
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-4-2020 1:00 PM

Classification-based method for estimating dynamic treatment Classification-based method for estimating dynamic treatment

regimes regimes

Junwei Shen, The University of Western Ontario

Supervisor: He, Wenqing, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Statistics and Actuarial Sciences

© Junwei Shen 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Biostatistics Commons

Recommended Citation Recommended Citation
Shen, Junwei, "Classification-based method for estimating dynamic treatment regimes" (2020). Electronic
Thesis and Dissertation Repository. 7143.
https://ir.lib.uwo.ca/etd/7143

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.lib.uwo.ca%2Fetd%2F7143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7143?utm_source=ir.lib.uwo.ca%2Fetd%2F7143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Dynamic treatment regimes are sequential decision rules dictating how to individualize

treatments to patients based on evolving treatments and covariate history. In this thesis, we

investigate two methods of estimating dynamic treatment regimes. The first method extends

outcome weighted learning from two-treatments to multi-treatments and allows for negative

treatment outcome. We show that under two different sets of assumptions, the Fisher consis-

tency can be maintained. The second method estimates treatment rules by a neural classifica-

tion tree. A weighted squared loss function is defined to approximate the indicator function to

maintain the smoothness. A method of tree reconstruction and pruning is proposed to increase

the interpretability. Simulation studies and real application to data from Sequential Treatment

Alternatives to Relieve Depression (STAR*D) clinical trial are conducted to illustrate the pro-

posed methods.

Keywords: Classification methods, dynamic treatment regimes, neural classification tree,

outcome weighted learning, personalized medicine, support vector machine

i

Lay Summary

Traditionally, treatments for patients are decided by clinical judgments based on clinician’s

experience or practice guidelines based on clinical evidence and expert opinions. Patients with

the same disease often receive the same treatment. It is one-size-fits-all approach. However,

patient heterogeneity makes it possible that the best treatment for one patient is suboptimal for

another. Therefore, it is important to make an transition from the traditional one-size-fits-all

approach to individualized treatment rule which takes personal characteristics into account and

tailors treatments to patients. This thesis will present two methods of identifying individualized

treatment rule, called multicategory outcome weighted learning and neural classification tree.

ii

Acknowledgements

I would like to convey my profound gratitude to my supervisor, Dr. Wenqing He, for his

scientific guidance, support and for sharing his expertise throughout my study at Western. This

thesis would not have been possible without his insights and helpful comments.

I would like to express my thanks to Dr. Grace Yi. The data science meetings arranged

by Dr. Yi and Dr. He deepened my interests in statistics and exposed me to the cutting-edge

research problems.

I would like to thank my thesis examiners, Dr. Yun-Hee Choi, Dr. Cristian Bravo Roman,

Dr. Jiandong Ren for taking the time to read my thesis and for the helpful comments.

Last but not least, I would like to thank my family and my friends at Western for their love

and encouragement. The study and life at Western would not have been such happy without

their constant support.

iii

Contents

Abstract i

Lay Summary ii

Acknowledgements iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Dynamic treatment regimes . 1

1.2 Potential outcomes framework . 4

1.3 Review of reinforcement learning . 6

1.4 Review of indirect methods . 7

1.4.1 Q-learning . 8

1.4.2 G-estimation in structural nested mean model 10

1.5 Review of direct methods . 12

1.5.1 Inverse probability weighting . 12

1.5.2 Outcome weighted learning . 14

1.6 Objectives and organization . 16

2 Multicategory Outcome Weighted Learning 18

2.1 Introduction . 18

iv

2.2 Notation and framework . 19

2.3 Method framework . 21

2.3.1 Single stage . 21

2.3.1.1 Fisher consistency . 23

2.3.1.2 Computation details . 25

2.3.2 Multi-stage . 33

2.4 Numerical investigation . 34

2.4.1 Simulation study . 34

2.4.2 Application to STAR∗D study . 41

2.5 Conclusion . 43

2.6 Appendix . 44

3 Dynamic Treatment Regimes based on Neural Classification Tree 47

3.1 Introduction . 47

3.2 Literature review . 48

3.2.1 Neural network . 48

3.2.2 Classification tree . 49

3.3 Neural network architecture for the DTR . 51

3.4 Tree reconstruction and pruning . 55

3.5 Numerical investigation . 57

3.5.1 Simulation study . 57

3.5.2 Application to STAR∗D study . 63

3.6 Conclusion . 64

4 Conclusion 66

Bibliography 69

A R Functions for First Model 73

v

B Python Functions for Second Model 108

Curriculum Vitae 117

vi

List of Figures

1.1 A schematic of DTR in the alcohol dependence example 2

1.2 A schematic of treatment assignment in STAR*D (Chakraborty and Moodie,

2013) . 4

2.1 Plots of the effect of the modified loss function. In panel (a), the green plane is

the indicator function I(A = d(X)) and the red plane is the proposed modified

loss function. Panel (b) is the plot of their difference. 23

2.2 Simulation results for scenarios 1 and 5 for different γ. Loss 1 and 2 refer to

VY(f (X), A) and Vc
Y(f (X), A) respectively. Figure 2.2a and figure 2.2b show the

misclassification error rates and empirical value for linear decision boundary.

Figure 2.2c and figure 2.2d give the same result for nonlinear decision boundary 39

2.3 Estimated value function based on 100 repetitions of application for Sequential

Treatment Alternatives to Relieve Depression data 43

3.1 An example of standard neural network; I, H and O denote nodes in input,

hidden and output laye. B denotes the bias term 49

3.2 Estimated value function based on 100 repetitions of application for Sequential

Treatment Alternatives to Relieve Depression data 64

vii

List of Tables

2.1 Misclassification error rates approximated by validation data set of size 1000,

averaged over 500 simulation runs; the numbers in parenthesis are standard

deviations over 500 simulation runs . 40

2.2 Empirical value function approximated by validation data set of size 1000, av-

eraged over 500 simulation runs; the numbers in parenthesis are standard devi-

ations over 500 simulation runs . 41

3.1 Misclassification error rates approximated by validation data set of size 1750,

averaged over 500 simulation runs; the numbers in parenthesis are standard

deviations over 500 simulation runs . 62

3.2 Empirical value function approximated by validation data set of size 1750, av-

eraged over 500 simulation runs; the numbers in parenthesis are standard devi-

ations over 500 simulation runs . 62

viii

Chapter 1

Introduction

1.1 Dynamic treatment regimes

Personalized medicine is a medical paradigm where treatment is customized for each patient

based on individual information. The motivation behind this paradigm is the fact that het-

erogeneity exists among different patients and when making medical decisions, the existing

heterogeneity needs to be taken into account. For example, patients may respond differently to

the same drug because of their personal difference. In this case, without considering personal

information, the one-size-fits-all approach will result in inefficient or over treatment. Dynamic

treatment regimes (DTR), also known as adaptive treatment strategies, generalize personal-

ized medicine to time-varying treatment settings in which treatment is repeatedly tailored to a

patient’s dynamic state (Chakraborty and Murphy, 2014).

A simple example of dynamic treatment regimes is the treatment of alcohol dependence

(Chakraborty and Moodie, 2013). Two stages are involved: initially, clinician prescribes either

naltrexone (NTX) or cognitive behavioral therapy (CBT) to the patients. Patients are then

classified as responder or non-responder based on the number of heavy-drinking days within

the next two months after they take the initial treatment. If a patient experiences more than

two heavy-drinking days during the following two months, the patient is labelled as a non-

1

2 Chapter 1. Introduction

responder, otherwise a responder. At the second stage, the non-responders to NTX will be

assigned either CBT or an augmentation of NTX with CBT and the non-responders to CBT

will be assigned either NTX or an augmentation of CBT with NTX. All responders will receive

telephone monitoring (TM) within the next six months.

Figure 1.1 gives a schematic of a possible DTR in the alcohol dependence example. This

DTR consists of two decision rules: the first decision rule prescribes the initial treatment based

on the baseline information H0 and the second decision rule use intermediate outcome and

updated information H1 to assign the secondary treatment. Specifically, the DTR is: at the first

stage, prescribe CBT if the baseline level of some variable exceeds the pre-specified threshold

and otherwise prescribe NTX; at the second stage, if a patient is a responder to the initial

treatment, prescribe TM as the secondary treatment; if a patient is a non-responder, switch to

the other treatment or prescribe an augmentation based on whether the intermediate level of

some variable exceeds the pre-specified threshold.

Figure 1.1: A schematic of DTR in the alcohol dependence example

Another example is Sequential Treatment Alternatives to Relieve Depression (STAR*D)

clinical trial which will be used as numerical illustration in chapter 2 and 3. It was a multi-

site, multi-step randomized clinical trial on 4041 patients with nonpsychotic major depressive

1.1. Dynamic treatment regimes 3

disorder (Rush et al., 2004). The study compares treatment options for patients without satis-

factory response with citalopram (CIT), a selective serotonin reuptake inhibitor antidepressant.

The primary outcome is the clinician-rated Quick Inventory of Depressive Symptomatology

(QIDS) score ranging from 0 to 27 in the sample. Higher values of QIDS score correspond

to higher severity and thus represent a worse outcome. The study included four levels where

each level consisted of a 12 week period of treatment. At the end of each level, patients whose

12-week clinician-rated QIDS score ≤ 5 or reduction in QIDS score ≥ 50% will not move to

further level. Chakraborty and Moodie (2013) gives a schematic of treatment assignment in

the STAR*D study. At level 1, all patients received CIT. Patients who are eligible for level

2 treatment were randomized to one of the seven treatments including four switch options

(venlafaxine[VEN], sertraline[SER], bupropion[BUP] and cognitive therapy[CT]) and three

augment options (CT, BUP or buspirone[BUS] added to CIT). Patients without satisfactory

response to CIT at level 1 and to CT at level 2 (either alone or in combination) could go to a

supplementary level 2A where the patients were randomized to one of the two switch options

(BUP, VEN). Patients who entered level 3 were randomized to receive one of the two switch

options (mirtazapine[MRT], nortriptyline[NTP]) and two augment options (lithium[Li], thy-

roid hormone[THY]) while patients who entered level 4 were expected to receive one of the

two switch options (tranylcypromine[TCP] or the combination of VEN + MRT).

The goal of constructing DTR is to improve treatment outcome as well as reduce medical

resource waste by prescribing the treatment only when it is needed. An optimal DTR optimizes

the expectation of a desired cumulative outcome over a population of interest (Laber et al.,

2014). So an optimal DTR should maximize the expectation of treatment outcome over the

population.

Currently, the methodologies in DTR mainly emerged from two different academic disci-

plines: reinforcement learning and causal inference. Methodologies originating from different

fields use different terminologies. For example, the DTR and outcome in personalized medicine

are respectively called policy and value in reinforcement learning. We will describe the termi-

4 Chapter 1. Introduction

Figure 1.2: A schematic of treatment assignment in STAR*D (Chakraborty and Moodie, 2013)

nology in a coherent fashion and avoid the difference. Additionally, although different models

use different techniques to obtain the optimal decision rule, a common framework is applicable

to all models. In the remaining of this chapter, the potential outcomes framework and some

common assumptions in DTR will be introduced first, then a conceptual overview of reinforce-

ment learning and some existing popular models including both direct methods and indirect

methods will be given.

1.2 Potential outcomes framework

In this section, the potential outcomes, also known as counterfactuals, and some necessary

assumptions are briefly introduced.

Potential outcomes or counterfactuals is defined as a person’s outcome had he followed a

particular treatment regime, possibly different from the regime which he was actually observed

to follow. The individual-level causal effect of a regime may then be viewed as the difference in

outcomes if a person had followed that regime as compared to a placebo regime or a standard

care protocol (Chakraborty and Moodie, 2013). For example, suppose we have two available

treatments: a and a′. The individual-level causal effect should be the difference between out-

comes under treatment a and a′. However, an individual will only take one treatment. Without

1.2. Potential outcomes framework 5

loss of generality, assume the individual takes treatment a. Then the potential outcome Ya un-

der treatment a, is the observed outcome, and the potential outcome Ya′ under treatment a′, is

unobservable. So individual-level causal effect actually cannot be observed. However, with

some assumptions, the potential outcome can be connected to the observed outcome.

Before the statement of assumptions, some notations need to be introduced. The observable

data trajectory for a participant in a T -stage treatment is denoted by (X1, A1, X2, · · · , AK , XT+1)

where Xt is the covariate information at the beginning of stage t (before taking any treatment),

At is the treatment at stage t. X̄t = (X1, · · · , Xt) includes all covariate information up to stage t

and Āt = (A1, · · · , At) denotes the treatment history up to stage t. Similarly, Xt = (Xt, · · · , XT)

and At = (At, · · · , AT) respectively denote the covariate information and treatment assignment

from stage t to the end of the treatment. Ht = (X̄t, Āt−1) denotes all history information up to

stage t. So a treatment regime dt at stage t is a map from the space of history information to

the space of treatments, t = 1, 2, · · · ,T . Additionally, all capital letters represent the random

variables while the lowercase letters represent the realization of the corresponding random

variables.

In general, three assumptions need to be made: consistency, no unmeasured confounders

and positivity (Chakraborty and Moodie, 2013). The first two assumptions are required by the

potential outcomes framework and the positivity assumption is required by the fact that the

treatment or regime under consideration should be feasible.

Assumption 1 Consistency: The potential outcomes under the observed treatment and the

observed outcome agree.

Assumption 2 No unmeasured confounders: For any treatment sequence āt, and conditional

on the history Ht = (X̄t, Āt−1), treatment At is independent of future (potential) outcomes

Xt+1(āt), Xt+2(āt+1), · · · ,XT (āT−1), Y(āT), where Y(āT) is the outcome under treatment sequence

āT

Assumption 3 Positivity: Let πt(at|Ht) denote the conditional probability of receiving treat-

6 Chapter 1. Introduction

ment at given Ht and let ft(Ht) denote the density function of Ht. Then for any t and for all

histories ht with f (ht) > 0, P[πt(dt(Ht)|Ht) > 0] = 1.

The consistency assumption requires that the outcome for a given treatment is the same, regard-

less of the manner in which treatments are assigned. The no-unmeasured-confounder assump-

tion allows us to view each stage as randomized trial if all relevant confounders are included.

Positivity requires some subjects to have followed the regime d̄T , therefore the analysts are able

to estimate the performance of the regime. (Chakraborty and Moodie, 2013)

1.3 Review of reinforcement learning

Reinforcement learning is characterized by a sequence of interactions between a learning agent

and the environment it wants to learn about (Chakraborty and Moodie, 2013). The learning

agent does not know what action should be taken but can only discover it by trying available

actions. Beyond the agent and the environment, one can identify three features of a reinforce-

ment learning system: policy, reward signal and value function (Sutton and Barto, 2018).

A policy defines the agent’s behavior. It is a map from the space of states to the space

of actions. Given a state, the policy will recommend an action for the agent to take. Reward

signal is the goal in reinforcement learning . Each time after an agent takes some actions, the

environment will update its state and send a reward to the agent. The agent’s objective is to

maximize the total rewards over a long run. While the reward signal indicates the immediate

desirability, the value of a state with respect to a given policy, defined as the total amount of

reward an agent can expect to accumulate over the future starting from the state, specifies the

long-term desirability.

Elements of DTR include patients, treatment at, history information ht, outcome yt and

treatment rule d. These elements of DTR respectively correspond to the agent, action, state,

reward and policy in reinforcement learning. So the value of ht under treatment rule d in

DTR refers to the total expected future treatment outcome of a patient, starting with history

1.4. Review of indirect methods 7

information ht, receiving treatment as the rule d suggests thereafter. More specifically,

Vd
t (ht) = Ed

[T∑
k=t

Yk(Hk, Ak, Xk+1)|Ht = ht

]
, 1 ≤ t ≤ T

where Yt is the outcome at stage t.

The optimal stage t value function for history ht is

Vopt
t (ht) = max

d∈D
Vd

t (ht)

The optimal value functions satisfy the Bellman equation (Bellman, 2010)

Vopt
t (ht) = max

at∈At
E
[
Yt(Ht, At, Xt+1) + Vopt

t+1(Ht+1)|Ht = ht, At = at

]
The marginal value of a policy d is the average value function under d averaged over all

possible initial observations

Vd = EX1

[
Vd(X1)

]
= Ed

[T∑
k=1

Yk(Hk, Ak, Xk+1)
]

From now on, we will use terminologies treatment, outcome, history, treatment rule/regime

instead of action, reward, state and policy, but we still use value function for measuring the

performance of the DTR.

1.4 Review of indirect methods

Indirect approaches, as the name suggests, do not estimate the treatment regime directly. They

instead first model the stage-specific conditional mean outcome and find the optimal treatment

regime by maximizing the estimated conditional mean outcome. Popular indirect methods

include Q-learning, A-learning, regret regression and G-estimation in structural nested mean

model (Chakraborty and Moodie, 2013). These methods are originally developed for the obser-

8 Chapter 1. Introduction

vational data. We provide a detailed introduction of Q-learning and G-estimation. A-learning

and regret regression fundamentally are extensions of the Q-learning.

1.4.1 Q-learning

Q-learning, which originates from reinforcement learning, characterizes DTR d by the Q-

function defined as the total expected future outcome starting from a history ht at stage t, taking

treatment at and following the DTR d thereafter (Chakraborty and Moodie, 2013). Thus,

Qd
t (ht, at) = E

[
Yt(Ht, At, Xt+1) + Vd

t+1(Ht+1)|Ht = ht, At = at

]
The optimal Q-function at stage t is

Qopt
t (ht, at) = E

[
Yt(Ht, At, Xt+1) + Vopt

t+1(Ht+1)|Ht = ht, At = at

]
The difference between Q-function and value function lies in the fact that Q-function Qopt

t (ht, at)

measures the expected total outcomes associated with taking treatment at at stage t given the

history ht, and then following the optimal treatment regime thereafter, while the value func-

tion Vopt
t (ht) measures the outcome for patient with history ht assuming that optimal treatment

regime is followed in the future (Schulte et al., 2014). So Q-learning postulates model for Q-

function and the optimal treatment at stage t is given by maximizing the estimated Q-function.

Illustration of Q-learning for two-stage case will be given first and the generalization to the

T -stage is straightforward. For simplicity, it is assumed that the treatment is binary A ∈ {−1, 1}

and Q-function is modelled by a linear regression. More flexible models such as splines or

neural network can also be applied to the Q-function (Chakraborty and Moodie, 2013).

In the two-stage case, the data is given by the trajectory (X1, A1, X2, A2, X3). So the histories

H1 = X1 at the first stage and H2 = (X1, A1, X2) at the second stage. Suppose Y1 and Y2 are

respectively the outcome observed at the end of stage 1 and 2. In this case, Y = Y1 + Y2 is the

total outcome. A two-stage DTR consists of two decision rules: d1(H1) and d2(H2) with each

1.4. Review of indirect methods 9

dt(Ht) ∈ {−1, 1}.

The optimal Q-function for two stages is defined as:

Qopt
2 (H2, A2) = E[Y2|H2, A2]

Qopt
1 (H1, A1) = E[Y1 + max

a2
Qopt

2 (H2, a2)|H1, A1]

If the above two Q-functions were known, the optimal DTR (dopt
1 , dopt

2) would be obtained by

backwards induction in dynamic programming which first specifies the optimal treatment rule

at the last stage and then moves from back to the front. That is,

dopt
t (ht) = argmaxat

Qopt
t (ht, at), t = 2, 1

Generally, the true Q-functions are unknown and because they are conditional expectations, a

natural approach is to model them via regression models. For simplicity, linear regression is

taken as an example.

Suppose the Q-function at stage t is modelled as

Qopt(Ht, At; βt, φt) = βT
t Ht0 + (φT

t Ht1)At

where Ht = (Ht0,Ht1). Ht0 and Ht1 denote the main effect of history and treatment effect of

history respectively. So the Q-learning algorithm involves the following steps:

1. Stage 2 regression: (β̂2, φ̂2) = argminβ2,φ2
1
n

∑n
i=1(Y2,i − Qopt

2 (H2,i, A2,i; β2, φ2))2

2. Stage 2 optimal rule: d̂2(h2) = argmaxa2
Q2(h2, a2; β̂2, φ̂2)

3. Stage 1 pseudo-outcome: Ŷ1,i = Y1,i + maxa2 Qopt
2 (h2,i, a2; β̂2, φ̂2), i = 1, · · · , n.

4. Stage 1 regression: (β̂1, φ̂1) = argminβ1,φ1
1
n

∑n
i=1(Ŷ1,i − Qopt

1 (h1,i, A1,i; β1, φ1))2

5. Stage 1 optimal rule: d̂1(h1) = argmaxa1
Q1(h1, a1; β̂1, φ̂1)

10 Chapter 1. Introduction

Once the Q-functions have been estimated, the optimal decision rule at stage t is given by

d̂opt
t (ht) = argmaxat

Qopt
t (ht, at; β̂t, φ̂t)

This process can be generalized to T > 2 stages in a similar way. Define Qopt
T+1 ≡ 0 and

Qopt
t (Ht, At) = E[Yt + max

at+1
Qopt

t+1(Ht+1, at+1)|Ht, At], t = 1, · · · ,T

Stage specific Q-function can be parameterized as

Qopt
t (Ht, At; βt, φt) = βT

t Ht0 + (φT
t Ht1)At, t = 1, · · · ,T

For t = T,T − 1, · · · , 1, the regression parameters are estimated by backwards induction

(β̂t, φ̂t) = argminβt ,φt

1
n

n∑
i=1

{
Yti + max

at+1
Qopt

t+1(Ht+1, at+1; β̂t+1, φ̂t+1) − Qopt
t (Hti, Ati; βt, φt)

}2

Therefore, the estimated optimal DTR is (d̂opt
1 , · · · , d̂opt

T) where

d̂opt
t (ht) = argmaxat

Qopt
t (ht, at; β̂t, φ̂t), t = 1, · · · ,T

1.4.2 G-estimation in structural nested mean model

Q-learning directly models the conditional mean outcomes. When the model for the Q-function

is misspecified, the resulting estimators for the true optimal regime can be inconsistent (Zhao

et al., 2015). Structural nested mean model, unlike Q-learning, models contrasts of conditional

mean outcomes and thus could be more robust to model misspecification (Chakraborty and

Moodie, 2013; Robins, 2004).

1.4. Review of indirect methods 11

An optimal blip-to-reference function γt(ht, at) at any stage t is defined as the expected

difference in outcome when using a reference regime dre f
t instead of at at stage t in persons

with treatment and covariate history ht who subsequently receive the optimal regime dopt
t+1

γt(ht, at) = E
[
Y(āt, d

opt
t+1) − Y(āt−1, d

re f
t , dopt

t+1)|Ht = ht

]
where “optimal” refers to treatment subsequent to stage t and “blip” refers to the single-stage

change in treatment at stage t.

