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Abstract

This thesis investigates the value and e↵ect that perceptiveness has in three game-theoretic

settings. I consider a player to be expert if they know the value of a particular payo↵-relevant

parameter in the models I study. If the player does not know such value, I consider the player to

be inexpert. A player is perceptive if they know with certainty whether their opponent is expert.

Otherwise, the player is imperceptive. The goal of this thesis is to provide insight regarding the

potential value and e↵ect that perceptiveness has in the game-theoretic settings I study.

The first model I consider emulates a two-player, one-round game of poker. The second

model I investigate is a two-player market-entry game. The third model I study depicts a two-

player market-entry game that is influenced by an information designer who aims to maximize

producer surplus. In each model, I consider distinct information structures, which vary in terms

of the players’ levels of expertise and perceptiveness. In the first two models, I solve for the

Bayesian Nash equilibria of each game and compute each agent’s expected payo↵. Then, by

comparing the equilibrium action and expected payo↵ of an agent when perceptive to that when

imperceptive, holding all else constant, I determine the agent’s value of perceptiveness and the

e↵ect that perceptiveness has on the agent’s equilibrium strategy. In the third model, I solve

for the information designer’s attainable decision rules, then determine which of the attainable

decision rules maximizes producer surplus.

Among other insights, I find that perceptiveness is generally valuable, whether that be from

the perspective of a poker player, a player considering market entry, or an information designer

in a market-entry game. Furthermore, under an equilibrium that treats the market-entry players

as symmetrically as possible, the value of perceptiveness is positive when both players have a

su�ciently high probability of being expert; whereas, the value of perceptiveness is zero when

either player is inexpert with a su�ciently high probability. Also, perceptiveness is generally

less beneficial to players considering market entry than it is to players playing poker.

Keywords: Perceptiveness, game theory, market-entry, information design, poker, value of

information, Bayesian games, reading opponents
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Summary for Lay Audience

This thesis studies the value and e↵ect that perceptiveness has in three game-theoretic set-

tings. I consider a player to be expert if they can discern their likelihood of realizing a high

payo↵ in a strategic setting. If the player cannot discern such, I consider the player to be in-

expert. A player is perceptive if they know with certainty whether their opponent is expert.

Otherwise, the player is imperceptive. The goal of this thesis is to provide insight regarding the

potential value and e↵ect that perceptiveness has in the game-theoretic settings I study.

The first model I consider emulates a two-player, one-round game of poker. The second

model I investigate is a two-player market-entry game. The third model I study depicts a two-

player market-entry game that is influenced by a third player that can signal to the other two

players whether they should enter the market. The third player aims to maximize the combined

well-being of the two other players. In each model, I consider distinct endowments of infor-

mation between the players. These endowments vary in terms of the players’ expertise and

perceptiveness. By obtaining the solutions and expected payo↵s of a player when they are per-

ceptive, then comparing such to that when the player is imperceptive, I determine the player’s

value of perceptiveness and the e↵ect that perceptiveness has on the player’s strategy. In the

third model, I solve for the attainable signals that the third player can send, then determine

which signal maximizes the combined well-being of the other two players.

Among other insights, I find that perceptiveness is generally valuable in all three models.

Furthermore, using a solution that treats the market-entry players as symmetrically as possible,

the value of perceptiveness is positive when both players have a su�ciently high probability

of being expert; whereas, the value of perceptiveness is zero when either player is inexpert

with a su�ciently high probability. I also find that perceptiveness is generally less beneficial

to players considering market entry than it is to players playing poker.
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Chapter 1

Introduction

In my thesis, I investigate the value and e↵ect that perceptiveness has in various game-theoretic

settings. I consider a player to be expert if they know the value of a particular payo↵-relevant

parameter in the models I study. If the player does not know such value, I consider the player

to be inexpert. A player is perceptive if they know with certainty whether their opponent is

expert. Otherwise, the player is imperceptive.

To motivate the potential value and e↵ect of perceptiveness, consider the following ex-

ample. Suppose an entrepreneur develops a novel idea and is considering whether to take it

to market. The cost associated with entering the market will surely a↵ect the entrepreneur’s

market-entry decision. Similarly, the entrepreneur’s competitor’s market-entry decision will be

a↵ected by their own market-entry cost. Since the entrepreneur’s expected payo↵ from entering

the market will likely be a↵ected by their competitor’s market-entry decision, the competitor’s

information regarding their own market-entry cost will likely a↵ect the entrepreneur’s decision

as well. As a result, perceptiveness will likely a↵ect the entrepreneur’s market-entry decision.

Also, the entrepreneur could be better (or worse) o↵ by being perceptive. The goal of my the-

sis is to provide insight regarding the potential value and e↵ect that perceptiveness has in three

di↵erent game-theoretic settings.

The first setting I consider, which is presented in Chapter 2, is a game-theoretic model that

1



2 Chapter 1. Introduction

emulates a two-player, one-round game of poker. I consider six distinct information structures,

which di↵er in terms of the players’ levels of expertise and perceptiveness. I solve for the

Bayesian Nash equilibria of each game and compute each agent’s expected payo↵. By com-

paring the equilibrium action and expected payo↵ of an agent when perceptive to that when

imperceptive, holding all else constant, I determine the agent’s value of perceptiveness and

the e↵ect that perceptiveness has on the agent’s equilibrium strategy. Among other insights, I

find that perceptiveness generally has significant value when the players’ chip endowment is

su�ciently high.

The second setting I consider, which is presented in Chapter 3, studies the value and ef-

fect that perceptiveness has in a market-entry setting. I consider a continuum of information

structures, which (similar to the first setting) di↵er in terms of the players’ expertise and per-

ceptiveness. Upon deriving and refining the Bayesian Nash equilibria and computing each

agent’s expected payo↵, I determine the sign and magnitude of each agent’s value of percep-

tiveness. I find that, under an equilibrium that treats the players as symmetrically as possible,

the value of perceptiveness is always non-negative. Furthermore, the value of perceptiveness is

always zero for an inexpert agent whose opponent is perceptive. Also, when both players have

a su�ciently high probability of being expert, the value of perceptiveness is positive; whereas,

if either agent is inexpert with a su�ciently high probability, the value of perceptiveness is

zero. Additionally, even when the value of perceptiveness is zero, perceptiveness still a↵ects

the players’ equilibrium actions. I also find that perceptiveness is generally less beneficial in

this model as opposed to the model I consider in Chapter 2.

The third setting I consider, which is presented in Chapter 4, studies the e↵ect that percep-

tiveness has on an information design problem in a market-entry setting. Like the previous two

settings, I consider information structures that di↵er in terms of the players’ expertise and per-

ceptiveness. However, this setting also features an information designer that aims to maximize

producer surplus and can send action recommendations to each player prior to the players’

market-entry decision. I find that perceptiveness provides positive value, in terms of producer
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surplus, when the di↵erence between the high and low state market-entry fees is su�ciently

small, the high state market-entry fee is su�ciently low, and the low state market-entry fee

is su�ciently high. Furthermore, perceptiveness inflicts negative value, in terms of producer

surplus, when both the high and low market-entry fees are su�ciently high or when the di↵er-

ence between the high and low state market-entry fees is su�ciently small and the low state

market-entry fee is su�ciently high.



Chapter 2

Perceptiveness in a Game-Theoretic

Model of Poker

“Once you’ve mastered the basic elements of a winning poker formula, psychology becomes

the key ingredient in separating break-even players from players who win consistently. The

most profitable kind of poker psychology is the ability to read your opponents.” (Caro, 2003,

p. 8)

2.1 Introduction

This quotation highlights the presence of two distinct skills required to be a successful poker

player. The first is expertise, which in poker can be thought of as a player’s ability to gauge how

strong their hand is relative to any competitior’s hand. The second is perceptiveness, which can

be thought of as a player’s ability to “read their opponents”.

There are several interpretations as to what “reading your opponents” entails. For instance,

it could refer to a player’s ability to discern their opponents’ level of expertise, or it could refer

to a player’s ability to accurately gauge their opponents’ hand strength based on a signal they

receive from such opponent. In this chapter, I focus on studying the e↵ect and value that a

player’s ability to discern their opponents’ level of expertise has in my game-theoretic model

4
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of poker.

My research in this chapter relates best to literature regarding the value of information1 and

literature regarding poker. Poker has been a topic of discussion among academic economists

for years, with works including von Neumann and Morgenstern (1944), Kuhn (1950), and Nash

and Shapley (1950). Poker has also been studied in various other fields of research including

computer science,2 psychology,3 and statistics.4 In addition to this, poker has intrigued many

casual players and non-academic authors who have discussed game theory optimal, exploita-

tive, and conventional poker strategy.

A small subset of influential poker literature includes Acevedo (2019), Harrington and

Robertie (2005), Little et al. (2015), and Snyder (2008).5 Acevedo (2019) presents an in-depth

analysis of game theory optimal play and how it applies to various situations in a No-Limit

Hold’em poker game. More specifically, Acevedo (2019) teaches readers how to apply game

theory in order to develop a non-exploitable poker strategy. Harrington and Robertie (2005)

teach fundamental poker strategy and establish Harrington’s M-ratio, which is a simple ratio

calculation that helps inform players how aggressively they should play in a particular poker

tournament situation. Little et al. (2015) provides a comprehensive review of modern, expert

poker strategy. Some of the broad range of topics covered in Little et al. (2015) include

range analysis, satellite play, game theory optimal play, and mental toughness. Snyder (2008)

establishes the importance of chip utility, which is founded upon the fact that the more chips a

player has in a poker tournament, the more strategies that player can utilize to accumulate even

more chips.

Most of the non-academic poker literature, including the literature I reference here, fo-

cuses on developing a poker strategy that can be applied while playing poker. My research in

this chapter departs from this, but still contributes to poker literature, since I develop a game-

1I address the value of information literature in Chapter 3.
2For instance Billings et al. (2003), Korb et al. (1999), Shi and Littman (2000), and Southey et al. (2012).
3For instance Gri�ths et al. (2010), McCormack and Gri�ths (2012), and Rapoport et al. (1997).
4For instance Borm and van der Genugten (2000, 2001), and Crosen et al. (2008).
5I listed these four poker books in particular since they have had the most substantial influence on the poker

strategy I use when playing.
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theoretic model of poker that incorporates perceptiveness. I also provide insight regarding the

value of perceptiveness and the e↵ect that perceptiveness has on a player’s equilibrium strategy

in my model of poker. Although it is not my intention to provide an applicable poker strategy,

I believe that my model and results confirm conventional poker wisdom that recommends ag-

gressive play when facing an opponent who you know is inexpert.

In addition to the poker literature from academic fields outside of economics that I cite

above, many studies have focused on examining the behavioural tendencies of players or em-

pirically determining whether poker is a game of luck or skill. Siler (2010) finds that a tight-

aggressive strategy (which is where a player plays their hands aggressively, but only plays

hands that have an expectation above a particular threshold) tends to be the most lucrative

strategy for expert players. Levitt and Miles (2014), Hannum and Cabot (2009), and Meyer et

al. (2013) empirically test the relationship between luck and skill in poker. The two former

papers find that poker is a game of skill, whereas the latter finds that poker is a game of luck.

This is a common debate among poker enthusiasts. From my personal experience, I believe

poker to be both a game of luck and a game of skill. Bad luck can ultimately destroy any good

player’s chance at success. However, in order to win, a highly skilled poker player needs far

less good luck than a lesser skilled poker player. Therefore, I believe that both luck and skill

are important to achieving poker success.

The model I develop is also related to literature on higher-order beliefs, games of incom-

plete information, and epistemic game theory. Aumann and Heifetz (2002) acknowledges the

importance, and details various methods, of incorporating players’ beliefs of the other players’

beliefs into game-theoretic models. I do this in my model by constructing perceptiveness as

a player’s ability to identify whether their opponent knows their own relative hand strength.

Jehiel and Koessler (2008) studies the e↵ect of analogy-based expectations in static two-player

games of incomplete information by assuming that players understand the average behavior of

their opponent over bundles of states, then act on the best responses to their opponent’s average

behaviour. My work di↵ers from Jehiel and Koessler (2008) as the players in my model act
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using best responses that are derived from a probabilistic distribution over di↵erent levels of

their opponent’s expertise, whereas Jehiel and Koessler (2008) derive best responses based on a

probabilistic distribution over a bundle of states. I also investigate the value of perceptiveness,

whereas Jehiel and Koessler (2008) focuses solely on the e↵ect of analogy-based expectations.

Friedenberg et al. (2016) studies rationality (a player’s tendency to act using a best response)

and cognition (a player’s tendency to apply some alternative rationale, such as using their best

response or using a strategy based on their lucky numbers, to playing a game). They find that

rationality is important when determining player behaviour, especially for cognitive players.

My work departs from this since I assume all players to be rational and study a player’s infor-

mation about how much their opponent knows, as opposed to studying a player’s information

about whether their opponents’ simply have a rational method behind their actions.

Additionally, my work in this chapter relates to economics literature pertaining to over-

confidence and other personality traits in strategic settings. Ando (2004) investigates an eco-

nomic contest featuring two players that are each overconfident with their relative abilities,

then specifically studies two unique sources of overconfidence: a player’s overestimation of

their own ability and a player’s underestimation of their opponent’s ability. Ando (2004) finds

that a player’s overestimation of their own ability always induces the player to become more

aggressive, whereas a player’s underestimation of their opponents’ ability sometimes induces

the player to become more passive; thus implying that overconfidence may not always lead to

aggressive tendencies. Ludwig et al. (2011) uses a model that features a two-player Tullock

contest to show that modest overconfidence can improve a player’s performance relative to an

unbiased opponent, and thus leads to an absolute advantage for the overconfident player. My

work provides an example of how a player’s overestimation of their opponent’s ability leads to

behaviour that is relatively more passive.

The rest of this chapter is organized as follows. Section 2.2 briefly discusses poker and

how it is played. Section 2.3 presents the model. Section 2.4 provides details regarding the

strategies, best responses, equilibria, and expected payo↵s. Section 2.5 reports the value of
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expertise and the value of perceptiveness, as well as a discussion on the value and e↵ect that

perceptiveness has in this chapter’s model. Section 2.6 concludes. The supplemental appendix

for this chapter is located in Appendix A.

2.2 Preliminaries

Poker is a collection of card games that combine gambling, skill, and strategy. A game of poker

begins with each player having a certain number of chips, which can be thought of as a player’s

capital. A series of hands are then dealt among the players. In each hand, players receive cards

and try to make the highest-ranking card combination possible. Throughout each hand, players

can place bets to either increase the number of chips the winning player will receive or to

attempt to win the hand immediately. Players must also periodically decide whether to remain

in the hand by matching the bets made by other players. When a player decides not to match an

opponent’s bet, the player is eliminated from the hand. A player wins a hand and collects all of

the wagered chips if all other players have been eliminated or if they have the highest-ranking

card combination after the final betting round.

2.3 Model

2.3.1 Inspiration

To induce action in a game of poker, players may have to pay “blinds” and/or “antes” at the start

of each hand. A common, and almost inevitable, occurrence in any poker tournament is when

these forced bets are a high proportion of the players’ total number of chips. In this situation, a

popular and e↵ective strategy is to either “fold” or go “all-in” in the first betting round. When

a player folds they relinquish their hand and forfeit their chance of winning all chips wagered

throughout the hand. When a player goes all-in, they maintain their chance of winning the hand

(and all of the chips wagered), but also risk all of their chips in the process. This approach is
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e↵ective since going all-in negates the other players’ chance of winning the hand by betting.

This means that the winning player will win the hand by matching all bets and having the

highest-ranking card combination of all players that matched such bets. Furthermore, if no

opponent decides to match the player’s all-in bet, the reward the player receives from winning

the hand is relatively large since the forced bets are a high proportion of the player’s total

number of chips. The model I develop in this chapter emulates the first betting round in a

two-player poker hand, in which each player can either go all-in or fold.

2.3.2 Players, Actions, States

Suppose there are two risk-neutral players, A and B, that are both endowed with chips and

receive a hand that is drawn by Nature. Upon receiving their hand, each player must choose

whether to “fold” (ai = F) or go “all-in” (ai = A). Player i’s payo↵ function is6

ui(ai, aj, hi, hj) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0, if (ai, aj) = (F, F)

1, if (ai, aj) = (A, F)

�1, if (ai, aj) = (F, A)

0, if (ai, aj) = (A, A) & hi = hj

K, if (ai, aj) = (A, A) & hi > hj

�K, if (ai, aj) = (A, A) & hi < hj.

I let {K � 1|K 2 R} and hi ⇠ i.i.d. U[0,1]. In this setting, K represents the players’ chip

endowment, and hi represents the value of player i’s hand. The set of states is [0,1]2, which

corresponds to the possible hand combinations that can be drawn between the two players.

6 j will always denote i’s opponent.
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2.3.3 Types, Information, & Beliefs

In this chapter, I consider six distinct information structures. I will construct the Bayesian Nash

equilibria and expected payo↵s for each information structure separately, then use the results

to determine the value and e↵ect of perceptiveness. The six information structures I consider

are

(✏A, ✏B) 2 {(0,0), (0,1), (1,1), (0,1/2), (1,1/2), (1/2,1/2)}, (2.1)

where ✏i represents player j’s probabilistic belief of player i knowing the value of hi. Each

(✏A, ✏B) ordered pair is common knowledge to both players and corresponds to a specific in-

formation structure. For instance, suppose (✏A, ✏B) = (1/2,1/2). Here, ✏ j = 1/2, which implies

that player i knows that player j knows the value of hj with a probability of 1/2.7 For a second

example, suppose (✏A, ✏B) = (0,1). Here, player A knows that player B knows the value of hB;

whereas, B knows that A merely knows that hA ⇠ iid U[0,1]. Furthermore, both players know

the probability that the other player believes them to know the value of their hand.

Definition 2.3.1 Player i is perceptive if player i knows with certainty whether player j knows

the value of h j.

Definition 2.3.1 classifies player i as perceptive if and only if ✏ j 2 {0,1}. Hence, player i

is imperceptive if and only if ✏ j 2 (0,1). As shown by Reza (1994), uncertainty is maximized

when all potential outcomes occur with equal probability. Hence, the most imperceptive player

i can be occurs when ✏ j = 1/2. For this reason, I have chosen ✏i = 1/2 as the imperceptive

class of games I study in this chapter. Since (✏A, ✏B) is common knowledge, each player’s

perceptiveness is common knowledge as well.

Definition 2.3.2 Player i is expert if player i knows the value of hi prior to deciding whether

to go all-in or fold.

