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Abstract

The provision in Paragraph 468 of Basel II Framework Document for calculating

loss given default (LGD) requires that parameters used in Pillar I of Basel II capital

estimations must be reflective of economic downturn conditions so that relevant risks

are accounted for. This provision is based on the fact that the probability of default

(PD) and LGD correlations are not captured in the proposed formula for estimating

economic capital. To help quantify economic downturn LGD, the Basel Committee

proposed establishing a functional relationship between long-run and downturn LGD.

To the best of our knowledge, the current proposed models that map out this

relationship have the same underlying framework. This thesis presents a general

factor PD-LGD correlation model within the conditional independence framework,

where obligors’ defaults are conditional on a common state of affairs in the economy.

We highlight a mistake that is frequently made in specifying loss given default, which

is, current studies ignore the difference between account-level potential loss and LGD.

By correcting this mistake and deriving the correct distribution of potential loss

and LGD, sensitivity analysis is conducted to ascertain the impact of the defective

model on economic capital and parameter estimates. The relationship between the

account and portfolio level correlations are explored. Finally, an empirical analysis is

conducted to validate the proposed estimation scheme of parameters in the model.

Keywords: PD-LGD correlation, potential loss, realized loss, systematic and

idiosyncratic risk factors, economic and regulatory capital.
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Summary For Lay Audience

When Banks issue loans, they are required to set aside some funds to protect the

credit issued in case of default. These funds are termed economic capital. It is im-

perative that the funds set aside adequately protect these positions even in stressful

economic conditions. Knowing the right amount of money for this purpose is a con-

cern. Financial Regulators require that the parameters used in estimating economic

capital are reflective of bad economic conditions, however, the formula presented in

their document does not reflect this. We have shown that existing proposed methods

to address this are defective, which implies that the empirical findings based on these

methods will be flawed as well. This flaw is fixed and exploratory work conducted.
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Terms, Acronyms, and Symbols

• Account-level Quantities Quantities relating to a single representative bor-

rower on a portfolio.

• Default Rate The frequency of default on an entire portfolio within a given

planning horizon.

• Exposure at Default EAD Loan exposure to a borrower at the time of default

within a given planning horizon.

• Economic Capital EC Amount of funds needed to remain solvent within a

given planning horizon.

• Loss Given Default LGD The amount of (or percentage) loss on a loan’s

exposure in the event of default within a given planning horizon.

• Probability of Default PD The likelihood of a borrower’s default within a

given planning horizon.

• Potential Loss Possible future loss on the portfolio within a given planning

horizon.

• Realized Loss Actualized loss on an exposure within a given planning horizon.

• Portfolio-Level Quantities Quantities relating to an entire portfolio.
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• EL Expected Loss.

• TTC Through The Cycle.

• UL Unexpected Loss.

• VaR Value at Risk.

• ADRp Asymptotic Portfolio-Level Default Rate.

• ALGDp Asymptotic Portfolio-Level Loss Given Default.

• ARLp Asymptotic Portfolio-Level Realized Loss.

• DRp Finite Portfolio-Level Default Rate.

• D Default Indicator.

• L Account-Level Loss Variable.

• Lp Portfolio-Level Loss Variable.

• LGDA Expected Value of Account-Level Loss Given Default.

• LGD(2)
A Account-Level Joint Loss Given Default.

• LGDp Finite Portfolio-Level Loss Given Default.

• M Maturity.

• PL Potential Loss.

• RL Realized Loss.

• RLp Finite Portfolio-Level Realized Loss.

• α Dependence Parameter for Default Driver.

• β Dependence Parameter for Loss Driver.
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• c Confidence Level.

• θI Correlation between Idiosyncratic Risk Drivers.

• θS Correlation between Systematic Risk Drivers.

• ρA Correlation between Default and Loss Drivers.

• ρp Correlation between Portfolio-Level Default Rate and Loss Given Default.
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Chapter 1

Introduction

1.1 Motivation

The cacophony associated with the 2007/2008 global financial crisis has triggered the

revision of existing rules and regulations by international financial regulators — with

the Basel Committee on Banking Supervision (BCBS) being the lead crusader [22, 90].

The changes in these rules and regulations are to bring a “sanctity” and “sanity”

check to the financial community. The attempt to fix the grossly exposed deficiencies

in the then existing financial rules and regulations by the crises resulted in putting

forward the third Basel Accord (also known as Basel III). The guidelines presented

in Basel III strengthen global capital and liquidity rules with the aim of promoting

a banking sector that can withstand financial and economic stress. The underlying

principle is to provide regulations that will help cushion the banking sector against

shocks originating from stressful economic conditions [23]. The framework provided

by Basel III does not supersede that provided by Basel II, thus the shortfalls inherent

in Basel II are worth noting.

1



The focus of Basel II is the implementation of risk management principles rooted

in three pillars: Minimum capital requirements, Supervisory review process, and Mar-

ket discipline. The central theme of this thesis deals with minimum capital require-

ments calculated for credit risk — one of the three major risk components banks are

faced with (the others are market and operational risk) [20]. Credit risk is the risk of

one party under financial contractual obligation to renege.

The calculation of the capital requirement and accordingly economic capital

involves the estimation of five risk parameters: The exposure at default (EAD) —

the loan’s exposure to borrowers at the time of default, probability of default (PD)

— likelihood of default over a given period of time, loss given default (LGD) — the

amount (or percentage) of money a bank expects to loose on a loan’s exposure in the

event of default, maturity (M) and correlations (ρ). The estimation of the parame-

ters needed as inputs for estimating EAD, PD, and LGD, and their dependencies is

a vital task. For instance, Credit Value at Risk is highly sensitive to the correlations

between PDs and LGDs, therefore correlation modelling is a major factor in credit

risk modelling [17–20, 23]. Basel II empowers banks to use different approaches to

computing regulatory capital (or capital requirement). The internal ratings-based

(IRB) approach, which is subject to supervisory review, allows banks to calculate

their own risk parameters after meeting some minimum requirements or guidelines.

The approaches for IRB takes two forms: The foundation approach, where banks

can calculate their own probability of default (PD) parameter while other risk pa-

rameters are furnished by the bank’s national supervisors. Advanced IRB permits

banks to rely on their own risk assessments of their counterparties and associated

exposures to arrive at capital requirements. In these approaches, the account-level
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capital requirement (CR) is calculated as (see [20], paragraph 271-272)

CR = EAD ·LGD ·

[
Φ

(
Φ−1(PD) + ρ(PD) · Φ−1(0.999)√

1− ρ(PD)2

)
− PD

]
·AF (PD,MAT ),

(1.1)

where AF (PD,MAT ) is an adjustment factor dependent on PD and effective matu-

rity MAT , ρ(PD) is the correlation parameter expressed as a function of PD, Φ is

the standard normal cumulative distribution and Φ−1 is its inverse. For a comprehen-

sive note on the theory behind Eq. (1.1), see [32, 60]. Accurate estimation of capital

requirement depends on accurate description of the loss distribution, which is very

much dependent on the account-level correlation between PDs (default correlation

between obliogrs), LGDs (LGD correlation between obliogrs), and PD and LGD.

The expression for capital requirement (Eq. (1.1)) does not account for PD-LGD

correlations in that the Vasicek model used to derive this formula does not capture

systematic correlation between PD and LGD [87]. To address this, the provision in

paragraph 468 of [20] requires that the parameters for capital estimation are reflective

of downturn economic conditions. This establishes the link between defaults and LGD

over a complete economic cycle.

This thesis focuses on modelling of portfolio-level co-movements of PD and LGD,

which is vital to credit risk assessment. We looked at, among others, the role of the

correlation between the systematic and idiosyncratic risk drivers of portfolio defaults

and losses on the correlation between PD and LGD within conditional independent

framework, where obligors’ defaults are conditional on common set of latent variables.
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1.2 Literature

The severity of estimation errors of the risk parameters, EAD, PD and LGD and

their dependencies on operations of banks, especially, their solvency in the advent of

severe distress economic condition can not be overemphasized. The freedom accorded

banks in the Basel II framework to quantifying these risk parameters renders the

effect of model choice on the estimate of these parameters uncertain. The effect of

(un)observable market-wide (systematic) risk factors on defaults and losses — either

static or dynamic (see for example [30, 35, 41] and [77]) — has been a motivating

factor for research on economic downturn effect on dependency of risk parameters.

Even though EAD estimates form a vital component of risk capital calculation,

empirical studies and estimation schemes for EAD is scanty. Most of these papers

focus on corporate loans (for example [11, 12, 14, 63] and [64]). These papers examined

floating rate corporates bond performance in the US, factors that influence credit lines

usage, among others. Other papers such as [2, 15, 79] and [85] focus on retail loans.

In particular, proposed estimation schemes can be found in [58, 69] and [85].

Modelling default correlations among obligors on a bank’s portfolio is vital to

the accurate measurement of capital requirement. Generally, two modelling direc-

tions are followed in evaluating default correlations — correlated Brownian motion,

where default correlations between obligors are directly modelled under assumption of

multidimensional correlated Brownian motion for the firm’s assets value falling below

or at some exogenously prespecified level (examples,[73, 89]), and by obligors’ expo-

sure to systematic (common) risk factors (examples, CreditRisk+ by Credit Suisse

Financial Products and CreditPortfolioView by Mckinsey & Company). Overview of

these credit models are respectively found in [28] and [36]. Pillar I of Basel II capital

estimation is based on the latter direction, where the existence of a nonobservable
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contemporaneous risk factor responsible for PD correlations is assumed. Some empir-

ical and theoretical work on PD estimations and correlations are respectively found

in [33, 38, 45] and [37, 59, 67, 70, 72, 93]. For example, Koyluoglu and Hickman

proposed a generalized model that is rooted in the underlying models of CreditRisk+,

CreditMetrics, and CreditPortfolioView [67].

LGD — one of the major components in the calculation of regulatory and eco-

nomic capital naturally is of great interest to lenders and investors and has to be

accurately estimated. For this reason, different modelling approaches for estimating

or forecasting LGD have been proposed. We have those that are based on macroe-

conomic variables (examples, level of unemployment, interest rates), see for example,

[25]. Others are based on characteristics of obligor [24, 39]. One of the well known

works on predictive models for LGD can be found in the technical report of Moody’s

KMV LossCalc version 2.0 for dynamic prediction of LGD [57]. LossCalc is a sta-

tistical model that uses information on instrument, firm, industry, and economy as

inputs to predict LGD. Empirical studies on LGD are also found in [6, 13, 62].

The notion that economic phenomena are incorporated into risk models for esti-

mating PDs and LGDs has received much attention. This is backed by the argument

that the current state of the business cycle is accounted for. This translates into

accurate measurement of credit portfolio risk. The trade-off inherent in employing

this approach is that regulatory capital obtained is higher during periods of economic

downturn — pro-cyclical effects of bank capital requirements kick in, where regulatory

and economic capital become higher and losses erode banks’ capital and potentially

hindering their credit supply. Some works on pro-cyclicality capital requirements

are found in [56, 80, 81, 88]. In particular, Gordy and Howells provided evidence

on pro-cyclicality of capital requirements and accordingly evaluated policy options

in dampening pro-cyclicality [56]. Empirical and theoretical evidence of the link be-
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tween PDs and LGDs (the equivalent of 1 − recovery rate) and its contribution to

the pro-cyclicality effects is ubiquitous in the literature: see for example, the works in

[1, 7, 8, 51, 61]. These papers show that there is a significant systematic variation of

LGD and most importantly a positive correlation between these two quantities. Frye’s

model [51] is motivated by the work by Finger [46] and Gordy [54], where defaults

are driven by a single systematic risk factor as opposed to correlated parameters. A

detailed description of Frye’s model is given in this chapter.

Summarizing, banks are required to estimate LGD parameters that capture

downturn economic conditions. Choice of model to quantify downturn LGD has been

challenging for industrial players. To help quantify downturn LGD, the Basel Com-

mittee proposed establishing a functional relationship between long-run and down-

turn LGD [16]. An alternative is banks providing graphs on downturn LGD based

on their internal assessments of LGDs during adverse economic conditions (subject

to supervisory standards).

1.3 Related Concepts

1.3.1 On Regulatory and Economic Capital

The importance of economic roles of banks were heightened in the wake of the

2007/2008 financial crises [3, 47, 76]. The smooth transmission of savings into pro-

ductive economic activities is very vital. Banks are one part of this transmission

mechanism. One of the vital economic roles of banks is the supply of credit: they

lend money to sovereign entities, corporations and consumers [52, 65, 76]. Issuance

of credit facilities comes with associated risk of loss of principal and interest. Some
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borrowers default on their debt obligations, causing financial loss to the banks. And

thereby, potentially rendering them handicapped in fulfilling their own debt and con-

tractual obligations. Regulatory and economic capital is therefore motivated in part

by concern of banks protecting themselves [26] and over negative externalities that

may arise from counterparties’ default.

Since knowledge of the future is beyond the grasp of everyone, it is almost

impossible to know in advance the severity of loss to a bank for a given period.

However, a bank can forecast the level of possible credit loss the bank expects to

incur (termed, expected loss (EL)). Expected loss can be viewed as an insurance for

losses banks’ anticipate from historical defaults, and therefore considered as part of

the cost for conducting business [16]. Funds set aside to cover EL is not enough as the

loss can exceed the anticipated level. Unexpected loss (UL) — the loss that exceeds

expected loss — can arise because of credit risk or adverse interest rate shocks (see,

example [4] and [40], of works integrating these two risks). Funds set aside to cover

UL is economic capital (EC) if EL is covered by revenues [16]. When these funds

reflect supervisory guidance and rules, then we have regulatory capital.

Determining the right level of capital against UL is a major task for banks in

that there are trade-offs involved. Holding a reduced level of capital makes available

economic resources that could be invested in profitable ventures, but more likelihood

of inadequate funds to meet debt obligations in the occurrence of unexpected large

losses. Conversely, holding a high level of capital freezes up funds that can be directed

to profitable ventures, however, banks are better placed in a position to likely meet

own-debt obligations.

Banks are unable to determine ahead of time, the exact number of defaults,

actual losses, and the exact outstanding amount of loans in a given year. These factors
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introduce random effects into the modelling process of economic or regulatory capital.

These random effects correspond to the risk parameters forming the foundation block

of Basel II IRB [20]: PD, LGD, and EAD. The subsequent sections throw more light

on the above mentioned factors as related to expected loss and the determination of

economic capital.

1.3.2 Expected and Unexpected Losses

We define the expected loss by first observing that the loss variable of any obligor on

any given portfolio is expressed as

L = EAD × LGD ×D, (1.2)

where D is the indicator variable associated with a default event in a given period of

time. EAD,LGD and D are random variables and are measured with respect to a

specified time period. LGD is a percentage value. Expected loss is therefore defined

as follows:

Definition 1. Given a loss variable L as described in Eq. (1.2), its expected value

EL = E[L] (1.3)

is the expected loss of the credit-risky asset of interest [28].

Proposition 1. It follows from Definition 1 that the expression of Expected Loss of

any credit-risky asset is given as

EL = E[EAD]× E[LGD]× E[D], (1.4)
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provided EAD,LGD, and D are independent. Furthermore, if EAD and LGD as-

sume constant values then

EL = EAD × LGD × E[D], (1.5)

where E[D] is the probability of an obligor defaulting in a certain time horizon.

Proof. Note that the expectation of any Bernoulli random variable is the probabil-

ity of a success event. Therefore, the variable D being a Bernoulli variable has its

expected value equal to the probability of obligor default. If EAD,LGD and D are

independent, then the joint density factors into the product of the marginal densities

and the result follows.

Eq. (1.4) and (1.5) indicate that a high PD will trigger a high level of EL. The

same holds for LGD and EAD, an upward movement in both will cause an upward

movement of EL. To determine EL based on portfolio values, consider Figure 1.1. The

figure shows the distribution of portfolio loss. The vertical and the horizontal axes

show the likelihood of loss and values of loss respectively. The shaded area (green)

under the right hand side of the curve represents the probability that a bank will

be unable to meet its own-debt obligations given its profits and capital — assuming

the bank has set aside capital to cover both expected and unexpected losses. One

minus this probability is the confidence level at which (Credit) Value at Risk (VaR) is

obtained. The VaR is the level of loss that corresponds to the confidence level. Thus,

if the bank sets capital commensurable to the gap between EL and VaR, then this

capital is what is termed economic capital if EL is covered by revenues. Economic

capital is therefore the amount of risk capital that a bank estimates in order to remain

solvent at a given confidence level within a given time horizon. And when capital is

set to reflect supervisory guidance and rules, the resulting capital estimates is termed
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regulatory capital. That said, we give the general definition of economic capital by

first observing the following definitions [28].

Figure 1.1: The Portfolio Loss distribution.

Definition 2. A portfolio loss Lp is the sum of the collection of losses of individual

obligors on the portfolio. Notationally,

Lp =
n∑
i=1

Li =
n∑
i=1

EADi · LGDi · Di,

where n is the number of obligors on the portfolio. It follows that the expected portfolio

loss is

ELp =
n∑
i=1

E[EADi · LGDi · Di].

Definition 3. The c-quantile of portfolio loss Lp is defined as

Q(c) = inf{q > 0|c ≤ P(Lp ≤ q)}.
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Definition 4. The economic capital (EC) corresponding to a prescribed confidence

level c is defined as the c-quantile of portfolio loss Lp minus the EL of the portfolio:

ECc = Q(c)− ELP ,

The c-quantile of portfolio loss Q(c) is what is termed as the (Credit) Value

at Risk (VaR) in the sequel provided above. For example, a confidence level of

c = 99.99% implies that the economic capital will on the average sufficiently cover

9,999 out of 10,000 years under a one-year planning horizon.

1.4 Modelling dependencies using factor models

In statistical modelling there is the need to provide explanations for the variance of

variables in terms of underlying factors and this need surfaces in credit risk. Factor

models provide this platform. For instance, via factor models, the correlation between

respective losses can be explained in terms of economic variables. Thus, explanations

to large losses can be inferred. That is to say, once we can give a valid interpretation

of the correlations between respective losses associated with individual obligors, we

can as well give valid interpretations to the distribution of the total loss on the port-

folio. Summarizing, factor models provide a way to express the correlation between

defaults and losses among obligors, and correlation between default and loss by a rep-

resentative obligor. The following subsections give a review of selected factor models

on which illustrations in this thesis are based. These factor models, including any

dependencies are specified at the acount-level while interest lies in the portfolio-level

quantities, such as the portfolio level default rate or loss.
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1.4.1 A Review of Selected Factor Models

Frye’s Model

Frye’s credit risk model incorporates factors that simultaneously affect default and

the value of loan collateral [51]. By this specification, account-level LGD and default

are dependent on a common risk factor representing depressing and buoyant years

of the economy in addition to dependence on individual risk factors unique to these

representative exposures. The model shows that the decrease (increase) in default

rate and collateral value of loan is due to their dependency on common factor(s).

In the spirit of the conditional approach suggested in [46] and [53], the proposed

model may be described as follows: Let each obligor i have an exposure of $1.00. The

collateral value for each obligor is a random variable that follows a normal distribution

determined by three parameters: its amount and volatilities – µ and σ respectively,

and the sensitivity of systematic (common) risk factor q. The value of collateral is

assumed to be determined within a one year period and that the default and loss

drivers have a common systematic risk component and independent idiosyncratic risk

components. We stick to the notation used in the original papers.

Frye’s model is a single systematic risk factor model that assumes an exposure

of $1.00 per obligor i in a portfolio. A latent variable driving losses on the portfolio

is defined as

Ci = qiX +
√

1− q2
iZi

is fed into a function driving the underlying collateral value of the portfolio. The

collateral value of an obligor i is presented as

Collaterali = µ(1 + σCi). (1.6)
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Since collateral is not expected to fall below 0, we assume µ > 0 in our study. X

and Zi are independent standard normal random variables capturing economy wide

and obligor-specific risk, respectively. qi ∈ [−1, 1], measures the degree of impact

of X and Zi on Ci. Eq. (1.6) implies that the value of collateral for obligor i is

jointly determined by the systematic risk X, and an idiosyncratic risk factor Zi, at

the end of the planning horizon. The collateral is normally distributed with mean µ

and standard deviation µσ. Furthermore, the default driver is expressed as

Ai = piX +
√

1− p2
iXi,

where Xi is standard normally distributed and is independent of X and Zi. pi ∈

[−1, 1] accounts for the sensitivity of A to X and Xi. Ai is the so called “financial

condition” or “asset return” of obligor i that determines whether the representative

obligor i defaults or not. The default event is modelled by observing

Di =


1 if Ai ≤ Φ−1(PDi)

0 Otherwise

,

where PDi is the probability of default corresponding to obligor i. It is assumed that

LGD associated with a representative obligor i is governed by

LGDi = max(0, 1− Collaterali).

By this specification, the portfolio-level loss is given as

Lp =
n∑
i=1

LGDiDi =
n∑
i=1

max(0, 1− Collaterali) · Di.

Frye analyzed the effect of collateral value on capital by using a conditional expected

loss given the state of the economy (systematic risk factor). By this, the author
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demonstrated that the effect of collateral damage increases economic capital for all

loans when model specification incorporates correlation between default probability

and recoveries with a common factor compared to models with independent recoveries.

Pykhtin’s Model

The specification of Frye’s model allows for negative collateral values due to the

normality assumption which leads to LGDi larger than 1. Pykhtin’s model [78] is a

follow up to Frye’s model in that it addresses this defect (LGD > 1) in Frye’s model

by assuming that the collateral corresponding to obligor i in the portfolio follows a

log-normal distribution:

Collaterali = exp(µ+ σRi). (1.7)

The loss driver Ri is defined as

Ri = βiY + γiξi +
√

1− β2
i − γ2

i ηi, (1.8)

where Y, ξi, ηi, i = 1, 2, ...n are independent and identical distributed (i.i.d ) N(0, 1)

random variables. βi and γi measure the sensitivity of Ri to Y, ξi and ηi. The default

driver is given as

Xi = αiY +
√

1− α2
i ξi, (1.9)

where αi accounts for the degree of impact of Y and ξi on Xi. The expression for Ri

implies that not only is the loss driver correlated with the default driver via a common

systematic risk factor, Y , the loss driver is as well dependent on the idiosyncratic risk

component ξi of default driver. In addition to Eq. (1.8) and (1.9), βi, γi > 0 such

that β2
i + γ2

i ≤ 1 and γi ≤
(

αi√
1−α2

i

)
βi.
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By specifying a loss function as in Eq. (1.7) in the event of default, and mak-

ing use of (1.7)-(1.9), Pykhtin derived the closed-form expression for the asymptotic

portfolio-level expected loss and the contribution of each obligor to the portfolio loss.

The effect of the correlation between default probability and recoveries on economic

capital is illustrated by assuming that at the portfolio level, the individual with the

largest exposure accounts for a negligible share of total portfolio exposure and thereby

diversifying away idiosyncratic risk at the portfolio level.

Miu and Odzemir’s (M & O Model)

Miu and Ozdemir [74] identified four different components of account-level PD and

LGD correlations in their modelling approach. These components are outlined as

follows:

1. Correlations between the systematic risk drivers of default and loss for a given

obligor: This correlation arises from the impact systematic risk factors have

on the value of asset(s) of counterparties. Asset value is linked to the severity

of the effect of economic-wide risk factors which has potential effects on the

likelihood of default by the counterparties and the recovery value.

2. Correlations between idiosyncratic risk drivers of default and loss for a given

obligor: The presence of these correlations follow from the fact that the idiosyn-

cratic risk factors affecting the value of the specific asset of a particular obligor

will affect the value of the asset in question and thereby affecting the chances

of default by the specific obligor, the recovery rate and the related LGD.

3. Correlations between the default risk drivers between different obligors: This

component is captured as inputs in the risk weight formulas specified by the
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Basel committee [20] and is also captured in most structural models.

4. Correlations between loss risk drivers between different borrowers: This compo-

nent denotes the systematic risk factors that affect the LGDs of all borrowers,

which may be independent of those affecting the likelihood of default by the

firm (or one of the borrowers).

It is worth noting that this model produces correlation between Di and LGDj, since

the model allows for correlation between the default driver of obligor i and loss driver

of obligor j.

Based on the above components, they proposed time invariant models that are

categorized into two — a model describing the (i) systematic and (ii) idiosyncratic

credit risk and then conducted a comparative study on these models. The model on

systematic credit risk is given as


Pt = βPDXt +

√
1− β2

PDε
i
PD,t

Lt = βLGDXt +
√

1− β2
LGDε

i
LGD,t

,

where Pt and Lt are latent variables and are jointly normally distributed. These two

variables account for the systematic risk factors relating to PD and LGD respectively.