Suppose rt(ht, at) is specified up to a parameter vector ψ. The optimal regime is then given

by

dopt
t (ht;ψ) = argmaxat

γt(ht, at;ψ)

for t = 1, · · · ,T . Once an estimator of ψ is constructed, the estimated optimal regime is

obtained by maximizing the estimated optimal blip-to-reference function. G-estimation is pro-

posed for estimating ψ in the optimal blip function. Define Gt(ψ) as

Gt(ψ) = Y +

T∑
k=t

[
γk(hk, d

opt
k ;ψ) − γk(hk, ak;ψ)

]
= Y +

T∑
k=t

E
[
Y(āk−1, d

opt
k) − Y(āk, d

opt
k+1)|Hk = hk

]
.

Gt(ψ) is a person’s outcome adjusted by the expected difference between the average outcome

for patients who received at and patients who were given the optimal treatment at the start of

stage t, where all patients had the same treatment and covariate history up to the start of stage

t − 1 and were subsequently treated optimally. It is proved that Gt(ψ) equals the expectation

of counterfactual outcome (Robins, 2004). Consider S t(At) = st(Ht, At) with parameter α as

a vector-valued function of dim(ψ) chosen by the analyst to contain the variables thought to

12 Chapter 1. Introduction

interact with treatment (Chakraborty and Moodie, 2013)

U(ψ, α) =

T∑
t=1

Gt(ψ)
{
S t(At) − E

[
S t(At)|Ht;α

]}
,

then U((ψ), α) is an unbiased estimating function since E
[
U(ψ, α)

]
= 0. A more effi-

cient estimating function can be obtained by postulating appropriate model for E
[
Gt(ψ)|Ht

]
(Chakraborty and Moodie, 2013). The refined estimating function is

U(ψ, η(ψ), α) =

T∑
t=1

(
Gt(ψ) − E

[
Gt(ψ)|Ht; η

]){
S t(At) − E

[
S t(At)|Ht;α

]}

It is proved that the resulting estimator ψ̂ is consistent if either E
[
Gt(ψ)|Ht; η

]
or pt(At =

1|Ht;α) is correctly modeled (Robins, 2004). This property is called doubly-robustness.

1.5 Review of direct methods

Direct methods, also known as policy search methods, directly estimate the marginal mean

Ed(Y) for all DTRs in a pre-specified class and then maximize the estimated marginal mean

over all possible DTRs to obtain an estimated optimal DTR (Laber et al., 2014). Popular direct

methods include inverse probability weighting and outcome weighted learning.

1.5.1 Inverse probability weighting

Inverse probability weighting method investigates the optimal treatment regimes in a pre-

specified class of treatment regimes. It estimates the value function of each possible treatment

regimes and choose the one with the maximum value.

Suppose d is an arbitrary regime under evaluation. When d is unobservable, the expectation

of potential outcome can be estimated by changing probability measure under the assumption

that Pd is absolutely continuous with respect to Pπ, where Pd, Pπ are the probability measure

1.5. Review of direct methods 13

under regime d and exploration policy π. Absolute continuity indicates that any trajectory

which can be observed under regime d has a positive probability of occurring under the explo-

ration regime π. Then the value function can be written as

Vd = EdY =

∫
YdPd =

∫
Y
(dPd

dPπ

)
dPπ (1.1)

where dPd
dPπ

is the Radon-Nikodym derivative denoted by wd,π and wd,π =
∏T

t=1
I[At=dt(Ht)]
πt(At |Ht)

with

πt(At|Ht) being the conditional treatment probability. A natural estimate of Vd is its empirical

value V̂d

V̂d = Pn

[
wd,πY

]
where Pn is the empirical average operator. By normalizing the weights, the inverse probability

of treatment weighted (IPTW) estimator can be obtained as

V̂d
IPTW =

Pn[wd,πY]
Pn[wd,π]

For single stage, an augmented, doubly-robust estimator is the augmented inverse probability

of treatment weighting (AIPTW), given by

V̂d
AIPTW = Pn

{ I[A = d(H)Y
πc(H)

−
I[A = d(H)] − πc(H)

πc(H)
m(H)

}
where

πc(H) = π(H)I[d(H) = 1] + (1 − π(H))I[d(H) = −1],

m(H) = µ(1,H)I[d(H) = 1] + µ(−1,H)I[d(H) = −1],

µ(A,H) is the estimated mean outcome for covariate H and treatment A and π(H) is the esti-

mated propensity score.

14 Chapter 1. Introduction

Once the values for all regimes in the pre-specified class of DTRs are estimated, the optimal

DTR can be chosen as the one with the largest empirical value.

1.5.2 Outcome weighted learning

Outcome weighted learning (OWL) casts the original problem as a weighted classification

problem. Different from the method introduced in section 1.5.1, OWL does not search the

value of every possible treatment regime. It instead minimizes the weighted misclassification

error rate for assigning patients to the observed treatment (Zhao et al., 2012).

A single stage treatment regime is employed as an illustration. In this case, the history H

only includes prognostic value X. It is known in equation (1.1) that

dopt = argmaxd∈D E
[I(A = d(X))

π(A, X)
Y
]

It is equivalent to

dopt = argmind∈D E
[I(A , d(X))

π(A, X)
Y
]
,

which can be viewed as a weighted misclassification error and therefore, can be solved by clas-

sification techniques from machine learning (Zhao et al., 2012). It is known that minimizing

the weighted misclassification error requires the weights to be nonnegative and thus the out-

come should be nonnegative. Outcome weighted learning mainly uses support vector machine

for solving the classification problem. So dopt(X) = sign(f (x)) for some decision function f

(Zhao et al., 2012). The optimal f ∗ can be obtained by minimizing

n−1
n∑

i=1

Yi

π(Ai, Xi)
φ(Ai f (Xi)) + λn|| f ||2

where φ(u) = (1 − u)+ is the hinge loss function, x+ = max(x, 0) and || f || is a norm for f .

Consider f as a linear function, f (x) = 〈β, x〉 + β0 where 〈·,·〉 denotes the inner product in

1.5. Review of direct methods 15

Euclidean space. As usual, the minimizing problem can be rewritten as

max
β,β0,||β||=1

C

subject to Ai(〈β, Xi〉 + β0) ≥ C(1 − ξi)

ξi ≥ 0,
∑ Yi

πi
ξi < s

by introducing slack variables ξi and C > 0 as the classifier margin. πi = πI(Ai = 1) + (1 −

π)I(Ai = −1) and s is a constant depending on λn (Zhao et al., 2012). It is equivalent to

min
1
2
||β||2

subject to Ai(〈β, Xi〉 + β0) ≥ (1 − ξi)

ξi ≥ 0,
∑ Yi

πi
ξi < s

that is,

min
1
2
||β||2 + κ

n∑
i=1

Yi

πi
ξi

subject to Ai(〈β, Xi〉 + β0) ≥ (1 − ξi), ξi ≥ 0

The corresponding Lagrange function is

1
2
||β||2 + κ

n∑
i=1

Yi

πi
ξi −

n∑
i=1

αi

{
Ai(XT

i β + β0) − (1 − ξi)
}
−

n∑
i=1

µiξi

with αi ≥ 0, µi ≥ 0. After some simple mathematical operations, the dual problem can be

written as

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jAiA j〈Xi, X j〉

16 Chapter 1. Introduction

subject to 0 ≤ αi ≤ κ
Yi

πi
,

n∑
i=1

αiAi = 0.

Finally, the estimator β̂ is obtained by

β̂ =
∑
α̂>0

α̂AiXi

and β̂0 is solved using the margin points subject to the Karush-Kuhn-Tucker conditions (Hastie

et al., 2009).

Consider f as a nonlinear function in the reproducing kernel Hilbert space(RKHS) HK ,

f (x) =
∑m

i=1 αiK(x, xi), where K is a kernel function. It is known that the optimal decision

function is given by

n∑
i=1

α̂iAiK(x, xi) + β̂0

where (α̂1, ..., α̂n) is obtained by solving the dual problem

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jAiA jk(xi, x j)

subject to 0 ≤ αi ≤ κ
Yi

πi
,

n∑
i=1

αiAi = 0

1.6 Objectives and organization

Many methods in the literature focuses only on single stage and binary treatment. However,

in reality it is common that patients and clinicians have more than two choices for treatment

assignment. For chronic diseases such as depression or alcohol addiction, patients always

receive long-time therapy involving more than one single decision point. In addition, in the

1.6. Objectives and organization 17

field of DTR it is assumed that larger outcome is preferred. However, in some cases this

prerequisite may not be satisfied. For example, in STAR*D, the original outcome is QIDS

score of which larger values correspond to higher severity, thus smaller outcome is preferred.

To make it consistent, researchers always take the negative of QIDS score as the new outcome.

The negative outcome will cause problems when outcome weighted learning by uses hinge

loss function to approximate the 0 − 1 loss function and to solve the optimization problem by

convex optimization techniques. The convexity will not be valid for negative outcomes causing

the optimization procedure problematic.

So the main objective of this thesis is to explore the extension of the outcome weighted

learning to more general settings such as multi-armed treatments and negative treatment out-

come. The rest of the thesis is organized as follows. In Chapter 2, we propose an angle-based

multicategory outcome weighted learning using multicategory support vector machine. The

loss function is modified to allow for negative treatment outcome. To ensure the consistency,

two further modifications are made: we either make assumptions on treatment effect or con-

strain the range of the decision function. Extension to multiple stages is also considered. In

Chapter 3, we propose a method based on neural decision tree. The neural network is imple-

mented to increase prediction accuracy while a reconstructed and pruned tree based on predic-

tion result from neural network is used to maintain interpretability. The conclusion remarks

and future work are described in Chapter 4. R code for the method proposed in Chapter 2 and

Python code for the method proposed in Chapter 3 are attached in the Appendix.

Chapter 2

Multicategory Outcome Weighted

Learning

2.1 Introduction

In this chapter, we investigate the optimal treatment rule in the case of multi-treatment with

potential negative outcome based on outcome weighted learning. We also extend the multicat-

egory outcome weighted learning to multiple stages.

We propose a multicategory outcome weighted learning method based on an angle-based

multicategory support vector machine. A surrogate loss function is used when the weight is

negative to maintain the convexity of the loss function so that the optimization can be solved

through coordinate descent method. A direct modification without any constraint may not

guarantee the Fisher consistency of the resulting classifier, so we propose two solutions: either

make reasonable and feasible assumptions on treatment effect or bound the range of the deci-

sion function. The algorithm is outlined and the numerical studies are conducted to assess the

performance of the proposed methods. A real data application is employed for illustration.

The rest of this chapter is organized as follows. Section 2.2 describes notations and in-

troduces angle-based framework of multicategory classification. In section 2.3, the proposed

18

2.2. Notation and framework 19

multicategory outcome weighted learning is presented for treatment procedure with either sin-

gle stage or multiple stages. The optimization algorithm is also described. Simulation study

and the application to STAR∗D data are carried out to assess the performance of the proposed

model and to illustrate the use of the proposed method in section 2.4. The chapter is concluded

in section 2.5. The proofs of the theorems are left in the Appendix in this chapter.

2.2 Notation and framework

Suppose there are T stage treatments for patients with Kt treatment options at stage t, 1 ≤ t ≤ T .

Let Yt denote the observed treatment outcome at stage t and the overall outcome for the patient

is defined as Y =
∑T

t=1 Yt . Assume that larger values of outcome are preferred and each Yt

can be either positive or negative. The objective is to maximize the expected overall outcome

Ed(Y) under regime d. Let At ∈ At = {1, 2, · · · ,Kt} be the treatment assignment received by

the patient at stage t, Xt = (Xt1, · · · , Xtp) be the covariate information of the patient at stage

t. X̄t and Āt are used to denote the covariate information and treatment history up to stage

t. The history at stage t is then Ht = (X̄t, Āt−1) and let πt(At,Ht) = Pr(A = At|H = Ht) be

the probability of receiving treatment At at stage t for a patient with history Ht. A dynamic

treatment regime d is a vector d = (d1, · · · , dT) where dt is the optimal treatment at stage t and

ds
t = (dt, · · · , ds), ∀t < s are defined similarly. Besides, Y i

t , Y i,Ai
t, Xi

t refer to the observed value

of the corresponding variables for patient i.

The outcome weighted learning (OWL) is employed to identify the optimal treatment

regimes for patients where classification methods are utilized to formulate the assignment of

treatments. When K-category treatments are considered, K-category classifiers are needed.

In the literature, many popular K-category classifiers use K classification functions and

impose sum-to-zero constraint on the K classification functions to reduce the function space

(Lee et al., 2004; Liu and Yuan, 2011). It is shown that constructing K functions with sum-

to-zero constraint can be inefficient and an angle-based classification method for any binary

20 Chapter 2. Multicategory OutcomeWeighted Learning

large-margin loss function has been proposed to overcome this problem (Zhang and Liu, 2014).

The angle-based classification method can be described as follows. Define a specific sim-

plex W using K vectors W1, · · · ,WK in the (K −1)-dimensional space. W1, · · · ,WK are defined

as:

W j =


(K − 1)−1/21K−1 j = 1

−(1 + K1/2)/(K − 1)3/21K−1 + {K/(K − 1)}1/2e j−1 2 ≤ j ≤ K
(2.1)

where 1K−1 is a (K − 1)-dimensional vector with all elements equal to 1 and e j is a (K − 1)-

dimensional vector such that all elements is 0 except that the j-th element is 1.

Based on the definition, W consists of K unit directions in the (K − 1)-dimensional space.

The angles between any two directions W j, W j′ are equal. A vector in the (K − 1)-dimensional

space will have K angles with respect to those K directions. In the angle-based framework, a

covariate vector X is mapped to a (K−1)-dimensional vector function f (X) = (f1(X), f2(X), · · · , fK−1(X)).

The predicted class label j of X is determined by the class of which W j has the smallest angle

with f (X). Since the norm of W j, j = 1, · · · ,K are equal, the vector W j that has the smallest

angle with f (X) is the one which has the largest inner product with f (X). So given any covari-

ate vector X, predicting its class label is equivalent to finding argmax1≤ j≤k〈 f (X),W j〉 and f (X)

automatically satisfies
∑K

j=1〈 f (X),W j〉 = 0. It is believed that the angle-based classification

method enjoys a better geometric interpretation of the least angle prediction rule, a lower com-

putational cost as well as some good theoretical properties (Zhang and Liu, 2014). The benefit

is that in stead of K classification functions with sum-to-zero constraint in most K-category

classifiers, only K − 1 functions are needed for angle-based classification methods and with

the specific simplex W defined as in equation (2.1) the K − 1 functions automatically satisfy∑K
j=1〈 f (X),W j〉 = 0 making the optimization procedure more efficient.

2.3. Method framework 21

2.3 Method framework

2.3.1 Single stage

In the case of single stage, the notation Kt,Yt,At, πt(At,Ht) is simplified as K, Y , A, π(A, X).

Recall that in OWL,

dopt = argmind∈D E
[I(A , d(X))

π(A, X)
Y
]

(2.2)

It can be viewed as weighted misclassification error. Due to the non-smoothness of the in-

dicator function, different surrogate loss functions have been proposed in the literature (Zhao

et al., 2012; Lou et al., 2018; Fu et al., 2019). For our method, we use the loss function in

reinforced multicategory support vector machine (Liu and Yuan, 2011; Zhang et al., 2016) and

its extension to angle-based framework is

V(f (X), A) = γ[(k − 1) − 〈 f (X),WA〉]+ + (1 − γ)
∑
a,A

[1 + 〈 f (X),Wa〉]+ (2.3)

where A is the class label for the patient with covariate vector X and 0 ≤ γ ≤ 1. V(f (X), A) is

a linear combination of two common loss functions in multicategory support vector machine

and γ controls how these two loss functions are combined. When γ = 0, it reduces to the

vector hinge loss function
∑

a,A[1+ 〈 f (X),Wa〉]+ while when γ = 1 it becomes naive hinge loss

multiplied by K − 1, that is [(K − 1) − 〈 f (X),WA〉]+. The optimization problem becomes

argmin
f∈RKHS

{1
n

n∑
i=1

Yi

π(Ai, Xi)
V(f (Xi), Ai)) + J(f)

}
(2.4)

where RKHS denotes the Reproducing Kernel Hilbert Space and J(f) is the penalty term for

f . When the outcome is negative the convexity of the objective function cannot be maintained.

22 Chapter 2. Multicategory OutcomeWeighted Learning

To overcome the problem, we rewrite the right hand side of equation (2.2) as

argmind∈D E
[|Y |I(Y ≥ 0)
π(A, X)

I(A , d(X)) −
|Y |I(Y < 0)
π(A, X)

I(A , d(X))
]

= argmind∈D E
[|Y |I(Y ≥ 0)
π(A, X)

I(A , d(X)) +
|Y |I(Y < 0)
π(A, X)

I(A = d(X))
] (2.5)

We modify the loss function similarly as in Chen et al. (2018).

VY(f (X), A) =


γ[(K − 1) − 〈 f (X),WA〉]+ + (1 − γ)

∑
a,A[1 + 〈 f (X),Wa〉]+ Y ≥ 0

γ[(K − 1) + 〈 f (X),WA〉]+ + (1 − γ)
∑

a,A[1 − 〈 f (X),Wa〉]+ Y < 0
(2.6)

Thus, equation (2.4) can be modified as

argmin
f

{1
n

n∑
i=1

{ |Yi|I(Yi ≥ 0)
π(Ai, Xi)

γ[(k − 1) − 〈 f (X),WA〉]+ + (1 − γ)
∑
a,A

[1 + 〈 f (X),Wa〉]+

+
|Yi|I(Yi < 0)
π(Ai, Xi)

γ[(k − 1) + 〈 f (X),WA〉]+ + (1 − γ)
∑
a,A

[1 − 〈 f (X),Wa〉]+

}
+ J(f)

} (2.7)

When the outcome is positive, VY(f (X), A) reduces to V(f (X), A) and when the outcome is neg-

ative, VY(f (X), A) is a tight convex upper bound of I(A = d(X)). To compare VY(f (X), A) when

Y < 0 with the indicator function I(A = d(X)), define the vector g = (〈 f (x),W1〉, · · · , 〈 f (x),WK〉).

It is a vector function of x, but to simplify the notation we only use g when there is no confu-

sion. The component of g is g j, j = 1, · · · ,K satisfying
∑K

j=1 gi = 0. The indicator function

I(A = d(X)) can then be written as I(gA > g1, · · · , gA > gA−1, gA > gA+1, · · · , gA > gK). Figure

2.1 shows a picture of the effect of the modified loss function when K = 3, γ = 0.5. In this

case, g is written as g = (x, y, z) and by symmetry we assume the true class label is 3. We

should note that in figure 2.1a, for the interval [1,+∞) × [1,+∞) there is a mixture of both

red and green color. It does not mean our modified loss function cannot bound the indicator

function for this interval. It is due to the way that our plotting software Mathematica displays

overlapped region. It is clearer in figure 2.1b, in the interval [1,+∞) × [1,+∞) the difference

of the two functions remains 0.

2.3. Method framework 23

(a) (b)

Figure 2.1: Plots of the effect of the modified loss function. In panel (a), the green plane is the
indicator function I(A = d(X)) and the red plane is the proposed modified loss function. Panel
(b) is the plot of their difference.

2.3.1.1 Fisher consistency

Before presenting our results about consistency of the optimization problem (2.7), we introduce

some assumptions and notations that is specific to this section.

Define conditional reward R j to be R j(x) = E[Y |X = x, A = j]. Its positive and negative

parts are respectively defined as R+
j (x) = E[YI(Y ≥ 0)|X = x, A = j] and R−j (x) = E[YI(Y <

0)|X = x, A = j]. Define the conditional risk function for decision function f as r(f |X = x) =

E
[
|Y |

π(A,X)VY(f , A)|X = x
]

Fisher consistency is an important property in classification literature. Instead of solving

the original problem (2.2) we are solving the surrogate problem (2.7). Fisher consistency

ensures that the solution to the surrogate problem (2.7) can lead to the solution to the original

problem (2.2) given the whole population. A Fisher consistent classifier can achieve the best

performance asymptotically. Without any modification, the classifier based on loss function

(2.3) is Fisher consistent for 0 ≤ γ ≤ 0.5 (Zhang et al., 2016). However, if the modification of

the loss function is used as in equation (2.6) is used, it becomes more complicated with regard

to the consistency. To ensure the consistency, in addition to the three assumptions stated in

section 1.2, the following further assumptions need to be imposed

Assumption 4 For a patient with covariate vector x, denote the best and worst treatments by i

24 Chapter 2. Multicategory OutcomeWeighted Learning

and j respectively. Then R+
i (x) > R+

t (x) > R+
j (x) and R−i (x) > R−t (x) > R−j (x), for ∀t , i, j. Also,

Rs(x) = R+
s (x) + R−s (x) > 0, for ∀1 ≤ s ≤ K.

Assumption 5 For any treatment s, R+
s (x) <

∑
t,s R+

t (x) and R−s (x) >
∑

t,s R−t (x).

Assumptions 4 and 5 are reasonable in the following sense. First, for any treatment s,

R+
s (x) and |R−s (x)| respectively measure the beneficial and adverse effect of treatment s. The

larger R+
s (x) and |R−s (x)| are, the more beneficial or adverse effects the treatment s have on

the patient. Assumption 4 requires that the best treatment should have a large probability of

beneficial effect and a small probability of adverse effect while it is contrary for the worst

treatment. Second, assumption 5 requires all treatments under consideration are comparable.

If, for a treatment s, R+
s (x) >

∑
t,s R+

t (x) or R−s (x) <
∑

t,s R−t (x), it means the treatment s is a

dominantly best or worst treatment which can be identified directly. With assumption 4 and 5,

we can obtain the Fisher consistency in the next theorem.

Theorem 2.3.1 If assumptions 4 and 5 are valid, the method of finding optimal treatment rule

using classifier based on the loss function (2.6) is Fisher consistent for γ ∈ [0, 0.5].

If assumptions 4 and 5 do not hold, we can further modify the loss function to make it

applicable to all cases. The result is given in theorem 2.3.2.

Theorem 2.3.2 For any γ ∈ [0, 1], if the constraint 〈 f ,W j〉 ≥ −
1

K−1 for any j = 1, · · · ,K is

valid, then the method of finding optimal treatment rule using the classifier based on the loss

function (2.6) is still Fisher consistent.