7I consider i’s belief to be an accurate gauge of j’s probability of knowing the value of h j. That is, if i believes
j knows h j with probability ✏ j, then ex-ante j knows h j with probability ✏ j.
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Definition 2.3.2 classifies player i as expert if and only if player i knows the value of hi

prior to deciding whether to go all-in or fold. If player i is not expert, I classify player i as

inexpert.

The type space, ti, for each player i varies depending on the value of ✏i. If ✏i = 0, the type

space for i is ti 2 {Ii}. If ✏i = 1, the type space for i is ti 2 [0,1]. If ✏i 2 (0,1), the type space for

i is ti 2 [0,1] [ {Ii}. When ✏i = 0, j is perceptive and i merely knows that hi ⇠ iid U[0,1]. As a

result, i only has one type, which I denote as Ii. When ✏i = 1, j is perceptive and i knows the

value of hi. As a result, i has a continuum of types, each corresponding to a particular value

of hi. Finally, when ✏i 2 (0,1), j is imperceptive so it is conceivable for i to be either expert or

inexpert, and hence have a type space of [0,1] [ {Ii}.

By considering the six information structures listed in Expression (2.1), I cover every player

configuration possibility, given that any imperceptive player i has an opponent j such that

✏ j = 1/2. Since my model features two levels of expertise and two levels of perceptiveness,

there are four configuration possibilities for each player. These are: 1) expert, perceptive;

2) inexpert, perceptive; 3) expert, imperceptive; and 4) inexpert, imperceptive. Therefore,

there are sixteen total configurations, which can be reduced to six by excluding symmetric and

redundant8 configurations.

2.3.4 Timeline

The timeline for the game in this chapter is as follows. First, each player observes (✏A, ✏B) and

learns whether they are expert or inexpert. Second, each player i receives their draw of hi,

which player i observes if i is expert. Third, players simultaneously choose to either fold or go

all-in. Fourth, the hand values are revealed to both players and payo↵s are realized.

8By redundant, I refer to configurations that have the existence of multiple agents for one player. That is, when
player i is imperceptive, there will be two agents for player j, one for each level of expertise. In my analysis, I
group these configuration possibilities together into one game.
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2.4 Strategies, Best Responses, & Equilibria

2.4.1 Strategies

A strategy maps each type to a probability distribution over actions. Therefore, I must define a

strategy for each level of expertise since the type space for an expert agent is [0,1] and the type

space for an inexpert agent is {Ii}. Since an expert agent i knows the value of hi, this information

should a↵ect their strategy since i’s expected payo↵ depends on hi. Since i’s expected payo↵

is increasing in hi,9 I restrict attention to cut-o↵ strategies for an expert agent i. I let �i, where

�i 2 [0,1], represent an expert agent i’s cut-o↵, such that i chooses to fold for all hi < �i and

chooses all-in for all hi � �i.10

An inexpert agent i does not know the value of hi prior to deciding whether to fold or go

all-in, which is depicted by an inexpert i’s type space of {Ii}. Therefore, an inexpert i’s strategy

should not depend on hi. I let ↵i, where ↵i 2 [0,1], represent the probability that an inexpert

agent i chooses to fold.11

2.4.2 Best Responses

Before constructing the best response functions, I derive each agent’s expected payo↵ from

choosing fold and from choosing all-in. I denote agent i’s expected payo↵ from choosing ai as

E[uai
i,q(� j,↵ j)], where q 2 {EX, IX} denotes agent i’s expertise.12 Since an agent i that chooses

fold has a payo↵ that is independent of hi, an agent’s expected payo↵ from choosing fold is

independent of their expertise. Hence an expert or inexpert agent i’s expected payo↵ from

choosing fold is

9To see this, consider the expression for ui listed in Section 2.3.2. Player i’s expected payo↵ from choosing
fold is constant in hi, whereas i’s expected payo↵ from choosing all-in increases in hi, given some arbitrary h j.

10I restrict attention to equilibria where an expert i chooses all-in if they are indi↵erent between the two actions.
11Hence, an inexpert i chooses all-in with probability 1�↵i.
12EX indicates that i is expert, whereas IX indicates that i is inexpert.
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E[uF
i (� j,↵ j)] = ✏ j[Pr(aj=F | j=EX)(0) + Pr(aj=A | j=EX)(�1)]

+ (1�✏ j)[Pr(aj=F | j=IX)(0) + Pr(aj=A | j=IX)(�1)]

= �✏ j(1�� j) � (1�✏ j)(1�↵ j)

= ✏ j� j + (1�✏ j)↵ j � 1. (2.2)

An inexpert agent i’s expected payo↵ from choosing all-in is13

E[uA
i,IX(� j,↵ j)] =

✏ j[Pr(aj=F | j=EX)(1) + Pr(aj=A | j=EX)

· [Pr(hi>hj | hj � � j)K + Pr(hi<hj | hj � � j)(�K) + Pr(hi=hj | hj � � j)(0)]]

+ (1�✏ j)[Pr(aj=F | j=IX)(1)

+ Pr(aj=A | j=IX)[Pr(hi>hj)K + Pr(hi<hj)(�K) + Pr(hi=hj)(0)]]

= ✏ j[� j + (1�� j)[� j(�K) + 1
2 (1�� j)(K) + 1

2 (1�� j)(�K)]] + (1�✏ j)[↵ j + (1�↵ j)K(0)]

= ✏ j� j + (1�✏ j)↵ j � ✏ j� j(1�� j)K. (2.3)

Lastly, an expert agent i’s expected payo↵ from choosing all-in is

13Appendix A.1 provides a breakdown of the possible states and the corresponding payo↵ that an inexpert agent
i receives when choosing all-in against an expert agent j, given that j uses a cut-o↵ strategy, � j.
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E[uA
i,EX(� j,↵ j)] =

✏ j[Pr(aj=F | j=EX)(1) + Pr(aj=A | j=EX)[Pr(hi > hj | hj � � j)K

+ Pr(hi < hj | hj � � j)(�K) + Pr(hi = hj | hj � � j)(0)]]

+ (1�✏ j)[Pr(aj=F | j=IX)(1)

+ Pr(aj=A | j=IX)[Pr(hi > hj)K + Pr(hi < hj)(�K) + Pr(hi = hj)(0)]]

= ✏ j(� j + [Pr(hi < � j)(�K) + Pr(hi � � j)[(hi�� j)K + (1�hi)(�K)]])

+ (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

= ✏ j� j + ✏ jK[Pr(hi � � j)(2hi�� j�1) � Pr(hi < � j)] + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

= ✏ j� j + ✏ jK[Pr(hi � � j)(2hi�� j) � (Pr(hi � � j) + Pr(hi < � j))]

+ (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

= ✏ j� j + Pr(hi � � j)(2hi�� j)✏ jK � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] (2.4)

=

8>>>>>><
>>>>>>:

✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] + ✏ j(2hi�� j)K if hi � � j

✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] if hi < � j

(2.5)

To solve for the Bayesian Nash equilibria for the six information structures listed in Ex-

pression (2.1), there are six best response functions I require. These six best response functions

are for an

i inexpert & perceptive agent i versus an inexpert agent j;

ii expert & perceptive agent i versus an inexpert agent j;

iii inexpert & perceptive agent i versus an expert agent j;

iv expert & perceptive agent i versus an expert agent j;

v inexpert & imperceptive agent i;
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vi expert & imperceptive agent i.

Any agent i’s best response function is independent of j’s perceptiveness. This is because

j’s perceptiveness will a↵ect j’s best response function, which will in turn a↵ect j’s strategy

variables, � j and ↵ j. Although these variables substitute into i’s best response function, the

function itself will remain unchanged if j’s perceptiveness were to change. Additionally, since

an imperceptive agent i is unable to discern j’s expertise, i’s best response function is indepen-

dent of j’s expertise.

Inexpert & Perceptive vs. Inexpert

Lemma 2.4.1 Suppose an inexpert, perceptive agent i is facing an inexpert opponent j. Agent

i’s best response is to choose all-in, ↵BR
i = 0, for all K � 1.

Proof Suppose i is inexpert, perceptive and j is inexpert. This implies that ✏ j = 0. By Equa-

tions (2.2) and (2.3), i’s expectation from choosing all-in will be greater than or equal to i’s

expectation from choosing fold if and only if

E[uA
i,IX(� j,↵ j)] � E[uF

i (� j,↵ j)]

✏ j� j + (1�✏ j)↵ j � ✏ j� j(1�� j)K � ✏ j� j + (1�✏ j)↵ j � 1.

This expression, when ✏ j = 0, simplifies to 0 � �1. Therefore, agent i’s expected payo↵ from

choosing all-in is greater than i’s expected payo↵ from choosing fold for all K � 1.

Expert & Perceptive vs. Inexpert

Lemma 2.4.2 Suppose an expert, perceptive agent i faces an inexpert opponent j. Agent i’s

best response is to, for all K � 1, choose the cut-o↵

�BR
i (↵ j) = Max{ 12 (1� 1

(1�↵ j)K
), 0}.
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Proof Suppose i is expert, perceptive and j is inexpert. This implies that ✏ j = 0. By Equations

(2.2) and (2.5), i should select �i such that i is indi↵erent between actions.14 If no indi↵erence

point exists, i should select whichever action yields the highest expected payo↵. Therefore, if

hi � � j,

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi � � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] + ✏ j(2hi�� j)K

�i(↵ j) = 1
2 (1� 1

(1�↵ j)K
),

while if hi < � j,

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi < � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

�i(↵ j) = 1
2 (1� 1

(1�↵ j)K
).

Since �i 2 [0,1], the lowest value that i can select for �i is zero. Moreover, 1
2 (1� 1

(1�↵ j)K
) is

bounded above by 1/2. Therefore,

�BR
i (↵ j) = Max{ 12 (1� 1

(1�↵ j)K
), 0},

for all K � 1 when i is expert, perceptive and facing an inexpert opponent j.

In this situation, agent i’s expected payo↵ from choosing all-in may be greater than their

expected payo↵ from choosing fold for all K � 1. This depends on the inexpert j’s strategy, ↵ j.

�BR
i (↵ j) is bounded above by 1/2, but diverges to �1 as ↵ j approaches 1 (which occurs when j

always chooses fold). The intuition behind this is that if an inexpert j chooses to fold with a

su�ciently high frequency, the expert i should always choose all-in in order to receive the ante

that j often relinquishes by choosing fold.

14When i is indi↵erent between choosing all-in and fold, hi = �i.



2.4. Strategies, Best Responses, & Equilibria 17

Inexpert & Perceptive vs. Expert

Lemma 2.4.3 Suppose an inexpert, perceptive agent i is facing an expert opponent j. Agent

i’s best response correspondence, for all K � 1, is

↵BR
i (� j) =

8>>>>>>>>>>><
>>>>>>>>>>>:

{1} if �2
j � � j +

1
K < 0

{0} if �2
j � � j +

1
K > 0

[0,1] if �2
j � � j +

1
K = 0.

Proof Suppose i is inexpert, perceptive and j is expert. This implies that ✏ j = 1. By Equa-

tions (2.2) and (2.3), i’s expectation from choosing all-in will be greater than or equal to i’s

expectation from choosing fold if and only if

E[uA
i,IX(� j,↵ j)] � E[uF

i (� j,↵ j)]

✏ j� j + (1�✏ j)↵ j � ✏ j� j(1�� j)K � ✏ j� j + (1�✏ j)↵ j � 1

�2
j � � j +

1
K � 0.

Therefore, for all K � 1, when i is inexpert, perceptive and facing an expert opponent j, i

should always choose all-in if �2
j � � j +

1
K > 0 and always choose fold if �2

j � � j +
1
K < 0.

Furthermore, if �2
j � � j +

1
K = 0, then i will be indi↵erent between the two actions.

Expert & Perceptive vs. Expert

Lemma 2.4.4 Suppose an expert, perceptive agent i faces an expert opponent j. Agent i’s best

response is to, for all K � 1, choose the cut-o↵

�BR
i (� j) = 1

2 (1� 1
K+� j),

when hi � � j, and to choose fold (�i = � j) when hi < � j.

Proof Suppose i is expert, perceptive and j is expert. This implies that ✏ j = 1. By Equations

(2.2) and (2.5), i should select �i such that i is indi↵erent between actions. If no indi↵erence
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point exists, i should select whichever action yields the highest expected payo↵. Therefore, if

hi � � j, then

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi � � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] + ✏ j(2hi�� j)K

�i(� j) = 1
2 (1� 1

K+� j),

while if hi < � j,

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi < � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

K = 1.

Since K � 1, this implies that if hi < � j, agent i will be at least weakly better o↵ by choosing to

fold when hi < � j, given that i is expert, perceptive and j is expert. Since, in this case, hi < � j,

by setting �i = � j, i will choose fold when hi < � j.

Inexpert & Imperceptive

Lemma 2.4.5 Suppose i is inexpert and imperceptive. Agent i’s best response correspondence,

for all K � 1, is

↵BR
i (� j,↵ j) =

8>>>>>>>>>>><
>>>>>>>>>>>:

{1} if �2
j � � j +

2
K < 0

{0} if �2
j � � j +

2
K > 0

[0,1] if �2
j � � j +

2
K = 0.

Proof Suppose i is inexpert and imperceptive. This implies that ✏ j = 1/2. By Equations (2.2)

and (2.3), i’s expectation from choosing all-in will be greater than or equal to i’s expectation

from choosing fold if and only if
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E[uA
i,IX(� j,↵ j)] � E[uF

i (� j,↵ j)]

✏ j� j + (1�✏ j)↵ j � ✏ j� j(1�� j)K � ✏ j� j + (1�✏ j)↵ j � 1

1 � 1
2� j(1�� j)K

�2
j � � j +

2
K � 0.

Therefore, for all K � 1, when i is inexpert and imperceptive, i should always choose all-in if

�2
j � � j +

2
K > 0 and always choose fold if �2

j � � j +
2
K < 0. Furthermore, if �2

j � � j +
2
K = 0,

then i will be indi↵erent between the two actions.

Expert & Imperceptive

Lemma 2.4.6 Suppose i is expert and imperceptive. Agent i’s best response is to, for all K � 1,

choose the cut-o↵

�BR
i (� j,↵ j) =

8>>>>>><
>>>>>>:

Max{ 12+ 1
2(2�↵ j)

(� j� 2
K ), 0}, if hi � � j

Min{Max{ 12+ 1
2(1�↵ j)

(1� 2
K ), 0}, 1}, if hi < � j.

Proof Suppose i is expert and imperceptive. This implies that ✏ j = 1/2. By Equations (2.2) and

(2.5), i should select �i such that i is indi↵erent between actions. If no indi↵erence point exists,

i should select whichever action yields the highest expected payo↵. Therefore, if hi � � j,

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi � � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K] + ✏ j(2hi�� j)K

�i(� j,↵ j) = 1
2 +

1
2(2�↵ j)

(� j� 2
K ),

while if hi < � j,



20 Chapter 2. Perceptiveness in a Game-TheoreticModel of Poker

E[uF
i (� j,↵ j)] = E[uA

i,EX(� j,↵ j)|hi < � j]

✏ j� j + (1�✏ j)↵ j � 1 = ✏ j� j � ✏ jK + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]

�i(� j,↵ j) = 1
2 +

1
2(1�↵ j)

(1� 2
K ).

Since �i 2 [0,1], the lowest (highest) value that i can select for �i is zero (one). Therefore,

�BR
i (� j,↵ j) =

8>>>>>><
>>>>>>:

Max{ 12+ 1
2(2�↵ j)

(� j� 2
K ), 0}, if hi � � j

Min{Max{12+ 1
2(1�↵ j)

(1� 2
K ), 0}, 1}, if hi < � j,

for all K � 1 when i is expert and imperceptive.15

In this situation, agent i’s expected payo↵ from choosing all-in may be greater than or less

than their expected payo↵ from choosing fold for some K � 1. This depends on j’s inexpert

strategy (↵ j) and j’s expert strategy (� j). If hi � � j, then �BR
i is bounded above by 1, but �BR

i < 0

when 1� 1
K <

1
2 (↵ j�� j). Hence, if hi � � j and 1� 1

K <
1
2 (↵ j�� j), an expert, imperceptive agent

i’s best response is to always choose all-in. Similarly, if hi < � j, then �BR
i > 1 when ↵ j >

2
K ,

and �BR
i < 0 when ↵ j > 2(1� 1

K ). This implies that if K is high enough to make ↵ j >
2
K , an

expert, imperceptive agent i’s best response is to always fold. Whereas, if K is low enough to

make ↵ j > 2(1� 1
K ), an expert, imperceptive agent i’s best response is to always go all-in. The

intuition behind this is that if the number of chips that i can lose is su�ciently high, then i is

better o↵ by taking a guaranteed loss of one chip, as opposed to risking all of their chips by

going all-in when hi < � j. Similarly, if the number of chips that i can lose is su�ciently low,

then i is better o↵ risking all of their chips when hi < � j, on the o↵ chance that j folds.

15The expression 1
2+

1
2(2�↵ j)

(� j� 2
K ) is bounded above by 1 and can be less than 0. Additionally, the expression

1
2+

1
2(1�↵ j)

(1� 2
K ) can be greater than 1 or less than 0.
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2.4.3 Equilibria

Using the best responses given by Lemmas 2.4.1-2.4.6, I derive the Bayesian Nash equilibria

for each of the six information structures listed in Expression (2.1). I restrict attention to

symmetric equilibria when two agents are symmetric.16 Solving for each equilibrium is tedious,

but straightforward. Each agent will have a best response, given by one of Lemmas 2.4.1-2.4.6.

When there are x agents, such that x 2 {2, 3, 4}, there will be x best response functions and x

variables to solve for. As a result, the Bayesian Nash equilibrium can be found by setting up

and solving the applicable system of equations.

Information Structure: (✏A, ✏B) = (0,0)

Theorem 2.4.7 Suppose (✏A, ✏B) = (0,0). This implies that both players are inexpert and per-

ceptive. Furthermore, for all K � 1, the unique equilibrium is

(↵⇤A,↵
⇤
B) = (0, 0).

Proof This proof follows directly from Lemma 2.4.1.

Information Structure: (✏A, ✏B) = (0,1)

Theorem 2.4.8 Suppose (✏A, ✏B) = (0,1). This implies that player A is inexpert and perceptive,

whereas player B is expert and perceptive. Furthermore, the unique equilibrium is

(↵⇤A, �
⇤
B) =

8>>>>>><
>>>>>>:

(0, 1
2 [1� 1

K ]), if K 2 [1, 2+
p

5]

(1� 1p
K(K�4) ,

1
2 [1�

q
1� 4

K ]), if K > 2+
p

5.

Proof This proof follows directly from Lemmas 2.4.2 and 2.4.3.
16For instance, in the game (✏A, ✏B) = (1/2,1/2), the two inexpert agents will be symmetric and the two expert

agents will be symmetric. Whereas, in the game (✏A, ✏B) = (0,1/2), the two inexpert agents will not be symmetric
since ✏A , ✏B.