The pair (βPD, βLGD) ∈ [−1, 1]2 respectively determine the sensitivity of Pt and Lt

to Xt and εiPD,t and εiLGD,t respectively. Xt, ε
i
PD,t, ε

i
LGD,t are i.i.d standard normal

random variables. The model assumes homogeneous credit quality among individual

obligors and further allows for correlation between the individual specific risk compo-

nents of PD and LGD. By this, the equations governing the idiosyncratic credit risk
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for exposure i, are as follow:


pit = RPDPt +

√
1−R2

PDe
i
PD,t

lit = RLGDLt +
√

1−R2
LGDe

i
LGD,t

,

where 
eiPD,t = θPDx

i
t +
√

1− θ2
PDε

i
PD,t

eiLGD,t = θLGDx
i
t +
√

1− θ2
LGDε

i
LGD,t

. (1.10)

(RPD, RLGD) ∈ [−1, 1]2 measures the sensitivity of pt and it to Pt and Lt respectively

and are assumed to be homogeneous across individual obligors. The pair (pt, lt)

are correlated latent variables and the correlation is via Eq. (1.10). pit and lit are the

individual PD and LGD risk drivers respectively. xit denotes the specific risk driver for

obligor i, and is assumed to be standard normally distributed. Also, εiPD,t and εiLGD,t

are independent of xit and are assumed to be mutually independent and normally

distributed with zero means and unit standard deviations. Thus, eiPD,t and eiLGD,t

are standard normally distributed. θPD, θLGD ∈ (0, 1). It is assumed that there is a

one-to-one monotonic mapping between LGDi
t and the lit value defined as follows:

LGDi
t = B−1(Φ(lit), a, b),

where B−1(·) denotes the beta inverse cumulative distribution function with shape

parameters a and b. Default occurs when pit is less than a particular constant thresh-

old.
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Witzany’s Model

Witzany’s model [92] is a two-factor model that captures retail portfolio probability of

default and LGD and their dependency thereof. The proposed model is an extended

version of the one-factor model proposed by Frye [51], Pykhtin [78], and Tasche

[83]. It is assumed that the loss driver is dependent on two systematic factors – the

systematic factor that drives probability of default and an additional systematic factor

that captures, say fluctuations in economic conditions. The respective expressions

governing default and loss drivers are as follows:

Y1,i =
√
ρ1X1 +

√
1− ρ1ζ1,i,

Y2,i =
√
ρ2

(
ωX1 +

√
1− ω2X2

)
+
√

1− ρ2ζ2,i,

where the pair (X1, X2) are the systematic risk factors and are independent standard

normally distributed. The variables ζ1,i and ζ2,i account for the idiosyncratic risk com-

ponents in the model. These variables (ζ1,i and ζ2,i) are standard normally distributed

and are independent of each other as well as X1 and X2. The pair (ρ1, ρ2) ∈ [−1, 1]2

measures the sensitivity of Yi,1 and Yi,2 to the systematic risk factors and ω ∈ [−1, 1]

parameterizes the link between PD and LGD systematic risk factors. The loss func-

tion given that default occurs takes the form

LGDi = F−1(Φ(Y2)),

where F−1 is the inverse of a cumulative distribution function. In this proposed

modelling framework, F−1 is the cumulative inverse beta distribution function as in

the case of Miu and Odzemir’s modelling approach.
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1.5 Contribution

The estimate of regulatory and economic capital needed to offset losses within a

bank’s portfolio of loans is dependent on the accurate representation of the portfolio

loss distribution tail. As evident in the literature, losses and defaults are correlated:

portfolio-level losses are dependent on the extent to which individual defaults are

correlated with each other and the severity of the associated losses. Portfolio loss and

default distributions are therefore linked. The link determines the portfolio loss tail

distribution.

Default and loss dependency is driven by the degree of dependency on system-

atic risk factors. These factors represent sectoral (for examples of work along this

line, see the technical documentation on CreditRisk+ [34], also [5, 10] and [84]) or

macroeconomic forces (see, for example, [42] and [51] ) responsible for driving default

and loss dynamics for all obligors. The effect of the correlation between the respective

systematic risk drivers of default and loss on portfolio performance is worth investi-

gating — the effect on the tail distribution of portfolio loss, and thus regulatory and

economic capital.

This thesis contributes to the continual studies on portfolio credit risk modelling

and focuses on the co-movement of probability of default (PD) and loss given default

(LGD) (also termed, PD-LGD correlation) within the factor modelling approach.

To the best of our knowledge, the current PD-LGD correlation models have the

same underlying framework (compare, for example, [44, 51, 68, 74, 78, 82, 91] and

[92]). We highlight a mistake that is frequently made in specifying LGD, which is,

current studies ignore the difference between potential loss and loss given default at

the account level. Generally the current literature defines loss given default at the
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account-level as

LGD = H(loss driver).

An examination of the above transformation of loss drivers to account-level LGDs

reveals that occurrence of default is not incorporated in the transformation — Loss

drivers are assumed independent of default drivers in determining LGDs. We argue

that the correct transformation of loss drivers to account-level LGD should take into

account the dependency of loss and default drivers. Thus, the transformation H(·)

should transform loss drivers to potential losses PL so that we have

PL = H(loss driver).

By proving the validity of our argument, we address the following research

questions: How serious is the effect of this flaw on model-implied account-level loss

distribution, parameter estimates and economic capital? What is the behaviour of

LGD at the account and portfolio-level and the relationship between account-level

default and loss and the default and loss relationship at the portfolio-level?

We examine the above research questions through the lens of Monte Carlo Sim-

ulation (MCS) and Analytical Approximation. We propose an estimation scheme

— based on Method of Moments — for model parameters. Empirical analysis is

conducted on model parameters. We conclude by proposing a future direction of

the study by observing that the generalized PD-LGD model presented in this the-

sis assumes serially independent systematic and idiosyncratic risk factors. And that

to adequately capture the portfolio risk, the model can be extended to incorporate

serial dependence of the risk factors on the portfolio. The remaining part of the

introduction outlines the thesis.
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Chapter 2: Modelling Account-Level Quantities

This chapter presents a generalized credit risk model that nests existing factor credit

risk models. The flaw inherent in the existing models is highlighted, which is to ignore

the difference between account-level potential loss and loss given default. By fixing

this defect and deriving the correct distribution of potential loss and LGD, sensitivity

analysis is conducted to ascertain impact of defective model on risk metrics such as

economic capital and parameter estimates.

Chapter 3: Comparing Account and Portfolio Level LGD

It is imperative that nobody uses credit risk models they do not understand at an

intuitive level. The user should be able to establish a clear link between model

parameters and statistical properties of model implied quantities. An intuitive un-

derstanding requires a clear link between the account and portfolio levels parameters,

distributions, risk measures, etc. This chapter, therefore, investigates the relationship

between the relative size of the correlation between the systematic risk factors to that

of idiosyncratic risk factors and the correlation between portfolio-level default rate

and LGD.

Chapter 4: Empirical Study on Model Parameters

We proposed a Method of Moments (MoM) based estimation scheme for model pa-

rameters. We established that the risk measure, Value at Risk, and the mean and

standard deviation of the model implied portfolio-level LGD and the correlation be-

tween portfolio-level default rate and LGD are respectively not sensitive to the cor-

relation between loss and default drivers. The marginal and dependency parameters
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in the model are estimated using both Monte Carlo simulation scheme and a data set

on Charge-off and Delinquency Rates on loans and leases from the 100 largest banks

— obtained from the Board of Governors from the Federal Reserve System (BGFRS)

[29]. The Monte Carlo simulation scheme is to validate the proposed method. The

BGFRS data implied estimates are used to estimate the model implied mean and vari-

ance of the portfolio-level LGD and the correlation between default rate and LGD.

Comparison of these estimates indicates appreciable performance of our proposed

model.

Chapter 5: Future Work

This chapter discusses a possible future work based on the findings presented in this

document and results in the literature.
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Chapter 2

Modelling Account-Level

Quantities

This chapter presents generalized PD-LGD correlation model within conditional inde-

pendent framework, where obligor’s defaults are conditional on a common systematic

risk factor. We highlight a mistake that is frequently made, which is to ignore the

difference between potential loss and loss given default at the account level. A model

that corrects this defect is proposed and the distribution associated with this “correct-

model” is compared to that of the defective model. The parameter estimates from

these respective distributions are also compared.

2.1 Nesting Models and Related Distributions

This section describes a generalized PD-LGD correlation model and its link to specific

models in the literature. Relevant loss distributions needed in subsequent sections

are derived.

23



2.1.1 Nesting All the Models

Consider a portfolio of N loans and assume homogeneous parameters across individual

obligors (or exposures), the general structure of each of these models is presented as

Ai = α · SA +
√

1− α2 · IA,i, (2.1)

Bi = β · SB +
√

1− β2 · IB,i, (2.2)

where i represents individual exposures. In the ensuing discussion, we drop i in favour

of notational convenience. Associated with each exposure is the pair of latent variables

A and B that governs default and loss scenarios. Here α and β are constants in the

interval [−1, 1], the pair (SA, SB) are the systematic risk drivers capturing prevailing

economic conditions affecting A and B, respectively, and are common to all accounts.

This pair (SA, SB) are assumed to be standard bivariate normally distributed1 with

correlation θS. The variables IA and IB account for the idiosyncratic risks on the

portfolio through A and B, respectively, and are specific to each account and inde-

pendent across accounts. They are bivariate standard normal with correlation θI .

The pairs — (SA, SB) and (IA, IB) — are independent of one another.

These assumptions imply that (A,B) follows a standard bivariate normal dis-

tribution. The account-level correlation ρA is therefore obtained as

ρA = E[AB]

= αβ E[SASB] +
√

1− α2
√

1− β2 E[IAIB]

= αβθS +
√

1− α2
√

1− β2θI ,

where θS = E[SASB] and θI = E[IA,iIB,i]. See Table A.1 for a comparison of the

1By this we mean bivariate normal with standard normal margins and arbitrary correlation.
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parameters and correlation structure of the general model to that of the specific

models presented in Chapter 1. It is tempting to think of ρA as dictating portfolio-

level PD-LGD correlation but this is tricky — we will show that ρA does not tell us the

whole story about the portfolio. At the account level then ρA does explain a lot — the

question is how relevant the account-level relationship is, if one is ultimately interested

in portfolio-level statistics such as economic capital? This question is addressed in

Chapter 3 of this document. Table 2.1 presents the generalized correlation structure

between pairs of account-level default and loss drivers.

Table 2.1: Generalized correlation structure between pairs of account-level default
and loss drivers.

Correlations Formulas

(Ai, Bi) αβθS +
√

1− α2
√

1− β2θI
(Ai, Aj) α2

(Bi, Bj) β2

(Ai, Bj) αβθS

Remark 1. A and B are independent if and only if αβθS +
√

1− α2
√

1− β2θI = 0

which holds if and only if one of the following is true

1. There is no dependence between the systematic risk factors (SA, SB) and no

dependence between the idiosyncratic risk factors (IA, IB) — that is θS = θI = 0.

2. The systematic risk factors (SA, SB) are independent, and at least one of (α, β)

has an absolute value of 1. Note that α(β) controls the relative importance of

the systematic and idiosyncratic components on the default (loss) driver.

3. The idiosyncratic risk factors (IA, IB) are independent, and at least one of (α, β)

is zero. That is θS 6= 0, θI = 0 and α = 0 or β = 0 or α = β = 0.

4. The pair (SA, SB) are dependent (θS 6= 0), (IA, IB) are also dependent (θI 6= 0),

and αβθS = −
√

1− α2
√

1− β2θI .
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The above remark follows intuitively as: ρA = 0 if A and B are independent.

Conversely, if ρA = αβθS+
√

1− α2
√

1− β2θI = 0 — given that any of the statements

1-4 holds —(and the fact that (A,B) are jointly normal) it follows that A and B are

independent.

Now, default occurs when A is less than a given threshold amount. In notational

form, we have

D = 1{A≤Φ−1(PD)}. (2.3)

D and PD are default indicator and probability of default associated with a repre-

sentative exposure over a given time horizon respectively. This document assumes a

homogeneous PD across individual exposures. That is PDi = PDj = PD for i 6= j.

Φ−1 is the standard normal inverse cumulative distribution function. Associated with

each exposure is the potential and realized loss and the loss in the event of default.

Potential loss is the possible future loss on the portfolio in a planning horizon,

expressed notationally as

PL = H(B),

where H(·) is a monotone function of B. It appears we are the first to use the

terminology, potential loss. It seems useful to think of potential loss as being related

to collateral. For instance, if collateral for an individual obligor C is non-negative

then PL = max(0, 1−C). Realized loss on an exposure is the product of D and PL.

So we have

RL = D · PL = 1{A≤Φ−1(PD)} ·H(B).

Remark 2. It is important to observe from the definition of PL and RL that at

the end of a planning horizon, the potential and realized loss may be different for the

same obligor — realized losses being zero for the non-defaulting obligors but potential

losses not necessarily zero. So a representative account may have a different notional
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value of potential and realized loss. Notationally, If D = 1 then PL = RL and

if D = 0 then PL and RL could potentially be different.

Note that by model specification (Eq. 2.3) we have written default as a de-

creasing (non-increasing) function of A. PL can be expressed as an increasing or

a decreasing function of B. Suppose H(·) increases (decreases) with increasing (de-

creasing) B, then in order that default and potential loss have a positive relationship

we require ρA < 0. This is because a negative correlation between A and B induces

a positive relationship between default and potential loss — increasing values of A

implies decreasing likelihood of default (D = 1), B and H(·) and conversely, D, B and

H(·) increases as A decreases. From similar chain of reasoning, decreasing (increas-

ing) H(·) with an increasing (decreasing) B implies a positive correlation between A

and B — ρA > 0.

Summarizing, the imposition of a positive relationship between default and po-

tential loss means that the inverse (or positive) assumption between H(·) and B

requires a positive (or negative) correlation between A and B. That said, Algorithm

1 presents the procedure for calculating economic capital.

2.1.2 Linking Nested Models to Specific Models

To proceed with our discussion, it is worth noting that the specific models fit the

general model by the restrictions imposed on θS, θI and H(·). Table A.1 in Appendix

A.1 presents a comparison of the variables and parameters in the general model — Eq.

(2.1) and (2.2)) — and the correlation structure thereof to that of the four specific

models presented earlier in this document. The description of the function H(·) —

the transformation of B – varies across models.
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Algorithm 1 Estimating economic capital

1: Input parameters — (α, β): sensitivity parameter of systematic and idiosyncratic
risk factors, PD: common probability of default, m: portfolio size, n: number
of simulations, c: confidence level, θI : correlation between systematic risk factors
(IA, IB), θS: correlation between idiosyncratic risk factors (SA, SB)

2: Generate n quantities of the pair (SA, SB). Denote the simulated values as
(sA,1, sB,1), (sA,2, sB,2), ..., (sA,n, sB,n)

3: For j = 1 to n

a. Generate m quantities of the pair (IA, IB). Denote the simulated values as
(iA,1, iB,1), (iA,2, iB,2), (iA,3, iB,3), ..., (iA,m, iB,m)

i For i = 1 to m set

• Ai = αsj +
√

1− α2iA,i

• Bi = βsj +
√

1− β2iB,i

• Di =

{
1 if Ai ≤ Φ−1(PD)

0 Otherwise

• PLi = H(Bi)

• RLi = Di · PLi
ii End

b. Set Lp,j =
∑m

i=1RLi
4: End
5: Calculate the mean µLp and c− quantile Q(c) of Lp

• µLp = 1
n

∑n
j=1 Lp,j

• Q(c) = empirical quantile of Lp at c

6: Calculate Economic capital ECc

• ECc = Q(c)− µLp
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Table 2.2 links the models presented in the introductory chapter of this doc-

ument to the general model presented in Section 2.1.1. The definition of H(·) and

the restrictions on the respective correlation parameters θS and θI are highlighted.

H(·) in Miu and Odzemir’s model is a strictly monotone function of B. H(·) in Frye

and Pykhtin’s models are expressed as a piecewise function of B, where both models

have respectively, a linear and exponential components. The respective models has a

general form as follows:

H(B) =


0 if B ≥ H

−1
(0),

H(B) if B < H
−1

(0),

(2.4)

where H(·) is a strictly monotone function of B. The function H(·) in Frye and

Pykhtin’s model decreases with respect to B and that of Miu and Odzemir and

Witzany is an increasing function of B. Note thatH(·) is a strictly decreasing function

within Frye’s and Pykhtin’s modelling framework but could be expressed as a strictly

increasing function of B.

Figure 2.1 presents the graphs of the respective function H(·) of these models.

The parameters used to plot the graphs are chosen such that the means and variances

of PL are the same across models.

Table 2.2: Model specific H(B), θS and θI . B−1 is the inverse of beta CDF.

Models θS θI H(B) H(B)
Miu & Odzemir arbitrary arbitrary B−1(Φ(B), δ1, δ2) NA

Witzany arbitrary 0 B−1(Φ(B), δ1, δ2) NA
Frye 1 0 max(0, 1− µ(1 + σB)) 1− µ(1 + σB)

Pykhtin 1 arbitrary max(0, 1− exp(µ+ σB)) 1− exp(µ+ σB)
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(a) H(·) in Miu and Odzemir and
Witzany’s model: δ1 = 2, δ2 = 3.

(b) H(·) in Frye’s model: µ =
0.6020, σ = 0.3310

(c) H(·) in Pykhtin’s model:µ =
−0.5584, σ = 0.3660

Figure 2.1: H(·) in specific models: Miu, Odzemir, Witzanny, Frye, and Pykhtin.

2.2 Conditional Distribution of B given A ≤ Φ−1(PD)

Let PD(b) = P(A ≤ Φ−1(PD)|B = b), the conditional probability of default, given

the value of the loss driver. To derive the expression for P(A ≤ Φ−1(PD)|B =

b), consider the following properties of jointly normal random variables (X, Y ) with

corresponding means (µX , µY ), variances (σ2
X , σ

2
Y ) and correlation coefficient ρXY (see

[27] for derivation of these properties):

• the conditional expectation of Y given X = x satisfies the relation

E[Y |X = x] = µY + ρXY
σY
σX

(x− µX),

• the conditional variance of Y given X = x is governed by

Var[Y |X = x] = σ2
Y (1− ρ2

XY ),

and

• the conditional distribution of Y given X = x therefore satisfies

Y |X = x ∼ N(µY + ρXY
σY
σX

(x− µX), σ2
Y (1− ρ2

XY )).
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Since A and B are bivariate standard normal distributed, by the above properties we

have 
E[A|B = b] = ρA · b,

Var[A|B = b] = 1− ρ2
A.

So we have

P(A ≤ Φ−1(PD)|B = b) = P

A− ρA · b√
1− ρ2

A

≤ Φ−1(PD)− ρA · b√
1− ρ2

A,B


= Φ

(
Φ−1(PD)− ρA · b√

1− ρ2
A

)
. (2.5)

The conditional density of the loss driver B given that default occurred, which

is the distribution modelling the probability of observing B when the default driver

A falls below the default threshold Φ−1(PD) is obtained as follows: Let Φ̂(b) be

conditional cumulative distribution function of B given A ≤ Φ−1(PD) so that we

have

Φ̂(b) = P(B ≤ b|A ≤ Φ−1(PD)) =
P(B ≤ b, A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))
. (2.6)

Consider

P(B ≤ b, A ≤ Φ−1(PD)) =

∫ b

−∞

∫ Φ−1(PD)

−∞
φ(u, v)dudv,

where φ(u, v) = φ(u|v)φ(v) is the joint density of A and B, φ(v) is the marginal pdf

of B and φ(u|v) is the conditional pdf of A given B. This gives
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P(B ≤ b, A ≤ Φ−1(PD)) =

∫ b

−∞

∫ Φ−1(PD)

−∞
φ(u|v)φ(v)dudv

=

∫ b

−∞
φ(v)

(∫ Φ−1(PD)

−∞
φ(u|v)du

)
dv

=

∫ b

−∞
φ(v)P(A ≤ Φ−1(PD)|B = v)dv.

Also, since A is standard normally distributed the denominator in Eq. (2.6) is

P(A ≤ Φ−1(PD)) = Φ(Φ−1(PD)) = PD.

Eq. (2.6) can therefore be rewritten as

Φ̂(b) =

∫ b
−∞ φ(v)P(A ≤ Φ−1(PD)|B = v)dv

PD
.

By employing the fundamental theorem of calculus we get

φ̂(b) =
d

db
Φ̂(b) = φ(b) · P(A ≤ Φ−1(PD)|B = b)

PD
,

thus from Eq. (2.5)

φ̂(b) = φ(b) ·
Φ

(
Φ−1(PD)−ρA·b√

1−ρ2A

)
PD

= φ(b) · PD(b)

PD
. (2.7)

It is interesting to note that values of b which make default more likely have a greater

likelihood under this conditional distribution, as might be expected.

Remark 3. The above suggests that there exist a critical value b∗ of b, below or

above which the conditional distribution of B given default puts — relative to the

unconditional distribution of B — more weight on the distribution of B. The direction
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of the weight is determined by the sign of ρA. So for example ρA ≤ 0, there exist b∗

above which φ̂(b) ≥ φ(b). See Figures 2.2 and 2.3.

Having the derivation of the conditional distribution of B given A ≤ Φ−1(PD),

observe the following theorem:

Theorem 1. Φ̂(b) ≥ Φ(b) if ρA ≥ 0 and conversely, Φ̂(b) ≤ Φ(b) if ρA ≤ 0.

We prove the above theorem by observing the theorem below (see [86], pages

8-12):

Theorem 2. (Slepian Inequality). Let X = (X1, X2, ..., Xn) be mean zero random

normal vector with n×n covariance matrix Σ. Define S = (ρi,j) and T = (εi,j) as two

positive semidefinite correlation matrices. If ρi,j ≥ εi,j for all i, j = 1, 2, ...n, then

PΣ=S(X1 ≤ ν1, X2 ≤ ν2, ..., Xn ≤ νn) ≥ PΣ=T(X1 ≤ ν1, X2 ≤ ν2, ..., Xn ≤ νn)

holds for all ν = (ν1, ν2, ..., νn). Alternatively,

PΣ=S(X1 ≥ ν1, X2 ≥ ν2, ..., Xn ≥ νn) ≥ PΣ=T(X1 ≥ ν1, X2 ≥ ν2, ..., Xn ≥ νn).

It follows from Theorem 2 that for bivariate normal random variables (X, Y )

with correlation ρ ≤ (≥) 0 and zero mean vector (see corollary 2 of [86])

PS(X ≤ x, Y ≤ y) ≤ (≥)P(X ≤ x) · P(Y ≤ y).

In particular, for standard normal variates X and Y (see for example [75]), we have

P(X ≤ x, Y ≤ y) ≤ (≥)Φ(x) · Φ(y).
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Theorem 2 implies that the quadrant probability P(·) is a monotonically increasing

function of ρi,j and therefore this is maintained in the impact the co-movements of

the components of the random vector X have on their joint probability. Now, we

prove Theorem 1 as follows:

Proof. Recall that

Φ̂(b) = P(B ≤ b|A ≤ Φ−1(PD)) =
P(B ≤ b, A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))
.

Case 1. Suppose ρA ≥ 0. From Theorem 2, we have

Φ̂(b) =
P(B ≤ b, A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))

≥ P(B ≤ b) · P(A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))

= P(B ≤ b) = Φ(b).

Case 2. Suppose ρA ≤ 0. Theorem 2 implies

Φ̂(b) =
P(B ≤ b, A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))

≤ P(B ≤ b) · P(A ≤ Φ−1(PD))

P(A ≤ Φ−1(PD))

= P(B ≤ b) = Φ(b).
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2.2.1 Numerical Illustration of Theorem 1 (Φ̂(b) verses Φ(b))

We confirm Theorem 1 by comparing the unconditional and conditional distribution of

the loss driver B given that A ≤ Φ−1(PD) under the respective correlation conditions

(ρA ≥ 0 and ρA ≤ 0). The figures are produced by arbitrarily specifying a range

of values of b from -4 to 4. Parameter values are specified as PD = 0.05, ρA =

−0.4 and 0.4.

Figure 2.2 compares the density functions of the unconditional (red curve) and

conditional (green) loss drivers B given default. The specification of φ̂(b) assumes

a negative correlation (ρA = −0.4) between the loss driver B and the default driver

A. The graphs show that φ(b) and φ̂(b) are different. This difference – the graph of

φ̂(b) (green curve) overlapping to the right of the graph of φ(b) (red curve) – stems

from the specification of the respective density functions. The inverse relationship

between A and B forces the graph of φ̂(b) to overlap to the right of the graph of φ(b).

As a result of this phenomenon the graph of the respective cumulative distribution

functions of the unconditional and conditional loss drivers given default shows similar

pattern where the graph of the cumulative distribution function of the conditional

loss drivers given default (green curve) is to the right of the graph of the cumulative

distribution function of the unconditional loss drivers as depicted in Figure 2.2b.

Figure 2.3 compares the conditional and unconditional density and cdf plots

when default occurs for positive correlation between default and loss drivers (ρA =

0.4) — see Figures 2.3a-2.3b. The figure shows reverse of the patterns observed in

the case for negative correlation between default and loss drivers — we observe that

the conditional density curve of the loss driver given default overlaps to the left of

the unconditional density curve of the loss driver. This pattern is reflected in the

respective cdfs involving the conditional and unconditional loss drivers when default
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occurs, as expected from Theorem 1.

