.  The match to the response spectrum of Record 1 and Record 2 is improved as 

compared to those shown in Figures 3.7 and 3.8.  Most importantly, the average time-

frequency representation of the simulated records shown in Figure 3.15 agrees well with 

their corresponding target shown in Figure 3.13. 
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Figure 3.14: Flowchart to simulate ground motions at a site for given target TFPSD 

function obtained based on ST. 

 

A final point that deserves discussion is whether the simulated records following the 

flowchart shown in Figure 3.14 is Gaussian.  As mentioned earlier, the direct use of 

Model-1 and Model-2 results in the simulated records to be Gaussian.  However, after 

adjustment according to Eq. (3-27), it is unknown if such property still holds since the 

theoretical proof is unavailable at present.  However, by collecting the samples, at 

selected times, of simulated records corresponding to the numerical analysis carried out 

for Figure 3.15, their empirical probability distributions are plotted on the normal 

probability in Figure 3.16.  The plots suggest that the samples could be considered as 

Gaussian. 

Although the possible extensions similar to Option-A to simulate ground motions at 

multiple-support and the assessment of the adequacy of using Option-B are of interest, 

they are left for a future investigation. 
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Figure 3.15: Calculated ST(j), typical sampled records, mean of amplitude of ST 

coefficients, and response spectrum of simulated records according to Option-A.  The left 

and right panels are by considering Records 1 and 2, respectively. 
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Figure 3.16: Empirical probability distributions of simulated samples at several selected 

times presented on the normal probability paper. 

 

3.7 Conclusion 

Two new time-frequency spectral representation models to simulate ground motions at 

single or multiple sites are proposed.  The models are developed based on time-frequency 

representation obtained from the discrete orthonormal S-transform.  They consider time-

frequency dependent coherence and can be easily understood by drawing the parallel of 

the proposed models to those well-known models developed based on the (Fourier) 

spectral representation method.  The models explicitly consider amplitude modulation 

and frequency modulation functions that are embedded in the time-frequency spectral 

representation.  One of the models explicitly emphasizes the role of the random phase 

angle in modeling the nonstationary stochastic processes while the other brings out 

explicitly the uncertainty in the processes through the random amplitudes associated with 

the real and imaginary parts of the orthonormal basis functions.  The formulation to 

conditionally simulate multi-support seismic ground motions is also given based on the 

proposed model with uncertain amplitudes.  As can be observed from the formulation of 

the proposed models, their use is no more sophisticated or difficult than that of the 

models based on the well-known spectral representation method. 
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Numerical analysis carried out by using the proposed model indicates that the models 

can be successfully implemented to simulate nonstationary ground motions for a given 

target TFPSD function.  Overall, the average time-frequency representation and response 

spectrum of the simulated records are in agreement with those of the targets. 

A drawback of using the DOST is that the time-frequency resolution obtained from 

DOST is coarser than that obtained by using the S-transform.  An enhancement of the 

proposed models to simulate ground motions at a site by incorporating the information 

obtained from the S-transform is also presented (see Eq. (3-27)).  Numerical results 

indicate that such an extension could improve the simulated records to match the target 

response spectrum. 

3.8 Data availability statement 

The records shown in Table 3.2 are extracted from http://www.csmnc.net; 

http://www.kyoshin.bosai.go.jp and the Data Management Center for Strong Motion 

Seismology of the Institute of Earth Science (IES), Taiwan.   
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Chapter 4  

4 A time-frequency representation model for seismic 
ground motions 

4.1 Introduction 

Reliability analysis and risk modelling of structures subjected to seismic loading 

require the use of a large number of ground motions with various specific seismic 

scenarios.  As the number of historical ground motion records are limited and cannot 

always match the given scenarios, simulated ground motion records are used.  For the 

simulation, the ground motion is treated as a nonstationary stochastic process.  A popular 

stochastic model is based on the evolutionary theory (Priestley 1965), assuming that the 

nonstationary stochastic process can be obtained by applying a slowly-varying amplitude 

modulation function to a stationary stochastic process defined by a power spectral density 

(PSD) function.  A process modeled in such a manner is characterized by the 

evolutionary PSD (EPSD) function that is a function of the amplitude modulation 

function.  A realization of the evolutionary stochastic process can be simulated using the 

spectral representation method (SRM) (Shinozuka and Jan 1972; Shinozuka and Deodatis 

1991; Liang et al. 2007).  Models of the EPSD function that depends on the seismic 

source and site characteristics were developed in Sabetta and Pugliese (1996) and Pousse 

et al. (2006).  For the assessment of the EPSD function, they used the short-time Fourier 

transform (STFT), as suggested by Priestley (1965).  A well-known drawback of STFT is 

that its application is associated with energy leakage.  A narrow-width window results in 

a better resolution in the time domain but a reduced resolution in the frequency domain, 

and vice versa (Cohen 1995).  In addition, STFT could provide good time resolution at 

high frequency or good frequency resolution at low frequency but not both since it uses 

fixed window length. 

Yeh and Wen (1990) (Grigoriou et al. 1988) applied the time transformation to take 

into account potential time-varying frequency, resulting in the ground motion record that 

is characterized by a time-frequency dependent PSD function, which should not be 

treated as a time and frequency dependent amplitude modulation function in the context 
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of SRM.  This was illustrated in Hong (2016) for the amplitude and frequency modulated 

nonstationary process.  Modelling of ground motions with time transformation was also 

considered in Alamilla et al. (2001), and a set of model parameters for the power spectral 

density (PSD) function and for time transformation was developed based on Mexican 

ground motions.  These parameters are functions of magnitude and epicentral distance.  

Other models used to model and simulate the nonstationary stochastic ground motions 

with time-varying amplitude and frequency include the use of superposition of multiple 

evolutionary processes (Conte and Peng 1997; Vlachos et al. 2018), the application of 

wavelet packet transform (Yamamoto and Baker 2013), the use of a modulated, and 

filtered white noise (MFW) process with the time- and frequency-varying characteristics 

of the filter (Rezaeian and Der Kiureghian 2010), and the use of the time-frequency 

spectral representation method (TFSRM) (Cui and Hong 2020; Hong and Cui 2020) 

which is based on the combined use of the S-transform (ST) and discrete orthonormal S-

transform (DOST) (Stockwell et al. 1996; Pinnegar and Mansinha 2003; Stockwell 

2007). 

If the ground motions are represented by the superposition of multiple evolutionary 

processes, the number of parameters for the model increases as the number of the 

evolutionary processes increases.  For example, the model reported in Vlachos et al. 

(2018) involves 18 model parameters.  The use of the wavelet package transform, which 

provides a time-scale representation, overcomes the coarse time-scale representation 

obtained from the discrete wavelet transform. However, it is still a discrete 

representation.  The model proposed in Yamamoto and Baker consists of 13 model 

parameters.  The MFW model is very adaptive, and the identification of the model 

parameters can be carried out directly in the time domain.  However, the selection of the 

time-varying functional forms for the filter is not a straightforward task for practical 

applications.  Simplifying assumptions, such as that the time-varying frequency of the 

filter is a linear function of time and the damping ratio for the filter can be considered as 

constant, may be assumed to reduce the number of required model parameters (Rezaeian 

and Der Kiureghian 2010).  The combined use of ST and DOST to model and simulate 

the nonstationary stochastic process is a new technique; it takes advantage of the high 

fidelity of time-frequency representation of ST and the orthogonal property of the basis 
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functions in DOST.  However, the development of a model of the TFPSD function based 

on ST for the scenario seismic events has not been reported. 

ST is viewed as a hybrid of continuous wavelet transform and STFT (Stockwell et al. 

1996; Pinnegar and Mansinha 2003).  It combines the good features of STFT and 

continuous wavelet transform; it can be interpreted as an STFT but with a frequency-

dependent sliding window or as a phase-corrected continuous wavelet transform.  It 

provides the time and frequency representation with the phase angle that has the 

interpretation consistent with the Fourier transform.  The use of ST leads to both good 

time resolution at high frequency and good frequency resolution at low frequency.  

DOST is an efficient transform that localizes the spectrum and retains the advantageous 

phase properties of the S-transform (Stockwell 2007).  Both ST and DOST are widely 

used for signal and image processing.   

In this study, a model for the TFPSD function for scenario seismic events and site 

conditions is proposed.  The proposed model requires 10 model parameters, where the 

regression equations for the model parameters are obtained by considering both the inter- 

and intra-event variability.  The proposed model is developed based on 1504 historical 

records.  In the next sections, a brief description of ST and DOST is given, and the newly 

developed simulation model based on ST and DOST is summarized.  The criteria used to 

select records and the characteristics of the selected records used to develop the model 

are given, and the procedure used to assess the model parameters as well as the resulting 

model parameters are then presented.  This is followed by an illustration of using the 

proposed model to simulate ground motions and by a comparison of the pseudo-spectral 

acceleration obtained from the simulated ground motions obtained using the proposed 

model to that predicted by using several ground-motion models (GMMs) from NGA-

West2 (Ancheta et al. 2014) and to that of the considered actual records used in this 

study.   
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4.2 Time-frequency representation and simulation of 
ground motions using S-transform and discrete 
orthonormal S-transform 

4.2.1 Time-frequency representation using S-transform 

Given the ground motion record component x(t), the ST application of ST (Stockwell 

et al. 1996) results in, 

( ) 2( , ) ( ) ( ) ( , ) i ftx f ST x t x t w f t e dt 



−

−

= = −S , (4-1) 

where ST( ) denotes the S-transform, 1i = − , ( , )x f S  denotes the ST coefficient of x(t), 

providing a time-frequency representation; f and  are the frequency and time similar in 

the Fourier transform; and  is the center of the window function ( , )w f t −  defined by, 

2 2

2

( )
( , ) exp

22

f f t
w f t






 −
− = − 

 
, (4-2) 

in which  is a parameter for the transformation and can be taken equal to one.  The 

inverse ST (IST), denotes as IST( ), can be expressed as, 

( ) 2( ) ( , ) ( , ) i ftx t IST x f x f d e df  

 

− −

 
= =  

 
 S S . (4-3) 

For computational efficiency, the discrete version of Eqs. (4-1) and (4-3) for 

discretized x(t) sampled with sampling interval T, can be expressed as (Yan and Zhu 

2011; Battisti and Riba 2016), 
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2 2 21
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p q j p

j p
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x f x f e
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 
= −  

 
S , (4-4) 

and, 



71 

 

( ) ( , )
pj f p q

q

x t IFFT x f 
 

=  
 
 S , (4-5) 

where ( )
1

2

0

ˆ ( ) p j

N
i f t

p j

j

x f x t e


−
−

=

=   or ( )ˆ( ) ( )
jp t jx f FFT x t=  is the Fourier coefficient of x(t); 

j Tt j= ; / ( )p Tf p N= ; 0,1,..., 1p N= − ; 
q Tq = ; 0,1,..., 1q N= − ; 

( ) ( )( )2 2 2 2ˆ( , ) exp 2 /
jp q f p j j px f IFFT Nx f f f  += −S ; and FFT( ) and IFFT( ) denote the 

FFT and the inverse FFT of its argument. 

The single-sided TFPSD function of x(t) can be defined as (Hong and Cui 2019; Hong 

2020), 

*( , ) ( , )
( , ) 2  ,   0x

x f x f
S f f

D f

 
 = S S

S , (4-6) 

where ( )( )2
exp 2 ( 1)

d
D


 





−

= − −  is a constant that can be evaluated numerically 

and is well approximated by 
21/ 4  (its use leads to a relative error less than 1.4% for 

 = 1 since the numerical integration leads to a value of 0.286); the superscript * denotes 

the complex conjugate.  Throughout the present study,  = 1 is considered.  The use of 

Eq. (4-6) ensures the energy conservation, that is, 

2

0 0 0

( ) ( , )

T T

T xE x t dt S f d df 

  
= =  

 
   S  (4-7) 

where ET denotes the total energy and T is the duration of x(t).  It must be emphasized 

that *( , ) ( , )x f x f S S  must not be treated as the amplitude modulation function in the 

context of SRM since the use of *( , ) ( , )x f x f S S  is not energy preserving.  Although 

( , )xS f S  could be used in SRM, however, in such a case, it cannot be used to simulate 

the time-dependent incoherent ground motions at multiple sites - a point that was already 

extensively discussed in Hong and Cui (2020).  For this reason and to maintain the 
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consistency of using ST, TFSRM (Cui and Hong 2020; Hong and Cui 2020) rather than 

SRM is to be used to simulate ground motions for a given ( , )xS f S  in the following. 

An illustration of the ST coefficients, TFPSD function, and ET for a record component 

(E-W component recorded at Tarzana - Cedar Hill in the 1992 Landers earthquake) 

shown in Figure 4.1 is given in the same figure.  As can be observed from the figure, ST 

can be used to characterize complex ground motions in the time and frequency domain.  

In the same figure, the time histories of the displacement and velocity corresponding to 

the actual ground acceleration record are presented. 

 

 

Figure 4.1.  a) The actual record and its corresponding velocity and displacement time 

histories; b) the amplitude of ST coefficients of the record; c) the TFPSD of the record. 

 

4.2.2 Simulation model and algorithm 

Since ST, similar to the continuous wavelet transform, provides an inefficient 

redundant representation, a simple and efficient model by directly using IST to simulate 

ground motions for a given TFPSD function is unavailable.  However, by taking 

advantage of the orthogonal basis in discrete orthonormal S transform (DOST) 

(Stockwell 2007), the procedure to simulate the records based on TFSRM (Cui and Hong 

2020; Hong and Cui 2019) for a given target TFPSD function are shown in Figure 4.2.  

More specifically, the steps are as follows:  
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a) Discretize the time-frequency space of the TFPSD function in cells according to the 

time and frequency localization of DOST.  The indices p and q for the center of a 

frequency band fp = p/(N), and the time localization tq = q, are selected based on 

octave sampling (Stockwell 2007), where for the octave number m, 
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2

2 1

 0;  0;  1 , for 0
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p q

m N

m

m

− −

 =


=

= − −


+

, (4-8) 

 where  indicates the width of the frequency band centred at the frequency indexed by 

p.  An illustration of using the calculated ( , )xS f S  presented in Figure 4.1 as the 

target TFPSD function to evaluate ( , )x p pS f DS  is presented in Panels a) and b) in 

Figure 4.2 

b) Let ( , )x p pS f DS  denote the integral of ( , )xS f S  for the (p, q)-th cell, and sample NT 

records according to, 

 
( , )

[ ]
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j k x p p k p p

all p q

x t S f D t f k N

  = = −  DS , (4-9) 

 where ( )j kx t , j = 1, …, NT, denotes the j-th simulated record, ( , )p q  are independent 

and uniformly distributed between 0 to 2, and 
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=

−
, (4-10) 

 are the orthonormal basis functions for DOST.  An illustration of the simulated record, 

according to Eq. (4-9), is presented in Panel c) in Figure 4.2 by considering NT = 100. 

c) As DOST provides a relatively coarse time-frequency representation, the j-th 

simulated record is adjusted for increased fidelity using, 



74 

 

 ( )( ) ( , ) / ( , ) ( ) from Eq. (9)j k x ES j kx t IST S f S f ST x t  =
 S , (4-11) 

 where  denotes the point by point multiplication in the f- domain and ( , )ESS f   

represents the average of the TFPSD function of the NT simulated records in Step b).  

For illustration purposes, the adjusted record, according to Eq. (4-11), is depicted in 

Panel d) in Figure 4.2.  

 

 

Figure 4.2.  Procedure of simulating records by using TFSRM. 



75 

 

 

As can be observed from Figures 4.1 and 4.2, ( , )x p pS f DS  is coarser than ( , )xS f S , 

and the sampled records resemble closely the record used to calculate ( , )xS f S .  To 

show the adequacy of this simulation method, 100 records are sampled by following the 

above steps with the target ( , )xS f S  as shown Figure 4.1.  A typical simulated record 

and its corresponding velocity and displacement time histories are illustrated in Figure 

4.3.   Since a sample-to-sample comparison of a stochastic process is not relevant, the 

peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral 

acceleration (PSA), Arias intensity (AI) and zero-crossing rate for each of the sampled 

records are calculated.  The obtained statistics of the samples are presented in Figure 4.3 

and compared with those corresponding to the seed record depicted in Figure 4.1.  In all 

cases, the average values of PGA, PGV, PSA, AI, and zero-crossing rate follow closely 

to their targets.  The slight differences between the mean of PGA and the seed record and 

mean of PGV to the seed record are attributed to the use of only 100 samples and the 

possible non-Gaussian effect.  The latter is because the TFSRM, similar to the well-

known SRM, generates the Gaussian process while the seed record is may not be 

Gaussian.  In fact, by normalizing x(tj) of the seed record to its uniform amplitude 

modulation function that is obtained according to the evolutionary theory (Priestley 

1965), the kurtosis coefficient of the normalized values equals 2.87, which deviates from 

3.0 that corresponds to a Gaussian process.  To further illustrate the TFSRM, the same 

analysis is carried out for the E-W record component recorded at Salton City in the 1992 

Big Bear-01 earthquake.  This record component having a kurtosis coefficient of 2.53 is 

shown in Figure 4.4.  The obtained results are also presented in Figure 4.4, indicating that 

the observations made to Figure 4.3 are equally applicable to these results.  In all cases, 

the close match of the PSA, AI, and zero-crossing rate validates the usefulness of 

TFSRM for engineering applications. 
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Figure 4.3.  a) A sample of simulated record and its velocity and displacement time 

histories; b) the statistics of PGA and PGV, c) PSA, d) AI and e) zero crossing rate of a00 

simulated records to their corresponding targets.  The seed or target record is shown in 

Figure 4.1. 
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Figure 4.4.  a) A historical record (i.e., seed rcord) and its velocity and displacement time 

histories; b) its TFPSD; c) a sample of simulated record and its velocity and displacement 

time histories; d) statistics of PGA and PGV, e) PSA, f) AI and g) zero-crossing rate of 

the 100 simulated records to their corresponding targets. 

 

4.3 Historical horizontal ground motion record components 
used to develop the TFPSD function 

The PEER NGA-West2 database contains a large number of ground motion records.  

The database included records from different earthquake types, source parameters, and 
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recording sites.  For most cases, the three commonly used seismic source parameters and 

site condition, that are the earthquake moment magnitude M, the rupture distance (i.e., 

the closest distance from the recording site to the fault area) Rrup, and the shear-wave 

velocity of the top 30 m of soil at the site VS30, are available for each record.  It is noted 

that the criteria used to select the records to develop ground motion models vary by 

different studies (Sabetta and Pugliese 1996; Alamilla et al. 2001; Pousse et al. 2006; 

Rezaeian and Der Kiureghian 2010; Yamamoto and Baker 2013; Vlachos et al. 2018).  

The criteria adopted for selecting records in the present study are: 

1) M is greater than 4.5 and Rrup is between 10 and 300 km so to exclude the low-

intensity records and the near-fault records; 

2) VS30 is between 180 m/s and 1500 m/s so to represent the site Classes B, C and D only 

as defined by UBC (1997); and, 

3) Only free-field records from strike-slip fault earthquakes, which are considered as 

mainshocks, are included if there are at least five records from the same event. 

The application of the above criteria resulted in 1504 records, each with two horizontal 

components.  These records are from 31 events, as indicated in Table 4.1.  The 

distribution of M and Rrup associated with the selected records is depicted in Figure 4.5.  

Each record component is plotted, inspected, and baseline corrected.  Before each record 

component is used, the segments of the record component with the first 0.5% and the last 

0.5% of ET are removed to eliminate the padded zeros from the processing and some non-

earthquake noise. 
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Table 4.1.  Summary of the selected records and their corresponding events. 

Earthquake Name Year Magnitude No. of pairs of records 

"Coyote Lake" 1979 5.74 5 

"Imperial Valley-06" 1979 6.53 16 

"Imperial Valley-07" 1979 5.01 8 

"Livermore-01" 1980 5.80 13 

"Morgan Hill" 1984 6.19 19 

"Chalfant Valley-02" 1986 6.19 10 

"Superstition Hills-02" 1987 6.54 7 

"Landers" 1992 7.28 65 

"Big Bear-01" 1992 6.46 37 

"Kobe Japan" 1995 6.90 16 

"Kocaeli Turkey" 1999 7.51 22 

"Duzce Turkey" 1999 7.14 15 

"Hector Mine" 1999 7.13 69 

"Yountville" 2000 5.00 20 

"Big Bear-02" 2001 4.53 40 

"Mohawk Val Portola" 2001 5.17 6 

"Gulf of California" 2001 5.70 12 

"CA/Baja Border Area" 2002 5.31 8 

"Gilroy" 2002 4.90 34 

"Nenana Mountain Alaska" 2002 6.70 35 

"Denali Alaska" 2002 7.90 249 

"Big Bear City" 2003 4.92 67 

"Chi-Chi Taiwan-04" 1999 6.20 226 

"Landers" 1992 7.28 8 

"Hector Mine" 1999 7.13 43 

"Bam Iran" 2003 6.60 21 

"Parkfield-02 CA" 2004 6.00 64 

"Molise-01 Italy" 2002 5.70 12 

"El Mayor-Cucapah Mexico" 2010 7.20 279 

"Joshua Tree CA" 1992 6.10 5 

"Darfield New Zealand" 2010 7.00 73 
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Figure 4.5.  Distribution of M and Rrup of selected records.  

 

4.4 Development of the model for the TFPSD function 

4.4.1 Time-frequency analysis of ground motions 

To develop a probabilistic model of ( , )xS f tS  based on a set of ground motion 

records, first, the normalized TFPSD function ( , )xS f S , denoted as 0 ( , )xS f S , is 

evaluated for each record component, 

0 ( , ) ( , ) /x x TS f S f E =S S , (4-12) 

An illustration of the calculated 0 ( , )xS f S  for the record component depicted in Figure 

4.1 is shown in Figure 4.6a.  The PSD function (i.e., integral of ( , )xS f S  over the time) 

equals the integral of ( , )xS f S  over the time, and the time-varying envelop function A() 

is defined as the square-root of the integral of ( , )xS f S  over the frequency.  The 

calculated SA and A() are presented in Figures 4.6b and 4.6c.  
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Figure 4.6.  Time-frequency characteristics of the record component shown in Figure 4.1: 

a) Calculated normalized TFPSD function, b) the time-varying envelop function A(), c) 

the PSD function, d) 0 ( )  , e) 1 0( ) / ( )    , and f) 2 0( ) / ( )    . 

 

To see the time-varying characteristics of the signal x(t), moments of 0 ( , )xS f S  over 

the frequency domain for a given time  can be evaluated,  

0( ) ( , ) , 0,1,2;j

j xf S f df j  = = S  (4-13) 

where ( )j   denotes the j-th moment of the normalized TFPSD function.  0 ( )   

represents the distributed energy in time; its square-root value represents the time-varying 

envelop function of the process.  1 0( ) / ( )     and 2 0( ) / ( )     represents the first and 

second moments of 
0 0( , ) / ( )xS f   S , respectively, where the use of this normalization 

ensures that the area under the curve 
0 0( , ) / ( )xS f   S  for a given value of  equal to 

unit.  The normalization facilitates the selection of a parametric model for 

0 0( , ) / ( )xS f   S  since it may be interpreted as a probability density function, and many 

of the well-known probability density functions can be considered as the candidate 

parametric model, where the model fitting can be facilitated by using the method of 
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moments or the maximum likelihood method.  For example, by considering 0 ( , )xS f S  

shown in Figure 4.6a, the calculated 0 ( )  , 1 0( ) / ( )     and 2 0( ) / ( )     are shown in 

Figures 4.6d to 4.6f, respectively.  The plots indicate that the variations in time for all 

three parameters are significant.   