22 Chapter 2. Perceptiveness in a Game-TheoreticModel of Poker

Information Structure: (✏A, ✏B) = (1,1)

Theorem 2.4.9 Suppose (✏A, ✏B) = (1,1). This implies that both players are expert and percep-

tive. Furthermore, for all K � 1, the unique equilibrium is

(�⇤A, �
⇤
B) = (1� 1

K , 1� 1
K ).

Proof This proof follows directly from Lemma 2.4.4.

Information Structure: (✏A, ✏B) = (0,1/2)

Theorem 2.4.10 Suppose (✏A, ✏B) = (0,1/2). This implies that player A is inexpert and imper-

ceptive, whereas player B is perceptive. Furthermore, the unique equilibrium is

(↵⇤A, �
⇤
B,↵

⇤
B) =

8>>>>>><
>>>>>>:

(0, 1
2 [1� 1

K ], 0), if K 2 [1, 4+
p

17]

(1� 1p
K(K�8) ,

1
2 [1�

q
1� 8

K ], 0), if K > 4+
p

17.

Proof This proof follows directly from Lemmas 2.4.1, 2.4.2, and 2.4.5.

Information Structure: (✏A, ✏B) = (1,1/2)

Theorem 2.4.11 Suppose (✏A, ✏B) = (1,1/2). This implies that player A is expert and impercep-

tive, whereas player B is perceptive. Furthermore, a Bayesian Nash equilibrium is

(�⇤A, �
⇤
B,↵

⇤
B) =

8>>>>>>>>>>><
>>>>>>>>>>>:

( 5
7 [1� 1

K ], 6
7 [1� 1

K ], 0), if K 2 [1, 1.7+0.7
p

11]

(1
2[1+

q
1� 4

K ], 1
4 [3� 2

K+
q

1� 4
K ], 1

4 [7� 3K�10p
K(K�4) ]), if K 2 (1.7+0.7

p
11, 25

6 ]

(1� 5
3K , 1� 4

3K , 1), if K > 25
6 .

Proof This proof follows directly from Lemmas 2.4.3, 2.4.4, and 2.4.6.

The equilibrium listed in Theorem 2.4.11 is not unique since
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(�⇤A, �
⇤
B,↵

⇤
B) = (1� 1

K , 1� 1
K , 0)

also exists as an equilibrium, for all K � 1. I restrict attention to the equilibrium listed in

Theorem 2.4.11 since it captures a change, from the (✏A, ✏B) = (1,1) information structure, in

the expert agents’ equilibrium strategy.

Information Structure: (✏A, ✏B) = (1/2,1/2)

Theorem 2.4.12 Suppose (✏A, ✏B) = (1/2,1/2). This implies that both players are imperceptive.

Furthermore, a symmetric Bayesian Nash equilibrium is

(�⇤A,↵
⇤
A, �

⇤
B,↵

⇤
B) =

8>>>>>>>>>>><
>>>>>>>>>>>:

(2
3 [1� 1

K ], 0, 2
3 [1� 1

K ], 0), if K 2 [1, 4+3
p

2]

(1
2[1+

q
1� 8

K ], 1
2 [3� K�4p

K(K�8) ],

1
2 [1+

q
1� 8

K ], 1
2 [3� K�4p

K(K�8) ]), if K > 4+3
p

2.

Proof This proof follows directly from Lemmas 2.4.5 and 2.4.6.

The equilibrium listed in Theorem 2.4.12 is not unique since

(�⇤A,↵
⇤
A, �

⇤
B,↵

⇤
B) = (1� 1

K , 0, 1� 1
K , 0)

also exists as an equilibrium, for all K � 1. I restrict attention to the equilibrium listed in

Theorem 2.4.12 since it captures a change, from the (✏A, ✏B) = (1,1) information structure, in

the expert agents’ equilibrium strategy. Figures 2.1-2.6 give visual depictions of each agent’s

equilibrium strategy for K 2 [1, 20], for each of the six information structures I consider.

2.4.4 Ex-Ante Expected Payo↵s

The ex-ante expected payo↵ for agent i can be determined by integrating i’s best response ex-

pected payo↵ for all possible draws of hi. Lemmas 2.4.13 and 2.4.14 formalize these functions.
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Figure 2.1: Equilibrium strategies when (✏A, ✏B) = (0,0).

Figure 2.2: Equilibrium strategies when (✏A, ✏B) = (0,1).
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Figure 2.3: Equilibrium strategies when (✏A, ✏B) = (1,1).

Figure 2.4: Equilibrium strategies when (✏A, ✏B) = (0,1/2).
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Figure 2.5: Equilibrium strategies when (✏A, ✏B) = (1,1/2).

Figure 2.6: Equilibrium strategies when (✏A, ✏B) = (1/2,1/2).
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Lemma 2.4.13 Suppose agent i is expert and �i  � j. Agent i’s ex-ante expected payo↵ is

EUi,EX(�i, � j,↵ j) = ✏ j� j + (1�✏ j)↵ j � �i + K(1��i)[�i�(1�✏ j)↵ j�i] � ✏ j� jK + ✏ jK�2
i .

Additionally, suppose agent i is expert and �i � � j. Agent i’s ex-ante expected payo↵ is

EUi,EX(�i, � j,↵ j) = ✏ j� j + (1�✏ j)↵ j � �i + K(1��i)[�i�(1�✏ j)↵ j�i] � ✏ j� jK + ✏ jK�i� j.

Proof Suppose agent i is expert and that �i  � j. Agent i’s ex-ante expected payo↵ is

EUi,EX(�i, � j,↵ j) =
Z �i

0
E[uF

i,EX(� j,↵ j)] dhi+

Z � j

�i

E[uA
i,EX(� j,↵ j)] dhi+

Z 1

� j

E[uA
i,EX(� j,↵ j)] dhi

=

Z �i

0
(✏ j� j + (1�✏ j)↵ j � 1) dhi

+

Z � j

�i

(✏ j[� j�K] + (1�✏ j)[↵ j + (1�↵ j)(2hi�1)K]) dhi

+

Z 1

� j

(✏ j[� j�K+(2hi�� j)K] + (1�✏ j)[↵ j+(1�↵ j)(2hi�1)K]) dhi

= ✏ j� j�i+(1�✏ j)↵ j�i��i + ✏ j(� j�K)(� j��i) + (1�✏ j)↵ j(� j��i)

� (1�✏ j)(1�↵ j)K(� j��i) + (1�✏ j)(1�↵ j)K[�2
j��2

i ]

+ ✏ j(� j�K)(1�� j) � ✏ j� jK(1�� j) + ✏ jK(1��2
j)

+ (1�✏ j)↵ j(1�� j) � (1�✏ j)(1�↵ j)K(1�� j) + (1�✏ j)(1�↵ j)K[1��2
j]

= ✏ j� j + (1�✏ j)↵ j � �i + K�i(1��i)[1�(1�✏ j)↵ j] � ✏ j� jK + ✏ jK�2
i .

Now suppose agent i is expert and that �i � � j. Agent i’s ex-ante expected payo↵ is

EUi,EX(�i, � j,↵ j) =
Z �i

0
E[uF

i,EX(� j,↵ j)] dhi +

Z 1

�i

E[uA
i,EX(� j,↵ j)] dhi

=

Z �i

0
(✏ j� j + (1�✏ j)↵ j � 1) dhi

+

Z 1

�i

(✏ j[� j�K+(2hi�� j)K] + (1�✏ j)[↵ j+(1�↵ j)(2hi�1)K]) dhi

= [✏ j� j + (1�✏ j)↵ j � 1]�i

+ ✏ j� j(1��i) � ✏ jK(1��i) � ✏ j� jK(1��i) + ✏ jK(1��2
i )

+ (1�✏ j)↵ j(1��i) � (1�✏ j)(1�↵ j)K(1��i) + (1�✏ j)(1�↵ j)K(1��2
i )

= ✏ j� j + (1�✏ j)↵ j � �i + K�i(1��i)[1�(1�✏ j)↵ j] � ✏ j� jK + ✏ jK�i� j.
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Lemma 2.4.14 Suppose agent i is inexpert. Agent i’s ex-ante expected payo↵ is

EUi,IX(↵i, � j,↵ j) = ✏ j� j + (1�✏ j)↵ j � ↵i � ✏ j(1�↵i)� j(1�� j)K.

Proof Suppose agent i is inexpert. Agent i’s ex-ante expected payo↵ is

EUi,IX(↵i, � j,↵ j) = ↵i

Z 1

0
E[uF

i,IX(� j,↵ j)] dhi + (1�↵i)
Z 1

0
E[uA

i,IX(� j,↵ j)] dhi

= ↵i

Z 1

0
(✏ j� j + (1�✏ j)↵ j � 1) dhi

+ (1�↵i)
Z 1

0
(✏ j� j + (1�✏ j)↵ j � ✏ j� j(1�� j)K) dhi

= ✏ j� j + (1�✏ j)↵ j � ↵i � ✏ j(1�↵i)� j(1�� j)K.

2.5 Value of Expertise & Perceptiveness

Substituting the equilibria listed in Theorems 2.4.7-2.4.12 and applying Lemmas 2.4.13 and

2.4.14, I compute player i’s value of expertise as

VoE!
i (�i,↵i, � j,↵ j) = EU!

i,EX(�i, � j,↵ j) � EU!
i,IX(↵i, � j,↵ j), (2.6)

where ! 2 {(P, IP), (P, IM), (P, EP), (P, EM), (M, P), (M,M)} represents the specific situation

in terms of the players’ expertise and perceptiveness. Each ordered pair in ! corresponds to a

viable situation for player i. For instance, (P, IP) corresponds to when i is perceptive and facing

an inexpert, perceptive opponent j. Similarly, (P, IM) corresponds to when i is perceptive and

facing an inexpert, imperceptive opponent j, (P, EP) corresponds to when i is perceptive and

facing an expert, perceptive opponent j, (P, EM) corresponds to when i is perceptive and facing

an expert, imperceptive opponent j, (M, P) corresponds to when i is imperceptive and facing

a perceptive opponent j, and (M,M) corresponds to when i is imperceptive and facing an

imperceptive opponent j. Figure 2.7 depicts i’s value of expertise in each of these situations
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for K 2 [1, 20].

Likewise, by substituting the equilibria listed in Theorems 2.4.7-2.4.12 and applying Lem-

mas 2.4.13 and 2.4.14, I compute player i’s value of perceptiveness as

VoP ⇢
i (si, � j,↵ j)

= 1
2 [EU ⇢

i,x(si, � j|✏ j = 1) + EU ⇢
i,x(si,↵ j|✏ j = 0)] � EU ⇢

i,x(si, � j,↵ j|✏ j = 1/2), (2.7)

where ⇢ 2 {(E, P), (I, P), (E,M), (I,M)} represents the specific situation in terms of the players’

expertise and perceptiveness, x 2 {EX, IX} represents i’s expertise, and si 2 {�i,↵i} represents

i’s equilibrium strategy.17 Each ordered pair in ⇢ corresponds to a viable situation for player

i. For instance, (E, P) corresponds to when i is expert and facing a perceptive opponent j.

Similarly, (I, P) corresponds to when i is inexpert and facing a perceptive opponent j, (E,M)

corresponds to when i is expert and facing an imperceptive opponent j, and (I,M) corresponds

to when i is inexpert and facing an imperceptive opponent j. Figure 2.8 depicts i’s value of

perceptiveness in each of these situations for K 2 [1, 20].

In Figure 2.7, each unique colour corresponds to a specific amount of information that i

has regarding j’s expertise. Also, the solid lines in Figure 2.7 represent the instance when i

is against a perceptive opponent j, whereas the dashed lines represent the instance when i is

against an imperceptive opponent j. Given these results, Figure 2.7 shows that the value of ex-

pertise is positive for all K 2 (1, 20]. This actually holds for all K > 20 as well. Furthermore,

as the players’ chip endowment increases, i’s value of expertise converges to 1 when both i

and j are perceptive and converges to 5/6 when i is imperceptive and j is perceptive. Contrar-

ily, as the players’ chip endowment increases, i’s value of expertise converges to 0 when j is

imperceptive.

The intuition for this is that, as the players’ chip endowment increases, each player i tends to

select fold with a weakly increasing frequency unless they are certain that j is inexpert. That is,

as K increases, i will select fold with a weakly increasing frequency unless i is perceptive and

17This notation assumes that si = �i if and only if x = EX.
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Figure 2.7: Player i’s value of expertise in various situations.

Figure 2.8: Player i’s value of perceptiveness in various situations.
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j is inexpert. In this case, as K increases, once the inexpert j switches from always choosing

all-in to choosing fold with some positive probability, the expert i will lower their cut-o↵ and

e↵ectively select all-in more frequently (as shown in Figures 2.2 and 2.4). As the frequency

of an imperceptive opponent j choosing fold converges to 1, the expertise of player i matters

progressively less since hi becomes increasingly more irrelevant. Contrarily, when player i

is facing a perceptive opponent j, j will choose all-in with increasing probability beyond a

certain chip endowment threshold (as shown in Figures 2.2 and 2.4) when i is inexpert, but

will continue choosing fold with increasing probability as K increases when i is expert. The

influence that i’s expertise has over j’s equilibrium strategy is what drives i’s value of expertise

when j is perceptive.

In Figure 2.8, the blue lines correspond to an expert i, while the yellow lines correspond

to an inexpert i. Furthermore, the solid lines correspond to an instance when j is perceptive,

while the dashed lines correspond to an instance when j is imperceptive. By Equation (2.7), an

expert i’s value of perceptiveness when j is perceptive is

VoP(E,P)
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Furthermore, an expert i’s value of perceptiveness when j is imperceptive is
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Additionally, an inexpert i’s value of perceptiveness when j is perceptive is
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Lastly, an inexpert i’s value of perceptiveness when j is imperceptive is
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The main takeaway from Figure 2.7 is that the value of perceptiveness is generally positive

in all four situations. As the players’ chip endowment increases, i’s value of perceptiveness

converges to 2/3 when i is expert and j is perceptive. Otherwise, as the players’ chip endow-

ment increases, i’s value of perceptiveness converges to 1/2. Furthermore, for all K � 1 when i

is expert, i’s value of perceptiveness is higher when j is perceptive than it is when j is imper-

ceptive. Contrarily, for all K � 1 when i is inexpert, i’s value of perceptiveness is higher when

j is imperceptive than it is when j is perceptive.

The intuition for why perceptiveness generally provides positive value in all four situations

is similar to why expertise provides positive value for i when j is perceptive. Perceptiveness

allows a player i to identify, with certainty, a situation where j is inexpert. When i is perceptive

and j is inexpert, as the players’ chip endowment increases, i’s equilibrium strategy allows i

to select all-in with an increasing probability. Whereas, when i is imperceptive or when j is

expert, as the players’ chip endowment increases, i’s equilibrium strategy causes i to select fold
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with an increasing probability. To summarize this point, as K increases beyond a certain level,

when i is imperceptive, i will always fold more often; whereas, when i is perceptive, i will

fold more often when j is expert, but go all-in more often when j is inexpert. When i is in an

equilibrium that has i going all-in with a relatively high frequency compared to j, i is able to

realize value from winning the forced bets uncontested a higher proportion of the time. This is

similar to the benefit that an aggressive poker player experiences when facing a passive poker

player that tends to fold too often.

2.6 Conclusion

In this chapter, I develop and study a model that features six distinct information structures and

emulates a two-player, one-round game of poker. Player i is expert if they know the value of

their hand, hi, prior to deciding whether to go all-in or fold. Player i is perceptive if they know

whether their opponent j is expert. The six information structures I consider vary in terms of

the players’ expertise and perceptiveness.

The main result that I find in this chapter is that when the players’ chip endowment is su�-

ciently high, perceptiveness always provides value. The intuition for this is that perceptiveness

allows a player to identify an inexpert opponent. This allows the player to e↵ectively utilize

an aggressive strategy to take advantage of their opponent’s inexpertise. Whereas, had the

player been imperceptive, the player would utilize a more passive equilibrium strategy, taking

into consideration that their opponent may actually be expert. The e↵ectively aggressive (all-

in with a high probability) strategy against an inexpert opponent allows the player to capture

the forced bets, uncontested, a high percentage of the time. Whereas, the passive (fold with

a high probability) strategy mitigates the player’s risk, but also causes the player to forgo the

opportunity of capturing any forced bets.



Chapter 3

Perceptiveness in a Market-Entry Game

3.1 Introduction

This chapter of my thesis studies the value and e↵ect that perceptiveness has in a market-entry

setting. A player is expert if they know their market-entry fee prior to making their market-

entry decision. Whereas, a player is perceptive if they know whether their opponent is expert.

Under an equilibrium refinement that treats the players as symmetrically as possible, I find that

the value of perceptiveness is always non-negative. Furthermore, the value of perceptiveness is

always zero for an inexpert agent whose opponent is perceptive. Also, when both players have

a su�ciently high probability of being expert, the value of perceptiveness is positive; whereas,

if either player is inexpert with a su�ciently high probability, the value of perceptiveness is

zero. Moreover, even when the value of perceptiveness is zero, perceptiveness can still a↵ect

the players’ equilibrium actions.

I also find that a player’s value of perceptiveness is minimized when their competitor enters

with a specific probability regardless of their expertise. As the di↵erence in the competitor’s

market-entry probability increases, with respect to their level of expertise, the player’s value of

perceptiveness increases. This is because perceptiveness allows the player to more accurately

gauge their competitor’s propensity to enter the market, which is what ultimately influences the

34
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player’s payo↵. When the competitor enters the market with a specific probability regardless of

their expertise, the value of knowing the competitor’s expertise is minimized since the player

can already infer the competitor’s probability of entering the market.

Studying perceptiveness in a market-entry setting is beneficial since doing so provides the-

oretical results that show whether perceptiveness has tangible value. My goal for this chapter is

to provide general insight towards determining when perceptiveness is beneficial in a market-

entry setting and how perceptiveness a↵ects the market-entry strategies of potential entrants.

Perceptiveness is directly linked to the information players have in games, so this chapter

is closely related to the value of information literature. This literature is vast, but still grow-

ing, with many influential papers1 along with new developments.2 Despite this, the notion of

studying a player’s information about their opponents’ information is quite novel. However, it

is becoming more prominent in recent years with the development of papers such as Mekonnen

and Leal Vizcaíno (2018), Denti (2019), and Tirole (2016).

Mekonnen and Leal Vizcaíno (2018) studies how information quality about an uncertain

state a↵ects the induced distribution of an agent’s optimal action. They primarily focus on a

single agent setting where the agent’s action and the payo↵-relevant state are complements, but

extend their results to supermodular games with incomplete information in order to understand

how information quality a↵ects the equilibrium in games with strategic complementarities.