(a) Unconditional and conditional density function
of B, given default occurred

(b) Unconditional and conditional cumulative dis-
tribution function of B, given default occurred

Figure 2.2: Distribution of unconditional and conditional loss driver, given default.
PD = 0.05, ρA = −0.4.

(a) Unconditional and conditional density function
of B, given default occurred

(b) Unconditional and conditional cumulative dis-
tribution function of B, given default occurred

Figure 2.3: Distribution of unconditional and conditional loss driver, given default.
PD = 0.05, ρA = 0.4.

2.3 Account-Level Potential Loss and Loss Given

Default (LGD) Distribution

It is important to relate model quantities to observable quantities. In order to think

about observable quantities let us imagine we have a giant spreadsheet. In one column
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we have the default indicator telling us whether the account defaulted or not. In

another column we have (i) blank cells in the non-default rows and (ii) numbers in

the default rows.

The blank cells correspond to unobserved potential losses, the non-empty cells

correspond to observed potential losses. So we only observe potential loss if its value

is “switched on” by a default.

Remark 4. The non-empty cells therefore contain observations drawn from the con-

ditional distribution of PL, given that default occurred (D = 1). They do not contain

observations from the marginal (unconditional) distribution of PL. This means that

we cannot use account-level loss given default data to estimate parameters of the un-

conditional distribution of PL, because our data did not come from that distribution.

Definition 5. Account-level potential loss (PL) distribution is denoted as fPL and

is defined as the unconditional distribution of PL.

Definition 6. Account-level loss given default (LGD) distribution is denoted as fLGD

and is defined as the conditional distribution of PL given that D = 1.

The derivation of the distribution of the account-level PL and LGD under the

general model and that of the specific models — Frye [51], Miu & Odzemir [74],

Pykhtin [78] and Witzany [92] — are presented in the ensuing sections.

2.3.1 Account-Level PL Distribution under General Model

Define FPL = P(PL ≤ `). We derive FPL and its density as follows: Suppose

fPL(`) = d
d`
FPL(`) and assume H(·) is invertible and is an increasing function of B,
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then the marginal density of PL is fPL. We have the derived distribution as

P(PL ≤ `) = P(H(B) ≤ `)

= P(B ≤ H−1(`))

= Φ(H−1(`)).

We therefore have

fPL(`) = φ(H−1(`)) · d
d`
H−1(`), (2.8)

where φ is the standard normal probability density function (pdf). If H(·) is a

decreasing function of B, we have

P(PL ≤ `) = 1− Φ(H−1(`)),

which results in

fPL(`) = −φ(H−1(`)) · d
d`
H−1(`).

For the case where H(·) is not strictly monotone — such as presented in Frye

and Pykhtin’s model — Eq. (2.4). The distribution takes a different form: The

probability of PL = 0 is given as

P(PL = 0) = P(H(B) = 0) = P(B ≥ H
−1

(0)) = 1− Φ(H
−1

(0)) = Φ(−H−1
(0)).
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And probability of PL ≤ ` given that PL > 0 is derived as

FPL(`) = P(PL ≤ `|PL > 0) =
P(H(B) ≤ `,H(B) > 0)

P(H(B) > 0)

=
P(H

−1
(`)) ≤ B < H

−1
(0))

P(B < H
−1

(0))

= 1− Φ(H
−1

(`))

Φ(H
−1

(0))
.

The resulting conditional pdf of PL ≤ ` given that PL > 0 is

fPL(`) = − φ(H
−1

(`))

Φ(H
−1

(0))
· d
d`
H
−1

(`). (2.9)

Note that if H(B) is invertible and an increasing function of B, then

fPL(`) =
φ(H

−1
(`))

Φ(−H−1
(0))
· d
d`
H
−1

(`). (2.10)

2.3.2 Account-Level LGD Distribution under General Model

Since PL is driven by B, it implies that the underlying mechanism in obtaining loss

given default (or observed PL) is dependent on the specification of the conditionally

realized B given that default occurred (A ≤ Φ−1(PD)). By this, the distribution of

loss given that default occurred is in part driven by the conditional distribution of B

given A ≤ Φ−1(PD).

Suppose H(·) invertible and increases with respect to B. We obtain fLGD as

follows: Let FLGD(`) = P(PL ≤ `|D = 1) then we have

P(PL ≤ `|D = 1) = P(B ≤ H−1(`)|A ≤ Φ−1(PD)) = Φ̂(H−1(`)).
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Similarly, let fLGD(`) = d
d`
FLGD(`) so that we have

fLGD(`) =
d

d`
FLGD(`) = φ̂(H−1(`)) · d

d`
H−1(`). (2.11)

By rearranging Eq. (2.8), we get

d

d`
H−1(`) =

fPL(`)

φ(H−1(`))
. (2.12)

Using Eq. (2.11) and (2.12)

fLGD(`) = fPL(`) · φ̂(H−1(`))

φ(H−1(`))
.

By making use of Eq. (2.7) and observing that b = H−1(`),

fLGD(`) = fPL(`) · PD(H−1(`))

PD
. (2.13)

Observe PD(H−1(`)) = P(A ≤ Φ−1(PD)|B = H−1(`)). So for values of ` that

make default more likely, PD(H−1(`)) > PD. This leads to a critical value `∗ of `,

below or above which the account-level LGD distribution put less or more weight on

the loss distribution compared to that of account-level PL distribution. This critical

value is obtained as — see Eq. (2.7)

`∗ = H

Φ−1(PD)
(

1−
√

1− ρ2
A

)
ρA

 .

Now, PD(H−1(`)) > PD implies

ρAH
−1(`) < Φ−1(PD)

(
1−

√
1− ρ2

A

)
.
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Suppose ρA > 0,

H−1(`) <
Φ−1(PD)

(
1−

√
1− ρ2

A

)
ρA

.

In this case, if H(·) is an increasing (decreasing) function of B, then ` < (>)`∗.

Suppose ρA < 0, then we have

H−1(`) >
Φ−1(PD)

(
1−

√
1− ρ2

A

)
ρA

,

thus H(·) an increasing (decreasing) function of B, implies ` > (<)`∗. The above

inequalities imply the following:

Cases where H(·) is expressed as strictly increasing function of B and positive

correlation between default and PL is imposed — negative ρA — if ` > `∗ then fLGD

will assign more weight to the account-level loss distribution than fPL does. This

also holds for cases where H(·) is expressed as a strictly decreasing function of B and

positive correlation between default and PL is imposed — positive ρA. “Bad” values

of ` correspond to high values of b.

Conversely, suppose negative correlation between default and PL is imposed,

coupled with strictly increasing H(·) as B increases — positive ρA. In this case if

` < `∗ then “bad” ` corresponds to small values of b and default is more likely — fLGD

in this case assigns more weight to the account-level loss distribution than that of

fPL. This also holds when H(·) strictly decreases with an increasing B and correlation

between default and PL assumes a negative value— negative ρA.

Remark 5. fLGD = fPL if and only if ρA = 0.

Remark 6. The assumption that positive correlation between PL and D implies that

if ρA 6= 0, fLGD 6= fPL and fLGD > fPL for all values of ` > `∗. Thus, LGD distribu-

tion attaches higher probability to large losses relative to that of PL distribution. This

41



is illustrated in Figures 2.4- 2.6, where ` > `∗ (value of ` at the intersection point of

the graph of fLGD (green curve) and fPL (red curve)) depicts heavier tail distribution

of LGD than that of PL.

Suppose H(·) is not a strictly monotone function of B and assumes the form in

Eq. (2.4), then we have the probability of PL = 0 given that D = 1 as

FLGD(0) = P(PL = 0|D = 1) = P(B ≥ H
−1

(0)|D = 1) = 1− Φ̂(H
−1

(0)),

and if H(·) is an invertible decreasing function of B, the probability of PL ≤ ` given

that D = 1 and PL > 0,

FLGD(`) = P(PL ≤ `|D = 1,PL > 0) = P(H(B) ≤ `|D = 1, H(B) > 0)

=
P(H

−1
(`) ≤ B < H

−1
(0)|A ≤ Φ−1(PD))

P(B < H
−1

(0)|A ≤ Φ−1(PD))

= 1− Φ̂(H
−1

(`))

Φ̂(H
−1

(0))
,

which from Eq. (2.9) and (2.7) yields the conditional pdf of PL ≤ ` given that D = 1

and PL > 0 as

fLGD(`) = fPL(`) · φ̂(H
−1

(`))

φ(H
−1

(`))
· Φ(H

−1
(0))

Φ̂(H
−1

(0))

= fPL(`) · PD(H
−1

(`))

PD
· Φ(H

−1
(0))

Φ̂(H
−1

(0))
. (2.14)

If H(·) is a strictly increasing function of B, then from Eq. (2.10) and (2.7) the

conditional pdf of PL ≤ ` given that D = 1 and PL > 0 is derived as

fLGD = fPL(`) · PD(H
−1

(`))

PD
· Φ(−H−1

(0))

Φ̂(−H−1
(0))

.
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Finally, for −∞ ≤ ` < 0, the unconditional and conditional cdf of PL, given

default occurred are respectively zero. That is P(−∞ ≤ PL < 0) = P(−∞ ≤ PL <

0|A ≤ Φ−1(PD)) = 0.

2.3.3 Distribution of Account-Level PL and LGD under Spe-

cific Models

Miu and Odzemir’s Model

Noting that H−1(`) under Miu and Odzemir’s modelling framework is

H−1(`) = Φ−1(B(`), δ1, δ2),

where B denotes the beta cumulative distribution function with shape parameters δ1

and δ2, it follows that

d

d`
H−1(`) =

β(`, δ1, δ2)

φ(Φ−1(B(`, δ1, δ2)))
,

where β(·) is the beta probability density function. From Eq. (2.8), the unconditional

density of PL is the beta density function and is written as

fPL(`) =
Γ(δ1 + δ2)`δ1−1(1− `)δ2−1

Γ(δ1)Γ(δ2)
. (2.15)
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Where Γ(·) is the gamma function. It follows that the expected value and variance

of potential losses under this distribution are respectively expressed as


E[PL] = δ1

δ1+δ2
,

Var[PL] = δ1δ2
(δ1+δ2)2(δ1+δ2+1)

.

Making use of Eq. (2.13), the conditional density of PL given that default occurred

is derived as

fLGD(`) = fPL(`) · PD(Φ−1(B(`, δ1, δ2))

PD
. (2.16)

Figure 2.4 shows the density plots of potential loss and LGD for Miu and

Ozdemir’s model. The values for the correlation between default A and loss B drivers

is assumed negative (ρA = −0.4). This is to impose a positive correlation between

default and loss. PD = 0.05, δ1 = 2, δ2 = 3. The figure shows that the unconditional

and conditional distribution of portfolio loss given that default occurred are different.

Figure 2.4: Miu and Ozdemir’s model: Unconditional and conditional densities. ρA =
−0.4, δ1 = 2, δ2 = 3, PD = 0.05.

Since the specification of potential loss within Witzany’s modelling framework
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is the same as that of Miu and Odzemir’s model, the densities are described by Eq.

(2.15) and (2.16).

Frye’s Model

From Table 2.2, the account-level PL distribution is derived as follows: Observe that

H
−1

(`) =


1−`−µ
µσ

if ` > 0,

1−µ
µσ

if ` = 0,

and

d

d`
H
−1

(`) = − 1

µσ
.

For PL = 0

P(PL = 0) = P
(
B ≥ H

−1
(0)
)

= Φ

(
µ− 1

µσ

)
.

And from Eq. (2.9), the condtitional pdf of PL ≤ ` given that PL > 0 is

fPL(`) =
1

µσ
·
φ
(

1−µ−`
µσ

)
Φ
(

1−µ
µσ

) .

The account-level LGD distribution is obtained as follows: The conditional

probability of PL = 0 given D = 1 is

P(PL = 0|D = 1) = 1− Φ̂

(
1− µ
µσ

)
,

and from Eq. (2.14) the conditional density of PL given D = 1 for positive values of

PL is

fLGD(`) =
1

µσ · PD
·
φ
(

1−`−µ
µσ

)
Φ̂
(

1−µ
µσ

) · PD(1− µ− `
µσ

)
.
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Having the expressions for the respective densities (conditional and uncondi-

tional) of PL, we derive the first moment of PL by first observing that from Table

2.2, we have

E[PL] = E[(1− (µ+ µσB))1{µ+µσB≤1}] (2.17)

= E
[
(1− (µ+ µσB))1{B≤ 1−µ

µσ }
]

=

∫ 1−µ
µσ

−∞
((1− µ)− µσb)φ(b)db

= (1− µ)Φ

(
1− µ
µσ

)
+ µσφ

(
1− µ
µσ

)
.

and the second moment2,

E[PL2] = E
[(

1− (µ+ µσB))2
)
1{µ+µσB≤1}

]
= E

[(
1− (µ+ µσB))2

)
1{B≤ 1−µ

µσ }
]

= (1− 2µ+ µ2)Φ

(
1− µ
µσ

)
+ 2µσ(1− µ)φ

(
1− µ
µσ

)
+ (µσ)2

[
Φ

(
1− µ
µσ

)
− 1− µ

µσ
φ

(
1− µ
µσ

)]
.

The variance is then obtained as

Var(PL) = E[PL2]− (E[PL])2 .

We use these quantities, Var(PL) and E[PL], as the base for comparing the densities

across the models presented in this section.

Figure 2.5 shows the graphs of unconditional (red curves) and conditional (green

curves) density function of potential loss given that default occurred. The figure

indicates that the distribution between the unconditional and conditional potential

2We used the relation dφ(b)
db = −bφ(b) and d2φ(b)

db2 = (b2 − 1)φ(b).
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loss given default are different. Since H(B) is a decreasing function of B, to impose a

positive correlation between default and potential loss, we chose positive value of ρA

— ρA = 0.4. For comparison purposes, the density curves are obtained by estimating

the parameters µ and σ by assuming that the respective expected value and variance

of the potential losses within the framework of Frye’s model are equal to the respective

expected value and variance of the potential loss obtained from Miu and Ozdemir’s

model — µ = 0.6020, σ = 0.3310, and PD = 0.05.

Figure 2.5: Frye’s Model: Unconditional and conditional densities. P(PL = 0) =
0.0259,P(PL = 0|D = 1) = 0.0014. µ = 0.6020, σ = 0.3310, ρA = 0.4, PD = 0.05.

Pykhtin’s Model

As in the case of Frye’s model, Pykhtin’ model takes the form of Eq. (2.4). We obtain

the following from Table 2.2:

H
−1

(`) =


ln(1−`)−µ

σ
if ` > 0,

−µ
σ

if ` = 0,
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and

d

d`
H
−1

(`) = − 1

(1− `)σ
.

The unconditional and conditional PL given D = 1 are as follows: When PL =

0, 
P(PL = 0) = Φ

(
µ
σ

)
,

P(PL = 0|D = 1) = 1− Φ̂
(
−µ
σ

)
,

and for PL ≤ `, where ` > 0


fPL(`) = 1

(1−`)·σ ·
φ( ln(1−`)−µ

σ )
Φ(−µσ )

,

fLGD(`) = 1
(1−`)σPD ·

φ( ln(1−`)−µ
σ )

Φ̂(−µσ )
· PD

(
ln(1−`)−µ

σ

)
.

Finally, fPL(`) = fLGD(`) = 0 for ` < 0.

The first and the second moments of potential loss under this setting are derived

as

E[PL] = E[0 · 1{H>1} + (1−H) · 1{H≤1}]

= E 1{H≤1} − EH · 1{H≤1}

= E 1{exp(µ+σB)≤1} − E exp(µ+ σB) · 1{exp(µ+σB)≤1},

and making use of completing the square yields

E[PL] = Φ
(
−µ
σ

)
− exp

(
1

2
(2µ+ σ2)

)
Φ
(
−µ
σ
, σ, 1

)

and a similar approach gives

E[PL2] = Φ
(
−µ
σ

)
−2 exp

(
1

2
(2µ+ σ2)

)
Φ
(
−µ
σ
, σ, 1

)
+exp

(
2
(
µ+ σ2

))
Φ
(
−µ
σ
, 2σ, 1

)
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respectively.

Figure 2.6 compares the graphs of the conditional and unconditional densities

for the potential loss, given that default occurred. The graphs are obtained by first

estimating the parameters µ and σ such that the first and second moments are equal

to that obtained under Miu and Odzemir’s setting. This is to guarantee a uniform

comparison of the density curves across all the models. The graph shows similar

pattern as in the case for Frye’s model — distribution of the unconditional and

conditional potential loss, given default are different.

Figure 2.6: Pykhtin’s Model: Unconditional and conditional densities. P(PL = 0) =
0.0635,P(PL = 0|D = 1) = 0.0056. µ = −0.5584, σ = 0.3660, ρA = 0.4, and PD =
0.05.

Summary of Distribution Functions under Specific Models

Given the above background, Table 2.3 presents expressions for the pdfs linked to

potential loss described in the above discussed four models.
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Table 2.3: The expressions for the pdfs of potential loss linked to respective model
under discussion

Models Functions
fPL(`) fLGD(`)

Miu & Odzemir’s
(Witzany’s)
Model

Γ(δ1+δ2)`δ1−1(1−`)δ2−1

Γ(δ1)Γ(δ2)
Γ(δ1+δ2)`δ1−1(1−`)δ2−1

Γ(δ1)Γ(δ2)
· PD(Φ−1(B(`,δ1,δ2))

PD

Functions
fPL(`) fLGD(`)

PL ≤ ` given PL > 0 PL = 0 PL ≤ ` given PL > 0 PL = 0

Frye’s Model 1
µσ
· φ(

1−`−µ
µσ )

Φ( 1−µ
µσ )

Φ
(
µ−1
µσ

)
1

µσPD

φ( 1−`−µ
µσ )

Φ̂( 1−µ
µσ )

· PD
(

1−µ−`
µσ

)
1− Φ̂

(
1−µ
µσ

)
Pykhtin’s Model 1

(1−`)σPD
φ( ln(1−`)−µ

σ )
Φ(−µ

σ )
Φ
(
µ
σ

)
1

(1−`)σPD ·
φ( ln(1−`)−µ

σ )
Φ(−µ

σ )
· PD

(
ln(1−`)−µ

σ

)
1− Φ̂

(−µ
σ

)

2.4 Revealing Defect and Corrective Approach

The preceding sections present discussions on the respective distributions of account-

level potential loss and loss given default, where these distributions are linked to

specific models in the literature — (i) Frye, (ii) Miu and Ozdemir, (iii) Pykhtin and

(iv) Witzany. We demonstrated the respective distributions are different.

Recall the account-level loss variable L = EAD · LGD · D. Empirical evidence

suggests existence of correlation between the constituents of L [6, 7]. This implies that

modelling and estimation schemes for these quantities should account for these corre-

lations. The literature on credit risk has many models that capture this phenomenon

— see for example, [44, 74, 91]. However, some proposed models and estimation

schemes in the current literature implicitly assume independency of loss and default

drivers in defining (or modelling) account-level LGD. By definition, LGD is defined

as conditional loss given that default occurred, thus imposing dependency on loss

and default drivers. The current literature assumes a definition of L that constitutes

unconditional loss PL instead of LGD:

L = EAD · PL · D, (2.18)
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where PL is a percentage value in this case. This leads to problems in calculating

regulatory and economic capital: (1) If one assumes that the underlying assumptions

in the derivation of the regulatory capital Eq. (1.1) holds, then estimates using

Eq. (2.18) as input maybe misleading. (2) Addressing the dependency problem

in Eq. (1.1) as a way of meeting the provision in paragraph 468 of [20], will be

done via the triplet (EAD,PL,D) instead of (EAD,LGD,D). (3) Since the current

literature is concerned with parameter estimations that are ultimately used in finding

an approximate distribution for account-level LGD, under the current framework,

there is the problem of a mismatch of data and the targeted quantity to be estimated

— LGD data is used to estimate potential loss distribution.

Our goal in this section is to explain the defect in the existing PD-LGD correla-

tion models — which is the target distribution for the account-level loss given default

is not what we think it is. We correct this defect by proposing a model that gives the

correct distribution.

2.4.1 Explaining Defect

Several papers used the transformation — see for instance [44, 74, 83, 91, 92]

H(b) = B−1(Φ(b), δ1, δ2), (2.19)

where B is the cdf of beta distribution with scale parameters δ1 and δ2, which are the

unknown parameters to be estimated. B−1 is the inverse cdf, δ1 and δ2 are to ensure

that the model-implied and the observed LGD distributions match each other. The

aforementioned papers used the observed LGD data to estimate the pair (δ1, δ2) by
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solving the equations 
µLGD = δ1

δ1+δ2
,

σ2
LGD = δ1δ2

(δ1+δ2+1)(δ1+δ2)2
,

(2.20)

where µLGD and σ2
LGD are the mean and variance of observed LGD.

If it is true that the account-level LGD distribution is beta, the proposed esti-

mation scheme would have been the perfect way to estimate these parameters. Un-

fortunately, it is easy to see — from Eq. (2.8) and (2.13) —that the PL and LGD

distributions are given by


fPL(`) = β(`, δ1, δ2),

fLGD(`) = β(`, δ1, δ2) · PD(Φ−1(B(`,δ1,δ2))
PD

.

If ρA 6= 0, which is observed in general, then the observed account-level LGD does

not follow a beta distribution and it is therefore erroneous to use LGD data as input

in Eq. (2.20) to estimate δ1 and δ2 — a modelling error that has not been addressed

in the literature.

The papers mentioned above do not make a distinction between account-level

LGD and potential loss and we believe is the source of the modelling error. The

ensuing section investigates the severity of this modelling error on parameter estimates

and economic capital.

Before proceeding, we will give a general description of this error. Generally,

parameter estimation involves the following: (1) Select a parametric family for the

account-level LGD distribution {fψ : ψ ∈ Ψ}, where Ψ is the parameter space. (2)

Set loss Hψ(b) = F−1
ψ (Φ(b)), where Fψ is the cdf of fψ and F−1

ψ is its inverse. (3) Use

LGD data to estimate parameter ψ. This approach would be correct if the LGD data
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came from fψ. Unfortunately, it is clear — from Eq. (2.8) and (2.13) — that the PL

and LGD distributions take the form
fPL(`) = fψ(`),

fLGD(`) = fψ(`) · PD(Φ−1(Fψ(`))

PD
.

Observe from the above equation that if ρA 6= 0 fPL(`) 6= fLGD(`), implying account-

level LGD data does not come from fPL(`) as it is implicitly assumed in the papers

pointed out in this document. As such this approach is incorrect.

2.4.2 Effect of Defect on Parameter and Economic Capital

Estimates

We explore the severity of this error using the correlation structure (θI = 0, θS = 1)

in Frye’s model, but used the transformation in Eq. (2.19) and assumed beta as the

target distribution of the account-level loss given default. We employed method of

moments, where we map the sample moments obtained for simulated account-level

potential loss and loss given default to the respective population counterparts.

We estimate the parameters δ1 and δ2 by assuming 10000 economic scenarios.

δ1 = 0.3499, δ2 = 4.0354 and PD = 0.05. Algorithm 2 outlines the estimation

procedure. Note that the simulation procedure assumes a portfolio of one obligor (we

are effectively working with account-level PL and LGD). The estimated values are

used to estimate the corresponding values of EC and then the percentage differences

are found. The percentage difference is calculated by subtracting the EC obtained

from the estimate of δ1 and δ2 based on account-level LGD distribution from that

obtained from the parameter estimate based on the account-level PL and then divided
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by the former.

Table 2.4 shows estimated values of δ1 and δ2 for varying values of ρA. The

table compares the estimated values of the pair (δ1, δ2) under account-level PL and

LGD with their respective true values — δ1 = 0.3499 and δ2 = 4.0345. The re-

sult shows clear discrepancy between the estimates. For example, ρA = −0.4 gives

an estimate under the account-level LGD setting as 0.7737 and 3.309 for δ1 and δ2

respectively, which are different from the corresponding true values — δ1 = 0.3499

and δ2 = 4.0345. The deviation from the true values widens as ρA increases. The

percentage difference in EC in the table indicates gross difference in the estimated

EC based on the respective estimated parameter values δ1 and δ2 from the respective

distributions of account-level LGD and PL. This means estimated δ1 and δ2 from the

PL distribution understates greatly EC. For instance, we have an understatement of

EC of 54.26% and 41.07% at 90% and 99% confidence level (CL) respectively when

ρA = −0.2.

Furthermore, using an approximate sampling distribution of the respective pa-

rameters, 95% confidence interval (CI) and the mean square error (MSE) are presented

in Table 2.5 . The CI is obtained using the corresponding quantiles (2.5% and 97.5%)

from the approximate distribution. We used a sample size of 1000. The CI and the

MSE indicate that estimates using LGD data deviates grossly from the true values

of the parameters.