Several probability density functions are considered as the candidate models to fit 

0 0( , ) / ( )xS f   S
, and it was found that the lognormal model provides a better fit.  The 

choice of the lognormal model is further justified since it was shown in Sabetta and 

Puliese (1996) and in Pousse et al. (2006) that it can be adequate but for the far-field 

ground motions.  By adopting the lognormal model,  

2
2

0 ( ) ln ln ( ) ( ) / 21
( , ) exp

2 ( )2 ( )

T c
x

E f F
S f

f

    


  

  − +
 = −  
   

S , (4-14) 

where 

2 2( ) ln[1 ( ) / ( )]b cF F   = + , (4-15) 

( )
1/2

2

2 0 1 0( ) ( ) / ( ) ( ) / ( )bF t         = −
 

, (4-16) 

and 

1 0( ) ( ) / ( )cF     = , (4-17) 

These model parameters can be obtained based on regression analysis.  As mentioned 

earlier that the developed model for ( , )xS f S  cannot and must not be used in the context 

of SRM because the evaluation ( , )xS f S  included both the frequency modulation and 

the amplitude modulation. 

0( )   could be viewed as the squared amplitude modulation function.  A preliminary 

analysis indicates that it could be as, 
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0 ( ) ( ) /h T  = , (4-18) 

where 

2
1

( ) exp ln
2 12 (1 )

h
 

  
 

  
= − +  

−−    

, (4-19) 

where ( )= / T   =  represent the normalized time; T is the duration of the record;  and 

 are the model parameters, and the mathematical form for h(v) is the Johnson SB 

distribution (Hahn and Shapiro 1967).  The parameters  and  can be determined by 

carrying out regression analysis.  An illustration of such a fitting is depicted in Figure 

4.6a.  The results presented in the figure indicates that the use of the model shown in Eq. 

(4-18) can adequately represent the energy distribution in time.  The Johnson SB 

distribution is flexible and can approximate well the lognormal and gamma distributions, 

which were used to model 0 ( )   in Sabetta and Pugliese (1996) and Rezaeian and Der 

Kiureghian (2010).  Also, the mathematical model 
0( )   only requires three parameters 

(i.e., , , T).  This number of parameters is the same as that used for the models 

considered in Sabetta and Pugliese (1996) and Pousse et al. (2006), and Rezaeian and Der 

Kiureghian (2010) but less than that used for the models considered in Alamilla et al. 

(2001) and Vlachos et al. (2016). 

Let P denote the time at which the cumulative energy of the record component equals 

fraction P of the total energy.  By definition, /P Pv T= .  Since the energy distribution in 

v is modeled using the Johnson SB distribution, it can be shown that 

( ) ( ) 1 1exp ( ) / / 1 exp ( ) /Pv P P     − −   = − + −    , (4-20) 

where 
-1( ) •  is the inverse cumulative normal distribution function.  To find regression 

models for , , T as functions of seismic source and site characteristics, it is noted that 

the effective duration of ground motion defined as D = 0.95 - 0.05 is often used in the 

literature (Trifunac and Brady 1975).  Therefore, if a value of D can be determined from 



84 

 

a regression model, by definition T can be calculated from, 

0.95 0.05/ ( )T D  = − , (4-21) 

The assessment of the predicting models for , , and D is to be discussed shortly.  

By using the values of 1 0( ) / ( )     and 2 0( ) / ( )     such as those shown in Figure 

4.6, it was found that Fc() and Fb() could be approximated by using, 

1 2 3( ) exp[ / ]bF b b T b = − + , (4-22) 

and, 

1 2 3( ) exp[ / ]cF c c T c = − + , (4-23) 

where cj and bj (j = 1, 2, 3) are model parameters that can be determined based on the 

regression analysis.  These considered models are slightly more sophisticated than those 

used by Sabetta and Pugliese (1996), which assumed Fb and Fc as linear functions of 

time.  

However, an analysis aimed at developing a set of predicting equations for ci and bi 

was unsuccessful by considering the records described in Table 4.1 because of very large 

scatter associated with some of the predicting equations.  As an alternative, values of 

Fb(0), Fb(T), Fc(0) and Fc(T), denoted with simplified notations 
,0bF , 

,b TF , 
,0cF  and 

,c TF , 

respectively, are calculated using the model shown in Eqs. (4-22) and (4-23) fitted to 

each record component.  Moreover, the ratios defined as, 

(0) ( / 2)
,  for  or 

(0) ( )

y y

y

y y

F F T
r y b c

F F T

−
= =

−
 (4-24) 

are calculated based on the fitted model as well for each record component.  As will be 

shown that the six parameters ci and bi can be determined for given values of 
,0bF , 

,b TF , 

,0cF , 
,c TF , rb, and rc. 
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Before developing predicting equations for (
,0bF , 

,b TF , 
,0cF , 

,c TF , rb, rc), a statistical 

analysis of rb and rc is carried out.  By presenting the samples of rb and samples of rc 

obtained from all the considered record components in empirical distribution form as 

shown in Figure 4.7, it was observed that rb and rc are between 0.495 and 0.505 for about 

less than 20% of the cases, and rb and rc are less than 0.495 for about less than 0.2% of 

the cases.  Note that because of the adopted model shown in Eqs. (4-22) and (4-23), 

values of rb and rc cannot be exactly equal to 0.5 since rb or rc = 0.5 corresponds to the 

linear model.  As rb equal to 0.5 and rc equal to 0.5 imply that Fc() and Fb() can be 

adequately approximated by a linear function, respectively, this suggests that only for 

about less than 20% of all the considered record component, Fb() and Fc() could be 

approximated well by linear functions.  The cases for rb or rc that are less than 0.5 

correspond to when Fb() and Fc() are increase functions of .  The cases for rb > 0.5 or 

rc> 0.5 correspond to when Fb() and Fc() are decreasing functions of .   

 

 

Figure 4.7.  Empirical cumulative distribution of the ratios rb and rc. 
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Figure 4.8.  rb and rc versus of M, Rrup or VS30. 

 

To investigate whether rb and rc are functions of M, Rrup or VS30, plots of rb and rc 

versus of M, Rrup or VS30 are presented in Figure 4.8.  These plots show that there are no 

clear trends that can be used to develop predicting models for rb and rc as functions of M, 

Rrup or VS30.  Consequently, in the remaining part of the present study, it is assumed that 

rc and rb can be treated as random variables and independent of M, Rrup or VS30.  More 

specifically, the following quantile functions, 

0.5 0 0.195

( )    ln 0.500 2.965
0.195 1

2.465

b

P

r P P P
P

 


= − +
 



, (4-25) 

and, 

0.5 0 0.162

( )    ln 0.741 4.138
0.162 1

4.879

c

P

r P P P
P

 


= + +
 



, (4-26) 

are used to model rb and rc, where rb(P) is quantile function of rb, rc(P) is the quantile 
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function of rc, and P denotes the probability (values of P in Eqs. (4-25) and (4-26) can 

differ).  The adequacy of the quantile functions are illustrated in Figure 4.7.  The linear 

correlation coefficient between rb and rc equals to 0.44, which is small.  rb and rc are 

assumed to be independent in the following. 

Given values of (
,0bF , 

,b TF , rb), if rb is not equal to 0.5, bj, j = 1, 2, and 3, can be 

calculated using, 

2 2

,0 ,

1

,0 ,

( )
,

(2 1)( )

b b b T

b b b T

r F F
b

r F F

−
=

− −
 (4-27) 

2

1
2ln ,b

b

r
b

r

 −
= −  

 
 (4-28) 

and, 

2

,0 , ,0

3

,0 ,(2 1)( )

b b T b

b b b T

F F F
b

r F F

−
=

− −
, (4-29) 

The model shown in Eq. (4-22) is then defined.  If rb equals 0.5, Eq. (4-22) is replaced by 

the following linear model. 

,0 ,0 ,( ) ( ) /b b b b TF F F F T = − − , (4-30) 

Similarly, cj, j = 1, 2, and 3, can be calculated by using Eqs. (4-27) to (4-30) but with c 

replaced by b. 

In summary, there are 10 model parameters for the proposed model shown in Eq. (4-

14).  Two parameters (rb and rc) are already models using Eqs. (4-25) and (4-26), the 

remaining 8 parameters, which is included in the 8×1 vector X, where X = (ET, D, , , 

,0bF , 
,b TF , 

,0cF , 
,c TF )T, the superscript denotes the transpose, and the j-th element in X, 

Xj, represents the j-th parameter in the vector.  The total number of parameters is 

comparable or less than that for the models proposed in Sabetta and Pugliese (1996), 

Alamilla et al. (2001), and Pousse et al. (2006), Rezaeian and Der Kiureghian (2010), and 



88 

 

Vlachos et al. (2018).  According to the above, the values of these eight model 

parameters for each record can be calculated by: 

a) Applying ST to x(t) as shown in Eq. (4-4) but using the FFT; 

b) Calculating the TFPSD function according to Eq. (4-6), and evaluate ET using Eq. (4-

7), effective duration D, and ( )j  , 0,1,2j = , 

c) Fitting model shown in Eq. (4-18) to the calculated 0 ( )   to find  and ; and, 

d) Fitting the model Fc() and Fb() defined by Eqs. (4-22) and (4-23) to the values of 

Fc() and Fb() calculated according to Eqs. (4-16) and (4-17), and calculate 
,0bF , 

,b TF

, 
,0cF , 

,c TF , rb and rc (the modelling of rb and rc is already presented in the above). 

4.4.2 Development of predicting equations for the model 

parameters 

By carrying out the analysis described in Steps a) to d) for each record component, the 

samples of X are obtained.  These samples are used to develop predicting equations for X 

as functions of M, Rrup, and VS30.  For the development, first, a distribution fitting for 

each Xj is carried out.  It was observed that they do not always follow a normal 

distribution, as shown in Figure 4.9.  The probabilistic models shown in the figure for 

each parameter Pj are selected based on the Akaike information criterion (AIC and AICc) 

(Akaike 1970; Burnham and Anderson 2002) and by considering several commonly used 

probabilistic distribution models as candidate models.  The plots shown in the figure 

show that the selected distribution models provide a good fit to the empirical data for the 

model parameters.  The equations and model parameters of the fitted distributions are 

shown in Table 4.2. 
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Table 4.2.  Fitted distribution parameters for the probability distribution models shown in 

Figure 4.8. 

Distribution 
Probability density function of X, f(x) 

X Fitted model 

parameters 

Lognormal 

2

2

1 (ln )
exp

22

x

x



 

 −
− 

 
, 

ET ( ) = (6.73, 2.35) 

 ( ) = (0.18, 0.23) 

Truncated 

lognormal 

2

2

1 (ln )
exp

22
,  

ln ln

x

x
L x U

U L



 

 
 

 

 −
− 

 
 

   − −
−   

   

, D 
(  L, U) = 

(3.38, 0.63, 2.5, 150). 

Johnson SU 

2

1

2

1
exp sinh

2

2
1

x

x


 



  



−
   −
 − +      

 −
+  

 

,  

(   ) = 
(-3.53, 2.72, -1.21, 

1.28) 

Weibull 

1 2

exp
x x




  

−     
−         

, Fb,0 ( ) = (6.56, 2.87) 

Gamma 
11
exp

( )

x
x

   

−  
− 

 
, 

Fb,T ( ) = (2.18, 1.27) 

Fc,0 ( ) = (5.45, 1.10) 

Frechet 

1 1
1

1
exp 1 1

x x  
 

  

− − − 
   − − − + +        

 

, Fc,T 
(  ) = 

(0.38, 0.80, 1.42) 
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Figure 4.9.  Cumulative distribution of each parameter and their corresponding fitted 

cumulative probability distribution function. 

 

To develop the predicting equations, similar to others (e.g., Rezaeian and Der 

Kiureghian 2010; Vlachos et al. 2018), first, the random variables Xj are mapped to the 

normal space based on their marginal probability distribution functions.  The multivariate 

regression analysis is then carried.  More specifically, the value of Xj, xj, is mapped to the 

normal space using, 

1[ ( )]j j jz F x−= , (4-31) 

where ( )jF •  represents the fitted cumulative probability distribution function of Xj and 

1[ ]− •  is the inverse of the standard normal distribution function, and zj is the value of 

the standard normally distributed random variable Zj. 

In the normal space, it is considered that the predicting equations can take the 

following mathematical forms, 

,1 ,2 ,3 ,4 30

,1 ,2 ,3 ,4 30

ln ln , for 1,2

ln( ) ln , for 3,...,8

j j j rup j S j

j

j j j rup j S j

a a a R a V j
Z

a a a R a V j





M

M M

+ + + + =
= 

+ + + + =
, (4-32) 
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where aj,k, k = 1,…, 4, are the model coefficients of Zj, and j are zero-mean residuals.  

The residual j equals the sum of the zero-mean interevent residual j and intraevent 

residual j with their standard deviation represented by j and j, respectively.  The 

mathematical forms considered are typical of those used to develop simple GMMs.  The 

consideration of the spatial correlation (Goda and Hong (2008) and residuals that depend 

on M, Rrup or VS30 (e.g., Boore et al. 2014) are beyond the scope of the present study.  

This simplified treatment is consistent with the model development discussed in the 

introduction section.  For the regression analysis, the restricted maximum likelihood 

method (REML) implemented in MATLAB is used (Patterson and Thompson 1971).  

The obtained model parameters, as well as the residuals, are shown in Table 4.3. 

 

 

Figure 4.10.  Compare of actual data and predicted values as functions of M, Rrup and 

VS30.  
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The model coefficients presented in Table 4.3 indicate that all the predicted values are 

increasing function of M and are decreasing function of ln(Rrup) or Mln(Rrup).  All the 

predicted zj, except z1 and z2, increase as VS30 increases.  By using the obtained model 

coefficients, the predicted values of Zj as functions of M, Rrup or VS30 are compared to the 

samples in Figure 4.10.  The plots indicate that the considered predicting models follow 

adequately to the trends of the samples.  As can be observed that z1 (i.e., mapped values 

of ET) increases with increased M, and decreased Rrup and VS30.  The same trends are 

observed for z2 that represents the mapped D, except that z2 is a decreased function of 

Rrup.  The trends of both Fb() and Fc() at the beginning and the end of records to M, Rrup 

or VS30 are very similar; they decrease as M or Rrup increases, and they increase with 

increasing VS30.  The predicted value of Z3 is sensitivity to Rrup; z4 is an increasing 

function of VS30.  The predicted values of Z5 to Z8 (i.e., mapped 
,0bF , 

,b TF , 
,0cF , 

,c TF ) are 

decreasing functions of Rrup. 

 

 

Figure 4.11.  Residuals of inter- and intra-event for each parameter in normal space.  

 

Table 4.3 shows that the standard deviation of the interevent residual is smaller or 

comparable to the intraevent residuals for the considered predicting equations.  j and j 

for each record component are shown in Figure 4.11.  As can be observed from the 

figure, the residuals are relatively consistent for ranges of values of M, Rrup and VS30.  The 
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correlation coefficient between j and k for j k  are calculated and shown in Table 4.4.  

The correlation coefficient between a pair of variables j and k for j k  is weak, except 

that the absolute value of the correlation coefficient is greater than 0.5 only for four pairs 

of variables (2, 4), (3, 4), (5, 7) and (6, 8).  The negative correlation coefficient 

between (2, 4) suggests that a decreased D is associated with increased ; hence, a more 

peaked amplitude modulation function.  The positive correlation between (3, 4) 

indicates that the location of the large amplitude modulation is shifted toward higher 

values of  if  is increased.  The positive correlation coefficient between (5, 7) implies 

that the mean and coefficient of variation over frequency (see Eq. (4-16) and Eq. (4-17)) 

for ( , )xS f S  at  = 0 are positively related.  A similar observation can be made at  = T 

based on the positive coefficient between (6, 8). 

It must be emphasized that since the processed records used are for the magnitude 

ranging from 4.5 to 8, rupture distance between 10 and 300 km, VS30 between 180 and 

1500 m/s, and frequency ranging from 0 to 20 Hz, the developed TFPSD model is 

considered to be adequate only for these mentioned ranges. 

 

Table 4.3.  Coefficients for the predicting equations shown in Eq. (4-32). 

 aj,1 aj,2 aj,3 aj,4 j j 

Z1 1.947 0.880 -0.927 -0.590 0.215 0.432 

Z2 -2.402 0.502 0.490 -0.526 0.605 0.580 

Z3 -0.535 0.378 -0.104 0.154 0.682 0.670 

Z4 -3.378 0.128 -0.032 0.533 0.656 0.623 

Z5 -2.546 0.249 -0.072 0.496 0.468 0.775 

Z6 -4.376 0.418 -0.098 0.753 0.530 0.699 

Z7 -2.459 0.253 -0.099 0.604 0.474 0.743 

Z8 -2.410 0.228 -0.087 0.596 0.483 0.742 
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Table 4.4.  Correlation between total residuals of 8 parameters in normal space. 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 

Z1 1 -0.215 0.186 0.272 -0.145 -0.007 0.032 0.221 

Z2  1 -0.075 -0.565 0.021 -0.472 -0.106 -0.505 

Z3   1 0.509 -0.038 0.193 0.186 0.120 

Z4    1 0.111 0.344 0.275 0.340 

Z5     1 0.133 0.630 -0.073 

Z6      1 0.431 0.784 

Z7       1 0.241 

Z8        1 

 

4.5 Use and validation of the proposed time and frequency 
power spectral density function 

4.5.1 Illustration of the procedure to generate synthetic record 

components for scenario events 

The generation of synthetic ground motions for given seismic source and site 

characteristics is straight forward.  For example, by considering M = 7, Rrup = 60 km and 

VS30 =450 m/s, the calculated values of zj, j =1…, 8, are equal to [0.707, -0.095, 0.071, -

0.143, 0.164, 0.342, 0.165, 0.334] by using Eq. (4-32) and the model coefficients shown 

in Table 4.3 but without considering the effect of residuals.  By adding a set of sampled 

values of j, that jointly normally distributed with the variance equal to ( )2 2

j j +  and 

correlation coefficient shown in Table 4.4, a sample of zj, j =1…, 8, for the considered 

scenario seismic event is obtained, which equals [0.785, -0.615, -0.120, 0.480, -1.64, -

0.29, 2.36, 1.01].  The use of these values and Eq. (4-31) with the fitted distribution 

model parameters shown in Table 4.2 results in (ET, D, , , 
,0bF , 

,b TF , 
,0cF , 

,c TF ) = 

[5287, 19.85, 0.85, 1.33, 2.34, 1.90, 13.70, 3.45].  Samples of rb and rc are calculated 

using the quantile functions shown in Eqs. (4-25) and (4-26).  In particular, rb and rc 

equal to (0.98, 0.91) are used to emphasize the time-varying amplitude and frequency 

characteristics.  Using the values of (ET, D, , , 
,0bF , 

,b TF , 
,0cF , 

,c TF , rb, rc), ( , )xS f S  

shown in Eq. (4-14) for the considered scenario event becomes, 
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2
2

05287 ( ) ln ln ( ) ( ) / 21
( , ) exp

2 ( )2 ( )

c
x

f F
S f

f

    


  

  − +
 = −  
   

S
, (4-33) 

where 

2

0.436exp( 0.24 ) 1.90
( ) ln 1

10.36exp( 0.12 ) 3.35


 



  − +
= +  

− +   

, (4-34) 

( ) 10.36exp( 0.12 ) 3.35cF  = − + , (4-35) 

2

0

1 1.33 1
( ) exp 0.85 1.33ln

2 12 (1 )T


 

 

  
=  − +  

−−    

, (4-36) 

T = 38.79 (s), and / 38.79 = . 

The values of ( , )xS f S  shown in Eq. (4-33) is presented in Figure 4.12a.  By 

applying the simulation model described in Eq. (4-11), a typical sampled record 

component is shown in Figure 4.12b.  The mean and standard deviation of ( , )xS f S  

based on 500 simulated record components are shown in Figures 4.12c and 4.12d.  The 

mean compares adequately to the target ( , )xS f S .  The PSA for each sampled record 

component is calculated and illustrated in Figure 4.12e.  The mean and mean +/- one 

standard deviation of the PSA for the sampled records are also shown in Figure 4.12e.  

The magnitude of the variability of the PSA calculated from the simulated ground 

motions in log scale is relatively consistent for the considered vibration period. 
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Figure 4.12.  Sampled target TFPSD function, a sampled time history, the statistics of 

simulated TFPSD and PSA of the simulated records: a) Target ( , )xS f S  for a scenario 

event, b) a typical sampled record and its velocity and displacement time history, c) mean 

( , )xS f S  of the samples, d) standard deviation of ( , )xS f S  of the samples, and e) 

calculated PSA of the sampled records. 

 

4.5.2 Comparison of PSA from the simulated records to ground 

motion models 

In an effort to validate the proposed model for ( , )xS f S , 500 records are simulated 

for selected values of M, Rrup, and VS30 by applying the procedure used for the illustrative 

example.  PSA for each sampled record component is obtained and shown in Figure 4.13.  

The figure also shows the predicted median values, as well as the median +/- one 

standard deviation, by using GMMs from NGA-West2 developed by Abrahamson et al. 

(2014); Boore et al. (2014); Campbell and Bozorgnia (2014); Chiou and Youngs (2014), 

referred to as  ASK14, BSSA14, CB14, and CY14, respectively.  The comparison in 
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Figure 4.13 shows that for all cases, the median curves of the calculated PSA from the 

simulated records agree well with the predicted values by using the four mentioned 

GMMs.  The standard deviations obtained based on the developed model are also 

comparable to those associated with GMMs from NGA-West2.  The differences that can 

be observed from the plots are attributed to that the records used in the present study to 

develop the model for ( , )xS f S  differ from those employed in developing the four 

GMMs.  The comparison also suggests that the proposed ( , )xS f S  and the simulation 

procedure are adequate. 

 

 

Figure 4.13.  Comparison of the calculated PSA to the median values and median +/- 

standard deviation predicted by using the GMMs from NGA-West2. 

 

Note that the probabilistic seismic hazard analysis (PSHA) for a site or a region 

incorporates the information on seismicity, magnitude-recurrence relations, and GMMs 

(e.g., McGuire 1995; Hong et al. 2006).  One may adopt a TFPSD model, such as the one 

proposed in the present study, instead of using GMMs, to carry out PSHA.  This 



98 

 

approach has the advantage of providing both the synthetic records as well as PSA 

instead of only PSA.  The synthetic records are useful to evaluate the nonlinear inelastic 

structural responses. 

 

 

Figure 4.14.  Comparison of trends of the calculated PSA from simulated records based 

on the proposed TFPSD model to the PSA of historical records described Table 4.1 (Tn 

represents the period). 