They find that as one player’s information quality increases, the other player is indirectly more

informed about the former player’s signal. Mekonnen and Leal Vizcaíno (2018) also investi-

gates a two-player Bayesian game with one-sided information acquisition of a payo↵-relevant

state. They find that a player’s value of acquiring information is always positive when their

opponent does not know that they acquired such. However, they also find that a player’s value

of information acquisition may be negative if their opponent knows such information was ac-

quired. My research departs from Mekonnen and Leal Vizcaíno (2018) since I investigate a

market-entry game with strategic substitutes. I also allow for informational symmetry and fo-

1Such as Hirshleifer (1971), Milgrom and Stokey (1982), Milgrom and Weber (1982), and Vives (1984).
2For instance Myatt and Wallace (2015), Pęski (2008), and Ui and Yoshizawa (2015).
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cus my e↵orts toward determining when perceptiveness provides value and the e↵ect that such

information has on the players’ equilibrium strategies.

Denti (2019) examines a model of endogenous information acquisition in coordination

games where players can choose how much information to acquire, where such information

pertains to what the other players know about the value of a common payo↵-relevant state.

Tirole (2016) considers a framework where players can choose their information structure, and

subsequently play a game that contains linear-quadratic payo↵s and binary information struc-

tures using the information structure chosen by the agent. The key distinction between my

research and that of Denti (2019) and Tirole (2016) is that I study the value of information

regarding another player’s information in a market-entry game. I also focus my attention on

how such information influences the outcome of a market-entry game, whereas both of these

papers study how much information should be acquired in their respective settings.

This chapter also relates to market-entry literature. To the best of my knowledge, my re-

search is the first to investigate the value and e↵ect that a player’s information regarding another

player’s information about a payo↵-relevant state has in a market-entry setting. Market-entry

literature includes papers that have used experiments to study how to determine which of the

multiple equilibria that exist in market-entry games agents are likely to coordinate upon,3 as

well as papers that have conducted market-entry empirical studies.4 I contribute to this lit-

erature by providing theoretical results which indicate that a player’s information regarding

another player’s information of a payo↵-relevant state should be considered when modeling a

market-entry game.

The rest of this chapter is comprised as follows. Section 3.2 describes the model and the in-

formation structures I consider. Section 3.3 develops the strategies, best responses, equilibria,

and expected payo↵s used to compute the value and e↵ect of perceptiveness. Section 3.4 de-

rives the value of perceptiveness and discusses key insights. Section 3.5 concludes. Appendix

B provides all supplemental appendices for this chapter.

3Including Camerer and Lovallo (1999), Du↵y and Hopkins (2005), and Erev and Rapoport (1998).
4Including Berry and Tamer (2006), and Bresnahan and Reiss (1990, 1991).
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3.2 Model

Players, Actions, States

I study a Bayesian game that features two players, A and B, that each produce the same product.

Both players must consider whether to “enter” (ai = E) or “not enter” (ai = N) the market in

which this product is sold. Player i’s payo↵ function is5

ui(ai, aj, �i) =

8>>>>>>>>>>><
>>>>>>>>>>>:

0 if ai = N

1 � �i if (ai, aj) = (E,N)

⇡D � �i if (ai, aj) = (E, E).

I let �i ⇠ i.i.d. U[0,1] and ⇡D 2 [0,1/2], where �i represents the market entry fee, and ⇡D

represents a duopolist’s post-entry profit. In this chapter, I normalize a monopolist’s post-entry

profit to equal 1.

Microfoundations

I consider a linear inverse demand curve and a situation such that each player can produce

with a marginal cost of zero. Furthermore, I assume that the players’ products are identically-

perceived by consumers. Bertrand competition arises when ⇡D = 0, since under Bertrand com-

petition both players would continually undercut the other player’s price. Cournot competition

arises when ⇡D = 4/9.6

Types

In this chapter, I consider a continuum of information structures. Similar to the last chapter,

I construct the Bayesian Nash equilibria and expected payo↵s for each information structure,

then use the results to determine the value and e↵ect of perceptiveness. The parameter space

5 j will always denote i’s opponent.
6A derivation showing that Cournot competition arises when ⇡D = 4/9 is shown in Appendix B.1.
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for the information structures I consider is (✏A, ✏B) 2 [0,1]2, where ✏i represents the probabil-

ity of player i knowing the value of �i. Each (✏A, ✏B) ordered pair corresponds to a specific

information structure. Furthermore, (✏A, ✏B) is common knowledge to both players.

Definition 3.2.1 Player i is perceptive if player i knows with certainty whether player j knows

the value of � j.

By Defintion 3.2.1, player i is perceptive if and only if ✏ j 2 {0,1}. Otherwise, player i is

imperceptive. Since (✏A, ✏B) is common knowledge, each player’s perceptiveness is common

knowledge as well.

Definition 3.2.2 Player i is expert if player i knows �i prior to making their market-entry

decision.

Definition 3.2.2 classifies player i as expert, in this chapter, if and only if i knows the value

of �i prior to deciding whether to enter the market. If player i does not know �i prior to making

such decision, I classify i as being inexpert.

The type space, ti, for each player i depends on their opponent’s perceptiveness. If ✏i = 1,

player j is perceptive, and i’s type space is [0,1] since i is expert. If ✏i = 0, player j is perceptive,

and i’s type space is {Ii} since i is inexpert. If ✏i 2 (0,1), player j is imperceptive, and i’s type

space is [0,1] [ {Ii} since i may be expert or inexpert.

Timeline

The timeline for the game in this chapter is as follows. First, each player i observes (✏A, ✏B)

and learns whether they are expert or inexpert. Second, each player i receives their draw of

�i, which player i observes if i is expert. Third, both players simultaneously decide whether to

enter the market. Fourth, payo↵s are realized.
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3.3 Strategies, Best Responses & Equilibria

Player Strategies

Similar to the last chapter, an expert agent i knows the value of �i. This should a↵ect an expert

i’s strategy since i’s expected payo↵ depends on �i. Since i’s expected payo↵ is decreasing

in �i, I restrict attention to cut-o↵ strategies for an expert agent i. I let �i, where �i 2 [0,1],

represent an expert agent i’s cut-o↵, such that i chooses to enter for all �i  �i and chooses to

not enter for all �i > �i.7

An inexpert agent i does not know the value of �i prior to making their market-entry deci-

sion. Thus, an inexpert i’s expected payo↵ does not depend on �i. I henceforth define ⌘i, such

that ⌘i 2 [0,1], as the probability that an inexpert agent i chooses “enter”. Thus, an inexpert

agent i chooses “not enter” with probability 1�⌘i.

Best Responses

I obtain the best response for an expert agent i by finding the value of �i that makes i indi↵erent

between entering and not entering the market. The payo↵ i receives from not entering is zero

regardless of �i. Contrarily, the payo↵ i receives from entering is a probability distribution over

j’s potential expertise and corresponding strategies, multiplied by the payo↵ i would receive

given j’s action. More specifically, an expert i’s payo↵ from entering the market is

uE
i,EX(� j, ⌘ j) = ✏ j[� j(⇡D��i) + (1�� j)(1��i)] + (1�✏ j)[⌘ j(⇡D��i) + (1�⌘ j)(1��i)]

= 1 � �i � (1�⇡D)(✏ j� j + (1�✏ j)⌘ j). (3.1)

An expert i is indi↵erent between entering and not entering the market when �i = �i. Hence,

I obtain an expert i’s best response function by equating i’s payo↵ from entering the market to

i’s payo↵ from not entering the market, while setting �i = �i. As a result, an expert i’s best

response function is

7I restrict attention to equilibria where an expert i chooses enter if they are indi↵erent between the two actions.
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�BR
i (� j, ⌘ j) = 1 � (1�⇡D)(✏ j� j + (1�✏ j)⌘ j). (3.2)

I obtain the best response function for an inexpert agent i by determining when each of i’s

actions result in a higher expected payo↵ than i’s other action. An inexpert i’s expected payo↵

from not entering the market is zero. Whereas, an inexpert i’s expected payo↵ from entering

the market is

E[uE
i,IX(� j, ⌘ j)] = ✏ j[� j(⇡D�E[�i]) + (1�� j)(1�E[�i])]

+ (1�✏ j)[⌘ j(⇡D�E[�i]) + (1�⌘ j)(1�E[�i])]

= 1 � E[�i] � (1�⇡D)(✏ j� j + (1�✏ j)⌘ j). (3.3)

I obtain an inexpert i’s best response correspondence by comparing i’s expected payo↵ for each

action and simplifying.8 Therefore, an inexpert i’s best response correspondence is

⌘BR
i (� j, ⌘ j) =

8>>>>>>>>>>><
>>>>>>>>>>>:

{1} if ✏ j� j + (1�✏ j)⌘ j <
1

2(1�⇡D)

{0} if ✏ j� j + (1�✏ j)⌘ j >
1

2(1�⇡D)

[0,1] if ✏ j� j + (1�✏ j)⌘ j =
1

2(1�⇡D) .

(3.4)

The expression ✏ j� j + (1�✏ j)⌘ j represents j’s aggregate probability of entering the market.

Consequently, i will be less (more) inclined to enter the market as j’s aggregate probability of

entering increases (decreases). As j enters the market with a higher probability, the incentive

for i entering lessens since the probability of realizing the duopoly profit, as opposed to the

monopoly profit, increases. Furthermore, the best responses illustrate that as a duopolist’s

post-entry profit increases, both players should be equally or more inclined to enter the market,

given their opponent’s aggregate probability of entering remains constant.

8Since �i ⇠ i.i.d. U[0,1], E[�i] = 1/2.
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Equilibria

I use the Bayesian Nash solution concept to solve my model. By applying the best responses

depicted by Expressions (3.2) and (3.4), I develop Propositions 3.3.1-3.3.6.

Proposition 3.3.1 Suppose (✏A, ✏B) = (0,0). (⌘⇤A, ⌘
⇤
B) is an equilibrium if and only if for all

i 2 {A,B}
⌘⇤i = 1 if ⌘⇤j <

1
2(1�⇡D) , (3.5a)

and ⌘⇤i = 0 if ⌘⇤j >
1

2(1�⇡D) , (3.5b)

where j 2 {A,B} is such that i , j.

Proposition 3.3.2 Suppose (✏A, ✏B) 2 {(0,1), (1,0)}. (⌘⇤i , �
⇤
j) is an equilibrium if and only if for

all i 2 {A,B}

�⇤j = 1 � (1�⇡D)⌘⇤i , (3.6)

⌘⇤i = 1 if �⇤j <
1

2(1�⇡D) , (3.7a)

and ⌘⇤i = 0 if �⇤j >
1

2(1�⇡D) , (3.7b)

where j 2 {A,B} is such that i , j.

Proposition 3.3.3 Suppose (✏A, ✏B) = (1,1). (�⇤A, �
⇤
B) is an equilibrium if and only if for all

i 2 {A,B}

�⇤i = 1 � (1�⇡D)�⇤j, (3.8)

where j 2 {A,B} is such that i , j.
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Proposition 3.3.4 Suppose ✏i = 0 and ✏ j 2 (0,1), for all i 2 {A,B} where j 2 {A,B} is such that

i , j. (⌘⇤i , �
⇤
j, ⌘
⇤
j) is an equilibrium if and only if for all i 2 {A,B}

⌘⇤i = 1 if ✏ j�
⇤
j + (1�✏ j)⌘⇤j <

1
2(1�⇡D) , (3.9a)

⌘⇤i = 0 if ✏ j�
⇤
j + (1�✏ j)⌘⇤j >

1
2(1�⇡D) , (3.9b)

�⇤j = 1 � (1�⇡D)⌘⇤i , (3.10)

⌘⇤j = 1 if ⌘⇤i <
1

2(1�⇡D) , (3.11a)

and ⌘⇤j = 0 if ⌘⇤i >
1

2(1�⇡D) , (3.11b)

where j 2 {A,B} is such that i , j.

Proposition 3.3.5 Suppose ✏i = 1 and ✏ j 2 (0,1), for all i 2 {A,B} where j 2 {A,B} is such that

i , j. (�⇤i , �
⇤
j, ⌘
⇤
j) is an equilibrium if and only if for all i 2 {A,B}

�⇤i = 1 � (1�⇡D)(✏ j�
⇤
j + (1�✏ j)⌘⇤j), (3.12)

�⇤j = 1 � (1�⇡D)�⇤i , (3.13)

⌘⇤j = 1 if �⇤i <
1

2(1�⇡D) , (3.14a)

and ⌘⇤j = 0 if �⇤i >
1

2(1�⇡D) , (3.14b)

where j 2 {A,B} is such that i , j.

Proposition 3.3.6 Suppose (✏A, ✏B) 2 (0,1)2. (�⇤A, ⌘
⇤
A, �

⇤
B, ⌘

⇤
B) is an equilibrium if and only if for

all i 2 {A,B}

�⇤i = 1 � (1�⇡D)(✏ j�
⇤
j + (1�✏ j)⌘⇤j), (3.15)

⌘⇤i = 1 if ✏ j�
⇤
j + (1�✏ j)⌘⇤j <

1
2(1�⇡D) , (3.16a)

and ⌘⇤i = 0 if ✏ j�
⇤
j + (1�✏ j)⌘⇤j >

1
2(1�⇡D) , (3.16b)

where j 2 {A,B} is such that i , j.
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The proof of Propositions 3.3.1-3.3.6 follows from the definition of a Bayesian Nash equi-

librium and the best response derivations I completed earlier in Section 3.3. I find all Bayesian

Nash equilibria by using Propositions 3.3.1-3.3.6 and solving the resulting system of equations.

Theorem 3.3.7 Suppose (✏A, ✏B) = (0,0). (⌘⇤A, ⌘
⇤
B) 2 {( 1

2(1�⇡D) ,
1

2(1�⇡D) ), (0,1), (1,0)} is an equilib-

rium. Furthermore, if ⇡D = 1/2, then (⌘⇤i , ⌘
⇤
j) = (1, ⌘̄ j) such that ⌘̄ j 2 [0,1) is an equilibrium as

well, for all i 2 {A,B} where j 2 {A,B} is such that i , j.

Proof Theorem 3.3.7 follows directly from Proposition 3.3.1.

Theorem 3.3.8 Suppose (✏A, ✏B) 2 {(0,1), (1,0)}. (⌘⇤i , �
⇤
j) 2 {( 1�2⇡D

2(1�⇡D)2 ,
1

2(1�⇡D) ), (0,1), (1, ⇡D)} is

an equilibrium for all i 2 {A,B} where j 2 {A,B} is such that i , j.

Proof Theorem 3.3.8 follows directly from Proposition 3.3.2.

Theorem 3.3.9 Suppose (✏A, ✏B) = (1,1). (�⇤A, �
⇤
B) = ( 1

2�⇡D
, 1

2�⇡D
) is an equilibrium.

Proof Theorem 3.3.9 follows directly from Proposition 3.3.3.

Theorem 3.3.10 Suppose ✏i = 0 and ✏ j 2 (0,1), for all i 2 {A,B} where j 2 {A,B} is such that

i , j. (⌘⇤i , �
⇤
j, ⌘
⇤
j) 2 {(0,1,1), (1, ⇡D, 0)} is an equilibrium. Furthermore, if ✏B > 1� ⇡D

1�⇡D
, then

(⌘⇤i , �
⇤
j, ⌘
⇤
j) = ( 1�2⇡D

2✏B(1�⇡D)2 , 1� 1�2⇡D
2✏B(1�⇡D) , 1) is an equilibrium. Additionally, if ✏B  1� ⇡D

1�⇡D
, then

(⌘⇤i , �
⇤
j, ⌘
⇤
j) = ( 1

2(1�⇡D) ,
1/2, 1

2+
⇡D

2(1�✏B)(1�⇡D) ) is an equilibrium. Lastly, if ⇡D = 1/2, then (⌘⇤i , �
⇤
j, ⌘
⇤
j) =

(1, ⇡D, ⌘̄ j) such that ⌘̄ j 2 [0,1] is an equilibrium as well.

Proof Theorem 3.3.10 follows directly from Proposition 3.3.4.

Theorem 3.3.11 Suppose ✏i = 1 and ✏ j 2 (0,1), for all i 2 {A,B} where j 2 {A,B} is such

that i , j. (�⇤i , �
⇤
j, ⌘
⇤
j) = ( ⇡D

1�✏ j(1�⇡D)2 , 1� ⇡D(1�⇡D)
1�✏ j(1�⇡D)2 , 1) is an equilibrium. Additionally, if ✏ j 

1 � ( ⇡D
1�⇡D

)2, then (�⇤i , �
⇤
j, ⌘
⇤
j) 2 {(

1�(1�⇡D)✏ j

1�✏ j(1�⇡D)2 ,
⇡D

1�✏ j(1�⇡D)2 , 0), ( 1
2(1�⇡D) ,

1
2 ,

1
2�

⇡2
D

2(1�✏ j)(1�⇡D)2 )} is an equi-

librium as well.

Proof Theorem 3.3.11 follows directly from Proposition 3.3.5.
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Theorem 3.3.12 Suppose (✏A, ✏B) 2 (0,1)2.

(�⇤A, ⌘
⇤
A, �

⇤
B, ⌘

⇤
B) = (1� (1�⇡D)(1�✏B(1�⇡D))

1�✏A✏B(1�⇡D)2 , 1, 1� (1�⇡D)(1�✏A(1�⇡D))
1�✏A✏B(1�⇡D)2 , 1)

is an equilibrium if and only if 1�( ⇡D
1�⇡D

)2  (2�✏i)✏ j, for all i 2 {A,B} where j 2 {A,B} is such

that i , j. Furthermore,

(�⇤A, ⌘
⇤
A, �

⇤
B, ⌘

⇤
B) 2 {(1� ✏B⇡D(1�⇡D)

1�✏A✏B(1�⇡D)2 , 1, ⇡D
1�✏A✏B(1�⇡D)2 , 0), ( ⇡D

1�✏A✏B(1�⇡D)2 , 0, 1� ✏A⇡D(1�⇡D)
1�✏A✏B(1�⇡D)2 , 1)}

is an equilibrium if and only if ✏A✏B  1 � ( ⇡D
1�⇡D

)2. Additionally,

(�⇤i , ⌘
⇤
i , �
⇤
j, ⌘
⇤
j) = (1� 1�2⇡D

2✏i(1�⇡D) , 1, 1/2,
1�2⇡D�✏i✏ j(1�⇡D)2

2✏i(1�✏ j)(1�⇡D)2 )

is an equilibrium, for all i 2 {A,B} where j 2 {A,B} is such that i , j, if and only if

✏i✏ j  1�( ⇡D
1�⇡D

)2,

✏i � 1� ⇡D
1�⇡D

and ✏i(2�✏ j) � 1�( ⇡D
1�⇡D

)2.

