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Abstract

We use mathematical models to study prophages, viral genetic sequences carried by bacte-

rial genomes. In this work, we first examine the role that plasmid prophage play in the survival

of de novo beneficial mutations for the associated temperate bacteriophage. Through the use

of a life-history model, we determine that mutations first occurring in a plasmid prophage are

far more likely to survive drift than those first occurring in a free phage. We then analyse the

equilibria and stability of a system of ordinary differential equations that describe temperate

phage-host dynamics. We elucidate conditions on dimensionless parameters to determine a

parameter regime that guarantees coexistence of all populations. We then develop a resource-

explicit model to investigate further the lysis-lysogeny decision in variable environments. A

novel feature of our model is the inclusion of a distinct stationary phase for the hosts and

lysogens. Through the application of evolutionary invasion techniques, we determine that as

variability increases, bacteriophage populations tend to evolve to a fully lysogenic state, so

long as the hosts and lysogens are able to enter stationary phase. This lead us to question

the evolutionary fates of prophage in fast- and slow-growing bacterial species. Using a par-

tial differential equation model developed in [94], we fit distributions of prophage lengths for

both growth classes and observe several significant differences in strategies of the phage that

infect both growth classes. Specifically, we demonstrate that phages infecting fast-growing

hosts have a much higher rate of lysogeny. Our work sheds light on the long-standing question,

“why be temperate?” [176], offering novel explanations regarding the evolution of temperate

bacteriophage.

Keywords: Bacteriophage, bacteria, stationary phase, prophage, plasmid prophage, math-

ematical model, equilibria, stability, chemostat, bioinformatics
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Summary for Lay Audience

Bacteriophages (or “phages” for short) are viral particles that predate on bacteria. Phages

are pivotal players in the evolution of bacteria, and as such provide interesting avenues for

experimental and theoretical work. These microscopic predators are able to infect through two

main methods. The first has been studied extensively, wherein the phage infects and imme-

diately kills the host. Phages that utilise this first strategy are often used in “phage therapy"

treatments, where they eliminate antibiotic resistant bacteria from an infected human. The sec-

ond involves the phage becoming integrated into the bacterial genome, and laying dormant for

some time. The second strategy has puzzled researchers, as it does not seem to directly benefit

the phage. The question as to why the phage evolved such a strategy is the focus of our work.

Although some biologists have offered insight into this evolutionary question, we further their

work by developing mathematical models of phage-bacteria dynamics. We identify that muta-

tions beneficial to the phage are more likely to propagate forward if they occur when the phage

is integrated. We also find that this integration may be an important strategy for the survival of

the phage, if the host is living in a highly variable environment. We, therefore, hope our work

has generated new answers to this biological puzzle.
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Chapter 1

Introduction

1.1 Bacteriophage

Bacteriophage (or “phage” for short) are viral particles that infect bacterial hosts, and are es-

timated to be the most abundant group of organisms on earth [37]. Although phage were first

identified over 90 years ago [80, 186], they have become pivotal organisms in scientific re-

search in recent years due to their role in medical treatments [100, 124], ecosystem health and

cycling of nutrients [89, 135], and in bacterial evolution [12, 21, 34, 38, 60].

Phage are used in the medical treatment of bacterial infections in procedures called phage

therapy [19]. First utilised shortly after the discovery of bacteriophage, phage therapy is often

used to eliminate antibiotic-resistant bacteria from an infected patient [27, 100]. Although

phage therapy has been practiced over the last eight decades in France, Russia and Eastern

Europe [40, 69], the treatment has become more prevalent in recent years, due to the emergence

of multi-drug-resistant bacteria [110, 209].

As was previously mentioned, bacteriophage are very abundant and often outnumber all

1



2 Chapter 1. Introduction

other organisms within an ecosystem, thus providing substantial evolutionary pressure on

prokaryotes [205]. Due to the phage’s ability to influence the community present in an ecosys-

tem, for example due to the “kill-the-winner” strategy they employ [182], phage play an inte-

gral role in determining ecosystem health [157]. In particular, phage are important components

of the cycling of nutrients, such as nitrogen, phosphorous and carbon, throughout the ecosys-

tem [202, 204].

Many bacterial hosts have evolved an immune system of sorts in the CRISPR-Cas system,

which targets infecting phage genomes and reduces the possibility of horizontal gene transfer

[180]. It should be noted though that co-evolution has also occurred, that is, the phage them-

selves have evolved in an attempt to evade the immune response of the CRISPR system [161].

Although we often view the interactions between phage and host as antagonistic (or as a more

traditional predator-prey dynamic), it is often observed that phage and host may have a mutu-

alistic relationship [140]. Infecting phage may provide various benefits to their host, including

virulence factors [26], stress tolerance [197] and most commonly super-infection exclusion

[115, 121].

Phage adopt a variety of different infection strategies. Often, phage are classified by their

use of two key infection strategies, lytic or lysogenic [114] (see Figure 1.1), that will be ex-

plained in detail below. However, these two strategies are not the only classifications, and

recently it has been discussed that there is a plethora of classifications that are useful in the

identification of bacteriophage [64, 81].

Phage that infect a host through the lytic strategy, called virulent phage, are characterized

by bacterial adsoprtion, the hijacking of the host’s machinery and the lysis (death) of the host

releasing a multitude of new progeny into the environment [4]. In contrast, a phage employ-
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Figure 1.1: Cartoon diagram displaying the two modalities of infection strategy for temperate

bacteriophage. Within the lytic life cycle, a phage attaches, and hijacks the host’s machinery

to produce a large number of progeny. The new phage then burst the cell open, killing it in

the process. The lysogenic life cycle is characterised by the integration of the phage genome

into the host’s genome after adsorption. Generally, the integrated genome will stay within the

host’s genome for some time before inducing (i.e., excising from the host’s genome) and then

entering the lytic cycle.

ing a lysogenic strategy has the ability to integrate its genome into the host’s genome, without

killing the host [41]. These phage, called temperate phage, undergo a decision to determine

if they will integrate within the host or undergo the lytic strategy upon attachment [114]. The

integrated phage genetic material, called a prophage, may exist for numerous bacterial genera-

tions, until induction of the prophage occurs. This process typically excises the prophage from

the host’s genome, allowing the phage to then enter into the lytic cycle [111]. During the bac-

terial generations when the prophage is integrated in the bacterial genome, there is mutational
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risk involved in the replication process (i.e., the prophage relies on perfect replication by the

host) [35]. Due to this gradual mutational decay, the prophage may become unable to perform

key functions such as cell lysis, or progeny production; such a prophage is deemed “cryptic"

[33, 196]. Temperate bacteriophage will be discussed in more detail in Section 1.1.1.

Although we commonly refer to phage as either lytic or lysogenic, multiple other exploita-

tion strategies exist. One such strategy is that of filamentous phage. Unlike its lytic or lysogenic

counterparts, a filamentous phage causes a chronic infection of the host, continually secreting

progeny from the host without causing cell death [120]. A filamentous phage, such as the M13

phage, will reduce the host’s growth rate due to metabolic strain from replication of the phage

DNA and the secretion process, as well as the embedded proteins the phage encodes on the

membrane of the host [117, 118]. In addition to secreting progeny into the environment, fila-

mentous phage may also be transferred vertically through generations [107]. These phage have

also been of interest to experimental evolution studies that investigate the switching behaviour

between a mutualistic and parasitic relationship with the host bacterium [30, 168, 169].

Another prevalent exploitation strategy by bacteriophage is a version of lysogeny wherein

the phage forms a plasmid-like structure (a separate circle or rod of DNA), as opposed to

integrating within the host’s genome [154]. Plasmid prophage, as they are known, often exist

as low copy number plasmids within the host’s cytoplasm, allowing them to be horizontally

and vertically transferred [152, 153]. Plasmid prophage will be discussed in greater depth in

Section 1.1.2.
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1.1.1 Temperate Bacteriophage and Prophage

As was briefly discussed in Section 1.1, phage have two main life cycles (or infection strate-

gies). Here, we focus solely on the infection strategy of temperate phage. These phage undergo

bacterial adsorption, after which the phage may either immediately lyse the host, or may inte-

grate its genome into the host’s. The phage then replicates along with the host, and may stay

integrated for many bacterial generations [36, 37, 114].

As described in the previous section, once integrated within the host’s genome, the phage

genetic material is called a prophage [114]. Through genome sequencing studies, it has been

discovered that bacterial genomes include anywhere between zero and 15 prophage (in the lat-

ter case, prophage account for about 16% of the host’s genome) [183]. The large number of

prophage found in many different bacterial species suggests that lysogeny is quite prevalent in

bacteria [35, 36, 61, 66]. Although it may seem detrimental to harbour viral genetic material,

the prophage often confers some benefit to the host bacterium [16]. Prophage are also respon-

sible for repressing phage genes, thus eliminating the possibility of superinfection by the same

phage [51].

Several temperate phage have been closely studied. One such phage is the lambda phage.

Lambda has been extensively studied, and is the most common example of a tailed, temperate

phage [78]. Lambda is often used in research studies to determine factors that influence the de-

cision between immediately lysing the host, or integrating into the genome to form a prophage

[98, 151]. Another closely studied temperate phage is phage Mu. Unlike lambda, which only

infects Escherichia coli, Mu has a wide range of possible hosts [134]. Mu-like phage have a

key difference from lambda-type phage in that they insert at apparently random positions in the
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host’s genome, often leading to noticeable mutations of the host [195].

Temperate phage face a lysis-lysogeny decision upon infecting a susceptible host. This de-

cision is regulated by bistable genetic switches [50, 141, 151, 171]. Dependent on the specific

phage, the switch may be controlled by various factors; for instance, [50] suggests the control-

ling feature is the existence of overlapping face-to-face promoter regions on the phage genome,

while [141] suggests that environmental signals and the number of infecting phage control the

genetic switch. It is important to note, however, that it has been shown that the propensity, or

probability as we will call it, for lysogeny can evolve in response to selection [155].

The link between bacterial life-history traits and the distribution of prophage within the

bacterial genome has been recently discussed [183]. One of the life-history traits that was

most highly correlated with prophage content was the bacterial minimal doubling time. This

doubling time refers to the minimal time (on average) it takes a certain bacterial population

to double in size (not to be confused with generation time, which is much more difficult to

determine) [67]. Fast-growing bacteria are often found in environments where the resources

are highly variable [23, 95], which presents an interesting question: is lysogeny advantageous

in highly variable environments? It has also been suggested that the number of prophage carried

by a bacterium may be linked with bacterial pathogenicity. Therefore, it has been hypothesized

that more prophage may be present in pathogenic bacteria because the prophage confer an

evolutionary benefit to their hosts [26, 189].



1.1. Bacteriophage 7

1.1.2 Plasmid Prophage

As previously discussed, in certain cases the temperate phage may be incorporated into plasmid

sequences, freely existing within the host cell, but outside the host’s genome [34, 159]. Typical

plasmid prophage exist as relatively large genetic elements that are kept at low copy numbers

to reduce the metabolic burden on the host [112].

Due to the low copy number of the plasmid prophage, the transmission of the viral genetic

material vertically may be compromised [137]. To ensure the virus’s long term survival in

the population, plasmid prophage encode maintenance strategies to ensure transmission [166].

One such strategy is plasmid addiction, or post-segregational killing [210]. When utilizing this

strategy the virus ensures its survival by encoding two proteins, a “toxin/anti-toxin” system,

that are released into the host. This system will kill a post-segregation plasmid-free host, while

if the plasmid is present the anti-toxin will clear the toxin from the host ensuring that only those

that carry the viral DNA are alive in the next generation [76]. Similarly, a plasmid prophage

may inhibit the growth of a daughter cell that does not contain a copy [104].

A secondary maintenance strategy that plasmid prophage encode is called a partition sys-

tem. Here, the plasmid encodes proteins that will ensure that, even at low copy numbers, each

daughter cell will receive at least one copy of the prophage [68]. Partition systems direct the

segregation of the plasmids by moving them to either side of the cell, minimizing the prob-

ability of loss during division [166]. Most low copy number plasmids seem to encode for a

partition system, including plasmid prophage [68, 152, 212].

The role of plasmid prophage on the evolution of temperate phage is the focus of discussion

in Chapter 2. Within this chapter, we often mention “chromosomal” prophage and plasmid
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prophage. For clarity, we call any prophage that is integrated within the host’s genome a

chromosomal prophage, while those that exist as a plasmid-like structure as plasmid prophage.

1.2 Their Hosts

In most studies (both in vivo and in silico), the bacterial host that is of interest in researching

host-phage dynamics is Escherichia coli [92, 109, 176, 211]. However, most, if not all, bacteria

have been identified as being able to be infected by some phage [71, 87, 200]. Phage do indeed

have specific hosts that they can infect, as evolutionary pressures have forced them to become

niche predators of sorts (see [87] for discussion on host range of bacteriophage).

1.2.1 Stationary Phase

Although the main focus of Chapter 4 is the lysis-lysogeny decision of temperate phage, the

bacterial stationary phase may play a role in this decision. The stationary phase for a bac-

terial population is defined as a period of limited or no growth when resources are depleted

[96] (see Figure 4.1 in Chapter 4 for a clear diagram). Many bacteria-phage experimental pro-

tocols predominantly study the exponential growth phase, when phage and hosts can freely

propagate [4, 208]. This experimental design has also been challenged by several researchers,

who discovered that phage may persist even through “famine” periods of diminished resources

[91, 130, 164].

The common example of a bacterial host with a distinct stationary phase is E. coli [62, 95,

146]. As previously mentioned, these hosts are often used in experimental research regarding

the lysis-lysogeny decision, however, little is understood about how the stationary phase may
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play a role in the switch between the two strategies.

Bacterial stationary phases are often initiated when a population faces less favourable envi-

ronmental conditions (such as the “famine” periods suggested in [91] and [164]). An interesting

feature of the stationary phase, other than its characteristic of inhibition of growth, is that the

host cells often become immune to infection by bacteriophage [28, 163]. A distinct stationary

phase for the host bacteria population has also been suggested to play a role in the coevolution

of phage and host [63]. We conclude, then, that due to its possible role in the coevolution

of phage and host, the stationary phase may in fact play a pivotal role in the lysis-lysogeny

decision, and has oft been dismissed from both models and experiments.

1.3 Previous Models of Host-Phage Dynamics

Within this section, we will be focusing solely on models of temperate bacteriophage and their

bacterial hosts. Extensive literature is available on the dynamics of strictly lytic phage and

hosts, but this will not be the focus of our discussion. For an in-depth review of such literature,

see [198].

The models used to describe the dynamics of host and phage can often be broken into two

main categories: (i) resource-explicit models and (ii) resource-implicit models. We will briefly

review important literature of both types of models, which give some insight to our ventures in

modelling these dynamics in Chapters 3 and 4.
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1.3.1 Resource-Explicit Models

In models where resources are explicit, meaning they are modelled alongside the population

densities of the species in question, models of chemostats are often used. The chemostat is

often considered the idealization of a laboratory experiment in population studies [179], first

described, by all accounts, by Novick and Szilard [139]. A simple chemostat is pictured as a

container of a well-mixed solution that has an inflow of a limiting resource for some growing

species, in our case a population of bacteria, and an outflow of mixed solution. Smith and

Waltman [173] describe the chemostat model in detail, and provide an extensive discussion on

methods to analyse mathematical models of chemostats.

A chemostat is often described by a set of ordinary differential equations, that contain

two major components: a resource and at least one species. The resource is often modeled

with a constant input to the chemostat, but inflow may be altered by some input function,

denoted hereafter as C(t). The resource is lost to the system from the obvious outflow, but

also through the species in question consuming it. The species then grows dependent on the

resource concentration, and is lost due to the outflow of the system or by a death/clearance rate.

If the species of interest is a bacterium, the growth rate is often given by the Michaelis–Menten

equation [6, 127, 172, 173]; this function was shown to fit empirical bacterial growth results

by Jacques Monod [133].

Interestingly, the article that first brought forth the mathematical description of temperate

phage and host interactions was a chemostat model developed to address the question, “why be

temperate?”. Developed by Stewart and Levin [176], the authors sought to elucidate important

conditions that may play a role in understanding the presence of lysogeny. Here, the model
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contains both temperate and strictly lytic phage, infecting a single host. By breaking down

the model into various cases (i.e., excluding certain populations), Stewart and Levin champion

two hypotheses on why a phage may be temperate, over its virulent (i.e., lytic) counterpart.