Summarizing, we have demonstrated in this section that the observed LGD dis-

tribution obtained from the PD-LGD correlation models in the aforementioned papers

is different from the targeted distribution. This modelling error greatly impacts EC

estimates.
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Algorithm 2 Estimating δ1 and δ2. We assumed a portfolio of one obligor

1: Input parameters — (α, β): sensitivity parameter of systematic and idiosyncratic
risk factors, PD: common probability of default, n: number of simulated eco-
nomic scenarios

2: Generate n quantities of the systematic risk driver, SA. Denote the simulated
values as s1, s2, ..., sn.

3: Generate n quantities of the idiosyncratic risk drivers, IA and
IB. Denote the simulated values for the pair IA and IB as
(iA,1, iB,1), (iA,2, iB,2), (iA,3, iB,3), ..., (iA,n, iB,n).

4: For each of the observed systematic and idiosyncratic risk drivers i set

• Ai = αsi +
√

1− α2iA,i

• Bi = βsi +
√

1− β2iB,i

• Di =

{
1 if Ai ≤ Φ−1(PD)

0 Otherwise

• PLi = B−1(Φ(Bi), δ1, δ2)

5: Number of defaults ND =
∑n

i=1Di
6: Let j1, j2, j3, ..., jND be defaulted exposures. For example, set

• n = 10

•

{
Di = 1 for i = 1, 4, 7

Di = 0 for other values at i

So ND = 3, j1 = 1, j2 = 4, j3 = 7.
7: Define LGDk = PLjk
8: Calculate the means and variances of PL, and LGD

• µPL = 1
n

∑n
i=1PLi

• µLGD = 1
ND

∑ND
k=1 LGDk

• σ2
PL = 1

n

∑n
i=1(PLi − µPL)2

• σ2
LGD = 1

ND

∑ND
i=1(LGDk − µLGD)2

9: Solve for δ1 and δ2 using

i • µPL = δ1
δ1+δ2

• σ2
PL = δ1δ2

(δ1+δ2)2(δ1+δ2+1)

ii • µLGD = δ1
δ1+δ2

• σ2
LGD = δ1δ2

(δ1+δ2)2(δ1+δ2+1)
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Table 2.4: Estimated values of δ1 and δ2 under different values of ρA corresponding
to different parameter value combination of α and β. The true values of δ1 and δ2

are 0.3499 and 4.0354 respectively. PD = 0.05. δ1 and δ2 are estimated by assuming
a portfolio of one obligor (N = 1) and 10000 economic scenarios. EC is estimated
using 1000 economic scenarios and number of obligors.

Estimates using LGD data Estimates using PL data Percentage difference of EC

Parameter values δ̂1 δ̂2 δ̂1 δ̂2 90% CL 99% CL
ρA = −0.2(α = −0.6, β = 0.33333) 0.5703 3.8056 0.3419 3.9430 54.26% 41.07%
ρA = −0.4(α = −0.520, β = 0.760) 0.7737 3.3090 0.3434 4.0252 111.69% 52.77%
ρA = −0.6(α = −0.630, β = 0.950) 1.2163 3.4421 0.3475 4.1248 177.93% 53.26%

Table 2.5: 95% Confidence Intervals of δ1 and δ2 under different values of ρA corre-
sponding to different parameter value combination of α and β. The true values of
δ1 and δ2 are 0.3499 and 4.0354 respectively. PD = 0.05. δ1 and δ2 are estimated
by assuming a portfolio of one obligor (N = 1) and 10000 economic scenarios. 1000
sample size of estimates.

CI using LGD data CI using PL data

Parameter values δ̂1 MSE δ̂2 MSE δ̂1 MSE δ̂2 MSE
ρA = −0.2(α = −0.6, β = 0.33333) [0.4338 0.5906] 0.0272 [2.9926 4.1602] 0.3499 [0.3464 0.3464] 0.0000 [4.0973 4.0973] 0.0038
ρA = −0.4(α = −0.520, β = 0.760) [0.6383 0.8572] 0.1618 [2.8226 3.8214] 0.5667 [0.3461 0.3461] 0.0000 [4.0395 4.0395] 0.0000
ρA = −0.6(α = −0.630, β = 0.950) [1.0713 1.3800] 0.7485 [3.0349 3.9911] 0.3517 [0.3396 0.3396] 0.0001 [3.9768 3.9768] 0.0034

2.4.3 Correcting Defect

In this section we show how to choose the transformation H so that the account-level

LGD distribution comes from a target parametric family. In other words we have

solved the problem that was identified in section 2.4.1. The objective is that given a

target parametric family of distribution fψ for an account-level LGD data, we choose

a transformation that defines PL such that the account-level distribution is fψ. In

what follows, we let Hf denote a transformation under which fLGD = f , where f is

some pdf on [0, 1].

Theorem 3. Suppose f is a pdf on [0, 1]. There are two transformations, one increas-

ing and the other decreasing, with the property that fLGD = f . The increasing function

is Hf (b) = F−1(Φ̂(b)) and the decreasing transformation is Hf (b) = F−1(1 − Φ̂(b)),

where F is the cdf of f .
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Proof. Suppose Hf is an increasing function of B, then

P(Hf (B) ≤ `|A ≤ Φ−1(PD)) = P(B ≤ H−1
f (`)|A ≤ Φ−1(PD)

= Φ̂(H−1
f (`)).

Now for a choice of Hf such that

P(Hf (B) ≤ `|A ≤ Φ−1(PD)) = F (`),

we should have

Φ̂(H−1
f (`)) = F (`),

This implies that

H−1
f (`) = Φ̂−1(F (`)). (2.21)

Now, let b = H−1
f (`). Noting that ` = Hf (b) and b = Φ−1(F (Hf (b)), Eq. (2.21)

becomes

Φ̂(b) = F (Hf (b)),

which implies

Hf (b) = F−1(Φ̂(b)).

Now, Suppose Hf is a decreasing function of B, then

P(Hf (B) ≤ `|A ≤ Φ−1(PD)) = P(B ≥ H−1
f (`)|A ≤ Φ−1(PD))

= 1− P(B ≤ H−1
f (`)|A ≤ Φ−1(PD))

= 1− Φ̂(H−1
f (`)).
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Now for a choice of Hf such that

P(Hf (B) ≤ `|A ≤ Φ−1(PD)) = F (`),

we should have

1− Φ̂(H−1
f (`)) = F (`).

Which is not different from

H−1
f (`) = Φ̂−1(1− F (`)). (2.22)

Similar as above, let b = H−1
f (`). Noting that ` = Hf (b) and b = Φ−1(1−F (Hf (b))),

Eq. (2.22) becomes

Φ̂(b) = 1− F (Hf (b)),

which means

Hf (b) = F−1(1− Φ̂(b)).

2.5 Comparing Transformations

Let f be a pdf and F be its cdf. In this section we compare the transformations —

Ĥ(b) (right transformation) and H(b) (wrong transformation). If f is the desired pdf

for the account-level LGD, then H(b) is the incorrect transformation that is currently

used in some of the literature where as Ĥ(b) is the correct transformation that has

been identified in this thesis for the first time. Our first observation is as follows:
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Proposition 2. Suppose H is an increasing transformation. H ≥ Ĥ if ρA ≤ 0.

H ≤ Ĥ otherwise.

Proposition 3. Suppose H is a decreasing transformation. H ≥ Ĥ if ρA ≥ 0.

H ≤ Ĥ otherwise.

Proof. The proof of Propositions 2 and 3 follows from Theorem 1,

Propositions 2 and 3 imply that under the assumption of a positive correlation

between account-level default and potential loss, H over transforms the loss driver.

That is, simulations based on H overstate the account-level PL. The converse —

negative correlation between account-level default and potential loss — produces an

understatement of account-level PL using H.

2.5.1 Comparing Distribution of Loss under H(b) and Ĥ(b)

Without lost of generality, we assume an increasing transformation of B in this sec-

tion. The value of ρA is negative. We set Ĥ(b) = F−1(Φ̂(b)) (correct transformation)

and H(b) = F−1(Φ(b)) (wrong transformation).
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The cdf of account-level potential loss PL under the transformation H(b) =

F−1(Φ(b)) is given by

P(PL ≤ `) = P(H(B) ≤ `)

= P(Φ(B) ≤ F (`))

= P(B ≤ Φ−1(F (`)))

= Φ[Φ−1(F (`))]

= F (`).

The cdf of account-level LGD is

P(PL ≤ `|D = 1) = P(H(B) ≤ `|D = 1)

= P(B ≤ Φ−1(F (`))|D = 1)

= Φ̂[Φ−1 (F (`))].

The cdf of account-level potential loss using the transformation Ĥ(b) = F−1(Φ̂(b))

is derived as

P(PL ≤ `) = P(Φ̂(B) ≤ F (`))

= P(B ≤ Φ̂−1(F (`)))

= Φ[Φ̂−1(F (`))]

and the cdf of account-level LGD is

P(PL ≤ `|D = 1) = F (`).
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Table 2.6 presents a summary of the various distributions of potential loss under the

different transformations presented above.

Table 2.6: Cumulative distribution function (cdf) of potential loss under different-
transformations

Transformation

H(b) = F−1(Φ(b)) Ĥ(b) = F−1(Φ̂(b))

cdf of account-level PL F (`) Φ[Φ̂−1(F (`))]

cdf of account-level LGD Φ̂[Φ−1(F (`))] F (`)

(a) Cumulative distribution function of account-
level PL and LGD under transformation, H(b) =
F−1(Φ(b)).

(b) Cumulative distribution function of account-

level PL and LGD under transformation, Ĥ(b) =

F−1(Φ̂(b)).

Figure 2.7: Cumulative distribution functions of account-level PL and LGD under
different transformations. F is cdf of a beta random variable with scale parameters
δ1 = 2 and δ2 = 3, PD = 0.05, ρA = −0.4.

Figures 2.7a and 2.7b compare the cdf of account-level PL (red curve) and

LGD (green curve) under the respective transformations. Figure 2.7a compares the

the distribution of the account-level PL and LGD under the transformation H(b) =

F−1(Φ(b)). The figures show that the cdf of account-level PL and LGD are different.

Figure 2.8a compares the cdf of account-level PL under the respective trans-

formations — H(b) (blue curve) and Ĥ(b) (black curve) and Figure 2.8b compares

the account-level LGD under the respective transformations — H(b) (blue curve)
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(a) Cumulative distribution function of PL under

transformations, H(b) = F−1(Φ(b)) and Ĥ(b) =

F−1(Φ̂(b)).

(b) Cumulative distribution of LGD, H(b) =

F−1(Φ(b)) and Ĥ(b) = F−1(Φ̂(b)).

Figure 2.8: Cumulative distributions of account-level PL and LGD. H(b) =

F−1(Φ(b)) and Ĥ(b) = F−1(Φ̂(b)). F is cdf of a beta random variable with scale
parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = −0.4.

and Ĥ(b) (black curve). The figures show a disparity in the cdf under the respective

transformations.

Table 2.7 summarizes the density functions of account-level PL and LGD under

the respective transformations. A comparison of the graphs of these density functions

under these transformations are presented in Figures 2.9 and 2.10. Figures 2.9a and

2.9b are the graphs of the density functions of the account-level PL and LGD under

the transformations H(b) = F−1(Φ(b)) and Ĥ(b) = F−1(Φ̂(b)) respectively. The

figures show disparity in the respective density functions under each transformation,

thus corroborating the story presented by Figure 2.7 — the account-level PL and LGD

using the two transformations defer. Figures 2.10a and 2.10b highlight the difference

in the distributions of the account-level PL and LGD under the two transformations

by comparing the respective density curves.
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Table 2.7: Density function of potential loss under different transformations

Transformation

H(b) = F−1(Φ(b)) Ĥ(b) = F−1(Φ̂(b))

Density of account-level PL f(`) φ(Φ̂−1(F (`)))f(`)

φ̂(Φ̂−1(F (`)))

Density of account-level LGD φ̂(Φ−1(F (`)))f(`)
φ(Φ−1(F (`))

f(`)

(a) Probability density functions of account-level PL
and LGD under transformation, H(b) = F−1(Φ(b)).

(b) Probability density functions account-level PL
and LGD under transformation. Ĥ(b) = F−1(Φ̂(b)).

Figure 2.9: Density functions of account-level PL and LGD under different transfor-
mations. F is cdf of a beta random variable with scale parameters δ1 = 2 and δ2 = 3,
PD = 0.05, ρA = −0.4.

(a) Unconditional density functions of PL under

transformations, H(b) = F−1(Φ(b)) and Ĥ(b) =
F−1(Φ(b)).

(b) Conditional density functions of PL given de-
fault under transformations, H(b) = F−1(Φ(b)) and

Ĥ(b) = F−1(Φ̂(b)).

Figure 2.10: Density functions under transformations, H(b) = F−1(Φ(b)) and Ĥ(b) =

F−1(Φ̂(b)). F is cdf of a beta random variable with scale parameters δ1 = 2 and δ2 =
3, PD = 0.05, ρA = −0.4.
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2.5.2 Comparing Economic Capital (EC) under H(b) and Ĥ(b)

Again, without loss of generality, we assumed an increasing transformation on the

loss driver B and thereby impose a positive correlation between account-level PL

and default. By this, the range of values of ρA are set on the interval [−1, 0].

Table 2.8 further highlights the assertion that definition of potential loss us-

ing the transformation H(b) = F−1(Φ(b)) over transforms loss drivers leading to

overstatement of EC. We considered confidence levels of 90% and 99% in estimating

percentage EC — the fraction of estimated EC of portfolio value. See Algorithm 1 for

estimation procedure. We assumed portfolio size of 1000 and 1000 economic scenar-

ios. Under both confidence levels, we have estimated percentage EC corresponding

to incorrect transformation (H(b)) bigger than estimated percentage EC correspond-

ing to correct transformation (Ĥ(b)). Also, the gap between percentage EC under

the respective transformations H(b) and Ĥ(b) increases with increasing correlation

between default and loss drivers, A and B.

Table 2.8: Economic capital under the two transformations. The pair (SA, SB) as-
sumes a perfect correlation between each other (θS = 1) and the pair (IA, IB) are
independent of each other (θI = 0). PD is 0.05. F−1 is the inverse beta cumulative
distribution function with scale parameters δ1 = 0.3499, δ2 = 4.0354, and mean and
standard deviation, 0.0798 and 0.1166 respectively. Each exposure is 1.00. We have
portfolio size of 1000 (1000 borrowers) and 1000 simulated pairs of (SA, SB) (eco-
nomic scenarios). The EC is the difference between the mean realized losses and the
respective confidence level, 90% and 99%. The EC is expressed as a percentage of
portfolio value.

α β Transformation

H(b) = F−1(Φ(b)) Ĥ(b) = F−1(Φ̂(b))
Economic capital at 90% confidence level −0.31 0.63 1.08% 0.68%
Economic capital at 99% confidence level 4.68% 3.50%
Economic capital at 90% confidence level −0.59 0.67 1.54% 0.55%
Economic capital at 99% confidence level 11.29% 6.02%
Economic capital at 90% confidence level -0.71 0.84 2.01% 0.23%
Economic capital at 99% confidence level 20.03% 8.24%
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2.6 Conclusion

The correct specification of the distribution of account-level loss given default is a

function of how accurately potential loss is defined. An erroneous specification of

potential loss will inevitably lead to distribution of loss that may not capture appre-

ciably the underlining risk on the portfolio. This chapter presents a generalized credit

risk model that nests existing credit risk models. We highlight that existing models

ignore the difference between account-level potential loss and loss given default. This

leads to a distribution of loss given default that does not capture expected portfo-

lio loss dynamics — the distributions presented in the literature is that of potential

loss. We fixed this defect by proposing a function that transforms loss drivers to

potential loss that reflects the difference in these concepts — potential loss and loss

given default. By deriving the correct distributions under the respective defective and

correct transformations we established that estimates of risk measures, for example,

economic capital are grossly different under the defective and correct models. This

is a concern to banks as they have to put in reserves funds that appreciably reflects

risk on the portfolio. We further highlighted how sensitive parameter estimates are

to the defect in the existing models.
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Chapter 3

Comparing Account and Portfolio

Level LGD

Chapter 2 presents a discussion on the distinction between account-level PL and

LGD. This chapter looks at the behavior of LGD at the account and portfolio-level

and the relationship between account-level default and loss relationship and default

and loss relationship at the portfolio-level. In this thesis, average realized loss and

portfolio level realized loss are used interchangeably.

3.1 Finite Portfolio-level Default Rate and Loss

Given Default

Consider a portfolio of N exposures with a common exposure $X each. The portfolio-

level default rate DRp is defined as the proportion of defaults on the portfolio over a
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given time horizon. It is defined formally as

DRp =
1

N

N∑
i=1

Di.

The dollar value of the loss exposure i is $RLi = $X · Di · PLi. So the loss exposure

expressed as a percentage of the dollar value of an exposure i is RLi = Di · PLi.

The dollar value of total realized loss on the entire portfolio (we may refer to this as

portfolio-level realized loss) is the summation of the individual realized losses within

a stipulated time period, and is expressed as

$RLp =
N∑
i=1

$RLi =
N∑
i=1

$X · Di · PLi. (3.1)

The total loss expressed as a percentage of the total notional value of the portfolio-

level realized loss is

RLp =

∑N
i=1 $X · Di · PLi∑N

i=1 $X
=

∑N
i=1Di · PLi

N
,

which is the same as the average percentage realized loss of individual exposures.

Because we are multiplying by Di, the sum in Eq. (3.1) really only extends over

defaulted exposures. The dollar value of portfolio-level realized loss and loss given

default $LGDp are therefore equal. We define LGDp as the total loss expressed as a

percentage of the total value of defaulted exposures (that is, the ratio of total loss on

the portfolio to the total notional value of defaulted exposures):

LGDp =

∑N
i=1 $X · Di · PLi∑N

i=1 $X · Di
=

∑N
i=1Di · PLi∑N

i=1Di
. (3.2)

Eq. (3.2) implies that the percentage quote of portfolio-level LGD is the same as

the average loss sustained on the defaulted exposures. For later use, we have LGDp
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rewritten as

LGDp =
1
N

∑N
i=1Di · PLi

1
N

∑N
i=1Di

. (3.3)

So by extension, the percentage quote of portfolio-level LGD can be written in terms

of the average percentage realized loss on the portfolio and the portfolio-level default

rate (this would not be true if exposures are of different sizes).

The rest of this chapter (i) compares the LGD distribution at the portfolio-level

(that is probability distribution of LGDp) to the distribution of LGD at the account-

level (that is conditional distribution of PLi given Di = 1, which we study in great

detail in the previous chapter) and (ii) investigates the extent to which portfolio-level

relationships (specifically, the correlation between LGDp and DRp) are determined

by account-level relationships (specifically, correlation between Di and PLi).

3.2 Joint Distribution of DRp and LGDp

The exact distribution of DRp,RLp and LGDp are extremely complicated for finite

N . As originally noted by Vasicek, however, the limiting distribution of DRp as

N →∞ is surprisingly simple [87]. In this section, we show that the same is true for

RLp and LGDp. And we derive the limiting joint distribution of DRp and LGDp.

3.2.1 Asymptotic Representation of DRp,RLp and LGDp.

Given SA = sA the default drivers A1, A2, A3, ... are independent and identical dis-

tributed (i.i.d.) normal with mean αsA and standard deviation 1 − α2. This means
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default indicators D1,D2,D3, ... are i.i.d. Bernoulli variables with success probability

P(Di = 1|SA = sA) = P(Ai ≤ Φ−1(PD)|SA = sA) = Φ

(
Φ−1(PD)− αsA√

1− α2

)
, (3.4)

where we note that Eq. (3.4) is the conditional default probability given SA = sA of

an individual exposure. By the law of large numbers, we know that for a sequence

of i.i.d. Bernoulli random variables, the proportion of successes converges to the

theoretical probability of success (the common probability of success) as N → ∞.

Thus given SA = sA, we have that

lim
N→∞

DRp = ADRp(sA), (3.5)

where

ADRp(sA) = P(Di = 1|SA = sA)

is the individual conditional default probability. In light of Eq. (3.5), we call

ADRp(SA) the asymptotic default rate (this will be the default rate of an infinitely

large portfolio).

Now, given the realized values of the pair (SA, SB), say (sA, sB), the pairs

(A1, B1), (A2, B2), (A3, B3), ... are i.i.d. bivariate normal with mean vector µA,B and

covariance matrix ΣA,B (see appendix B.1 for derivation),

µA,B =

αsA
βsB


and

ΣA,B =

 1− α2
√

(1− α2)(1− β2)θI√
(1− α2)(1− β2)θI 1− β2

 .

69



Note that the mean vector depends on the realized values of the pair (SA, SB) and

ΣA,B does not. This means the sequence D1 · PL1,D2 · PL2,D3 · PL3, ... will be i.i.d.

as well. Again, by the law of large numbers, we have

lim
N→∞

1

N

N∑
i=1

Di · PLi = E[Di · PLi|SA = sA, SB = sB]. (3.6)

We define ARLp(sA, sB) as

ARLp(sA, sB) = E[Di · PLi|SA = sA, SB = sB].

In light of Eq. (3.6), we call ARLp(SA, SB) the asymptotic portfolio-level realized

loss.

Since the limit of the ratio of two functions is the ratio of the limit of the

functions, provided that the limit in the denominator function is not zero, from Eq.

(3.3),(3.5) and (3.6) we have

lim
N→∞

LGDp =
limN→∞

1
N

∑N
i=1Di · PLi

limN→∞
1
N

∑N
i=1Di

=
ARLp(SA, SB)

ADRp(SA)
,

where we note that limN→∞
1
N

∑N
i=1Di > 0. We call the ratio of ARLp and ADRp

the asymptotic portfolio-level LGD (ALGDp).

Finding expression for ARLp(SA, SB) and ALGDp

The conditional expectation defining ARLp is of the form E[f(A)·g(B)|SA = sA, SB =

sB]. By employing the tower property of conditional expectation, E[f(A) ·g(B)|SA =
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sA, SB = sA] can take the form

E[E[(f(A) · g(B))|B = b, SA = sA, SB = sB]|SA = sA, SB = sB]

= E[g(B) · E[f(A)|B = b, SA = sA, SB = sB]|SA = sA, SB = sB]

= E[H(B)E[1{A≤Φ−1(PD)}|B = b, SA = sA, SB = sB]|SA = sA, SB = sB]

= E[H(B)P(A ≤ Φ−1(PD)|B = b, SA = sA, SB = sB)|SA = sA, SB = sB].

Now (see appendix B.2)

P(A ≤ Φ−1(PD)|B = b, SA = sA, SB = sB)

= Φ

Φ−1(PD)− αsA − θI
√

1−α2

1−β2 (b− βsB)√
(1− α2)(1− θ2

I )

 . (3.7)

So we have

ARLp(sA, sB)

=

∫
R
H(b) · Φ

Φ−1(PD)− αsA − θI
√

1−α2

1−β2 (b− βsB)√
(1− α2)(1− θ2

I )

 · φ(b; βsB, 1− β2)db, (3.8)

where φ(·) is the normal pdf with mean βsB and variance 1 − β2. Note that the

conditional pdf of the variate B given the realized values of SA and SB is normal

with mean βsB and variance 1− β2. Figure 3.1 shows the graph of ARLp against SB

for given values of SA. It shows that for a given value of SA, ARLp is a monotone

function of SB. The nature of monotonicity (increasing or decreasing) is determined

by the transformation H(b). If H is a decreasing (increasing) function of b, ARLp

decreases (increases) with respective to SB for a given value of SA. See Figures 3.1a

and 3.1b, and observe that even though the graph of ARLp when SA = 2 (green

curve) appears horizontal, note that it is still increasing with SB — the values of
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ARLp are very small.

(a) H(b) = F−1(1− Φ̂(b)) (b) H(b) = F−1(Φ̂(b))

Figure 3.1: Asymptotic portfolio-level realized loss verses systematic risk factor
SB using Eq. (3.8). F is cumulative beta distribution with scale parameters
δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.4, α = β =

√
0.25, θS = 0.8, θI = 0.2667.

Remark 7. Note that if θI = 0 then ARLp factors into the product of a function of

sA and a function of sB since the drivers (A,B) are then independent given SA = sA

and SB = sB. Indeed if θI = 0 then

ARLp(sA, sB) = Φ

(
Φ−1(PD)− αsA√

1− α2

)
·
∫
R
H(b) · φ(b; βsB, 1− β2)db,

= ADRp(sA) · h(sB).

In this case, the ALGDp is given as

ALGDp(sB) = h(sB) =

∫
R
H(b) · φ(b; βsB, 1− β2)db. (3.9)

which is an decreasing (increasing) function of sB when H is a decreasing (increasing)

function of b — by reason of Figure 3.1.

Appendix D.1 discusses the behaviour of ALGDp with respect to θI . We answer

the question, at what interval of θI will ALGDp be increasing (or decreasing).
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3.2.2 Probability Density of ADRp

Note that the asymptotic default rate is a random variable and is a decreasing function

of SA. From Eq. (3.4), the cdf of ADRp(SA) is therefore obtained (for 0 < dr < 1)

as

P(ADRp(SA) ≤ dr) = P(SA ≥ ADR−1
p (dr)) = Φ

(√
1− α2

α
Φ−1(dr)− Φ−1(PD)

α

)
,

where we use the fact that SA is standard normal and

ADR−1
p (dr) =

Φ−1(PD)−
√

1− α2Φ−1(dr)

α
.