The proofs of theorem 2.3.1 and 2.3.2 are given in the Appendix in this chapter. To make it

more explicit, We refer the loss function in theorem 2.3.2 as Vc
Y(f (X), A) where c denotes the

constraint 〈 f ,W j〉 ≥ −
1

K−1 with the loss function VY(f (X), A). Since Vc
Y(f (X), A) has an extra

constraint compared with VY(f (X), A), it is expected to be less efficient.

2.3. Method framework 25

2.3.1.2 Computation details

In this section, we derive the dual problem of the optimization (2.7). We focus on both linear

and nonlinear case with L2 penalty, and present the results for VY(f (X), A) and Vc
Y(f (X), A)

separately.

Loss function 1: VY(f (X), A)

a. Linear case

For linear case, assume that fq(x) = xTβq, q = 1, · · · ,K − 1, where x is the covariate vector

with constant 1 included and βq is the coefficient parameter vector. The penalty term J(f)

is defined as J(f) =
∑K−1

q=1 β
T
q βq. By introducing the slack variables ξi j, i = 1, · · · , n; j =

1, · · · ,K, the optimization problem can be written as

min
βq,ξi j

nλ
2

K−1∑
q=1

βT
q βq +

∑
i:yi≥0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

−
∑
i:yi<0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

Subject to ξi j ≥ 0 (i = 1, · · · , n; j = 1, · · · ,K)

ξi,Ai + 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi ≥ 0)

ξi j − 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi ≥ 0; j , Ai)

ξi,Ai − 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi < 0)

ξi j + 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi < 0; j , Ai)

The Lagrangian function L can be defined as

L =
nλ
2

K−1∑
q=1

βT
q βq +

∑
i:yi≥0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

−
∑
i:yi<0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai] −
n∑

i=1

K∑
j=1

τi jξi j

26 Chapter 2. Multicategory OutcomeWeighted Learning

−
∑
i:yi≥0

αi,Ai[ξi,Ai + 〈 f (xi),WAi〉 − (K − 1)] −
∑
i:yi≥0

∑
j,Ai

αi j[ξi j − 〈 f (xi),W j〉 − 1]

−
∑
i:yi<0

αi,Ai[ξi,Ai − 〈 f (xi),WAi〉 − (K − 1)] −
∑
i:yi<0

∑
j,Ai

αi j[ξi j + 〈 f (xi),W j〉 − 1]

=
nλ
2

K−1∑
q=1

βT
q βq + (K − 1)

n∑
i=1

αi,Ai +

n∑
i=1

∑
j,Ai

αi j +
∑
i:yi≥0

K∑
j=1

[ci j − τi j − αi j]ξi j

−
∑
i:yi<0

K∑
j=1

[ci j + τi j + αi j]ξi j −
∑
i:yi≥0

αi,Ai〈 f (xi),WAi〉 +
∑
i:yi<0

αi,Ai〈 f (xi),WAi〉

+
∑
i:yi≥0

∑
j,Ai

αi j〈 f (xi),W j〉 −
∑
i:yi<0

∑
j,Ai

αi j〈 f (xi),w j〉

where αi j, τi j, i = 1, · · · , n; j = 1, · · · ,K are Lagrangian multipliers and ci j =
yi

π(Ai,xi)
[(1 −

γ)I(j , Ai) + γI(j = Ai)]. By solving ∂L
∂βq

= 0 and ∂L
∂ξi j

= 0, we can obtain that

ci j − τi j − αi j = 0 for i : yi ≥ 0 (2.8)

ci j + τi j + αi j = 0 for i : yi < 0 (2.9)

βq =
1

nλ

[∑
i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi +
∑
i:yi<0

∑
j,Ai

αi jW jqxi

]
(2.10)

where W jq is the q-th component of W j. Since maximizing L is equivalent to minimizing

−L, by plugging equation (2.8) ∼ (2.10) in L we can obtain the dual problem

min
αi j

M

s.t. 0 ≤αi j ≤ |ci j|

where

M =
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi +
∑
i:yi<0

∑
j,Ai

αi jW jqxi

]T

×
[∑

i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi +
∑
i:yi<0

∑
j,Ai

αi jW jqxi

]

2.3. Method framework 27

− (K − 1)
n∑

i=1

αi,Ai −

n∑
i=1

∑
j,Ai

αi j

Then the optimization problem can be solved by coordinate descent algorithm outlined in

Algorithm 1.
Algorithm 1: Estimating fq(x) by coordinate descent algorithm

Result: Estimated decision function fq(x), q = 1, · · · ,K − 1

Initialization: define α = (αi j)i=1,··· ,n; j=1,··· ,K as an n × K matrix with the (i, j) element

equal to αi j. Initialize α(0) as zero matrix and m = 1. N is the maximum number of

iterations and tol is the preset tolerance ;

while m < N do
with α(m−1) given, sequentially update α(m−1)

i j to α(m)
i j . To get α(m)

i j , first fix α(m−1)
st ,

(s, t) , (i, j), solve ∂M
∂αi j

= 0 to get solution α̂i j and the updated α(m)
i j is determined

as

α(m)
i j =


0 α̂i j ≤ 0

|ci j| α̂i j ≥ |ci j|

α̂i j otherwise

if |α(m) − α(m−1)| < tol then

stop the iteration;

else

m = m + 1;

end

end

Plug α̂ in equation (2.10) to obtain the estimated decision function fq(x),

q = 1, · · · ,K − 1.

b. Nonlinear case

Define k : X × X → R as a kernel function which is continuous, symmetric and K =(
k(xi, x j)

)
i=1,··· ,n; j=1,··· ,n

as the positive semidefinite gram matrix. The nonlinear decision

28 Chapter 2. Multicategory OutcomeWeighted Learning

boundary, can be assumed as fq(x) = θq0 +
∑n

i=1 θqik(x, xi). The penalty term J(f) is defined

as J(f) =
∑K−1

q=1 θ
2
q0 +

∑K−1
q=1 θ

T
q Kθq, where θq = (θq1, · · · , θqn). The optimization problem is

then written as

min
θq0,θq,ξi j

nλ
2

K−1∑
q=1

θ2
q0 +

nλ
2

K−1∑
q=1

θT
q Kθq +

∑
i:yi≥0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

−
∑
i:yi<0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

Subject to ξi j ≥ 0 (i = 1, · · · , n; j = 1, · · · ,K)

ξi,Ai + 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi ≥ 0)

ξi j − 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi ≥ 0; j , Ai)

ξi,Ai − 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi < 0)

ξi j + 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi < 0; j , Ai)

The Lagrangian function L can be defined as

L =
nλ
2

K−1∑
q=1

θ2
q0 +

nλ
2

K−1∑
q=1

θT
q Kθq +

∑
i:yi≥0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai]

−
∑
i:yi<0

yi

π(Ai, xi)
[(1 − γ)

∑
j,Ai

ξi j + γξi,Ai] −
n∑

i=1

K∑
j=1

τi jξi j

−
∑
i:yi≥0

αi,Ai[ξi,Ai + 〈 f (xi),WAi〉 − (K − 1)] −
∑
i:yi≥0

∑
j,Ai

αi j[ξi j − 〈 f (xi),W j〉 − 1]

−
∑
i:yi<0

αi,Ai[ξi,Ai − 〈 f (xi),WAi〉 − (K − 1)] −
∑
i:yi<0

∑
j,Ai

αi j[ξi j + 〈 f (xi),W j〉 − 1]

=
nλ
2

K−1∑
q=1

θ2
q0 +

nλ
2

K−1∑
q=1

θT
q Kθq + (K − 1)

n∑
i=1

αi,Ai +

n∑
i=1

∑
j,Ai

αi j +
∑
i:yi≥0

K∑
j=1

[ci j − τi j − αi j]ξi j

−
∑
i:yi<0

K∑
j=1

[ci j + τi j + αi j]ξi j −
∑
i:yi≥0

αi,Ai〈 f (xi),WAi〉 +
∑
i:yi<0

αi,Ai〈 f (xi),WAi〉

+
∑
i:yi≥0

∑
j,Ai

αi j〈 f (xi),W j〉 −
∑
i:yi<0

∑
j,Ai

αi j〈 f (xi),w j〉

2.3. Method framework 29

where αi j, τi j, ci j are the same as in linear case. Similarly, by assuming ∂L
∂ξi j

= 0, ∂L
∂θq0

= 0

and ∂L
∂θq

= 0, we obtain

ci j − τi j − αi j = 0 for i : yi ≥ 0 (2.11)

ci j + τi j + αi j = 0 for i : yi < 0 (2.12)

θq0 =
1

nλ

[∑
i:yi≥0

αi,AiWAi,q −
∑
i:yi<0

αi,AiWAi,q −
∑
i:yi≥0

∑
j,Ai

αi jW jq +
∑
i:yi<0

∑
j,Ai

αi jW jq

]
(2.13)

θq =
1

nλ
K−1

[∑
i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi +
∑
i:yi<0

∑
j,Ai

αi jW jqKi
]

(2.14)

where Ki is the ith column of the gram matrix K and W jq is the same as in linear case. By

plugging equation (2.11) ∼ (2.14) in L, we obtain the dual problem

min
αi j

M

s.t. 0 ≤αi j ≤ |ci j|

where

M =
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi +
∑
i:yi<0

∑
j,Ai

αi jW jqKi
]T

K−1

×
[∑

i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi +
∑
i:yi<0

∑
j,Ai

αi jW jqKi
]

+
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,q −
∑
i:yi<0

αi,AiWAi,q −
∑
i:yi≥0

∑
j,Ai

αi jW jq +
∑
i:yi<0

∑
j,Ai

αi jW jq

]2

− (K − 1)
n∑

i=1

αi,Ai −

n∑
i=1

∑
j,Ai

αi j

The estimating algorithm is the same as Algorithm 1.

30 Chapter 2. Multicategory OutcomeWeighted Learning

Loss function 2: Vc
Y(f (X), A)

Unlike SVM whose solution only depends on support vectors, the classifier based on Vc
Y(f (X), A)

uses all training data to estimate the decision function. The condition 〈 f ,W j〉 ≥ −
1

K−1 can typ-

ically be approximated by modifying the loss function so that huge loss will be added when

〈 f ,W j〉 < −
1

K−1 (Park and Liu, 2009). Thus we define a new loss function

lu(f (X), A) =


VY(f (X), A) 〈 f (X), A〉 ≥ − 1

K−1

u(− 1
K−1 − 〈 f (X), A〉) 〈 f (X), A〉 < − 1

K−1

(2.15)

where u ≥ 0 and VY(f (X), A) is defined in equation (2.6). When u → +∞, lu(f (X), A) →

Vc
Y(f (X), A). So the optimization problem can be written as

min
nλ
2

J(f) +
∑
i:yi≥0

yi

π(Ai, xi)

(1 − γ)
∑
j,Ai

ξi j + γξi,Ai


−

∑
i:yi<0

yi

π(Ai, xi)

(1 − γ)
∑
j,Ai

ξi j + γξi,Ai


Subject to ξi j ≥ 0 (i = 1, · · · , n; j = 1, · · · ,K)

ξi,Ai + 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi ≥ 0)

ξi j − 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi ≥ 0; j , Ai)

ξi,Ai − 〈 f (xi),WAi〉 − (K − 1) ≥ 0 (i : yi < 0)

ξi j + 〈 f (xi),W j〉 − 1 ≥ 0 (i : yi < 0; j , Ai)

ξi j + u(
1

K − 1
+ 〈 f (xi,W j〉) ≥ 0 (i = 1, · · · , n; j = 1, · · · ,K)

The corresponding Lagrangian function L can be defined as

L =
nλ
2

J(f) + (K − 1)
n∑

i=1

αi,Ai +

n∑
i=1

∑
j,Ai

αi j +
∑
i:yi≥0

K∑
j=1

[ci j − τi j − αi j − vi j]ξi j

−
∑
i:yi<0

K∑
j=1

[ci j + τi j + αi j + vi j]ξi j −
∑
i:yi≥0

αi,Ai〈 f (xi),WAi〉 +
∑
i:yi<0

αi,Ai〈 f (xi),WAi〉

2.3. Method framework 31

+
∑
i:yi≥0

∑
j,Ai

αi j〈 f (xi),W j〉 −
∑
i:yi<0

∑
j,Ai

αi j〈 f (xi),w j〉 −

n∑
i=1

K∑
j=1

vi ju〈 f (xi),W j〉 −

n∑
i=1

K∑
j=1

vi j
u

K − 1

where ci j, αi j and τi j are defined the same as before and vi j is the Lagrangian multiplier for the

inequality constraint ξi j + u(1
K−1 + 〈 f (xi,W j〉) ≥ 0. For linear decision rule, J(f) =

∑K−1
q=1 β

T
q βq.

For nonlinear decision rule, J(f) =
∑K−1

q=1 θ
2
q0 +

∑K−1
q=1 θ

T
q Kθq. After some similar mathematical

operations as in the case of VY(f (X), A), for both linear and nonlinear cases we have


ci j − τi j − αi j − vi j = 0 for i : yi ≥ 0

ci j + τi j + αi j + vi j = 0 for i : yi < 0
(2.16)

For linear decision rule, βq, q = 1, · · · ,K−1 are functions of αi j, vi j, i = 1, · · · , n; j = 1, · · · ,K

as

βq =
1

nλ

[∑
i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi

+
∑
i:yi<0

∑
j,Ai

αi jW jqxi +

n∑
i=1

K∑
j=1

vi juW jqxi

] (2.17)

For nonlinear decision rule, θq0 and θq, q = 1, · · · ,K − 1 can be obtained by

θq0 =
1

nλ

[∑
i:yi≥0

αi,AiWAi,q −
∑
i:yi<0

αi,AiWAi,q −
∑
i:yi≥0

∑
j,Ai

αi jW jq

+
∑
i:yi<0

∑
j,Ai

αi jW jq +

n∑
i=1

K∑
j=1

vi juW jq

] (2.18)

θq =
1

nλ
K−1

[∑
i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi

+
∑
i:yi<0

∑
j,Ai

αi jW jqKi +

n∑
i=1

K∑
j=1

vi juW jqKi
] (2.19)

So the dual problem for linear case is

min
αi j

M

32 Chapter 2. Multicategory OutcomeWeighted Learning

s.t. 0 ≤αi j + vi j ≤ |ci j|

where

M =
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi +
∑
i:yi<0

∑
j,Ai

αi jW jqxi

+

n∑
i=1

K∑
j=1

vi juW jqxi

]T
×

[∑
i:yi≥0

αi,AiWAi,qxi −
∑
i:yi<0

αi,AiWAi,qxi −
∑
i:yi≥0

∑
j,Ai

αi jW jqxi

+
∑
i:yi<0

∑
j,Ai

αi jW jqxi +

n∑
i=1

K∑
j=1

vi juW jqxi

]
− (K − 1)

n∑
i=1

αi,Ai −

n∑
i=1

∑
j,Ai

αi j +

n∑
i=1

K∑
j=1

vi j
u

K − 1

The dual problem for nonlinear case is

min
αi j,vi j

M

s.t. 0 ≤αi j + vi j ≤ |ci j|

where

M =
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi +
∑
i:yi<0

∑
j,Ai

αi jW jqKi

+

n∑
i=1

K∑
j=1

vi juW jqKi
]T

K−1 ×
[∑

i:yi≥0

αi,AiWAi,qKi −
∑
i:yi<0

αi,AiWAi,qKi −
∑
i:yi≥0

∑
j,Ai

αi jW jqKi

+
∑
i:yi<0

∑
j,Ai

αi jW jqKi +

n∑
i=1

K∑
j=1

vi juW jqKi
]

+
1

2nλ

K−1∑
q=1

[∑
i:yi≥0

αi,AiWAi,q −
∑
i:yi<0

αi,AiWAi,q

−
∑
i:yi≥0

∑
j,Ai

αi jW jq +
∑
i:yi<0

∑
j,Ai

αi jW jq +

n∑
i=1

K∑
j=1

vi juW jq

]2
− (K − 1)

n∑
i=1

αi,Ai −

n∑
i=1

∑
j,Ai

αi j

+

n∑
i=1

K∑
j=1

vi j
u

K − 1

2.3. Method framework 33

2.3.2 Multi-stage

In this section we consider T > 1. Q-learning uses backwards induction for T > 1. The prin-

ciple is that the best treatment at the last stage is first estimated and then we move backwards

to the previous stages. A brief example of two-stage case is given in section 1.4.1. For our

proposed method, we use a similar technique as in Q-learning with a difference in the pseudo-

outcome. Since Q-learning models the conditional mean outcome at each stage t = 1, · · · ,T ,

the pseudo-outcome is generated via the maximized Q-function in the next stage where the Q

function is typically approximated by regression models. In our proposed method, we directly

estimate the best treatment based on the pseudo-outcome obtained via the potential outcome as

if the patients receive the estimated best treatment in all future stages using the doubly-robust

estimator (Zhang et al., 2013).

We define a Q-function at stage t, Qt, as the reward obtained in future stages if the patient

is assigned the estimated optimal treatment from stage t to the end stage T . Based on the

definition, we have QT+1 = 0 and for t = 1, · · · ,T , if a patient actually follows the estimated

best treatment from stage t to the end, Qt =
∑T

s=t Ys, otherwise it will be approximated by

the doubly-robust estimator which will be described later. The pseudo-outcome at stage t =

1, · · · ,T , Y pse
t , is then defined as Y pse

t = Yt + Qt+1.

We can recast the estimation of potential outcome provided that patients follow the es-

timated best treatment from stage t to the end as a monotone coarsening problem, and it is

shown that coarsening is at random (Zhang et al., 2013). For estimating Qt, we start from stage

t and all history information prior to stage t is viewed as the new baseline information. Define

Nts = I(At = dt, · · · , As = ds), t < s as an indicator function for whether or not the patient

receives the recommended treatment from stage t to s. Then we define the coarsening discrete

hazard λts(X̄s) = Pr(As , ds(X̄s, Ās−1)|X̄s,Nt,s−1 = 1). It is the probability that the treatment

received by patients ceases to be consistent with the dynamic treatment regimes d at stage s

given that it is consistent from stage t to stage s − 1. The probability of the observed treatment

being consistent with dt at least up to stage s can be expressed as Mts(X̄s) =
∏s

p=t{1 − λtp(X̄p)}.

34 Chapter 2. Multicategory OutcomeWeighted Learning

Then the doubly-robust estimator of Qt (Zhang et al., 2013) is constructed as

Qt =
NtT

∑T
s=t Ys

MtT (X̄T)
+

T∑
s=t

Nt,s−1(I[As , ds(X̄s)] − λts(X̄s))
Mts(X̄s)

Lts(X̄s) (2.20)

where Lts(X̄s) can be arbitrary function of X̄s and the optimal choice with the smallest asymp-

totic variance is E[Qt|X̄s,Nt,s−1 = 1] (Zhang et al., 2013).

From equation (2.20) we need to estimate λts(X̄s) and Lts(X̄s). For the estimation of λts(X̄s)

we only need to specify the model for propensity score πs(x̄s, ās−1, as) = Pr(As = as|X̄s =

xs, Ās−1 = ās−1). For randomized trial, πs(x̄s, ās−1, as) is determined. For observational study

πs(x̄s, ās−1, as) needs to be modeled. A common choice to obtain the propensity score is the lo-

gistic regression or multinomial regression. Let Lts(X̄s) = 1− π(X̄s, at−1, ds−1
t (X̄s−1), ds(X̄s)) and

take Lts(X̄s) = E[Qt|X̄s,Nt,s−1 = 1]. We can define iteratively that µtT (x̄t, āt) = E[
∑T

p=t Yp|X̄T =

x̄T , ĀT = āT] and ftT (x̄T , āT−1) = µtT (x̄T , āT−1, dT). For s = T − 1, · · · , t, define µts(x̄s, ās) =

E[ft,s+1(x̄s, Xs+1, ās|X̄s = x̄s, Ās = ās] and fts(x̄s, ās−1) = µts(x̄s, ās−1, ds). It is shown that

Lts(X̄s) = µts(x̄s, ds
t) (Zhang et al., 2013).

2.4 Numerical investigation

In this section, we describe both the simulation studies and real data application of the proposed

method.

2.4.1 Simulation study

To assess the performance of the proposed methods, simulation studies were carried out for a

variety of scenarios. We consider both linear and nonlinear decision rule with single stage and

multi-stage. For linear decision rule, we restrict f to be a linear function of x and for nonlinear

decision rule we use Gaussian kernel. We also evaluate the influence of reduced main effect,

reduced interaction effect as well as increased number of treatments.

2.4. Numerical investigation 35

For each simulation setting, we first generate a tuning set with a sample size of 500 for

training the tuning parameter which is λ in linear case and λ, τ in nonlinear case. We use a

grid search to find the best tuning parameter. λ varies in [0.1, 100] and τ in Gaussian kernel

k(x, y) = exp{−||x − y||22/(2τ
2)} varies in [0.1, 2]. For the parameter u in Vc

Y(f (X), A), we just

use u = 1000 because when u becomes larger than 1000 the result will not change much. For

each of our settings, we repeat the simulation 500 times. For each simulation run, we gener-

ate a data set with a sample size of 1500. We randomly choose 500 of them as training data

and the remaining is used as testing data. For single stage, we use misclassification error rate

and the empirical value function to assess the performance of the model. For multi-stage, we

only use empirical value function to assess the model. The misclassification error rate in the

single stage setting is defined as Pn[I(Aopt = d(X))] and the empirical value function is defined

as Pn[
∏T

t=1
I(At=dt(Ht))
πt(At |Ht)Y

]/Pn[
∏T

t=1
I(At=dt(Ht))
πt(At |Ht)

] where Pn is the empirical average operator. The mis-

classification error rate measures the possibility that the estimated dynamic treatment regime

cannot detect the true optimal treatment. The empirical value function measures the outcome

patients can obtain if they follow the estimated dynamic treatment regime. A smaller misclas-

sification error rate or a larger empirical value function provide evidence that the estimated

dynamic treatment regime is preferred.

We consider 9 scenarios (Liu and Yuan, 2011; Zhang et al., 2016):

1. A three-treatment case. The optimal treatment Aopt satisfies Pr(Aopt = 1) = Pr(Aopt =

2) = Pr(Aopt = 3) = 1/3. The covariate vector satisfies X|Aopt = j ∼ N(µ j, σ
2I) where

µ1 = (1, 0, 0)T , µ2 = (−0.5,
√

3/2, 0)T , µ3 = (−0.5,−
√

3/2, 0)T , σ2 is chosen such that

the Bayes classification error is 5% and I is the identity matrix. The actual treatment is

generated from multinomial distribution with

Pr(Aobs = 1|X) =
1

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

Pr(Aobs = 2|X) =
exp(−2 + X1 + 2X2 − X3)

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

36 Chapter 2. Multicategory OutcomeWeighted Learning

Pr(Aobs = 3|X) =
exp(−1 − 2X1 + 2X2)

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

The outcome R follows N(xTβ + 10I(Aobs = Aopt), 1) where β = (0, 1, 1)T .