Their hypothesis that lysogeny is a method for phage to survive through difficult times is still

well-regarded, and is often promoted as the predominant reason for the evolution of temperate

phage [90, 122, 144, 145].

Not only does Stewart and Levin’s model provide a basis for our work, but it also provides

a base model structure for many other research studies. For instance, Mittler bases his initial

model structure of two phage strains on Stewart and Levin’s, but switches focus to analyse

the evolution of the genetic “switch” (described previously) of temperate phage [129]. Evans

et al., in fact, extend Mittler’s work to include the continuous evolution of temperate phage

via small mutations; here, they utilise adaptive dynamics to determine an evolutionarily stable

strategy for temperate phage [57]. Schoustra et al. make simplifications to the Stewart and

Levin model in order to demonstrate that temperate phage may act as allelopathic agents, and

as such be favoured by selection [162].

In all the previous work cited thus far, the resource input, C(t), was assumed to be a constant

function. An interesting avenue for chemostat models of phage-host interactions is utilising a

chemostat to simulate environmental conditions, as is done in [8] for instance. Although some

have demonstrated interesting conditions regarding the growth and competition of bacterial

species [84, 172], comparitively little work has addressed temperate phage-host dynamics in a

variable (often periodic) environment.
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1.3.2 Resource-Implicit Models

In contrast to resource-explicit models that utilise chemostats, researchers may also model

phage-host interactions without an explicit resource. Here, the bacteria population is allowed

to grow at a rate that is a function of population density, instead of growing dependent on

resource availability. Typically, so that the population does not grow exponentially large, a

logistic growth rate is employed. However, other density-dependent growth models such as the

Beverton-Holt or Ricker model, could also be used [14, 156].

A model of resource-implicit phage-host interactions was developed by Berngruber et al.

in 2013 [12]. Here, the authors build a model of hosts, phage and “infected” hosts (what we

later call lysogens) and compete a virulent with a temperate phage to elucidate evolutionary

trends of infection. Although they initially dominate, the virulent phage are shown to lose

the competition in the long-term, suggesting that as the hosts become less abundant it is more

beneficial to the phage to act temperately. Berngruber et al. improve upon their model to then

include spatial structure in 2015 [13]. Here, they further discuss similar results to those found

previously, but also determine that as the population increases its structure, virulence tends to

decrease.

A recent model was developed by Doekes et al. to determine the role of a “communication”

protein on the propensity of lysogeny in a bacteriophage population [52]. In experimental

work, Erez et al. observed the hijacking of the host bacterium’s quorum sensing machinery by

a temperate phage [56]. Upon integration into the host’s genome, the lysogen secretes a protein

into the environment, which experimentally altered the propensity of lysogeny. Doekes et al.

model such behaviour and determine that a switch between lysogenic and lytic behaviour at
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certain levels of the protein confers the most benefit to the phage.

1.4 Evolutionary Invasion Analysis

A common notion from evolutionary theory is that the “fittest will survive”, an idea coined by

Herbert Spencer in 1864 [175] after reading the prolific work of Darwin. An obvious question

then presents itself, namely how does one determine who is the fittest in various scenarios of

competition? This is the underlying idea of evolutionary invasion analysis, and the bulk of the

proceeding discussion.

According to Diekmann, evolutionary invasion analysis comes in two brands: a game the-

oretical approach popularized by Maynard-Smith [174] and the more recent approach using

adaptive dynamics [47]. The latter approach focuses on the long-term growth of a mutant in-

vading a population in the environmental conditions that are set by the current wild-type (or

resident) species [45]. We define this resident species as the population with the specific allele

that is currently fixed, while the mutant or invading population is that with a different allele

that has arisen by mutation [142]. The goal of undergoing an evolutionary invasion analysis is

two-fold: (1) determine what types of mutant alleles can invade and (2) determine if there is a

resident that can resist invasion [142].

To determine the answers to these questions, we undergo an invasion analysis. We outline

the steps for a one-dimensional trait given by Diekmann in [47]. After determining the allele or

trait in question, we allow the population to become monomorphic in that trait, which as defined

by Otto and Day would be the resident population [142]. An invasion analysis involves seeding

a rare mutant that differs from the resident only slightly in the specific trait and determining
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if it begins to grow. To determine the long-term outcome, a non-linear analysis is generally

necessary. The tools necessary to complete such an analysis are not typically generalizable

across models, although several researchers have determined patterns in their results [47, 65].

Using the information discerned from this non-linear analysis and invasion of a mutant, we

finally can determine the trait value that will be invulnerable to invasion, i.e., cannot be driven

to extinction by a subsequent mutant. This strategy is often referred to as an evolutionarily

stable strategy (ESS) [174].

Conveniently, the results of an adaptive dynamic analysis may be plotted in a pairwise

invasibility plot, or PIP. An example PIP that has been described many times preivously, for

instance in [46, 65, 142], is shown in Figure 1.2. A line is drawn at a 45◦ angle, indicating

neutrality between the resident and mutant trait; intuitively, a mutant and resident that have

the same trait value are neutral to invasion. This line separates regions of + and − indicating

a successful and unsuccessful invader respectively. We can think of these regions as meaning

that a successful (unsuccessful) invader will have offspring greater than (less than) one in the

+ (−) region. [142].

A potential ESS corresponds to the intersection of the two lines on our simple PIP; indicated

with a dashed circle in Figure 1.2. In our cartoon PIP, the indicated point of intersection is in

fact an ESS, as no other mutant strategy will be able to invade such a point; equivalently the

growth rate of any other mutant will not be higher once the population has reached this trait

value [142, 47].

Each PIP has a corresponding coexistence plot, that displays regions of parameter space

where both the mutant and resident traits may persist resulting in a polymorphic population

[125]. The coexistence plot is constructed by mirroring a PIP over its diagonal and overlaying
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the resulting mirrored PIP over the original PIP [22]. For a clear illustration of this construction,

we refer the reader to Figure 6 of Brännström et al. [22].

Although we only show one PIP with a clear ESS, these graphical representations may take

many other forms dependent on the model in question and, as such, may indicate a variety of

evolutionary trajectories. Such trajectories and a discussion on their biological meaning are

reviewed in [46], [125], and [142].

Figure 1.2: Cartoon diagram of a common pairwise invasibility plot shown in most adaptive

dynamics literature. Resident traits are plotted on the horizontal axis, with invading mutant

traits on the vertical. Regions where a mutant trait can invade a resident trait are coloured in

grey and marked with a “+” symbol. Regions where a mutant trait cannot invade are coloured

white and marked with a “−” symbol.
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1.5 Extinction Probabilities

De novo mutations are the raw material for adaptation. But even if they confer a benefit, de

novo mutations that occur as a single copy in a large population do not usually succeed in

producing a lineage that persists. This loss of rare mutations is one aspect of what is known as

genetic drift [102]. Therefore, the study of the long-term fate of rare mutations has become a

focus of interest. A typical approach in determining the long-term fate is through the utilisation

of a branching process [88] which tracks birth and deaths of a focal lineage, assuming all else

in the population is constant [9, 72].

Mathematically, branching processes are often modelled using probability generating func-

tions (PGF). Consider a discrete random variable R, with a probability mass function pi, where

the probability mass function is defined as a function that gives the probability that a discrete

random variable is exactly equal to some value (i.e., P(R = i)) [177]. If R can only take

non-negative integer values, the PGF for R is defined as

f (x) =

∞∑
i=0

pixi .

Note that f (0) = p0. Suppose that R defines the offspring distribution of a single generation in

a lineage, then f (0) gives the probability that there are zero offspring in that generation.

If we continue with our assumption that R defines the number of offspring in the current

generation, we can then use the PGF, f (x) to determine the offspring distribution after two

generations or further. To do so, we simply need to take the composition of f (x) with itself.

For example, if we wish to determine the offspring distribution after two generations of re-

production, we would need f ( f (x)) or f 2(x) [58]. Then f ( f (0)) gives the probability of zero

individuals in the lineage after generation two.
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To find the ultimate probability that the lineage goes extinct, we need to evaluate the limit as

the number of generations, n, goes to infinity. We define this probability as X. Mathematically,

we are looking to determine

X = lim
n→∞

f n(0)

under the condition 0 ≤ X ≤ 1.

If we apply the function f to both sides of the equation above, we find

f (X) = f ( lim
n→∞

f n(0)) = lim
n→∞

f ( f n(0)) = lim
n→∞

f n+1(0) = X ,

which is a powerful result that allows us to determine the extinction probability of a lineage

given the probability generating function [58, 72]. We utilise this idea of calculating the ex-

tinction probability of a de novo mutation in Chapter 2.

1.6 Basic Reproduction Number, R0

The basic reproduction number is an extremely important quantity in mathematical biology in

the field of disease spread and the identification of the invasiveness of a mutant species. This

scalar quantity is defined in a variety of ways, however, we will focus on its definition as the

average number of secondary infections an infected individual will produce over its lifetime in

a completely susceptible population [44].

In 1927, Kermack and McKendrick developed the first epidemic model, utilising a thresh-

old quantity made from model parameters to predict an epidemic outbreak [93]. A general

formula, lacking a symbol and name at the time of discovery, was first given by Sharpe and

Lotka in 1911 [170]. The first noted naming and symbolizing of the basic reproduction num-
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ber1 as R0 is credited to Lotka in 1939 [113].

A common approach to identify the basic reproduction number is the usage of a next gen-

eration matrix (NGM). This technique offers both an intuitive biological basis and algorithmic

framework to derive R0 for compartmental disease models [49, 187]. The method of the NGM

applies to a system of n ordinary differential equations of which m < n define the infected

classes. This concept of “infected” classes can also be applied to the idea of “invading” classes

(or “mutant” class) as described in Section 1.4. The equations for the infected classes are

linearized about the disease-free equilibrium and divided into two matrix components. The

first matrix contains the terms which define the influx into the infected classes from uninfected

classes. This matrix is often denoted as F. The remaining terms, such as the remaining influx

terms and the outflux from each class, are used in the second matrix, denoted by −V . The next

generation matrix is then given by NGM = FV−1.

The main function of this matrix is to provide the basic reproduction number for a popula-

tion model [49]. The basic reproduction number is given by the spectral radius of the NGM,

i.e.,

R0 = ρ(FV−1) ,

also known as the modulus of the largest eigenvalue of the NGM [187]. To illustrate the

importance of the basic reproduction number, see [77] for a number of studies utilizing this

method for stability analysis of epidemic models.

In 2009, Diekmann et al. developed an intuitive and biologically relevant methodology for

the construction of the NGM [48]. A discrepancy often arises in the construction of the NGM

as it may be constructed in a multitude of ways dependent on the scientist’s views on what

1Although, it was called the “net reproduction number” at the time.
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constitutes a “new infection”. In this article, Diekmann et al. validate various definitions of the

NGM by proving conditions under which the R0 approximations are the same [48].

Although this methodology is elegant and often somewhat simple, it can falter when we

extend our models to anything other than autonomous ordinary differential equations. As bi-

ological processes are often multi-layered and quite complex, the systems we use to model

them are often non-autonomous. Specifically, we will discuss some methodologies to deal

non-autonomous models with with time-periodic parameters.

1.6.1 Basic Reproduction Number for Time-Periodic Models

The NGM method of calculating the basic reproduction number for biological models is a long-

standing approach that unfortunately falters in non-autonomous environments [48, 201]. Here,

we will review three methods that may be employed to calculate R0 when dealing with time-

periodic, non-autonomous models: time-averaging, root finding and a numerical discretization

of the infection operator. We note that time periodic models are often used for species that are

affected seasonal, such as epidemics through the course of a year, or a bacterial population in

a fluctuating environment (as is modeled in Chapter 4).

Method of Time-Averaging

In some periodic non-autonomous epidemic models, the basic reproduction number may be

obtained from the corresponding autonomous model determined by time-averaging the coef-

ficients. Ma and Ma develop this method for SEIR (susceptible-exposed-infected-recovered)

models (and their variants) with and without recruitment for the susceptible class; recruit-

ment is defined as births or loss of immunity by the authors [116]. The authors use a simple
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SEIR model to demonstrate sufficient conditions for extinction of the infected class, wherein

only the contact rate, β, varies periodically. It is found that if no recruitment is allowed, then

maxt{R0(t)} < 1, meaning the maximum that the time-varying R0 reaches over time is less than

one, is a sufficient condition for extinction [116]. Similarly, the authors determine that when

recruitment is allowed, a sufficient condition for extinction of the disease is the time-average

R0, denoted in the article as R̄0, being less than one. Concurrently, Greenhalgh and Moneim

determine the same result, regarding a time-averaged basic reproduction number, for models

without an exposed class but with loss of immunity (i.e., for SIRS models) [70, 132].

A caveat to the results of the aforementioned articles was the need for a constant population,

and that there was no delay in infection. Wesley and Allen extend the results of Ma and Ma, and

Greenhalgh and Moneim by demonstrating necessary conditions to calculate a time-averaged

R0 when the population is not constant [201]. By first proving the existence of a periodic

solution to a logistic growth differential equation with periodic birth and death rates, the authors

elucidate sufficient conditions on multiple variants of the SIRS model where the time-averaged

basic reproduction number is equivalent to our understanding of R0 from the corresponding

autonomous system [201].

We note that all of the work discussed above applies only to specific classes of either SEIR

or SIRS models, and cannot be widely applied to all time-periodic models.

Method of Root-Finding

Although the time-averaged basic reproduction number is simplistic and intuitive, it fails when

models break the basic assumptions outlined in all of the above examples. Extrapolating these

ideas further, Wang and Zhao demonstrate more broad conditions under which time-averaging
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approaches may work, but also note that this is not always applicable to every model [194]. To

alleviate some of these constraints, Safi et al. develop a numerical method akin to a root-finding

method, such as Newton’s Method [160].

Their method utilizes theory derived in [194] (see Theorem 2.1 in that article) by consider-

ing the ω-periodic system,

dw
dt

=

[
−V(t) +

F(t)
λ

]
w , (1.1)

where λ > 0 and V(t) and F(t) are n × n matrices constructed in the traditional NGM approach

described by Diekmann et al. [48]; however, some of the parameters in such construction may

now vary with time. We then let W(t, s, λ) where t ≥ s, be the evolution operator of this system

on Rn. Safi et al.’s method can then be summarized as an interative approach, outlined as

follows in [147],

1. Determine an appropriate range for λ. Pick a value λ1 > 0 that is within this range.

2. Compute the evolution operator, W(ω, 0, λ1) by solving (1.1) through the utilisation of a

differential equation solver.

3. Determine the spectral radius of the evolution operator, i.e., ρ(W(ω, 0, λ1)).

4. Calculate f (λ1) = ρ(W(ω, 0, λ1))−1. If f (λ1) = 0 (or within a specified tolerance ε), then

R0 = λ1; otherwise, pick another value for λ1 within the appropriate range and repeat.

This root-finding iterative method was inspired by the results of Bacaër in [10], based on Flo-

quet theory.

We note, however, although root-finding is quite simplistic in its underlying mechanics, it

can be computationally expensive. There is also no guarantee of convergence given by Safi et
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al. or any literature on the subject since [160]. In addition to this problem, the computational

cost of repeatedly computing a solution to an ODE can be quite high, and suggests a better

method may be needed. This improvement on Safi et al.’s method is discussed below.

Numerical Discretization of the Infection Operator

This final approach to calculating the basic reproduction number of an infected class is de-

veloped by Posny and Wang in [147]. The authors comment on the cost and implementation

struggles one might face when implementing the aforementioned root-finding method, and

seek to construct a simpler algorithm. As with Safi et al.’s method, Posny and Wang consider a

system of differential equations that is ω-periodic (i.e., f (t) = f (t +ω)), for some ω > 0. They

define an infection operator, as is done in [194], with an evolution operator Y(t, s) defined from

the linear system

dy
dt

= −V(t)y ,

with V(t) being the same construction as the V matrix in the NGM approach for a non-periodic

system. The authors go onto redefine their next generation operator as,

(Lφ)(t) =

∫ ω

0
G(t, s)φ(t − s) ds , (1.2)

where

G(t, s) ≈

 M∑
k=0

Y(t, t − s − kω)

 F(t − s) .

In the approximation of G, the matrix F(t) is from the construction of the next-generation

matrix (as was done with V(t)) and M is some integer larger than zero. An interesting feature

of this approximation, that the authors note, is that M need not be excessively large for accurate
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approximations, due to the exponential decay of the terms in the summation. By writing the

infection operator in this way, it is possible to numerically integrate Equation (1.2).