Lastly,

(�⇤A, ⌘
⇤
A, �

⇤
B, ⌘

⇤
B) = (1/2, 1

2+
⇡D

2(1�⇡D)(1�✏A) ,
1/2, 1

2+
⇡D

2(1�⇡D)(1�✏B) )

is an equilibrium if and only if ✏A  1� ⇡D
1�⇡D

and ✏B  1� ⇡D
1�⇡D

.

Proof Theorem 3.3.12 follows directly from Proposition 3.3.6.

Figures 3.1-3.5 depict the equilibrium existence regions when ⇡D = 4/9 and (✏A, ✏B) 2 (0,1)2.

Corollary 3.3.13 formalizes equilibrium existence for all (✏A, ✏B) 2 [0,1]2.

Corollary 3.3.13 There exists an equilibrium for all (✏A, ✏B) 2 [0,1]2.

Proof Corollary 3.3.13 follows directly from Theorems 3.3.7-3.3.12.
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Figure 3.1: Equilibrium existence when both inexpert agents always enter.

Figure 3.2: Equilibrium existence when one inexpert agent always enters, whereas the other
inexpert agent never enters.



46 Chapter 3. Perceptiveness in aMarket-Entry Game

Figure 3.3: Equilibrium existence when inexpert agent A always enters, whereas inexpert agent
B mixes between entering and not entering.

Figure 3.4: Equilibrium existence when inexpert agent B always enters, whereas inexpert agent
A mixes between entering and not entering.
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Figure 3.5: Equilibrium existence when both inexpert agents mix between entering and not
entering.

Equilibrium Refinement

As illustrated by Figures 3.1-3.5 and Theorems 3.3.7-3.3.12, multiple equilibria exist for many

(✏A, ✏B) information structures. Because of this, I refine the equilibria when multiple exist.

The equilibrium selection rule I follow can be thought of as the “middle equilibrium”. For

all (✏A, ✏B) 2 [0,1]2, the equilibria that exist can be ranked in terms of each player’s aggregate

entry probability. As shown by expressions (3.2) and (3.4), i’s best response is decreasing in j’s

aggregate entry probability. Hence, i’s rank of equilibria in terms of aggregate entry probability

will be the reverse of j’s rank.

The “middle equilibrium” selection rule selects a symmetric equilibrium when ✏A = ✏B,

whereas it treats the players as symmetrically as possible, in terms of aggregate entry probabil-

ity, when ✏A , ✏B. For this rule to work nicely, there must be an odd number of equilibria that

exist for any (✏A, ✏B) coordinate. This property holds generically for my model.

Based on the middle equilibrium selection rule and the aggregate entry probability rank-
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ings, the refined equilibrium can be segmented into four regions on the ✏A-✏B plane. The four

regions are as follows. First, if ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2, then an equi-

librium where any inexpert agent always enters arises. Second, if ✏A  1� ⇡D
1�⇡D

and ✏B  1� ⇡D
1�⇡D

,

then an equilibrium where any inexpert agent mixes between entering and not entering the

market arises. Third, if ✏A � 1� ⇡D
1�⇡D

and ✏B(2�✏A) < 1�( ⇡D
1�⇡D

)2, then an equilibrium where any

inexpert agent for A always enters, whereas any inexpert agent for B mixes between entering

and not entering the market arises. Fourth, if ✏B � 1� ⇡D
1�⇡D

and ✏A(2�✏B) < 1�( ⇡D
1�⇡D

)2, then an

equilibrium where any inexpert agent for B always enters, whereas any inexpert agent for A

mixes between entering and not entering the market arises. Figure 3.6 gives an image of the

refined equilibrium regions and how they adjust for di↵erent values of ⇡D.

Ex-Ante Expected Payo↵s

In order to determine a player’s value of perceptiveness, I must derive a player’s ex-ante ex-

pected payo↵ given such player’s expertise. I focus attention towards expectations given exper-

tise since a player’s market-entry decision is made after the player has observed their expertise.

I obtain i’s ex-ante expected payo↵ functions by integrating over all of i’s possible draws of

�i with respect to i’s optimal action for each specific draw. An expert agent i’s ex-ante expected

payo↵ is

EUEX
i (� j, ⌘ j) =

Z �i

0
uE

i,EX(� j, ⌘ j)d�i +

Z 1

�i

uN
i,EX(� j, ⌘ j)d�i

=

Z �i

0
[1��i�(1�⇡D)(✏ j� j+(1�✏ j)⌘ j)]d�i +

Z 1

�i

[0]d�i

= �i(1�(1�⇡D)(✏ j� j+(1�✏ j)⌘ j)�1
2�i)

= �i(�BR
i (� j, ⌘ j)�1

2�i). (3.17)

If an expert agent i plays a best response strategy, then Equation (3.17) can be rewritten as

EUEX
i (� j, ⌘ j) = 1

2 (�BR
i (� j, ⌘ j))2. (3.18)
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(a) Refined equilibrium when ⇡D = 0. (b) Refined equilibrium when ⇡D = 2/9.

(c) Refined equilibrium when ⇡D = 4/9 . (d) Refined equilibrium when ⇡D = 1/2.

Figure 3.6: Refined equilibrium regions for various levels of ⇡D.
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Moreover, an inexpert agent i’s ex-ante expected payo↵ is

EUIX
i (� j, ⌘ j) = ⌘i

Z 1

0
E[uE

i,IX(� j, ⌘ j)]d�i + (1�⌘i)
Z 1

0
uN

i,IX(� j, ⌘ j)d�i

= ⌘i

Z 1

0
[1�E[�i]�(1�⇡D)(✏ j� j+(1�✏ j)⌘ j)]d�i + (1�⌘i)

Z 1

0
[0]d�i

= ⌘i( 1
2�(1�⇡D)(✏ j� j+(1�✏ j)⌘ j)). (3.19)

Equation (3.18) shows that an expert agent’s ex-ante expected payo↵ strictly increases in

their best response cuto↵. This implies that any equilibrium where an expert agent i enters the

market with a higher cuto↵ than in some other equilibrium, will have a higher ex-ante expected

payo↵ for i than the other equilibrium had.

Equations (3.2), (3.18), and (3.19) together show that regardless of i’s expertise, i’s ex-ante

expected payo↵ is weakly decreasing in j’s aggregate entry probability. This implies that any

player, regardless of their expertise, that is using a best response, is weakly better o↵ by their

competitor entering the market less frequently. An interesting insight that arises from this is

that if a player could perform an action that somehow deters (or at least makes deterrence more

likely) their opponent from entering the market, the player would strictly benefit from doing so

if they enter the market with positive probability. Therefore, there is tangible value in deterring

a competitor’s entry into the market.

3.4 Value of Perceptiveness

Identifying the value of perceptiveness using the ex-ante expected payo↵s when i is perceptive

(✏ j 2 {0,1}) and when i is most imperceptive (✏ j = 1/2) is problematic in this chapter since

multiple equilibria exist and the existence regions vary across the ✏i-✏ j plane. Moreover, these

existence regions change as the duopoly profit changes. Also, there is no combination of

equilibria that connects the existence regions across the ✏i-✏ j plane uniformly.9 Therefore, in

9To clarify, by saying that “there is no combination of equilibria that connects. . . uniformly”, I mean that across
the entire ✏i-✏ j plane, there is at least one equilibrium region boundary that will not be continuous, in terms of the
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order to obtain an accurate gauge of the value of perceptiveness, I must restrict my focus to

analyzing its value within specific equilibrium regions.

I determine i’s value of perceptiveness by taking the di↵erence between i’s expected payo↵

with information pertaining to j’s expertise and i’s expected payo↵ without such information.

Hence, the value of perceptiveness for a player i with expertise x, such that x 2 {EX, IX}, is

given by

VoPx
i (✏i, ✏ j, µ) = 1

2 [EUx
i (✏i, ✏ j+µ) + EUx

i (✏i, ✏ j�µ)] � EUx
i (✏i, ✏ j), (3.20)

where µ is some arbitrary positive number such that [✏ j�µ, ✏ j+µ] ⇢ [LBregion,UBregion].10

Plotting ✏ j on the x-axis and EUx
i (✏i, ✏ j) on the y-axis, VoPx

i (✏i, ✏ j, µ) can be interpreted as

the vertical distance between the weighted average of i’s ex-ante expected payo↵ using ✏̄ j = ✏ j+

µ and ✏ j = ✏ j � µ, and i’s ex-ante expected payo↵ using ✏ j. The weighted average of i’s ex-ante

expected payo↵, using ✏ j and ✏̄ j, provides a notion to compare mean-preserving spreads of the

same player. Computing the vertical distance identifies how much i values being at a weighted-

average of two di↵erent ✏ j points, at least one of which results in i being more perceptive,11 as

opposed to a middling ✏ j point. Switching from ✏ j with certainty to a weighted-average of ✏ j

and ✏̄ j could hypothetically occur if i were granted some additional information regarding j’s

expertise. Conditional on the weighted-average of ✏ j and ✏̄ j being a mean-preserving spread

of ✏ j, the vertical distance between the resulting ex-ante expected payo↵s captures i’s value of

perceptiveness. In Appendix B.2, I include an example that illustrates the intuition behind how

I measure the value of perceptiveness, as well as why this method is credible.

By taking the second derivative of i’s ex-ante expected payo↵s with respect to ✏ j, I am able

to determine whether the value of perceptiveness is positive, zero, or negative. If the second

derivative of i’s ex-ante expected payo↵ with respect to ✏ j is strictly greater (less) than zero, i’s

players’ equilibrium strategies, as either ✏i or ✏ j changes.
10LBregion and UBregion represent the lower and upper ✏ j bounds for the specific equilibrium existence region

being considered.
11As shown by Reza (1994), uncertainty is maximized when all potential outcomes occur with equal probability.

Hence, the most imperceptive player i can be occurs when ✏ j = 1/2. Consequently, i becomes more perceptive as
|✏ j � 1

2 | becomes larger. From here it is easy to show that for all valid ✏ j and µ combinations, at least one of ✏ j and
✏̄ j results in i being more perceptive than i is with ✏ j.
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value of perceptiveness is positive (negative). If the second derivative of i’s ex-ante expected

payo↵ with respect to ✏ j equals zero, i’s value of perceptiveness is zero. This follows from the

properties of second derivatives, convexity, and concavity.

To determine the magnitude of i’s value of perceptiveness, di↵erent values of µ can be

applied within Equation (3.20). This allows me to determine the resulting vertical distance,

which captures i’s value of perceptiveness, for the specific value of µ that I consider. Whether

searching for the sign or magnitude of i’s value of perceptiveness, it is imperative that I use

mean-preserving spreads of ✏ j in equation (3.20). Doing so allows for a direct comparison to

be made between two di↵erent levels of perceptiveness for player i.

3.4.1 Application to Market-Entry Setting

Being perceptive for i can be thought of as having information pertaining to j’s expertise.

As such, the steps for determining the value of perceptiveness are similar to those taken to

determine the value of information in the oil investment decision problem outlined in Appendix

B.2, where p is now the ex-ante probability of j being expert (✏ j) and the expected profit is now

i’s ex-ante expected payo↵ (EUx
i (✏i, ✏ j)).

Without loss of generality, in this section I restrict attention to the (✏i, ✏ j) 2 (0,1)2 informa-

tion structures. By substituting the refined “middle equilibria” listed in Theorem 3.3.12 into the

ex-ante expected payo↵ equations, (3.18) and (3.19), I determine the ex-ante expected payo↵s

for the refined equilibria. If ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2,

EUEX
i (✏i,✏ j) = 1

2 (1� (1�⇡D)(1�✏ j(1�⇡D))
1�✏i✏ j(1�⇡D)2 )2.

and EUIX
i (✏i,✏ j) =

✏ j(2�✏i)(1�⇡D)2�(1�2⇡D)
2(1�✏i✏ j(1�⇡D)2) .

If ✏i  1� ⇡D
1�⇡D

for i 2 {A,B},

EUEX
i (✏i,✏ j) = 1/8.

and EUIX
i (✏i,✏ j) = 0.

If ✏i � 1� ⇡D
1�⇡D

and ✏ j(2�✏i) < 1�( ⇡D
1�⇡D

)2 for i 2 {A,B},
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EUEX
i (✏i,✏ j) = 1

2 (1� 1�2⇡D
2✏i(1�⇡D) )

2,

EUIX
i (✏i,✏ j) = 1

2�
1�2⇡D

2✏i(1�⇡D) ,

EUEX
j (✏i,✏ j) = 1/8,

and EUIX
j (✏i,✏ j) = 0.

When either ✏A(2�✏B) < 1�( ⇡D
1�⇡D

)2 or ✏B(2�✏A) < 1�( ⇡D
1�⇡D

)2, perceptiveness has zero value

for player i regardless of i’s expertise since EUx
i (✏i,✏ j) is linear with respect to ✏ j for x 2

{EX,IX} and i 2 {A,B}. However, if ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2, ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2, and i is

expert,

dEUEX
i (✏i,✏ j)
d✏ j

=
(1 � ✏i(1�⇡D))(⇡D + ✏ j(1�✏i)(1�⇡D)2)(1�⇡D)2

(1 � ✏i✏ j(1�⇡D)2)3

and
d2EUEX

i (✏i,✏ j)
d✏ j

2 =
(1 � ✏i(1�⇡D))(1 � ✏i + ✏i(3⇡D + 2✏ j(1�✏i)(1�⇡D)2))(1�⇡D)4

(1 � ✏i✏ j(1�⇡D)2)4 ; (3.21)

whereas, if ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2, ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2, and i is inexpert,

dEUIX
i (✏i,✏ j)
d✏ j

=
(1�✏i(1�⇡D))(1�⇡D)2

(1�✏i✏ j(1�⇡D)2)2

and
d2EUIX

i (✏i,✏ j)
d✏ j

2 =
2✏i(1�✏i(1�⇡D))(1�⇡D)4

(1�✏i✏ j(1�⇡D)2)3 . (3.22)

Suppose ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2. Equations (3.21) and (3.22)

depict the convexity of i’s ex-ante expected payo↵ functions, with respect to ✏ j, for expert and

inexpert agents of i respectively. These equations show that perceptiveness has positive value

for i given that ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2, since d2EUEX
i (✏i,✏ j,⇡D)
d✏ j2

> 0 and
d2EUIX

i (✏i,✏ j,⇡D)
d✏ j2

> 0. This implies that both ex-ante expected payo↵ functions are convex in ✏ j.

Theorems 3.4.1 and 3.4.2, as well as Corollary 3.4.3, formalize these results.

Theorem 3.4.1 Suppose i is expert. Under the “middle equilibrium” refinement, i’s value of

perceptiveness is positive if and only if
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i) ✏i(2�✏ j) � 1�( ⇡D
1�⇡D

)2,

ii) ✏ j(2�✏i) � 1�( ⇡D
1�⇡D

)2,

and iii) (⇡D, ✏i) , (0,1).

Otherwise, i’s value of perceptiveness is zero.

Theorem 3.4.2 Suppose i is inexpert. Under the “middle equilibrium” refinement, i’s value of

perceptiveness is positive if and only if

i) ✏i(2�✏ j) � 1�( ⇡D
1�⇡D

)2,

ii) ✏ j(2�✏i) � 1�( ⇡D
1�⇡D

)2,

and iii) ✏i , 0.

Otherwise, i’s value of perceptiveness is zero.

Corollary 3.4.3 Under the “middle equilibrium” refinement, i’s value of perceptiveness is

never negative.

The proof for Theorems 3.4.1 and 3.4.2 follow from the preceding discussion combined

with determining when the second derivatives, depicted in Equations (3.21) and (3.22), equal

zero.12 Corollary 3.4.3 can be established by showing that there is no (✏A, ✏B) ordered pair that

results in i’s ex-ante expected payo↵ being strictly concave in ✏ j under the “middle equilib-

rium” refinement. As it turns out, the non-negativity property listed in Corollary 3.4.3 does not

hold in general. The value of perceptiveness for i can actually be negative if a change in i’s

perceptiveness causes the equilibrium to shift from an equilibrium where i enters frequently to

one where i enters rarely.13 However, under the “middle equilibrium” selection rule, i’s value

of perceptiveness is either positive or zero.
12Thereby indicating when, in the corresponding equilibrium region, the value of perceptiveness is zero.
13Recall that i’s ex-ante expected payo↵ is weakly increasing in their probability of entering the market. Hence,

if an increase in i’s perceptiveness causes the equilibrium to shift in a way that i’s market-entry frequency su�-
ciently decreases, i’s value of perceptiveness will be negative.
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Theorems 3.4.1 and 3.4.2 establish whether i’s value of perceptiveness is positive, zero, or

negative within each equilibrium region. Based on these theorems, given the “middle equi-

librium” refinement, the only equilibrium region where the value of perceptiveness may di↵er

from zero is the region where ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) � 1�( ⇡D
1�⇡D

)2.

Theorem 3.4.4 Suppose ✏i(2�✏ j) � 1�( ⇡D
1�⇡D

)2 and ✏ j(2�✏i) � 1�( ⇡D
1�⇡D

)2. An expert i’s value of

perceptiveness is

VoPEX
i (✏i, ✏ j, µ) =

( f k + gh)2 + ( f h + gk)2

2(k2 � h2)2 � f 2

2k2 ; (3.23)

whereas, an inexpert i’s value of perceptiveness is

VoPIX
i (✏i, ✏ j, µ) =

lh
k(k2 � h2)

, (3.24)

such that

k = 1 � ✏i✏ j(1�⇡D)2,

f = ⇡D + (1�✏i)✏ j(1�⇡D)2,

g = (1�✏i)(1�⇡D)2µ,

h = ✏i(1�⇡D)2µ,

and l = (1�✏i(1�⇡D))(1�⇡D)2µ.

Theorem 3.4.4 summarizes the magnitude of i’s value of perceptiveness when such value

is non-zero under the “middle equilibrium” refinement. The proof of Theorem 3.4.4 follows

from substituting i’s ex-ante expected payo↵s, when ✏A(2�✏B) � 1�( ⇡D
1�⇡D

)2 and ✏B(2�✏A) �

1�( ⇡D
1�⇡D

)2, into Equation (3.20). Equation (3.24) shows that when i is inexpert and j is per-

ceptive, i’s value of perceptiveness is always zero (since ✏i = 0). Furthermore, an inexpert

agent i’s value of perceptiveness is positive when j is imperceptive, ✏i 2 (0,1). Also, for both

levels of expertise, the magnitude of i’s value of perceptiveness increases as the quality of such
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information (µ) increases.