2. All the settings are the same as scenario 1 except that β = 0.1 × (0, 1, 1)T .

3. All the settings are the same as scenario 1 except that R follows N(xTβ + 2I(Aobs =

Aopt), 1)

4. A four-treatment case. The optimal treatment Aopt satisfies Pr(Aopt = 1) = Pr(Aopt =

2) = Pr(Aopt = 3) = Pr(Aopt = 4) = 1/4. The covariate vector satisfies X|Aopt = j ∼

N(µ j, σ
2I) where µ j = (W j, 0, 0)T , W j is defined in section 2.2 when K = 4 and σ2 is

chosen such that the Bayes classification error is 5% and I is the identity matrix. The

actual treatment is generated from multinomial distribution with

Pr(Aobs = 1|X) =
1
S

Pr(Aobs = 2|X) =
exp(−2 + X1 + 2X2 − X3)

S

Pr(Aobs = 3|X) =
exp(−1 − 2X1 + 2X2)

S

Pr(Aobs = 4|X) =
exp(−2X1 + 2X2 − 2X4 − X5)

S

where S = 1+exp(−2+X1 +2X2−X3)+exp(−1−2X1 +2X2)+exp(−2X1 +2X2−2X4−X5)

The outcome R follows N(xTβ + 10I(Aobs = Aopt), 1) where β = (0, 1,−1, 1,−1)T .

5. All the settings are the same as scenario 1 except that the covariate vector satisfies

X|Aopt = j ∼ 0.5N(µ ja, σ
2I) + 0.5N(µ jb, σ

2I) where µ ja = (cos(jπ/3), sin(jπ/3), 0)T ,

µ jb = (cos(jπ/3 + π), sin(jπ/3 + π), 0)T , σ2 is chosen such that the Bayes classification

error is 5% and I is the identity matrix.

6. All the settings are the same as scenario 5 except that β = 0.1 × (0, 1, 1)T .

2.4. Numerical investigation 37

7. All the settings are the same as scenario 5 except that R follows N(xTβ + 2I(Aobs =

Aopt), 1)

8. All the settings are the same as scenario 4 except that the covariate vector satisfies

X|Aopt = j ∼ 0.5N(µ ja, σ
2I) + 0.5N(µ jb, σ

2I) where µ ja = (cos(jπ/4), sin(jπ/4), 0T
3)T ,

µ jb = (cos(jπ/4 + π), sin(jπ/4 + π), 0T
3)T , σ2 is chosen such that the Bayes classifica-

tion error is 5% and I is the identity matrix. The actual treatment is generated from

multinomial distribution with

Pr(Aobs = 1|X) =
1
S

Pr(Aobs = 2|X) =
exp(−2 + X1 + 2X2 − X3 − 2X4)

S

Pr(Aobs = 3|X) =
exp(−1 − 2X1 + 2X2 − 2X5)

S

Pr(Aobs = 4|X) =
exp(X1 − X3 − X4)

S

where S = 1+exp(−2+X1+2X2−X3−2X4)+exp(−1−2X1+2X2−2X5)+exp(X1−X3−X4)

9. A two-stage case. The optimal treatment at stage t, Aopt
t , t = 1, 2 satisfies Pr(Aopt

t =

1) = Pr(Aopt
t = 2) = Pr(Aopt

t = 3) = 1/3. The covariate vector at stage t satisfies

Xt|A
opt
t = j ∼ 0.5N(µ ja, σ

2I) + 0.5N(µ jb, σ
2I) where µ ja = (cos(jπ/3), sin(jπ/3), 0T

3)T ,

µ jb = (cos(jπ/3 + π), sin(jπ/3 + π), 0T
3)T , σ2 is chosen such that the Bayes classification

error is 5% and I is the identity matrix. The actual treatment at stage 1 is generated from

multinomial distribution with

Pr(Aobs
1 = 1|X1) =

1
S

Pr(Aobs
1 = 2|X1) =

exp(−1 − X11 + 2X12 − X13 − X14 − X15)
S

Pr(Aobs
1 = 3|X1) =

exp(−1 − 2X11 + 2X12 − 2X13 + 2X14)
S

where S = 1+exp(−1−X11 +2X12−X13−X14−X15)+exp(−1−2X11 +2X12−2X13 +2X14)

38 Chapter 2. Multicategory OutcomeWeighted Learning

The actual treatment at stage 2 is generated from multinomial distribution with

Pr(Aobs
2 = 1|X2) =

1
S

Pr(Aobs
2 = 2|X2) =

exp(−1 − X21 + X22 − X23 − 2X24)
S

Pr(Aobs
2 = 3|X2) =

exp(−2X21 + X22 − 2X23 + X24)
S

where S = 1 + exp(−1 − X21 + X22 − X23 − 2X24) + exp(−2X21 + X22 − 2X23 + X24). The

outcome R1 follows N(u1, 1) where u1 = 10I(Aopt
1 = Aobs

1) + X12 + X13 − X2
14 + X11X15.

The outcome R2 follows N(u2, 1) where u2 = 5I(Aopt
2 = Aobs

2) + (X2
22 + X24)2X21 + X23X25.

Scenarios 1 ∼ 4 have linear decision rule and scenarios 5 ∼ 8 have nonlinear decision rule.

Scenarios 2 and 6 involve reduced main effect while scenarios 3 and 7 investigate the impact

of the reduced interaction effect. Scenarios 4 and 8 consider a four-treatment case so that the

effect of the number of treatment options can be observed. Finally, scenario 9 involves two

stages as well as a more complex nonlinear main effect.

Figure 2.2 shows the simulation results for scenarios 1 and 5 using different values of γ.

Loss 1 refers to the unconstrained loss function VY(f (X), A), while loss 2 refers to Vc
Y(f (X), A).

It is shown in the figure that for Vc
Y(f (X), A) the simulation results do not vary much for differ-

ent γ, compared with VY(f (X), A). For linear case, VY(f (X), A) outperforms Vc
Y(f (X), A) while

for nonlinear case Vc
Y(f (X), A) performs better. γ = 0.5 gives relatively stable results. γ = 0.5

may not perform the best in a single case but it always gives results close to the best one. Con-

sidering this observation and the fact that VY(f (X), A) is Fisher consistent in [0, 0.5], in other

scenarios, we use γ = 0.5.

Table 2.1 shows the misclassification error rates obtained by validation data of size 1000,

where OVR and OVO columns are results from One-Versus-Rest and One-Versus-One meth-

ods. The One-Versus-Rest approach constructs K classifiers each comparing one of the K

classes to the remaining K − 1 classes and producing a real-valued confidence score for its

prediction. A new observation is assigned to the class for which the corresponding classifier

2.4. Numerical investigation 39

(a) (b)

(c) (d)

Figure 2.2: Simulation results for scenarios 1 and 5 for different γ. Loss 1 and 2 refer to
VY(f (X), A) and Vc

Y(f (X), A) respectively. Figure 2.2a and figure 2.2b show the misclassifica-
tion error rates and empirical value for linear decision boundary. Figure 2.2c and figure 2.2d
give the same result for nonlinear decision boundary

produces the highest confidence score. The One-Versus-One approach constructs K(K−1)
2 clas-

sifiers each comparing a pair of classes. A new observation is assigned to the class to which

it is most frequently assigned in these K(K−1)
2 pairwise classifications. From table 2.1, in terms

of misclassification error rates, VY(f (X), A) performs better than Vc
Y(f (X), A) in the first two

scenarios and they have comparable performance for scenarios 3 ∼ 6. However, for scenar-

ios 7 and 8, misclassification error rates obtained from Vc
Y(f (X), A) are apparently lower than

those obtained from VY(f (X), A). Also, estimates obtained from Vc
Y(f (X), A) have comparable

or smaller standard deviations than those from VY(f (X), A) in all scenarios except scenario 2.

These observations show that Vc
Y(f (X), A) is better at dealing with complex situation and is

more stable as expected given that the Fisher consistency of classifier based on Vc
Y(f (X), A)

does not require any assumptions about treatment outcome.

40 Chapter 2. Multicategory OutcomeWeighted Learning

Table 2.1: Misclassification error rates approximated by validation data set of size 1000, av-
eraged over 500 simulation runs; the numbers in parenthesis are standard deviations over 500
simulation runs

Scenario VY(f (X), A) Vc
Y(f (X), A) OVR OVO

Linear

1 6.72% (3.1%) 8.66% (3.8%) 7.83% (3.7%) 9.31% (4.3%)
2 6.05% (1.9%) 8.48% (3.6%) 6.72% (1.7%) 8.34% (3.1%)
3 16.65% (11.5%) 17.2% (8.8%) 22.67% (12.5%) 17.23% (9.2%)
4 9.84% (4.9%) 9.97% (3.7%) 8.80% (3.4%) 12.92% (3.7%)

Nonlinear

5 11.10% (4.8%) 10.89% (4.9%) 21.66% (6.6%) 24.68% (6.6%)
6 11.32% (5.3%) 10.86% (3.7%) 22.44% (6.1%) 25.66% (6.3%)
7 18.66% (7.6%) 14.28% (6.9%) 26.72% (7.9%) 28.11% (7.6%)
8 22.02% (4.4%) 19.90% (4.4%) 32.24% (4.1%) 35.26% (4.2%)

Table 2.2 shows the empirical value function obtained by validation data of size 1000 which

is a more comprehensive measure of the performance of the estimated treatment rule. We see

that for linear case VY(f (X), A) performs better than Vc
Y(f (X), A) in terms of estimated values

in first two scenarios and they have comparable performance for scenarios 3 and 4. However,

for nonlinear cases, values from Vc
Y(f (X), A) are higher than those from VY(f (X), A) in all

scenarios, which again shows that Vc
Y(f (X), A) is superior to VY(f (X), A) in the case of complex

situations. Unlike misclassification error rate, estimator of value obtained from Vc
Y(f (X), A) has

larger variance. In the two-stage case, the approximated value from Vc
Y(f (X), A) is larger than

that from VY(f (X), A) which suggests Vc
Y(f (X), A) is better for multiple stages.

From the two tables we see that, both loss functions perform better in the scenarios with re-

duced main effect or larger interaction effect in either linear or nonlinear cases. It is reasonable

because when the data set itself has more apparent boundary, the performance of a classifier is

expected to be more accurate. Comparing scenarios 4, 8 to other scenarios, we can observe that

when the number of treatment options increases, the estimation accuracy decreases. We also

compare the performance of the two proposed loss functions with those of One-Versus-Rest

(OVR) and One-Versus-One (OVO) methods. For linear case, the proposed loss functions ,

One-Versus-Rest and One-Versus-One gives comparable results. For nonlinear case or multi-

ple stages, the two proposed loss functions perform apparently better than the One-Versus-Rest

and the One-Versus-One methods in terms of both misclassification error and value. It suggests

2.4. Numerical investigation 41

our proposed method performs better than the competitors with complex situation.

Table 2.2: Empirical value function approximated by validation data set of size 1000, aver-
aged over 500 simulation runs; the numbers in parenthesis are standard deviations over 500
simulation runs

Scenario VY(f (X), A) Vc
Y(f (X), A) OVR OVO

Single stage: T = 1

Linear

1 9.32 (0.541) 9.13 (0.650) 9.25 (0.582) 9.10 (0.602)
2 9.41 (0.353) 9.16 (0.530) 9.33 (0.407) 9.19 (0.402)
3 1.68 (0.344) 1.67 (0.387) 1.54 (0.383) 1.66 (0.326)
4 9.02 (0.935) 8.99 (0.704) 9.10 (0.697) 8.67 (0.785)

Nonlinear

5 8.89 (0.589) 8.95 (0.604) 7.90 (0.720) 7.58 (0.741)
6 8.84 (0.712) 8.92 (0.511) 7.78 (0.770) 7.46 (0.768)
7 1.64 (0.286) 1.72 (0.266) 1.46 (0.247) 1.44 (0.229)
8 7.79 (0.859) 7.96 (0.852) 6.79 (0.691) 6.48 (0.665)

Two stage: T = 2
9 11.64 (0.858) 12.47 (0.933) 7.57 (0.305) 7.50 (0.446)

2.4.2 Application to STAR∗D study

We applied the proposed method to the data from the Sequential Treatment Alternatives to

Relieve Depression (STAR*D) clinical trial. A brief introduction of the study is described in

section 1.1. Following Schulte et al. (2014) and Zhang et al. (2013), we only consider level 2

and 3 and simplify the treatment options at each level. We combine level 2 and level 2A as first

stage and define level 3 as second stage. Following the work of Liu et al. (2018) and Zhang

et al. (2013), at each stage, treatment(Ak), outcome(Yk) and feature variables(Hk), k = 1, 2 are

defined as follows:

A1 : 1 if the patient takes an augment option and 2 if the patient takes a switch option at level

2 and 2A(stage 1)

A2 : 1 if the patient takes an augment option and 2 if the patient takes a switch option at level

3(stage 2)

Y1 : - QIDS score at the end of stage 1 if remission was achieved, −1
2 QIDS score at the end

of stage 1 if the patient moved to stage 2

42 Chapter 2. Multicategory OutcomeWeighted Learning

Y2 : −1
2 QIDS score at the end of stage 2

H1 : baseline QIDS score at the beginning of the trial, the slope of QIDS score based on QIDS

score at baseline and stage 1, preference for treatment(1 for switch, -1 for augment, 0

for no preference)

H2 : baseline QIDS score at stage 1, the slope of QIDS score based on QIDS score at stage 1

and stage 2, preference for treatment(1 for switch, -1 for augment, 0 for no perference)

There were 1246 patients entering first stage and 327 of them moved to second stage. In the

analysis, the patients who did not enter stage 2 due to remission were assumed to receive

optimal treatment at stage 2. To implement the proposed model, at each stage multinomial re-

gression and linear regression were used to estimate treatment probability and pseudo-outcome

respectively. Comparisons of different methods are based on 100 repetitions. For each repeti-

tion, the sample data is randomly split into training data and testing data. At the second stage,

2
3 of the total 327 patients are chosen as training data. At the first stage, there are 919 patients

who did not move to the second stage. About 2
3 of these 919 patients (612 patients) along

with the training observations at second stage are chosen as training data for first-stage model

fitting. The testing value functions of the estimated DTRs, which is the weighted average of

the outcome for all patients whose observed treatments are consistent with the estimated DTR

in all stages, are computed over testing data.

Figure 2.3 provides results of our proposed methods. The classifier based on VY(f (X), A)

(loss 1) with linear kernel outperforms others. The mean estimated value functions of DTR

based on loss 1 with linear and gaussian kernel are −8.21 (sd = 0.82) and −9.34 (sd = 1.14)

respectively, while loss 2 with linear and gaussian kernel gives DTRs of mean value −8.72

(sd = 1.01) and −9.28 (sd = 1.02).

2.5. Conclusion 43

Figure 2.3: Estimated value function based on 100 repetitions of application for Sequential
Treatment Alternatives to Relieve Depression data

2.5 Conclusion

In this chapter, we extend the standard outcome weighted learning to a multi-treatment, multi-

stage setting with potential negative outcome. The method is based on an angle-based multi-

category support vector machine and the loss function is modified when the outcome is nega-

tive. We provide two extra assumptions and show that when these assumptions are satisfied,

the Fisher consistency of the modified loss function will still be valid. For cases where the as-

sumptions do not hold, if the decision function is constrained, the classifier is Fisher consistent.

Our classification-based method is conceptually simple. It directly borrows the technique

of multicategory support vector machine and modifies it to fit the DTR background. Simulation

study and real data application are conducted to illustrate the proposed method. It shows that

our method are better than the standard One-Versus-One and One-Versus-Rest methods. How-

ever, from the numerical investigation we also find the method does not perform satisfactorily

when the interaction effect is very small or the number of treatment options is large. For these

two cases, further improvement and modification are required.

44 Chapter 2. Multicategory OutcomeWeighted Learning

2.6 Appendix

Proof of Theorem 2.3.1 To prove theorem 2.3.1, we first introduce the following lemma (Zhang

and Liu, 2014).

Lemma 2.6.1 Suppose we have arbitrary f ∈ RK−1. For any u, v ∈ {1, ...,K} such that u , v,

define Tu,v = Wu −Wv. For any scalar z ∈ R, 〈(f + zTu,v),Wω〉 = 〈 f ,Wω〉, where ω ∈ {1, ...,K}

andω , u, v. Furthermore, we have that 〈(f +zTu,v),Wu〉−〈 f ,Wu〉 = −〈(f +zTv,u),Wv〉+〈 f ,Wv〉.

To simplify the notation, we use R+
j , R−j instead of R+

j (x) and R−j (x). Without loss of generality,

assume that treatment 1 and 2 are respectively the best and the worst treatment. Suppose f ∗ is

the minimizer of the conditional loss r(f |x). The conditional loss r(f |x) can be rewritten as

r(f |x) = E
[|Y |
π(A, x)

VY(f , A)|x
]

=

K∑
i=1

R+
i V1(f , i) −

K∑
i=1

R−i V2(f , i)
(2.21)

where V1(f , i) = γ[(K − 1)− 〈 f (X),Wi〉]+ + (1− γ)
∑

a,i[1 + 〈 f (X),Wa〉]+ and V2(f , i) = γ[(K −

1) + 〈 f (X),Wi〉]+ + (1 − γ)
∑

a,i[1 − 〈 f (X),Wa〉]+.

First, we need to show 〈 f ∗(x),W1〉 ≥ 〈 f ∗(x),W j〉, for j , 1. If there exists a treatment j such

that 〈 f ∗,W1〉 < 〈 f ∗,W j〉. By lemma 2.6.1, we can construct f ∗∗ such that 〈 f ∗∗,W1〉 = 〈 f ∗,W j〉,

〈 f ∗∗,W j〉 = 〈 f ∗,W1〉 and 〈 f ∗∗,Wt〉 = 〈 f ∗,Wt〉,∀t , 1, j. One can verify that

V1(f ∗,Wt) = V1(f ∗∗,Wt) V2(f ∗,Wt) = V2(f ∗∗,Wt) ∀t , 1, j

Vs(f ∗,W1) = Vs(f ∗∗,W j) Vs(f ∗,W j) = Vs(f ∗∗,W1) s = 1, 2

Thus, r(f ∗|x) − r(f ∗∗|x) = (R+
1 − R+

j)[V1(f ∗, 1) − V1(f ∗, j)] + (R−1 − R−j)[V2(f ∗, j) − V2(f ∗, 1)].

Since 〈 f ∗,W j〉 > 〈 f ∗,W1〉, we have V1(f ∗, 1) − V1(f ∗, j) > 0 and V2(f ∗, j) − V2(f ∗, 1) > 0.

Based on assumptions 4, r(f ∗|x) − r(f ∗∗|x) > 0 which contradicts to the definition of f ∗.

Similarly, we can show that 〈 f ∗,W2〉 ≤ 〈 f ∗,W j〉, for j , 2.

2.6. Appendix 45

Second, we need to show 〈 f ∗,W1〉 ≤ K − 1. If 〈 f ∗,W1〉 > K − 1, because
∑K

i=1〈 f
∗,Wi〉 = 0,

we can find j such that 〈 f ∗,W j〉 < −1. There exists f ∗∗ such that 〈 f ∗∗,Wt〉 = 〈 f ∗,Wt〉, ∀t , 1, j

and 〈 f ∗∗,W1〉 = 〈 f ∗,W1〉 − ε > K − 1, 〈 f ∗∗,W j〉 = 〈 f ∗,W j〉+ ε < −1 where ε is a small positive

value. Then one can verify r(f ∗|x) − r(f ∗∗|x) = P − N where P = (1 − γ)ε
∑K

i=1 R+
i − R+

1 (1 −

γ)ε + R+
j γε and

N =


(1 − γ)ε

K∑
i=1

R−i + R−1γε − R−j (1 − γ)ε 〈 f ∗,W j〉 ≤ −(K − 1)

(1 − γ)ε
K∑

i=1

R−i + R−1γε − R−j ε 〈 f ∗,W j〉 > −(K − 1)

Under the assumption 5, when γ ∈ [0, 0.5], P > 0 and N < 0. Therefore, r(f ∗|x) − r(f ∗∗|x) =

P − N < 0 which contradicts to the definition of f ∗.

Similarly, we can show that 〈 f ∗,W2〉 ≥ −(K − 1).

Next, we need to show argmax j〈 f
∗,W j〉 is unique. Since 〈 f ∗,W2〉 ≥ −(K−1) and 〈 f ∗(x),W1〉 ≥

〈 f ∗(x),W j〉 for ∀ j , 1, we have 〈 f ∗,W1〉 ≥ 1. Then we have two cases:

a. 〈 f ∗,W1〉 > 1

If there exists j such that 〈 f ∗,W1〉 = 〈 f ∗,W j〉 > 1, we can construct f ∗∗ such that 〈 f ∗∗,Wt〉 =

〈 f ∗,Wt〉, ∀t , 1, j and 〈 f ∗∗,W1〉 = 〈 f ∗,W1〉 + ε > 1, 〈 f ∗∗,W j〉 = 〈 f ∗,W j〉 − ε > 1 where

ε is a small positive number. One can verify that r(f ∗|x) − r(f ∗∗|x) = P − N, where P =

(R+
1 − R+

j)ε > 0 and N = (R−j − R−1)ε < 0. So we have r(f ∗|x) > r(f ∗∗|x) which contradicts to

the definition of f ∗.

b. 〈 f ∗,W1〉 = 1

Since 〈 f ∗,W2〉 ≥ −(K − 1), if 〈 f ∗,W1〉 = 1, we have 〈 f ∗,Wt〉 = 1,∀t , 2 and 〈 f ∗,W2〉 =

−(K − 1). There exists j , 1, 2 and f ∗∗ such that 〈 f ∗∗,Wt〉 = 〈 f ∗,Wt〉, ∀t , 2, j and

〈 f ∗∗,W2〉 = 〈 f ∗,W2〉 + ε ∈ (−(K − 1),−1], 〈 f ∗∗,W j〉 = 〈 f ∗,W j〉 − ε ∈ [−1, 1) where ε is a

small positive number. One can verify that r(f ∗|x)− r(f ∗∗|x) = [(1−γ)
∑K

i=1 R+
i + R+

2γ−R+
j −

R−j + R−2]ε > 0 under the assumptions 4, 5 and γ ∈ [0, 0.5]. So it contradicts to the definition

46 Chapter 2. Multicategory OutcomeWeighted Learning

of f ∗.