Consider the interval [0, ω] that is uniformly partitioned over n nodes, hereby denoted as

ti = i · ωn for i = 0 , . . . , n − 1. The authors then approximate (1.2) using the trapezoidal rule

(due to its second-order accuracy):

(Lφ)(t) ≈
ω

n

 n−1∑
i=0

G(t, ti)φ(t − ti) +
1
2

[G(t, t0) + G(t, tn)] φ(t − t0)

 .
By denoting,

G̃(t, t0) =
1
2

[G(t, t0) + G(t, tn)]

we can rewrite the approximation as,

(Lφ)(t) ≈
ω

n

G̃(t, t0)φ(t − t0) +

n−1∑
i=0

G(t, ti)φ(t − ti)

 .
This operator equation may be simplified as the matrix equation (Lφ)(t) = λφ(t) through two

vector multiplications (see Equation (5) of [147] for the details). This rewriting of the infection

operator generates a matrix system that has coefficient matrix, A. This matrix A has dimension

(nm) × (nm), where n is the number of partitions and m is the size of the the matrix G. Simpli-

fying the structure of A to an n × n matrix, where each entry is given by an m × m matrix, we

can construct A as follows:

1. Diagonal entries of A are given by G̃(t j−1, t0), where j is the row of the n×n simplification

of A, and

2. Non-diagonal entries are given by G(t j, tu), where u = ( j − k) mod n with j being the

row and k being the column of the n × n simplification of A.
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Therefore, the matrix equation of the infection operator may be rewritten as

(Lφ)(t) = λφ̃ =
ω

n
Aφ̃ ,

where φ̃ is a column vector of dimension (nm) × 1.

This rewriting of the infection operator as the product of A with φ̃ allows one to find the

basic reproduction number as,

R0 ≈
ω

n
ρ(A) ,

where ρ is the spectral radius operator as defined in Section 1.6. This idea for the basic repro-

duction number may be numerically implemented, and is more computationally efficient when

compared with Safi et al.’s root finding approach [147].

The authors demonstrate their method by comparing it with both previous methods, and

that outlined in the basis for Safi et al.’s approach. They find that their algorithmic approach

gives essentially the same basic reproduction number as the root-finding method; as mentioned,

however, it is found to be much more computationally efficient. Both the root-finding and

numerical discretization methods determined that the time-averaging method underestimates

the value of R0, while Floquet theory tends to overestimate. The authors of both articles point

out that their approaches are more broadly applicable, and are a better approximation of R0 for

time-periodic systems of ordinary differential equations [147, 160, 194].
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The fate of beneficial mutations in plasmid

prophage

It has been well-studied that prophage sequences (viral sequences within a bacterial host) can

undergo significant genetic degradation, since prophage are temporarily shielded from selec-

tion on their lytic function. In addition, the host stands to benefit from the inactivation of

potentially lethal prophage. For instance, [15] observed a clear pattern of purifying selection

on prophage genes, suggesting that there may be a rapid inactivation of these sequences by

their host. Thus, genetic deletions and other deleterious mutations should ultimately accrue

and, therefore, impair their function. This has been validated by identifying a large number of

defective or degraded prophage elements in various bacterial genomes [35, 36].

In contrast, however, several recent studies have elucidated the adaptive potential of prophage

sequences. Likewise, [196] demonstrated that such defective prophage sequences confer a

range of beneficial functions to their host (in this case, Escherichia coli) when encountering

adverse environmental conditions. We can conclude then that prophage sequences clearly im-

25
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prove the fitness of their host, in some situations. In addition, it has been shown that adaptive

recombination between prophage and infecting phage occurs quite frequently, demonstrating

the role prophage play as an accessible reservoir of phage genetic material [20, 101, 131, 136].

It has been found that prophage sequences within the bacterial genome play a large role in

the adaption of temperate phage [192]. In particular, new mutations are more likely to survive

if they first occur in a prophage sequence, rather than a free phage. But, do these results still

hold when examining a temperate phage that creates a plasmid prophage, in lieu of integration

into the genome? This is the question we will explore in this chapter. These results have also

been published, in part, in [192].

2.1 Background Biology

Although the vast majority of temperate bacteriophages integrate themselves into the host’s

genome directly, some, like the P1-phage or n15-phage, are known to form a plasmid-like

structure in the cytoplasm of the host [38, 159]. As discussed in Chapter 1, these plasmid-like

structures are generally large genetic elements that are kept at low copy numbers in order to

reduce the possible metabolic strain on the host [38, 112]. Due to plasmid-prophage keeping

low copy numbers, during partition, one or both daughter cells may inherit a single copy of the

prophage. In an attempt to ensure the survival of its lineage, a plasmid prophage often codes

for some maintenance strategy [166]. These maintenance strategies may include coding for a

toxin/anti-toxin system or some partition system that ensures daughter cells receive a copy of

the plasmid [54, 213].
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2.2 Model

In previous work, it was found that the survival probability of adaptive mutations can depend

sensitively on the details of an organism’s life history [85, 143, 191]. We, therefore, begin

by developing a life-history model for temperate viruses that includes the lytic and plasmid

prophage replication cycles (for details on the life history of chromosomal prophages, see

[192]). Our model considers free bacteriophages and lysogens, tracking which events occur

in their life cycles, and in what order they occur. It should be noted, however, that time is not

modelled explicitly, which greatly simplifies the analysis.

Figure 2.1 illustrates the approach. A free phage successfully attaches to a host bacterium

with probability A, or is lost with probability 1 − A. After attachment has occurred, either the

temperate phage will lysogenize, forming a plasmid structure inside the host with probability

P, or will immediately enter the lytic cycle with probability 1− P. The outcome of undergoing

lysogeny is a single new plasmid prophage; the outcome of undergoing lysis is a burst of B

free phages. In our model we assume this process is immediate. However, in reality, the lysis

process would take some time to produce B progeny viral particles within the host, and then

release into the environment.

We note that the attachment probability A reflects the overall probability of attachment

and successful infection of a susceptible host cell. The underlying assumption here is that

the population of susceptible hosts for a given temperate phage is large and approximately

constant. We also assume that having one copy of a plasmid prophage is sufficient to not be

infected a second time by the same phage. This would be true whenever the prophage confers

superinfection immunity (often the case, presumably to reduce the metabolic strain that the
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plasmid confers on the host) [38, 53, 178].

A plasmid prophage has a very distinct life history, that has a multitude of avenues avail-

able. Cells that contain a plasmid prophage may undergo either induction (the process in which

a prophage initiates the lytic cycle), conjugation (the process in which an infected cell horizon-

tally transfers a copy of the prophage to an uninfected cell), cell fission (the process in which

a cell produces a copy of itself) or cell death. The probability that induction occurs first is N,

the probability of conjugation occurring first is J, fission occurring first is F and cell death

occurring first is M, with the condition that N + J + F + M = 1. We then use copy fidelity,

C, to quantify the probability that each subsequent daughter cell, after fission has completed,

carries a functional copy of the plasmid prophage. Thus, the plasmid prophage may be carried

by zero, one or two daughters with probabilities (1 − C)2, 2C(1 − C), and C2, respectively.

When C = 1, both daughter cells are guaranteed to carry the plasmid prophage (suggesting a

perfect partition maintenance strategy is being employed [54]), whereas when C = 0, neither

daughter is a carrier.

It is important to mention that daughter cells that contain zero copies of the plasmid may

be short lived due to a toxin/anti-toxin maintenance strategy often employed by such phages

[104, 166]. This is immaterial, however, since such cells do not contribute to the prophage

lineage. We do not distinguish between daughter cells that carry one or more copies of the

prophage due to this being quite unlikely in reality, as described previously.
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Figure 2.1: Diagram of the life-history model. The life-history events modeled for (A) free

phage and (B) lysogens containing a plasmid prophage are shown (see Section 2.2 for details).

This diagram is a modified version of Figure 1 from [192]. In both panels, the black curves

represent the bacteria’s genome and the red circle represents a plasmid prophage.

2.2.1 Wild-type Population

To study the adaptation of temperate phage, we would like to predict the survival probabil-

ity of rare beneficial mutations. Thus, we consider a wild-type population that is initially at

equilibrium. This translates to a wild-type phage population in which each phage produces

one surviving offspring. This constraint, that the wild-type fitness is one, can be achieved by

balancing parameter values in a multitude of ways.

We classify these ways of balancing parameters in three distinct regimes: neutral, lysogeny
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advantage or lysis advantage. These three classifications were also used in the chromosomal

prophage life-history model examined in [192]. The basic idea is to determine the average

number of offspring produced during either the lytic or lysogenic life cycle. The lytic cycle

will have an average number of offspring given by the product of the attachment probability

and burst size, i.e., AB. If this product of parameters is equivalent to one, then we call this

the “neutral" regime. If the product is greater than one, then there is an advantage in this lytic

life cycle, placing us in the “lysis advantage" regime of parameter space. Finally, if we set the

product to be less than one, we have given the advantage to the lysogenic life cycle, meaning

we are in the “lysogenic advantage" regime.

We may think of our life-history model mathematically as a branching process in which a

single free phage produces A lysogens with probability P and AB free phages with probability

1 − P. A single plasmid prophage, however, would produce B free phage with probability N,

two lysogens with probability J and 2C(1−C)+2C2 lysogens with probability F. The lysogens

produced by a single plasmid prophage can be written as,

2J + F
[
2C(1 −C) + 2C2

]
.

We determine this equation by identifying the possible avenues a plasmid prophage may un-

dergo to produce new progeny prophage; namely, fission and conjugation. As mentioned

above, when undergoing conjugation, with probability J, a plasmid prophage will horizon-

tally transfer a copy of its plasmid to a non-infected host. Thus, after conjugation has been

completed, two plasmid prophage are present. Similarly, a plasmid prophage may be present

while the host undergoes a fission event, with probability F. As is clear from Figure 2.1, af-

ter a fission event the resulting daughter cells may both have the plasmid, one may have the
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plasmid or neither may have the plasmid; where we denote the probability of both daughter

cells acquiring a copy of the prophage as C. Thus, one daughter cell having a prophage after

fission is represented by the probability C(1 − C) (i.e., one daughter has a copy, and one does

not), which may occur in two ways. In contrast, both daughter cells may have the prophage,

which would occur with probability C2. We multiply this term by two, as well, to represent

that two prophage are present in the next time step. As mentioned, there is indeed a third event

present after fission: no daughter cell has a prophage sequence present. This would occur with

probability (1 −C)2, however, much like the event where both daughter cells have a prophage,

we multiply this term by the amount of resultant plasmid prophage, namely zero. Thus, this

final event is not seen in our equation above.

Defining Vn and Ln as the number of free virus and lysogens, respectively, in generation n,

we can express these concepts as a system of difference equations,

Vn+1 = A(1 − P)BVn + NBLn

Ln+1 = APVn +
(
2J + F

[
2C(1 −C) + 2C2

])
Ln .

This system of equations can then be rewritten as a matrix system, with the projection (or

coefficient) matrix given by,

G =


A(1 − P)B NB

AP 2J + F
[
2C(1 −C) + 2C2

]
 . (2.1)

After determining this matrix G, we can express the average number of individuals produced by

a single wild-type individual as the dominant eigenvalue (see [39] for an in-depth explanation).

For the matrix G, the eigenvalues are given by

λ± =
1
2

A(1 − P)B + FC + J ±
1
2

√
(A(P − 1)B + 2(FC + J))2 + 4ABPN , (2.2)



32 Chapter 2. The fate of beneficial mutations in plasmid prophage

and it is clear that the dominant (i.e., largest) eigenvalue will be given by λ+, hereafter referred

to as simply λ.

For the wild-type phage to have dominant eigenvalue, λ, equal to one in each parameter

regime as described above, we first set the product of AB to an appropriate value. It is worth

noting that in the numerical examples to follow, we only give a slight advantage to either

lysis or lysogeny by setting B as a constant estimated from the experimental literature and

shifting the attachment probability just above or below the value of 1/A. We then set the other

parameters, with the exception of one parameter (in our case the probability of conjugation,

J, but the same process could be applied to other parameters), to values consistent with the

experimental literature, as chosen in the chromosomal prophage model [192]. We compute

the missing parameter value using equation (2.2), to satisfy the condition that λ = 1. Table

2.1 gives the parameter values that were used to construct the figures below. Note that in

[155], the probability of lysogenization, P, is reported to be much lower than our selected

parameter values; for λ-phage P is in the range of 10−4 to 10−1. Here, we use larger values

of P for illustrative purposes, since beneficial mutations must reduce this value in the lysis

advantage case. The probability of induction for temperate phages, N, is strongly dependent

on environmental conditions and, as such, may vary widely [83, 129, 150].

2.2.2 Beneficial Mutations

Now that we have constructed and ensured our wild-type population has growth rate equal

to one (or having, on average, one offspring per generation), we wish to consider the fate of

rare adaptive mutations that may arise first in the free phage or the plasmid prophage genome.
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Parameter Lysogeny Advantage LL Neutral Lysis Advantage

A, attachment probability 0.008 0.01 0.011

B, burst size 100 100 100

M, cell death 0.2614 0.315 0.4092

P, lysogenisation probability 0.10 0.10 0.20

N, induction probability 0.15 0.15 0.10

F, fission probability 0.20 0.20 0.15

J, conjugation probability 0.3886 0.335 0.3408

C, fidelity probability 0.45 0.50 0.45

Table 2.1: Temperate phage wild-type parameter values for plasmid prophage life-history

model.

It should be clear that increasing attachment probability or the burst size increases the phage

growth rate. Suppose that the wild-type temperate phage has life-history trait x, we will then

use x̃ to denote the analogous parameter in the mutant phage. Thus, translating our above state-

ment into mathematical conditions, we would say Ã > A and B̃ > B always reflects a beneficial

mutation. Correspondingly, mutations that would reduce the death of hosts containing plasmid

prophage, and increase the probability of conjugation (i.e., M̃ < M and J̃ > J, respectively)

always benefit the plasmid prophage. The probabilities for induction, N, and lysogenisation,

P, reflect transitions between the two life cycles for the phage. Depending on which parameter

regime we are in, either lysis or lysogeny advantage, it may be beneficial to increase one or the

other probability.
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Similarly, the impact of changes to the probability of fission, F, is dependent on the value

selected for the wild-type phage’s copy fidelity. In Table 2.1, we have selected values of C <

0.5, meaning that it is more likely, if only slightly, that when undergoing fission the wild-

type prophage produces less than one offspring. Thus, if C has a value less than 50%, it

would be beneficial to the mutant phage to reduce its fission probability, that is F̃ < F if

C < 0.5. In contrast, if C > 0.5 then it would be beneficial to the mutant to increase its

probability of fission, as the number of offspring produced via fission will, on average, be

greater than one. This second case, although not shown in the parameter values in Table 2.1, is

demonstrated below. Although F has a condition on the direction of beneficial mutation, it is

always beneficial to the mutant to increase its copy fidelity (i.e., C̃ > C).

To compare mutations affecting the various traits, we compute the selective advantage, s,

of each mutation. If the generation times in the free phage and plasmid prophage life cycles

are sufficiently similar, we can simply compute the dominant eigenvalue λ̃ of G̃, which would

be analogous to the matrix G from above, with each parameter replaced with the appropriate

mutant parameter value. The selective advantage is then simply s = λ̃ − 1.

2.2.3 Extinction Probabilities

The model of a simple branching-process described above has an additional advantage in that

extinction probabilities can be readily expressed in two implicit equations. Here, we will use

XV to denote the extinction probability of the mutant lineage that first has a mutation in the

free phage, while XL is the extinction probability of a lineage that begins in a single plasmid

prophage.
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The free phage lineage is lost if the original phage does not attach (with probability 1 − A)

or if the phage successfully attaches (with probability A), but the lineage that is then created is

lost. If the phage creates a plasmid prophage, the the lineage is lost only if the resulting lineage,

starting with a single plasmid prophage, is lost; by definition, this occurs with probability

XL. Similarly, if the successfully attaching phage immediately enters the lytic cycle, then the

resulting lineage is lost if all of the burst of progeny phage are lost; this would be defined then

as XB
V . Putting this all together, we write:

XV = 1 − A + A[PXL + (1 − P)XB
V ] . (2.3)

The plasmid prophage lineage is a little more complex, however, we can logically determine

the extinction probability through a similar approach. Initially the plasmid prophage has four

avenues to consider; it may induce producing B free phage, it may conjugate with a susceptible

host, it may be lost due to cell death or clearance, or it may undergo fission. If the prophage

induces, then the lineage is lost only if all B progeny free phage are lost (i.e., XB
V , as above). If

the prophage congugates with another host bacterium, then two plasmid prophages are created,

thus, to lose this lineage both must be lost, which we can write as X2
L. As above, we treat cell

loss or clearance just as we treated unsuccessful attaching, where the lineage goes extinct with

probability M. Finally, if the prophage undergoes fission, with probability F, depending on the

copy fidelity, the lineage is lost with probability

C2X2
L + 2C(1 −C)XL + (1 −C)2 .