The resulting pdf is

fADRp(dr) =

√
1− α2

α · φ(Φ−1(dr))
φ

(√
1− α2

α
Φ−1(dr)− Φ−1(PD)

α

)
, (3.10)

a two parameter family with parameters PD and α. Figure 3.2 compares the esti-

mated density of simulated values of finite portfolio-level default rate (black curve)

and the density of asymptotic default rate ADRp (red curve). Observe that as the

portfolio size increases from 500 to 5000, we see very good approximation of the esti-

mated density with the theoretical density. This visual agreement is confirmed by the

Kolmogorov-Smirnov test, where using the kstest function in MATLAB we observed

that for a portfolio size of 500, the p-value is 3%, and a portfolio size of 5000, the

p-value is 67%. The null hypothesis is that the two data sets come from the same

distribution.

The theoretical mean and variance are derived by first recalling that ADRp =

E[Di|SA] (= P(Di = 1|SA)).
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(a) N = 500 (b) N = 5000

Figure 3.2: Estimated density of simulated values of finite portfolio-level and density
of asymptotic portfolio-level default rate using Eq. (3.10). α = 0.25, PD = 0.05.
Number of simulated systematic risk factors m = 1000. The ksdensity function in
Matlab is used for density estimation.

The expected value of ADRp is obtained as

µADRp = E[ADRp]

= E[E[Di|SA]]

= E[Di] = P(Di) = PD, (3.11)

where we used the tower property. Using the fact that exposures are homogeneous

ADR2
p = E[Di|SA] · E[Di|SA]

= E[Di|SA] · E[Dj|SA] (3.12)

Thus applying the property of conditional independence to Eq. (3.12), yields

ADR2
p = E[Di · Dj|SA]. (3.13)
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The variance of ADRp is therefore

σ2
ADRp = E[ADR2

p]− PD2

= E[E[Di · Dj|SA]]− PD2 (3.14)

= E[Di · Dj]− PD2 (3.15)

= PD(2) − PD2, (3.16)

where in moving from line (3.14) to (3.15) we use the tower property and

PD(2) = E[Di ·Dj] = P(Di = 1,Dj = 1) = P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)) (3.17)

is the probability of two obligors defaulting simultaneously. PD(2) can be computed

using bivariate normal pdf. Note that

PD(2) − PD2 = E[Di · Dj]− E[Di] · E[Dj]

= Cov(Di,Dj),

Cov(Di,Dj) is the covariance of default indicators.

Remark 8. The variance of portfolio-level default rate is the same as the covariance

between defaults.

3.2.3 Mean and Variance of ARLp

Using the tower property, the mean of ARLp is derived as

µARLp = E[ARLp] = E[E[RLi|SA, SB]] = E[RLi].
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The fact that exposures are homogeneous allows us to write

ARL2
p = E[RLi|SA, SB] · E[RLi|SA, SB]

= E[RLi|SA, SB] · E[RLj|SA, SB],

so that

ARL2
p = E[RLi · RLj|SA, SB],

where we use the property of conditional independence. Hence, the expected value of

ARL2
p is

E[ARL2
p] = E[RLi · RLj], (3.18)

where we applied the tower property. Again, using the property of homogeneity of

exposures

µ2
ARLp = E[RLi] · E[RLj].

We can therefore express the variance of ARLp as

σ2
ARLp = E[RLi · RLj]− E[RLi] · E[RLj]

= Cov(RLi,RLj).

Cov(RLi,RLj) is the covariance between account-level realized losses (RLi andRLj)

Remark 9. The variance of portfolio-level realized loss is equal to the covariance

between the account-level realized loss on exposures.
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Alternatively, recall that RLi = Di · PLi, hence we have the expected value of

ARLp as

µARLp = E[ARLp] = E[E[Di · PLi|SA, SB]] = E[Di · PLi].

Applying the tower property and conditioning on Di gives

µARLp = E[Di · PLi]

= E[PLi|Di = 1] · P[Di = 1] = LGDA · PD, (3.19)

where

LGDA = E[PLi|Di = 1].

The variance is obtained as

σ2
ARLp = E[ARL2

p]− µ2
ARLp ,

where

E[ARL2
p] = E[RLi · RLj]

= E[Di · PLi · Dj · PLj] (3.20)

= E[E[Di · PLi · Dj · PLj|SA, SB]] (3.21)

= E[(E[Di · PLi|SA, SB])2] (3.22)

We use the tower property and the fact that exposures are homogeneous in moving

from line (3.20) to (3.21) and from line (3.20) to (3.22) respectively. We use the
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Jensen’s inequality to get1

E[(E[Di · PLi|SA, SB])2] ≤ E[E[(Di · PLi)2|SA, SB]]

= E[(Di · PLi)2]

= E[PL2
i |D2

i = 1] · P(D2
i = 1)

= E[PL2
i |Di = 1] · PD.

Noting that the variance of account-level LGD is

σ2
LGD = E[PL2

i |Di = 1]− (E[PLi|Di = 1])2,

we have

E[PL2
i |Di = 1] = σ2

LGD + LGD2
A.

Thus

σ2
ARLp ≤ PD[σ2

LGD + LGD2
A]− PD2LGD2

A

= PD[σ2
LGD + LGD2

A(1− PD)]. (3.23)

Remark 10. Since 0 ≤ PD ≤ 1, observe from Eq. (3.23) that extreme values of

PD, say PD = 0 (no defaults at the account-level), σ2
ARLp

= σ2
LGD = 0 and PD = 1

(all account defaults), σ2
ARLp

≤ σ2
LGD.

1Observe that the expression in the outer expectation symbol E in line (3.22) takes the form

f(x) = x2. So we have f((E[Di · PLi|SA, SB ])) = (E[Di · PLi|SA, SB ])
2 ≤ E[(Di · PLi)2|SA, SB ] =

E[f(Di · PLi)|SA, SB ]
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3.2.4 Covariance of ADRp and ARLp

Again, we apply the homogeneity property of exposures to arrive at

ADRp · ARLp = E[Di|SA] · E[Di · PLi|SA, SB]

= E[Dj|SA] · E[Di · PLi|SA, SB],

and applying the conditional independence property gives

ADRp · ARLp = E[Di · Dj · PLi|SA, SB], (3.24)

Applying the tower property to Eq. (3.24), we have

E[ADRp · ARLp] = E[E[Di · Dj · PLi|SA, SB]]

= E[Di · Dj · PLi], (3.25)

E[ADRp · ARLp] can be expressed as

E[ADRp · ARLp] = E[Di · Dj · PLi]

= E[Di · Dj · PLi|Di · Dj = 1] · P(Di · Dj = 1)

= E[PLi|Di = 1,Dj = 1] · P(Di = 1,Dj = 1),

thus the covariance of ADRp and ALGDp is

σADRp,ARLp = E[ADRp · ARLp]− E[ADRp] · E[ARLp]

= LGD
(2)
A · PD

(2) − PD2 · LGDA, (3.26)
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where

LGD
(2)
A = E[PLi|Di = 1,Dj = 1]

is the account-level LGD given joint defaults of two obligors — we call this quantity

“account-level joint LGD”. Section 3.3.2 presents discussion on computing LGD
(2)
A .

3.2.5 Deriving Joint Density of ADRp and ALGDp

Let dr = ADRp(sA) and ` = ARLp(sA,sB)

ADRp(sA)
. Since ADRp is monotone and numerical

evidence (Figure 3.1) suggests that ARLp is monotone in sB for a fixed value of sA,

it follows that (dr, `) is a one-to-one transformation of (sA, sB). We let sA = g1(dr)

and sB = g2(dr, `) be the components inverse transformation. Then g1(dr) is given

by

sA = g1(dr) =
Φ−1(PD)−

√
1− α2Φ−1(dr)

α
, (3.27)

but generally, g2(dr, `) must be computed numerically. This can be done as follows:

Set

gSA,SB(sA, sB) = `− ARLp(sA, sB)

ADRp(sA)
.

Since sA can be computed from Eq. (3.27), for given values of dr and `, the function

gSA,SB reduces to a function of only sB. We can then retrieve the value of sB (or

g2(dr, `)) numerically by finding the zero of the following:

gSB(sB) = `− ARLp(sA, sB)

ADRp(sA)
.

That is the value of sB (or g2(dr, `)) is the zero of gSB(sB).
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Suppose g1(·) and g2(·) are partially differentiable on dr and ` so that we get

the Jacobian as

J =

∣∣∣∣∣∣∣
∂sA
∂dr

∂sA
∂`

∂sB
∂dr

∂sB
∂`

∣∣∣∣∣∣∣ ,
where ∂sA

∂dr
= ∂g1(dr)

∂dr
, ∂sA
∂`

= ∂g1(DRp)

∂`
= 0, ∂sB

∂dr
= ∂g2(dr,`)

∂dr
, and ∂sB

∂`
= ∂g2(dr,`)

∂`
. We have

J =
∂g1(dr)

∂dr
· ∂g2(dr, `)

∂`
.

It is straightforward to compute ∂g1(dr)
∂dr

using Eq. (3.27), however, computing ∂g2(dr,`)
∂`

is not that simple. We do the computation numerically. From derivative by first

principle:

∂g2(dr, `)

∂`
= lim

ε→0

g2(dr, `+ ε)− g2(dr, `)

ε
,

where ε is a small change in ` and g2(dr, `+ ε) is the zero of the expression

gSB ,ε(sB) = (`+ ε)− ARLp(sA, sB)

ADRp(sA)
.

By this, we can approximate ∂g2(dr,`)
∂`

as

∂g2(dr, `)

∂`
≈ g2(dr, `+ ε)− g2(dr, `)

ε
,

assuming very small value of ε. Having the computed value of J , the joint density of

ADRp and ALGDp is obtained using

fADRp,ALGDp(dr, `) = fSA,SB(g1(dr), g2(dr, `))|J |, (3.28)

where fSA,SB(g1(dr), g2(dr, `)) is a bivariate normal density function of the pair (SA, SB).

Figure 3.3 exhibits the numerically obtained joint density and associated contour plot.

The contour, which is the height of the surface plot, are obtained by slicing the joint
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density (Eq. (3.28) surface of the pair (ALGDp, ADRp) with planes parallel to the

ALGDp − ADRp plane and intersect at the corresponding values for the expression

for the joint density of ALGDp and ADRp evaluated at some given values for ALGDp

and ADRp.

Remark 11. The closed form of the joint density of ADRp and ALGDp presented

in Eq. (3.28) can be numerically intensive to work with.

(a) Surface plot of joint density of portfolio-level
LGD and default rate.

(b) Contour plot of joint density of portfolio-level
LGD and default rate.

Figure 3.3: Surface and contour plots (12 levels) of asymptotic portfolio-level LGD

and default rate using potential loss defined as H(b) = F−1(1−Φ̂(b)). F is cumulative
beta distribution with scale parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.4, α =
β =
√

0.25, θS = 0.8, θI = 0.2667.

3.2.6 Marginal Density of ALGDp

The general marginal density of ALGDp is

fALGDp(`) =

∫
R
fSA,SB(g1(dr), g2(dr, `))|J |ddr, (3.29)

where we used Eq. (3.28), and θI takes on arbitrary values.

Now for simplicity, we compare the finite and asymptotic portfolio-level LGD

by considering θI = 0 (that is independent idiosyncratic risk factors). With no

82



idiosyncratic correlation, asymptotic portfolio-level LGD takes the form in Eq. (3.9).

Suppose h is an increasing function of SB, then the cdf of ALGDp is given by

Fp(`) = P(h(SB) ≤ `)

= P(SB ≤ h−1(`))

= Φ(h−1(`)).

Since SB is normally distributed with 0 mean and standard deviation of 1. It follows

that the density of ALGDp is derived as

fp(`) =
d

d`
Φ(h−1(`))

=
φ(h−1(`))

h′(h−1(`))
.

On the other hand if h is a decreasing function of SB then the cdf of the ALGDp is

derived as

Fp(`) = P(h(SB) ≤ `)

= P(SB ≥ h−1(`))

= 1− P(SB ≤ h−1(`))

= 1− Φ(h−1(`)).

The resulting density of ALGDp is therefore

fp(`) = − d

d`
Φ(h−1(`))

= − φ(h−1(`))

h′(h−1(`))
.
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h′(·) is the derivative of h with respect to s and is given as (assuming existence of

derivative under the integral)

h′(s) =
β

1− β2
·
∫
R
H(b) · (b− βs) · φ(b; βs, 1− β2)db.

We compute sB = h−1(`) by first setting

gSB(sB) = `− h(sB)

and then find the zero of gSB(sB) for a given value of `. Note that this is numerically

intensive procedure.

Figure 3.4 compares the estimated density of simulated values of finite portfolio-

level LGD (LGDp) (black curve) and the density of the asymptotic portfolio-level

LGD (ALGDp) (red curve) for independent idiosyncratic risk factors (θI = 0). It

illustrates that the estimated density of the simulated values of LGDp agrees with

the derived density function of ALGDp — as we increase the portfolio size from

500 to 5000, the estimated density approximates the theoretical density very well.

The visual agreement is confirmed by the Kolmogorov-Smirnov test, where using the

kstest function in MATLAB we observed that for a portfolio-size of 500, the p-value

is 0.0009%, and a portfolio size of 5000, the p-value is 72%. The null hypothesis is

that the two data sets come from the same distribution.

Figure 3.5 illustrates the densities of the account-level LGD (black curve) and

the portfolio-level LGD (red curve). The transformation was chosen such that the

account-level LGD distribution is beta with mean 40% and standard deviation 20%.

Table 3.1 shows the statistical measures of the account and portfolio level LGD. The

figure and table exhibit difference in the respective distributions. For instance, the

skewness of both quantities shows a right skewed distribution for the account-level
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(a) N = 500 (b) N = 5000

Figure 3.4: Estimated density of simulated values of finite portfolio-level LGD
and the density of asymptotic portfolio-level LGD using potential loss defined as
H(b) = B−1(1 − Φ̂(b)). B is cumulative beta distribution with scale parameters
δ1 = 2 and δ2 = 3, and B−1 is the inverse. PD = 0.05, ρA = 0.25, α = β =√

0.25, θS = 1, θI = 0. Number of simulated systematic risk factors m = 1000.
The ksdensity function Matlab is used for density estimation

LGD (skewness = 0.2857) and the portfolio-level LGD (skewness = 0.3715) and much

variation in the observations of the account-level LGD (standard deviation = 0.2000)

as compared to that of the portfolio-level LGD (standard deviation = 0.0921) — this

could be attributed to diversification effect.

Remark 12. This demonstrates that LGD can behave differently at the account and

portfolio level. In particular, the means and standard deviations of these quantities

are different. We explain the source of this difference in Section 3.3.

Table 3.1: Statistical measure of asymptotic account and portfolio level LGD. We use
the transformation H(b) = B−1((1−Φ̂(b)), δ1, δ2). B−1 is the inverse of the cumulative
beta distribution with scale parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.25, α =
β =
√

0.25. θS = 1, θI = 0.

Statistical Measure Account-Level LGD Portfolio-Level LGD
Mean 0.4000 0.3007

Median 0.3846 0.2944
Kurtosis 2.3571 2.9781
Skewness 0.2857 0.3715

Standard deviation 0.2000 0.0921
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Figure 3.5: Densities of account-level LGD and portfolio-level LGD. Potential loss is
defined as H(b) = B−1((1 − Φ̂(b)), δ1, δ2). B−1 is the inverse of the cumulative beta
distribution with scale parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.25, α = β =√

0.25, θS = 1, θI = 0.

3.3 Account and portfolio level relationships

The correlation between default and loss drivers ρA summarizes the relationship be-

tween loss and default at the account level. It is natural to investigate whether it also

determines the relationship between default and loss at the portfolio level. Specifi-

cally, we are looking at the extent to which the account level relationship between

default and loss determines portfolio level relationship between default and loss.

Recall that the account-level correlation ρA is given as

ρA = αβθS +
√

1− α
√

1− βθI . (3.30)

It is clear that for a given value of ρA, there are different possible combinations of

θS and θI that are consistent with the values of ρA. If we vary (θS, θI) such that ρA

is fixed, we are effectively varying the source of the account-level relation while its
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degree or magnitude is fixed. In order to determine whether portfolio-level relationship

between default and loss is dictated by the degree or source of the account-level

relationship we perform the following experiment. First we fixed α, β and ρA. Fixing

ρA fixes the degree of account-level correlation. Next we created a grid of values in

the unit interval [0, 1] for θS. For each value of θS in the grid, we set

θI =
ρA − αβθS√

1− α2
√

1− β

and estimate the correlation between ADRp and ALGDp, ρp, as described in Algo-

rithm 3, which is a simulation based estimation scheme. We chose this approach

even though we could have used the joint density of ADRp and ALGDp (Eq. (3.28))

because it is computationally easy.

Figure 3.6 illustrates the result of this experiment. We use the transformation

of B such that account-level LGD distribution is beta with mean and standard devia-

tion, 40% and 20% respectively. The figure illustrates a positive relationship between

ρp and respectively θS
θI

and θS. Thus, even though the degree of account-level re-

lationship has no bearing on portfolio-level relationship, the individual components

impact portfolio-level relationship. In other words, the portfolio-level relationship is

not determined by the degree of account-level relationship. It is determined by its

source.

Of particular note, ρp has a mixture of negative and positive values for some

parameter values of θS
θI

. Indicating that if the correlation at the account-level is due

primarily to correlation between systematic (relative to idiosyncratic) risk factors, the

portfolio-level correlation is strong and positive (see Figure 3.6a). For example, if θS

contributes about 4 times relative to θI to account-level relationship, the portfolio-

level correlation is about 0.72. In this case, LGD estimated under economic downturn
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(a) (b)

Figure 3.6: Relationship between the correlation between portfolio-level default rate
and loss given default and correlation between risk factors using potential loss defined
as H(b) = B−1((1−Φ̂(b)), δ1, δ2). B−1 is the inverse of the cumulative beta distribution
with scale parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.4, α = β =

√
0.25.

condition will be greater than that estimated under through the cycle (TTC) condi-

tion. This is because downturn LGD is in sync with expected behavior of business

cycles and thus changes with these cycles whereas TTC LGD is not cyclical and may

be the representation of the cycle-average LGD over several periods, hence rendering

LGD estimates relatively constant over the business cycle [74]. On the other hand,

if the account-level correlation is primarily attributed to idiosyncratic (relative to

systematic) risk factors, the portfolio-level correlation is strong and negative. In this

case, we have an inverse relationship between portfolio-level default rate and LGD,

thus suggesting lower estimates of LGD during downturn than estimates under TTC.

A contradictory to what is expected in the Basel II [20].

Remark 13. The above suggests that ensuring that the account-level relationship

is positive does not necessarily guarantee that downturn LGD behaves as the Basel

requirement says it should. We are fairly certain that this important discovery has

not appeared in the literature.

Figure 3.7 supports the observation in Figure 3.6. It shows the contour plots

of the pair (ADRp, ALGDp) for different parameter values of θS and θI . The figure
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Algorithm 3 Calculating correlation between ADRp and ALGDp

1: Input parameters — (α, β): sensitivity of systematic and idiosyncratic risk factors,
PD: common probability of default, n: number of simulations, θI : correlation
between systematic risk factors (IA, IB), θS: correlation between idiosyncratic risk
factors (SA, SB), ρA: correlation between default and loss drivers

2: For each θS

i set θI = ρA−αβθS√
1−α2
√

1−β2

ii generate n observations of the pair (SA, SB)

iii using the observations of the pair (SA, SB) as inputs, set

• ADRp,= Φ
(

Φ−1(PD)−αsA√
1−α2

)
• ARLp =

∫
RH(b) ·Φ

Φ−1(PD)−αsA−θI
√

1−α2
1−β2

(b−βsB)
√

(1−α2)(1−θ2I )

 · φ(b; βsB, 1− β2)db

• ALGDp = ARLp
ADRp

3: End for each θS
4: Calculate the correlation between ADRp and ALGDp

illustrates increasing concentration of the contour lines around the respective means

of ADRp and ALGDp, for positive values of ρp (θS > 0.3402, Figures 3.7c-3.7e) and

negative values of ρp (θS < 0.3402, Figures 3.7a and 3.7b). This shows the link

between θS and the joint density via ρp. An important issue relating to the portfolio-

level loss distribution, hence risk parameter estimations.

Figure 3.8 shows the density plot of ALGDp for varying parameter value com-

binations of the pair (θS, θI) given fixed value of ρA, α, and β. The figure indicates

that the shape of the density of ALGDp is dependent on the values of θS and θI . In

particular, the density plots show that as θS increases from 0.0 to 0.8, the likelihood

of a portfolio realizing low values of losses increases. Figure 3.8b clearly exposes

this observation, where the mean of ALGDp relates inversely to θS
θI

. This echoes the

story from Figures 3.6 and 3.7. For instance, θS
θI

= 0.00 indicates that the source

of the account-level relationship is primarily due to the the correlation between the

idiosyncratic components. The portfolio-level correlation ρp in this case is strong and
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negative.

Remark 14. The above observed phenomenon highlights the importance of depen-

dency structure in a credit risk model in the accurate estimation of risk parameters —

PD,LGD,EC. The natural question then is, what is the source of this phenomenon?

The ensuing section explains the origin of this phenomenon.

(a) θS = 0.00, θI = 0.53 (b) θS = 0.20, θI = 0.47 (c) θS = 0.40, θI = 0.40

(d) θS = 0.6, θI = 0.33 (e) θS = 0.8, θI = 0.27

Figure 3.7: Contour plots of the joint density of asymptotic portfolio-level LGD and
default rate for different value combinations of correlation between systematic risk
factors and idiosyncratic risk factors using potential loss defined as H(b) = B−1((1−
Φ̂(b)), δ1, δ2). B−1 is the inverse of the cumulative beta distribution with scale param-
eters δ1 = 2 and δ2 = 3, ρA = 0.4, α =

√
0.25, β =

√
0.25, δ1 = 2, δ2 = 3, PD = 0.05

3.3.1 Source of Account-Level Correlation

By definition, the correlation between asymptotic portfolio-level default rate and LGD

is

ρp =
Cov(ADRp, ALGDp)

σADRp · σALGDp
,
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(a) Density function of ALGDp for differ-
ent value combinations of the pair (θS , θI)

(b) Mean of ALGDp verses θS

Figure 3.8: Density of asymptotic portfolio-level LGD ALGDp for different parameter
value combinations of the correlation between the systematic θS and idiosyncratic θI
risk factors and the plot of the mean of ALGDp against θS

θI
using potential loss defined

as H(b) = B−1((1−Φ̂(b)), δ1, δ2). B−1 is the inverse of the cumulative beta distribution
with scale parameters δ1 = 2 and δ2 = 3, PD = 0.05, ρA = 0.4, α = β =

√
0.25.

where σALGDp is the standard deviation of ALGDp. Noting that ALGDp = ARLp
ADRp

and

E[ARLp] = PD · LGDA,

Cov(ADRp, ALGDp) = E[ADRp · ALGDp]− E[ADRp] · E[ALGDp]

= E[ARLp]− E[ADRp] · E[ALGDp]

= PD(LGDA − E[ALGDp])

is the covariance of ADRp and ALGDp. The sign of ρp is governed by the relative

movement of ADRp and ALGDp, which is captured by Cov(ADRp, ALGDp) and is

determined by the relative sizes of LGDA and E[ALGDp]. Cov(ADRp, ALGDp) is

positive if LGDA > E[ALGDp] and negative if LGDA < E[ALGDp]. Hence, compre-

hending the sign of ρp is equivalent to comprehending the sign of Cov(ADRp, ALGDp).

In fact, Figure 3.8b shows the dependency of E[ALGDp] on θS. Noting that LGDA

is independent of θS, our discussion focuses on the influence of the relative size of θS

on E[ALGDp].
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Remark 15. To explain the origin of the phenomenon observed in Figure 3.6 (mixture

of negative and positive sign for ρp), we need to establish the influence the relative

sizes of θS and θI have on Cov(ADRp, ALGDp) via their effect on E[ALGDp]. We

do this by first finding the expression for E[ALGDp].

We know the expressions for E[ARLp] and E[ADRp] (see Eq. (3.11) and (3.19)),

so we are left with obtaining the expression for E[ALGDp]. Using quadratic Taylor

Series Approximation, the approximation of E[ALGDp] is (see Appendix B.3 for

detailed discussion)

E[ALGDp] ≈
µARLp
µADRp

+
µARLp
µ3
ADRp

σ2
ADRp −

1

µ2
ADRp

σADRp,ARLp .