Corollary 3.4.5 Suppose (✏i,✏ j) 2 (0,1)2 and � j = ⌘ j, for all i 2 {A,B}, where j 2 {A,B} such

that i , j. Player i’s value of perceptiveness is zero. Moreover, perceptiveness will not e↵ect

i’s equilibrium strategy.

Proof See Appendix B.3.

The intuition for Corollary 3.4.5 comes from each player knowing that their opponent will

enter the market with a particular probability regardless of their expertise. As shown by Equa-

tions (3.2), (3.4), (3.17), and (3.19), each agent i’s best response and ex-ante expected pay-

o↵, with respect j’s equilibrium strategies, depends solely on j’s aggregate entry probability,

✏ j� j + (1�✏ j)⌘ j. Given that j enters the market with the same probability regardless of j’s ex-

pertise, i’s best response and ex-ante expected payo↵ will be independent of i’s perceptiveness

since ✏ j drops out of Equations (3.2), (3.4), (3.17), and (3.19), when substituting in � j = ⌘ j.

Therefore, when j enters the market with a specific probability regardless of j’s expertise, i’s

value of perceptiveness will be zero and perceptiveness will not a↵ect i’s equilibrium strat-

egy. Moreover, given the “middle equilibrium” refinement, under Bertrand competition (when

⇡D = 0), when (✏A,✏B) 2 (0,1)2, player i will enter the market with a probability of 1/2 regard-

less of i’s expertise, for all i 2 {A,B}. That is, an expert agent i will use a cut-o↵ strategy of

�i = 1/2, whereas an inexpert agent i will use a mixing strategy of ⌘i = 1/2.14 This implies that

perceptiveness will not have any value or e↵ect to players under Bertrand competition.

3.4.2 Comparing Results Between Chapters 2 & 3

Comparing the results between Chapter 2 and Chapter 3 can be done by fixing ✏i, such that

✏i 2 {0, 1/2, 1}, while varying ✏ j, then applying i’s expected payo↵s to Equation (3.20) in order

to obtain i’s value of perceptiveness. In Chapter 2, I obtain i’s value of perceptiveness using

µ = 1/2. Whereas, in Chapter 3, I must consider the bounds of the equilibrium region of
14This result can be obtained by substituting ⇡D = 0 into Theorem 3.3.12.
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interest. Hence, there will be an upper bound for the µ-value I consider in Chapter 3. For

the following comparison, I set ⇡D = 4/9. Based on the equilibrium region bounds in Chapter

3, when (✏i, ✏ j) = (0,1/2), I can consider µ 2 [0,3/10]; when (✏i, ✏ j) = (1/2,1/2), I can consider

µ 2 [0,13/50]; and when (✏i, ✏ j) = (1,1/2), I can consider µ 2 [0,7/50].15 Figures 3.7-3.10 present

agent i’s value of perceptiveness for the aforementioned parameter values and (✏i, ✏ j) ordered

pairs. Figures 3.7 and 3.9 correspond to my results in Chapter 2, whereas Figures 3.8 and 3.10

correspond to my results in Chapter 3.

As illustrated by Figures 3.7-3.10, perceptiveness generally provides positive value to play-

ers in both models. However, the magnitude of benefit that arises from perceptiveness varies

substantially between the models. Figures 3.7-3.10 show that perceptiveness has a more sub-

stantial benefit in Chapter 2 than it has in Chapter 3. The value of perceptiveness in Chapter 2

(Figures 3.7 and 3.9) is measured in terms of chips (K); whereas, the value of perceptiveness in

Chapter 3 (Figures 3.8 and 3.10) is measured in terms of monopolistic profit (⇡M = 1). For in-

stance, suppose (✏i, ✏ j) = (1/2,1/2) and K = 18 in the Chapter 2 model, while (⇡D, µ) = (4/9,1/5) in

the Chapter 3 model. In Chapter 2, perceptiveness approximately provides an added expected

value of 0.4 chips for an expert agent i and 0.5 chips for an inexpert agent i. In this poker

setting, the added value is actually quite substantial given that a player e↵ectively only loses 1

chip by folding and can only win or lose a maximum of 18 chips. In Chapter 3, perceptiveness

approximately provides an added expected value of 0.24% of monopolistic profit for an expert

agent i and 0.175% of monopolistic profit for an inexpert agent i. Although these calculations

involve a strictly larger µ-value in the Chapter 2 model than the Chapter 3 model, the di↵erence

in the magnitude of the value of perceptiveness in both models is enough for me to infer that

perceptiveness, despite generally having positive value in both games, is much more beneficial

in poker than it is in a market-entry setting. This is likely due to j’s payo↵-relevant realiza-

15These bounds can be determined by identifying which equilibrium region the corresponding (✏i, ✏ j) coordinate
lies within, then subsequently determining how far the regional boundary is from (✏i, ✏ j). For instance, suppose
(✏i, ✏ j) = (1/2, 1/2). By Theorem 3.3.12, the equilibrium is such that 1�( ⇡D

1�⇡D
)2  (2�✏i)✏ j and 1�( ⇡D

1�⇡D
)2  (2�✏ j)✏i.

Substituting ⇡D = 4/9 and ✏i = 1/2 yields equilibrium region conditions of ✏ j  32
25 and 6

25  ✏ j. Therefore, the
maximum value for µ is 1

2 � 6
25 =

13
50 .
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Figure 3.7: Agent i’s value of perceptiveness in Chapter 2, when (✏i, ✏ j) = (1/2,1/2) and µ = 1/2.

Figure 3.8: Agent i’s value of perceptiveness in Chapter 3, when (✏i, ✏ j) = (1/2,1/2) and ⇡D = 4/9.
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Figure 3.9: Agent i’s value of perceptiveness in Chapter 2, when ✏i 2 {0,1}, ✏ j = 1/2, and µ = 1/2.

Figure 3.10: Agent i’s value of perceptiveness in Chapter 3, when ✏i 2 {0,1}, ✏ j = 1/2, and
⇡D = 4/9.
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tion (hj) having a direct e↵ect on i’s payo↵ in the poker setting, whereas j’s payo↵-relevant

realization (� j) merely had an indirect e↵ect on i’s payo↵ in the market-entry setting.

3.5 Conclusion

In this chapter, I develop and study a model that depicts a two-player market-entry game fea-

turing a continuum of information structures. Player i is expert if they know their market-entry

fee, �i, prior to deciding whether to enter the market. Player i is perceptive if they know

whether their competitor j is expert. The information structures I consider vary in terms of the

players’ expertise and perceptiveness.

The main results that I find in this chapter are as follows. Under an equilibrium refinement

that treats the players as symmetrically as possible, when both players have a su�ciently high

probability of being expert, the players’ value of perceptiveness is positive; whereas, if either

player is inexpert with a su�ciently high probability, the players’ value of perceptiveness is

zero. Furthermore, the value of perceptiveness is always non-negative under the equilibrium

refinement I consider. Lastly, even when the value of perceptiveness is zero, perceptiveness

can still a↵ect the players’ equilibrium strategies.



Chapter 4

Perceptiveness in a Market-Entry,

Information Design Setting

4.1 Introduction

In this chapter, I apply the same notion of perceptiveness, which I investigated in Chapters 2 and

3, to a market-entry setting with an information designer. The information designer will have

the ability to influence the players’ market-entry decision by sending action recommendation

signals to the players. Doing so will subsequently influence the players’ individually optimal

behaviour, which will in turn help the information designer achieve a particular objective.

As noted in Bergemann and Morris (2019), information design literature has been covered

more extensively over the past decade. Furthermore, information design has spanned across

several distinct bodies of literature, such as Bayesian persuasion, Bayesian games with com-

munication, and literature pertaining to various economic applications of information design.

Bayesian persuasion literature, notably Kamenica and Gentzkow (2011), typically features an

interaction between a receiver and a sender, who has an informational advantage over the re-

ceiver. The sender selects an informational signal to send to the receiver, who then chooses an

action, which subsequently determines the payo↵s that each player receives. Bayesian games

61
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with communication, notably Myerson (2013), typically features multiple players, including

a mediator that has no informational advantage over the other players. The mediator, in this

literature, can be viewed as an information designer. Additionally, some of the economic appli-

cations of information design include voter persuasion (Alonso & Câmara (2016)), the welfare

consequences of price discrimination (Bergemann, Brooks, & Morris (2015)), and matching

markets between schools and job placements (Ostrovsky & Schwarz (2010)).

In general, information design literature pertains to the instance of when the information

designer has an informational advantage over multiple players. Recent developments include

Bergemann and Morris (2019), Mathevet, Perego, and Taneva (2020), and Taneva (2019). As

titled, Bergemann and Morris (2019) provides a unified perspective of information design. In

this paper, Bergemann and Morris (2019) provides an extensive review and comparison of

several bodies of literature, including Bayesian persuasion and communication in Bayesian

games, that incorporate information design. In addition to this, Bergemann and Morris (2019)

discuss the distinction between literal and metaphorical information design, information de-

sign’s relationship to mechanism design, and various applications of information design. Most

importantly, Bergemann and Morris (2019) outlines the general information design setting

and provides an investment example to illustrate how an information design problem can be

solved in four di↵erent scenarios: 1) Single player without prior information; 2) Single player

with prior information; 3) Many players without prior information; and 4) Many players with

prior information. Detailed solutions for this investment example are provided and explained

in Bergemann and Morris (2013, 2016, 2019). The explanations of the investment example

outlined by these three papers provide a clear description of how to structure and solve an

information design problem, which proved invaluable as I developed this chapter.

Taneva (2019) details a general approach to deriving the information designer’s optimal

information structure in static finite environments. Taneva (2019) then applies this approach

to a symmetric binary environment, derives the corresponding constraint set, and solves for

the optimal information structure for an information designer wishing to miscoordinate actions
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between players. Following this, Taneva (2019) gives a complete characterization of the opti-

mal information structure for all possible symmetric information designer payo↵ functions in

a symmetric binary environment. Mathevet, Perego, and Taneva (2020) investigates informa-

tion design from a belief manipulation perspective by characterizing the feasible distribution of

players’ beliefs that an information designer can induce by their choice of information struc-

ture. Then, using their results, Mathevet, Perego, and Taneva (2020) develop a novel approach

to solving the information designer’s problem. Their approach features the information de-

signer first optimizing over private information, then sending out an optimal public signal.

My research in this chapter contributes to and departs from information design literature by

incorporating perceptiveness into an information design problem. I also determine the e↵ect

that perceptiveness has on an information designer’s ability to maximize producer surplus in a

market-entry setting. I find that if a governing body subsidizes market-entry by a su�ciently

high amount (indicated by a su�ciently small, negative market-entry fee), perceptiveness will

not a↵ect producer surplus nor the information designer’s producer-surplus-maximizing deci-

sion rule. Moreover, when both the high and low state entry fees are su�ciently large, percep-

tiveness will not a↵ect the information designer’s producer-surplus-maximizing decision rule,

but will inflict negative value in terms of producer surplus.

Additionally, I find that when there is a su�ciently small di↵erence between the high and

low state market-entry fees, perceptiveness will a↵ect the information designer’s producer-

surplus-maximizing decision rule. However, despite this, the maximized value of producer

surplus will only be a↵ected for market-entry fee di↵erences that are su�ciently small, within

this already su�ciently small di↵erence. Furthermore, when perceptiveness a↵ects the infor-

mation designer’s producer-surplus-maximizing decision rule and the maximized value of pro-

ducer surplus, perceptiveness will provide positive value, in terms of producer surplus, when

the high state market-entry fee is su�ciently low. Contrarily, when perceptiveness a↵ects the

information designer’s producer-surplus-maximizing decision rule and the maximized value of

producer surplus, perceptiveness will inflict negative value, in terms of producer surplus, when
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the high state market-entry fee is su�ciently high.

The remainder of this chapter is comprised as follows. Section 4.2 describes the model,

specifically detailing the game I study. Section 4.3 develops the Bayes correlated equilibria

that the information designer can attain, taking into consideration any applicable constraints.

Section 4.4 highlights the information designer’s objective of maximizing producer surplus,

then outlines the decision rule that achieves this for all market-entry fee regions I consider.

Section 4.5 discusses the e↵ect that perceptiveness has on this information designer problem,

and subsequently discusses whether perceptiveness provides positive, zero, or negative value,

in terms of producer surplus, in each market-entry fee region. Section 4.6 concludes. Appendix

C provides the supplemental appendix for this chapter.

4.2 Model

4.2.1 Players, Actions, States

I study a Bayesian game that features two players, A and B, that each produce the same product.

Both players must consider whether to “enter” (ai = Ei) or “not enter” (ai = Ni) the market in

which this product is sold. Player i’s payo↵ function is1

ui(ai, aj, �) =

8>>>>>>>>>>><
>>>>>>>>>>>:

0 if ai = Ni

⇡M � � if (ai, aj) = (Ei,Nj)

⇡D � � if (ai, aj) = (Ei, E j).

I let (⇡M, ⇡D) 2 R2
+ and � 2 {�H, �L} where (�H, �L) 2 R2 such that �H � ⇡M > ⇡D > �L. In this

setting, ⇡M and ⇡D respectively represent the post-entry profit that a monopolist and duopolist

would receive by operating in the market. Furthermore, � represents the market-entry fee that

each player must pay to enter the market.2 There are two possible states of the world, H and
1 j will always denote i’s opponent.
2In this chapter, my model features a market-entry fee that is common for both players. Whereas, in Chapter



4.2. Model 65

L, which represent the high and low market-entry fees respectively. The high state occurs with

probability h 2 (0,1), whereas the low state occurs with probability (1�h). All of the above

is common knowledge to both players. Throughout my analysis, I focus attention towards a

parameterization of ⇡M = 1, ⇡D = 4/9, and h = 1/2. By doing so, I study a Cournot competition

market-entry setting with two states that are equally likely to occur. The microfoundations of

my model are discussed in Appendix C.1.

In addition to the two players, there is an omniscient information designer who can pro-

vide the players with additional information in order to induce them to make particular action

choices. Bergemann and Morris (2019) refers to the omniscient case as the case where the

information designer faces no constraints on their ability to condition the signals on the payo↵-

relevant states of the world and all players’ prior information. In this chapter, I focus my

attention to this case as opposed to cases where the players have some prior information that

the information designer is not privy to. Additionally, the objective of the information designer

will be to maximize producer surplus, given the state and the actions of each player. I will

address the information designer’s objective in more detail in Section 4.4.

4.2.2 Types

The parameter space for the information structures I consider is (✏A, ✏B) 2 (0,1)2, such that

✏A = ✏B, where ✏i represents the probability of player i knowing �. Each (✏A, ✏B) ordered pair

is common knowledge to both players and corresponds to a specific information structure. For

instance, suppose (✏A, ✏B) = (1/2,1/2). Here, ✏ j = 1/2, which implies that player i knows that

player j knows the state of the world with a probability of 1/2. Additionally, player i knows

that, with a probability of 1/2, player j believes the state of the world is H with probability h

and L with probability 1�h. For a second example, suppose (✏A, ✏B) = (1/4,1/4). Here, player

i knows that player j knows the state of the world with a probability of 1/4. Hence, player

i also knows that with a probability of 3/4, player j believes the state of the world is H with

3, each player had a separate draw for their market-entry fee.
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probability h and L with probability 1�h. Since (✏A, ✏B) is common knowledge, both players

know the probability that the other player believes them to know the state of the world with.

Since I focus on symmetry between ✏A and ✏B, I henceforth let ✏ = ✏A = ✏B.

Definition 4.2.1 Player i is perceptive if player i knows with certainty whether player j knows

the value of �.

Definition 4.2.1 classifies player i as perceptive if and only if ✏ j 2 {0,1}. Since I focus my

study on (✏A, ✏B) 2 (0,1)2, neither player will truly be perceptive in this setting. However, some

classes of players will be more perceptive than others. As shown by Reza (1994), uncertainty

is maximized when all potential outcomes occur with equal probability. Hence, the most im-

perceptive player i can be occurs when ✏ j = 1/2. Consequently, i becomes more perceptive as

|✏ j � 1
2 | increases. Therefore, for instance, the players in the game featuring (✏A, ✏B) = (1/4,1/4)

are more perceptive than the players in the game featuring (✏A, ✏B) = (1/2,1/2). Similarly, the

players in the game featuring (✏A, ✏B) = (1/2,1/2) are more imperceptive than the players in the

game featuring (✏A, ✏B) = (1/4,1/4). Consequently, since (✏A, ✏B) is common knowledge, each

player’s perceptiveness is common knowledge as well.

Definition 4.2.2 Player i is expert if player i knows � prior to making their market-entry deci-

sion.

Definition 4.2.2 classifies a player as expert if and only if such player knows the market-

entry fee prior to making their market-entry decision. If player i does not know the value of �

prior to making such decision, I classify player i as being inexpert.

Since both players are at least a little imperceptive, the type space for each player i is

ti 2 {Hi, Li, Ii}, since j is uncertain whether i is expert and knows the state with certainty or

inexpert and does not know the state with certainty. Player i is type Hi if i is expert and the

state is H; player i is type Li if i is expert and the state is L; and, player i is type Ii if i is

inexpert. Even as ✏i approaches 1 (or 0), there is still an ex-ante chance that i is inexpert (or
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expert). Thus, player i’s expertise is private information to i, since j will always believe there

to be some chance that i is expert and some chance that i is inexpert. Consequently, even if

both players know �s, where s 2 {H, L} represents the state, the state will not be common

knowledge to the players since both players believe there to be some positive probability that

the other does not know the true value of �.

4.2.3 Timeline

The timeline for each particular game is as follows. First, the information designer chooses

and commits to a state-contingent and expertise-contingent decision rule regarding the signal

recommendations they will send to each player. Second, the state s and the players’ expertise

is realized. Third, the information designer sends each player an action recommendation signal

corresponding to the information designer’s decision rule. Fourth, each player simultaneously

chooses whether to enter the market, taking into consideration the prior information and their

recommended action from the information designer. Fifth, payo↵s are realized.

4.3 Equilibria & Obedience Constraints

I consider the Bayes correlated equilibrium solution concept developed by Bergemann and

Morris (2016) when determining the information designer’s decision rule,

�((ai, aj)|(ti, t j), s).

Specifically, the decision rule is a probability distribution over actions, given each player’s

type and the state, that the information designer bases their recommendations on. That is,

the decision rule �((ai, aj)|(ti, t j), s) represents the probability that the information designer

chooses to recommend the market-entry outcome (ai, aj), given the state and each player’s

type. The Bayes correlated equilibrium solution concept is founded upon having the players’

actions constitute a Bayesian Nash equilibrium.