Once again, we can put this all together to write:

XL = M + NXB
V + JX2

L + F[C2X2
L + 2C(1 −C)XL + (1 −C)2] . (2.4)
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For the wild-type population, elementary algebraic manipulation reveals that the only so-

lution to these two equations is given by XV = XL = 1, as the expected number of offspring

is equal to one [9]. For beneficial mutations, we once again replace all parameters with their

analogous mutant parameter values, then find the solutions with both XV and XL constrained

between zero and one. In order to solve these equations, we utilize an iterated root finding

method, that uses an initial condition sufficiently close to XV = XL = 0. It is clear that due to

the order of the equations, namely B (which should be noted is quite large), that there are many

roots to these equations. We start at this end of our constrained probability space in order to

ensure that we find the smallest possible real root to these equations. We look to determine this

specific root, as opposed to any of the other possible real roots, as the extinction probability is

always given by the smallest positive real root [9].

In all our results to follow, we plot survival probabilities, as opposed to the extinction

probabilities we solve for. We define survival probability simply as the complement of the

extinction probability, meaning ΠV = 1 − XV and ΠL = 1 − XL. This illustrates the probability

that de novo mutations survive drift when rare.

2.3 Results

Figure 2.2 plots the survival probability of de novo mutations affecting a single trait versus

the trait value, for each of the eight life-history traits previously described. For each trait, one

should observe the unmistakable difference between the fate of a de novo beneficial mutation

that were to first occur in the prophage state (displayed with solid lines) and those that first

occur as a free phage (dots). This figure shows the results for the lysogeny-advantage parameter
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regime. The survival of the mutations occurring within the plasmid prophage state is always

much more likely than those that begin in free phage. This coincides with our results for a

traditional chromosomal temperate phage, as well.

Figure 2.2: The survival probability of beneficial mutations affecting one of the eight life-

history traits vs. the trait value. Results are shown for beneficial mutations that first occur in

a single free phage (dots) or in a single plasmid prophage (lines). Wild-type paramater values

are as provided for the lysogeny-advantage case in Table 2.1.
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Another key feature to take note of in Figure 2.2 is the inflection points for mutations

that increase attachment probability or burst size. These inflections occur where ÃB = 1 and

AB̃ = 1, respectively. This reflects an interesting phenomenon wherein either attachment or

burst size has little effect on the mutant phage’s survival, provided that the mutant lineage

remains within this parameter regime where lysogeny is advantageous. For larger magnitude

changes (i.e., those that make the product of AB > 1), we notice that substantial survival

probabilities emerge.

Figure 2.3 shows the same results, plotted against selective advantage, s, for each mutation,

and thus allows us to make comparisons across the life-history traits. We have computed s in

this figure from the projection matrix eigenvalue λ, assuming that the generation times for both

phases of the phage life cycle are similar. As we see in Figure 2.2, the y-axis in the top panel

versus the bottom panel has a stark difference. This illustrates that beneficial mutations that

were to first occur in the plasmid prophage are orders of magnitude more likely to survive than

those which begin in a free phage. For mutations that occur first in the free phage, we see

that attachment mutations are most likely to survive, followed by burst size mutations. For

mutations that first occur in a plasmid prophage, however, a mutation that reduces the host

mortality is most beneficial. Mutations that increase the probability of conjugation are also

very likely to survive. This presumably follows from the fact that, in our model, conjugation

guarantees a successful creation of a new copy of the plasmid prophage, where fission does

not.

The fate of mutations that affect fission rates depends exclusively on copy fidelity, C, in the

wild-type phage. If C < 0.5, as we’ve illustrated in Figure 2.3, plasmids are often lost during

fission and the expected number of copies of the plasmid after fission is indeed less than one;
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Figure 2.3: The survival of mutations on plasmid prophage vs. selective advantage. Panels on

the left illustrate traits that are in common between plasmid and chromosomal prophage; panels

on the right are traits unique to a plasmid’s life history. We find that muations that first occur

in plasmid prophages are far more likely to survive than those first occurring in free phage.

Wild-type parameter values are A = 0.008, B = 100, M = 0.2614, N = 0.15, P = 0.10,

F = 0.20, J = 0.3886, and C = 0.45.

thus, by reducing F, we are actually benefiting the phage. The reverse holds true if C > 0.5. In

this case, mutations that increase the probability of fission, F, have a high survival probability,

as shown in Figure 2.4.
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Figure 2.4: The survival probability of mutations on plasmid prophage, versus selective advan-

tage. Panels on the left illustrate traits that are in common between plasmid and chromosomal

prophage; panels on the right are for traits unique to the plasmid life history. This figure il-

lustrates the lysogeny advantage regime, with C > 0.5. Parameter values are: C = 0.55 ,

M = 0.2814 , and J = 0.3686; all other parameter values are as described for Figure 2.3.

2.4 Discussion and Future Work

Prophage sequences constitute of the primary sources of genetic diversity in bacterial popula-

tions [26, 34]. Although integrated prophage are often the focus of these studies [34, 37, 79,

144], plasmid-forming temperate phage offer a new avenue in the explanation of prophage’s



2.4. Discussion and FutureWork 41

role in generating de novo genetic innovations.

Because phage sequences constitute the most diverse and pervasive gene pool on Earth,

with extremely large population sizes and (in comparison) short generation times, phage ar-

guably represent the “principle reservoir of genetic novelty" [97] for all life forms. For in-

stance, it has been experimentally shown that phage can facilitate lateral gene transfer (either

chromosomally or through a plasmid) between highly divergent species, like finding arthropod

sequences within a bacteriophage [18]. While phage present a novel exploration of genotype

space, most of these innovations are lost to genetic drift. Within this project, we sought to

understand this process more deeply and look to forecast which factors affect the survival of

mutations in this vast reservoir.

Principally, our results suggest that de novo beneficial mutations in temperate bacterio-

phage are much more likely to survive genetic drift if they first occur during plasmid prophage

replication, as opposed to occurring during the lytic replication. It is reasonable to think this

is due to the relatively low variance in offspring that a bacteriophage experiences when it has

integrated within a host (either in the traditional sense, or as a plasmid-like structure as we’ve

described here). In contrast, a bacteriophage is more likely to experience high variance in off-

spring success in the lytic cycle. We can see this by considering a population of bacteriophage

at equilibrium that has a burst size B; on average only one of B daughter phages can success-

fully attach to and infect a new host cell. Thus the probability of immediate extinction of the

bacteriophage of any new lineage produced during a burst of B new progeny is given by 1−1/B

for the lytic phage, which is much higher than immediate extinction for a prophage. Roughly

speaking, we can expect that prophage mutations are at least B/2 times more likely to survive

genetic drift than their free phage counterparts (this can be seen clearly in Figure 2.2).
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Our results, therefore, suggest that plasmid prophages may have played a disproportion-

ate role in genetic innovation for their associated free phage lineages. Experimentally, rapid

evolution and coevolution in temperate phages has been observed; namely, induction rates and

the probability of lysogeny rapidly respond to selection [155], whereas temperate phage can

adapt to host coevolution by exploiting their hosts [31, 64, 126]. The evolutionary potential of

obligately lytic vs. temperate phage has not yet been explored; leading to the question: would

a temperate phage evolve more rapidly if genes for lysis were knocked out, or with the genes

for lysogeny knocked out, assuming all else is held equal? Our results suggest that genetic drift

would strongly favour innovation if it were to occur first in a prophage (integrated or as a free

formed plasmid).



Chapter 3

Analysis of the existence and stability of

equilibria in a model of temperate

bacteriophage

In this chapter, we will be developing and analysing a system of non-linear ordinary differential

equations describing the dynamics of temperate phages, prophages and their hosts. The evolu-

tionary dynamics have been studied, in part, in Wahl et al. (2019) and Berngruber et al. (2013,

2015) . However, no analysis of the equilibria or stability of such a model was completed in

these papers. This analysis will establish a foundation for the more complex model treated in

Chapter 4.

43
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3.1 Introduction

As mentioned previously, temperate bacteriophage are viral particles that infect bacterial hosts,

and may undergo two distinct propagation strategies: the lytic strategy and the lysogenic strat-

egy [184]. In this chapter, we develop a simple model to examine the interaction between

bacteria, a temperate phage species and a lysogen (an infected host with an integrated viral

genome, called a prophage). We track the population densities of each of the three classes,

hosts, H, free virus, V , and lysogens, L. Host bacteria reproduce at maximum rate r, and this

rate is reduced to zero as the cell density approaches a fixed carrying capacity, K. Free virus

adsorbs to host cells via mass action kinetics at rate α. Upon adsorption, the virus instigates

lysogeny with probability p, or induces lysis with probability 1 − p; the latter produces a burst

of b viral particles. The free virus is cleared from the environment, denatured, or lost at an

overall rate c. By assuming that an integrated viral genome gives no benefit or cost to the host

bacteria, the lysogens will grow at the same rate as uninfected hosts. The lysogens are also

induced at a rate ν, producing a burst of b free virions. Finally, we assume that lysogens can-

not be re-infected, since many prophages confer immunity to superinfection [17, 185]. These

assumptions yield the following system of ordinary differential equations:

dH
dT

= r
(
1 −

κ

K

)
H − αHV

dL
dT

= r
(
1 −

κ

K

)
L + pαHV − νL

dV
dT

= ηbL + b(1 − p)αHV − cV .

(3.1)

where κ is the total cell density, i.e., κ = H + L and all other parameters (namely α, b, c, ν, r, K

and p) are positive. If any of these parameters were zero, our model would not be sensible. For

instance, if c or ν happen to be zero, the free phage and lysogen may only grow. In addition,
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p, the probability of lysogeny, is in the interval (0, 1); we do not include the extreme values of

the probability in order to ensure existence of both the free virus and lysogens in our model.

Two additional assumptions are present within the construction of System (3.1). First, we

have assumed that the lysis time is negligible on time scales we will consider, meaning we treat

lysis as an instantaneous event. Second, we have assumed that a carrying capacity, K, limits

the cell density, as opposed to explicitly including a resource concentration [176]. In Chapter

4, we analyse a more complex model that includes a resource compartment.

We also note that System (3.1) is very similar to the model developed by Berngruber et al.

(2013, 2015) in a study of the frequencies of virulent and avirulent phages over the course of

a single infection. In addition, our model presents a similar structure to the model developed

by Beretta and Kuang [11]. However, their model only examines the interplay of strictly lytic

phage and bacteria, while ours is investigating the interactions between temperate phage and

bacteria.

For the sake of simplicity, we rescale System (3.1) to write it in a dimensionless form. By

expressing the host and lysogen densities as fractions of the carrying capacity, and normalizing

the free virus density in units of burst size, i.e.,

h =
H
K
, l =

L
K

and v =
V

bK

and re-expressing time in units of the generation time for lytic replication, t = αbKT , we can

reduce the system to a dimensionless form,

dh
dt

= B(1 − h − l)h − vh

dl
dt

= B(1 − h − l)l + pvh − Al

dv
dt

= Al + (1 − p)vh −Cv .

(3.2)
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Here, we have relabelled various parameter groupings by,

A =
η

αbK
, B =

r
αbK

, and C =
c

αbK
.

This reduction reveals that the underlying dynamical system has only four free parameters:

the induction (or activation) rate, A; the bacterial growth rate, B; the free virus clearance rate,

C; and the probability of lysogeny, p, where p ∈ (0, 1) (as stated above). In addition to the

condition on p, A, B and C are all positive parameters due to the positivity of parameters in

System (3.1).

3.2 Preliminaries

3.2.1 Initial Condition and Positive Invariance

The initial condition, x0 = (h(t0), l(t0), v(t0)), for System (3.2) may be any point in the non-

negative octant of R3, i.e.,

x0 =
{
(h, l, v) ∈ R3

∣∣∣ h ≥ 0 , l ≥ 0 , v ≥ 0
}
. (3.3)

Our argument of positive invariance for System (3.2) follows suit with the arguments of

Beretta and Kuang [11]. Although the model developed in [11] focuses on strictly lytic phage

infecting bacteria, the analysis can be applied to our model.

To prove positive invariance we will begin by rewriting System (3.2) in vector form by

setting,

x = [h , l , v ]T
∈ R3
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and

F(x) =


F1(x)

F2(x)

F3(x)


=


B(1 − h − l)h − vh

B(1 − h − l)l + pvh − Al

Al + (1 − p)vh −Cv


(3.4)

where F : R3 → R3 and the vector function F is continuously differentiable. We may then

simply write System (3.2) as

dx
dt

= F(x) , (3.5)

with initial condition in the Set (3.3). Suppose we choose x in the non-negative octant of R3

such that xi = 0, then Fi(x)|xi=0 ≥ 0 for i = 1, 2, 3. It therefore follows from the standard exis-

tence and uniqueness theory for ordinary differential equations that the face h = 0 is invariant

and for positive initial conditions the other faces repel into the interior.

3.2.2 Equilibria

Let us determine the equilibria of System (3.2). It is straight-forward to see that, for all pa-

rameter values there exists a vanishing equilibrium, E0 = (0, 0, 0). Furthermore, there exists a

virus free equilibrium (or host only equilibrium) at EH = (1, 0, 0), where the index H stands

for “host only”. This system exhibits a third boundary equilibrium, EVL = (0, l̂, (A/C)l̂), where

l̂ = (B − A)/B; as with our previous equilibrium, we have indexed this equilibrium value with

VL to indicate “only viral and lysogen densities”. Finally, all three populations are able to

co-exist at the equilibrium,

E? = (h∗, l∗, v∗) =

(
C − l∗ ,

Cpv∗

A − (1 − p)v∗
, B(1 −C)

)
. (3.6)
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We note here that while the sum h∗+l∗ is fixed at the clearance rate of virus, C, h∗ is a decreasing

function while l∗ is an increasing function of p. Biologically, we interpret this as meaning there

are more lysogens and fewer susceptible host cells if the probability of lysogeny is increased.

Although E0 and EH are always present as equilibria for System (3.2), meaning no con-

ditions on parameters are needed for existence, both EVL and E? have inherent conditions for

existence. The “only viral and lysogen densities” equilibrium, EVL, exists only if the induction

rate A is less than the growth rate B. By fixing B, as A approaches and passes through B from

below, we see that EVL approaches and crosses through E0. This intersection of EVL with E0 is

shown numerically in Figure 3.1.

Figure 3.1: The biological feasibility of EVL for System (3.2) as the induction rate, A, increases.

As A increases and passes through B (plotted as a dash-dot line), we see both the lysogen and

free virus populations become negative. Parameters are set at B = 0.75, C = 0.8 and p = 0.5.

For the coexistence equilibrium, E?, to be biologically feasible, several conditions must

hold. The clearest condition is that on the clearance rate of the virus, C. If C > 1, then the
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viral component of the equilibrium, v∗, would be less than zero. As C approaches and passes

through one from below, we see E? approaching and crossing through EH. In addition to

ensure positivity of all components of E?, we must also ensure that A > (1 − p)B(1 − C); if

this does not hold, then the denominator of l∗ would become negative. Finally, to ensure h∗ is

positive, we must have the stronger condition, A > B(1−C). Thus, as A approaches and passes

through B(1 −C) from above, E? approaches and passes through EVL, as shown in Figure 3.2.

This condition will be of even greater importance during our discussion of local stability of the

equilibria.

Figure 3.2: The biological feasibility of E? and the crossing of E? and EVL at A = B(1 −

C) (dash-dot line), as the induction rate, A, decreases. As A decreases and passes through

B(1 − C), we see that E? (dashed line), intersects with EVL, (solid line). Consequently, the

host equilibrium value of E? becomes negative. The three panels show the host, lysogeny and

free virus population densities from left to right. Parameters are set at B = 0.75, C = 0.8 and

p = 0.5.