 

4.5.3 Comparison of PSA from the simulated records to PSA from 

the selected historical records 

To further validate the proposed model for the TFPSD, a record is simulated for each 

of the combinations of M, Rrup, and VS30 that correspond to the considered records listed 

in Table 1.  PSA values of the simulated records for the vibration period Tn equal to 0.1, 

0.5, 1 and 2s are calculated and are plotted versus M, Rrup, and VS30, separately, and 
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compared with those obtained from the actual records, as shown in Figure 4.14.  The 

plots again indicate that the proposed ( , )xS f S  and the simulation procedure are 

adequate since the overall trends of PSA from the proposed model reflect adequately 

those obtained from the actual records. 

 

4.6 Conclusion 

A model for the time-frequency power spectral density (TFPSD) function for scenario 

seismic source and site conditions is proposed.  The model for the TFPSD has 10 model 

parameters.  Predicting equations for these model parameters are developed by using 

1504 selected historical ground motion records from strike-slip fault earthquakes. 

The development of the model for TFPSD is based on the S-transform that has good 

time-frequency resolution since it uses a frequency-dependent window.  Unlike some of 

the models available in the literature (i.e., evolutionary power spectral density models for 

the ground motions), the developed model implicitly considers both the amplitude 

modulation and frequency modulation.  The use of the proposed TFPSD function to 

simulate ground motions for seismic source and site conditions is illustrated by applying 

a simulation model that is developed based on the discrete orthonormal S-transform and 

S-transform. 

The adequacy of the proposed TFPSD function for the ground motions is investigated 

by comparing the spectral acceleration estimated from the simulated record components 

to the predicted PSA by using ground motion models from NGA-West2 and to the PSA 

from the considered historical records.  These comparisons show that they agree well. 

 

4.7 Data and resources 

The records listed in Table 4.1 are from https://ngawest2.berkeley.edu.  The website is 

last accessed on November 15, 2019. 

https://ngawest2.berkeley.edu/
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Chapter 5  

5 A time-frequency dependent coherence model for 
seismic ground motions 

5.1 Introduction 

There are several well-known empirical lagged spatial coherence models for ground 

motions in the literature, including the ones given by Luco and Wang (1986), 

Harichandran and Vanmarcke (1986), Hao et al. (1989) and Abrahamson et al. (1991).  A 

review and discussion of the coherence models are given in Hong and Liu (2014), 

Konakli et al. (2014), and Liu and Hong (2015, 2016).  A common characteristic of the 

models that are developed for the ground motions along the same horizontal record 

component orientation is that the lagged coherence decreases exponentially with 

increasing separation or increasing frequency.  The majority of the models were 

developed based on the records from the dense arrays in Taiwan (i.e., Lotung Large Scale 

Seismic Test (LSST) Array and Strong Motion Array in Taiwan (SMART)).  The 

assessment of the lagged coherence for horizontal record components along the same 

orientation and for the vertical record components was presented in Chiu et al. (1995) 

using records from the SMART project.  Their results indicate that the lagged coherence 

for the vertical record components is consistently lower than that for the horizontal record 

components.  The same trends observed based on records from Taiwan were observed by 

using California records (Konakli et al. 2014).  The assessment of the lagged coherence 

for record components along two orthogonal horizontal orientation was reported in Hong 

and Liu (2014) and Liu and Hong (2015).  Some of the most interesting findings are that 

the statistics of the lagged coherence are insensitive to the orientations of the orthogonal 

horizontal excitations with respect to the principal axes  (defined based on Arias 

intensity) and that the lagged coherence along the two horizontal principal axes is similar 

to that along two random but orthogonal horizontal orientations.  In addition, a spatial 

coherence model by using the tri-directional ground motions was proposed in Liu and 

Hong (2016). 

In all the above-mentioned studies, it is noted that the evaluation of the lagged 
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coherence was carried out using the ordinary Fourier transform (FT) and that the 

proposed spatial coherence models are functions of frequency and separation but 

independent of time.  If the ground motions at different sites are modeled as the 

amplitude modulated evolutionary processes (Priestley 1965; Priestley and Tong 1973), 

the use of a time-independent lagged coherence is adequate since this agrees with the 

adopted theoretical model.  The ground motions based on such a case can be simulated 

using the spectral representation method (Shinozuka and Jan 1972; Shinozuka and 

Deodatis 1996). 

If the ground motions are modeled as the amplitude and frequency modulated 

evolutionary processes (Grigoriu, Ruiz, and Rosenblueth 1988; Yeh and Wen 1990), 

where the frequency modulation is achieved through non-linear time transformation, it 

can be shown that the lagged coherence of the nonstationary processes modeled in such a 

manner (Heredia-Zavoni and Santa-Cruz 2000; Hong 2016) depends on time.  Also, 

Conte and Peng (1997) considered the ground motions at a site can be expressed as the 

superposition of several amplitude modulated subprocesses; in such a case, the lagged 

coherence between the ground motions at different sites could also be time-dependent.  

However, to the authors’ knowledge, a time-frequency dependent (TF-dependent) 

empirical parametric lagged coherence model is unavailable in the literature, although an 

evaluation of the lagged coherence by using the continuous wavelet transform was 

assessed by applying complex Morlet wavelet in Abbas and Tezcan (2019, 2020) and by 

applying generalized Morse wavelet in Qiao et al. (2020).  Abbas and Tezcan (2020) 

proposed a non-parametric model using the relevance vector machine modeling 

technique, where the weights and kernel widths were given only for the time up to 5 s. 

The main objectives of the present study are to evaluate the TF-dependent lagged 

coherence, to develop an empirical TF-dependent lagged coherence model, and to show 

its application in simulating the spatially varying ground motions.  The remainder of the 

paper is organized as follows.  Section 2 provides a summary of the family of Fourier 

transforms used to estimate power spectral density and coherence functions.  More 

specifically, it includes the FT, time-dependent windowed Fourier transform (i.e., short-

time Fourier transform (STFT)) (Cohen 1995), and TF-dependent windowed Fourier 
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transform – the S-transform (ST) (Stockwell et al. 1996; Pinnegar and Mansinha 2003; 

Stockwell 2007).  The summary provides the basis for discussing the characteristics of 

these transforms as well as possible bias in the calculated PSD by using these transforms.  

Section 3 describes the estimation of TF-dependent coherence and the proposed empirical 

TF-dependent lagged coherence model.  In section 4, the use of the proposed TF-

dependent coherence model to simulate the ground motions at multiple sites by using a 

recently developed ground motion simulation technique (Cui and Hong 2020a; Hong and 

Cui 2020) based on the ST and discrete orthonormal S-transform (DOST) (Stockwell 

2007) is shown.  Finally, the conclusions are presented in Section 5. 

5.2 Family of Fourier transforms for evaluating power 
spectral density and coherence functions 

The three techniques considered for evaluating spectra and coherence in this chapter 

are the ordinary Fourier analysis (Jenkins and Watts 1969; Newland 2012), the windowed 

Fourier analysis (Priestley 1965, 1988; Cohen 1995), and the S-transform (Stockwell et 

al. 1996). 

Consider that the samples of the stochastic processes 
1
( )nX t  at the spatial points 

1np , 

n1 = 1,…, n, denoted as 
1
( )nx t , are obtained.  The FT of 

1
( )nx t , and its inverse used in this 

chapter are, 

1 1

2( ) ( ) i ft

n nx f x t e dt
+

−

−
= F , (5-1) 

and, 

1 1

2( ) ( ) i ft

n nx t x f e df
+

−
=  F . (5-2) 

where 
1
( )nx fF  denotes the Fourier transform of 

1
( )nx t , f is the frequency in Hz, and 

1 2

*( ) ( )n nx f x f= −F F .  If 
1
( )nx t  is given in the discrete form, the use of discrete FT and the 

fast Fourier transform (FFT) can be used to evaluate the Fourier coefficients (Jenkins and 

Watts 1969; Newland 2012). 
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The double-sided power spectral density (PSD) function, 
1 2

( )n nS fF  is then calculated 

using (Zerva 2009), 

1 2 1 2

*( ) ( ) ( ) /n n n nS f x f x f T=F F F , (5-3) 

where the subscript * denotes the complex conjugate, and T is the duration of the sampled 

processes.  
1 2

( )n nS fF  represents the auto and cross PSD functions for n1 = n2 and 1 2n n , 

respectively.  The square root of the integral of 
1 2

( )n nS fF  over the frequency is referred to 

as the intensity of 
1
( )nx t . 

The smoothed auto and cross PSD functions need to be used to estimate the coherence 

between 
1
( )nx t  and 

2
( )nx t , ( )fF , (Zerva 2009), 

1 2 1 1 2 2
( ) ( ) / ( ) ( )n n n n n nf S f S f S f =F F F F , (5-4) 

where the bar above a symbol represents the smoothing operator applied to that symbol.  

The absolute value of ( )fF , ( )fF , is known as the lagged coherence and the phase 

angle of the coherence ( )fF  equals ( )1tan Im( ( )) / Re( ( ))f f −

F F , in which Im( ) and 

Re( ) denote the imaginary and real parts of its argument, respectively.  As the values of 

1
( )nx t  and 

2
( )nx t  are often reported at discrete and evenly spaced values to t, tp (p =1, …, 

N), the 
1 2

( )n nS fF  and its smoothed version, 
1 2

( )n n kS fF , are calculated at discrete 

frequencies fk, by using, 

1 2 1 2
( ) ( ) ( )

M

n n k n n k

m M

S f W m f S f m f 
+

=−

= +F F , (5-5) 

where =kf k f , f  is the frequency increment and equals to 1/T, and ( )W m f  is the 

window with 2M+1 points.  The commonly used window includes the boxcar, Hanning, 

Hamming windows (Jenkins and Watts 1969). 
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A stationary process can be characterized by using the PSD function that is obtained 

based on FT.  However, the use of FT is not effective for the nonstationary processes 

since the analysis does not provide information on the time-varying aspect of the process 

or the PSD function.  An alternative is to treat the nonstationary process as evolutionary 

processes and use the Fourier analysis but for the windowed time history (i.e, STFT) 

(Priestley 1965).  More specifically, for a given sample of a stationary process, 
1
( )nx t , the 

application STFT leads to, 

1

2

1( , ) ( ) ( ) i fu

n nx f x u g u e du 


−

−
= −W  (5-6) 

where  denotes the time of interest, and the window ( )( )=1/ 2g u h  for | |u h  with the 

window size h that is much smaller than T (Priestley 1965).  Similar to the application of 

discrete FT to a signal given in the discrete form (i.e., 
1
( )nx t  is given at t equal to 

( 1)pt p t= −  , p = 1, …, N), the calculation of 1( , )nx f W  in Eq. (5-6) can be carried 

out at tp and fk using FFT (Jenkins and Watts 1969; Cohen 1995; Newland 2012). 

The time-frequency (dependent) PSD (TFPSD) function, 
1 2

( , )n nS f W , is defined as, 

( )
1 2 1 2 1 2

*( , ) ( , ) ( , ) /n n n n n nS f x f x f D D  =W W W W W , (5-7) 

where 
1 2 1 2

*( , ) ( , )n n n nS f S f = −W W , 
1nDW  and 

2nDW  are the normalization factor in 

ensuring the integration of 
1 1

( , )n nS f W  over the time and frequency domain equal to the 

integration of 
1 1

( )n nS fF  over the frequency domain (i.e., variance).  In other words, 
1nDW  

is defined by, 

1 1 2 1 1

,

*( , ) ( , ) / ( )

f f

n n n n nD x f x f dfd T S f df

 

  
 
 =
 
 

 W W W F
,  (5-8) 

where  with subscripts denotes the integration over the domain of the subscripts.  It can 
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be shown that 
1nDW  equals unity.  However, in practical applications, since Eq. (5-6) is 

always applied to a signal with finite length, and in discrete form, there is a wrap-around 

effect on 
1nDW .  In such a case, a renormalization is needed to ensure energy 

conservation. 

Eq. (5-7) provides the auto TFPSD function if n1 = n2 and cross TFPSD function if 

1 2n n .  Analogously to the ordinary Fourier analysis, the square root of the integration 

of 
1 2

( , )n nS f W  over the frequency for a given value of , 

1 1 1

1/2

( ) ( , )n n nI S f df 



−

 
=  

 
W W . (5-9) 

is referred to as the time-varying intensity of 
1
( )nx t .   

The TF-dependent coherence function, ( , )k rf W , is defined as, 

1 2 1 2 1 1 2 2
( , ) ( , ) / ( , ) ( , )n n n n n n n nf S f S f S f    =W W W W , (5-10) 

where S  is the smoothed S with a time-frequency window.  The lagged coherence equals 

1 2
( , )n n f W , and the phase angle of the coherence 

1 2
( , )n n f W  equals 

( ) ( )1tan Im ( , ) / Re ( , )f f   −   W W .  The numerical calculation of the smoothed TFPSD 

functions is to be elaborated shortly. 

Note that as the width of the window increases, the STFT provides better resolution at 

the low frequencies, but the resolution in time decreases, leading to a reduced temporal 

resolution.  Moreover, a well-known drawback of STFT is energy leakage (Cohen 1995).  

To illustrate the effect of the window width on the estimated PSD function, consider a 

stochastic process that is defined by ( ) ( )
2

2 2 2( ) 1 0.0225 / 1 0.25 0.0225S f f f f = + − +
  

, 

representing a (doubled-sided) Kanai-Tajimi model (Clough and Penzien 1995).  By 

using this PSD function, a sample of the stationary process with the duration equal to 
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40.95 s and time increment of 0.01 s is simulated by using the spectral representation 

method.  The simulated record is shown in Figure 5.1a.  The evaluation of the PSD 

function of the simulated record is carried out by using the ordinary Fourier transform 

(see Eq. (5-3)) and shown in Figure 5.1b.  By using STFT and applying Eq. (5-7), 

1 1
( , )n nS f W  is obtained for h = 0.5 and 2 s.  The PSD function obtained by integrating 

1 1
( , )n nS f W  over the time domain is also presented in Figure 5.1c.  As shown in Figure 

5.1b, the smoothed PSD obtained based on FT matches the target PSD well; the 

unsmoothed PSD function fluctuates around the target PSD function.  The results 

presented in Figure 5.1c indicate that the PSD function obtained based on STFT is close 

to the target if h is large, but deviates from the target if the window width is small. 

 

 

Figure 5.1: Sampled record and estimated PSD functions by using FT, STFT, and ST: a) 

Sampled record, b) Comparison of the target and estimated PSD by using FT and ST, and 

c) Comparison of the target and estimated PSD by using STFT. 
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To have better resolution, unless otherwise indicated, the numerical evaluation of the 

coherence in this chapter is to be carried out using ST (Stockwell et al. 1996) (i.e., 

Fourier transform with the TF-dependent window) defined as, 

1 1 1

2( , ) ( ( )) ( ) ( , ) i ft

n n nx f ST x t x t w f t e dt 



−

−

= = −S , (5-11) 

where 
1
( , )nx f S  is the ST coefficient of

1
( )nx t , ST( ) denotes the S-transform, and the 

TF-dependent window ( , )w f t −  is given by, 

( )
22

2
( , ) exp

22

f tf
w f t






 −
− = − 

 
 

. (5-12) 

in which  is a parameter of the window.  The inverse ST transform, IST( ), is given by, 

1 1 1

2( ) ( ( , )) ( , ) i ft

n n nx t IST x f x f d e df  

 

− −

 
= =  

 
 S S . (5-13) 

showing that the integration of the ST coefficients over time equals the Fourier 

coefficients.  Similar to FT and STFT, the evaluation of the ST coefficient for the discrete 

time series can be carried out at (tp, fk) by using FFT (Yan and Zhu 2011; Battisti and 

Riba 2016). 

In this case, the definition of the TFPSD 
1 2

( , )n nS f S , time-varying intensity 
1
( )nI S , 

and the TF-dependent coherence 
1 2

( , )n n f S  are defined using Eqs. (5-7), (5-9) and (5-

10) except that the subscript W is replaced by S and Eq. (7) is replaced by 

( )
1 2 1 2 1 2

*( , ) ( , ) ( , ) /n n n n n nS f x f x f D D f  =S S S S S . (5-14) 

where 
1 2 1 2

*( , ) ( , )n n n nS f S f = −S S , f in the denominator is necessary to ensure the energy 

conservation for n1 = n2, and 
1nDS  can be evaluated numerical and can be approximated 
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by ( )1/ 4   with an error less than 1.3% for  = 1 (Hong 2020).  As an example, for 

the sampled record shown in Figure 5.1a, by applying Eq. (5-14) and integrating 

1 1
( , )n nS f S  over the time domain, the obtained PSD function is also presented in Figure 

5.1b.  The comparison shown in the figure indicates that the obtained PSD function 

matches the target PSD function well. 

5.3 Estimation of TF-dependent spectra and coherence 

5.3.1 Considered seismic ground motion records 

For the evaluation of the TF-dependent coherence, sets of ground motions recorded 

from the LSST and SMART-1 arrays for several seismic events that were used and 

discussed in Liu and Hong (2016) are considered in the following.  The sets of records 

are listed in Table 5.1 for easy reference; the location of the arrays is depicted in Figure 

5.2.  Similar to their study, the baseline correction and fourth-order Butterworth filter 

with low-cut corner frequency equal to 0.2 Hz are applied to the records, and the wave 

passage effect is removed from the paired records within the LSST array or within the 

SMART-1 array to assess the coherence.  The consideration of the paired records only 

within the LSST array or within the SMART-1 array is because the sampling rate is 0.005 

for the former and 0.01 s for the latter.  In addition, only the records for the sensors 

oriented in the same horizontal direction (i.e., East-West (E-W) or North-South (N-S)) 

are considered. 
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Figure 5.2: Layouts of LSST (right) and SMART1 (left) array located in Lotung, 

Taiwan. 

 

Table 5.1: Selected seismic events recorded on LSST array and SMART-1 array (see Liu 

and Hong (2016) for additional detail). 

Seismic  

Event 
Data (YY,MM,DD) Lat. (◦) Lon. (◦) Mag. (ML) 

Event No.* 

LSST SMART-1 

SE-1 1985.10.26 121.84 24.42 4.7 2 37 

SE-2 1986.01.16 121.97 24.77 6.1 4 39 

SE-3 1986.05.20 121.60 24.09 6.2 7 40 

SE-4 1986.07.30 121.80 24.64 5.8 12 43 

SE-5 1986.11.14 121.84 24.00 6.8 16 45 

 

5.3.2 Estimated coherence 

To show the differences in the estimated coherence by using the three mentioned 

transforms in the previous section, and to identify a few salient features of the frequency-

dependent coherence versus the TF-dependent coherence, consider a pair of records 

shown in Figures 5.3a and 5.3b with separation distance equal to 5 m.  The time-varying 

intensity of the record 
1
( )nI S  that is also shown in the plots will be discussed shortly. 

By applying FT, the obtained PSD functions, the lagged coherence and phase angle of 

the coherence are shown in Figures 5.3c to 5.3e.  Since the use of different windows with 

the same window width leads to the similar results (Zerva 2009), for simplicity and 

without loss generality, a boxcar window with M = 15 (see Eq. (5-5)) is used throughout 

this chapter for the numerical evaluation of the smoothed spectra and coherence if the FT 

is used.  As can be observed from the plots, the PSD functions from the two records are 

similar, and the lagged coherence decreases with increasing frequency, a trend that is 

reported already in the literature (e.g., Luco and Wang 1986; Harichandran and 

Vanmarcke 1986, Hao et al. 1989).   
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Figure 5.3: Records from station FA1-1 and FA1-3 for SE-2, and estimated (doubled-

sided) PSD, lagged coherence, and phase angle of coherence. 

 

If the STFT shown in Eq. (5-6) is employed for the pair of records shown in Figures 

5.3a and 3b, the obtained results are shown in Figure 5.4.  h equals 0.5 s and 2 s are 

considered to see the effect of h in the windowed Fourier transform on the estimated 

spectra and coherence.  Before the evaluation of the cross PSD function using the 

windowed Fourier transform, one of the paired records is time-shifted such that the sum 

of the product of records after the shift is maximized.  This is aimed at eliminating the 

wave passage effect and is done throughout the remaining analysis.  Similar to the case 

based on the ordinary Fourier analysis, for simplicity, a boxcar window is used to 

estimate the smoothed spectra employed in calculating the coherence.  The widths of the 

boxcar along the frequency axis and along the time axis are taken equal to 31 points for 

the numerical analysis in the following if STFT defined in Eq. (5-6) or ST defined in Eq. 

(5-11) are employed.  The results presented in Figure 5.4 show that the use of STFT 

provides time and frequency localization of the energy of the records and coherence.  

This overcomes the drawback of using FT, which only provides the frequency 

characterization of the energy and lagged coherence.  The plots of the TFPSD functions 
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show the time localization of the energy of the records.  As h increases, the time 

localization of the energy is smeared over the time axis, and the resolution in time is 

decreased.  This is expected, as explained earlier.  It emphasizes that the resolution at the 

low frequencies deteriorates by using a narrower window because the long waves are 

better represented by records with long durations.  The resolution at the high frequencies 

deteriorates by using a wider window because the increased window width cannot 

capture the temporal resolution of high frequencies waves.  The calculated lagged 

coherence is sensitive to the window width h. 

 

 

Figure 5.4: Estimated TFPSD (unit: cm2/s3) and coherence by using STFT for the 

records shown in Figures 5.2a and 5.2b.  The first and second rows show the results for h 

= 0.5 and 2.0 s of the records at station FA1-1 of SE-2, respectively.  The first column 

shows TFPSDF, the second column shows the TFSDF in detail, the third column depicts 

the lagged coherence between records FA1-1 and FA1-3, and the fourth column presents 

the phase angle of the coherence. 

 

By applying ST, the calculated TFPSD and the TF-dependent coherence for the two 

records shown in Figures 5.3a and 5.3b are shown in Figure 5.5.  For the analysis,  = 1, 

2, and 3 are employed to illustrate the effect of the “bandwidth” parameter  on the 
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estimated TF-dependent spectra and coherence.  As can be observed from Figure 5.5, the 

increase in  leads to decreased resolution of the TFPSD in time.  However, the 

differences in the obtained TFPSD functions can be large by using  equal 1 and 3.  It 

appears that the estimated lagged coherence is much less sensitive to the value of .  

There are differences between the results shown in Figures 5.4 and 5.5.  The energy 

shown in Figure 5.5 for frequencies lower than about 4 Hz is more widely spread in time 

than that in Figure 5.4.  These observations show the advantages of using ST: it provides 

good resolution at lower frequency and time localization of the energy at high 

frequencies.  Based on the above discussion, the use of the ordinary Fourier transform 

and STFT will not be considered further in the following numerical analysis.  Moreover, 

since the use of different  values can lead to different TFPSD and lagged coherence 

functions, the results obtained by using different  values are not interchangeable.  In the 

following, only  =1 is considered to keep the numerical analysis to a manageable size, 

so to concentrate on the characterization of the TF-dependent coherence. 

To identify the effect of the separation of the recording stations on the coherence, 

consider three records from the same seismic event that are shown in Figures 5.6a to 5.6c.  

The calculated time-varying intensity of the record 
1
( )nI S

 is also included in each of the 

plots.  The separation between C00 and I01, between I01 and M01 and between C00 and 

M01 are 200, 800, and 1000 m, respectively.  The analysis that is carried out for the 

results presented in Figure 5.5 is repeated by using the three records shown in Figure 5.6.  