Therefore, we have proved 〈 f ∗,W1〉 > 〈 f ∗,Wt〉,∀t , 1 and the Fisher consistency is obtained.

Proof of Theorem 2.3.2 Under the constraint 〈 f ∗,Wt〉 ≥ −
1

K−1 ,∀t ∈ {1, ...,K} and the condi-

tion
∑K

i=1〈 f
∗,Wi〉 = 0, we have − 1

K−1 ≤ 〈 f
∗,Wt〉 ≤ 1,∀t. Define m+

j =
∑

i, j R+
i , m−j =

∑
i, j R−i ,

m j = m+
j + m−j and j0 = argmin j m j. We can show

r(f |x) =

K∑
i=1

R+
i

[
(1 − γ)

∑
j,i

(1 + 〈 f ,W j〉)+ + γ(K − 1 − 〈 f ,Wi〉)+

]
−

K∑
i=1

R−i
[
(1 − γ)

∑
j,i

(1 − 〈 f ,W j〉)+ + γ(K − 1 + 〈 f ,Wi〉)+

]
=

K∑
i=1

R+
i

∑
j,i

(1 + 〈 f ,W j〉) −
K∑

i=1

R−i
∑
j,i

(1 − 〈 f ,W j〉)

=

K∑
j=1

(1 + 〈 f ,W j〉)
∑
i, j

R+
i −

K∑
j=1

(1 − 〈 f ,W j〉)
∑
i, j

R−j

=

K∑
j=1

〈 f ,W j〉m j +

K∑
j=1

(m+
j − m−j)

=
∑
j, j0

〈 f ,W j〉(m j − m j0) +

K∑
j=1

(m+
j − m−j)

≥ −
∑
j, j0

1
K − 1

(m j − m j0) +

K∑
j=1

(m+
j − m−j)

So f ∗, the minimizer of the conditional loss r(f |x) satisfies

〈 f ∗,W j〉 =


1 j = j0

−
1

K − 1
otherwise

Thus, argmax j〈 f
∗,W j〉 = argmin j m j and the Fisher consistency is obtained.

Chapter 3

Dynamic Treatment Regimes based on

Neural Classification Tree

3.1 Introduction

In the previous chapter, we extended outcome weighted learning to multicategory setting as

well as negative outcome where we approximated the 0 − 1 loss function by the hinge loss

function in reinforeced multicategory support vector machine. In this chapter, we make use of

weighted squared loss to approximate the weighted misclassification error and apply a classifi-

cation tree model to find the optimal treatment regimes. Due to the smoothness of the weighted

squared loss function, neural network can be used for the training of the tree to improve predic-

tion accuracy. Unlike traditional decision tree which determines splitting variables and cutting

points in a greedy manner, the neural classification tree estimates all cutting points simulta-

neously. The traditional classification tree is then reconstructed based on the estimated result

from training data to increase the interpretability.

The rest of the section organizes as follows. Section 3.2 briefly reviews the neural network

and the decision tree. Section 3.3 describes the neural network architecture of the proposed

model and a variable selection method used to reduce tree depth. A tree reconstruction and

47

48 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

pruning process is proposed in section 3.4 to construct a traditional classification tree. We

present all model details for single stage treatment. The extension to multiple stage treatment

is the same as that in section 2.3.2. The simulation study and application to STAR∗D data are

carried out to assess the performance of the model in section 3.5. The chapter is concluded in

section 3.6.

3.2 Literature review

3.2.1 Neural network

The idea of neural network is to extract linear combination of the inputs as derived features and

then model the target as a nonlinear function of these features (Hastie et al., 2009). A neural

network is typically organized in layers including input layer, hidden layers and output layer. In

each layer there are one or more nodes which connect different layers via activation functions.

Typical activation functions include sigmoid, tanh, ReLU and softmax functions (Hastie et al.,

2009). Figure 3.1 provides an example of a standard neural network. It includes one input

layer, one hidden layer and one output layer. The numbers of nodes in these layers are 4, 3 and

3 respectively. Given all trainable parameters fixed, the four input features plus a bias term B1

are weighted summed. The summation flows into the hidden layer by applying an activation

function. The result in hidden layer plus another bias term B2 is then transformed to the output

in the output layer with an objective function being employed for measuring the prediction

accuracy. The trainable parameters are then updated by minimizing the objective loss function

via the gradient descent. This forward and backpropagation procedure is repeated until either

convergence or the maximum number of iterations is achieved.

The neural network is flexible for both regression and classification in the sense that it

can capture nonlinear and complex relationship between inputs and outputs since it is actually

a mathematical model with approximation functions. It has shown excellent performance in

many areas such as image recognition and natural language processing (Hastie et al., 2009).

3.2. Literature review 49

Figure 3.1: An example of standard neural network; I, H and O denote nodes in input, hidden
and output laye. B denotes the bias term

.

However, neural networks are black-box models meaning that we are not able to interpret how

each feature influences the final output.

3.2.2 Classification tree

The idea of classification tree is to paritition the feature space into a set of rectangles and

then fit a simple model in each node (Hastie et al., 2009). It is simple, interpretable and also

powerful for tabular data.

Specifically, suppose the feature space is parititioned to M regions R1, · · · ,RM, the obser-

vation with covariate vector x will be classified as

f (x) =

M∑
m=1

cmI(x ∈ Rm)

where I is the indicator function , cm is the class label prediction in region Rm with Nm obser-

50 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

vations, and is determined by the majority vote

cm = argmaxk p̂km

where p̂km is the proportion of class k observations in region m

p̂km =
1

Nm

∑
xi∈Rm

I(yi = k) (3.1)

The best partition is searched by a greedy algorithm. Take the top split as an example and for

simplicity, assume the covariate vector X = (X1, · · · , Xp) is continuous. Two nodes formed by

variable j and cutting point s is

R1(j, s) = {X|X j ≤ s} and R2(j, s) = {X|X j > s}

The impurity measure Q1, Q2 can be computed for each node. Popular choices of impurity

measure for classification tree include

Misclassification error:
1

Nm

∑
i∈Rm

I(yi , cm)

Gini index:
∑
k,k′

p̂km p̂k′m

Cross-entropy: −

K∑
k=1

p̂km log p̂km

where p̂km is defined in equation (3.1). The best splitting variable and points are then found

by minimizing Q1 + Q2 over all possible pairs (j, s). For the new daughter node, this process

will be recursively repeated until the prespecified stopping criterion is met, for example, the

maximum number of nodes is achieved or the number of observations in each node is smaller

than the prespecified threshold.

3.3. Neural network architecture for the DTR 51

3.3 Neural network architecture for the DTR

Without loss of generality, suppose the input vector X = (x1, · · · , xm) ∈ Rm is continuous,

output vector s = (s1, · · · , sK) ∈ [0, 1]K satisfying
∑K

j=1 s j = 1 . m and K are the number of

features and treatments respectively. In addition to the input and output layer in the standard

neural network, a neural decision tree includes a binning layer for split decisions and a layer of

Kronecker product for representing terminal node (Yang et al., 2018).

The basic idea is that for each feature x j, the binning layer outputs an almost one-hot vector

indicating the bins to which x j belongs via a one-layer neural network. For example, consider

three bins with two cutting points −1, 1 for the j-th feature. For observations x j = −2, x j = 0

and x j = 2 the outputs of the one-layer neural network are expected to approximate the exact

one-hot vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. In total there are m such vectors.

The Kronecker product of these m vectors indexes the leaf node where the covariate vector X

belongs to (Yang et al., 2018).

To better illustrate the idea of using a binning layer, we take variable x j as an example.

Suppose there are q cutting points p1 < p2 < · · · < pq, where q is a tuning parameter selected

by cross validation or manually pre-set and pt, t = 1, · · · , q are trainable parameters.

Define ω = (1, 2, · · · , q + 1) a constant vector and b = (0,−p1,−p2 − p3, · · · ,−p1 − p2 −

· · · − pq) the bias vector. A one-layer neural network can be constructed for variable x j (Yang

et al., 2018)

fω,b,τ(x j) = softmax((ωx j + b)/τ) (3.2)

It outputs a (q+1)-dimensional vector. The i-th component of the softmax function
(
softmax(z)

)
i
=

ezi∑q+1
j=1 ez j

with z = (z1, · · · , zq+1). τ controls how close the output approximates the exact one-hot

vector. The smaller the τ is, the closer the result from equation (3.2) is to the real one-hot

vector.

To illustrate the rationale behind (3.2) as well as the specification of ω and b, assume the

maximizer of (3.2) for a specific x j is k. For simplicity, assume k , 1, q + 1. The situation for

52 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

k = 1 or q + 1 is very similar. We then have


kx j − (p1 + · · · + pk−1) > (k − 1)x j − (p1 + · · · + pk−2)

kx j − (p1 + · · · + pk−1) > (k + 1)x j − (p1 + · · · + pk)
(3.3)

So x j ∈ (pk, pk+1). It shows that the output based on (3.2) with the specified ω and b indicates

the interval to which a specific x j belongs. When x j is a categorical variable, the one-hot

encoder can be viewed as binning output.

Since there are m features, in binning layer m one-layer neural networks will be constructed.

Each one has the same structure as (3.2) for continuous variable or uses one-hot encoding for

a categorical variable. Theoretically, the number of cutting points q can vary for different

features, but for simplicity we assume there is a common q for all continuous standardized

features. So the one-layer neural networks for continuous variables in binning layer only differ

in the choice of p1, · · · , pq.

The m vectors obtained from binning layer are then taken Kronecker product. Since each

of the m vectors indicates the bins to which a feature belongs, the Kronecker product actually

partitions the feature space and indicates the region where an observation with covariate vector

X belongs to. The layer of Kronecker product is then fully-connected to the output layer of K

nodes with softmax as activation function where K is the number of available treatments.

Another important element in neural network is its objective function. Recall that OWL

minimizes weighted classification error rate E
[

Y
π(A,X) I(A , a)

]
where Y is the outcome, A is the

observed treatment, a is the estimated optimal treatment and π(A, X) = Pr(A|X) is the treatment

assignment probability. In this chapter, we further assume E(Y |A, X) ≥ 0.

Define the weighted squared loss as

L(s) = EA,X

[
WA,X

K∑
j=1

(s j − ν j)2
]

(3.4)

where WA,X =
E(Y |A,X)
π(A,X) ≥ 0 is the weight, ν = (ν1, · · · , νK) is a one-hot vector for multi-

3.3. Neural network architecture for the DTR 53

classification. If patient i receives treatment j, then ν(i)
t = 0 for t , j and ν(i)

j = 1. s(X) =

(s1(X), · · · , sK(X)) is the decision vector function satisfying
∑K

i=1 si(X) = 1.

We have the following theorem

Theorem 3.3.1 If s∗ minimizes the weighted squared loss (3.4) with the constraint
∑K

j=1 s j = 1,

d(x) = argmax j≤K s j(x) gives the optimal treatment.

Proof The weighted squared loss L(s) given the observation X = x is

L(s|x) = EA|X=x

[
WA,X

K∑
j=1

(s j − d j)2|x
]

=

K∑
A=1

E(Y |A, x)
K∑

j=1

(s j − d jA)2

(3.5)

where d jA = I(j = A). So it suffices to show that if a measurable function s∗ = (s∗1, · · · , s
∗
K)

minimizes L(s|x) in (3.5) for every x, then we must have d(x) = argmax j≤K s j(x) gives the

optimal treatment.

Define

G(s, λ, x) = L(s|x) − λ(
K∑

j=1

s j − 1)

=

K∑
A=1

E(Y |A, x)
∑
j,A

s2
j +

K∑
A=1

E(Y |A, x)(sA − 1)2 − λ(
K∑

j=1

s j − 1)

=

K∑
A=1

E(Y |A, x)
K∑

j=1

s2
j − 2

K∑
A=1

E(Y |A, x)sA − λ(
K∑

j=1

s j − 1) +

K∑
A=1

E(Y |A, x)

(3.6)

So for j = 1, · · · ,K, let

∂G
∂s j

= 2
K∑

A=1

E(Y |A, x)s j − 2E(Y | j, x) − λ = 0 (3.7)

54 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

Summing up the K equations, we obtain

λ = 0

s j =
E(Y | j, x)∑K

A=1 E(Y |A, x)
for j = 1, · · · ,K

(3.8)

Because of the convexity of the weighted squared error loss, equation (3.8) is the minimizer.

So argmax j≤K s j(x) = argmax j≤K E(Y | j, x).

One strength of neural classification tree is that unlike traditional decision tree who searches

split variables and points in greedy algorithm, it estimates all cutting points simultaneously by

directly minimizing the overall loss. The optimization as well as implementation is easily

carried out in TensorFlow. However, it still has some shortcomings. First, when the number

of features or cutting points is large, the tree will also be very large because the use of Kro-

necker product may lead to useless splits or inclusion of noisy variables. Second, due to the

error resulted from approximating one-hot vector by softmax function in binning layer, neural

classification tree may give different prediction results for observations in the same region. In

addition, it cannot give the sequential tree structure as the traditional tree does since only final

nodes are known, and this will hurt part of the interpretability. For the second problem, we

propose a traditional tree construction and pruning method for growing the tree sequentially

after training neural classification tree in next section. To solve the first problem, a variable

selection needs to be implemented before training the neural network.

Variable selection in DTR is quite different from that in other fields in the sense that only

prescriptive variables which influence the optimal treatment assignment are of interest. Pre-

dictive variables which plays a role in the outcome may be useless in determining treatment.

Various techniques have been proposed for the variable selection in DTR (Gunter et al., 2011;

Lu et al., 2013; Qian and Murphy, 2011; Zhang and Zhang, 2018; Fan et al., 2016). We make

use of the sequential advantage selection in our approach. Compared to other methods, se-

quential advantage selection can handle a large number of covariates even if the sample size is

3.4. Tree reconstruction and pruning 55

small and it excludes marginally important but jointly unimportant variables or vice versa (Fan

et al., 2016).

Let V = { j1, · · · , jk} be an arbitrary model with x j1 , · · · , x jk as the selected covariates and

F = {1, · · · , p} be the full model. Xi is the covariate vector for i-th patient and Xi(M) = {Xi j :

j ∈ V} is the covariate for i-th patient corresponding to model V . The sequential advantage of

a variable X j with k − 1 variables X j1 , · · · , X j(k−1) already in the model is defined as:

S (k)
j =

1
n

n∑
i=1

{
max

a
Ê(Y |XV (k)

j
= xiV (k)

j
, A = a) − Ê(Y |XV (k)

j
= xiV (k)

j
, A = a(k−1)

opt (xiV (k−1)))
}

(3.9)

where V (k−1) = { j1, · · · , jk−1}, V (k)
j = V (k−1) ∪ { j}, and a(k−1)

opt (xiV (k−1)) is the optimal treatment

regime based on k − 1 variables X j1 , · · · , X jk−1

In summary, the basic idea of the procedure is that starting from null model, at each time k

we select variables which maximizes S (k)
j in equation (3.9). The selecting process is repeated

until the maximum number of selected features is met or the ratio of the maximum advantage at

the current step and the sum of maximum advantages prior and up to the current step is below

the pre-set threshold. In this thesis, random forest is used for modelling outcome Y in equation

(3.9).

3.4 Tree reconstruction and pruning

Without loss of generality, assume the selected features are {X1, · · · , Xm} , the cutting points

for variable X j obtained from neural classification tree is {p j1, · · · , p jq} and the possible nodes

are represented by the pair (X j, p ji) for j = 1, · · · ,m and i = 1, · · · , q. We first describe how to

find the top parental node and each daughter node can be determined similarly.

Denote V0 as the overall misclassification rate. It is the empirical misclassification rate

from the neural classification tree. For each pair (X j, p ji), j = 1, · · · ,m and i = 1, · · · q, the

observations can be divided into two subsets: observations with X j ≥ p ji and observations with

X j < p ji. Then the misclassification rates Va and Vb on the two subsets are computed. Since

56 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

the inequality
t1 + t2

n1 + n2
<

t1

n1
+

t2

n2

always holds when 0 < t1 < n1 and 0 < t2 < n2, we have V0 < Va + Vb. By searching over

all pairs (X j, p ji), j = 1, · · · ,m, i = 1, · · · , q, the pair minimizing Va + Vb is selected as the

top parental node. For example, assume the pair is (X1, p11). Then at the top parental node,

the splitting variable is X1 and corresponding cutting point is p11. After the top parental node

is specified, the observations are divided into two subsets. A daughter node for each subset

will be determined by repeating the same process in the current subset except that the nodes in

previous branches will not be considered any more.

The tree reconstruction process will stop if either of the two following criterions is met:

the predicted treatments of all observations in the current node are identical or all pairs have

been used for splitting. In the reconstructed tree, the number of different predicted treatments

in each terminal node may be more than 1. In this case, we adjust the prediction by taking the

majority vote, or by random assignment if the numbers of predicted treatments are the same.

The tree is then pruned from bottom. Suppose sibling nodes O1 and O2 have one common

parental node O and the predicted treatments under O1, O2 after adjustment by majority vote or

random assignment is P and Q respectively. If VO1 +VO2 < minP,Q{VOP,VOQ}+η, the two nodes

O1 and O2 will be merged where VOP and VOQ are the misclassification rates if all observations

under node O are assigned treatment P and Q respectively. η is a prespecified parameter. After

merging, the new predicted treatment under node O is argmini∈{P,Q} VOi.

The tree reconstruction and pruning processes are different from those for the traditional

classification tree. In traditional classification trees, the sum of misclassification errors (or other

impurity measures) of the two daughter nodes is always smaller than the misclassification rate

(or other impurity measures) of the parental node and the predicted class is determined when

the splitting node is given. In our method, we estimate all cutting points simultaneously using

neural network. The prediction result is then used for tree reconstruction and adjusted after

the tree is reconstructed. The adjusted prediction is then used for tree pruning so that we

3.5. Numerical investigation 57

finally grow a tree of which the structure is the same as the traidional tree but the cutting points

are trained simultaneously. In stead of the prediction from the black-box neural network, we

can also get prediction from our reconstructed and pruned tree so that the interpretability is

maintained.

3.5 Numerical investigation

In this section, we describe both the simulation studies and real data application of the proposed

method.

3.5.1 Simulation study

To evaluate the performance of the proposed neural classification tree, simulation studies were

carried out for a variety of scenarios. We consider either the treatment probability is known

or estimated from data. For the first case, we randomly assign treatments so that the treatment

categories are balanced and treatment probabilities are determined. For the second case, we

construct multinomial regression to estimate the treatment probability. Both tree type and non-

tree type data with either single stage or multi-stage treatments are considered.

For each of the settings, we repeat the simulation 500 times. For each simulation run, we

generate a data set with a sample size of 3500. We randomly choose half of them as training

data and the remaining is used as testing data. For the single stage, we use misclassifica-

tion error rate and the empirical value function for assessment. For multi-stage, we only use

empirical value function to assess the model. The misclassification error rate in the single

stage setting is defined as Pn[I(Aopt = d(X))] and the empirical value function is defined as

Pn[
∏T

t=1
I(At=dt(Ht))
πt(At |Ht)Y

]/Pn[
∏T

t=1
I(At=dt(Ht))
πt(At |Ht)

] where Pn is the empirical average operator.

We consider 11 scenarios:

1. A three-treatment case. The number of variables is set to be 1000. The covariate vector

X is generated from multivariate normal distribution with mean 0 and identity variance.

58 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

The actual treatment is generated from multinomial distribution with

Pr(Aobs = 1|X) =
1

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

Pr(Aobs = 2|X) =
exp(−2 + X1 + 2X2 − X3)

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

Pr(Aobs = 3|X) =
exp(−1 − 2X1 + 2X2)

1 + exp(−2 + X1 + 2X2 − X3) + exp(−1 − 2X1 + 2X2)

The true optimal treatment satisfies:

Aopt =


1 X1 ≤ 0 and X2 ≤ 0.5

2 X1 > 0 and X3 ≤ 0.5

3 otherwise

The outcome R follows N(2 + X4 + X5 + 10I(Aobs = Aopt), 1).

2. All the settings are the same as scenario 1 except that the observed treatment Aobs ∼

Uniform{1, 2, 3}.

3. All the settings are the same as scenario 1 except that

Aopt =


1 −0.3 ≥ X1 ≤ 0.5

2 X1 < −0.3 and X2 ≥ 1; X1 > 0.5 and X2 ≤ 2

3 otherwise

4. All the settings are the same as scenario 3 except that the observed treatment Aobs ∼

Uniform{1, 2, 3}

3.5. Numerical investigation 59

5. All the settings are the same as scenario 1 except that

Aopt =


1 X1 < −0.5

2 X1 ≥ −0.5 and X1 + X2 < 0.5

3 otherwise

6. All the settings are the same as scenario 5 except that the observed treatment Aobs ∼

Uniform{1, 2, 3}.

7. All the settings are the same as scenario 1 except that

Aopt =


1 X1X2 < −0.2

2 X1X2 ≥ −0.2 and X3 < 0

3 otherwise

8. All the settings are the same as scenario 7 except that the observed treatment Aobs ∼

Uniform{1, 2, 3}.

9. A four-treatment case. The number of variables is 1000. The covariate vector X is

generated from multivariate normal distribution with mean 0 and identity variance. The

actual treatment is generated from multinomial distribution with

Pr(Aobs = 1|X) =
1
S

Pr(Aobs = 2|X) =
exp(X1 + 3X2 − X3 + X5)

S

Pr(Aobs = 3|X) =
exp(−2X1 + 2X2)

S

Pr(Aobs = 4|X) =
exp(−2X1 + 2X2 − 4X3 − 2X4 − X5)

S

where S = 1+exp(X1+3X2−X3+X5)+exp(−2X1+2X2)+exp(−2X1+2X2−4X3−2X4−X5)

60 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

The true optimal treatment satisfies:

Aopt =



1 X1 < −0.65

2 X2 > −0.4 and X3 < 0

3 X2 > −0.4 and X3 ≥ 0

4 otherwise

The outcome R follows N(2 + X4 + X5 + 10I(Aobs = Aopt), 1).