In summary, for the coexistence equilibrium, E?, two conditions are sufficient. First, we

must have C < 1. Otherwise, the viral and lysogen populations would lose positivity. Second,

we need A > B(1 − C), otherwise the host population density will be negative. Based on

these results, we can select A as a biologically relevant parameter on which the equilibrium



50 Chapter 3. Analysis of equilibria of a temperate phage model

behaviour of System (3.2) depends.

To consolidate the ideas of existence of equilibria, let us denote

A∗ = B(1 −C) .

We may then summarize the results of this analysis in Proposition 3.2.1 and graphically in

Figure 3.3. The phrasing that each equilibria exists in Figure 3.3 means that each equilibria is

biologically feasible. This critical value of the induction rate will play a similarly important

role when discussing the local stability of EVL and E? in Section 3.3.

Proposition 3.2.1. For all positive values of A, B, C in System (3.2), the equilibria E0 and EH

exist. If C > 1 and A > B, then these are the only two equilibria that exist. If C > 1 and A < B,

then EVL also exists. If C < 1 and A < A∗, then these are the only three equilibria that exist

once again. If C < 1 and A > B, then EVL no longer exists but E? exists. Finally, if C < 1 and

A ∈ (A∗, B), all four equilibria exist.

3.3 Stability of the equilibiria

Using local stability techniques as described in [142], we begin by finding the Jacobian matrix.

The Jacobian matrix for the system of equations (3.2) is given by,

J(h, l, v) =


B(1 − 2h − l) − v −Bh −h

pv − Bl B(1 − h − 2l) − A ph

(1 − p)v A (1 − p)h −C


. (3.7)
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1C < 1 C > 1

A∗

B

A < A∗

A > A∗

A > B

A

C

all 4 equilibria exist

E0 , EH , and EVL exist

E0 , EH , and E? exist E0 and EH exist

E0 , EH , and EVL exist

Figure 3.3: Summary of the existence of the equilibria of System (3.2). The parameter space

can be divided into regions in which the clearance rate, C, is greater or less than one, while the

induction rate, A, exhibits two critical points A = A∗ and A = B. Note that when C < 1, A∗ < B

since A∗ = B(1 −C).

At the vanishing equilibrium, E0, we have,

J(0, 0, 0) =


B 0 0

0 B − A 0

0 A −C


Due to the structure of J(0, 0, 0) as a lower triangular matrix, we may quickly identify its three



52 Chapter 3. Analysis of equilibria of a temperate phage model

eigenvalues as

λ1 = B , λ2 = B − A , and λ3 = −C .

If we wish to ensure the stability of E0 (i.e., all eigenvalues of J(0, 0, 0) must be negative),

we must have B < 0. Biologically, this would mean the growth rate of the host and lysogen

population is negative, which is not realistic. We can therefore conclude, for biologically

relevant parameters (i.e., all positive and non-zero), that E0 is always unstable.

Consider now the “host only” equilibrium, EH = (1, 0, 0). From Equation (3.7), we have

J(1, 0, 0) =


−B −B −1

0 −A p

0 A 1 − p −C


,

whose eigenvalues, Λi, for i = 1, 2, 3, are the roots of

(Λ + B)(Λ2 + (A + C + p − 1)Λ + A(C − 1)) = 0 .

Clearly, one eigenvalue is always real and negative, denoted as Λ1 = −B < 0. The other two

eigenvalues are the roots of the quadratic equation,

Λ2 + (A + C + p − 1)Λ + A(C − 1) = 0 .

To ensure that both roots of this quadratic have negative real parts, that is all three eigenvalues

have negative real parts, we must have the coefficients all be the same sign, namely positive (as

the coefficient of Λ2 is 1 > 0) [24]. This means we must ensure that A + C + p − 1 > 0 and

A(C − 1) > 0. Looking at the second condition, A(C − 1) > 0, and knowing that A > 0, we can

deduce that C−1 > 0 or C > 1. If this holds the former condition will also hold. Therefore, we

conclude that a necessary condition for local stability of EH is that C > 1. In fact, through the
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utilization of Lyapunov function theory, we can show global asymptotic stability of EH when

C > 1.

Theorem 3.3.1. The equilibrium EH = (1, 0, 0) is globally asymptotically stable when C > 1.

Proof. Set xH = (1, 0, 0) and

G(h, l, v) = ln(h) − h − l − v .

Clearly, G(h, l, v) is not positive definite in a neighbourhood around xH. However, we build the

function V(h, l, v) as

V(h, l, v) = G(xH) −G(h, l, v) = h + l + v − ln(h) − 1 , (3.8)

then we satisfy the two necessary conditions for V(h, l, v) to be a proposed Lyapunov function.

That is to say that V(xH) = 0 and that V(h, l, v) is positive definite in a neighbourhood about

this equilibrium.

Taking the derivative of Equation (3.8) with respect to t, we find

dV
dt

=
dh
dt

+
dl
dt

+
dv
dt
−

1
h

dh
dt
. (3.9)

By evaluating this derivative at the values given in System (3.2) and doing some simplification,

we find that

dV
dt

= v(1 −C) − B(h + l − 1)2 .

We are aware that B > 0 from our original model construction, therefore the second term is

strictly less than zero, for all values of h and l. Thus, if C > 1 then V̇ < 0 for all (h, l, v) ∈

R3 \ {xH}. Hence, Equation (3.8) is a Lyapunov function, and we can conclude that xH =

(1, 0, 0) is globally asymptotically stable when C > 1. �
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Biologically speaking, the condition on global asymptotic stability of EH corresponds to a

large clearance rate of the virus. Consequentially, if we remove the virus at a high rate (namely

greater than it is produced via induction or infection), we would see the virus and, in turn,

the lysogens being removed completely from the population, even if the growth rate of the

lysogens was large.

Next, we will consider the last boundary equilibrium, EVL. Again, from Equation (3.7), we

have

J(0, l̂, (A/C)l̂) =


(A/BC)(A − B(1 −C)) 0 0

(1/C)(Ap − BC) l̂ A − B 0

(A/C)(1 − p) l̂ A −C


,

where l̂ = (B − A)/B. We may utilize the structure of this matrix, as a lower triangular matrix,

to quickly identify its three eigenvalues as

λ1 = −C , λ2 = A − B , and λ3 =
A

BC
(A − B(1 −C)) .

We note that due to the positivity of the parameters of System (3.2), and the condition for

existence of EVL, namely A < B, both λ1 and λ2 will always be negative when EVL exists.

Thus, it suffices to show the conditions on λ3 to prove stability of EVL.

We will discuss conditions necessary for λ3 < 0 in three cases: C > 1, C < 1 and C = 1.

Before considering the three cases, we should note that A/(BC) is always positive, thus we can

simplify our discussion on the conditions for negativity of λ3 to the sign of A − B(1 −C).

When C > 1, it is clear that 1 − C < 0 and, in turn, B(1 − C) < 0. Thus, A − B(1 − C) > 0

so long as C > 1. Therefore, if EVL exists and C > 1, EVL is unstable. It is clear to show all

the previous statements hold if C = 1, thus we can state in definite terms that if C ≥ 1, EVL is

unstable.
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The final case we must consider is when C < 1. Here, we notice that B(1−C) > 0, therefore

to ensure negativity of λ3, we must have A < B(1 − C), in other words, we must satisfy the

inequality A < A∗. Therefore, we conclude that if C ≥ 1, EVL is unstable, with the caveat that

at C = 1, EVL is non-hyperbolic, and if C < 1 then A < A∗ is needed for local stability.

Our final discussion on stability will revolve around the coexistence equilibrium, E?. Al-

though we wish to undergo a similar analytical approach to determining the stability criteria

of E?, the eigenvalues of the Jacobian evaluated at E? are not tractable. We can, however, nu-

merically observe that E? is stable wherever it exists. That is, E? appears to be stable provided

C < 1 and A > A∗. This numerical stability is demonstrated in Figure 3.4. This switch of

stability at A = A∗ suggests that a transcritical bifurcation occurs between EVL and E?.

Figure 3.4: Numerical stability of E? when C < 1 and A > A∗. Plotted are numerically inte-

grated results for h(t) , l(t), and v(t) using several different initial conditions, all demonstrating

that as t tends to infinity the population structure tends towards E?. Dashed lines in each panel

show h∗ , l∗ and v∗ (as given in Equation (3.6)), respectively. Parameters are set at A = 0.7 ,

B = 0.75 , C = 0.8 , and p = 0.5.

We summarize our above discussion in the bifuraction diagrams shown in Figure 3.5,
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Proposition 3.3.2 and Conjecture 3.3.3.

Proposition 3.3.2. Assume all parameters of System (3.2) are strictly positive for biological

feasibility. For all biologically feasible parameters, E0 = (0, 0, 0) is unstable. If C > 1,

then EH = (1, 0, 0) is globally asymptotically stable, and EVL is unstable; the coexistence

equilibrium, E? does not exist in this regime. If C < 1, EH is always unstable, and if A < A∗,

EVL is locally stable and E? is unstable.

Conjecture 3.3.3. If C < 1 and A > A∗, then E? is locally stable and EVL is unstable. At

A = A∗ a transcritical bifurcation occurs with a switch of stability from EVL to E?.

(a) host equilibrium (b) lysogen equilibrium (c) virus equilibrium

Figure 3.5: Bifurcation diagram for System (3.2) using induction rate, A, as the bifurcation pa-

rameter. Solid red lines indicate the stable equilibrium for the system, while black dashed lines

indicate an unstable equilibrium. Panel (a) shows the bifurcation diagram for the host popula-

tion, where E0 and EVL are indistinguishable. Panel (b) shows the bifurcation diagram for the

lysogen population, where E0 and EH are indistinguishable. Panel (c) shows the bifurcation

diagram for the free virus population, once again where E0 and EH are indistinguishable. All

diagrams are plotted on the interval A ∈ [(1 − p)B(1 − C), 1], as all equilibria are biologically

feasible at some interval of this range. Parameters are set at B = 0.75, C = 0.8 and p = 0.5.
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3.4 Discussion

The mathematical model we propose in this chapter, although simple, presents an interesting

problem when considering the analysis of its equilibria and their associated stability. Here,

we determine a variety of conditions to ensure the existence of all three populations in the

environment. Although four free parameters were revealed to be present when making System

(3.1) dimensionless, two of these are clearly most important on the existence and stability of

equilibria: the viral clearance rate, C and the induction rate, A.

When the viral clearance rate is large, in particular when the dimensionless clearance rate

exceeds unity, the non-dimensional System (3.2) yields three biologically feasible equilibria.

In this same parameter regime, where C > 1 and all other parameters are greater than zero, we

show that EH, the “host only” equilibrium, is not only locally but globally asymptotically stable

(see the proof of Theorem 3.3.1). This makes biological sense, since if the virus is removed at

a fast rate, then viral particles would have little to no chance in infecting the host to produce

lysogens or more free virus.

The induction rate also presents itself as an important parameter in our model. We find

many conditions related to the value of the induction rate to ensure the biological feasibility

of many of the equilibria, as well as their associated stability. We determine that for all four

equilibria of System (3.2) to exist, A must be bounded below by A∗ = B(1 − C) and above at

the growth rate of the bacteria, B. Below the lower bound, E? becomes negative, losing its

biological feasibility, and above the upper bound, EVL becomes negative.

To summarize our discussion of stability, we expand what is already displayed in Figure

3.3 to now include which equilibria are stable in each regime. This is shown in Figure 3.6. We
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notice that A∗ not only plays a pivotal role in the existence of the equilibria but also in their

stability. In addition, when C < 1, we observe an exchange of stability at A = A∗ between

EVL and E?. For values of A below this bifurcation point, we can analytically show that EVL

is locally stable, which our numerical results confirm. For values above this bifurcation point,

however, we can only show numerically that E? is locally stable. We note that this conjecture

regarding the stability of E? has been shown to hold [206].

1C < 1 C > 1

A∗

B

A < A∗

A > A∗

A > B

A

C

all 4 equilibria exist
E? stable (numerical only)

E0 , EH , and EVL exist
EVL stable

E0 , EH , and E? exist
E? stable (numerical only)

E0 and EH exist
EH stable (GAS)

E0 , EH , and EVL exist
EH stable (GAS)

Figure 3.6: An extension of the results shown in Figure 3.3 to now include which equilibrium

is stable in each parameter regime.



Chapter 4

The role of stationary phase in the

lysis-lysogeny decision

In this chapter, we extend our previous work to encompass bacteria and phage that exist in

a variable environment. Through the development of a chemostat model, we include a time-

varying resource compartment to simulate an environment with variable conditions. Through

analysis of this model, we reveal the importance of a stationary phase for the bacterial host;

stationary phase is a feature of most bacterial populations that may, in fact, play an impor-

tant role in the lysis-lysogeny decision of an infecting bacteriophage. In this chapter we will

demonstrate that, when infecting bacteria with a stationary phase in a time-varying environ-

ment, bacteriophage tend to evolve toward complete lysogeny.

59
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4.1 Introduction

As noted many times in previous chapters, bacteriophage have been studied extensively, with

their abundance and importance being highlighted as of late [75]. In [183], multiple life-history

traits of the host were quantified in an attempt to find correlations between these traits and the

prevalence of prophage in the bacterial genome. The strongest correlation was revealed to

be between the minimal doubling time of the host and the presence of prophage. Thus, the

best predictor of lysogeny seems to be the host’s ability to grow quickly when resources are

plentiful.

The identified correlation between minimal doubling time and the abundance of prophage

seems somewhat counter intuitive. When a bacterial population is experiencing rapid growth,

the expected evolutionary payoff for lysogeny would be increased due to fast fission times. The

rapid growth of cells would seem to imply, however, an even greater potential payoff for lysis.

Why then, across a wide range of measured life-history traits, is the minimal doubling time the

strongest empirical predictor of lysogeny? This is the question we explore in this chapter.

Bacteria with smaller minimal doubling times have been identified more commonly in en-

vironments with variable conditions [95, 146]. Thus, a correlation between lysogeny and min-

imal doubling times could arise if lysogeny is also favoured in environments that vary between

extreme feast and famine periods. This connection between varying between high and low

resource periods due to seasonal variation and the presence of lysogeny was explored within

coastal lagoons [122]. Maurice et al. found a strong link to lysis and environmental conditions,

but found that lysogeny did not seem to be affected to the same degree [122]. This runs counter

to the hypothesis posed by Touchon et al., and creates an opportunity for us to identify under
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what conditions lysogeny may indeed be favoured [122, 183].

When considering an environment where the bacterial population experiences shifts be-

tween feast and famine periods, it would be negligent to ignore the effect of the stationary

phase. The bacterial stationary phase, is a phase of bacterial population growth in which the

bacteria become non-active and no cellular division occurs (Figure 4.1 shows a general growth

time course for a bacterial population with a clear stationary phase) [29, 96, 138]. Often this

phase of bacterial growth is triggered by an extreme limitation of resources, and is thought

to assist in the long-term survival of the bacteria [59]. Although growth is inhibited while in

stationary phase, the bacteria also become immune to most bacteriophage infections [28, 163].

In addition, stationary phase has been suggested to play an important role in bacteria-phage co-

evolution, and, as such, should be considered as a possible factor in the lysis-lysogeny decision

of temperate bacteriophage [63, 161, 165].

Here, we adapt the methodology of our previous work [190] to investigate the long-term

outcome of the evolution of the probability of lysogeny. In particular, we test whether envi-

ronmental variability might explain the observed correlation between lysogeny and minimal

doubling times. Although a multitude of other factors may be present in their usual environ-

ment, our results predict that those phage that infect bacterial hosts with a distinct stationary

phase are more likely to evolve a high probability of lysogeny in highly variable environments.

In fact, as we observed previously, full lysogeny (that is, a phage population that never initiates

immediate lysis) is the predicted evolutionary outcome. In contrast, when infecting a bacterial

population with no stationary phase in a highly variable environment, the phage will evolve to

an intermediary state, where lysis and lysogeny are both able to occur.
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Figure 4.1: General growth curve for a bacterial population. The lag phase is characterised by

the bacteria becoming accustomed to their environment, during which they may not replicate

but grow in volume. The log phase is when the bacteria exhibit exponential growth, eventually

reaching maximal growth, which can be used to estimate the strain’s minimal doubling time.

The bacteria then enter stationary phase, at which point the bacterial population no longer

grows, possibly due to an exhaustion of resources. Finally, the population enters a death phase,

during which the number of cells dying exceeds the new progeny produced through cellular

fission [193].