The obtained TFPSD and lagged coherence functions of the paired records among the 

three records are also shown in Figure 5.6.  Note that the lagged coherence in the low 

frequencies for C00-M01, and I01-M01 is lower than that in the high frequencies for the 

time interval around 10 to 15 seconds.  It was attributed to the sample-to-sample 

variability, as will be seen, this observed trend differs from that observed based on the 

average values of lagged coherence.  As can be observed from the figure, the energy 

concentration in time is consistent with the time-varying 
1
( )nI S

.  In all cases, the PSD 

and lagged coherence depend on time and frequency.  Most importantly, the time 

dependency of the lagged coherence shown in Figure 5.6 is much more pronounced as 

compared to that shown in Figure 5.5.  It suggests that the time dependency of the lagged 
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coherence for separation greater than 100 m should not be neglected, and the magnitude 

of lagged coherence depends on 
1
( )nI S

.  The results also show that the lagged 

coherence decreases as the separation increases. 

To further illustrate the time-dependency of the lagged coherence to the time-varying 

intensity, frequency, and separation, the analysis that is carried for the results presented in 

Figure 6 is repeated by considering the records recorded at station I01, I06, and M01 of 

the 5 events listed in Table 1.  The calculated time-varying intensity, as well as the lagged 

coherence, are shown in Figure 7.  The plots in the figure indicate that the lagged 

coherence for each event between the same paired records differs.  This is viewed as the 

sample-to-sample variability.  However, in general, the average of the lagged coherence 

decreases with increasing frequency or with decreasing separation.  Most importantly, the 

average of the lagged coherence is larger at high-intensity values. 

 

Figure 5.5: Effects of  on the TFPSD (unit: cm2/s3) and coherence functions by using 

ST for the two records shown in Figures 5.2a and 5.2b.  The first, second, and third rows 

show the results for  equal to 1, 2, and 3, respectively.  The first column shows TFPSD, 
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the second column shows the TFSDF in detail, the third column depicts the lagged 

coherence, and the fourth column presents the phase angle of the coherence. 
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Figure 5.6: Records from the stations C00, I01, and M01 for the event SE-2, and 

estimated TFPSD and lagged coherence functions: a). Records and their TFPSD function 

(unit: cm2/s3), b) lagged coherence function, and c) wrapped phase angles. 

 

Figure 5.7.  Records at stations I01, I06 and M01 from each of the 5 events listed in 

Table 1, and the calculated values of the lagged coherence. 

 

5.3.3 Proposed TF-dependent lagged coherence model 

Results in the previous section indicate that the lagged coherence depends on the 

intensity, which is a function of time.  This is unlike the well-known models proposed in 

the literature (see introduction) that are obtained based on FT.  The results shown in 

Figures 5.5 to 5.7 also indicate that the magnitude of the lagged coherence depends on 

1
( )nI S

 as mentioned earlier. 
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To further investigate such a relation, first, it is noted that the scaling of the records by 

a constant does not alter the coherence function.  Consider two records 
1
( )nx   and 

2
( )nx   

with wave passage effect removed.  Define the normalized time-varying ground motion 

intensity 
1 2

( )Nn nI   for the two records as 

( ) ( )
1 2

1 2

1 2

( ) ( )1
( )

2 max ( ) max ( )

n n

Nn n

n n

I I
I

I I

 


 

 
 = +
 
 

S S

S S

. (5-15) 

Based on this definition, 
1 2

( )Nn nI  , has a value within 0 and 1.  Using this normalized 

intensity, the values of the estimated lagged coherence plotted in the f- domain in 

Figures 5.5 and 5.6 are replotted in the f-I domain in Figure 5.8, where the simplifying 

notation 
1 2, ( )Nn nI I =  is used.  For the plotting, a squared box window is applied to 

provide a smoothed plot.  The results presented in Figure 5.8 exhibit an identifiable 

pattern in the f-I domain.  It shows that the large magnitude of the lagged coherence is 

located in regions with low frequencies and high-intensity values and depends on the 

separation. 

 

 

Figure 5.8: Lagged coherence shown in Figure 5.5 and 5.6 plotted in f-I domain. 

 

Based on the above observations, one could develop a lagged coherence model in 

terms of frequency and separation as well as I instead of time.  In other words, 
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1 2
( , )n n f S  can be expressed as, 

1 2
( , ) ( , , )n n nf f I d  =S S , (5-16) 

where d =
1 2,n nd  in m denotes the separation between the recording sites for 

1
( )nx   and 

2
( )nx  . 

As pointed out by Abrahamson et al. (1991), the statistical properties of lagged 

coherence ( )fF  are not simple even for stationary processes.  The transformed ( )fF , 

1tanh ( )f−

F , is approximately normal with a bias that can be estimated and removed if 

( )fF  is not very small (Enochson and Goodman 1965; Benignus 1969; Abrahamson et 

al. 1991). 

Abrahamson et al. (1991) fitted h(f,d), according to 
1 ˆtanh ( ) ( , )f h f d − = +F  (see 

their equation (5-6)) where ˆ ( )fF  is the estimated lagged coherence, and  is the bias 

which depends on the width of the window used to smooth the spectra and was taken 

equal to 0.35.  It is understood that the target lagged coherence to be used to simulate 

synthetic records should be ( )tanh ( , )h f d .  Other studies (e.g. Hong and Liu 2014; Liu 

and Hong 2015, 2016) fitted ( , )h f d  directly to the samples of 
1 ˆtanh ( )f−

F .  In such a 

case, the target lagged coherence used for simulation should be  tanh max( ( , ) ,0)h f  − .  

In this chapter, the fitting procedure given in Abrahamson et al. (1991) is followed to 

develop an empirical model for ( )1tanh , ,f I d−

S . 

For the development, first, the analysis that is carried out for a few record-pairs 

presented in Figure 5.8 is repeated but considering all the records from the events listed 

in Table 5.1.  The estimated mean of the lagged coherence by considering the records is 

presented in Figure 5.9 for selected separation intervals (i.e., 0.9d to 1.1d).  The plot 

shows that the mean of ( ), ,f I dS  increases as I increases or f decreases.  Such clear 
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trends facilitate the development of an empirical model for ( ), ,f I dS .  Since the 

number of events is so small no statistical analysis of the event to event statistical 

variability of ( ), ,f I dS  is carried out, although an inspection of the obtained results 

indicates that the estimated mean of ( ), ,f I dS  varies from event to event.  This 

observation is consistent with the results obtained from the ordinary Fourier analysis (Liu 

and Hong 2016).  By using the estimated lagged coherence from all events listed in Table 

5.1, the estimated mean of ( ), ,f I dS  is shown in Figure 5.10a for selected separation 

intervals, while the estimated mean of ( )1tanh , ,f I d−

S  is presented in Figure 5.10b.  

The results presented in Figure 5.10a confirm the trends mentioned for Figure 5.8.  The 

estimated mean of ( )1tanh , ,f I d−

S  also increases as I increases or f decreases.  This is 

expected since 
1tanh−

 is a monotonic increasing transformation.  Further inspection of 

the results shown in Figure 5.10 indicates that the mean of ( )1tanh , ,f I d−

S  for fixed I 

and d follows an exponential decay as f increases.  It remains almost constant for a given 

value of d that is around 20 m and for a given value of f that is less than about 5 Hz; this, 

however, is not the case for a given value of d that is greater than about 100 m.  Also, the 

mean of ( )1tanh , ,f I d−

S  is small and almost insensitive to the values of I, f and d for 

the region where f is higher than about 10 Hz, and d is larger than about 100 m. 

Based on the above consideration and observations, the following functional form is 

used to fit ( )1tanh , ,f I d−

S , 

( )1tanh , , = ( , , )+f I d h f I d −

S , (5-17) 

where, 

( ) ( ) ( )1 2 3 4 1 2 0( , , )=exp 1 1 exp( ( / ) )dIbh f I d a a d a a d f c c I d d
  + + +  − − − −     (5-18) 

and [a1, a2, a3, a4, b, c1, c2, I, d0, d] are model parameters to be determined through 
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regression analysis, and  is set equal to 0.21 because the window width used to smooth 

the spectra in this chapter is wider than that used in Abrahamson et al. (1991).  The 

estimated values of [a1, a2, a3, a4, b, c1, c2, I, d0, d] through nonlinear regression 

analysis by considering the sampled means obtained by using the records from the listed 

events shown in Table 5.1 are [0.78, -3.14×10-4, -0.16, -2.25×10-5, 0.8, 0.54, 0.54, 1.84, 

48.6, 5.0].  A comparison of the fitted model to the samples is shown in Figure 5.11 for a 

function of frequency and selected combinations of separation and intensity.  It is 

observed that, in general, the fitted model represents well the trends of the samples.  The 

deviation at low frequency is relatively large as compared to that for high frequencies.  

However, since the function ( )tanh y  for y greater than about 1.5 is relatively insensitive 

to y (e.g., ( )tanh y  equals 0.91, 0.92, and 0.96 for y = 1.5, 1.6, and 2, respectively), a 

relatively large deviation at high values of ( )1tanh , ,f I d−

S  shown in Figure 5.11 is 

deemed acceptable.  It should be noted that the consideration of f, I and d dependent 

residuals for the nonlinear regression analysis is of interest but beyond the scope of this 

chapter.  Also, it should be understood that the target lagged coherence is to be calculated 

using ( )tanh ( , , )h f I d  if the proposed model is adopted. 
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Figure 5.9: Mean of the estimated ( ), ,f I dS  by considering records from the events 

listed in Table 5.1 and for selected d values. 
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Figure 5.10: a) Mean of ( )1tanh , ,f I d−

S , and b) mean of ( ), ,f I dS  plotted in f-I 

domain by considering records described in Table 5.1 for different d values ranging from 

5 to 2000 m. 
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Figure 5.11: Comparison of the fitted model and samples for selected combinations of 

separation and intensity. 

 

This developed empirical model is plotted in Figure 5.12.  A comparison of the results 

shown in Figure 5.12 to those in Figure 5.10 indicates that the empirical model provides 

an adequate representation of the estimated lagged coherence from the actual records.  

Note that a simple plot of the developed TF-dependent lagged coherence model differs 

from the frequency-dependent coherence models.  This is expected as the latter does not 

take into account the time-varying amplitude and frequency contents. The application of 

the developed TF dependent model is presented in the next section. 
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Figure 5.12: Predicted ( ), ,f I dS  and ( )1tanh , ,f I d−

S  by using the empirical 

model shown in Eq. (5-17) with the estimated model parameters. 

 

5.4 Numerical example applications 

5.4.1 Method to simulate ground motions for given target TFPSD 

functions 

Given the target TFPSD and the coherence functions for n points, the ground motion 
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records at multiple points can be simulated using a simulation model (i.e., time-frequency 

spectral representation method (TFSRM)) in chapter 3 that was developed based on the 

ST and DOST (Stockwell et al. 2003; Stockwell 2007).  More specifically, let MST(f,) 

denote the n×n TFPSD matrix with the (n1, n2)-th element denoted as 
1 2

( , )Tn nS f   given 

by, 

( )
1 2 1 2 1 2 1 1 2 2

( , ) , , ( , ) ( , )Tn n T n n n n Tn n Tn nS f f d S f S f    = S , (5-19) 

where n1, n2 = 1, …, n, 
1 2

( , )n nS f   with an additional subscript T is used to identify that it 

represents the target and is one-sided (which equals twice of doubled-sided value), and 

( )
1 2 1 2

, ,T n n n nf d S  is the target coherence function. 

Following the procedure given in chapter 3, the f- domain is discretized into cells 

according to the time and frequency localization of DOST.  This discretization scheme 

and numbered cells for a given TFPSD are illustrated in Figure 5.13.  The integral of 

1 2
( , )Tn nS f   over the j-th cell’s time and frequency domain is denoted as 

1 2
( )Tn nS j .  The 

matrix MST(f,) is then replaced by its corresponding matrix MST(j) with the (n1, n2)-th 

element denoted 
1 2

( )Tn nS j .  MST(j) is decomposed into L(j)LH(j) based on Cholesky 

decomposition, where L(j) is the lower triangle matrix and the superscript denotes the 

conjugate transpose (i.e., Hermitian matrix).  The record at the n1-th point is sampled 

initially using, 

1

1 1

/2
( )

, 1

1 1

( ) 2 Re ( ) ( ; ) e   m

n N
i j

init n k n m k

m j

x L j D j


 
= =

 =   ,  for 1 1,...,n n= , (5-20) 

where 
1n mL  denotes the (n1, m)-th element of L(j), m(j) are independent and uniformly 

distributed between 0 and 2, and 1( ; )kD j  are the basis functions used in DOST 

(Stockewell 2007) in a single-index form.  A total of NT sets of {
1, ( )init nx  } is sampled, 

and the average of TFPSD of 
1, ( )init nx  , 

1 1
( , )ESn nS f  , is calculated.  Finally, the records 
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at the n1-th point, 
1
( )nx  , is then obtained using, 

( )
1 1 1 1 1 1, ,( ) ( , ) / ( , ) ( )n k Tn n ES n n Init n kx IST S f S f ST x    =

 
, (5-21) 

where  denotes the point by point multiplication operator in the f- domain.  The use 

of Eq. (5-21) is aimed at enhancing the time-frequency representation of the simulated 

record. 

To take into account the wave passage effect (Der Kiureghian 1996) in the simulated 

records in relation to a selected site, say the first site, one could simply apply 

( ) ( )
1 11( ) exp 2 /n k n apIST ST x i fd v  

 
 or 

( ) ( )
1 11( ) exp 2 /n k n apIFT FT x i fd v  

 
 to obtain the records that include the wave 

passage effect, where ( )FT  and ( )IFT  denote the Fourier transform and its inverse, 

respectively. 
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Figure 5.13: Illustration of mapping from 
1 2, ( , )T n nS f   to 

1 2, ( )T n nS j : a) Target TFPSD 

function, b) Magnified view of TFPSD function for a portion of low frequency, c) 

discretization according to the time and frequency localization of DOST, and d) TFPSD 

associated with DOST representation.   

 

5.4.2 Numerical examples 

For the numerical analysis, consider one is interested in simulate ground motions at 

eight supports for a bridge as illustrated in Figure 5.14 by considering a scenario strike-

slip earthquake event with the moment magnitude 7, rupture distance equal to 50 km, and 

the shear wave velocity in the top 30 m equal to 450 m/s.  It is considered that the seismic 

wave propagates from left to right (i.e., point 1 to point 8) with apparent wave velocity, 
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vap, equals 2500 m/s.  It is considered that ( )
1 2

, ,T n nf d S  is defined based on the 

proposed empirical model shown in Eqs. (5-17) and (5-18), and 

1 1 2 2
( , ) ( , ) ( , )Tn n T Tn nS f S f S f  = = , where, 

( ) ( )
1 2 1 2 1 2 1 2,, , tanh , ( ),T n n n n Nn n n nf d h f I d  =S , (5-22) 

and, 

2
2

0 ( ) ln ln ( ) ( ) / 21
( , ) exp

2 ( )2 ( )

T c
T

E f F
S f

f

    


  

  − +
 = −  
   

 (5-23) 

This adopted target ( , )TS f   is sampled based on the model given in chapter 4 for stick-

slip earthquakes with the parameters ET, ( )  , ( )cF  , and 
0 ( )   for the considered 

scenario event presented in Table 5.2.  Based on the adopted TFPSD function, the 

intensity function that is required for Eq. (5-15) can be calculated numerically using, 

1 1

+

0
( ) ( , )n n TI S f df 



= S  (5-24) 

where n1 = 1, …, 8.  For this numerical example, 
1 1 1 1

( ) ( )n n n nI I =S S  since

1 1 2 2
( , ) ( , )Tn n Tn nS f S f = .  The target TFPSD function for three selected sites and 

lagged coherence for three paired sites are depicted in Figures 5.15a and 5.15b.  Figure 

5.15a shows that the target TPPSD function contains the time-varying amplitude and 

frequency.  Figure 5.15b illustrated that the target lagged coherence depends on the 

intensity, and it decreases as the separation increase.  
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Figure 5.14: Layout of the sites for the numerical example. 

 

Using TFSRM described in the previous section, 100 sets of records with  = 0.02 s 

are simulated.  A set of samples of 
1
( )nx   is illustrated in Figure 5.16a, illustrating their 

similarity and time-varying amplitude.  The calculated average values of the TFPSD 

function from the sets of the simulated records are shown in Figure 5.16b for three sites, 

and the calculated average of the lagged coherence for three paired stations are shown in 

Figure 5.16c.  Figure 5.16b indicates that the mean of the TFPSD agrees well with its 

target.  The lagged coherence presented in Figure 5.16c resembles closely to their target 

depicted in Figure 5.15b.  This also corroborates the usefulness of TFSRM as well. 

 

 

 

 

 

 

 



132 

 

Table 5.2: Model parameters for the scenario event. The coefficients shown in the table 

represent a set of sampled coefficients simulated based on the ground motion model 

given in Chapter 4). 

Model parameters in Eq. (23) Coefficients 

ET (cm2/s3) ET = 30866 

1 2 3( ) exp( / )cF c c T c = − + , where 

2 2

,0 ,

1

,0 ,

( )
,

(2 1)( )

c c c T

c c c T

r F F
c

r F F

−
=

− −

2

1
2ln ,c

c

r
c

r

 −
= −  

 
and 

2

,0 , ,0

3

,0 ,(2 1)( )

c c T c

c c c T

F F F
c

r F F

−
=

− −
 

=0.979cr  

,0 =11.061cF  

, =1.964c TF  

2

( )
( ) ln 1

( )

b

c

F

F


 



  
 = +  
   

, where 1 2 3( ) exp( / )bF b b T b = − + , 

2 2

,0 ,

1

,0 ,

( )
,

(2 1)( )

b b b T

b b b T

r F F
b

r F F

−
=

− −
 2

1
2ln ,b

b

r
b

r

 −
= −  

 
 

2

,0 , ,0

3

,0 ,(2 1)( )

b b T b

b b b T

F F F
b

r F F

−
=

− −
 

=0.996br  

,0 =8.425bF  

, =2.786b TF  

 

2

0

1
( ) exp ln

22 ( )

T

TT

 
   

 

  
= − +  

−−    
 

Where 0.95 0.05/ ( )T D  = − ，
( )

( )

1

1

exp ( ) /

1 exp ( ) /
P

P
v

P

  

  

−

−

 − 
=

 + − 

, and 

-1( ) •  is the inverse of the normal distribution function. 

1.25 =  

1.50 =  
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Figure 5.15: a) the target TFPSD; b) the target TF-dependent lagged coherence with d 

equal to 100m, 200m, and 500m. and c) normalized intensity.   
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Figure 5.16: a) A set of sample of simulated records using Eq (5-20) and Eq (5-21) with 

wave-passage effect considered; b) mean of TFPSD samples of Sites 3, 4, and 5; c) mean 

of lagged coherence of simulated samples between 3 pairs of sites with d equal to 100m, 

200m and 500m separately; d) standard deviation of TFPSD samples of Sites 3, 4, and 5; 

e) standard deviation of lagged coherence of simulated samples between 3 pairs of sites 

with d equal to 100m, 200m and 500m separately. 

 

5.5 Summary and Conclusions 

In this chapter, the time-frequency (TF) dependent (TF-dependent) lagged coherence 

model for the seismic ground motions is developed.  The developed TF-dependent model 
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is first of its kind since existing models in the literature are frequency-dependent that is 

only adequate for stationary or amplitude modulation evolutionary process.  The 

development is based on the time-frequency representation and the TF power spectral 

density function obtained from the S-transform - a TF-dependent windowed Fourier 

transform.  The considered ground motion records for the development are those obtained 

from the dense arrays in Taiwan (i.e., Lotung Large Scale Seismic Test (LSST) Array 

and Strong Motion Array in Taiwan (SMART)). 

The analysis results show that the lagged coherence decreases with increasing 

separation or increasing frequency, which is commonly observed based on ordinary 

Fourier analysis.  Most importantly, it is shown that the TF-dependent lagged coherence 

varies with the time-varying intensity within the duration of the records; a higher 

normalized intensity corresponds to a higher lagged coherence.  This striking feature is 

included in the developed empirical parametric TF-dependent lagged coherence model 

(see Eqs. (5-17) and (5-18)).  The model is a function of the frequency, the separation 

between recording sites, and the normalized ground motion intensity that is a function of 

time.  It must be noted that the proposed model is developed based on records from LSST 

and SMART-1, similar to other available time-independent lagged coherence models, it 

is assumed that it is applicable for other seismic regions.  This assumption needs to be 

verified by using records from other regions when they become available. 

The application of the developed TF-dependent lagged coherence model to simulated 

nonstationary ground motions at multiple points is presented by using the time-frequency 

spectral representation method that was developed based on the S-transform and discrete 

orthonormal S-transform. 
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Chapter 6  

6 An algorithm to simulate nonstationary and non-
Gaussian stochastic processes at single or multiple sites 

6.1 Introduction 

Seismic ground motions vary in time and space.  They can cause damages to structures 

and infrastructure systems.  Since the actual ground motion records that match the 

configuration of the multiple supports of a structure, such as a bridge and a latticed shell 

structure (Lupoi et al. 2005; Zerva 2009; Li et al. 2014), are usually unavailable, 

simulated seismic ground motions are commonly employed to assess the structural 

responses. 

The time-varying characteristics of the ground motions can be modeled using the 

evolutionary processes (Priestley 1965, 1981), as was done in Shinozuka and Deodatis 

(1991) and Deodatis (1996).  The evolutionary process is defined based on an amplitude 

modulation function and the power spectral density (PSD) function of a stationary 

process.  The amplitude modulation function may depend on time or frequency or both.  

The evolutionary process is known as the uniformly modulated evolutionary process if 

the amplitude modulation function depends only on time.  The application of the 

evolutionary process results in that the PSD function of the evolutionary to be equal to 

the square of the amplitude modulation function multiplying the PSD function of the 

underlying stationary process.  The simulation of the evolutionary process can be carried 

out by using the spectral representation methods (SRM) (Shinozuka and Jan 1972; 

Shinozuka and Deodatis 1991; Deodatis 1996; Liang et al. 2007), which is based on the 

ordinary Fourier transform.  Some of the well-known PSD functions used to model the 

ground motions include the Kanai-Tajimi model, Clough-Penzien model, the model given 

in Sabetta and Pugliese (1996) and the model given in Pousse et al. (2006).  The models 

in the last two mentioned studies are of interest, especially if one is interested in 

simulating ground motions for scenario seismic events. 
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The evolutionary process can be extended to vector processes, as described in 

Priestley and Tong (1973).  They also showed that the lagged coherence between two 

evolutionary processes is time-independent.  Therefore, if a time-independent lagged 

coherence model, such as the ones given in Luco and Wang (1986), Harichandran and 

Vanmarcke (1986), Hao et al. (1989), Abrahamson et al. (1991), and Liu and Hong 

(2015, 2016), is adopted, the use of the evolutionary process is adequate for simulating 

seismic ground motions.  However, the study in chapter 5 showed that the lagged 

coherence is affected by the amplitude of the ground motions, and is time-dependent.  In 

such a case, SRM cannot be used directly.  To overcome this difficulty, the time-

frequency (dependent) SRM (TFSRM) developed in chapter 3 to simulated ground 

motions based on the S-transform and discrete orthogonal S-transform (Stockwell et al. 