10. All the settings are the same as scenario 9 except that Aobs ∼ Uniform{1, 2, 3, 4}.

11. A two-stage case. The covariate vector X1, X2 follows multivariate normal distribution

with mean 0 and identity variance. The actual treatment at stage 1 is generated from

multinomial distribution with

Pr(Aobs
1 = 1|X1) =

1
S

Pr(Aobs
1 = 2|X1) =

exp(−1 − X11 + 2X12 − X13 − X14 − X15)
S

Pr(Aobs
1 = 3|X1) =

exp(−1 − 2X11 + 2X12 − 2X13 + 2X14)
S

where S = 1+exp(−1−X11 +2X12−X13−X14−X15)+exp(−1−2X11 +2X12−2X13 +2X14)

The actual treatment at stage 2 is generated from multinomial distribution with

Pr(Aobs
2 = 1|X2) =

1
S

Pr(Aobs
2 = 2|X2) =

exp(−1 − X21 + X22 − X23 − 2X24)
S

Pr(Aobs
2 = 3|X2) =

exp(−2X21 + X22 − 2X23 + X24)
S

where S = 1 + exp(−1 − X21 + X22 − X23 − 2X24) + exp(−2X21 + X22 − 2X23 + X24). The

3.5. Numerical investigation 61

true optimal treatment at first stage Aopt
1 satisfies

Aopt
1 =


1 X11 ≤ 0 and X12 ≤ 0.5

2 X11 > 0 and X13 ≤ 0.5

3 otherwise

The true optimal treatment at second stage Aopt
2 satisfies

Aopt
2 =


1 X21 ≤ −0.1 and X22 ≤ 0.7

2 X21 > −0.1 and X23 ≤ 0.4

3 otherwise

The outcome R1 follows N(u1, 1) where u1 = 10I(Aopt
1 = Aobs

1)+2+ X12 + X14−X13−X15.

The outcome R2 follows N(u2, 1) where u2 = 5I(Aopt
2 = Aobs

2)+2+(X2
22+X24)2X21+X23X25.

Scenarios 1 ∼ 4 have standard tree type boundary. Scenarios 1 and 2 involve single split for

each feature while in scenarios 3 and 4 the number of split points for features is 2. Scenarios

5 ∼ 8 have non-standard tree type boundary. The split rules in scenarios 5 and 6 involve linear

combination of features while scenarios 7 and 8 have nonlinear split rule. Scenarios 9 and

10 consider a four-treatment case so that the effect of the number of treatment options can be

observed. Finally, scenario 11 involves two stages as well as a more complex nonlinear main

effect.

Table 3.1 and 3.2 show the misclassification error rates and empirical value function ob-

tained by validation data of size 1750. The column NCT shows the result obtained from the

neural classification tree while the column NCT-correct gives the result obtained from the re-

constructed and pruned tree. The columns OVR and OVO give the simulation results from

One-Versus-Rest and One-Versus-One methods based on support vector machine. For scenar-

ios 1 ∼ 4, 9 ∼ 10, in terms of both misclassification error rates and empirical value function,

NCT and NCT-correct show comparable performance while for scenarios 5 ∼ 8 NCT performs

62 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

Table 3.1: Misclassification error rates approximated by validation data set of size 1750, av-
eraged over 500 simulation runs; the numbers in parenthesis are standard deviations over 500
simulation runs

Scenario NCT NCT-correct OVR OVO
1 8.67% (3.7%) 8.92% (4.8%) 17.85% (2.5%) 18.66% (2.4%)
2 2.82% (1.8%) 2.22% (2.2%) 9.22% (1.2%) 9.59% (1.2%)
3 20.35% (3.3%) 20.04% (5.9%) 22.67% (2.5%) 17.23% (2.4%)
4 5.39% (1.9%) 5.02% (4.4%) 12.26% (1.5%) 11.11% (1.3%)
5 18.18% (5.9%) 23.76% (9.0%) 33.05% (3.7%) 35.37% (3.7%)
6 14.97% (2.5%) 17.78% (3.9%) 8.76% (1.2%) 8.65% (1.2%)
7 17.13% (4.5%) 24.28% (5.8%) 25.05% (2.9%) 26.43% (2.7%)
8 7.90% (2.7%) 17.06% (3.0%) 10.19% (1.2%) 10.52% (1.2%)
9 16.52% (8.0%) 18.03% (9.5%) 38.10% (3.8%) 39.59% (3.3%)

10 4.30% (4.0%) 3.98% (4.5%) 12.53% (1.7%) 12.80% (1.6%)

Table 3.2: Empirical value function approximated by validation data set of size 1750, aver-
aged over 500 simulation runs; the numbers in parenthesis are standard deviations over 500
simulation runs

Scenario NCT NCT-correct OVR OVO
Single stage: T = 1

1 11.14 (0.933) 11.14 (0.621) 10.21 (0.457) 10.13 (0.463)
2 11.72 (0.212) 11.78 (0.256) 11.06 (0.177) 11.03 (0.183)
3 10.75 (0.588) 10.87 (0.968) 9.98 (0.441) 10.01 (0.407)
4 11.46 (0.211) 11.48 (0.462) 10.77 (0.194) 10.89 (0.183)
5 10.20 (0.865) 9.72 (1.362) 8.68 (0.544) 8.45 (0.521)
6 10.50 (0.294) 10.21 (0.448) 11.12 (0.162) 11.13 (0.167)
7 10.35 (0.642) 9.71 (1.140) 9.48 (0.546) 9.33 (0.552)
8 11.21 (0.294) 10.37 (0.384) 10.98 (0.181) 10.96 (0.183)
9 10.31 (1.279) 10.21 (1.593) 8.27 (0.892) 8.11 (0.869)
10 11.57 (0.424) 11.59 (0.486) 10.75 (0.237) 10.73 (0.225)

Two stage: T = 2
11 17.43 (1.827) 17.21 (1.909) 10.89 (1.496) 10.96 (1.634)

better than NCT-correct. It suggests that the corrected tree is valid if only one variable is in-

volved at each split point, which is the case for the standard decision tree. If the split rule

involves linear or nonlinear combination of different variables, NCT performs better. For sce-

nario 11, the estimated value function computed from NCT and NCT-correct are very close. It

suggests the correction method works well for dynamic case. Comparing the results in scenar-

ios 1 and 2 with results in scenarios 3 and 4, when the true number of cutting points for variables

3.5. Numerical investigation 63

increases, there is an apparent increase in misclassification error rate. However, from table 3.2

the corresponding decrease in estimated value function is relatively small. It indicates that the

proposed methods are still valid when there are various cutting points for variables, since for

DTR the estimated value function is a more comprehensive measure than the misclassification

error. Comparing the results in scenarios 1, 3, 5, 7, 9 and results in scenarios 2, 4, 6, 8, 10, all

methods perform better when the treatment probability is known. The results obtained from

One-Versus-Rest (OVR), One-Versus-One (OVO) are also given in table 3.1 and table 3.2. It

shows that the proposed methods give better results than OVR and OVO in all scenarios except

in scenario 6. For the two-stage case, this comparison is more obvious.

3.5.2 Application to STAR∗D study

A brief introduction of the data set is described in section 1.1. Variables are described in

section 2.4.1. The only difference is that neural classification tree requires the outcome to

be positive. Thus, keeping other elements defined the same as in Chapter 2, we define the

treatment outcome at each stage as:

Y1 : 27 - QIDS score at the end of stage 1 if remission was achieved, 13.5 − 1
2 QIDS score at

the end of stage 1 if the patient moved to stage 2

Y2 : 13.5 − 1
2 QIDS score at the end of stage 2

Figure 3.2 gives comparison of our proposed methods. Three different number of cutting

points 1, 2 and 3 are set for each feature. Comparison between results from NCT and its

corrected tree is also given. From the figure, it shows all settings gives similar results. When

the number of cutting points is 1, the mean estimated value function based on NCT and NCT-

correct are 18.30 (sd = 0.57) and 18.17 (sd = 0.66), respectively. When the number of cutting

points is 2, the mean estimated value function based on NCT and NCT-correct are 18.23 (sd =

0.57) and 18.20 (sd = 0.71), respectively. When the number of cutting points is 3, the mean

estimated value function based on NCT and NCT-correct are 18.24 (sd = 0.49) and 18.24

64 Chapter 3. Dynamic Treatment Regimes based on Neural Classification Tree

Figure 3.2: Estimated value function based on 100 repetitions of application for Sequential
Treatment Alternatives to Relieve Depression data

(sd = 0.66), respectively. The results suggest that only 1 cutting point needs to be considered

for each feature and the reconstructed and pruned tree is valid for prediction for this data set.

3.6 Conclusion

In this chapter, we proposed a method of estimating dynamic treatment regimes based on neural

classification tree. The advantage of the proposed method is that the neural network estimates

split variables and cutting points simultaneously rather than in greedy manner. In addition, the

true complex relationship between optimal treatment and treatment reward is not assumed and

therefore can be approximated flexibly. However, the prediction of observations in the same

node may vary using the neural classification tree. The order of the split variables or points is

unknown. We further propose a method of reconstructing and pruning the tree based on the

output from neural classification tree to overcome these disadvantages.

Simulation study and real data application are conducted to illustrate our method. Over-

all, the proposed methods work well. However, from the numerical investigation we find the

3.6. Conclusion 65

corrected NCT does not perform very satisfactorily when the true split rules involve linear or

nonlinear combinations of variables. For these two cases, further improvement and modifica-

tion are required.

Chapter 4

Conclusion

This thesis was motivated by the Sequential Treatment Alternatives to Relieve Depression

(STAR*D) study. The study included four levels and at each level patients were random-

ized to various treatment options with both clinical and treatment information considered. The

goal of this study was to compare the effectiveness of different multi-level treatment options

for patients with major depressive disorder based on the collected information.

In this study, the primary outcome is the clinician-rated Quick Inventory of Depressive

Symptomatology (QIDS) score of which higher values correspond to higher severity. In order

to make it consistent with the prerequisite that larger outcome is preferred in the field of DTR,

researchers always replace the the original outcome with its negative which results in negative

outcome.

Outcome weighted learning, as the foundation of classification-based methods for esti-

mating dynamic treatment regimes, focuses on binary treatment, single stage as well as non-

negative outcome. Motivated by the STAR*D study, the objective of this thesis is to explore

extension of outcome weighted learning to multi-armed treatment, multiple stages as well as

negative outcome.

In this thesis, two methods were discussed to achieve this objective. The first method is

based on multicategory support vector machine. An angle-based loss function which linearly

66

67

combines naive hinge loss and vector hinge loss with a tuning parameter γ ∈ [0, 1]. The loss

function is then modified to allow for negative treatment outcome with two different sets of

assumptions. One is about the treatment outcome ranking and the other one is about the lower

bound of the inner products 〈 f (X),W j〉, j = 1, · · · ,K where K is the number of treatment op-

tions and W j is defined as in equation (2.1). We theoretically prove that under the assumptions

of treatment outcome ranking, the Fisher consistency of the classifier can be maintained for

γ ∈ [0, 0.5]. Under the assumption that 〈 f (X),W j〉 ≥ −
1

K−1 , j = 1, · · · ,K, the Fisher con-

sistency of the classifier can be maintained for any γ ∈ [0, 1]. The second proposed method

combines neural network and decision tree. While neural network is known for flexibility with

approximation functions, decision tree is highly interpretable. To ensure the smoothness of the

objective function in neural network, we proposed to use a weighted squared loss function for

the classification problem and proved that the output can give the optimal treatment regime.

The prediction is hard to interpret for neural network since it is a black-box method and the

neural network classification tree does not give a tree structure as the standard decision tree.

To solve these problems, we further proposed a method of tree reconstruction. We adjust the

prediction based on the reconstructed tree and then prune the tree.

The two methods have different advantages. The multicategory outcome weighted learning

directly borrows techniques of multicategory support vector machine. So it is conceptually

simple. The neural classification tree considers both accuracy and interpretability. The true

relationship between treatment and outcome is not assumed and hence can be modelled flexibly

and the optimization procedure can be easily implemented in TensorFlow.

There are several possible directions for future research. As seen in our simulation study,

when the number of treatment increases the prediction accuracy will decrease. Currently, we

only consider a very small number of treatments. Improvement needs to be made in the pres-

ence of large number of treatments. Furthermore, Laber and Zhao (2015) considers purity

measure for continuous treatment in their tree-based method. They use a kernel smoother to

approximate the indicator function. A distribution over treatment for each covariate is defined

68 Chapter 4. Conclusion

to approximate the treatment rule. However, in the field of DTRs, the extension to continu-

ous treatment has not been well studied. Modifying our model for large number of treatments

or even continuous treatment is of interest. Additionally, for our second model, although we

use sequential advantage selection for variable selection, other feature selection techniques to

choose variables can also be applied since the variable selection is independent of the proposed

model. A variable importance measure may be defined to better rank the variables.

Other explanation techniques in machine learning literature such as LIME and TreeSHAP

can also be employed for the DTR problems to enhance interpretability. Local interpretable

model-agnostic explanations (LIME) constructs interpretable representation for actual features

and identifies an interpretable surrogate model over the interpretable representation which can

be a good approximation to the original predictions locally. The surrogate model can be any

interpretable model such as decision tree (Ribeiro et al., 2016). SHapley Additive exPlana-

tion (SHAP) method assigns each feature an importance value for a particular prediction and

explains the prediction based on the contribution of each feature (Lundberg and Lee, 2017).

TreeSHAP, as a variant of SHAP, is designed specifically for tree ensemble methods with re-

duced computation complexity (Lundberg et al., 2018). We may further explore those methods

in DTR setting and compare with our proposed methods.

Bibliography

Richard Bellman. Dynamic programming. Princeton:Princeton University Press, 2010.

Bibhas Chakraborty and Erica E.M. Moodie. Statistical methods for dynamic treatment

regimes: reinforcement learning, causal inference, and personalized medicine. Springer,

2013.

Bibhas Chakraborty and Susan A. Murphy. Dynamic treatment regimes. Annual Review of

Statistics and Its Application, 1(1):447–464, 2014.

Jingxiang Chen, Haoda Fu, Xuanyao He, Michael R. Kosorok, and Yufeng Liu. Estimating

individualized treatment rules for ordinal treatments. Biometrics, 74(3):924–933, 2018.

Ailin Fan, Wenbin Lu, and Rui Song. Sequential advantage selection for optimal treatment

regimes. The Annals of Applied Statistics, 10(1):32–53, 2016.

Sheng Fu, Qinying He, Sanguo Zhang, and Yufeng Liu. Robust outcome weighted learning

for optimal individualized treatment rules. Journal of Biopharmaceutical Statistics, 29(3):

606–624, 2019.

Lacey Gunter, Ji Zhu, and Susan A. Murphy. Variable selection for qualitative interactions.

Statistical Methodology, 8(1):42–55, 2011.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning.

New York: Springer-Verlag, 2009.

69

70 BIBLIOGRAPHY

Eric B. Laber and Ying-Qi Zhao. Tree-based methods for individualized treatment regimes.

Biometrika, 102(3):501–514, 2015.

Eric B. Laber, Daniel J. Lizotte, Min Qian, William E. Pelham, and Susan A. Murphy. Dynamic

treatment regimes: technical challenges and applications. Electronic Journal of Statistics, 8

(1):1225–1272, 2014.

Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines: theory

and application to the classification of microarray data and satellite radiance data. journal of

the American Statistical Association, 99(465):67–81, 2004.

Ying Liu, Yuanjia Wang, Michael R. Kosorok, Yingqi Zhao, and Donglin Zeng. Augmented

outcome-weighted learning for estimating optimal dynamic treatment regimes. Statistics in

Medicine, 37(26):3776–3788, 2018.

Yufeng Liu and Ming Yuan. Reinforced multicategory support vector machines. Journal of

Computational and Graphical Statistics, 20(4):901–919, 2011.

Zhilan Lou, Jun Shao, and Menggang Yu. Optimal treatment assignment to maximize expected

outcome with multiple treatments. Biometrics, 74(2):506–516, 2018.

Wenbin Lu, Hao Helen Zhang, and Donglin Zeng. Variable selection for optimal treatment

decision. Statistical methods in medical research, 22(5):493–504, 2013.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.

Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent individualized feature attri-

bution for tree ensembles, 2018.

Seo Young Park and Yufeng Liu. From the support vector machine to the bounded constraint

machine. Statistics and Its Interface, 2(3):285–298, 2009.

Min Qian and Susan A. Murphy. Performance guarantees for individualized treatment rules.

Annals of Statistics, 39(2):1180–1210, 2011.

BIBLIOGRAPHY 71

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?”: Ex-

plaining the Predictions of Any Classifier. arXiv e-prints, art. arXiv:1602.04938, February

2016.

James M. Robins. Optimal structural nested models for optimal sequential decisions. Proceed-

ings of the Second Seattle Symposium in Biostatistics, pages 189–326, 2004.

A.John Rush, Maurizio Fava, Stephen R. Wisniewski, Philip W. Lavori, Madhukar H. Trivedi,

Harold A. Sackeim, Michael E. Thase, Andrew A. Nierenberg, Frederic M. Quitkin,

T. Michael Kashner, David J. Kupfer, Jerrold F. Rosenbaum, Jonathan Alpert, Jonathan W.

Stewart, Patrick J. McGrath, Melanie M. Biggs, Kathy Shores-Wilson, Barry D. Lebowitz,

Louise Ritz, George Niederehe, and for the STAR*D Investigators Group 1. Sequenced

treatment alternatives to relieve depression(star*d): Rationale and design. Controlled Clini-

cal Trials, 25(1):119–142, 2004.

Phillip J. Schulte, Anastasios A. Tsiatis, Eric B. Laber, and Marie. Q- and a-learning methods

for estimating optimal dynamic treatment regimes. Statistical Science, 29(4):640–661, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. A Bradford

Book, 2018.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neural decision trees.

arXiv preprint arXiv:1806.06988, 2018.

Baqun Zhang and Min Zhang. Variable selection for estimating the optimal treatment regimes

in the presence of a large number of covariate. The Annals of Applied Statistics, 12(4):

2335–2358, 2018.

Baqun Zhang, Anastasios A. Tsiatis, Eric B. Laber, and Marie Davidian. Robust estimation of

optimal dynamic treatment regimes for sequential treatment decisions. Biometrika, 100(3):

681–694, 2013.

72 BIBLIOGRAPHY

Chong Zhang and Yufeng Liu. Multicategory angle-based large-margin classification.

Biometrika, 101(3):625–640, 2014.

Chong Zhang, Yufeng Liu, Junhui Wang, and Hongtu Zhu. Reinforced angle-based multicat-

egory support vector machines. Journal of Computational and Graphical Statistics, 25(3):

806–825, 2016.

Ying-Qi Zhao, Donglin Zeng, A. John Rush, and Michael R. Kosorok. Estimating individual-

ized treatment rules using outcome weighted learning. Journal of the American Statistical

Association, 107(499):1106–1118, 2012.

Ying-Qi Zhao, Donglin Zeng, Eric B. Laber, and Michael R. Kosorok. New statistical learn-

ing methods for estimating optimal dynamic treatment regimes. Journal of the American

Statistical Association, 110(510):583–598, 2015.

Appendix A

R Functions for First Model

1 library(nnet)

2 library(MASS)

3

4 W.gen = function(k)

5 {

6 X = matrix(0,k,k-1)

7 X[1,]=rep((k-1)^(-1/2),k-1)

8 for (index in 2:k)

9 {

10 X[index ,]=rep(-(1+sqrt(k))/((k-1)^(1.5)), k-1)

11 X[index,index -1]=X[index,index -1]+sqrt(k/(k-1))

12 }

13 return(X)

14 }

15 #W.gen generates the representation matrix for treatment

16

17 A.matrix.gen=function(k,a.train)

18

19 {

20 nobs=length(a.train)

21 A.matrix = matrix(0,nobs,k-1)

73

74 Chapter A. R Functions for FirstModel

22 X=W.gen(k)

23 for (index in 1:nobs)

24 {

25 A.matrix[index ,] = X[a.train[index],]

26 }

27 return(A.matrix)

28 }

29 #a.train: treatment assignment for training data, should be a vector

30 #A.matrix.gen generate the representation matrix for treatment assignment

for specific dataset

31

32

33 X.matrix.gen=function(covariate)

34 {

35 A=matrix(0,nrow(covariate),ncol(covariate)+1)

36 A[,1]=1

37 A[,-1]=as.matrix(covariate)

38 return(A)

39 }

40 #X.matrix.gen generates design matrix with intercept 1

41 #the i-th row is covariate information for the i-th observation

42 #(i,j) element is the j-th variable for observation i

43

44 propensity_model=function(covariate ,a.train)

45 {

46 Data=data.frame(covariate ,y=a.train)

47 model=multinom(y~X1+X2+X3,data=Data)

48 #model=multinom(y~X1+X2+X3+X4+X5,data=Data)

49 return(model)

50 }

51

52 propensity_score=function(covariate ,a.train,model,i)

53 {

75

54 data=data.frame(t(covariate[i,]))

55 prob=predict(model,newdata=data,type=’probs’)

56 score=as.numeric(prob[a.train[i]])

57 return(score)

58 }

59 #estimate propensity score

60

61

62 alpha_upper=function(i,j,gamma,covariate ,reward,a.train,model)

63 {

64 omega=reward[i]/propensity_score(covariate ,a.train,model,i)

65 if(j==a.train[i])

66 c=gamma*omega

67 else

68 c=(1-gamma)*omega

69 return(abs(c))

70 }

71 #compute the upper bound of each alpha_ij

72

73 ######prediction function for linear case

74 pred=function(k,newdata,beta)

75 {

76 nobs=nrow(newdata)

77 X=X.matrix.gen(newdata)

78 response=rep(0,nobs)

79 W=W.gen(k)

80 for(i in 1:nobs)

81 {

82 f=beta%*%X[i,]

83 angle=W%*%f

84 response[i]=which.max(angle)

85 }

86 return(response)

76 Chapter A. R Functions for FirstModel

87 }

88

89 #######prediction function for nonlinear case

90 pred=function(k,covariate ,newdata,theta,kpara)

91 {

92 covariate=as.matrix(covariate)

93 newdata=as.matrix(newdata)

94 nobs=nrow(newdata)

95 response=rep(0,nobs)

96 W=W.gen(k)

97 nobs_train=nrow(covariate)

98 kernel_vector=rep(0,nobs_train+1)

99 for(i in 1:nobs)

100 {

101 kernel_vector=rep(0,nobs_train+1)

102 kernel_vector[1]=1

103 for(j in 1:nobs_train)

104 kernel_vector[j+1]=kernel(newdata[i,],covariate[j,],kpara)

105 f=theta%*%kernel_vector

106 angle=W%*%f

107 response[i]=which.max(angle)

108 }

109 return(response)

110 }

111

112 kernel<-function(x,y,kpara)

113 {

114 difference=x-y

115 norm=t(difference)%*%difference

116 expo=-norm/(2*kpara^2)