From Eq. (3.11) and (3.19)

µARLp
µADRp

= LGDA, (3.31)

and from Eq. (3.11), (3.16), and (3.19)

µARLp
µ3
ADRp

σ2
ADRp =

LGDA

PD2

(
PD(2) − PD2

)
=
LGDA

PD2
· PD(2) − LGDA, (3.32)

and from Eq. (3.26) and (3.11)

1

µ2
ADRp

σADRp,ARLp =
1

PD2

(
LGD

(2)
A · PD

(2) − PD2 · LGDA

)
=

1

PD2
LGD

(2)
A · PD

(2) − LGDA. (3.33)

Combining Eq. (3.31), (3.32) and (3.33) gives

E[ALGDp] ≈ LGDA −
PD(2)

PD2
·∆LGD,
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where

∆LGD = LGD
(2)
A − LGDA. (3.34)

Thus,

Cov(ADRp, ALGDp) ≈
PD(2)

PD
∆LGD.

From Eq. (3.34), Cov(ADRp, ALGDp) changes sign at LGD
(2)
A = LGDA. Observe

that account-level joint LGD, LGD
(2)
A , is governed by the parameters δ1, δ2, α, β, θI

and θS, so the value of ∆LGD is determined by values of these parameters. In partic-

ular θS or θI — the respective correlation between the systematic and idiosyncratic

risk factors — highlights its value. Figure 3.9 compares the exact and approximated

values of E[ALGDp] using varying values of θS. The figure indicates a close match

between the two quantities.

Figure 3.9: Exact and Approximated Values of E[ALGDp]. δ1 = 2, δ3, PD = 0.05,
ρA = 0.25, α = β =

√
0.25, θI = 0.
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3.3.2 On LGD
(2)
A and LGDA

We know that H(B) is a monotone function. This suggests that its mean will be a

monotone function of the mean of Bi given that exposure i and j defaulted. Since we

can use the result from [71] to get that conditional mean, we use this to explain the

impact of the relative size of θS on Cov(ADRp, ALGDp) through E[ALGDp].

Now, from Eq. (11) in [71], we obtain (see Appendix B.4) µΦ−1(PD) = E[Bi|Ai ≤

Φ−1(PD)] as

µΦ−1(PD) = −ρA ·
φ(Φ−1(PD))

PD
.

µΦ−1(PD) is the conditional expected value of loss driver given that default occurred.

Also, µ
(2)

Φ−1(PD) = E[Bi|Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)] is derived as (see Appendix

B.4)

µ
(2)

Φ−1(PD) = −(ρA + αβθS) · φ(Φ−1(PD))

PD(2)
· ζ,

where

ζ = Φ

(
Φ−1(PD)(1− α2)√

1− α4

)
is the conditional probability of Ai ≤ Φ−1(PD) given Aj = Φ−1(PD). µ

(2)

Φ−1(PD) is

the conditional expectation of loss driver given simultaneous occurrence of defaults

of two obligors. Note that µ
(2)

Φ−1(PD) is a monotone function of θS.

Theorem 4. µ
(2)

Φ−1(PD) = µΦ−1(PD) if and only if θS
θI

=
θ∗S
θ∗I

=
√

1−α2
√

1−β2

αβ

(
PD(2)−ζPD
2ζPD−PD(2)

)
.

Proof. Suppose µ
(2)

Φ−1(PD) = µΦ−1(PD), then

θS = θ∗S =
ρA
αβ

(
PD(2)

ζPD
− 1

)
.
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Inserting θ∗S in Eq. (3.30) and solving for θI gives

θI = θ∗I =
ρA√

1− α2
√

1− β2
· (2ζPD − PD(2)).

The result follows from the ratio of θ∗S to θ∗I ( θ
∗

θ∗I
).

Conversely, suppose θS
θI

=
θ∗S
θ∗I

. This is equivalent to θS = θ∗S. Inputting θS = θ∗S

in the expression for µ
(2)

Φ−1(PD) gives the result.

Corollary 4.1. E[Bi|SA, SB,Di = 1,Dj = 1] is a monotone function of θS.

Proof. Since

E[Bi|Di = 1,Dj = 1] = E[E[Bi|SA, SB,Di = 1,Dj = 1]|Di,Dj = 1],

the result follows from Theorem 4.

Remark 16. LGD
(2)
A = LGDA if and only if θS

θI
=

θ∗S
θ∗I

. In other words there exist a

threshold ratio of θS to θI for which LGD
(2)
A = LGDA.

Proof. Note that

LGD
(2)
A = E[PLi|Di = 1,Dj = 1]

= E[E[PLi|SA, SB,Di = 1,Dj = 1]|Di = 1,Dj = 1]

= E[E[H(Bi)|SA, SB,Di = 1,Dj = 1]|Di = 1,Dj = 1].

So LGD
(2)
A is a monotone function of θS if and only if E[H(Bi)|SA, SB,Di = 1,Dj = 1]

is a monotone function of θS.
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Figures 3.10 and 3.11 illustrate Remark 16. These figures are obtained by using

fixed parameter values of ρA, α and β while the value of θS varies. Observe in Figure

3.10 that the value (black line) of θS
θI

for which the graphs (see Figure 3.10a) of

µ
(2)

Φ−1(PD) (red line) and µΦ−1(PD) (green line) intersect equals the value (black line)

at the intersection of the graphs (see Figure 3.10b) of LGD
(2)
A (red line) and LGDA

(green line). This observation leads to the following remark.

Remark 17. Because Cov(ADRp, ALGDp) ≥ 0 if and only if θS
θI
≥ θ∗S

θ∗I
, and con-

versely, Cov(ADRp, ALGDp) ≤ 0 if and only if θS
θI
≤ θ∗S

θ∗I
, we conclude that the sign

of ρp is determined by θS
θI

. It takes positive values for values of θS
θI
>

θ∗S
θ∗I

and negative

values when θS
θI
<

θ∗S
θ∗I

.

(a) E[Bi|Ai ≤ Φ−1(PD)] and E[Bi|Ai <
Φ−1(PD), Aj ≤ Φ−1(PD)]

(b) LGDA and LGD
(2)
A

Figure 3.10: Conditional expectation of loss driver and account-level and poten-
tial loss. Potential loss is defined as H(b) = B−1(1 − Φ̂(b)). B is cumulative
beta distribution with scale parameters δ1 = 2 and δ2 = 3, and B−1 is the inverse.
PD = 0.05, ρA = 0.4, α = β =

√
0.25.

3.4 Conclusion

PD-LGD correlations affect immensely the estimates of portfolio risk measures. Un-

derstanding the source of these correlations is of paramount importance as they can
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(a) (b)

Figure 3.11: Difference in expected value of account-level LGD account-level joint
LGD using potential loss defined as H(b) = B−1((1− Φ̂(b)), δ1, δ2). B−1 is the inverse
of the cumulative beta distribution with scale parameters δ1 = 2 and δ2 = 3, PD =
0.05, ρA = 0.4, α = β =

√
0.25.

introduce additional variability into the losses on exposures in the event of defaults

and the distribution of the overall losses on the portfolio.

In this chapter, we specify the expressions for asymptotic portfolio default rate

and loss given default and their joint and marginal distribution. We use these expres-

sions to explain the link between the account and portfolio level relationships.

We show that portfolio-level correlation is positively related to the correlation

between the systematic risk factors. And that at some threshold the correlation be-

tween portfolio level default rate and loss given default transitions from positive to

negative. Suggesting that with a fixed value of account-level relationship — correla-

tion between default and loss drivers — portfolio-level correlations can vary.

Furthermore, we demonstrated that under certain conditions the expected value

of the account and portfolio level loss given default can be equal, less or greater than

each other. This threshold is determined by the relative size of the correlation be-

tween systematic risk factors to idiosyncratic risk factors. This phenomenon impacts

estimates of downturn LGD via the portfolio-level relationship — the correlation be-
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tween portfolio-level default rate and LGD. Default and LGD at the portfolio level

can relate inversely or positively. This contradicts the expectation of Basel II, where

it is believed that estimates of downturn LGD will be greater than TTC LGD es-

timates. As this determines the relative sizes of the estimates of LGD under each

regime (downturn or TTC).

The above findings imply that parameter value choices in credit risk models

determine largely the relative sizes of downturn and TTC LGD estimates, which

means economic capital could be underestimated or overestimated.
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Chapter 4

Empirical Study on Model

Parameters

This chapter presents a methodology for estimating the parameters in the model. The

methodology is based on the Method of Moments (MoM). Monte Carlo simulation

is used to validate the proposed methodology. An empirical study on delinquency

and charge-off rates from the Federal Financial Institutions Examination Council

(FFIEC) Consolidated Reports of Condition and Income on the 100 largest banks in

the United States is conducted, where the proposed method is applied.
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4.1 Summary of Model of Interest

Recall from Section 2.1.1, the expressions governing default A and loss B drivers for

a representative account i:


Ai = α · SA +

√
1− α2 · IA,i

Bi = β · SB +
√

1− β2 · IB,i
,

where −1 ≤ α, β ≤ 1, the pairs (SA, SB) and (IA,i, IB,i) are respectively standard

bivariate normal systematic and idiosyncratic risk factors with respective correlation

parameters θS and θI . The drivers (Ai, Bi) are bivariate standard normal with cor-

relation parameter ρA = αβθS +
√

1− α2
√

1− β2θI . These drivers are sensitive to

the systematic and idiosyncratic risk factors through α and β. The default scenario

is defined as

D = 1{Ai≤Φ−1(PD)}.

We are interested in estimating the parameters in the above equations and LGD via

the expression for potential loss. To carry out the estimation procedure, we assumed

transformation of loss drivers to potential loss using the relation

PL = B−1(1− Φ̂(b), δ1, δ2),

where B−1 is the inverse beta cdf. In all we have the following parameters to estimate:

α, β, θI , θS, δ1, δ2, PD, and ρA.
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4.2 Data description

The exploratory study presented in this chapter is based on the dataset on delinquency

(default (DRp)) and charge-off (realized loss (RLp)) rates compiled from the quarterly

Federal Financial Institutions Examination Council (FFIEC) Consolidated Reports

of Condition and Income on 100 largest banks in the United States [29]. Charge-off

rate is calculated as the difference in a bank’s gross charge-offs and recoveries during

a quarter written as a proportion of that quarter’s average level of unpaid loans.

These are seasonally adjusted. Charge-offs are values of “bad loans” that are written

against loss reserves. Loans are considered delinquent, when they are past due at

least thirty days. These loans could accrue interest or not. The delinquency rates

are obtained as the ratio of the defaulted amount of loans (in monetary terms) to

the total amount of outstanding loans and are seasonally adjusted. We calculate the

LGD for each period as RLp
DRp

.

The loans of these banks are categorized under seven groups: Real Estate,

Consumer, Commercial and Industrial (C & I), Leases, Agricultural, and All Loans

and Leases (referred as Total Loans and Leases in the report). The Real Estate

category has four subcategories — Residential, Commercial, Farmland and All. Also

the Consumer category has three subcategories — Credit Cards, Other than Credit

Cards and All. So in all, the study involves 11 time series.

The dataset on realized loss covers 138 quarters over a period of 1985 to 2019

for Commercial and Industrial, Leases, and Agricultural loans. That of default rates

cover 130 quarters — from a period of 1987 to 2019. The Real estate dataset on

defaults and realized losses runs from 1991 to 2019, a total of 114 quarters for its

subcategories. Under consumer loans, we have 138 and 114 quarters respectively for

charge-offs and delinquency rates for both categories, Credit Cards and Other than
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Credit Cards. The category for All Consumers has 138 and 130 quarters for charge-

offs and delinquency rates respectively. The total of these loans categories across

each quarter has 138 quarters for both charge-offs and delinquency rates. We did

not consider quarters with missing default rate in our computation. Table 4.1 and

4.2 present the respective summary statistics of delinquency and charge-off rates and

LGDs of these loan categories.

Table 4.1: Summary statistics of delinquency (default) and charge-off rates (realized
loss) of loan categories. Values are presented in percentages.

Loan Type Delinquency/Default rate Charge-off rate/Realized loss
Mean Median standard deviation Mean Median standard deviation

Real Estate:
Residential 4.50 2.83 3.44 0.50 0.17 0.73
Commercial 4.28 2.12 4.48 0.68 0.12 1.06
Farmland 3.80 3.41 1.81 0.24 0.14 0.39
All 4.75 3.66 2.99 0.59 0.22 0.71

Consumer:
Credit Cards 4.00 4.17 1.19 4.66 4.30 1.66
Other 2.91 2.94 0.63 1.28 1.10 0.60
All 3.46 3.63 0.82 2.68 2.42 1.03

C & I 2.59 1.76 1.76 0.76 0.53 0.62
Leases 1.38 0.13 1.38 0.40 0.31 0.31
Agricultural 4.15 3.06 3.04 0.40 0.25 0.81
All Loans and
Leases

3.73 2.86 1.89 1.04 0.80 0.66

4.3 Estimation Scheme and Results

The estimation scheme presented in this thesis is based on the Method of Moments

(MoM). The MoM matches population moments of random variables to its sample

counterparts, where the population moments are expressed as a function of the pa-

rameters of interest and these parameters are then recovered. The values obtained

are the estimates of these parameters. The formal description is as follows: Let

B1,B2, ...,BT be a sequence of independent random sample from a population with
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Table 4.2: LGD statistics for loan categories and the correlation between delinquency
rates and LGD. Values are presented in percentages.

Loan Type Mean Median standard deviation ρp
Real Estate:

Residential 8.50 6.54 7.15 44.10
Commercial 9.99 6.44 9.87 68.10
Farmland 5.30 41.65 68.63 32.36

All 9.40 7.84 7.34 66.11
Consumer:
Credit Cards 119.68 114.84 28.85 -38.52

Other 44.52 40.34 17.64 -10.76
All 79.41 81.07 24.28 -31.29

C & I 29.50 28.76 14.05 -3.51
Leases 26.61 25.03 14.32 50.17

Agricultural 9.61 7.98 10.69 0.58
All Loans and Leases 28.52 28.03 8.73 -14.71

distribution function f(b|Θ), where Θ is a q-dimensional vector of parameters. Define

the respective qth sample and population moments as


Bq = 1

T

∑n
i=1 b

q
i ,

E[Bq] = µq(Θ).

The MoM estimator Θ̂ of Θ is then found by solving the system of equations for Θ

that makes the population moments equal the sample moments



B1 = µ1(Θ),

B2 = µ2(Θ),

...

Bq = µq(Θ).

Even though MoM estimators often yields estimates that can be improved upon

(for example, estimates can be out of parameter space), its choice is attractive in that
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its application is simple and typically yields appreciable results — see for example, [49,

55] for application of MoM to parameter estimation on portfolio credit risk models.

The model discussed in this document presents the challenge of solving a system of

five equations with seven unknowns. That is we have the problem of estimating seven

parameters using five moments. Mapping those parameters to the five moments leaves

us with two undetermined parameters. We have observed that necessary risk measures

such as Value-at-Risk (VaR), the mean and standard deviation of the portfolio-level

LGD, and portfolio-level correlation ρp do not depend on these two parameters.

Since we demonstrated in Chapter 3 that as the portfolio size increases, the

distributions of the finite portfolio quantities approximates accurately that of their

asymptotic quantities, we therefore based the estimation scheme on the asymptotic

quantities — see Figures 3.2 and 3.4. Against this background, we want to choose

values of parameters such that the empirical moments for finite portfolio equals that

of the theoretical moments of asymptotic portfolio. So for instance, for large portfolio

size, RLp ≈ ARLp, thus RLp ≈ ARLp. We are therefore interested in finding values

of parameters such that RLp ≈ ARLp = E[ARLp]. This estimation approach is

consistent with the dataset used for our analysis. Table 4.3 reports a summary of

the model implied quantities and the parameter on which they depend. The ensuing

subsections present the proposed estimation scheme.

Table 4.3: Model implied quantities and their parameter dependencies

Model implied quantities Parameters
E[ADRp] PD
E[ADR2

p] α, PD
E[ARLp] δ1, δ2, PD

E[ADRp · ARLp] α, βθS, δ1, δ2, ρA, PD
E[ARL2

p] α, β, βθS, δ1, δ2, ρA, PD
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4.3.1 Estimating PD

Our estimation scheme starts with the estimation of default parameters. From Eq.

(3.11), we note that E[ADRp] = E[Di = 1] = PD. So we can estimate PD by using

the average of the delinquency rates:

P̂D = ADRp =
1

T

T∑
i=1

ADRp,i.

4.3.2 Estimating α

The estimation is based on the expression for asymptotic conditional default rate

given SA. From Eq. (3.13) and (3.17),

E[ADR2
p] = P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)), (4.1)

which is computed using the bivariate normal cdf. The mean vector and covariance

matrix are expressed as

µAi,Aj =

0

0

 and ΣAi,Aj =

 1 α2

α2 1


respectively. Knowing the estimated value of PD implies we have one variable — α

— to estimate from Eq. (4.1). This, we do by setting the sample second moment of

ADRp to its population counterpart and solve for α:

ADR2
p =

1

T

T∑
i=1

ADR2
p,i = E[ADR2

p].
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Figure 4.1 illustrates the graph of the empirical and theoretical second moments of

ADRp — respectively ADR2
p and E[ADR2

p] — as a function of α. We observe that α

impacts E[ADR2
p]. This implies that it can affect other risk measures in the model

as well. We also see that E[ADR2
p] is monotone in α and it intersects the graph of

ADR2
p at a unique point.

Figure 4.1: Empirical and theoretical second moments of ADRp as a function of α
using Eq. (4.1). The empirical moment is estimated using the data on seasonally
adjusted delinquency rates on residential loans of 100 largest banks in the United
States from the period 1985 to 2019 [29]. P̂D = 0.0449.

4.3.3 Estimating δ1 and δ2

Having the estimates for the default parameters, we estimate δ1 and δ2 as follows:

From Eq. (3.19) , we know that

E[ARLp] = E[PLi|Di = 1] · PD.
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Assuming the distribution of account-level LGD is modelled by beta distribution with

scale parameters δ1 and δ2, the transformation of PLi ensures that account-level LGD

(LGDi) has a beta distribution (see Table 2.7). Thus,

E[LGDi] = E[PLi|Di = 1] =
δ1

δ1 + δ2

,

which implies that

E[ARLp] =
δ1

δ1 + δ2

· PD.

In practice, the distribution of account-level LGD is U-shaped (see for example the

description of account-level LGD data in [31] and [66]). For this reason, we pick

values of δ1 and δ2 between 0 and 1. Using the sample first moment of ARLp as the

proxy for its population counterpart, E[ARLp], we can estimate the values of δ1 and

δ2. Observe that given the respective values of PD and E[ARLp], we can express the

parameters δ1 and δ2 as a linear function of the other:

δ1 =
E[ARLp]

PD − E[ARLp]
· δ2.

In our analysis, we assume the value of δ2 as 0.5. The estimate for δ1 is therefore,

dependent on the first sample moments of ADRp and ARLp respectively. That is

δ̂1 =
1
T

∑T
i=1 ARLp,i

1
T

∑T
i=1ADRp,i − 1

T

∑T
i=1 ARLp,i

· 0.5. (4.2)

4.3.4 Identifying βθS and ρA

We now have the estimated values of α, PD, δ1 and δ2. We are left to estimate

θS, θI and β. From Eq. (3.25), the expected value of the product of the asymptotic
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portfolio-level default rate and realized loss is

E[ADRp · ARLp] = E[Di · Dj · PLi]

= E[E[Di · Dj · PLi|Bi]]

= E[PLi · E[Di · Dj|Bi]]

= E[H(Bi) · P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi)]

=

∫ ∞
−∞

H(b) · P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = b) · φ(b) · db,

where φ(b) is the marginal density of B and is the standard normal pdf. The con-

ditional distribution of the pair (Ai, Aj) given Bi = b, P(Ai ≤ Φ−1(PD), Aj ≤

Φ−1(PD)|Bi = b) is given as (see Appendix C.1)

Ai, Aj|Bi = b ∼ N


 ρA · b

αβθS · b

 ,
 1− ρ2

A α2 − αβθSρA

α2 − αβθSρA 1− (αβθS)2


 . (4.3)

H(·) is a function of δ1 and δ2 and P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|B = b) is a

function of ρA, α, and the product βθS. Since we know the estimates of α, PD, δ1

and δ2 from the preceding sections, we set ν = βθS in Eq. (4.3) and observe that

E[ADRp · ARLp] is a function of the pair (ρA, ν).

Figure 4.2a illustrates that, for a fixed value of ρA, E[ADRp · ARLp] is a

monotone function of ν, while Figure 4.2b illustrates that, for a fixed value of ν,

E[ADRp · ARLp] is a monotone function of ρA. One implication of this behaviour

is that, for a fixed value of ρA, there is a unique value of ν for which the model-

implied covariance is equal to the empirical covariance (that is E[ADRp · ARLp] =

ADRp · ARLp) and in what follows we let ν(ρA) denote this value of ν.. In other

words, for a given value of ρA, ν(ρA) is that value of ν that ensures the following

108



(a) E[ADRp ·ARLp] against ν. ρA = 0.4 (b) E[ADRp ·ARLp] against ρA. ν = 0.4

Figure 4.2: E[ADRp · ARLp] as a function of ν and ρA respectively. The Data used
is seasonally adjusted charge-off (realized losses) and delinquency (default) rates on
residential loans of 100 largest banks in the United States from the period 1985 to
2019 [29]. δ̂1 = 0.0611, δ̂2 = 0.5, α̂ = 0.3344, and P̂D = 0.0450.

equation holds

ADRp · ARLp =
1

T

T∑
i=1

ADRp,i · ARLp,i = E[ADRp · ARLp]. (4.4)

Figure 4.3 shows the graph of ν(ρA). It is monotone in ρA. Any point on the

curve will ensure that the model implied covariance equals the empirical covariance.

4.3.5 Identifying β

From Eq. (3.18), we know that

E[ARL2
p] = E[RLi · RLj].

109



Figure 4.3: ν against ρA. The Data used is seasonally adjusted charge-off (realized
losses) and delinquency rates on residential loans of 100 largest banks in the United

States from the period 1985 to 2019 [29]. δ̂1 = 0.0611, δ̂2 = 0.5, and P̂D = 0.0450.

So we have

E[ARL2
p] = E[Di · Dj · PLi · PLj]

= E[PLi · PLj · E[Di · Dj|Bi, Bj]]

= E[H(Bi) ·H(Bj) · P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi, Bj)]

=

∫ ∞
−∞

∫ ∞
−∞

H(bi) ·H(bj)·

P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = bi, Bj = bj)φ(bi, bj) · dbi · dbj,

where φ(bi, bj) is the bivariate normal pdf of the pair (Bi, Bj) with the respective

mean vector and covariance matrix

µBi,Bj =

0

0

 and ΣBi,Bj =

 1 β2

β2 1

 .
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The conditional distribution of the pair (Ai, Aj) given the pair (Bi = bi, Bj = bj),

P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = bi, Bj = bj) has mean vector

µAi,Aj |Bi=bi,Bj=bj =
1

1− β4

ρA(bi − β2 · bj) + αν(bj − β2 · bi)

αν(bi − β2 · bj) + ρA(bj − β2 · bi)]


and covariance matrix

ΣAi,Aj |Bi=bi,Bj=bj =
1

1− β4

Γ∗1,1 Γ∗1,2

Γ∗2,1 Γ∗2,2

 ,
where 

Γ∗1,1 = Γ∗2,2 = (1− β4)− ρA(ρA − β2αν) + αν(αν − β2ρA),

Γ∗1,2 = Γ∗2,1 = α2(1− β4)− ρA(αν − β2ρA) + αν(ρA − β2αν).

Again, observe that both H(bi) and H(bj) are functions of δ1 and δ2. And P(Ai ≤

Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = b, Bj = b) is a function of α, β, ρA, PD and the

product ν = βθS. Thus, E[ARL2
p] is dependent on the parameters α, β, δ1, δ2, ρA, PD

and ν.

Figure 4.4 illustrates that for given values of all the other parameters, E[ARL2
p]

is a monotone function of β. If it were possible to determine all the values of the

other parameters it will be possible to determine β uniquely. But it is not possible

to determine both ρA and ν, so it is not possible to determine β. That being said, if

we fix the value of ρA, it is possible to determine the value of β uniquely as follows:

1. Fix the value of ρA.

2. Compute ν = ν(ρA), the unique value of ν that ensures Eq. (4.4) is satisfied.
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3. Given the values of ρA and ν(ρA), let β(ρA) be that value of β that ensures that

ARL2
p =

1

T

T∑
i=1

ARL2
p,i = E[ARL2

p]

is satisfied.

4. Note that for a given value of ρA, the value of θS is uniquely determined as

θS(ρA) = ν(ρA)
β(ρA)

, and θI(ρA) = ρA−αβ(ρA)θS(ρA)√
1−α2)
√

1−β2
.

Figure 4.4: E[ARL2
p] against β. The Data used is seasonally adjusted charge-off

(realized losses) and delinquency rates on residential loans of 100 largest banks in the
United States from the period 1985 to 2019 [29]. The value of ν̂ (0.2921) corresponds

to that value of ρA (0.4500) that satisfies Eq. (4.4). δ̂1 = 0.0611, δ̂2 = 0.50, and

P̂D = 0.0450.