Bergemann and Morris (2019) shows that an omniscient information designer can attain
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a decision rule if and only if it is a Bayes correlated equilibrium. Additionally, Bergemann

and Morris (2016) shows that a Bayes correlated equilibrium only requires that the players be

obedient, which is defined by Definition 4.3.1.

Definition 4.3.1 Decision rule �((ai, aj)|(ti, t j), s) is obedient if for each i, ti 2 {Hi, Li, Ii}, and

ai 2 {Ei,Ni},
X

a j2{E j,N j}, t j2{H j,L j,I j}, s2{H,L}
ui((ai, aj), s)�((ai, aj)|(ti, t j), s)⇢((ti, t j)|s) (s)

�
X

a j2{E j,N j}, t j2{H j,L j,I j}, s2{H,L}
ui((a0i , aj), s)�((ai, aj)|(ti, t j), s)⇢((ti, t j)|s) (s) (4.1)

for all a0i 2 {E,N}, where ⇢ represents the probability distribution of types conditional on the

state, and  represents the probability distribution over the possible states.

A decision rule, is obedient if each player i, after receiving their action recommendation

ai, has no other action a0i that could provide them with a strictly higher payo↵. Definition 1

in Bergemann and Morris (2019) provides the technical definition of obedience in a general

information design setting. Definition 4.3.1 is an application, to my model, of Bergemann and

Morris (2019)’s definition of obedience. As shown in Bergemann and Morris (2016), a deci-

sion rule that satisfies obedience is a Bayes correlated equilibrium. Similarly, a decision rule,

�((ai, aj)|(ti, t j), s), that satisfies obedience, in terms of Definition 4.3.1, is a Bayes correlated

equilibrium. Therefore, to solve for the Bayes correlated equilibria, I must determine which

decision rules are attainable for the information designer, based on the obedience constraints I

derive using Definition 4.3.1. Upon identifying all attainable Bayes correlated equilibria, I will

determine which attainable decision rule maximizes producer surplus.
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4.3.1 Obedience Constraints for Expert Agents

Using Definition 4.3.1, I can generate obedience constraints for an expert agent of type H, an

expert agent of type L, and an inexpert agent of type I. Each agent will have two obedience

constraints, one for entering the market (ai = E) and one for not entering the market (ai = N).

I henceforth denote each obedience constraint for i as OCti
ai .

Lemma 4.3.1 If �((ai, aj)|(ti, t j), s) is obedient, then

1) �((Ei, E j)|(Hi, t j),H) = 0;
2) �((Ei,Nj)|(Hi, t j),H) = 0;
3) �((Ni, E j)|(Li, t j), L) = 0;
4) �((Ni,Nj)|(Li, t j), L) = 0;
5) �((NA,NB)|(HA,HB),H) = 1;

and 6) �((EA, EB)|(LA, LB), L) = 1.

Proof Suppose i is expert and s = H. This implies that i’s type will be Hi. By Definition 4.3.1,

i’s obedience constraint for entering the market (ai = Ei), for all t j 2 {Hj, Lj, I j}, is

ui((Ei, E j),H)�((Ei, E j)|(Hi, t j),H)⇢((Hi, t j)|H) (H)

+ ui((Ei,Nj),H)�((Ei,Nj)|(Hi, t j),H)⇢((Hi, t j)|H) (H)

� ui((Ni, E j),H)�((Ei, E j)|(Hi, t j),H)⇢((Hi, t j)|H) (H) (4.2)

+ ui((Ni,Nj),H)�((Ei,Nj)|(Hi, t j),H)⇢((Hi, t j)|H) (H).

Since ui = 0 whenever ai = Ni, Inequality (4.2) simplifies to

ui((Ei, E j),H)�((Ei, E j)|(Hi, t j),H)⇢((Hi, t j)|H) (H)

+ ui((Ei,Nj),H)�((Ei,Nj)|(Hi, t j),H)⇢((Hi, t j)|H) (H) � 0.

Moreover, ui((Ei, E j),H) = ⇡D��H and ui((Ei,Nj),H) = ⇡M��H. Hence, i’s obedience con-

straint for entering the market further simplifies to

(⇡D��H)�((Ei, E j)|(Hi, t j),H)⇢((Hi, t j)|H) (H)

+ (⇡M��H)�((Ei,Nj)|(Hi, t j),H)⇢((Hi, t j)|H) (H) � 0. (4.3)

Recall that �H � ⇡M > ⇡D > �L. This implies that Inequality (4.3) will only be satisfied
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when �((Ei, E j)|(Hi, t j),H) = 0 and �((Ei,Nj)|(Hi, t j),H) = 0, which must be the case since

⇢((Hi, t j)|H) (H) 2 (0,1).3 Furthermore, by the laws of probability,

�((EA, EB)|(HA,HB),H) + �((EA,NB)|(HA,HB),H)

+ �((NA, EB)|(HA,HB),H) + �((NA,NB)|(HA,HB),H) = 1.

This implies that �((NA,NB)|(HA,HB),H) = 1.

Now suppose i is expert and s = L. This implies that i’s type will be Li. By Definition

4.3.1, i’s obedience constraint for not entering the market (ai = Ni), for all t j 2 {Hj, Lj, I j}, is

ui((Ni, E j), L)�((Ni, E j)|(Li, t j), L)⇢((Li, t j)|L) (H)

+ ui((Ni,Nj), L)�((Ni,Nj)|(Li, t j), L)⇢((Li, t j)|L) (L)

� ui((Ei, E j), L)�((Ni, E j)|(Li, t j), L)⇢((Li, t j)|L) (L) (4.4)

+ ui((Ei,Nj), L)�((Ni,Nj)|(Li, t j), L)⇢((Li, t j)|L) (L)

Since ui = 0 whenever ai = Ni, Inequality (4.4) simplifies to

0 � ui((Ei, E j), L)�((Ni, E j)|(Li, t j), L)⇢((Li, t j)|L) (L)

+ ui((Ei,Nj), L)�((Ni,Nj)|(Li, t j), L)⇢((Li, t j)|L) (L)

Moreover, ui((Ei, E j), L) = ⇡D��L and ui((Ei,Nj), L) = ⇡M��L. Hence, i’s obedience constraint

for entering the market further simplifies to

0 � (⇡D��L)�((Ni, E j)|(Li, t j), L)⇢((Li, t j)|L) (L)

+ (⇡M��L)�((Ni,Nj)|(Li, t j), L)⇢((Li, t j)|L) (L) (4.5)

Recall that �H � ⇡M > ⇡D > �L. This implies that Inequality (4.5) will only be satisfied

when �((Ni, E j)|(Li, t j), L) = 0 and �((Ni,Nj)|(Li, t j), L) = 0, which must be the case since

⇢((Hi, t j)|H) (H) 2 (0,1). Furthermore, by the laws of probability,

�((EA, EB)|(LA, LB), L) + �((EA,NB)|(LA, LB), L)

+ �((NA, EB)|(LA, LB), L) + �((NA,NB)|(LA, LB), L) = 1.

This implies that �((EA, EB)|(LA, LB), L) = 1.

3When ⇡M = �H , I restrict attention to decision rules where �((Ei,Nj)|(Hi, t j),H) = 0.
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Lemma 4.3.1 implies that the information designer has no ability to influence the market-

entry decision of an expert agent. Since an expert agent knows the state prior to making their

market-entry decision, they will always enter in the low entry fee state and never enter in the

high entry fee state. As a result, for a decision rule � to be obedient, it is necessary that the

information designer always recommends entry to expert agents in the low entry fee state and

never recommends entry to expert agents in the high entry fee state. As such, I will henceforth

restrict attention to decision rules where the information designer always recommends entry to

expert agents in the low entry fee state, but never in the high entry fee state.

It can easily be verified that never recommending entry to an expert agent in the high

entry fee state satisfies the obedience constraint for not entering the market. Likewise, it can

easily be verified that always recommending entry to an expert agent in the low entry fee state

satisfies the obedience constraint for not entering the market. It is interesting to note that

an expert agent’s market-entry decision is made independent from their opponent’s expertise.

Additionally, if one player happens to be expert, a duopoly will never occur in the high entry

fee state; whereas, entry by at least one player will occur in the low entry fee state.

4.3.2 Obedience Constraints for Inexpert Agents

Since an inexpert agent does not know the state, the information designer will be able to influ-

ence their market-entry decision more substantially than they could with an expert agent. Let �s

represent the information designer’s probability of recommending an inexpert agent i to enter

the market in state s, given that player j is expert. Let ⌘s represent the information designer’s

probability of recommending an inexpert agent i to enter the market in state s, given that player

j is inexpert. Let ⌘s
D represent the information designer’s probability of recommending both

inexpert agents to enter the market in state s, given that both players are inexpert. These action

recommendation variables are defined such that

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) 2 [0,1]6,
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where 2⌘L�⌘L
D  1 and 2⌘H�⌘H

D  1.

When both players are inexpert, the information designer must decide whether or not to

coordinate entry between the players. Because of this, I am required to define two separate

variables, ⌘s and ⌘s
D, for each state in order to fully characterize the instance when both players

are inexpert. I restrict attention to symmetric decision rules,4 which is consistent with infor-

mation design literature, like Bergemann and Morris (2019). Tables 4.1-4.8 summarize the

probabilities associated with each market-entry outcome for the four possible configurations of

the players’ expertise.

Tables 4.9 and 4.10 provide a breakdown of the components used to derive an inexpert

agent’s obedience constraint for entering the market, OCI
E. Table 4.9 provides the components

for the left side of Definition 4.3.1, whereas Table 4.10 provides the components for the right

side. An inexpert agent’s obedience constraint for entering the market is

OCI
E : h(1�✏)2[⌘H

D(⇡D��H) + (⌘H�⌘H
D)(⇡M��H)]

+ (1�h)(1�✏)2[⌘L
D(⇡D��L) + (⌘L�⌘L

D)(⇡M��L)]

+ h(1�✏)✏�H(⇡M��H) (4.6)

+ (1�h)(1�✏)✏�L(⇡D��L) � 0.

Tables 4.11 and 4.12 provide a breakdown of the components used to derive an inexpert

agent’s obedience constraint for not entering the market, OCI
N . Table 4.11 provides the com-

ponents for the right side of Definition 4.3.1, whereas Table 4.12 provides the components for

the left side. An inexpert agent’s obedience constraint for not entering the market is

OCI
N : 0 � h(1�✏)2[(⌘H�⌘H

D)(⇡D��H)+(1�2⌘H+⌘H
D)(⇡M��H)]

+ (1�h)(1�✏)2[(⌘L�⌘L
D)(⇡D��L)+(1�2⌘L+⌘L

D)(⇡M��L)]

+ h(1�✏)✏(1��H)(⇡M��H) (4.7)

+ (1�h)(1�✏)✏(1��L)(⇡D��L).

4That is, symmetric for agents with the same expertise.
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Table 4.1: Probability distribution of market-entry outcomes in the high entry fee state when
both players are expert.

B enters B does not enter

A enters 0 0
A does not enter 0 1

Table 4.2: Probability distribution of market-entry outcomes in the low entry fee state when
both players are expert.

B enters B does not enter

A enters 1 0
A does not enter 0 0

Table 4.3: Probability distribution of market-entry outcomes in the high entry fee state when A
is inexpert and B is expert.

B enters B does not enter

A enters 0 �H

A does not enter 0 1��H

Table 4.4: Probability distribution of market-entry outcomes in the low entry fee state when A
is inexpert and B is expert.

B enters B does not enter

A enters �L 0
A does not enter 1��L 0
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Table 4.5: Probability distribution of market-entry outcomes in the high entry fee state when A
is expert and B is inexpert.

B enters B does not enter

A enters 0 0
A does not enter �H 1��H

Table 4.6: Probability distribution of market-entry outcomes in the low entry fee state when A
is expert and B is inexpert.

B enters B does not enter

A enters �L 1��L

A does not enter 0 0

Table 4.7: Probability distribution of market-entry outcomes in the high entry fee state when
both players are inexpert.

B enters B does not enter

A enters ⌘H
D ⌘H�⌘H

D

A does not enter ⌘H�⌘H
D 1�2⌘H+⌘H

D

Table 4.8: Probability distribution of market-entry outcomes in the low entry fee state when
both players are inexpert.

B enters B does not enter

A enters ⌘L
D ⌘L�⌘L

D

A does not enter ⌘L�⌘L
D 1�2⌘L+⌘L

D
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Table 4.9: Summary of possible contingencies for an inexpert player (A), as well as the infor-
mation designer’s decision rule for recommending such player to enter the market.

State Types Probability Actions Decision Rule uA(a0A, aB)tA tB ⇢((ti, t j)|s) (s) a0A aA aB �((ai, aj)|(ti, t j), s)
H IA IB (1�✏)2h EA EA EB ⌘H

D ⇡D��H

H IA IB (1�✏)2h EA EA NB ⌘H�⌘H
D ⇡M��H

L IA IB (1�✏)2(1�h) EA EA EB ⌘L
D ⇡D��L

L IA IB (1�✏)2(1�h) EA EA NB ⌘L�⌘L
D ⇡M��L

H IA HB (1�✏)✏h EA EA EB 0 ⇡D��H

H IA HB (1�✏)✏h EA EA NB �H ⇡M��H

L IA LB (1�✏)✏(1�h) EA EA EB �L ⇡D��L

L IA LB (1�✏)✏(1�h) EA EA NB 0 ⇡M��L

Table 4.10: Summary of possible contingencies for an inexpert player (A), as well as the infor-
mation designer’s decision rule for recommending such player to enter the market.

State Types Probability Actions Decision Rule uA(a0A, aB)tA tB ⇢((ti, t j)|s) (s) a0A aA aB �((ai, aj)|(ti, t j), s)
H IA IB (1�✏)2h NA EA EB ⌘H

D 0
H IA IB (1�✏)2h NA EA NB ⌘H�⌘H

D 0
L IA IB (1�✏)2(1�h) NA EA EB ⌘L

D 0
L IA IB (1�✏)2(1�h) NA EA NB ⌘L�⌘L

D 0
H IA HB (1�✏)✏h NA EA EB 0 0
H IA HB (1�✏)✏h NA EA NB �H 0
L IA LB (1�✏)✏(1�h) NA EA EB �L 0
L IA LB (1�✏)✏(1�h) NA EA NB 0 0
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Table 4.11: Summary of possible contingencies for an inexpert player (A), as well as the infor-
mation designer’s decision rule for recommending such player to not enter the market.

State Types Probability Actions Decision Rule uA(a0A, aB)tA tB ⇢((ti, t j)|s) (s) a0A aA aB �((ai, aj)|(ti, t j), s)
H IA IB (1�✏)2h EA NA EB ⌘H�⌘H

D ⇡D��H

H IA IB (1�✏)2h EA NA NB 1�2⌘H+⌘H
D ⇡M��H

L IA IB (1�✏)2(1�h) EA NA EB ⌘L�⌘L
D ⇡D��L

L IA IB (1�✏)2(1�h) EA NA NB 1�2⌘L+⌘L
D ⇡M��L

H IA HB (1�✏)✏h EA NA EB 0 ⇡D��H

H IA HB (1�✏)✏h EA NA NB 1��H ⇡M��H

L IA LB (1�✏)✏(1�h) EA NA EB 1��L ⇡D��L

L IA LB (1�✏)✏(1�h) EA NA NB 0 ⇡M��L

Table 4.12: Summary of possible contingencies for an inexpert player (A), as well as the infor-
mation designer’s decision rule for recommending such player to not enter the market.

State Types Probability Actions Decision Rule uA(a0A, aB)tA tB ⇢((ti, t j)|s) (s) a0A aA aB �((ai, aj)|(ti, t j), s)
H IA IB (1�✏)2h NA NA EB ⌘H�⌘H

D 0
H IA IB (1�✏)2h NA NA NB 1�2⌘H+⌘H

D 0
L IA IB (1�✏)2(1�h) NA NA EB ⌘L�⌘L

D 0
L IA IB (1�✏)2(1�h) NA NA NB 1�2⌘L+⌘L

D 0
H IA HB (1�✏)✏h NA NA EB 0 0
H IA HB (1�✏)✏h NA NA NB 1��H 0
L IA LB (1�✏)✏(1�h) NA NA EB 1��L 0
L IA LB (1�✏)✏(1�h) NA NA NB 0 0
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4.3.3 Equilibria

Combining Lemma 4.3.1 with both obedience constraints, OCI
E and OCI

N , for an inexpert agent,

provides the necessary existence conditions for a Bayes correlated equilibrium, given that ✏A =

✏B = ✏ and

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) 2 [0,1]6,

such that 2⌘H�⌘H
D  1 and 2⌘L�⌘L

D  1. Theorem 4.3.2 formalizes how to determine whether a

decision rule � constitutes a Bayes correlated equilibrium.

Theorem 4.3.2 Suppose ✏A = ✏B = ✏. The decision rule

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D)

is a Bayes correlated equilibrium if and only if

1) (�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) 2 [0,1]6;

2) 2⌘L�⌘L
D  1;

3) 2⌘H�⌘H
D  1;

4) h(1�✏)2[⌘H
D(⇡D��H) + (⌘H�⌘H

D)(⇡M��H)]

+ (1�h)(1�✏)2[⌘L
D(⇡D��L) + (⌘L�⌘L

D)(⇡M��L)]

+ h(1�✏)✏(⇡M��H)�H

+ (1�h)(1�✏)✏(⇡D��L)�L � 0;

and 5) 0 � h(1�✏)2[(⌘H�⌘H
D)(⇡D��H)+(1�2⌘H+⌘H

D)(⇡M��H)]

+ (1�h)(1�✏)2[(⌘L�⌘L
D)(⇡D��L)+(1�2⌘L+⌘L

D)(⇡M��L)]

+ h(1�✏)✏(⇡M��H)(1��H)

+ (1�h)(1�✏)✏(⇡D��L)(1��L).

The proof of Theorem 4.3.2 follows from Lemma 4.3.1, Inequality (4.6), Inequality (4.7),

and the proof from Bergemann and Morris (2016) that shows that a Bayes correlated equi-

librium only requires that each player be obedient. Moving forward, I use Theorem 4.3.2 to

identify all attainable Bayes correlated equilibria. I then determine which of these equilibria

the information designer should select in order to maximize producer surplus.
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Corollary 4.3.3 The decision rule

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (1, 0, 1, 1, 0, 0)

is a Bayes correlated equilibrium for all (⇡M, ⇡D) 2 R2
+ and (�H, �L) 2 R2 such that �H � ⇡M >

⇡D > �L.

Corollary 4.3.3 follows from substituting the

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (1, 0, 1, 1, 0, 0)

decision rule into Theorem 4.3.2. This corollary establishes that the set of attainable decision

rules for the information designer to select from is nonempty.