117 return(exp(expo))

118 }

119

77

120 Gram<-function(covariate ,kpara)

121 {

122 covariate=as.matrix(covariate)

123 nobs=nrow(covariate)

124 gram=matrix(0,nrow=nobs,ncol=nobs)

125 for(i in 1:nobs)

126 for(j in 1:nobs)

127 gram[i,j]=kernel(covariate[i,],covariate[j,],kpara)

128 return(gram)

129 }

130

131 ######## loss function without constraint:linear case#######

132 alpha_ij_update_2_c=function(k,i,j,lambda,gamma,covariate ,atrain,initial,

reward, score)

133 {

134 nobs=nrow(covariate)

135 ncov=ncol(covariate)

136 f=0

137 X=X.matrix.gen(covariate)

138 W=W.gen(k)

139 Amatrix=A.matrix.gen(k,atrain)

140 xinner=t(X[i,])%*%X[i,]

141 sum_w=t(W[j,])%*%W[j,]

142 denom=sum_w*xinner

143 alpha_initial=initial

144 A=0

145 for(q in 1:(k-1))

146 {

147 B1=rep(0,ncov+1)

148 B2=rep(0,ncov+1)

149 B3=rep(0,ncov+1)

150 B4=rep(0,ncov+1)

151 for(index_i in 1:nobs)

78 Chapter A. R Functions for FirstModel

152 {

153 if(reward[index_i]>=0)

154 {

155 B1=B1+alpha_initial[index_i,atrain[index_i]]*Amatrix[index_i,q]*X[

index_i,]

156 for(index_j in 1:k)

157 if(index_j!=atrain[index_i])

158 B3=B3+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

159 }

160 else

161 {

162 B2=B2+alpha_initial[index_i,atrain[index_i]]*Amatrix[index_i,q]*X[

index_i,]

163 for(index_j in 1:k)

164 if(index_j!=atrain[index_i])

165 B4=B4+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

166 }

167 }

168 if(reward[i]>=0)

169 {

170 if(j==atrain[i])

171 B1=B1-alpha_initial[i,atrain[i]]*Amatrix[i,q]*X[i,]

172 else

173 B3=B3-alpha_initial[i,j]*W[j,q]*X[i,]

174 }

175 else

176 {

177 if(j==atrain[i])

178 B2=B2-alpha_initial[i,atrain[i]]*Amatrix[i,q]*X[i,]

179 else

180 B4=B4-alpha_initial[i,j]*W[j,q]*X[i,]

181 }

182 B=B1-B2-B3+B4

79

183 f=0

184 for(index in 1:(ncov+1))

185 f=f+B[index]*X[i,index]

186 A=A+f*W[j,q]

187

188 }

189 if(reward[i]>=0)

190 {

191 if(j==atrain[i])

192 A=-A+nobs*lambda*(k-1)

193 else

194 A=A+nobs*lambda

195 }

196 else

197 {

198 if(j==atrain[i])

199 A=A+nobs*lambda*(k-1)

200 else

201 A=-A+nobs*lambda

202 }

203 new_alpha_ij=A/denom

204 omega=reward[i]/score[i]

205 c=0

206 if(j==atrain[i])

207 c=gamma*omega

208 else

209 c=(1-gamma)*omega

210 c=abs(c)

211 upper=c

212 if(new_alpha_ij>upper)

213 new_alpha_ij=upper

214 else if(new_alpha_ij<0)

215 new_alpha_ij=0

80 Chapter A. R Functions for FirstModel

216 alpha_initial[i,j]=new_alpha_ij

217 return(alpha_initial)

218 }

219

220 alpha_optim_c=function(k,lambda,gamma,covariate ,a.train,alpha_initial,

reward,score,maxiter=1000)

221 {

222 nobs=nrow(covariate)

223 t=0

224 #score=sapply(c(1:nobs),propensity_score,covariate=covariate ,a.train=a.

train,model=model)

225 pre_alpha=alpha_initial

226 iter_alpha=alpha_initial

227 while(t<=maxiter)

228 {

229 t=t+1

230 for(i in 1:nobs)

231 for(j in 1:k)

232 {

233 new_alpha=alpha_ij_update_2_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,reward,score)

234 iter_alpha=new_alpha

235 }

236 difference=sum(abs(pre_alpha-new_alpha))

237 if(difference <0.001*nobs*k)

238 {

239 alpha=new_alpha

240 break

241 }

242 else

243 {

244 pre_alpha=new_alpha

245 alpha=new_alpha

81

246 }

247 print(t)

248 }

249 return(alpha)

250 }

251

252 beta_q_alpha=function(k,q,covariate ,lambda,alpha,reward,a.train)

253 {

254 W=W.gen(k)

255 X=X.matrix.gen(covariate)

256 A.matrix=A.matrix.gen(k,a.train)

257 nobs=nrow(covariate)

258 A=0

259 B=0

260 C=0

261 D=0

262 index_pos=which(reward >=0)

263 index_neg=which(reward <0)

264 for(i in index_pos)

265 for(j in 1:k)

266 {

267 if(j==a.train[i])

268 A=A+alpha[i,j]*A.matrix[i,q]*X[i,]

269 else C=C+alpha[i,j]*W[j,q]*X[i,]

270 }

271 for(i in index_neg)

272 for(j in 1:k)

273 {

274 if(j==a.train[i])

275 B=B+alpha[i,j]*A.matrix[i,q]*X[i,]

276 else

277 D=D+alpha[i,j]*W[j,q]*X[i,]

278 }

82 Chapter A. R Functions for FirstModel

279 beta_q=(A-B-C+D)/(lambda*nobs)

280 return(beta_q)

281 }

282 #beta_q_alpha generates beta_q if the alpha has been found by the dual

problem

283 #beta_q is the coefficient vector in f_q(x) q is between 1 and k-1, length=

ncol(covariate)+1

284 #alpha stores the estimation of all alpha_ij, should be a matrix nrow=nobs,

ncol=k

285 #lambda is the tuning parameter ,scalar

286 #reward is the outcome, vector

287

288 beta_alpha=function(k,covariate ,lambda,alpha,reward,a.train)

289 {

290 beta=matrix(0,nrow=k-1,ncol=ncol(covariate)+1)

291 for(q in 1:k-1)

292 beta[q,]=beta_q_alpha(k,q,covariate ,lambda,alpha,reward,a.train)

293 return(beta)

294 }

295

296 ########### loss function without constraint:nonlinear case##########

297 alpha_ij_update_c=function(k,i,j, lambda, gamma,covariate , atrain,initial,

reward, score, kpara,gram)

298 {

299 nobs=nrow(covariate)

300 W=W.gen(k)

301 alpha_initial=initial

302 A=0

303 for(q in 1:(k-1))

304 {

305 B1=0

306 B2=0

307 B3=0

83

308 B4=0

309 C1=0

310 C2=0

311 C3=0

312 C4=0

313 for(index_i in 1:nobs)

314 {

315 if(reward[index_i]>=0)

316 {

317 B1=B1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

318 C1=C1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

319 for(index_j in 1:k)

320 if(index_j!=atrain[index_i])

321 {

322 B3=B3+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

323 C3=C3+alpha_initial[index_i,index_j]*W[index_j,q]

324 }

325 }

326 else

327 {

328 B2=B2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

329 C2=C2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

330 for(index_j in 1:k)

331 if(index_j!=atrain[index_i])

332 {

333 B4=B4+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

334 C4=C4+alpha_initial[index_i,index_j]*W[index_j,q]

335 }

336 }

84 Chapter A. R Functions for FirstModel

337 }

338 if(reward[i]>=0)

339 {

340 if(j==atrain[i])

341 {

342 B1=B1-alpha_initial[i,atrain[i]]*W[atrain[i],q]*gram[i,i]

343 C1=C1-alpha_initial[i,atrain[i]]*W[atrain[i],q]

344 }

345 else

346 {

347 B3=B3-alpha_initial[i,j]*W[j,q]*gram[i,i]

348 C3=C3-alpha_initial[i,j]*W[j,q]

349 }

350 }

351 else

352 {

353 if(j==atrain[i])

354 {

355 B2=B2-alpha_initial[i,atrain[i]]*W[atrain[i],q]*gram[i,i]

356 C2=C2-alpha_initial[i,atrain[i]]*W[atrain[i],q]

357 }

358 else

359 {

360 B4=B4-alpha_initial[i,j]*W[j,q]*gram[i,i]

361 C4=C4-alpha_initial[i,j]*W[j,q]

362 }

363 }

364 B=B1-B2-B3+B4

365 C=C1-C2-C3+C4

366 A=A+(B+C)*W[j,q]

367 }

368 if(reward[i]>=0)

369 {

85

370 if(j==atrain[i])

371 A=-A+nobs*lambda*(k-1)

372 else

373 A=A+nobs*lambda

374 }

375 else

376 {

377 if(j==atrain[i])

378 A=A+nobs*lambda*(k-1)

379 else

380 A=-A+nobs*lambda

381 }

382 new_alpha_ij=A/2

383 omega=reward[i]/score[i]

384 c=0

385 if(j==atrain[i])

386 c=gamma*omega

387 else

388 c=(1-gamma)*omega

389 c=abs(c)

390 upper=c

391 if(new_alpha_ij>upper)

392 new_alpha_ij=upper

393 else if(new_alpha_ij<0)

394 new_alpha_ij=0

395 alpha_initial[i,j]=new_alpha_ij

396 return (alpha_initial)

397 }

398

399

400 alpha_optim_c=function(k,lambda,gamma,covariate ,a.train,alpha_initial,

reward,score,kpara,maxiter=1000)

401 {

86 Chapter A. R Functions for FirstModel

402 nobs=nrow(covariate)

403 t=0

404 gram=Gram(covariate ,kpara)

405 #score=sapply(c(1:nobs),propensity_score,covariate=covariate ,a.train=a.

train,model=model)

406 pre_alpha=alpha_initial

407 iter_alpha=alpha_initial

408 while(t<=maxiter)

409 {

410 t=t+1

411 for(i in 1:nobs)

412 for(j in 1:k)

413 {

414 new_alpha=alpha_ij_update_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,reward,score,kpara,gram)

415 iter_alpha=new_alpha

416 }

417 diff=sum(abs(pre_alpha-new_alpha))

418 if(diff <0.0001*nobs*k)

419 {

420 alpha=new_alpha

421 break

422 }

423 else

424 {

425 pre_alpha=new_alpha

426 alpha=new_alpha

427 }

428 print(t)

429 }

430 return(alpha)

431 }

432

87

433 theta_q_0_alpha=function(k,q,covariate ,lambda,alpha,reward,a.train)

434 {

435 W=W.gen(k)

436 nobs=nrow(covariate)

437 A=0

438 B=0

439 C=0

440 D=0

441 index_pos=which(reward >=0)

442 index_neg=which(reward <0)

443 for (i in index_pos) {

444 for(j in 1:k)

445 {

446 if(j==a.train[i])

447 A=A+alpha[i,j]*W[j,q]

448 else

449 C=C+alpha[i,j]*W[j,q]

450 }

451 }

452 for(i in index_neg)

453 for(j in 1:k)

454 {

455 if(j==a.train[i])

456 B=B+alpha[i,j]*W[j,q]

457 else

458 D=D+alpha[i,j]*W[j,q]

459 }

460 theta_q_0=(A-B-C+D)/(lambda*nobs)

461 return(theta_q_0)

462 }

463

464 theta_q_alpha=function(k,q,covariate ,lambda,alpha,reward,a.train,kpara)

465 {

88 Chapter A. R Functions for FirstModel

466 W=W.gen(k)

467 gram=Gram(covariate ,kpara)

468 nobs=nrow(covariate)

469 A=0

470 B=0

471 C=0

472 D=0

473 index_pos=which(reward >=0)

474 index_neg=which(reward <0)

475 for(i in index_pos)

476 {

477 KKi=rep(0,nobs)

478 KKi[i]=1

479 for(j in 1:k)

480 {

481 if(j==a.train[i])

482 A=A+alpha[i,j]*W[j,q]*KKi

483 else

484 C=C+alpha[i,j]*W[j,q]*KKi

485 }

486 }

487 for(i in index_neg)

488 {

489 KKi=rep(0,nobs)

490 KKi[i]=1

491 for(j in 1:k)

492 {

493 if(j==a.train[i])

494 B=B+alpha[i,j]*W[j,q]*KKi

495 else

496 D=D+alpha[i,j]*W[j,q]*KKi

497 }

498 }

89

499 theta_q=(A-B-C+D)/(lambda*nobs)

500 return(theta_q)

501 }

502

503 theta_alpha=function(k,covariate ,lambda,alpha,reward,a.train,kpara)

504 {

505 theta=matrix(0,nrow=k-1,ncol=nrow(covariate)+1)

506 for(q in 1:(k-1))

507 theta[q,]=c(theta_q_0_alpha(k,q,covariate ,lambda,alpha,reward,a.train),

theta_q_alpha(k,q,covariate ,lambda,alpha,reward,a.train,kpara))

508 return(theta)

509 }

510

511 ##############loss function with constraint: linear case#############

512 alpha_ij_update_c=function(k,i,j,lambda,gamma,covariate , atrain,initial_

alpha,initial_lower,reward, v,score)

513 {

514 nobs=nobs(covariate)

515 ncov=ncol(covariate)

516 f=0

517 X=X.matrix.gen(covariate)

518 W=W.gen(k)

519 Amatrix=A.matrix.gen(k,atrain)

520 xi=X[i,]

521 xinner=t(X[i,]%*%X[i,]

522 sum_w=t(W[j,])%*%W[j,]

523 denom=sum_w*xinner

524 alpha_initial=initial_alpha

525 lower_initial=initial_lower

526 A=0

527 for(q in 1:(k-1))

528 {

529 B1=rep(0,ncov+1)

90 Chapter A. R Functions for FirstModel

530 B2=rep(0,ncov+1)

531 B3=rep(0,ncov+1)

532 B4=rep(0,ncov+1)

533 for(index_i in 1:nobs)

534 {

535 if(reward[index_i]>=0)

536 {

537 B1=B1+alpha_initial[index_i,atrain[index_i]]*Amatrix[index_i,q]*X[

index_i,]

538 for(index_j in 1:k)

539 if(index_j!=atrain[index_i])

540 B3=B3+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

541 }

542 else

543 {

544 B2=B2+alpha_initial[index_i,atrain[index_i]]*Amatrix[index_i,q]*X[

index_i,]

545 for(index_j in 1:k)

546 if(index_j!=atrain[index_i])

547 B4=B4+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

548 }

549 }

550 if(reward[i]>=0)

551 {

552 if(j==atrain[i])

553 B1=B1-alpha_initial[i,atrain[i]]*Amatrix[i,q]*X[i,]

554 else

555 B3=B3-alpha_initial[i,j]*W[j,q]*X[i,]

556 }

557 else

558 {

559 if(j==atrain[i])

560 B2=B2-alpha_initial[i,atrain[i]]*Amatrix[i,q]*X[i,]

91

561 else

562 B4=B4-alpha_initial[i,j]*W[j,q]*X[i,]

563 }

564 B=B1-B2-B3+B4

565 L=rep(0,ncov+1)

566 for(index_i in 1:nobs)

567 for(index_j in 1:k)

568 {

569 L=L+lower_initial[index_i,index_j]*v*W[index_j,q]*X[index_i,]

570 }

571 f=0

572 for(index in 1:(ncov+1))

573 f=f+(B+L)[index]*X[i,index]

574 A=A+f*W[j,q]

575 }

576 if(reward[i]>=0)

577 {

578 if(j==atrain[i])

579 A=-A+nobs*lambda*(k-1)

580 else

581 A=A+nobs*lambda

582 }

583 else

584 {

585 if(j==atrain[i])

586 A=A+nobs*lambda*(k-1)

587 else

588 A=-A+nobs*lambda

589 }

590 new_alpha_ij=A/denom;

591 omega=reward[i-1]/score[i-1]

592 c=0

593 if(j==atrain[i])

92 Chapter A. R Functions for FirstModel

594 c=gamma*omega

595 else

596 c=(1-gamma)*omega

597 c=abs(c)

598 upper=c-lower_initial[i,j]

599 if(new_alpha_ij>upper)

600 new_alpha_ij=upper

601 else if(new_alpha_ij<0)

602 new_alpha_ij=0

603 alpha_initial[i,j]=new_alpha_ij

604 return (alpha_initial)

605 }

606

607 lower_ij_update_c=function(k, i,j, lambda, gamma, covariate , atrain,

initial_alpha, initial_lower, reward,v, score)

608 {

609 nobs=nrow(covariate)

610 ncov=ncol(covariate)

611 X=X.matrix.gen(covariate)

612 W=W.gen(k)

613 xi=X[i,]

614 xinner=t(xi)%*%xi

615 sum_w=t(W[j,])%*%W[j,]

616 denom=sum_w*xinner*v*v

617 alpha_initial=initial_alpha

618 lower_initial=initial_lower

619 A=0

620 for(q in 1:(k-1))

621 {

622 B=rep(0,ncov+1)

623 C=rep(0,ncov+1)

624 D=rep(0,ncov+1)

625 E=rep(0,ncov+1)

93

626 L=rep(0,ncov+1)

627 for(index_i in 1:nobs)

628 {

629 for(index_j in 1:k)

630 {

631 if(index_j==atrain[index_i])

632 {

633 if(reward[index_i]>=0)

634 B=B+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

635 else

636 C=C+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

637 }

638 else

639 {

640 if(reward[index_i]>=0)

641 D=D+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

642 else

643 E=E+alpha_initial[index_i,index_j]*W[index_j,q]*X[index_i,]

644 }

645 if(index_i!=i || index_j!=j)

646 L=L+lower_initial[index_i,index_j]*v*W[index_j,q]*X[index_i,]

647 }

648 }

649 med=B-C-D+E+L

650 sum=0

651 for(index_j in 1:(ncov+1))

652 sum=sum+med[index_j-1]*X[i,index_j]

653 A=A+sum*W[j,q]*v

654 }

655 A=-A+nobs*lambda*v/(k-1)

656 new_lower_ij=A/denom

657 omega=reward[i-1]/score[i-1]

658 c=0

94 Chapter A. R Functions for FirstModel

659 if(j==atrain[i])

660 c=gamma*omega

661 else

662 c=(1-gamma)*omega

663 c=abs(c)

664 upper=c-alpha_initial(i-1,j-1)

665 if(new_lower_ij<0)

666 new_lower_ij=0

667 else if(new_lower_ij>upper)

668 new_lower_ij=upper

669 lower_initial[i,j]=new_lower_ij

670 return (lower_initial)

671 }

672

673 para_optim_c=function(k,lambda,gamma, covariate ,a.train,alpha_initial,lower

_initial,reward,v,score,maxiter=1000)

674 {

675 nobs=nrow(covariate)

676 t=0

677 # score=sapply(c(1:nobs),propensity_score,covariate=covariate ,a.train=a.

train,model=model)

678 pre_alpha=alpha_initial

679 iter_alpha=alpha_initial

680 pre_lower=lower_initial

681 iter_lower=lower_initial

682 while(t<=maxiter)

683 {

684 t=t+1

685 for(i in 1:nobs)

686 for(j in 1:k)

687 {

688 new_alpha=alpha_ij_update_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,iter_lower,reward,v,score)

95

689 iter_alpha=new_alpha

690 new_lower=lower_ij_update_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,iter_lower,reward,v,score)

691 iter_lower=new_lower

692 }

693 difference1=sum(abs(pre_alpha-new_alpha))

694 difference3=sum(abs(pre_lower-new_lower))

695 sum_difference=difference1+difference3

696 if(sum_difference <0.0001*2*nobs*k)

697 {

698 alpha=new_alpha

699 lower=new_lower

700 break

701 }

702 else

703 {

704 pre_alpha=new_alpha

705 alpha=new_alpha

706 pre_lower=new_lower

707 lower=new_lower

708 }

709

710 }

711 return(list(alpha,lower))

712 }

713

714 beta_q_para=function(k,q,covariate ,lambda,alpha,lower,reward,v,a.train)

715 {

716 W=W.gen(k)

717 X=X.matrix.gen(covariate)

718 A.matrix=A.matrix.gen(k,a.train)

719 nobs=nrow(covariate)

720 A=0

96 Chapter A. R Functions for FirstModel

721 B=0

722 C=0

723 D=0

724 L=0

725 index_pos=which(reward >=0)

726 index_neg=which(reward <0)

727 for(i in index_pos)

728 for(j in 1:k)

729 {

730 if(j==a.train[i])

731 A=A+alpha[i,j]*A.matrix[i,q]*X[i,]

732 else C=C+alpha[i,j]*W[j,q]*X[i,]

733 }

734 for(i in index_neg)

735 for(j in 1:k)

736 {

737 if(j==a.train[i])

738 B=B+alpha[i,j]*A.matrix[i,q]*X[i,]

739 else

740 D=D+alpha[i,j]*W[j,q]*X[i,]

741 }

742 for(i in 1:nobs)

743 for(j in 1:k)

744 {

745 L=L+lower[i,j]*v*W[j,q]*X[i,]

746 }

747

748 beta_q=(A-B-C+D+L)/(lambda*nobs)

749 return(beta_q)

750 }

751

752 beta_alpha=function(k,covariate ,lambda,alpha,lower,reward,v,a.train)

753 {

97

754 beta=matrix(0,nrow=k-1,ncol=ncol(covariate)+1)

755 for(q in 1:k-1)

756 beta[q,]=beta_q_para(k,q,covariate ,lambda,alpha,lower,reward,v,a.train)

757 return(beta)

758 }

759

760 ##############loss function with constraint:nonlinear case###########

761 alpha_ij_update_c=function(k,i,j,lambda,gamma,covariate ,atrain, initial_

alpha,initial_lower,reward,v, score,kpara,gram)

762 {

763 nobs=nrow(covariate)

764 W=W.gen(k)

765 alpha_initial=initial_alpha

766 lower_initial=initial_lower

767 A=0

768 for(q in 1:(k-1))

769 {

770 B1=0

771 B2=0

772 B3=0

773 B4=0

774 C1=0

775 C2=0

776 C3=0

777 C4=0

778 EB=0

779 EC=0

780 for(index_i in 1:nobs)

781 {

782 if(reward[index_i]>=0)

783 {

784 B1=B1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

98 Chapter A. R Functions for FirstModel

785 C1=C1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

786 for(index_j in 1:k)

787 {

788 EB=EB+lower_initial[index_i,index_j]*v*W[index_j,q]*gram[index_i,

i]

789 EC=EC+lower_initial[index_i,index_j]*v*W[index_j,q]

790 if(index_j!=atrain[index_i])