4.2 Model

We begin by adopting a chemostat modelling approach, adapted from [176], to analyze the

effect of a changing environment, controlled by the forcing of resource in the system (see

[172] for a discussion of this approach) and the presence of a bacterial stationary phase. Here,

bacterial hosts are able to move between an active state, H, and a stationary state, H̃. Similarly,

we have lysogens (hosts with integrated viral DNA) that can also move between an active, L

and stationary, L̃, state. The active hosts and lysogens grow according to a Michaelis-Menton
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resource uptake growth rate, ψ(R), first described by Monod [133] and utilized in a vast number

of similar models ([73, 84, 173, 181], for instance). In addition, the hosts and lysogens may

become stationary at a rate, σ(R), that exponentially decays with the resource concentration,

R, meaning that at low resource levels the active cells become stationary more quickly [158].

Stationary cells become active once again at a per capita rate, w. Both hosts and lysogens are

lost or cleared at a rate ρB, while the lysogens are induced at a rate ξ, producing β new viral

particles. Finally, we assume that the lysogens cannot be re-infected, as prophages often confer

immunity to superinfection by the same phage [2, 185].

Free virus, V , adsorbs into the active hosts using mass-action dynamics at a rate α. Once

the virus has adsorbed, the virus utilises a lysogenic strategy with probability p, and with

probability 1− p utilises a lytic strategy, producing β new viral particles, as assumed in System

(3.1). The free virus is cleared, lost or denatured at a rate κ. We assume that the viruses are

unable to infect host cells in stationary phase.

The resource flows in and out of the system at constant rate ρ. However, the input flow is

given by a sinusoidal forcing term, C(t), to simulate a changing environment. In addition, the

bacteria and lysogens use up the resource with yield ε.
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These assumptions yield a system of ordinary differential equations:

dH
dt

= ψ(R)H − σ(R)H − αHV + wH̃ − ρBH

dL
dt

= ψ(R)L − σ(R)L + αpHV + wL̃ − (ξ + ρB)L

dH̃
dt

= σ(R)H − wH̃

dL̃
dt

= σ(R)L − wL̃

dV
dt

= ξβL + α(1 − p)βHV − κV

dR
dt

= ρ(C(t) − R) − εψ(R)(H + L) ,

(4.1)

where

ψ(R) =
mR

a + R
, σ(R) = ζe−θR and C(t) = R? (1 + C0 sin(ωt)) .

Although it is possible to scale some parameters of a non-autonomous system to be dimen-

sionless, we take a fully numerical approach in the following analysis, and, as such, find it

unnecessary to make System (4.1) dimensionless. Dimensional parameters are given in Table

A.1 in Appendix A.

Here, we look to compare results with and without the inclusion of the bacterial stationary

phase. Often, this phase is neglected in mathematical models of phages and their hosts [176,

190]. Figure 4.2 shows time courses of System (4.1) when stationary phase is “turned on”

and “turned off”; where to “turn off” the host’s and lysogen’s ability to enter the stationary

phase, we simply set ζ = 0 in σ(R). We see a stark qualitative difference between the two time

courses.
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(a) (b)

Figure 4.2: Time course of System (4.1). Panel (a) shows the time course without stationary

phase (i.e., ζ = 0) and panel (b) shows the time course with stationary phase (i.e., ζ = 2.5).

Parameter values are given in Table A.1.

4.3 Evolutionary Invasion Analysis

To determine the long-term trend of the probability of lysogeny in the phage population, we

utilise a pairwise invasion analysis. Here, we introduce a rare mutant virus, only differing from

the wild-type by the probability of lysogeny. To do so, we add three additional compartments
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to System (4.1):

dH
dt

= ψ(R)H − σ(R)H − αH(Vr + Vµ) + wH̃ − ρBH

dLr

dt
= ψ(R)Lr − σ(R)Lr + αprHVr + wL̃r − (ξ + ρB)Lr

dH̃
dt

= σ(R)H − wH̃

dL̃r

dt
= σ(R)Lr − wL̃r

dVr

dt
= ξβLr + α(1 − pr)βHVr − κVr

dR
dt

= ρ(C(t) − R) − εψ(R)(H + Lr + Lµ)

dLµ
dt

= ψ(R)Lµ − σ(R)Lµ + αpµHVµ + wL̃µ − (ξ + ρB)Lµ

dVµ

dt
= ξβLµ + α(1 − pµ)βHVµ − κVµ

dL̃µ
dt

= σ(R)Lµ − wL̃µ ,

(4.2)

where ψ(R) , σ(R) , and C(t) are defined as before. Wildtype strains of the phages and lysogens

are denoted with a subscript r (to signify it as the resident strain1), and mutant strains are

denoted by a subscript µ. We assume that the mutant strain only differs from the resident strain

by their probability of lysogeny.

In a traditional pairwise invasibility plot (PIP) the determination whether the mutant can

invade or not is often completed through a nonlinear invasion analysis, as described in Section

1.4, commonly through the use of an invasion R0 (see [86] or [142] for a succinct discussion

of the topic). In Section 1.6.1, we outline multiple approaches to calculate the basic reproduc-

tion number in models with time-periodic parameters, such as System 4.2. Unfortunately, the
1A subscript w was not used as to avoid confusion with the transition rate from stationary to active phase of

the cells.
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assumptions of Wesley and Allen [201] do not hold for System (4.2), and therefore we cannot

use a time-averaged approach. Through numerous computational experiments, we found that a

direct approach to determine invasion (described below) was just as computationally efficient

as Posny and Wang’s discretization approach, which was determined to be more efficient than

the root-finding approach [147, 160]. This is because to ensure accuracy in a numerical dis-

cretization approach the necessary matrices become cumbersome [147]. We therefore proceed

with our analysis using a direct approach implemented as follows.

For a given wildtype strain, we first numerically integrate System (4.2) with Lµ = Vµ = 0

until we reach a periodic solution. To ensure that we have indeed reached a periodic solution

we check the condition |H(tN) − H(tN + T )| < γ, where tN is some sufficiently large time,

T = 2π/ω (i.e., the period of C(t)) and γ is some small threshold. After determining that we

have reached a periodic solution, we seed in a mutant virus and lysogen at at ratio of 10−10 of the

resident virus and lysogen population, respectively. We then numerically integrate the entire

system for approximately 25 more periods of time (corresponding to approximately 25 more

days). In order to determine if the mutant strain has successfully invaded the wildtype strain,

we only consider the virus population; however, the results would be identical if we considered

the lysogeny population. We record the average of the virus population over one period when

initially seeded into the system, and one period from the end of our numerical integration. We

then check the slope created from these two averages. If said slope is positive (negative), the

mutant is recorded as successfully (unsuccessfully) invading the wildtype population. If the

absolute value of the slope is within some small tolerance, then we record coexistence between

the mutant and wildtype strains. Figure 4.3 shows an example of successful and unsuccessful

invasion of the mutant strain. We then plot the results of this competition PIP and determine the
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critical probability of lysogeny (corresponding to what is known as an “evolutionarily stable

strategy”).

In the majority of our results, especially when stationary phase is included, we observe an

unusual structure in the pairwise invasibility plots; a substantial coexistence region is observed

that separates regions wherein the mutant fails to invade (an example PIP is shown in Figure

4.4a, while the corresponding coexistence plot is shown in Figure 4.4b). In this case, we

identify an upper and lower bound on the critical probability of lysogeny, between which we

could expect complex but constrained dynamics as described more fully in the sections to

follow. Figure 4.5 shows the identification of such bounds on the PIP shown in Figure 4.3a.

The interpretation of what constitutes a variable environment is an issue that we address

by observing the effects of changing three properties of the input function, C(t). We observe

the effect of changing the amplitude, C0, the frequency, ω, and the average value of the input

forcing, R?. Results for each case are displayed in Figures 4.6, 4.7, and 4.8. It is worth noting

that we vary each parameter individually, fixing the other two. A scenario in which more than

one parameter is allowed to change is an avenue for future work.

First, we will focus our attention on the effect of changing the amplitude of the forcing

function (see Figure 4.6); note that we restrict C0 ∈ (0, 1) as any greater value would cause the

resource input function to produce negative resource. In this case, we notice a stark difference

when stationary phase is included. When no stationary phase is available to the host and

lysogen populations, we observe that the critical probability of lysogeny, in fact, decreases as

the amplitude increases (shown in Figure 4.6a). This suggests that in a variable environment,

where fast-growing bacteria are indeed more prevalent, we should expect less integrated phage

DNA, contradictory to the findings of Touchon et al [183]. However, when stationary phase is
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(a) successful invasion (b) unsuccessful invasion

Figure 4.3: Numerical simulation of System (4.2) to demonstrate the competition time courses

between a rare mutant and established wild-type phage species. System (4.2) was integrated

numerically for 2500 days, with a rare mutant seeded in at t ≈ 1500 days. The rare mutant

lysogen and virus populations were seeded in at a value 10−10 times the corresponding wildtype

population values at the seeding time. Panel (a) shows a successful mutant invasion, while

panel (b) shows a unsuccessful mutant invasion. Parameter values are given in Table A.1 with

the exception of pµ (note that pr is set at the p value given in the table). In panel (a) pµ = 0.8,

and in panel (b) pµ = 0.2.

available to the hosts, we see that as the amplitude increases so too does the critical probability

of lysogeny. We, in fact, see that at C0 ≈ 0.65, the population should evolve to a fully lysogenic

population (i.e., p = 1). It should be noted that there is an intermediate stage between a

population that has both lysis and lysogeny and one that is fully lysogenic. We observe a

population where there exists the possibility of two phenotypically different phage coexisting
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(a) (b)

Figure 4.4: Panel (a) shows an example of a pairwise invasibility plot for a resident wildtype

phage competing against an invading mutant phage that only differs from the resident in the

probability of lysogeny, p. Black identifies competitions where the mutant invades and takes

over, while grey identifies competitions where a mutant does not invade. Panel (b) shows

the coexistence plot for the PIP in panel (a). Similiarly, black represents regions where a

polymorphism of resident and mutant can occur, while grey represents competitions with no

possibility of coexistence. We note that the area of invasion separating the two non-invasion

areas in (a) are indeed an area of coexistence, where we may expect a polymorphism of two

phage species to exist.

(for example, a wild-type phage with p = 0.1 can coexist with a mutant with p = 0.5). This

would occur if we allow large evolutionary steps , that is, single mutations that have large

effects on the probability of lysogeny, p. If we allow only small evolutionary steps, however,

we predict that over the long term the population would evolve to become fully lysogenic, as

we see in the right-most region in Figure 4.6b.

Similar results are observed when we turn our focus to the frequency of the input func-

tion, ω, and the average of the input function, R?; Figures 4.7 and 4.8 display these results,
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Figure 4.5: Upper and lower bounds for the critical probability of lysogeny shown for the

same pairwise invasibility plot shown in Figure 4.4. Lower bound for the critical probability is

plotted with a red star, while the upper bound is plotted with a magenta star.

respectively. In contrast to the results from changing the amplitude, we see that when in-

creasing variability through either of these parameters, an increase in the critical probability of

lysogeny occurs. This increase is seen when stationary phase is and is not present. In support

of our claim of the importance of stationary phase, we do see that the level of variability (either

in ω or R?) at which we expect a fully lysogenic population to singularly evolve decreases

when stationary phase is present (note the difference in x-axis in Figures 4.7a and 4.7b).

An interesting feature, not seen in either of the other two cases, occurs when the average

value of the input function is increased greatly. After a certain value of R?, R?
C, when stationary

phase is included, coexistence between the wildtype and any mutant strain is predicted. This

suggests that when R? > R?
C, we expect that no matter what level of lysogeny an invading

mutant has, coexistence between the mutant and resident is expected. This region is shown in
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(a) without stationary phase (b) with stationary phase

Figure 4.6: The effect of changing the amplitude, C0, of the forcing term in the resource com-

partment of System (4.1) on the critical probability of lysogeny. The various forms the pairwise

invasibility plots used to determine the critical probability of lysogeny are shown in each region

as a cartoon (panel (a) only has one type of PIP). The blue and red lines represent the lower

and upper bounds on the critical probability of lysogeny; the purple line (in panel (b)) at p = 1

represents a fully lysogenic population.

the shaded panel of Figure 4.8b.

4.4 Discussion and Conclusion

The question regarding temperate bacteriophage, “why be temperate?” has puzzled researchers

for some time [176]. Biologists, mathematicians and anything in between seem to be looking

to elucidate the reason phage have evolved the ability to become inactive, housed within their

“prey” [82, 108, 183, 192, 190]. In this chapter, we examine a novel idea: bacterial stationary

phase may play an important role in the evolution of lysogeny. As noted previously, this distinct

state of zero growth for the bacterial host is often excluded from models of both bacterial
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(a) without stationary phase (b) with stationary phase

Figure 4.7: The effect of changing the frequency, ω, of the forcing term in the resource com-

partment of System (4.1) on the critical probability of lysogeny. The various forms of the

pairwise invasibility plots used to determine the critical probability of lysogeny are shown in

each region as a cartoon. The blue and red lines represent the lower and upper bounds on the

critical probability of lysogeny; the purple line at p = 1 represents a fully lysogenic population.

population dynamics [149] and bacteria-phage interactions [12, 13, 105, 190, 200].

Here, we develop a model to fill in the gaps of these past studies, where we include a

stationary phase for the hosts and lysogens. The inclusion of such a compartment, along with

the use of a chemostat model in order to simulate a variable environment has shed new light

on the findings by Touchon et al. [183], and a possible route for the evolutionary trajectory of

bacteriophage.

To simulate a changing environment, we use a simple sinusoidal function as the input to

the chemostat; taking inspiration from [84] and [172]. We then allow three parameters of the

forcing term to vary, namely, the amplitude, frequency and average of the sinusoidal function.

By doing so, we are able to view how each parameter, and in turn variability of some sort,

affects the critical or evolutionarily predicted probability of lysogeny of a phage population.
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(a) without stationary phase (b) with stationary phase

Figure 4.8: The effect of changing the average input, R?, of the forcing term in the resource

compartment of System (4.1) on the critical probability of lysogeny. The various forms of the

pairwise invasibility plots used to determine the critical probability of lysogeny are shown in

each region as a cartoon. The blue and red lines represent the lower and upper bounds on the

critical probability of lysogeny; the purple line at p = 1 represents a fully lysogenic population.

The shaded, right-most region of Panel (b) indicates an area where a mutant may invade and

coexist with the resident regardless of the probability of lysogeny.

To determine such a trajectory for the evolution of the phage, we utilise a pairwise inva-

sion approach, competing a resident phage population against an invading mutant population

that only differs in their probability of lyosgeny, p. In our analysis, we often find pairwise

invasibility plots (PIPs) that have a distinct coexistence region that separates two regions of

invasion (see Figure 4.4). Here, we indicate an upper bound and lower bound for a critical

probability, between which we would expect a polymorphism of phage species to be able to

coexist. This coincides with an idea presented by Wolkowicz and Zhao [207]. The authors state

that in a periodic chemostat with n species, one can expect to oberserve coexistence between

multiple species. This result is explained by identifying some species may thrive on high re-
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source, while another on low resource (and anything in between). We see this same behaviour

in our model; phage species with low probability of lysogeny are better suited for high resource

environments, while those with higher probabilities of lysogeny thrive in low resources.

In addition to the common upper/lower bound for coexistence in our results, we also see

an interesting feature when we increase the average of the forcing function to a large degree.

When the resource is increased greatly, the population does not exhibit a small region of coex-

istence, but instead we find that any invading mutant may coexist with the established resident

population. This result suggests that when resources are overly abundant to the resident, and

invading, types the resident population is not affected in any meaningful way by the invading

type; competition is completely relaxed. We can therefore conclude that when resources are

overly abundant, any two species of varying degrees of probability of lysogeny may coexist

with one another.