1996; Pinnegar and Mansinha 2003; Stockwell 2007).  TFSRM can cope with the time-

dependent lagged coherence.  The S-transform provides frequency-dependent resolution, 

and it can be viewed as a hybrid of continuous wavelet transform and short-time Fourier 

transform (Stockwell et al. 1996).  Both the S-transform and the discrete orthogonal S-

transform provide the time-frequency representation instead of the frequency only 

representation obtained by using the ordinary Fourier transform. 

It should be noted that the application of SRM or TFSRM leads to a Gaussian 

stochastic process.  However, the Gaussian assumption of the ground motions was 

questioned by Kafali and Grigoriu (2003), and Radu and Grigoriu (2018).  Radu and 

Grigoriu (2018) analyzed a large number of ground motion records and concluded that 

the marginal probability distribution of the amplitude of ground motions is highly non-

Gaussian.  A simple and straightforward approach to simulate the stationary non-

Gaussian process is to use SRM and the static probability distribution mapping (i.e., 

translation process) (Grigoriu 1998).  One of the drawbacks of the approach is that the 

PSD of the simulated process may deviate from the target PSD function because of the 

probability distribution mapping.  Several algorithms (Yamazaki and Shinozuka 1988; 

Gurley and Kareem 1997; Grigoriu 1998; Deodatis and Micaletti 2001) are proposed to 

correct this deviation.  Masters and Gurley (2003) compared the performance of the 

algorithms; they also proposed an iterative spectral correction algorithm to simulate the 

stationary non-Gaussian processes.  Their comparison indicates that the iterative spectral 
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correction algorithm outperforms the other considered algorithms in their study.  It is 

worth noting that this iterative algorithm is similar to the iterative amplitude adjusted 

Fourier transform (IAAFT) algorithm (Schreiber and Schmitz 1996, 2000), which is 

designed to generate surrogate for a given signal for statistical hypothesis testing.  Both 

of these algorithms are based on the ordinary Fourier transform.  A clear difference 

between these two algorithms is how the prescribed target PSD function and cumulative 

distribution function (CDF) are calculated or assigned.  The extension of IAAFT 

algorithm for generating a vector of surrogates is given in Schreiber and Schmitz (2000). 

The translation process has been extended for the nonstationary non-Gaussian process 

(Ferrante et al. 2005; Shields and Deodatis 2013, Wu et al. 2018).  Ferrante et al. (2005) 

focused on the simulation of a nonhomogeneous non-Gaussian field.  Shields and 

Deodatis (2013) presented an iterative procedure to estimate the corresponding target 

PSD for a Gaussian process, given the target PSD function and the marginal CDF for a 

non-Gaussian process.  By incorporating the time dependency in the probability 

distribution mapping for vector processes, a procedure is presented by Wu et al. (2018) to 

simulate nonstationary non-Gaussian ground motions.  However, possible time-

dependent lagged coherence cannot be taken into account because the algorithm is based 

on the evolutionary spectral theory, and the lagged coherence between evolutionary 

processes is time-independent, as mentioned earlier and explained in Priestley and Tong 

(1973).  Also, an iterative power and amplitude correction (IPAC) algorithm was 

presented in Hong et al. (2020) to simulate nonstationary non-Gaussian process.  The 

algorithm could be viewed as the extension of the spectral correction algorithm and 

IAAFT.  But, it is based on the S-transform rather than the ordinary Fourier transform.  

The possibility of extending the IPAC algorithm to simulate nonstationary non-Gaussian 

vector processes with time-independent or time-dependent lagged coherence has not been 

explored. 

For completeness, it should be noted that there are other available models to represent 

seismic ground motions in the literature, including the ones given by Yeh and Wen 

(1990), Fan and Ahmadi (1990), Conte and Peng (1997), and Rezaeian and Der 

Kiureghian (2010).  The advantage of the model given by Yeh and Wen (1990) is that it 
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takes the frequency modulation into account, although the assessment of the frequency 

modulation function (or time transformation function) is associated with practical 

assumptions.  The model given by Conte and Peng (1997) represents the ground motions 

by using the sum of multiple evolutionary processes.  The model given by Fan and 

Ahmadi (1990) is essentially an extension of the model developed by Kanai-Tajimi in 

that, the filter is defined by a nonlinear dynamic system.  The model presented by 

Rezaeian and Der Kiureghian (2010) considered that the ground motions are represented 

as a Duhamel integral with time-varying model parameters.  However, the procedures for 

using these models for simulating nonstationary non-Gaussian vector processes are 

unavailable in the literature. 

The main objective of this chapter is to extend the IPAC algorithm to simulate 

nonstationary non-Gaussian vector processes.  The extension incorporates the essential 

features of the IAAFT algorithm for generating vector surrogates.  It considers the time-

independent or time-independent lagged coherence.  The numerical examples are focused 

on the simulation of the seismic ground motions, although the algorithm is equally 

applicable to the nonstationary non-Gaussian processes for other natural phenomena such 

as winds and waves.  The remainder of this paper is organized as follows.  In Section 2, a 

brief summary of ST, DOST, the corresponding definition of the energy distribution, and 

lagged coherence is given.  It also serves the reader to familiarize our notations.  Section 

3 presents the extension of the IPAC algorithm to simulate the nonstationary non-

Gaussian vector processes with time-independent or time-dependent lagged coherence.  

Several numerical examples for simulating the seismic ground motions are presented in 

Section 4 to illustrate the adequacy of the proposed algorithm.  This is followed by some 

concluding remarks. 
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6.2 The S-transform, discrete orthonormal S-transform, 
and energy distribution 

6.2.1 The S-transform and discrete orthonormal S-transform – a 

brief description 

A brief review of the definition and relevant properties of the S-transform (ST) and 

discrete orthogonal S-transform (DOST) that are to be used in this chapter is summarized 

in this section.  The term ST is also used for its continuous form and its discretized form 

that must be distinguished from the DOST.  ST provides the time-frequency 

representation of a signal x(t) and is defined as (Stockwell et al. 1996; Pinnegar and 

Mansinha 2003), 

( ) 2( , ) ( ) ( ) ( , ) i ftx f ST x t x t w f t e dt



− 

−

 = =  −S , (6-1) 

where ( , )x f S  is the ST coefficient, ( )ST  denotes ST of its argument, and  is the 

center of the window function ( , )w f t −  defined as, 
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with the parameter  controls the effective width of the window in ST.  Stockwell et al. 

(1996) showed that Eq. (6-1) can be re-written as, 
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where ( )IST  is the inverse ST (IST), ˆ( )x f  is the Fourier transform (FT) of x(t).  The 

amplitude of the ST coefficient is represented by ( , )x f S ; the phase angle, ( , )f  , 

(rad) is given by, 

( )
( )

( )
1

Im ( , )
, tan

Re ( , )

x f
f

x f

−
 

  =    

S

S

 (6-5) 

where Im( ) and Re( ) denote the imaginary and real parts.   

Based on Eqs. (6-1) and (6-3), one has ( )( )( ) ( )IST ST x t x t= .  However, for a given 

( , )x f S , and arbitrarily assigned phase angle ( , )A f  , in general, the following is true, 

( )( , )
( ) ( , ) Ai s

x t IST x f e
 

= S . (6-6) 

and, 

( ) ( )( )( , ) ( , )( ) ( , ) ( , )A Ai s i sST x t ST IST x f e x f e    = S S . (6-7) 

That is, for a randomly assigned phase angle ( , )A f  , 
( , )

( , ) Ai f
x f e

 
S  is not a 

legitimate ST coefficient because ST is a redundant transform.  However, by letting 

( )( )( , )

1 ( , ) ( , ) Ai sx f ST IST x f e   =S S , we have ( )( )1 1( , ) ( , )ST IST x f x f =S S . 

The discretized forms of Eqs. (6-3) and (6-4) are, 
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and, 
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where the operator ( )IFT  denotes the inverse FT (IFT), and the subscript to this 

operators denotes the domain where the transform is carried out.  Similarly, in the 

following, the operator ( )FT  will be used to represent FT.  Eqs. (6-8) and (6-9) indicate 

that the evaluation of ( )tx j  and ( , )f tx p q S  can be carried out based on fast Fourier 

transform (FFT) (Battisti and Riba 2016). 

Given the discrete samples  ( )t N
x j , representing sampled ( )tx j  for j = 0,…, N-1, 

its ST is represented by N×N number of ST coefficients ( , )f tx p q S ).  This indicates 

that ST leads to a redundant representation.  To have a more efficient non-redundant 

time-frequency representation based on ST, Stockwell (2007) proposed DOST.  DOST 

has the maximum representation efficiency based on N orthonormal basis functions, 

[ ]( ; , )tD k p q  , and is given by, 

( )
1

[ ]
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( , ) ( ( )) 1/ ( ) ( ; , )
N

t t t

k

x p q DOST x k N x k D k p q  
−

=

= = DS , (6-10) 

and the inverse DOST is, 

*

[ ]

for feasible ,

( ) ( ( , )) ( , ) ( ; , )t t

p q

x k IDOST x p q x p q D k p q = = DS DS , (6-11) 

where ( , )x p qDS  is the DOST coefficient, the superscript * indicates the complex 

conjugate, p (positive or negative) is an index of the center of a frequency band fp = pf, 

f = 1/(Nt), q is an index for the time localization, and 
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in which  indicates the width of the frequency band centred at the frequency indexed by 

p (i.e., fp); for positive p, (p, q; ) are assigned according to (Stockwell 2007): 

( )0( ; ; )  =  0;  0;  1mp q  = , ( )1( ; ; )  =  1;  0;  1mp q  =  and 

( )-1 2 1 -1

2, ,log 2( ) 1( ; ; )  =  2 2 ;  0,1,...,2 1;  2m m m m

m Np q  − −

= − + − , and m is the octave number.  

According to the assigned p, q, and , there are N1 = N/2 orthonormal basis functions (for 

non-negative p).  If the same τ values are used, the vector of the basis functions for p is 

conjugate symmetric to the corresponding vector of the basis functions for -p (Wang and 

Orchard 2009).  Moreover, similar to the ordinary Fourier transform, the DOST 

coefficients are conjugate symmetric about p = 0 for a real-valued signal.  Each cell 

defined by ( , )f tp q   covers a region in the time-frequency domain (Wang and Orchard 

2009).   

FT and DOST are non-redundant transforms.  Therefore, by considering FT, for the 

randomly assigned phase angles ( )A f , we have,  

( )( )ˆ( ) ( ) Ai f

fx t IFT x f e


= , (6-13) 

and, 

( )( )( ) ( )ˆ ˆ( ( )) ( ) ( )A Ai f i f

t t fFT x t FT IFT x f e x f e = = , (6-14) 

If DOST is considered, for the randomly assigned phase angles ( , )A p q , we have, 

( )( , )
( ) ( , ) Ai p q

x t IDOST x p q e


= DS , (6-15) 

and 

( )( )( , ) ( , )( ( )) ( , ) ( , )A Ai p q i p qDOST x t DOST IDOST x p q e x p q e = =DS DS , (6-16) 
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This property shown in Eqs. (6-14) and (6-16) is not enjoyed by the redundant ST, as 

indicated in Eq. (6-7). 

6.2.2 Energy distribution and lagged coherence 

Consider two processes x(t) and y(t).  The two-sided cross periodogram or PSD 

defined based on FT is (Zerva 2009), 

*ˆ ˆ( ) ( ) ( ) /XYS f x f y f T=F , (6-17) 

where ˆ( )x f  and ˆ( )y f  are FT of x(t) and y(t), and T is the duration of x(t) and y(t).  

( )XXS fF  and ( )YYS fF  are the PSD of x(t) and y(t), respectively.  The coherence is 

defined as, 

( ) ( ) / ( ) ( )XY XY XX YYf S f S f S f =           F F FS S S , (6-18) 

where [ ]S  is a smoothing operator and the requirement for smoothing is explained in 

Zerva (2009).  ( )XY f  is known as lagged coherence. 

The ST based two-sided cross time-frequency power spectral density (TFPSD) 

function, ( , )XYS f S  is defined as, 
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preservation (Hong 2020).  The two-sided TFPSD function ( , )XXS f S  and ( , )YYS f S  is 

defined similarly.  Based on the TFPSD functions, the coherence, ( , )XY f S , is defined 

as, 

( , )
( , )

( , ) ( , )

XY

XY

XX YY

S f
f

S f S f


 

 

  
=

      

S

S

S S

S

S S
, (6-20) 
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The requirement for smoothing applied in Eq. (6-20) is elaborated in chapter 5, and 

similar to the use of FT (Zerva 2009) and wavelet transform (Cohen and Walden 2010).  

The absolute value of ( , )XY f S
, ( , )XY f S , is known as lagged coherence. 

The two-sided cross TFPSD function, ( , )XYS p qDS , and the coherence, ( , )XY p qDS , 

based on DOST, are defined as, which is the same as in chapter 3 but in different index, 

*( , ) ( , ) ( , )  XYS p q x p q y p q=DS DS DS , (6-21) 

and, 

( , )
( , )

( , ) ( , )

XY

XY

XX YY

S p q
p q

S p q S p q


  
=

      

DS

DS

DS DS

S

S S
, (6-22) 

The smoothing in Eq. (6-22) is applied to the p and q according to their location in the 

time-frequency domain as discussed in chapter 3.  ( , )XY p qDS  is the lagged coherence.  

The lagged coherence calculated based on Eqs. (6-20) and (6-22) agree well in the time-

frequency domain but the use of Eq. (6-20) leads to a better fidelity than that provided by 

Eq. (6-22). 

6.2.3 Sampling coherent noise 

Consider Np stochastic vector processes xk(t) for k = 1,…,Np.  If the processes are 

defined by ( )
k kX XS fF  and the lagged coherence ( )

k lX X f  for k, l = 1,…,Np, samples of 

xk(t) can be simulated using the SRM (Shinozuka and Jan 1972; Deodatis 1996).  In 

particular, if ( )
k kX XS fF  equals constant (e.g., one), the simulated xk(t) represents coherent 

noises.  Note that SRM cannot be used to simulate vector processes if the prescribed 

lagged coherence is time-dependent.  This is because that the SRM is developed for the 

stationary processes and evolutionary processes whose lagged coherence is time-

independent (Priestley and Tong 1973). 
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For the case with time-dependent lagged coherence, TFSRM proposed in chapter 3 can 

be employed.  In TFSRM, first, the prescribed ( , )
k kX XS f S  and ( , )

k lX X f S  of the vector 

processes are used to evaluate ( , )  
k kX XS p qDS  and ( , )

k lX X p qDS  according to the time 

and frequency location of DOST.  The Np× Np spectral matrix of the vector processes in the 

DOST domain, S(p, q), is then defined with its (k, l)-th element 

( , )= ( , ) ( , ) ( , )
k l k l k k l lX X X X X X X XS p q p q S p q S p qDS DS DS DS .  As the wave passage effect 

is not included in S(p, q), its effect may be added after the processes are simulated (Der 

Kiureghian 1996).  The application of Cholesky decomposition to S(p, q) results in L(p, 

q)LH(p, q), where L(p, q) is the lower triangle matrices, and the superscript H denotes 

Hermitian matrix.  The sample of the k-th process is then given by, 

( , )*

[ ]

1 for feasible ,

( ) 2 Re ( , ) ( ; , )e ,m

k
i p q

k t km t

m p q

x j L p q D j p q


 
=

 =    , (6-23) 

where 1,..., pk N= , ( , )kmL p q  denotes the (k, m)-th element of the lower triangle matrix 

L(p, q) and m(p, q) are independent and uniformly distributed between 0 and 2.  If 

( , )
k kX XS f S  equals a constant, Eq. (23) provides time-dependent coherent noise. 

6.3 Extension of IPAC algorithm to simulate nonstationary 
non-Gaussian vector processes 

The IPAC algorithm (Hong et al. 2020) for a nonstationary non-Gaussian process can 

be viewed as an extension of the well-known IAAFT algorithm (Schreiber and Schmitz 

1996, 2000) and the spectral correction algorithm (Masters and Gurley 2003), which are 

developed for stationary process and based on FT.  The following provides a rough 

procedure of IPAC, and for more details about IPAC, the reader is referred to the 

Appendix C.  Given target TFPSD function ( , )XXS f S  and target marginal CDF of x(t), 

, ( ( ))X tF x t , that depends on the time-varying standard deviation (t), the use of the IPAC 

algorithm to obtain  ( )t N
x j  based on ST is as follows: 
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a) Sample  ( )t N
u j  based on a random number generation algorithm for a uniformly 

distributed random variable between 0 and 1.  Assign { ( )}Np j  equal to the 

ascendingly sorted  ( )t N
u j .  Calculate the intensity function 

( , ) ( , )XXx f S f D f = SS , and the time-dependent variance, 

2 ( ) ( , )XXt S f t df



−

=  S , (6-24) 

b) Sample a sequence of Gaussian white noise, w(t), of length N, calculate 

( ) ( ),
( ( ))

i f
e ST w t

 
= , where ( ) /C C C =  for C not equal to zero and ( ) 0C =  if 

C equals zero;  

c) Calculate ( )( , )( ) ( , ) i f

PC tx j IST x f e   = S  (see Eq. (6)), ,( ) ( ( ))PC t X t PC tp j F x j =

, and find the rank of ( )PC tp j , denoted as rj, for 0,..., 1j N= − ; 

d) Assign ( )1

,( ) ( )
tAC t X j jx j F p r −= , for 0,..., 1j N= − ; and calculate 

( ) ( )( ),
( )

i f

AC te ST x j
 

 = ; 

e) Repeat Steps c) to d) until the convergence criterion is satisfied.  

Step c) serves to adjust the energy distribution, and Step d) provides the correction to 

match the marginal distribution.  As pointed out in Hong et al. (2020), some 

simplification can be made, and computational efficiency can be gained if the probability 

distribution of x(t)/(t) remains unchanged. 

It is noted that the IAAFT algorithm was extended by Schreiber and Schmitz (2000) to 

generate surrogates for several coherent time series, where the phase angle for each target 

process are calculated using the FT.  The extension is based on the fact that by adding the 

same phase to the Fourier coefficients of the processes at frequency f, the cross power 

spectral density (PSD) is preserved (Prichard and Theiler 1994).  More specifically, based 

on FT and Eq. (6-13), for Np processes, one has, 
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( )( )ˆ( ) ( ) ki f

k f kx t IFT x f e


= , for 1,..., pk N= , (6-25) 

where 
( )ˆ ˆ( ) ( ) ki f

k kx f x f e


=  denotes the Fourier coefficient for the k-th process, and 

ˆ ( )kx f  and ( )k f  represent the Fourier amplitude and phase angle of the Fourier 

coefficient.  The cross-product of the Fourier coefficients for xj(t) and xk(t) is given by, 

( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) k li f f

k l k lx f x f x f x f e
 −  = , (6-26) 

which only involves the phase difference.  Therefore, the cross-spectra is preserved by 

adding the same phase to the Fourier coefficients of each of the processes at the 

frequency f.  Hence, the cross-correlation functions are preserved as well, according to 

the Wiener-Khintchine theorem. 

A variant of the IAAFT algorithm given by Schreiber and Schmitz (2000) was 

presented in Borgnat et al. (2012) by using phase angles obtained from simulated 

coherent processes (or correlated noises) that have a constant variance.  By considering 

the salient features of the IPAC algorithm for a single process and the IAAFT algorithm 

for vector processes, an extension to the IPAC algorithm to simulate the nonstationary 

and non-Gaussian vector processes is proposed below. 

Before describing the algorithm, we note that for the vector processes, based on ST 

and Eq. (6-6), we can write, 

( )( , )

,( ) ( , ) ki s

k kx t IST x f e
 

= S  for 1,..., pk N= , (6-27) 

where ( , )k f   represents the phase of the ST coefficients.  Therefore, the essential idea 

is to use a set of simulated ( , )k f   according to the prescribed lagged coherence to 

define the processes and iteratively adjusting the phase by adding the same phase to the 

ST coefficients of each of the processes at the same (f,), one can simulate xk(t) with 

prescribed lagged coherence, TFPSD and marginal CDF.  The phase adjustment is 

determined by satisfying the target TFPSD and marginal CDF requirements. 
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Based on these considerations, for given target TFPSD function, ( , )
k kX XS f S , target 

marginal CDF, , ( ( ))
kX t jF x t , with its time-varying variance 

2 ( ) ( , )
k kk X Xt S f t df



−

=  S , and 

target lagged coherence function ( ( )
k lX X f  or ( , )

k lX X f S ) (or the target cross-

correlation function), the steps to simulate,  ( )k t N
x j , are illustrated in Figure 6.1 and 

detailed as follows: 

1) Sample  ( )k t N
u j  for k = 1,…, Np, based on a random number generation 

algorithm for a uniformly distributed random variable between 0 and 1.  Assign 

{ ( )}k Np j  equal to the ascendingly sorted  ( )k t N
u j .  Calculate the intensity 

function , ( , ) ( , )
k kk X Xx f S f D f =S S , 

2) Sample wk(t) of length N, for k = 1, …, Np, based on SRM if the target lagged 

coherence is time-independent or based on Eq. (6-23) if the target lagged coherence 

is time-dependent, where PSD function is a constant.  Alternatively, if the target 

cross-correlation function is given, wk(t) could be sampled by using the circulant 

embedding method (Wood and Chan 1994) with unit variance.  Also, sample a 

Gaussian white noise  0 ( )t N
w j .  Calculate 

( ) ( ),
( ( ))ki f

k te ST w j
 

 =  and 

( ) ( )0 ,

0( ( )
i f

te ST w j
 

 =  (noting that f can be positive and negative); assign 

( ) ( ) ( )0, , ,k kf f f     = + ; 

3) For k = 1, …, Np,  

3.1)  Calculate ( )( , )

, ,( ) ( , ) ki f

PC k t kx j IST x f e
 

 = S , 
, , ,( ) ( ( ))

kPC k t X t PC k tp j F x j = , and 

find the rank of , 1( )PC k tp j  , denoted as ,k jr , for 0,..., 1j N= − ; 

3.2)  Let ( )1

, , ,( ) ( )
kAC k t X t k k jx j F p r −= , for 0,..., 1j N= − ; and calculate 

( ) ( ),

,( ( ))ki f

AC k te ST y j
 

 = ; 
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4)  Calculate (f, ) using 

( ) ( )( ) ( ) ( )( )
1 1

tan ( , ) sin , , / cos , ,
p pN N

k k k k

k k

f f f f f         
= =

= − −  , and set 

( ) ( ), , ( , )k kf f f     = + , and 

5) Repeat Steps 3) to 4) until the convergence criterion is achieved.   

For this chapter, the convergence criterion is based on the ratio, rc, defined as the sum 

of the ( ,AC kx - ,PC kx )2 to the sum of the squared ,PC kx  for k = 1,…, Np; the value of rc less 

than 0.2% is used for numerical analysis to be carried out and the convergence is 

achieved usually within five iterations. 