791 {

792 B3=B3+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

793 C3=C3+alpha_initial[index_i,index_j]*W[index_j,q]

794 }

795 }

796 }

797 else

798 {

799 B2=B2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

800 C2=C2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

801 for(index_j in 1:k)

802 {

803 EB=EB+lower_initial[index_i,index_j]*v*W[index_j,q]*gram[index_i,

i]

804 EC=EC+lower_initial[index_i,index_j]*v*W[index_j,q]

805 if(index_j!=atrain[index_i])

806 {

807 B4=B4+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

808 C4=C4+alpha_initial[index_i,index_j]*W[index_j,q]

809 }

810 }

811 }

812 }

99

813 if(reward[i]>=0)

814 {

815 if(j==atrain[i])

816 {

817 B1=B1-alpha_initial[i,atrain[i]]*W[atrain[i],q]*gram[i,i]

818 C1=C1-alpha_initial[i,atrain[i]]*W[atrain[i],q]

819 }

820 else

821 {

822 B3=B3-alpha_initial[i,j]*W[j,q]*gram[i,i]

823 C3=C3-alpha_initial[i,j]*W[j,q]

824 }

825 }

826 else

827 {

828 if(j==atrain[i])

829 {

830 B2=B2-alpha_initial[i,atrain[i]]*W[atrain[i],q]*gram[i,i]

831 C2=C2-alpha_initial[i,atrain[i]]*W[atrain[i],q]

832 }

833 else

834 {

835 B4=B4-alpha_initial[i,j]*W[j,q]*gram[i,i]

836 C4=C4-alpha_initial[i,j]*W[j,q]

837 }

838 }

839 B=B1-B2-B3+B4+EB

840 C=C1-C2-C3+C4+EC

841 A=A+(B+C)*W[j,q]

842 }

843 if(reward[i]>=0)

844 {

845 if(j==atrain[i])

100 Chapter A. R Functions for FirstModel

846 A=-A+nobs*lambda*(k-1)

847 else

848 A=A+nobs*lambda

849 }

850 else

851 {

852 if(j==atrain[i])

853 A=A+nobs*lambda*(k-1)

854 else

855 A=-A+nobs*lambda

856 }

857 new_alpha_ij=A/2

858 omega=reward[i]/score[i]

859 c=0

860 if(j==atrain[i])

861 c=gamma*omega

862 else

863 c=(1-gamma)*omega

864 c=abs(c)

865 upper=c-lower_initial[i,j]

866 if(new_alpha_ij>upper)

867 new_alpha_ij=upper

868 else if(new_alpha_ij<0)

869 new_alpha_ij=0

870 alpha_initial[i,j]=new_alpha_ij

871 return (alpha_initial)

872 }

873

874 lower_ij_update_c=function(k,i,j,lambda,gamma,covariate ,atrain,initial_

alpha,initial_lower,reward,v,score,kpara,gram)

875 {

876 nobs=nrow(covariate)

877 W=W.gen(k)

101

878 alpha_initial=initial_alpha

879 lower_initial=initial_lower

880 A=0

881 for(q in 1:(k-1))

882 {

883 B1=0

884 B2=0

885 B3=0

886 B4=0

887 C1=0

888 C2=0

889 C3=0

890 C4=0

891 EB=0

892 EC=0

893 for(index_i in 1:nobs)

894 {

895 if(reward[index_i]>=0)

896 {

897 B1=B1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

898 C1=C1+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

899 for(index_j in 1:k)

900 {

901 EB=EB+lower_initial[index_i,index_j]*v*W[index_j,q]*gram[index_i,

i]

902 EC=EC+lower_initial[index_i,index_j]*v*W[index_j,q]

903 if(index_j!=atrain[index_i])

904 {

905 B3=B3+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

906 C3=C3+alpha_initial[index_i,index_j]*W[index_j,q]

907 }

102 Chapter A. R Functions for FirstModel

908 }

909 }

910 else

911 {

912 B2=B2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]*

gram[index_i,i]

913 C2=C2+alpha_initial[index_i,atrain[index_i]]*W[atrain[index_i],q]

914 for(index_j in 1:k)

915 {

916 EB=EB+lower_initial[index_i,index_j]*v*W[index_j,q]*gram[index_i,

i]

917 EC=EC+lower_initial[index_i,index_j]*v*W[index_j,q]

918 if(index_j!=atrain[index_i])

919 {

920 B4=B4+alpha_initial[index_i,index_j]*W[index_j,q]*gram[index_i,

i]

921 C4=C4+alpha_initial[index_i,index_j]*W[index_j,q]

922 }

923 }

924 }

925 }

926 EB=EB-lower_initial[i,j]*v*W[j,q]*gram[i,i]

927 EC=EC-lower_initial[i,j]*v*W[j,q]

928 B=B1-B2-B3+B4+EB

929 C=C1-C2-C3+C4+EC

930 A=A+(B+C)*W[j,q]*v

931 }

932 A=-A-v*nobs*lambda/(k-1)

933 new_lower_ij=A/(2*v*v)

934 omega=reward[i]/score[i]

935 c=0

936 if(j==atrain[i])

937 c=gamma*omega

103

938 else

939 c=(1-gamma)*omega

940 c=abs(c)

941 upper=c-alpha_initial[i,j]

942 if(new_lower_ij>upper)

943 new_lower_ij=upper

944 else if(new_lower_ij<0)

945 new_lower_ij=0

946 lower_initial[i,j]=new_lower_ij

947 return (lower_initial)

948 }

949

950 para_optim_c=function(k,lambda,gamma,kpara,covariate ,a.train,alpha_initial,

lower_initial,reward,v,score,maxiter=1000)

951 {

952 nobs=nrow(covariate)

953 t=0

954 gram=Gram(covariate ,kpara)

955 #score=sapply(c(1:nobs),propensity_score,covariate=covariate ,a.train=a.

train,model=model)

956 pre_alpha=alpha_initial

957 iter_alpha=alpha_initial

958 pre_lower=lower_initial

959 iter_lower=lower_initial

960 while(t<=maxiter)

961 {

962 t=t+1

963 for(i in 1:nobs)

964 for(j in 1:k)

965 {

966 new_alpha=alpha_ij_update_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,iter_lower,reward,v,score,kpara,gram)

967 iter_alpha=new_alpha

104 Chapter A. R Functions for FirstModel

968 new_lower=lower_ij_update_c(k,i,j,lambda,gamma,covariate ,a.train,

iter_alpha,iter_lower,reward,v,score,kpara,gram)

969 iter_lower=new_lower

970 }

971 difference1=sum(abs(pre_alpha-new_alpha))

972 difference3=sum(abs(pre_lower-new_lower))

973 sum_difference=difference1+difference3

974 if(sum_difference <0.0001*2*nobs*k)

975 {

976 alpha=new_alpha

977 lower=new_lower

978 break

979 }

980 else

981 {

982 pre_alpha=new_alpha

983 alpha=new_alpha

984 pre_lower=new_lower

985 lower=new_lower

986 }

987 }

988 return(list(alpha,lower))

989 }

990

991 theta_q_0_para=function(k,q,covariate ,lambda,alpha,lower,reward,a.train,v)

992 {

993 W=W.gen(k)

994 nobs=nrow(covariate)

995 A=0

996 B=0

997 C=0

998 D=0

999 E=0

105

1000 index_pos=which(reward >=0)

1001 index_neg=which(reward <0)

1002 for (i in index_pos) {

1003 for(j in 1:k)

1004 {

1005 if(j==a.train[i])

1006 A=A+alpha[i,j]*W[j,q]

1007 else

1008 C=C+alpha[i,j]*W[j,q]

1009 }

1010 }

1011 for(i in index_neg)

1012 for(j in 1:k)

1013 {

1014 if(j==a.train[i])

1015 B=B+alpha[i,j]*W[j,q]

1016 else

1017 D=D+alpha[i,j]*W[j,q]

1018 }

1019 for(i in 1:nobs)

1020 for(j in 1:k)

1021 E=E+lower[i,j]*v*W[j,q]

1022 theta_q_0=(A-B-C+D+E)/(lambda*nobs)

1023 return(theta_q_0)

1024 }

1025

1026 theta_q_para=function(k,q,covariate ,lambda,alpha,lower,reward,a.train,v,

kpara)

1027 {

1028 W=W.gen(k)

1029 #gram=Gram(covariate ,kpara)

1030 nobs=nrow(covariate)

1031 A=0

106 Chapter A. R Functions for FirstModel

1032 B=0

1033 C=0

1034 D=0

1035 E=0

1036 index_pos=which(reward >=0)

1037 index_neg=which(reward <0)

1038 for(i in index_pos)

1039 {

1040 KKi=rep(0,nobs)

1041 KKi[i]=1

1042 for(j in 1:k)

1043 {

1044 E=E+lower[i,j]*v*W[j,q]*KKi

1045 if(j==a.train[i])

1046 A=A+alpha[i,j]*W[j,q]*KKi

1047 else

1048 C=C+alpha[i,j]*W[j,q]*KKi

1049 }

1050 }

1051 for(i in index_neg)

1052 {

1053 KKi=rep(0,nobs)

1054 KKi[i]=1

1055 for(j in 1:k)

1056 {

1057 E=E+lower[i,j]*W[j,q]*v*KKi

1058 if(j==a.train[i])

1059 B=B+alpha[i,j]*W[j,q]*KKi

1060 else

1061 D=D+alpha[i,j]*W[j,q]*KKi

1062 }

1063 }

1064 theta_q=(A-B-C+D+E)/(lambda*nobs)

107

1065 return(theta_q)

1066 }

1067

1068 theta_para=function(k,covariate ,lambda,alpha,lower,reward,a.train,v,kpara)

1069 {

1070 covariate=as.matrix(covariate)

1071 theta=matrix(0,nrow=k-1,ncol=nrow(covariate)+1)

1072 for(q in 1:(k-1))

1073 theta[q,]=c(theta_q_0_para(k,q,covariate ,lambda,alpha,lower,reward,a.

train,v),theta_q_para(k,q,covariate ,lambda,alpha,lower,reward,a.train,v

,kpara))

1074 return(theta)

1075 }

Appendix B

Python Functions for Second Model

1 import pandas as pd

2 import tensorflow as tf

3 import numpy as np

4 import math

5 from sklearn import linear_model

6 from sklearn import metrics

7 from sklearn.ensemble import RandomForestRegressor

8 import statsmodels.api as sm

9 from sklearn.model_selection import train_test_split

10 from sklearn.preprocessing import LabelBinarizer

11 from functools import reduce

12 from sklearn.linear_model import LinearRegression

13 import random

14 from random import sample

15

16 def tf_kron_prod(a, b):

17 res = tf.einsum(’ij,ik->ijk’, a, b)

18 res = tf.reshape(res,[res.shape[0],tf.reduce_prod(res.shape[1:])])

19 return res

20

21 def tf_bin(x, cut_points , temperature=0.1):

108

109

22 D = cut_points.get_shape().as_list()[0]

23 W = tf.reshape(tf.linspace(1.0, D + 1.0, D + 1), [1, -1])

24 cut_points = tf.contrib.framework.sort(cut_points)

25 b = tf.cumsum(tf.concat([tf.constant(0.0, shape=[1]), -cut_points], 0))

26 h = tf.matmul(x, W) + b

27 res = tf.nn.softmax(h / temperature)

28 return res

29

30 def nn_decision_tree(x, cut_points_list , leaf_score , leaf_bias , temperature

=0.1):

31 leaf = reduce(tf_kron_prod ,map(lambda z: tf_bin(x[:, z[0]:z[0] + 1], z

[1], temperature), enumerate(cut_points_list)))

32 h=tf.matmul(leaf, leaf_score)+leaf_bias

33 return tf.nn.softmax(h)

34

35 def tree_construction(k,d,ncut,index,cut_points_list ,train_predict ,

train_A_opt ,train_covariate):

36 cutpoints = np.zeros(shape=(d, ncut))

37 for i in range(d): # record all trained cutting points

38 cutpoints[i] = cut_points_list[i].eval() # the order is consistent

with index[k:]

39 comptree = [] # recording node

40 index_comptree = [] # recording observations in each node

41 nlayer = 0

42 end = 0

43 comptree_layer = []

44 # reconstruct tree

45 while (end == 0):

46 if nlayer == 0:

47 v = np.mean(train_predict != train_A_opt)

48 vbase = 2

49 for i in range(d):

50 for j in range(ncut):

110 Chapter B. Python Functions for SecondModel

51 index1 = train_covariate[:, index[i + k] - k] <

cutpoints[i, j]

52 index2 = train_covariate[:, index[i + k] - k] >=

cutpoints[i, j]

53 v1 = np.mean(train_predict[index1] != train_A_opt[

index1])

54 v2 = np.mean(train_predict[index2] != train_A_opt[

index2])

55 if v1 + v2 < vbase:

56 index_left = index1

57 index_right = index2

58 vbase = v1 + v2

59 index_i = index[i + k] - k

60 index_j = cutpoints[i, j]

61 index_comptree.append([np.arange(ntrain)[index_left], np.arange

(ntrain)[index_right]])

62 comptree.append([index_i, index_j])

63 else:

64 index_comptree_layer = []

65 comptree_layer = []

66 for node in range(pow(2, nlayer)):

67 if comptree[nlayer - 1][2 * int(node / 2) + 1] == False:

68 comptree_layer.extend([False, False])

69 index_comptree_layer.extend([index_comptree[nlayer -

1][node], index_comptree[nlayer - 1][node]])

70 continue

71 vbase = 2

72 sample_index = index_comptree[nlayer - 1][node]

73 v = np.mean(train_predict[sample_index] != train_A_opt[

sample_index])

74 if len(set(train_predict[sample_index])) == 1:

75 comptree_layer.extend([False, False])

76 index_comptree_layer.extend([sample_index , sample_index

111

])

77 continue

78 indicator = []

79 t = node

80 layer_index = nlayer

81 while (t >= 0):

82 if t == 0 and layer_index == 0:

83 break

84 layer_index = layer_index - 1

85 indicator.append(comptree[layer_index][int(t / 2) * 2:(int(

t / 2) * 2 + 2)])

86 t = int(t / 2)

87 if (np.array(indicator).shape[0] >= d * ncut):

88 comptree_layer.extend([False, False])

89 index_comptree_layer.extend([sample_index , sample_index

])

90 continue

91 sample_covariate = train_covariate[sample_index , :]

92 sample_predict = train_predict[sample_index]

93 sample_true = train_A_opt[sample_index]

94 sample_weight = train_weight[sample_index]

95 for i in range(d):

96 for j in range(ncut):

97 if [index[i + k] - k, cutpoints[i, j]] in indicator

:

98 continue

99 index1 = sample_covariate[:, index[i + k] - k] <

cutpoints[i, j]

100 index2 = sample_covariate[:, index[i + k] - k] >=

cutpoints[i, j]

101 if np.sum(index1) == 0 or np.sum(index2) == 0:

102 indicator.append([index[i + k] - k, cutpoints[i

, j]])

112 Chapter B. Python Functions for SecondModel

103 continue

104 v1 = np.mean(sample_predict[index1] != sample_true[

index1])

105 v2 = np.mean(sample_predict[index2] != sample_true[

index2])

106 if v1 + v2 < vbase:

107 index_left = sample_index[index1]

108 index_right = sample_index[index2]

109 vbase = v1 + v2

110 index_i = index[i + k] - k

111 index_j = cutpoints[i, j]

112 if (np.array(indicator).shape[0] >= d * ncut):

113 comptree_layer.extend([False, False])

114 index_comptree_layer.extend([sample_index , sample_index

])

115 continue

116 else:

117 index_comptree_layer.extend([index_left , index_right])

118 comptree_layer.extend([index_i, index_j])

119 index_comptree.append(index_comptree_layer)

120 comptree.append(comptree_layer)

121 if np.sum(comptree_layer) == 0 and nlayer != 0:

122 end = 1

123 else:

124 nlayer = nlayer + 1

125 return [nlayer, comptree,index_comptree]

126

127 def pred_adjust(k,nlayer,comptree ,index_comptree ,train_predict):

128 ntrain=train_predict.size

129 train_predict_adjust = np.zeros(ntrain)

130 for i in range(pow(2, nlayer)):

131 s = np.zeros(k)

132 obs_index = index_comptree[nlayer - 1][i]

113

133 for j in range(k):

134 s[j] = np.sum(train_predict[obs_index] == (j + 1))

135 train_predict_adjust[obs_index] = np.argmax(s) + 1

136 return train_predict_adjust

137

138 def tree_pruning(nlayer,comtree,index_comptree ,train_predict_adjust ,eta

=0.05):

139 layer_index = nlayer - 1

140 while (layer_index >= 0):

141 for i in range(pow(2, layer_index)):

142 if comptree[layer_index + 1][4 * i + 1] != False or comptree[

layer_index + 1][4 * i + 3] != False:

143 continue

144 trt_left = list(set(train_predict_adjust[index_comptree[

layer_index][2 * i]]))

145 trt_right = list(set(train_predict_adjust[index_comptree[

layer_index][2 * i + 1]]))

146 if trt_left == trt_right:

147 comptree[layer_index][2 * i] = False

148 comptree[layer_index][2 * i + 1] = False

149 new = list(index_comptree[layer_index][2 * i]) + list(

index_comptree[layer_index][2 * i + 1])

150 index_comptree[layer_index][2 * i] = np.array(new)

151 index_comptree[layer_index][2 * i + 1] = np.array(new)

152 continue

153 shape1 = index_comptree[layer_index][2 * i].shape[0]

154 shape2 = index_comptree[layer_index][2 * i + 1].shape[0]

155 left = np.repeat(trt_left[0], shape1 + shape2)

156 right = np.repeat(trt_right[0], shape1 + shape2)

157 new = list(index_comptree[layer_index][2 * i]) + list(

index_comptree[layer_index][2 * i + 1])

158 new = np.array(new)

159 # miserror1=np.mean(train_predict_adjust[new]!=train_A_opt[new

114 Chapter B. Python Functions for SecondModel

])

160 # miserror_left=np.mean(left!=train_A_opt[new])

161 # miserror_right=np.mean(right!=train_A_opt[new])

162 miserror1 = np.average(train_predict_adjust[new] != train_A_obs

[new],

163 weights=np.reshape(train_weight[new],

newshape=new.shape[0]))

164 miserror_left = np.average(left != train_A_obs[new],

165 weights=np.reshape(train_weight[new

], newshape=new.shape[0]))

166 miserror_right = np.average(right != train_A_obs[new],

167 weights=np.reshape(train_weight[new

], newshape=new.shape[0]))

168 if miserror_left < miserror_right and miserror_left < miserror1

+ eta:

169 comptree[layer_index][2 * i] = False

170 comptree[layer_index][2 * i + 1] = False

171 index_comptree[layer_index][2 * i] = new

172 index_comptree[layer_index][2 * i + 1] = new

173 train_predict_adjust[new] = left

174 continue

175 elif miserror_right < miserror_left and miserror_right <

miserror1 + eta:

176 comptree[layer_index][2 * i] = False

177 comptree[layer_index][2 * i + 1] = False

178 index_comptree[layer_index][2 * i] = new

179 index_comptree[layer_index][2 * i + 1] = new

180 train_predict_adjust[new] = right

181 continue

182 layer_index = layer_index - 1

183 return [comptree, index_comptree ,train_predict_adjust]

184

185 def prediction(comptree_pred , index_comptree_pred , train_result , covariate)

115

:

186 layer_index_pred = 0

187 node_index = 0

188 while (comptree_pred[layer_index_pred][2 * node_index + 1] != False

):

189 feature_index = comptree_pred[layer_index_pred][2 * node_index]

190 cut_index = comptree_pred[layer_index_pred][2 * node_index + 1]

191

192 if covariate[feature_index] < cut_index:

193 node_index = 2 * node_index

194 else:

195 node_index = 2 * node_index + 1

196

197 layer_index_pred = layer_index_pred + 1

198

199 test_result = list(set(train_result[index_comptree_pred[

layer_index_pred - 1][node_index]]))[0]

200 return test_result

201

202 d=index.shape[0]-k #the number of selected features

203 ncut=1#the number of cutting points per feature

204 num_cut=np.repeat(ncut,d)

205 num_leaf = np.prod(np.array(num_cut) + 1)

206 num_class=k

207

208 # network architecture

209 sess = tf.InteractiveSession()

210

211 x_ph = tf.placeholder(tf.float32, [ntrain, d])

212 y_ph = tf.placeholder(tf.float32, [ntrain, num_class])

213 w_ph = tf.placeholder(tf.float32, [ntrain ,1])

214

215 cut_points_list = [tf.Variable(tf.random_uniform([i])) for i in num_cut]

116 Chapter B. Python Functions for SecondModel

216 leaf_score = tf.Variable(tf.random_uniform([num_leaf , num_class]))

217 leaf_bias = tf.Variable(tf.random_uniform([1,num_class]))

218

219 y_pred = nn_decision_tree(x_ph, cut_points_list , leaf_score , leaf_bias ,

temperature=0.1)

220 loss=tf.losses.mean_squared_error(y_ph,y_pred,weights=w_ph)

221 opt=tf.train.AdadeltaOptimizer(0.2)

222 train_step = opt.minimize(loss)

Curriculum Vitae

Name: Junwei Shen

Post-Secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: 2018 - 2020 Thesis Based - MSc in Statistics

Sichuan University
Chengdu, Sichuan, China
2014 - 2018 BSc in Mathematics and Applied Mathematics

Related Work Teaching Assistant
Experience: The University of Western Ontario

2017 - Present

117

	Classification-based method for estimating dynamic treatment regimes
	Recommended Citation

	Abstract
	Lay Summary
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Dynamic treatment regimes
	Potential outcomes framework
	Review of reinforcement learning
	Review of indirect methods
	Q-learning
	G-estimation in structural nested mean model

	Review of direct methods
	Inverse probability weighting
	Outcome weighted learning

	Objectives and organization

	Multicategory Outcome Weighted Learning
	Introduction
	Notation and framework
	Method framework
	Single stage
	Fisher consistency
	Computation details

	Multi-stage

	Numerical investigation
	Simulation study
	Application to STAR*D study

	Conclusion
	Appendix

	Dynamic Treatment Regimes based on Neural Classification Tree
	Introduction
	Literature review
	Neural network
	Classification tree

	Neural network architecture for the DTR
	Tree reconstruction and pruning
	Numerical investigation
	Simulation study
	Application to STAR*D study

	Conclusion

	Conclusion
	Bibliography
	R Functions for First Model
	Python Functions for Second Model
	Curriculum Vitae