As variability increases, we see a tendency for the population to evolve toward a fully

lysogenic population of temperate bacteriophage when variability is high enough. Biologically

speaking, this is not realistic, as the vast majority of temperate phage have the ability to undergo

both infection strategies [36, 81, 82]. We posit that this full lysogeny predicted by our model

may be biologically consistent with the idea of cryptic prophage. Perhaps, our model suggests

that when variability in the environment is high, a phage is more likely to stay integrated

than induce and enter into a lytic cycle. Thus, we might expect to observe an abundance

of cryptic prophage in fast-growing bacteria, since highly-variable environments favour both

fast-growing bacteria and high rates of lysogeny. Although we have not investigated how

variability affects induction in this work, this question regarding cryptic prophage is examined

more deeply in Chapter 5.
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From our results, we see clearly that not only does variability seem to affect the evolution-

arily stable strategy for temperate phage and their propensity for lysogeny, but so too does the

existence of a distinct stationary phase for the host. This result demonstrates a possible expla-

nation to the findings of Touchon et al. [183]. Due to the prevalence of fast-growing bacteria in

variable environments [95], we suggest that high levels of variability coupled with the bacterial

stationary phase may be the reason for the increased amount of lysogeny found by Touchon et

al. [183]. Perhaps it is worthwhile in further work on models of bacteria-phage to include the

host’s stationary phase, as it is clear to us it may indeed play an important role in not only the

lysis-lysogeny decision, but the coevolution of host and phage alike.



Chapter 5

The effect of life-history traits on the

distribution of prophage length

The results of Chapter 4 regarding a bacteriophage population evolving towards full lysogeny

create an additional area of exploration into prophage population dynamics. Classifying bac-

terial species according to their growth rates, we examine the prophage length distribution in a

set of fast- and slow-growing bacterial genomes. We then apply the techniques developed by

Khan and Wahl [94] to fit a partial differential equation model to these distributions, in order to

elucidate key features of the phage that infect these specific hosts. Our overall goal is to offer

explanations for several interesting but unexplained findings of Touchon et al. [183].

5.1 Introduction

Prophages can constitute a large portion of a given bacterial genome, on occasion accounting

for up to 16% of the host’s genome [183]. Recently, investigations into the length distributions

77
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of chromosomal prophages have revealed that these distributions are often multimodal, running

contrary to the previous expectation that prophage length distributions would be unimodal with

a negative skew [15, 25, 43, 94, 106]. Khan and Wahl [94] examined the underlying lysis-

lysogeny processes as an explanation for this multimodal length distribution. Their model

predicted large prophages were primarily maintained through lysogeny, while small prophages,

that do not contain genes for induction but confer benefits to the host, are primarily maintained

through selection [94].

The frequency under which a temperate phage undergoes lysogeny is highly dependent on

a multitude of factors, as previously discussed. However, the most common explanation for an

increase in lysogeny is that lysogeny may be favoured in conditions where susceptible bacteria

populations are at low densities, possibly due to low temperature or resource concentration

[42, 66, 123, 127, 148, 167, 190, 203]. In addition, it has been suggested that characteristics

of the bacterial host may play a pivotal role in the propensity for a temperate phage to undergo

lysogeny, notably the host’s growth rate [1, 183] and the pathogenicity of the host [3, 26, 183].

Motivated by this suggestion regarding the host itself playing an important role in the lysis-

lysogeny decision, Touchon et al. [183] compiled a large data set of hosts and their prophage

to reveal any correlations between previously suggested life-history traits of the host and the

number of prophages integrated into the genome. As noted in Chapter 4, the most significant

association observed was between the frequency of lysogeny and the bacteria’s minimal dou-

bling time [183]. As the host’s minimal doubling time decreased (i.e., a faster growing host),

the frequency of lysogeny increased [183]. In addition, a positive correlation between a host’s

pathogenicity and the frequency of lysogeny was observed, wherein pathogenic hosts were

found to have a much higher frequency of lysogeny [183].
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The goal of this chapter is to further investigate the relation between bacterial genetic and

life-history traits, specifically host minimal doubling time, and the distribution of prophage

lengths. Classifications of bacterial minimal doubling times are taken from the publicly avail-

able data of Touchon et al. [183], while prophage lengths are gathered using PHAge Search

Tool Enhanced Release (PHASTER) [7]. Recall that the results of Chapter 4 suggested an in-

crease in cryptic prophage in fast-growing bacteria. We therefore first examine the fraction of

prophages that are intact (functional) or incomplete (cryptic) in fast- and slow-growing hosts.

We then apply Khan and Wahl’s model [94] in order to elucidate any differences between the

strategies of temperate phage infecting fast- and slow-growing bacteria, and how these deci-

sions might influence prophage length distributions.

5.2 Length Distributions

Touchon et al. [183] identify a total of 1160 phages in their minimal doubling time data set;

splitting the group, they identify 615 found in fast-growing hosts, and 545 in slow-growing

hosts. The minimal doubling times (d) used to classify the bacteria were determined through

Vieira-Silva and Rocha’s experimental work on bacterial species [188]. Bacterial species were

classified into fast-growers if their minimal doubling time under optimal conditions was less

than 2.5 hours (i.e., d < 2.5 h) or slow-growers if d ≥ 2.5 h [183, 188]. The summary of data

for these growth classes is given in Table 5.1. We note that the reduced number of prophages

considered in the fast-growing classification is due to a few outliers with length greater than 80

kilobases (kb). These were excluded from our data set as they could not be fit by the model.

We passed the list of accession numbers (unique genome identifiers) for both the fast- and
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Bacterial Growth Class Prophage

Number

Min

(kb)

Max

(kb)

Average

(kb)

Fast 609 3.1 72.1 29.883

Slow 545 5.4 72.0 22.869

Total 1154 3.1 72.1 26.571

Table 5.1: Summary of data for growth classes. Data from Touchon et al. [183].

slow-growing hosts identified by Touchon et al. [183] into the PHASTER web interface [7]

to produce results files for each host. We note that not all hosts are readily available through

PHASTER, which reduced our data set to 176 genomes for both the fast- and slow-growing

data sets. After submitting accession numbers into PHASTER, we download a results file.

This file lists the number of prophages in the genome, length of each prophage, the possible

proteins present in the prophage and which prophage the sequence is most likely to be [7].

The PHASTER algorithm also identifies if a given prophage is “intact”, “questionable”, or

“incomplete” [7]. These classifications are determined through a completeness score within

the search algorithm of PHASTER; a score of greater than 90 is classified as intact, between

70 and 90 is questionable, while less than 70 is incomplete [7]. The data in the sections to

follow were extracted by post-processing of the results files obtained through this shell-scripted

bioinformatics pipeline. This pipeline is given in Appendix B.

After classifying the prophages according to their bacterial hosts, we were interested in test-

ing our hypothesis regarding an increased number of prophages in fast-growing hosts. Using

the completeness score for prophages from PHASTER, we identify the number of intact, ques-
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tionable and incomplete prophages a specific genome contains [7]. These results are shown in

Figure 5.1.

Figure 5.1: Percentage of prophages in each classification (either intact, questionable or in-

complete), according to PHASTER [7]. Panel a) shows the percentage of prophages in each

classification for fast-growing hosts, and panel b) shows the percentage for slow-growing hosts.

These initial data regarding the completeness of prophages are not consistent with the

suggestion that fast-growing bacteria will have more cryptic prophages. We notice that fast-

growing hosts, in fact, have similar fractions of intact and incomplete prophages within their

genomes, while slow-growing hosts have almost 30% more incomplete prophages than intact.

These findings lead us to question what factors may be influencing the lengths of prophages in

fast- and slow-growing hosts.

Figure 5.2 shows the prophage length distributions of prophages in fast- and slow-growing

hosts, as well as the combination of the two data sets. For fast-growing hosts, we see a clear
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multimodal distribution, similar to those considered by Khan and Wahl [94]. However, the

prophages within slow-growing hosts and, to some extent, the total prophage distribution seem

to have a unimodal distribution with positive skewness, in contrast to the previously predicted

negatively skewed distribution [15, 94]. This is consistent with the findings shown in Figure

5.1, in that slow-growing hosts tend to have more incomplete prophages within their genomes.

This degradation of prophages would account for the more prominent positive skewness of the

distribution when compared to the fast-growing host prophage length distribution (see [99] or

[128] for a discussion).

5.3 Model

To fit the data shown in Figure 5.2, we adapt the model developed by Khan and Wahl [94].

Following the findings of Khan and Wahl [94], we fit each data set (i.e., fast- and slow-growing

distributions) separately using a model comprised of functions describing lysogeny, selection,

induction and degradation. For a full description of each function in the model, see [94].

Khan and Wahl [94] outline the derivation of the partial differential equation,

∂Q(x, t)
∂t

= α f (x) +
∂

∂t
(D(x)Q(x, t)) + rsS (x)Q(x, t) − rI I(x)Q(x, t) , (5.1)

where the model parameters and functions are given in Table 5.2. Equation (5.1) describes the

time evolution of the prophage length distributions.

The distribution of interest, y(x), is the steady state solution of Q(x, t), that is

y(x) = lim
t→∞

Q(x, t) .
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Figure 5.2: Length distributions of prophages found in fast- and slow-growing bacterial hosts.

Panel a) shows the histogram of prophage lengths in fast-growing hosts, with a multimodal

distribution. Panel b) shows the histogram of prophage lengths in slow-growing hosts, with

a positively skewed unimodal distribution. Panel c) shows the total prophage length distribu-

tion (i.e., all prophages considered in the following analysis), again with a positively skewed

unimodal distribution.

This steady state solution is found to be,

y(x) =
−αe−

∫
F (x)dx

rDx

∫
f (x)e

∫
F (x)dxdx +

C
x

e−
∫
F (x)dx , (5.2)

where C is an arbitrary constant and

F (x) =
rS S (x)

rDx
−

rI I(x)
rDx

. (5.3)
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Q(x, t) frequency of prophages of length x (kb) at time t

y(x) steady state solution of Q(x, t)

f (x) length distribution of prophage sequences entering via lysogeny

D(x) mutational degradation rate

S (x) expected fraction of rS conferred by prophage of length x

I(x) probability that prophage carries genes required for induction

α Relative rate of lysogeny

rD Relative rate of degradation

rS Relative selection coefficient (intact prophage)

rI Relative rate of induction

nI Number of genes required for induction

Table 5.2: Model functions and parameters adapted from [94]

For brevity, we do not include the full derivation of Equation (5.2), but rather invite the reader

to see the description given by Khan and Wahl [94].

5.4 Results

To fit both the fast- and slow-growing data sets, we used a finite difference scheme to obtain,

numerically, the steady-state solution (Equation (5.2)) and compared this steady-state solution

to the data, optimizing the log-likelihood to identify the best fit parameter values. The log-
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likelihood is defined as

log(L) =

n∑
i=1

log y(xi) ,

where xi are the n observed lengths of prophage genomes in the data set, and y(xi) is the

numerically obtained steady-state solution.

The incoming phage distribution, f (x), is described by a mixed distribution incorporating

one to three Gaussian distributions [94]. Dependent on the number of Gaussian distributions

selected for f (x), our model could include k = 9, k = 12, or k = 15 free parameters. To select

the best model among the candidate models, we used the Akaike Information Criterion (AIC)

[5]. A full description of this process is outlined in Appendix C. For both data sets, the best

model among the candidate models included two Gaussian distributions in the function f (x),

that is,

f (x) =

2∑
i=1

pi exp
(
−(x − (θ + µi))2

σ2
i

)
,

where θ gives the length of the smallest autonomous temperate phage. Bobay et al. [15] report

that the smallest autonomous phage that can infect bacteria is 30 kb; in our following results

we, therefore, set θ = 30 kb.

The best fit parameters for the fast- and slow-growing data sets are given in Table 5.3.

All the given best fit rate parameters are given relative to the rate of degradation, rD. This is

because the steady state solution does not depend independently on the rates, but only on the

ratio of the rates. In particular, as shown in Equations (5.2) and (5.3), the steady state solution

depends on the rates α/rD , rS /rD , and rI/rD. While in principle we could provide the rates

relative to any of the four rate parameters in the model, normalizing by the degradation rate

has the additional advantage that the rate of degradation, a mutational rate, is not expected to
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differ between the two growth classes, and as such allows for a cleaner comparison [196].

Parameter Fast-growing Slow-growing

α relative rate of lysogeny 5.9 1.4

rD relative rate of degradation 1 1

rS relative selection coeff. (intact prophage) 10.774 65.167

rI relative rate of induction 44.0 65.99

nI number of genes required for induction 5.50 1.50

Table 5.3: Parameter values for the best fits for both bacterial growth groups. All of the given

relative rates have been normalized by the degradation rate, rD.

Figure 5.3 shows the best fit for y(x) for the fast- and slow-growing data sets respectively.

Parameters used in the Gaussian distributions underlying f (x) are given in the captions of each

figure, while the other best fit parameters are those given in Table 5.3.

Comparing the best-fit parameter values for fast- and slow-growing hosts, we find that

the rates of lysogeny, induction and selection all seem substantially different. This, however,

leads us to ponder if these values are indeed significantly different from one another. We

will discuss the methodology for determining whether the parameters are statistically different

in the following section. It is worth noting that the differences in parameter values are not

surprising, given the markedly different distributions illustrated in Figure 5.2. We will return

to the implications of these results in the Discussion.
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(a) fast-growing hosts (b) slow-growing hosts

Figure 5.3: The best fit predicted by the model (y(x), red curve) to each data set. Panel (a) shows

the best fit model for the fast-growing data set, with p1 = 50.487 , µ1 = 20.161 , σ1 = 8.547 ,

p2 = 20.230 , µ2 = 38.722 and σ2 = 3.408. Panel (b) shows the best fit model for the slow-

growing data set, with p1 = 13.114 , µ1 = 16.332 , σ1 = 10.364 , p2 = 27.906 , µ2 = 36.001

and σ2 = 1.648.

5.4.1 Statistical Analysis of Parameter Estimates

We want to test which of the parameter estimates for the best fit model, as given in Table 5.3,

are statistically different between the data sets, or whether these differences might have arisen

by chance. Ideally, one would undertake a bootstrapping approach to identify the variance

in the best fit parameters (see [55] for a discussion of this method). However, to ensure the

accuracy of the findings of a bootstrap method, we would need to fit, on the order of, 1000

sampled distributions. Due to the computational cost of the optimization algorithm (on the

order of one day to complete a single fit), this is not feasible. We therefore turn our attention

towards a weighted least squares approach, as described by Landaw and DiStefano [103].
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Before our discussion of this method and its results, we note that we fit our data sets by

minimizing the log-likelihood. This is in contrast to the fits used in the examples of Landaw

and DiStefano, who discuss results and statistical methods for fits that have used a weighted

least squares approach [103]. Although the assumptions of these two approaches are quite

different, we interpret the results to follow as a rough estimate for the confidence in our best fit

parameters. If feasible, we would utilise a bootstrapping methodology to ensure the accuracy

of the estimated coefficients of variation.

To determine the coefficients of variation in the best fit parameters of our fits, we construct

the variance-covariance matrix (hereafter referred to as the covariance matrix) as described by

Landaw and DiStefano [103].

We first denote p̂ as a P × 1 vector whose entries, p̂i, are the best fit parameters. Note that

in our best fit models, for both the fast- and slow-growing data sets, P = 11. This reduction of

free parameters by one is because we scale each rate by rD; there are only 11 free parameters

in the steady-state solution. Then, the P × P dimensional covariance matrix of p̂ (denoted as

COV(p̂)) is a measure of the spread of p̂ about its mean. The ith diagonal entry of COV(p̂) is

the variance of p̂i; therefore, its square root is the standard deviation of p̂i (denoted as sd( p̂i)).

We then can determine the coefficient of variation for each parameter (denoted as CVi , where

i = 1 . . . P) by

CVi =
sd( p̂i)

p̂i
× 100% . (5.4)

We can approximate COV(p̂) by constructing the complete information matrix for the com-

plete set of data [103]. We first let s(x, p̂) be a P × 1 vector whose ith component is

∂Y
∂pi

,
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where Y(x, p̂) is the best fit model of the cumulative distribution function for the prophage

lengths. That is,

Y(x, p̂) =

∫ x

0
y(τ) dτ ,

for parameter values p̂. The vector s can therefore be viewed as the sensitivity of the model

output to changes in the parameters [119]. Due to the fact the steady state solution y(x) and the

associated Y(x, p̂) are intractable analytically, we approximate the partial derivatives in s using

first principles with a step size of h = εpi/rD, where rD is the best fit rate of degradation. We

then construct the P × P point information matrix, M(xi), for each prophage length in our data

set, xi, by

M(xi) = s(xi, p̂)[s(xi, p̂)]T . (5.5)

Thus, the complete information matrix is given by

M =

N∑
i=1

M(xi) , (5.6)

where N is the number of prophage lengths in each data set. This complete information matrix

may then be used to approximate COV(p̂) as

COV(p̂) = σ2M−1 ,

where σ2 is the variance of the error between the data set and its fit. Due σ2 being unknown,

we may use an unbiased approximation

σ̂2 =
WRSS(p̂)

DF
, (5.7)

where DF is the value of the degrees of freedom, i.e., N − P. The function WRSS(p̂) is the

weighted residual sum of squares that is, for a given data set, z(xi), defined as

WRSS(p̂) =

N∑
i=1

[z(xi) − Y(x, p̂)]2 . (5.8)
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In a more general sense, each term in the summation of Equation (5.8) should be scaled by

the weight, wi, given to each data point [103]. However, in our log-likelihood fit all points are

equally weighted.