In Step 2), the phases for coherent processes are randomized by using 

( ) ( ) ( )0, , ,k kf f f     = + .  However, at the end of each iteration, only the relative 

phase differences are kept.  The calculation of (f,) in Step 4) is based on the equation 

given by Schreiber and Schmitz (2000) for the IAAFT algorithm, which is used to ensure 

that the cross power spectral density (PSD) function remains to be the same.  The variate 

of the IAAFT algorithm given in Borgnat et al. (2012) neglects the requirement of such a 

consistent phase shift (i.e., neglect Step 4). 

If the distribution type, 
, ( ( ))

kX t kF x t , remains unchanged in time and only depends on 

k(t) (i.e., if the marginal probability distribution of ( ) / ( )k kx t t  is identical), similar to 

the case of simulating a single nonstationary non-Gaussian process by using the IPAC 

algorithm (Hong et al. 2020), the above algorithm can be modified to gain efficiency 

according to the modifications given in Table 6.1.  The output of the algorithm can be the 

power spectra density matched time series or amplitude matched time series (i.e., 

, ( )PC k tx j  or 
, ( )AC k tx j ), which are equivalent if the convergence criterion is satisfied.   

 

Table 6.1: Simplification to the algorithm for the case where the marginal probability 

distribution of ( ) / ( )k kx t t  is identical. 
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 Modifications 

Step 1 Calculate  1( ) ( ( ))k k N
j p j −=  after { ( )}k Np j is determined 

Step 3.1 Calculate , ,( ) ( ) / ( )PC k t PC k t k tp j y j j   =  instead of 

, , ,( ) ( ( ))
kPC k t X t PC k tp j F y j =  

Step 3.2 Calculate , ,( ) ( ) ( )AC k t k j k tx j r j   =  instead of ( )1

, , ,( ) ( )
kAC k t X t k k jx j F p r −=  

 

 

Figure 6.1: IPAC algorithm to simulate nonstationary and non-Gaussian vector 

processes.  

 

6.4 Numerical validation and application of IPAC algorithm 

6.4.1 Numerical validation for the case with time-independent 

lagged coherence 

For the numerical validation, consider a scenario event, same as the event used in the 

example illustration of chapter 5, defined as a strike-slip earthquake with the moment 

magnitude 7.  It is assumed that the rupture to site distance equals 50 km, and the shear 

wave velocity in the top 30 m of the site equals 450 m/s.  For the considered scenario 



155 

 

events, it is assumed that the TFPSD of the zero-mean nonstationary ground motions, 

( , )S f S , for all considered sites shown in Figure 6.2a can be modeled using, 

2
2

0 ( ) ln ln ( ) ( ) / 21
( , ) exp

2 ( )2 ( )

cf F
S f

f

    


  

  − +
 = −  
   

S , (6-28) 

where [0, ],  34T T s = , and the parameters ( )  , ( )cF  , and 
0 ( )   are given by, 

( )
2

( ) ln 1 5.64exp( 11.03 /34)-8.49 ( )cF     = + −  
/ , (6-29) 

( ) 9.10exp( 7.68 /34)-11.55cF  = − , (6-30) 

and, 

( )( )( )
2

0 ( ) 1311805exp 0.5 1.5 1.25ln / 2 ( )T T        = − + − −   
/ .  (6-31) 

The used TFPSD function ( , )S f S  is the same as that used in the example of chapter 5.  

This TFPSD function is presented in Figure 6.2b.  Also, the time-varying standard 

deviation that equals 0( )   is shown in the figure. 

Furthermore, it is assumed that the spatial lagged coherence can be modeled using, 

( )( )1( ) = tanh tanh ( )
k l k lX X BiasX Xf f−  − , (6-32) 

where   denotes the bias factor that is taken equal to 0.2 in estimating the lagged 

coherence by using the Hamming window with a width of about 30 for smoothing, 

( )
k lBiasX X f  denotes the model given by Liu and Hong (2016) that is fitted to the 

calculated lagged coherence without removing the bias in estimating the lagged 

coherence (Abrahamson et al. 1991).  ( )
k lBiasX X f  is expressed as, 
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( )
( ) ( )

( )
( )0 0

0

2 2
( ) exp 1 1 exp 1

k l

kl kl
BiasX X

d d
f A A A A A A

f f

   
 = − − +  + − − − +            

, (6-33) 

in which dkl (m) is the separation between the k-th and l-th sites; 

( ) ( )( )
1/2

01 /
B

f k f f
−

 = + , A = 0.5,  = 1.60×10-4, k = 3.00×107, f0 =2.5 and B =5.7.  

This target spatial lagged coherence is plotted in the -f domain as shown in Figure 6.3a.  

Based on this adopted target lagged coherence function, a typical set of simulated 

coherent noises by using the SRM is shown in Figures 6.3b.  The lagged coherence of the 

simulated noise calculated based on ST (see Eq. (6-20)) is shown in Figure 6.4.  For the 

lagged coherence calculation, Eq. (6-20) is used, and the smoothing is carried out by 

using a box window with 30 30  points as discussed in chapter 5. 

 

 

 

Figure 6.2: a). Layout of considered site; b) the target TFPSD; c) time-varying standard 

deviation that equals 0( )  . 
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Figure 6.3: a) Target time-independent lagged coherence in the -f space and b) 

simulated coherent. 

 

 

Figure 6.4: Lagged coherence between simulated noise shown in Figure 6.3b.  

 

 



158 

 

 

 

 

Figure 6.5: Simulated nonstationary Gaussian ground motions with time-independent 

lagged coherence and their spectral characteristics:  a) sampled records, b) calculated 

lagged coherence; c) calculated TFPSD. 

For the moment, consider that the ground motion is Gaussian.  By applying the IPAC 

algorithm, with the phase angle ( ),k f   obtained from the sampled coherent noise 

shown in Figure 6.3b, and the target TFPSD given in Eq. (6-28), the obtained ground 

motion time histories (based on xAC,k(t)) and their corresponding TFPSD for Sites 1 to 4 

are shown in Figure 6.5a.  The calculated TFPSD function and lagged coherence by using 

the simulated ground motions are shown in Figures 6.5b, and 6.5c, respectively.  The 

calculated TFPSD presented in Figure 6.5b resembles that shown in Figure 6.2b.  The 

lagged coherence presented in Figure 6.5c mimics well that shown in Figure 6.4, 
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indicating that the lagged coherence is maintained after the iteration.  This partially 

validates the adequacy of the proposed extension to the IPAC algorithm.  Since xAC,k(t) 

are used as the simulated records, the amplitude matching (i.e., probability distribution 

matching) is ensured so no distribution comparison is presented. 

As mentioned in the introduction, the ground motions may not be Gaussian (Kafali 

and Grigoriu 2003; Radu and Grigoriu 2018).  Radu and Grigoriu (2018) showed that the 

kurtosis coefficient of the amplitude (positive and negative) of the ground motions 

deviates from that of a Gaussian random variable, which equals 3.  A probability 

distribution fitting analysis carried out in Hong et al. (2020) for some historical records 

indicates that x(t)/(t) could be adequately modeled using the generalized Gaussian 

distribution (GGD) (Nadarajah 2005).  This suggests that the marginal probability density 

function of x(t), , ( ( ))X tf x t , can be modeled using GGD, 

( ) 0
1( ) /0

,

1 0

( ( ))
2 (1/ )

x t

X tf x t e


 

  

− −
= , (6-34) 

where  denotes the mean that equals zero for the zero-mean process, 0 and 1 are 

positive model parameters, and ( )  denotes the gamma function.  If 0 equals 2, it 

represents the normal distribution.  The tail of the GGD is lighter and heavier than that of 

the normal distribution for 0 >2 and <2, respectively.  The variance and kurtosis 

coefficients of GGD are equal to ( ) ( )2

1 0 03 / / 1/      and 

( ) ( ) ( )2

0 0 05 / 1/ / 3 /      , respectively. 

By considering that the target marginal CDF of x(t) is defined by Eq. (6-34) with 0 

equal to 3, the analysis that is carried out for the Gaussian case is repeated by using the 

extended IPAC algorithm with the target TFPSD and lagged coherence as shown Eqs. (6-

28) and (6-32). More specifically, by using the same sampled coherent noises shown in 

Figure 6.3b, the sampled nonstationary and non-Gaussian ground motions are illustrated 

in Figure 6.6a.  As can be observed from the plots in Figures 6.5a and 6.6a, the Gaussian 

and non-Gaussian records differ.  The difference is not very large because of the 
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relatively small difference between the considered GGD and Gaussian distribution.  The 

calculated TFPSD function and lagged coherence for the sample records are shown in 

Figures 6.6b and 6.6c, respectively.  Again, the TFPSD functions of the sampled records 

resemble the target shown in Figure 6.2b. Also, the comparison of the lagged coherence 

shown in Figures 6.4 and 6c indicates that the lagged coherence is maintained after using 

the extended IPAC algorithm, suggesting that the IPAC algorithm alters the lagged 

coherence of the simulated coherent noises only slightly. 

Rather than illustrating a single realization of the vector processes, the analysis carried 

out for the results presented in Figures 6.4b, 6.5, and 6.6 is repeated 500 cycles.  The 

mean and standard deviation of the sampled noises and records are shown in Figure 6.7.  

The mean of lagged coherence shown in Figure 6.7 in all cases agrees well with that 

shown in Figure 6.3a.  Moreover, the means of the lagged coherence for the Gaussian and 

Non-Gaussian records calculated from the simulated ground motions agree well with 

those calculated from the simulated coherent noises.  The standard deviation of the 

lagged coherence for the simulated Gaussian and non-Gaussian ground motions are 

similar to those of simulated coherent noises as well.  These observations indicate the 

adequacy of the extended IPAC algorithm to simulate time-independent coherent 

nonstationary Gaussian or non-Gaussian processes. 

The mean and the standard deviations of the TFPSD functions estimated from the 

sampled records for Site 1 are shown in Figure 6.8.  The results for other sites are not 

shown because all sites have the same target TFPSD function.  The mean of the TFPSD 

function from the simulated records is consistent with its corresponding target.  Although 

the standard deviation of TFPSD is significant, the coefficient of variation of TFPSD is 

about one-half of that shown in Liu and Hong (2015, 2016), which is obtained from the 

simulated records by using SRM. 
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Figure 6.6: Simulated nonstationary Non-Gaussian ground motions with time-

independent lagged coherence and their spectral characteristics:  a) sampled records, b) 

calculated lagged coherence; c) calculated TFPSD. 
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Figure 6.7: Estimated statistics of the lagged coherence from the sampled noises and 

records:  a) for coherence noises; b) for nonstationary Gaussian records, and c) for 

nonstationary non-Gaussian noises.  
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Figure 6.8: Estimated statistics of the TFPSD functions of the simulated ground motions:  

a) for simulated nonstationary Gaussian ground motions, and b) for simulated 

nonstationary non-Gaussian ground motions.  

 

6.4.2 Numerical validation for the case with time-dependent 

lagged coherence 

In this section, the simulation of the vector processes by considering the time-

dependent lagged coherence is carried out.  For the simulation, the adopted time-

dependent lagged coherence model is (see chapter 5), 

( )

( ) ( )

1 2 3 4

1 2 0

exp
( , ) = tanh

1 ( ) 1 exp( ( / ) )
k l

dI

b

kl kl

X X

kl kl

a a d a a d f
f

c c I t d d


 

  + + + 
 
   − − − −

  

S , (6-35) 

where [a1, a2, a3, a4, b, c1, c2, I, d0, d] are model parameters that are equal to [0.78, -

3.14×10-4, -0.16, -2.25×10-5, 0.8, 0.54, 0.54, 1.84, 48.6, 5.0], and ( )klI t , and 
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( ) ( )
( ) ( )1

( )
2 max ( ) max ( )

k l
kl

k l

t t
I t

t t

 

 

 
= +  

 
. (6-36) 

The adopted time-varying lagged coherence is illustrated in Figure 6.9a.  By using this 

adopted time-dependent lagged coherence, a typical simulated set of coherent noises is 

shown in Figure 6.9b. 

By using the simulated coherence noises presented in Figure 6.9b, and the adopted 

target TFPSD shown in Figure 6.2b (see Eq. (28), the analysis that is carried out for the 

results presented in Figures 6.4, 6.5, and 6.6 is repeated, and the obtained results are 

presented in Figures 6.10 to 6.12.  An inspection of the results presented in the figures 

indicates that the observations made in the previous section are equally applicable to the 

results presented in Figures 6.10 to 6.12.  Most importantly, the time-dependent 

coherence for the simulated ground motions are similar to those of simulated coherent 

noises, and they are consistent with their targets.  The TFPSD functions of the simulated 

records agree with the target TFPSD function. 

To have a statistical-based comparison, the above-described analysis is repeated 500 

cycles.  The obtained mean and standard deviation of the time-dependent lagged 

coherence are presented in Figures 6.13a to 6.13c; the obtained mean and standard 

deviation of TFPSD function are shown in Figures 6.14a and 6.14b.   Again, in all cases, 

the mean of lagged coherence and the mean of the TFPSD functions calculated from the 

simulated vector processes agree well with their corresponding targets.  Also, the 

observations made for Figures 6.7 and 6.8 in the previous section are equally applicable 

to the results presented in Figures 6.13 and 6.14. 
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Figure 6.9: Target time-dependent lagged coherence and typical sampled noises with 

time-dependent coherence:  a) target time-dependent lagged noise, and b) typical set of 

sampled noises. 

 

 

Figure 6.10: Calculated lagged coherence by using the sampled noises shown in Figure 

6.9b. 
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Figure 6.11: Simulated nonstationary Gaussian ground motions with time-dependent 

lagged coherence and their spectral characteristics:  a) sampled records, b) calculated 

lagged coherence; c) calculated TFPSD. 
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Figure 6.12: Simulated nonstationary non-Gaussian ground motions with time-dependent 

lagged coherence and their spectral characteristics:  a) sampled records, b) calculated 

lagged coherence; c) calculated TFPSD. 
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Figure 6.13: Estimated statistics of the lagged coherence from the sampled noises and 

ground motion records considering time-dependent target lagged coherence:  a) for 

coherence noises; b) for nonstationary Gaussian records, and c) for nonstationary non-

Gaussian noises;. 

 



169 

 

 

Figure 6.14: Estimated statistics of the TFPSD functions using the simulated ground 

motions:  a) for simulated nonstationary Gaussian ground motions, and b) for simulated 

nonstationary Gaussian ground motions. 

 

6.5 Summary and conclusions 

Natural phenomena such as the seismic ground motions could be considered 

nonstationary non-Gaussian.  Their spatial lagged coherence could be time-dependent.  

An algorithm for simulating nonstationary non-Gaussian vector processes with time-

dependent lagged coherence is proposed in this chapter.  The algorithm is an extension of 

the iterative power and amplitude correction algorithm developed for a single 

nonstationary non-Gaussian process.  The algorithm first simulates coherent noises for 

given targe lagged coherence, and then iteratively adjusts phases of the processes by 

using the same phase adjustment for all the considered processes at each time-frequency 

point in the transform domain.  The phase adjustment is determined by the time-

frequency power spectral matching, and the marginal probability distribution matching. 
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The algorithm is successfully validated and illustrated numerically by simulating 

nonstationary Gaussian and non-Gaussian vector of ground motions with time-

independent as well as time-dependent lagged coherence. 

Although the application of the algorithm in this chapter is focused on the seismic 

ground motions, the algorithm is equally applicable to other nonstationary non-Gaussian 

vector processes. 
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Chapter 7  

7 Summary remarks and future work 

7.1 Summary remarks 

In this thesis, a new simulation method for nonstationary ground motions at single or 

multiple sites consider time-independent, or time-dependent coherence is first illustrated.  

Then a new time-frequency power spectral density model for ground motion records and 

a time-dependent coherence model are proposed.  Further, the simulation of 

nonstationary non-Gaussian ground motions at single or multiple sites is explored and 

shown.  The proposed models and simulation algorithms can be used to simulate ground 

motion records for specific scenarios for single or multiple sites.  The remarks from each 

chapter are summarized in the following: 

We started to develop a very simple to use record-based approach to simulate ground 

motion records based on the DOST in Chapter 2.  It is shown that although the time-

frequency resolution obtained from DOST for the recorded ground motions is coarse as 

compared to that obtained using the S-transform, its use clearly identifies the energy 

distribution in time and frequency.  The comparison of the time-frequency resolution, 

Fourier spectrum, time-varying power distribution, and response spectrum of the 

simulated and seed records indicates that the proposed simulation equation is useful for 

practical applications. 

We then extended the model, called the time-frequency spectral representation method 

(TFSRM), to simulate ground motions for single and multiple sites for given time-

frequency power spectral density function or matrix.  Most importantly, we showed that 

the model is adequate to simulate ground motions with prescribed time-dependent lagged 

coherence.  This is new and unavailable in the literature.  It is shown that TFSRM can be 

used to conditionally simulate ground motions as well.  In addition, an updating 

procedure is proposed to further enhance the fidelity of the time-frequency representation 

of the simulated ground motions. 
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To develop a time-frequency power spectral density (TFPSD) function model of the 

ground motions, extensive statistical analysis is carried out using an extensive set of 

actual ground motions for strike-slip fault earthquake in Chapter 4.  The developed 

TFPSD model has 10 model parameters and can be used for scenario seismic events.  The 

use of the proposed TFPSD function to simulate ground motions for seismic source and 

site conditions is illustrated by applying the simulation technique developed in Chapters 2 

and 3.  The adequacy of the proposed TFPSD function for the ground motions is 

investigated by comparing the spectral acceleration estimated from the simulated record 

components to the predicted PSA by using ground motion models from NGA-West2 and 

to the pseudo-spectral acceleration from the considered historical records.  The 

comparison shows that they agree well. 

Although there are indications that the lagged coherence of the ground motions is 

time-frequency dependent (TF-dependent), yet such a model is unavailable in the 

literature.  By using records from dense arrays, a new parametric model for the TF-

dependent lagged coherence model is proposed in Chapter 5.  The model is first of its 

kind.  The TF-dependent lagged coherence varies with the (time-varying) intensity within 

the duration of the records; a higher normalized intensity corresponds to a higher lagged 

coherence.  The model is a function of the frequency, the separation between recording 

sites, and the normalized ground motion intensity that is a function of time.  The use of 

the proposed model to simulate ground motions at multiple sites is illustrated. 

Chapter 6 is focused on the simulation of non-stationary and non-Gaussian processes.  

An efficient iterative algorithm for simulating nonstationary non-Gaussian vector 

processes with time-dependent lagged coherence is proposed.  The algorithm is an 

extension of the iterative power and amplitude correction algorithm developed for a 

single nonstationary non-Gaussian process.  The algorithm is successfully validated and 

illustrated numerically by simulating nonstationary Gaussian and non-Gaussian vector of 

ground motions with time-independent as well as time-dependent lagged coherence. 
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7.2 Future work 

Some potential future investigations envisaged are given below: 

1. The simulation of time-dependent coherent ground motions is based on DOST 

whose resolution is less than that of the S-transform.  Although the coherence 

between ground motion calculated based on DOST and S-transform is very close, 

the direct use of the S-transform to simulation spatially coherent ground motions 

could be an interesting and challenging topic.   

2. Although the standard deviation of interevent and intraevent of the developed 

TFPSD model is given, the correlation between the intraevent residual is unknown.  

This correlation may be dependent on the M, Rrup, and VS30.  The investigation of 

such correlation could lead to an improved model characterization.   

3. During the investigation of time-dependent coherence model, it was observed that 

the coherence might depend on the earthquake magnitude.  This aspect deserves 

further consideration if the data become available in the near future. 

4. The proposed iterative power and amplitude correction algorithm for simulating 

ground motions is proposed.  The algorithm is efficient.  Several aspects of the 

algorithms deserve further consideration, including the selection of convergence 

criterion, further improvement of efficiency and robustness. 

  



177 

 

Appendix 

Appendix. A Expectation of TFPSD function of the proposed models for a single site 

To simplify the notation for the proof that the expected TFPSD function of the 

nonstationary processes described by the proposed Model-1 and Model-2 is equal to its 

target value, let 1 1( ; ) Re( ( ; ))R k kD t j D t j=  and 1 1( ; ) Im( ( ; ))I k kD t j D t j= .  The expectation 

of the time-frequency spectrum of Model-1 can be written as, 
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where, 
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Using the condition that (j) are independent and uniformly distributed between 0 and 

2, the expectation in Eq. (A-1) becomes, 
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Substituting Eq. (A-3) into Eq. (A-1) results in, 
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where the index function, 
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in which U and V equal R or I.  Since the basis functions in DOST are orthonormal, 

( , ) 1/ 2UVI j l =  if U = V and j = l, otherwise it equals zero.  The use of this in Eq. (A-4) 

leads to, 
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which becomes, 

 *

1 1( ) ( ) ( )E X j X j S j=DS DS . (A-7) 

if l = m = j. This completes the proof for Eq. (14) in chapter 3. 

For Model-2, the expectation of the TFPSD function can be written as,  
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Since the last equality in Eq. (A-8) is the same as the second equality shown in Eq. (A-4), 

consequently, the solution given in Eq. (A-6) also apply to Eq. (A-8), indicating that the 

expectation of the TFPSD function of the nonstationary stochastic process by Model-2 

equal to the target TFPSD function S(j). 
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Appendix. B Expectation of TFPSD function of the proposed models for multiple-

support 

Let the DOST of 
1
( )nX t  and 

2
( )nX t  be denoted as 

11 ( )nX jDS  and 
21 ( )nX jDS  (i.e., 

1
2 ( , )nX p qDS  and 

2
2 ( , )nX p qDS ).  The application of DOST to 

1
( )nX t  shown in Eq. 

(21) in chapter 3 results in, 
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and 
21 ( )nX jDS  can be written in a similar fashion.  The expectation of the TFPSD 

function of the nonstationary processes defined by Model-1 shown in Eq. (21) in chapter 

3 for n1 ≤ n2 is then given by, 
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 (B-2) 

After some algebraic manipulations and considering that the phase angles (m, j) are 

independent and uniformly distributed between 0 to 2 and the basis functions in DOST 

are orthonormal, Eq. (B-2) becomes, 

 
1 2

*

1 1( ) ( ) 0n nE X l X m =DS DS . (B-3) 

if l m , and, 
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if l = m = j.  The last equality is based on the Cholesky decomposition of the matrix S(j).  

Eq. (B-4) indicates that the expectation of the TFPSD function of the sampled records 

from Model-2 equal to the target TFPSD matrix S(j). 