Figure 4.5 illustrates the relationship between ρA and respectively θS (see Figure

4.5a) and β (see Figure 4.5b). Again, notice that any point on the curve ensures that

the model implied variance of realized loss is equal to the empirical variance. The

same can be said of Figure 4.5b.
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(a) θS against ρA (b) β against ρA

Figure 4.5: Relationship between ρA and respectively θS and ν. The Data used
is seasonally adjusted charge-off (realized losses) and delinquency (default) rates on
residential loans of 100 largest banks from the period 1985 to 2019 in the United
States [29]. δ̂1 = 0.0611, δ̂2 = 0.5, and P̂D = 0.0450.

4.4 Impact of Free Parameter on Model Outputs

The previous section allows us to uniquely determine all but one parameter. Without

loss of generality, we have been using ρA as free parameter. But we could easily

have allowed it to be ν, β or θS. In this section we consider the influence of the free

parameter on the model output such as Value at Risk (VaR), the mean and standard

deviation of portfolio-level LGD , µALGDp and σALGDp respectively, and the correlation

between portfolio-level default rate and LGD, ρp.

To do so, for a given time series, we first estimate PD, δ1 and δ2 as described in

Sections 4.3.1,4.3.2 and 4.3.3. Next, for each values of ρA in a large grid, we compute

ν(ρA) and β(ρA) as described in Sections 4.3.4 and 4.3.5 and thereby estimate θS(ρA)

and θI(ρA). Finally, we simulate a large number of realizations of SA and SB and

compute the corresponding values of ARLp and ADRp. And we used the estimated

values to calculate the quantities of interest.

Figures 4.6a and 4.6b exhibit the sensitivity of respectively, 99.0% and 99.9%

realized loss Value at Risk (VaR) to ρA. The figures show that the account-level
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correlation ρA does not have much impact on the VaR. Impact on the mean and

standard deviation of portfolio-level LGD and the correlation between default rate

and LGD are shown in Figures 4.7a-4.7c. ρA has negligible effect on VaR of realized

loss, and the mean and standard deviation of portfolio-level LGD. ρA’s impact on

the correlation between portfolio-level default rate and LGD is not noticeable. The

figures are produced from the time series of real estate data on single family residential

mortgages described in section 4.2. Defaults parameters PD and α are set as PD =

0.0449 and α = 0.3344 respectively while δ1 and δ2 are given as 0.0611 and 0.5.

This result suggests that regardless of the values chosen for ρA, the estimated

risk measures will yield similar outcome. Thus the account-level correlation ρA does

not impact portfolio-level quantities and for this reason, we can choose its value for

convenience.

Furthermore, higher moments are not sensitive to changes in the model pa-

rameters. This is illustrated in Figure 4.8, where we observed that ρA does not

impact E[ADR3
p], E[ARL3

p], E[ARL2
p · ADRp] and E[ARLp · ADR2

p]. The expression

for E[ADR3
p] is obtained as

E[ADR3
p] = E[E[Di|SA]3] (4.5)

= E[E[Di|SA] · [E[Dj|SA] · [E[Dk|SA]] (4.6)

= E[E[Di · Dj · Dk|SA]] (4.7)

= E[Di · Dj · Dk] (4.8)

= PD(3),
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where we use the homogeneity, conditional independence and the tower properties in

moving from lines (4.5) to (4.6), (4.6) to (4.7), and (4.7) to (4.8).

PD(3) = E[Di · Dj · Dk] = P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD), Ak ≤ Φ−1(PD))

is the probability of simultaneous default by three obligors. PD(3) is calculated us-

ing three dimensional multivariate normal pdf with the mean vector and covariance

matrix

µAi,Aj ,Ak =


0

0

0

 and ΣAi,Aj ,Ak =


1 α2 α2

α2 1 α2

α2 α2 1


respectively. Similar as above, we derive the expression for E[ARL3

p] as

E[ARL3
p] = E[E[Di · PLi · Dj · PLj · Dk · PLk|SA, SB]]

= E[Di · PLi · Dj · PLj · Dk · PLk]

= E[PLi · PLj · PLk · E[Di · Dj · Dk|Bi, Bj, Bk]].

We compute E[Di · Dj · Dk|Bi, Bj, Bk] by first deriving its expression by following the

work in Appendix C.
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(a) 99.0% quantile of portfolio-level realized
loss (99.0% VaR) against ρA

(b) 99.9% quantile of portfolio-level realized
loss (99.9% VaR) against ρA

Figure 4.6: Impact of ρA on the risk measure, Value at Risk for 99.0% and 99.9%
quantile of portfolio-level realized loss respectively. δ̂1 = 0.0611, δ̂2 = 0.5, and P̂D =
0.0449. These estimates are based on the residential loan explained in Section 4.2.
Number of economic scenarios m = 10000. We used the asymptotic portfolio-level
realized loss in obtaining the graphs.

(a) Mean of portfolio-level LGD
against ρA

(b) Standard deviation of
portfolio-level LGD against ρA

(c) Graph of correlation be-
tween portfolio-level default rate
and LGD against ρA

Figure 4.7: Impact of ρA on the mean and standard deviation of portfolio-level LGD
and the correlation between portfolio-level default rate and LGD. δ̂1 = 0.0611, δ̂2 =
0.5, and P̂D = 0.0449. These estimates are based on the residential loan explained
in Section 4.2. Number of economic scenarios m = 10000. We used the asymptotic
portfolio-level realized loss in obtaining the graphs.

4.5 Estimation Result in the Reduced Model

4.5.1 Estimating Model Parameters

Based on the above discussion, we reduce the number of parameters in our model by

assuming that the idiosyncratic risk factors are independent (that is θI = 0) in the
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(a) E[ADR3
p] against ρA. (b) E[ARL3

p] against ρA.

(c) E[ARL2
p ·ADRp] against ρA. (d) E[ARLp ·ADR2

p] against ρA.

Figure 4.8: Impact of ρA on E[ADR3
p], E[ARL3

p], E[ARL2
p · ADRp] and E[ARLp ·

ADR2
p]. The Data used is seasonally adjusted charge-off (realized losses) and delin-

quency (default) rates on residential loans of 100 largest banks in the United States

from the period 1985 to 2019 [29]. P̂D = 0.0450, α̂ = 0.3344, β̂ = 0.3934, θ̂S =

0.5447, δ̂1 = 0.0611, δ̂2 = 0.5.

remaining of our study. With θI = 0, we have ρA = αβθS, which is determined by

estimating α and ν = βθS as described above. With this simplificationADRp = f(SA)

and ARLp = f(SB) — this makes computing easier.

Table 4.4 shows the estimated values of parameters via Monte Carlo simulation

scheme. We assumed particular values of model parameters and obtained the cor-

responding portfolio quantities ADRp, ADR2
p, ARLp, ADRp · ARLp and ARL2

p. We

then use these quantities to estimate the model parameters. This procedure is sim-

plified as follows:

1. Choose parameter values of α, PD, δ1, δ2, β and ν.
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2. Determine the model implied quantities — ADRp, ADR2
p, ARLp,ADRp · ARLp

and ARL2
p — using the parameter values in step 1.

3. Using the quantities in step 2 and the method discussed in the previous Sections

(4.3.1,4.3.2,4.3.4 and 4.3.5), determine the estimates of model parameters.

We see from Table 4.4 the estimates of these parameters match closely to their original

values. For instance, the value of α̂ (0.2508) is close to α (0.25). This indicate the

accuracy of our proposed estimation scheme.

Table 4.5 shows parameter estimates from the data on the charge-off and delin-

quency rates from the different loan categories described in Section 1. The es-

timates are expressed in terms of the marginal (PD, δ1, and δ2) and dependence

(α2, β2 and θS) parameters in the model. Some of the loan categories — subport-

folios under consumer loans (Credit Cards and All) have the estimated values of δ1

outside the assumed range (δ1 sandwiched between 0 and 1) under this estimation

scheme. This is due to the fact that the portfolio-level average default rate is less than

the average realized loss — see Table 4.1 and Eq, (4.2). Consequently, no estimate

can be provided for the dependence parameters β2 and θS.

Table 4.6 compares the model implied quantities of portfolio-level LGD to that

obtained from the time series data across the different loan categories described in

Section 4.2. We do this by first using the estimated values of the parameters presented

in Table 4.5 as inputs to compute simulated portfolio-level LGD and default rate of

size, say N . We then calculate the respective means and the variances of the LGDs

and the correlations between the default rate and LGD of both the simulated and the

time series data. The Table shows that these quantities are pretty close with each

other.
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Table 4.4: Monte Carlo: Parameter estimates under the assumption of independent
idiosyncratic risk factors. Number of economic-wide scenarios is 2000, number of
obligors is 20000

PD α δ1 β θS

0.05 0.25 0.075 0.25 0.6

P̂D α̂ δ̂1 β̂ θ̂S

0.0501 0.2508 0.0740 0.2493 0.5708

Table 4.5: Parameter estimates assuming independent idiosyncratic risk factors

Loan Type Marginal Parameters Dependence Parameters
PD δ1 δ2 α2 β2 θS ρA

Real Estate:
Residential 0.045 0.0611 0.5 0.1118 0.1548 0.5447 0.0717
Commercial 0.043 0.0949 0.5 0.1847 0.0910 0.6517 0.0845
Farmlands 0.0380 0.0339 0.5 0.0444 0.2726 0.3890 0.0428
All 0.0474 0.0710 0.5 0.0812 0.1132 0.6851 0.0657

Consumer:
Credit Cards 0.040 -3.5518 0.5 0.0186 NaN NaN NaN
Other 0.0290 0.3947 0.5 0.0087 0.3106 -0.1131 -0.0059
All 0.0346 1.7345 0.5 0.0111 NaN NaN NaN

C & I 0.0259 0.2059 0.5 0.0738 0.2280 -0.1835 -0.0238
Leases 0.0138 0.2070 0.5 0.0202 0.1810 0.5343 0.0323
Agricultural 0.0415 0.0534 0.5 0.1004 0.5652 -0.0190 -0.0045
All Loans and
Leases

0.0374 0.1932 0.5 0.0493 0.0945 0.0059 4.0263e-04

4.5.2 Comparing Economic Capital Under Correct and Wrong

Transformations

This section compares EC estimates from the correct and wrong transformations of

loss drivers to potential losses. Recall these transformations are respectively given

as Ĥ(b) = F−1(Φ̂(b) and H(b) = F−1(Φ(b)). We first compared the parameter es-

timates from these transformations. Table 4.7 presents these comparison. Observe

that the estimates of β across the loan categories are approximately equal. How-
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Table 4.6: Comparing model-implied quantities to observed data using estimates from
Table 4.5

Loan Type Mean of LGD Variance of LGD Correlation between DR and LGD
Simulated Observed Simulated Observed Simulated Observed

Real Estate:
Residential 0.0865 0.0850 0.0040 0.0051 0.5076 0.4410
Commercial 0.1244 0.0999 0.0036 0.0097 0.5979 0.6810
Farmland 0.0546 0.0530 0.0043 0.0047 0.3436 0.3236
All 0.1018 0.0940 0.0035 0.0054 0.6625 0.6611

Consumer:
Credit Cards NaN 1.1968 NaN 0.0833 NaN -0.3852
Other 0.4501 0.4452 0.0362 0.03113 -0.1377 -0.1076
All NaN 0.7941 NaN 0.0589 NaN -0.3129

C & I 0.3124 0.2950 0.0236 0.0197 -0.1897 -0.0351
Leases 0.2711 0.2661 0.0166 0.0205 0.5209 0.5017
Agricultural 0.1004 0.0961 0.0225 0.0114 -0.0153 0.0058
All Loans and
Leases

0.2806 0.2852 0.0088 0.0076 -0.0142 -0.1471

ever, that of θS and ρA are grossly different. For example, estimates of θS under the

correct transformation is about twice of that obtained under the wrong transforma-

tion. These differences in the estimates are reflective in the EC estimates under both

transformations. We have EC understated under wrong transformation for values of

ρA > 0. And conversely, EC estimates are overstated under the wrong transformation

when ρA < 0. Even though the difference might seem negligible, these estimates are

reflective of the magnitude of the estimated account-level correlation ρA.

Table 4.7: Economic Capital Comparison under correct and wrong transformations.

Loan Type Dependence Parameters Economic Capital
β2 θS ρA 99%

Correct Wrong Correct Wrong Correct Wrong Correct Wrong
Real Estate:

Residential 0.1548 0.1494 0.5447 0.2491 0.0717 0.0322 3.17% 2.77%
Commercial 0.0910 0.0832 0.6517 0.2597 0.0845 0.0354 4.45% 4.02%
Farmlands 0.2726 02708 0.390 0.1866 0.0428 0.0205 1.64% 1.47%
All 0.1132 0.1083 0.6851 0.3240 0.0657 0.0304 2.83% 2.36%

Consumer:
Credit Cards NaN NaN NaN NaN NaN NaN NaN NaN
Other 0.3106 0.3105 -0.1131 -0.0561 -0.0059 -0.0029 1.59% 2.91%
All NaN NaN NaN NaN NaN NaN NaN NaN

C & I 0.2280 0.2274 -0.1810 -0.0860 -0.0238 -0.0111 2.27% 2.44%
Leases 0.1810 0.1798 0.5343 0.2630 0.0323 0.0159 1.11% 0.95%
Agricultural 0.5652 0.5651 -0.0190 -0.0087 -0.0045 -0.0021 3.54% 3.56%
All Loans and
Leases

0.0945 0.0945 0.0059 0.0028 4.0263e-04 1.9229e-04 2.22% 2.21%
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4.5.3 Imputing Systematic Risk Factors

The estimated values in Table 4.5 can be used as inputs in the expressions for ADRp

and ARLp to obtain the estimates for the systematic risk factors for each period.

Thus, for a time series of ADRp and ARLp where i denotes the time index on

ADRp, sA, sB and ARLp, we have

ADRp,i = Φ

(
Φ−1(P̂D)− α̂sA,i√

1− α̂2

)
(4.9)

and

ARLp,i = ADRp,i

∫
R
H(b) · φ(b; β̂sB,i, 1− β̂2) · db. (4.10)

We solve for sA and sB in Eq. (4.9) and (4.10). Figures 4.9a–4.9d show the time

series and auto-correlation plots of the recovered values of sA and sB. Observe that

these risk factors are serially correlated. sB is more volatile than sA and is reflective

in the time series data for LGD and default rate, where we notice that LGD is more

volatile than default rate. Figure 4.10 confirms this observation.

4.6 Case Against Maximum Likelihood Estimation

Arguably, Maximum Likelihood Estimation (MLE) can be used to estimate model

parameters. However, this approach involved enormous computational effort and

thus not practical under this setting. We demonstrate in this section why we did not

employ the MLE scheme. We start by first assuming the pair (ADRp, ALGDp) are

serially independent time series, and then specify the respective likelihood functions
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(a) Time series plot of systematic risk driver of de-
faults SA

(b) Auto-correlation Function of systematic risk
driver of defaults SA

(c) Time series plot of systematic risk driver of losses
SB

(d) Auto-correlation Function of systematic risk
driver of losses SB

Figure 4.9: Time series and auto-correlation plots of systematic risk drivers. The
Data used is seasonally adjusted charge-off (realized losses) and delinquency (default)
rates on residential loans of 100 largest banks from the period 1991 to 2019 in the
United States [29]. Parameter values used: PD = 0.045, δ1 = 0.0611, δ2 = 0.5, α =
0.3344, β = 0.3934.

involving ADRp and ALGDp as

LADRp(α, PD) =
T∏
i=1

fADRp(ADRp,i) (4.11)

and

LALGDp(Θ) =
T∏
i=1

fALGDp(ALGDp,i), (4.12)
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Figure 4.10: Time series plots of Residential Real Estate Loans. The Data used
is seasonally adjusted charge-off (realized losses) and delinquency (default) rates on
residential loans of 100 largest banks from the period 1991 to 2019 in the United
States [29].

where Θ = (α, β, θS, θI , δ1, δ2, PD), and the expressions for fADRp(·) and fALGDp(·) are

presented in Eq. (3.10) and (3.29). It is easy (in terms of computational effort) to find

parameter values for which LADRp(·) is optimized. However, that of LALGDp(·) is not.

The singular evaluation of the likelihood function LALGDp(·) at ALGDp,1 = 0.058419

and Θ = (0.3344, 0.3934, 0.5447, 0.0611, 0.5, 0.045) is 5.2190. The computation time

is 11.46 seconds. Thus using data points of 114 will give a computation time of

approximately 22 minutes. Maximizing LALGDp(·) using the mle-function in MAT-

LAB did not provide convergence for 200 iterations with total computation time of

approximately 3 hours. This suggests that using the MLE approach for parameter

estimation is not practical. Table 4.8 reports the computer system specifications for

this experiment.

Table 4.8: Computer System Specifications

Device name DESKTOP-1TNM4KN
Processor Intel(R) Core(TM) m3-6Y30 CPU @0.90GHz 1.51 GHz
Installed RAM 8.00 GB (7.87 GB usable)
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4.7 Discussion and Conclusion

This chapter presents an estimation scheme based on method of moments (MoM) for

parameters in the model discussed. Alternatively, Maximum Likelihood Estimation

(MLE) could be used. The application of the MLE method involve specifying the

densities of default rate and realized loss or LGD (or recovery rate) — see for example

[44, 50]. We, however, make a case that the MLE approach under our modeling

setting requires huge computational cost in terms of computing time. We make a

case of over-specification of model parameters by demonstrating that the correlation

between default and loss drivers on the risk measure, VaR for realized loss and that

the degree of sensitivity of the mean and standard deviation of the portfolio-level

LGD to this correlation is extremely weak. Therefore, the account-level correlation

in and of itself has no influence on portfolio-level quantities. Against this background,

we assumed an independent relationship between the idiosyncratic risk factors and

obtained unique estimates for the model parameters.

The time series data applied to the estimation scheme have negative values in

some periods (or quarters) for charge-off rates (realized losses) and thereby yielding

negative values for LGD. The LGD calculated for some periods (or quarters) are

more than 1. These values are outside the model assumed values for these quantities.

However, since the estimation scheme is based on the sample moments of the realized

loss and default rates this setback in the time series is accounted for. However, this

yielded unstable results in the recovering of the systematic risk factors.

Owing to the theoretical property of conditional independence of default rate on

the state of the economy (systematic risk factors) the estimation scheme is built on

the assumption that default and loss drivers are serially independent. It is, therefore,

worth noting that the proposed estimation scheme has the underlying assumption of
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serially independent default rates and realized loss (or LGD) time series. In practice,

the observed default and realized loss time series exhibit auto-correlation (see for

example Figure 4.10). This is traceable to the dynamic of the systematic risk factors,

where we see that their serially correlated.

Against this background, the proposed estimation scheme in this thesis may not

adequately capture the risk on the portfolio in that the presence of auto-correlation

may systematically lead to low estimates [48]. However, under reasonable assumption,

the proposed method will be a good estimation choice as demonstrated by the results

from Monte Carlo procedure.
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Chapter 5

Future Work

There is much evidence gathered on the sensitivity of LGD to systematic risk factors

[66]. These evidence suggest that portfolio risk parameters estimates are sensitive

to the systematic risk factors and therefore estimation of portfolio risk measures

are reflective of the state of the economy. Indeed, the provision in Paragraph 468

of Basel II Framework Document for calculating loss given default (LGD) requires

that parameters used in Pillar I of Basel II capital estimations must be reflective

of economic downturn conditions so that relevant risks are accounted for and thus

proposed establishing a functional relationship between long-run and downturn LGD

[21].

This thesis has presented a generalized model on PD-LGD correlation. Under-

lying the modelling framework is the application of the two rating types commonly

known as point-in-time (PIT) and TTC [81]. The latter ratings system evaluates

customers by focusing on the permanent component of the default risk and the usage

of a prudent migration policy while the former, evaluates customers subjected to the

prevailing economic condition and thus incorporating cyclical and permanent effects

126



in modelling default and LGD [9, 81].

The proposed parameter estimation scheme is inherently based on the assump-

tion that the default and loss drivers are serially independent and that all individual

obligors have the same PIT rating, which accounts for all current state of the economy

— serially independent drivers means default and LGD time series are also serially

independent. However, real world data on default and LGD time series are auto-

correlated. Implying that, inherent in these data is the time dependency of portfolio

risk drivers. It is argued by Frei et al. [48] that two reasons account for this: (1) due

to the objective of stabilizing credit risk measures across economic cycles, in practice,

ratings is done using the TTC instead of the PIT and (2) since changes in obligor’s

credit quality does not instantly impact ratings, ratings become dependent on the

economic situation which leads to auto-correlated default and LGD time series. This

may lead to unsatisfactory results under our proposed estimation scheme.

Against this background, one can improve on or reduced the biases of parameter

estimates in the proposed method by adopting the method proposed in [48], where

we may construct MoM estimators with correction terms incorporating the auto-

correlation and finite length of default and LGD time series. In particular, the model

takes the form:

Ait = αSA,t +
√

1− α2I iA,t,

Bi
t = βSB,t +

√
1− β2I iB,t, (5.1)

where the pair (SA,t, SB,t) are governed by a time series process. The process may be

modelled as an Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), or

Auto- Regressive Integrated Moving Average (ARIMA). We recommend the latter in

that it provides the flexibility of the possibility of better capturing the dynamics in
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the real data and on the portfolio. Further more, the idiosyncratic component can

also be modelled as a time series process.

Impact of account-level parameters on portfolio-level quantities may be one of

the applications of the extended model (Eq. 5.1). The model may as well be used as

a predictive model in forecasting future defaults and losses, therefore, it falls in place

to test the predictability of the revised model. The model may be used to investigate

how regulatory and economic capital evolve with time. Summarizing, the proposed

extended model has the advantage of providing deep insight into the dynamics of

both account and portfolio level quantities and risk measures.
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[59] Hamerle, A., Liebig, T., and Rösch, D. (2003). Credit risk factor modeling and

the Basel II IRB approach. Discussion Paper Series 2: Banking and Financial

Studies, (2003,02).

[60] Happonen, J. (2016). Theory behind regulatory capital formulae. http: // urn.

fiURN: NBN: fi: aalto-201610124934 .

[61] Hu, Y.-T. and Perraudin, W. (2002). The dependence of recovery rates and

defaults. http: // citeseerx. ist. psu. edu/ viewdoc/ download? doi= 10. 1.

1. 139. 2006& rep= rep1& type= pdf .

135

Moody's Kealhofer, McQuown, and Vasicek (KMV) Investors Services. http://www.defaultrisk.com/_pdf6j4/LCv2_DynamicPredictionOfLGD_fixed.pdf
Moody's Kealhofer, McQuown, and Vasicek (KMV) Investors Services. http://www.defaultrisk.com/_pdf6j4/LCv2_DynamicPredictionOfLGD_fixed.pdf
Moody's Kealhofer, McQuown, and Vasicek (KMV) Investors Services. http://www.defaultrisk.com/_pdf6j4/LCv2_DynamicPredictionOfLGD_fixed.pdf
http://urn.fi URN:NBN:fi:aalto-201610124934
http://urn.fi URN:NBN:fi:aalto-201610124934
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.2006&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.2006&rep=rep1&type=pdf


[62] Jacobs Jr, M. (2012). An empirical study of the returns on defaulted debt.

Applied Financial Economics, 22(7):563–579.
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Appendix A

Chapter 2 Related Issues

A.1 Correlation Structure of the General Model

and Specific Models

Table A.1: Variables, Parameters and Correlation Structure of Models

General Model Frye’s Model M & O Model Pykhtin’s Model Witzany’s Model
Parameters

α p RPD α
√
ρ1

β q RLGD β
√
ρ2

– – βPD γ ω
– – βLGD – –
– – θPD – –
– – θLGD – –

PD drivers
Ai Ai pi Xi Y1,i
SA X P = βPDX + εPD,i Y X1
IA,i Xi ePD,i = θPD · xi + εPD,i ξi ζ1,i

Loss drivers
Bi Ci li Ri Y2,i

SB X L = βLGDX + εLGD,i Y ωX1 +
√

1− ω2X2

IB,i Zi eLGD,i = θLGD · xi + εLGD,i
γ√

1−β2
ξi +

√
1−β2−γ2√

1−β2
ηi ζ2,i

Correlations

Systematic θS 1 βPDβLGD 1 ω
Idiosyncratic θI 0 θPDθLGD

γ√
1−β2

0

PD and Loss αβθS +
√

1− α2
√

1− β2θI pq βPDβLGDRPDRLGD + θPDθLGD

√
1−R2

PD

√
1−R2

LGD αβ +
√

1− α2γ
√
ρ1ρ2ω
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A.2 Linking Specific Models to Nested Models

A.2.1 Frye’s Model

The model description in the introductory chapter guarantees θS and θI to be respec-

tively one and zero. Defaults are governed by Eq. (2.1) and for brevity, losses are

defined by collateral C

C = µ(1 + σB),

where B is given as in Eq. (2.2) with exception that SB = SA. Therefore C is normally

distributed with mean µ and standard deviation µσ. The default condition is defined

as in Eq. (2.3). Potential loss for a representative obligor is defined as

PL = max(0, 1− C), (A.1)

implying that realized loss is given as

RL = max(0, 1− C) · D. (A.2)

Table A.2 shows the correlation structure of the above discussed model. From the

table, the correlation between default and loss drivers is the product of the parameters

α and β. That is ρA = αβ, since the systematic and idiosyncratic risk components

of Eq. (2.1) and (2.2) are respectively, perfectly correlated and independent of each

other. ρA accounts for the correlation between PL and D. Also, default drivers of

individual obligors are correlated. A similar story can be said of the loss drivers.
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Table A.2: Correlation structure of Frye’s model

Correlations Formulas
(Ai, Bi) αβ
(Ai, Aj) α2

(Bi, Bj) β2

(Ai, Bj) αβ

A.2.2 Miu and Odzemir’s Model

The model takes the form of Eq. (2.1) and (2.2), where θS (correlation between

SA and SB) is the product βPDβLGD in their paper [74]. The parameters α and β are

the same as the parameters RPD and RLGD in the paper [74] respectively. Also, θI

is the product θPDθLGD — correlation between IA and IB — in Miu and Ozdemir’s

paper [74]. The correlation structure is the same as those shown in Table 2.1.