Using COV(p̂), we may extract the variance (and standard deviation) from the diagonal

entries. We can then use Equation (5.4) to find the coefficient of variation for each parameter.

Table 5.4 gives the best fit parameters, as in Table 5.3, with their associated standard deviations

and coefficients of variation. We note that the parameters describing lysogeny (α), selection

(rS ) and induction (rI , nI) all differ significantly between fast- and slow-growing bacteria.

Value ± sd Coefficient of Variation (%)

Parameter Fast Slow Fast Slow

α/rD 5.9 ± 0.2 1.4 ± 0.6 3.6334 40.8655

rS /rD 10.77 ± 0.04 65.17 ± 0.05 0.3745 0.0841

rI/rD 44.0 ± 2.0 65.99 ± 0.04 4.6432 0.0532

nI 5.50 ± 0.03 1.50 ± 0.01 0.6343 0.8736

Table 5.4: Parameter values for the best fits for both bacterial growth groups with standard

deviations. All of the given relative rates have been normalized by the degradation rate, rD.

Standard deviation and coefficient of variation were calculated with ε = 0.1.

One critical piece to note regarding the numerical calculation of the coefficients of varia-

tion: through experimentation, we notice that the coefficients of variation for the slow-growing

data set are sensitive to the step-size used in the first principle calculation of the partial deriva-

tives. To illustrate this sensitivity, we refer the reader to Appendix D. The coefficients of
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variation given in Table 5.4 are calculated with ε = 0.1, meaning the step-size used for each

partial derivative is 10% of the best fit parameter value, scaled by the best fit rD value.

5.5 Discussion

As an extension of the work of Chapter 4, we further investigated how life-history traits of

the bacterial host, such as minimal doubling time, affect the fractions of intact and incomplete

prophages in a bacterial genome, as well as the distribution of prophage lengths. We developed

a bioinformatics pipeline to extract both lengths and completeness classifications for prophages

in a set of publicly-available bacterial genomes and implemented the model and numerical

scheme developed by Khan and Wahl [94] to fit data sets created via this pipeline in order

to test whether prophages in fast- and slow-growing bacteria are subject to different rates of

lysogeny, selection or induction.

In the work of Touchon et al. [183], the strongest correlation between the host’s life-history

traits and prevalence of lysogeny is found to be the minimal doubling time. We therefore use

their curated list of bacterial genomes to generate the data used in our model fits, in order to

determine the possible differences in the forces affecting prophage. The fast-growing bacterial

hosts (with minimal doubling time less than 2.5 hours) have a multimodal prophage length

distribution, similar to distributions that have been observed in multiple data sets previously

[15, 43, 106]. However, the slow-growing hosts exhibit a unimodal distribution with positive

skewness, opposite to the previously predicted negatively skewed distribution [15, 94]. This

stark difference between the two data sets, which are seen in Figure 5.2, seems to suggest that

the forces acting on the prophages that are integrated in fast- and slow-growing hosts may be
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significantly different.

Utilising the model of Khan and Wahl [94], we fit each data set using a finite difference

scheme and optimized the log-likelihood to determine the best fit parameters. These best fit

values are given in Table 5.3 with their associated standard deviations. We note that each of

the rates given in this table are scaled by the rate of degradation, rD. As mentioned, although

the scaling by rate of induction would give each rate in units of expected prophage lifetime, we

expect the rate of induction to be different between the two hosts. However, it has been found

that the rate of degradation is more than likely constant across all bacterial hosts, and as such

is the better value to scale by [196].

Our results support the findings of Touchon et al. [183]. The rate of lysogeny, α, is much

larger for fast-growing hosts when compared to slow-growing hosts. This is congruent with the

strong correlation between minimal doubling time and the prevalence of prophage sequences

in the observations of Touchon et al. [183]. We note that the rates of lysogeny for the two

data sets are statistically different, with no overlap between the best fit parameters and their

associated standard deviations.

Our best fit parameters suggest several other differences between the forces acting on

prophage sequences. The relative rate of induction, rI , is larger for slow-growing hosts when

compared with fast-growing hosts. This difference is consistent with prophages infecting slow-

growing hosts favouring lysis, the process that requires induction, while those infecting fast-

growing hosts favour lysogeny [183, 190]. The relative selection coefficient, rS , is also larger

for prophages in slow-growing hosts. We predict that although fewer prophages become inte-

grated in slow-growing hosts, many of those that do are degraded to become cryptic prophages,

and are then maintained by selection. Thus, an experimentally testable prediction arising from
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this work is that prophages in slow-growing bacterial species confer greater selective benefits,

on average, than prophages in fast-growing bacteria.

Our findings support those of Touchon et al. [183], demonstrating that prophages that

infect fast-growing hosts have a higher rate of lysogeny. Although minimal doubling time and

lysogeny was the strongest correlation found in Touchon et al. [183], the authors note that

pathogenicity of the host may also play an important role in the distribution of prophages.

An investigation into the forces that act on prophages in pathogenic and non-pathogenic hosts

would be a clear avenue for future work.
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Conclusions and Future Work

The interaction between phage and bacterial host has become of increasing interest in scientific

research in recent years due to pivotal role both bacteria and phage play in a wide array of areas,

including medicine [100, 124], ecosystem health [89, 135] and evolution [12, 21, 34, 38, 60].

The sheer quantity of phage has transformed the views of many about phage-bacteria dynamics

from a simple interaction to a complex and important set of interactions [37].

Interest has increased since the 1980s in the evolution of so-called temperate phage [176],

bacteriophage that are able to initiate two distinct infection strategies on their bacterial prey

[114]. The answer to the long-standing question “why be temperate?” [176] has evaded re-

searchers for some time [12, 108, 190, 199]. Our contribution to this question comes in the

form of the results of Chapters 2 and 4. In addition, we investigate the existence and stability

of equilibria of a temperate phage model in Chapter 3 and further investigate the unexplained

some unexplained experimental results [183] using bioinformatical techniques in Chapter 5.

Below we provide a summary of all four projects and the conclusions derived from them.

We first begin by investigating the role that prophage sequences, in the form of a plasmid,

94
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may play in the adaptation of temperate phage in Chapter 2. Here, we develop a life-history

model for a free temperate phage and its associated plasmid prophage. We focus soley on

temperate phage creating plasmid prophages, as it is an interesting and oft neglected area of

prophage studies [34, 37, 79, 144]. The results of our model suggest that de novo beneficial mu-

tations are more likely to survive drift if they first occur during plasmid prophage replication,

rather than during lytic replication. This suggests that plasmid prophages may have played a

disproportionate role in genetic innovation for their associated temperate phage lineages. This

work is published, in part, in [192].

In Chapter 3, we develop and analyse a non-linear ordinary differential equation model

describing the dynamics of temperate phages, prophages and their hosts. The evolutionary

dynamics of this model have been studied, in part, in Wahl et al. [190] and Berngruber et al [12,

13]. However, no analysis of the equilibria or stability was conducted in this previous work.

We identify four distinct equilibria for the associated dimensionless system, and elucidate the

precise conditions necessary for stability and existence of each.

We extend the resource-implicit model of Chapter 3 to a resource-explicit model in Chap-

ter 4, to determine the evolutionary trajectory of temperate prophage in variable environments.

Our model development includes the novel inclusion of a bacterial stationary phase, which is

often neglected in models of temperate phage-bacteria dynamics (for instance in [12], [13],

[108], [176] and [190]). Through the utilisation of evolutionary invasion analysis, we observe

the importance of the stationary phase in the lysis-lysogeny decision when environments are

variable. We find that if bacteria have the ability to enter stationary phase, then when envi-

ronments vary greatly the propensity for lysogeny increases. Our results suggest a possible

explanation for the correlation between minimal doubling time and lysogeny experimentally in
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previous work [183].

The results of Chapter 4 regarding a phage population evolving towards full lysogeny cre-

ated an additional area of exploration that is the focus of Chapter 5. Throughout the utilisation

of a bioinformatic pipeline, we create a data set of genomes and their associated prophages

from a curated list of publicly-available bacterial genomes [183]. This data set was constructed

using PHASTER’s web interface [7]. By adapting the model of Khan and Wahl [94], we were

able to best fit the distribution of prophage lengths in order to identify any differences in strate-

gies of temperate phage infecting fast- and slow-growing bacteria. Our resulting best fit models

support the experimental observation that lysogeny is more prevalent for fast-growing bacteria.

6.1 Future Work

Although the results of Chapter 4 support the claim that variable environments with fast-

growing bacteria would have an increased propensity of lysogeny [95, 183], we investigate

what constitutes “variability” in a limited number of ways. In our model, the resource influx

is controlled by a sinusoidal function C(t), which has parameters that control the frequency,

amplitude and the average amount of resource influx. Our results allow each parameter to vary,

while holding the other two constant. A clear area for future work would be to allow multiple

parameters to vary, in order to observe if the results continue to support our hypothesis.

In addition, the concept of “variability” could be interpreted more broadly. For example,

the influx of resource could be controlled stochastically. We could extend this idea further, and

build a stochastic model to include all sorts of variability and determine the role stochasticity

plays on the lysis-lysogeny decision. Another avenue for future work for this model is an
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extension that could be suggested for a variety of phage-host models, the inclusion of spatial

dynamics. Since many bacteria exist in complex spatial communities known as biofilms [74],

spatial dynamics may be important to phage-host interactions in many ecological settings.

Our results from Chapter 5 support one experimental observation in regards to minimal

doubling time and lysogeny, however, a variety of host life-history traits have also been sug-

gested to influence the lysis-lysogeny decision [183]. An avenue for future work would be to

investigate how several of these other life-history traits, such as the pathogenicity of the host,

influence the distribution of prophage. Using our developed bioinformatics pipeline, the model

of Khan and Wahl [94], and the curated list of publicly-available bacterial genomes [183],

this would be a relatively straightforward and potentially impactful project to undertake in the

future.
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Appendix A

Parameter values for System (4.1)

Parameter Value Parameter Value

α 0.015 virus−1day−1 R? 6 resource·litre−1

β 100 viruses C0 0.8

ξ 1 day−1 ω 0.17 day−1

ρB 1 day−1 m 12.5 day−1

κ 4 day−1 a 1 resource·litre−1

p 0.5 ζ 2.5 day−1

ρ 1 day−1 θ 0.5 litre·resource−1

ε 1 resource· (cell·litre)−1 w 0.05 day−1

Table A.1: Parameter values used for numerical simulations of System (4.1), unless stated

otherwise.
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Appendix B

Shell-scripted bioinformatics pipeline

Here, we present the shell-scripted bioinformatics pipeline that accesses PHASTER’s [7] web

interface to download a Results file for each bacterial genome.

1 #!/bin/bash

2 while read accnum; do

3

4 wget "http://phaster.ca/phaster_api?acc=${accnum}" -O tmp/tmp.out;

5 awk '{gsub(/\\n/,"\n")}1' tmp/tmp.out > tmp/${accnum}.txt;

6 awk '{print $3 "," $4}' tmp/${accnum}.txt | grep -E ...

"intact\(|incomplete\(|questionable\(" > tmp/tmp${accnum}.txt

7 for score in intact questionable incomplete; do

8 grep -E "${score}" tmp/tmp${accnum}.txt | wc -l >> ...

output/iqi_${accnum}.txt

9 for protein in terminase portal head injection tail protease ...

transposase integrase lysis plate capsid lysin flippase; do
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126 Chapter B. Shell-scripted bioinformatics pipeline

10 grep -E "${score}\S+${protein}" tmp/tmp${accnum}.txt | wc -l >> ...

output/output_${accnum}.txt

11 done

12 done

13 done < accnums.txt

14 exit 0

The following short shell script searches the corresponding Results file for each prophage

length and stores it in a separate file that we read into Matlab to plot the histograms shown in

Chapter 5.

1 while read accnum; do

2

3 grep -E "Kb" tmp/${accnum}.txt | awk '{print $2 }' | grep -E "Kb" | ...

awk '{gsub("Kb"," ")}1' >> output/lengths_${accnum}.txt

4

5 done < accnums_sm_slow.txt

6

7 exit 0



Appendix C

Results from model selection

The Akaike Information Criterion (AIC) [5] estimates the quality of a model and protects

against overfitting. The lowers AIC is therefore the optimal model fit. To select the best model

among the candidate models, we used the AIC defined as,

AIC = 2k − 2 log
(
L̂
)

(C.1)

where k is the number of free parameters, and log
(
L̂
)

is the maximum log-likelihood. Equation

(C.1) was first derived by Akaike [5].

The AIC may, however, insufficiently punish extra parameters if the sample size comparted

to the number of parameters is small. To alleviate this potential problem, Burnham and Ander-

son [32] developed an improvement on Equation (C.1) called the corrected Akaike Information

Criterion (AICc). Their correct version is given by

AICc = AIC +
2k(k + 1)

n − (k + 1)
(C.2)

where k is once again the number of free parameters and n is the sample size.
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128 Chapter C. Results from model selection

While the lowest AIC (or AICc) value corresponds to the best fit, it is possible that several

candidate models offer equivalently good fits. This would then correspond to models that

cannot be rejected statistically. To address this issue, we compute the relative probability.

Defining AICmin as the lowest AIC of the candidate models, the relative probability [32] is

defined for each candidate model as

R = exp
(
AICmin − AIC

2

)
. (C.3)

The best fit model will then have relative probability of one.

In Tables C.1 and C.2. we provide both AIC and AICc values, the log-likelihood and

compute the relative probabilities using the AICc values. The difference in the number of

parameters reflects how many Gaussian components were included in the incoming prophage

distribution, f (x); we define the number of Gaussian distributions used as g, where g = 1, 2, or

3.

For each data set, the best fit model was found to be a mixed distribution of two Gaussian

distributions in f (x), meaning k = 12 free parameters were used. We note that in all testing

of the fits, we did not test the effect that the inclusion of HGT may have on the best fit. This

exclusion of the HGT process is done due to the findings of Khan and Wahl [94], where the

rate of HGT was found to be extremely small in comparison to the other rates.
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Parameters AIC AICc Log-

likelihood

Relative

Probability

1 12 4957.9482 4958.0877 −2466.9741 1

2 15 4958.9073 4959.7153 −2464.4533 0.6191

3 9 4965.0218 4965.1613 −2473.5109 0.0291

Table C.1: Number of parameters, AIC, AICc, log-likelihood and the corresponding relative

probabilities for the fast-growing data set. The best fit model includes a mixed distribution

to describe autonomous temperate phages (g = 2), degradation, induction and selection. No

model was tested with HGT included, as this was shown in [94] to have little effect on the

results.

Parameters AIC AICc Log-

likelihood

Relative

Probability

1 12 4201.6520 4202.2373 −2088.8260 1

2 9 4203.8107 4204.1466 −2092.9054 0.3398

3 15 4205.7795 4206.6869 −2087.8898 0.1270

Table C.2: Number of parameters, AIC, AICc, log-likelihood and the corresponding relative

probabilities for the slow-growing data set. The best fit model includes a mixed distribution

to describe autonomous temperate phages (g = 2), degradation, induction and selection. No

model was tested with HGT included, as this was shown in [94] to have little effect on the

results.



Appendix D

Sensitivity of the coefficients of variation

As stated in Chapter 5, the intractability of the steady state y(x) and the associated Y(x, p̂)

analytically means we need to approximate the partial derivatives of s(xi, p̂). To do so, we use

first principles with a step-size of h = εpi, where pi is the best fit parameter as given in Table

5.3. The results given in Table D.1 use ε = 0.12, in comparison to the results of Table 5.4 that

use ε = 0.1.

Coefficient of Variation(%)

Parameter Fast Slow

α/rD 3.2319 11.926

rS /rD 0.9238 0.0062

rI/rD 4.0269 0.0234

nI 0.3853 0.2785

Table D.1: Coefficients of variation for best fit parameters of fast- and slow-growing data sets

with ε = 0.12.
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