For Model-2 shown in Eq. (22) in chapter 3, the expectation of the TFPSD function 

can be written as, 

 

1 1 1

1

1 1 1 1 1

1 2

2 2 2

2

2 2 2 2 2

1 2

2

1
1 1

1

0 1 1 1
*

1 1 2
1

1 2*

1

0 1 1 2

1
*

1 12
0

( ; )
( ; )

( ; )2
( ) ( )

( ; )
( ; )

( ; )

2
( ; ) ( ; )

N N
n j R k

k

k j n j I k

n n
N N

n j R k

k

k j n j I k

N

k k

k

A D t j
D t l

B D t j
E X l X m E

N A D t j
D t m

B D t j

D t l D t m
N

−

= =

−

= =

−

=

  
  

+   
=  

  
   +   

=

 

 



DS DS

1 2

1 2

1 1 1 2

1
1 1 1 1

1

0 1 1 1 1 1

( ; ) ( ; )
( )

( ; ) ( ; )

N N
R k R k

n n

k j I k I k

D t j D t j
S j

D t j D t j

−

= =

 
 
+  

 

. (B-5) 

Following the same steps as shown in Eqs. (A-4) to (A-7), it can be shown that 

 
1 2

1 2

*

1 1

0,
( ) ( )

( ),n n

n n

l m
E X l X m

S m l m


= 

=
DS DS . (B-6) 

Note that the right-hand side of the first equality in Eq. (B-5) represents the application of 

double DOST but one with the conjugate basis functions (DOST*) to the correlation 

function of 
1 1
( )n kX t  and 

2 2
( )n kX t , ( )

1 2
,k kR t t .  This indicates that for the considered 

models of the nonstationary stochastic processes, the double DOST to the correlation 

function of two processes equals the expected value of the product of DOST of a process 

and DOST* of another process.  The product equals the quantity given in Eq. (B-6), 

reflecting the orthogonality of energy in different non-overlapping cells in the time-

frequency domain. 
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Appendix. C An algorithm to simulate nonstationary and non-Gaussian stochastic 

processes 

C.1 Introduction 

Observed time histories of the seismic ground motions (Newmark and Rosenblueth 

1976), wind velocity (Simiu and Scanlan 1996), wave height (Ochi 2005), etc. fluctuate 

randomly in time and space.  The time histories are used as the input to carry out the 

structural analysis.  Since the available recorded time histories of the random phenomena 

are limited, their synthetics are generated and used in practice.  The simulation is based 

on the theory of stochastic processes (Lutes and Sarkani 2004; Li and Chen 2009; Cramér 

and Leadbetter 2013). 

For stationary Gaussian processes, and evolutionary processes (Priestley 1965), the 

simulation can be carried out using the spectral representation method (Shinozuka and 

Jan 1972; Liang et al. 2007), developed based on the ordinary Fourier transform (FT).  A 

stationary process is defined by its power spectral density (PSD) function, and an 

evolutionary process is defined by the evolutionary PSD that is a function of an 

amplitude modulation function.  The evolutionary process with time-dependent amplitude 

modulation is widely used in generating seismic ground motions (Deodatis 1996; Boore 

2009) and fluctuating wind velocity for high-intensity wind events (Chen and Letchford 

2007; Kwon and Kareem 2009; Huang and Chen 2009; Hong 2016). 

Masters and Gurley (2003) proposed an iterative spectral correction algorithm to 

simulate the stationary non-Gaussian processes, where the spectral representation method 

is used in each iteration to generate the time history.  They showed that their algorithm 

outperforms the SRM-based simulation techniques presented in Yamazaki and Shinozuka 

(1988), Gurley and Kareem (1997), Grigoriu (1998), and Deodatis and Micaletti (2001).  

It is noted that an algorithm similar to the spectral correction algorithm, namely the 

iterative amplitude adjusted Fourier transform (IAAFT) algorithm, was proposed by 

Schreiber and Schmitz (1996, 2000) in the context of generating surrogate for statistical 

hypothesis testing.  The use of the translation process for the stationary non-Gaussian 
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process proposed in Grigoriu (1998) was extended for the nonstationary processes by 

others, including Ferrante et al. (2005) and Shields et al. (2011).   

The evolutionary PSD is often assessed using (time-dependent) windowed Fourier 

transform, such as the short-time Fourier transform (Cohen 1995).  The resolution of such 

a transform is controlled by the width of the window.  As the width of the window 

increases, a better resolution is obtained at the low frequencies, and the resolution in time 

deteriorates.  A good resolution in both time and frequency (i.e., scale) can be obtained 

by applying the continuous wavelet transforms (WT) (Daubechies 1992; Percival and 

Walden 2006).  A procedure to estimate the evolutionary PSD by applying the continuous 

WT was proposed by Spanos and Failla (2004).  However, an algorithm that directly 

applies the continuous WT to simulate the nonstationary stochastic processes with a 

prescribed wavelet spectrum or time-scale PSD was unavailable.  Recently, an iterative 

algorithm was presented by Chavez and Cazelles (2019) to generate surrogate for 

statistical hypothesis testing.  We will point out, in the following sections, a potential 

weakness of the algorithm, as well as the link between this algorithm and an interesting 

way of defining nonstationary processes in the wavelet domain introduced by Maraun et 

al. (2007).  The lack of continuous WT-based algorithm to simulate time histories is 

partly due to that the use of continuous WT does not lead to the decomposed signal to be 

represented by a set of orthogonal basis functions.  Rather than using the continuous WT, 

the application of the discrete WT and wavelet packet transform that have sets of 

orthogonal basis functions is presented in Gurley and Kareem (1999), and Yamamoto and 

Baker (2013).  The resolution obtained by using these discrete transforms is less refined 

than that obtained by using the continuous WT. 

The phase information in WT is local, while the phase information in the Fourier 

transform refers to the harmonics at zero time (Stockwell 2007).  Stockwell et al. (1996) 

(see also Pinnegar and Mansinha 2003) developed the S-transform (ST) that provides the 

time-frequency representation of the analyzed signal.  It is a hybrid of continuous WT 

and windowed FT.  The S-transform provides frequency-dependent resolution.  Similar to 

the continuous WT, ST does not lead to a decomposed signal to be represented by a set of 

orthogonal basis functions.  Stockwell (2007) proposed a discrete orthonormal S-
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transform.  The simulation of the seismic ground motions by using the discrete 

orthonormal S-transform or combination with ST was presented in Cui and Hong (2020) 

and Hong and Cui (2020).  These studies argued that the time-frequency PSD obtained 

based on ST should not be used as the evolutionary PSD since the former could include 

the time-varying frequency.  However, an algorithm by using ST alone to simulate 

nonstationary stochastic processes has not been reported in the literature. 

There are other techniques used to simulate the nonstationary processes.  These 

include the application of autoregressive moving-average (Samaras et al. 1985), 

Karhunen–Loéve expansion (Spanos and Ghanem 1989; Phoon et al. 2002; Spanos et al. 

2007), and polynomial chaos (Sakamoto and Ghanem 2002), and Hilbert-Huang 

transform (Wen and Gu 2004).  A review of these simulation procedures is beyond the 

presented study since these techniques involve varieties of mathematical concepts and 

algorithms. 

In the present study, we exam and extend the definition of the nonstationary processes 

in the transform domain.  We proposed an iterative power and amplitude correction 

(IPAC) algorithm to simulate nonstationary and non-Gaussian processes.  The algorithm 

could be viewed as an extension of IAAFT (Schreiber and Schmitz 1996) and the spectral 

correction algorithm (Masters and Gurley 2003) and is rooted in the concept of defining 

the stochastic processes in the transform domain.  In particular, we provide details of 

using the proposed algorithm with FT, ST and WT, where the energy distribution in the 

transform domain that satisfies energy preservation is prescribed, and the marginal 

probability distribution function of the process is given.  We provide numerical examples 

to show the proposed algorithm and compare the simulated time histories obtained by 

using the ST-based and (continuous) WT-based approach. 

C.2 Fourier transform, S-transform, and wavelet transforms 

This section summarizes some basic properties of FT (Cohen 1995; Newland 2012), 

ST (Stockwell et al. 1996; Pinnegar and Mansinha 2003), and continuous WT 

(Daubechies 1992).  Only the continuous WT, including its discretized form (which 

differs from the discrete wavelet transform), is used in the present study.  Unless 
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otherwise indicated, WT is used to refer to the continuous WT and its discretized form in 

the following.  The summary provides the basis for the proposed iterative simulation 

algorithm to be described in the next sections. 

Let x(t) denote a sample of a stochastic process such as the ground motion record, X(t).  

FT of x(t), and its inverse (IFT) can be expressed as 

( ) 2ˆ( ) ( ) ( ) i ft

tx f FT x t x t e dt
+

−

−
= =  , (C-1) 

and, 

( ) 2ˆ ˆ( ) ( ) ( ) i ft

fx t IFT x f x f e dt
+

−
= =  ( ) 2ˆ ˆ( ) ( ) ( ) i ft

fx t IFT x f x f e dt
+

−
= =  , (C-2) 

where ( )FT  and ( )IFT  denote the FT and IFT operations, the subscript associated 

with these operators indicates the domain or the index where the operation is carried out; 

ˆ( )x f  denotes FT of x(t); f is the frequency in Hz, 
*ˆ ˆ( ) ( )x f x f= − , and * denotes the 

complex conjugate.  A symbol or function with a circumflex is used to represent its FT 

throughout the present study.  If ( )x t  is given in the discrete form ( )tx j , 0,..., 1j N= −

, with a sampling time interval t  and the duration T, tT N= , the (discretized) FT pair 

is given by, 

( )
21

0

1
ˆ ˆ( ) ( ) ( )

N
i kj

N
t p f f

kt

x j IFT x p x k e
N



  


−

=

= =  , (C-3) 

and, 

( )
21

0

ˆ( ) ( ) ( )
N

i pk
N

f j t t t

k

x p FT x j x k e


   
−

−

=

= =  , (C-4) 

where 0,..., 1p N= − , 1/f T = , and the operators ( )FT  and ( )IFT  that are used for 

continuous FT are used for discrete FT as well.  It is considered implicitly in the 

following that the numerical calculations of ˆ( )fx p  and ( )tx j  are to be carried by 
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using the fast Fourier transform (FFT) (Newland 2012) for computational efficiency.  

Moreover, the notation { }N  is used for the collection of its argument of length N.  For 

example, { ( )}t Nx j  represents all ( )tx j  for 0,..., 1j N= − . 

ST of x(t) is defined as (Stockwell et al. 1996; Pinnegar and Mansinha 2003), 

( ) 2( , ) ( ) ( ) ( , ) i ftx f ST x t x t w f t e dt



− 

−

 = =  −S , (C-5) 

where ( , )x f S  is the ST coefficient, ( )ST  denotes the S-transform of its argument, and 

 is the center of the window function ( , )w f t −  defined as, 

2 2

2

( )
( , ) exp

22

f f t
w f t






 −
− = − 

 
. (C-6) 

The parameter  in Eq. (C-6) controls the effective width of the window in ST.  It can be 

shown (Stockwell et al. 1996) that, 

2

21 2
ˆ( , ) ( )exp

2

ix f x f e d
f





−

  
  =  + −     

S , (C-7) 

and, 

2( ) ( ( , )) ( , ) i ftx t IST x f x f d e df  

 

− −

 
= =  

 
 S S

, (C-8) 

where ( )IST  is the inverse S-transform (IST).  Using Eqs. (C-7) and (C-8), the 

discretized version of x(t) and ( , )x f S , represented by ( )tx j  and ( , )f tx q p S  pair, 

can be written as, 

( )
1

0

( ) ( , ) ( , )
N

t f t p t f t

k

x j IST x p q IFT x p k     
−

=

 
= =  

 
S S , for 0,..., 1j N= − , (C-9) 
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and, 

( ) ( )
2 2 2

2

2
ˆ( , ) ( ) ( ) exp  f t t j f

j
x p q ST x q IFT x j p

p

 
   

  
= = + −  

  
S

, for 

, 0,..., 1p q N= − , (C-10) 

indicating that the evaluation of the ST coefficients at ( , )f tp q   and its inverse at tj  

based on FT (Battisti and Riba 2016). 

WT is defined as (Daubechies 1992; Percival and Walden 2006), 

( )
1

( , ) ( ) ( ) *
t

x s WT x t x t dt
ss


 



−

− 
= =  

 
W , (C-11) 

where ( , )x s W  is the wavelet coefficient, the operator ( )WT  denotes WT, ( )   is the 

mother wavelet and, s is the scaling or dilation factor, and  is the translation or position 

parameter.  Eq. (C-11) can be expressed as (Daubechies 1992; Percival and Walden 

2006), 

( )* 2ˆˆ( , ) ( ) i fx s s x f sf e df  



−

= W , (C-12) 

to facilitate its computation by using FFT for signals given in the discretized form.  If the 

admissibility condition 0 C    is satisfied, where ( ) ( )
2

ˆ1/C f f df 



−

=  , x(t) 

can be obtained using the following inverse WT (Daubechies 1992), 

( ) 2

1 1 1
( ) ( , ) ( , )

t
x t IWT x s x s d ds

C s ss


   

 

− −

− 
= =  

 
 W W , (C-13) 

where ( )IWT  is the inverse of ( )WT .  If ( ) ( )*t t = − , Eq. (C-13) becomes, 
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2

0

2 1 1
( ) ( , )

t
x t x s d ds

C s ss


  

 

−

− 
=  

 
  W . (C-14) 

Moreover, if the analytical wavelet – complex-valued wavelet function that has no 

negative frequency components – is used, Eq. (C-13) can be expressed in Morlet 

formulation (Shenza 1992), 

3/2

1 0

2 1
( ) Re ( , )x t x s t ds

C s

 
=   

 
 W , (C-15) 

where ( )( )*

1

0

ˆ /C f f df 



=  . 

There are several well-known wavelet families (Daubechies 1992; Percival and 

Walden 2006; Olhede and Walden 2002), including Daubechies wavelets, generalized 

Morse wavelets, and Morlet wavelets. 

Eq. (C-14), (C-15) and (C-13) can be written in the following discretized form, 

( )
0

0 0 3/2
0 0 0

0 0

2 ln 1
( ) ( , )

u

l

LK
kt t t

t t kk
k r L

s j r
x j x c s r

C c sc s

  
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= =−

 −
=  

 
  W ,  for 0,..., 1j N= − ,(C-16) 
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kK
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t k
k

s x c s j
x j

C c s




=

 
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 
 

 W , for 0,..., 1j N= − , (C-17) 

and, 

( )*

0 0 0 0 0 0
ˆˆ( , ) ( ) ( )p p p

t k f fx c s q c s IFT x k c s k   = W , for 0,..., ,  and 0,..., 1p K q N= = − (C-18) 

where c0 and s0 are parameters for the numerical computation; K is the total number of 

scales considered for the numerical integration; L l tT L = −  and U U tT L =  define the 

lower and upper limit for the integral over time , and ( )( )*

1

0

ˆ /C f f df 



=  .  In the 
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following, we restrict ourselves to the real-valued signal and the analytical wavelets or 

wavelets with 
*( ) ( )t t = − . 

C.3 Gaussian process, power spectral density, and defining process in 

the transform domain 

According to the spectral representation method (Shinozuka and Jan 1972) with the 

use of FFT (Yang 1972), a sample of a Gaussian stationary process, x(t), can be simulated 

by transforming Gaussian white noise w(t) to the Fourier domain, multiplying it with an 

intensity function ˆ( )y f , and transforming it back to the time domain.  That is,  

( )( ( ))
( ) ( )

i w t

fx t IFT y f e


= F , (C-19) 

where ( )( ( ))
( ( ))

i w t
e FT w t


=F , in which the function ( ) /C C C =  is introduced to 

normalize the complex number C.  Based on FT pair, 
( ( ))ˆ( ) ( )

i w t
x f y f e


= F .  Since, by 

definition, the double-sided PSD function of the process x(t) with duration T, ( )xS fF , is 

given by,  

*ˆ ˆ( ) ( ) ( ) /xS f x f x f T=F , (C-20) 

it indicates that given the target PSD function ( )xS fF , one could define a stationary 

Gaussian process in the Fourier domain by assigning ˆ ˆ( ) ( ) ( )xy f x f S f T= = F .  The 

samples of the process so defined can be obtained using, 

( )( ( ))ˆ( ) ( )
i w t

fx t IFT x f e


= F , (C-21) 

and the expected PSD of the sampled signals equals the prescribed ( )xS fF .  The use of 

the definition given in Eq. (C-20) preserves the energy of x(t) according to Parseval’s 

theory. 

We note that by assigning ˆ( )y f  equal to ˆ( ) ( )M t x f , Eq. (C-19) becomes, 
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( ) ( )( ( )) ( ( ))ˆ ˆ( ) ( ) ( ) ( ) ( )
i w t i w t

f fx t IFT M t x f e M t IFT x f e
 

=  = F F , (C-22) 

which simulates a uniformly amplitude modulated evolutionary process (Priestley 1965).  

Such a process has an evolutionary PSD function equals ( )2 *ˆ ˆ( ) ( ) ( ) /M t x f x f T , and M(t) 

is the amplitude modulation function, which will be considered to be positive.  However, 

the use of ( )y f  equal to ˆ( , ) ( )M t f x f  in Eq. (C-19) does not lend itself to be 

interpreted as a proper inverse Fourier transform because the modulation function 

depends on the frequency.  This reduces the computational efficiency that otherwise can 

be gained by using FFT; it also makes the distinction between the modulation function 

and intensity function more blurred.  We will concentrate only on the case where the 

modulation function is defined outside of the transform domain.  However, the 

consideration of modulation that depends on variables in the transform domain could be a 

valid assumption. 

Maraun et al. (2007) emphasized the usefulness of using Eq. (C-19) to obtain samples 

of stationary Gaussian process, and extended it to define a class of nonstationary 

Gaussian processes in the wavelet domain by the wavelet multipliers ( , )y s W , stating 

that “an individual process is defined by its multipliers and a synthesizing wavelet 

pair…”  Samples of x(t) based on such a definition are then given as, 

( )( ( ))
( ) ( , )

i w t
x t IWT y s e


= W

W
, (C-23) 

where ( )( ( ))
( ( ))

i w t
e WT w t


=W .  We use the intensity function ( , )y s W  and 

( ( ))i w t
e

W  in 

Eq. (C-23) instead of using ( , )y s W  and ( ( ))WT w t  as suggested in Maraun et al. (2007).  

The use of 
( ( ))i w t

e
W  instead of ( ( ))WT w t  is aimed at not biasing the energy arising from 

the intensity function since   
*

( ( )) ( ( ))WT w t WT w t  is not a constant in the wavelet 

domain by using WT defined in Eq. (C-12).  The use of ( , )y s W  (as well as ˆ( )y f  in 

Eqs. (C-21) and (C-22)) is more restrictive than ( , )y s W  but is adequate for the proposed 

algorithm in the following section since we are focused on real-valued signals.  However, 
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a negatively valued intensity and complex-valued intensity may be considered for other 

applications. 

Similar to the use of M(t) in defining the uniformly modulated evolutionary process 

mentioned earlier, we include M(t) in Eq. (C-23),  

( ) ( )( ( )) ( ( ))
( ) ( ) ( , ) ( ) ( , )

i w t i w t
x t IWT M t y s e M t IWT y s e

 
 = = W W

W W
, (C-24) 

to define a modulated and intensity function adjusted (MODIF) process.  The intensity 

function gives time-scale characteristics of the process, and the modulation function 

provides additional time-varying characteristics of the process. 

We further extend the concept of defining the MODIF process in the time-frequency 

domain according to ST, denoted as the S-domain, where samples of x(t) are given as, 

( ) ( )( ( )) ( ( ))
( ) ( ) ( , ) ( ) ( , )

i w t i w t
x t IST M t y f e M t IST y f e

 
 =  = S S

S S , (C-25) 

where ( , )y f S  is an intensity function in the S-domain, and ( )( ( ))
( ( ))

i w t
e ST w t


=S . 

It is noted that besides the above-mentioned transforms, there are other transforms 

used for signal analysis and modeling; for example, the generalized Fourier family 

transforms (Brown et al. 2009).  Therefore, it is relevant and straightforward to 

conceptually generalize the approach in defining the MODIF processes in the transform 

domain if other transform pair is considered.  The definitions lend themselves to an easily 

understandable and almost trivial algorithm to simulate stochastic processes:  

A) Sample Gaussian white noise, w(t), and calculate the normalized coefficients of w(t) in 

the transform domain (e.g., 
( ( ))i w t

e
F , or 

( ( ))i w t
e

W , or 
( ( ))i w t

e
S  if FT, or WT, or ST is 

used, respectively). 

B) Apply the inverse transform to the product of the intensity function and the normalized 

coefficients obtained in Step A). 

C) Apply the modulation function to the simulated signal from Step B). 
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Step C) is separated from Steps A) and B) and is not affected by the selected 

transformation.  A critical issue of applying the MODIF process with prescribed target 

energy distribution is that the energy distribution of the sampled signals for given 

intensity function may not be readily established, except for the case where FT is used 

(i.e., transforms with non-redundant representation).  This is because unlike the FT, both 

WT and ST provide redundant representation.  The redundant representation results in 

that, in general, 
( ( ))

( , )
i w t

y s e


 W

W  and 
( ( ))

( , )
i w t

y s e


 S

S  do not represent the proper 

coefficients of WT and ST, respectively.  In other words, 
( ( ))

( , )
i w t

y s e


 W

W  and 

( ( ))
( , )

i w t
y s e


 S

S are not equal to ( )( )( ( ))
( , ) ( , )

i w t
x s WT IWT y s e


 = W

W W  and 

( )( )( ( ))
( , ) ( , )

i w t
x f ST IST y s e


 = S

S S , respectively. 

To see the impact of this inequality on the simulated MODIF process by using Eq. (C-

24), we note that we can define the double-sided time-scale PSD (TSPSD) function of the 

simulated process x(t), ( , )xS s W , as, 

*

( , ) ( , )
( , )x

x s x s
S s

s C s C 

 


  
  =
  
  

W
W W

. (C-26) 

The use of this definition leads to energy preservation since the integral of ( , )xS s W  in 

the wavelet domain equals the integral of 
2

( )x t  in the time domain (see Proposition 2.4.1 

in Daubechies (1992)).  Consequently, even we assign ( , )y s W  equals ( , )xS s C sW  

and M(t) = 1 for the simulation, the average energy of the sampled signals according to 

Eq. (C-24) will likely deviate from the specified target ( , )xS s W . 

Consider that we simulate the MODIF process using Eq. (C-25).  We can define the 

double-sided time-frequency PSD (TFPSD) function of the simulated process, ( , )xS f S , 

as, 
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( ) ( )
 *

( , ) ( , ) / ( , ) /xS f x f D f x f D f   =S S S , (C-27) 

since the use of this definition leads to energy preservation (Hong 2020), where 

( ) ( )( )2
1/ exp 2 ( 1)D d    



−

=  − − .  However, the average energy of the sampled 

signals by using Eq. (C-25) with ( , )y f S  equal to ( , ) ( , )xx f S f D f =S S  and 

M(t) = 1 will likely deviate from the specified target. 

In addition to the discussed energy distortion, the application of the MODIF process is 

likely to lead to the samples obtained from Eqs. (C-22), (C-24) and (C-25) to follow a 

marginal cumulative distribution function (CDF) that deviates from the prescribed 

marginal CDF of the zero-mean process , ( ( ))X tF x t .  An iterative process is proposed in 

the following sections to simulate the nonstationary and non-Gaussian with prescribed 

target PSD and CDF.  The PSD functions that satisfy the energy preservation by 

considering the selected transform are used as the basis to describe the proposed 

algorithm to maintain consistency.  Although this could become clumsy in some 

instances, it is useful in checking that a consistent transform pair is employed. 