The potential loss PL is defined as

PL = B−1(Φ(B), δ1, δ2), (A.3)

where B−1 denotes the inverse of the beta cumulative distribution function with shape

parameters δ1 and δ2.

A.2.3 Pykhtin’s Model

Pykhtin’s one factor credit risk model specifies a perfect correlation between the

systematic risk factors (θS = 1) and an arbitrary degree of correlation between id-

iosyncratic risk factors (θI ∈ [−1, 1]). The default drivers (or the asset returns) are

governed by Eq. (2.1). and the collateral value C takes the form

C = exp(µ+ σB). (A.4)
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B in Eq. (A.4) drives the standardized returns on collateral. For each obligor i in

this framework,

Bi = βSA + γIA,i +
√

1− β2 − γ2ηi

= βSA +
√

1− β2

(
γ√

1− β2
IA,i +

√
1− β2 − γ2

1− β2
ηi

)
.

By setting

IB,i =
γ√

1− β2
IA,i +

√
1− β2 − γ2

1− β2
ηi,

Bi = βSA +
√

1− β2IB,i,

which is in the form of Eq. (2.2). The variable SA is the common systematic risk factor

driving defaults and losses on the portfolio. In Pykhtin’s paper, SA = Y, IA,i = ε (see

Table A.1 for a complete overview of the parameters and variables in the model or

revisit the introductory chapter of this document). The potential and realized loss

associated with an obligor is expressed as in the case of Frye’s model — Eq. (A.1)

and Eq. (A.2). Table A.3 presents the correlation structure for this model.

Table A.3: Correlation structure of Pykhtin’s model

Correlations Formulas

(Ai, Bi) αβ +
√

1− β2
√

(1− α2)θI
(Ai, Aj) α2

(Bi, Bj) β2

(Ai, Bj) αβ
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A.2.4 Witzany’s Model

In this modeling setting, α and β are the parameters
√
ρ1 and

√
ρ2 in the Witzany’s

paper [92]. Table A.4 shows the correlation structure of the above discussed model.

Given the model specification, the correlation between SA and SB, θS, is an arbitrary

value and the correlation between the idiosyncratic risk factors, IA and IB is 0. The

potential loss PL are determined by Eq. (A.3).

Table A.4: Correlation structure of Witzany’s model

Correlations Formulas
(Ai, Bi) αβθS
(Ai, Aj) α2

(Bi, Bj) β2

(Ai, Bj) αβθS
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Appendix B

Derivations in Chapter 3

B.1 Conditional Mean and Covariance of A and B

Let

A =

Ai
Bi

 =

αSA +
√

1− α2IA,i

βSB +
√

1− β2IB,i

 , I =

IA,i
IB,i

 and S =

SA
SB

 .
Since by definition E[IA,i] = E[IB,i] = 0,

E[A|S = S] =

αsA
βsB

 ,
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where S =

sA
sB

. The corresponding covariance matrix of A given S = S is derived

as follows:

Σ = E
[
(A− E[A])(A− E[A])T |S = S

]
= E


√1− α2IA,i√

1− β2IB,i

[√1− α2IA,i
√

1− β2IA,i

]
= E

 √
1− α2I2

A,i

√
1− α2

√
1− β2IA,iIB,i

√
1− α2

√
1− β2IA,iIB,i

√
1− β2I2

B,i


=

 1− α2
√

1− α2
√

1− β2θI
√

1− α2
√

1− β2θI 1− β2

 .

B.2 P(A ≤ Φ−1(PD)|B = b, SA = sA, SB = sB)

From the properties of joint normal random variables, we have

• the conditional expectation of A given that B = b, SA = sA and SB = sB is

derived as

E[A|B = b, SA = sA, SB = sB] = αsA + θI

√
1− α2√
1− β2

(b− βsB),

• the conditional variance of A given B = b is obtained as

σ2
A|B=b,SA=sA,SB=sB

= (1− α2)(1− θ2
I ),

and
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• the conditional distribution of A given B = b is therefore obtained as

A|B = b, SA = sA, SB = sB ∼ N

(
αsA + θI

√
1− α2√
1− β2

(b− βsB), (1− α2)(1− θ2
I )

)
.

The above implies that

P(A ≤ Φ−1(PD)|B = b, SA = sA, SB = sB) = P

Z ≤ Φ−1(PD)− αsA − θI
√
1−α2√
1−β2

(b− βsB)√
(1− α2)(1− θ2I )


= Φ

Φ−1(PD)− αsA − θI
√
1−α2√
1−β2

(b− βsB)√
(1− α2)(1− θ2I )

 .

Note that ρA given SA = sA and SB = sB is derived as

ρA|SA=sA,SB=sB =
Cov(A,B|SA = sA, SB = sB)

σA|SA=sA,SB=sB · σB|SA=sA,SB=sB

=

√
1− α2

√
1− β2θI√

1− α2
√

1− β2

= θI .

B.3 Taylor Series Approximation

For the purpose of our study, define a bivariate function g : Λ ⊂ R2 → R, where Λ is

the induced sample space of two dimensional random variable K = (X, Y ) defined on

the probability space (Ω,F ,P), consisting of a sample space Ω, a σ− Algebra F and

a probability measure P . The elements in F are events that can be measured. For

instance, portfolio-level default rate DRp, portfolio-level realized loss RLp and loss
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given default LGDp are claimed as measurable events. In mathematical notational

form, we write Λ as

Λ = {(X, Y ) : X ∈ Λ1, Y ∈ Λ2},

where Λ1 and Λ2 are subsets of R, the set of real numbers. Let the mean vectorMK

and covariance matrix ΣK of K be given as

MK =

µX
µY

 and ΣK =

 σ2
X σX,Y

σX,Y σ2
Y

 .
It follows that the quadratic Taylor Series Approximation of g(·) around the respective

means of X and Y is

g(X, Y ) ≈ g(µX , µY ) + gX(µX , µY )(X − µX) + gY (µX , µY )(Y − µY )

+
1

2

[
gXX(µX , µY )(X − µX)2 + 2gXY (µX , µY )(X − µX)(Y − µY )

+ gY Y (µX , µY )(Y − µY )2
]
, (B.1)

where gX = ∂g
∂X
, gXX = ∂2g

∂X2 , gY = ∂g
∂Y

and gY Y = ∂2g
∂Y 2 .

From Eq. (B.1), the approximated mean for g(X, Y ) is obtained as

E[g(X, Y )] ≈ g(µX , µY ) + gX(µX , µY )E(X − µX) + gY (µX , µY )E(Y − µY )

+
1

2

[
gXX(µX , µY )E(X − µX)2 + 2gXY (µX , µY )E(X − µX)(Y − µY )

+ gY Y (µX , µY )E(Y − µY )2
]

= g(µX , µY ) +
1

2

[
gXX(µX , µY )σ2

X + 2gXY (µX , µY )σX,Y + gY Y (µX , µY )σ2
Y

]
.

(B.2)

Since ALGDp = ARLp(SA,SB)

ADRp(SA)
, let g(X, Y ) = Y

X
so that X = ADRp and Y =
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ARLp. Thus, µX = µADRp , µY = µARLp , σX = σADRp , σY = σARLp and σX,Y =

σADRp,ARLp . From Eq. (B.2), we obtain the expected value of ALGDp as

E[ALGDp] ≈
µARLp
µADRp

+
µARLp
µ3
ADRp

σ2
ADRp −

1

µ2
ADRp

σADRp,ARLp .

B.4 E[Bi|Ai ≤ Φ−1(PD)] and E[Bi|Ai ≤ Φ−1(PD), Aj ≤

Φ−1(PD)]

The moments of t-dimensional multivariate normal distributionB∗ = (B∗1 , B
∗
2 , ..., B

∗
t )
′ ∼

N(
˜
0,Σ) with double truncation in all variables xj ≤ B∗ ≤ yj can be obtained using

E[B∗i |x1 ≤ B∗1 ≤ y1, x2 ≤ B∗2 ≤ y2, ..., xt ≤ B∗t ≤ yt] =
t∑

j=1

σi,j(fj(xj)−fj(yj)), (B.3)

where σi,j is the standard deviation of Bi variable when i = j, covariance of B∗i and

B∗j when i 6= j. fj(·) is the j − th marginal truncated normal density [71]:

fj(xj) = P(B∗j = xj|x1 ≤ B∗1 ≤ y1, x2 ≤ B∗2 ≤ y2, ..., xt ≤ B∗t ≤ yt).
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Deriving E[Bi|Ai ≤ Φ−1(PD)]

We have a bivariate standard normal in this case. From Eq. (B.3)

E[B∗i |x1 ≤ B∗1 ≤ y1, x2 ≤ B∗2 ≤ y2] =
2∑
j=1

σi,j(fj(xj)− fj(yj))

= σi,1(f1(x1)− f1(y1)) + σi,2(f2(x2)− f2(y2)).

So

E[Bi|Ai ≤ Φ−1(PD)] = E[Bi|−∞ ≤ Bi ≤ ∞, Ai ≤ Φ−1(PD)]

= σBi(fBi(−∞)− fBi(∞)) + σBi,Ai(fAi(−∞)− fAi(Φ−1(PD))),

where

fBi(b) = P(Bi = b|−∞ ≤ Bi ≤ −∞,−∞ ≤ Ai ≤ Φ−1(PD))

=
P(−∞ ≤ Bi ≤ ∞,−∞ ≤ Ai ≤ Φ−1(PD)|B = b) · P(Bi = b)

P(Ai ≤ Φ−1(PD))

=
P(−∞ ≤ Ai ≤ Φ−1(PD)|B = b) · P(Bi = b)

PD

= Φ

(
Φ−1(PD)− ρA · b√

1− ρ2
A

)
· φ(b)

PD

and

fAi(ai) = P(Ai = ai|−∞ ≤ Bi ≤ ∞,−∞ ≤ Ai ≤ Φ−1(PD))

=
P(−∞ ≤ Bi ≤ ∞|Ai = ai) · P(Ai = ai)

P(Ai ≤ Φ−1(PD))

=
φ(ai)

PD
.
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Thus

E[Bi|Ai ≤ Φ−1(PD)] = −ρA ·
φ(Φ−1(PD))

PD
.

Deriving E[Bi|Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)]

Here, we have a 3-dimensional normal distribution. Similar as above, we have

E[Bi|Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)]

= E[Bi|−∞ ≤ Bi ≤ ∞,−∞ ≤ Ai ≤ Φ−1(PD),−∞ ≤ Aj ≤ Φ−1(PD)]

= ρBi(fBi(−∞)− fBi(∞)) + ρA(fAi(−∞)− fAi(Φ−1(PD))

+ αβθS(fAj(−∞)− fAj(Φ−1(PD)). (B.4)

The truncated marginal densities are obtained as

fBi(b) = P(Bi = b|−∞ ≤ Bi ≤ ∞, Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD))

=
P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = b) · P(Bi = b)

P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD))

= P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Bi = b) · φ(b)

PD(2)
, (B.5)

fAi(ai) = P(Ai = ai|−∞ ≤ Bi ≤ ∞, Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD))

=
P(Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)|Ai = ai) · P(Ai = ai)

PD(2)

=
P(Aj ≤ Φ−1(PD)|Ai = ai) · P(Ai = ai)

PD(2)

= Φ

(
Φ−1(PD)− α2 · ai√

1− α4

)
· φ(ai)

PD(2)
,
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and

fAj(aj) = Φ

(
Φ−1(PD)− α2 · aj√

1− α4

)
· φ(aj)

PD(2)
. (B.6)

Inputting these densities (Eq. (B.5)-(B.6)) in Eq. (B.4) gives

E[Bi|Ai ≤ Φ−1(PD), Aj ≤ Φ−1(PD)] = −(ρA + αβθS) · φ(Φ−1(PD))

PD(2)
· ζ.

where

ζ = Φ

(
Φ−1(PD)(1− α2)√

1− α4

)
.
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Appendix C

Derivations in Chapter 4

C.1 E[Ai, Aj|Bi = b] and Cov(Ai, Aj|Bi = b)

The joint distribution of Ai, Aj and Bi is multivariate normal with mean vector and

covariance matrix is

µAi,Aj ,Bi =


0

0

0

 and ΣAi,Aj ,Bi =


1 α2 ρA

α2 1 αβθS

ρA αβθS 1

 ,

respectively. The conditional expectation µAi,Aj |Bi=b and covariance ΣAi,Aj |Bi=b of Ai

and Aj given Bi = b are derived by respectively partitioning the vector µAi,Aj ,Bi and

the matrix ΣAi,Aj ,Bi into the form

µAi,Aj ,Bi =

µ[1]
Ai,Aj ,Bi

µ
[2]
Ai,Aj ,Bi

 and ΣAi,Aj ,Bi =

Σ
[11]
Ai,Aj ,Bi

Σ
[12]
Ai,Aj ,Bi

Σ
[21]
Ai,Aj ,Bi

Σ
[22]
Ai,Aj ,Bi

 ,
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where

µ
[1]
Ai,Aj ,Bi

=

0

0

 , µ
[2]
Ai,Aj ,Bi

= 0,

Σ
[11]
Ai,Aj ,Bi

=

 1 α2

α2 1

 , Σ
[12]
Ai,Aj ,Bi

=

 ρA

αβθS


Σ

[21]
Ai,Aj ,Bi

=

[
ρA αβθS

]
, and Σ

[22]
Ai,Aj ,Bi

= 1.

So we have the [43]

µAi,Aj |Bi=b = µ
[1]
Ai,Aj ,Bi

+ Σ
[12]
Ai,Aj ,Bi

[
Σ

[22]
Ai,Aj ,Bi

]−1

(b− µ[2]
Ai,Aj ,Bi

)

=

 ρA · b

αβθS · b


and

ΣAi,Aj |Bi=b = Σ
[11]
Ai,Aj ,Bi

− Σ
[12]
Ai,Aj ,Bi

[
Σ

[22]
Ai,Aj ,Bi

]−1

Σ
[21]
Ai,Aj ,Bi

=

 1− ρ2
A α2 − αβθSρA

α2 − αβθSρA 1− (αβθS)2

 .
Summarizing, conditional distribution of the pair (Ai, Aj) given Bi = b is given as

Ai, Aj|Bi = b ∼ N


 ρA · b

αβθS · b

 ,
 1− ρ2

A α2 − αβθSρA

α2 − αβθSρA 1− (αβθS)2


 .
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C.2 E[Ai, Aj|Bi = bi, Bj = bj] and Cov(Ai, Aj|Bi = bi, Bj =

bj)

The mean vector and covariance matrix of the joint normal distribution of the pair

(Ai, Aj, Bi, Bj) are respectively given as

µAi,Aj ,Bi,Bj =



0

0

0

0


and ΣAi,Aj ,Bi,Bj =



1 α2 ρA αν

α2 1 αν ρA

ρA αν 1 β2

αν ρA β2 1


,

We obtain the conditional expectation µAi,Aj |Bi,Bj and covariance matrix ΣAi,Aj |Bi,Bj

by employing the approach in Appendix C.1. We have

µAi,Aj |Bi,Bj =

 ρ αν

αν ρA


 1 β2

β2 1


−1 bi

bj


=

1

1− β4

ρA(bi − β2 · bj) + αν(bj − β2 · bi)

α(bi − β2 · bj) + ρA(bj − β2 · bi)


and

ΣAi,Aj |Bi=bi,Bj=bj =

 1 α2

α2 1

−
ρA αν

αν ρA


 1 β2

β2 1


−1 ρA αν

αν ρA


=

1

1− β4

Γ∗1,1 Γ∗1,2

Γ∗2,1 Γ∗2,2

 ,
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where 
Γ∗1,1 = Γ∗2,2 = (1− β4)− ρA(ρA − β2αν) + αν(αν − β2ρA),

Γ∗1,2 = Γ∗2,1 = α2(1− β4)− ρA(αν − β2ρA) + αν(ρA − β2αν).
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Appendix D

Some Observations

D.1 ALGDp as a function of θI

The goal here is to determine the interval (conditions) under which asymptotic

portfolio-level LGD increases (or decreases) as a function of θI . Recall that ALGDp =

ARLp(sA,sB)

ADRp(SA)
. Since ADRp(·) is not a function of θI , by proving that ARLp(sA, sB) is

an increasing (or decreasing) function of θI on a particular interval implies ALGDp

is also an increasing (or decreasing) function of θI on that interval.

Now, let redefine ARLp as a function of θI so that

ARLp(θI) =

∫
R
G · Φ (Q(θI)) db,

where 
G = H(b) · φ(b, βsB, 1− β2),

Q(θI) = iA−iBθI√
1−θ2I

.
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And 
iA = Φ−1(PD)−αsA√

1−α2 ,

iB = b−βsB√
1−β2

.

Observe that iA is the critical value that drives the conditional default probability

via sA.

To demonstrate that ARLp(θI) is an increasing (or decreasing) function on a

particular interval we need to show that ARL′p(θI) ≥ 0 on that interval. The first

derivative of ARLp(θI) is

ARL′p(θI) =

∫
R
G ·Q′(θI)φ (Q(θI)) db, (D.1)

Q′(θI) in Eq. (D.1) is the first derivative of Q with respect to θI and is given as

Q′(θI) =
θI(iA − iBθI)

[1− θ2
I ]

3
2

− iA

[1− θ2
I ]

1
2

=
θIiA − iB
[1− θ2

I ]
3
2

.

By definitionH(b) and φ(·) are positive, thusG ≥ 0. So for ARL′p(θI) ≥ 0, Q′(θI) ≥ 0.

Proposition 4. ARLp decreases and then increases as a function of θI if and only

if iA > 0 and |iB|≤ iA, whereas ARLp increases then decreases as a function of θI if

and only if iA < 0 and |iB|≤ |iA|. In both cases the point where the behaviour changes

is θI = iB
iA

.

Proof. Suppose ARLp increases as a function of θI . This implies Q′(θI) ≥ 0. This

means θIiA − iB ≥ 0. Thus, iA > 0 for this inequality to hold for all iB. Also,

since −1 ≤ θI ≤ 1, it follows that |iB|≤ iA. The same chain of reasoning holds for

decreasing ARLp.
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Suppose iA > 0 and |iB|≤ iA. Since [1 − θ2
I ]

3
2 , it follows that for Q′(θI) ≥ 0,

θIiA − iB ≥ 0. This implies θI ≥ iB
iA

. Conversely, ARLp decreases for θI ≤ iB
iA

.

The proof of the second part of Proposition 4 follows from the above.

Figure D.1 illustrates numerically, Proposition 4. We see that at iB
iA

(black

vertical line), the graph of ARLp transitions from a decreasing to increasing function

of θI for values of iA = 3 and iB = 2 (Figure D.1a), and from an increasing to

decreasing function of θI for iA = −3 and iB = 2 (Figure D.1b).

(a) iA = 3, iB = 2 (b) iA = −3, iB = 2

Figure D.1: ARLp as a function of θI . δ1 = 2, δ2 = 3, PD = 0.05, ρA = 0.4.

159



Curriculum Vitae

Wisdom Stallone Avusuglo

Research Interests

Applied Probability and Statistics focusing on problems in financial risk man-
agement, and Mathematical Biology, Non-Linear Dynamical Systems and Eco-
nomic Epidemiology focusing on disease transmission dynamics and control

University Education

Doctor of Philosophy in Statistics, Sept 2014–Aug 2020
Department of Statistical and Actuarial Sciences, Western University, London,
Ontario
Thesis Title: A Treatise of PD-LGD Correlation Modelling

Master of Science in Applied Modelling and Quantitative Methods, Sept 2011–
Sept 2013
Department of Mathematics, Trent University, Peterborough, Ontario
Thesis Title: Stability Properties of Disease Models Under Economic Expecta-
tions

Bachelor of Arts in Mathematics and Economics, Aug 2005–May 2009
Department of Mathematics and Economics, University of Ghana, Legon, Ac-
cra, Ghana

160



Peer-reviewed Publications

Avusuglo W. S., Abdella K., and Feng W. (2017). Stability analysis on an
economic epidemiological model with vaccination. Mathematical Biosciences
and Engineering, 14(4): 975–999.

Avusuglo W. S., Abdella K., and Feng W. (2014). Stability analysis on an
economic epidemiology model of syphilis. Communications in Applied Analysis,
18, 59–78.

Avusuglo W. S., Feng W., and Abdella K. (2014). A generalization of epidemio-
logical models under rational expectations. Dynamic Systems and Applications,
23, 635–652.

Awards/Scholarships

PSAC 610 Community Involvement Award, Western University, London, On-
tario (2017)

Graduate Research Scholarship, Western University, London, Ontario (2014-
2020)

Graduate Research Award, Trent University, Peterborough, Ontario (2011-
2013)

161


	A Treatise of PD-LGD Correlation Modelling
	Recommended Citation

	Abstract
	Summary For Lay Audience
	Acknowledgements
	Terms, Acronyms, and Symbols
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Literature
	Related Concepts
	On Regulatory and Economic Capital
	Expected and Unexpected Losses

	Modelling dependencies using factor models
	A Review of Selected Factor Models

	Contribution

	Modelling Account-Level Quantities
	Nesting Models and Related Distributions
	Nesting All the Models
	Linking Nested Models to Specific Models

	Conditional Distribution of B given A^-1(PD)
	Numerical Illustration of Theorem 1 ("0362(b) verses (b))

	Account-Level Potential Loss and Loss Given Default (LGD) Distribution 
	Account-Level PL Distribution under General Model
	Account-Level LGD Distribution under General Model
	Distribution of Account-Level PL  and  LGD  under Specific Models 

	Revealing Defect and Corrective Approach
	Explaining Defect
	Effect of Defect on Parameter and Economic Capital Estimates
	Correcting Defect

	Comparing Transformations 
	Comparing Distribution of Loss under H(b) and H"0362H(b)
	Comparing Economic Capital (EC) under H(b) and H"0362H(b)

	Conclusion

	Comparing Account and Portfolio Level LGD 
	Finite Portfolio-level Default Rate and Loss Given Default
	Joint Distribution of DR_p and LGD_p
	Asymptotic Representation of DR_p, RL_p and LGD_p.
	Probability Density of ADR_p
	Mean and Variance of ARL_p
	Covariance of ADR_p and ARL_p
	Deriving Joint Density of ADR_p and ALGD_p
	Marginal Density of ALGD_p

	Account and portfolio level relationships
	Source of Account-Level Correlation 
	 On LGD_A^(2) and LGD_A 

	Conclusion

	Empirical Study on Model Parameters
	Summary of Model of Interest
	Data description
	Estimation Scheme and Results
	Estimating PD
	Estimating 
	Estimating _1 and _2
	Identifying _S and _A
	Identifying 

	Impact of Free Parameter on Model Outputs
	Estimation Result in the Reduced Model
	Estimating Model Parameters
	Comparing Economic Capital Under Correct and Wrong Transformations
	Imputing Systematic Risk Factors

	Case Against Maximum Likelihood Estimation
	Discussion and Conclusion

	Future Work
	Bibliography
	Appendix Chapter 2 Related Issues
	Correlation Structure of the General Model and Specific Models 
	Linking Specific Models to Nested Models
	Frye's Model
	Miu and Odzemir's Model
	Pykhtin's Model
	Witzany's Model


	Appendix Derivations in Chapter 3
	Conditional Mean and Covariance of A and B 
	P(A^-1(PD)|B=b,S_A=s_A,S_B=s_B)
	Taylor Series Approximation
	`39 `42 `"613A `45 `47 `"603A E[B_i|A_i^-1(PD)] and `39 `42 `"613A `45 `47 `"603A E[B_i|A_i^-1(PD),A_j^-1(PD)]

	Appendix Derivations in Chapter 4
	`39 `42 `"613A `45 `47 `"603A E[A_i,A_j|B_i=b] and Cov(A_i,A_j|B_i=b) 
	`39 `42 `"613A `45 `47 `"603A E[A_i,A_j|B_i=b_i,B_j=b_j] and Cov(A_i,A_j|B_i=b_i,B_j=b_j) 

	Appendix Some Observations
	ALGD_p as a function of _I