 

C.4 Iterative power and amplitude corrected algorithm 

C.4.1 IAAFT algorithm 

To develop the proposed iterative algorithm, we note that, given the observed 

 ( )t N
x j , the IAAFT algorithm was proposed by Schreiber and Schmitz (1996, 2000) 

in the context of generating surrogates for statistical hypothesis testing.  The algorithm 

repeatedly uses FT and IFT, and ranked data.  This algorithm is explained using the 

ranking of ( )tx j  in the following. 

The PSD function ( )xS fF  of  ( )t N
x j  is calculated using Eq. (C-19) with possible 
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smoothing.  The objective of IAFFT is to generate surrogates that match the calculated 

( )xS fF  and shuffled  ( )t N
x j .  A similar algorithm - the spectral correction algorithm - 

was independently designed by Masters and Gurley (2003) to simulate non-Gaussian 

processes for the given target ( )xS fF  and target marginal CDF FX(x(t)).  A subtle 

difference between these two algorithms is on how the prescribed target PSD function 

and CDF are obtained or assigned.  For example,  ( )t N
x j  is obtained through 

distribution mapping in the spectral correction algorithm.  In IAAFT,  ( )t N
x j  is given 

and shuffled.  This shuffling, in the spectral correction method, can be viewed as 

matching the prescribed probability distribution.  Once  ( )t N
x j  is prescribed and 

( )xS fF  is calculated, by letting  ( )
N

j  equal to the ascendingly sorted  ( )t N
x j , the 

steps of the IAAFT algorithm are: 

1. Sample a sequence of Gaussian white noise, w(t), of length N, calculate 

( )( ( ))pi
e FT w t


= ; 

2. Calculate ( )( ) ( ) pi

PC t p x fx j IFT S p T e


 = F  and find the rank of ( )PC tx j , rj, for 

0,..., 1j N= − , based on the ascending order; 

3. Set ( ) ( )AC t jx j r = , for 0,..., 1j N= − ; and calculate ( )( )( )pi

j AC te FT x j


 = ; 

4. Repeat Steps 2) to 3) until the convergence criterion is achieved. 

Steps 1) and 2) are the same as Steps A) and B) described earlier that simulates a 

Gaussian process, except an additional ranking of ( )PC tx j  is carried out, which is 

equivalent to define the CDF as a preparation for the iteration.  In general, Step 2) leads 

to ( )PC tx j  with the PSD correction but may deviate from the target CDF assigned by 

 ( )
N

j , and Step 3) leads to the sampled ( )AC tx j  with the amplitude correction (i.e., 

matching CDF assigned based on  ( )
N

j ) but may deviate from the target PSD.  The 

iteration adjusts the PSD and CDF of the sampled time series to their corresponding 
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targets.  The tolerable differences between ( )PC tx j  and ( )AC tx j  can be used as the 

convergence criterion.  Once convergence is achieved ( )PC tx j  or ( )AC tx j  can be used 

as the sampled time series. 

The IAAFT algorithm is designed for stationary processes.  For the shuffling of 

 ( )t N
x j  to simulation stationary process, it is implicitly considered that the marginal 

CDF of x(t) at any given time remains to be the same.  Also, the PSD function for the 

stationary process is time-independent.  The IAAFT algorithm or the spectral correction 

method is not applicable to simulate the nonstationary processes as they have time-

varying PSD and CDF.  

 

C.4.2 Iterative power and amplitude correction algorithm 

In this section, we describe the proposed iterative power and amplitude correction 

(IPAC) algorithm to simulate the time history  ( )t N
x j  of a zero-mean nonstationary 

non-Gaussian process.  The proposed algorithm could be viewed as an extension to the 

IAAFT algorithm.  For the simulation, it is considered that, for M(t) = 1, the PSD 

function of the process that is characterized based on FT, or ST, or WT is given, and the 

distribution type for the marginal CDF of x(t), , ( ( ))X tF x t , is known.  Moreover, it is 

considered that , ( ( ))X tF x t  can be completely defined by the zero-mean, the time-varying 

standard deviation, (t), and other prescribed distribution parameters if they are required 

(since, in some cases, a CDF with more than two parameters may be considered). 

If FT is considered for a stationary process, the standard deviation (t) equals xF  

which is time-independent, where xF , equals the integral of ( )xS fF  over the frequency 

domain.  Since ( , )xS f S  provides the energy distribution over the time-frequency 

domain, the integral of ( , )xS f S  over the frequency domain provides the energy 

distribution in the time domain, ( )x S , 
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( ) ( , )x xS f df  



−

= S S , (C-28) 

and the integral of ( , )xS f S  over the time domain provides the energy distribution in the 

frequency domain, ( )xS fS .  Analogously to the statistics for the stationary process, 

( )x S  represents the variance of x(), and (t) equals ( )x tS .  Similarly, for the given 

( , )xS s W , the time-varying variance ( )x W  is given by, 

( ) ( , )x xS s df  



−

= W W , (C-29) 

and the integral of ( , )xS s W  over the time domain provides the energy distribution in the 

scale domain, ( )xS fW .  (t), equals ( )x tW . 

Let u(t) be a uniformly distributed random variable between 0 and 1 with its marginal 

CDF denoted as U(u(t)).  The relation between u(t) and x(t) can be established based on 

the probability transformation, ,( ( )) ( ( ))X tU u t F x t= .  The steps in the IPAC algorithm in 

a pseudo-code form are shown in the flowchart depicted in Figure C.1 and are described 

as follows: 

I) Prescribe the targets and initiate the simulation process:  

 Sample  ( )t N
u j  based on a random number generation algorithm for a uniformly 

distributed random variable between 0 and 1.  Assign { ( )}p j  equal to the 

ascendingly sorted  ( )t N
u j , and the intensity function ( )py sTf  according to the 

considered transform pair ( )( ), ( )Tf ITf , where 

a) For ( ) ( )( ), ( ) ( ), ( )Tf ITf FT IFT= , ( ) ( ) ( )p xy s y f S f T= = FTf F , and 

( ) xt = F  which is time-independent, 
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b) For ( ) ( )( ), ( ) ( ), ( )Tf ITf ST IST= , ( ) ( , ) ( , )p xy s y f S f D f = = STf S , and 

( ) ( )xt t = S , 

c) For ( ) ( )( ), ( ) ( ), ( )Tf ITf WT IWT= , ( ) ( , ) ( , )p xy s y s S s C s = = WTf W , and 

( ) ( )xt t = W . 

 The calculated (t) is used to fully specify , ( ( ))X tF x t . 

II) Iteration steps: 

II.1) Sample a sequence of Gaussian white noise, w(t), of length N, calculate 

( ) ( )( ( ))pi s
e Tf w t


=Tf

;  

II.2) Calculate ( )( )
( ) ( ) pi s

PC t px j ITf y s e


 = Tf

Tf , ,( ) ( ( ))PC t X t PC tp j F x j = , and find 

the rank of ( )PC tp j , denoted as rj, for 0,..., 1j N= − ; 

II.3) Set ( )1

,( ) ( )AC t X t jx j F p r −= , for 0,..., 1j N= − ; and calculate 

( ) ( )( )( )pi s

AC te Tf x j


 =Tf ; 

II.4) Repeat Steps 2) to 3) until the convergence criterion is satisfied.  

II.5) ( ) ( ) ( )t t AC tx j M j x j  =  . 

The algorithm essentially simulates the MODIF process and iteratively corrects the 

PSD and CDF.  The intensity function and the transform pair are used from Steps I) to 

II.4), while the modulation function only affects the assignment of the final results in 

Step II.5).  Since ( )AC tx j  is used in Step II.5), the distribution match (i.e., matching 

samples of ( ( ))ZF z t ,  ( )t N
z j ) is ensured by design.  One could replace Step II.5) with 

( ) ( ) ( )t t PC tx j M j x j  =   without altering the results if a stringent convergence 
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criterion is employed.  As can be observed from the steps of the IPAC algorithm, the 

analysis, as well as the simulation, is carried out within the same transform pair.  It 

avoids the need to map the obtained results from one type of transform into a different 

kind of transform (e.g., obtaining the spectrum using continuous WT and then transform 

it into evolutionary PSD).  Note that it may be attempting to replace the uniform 

distribution with the normal distribution for u(t).  However, by doing so, it requires the 

use of the inverse distribution transformation in Steps II.2 and II.3) and increases 

computing demand. 

The algorithm can be simplified if 
, ( ( ))X tF x t  remains unchanged and only depends on 

(t), that is, the marginal probability distribution of ( ) ( ) / ( )z t x t t= , FZ(z(t)), is time-

independent and z(t) has zero mean and unit variance.  In such a case, we calculate 

   1( ) ( ( ))ZN N
j F p j −=  in Step I); we replace “ ,( ) ( ( ))PC t X t PC tp j F x j = ” in Step II.2) 

and “ ( )1

,( ) ( )AC t X t jx j F p r −= ” in Step II.3) with “ ( ) ( ) / ( )PC t PC t tp j x j j   = ” and “

( ) ( )
jAC t r tx j j   = ”, respectively.  This avoids the use of probability distribution 

function during the iteration to gain extra computational efficiency.  This simplified 

version can also be used to generate surrogate for observed  ( )t N
x j , which has the 

effect of the modulation function already removed.  This is done by calculating 

   ( ) ( ) / ( )t t tN N
z j x j j   = , and letting  ( )

N
j  equal to the ascendingly sorted 

 ( )t N
z j  in Step I.1) (instead of    1( ) ( ( ))ZN N

j F p j −= ), where ( )tj   is to be 

calculated based on the PSD function estimated from  ( )t N
x j  by using a preferred 

transform. 

The usefulness of surrogate in the context of wind engineering was presented in 

McCullough and Kareem (2013).  The proposed algorithm, when used with WT to 

generate surrogate, differs from that given in Chavez and Cazelles (2019) for testing 

time-localized coherence, in that the time-varying ( )tj   is neglected in their algorithm 

(i.e., the amplitude adjustment is based on  ( )t N
x j  rather than its normalized version 
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in the IPAC algorithm).  This is convenient and may likely speed up the convergence of 

the algorithm.  However, the basis for the shuffling of  ( )t N
x j  is unclear if the 

marginal probability distribution of ( )tx j  for a nonstationary process is assumed to be 

time-varying. 

 

 

Figure C.1: Iterative power and amplitude corrected algorithm to simulate nonstatinary 

and non-Gaussian processes (Tf denotes the selected transform in this figure). 

 

C.5 Numerical examples 

In this section, we illustrate the proposed algorithm by generating surrogate for a 

given ground motion record and for a given fluctuating component of wind velocity time 

history of a high-intensity wind event.  We apply the algorithm to sample nonstationary 

ground motions for prescribed target PSD, where the target is defined based on a set of 

ground motion records, and the CDF is assumed to be Gaussian and non-Gaussian.  The 

test of the proposed algorithm for esoteric mathematical models is beyond the 

consideration of the present study. 
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C.5.1 Generating surrogate for an earthquake record 

Consider the record shown in Figure C.2.  By applying ST with the window parameter 

 = 1 (see Eq. (C-6)), the obtained TFPSD function is shown in Figure C.3a, and the 

calculated time-varying (t) is presented in Figure C.3b, showing that the TFPSD varies 

in time and frequency. 

By applying the IPAC algorithm, a surrogate is simulated and shown in Figure C.3b.  

The TFPSD of this surrogate is depicted in Figure C.3c.  The figure shows that the 

surrogate resembles the given record, and its TFPSD function resembles well that shown 

in Figure C.3a.  As xAC(t) is used for generating surrogate (see Step II.5 in IPAC 

algorithm), the amplitude (or probability distribution) matching is certain, so no plot is 

provided.  Additional test runs indicate that the convergence is usually achieved within 

five iterations, depending on the adopted convergence criterion.  It was noted that the 

average TFPSD function from multiple generated surrogates tends to be smoother as 

compared to the TFPSD of the observed record, which is expected since the observed as 

well as a single sampled record are realizations of stochastic processes. 

 

 

Figure C.2:  Ground motions recorded at the CU station, UNAM, Mexico, for the 

Michoacán earthquake that occurred on September 19, 1985. 
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Figure C.3: Results by using ST for the given record shown in Figure C.2:  a) TFPSD of 

the given record, b) a generated surrogate and (t) of the given record, and c) TFPSD of 

the generated surrogate shown in Figure C.3b 

 

The analysis based on ST is repeated but by applying WT using the GMWs (Olhede 

and Walden, 2002), 

( ) ( )2

0, , ,
ˆ ( ) ( ) 2

f
f U f a f e

 

    
−

= , (D-30) 

where ( )U   is the Heaviside function, ( )
/

, 2 /a e
 

   = , and  and  are model 

parameters.  The GMW is an analytical wavelet, and it was used to evaluate the coherence 

of the seismic ground motions (Qiao et al. 2020).  For the numerical analysis,  = 20 and  

= 3 are employed since these values are suggested as the default values for the algorithm 

implemented in MATLAB (Version 2019a).  The obtained TSPSD and (t) of the record 

are shown in Figures C.4a and C.4b, respectively.  A generated surrogate is also shown in 

Figure C.4b with its corresponding TSPSD function depicted in Figure C.4c.  An 

inspection of the surrogate depicted in Figure C.4b and the original record presented in 

Figure C.2 indicates that they exhibit similar temporal trends.  The TSPSD of the 

surrogate resembles that of the given record.  Again, the convergence is achieved within a 

few iterations.  A comparison of (t) shown in Figures C.3b and C.4b indicates that they 

are almost identical.  The minor differences between them are due to that ST and WT 

have different time-frequency (or time-scale) decomposition. 
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Figure C.4: Results by using WT for the given record shown in Figure C.2:  a) TSPSD of 

the given record, b) a generated surrogate and (t) of the given record, and c) TSPSD of 

the generated surrogate shown in Figure C.3b 

 

C.5.2 Generating surrogate for a wind record 

Now, consider a wind record presented in Figure C.5a.  For simplicity, the box 

window with a width of 32 samples is used to find the mean wind velocity of the time-

varying wind record.  By removing the mean, the fluctuating component of the wind is 

presented in Figure C.5b. 

 

 

Figure C.5: Wind velocity record from Tower 4 and 10 m height of the rear-flank 

downdraft that occurred during the evening on June 4, 2002, near Lubbock, Texas (Gast 

and Schroeder 2003; Orwig and Schroeder 2007): a) the wind record, and b) the 

fluctuating component of the record. 

 

By applying ST and WT, and following the same analyses that are carried out for the 
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ground motion record shown in the previous section, the obtained results are presented in 

Figures C.6 and C.7.  In general, the observations that can be drawn from this example 

are similar to those presented in the previous section for the ground motion record. 

 

 

Figure C.6: Results by using ST for the wind record shown in Figure C.5b:  a) TFPSD of 

the given record, b) a generated surrogate and (t) of the given record, and c) TFPSD of 

the generated surrogate shown in Figure C.6b. 

 

 

Figure C.7: Results by using WT for the wind record shown in Figure C.5b:  a) TSPSD 

of the given record, b) a generated surrogate and (t) of the given record, and c) TSPSD 

of the generated surrogate shown in Figure C.7b. 

 

C.5.3 Simulating ground motions 

Consider a set of 12 ground motion records oriented in the E-W direction for a seismic 

event that occurred on January 16, 1986, with a local magnitude of 6.1, focal depth of 

10.2 km, and an epicentral distance of 25.2 km.  These records are recorded by the LSST 
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array in Lotung, Taiwan, where the separation between any two recording sites is less 

than 100 m, as shown in Figure C.8a.  Three records from the 15 recording sites seem to 

be corrupted and are not considered.  The record obtained from FA-1 site is illustrated in 

Figure C.8b.  To minimizing the wave passage effect, first, each of the remaining 11 

records is time-shifted with respect to the record presented in Figure C.8b such that the 

sum of the product of a considered record and that shown in Figure C.8b is maximized 

after the shift. 

It is assumed that the average PSD of the considered 12 records could provide a good 

representation of the ground motions, at least for such a type of seismic event.  The 

calculated average TFPSD based on ST and the calculated average TSPSD based on WT 

are shown in Figures C.8c and C.8d, respectively.  The calculated (t) by using the 

average TFPSD and the average TSPSD presented in Figures C.8c and C.8d are included 

in Figure C.8b.  The obtained PSD and the standard deviation indicate the nonstationarity 

of the ground motions.  (t) values obtained by using ST and WT are in very good 

agreement. 

 

An assessment of the empirical probability distribution of the standardized variable 

( ) ( ) / ( )z t x t t=  is carried out by considering all 12 records.  The empirical distribution 

of z(t) by considering all 12 records is presented in Figure C.9, indicating that the 

empirical distribution can be fitted by a normal distribution only for the initial segment of 

the records.  Moreover, the distribution shape is time-varying and non-Gaussian.  The 

non-Gaussian behaviour of the ground motions is supported by the findings given in 

Radu and Grigoriu (2018), indicating that the Gaussian assumption for the seismic 

ground motions records included in the PEER NGA-West dataset may not always 

appropriate.  However, for this particular set of records, the tail of the distribution is 

shorter than that of the normal distribution, which differs from the longer tail behaviour 

suggested by Radu and Grigoriu (2018). 
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Figure C.8: a) The LSST array station of selected records, b) record at FA1-1 station, c) 

average TSPSD by using ST based on 12 records, and d) average TSPSD by using WT 

based 12 records. 

 

 

Figure C.9: Empirical distributions of the normalized time series of the considered 

ground motions.  a): Time interval (0, 2), (2, 4), (4, 6); b): (6, 8), (8,10), (10, 12); c): (10, 

15), (20, 25), (30, 35); d): entire duration and the fitted GGD with  0 = 3.01 and 1 = 

1.54. 

 

For illustration purposes, it is assumed that the marginal probability density function 

of x(t) can be represented by the generalized Gaussian distribution (GGD) (Nadarajah 
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2005),  

( ) 0
1( ) /0

,

1 0

( ( ))
2 (1/ )

x t

X tf x t e


 

  

− −
= , (D-31) 

where  denotes the mean, 0 and 1 are positive model parameters, and ( )  denotes 

the gamma function.  If 0 equals 2, it represents the normal distribution.  For 0 >2 and 

<2, the distribution tail is lighter and heavier than that of normal distribution.  The 

variance equals ( ) ( )2

1 0 03 / / 1/      , and the kurtosis coefficient equals 

( ) ( ) ( )2

0 0 05 / 1/ / 3 /      . 

By considering 0 = 2 and 1 2 =   (i.e., standard Gaussian), we use ST and the 

average target TFPSD function shown in Figure C.8c to sample the records using the 

IPAC algorithm.  Since a sampled record to sampled record comparison is irrelevant for 

x(t) represented as a nonstationary stochastic process, only a sampled record is illustrated 

in Figure C.10a.  The average TPSD function obtained from the 1000 sampled records is 

presented in Figure C.10b, and the calculated spectral acceleration (SA) for a damping 

ratio of 5% is shown in Figure C.10c for the 1000 sampled records.  Similarly, we use 

WT and the average target TFPSD function shown in Figure C.8d to carry out the 

simulation.  The obtained results are presented in Figures C.10d to C.10f.  The PSD 

functions shown in Figures C.10b and C.10e are almost identical to their corresponding 

targets presented in Figures C.8c and C.8d.  The mean of SA values shown in Figures 

C.10c and C.10f are in good agreement.  The standard deviation of SA obtained by using 

ST smaller than that obtained by using WT. 
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Figure C.10: Results based on simulated nonstationary Gaussian records by using ST 

and WT  (the results presented in a) to c) are for ST, and the results presented in d) to f) 

are for WT): a) a sampled record based on ST, b) average TFPSD of the 1000 sampled 

record, c) SA from 1000 sampled records using ST, d) a sampled record based on WT, e) 

average TSPSD of the 1000 sampled record, f) SA from 1000 sampled records using WT. 

 

We have tested the IPAC algorithm to simulate ground motions for additionally 

selected target PSD functions.  It was observed that in some cases, when the initial or 

final segment of records has less than 0.5% of total energy, the algorithm may converge 

very slowly or may not converge.  In such a case, it is suggested that such segments with 

negligible energy are to be truncated.  This is in agreement with common practice in 

earthquake engineering. 

To simulate the non-Gaussian process, we consider , ( ( ))X tf x t  as shown in Eq. (D-31) 

but with 0 = 3.01 and 1 = 1.54 (i.e., a kurtosis coefficient of 2.4) since their use fit the 

data adequately, as depicted in the last plot in Figure C.9.  We repeat the analysis that is 

carried out for the results presented in Figure C.10.  The obtained results are presented in 

Figure C.11.  A comparison of the results shown in Figures C.10 and C.11 indicates that 

the results follow the same trends.  To assess the quantitative differences between the 
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obtained SA based on Gaussian and non-Gaussian assumptions, we calculate the ratio of 

the mean of SA shown in Figure C.11 (i.e., non-Gaussian case) to its corresponding value 

shown in Figure C.10 (i.e., Gaussian case).  We do the same for the standard deviation of 

SA.  The obtained values are presented in Figure C.12, indicating that the mean and 

standard deviation of SA for the non-Gaussian case with a lighter tail are smaller than 

those for the Gaussian case for most considered vibration periods, which is expected.  

The decrease in SA by considering non-Gaussian excitation is most noticeable for a 

shorter vibration period.  This is because stiffer structures are more sensitive to peak 

acceleration values.  In general, the ratio based on ST is smoother than that based on WT. 

 

 

 

Figure C.11: Results based on simulated nonstationary non-Gaussian records by using 

ST and WT  (the results presented in a) to c) are for ST, and the results presented in d) to 

f) are for WT): a) a sampled record based on ST, b) average TFPSD of the 1000 sampled 

record, c) SA from 1000 sampled records using ST, d) a sampled record based on WT, e) 

average TSPSD of the 1000 sampled record, f) SA from 1000 sampled records using WT. 
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Figure C.12: Ratio of statistics of SA of simulated records with non-Gussian and with 

Gaussian distribution assumptions.  

 

C.6 Summary and conclusions 

We elaborated the concept of defining a modulated and intensity function adjusted 

(MODIF) stochastic process in the transform domain.  The definitions of the stochastic 

processes in the transform domain lend themselves to an easily understandable and 

almost trivial algorithm to simulate stochastic processes.  As such a simulated signal may 

not lead to the prescribed target PSD function and marginal cumulative distribution 

function of the process, we proposed a new iterative algorithm, called iterative power and 

amplitude corrected (IPAC) algorithm, so the sampled signal after the iteration have the 

prescribed properties.  Besides simulating nonstationary and non-Gaussian processes, the 

proposed iterative algorithm can be used to generate surrogate.  The algorithm can be 

used with Fourier transform, S-transform, and continuous wavelet transforms. 

Practical illustrative numerical examples showed the applicability of the proposed 

algorithm by sampling surrogates for the ground motions and the fluctuating component 

of winds.  The use of the IPAC algorithm to simulate nonstationary Gaussian and non-

Gaussian ground motions based on S-transform (ST) and continuous wavelet transform 

(WT) is presented.  The spectral accelerations are calculated using the simulated records.  
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In general, the mean and standard deviation of SA of the simulated records based on ST 

and based on WT agree well despite the differences between ST and continuous WT and 

between the frequency-dependent window used in ST and the generalized Morse wavelet 

used in the continuous WT. 
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