4.4 Maximizing Producer Surplus

I assume the market to follow a linear inverse demand curve of the form P = a � bQT , where

P represents the market price and QT represents the total quantity sold. I also assume that each

player produces identical products that can be produced with a marginal cost of zero and that

there are no fixed costs besides �. In this chapter, I consider an information designer whose

objective is to maximize producer surplus under Cournot competition. The calculations for the

equilibrium quantity, equilibrium price, consumer surplus, producer surplus, and total surplus

for each market outcome are listed in Appendix C.1. Additionally, in Appendix C.1, I include

two diagrams that illustrate the regions of consumer and post-entry producer surplus, along

with the equilibrium outcome, for a duopoly and a monopoly. It is important to note that the

producer surplus the information designer maximizes accounts for the market-entry fees.5

Using the variables defined in Section 4.3.2 and the producer surplus computations in Ap-

pendix C.1, I obtain an expression for producer surplus, which is given by

5The regions of producer surplus shown in Appendix C.1 do not account for the market-entry fee(s). As such,
the producer surplus I measure for the information designer’s objective will be the corresponding shaded regions
less the applicable market-entry fee(s).
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PS (�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) =

2✏2(1�h)(4
9⇡M��L)

+ 2✏(1�✏)[(1�h)(⇡M��L)�(1�h)(1
9⇡M+�L)�L�h(�H�⇡M)�H] (4.8)

+ 2(1�✏)2[(1�h)(⇡M��L)⌘L�h(�H�⇡M)⌘H�5
9 (1�h)⇡M⌘

L
D�5

9h⇡M⌘
H
D].

As mentioned in Section 4.2.1, I focus attention towards a situation where h = 1/2, ⇡M = 1, and

⇡D = 4/9. As such, Equation (4.8) reduces to

PS (�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) =

✏2( 4
9��L) + ✏(1�✏)[(1��L)�(1

9+�L)�L�(�H�1)�H] (4.9)

+ (1�✏)2[(1��L)⌘L�(�H�1)⌘H�5
9⌘

L
D�5

9⌘
H
D].

I segment my analysis into four regions of the “�H��L” plane, where �H � 1 > 4/9 > �L.

These regions are6

1) (�H, �L) 2 [1,1) ⇥ (�1,�1/9];

2) (�H, �L) 2 [14/9,1) ⇥ [�1/9, 4/9);

3) (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) and �H � 1+1
2 (1+✏)(4

9��L);

and 4) (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) and �H  1+1
2 (1+✏)(4

9��L).

I further segment the fourth region into four separate subregions. Given that

(�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) and �H  1+1
2 (1+✏)( 4

9��L),

these four subregions are

1) �H��L � 10
9 and �H 2 [1+1

2 (1�✏)( 4
9��L), 1+1

2 (1+✏)(4
9��L)];

2) �H��L � 10
9 and �H 2 [1, 1+1

2 (1�✏)( 4
9��L)];

3) �H��L  10
9 and �H 2 [ 2

(1+✏) (
4
9+✏)��L, 1+1

2 (1+✏)( 4
9��L)];

and 4) �H��L  10
9 and �H 2 [1, 2

(1+✏) (
4
9+✏)��L].

6The section and subsection headings for Regions 1, 3, 4, and 4.1-4.4 (on the following pages) should have a
square bracket “]” instead of a rounded bracket “)” wherever a square bracket “]” occurs when I list the regions
and subregions in the text. There seems to be a “Table of Contents” macro in the Western Thesis LaTeX template
that restricts me from using the square bracket “]” in section and subsection headings.
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4.4.1 Region 1: (�H, �L) 2 [1,1) ⇥ (�1,�1/9)

Theorem 4.4.1 If (�H, �L) 2 [1,1) ⇥ (�1,�1/9], then the producer-surplus-maximizing deci-

sion rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (1, 0, 1, 1, 0, 0). (4.10)

Proof This solution can be verified by showing that the gradient of the producer surplus is a

linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are 2⌘L�⌘L
D  1, the non-negativity constraints for �H,

⌘H, and ⌘H
D, as well as the upper bound constraints for �L, ⌘L, and ⌘L

D. The weights

(�2⌘L�⌘L
D1, ��L1, ��H�0, �⌘L1, �⌘L

D1, �⌘H�0, �⌘H
D�0)

= ( 5
9 (1�✏)2, ✏(1�✏)(�1

9��L), ✏(1�✏)(�H�1), ✏(1�✏)(�1
9��L), 0, (1�✏)2(�H�1), 5

9 (1�✏)2)

satisfy the expression

2
666666666666666666666666666666666666666666664

0 1 0 0 0 0 0

0 0 �1 0 0 0 0

2 0 0 1 0 0 0

�1 0 0 0 1 0 0

0 0 0 0 0 �1 0

0 0 0 0 0 0 �1

3
777777777777777777777777777777777777777777775

⇥

2
666666666666666666666666666666666666666666666666666664

�2⌘L�⌘L
D1

��L1

��H�0

�⌘L1

�⌘L
D1

�⌘H�0

�⌘H
D�0

3
777777777777777777777777777777777777777777777777777775

=

2
666666666666666666666666666666666666666666664

�✏(1�✏)( 1
9+�L)

�✏(1�✏)(�H�1)

(1�✏)2(1��L)

�5
9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

, (4.11)

where the columns of the 6 ⇥ 7 matrix represent the binding constraints, while each row repre-

sents a particular decision variable.7 Furthermore, the 6 ⇥ 1 matrix represents the gradient of

producer surplus. Additionally, since ✏ 2 (0,1), �L  �1/9, and �H � 1, the weights can each be

shown to be non-negative.

7Throughout this chapter, the order of rows for each matrix that does not contain weights is �L, �H , ⌘L, ⌘L
D, ⌘

H ,
and ⌘H

D . The order of columns in each left-most matrix begins with any applicable obedience constraints, followed
by any applicable market-entry outcome probability constraints, followed by any binding non-negativity or upper
bound constraints listed in the order of �L, �H , ⌘L, ⌘L

D, ⌘
H , and ⌘H

D .
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4.4.2 Region 2: (�H, �L) 2 [14/9,1) ⇥ [�1/9, 4/9)

Theorem 4.4.2 If (�H, �L) 2 [14/9,1) ⇥ [�1/9, 4/9), then the producer-surplus-maximizing deci-

sion rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (0, 0, 1/2, 0, 0, 0).

Proof This solution can be verified by showing that the gradient of the producer surplus is

a linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are 2⌘L�⌘L
D  1, as well as the non-negativity constraints

for �L, �H, ⌘L
D, ⌘H, and ⌘H

D. The weights

(�2⌘L�⌘L
D1, ��L�0, ��H�0, �⌘L

D�0, �⌘H�0, �⌘H
D�0)

= (1
2 (1�✏)2(1��L), ✏(1�✏)( 1

9+�L), ✏(1�✏)(�H�1), (4.12)

1
2(1�✏)2(1

9+�L), (1�✏)2(�H�1), 5
9 (1�✏)2)

satisfy the expression

2
666666666666666666666666666666666666666666664

0 �1 0 0 0 0

0 0 �1 0 0 0

2 0 0 0 0 0

�1 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

3
777777777777777777777777777777777777777777775

⇥

2
666666666666666666666666666666666666666666664

�2⌘L�⌘L
D1

��L�0

��H�0

�⌘L
D�0

�⌘H�0

�⌘H
D�0

3
777777777777777777777777777777777777777777775

=

2
666666666666666666666666666666666666666666664

�✏(1�✏)( 1
9+�L)

�✏(1�✏)(�H�1)

(1�✏)2(1��L)

�5
9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

(4.13)

where the columns of the 6 ⇥ 6 matrix represent the binding constraints, while each row repre-

sents a particular decision variable. Furthermore, the 6⇥ 1 matrix on the right side of Equation

(4.13) represents the gradient of producer surplus. Additionally, since ✏ 2 (0,1), �L 2 [�1/9, 4/9),

and �H � 14/9, the weights can each be shown to be non-negative.
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4.4.3 Region 3: (�H, �L) 2 [1,14/9) ⇥ [�1/9, 4/9) & �H � 1 + 1
2(1+✏)(4

9��L)

Theorem 4.4.3 If (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) such that �H � 1 + 1
2 (1+✏)( 4

9��L), then the

producer-surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (0, 0, 1/2, 0, 0, 0).

Proof This solution can be verified by using an identical process, matrix equation, and weights

as those used in the proof of Theorem 4.4.2. Furthermore, since ✏ 2 (0,1), �L 2 [�1/9, 4/9), and

�H 2 [1,14/9], the weights can each be shown to be non-negative.

4.4.4 Region 4: (�H, �L) 2 [1,14/9) ⇥ [�1/9, 4/9) & �H  1+1
2(1+✏)(4

9��L)

Region 4.1: �H��L � 10
9 & �H 2 [1+1

2 (1�✏)( 4
9��L), 1+1

2 (1+✏)( 4
9��L))

Theorem 4.4.4 If (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) such that

�H��L � 10
9 ,

�H  1+1
2 (1+✏)( 4

9��L),

and �H � 1+1
2 (1�✏)( 4

9��L),

then the producer-surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (

(1+✏)( 4
9��L) � 2(�H�1)

2✏( 4
9��L)

, 0, 1/2, 0, 0, 0).

Proof This solution can be verified by showing that the gradient of the producer surplus is a

linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are the OCI
N , 2⌘L�⌘L

D  1, as well as the non-negativity

constraints for �H, ⌘L
D, ⌘H, and ⌘H

D. The weights

(�OCI
N
, �2⌘L�⌘L

D1, ��H�0, �⌘L
D�0, �⌘H�0, �⌘H

D�0)

= (
(1�✏)( 1

9+�L)

( 4
9��L)

,
25(1�✏)2

81(4
9��L)

,
5✏(1�✏)(�H�1)

9(4
9��L)

, 0,
5(1�✏)2[(�H�1)�( 1

9+�L)]

9(4
9��L)

,
25(1�✏)2

81(4
9��L)

)

(4.14)

satisfy the expression
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2
666666666666666666666666666666666666666666664

�✏( 4
9��L) 0 0 0 0 0

✏(�H�1) 0 �1 0 0 0

�(1�✏)( 14
9 ��L) 2 0 0 0 0

5
9(1�✏) �1 0 �1 0 0

�(1�✏)( 14
9 ��H) 0 0 0 �1 0

5
9(1�✏) 0 0 0 0 �1

3
777777777777777777777777777777777777777777775

⇥

2
666666666666666666666666666666666666666666664

�OCI
N

�2⌘L�⌘L
D1

��H�0

�⌘L
D�0

�⌘H�0

�⌘H
D�0

3
777777777777777777777777777777777777777777775

=

2
666666666666666666666666666666666666666666664

�✏(1�✏)( 1
9+�L)

�✏(1�✏)(�H�1)

(1�✏)2(1��L)

�5
9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

(4.15)

where the columns of the 6 ⇥ 6 matrix represent the binding constraints, while each row repre-

sents a particular decision variable. Furthermore, the 6⇥ 1 matrix on the right side of Equation

(4.15) represents the gradient of producer surplus. Additionally, since ✏ 2 (0,1), �L 2 [�1/9, 4/9),

�H 2 [1,14/9], and (�H�1)�( 1
9+�L) � 0, the weights can each be shown to be non-negative.

Region 4.2: �H��L � 10
9 & �H 2 [1, 1+1

2 (1�✏)( 4
9��L))

Theorem 4.4.5 If (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) such that

�H��L � 10
9

and �H  1+1
2 (1�✏)( 4

9��L),

then the producer-surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (1, 0, 1� (�H�1)

(1�✏)( 4
9��L)

, 1� 2(�H�1)
(1�✏)( 4

9��L)
, 0, 0)

Proof This solution can be verified by showing that the gradient of the producer surplus is a

linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are the OCI
N , 2⌘L�⌘L

D  1, the upper bound constraint

for �L, and the non-negativity constraints for �H, ⌘H, and ⌘H
D. The weights
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(�OCI
N
, �2⌘L�⌘L

D1, ��L1, ��H�0, �⌘H�0, �⌘H
D�0)

= (
(1�✏)( 1

9+�L)

( 4
9��L)

,
25(1�✏)2

81(4
9��L)

, 0,
5✏(1�✏)(�H�1)

9(4
9��L)

,
5(1�✏)2[(�H�1)�( 1

9+�L)]

9(4
9��L)

,
25(1�✏)2

81(4
9��L)

)

(4.16)

satisfy the expression

2
666666666666666666666666666666666666666666664

�✏(4
9��L) 0 1 0 0 0

✏(�H�1) 0 0 �1 0 0

�(1�✏)(14
9 ��L) 2 0 0 0 0

5
9(1�✏) �1 0 0 0 0

�(1�✏)( 14
9 ��H) 0 0 0 �1 0

5
9(1�✏) 0 0 0 0 �1

3
777777777777777777777777777777777777777777775

⇥

2
666666666666666666666666666666666666666666664

�OCI
N

�2⌘L�⌘L
D1

��L1

��H�0

�⌘H�0

�⌘H
D�0

3
777777777777777777777777777777777777777777775

=

2
666666666666666666666666666666666666666666664

�✏(1�✏)( 1
9+�L)

�✏(1�✏)(�H�1)

(1�✏)2(1��L)

�5
9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

(4.17)

where the columns of the 6 ⇥ 6 matrix represent the binding constraints, while each row repre-

sents a particular decision variable. Furthermore, the 6⇥ 1 matrix on the right side of Equation

(4.17) represents the gradient of producer surplus. Additionally, since ✏ 2 (0,1), �L 2 [�1/9, 4/9),

�H 2 [1,14/9], and (�H�1)�( 1
9+�L) � 0, the weights can each be shown to be non-negative.

Region 4.3: �H��L  10
9 & �H 2 [ 2

(1+✏) (
4
9+✏)��L, 1+1

2 (1+✏)( 4
9��L))

Theorem 4.4.6 If (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) such that

�H��L  10
9 ,

�H  1+1
2 (1+✏)( 4

9��L),

and �H � 2
(1+✏) (

4
9+✏)��L,

then the producer-surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (0, 0, 1/2, 0,

1
2 (1+✏)( 4

9��L) � (�H�1)

(1�✏)( 14
9 ��H)

, 0)

Proof This solution can be verified by showing that the gradient of the producer surplus is a



4.4. Maximizing Producer Surplus 85

linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are the OCI
N , 2⌘L�⌘L

D  1, as well as the non-negativity

constraints for �L, �H, ⌘L
D, and ⌘H

D. The weights

(�OCI
N
, �2⌘L�⌘L

D1, ��L�0, ��H�0, �⌘L
D�0, �⌘H

D�0)

= (
(1�✏)(�H�1)

(14
9 ��H)

,
5(1�✏)2(�H��L)

18(14
9 ��H)

,
5✏(1�✏)[( 1

9+�L)�(�H�1)]

9(14
9 ��H)

, (4.18)

5✏(1�✏)(�H�1)
9(14

9 ��H)
,

5(1�✏)2[( 1
9+�L)�(�H�1)]

18(14
9 ��H)

,
25(1�✏)2

81(14
9 ��H)

)

satisfy the expression

2
666666666666666666666666666666666666666666664

�✏( 4
9��L) 0 �1 0 0 0

✏(�H�1) 0 0 �1 0 0

�(1�✏)( 14
9 ��L) 2 0 0 0 0

5
9(1�✏) �1 0 0 �1 0

�(1�✏)( 14
9 ��H) 0 0 0 0 0

5
9(1�✏) 0 0 0 0 �1

3
777777777777777777777777777777777777777777775

⇥

2
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��L�0

��H�0

�⌘L
D�0

�⌘H
D�0

3
777777777777777777777777777777777777777777775

=

2
666666666666666666666666666666666666666666664

�✏(1�✏)( 1
9+�L)

�✏(1�✏)(�H�1)

(1�✏)2(1��L)

�5
9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

(4.19)

where the columns of the 6 ⇥ 6 matrix represent the binding constraints, while each row repre-

sents a particular decision variable. Furthermore, the 6⇥ 1 matrix on the right side of Equation

(4.19) represents the gradient of producer surplus. Additionally, since ✏ 2 (0,1), �L 2 [�1/9, 4/9),

�H 2 [1,14/9], �H > �L, and (1
9+�L)�(�H�1) � 0, the weights can each be shown to be non-

negative.

Region 4.4: �H��L  10
9 & �H 2 [1, 2

(1+✏) (
4
9+✏)��L)

Theorem 4.4.7 If (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) such that

�H��L  10
9

and �H  2
(1+✏) (

4
9+✏)��L,

then the producer-surplus-maximizing decision rule is
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(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (

( 4
9��L)�(�H�1)�(1�✏)(1�1

2�L�1
2�H)

✏( 4
9��L)

, 0, 1/2, 0, 1/2, 0)

Proof This solution can be verified by showing that the gradient of the producer surplus is a

linear combination of a non-negative weighted average of the gradients for the binding con-

straints. Here, the binding constraints are the OCI
N , 2⌘L�⌘L

D  1, 2⌘H�⌘H
D  1, as well as the

non-negativity constraints for �H, ⌘L
D, and ⌘H

D. The weights

(�OCI
N
, �2⌘L�⌘L

D1, �2⌘H�⌘H
D1, ��H�0, �⌘L

D�0, �⌘H
D�0)

= (
(1�✏)(1

9+�L)

( 4
9��L)

,
25(1�✏)2

81(4
9��L)

,
5(1�✏)2[(1

9+�L)�(�H�1)]

18(4
9��L)

, (4.20)

5✏(1�✏)(�H�1)
9(4

9��L)
, 0,

5(1�✏)2(�H��L)
18(4

9��L)
)

satisfy the expression
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9 ��L) 2 0 0 0 0

5
9(1�✏) �1 0 0 �1 0
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9 ��H) 0 2 0 0 0

5
9(1�✏) 0 �1 0 0 �1

3
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��H�0
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3
777777777777777777777777777777777777777777775

=
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666666666666666666666666666666666666666666664

�✏(1�✏)( 1
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�✏(1�✏)(�H�1)

(1�✏)2(1��L)
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9 (1�✏)2

�(1�✏)2(�H�1)

�5
9 (1�✏)2

3
777777777777777777777777777777777777777777775

(4.21)

where the columns of the 6 ⇥ 6 matrix represent the binding constraints, while each row repre-

sents a particular decision variable. Furthermore, the 6⇥ 1 matrix on the right side of Equation

(4.21) represents the gradient of producer surplus. Additionally, since ✏ 2 (0,1), �L 2 [�1/9, 4/9),

�H 2 [1,14/9], �H > �L, and (1
9+�L)�(�H�1) � 0, the weights can each be shown to be non-

negative.
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4.5 The E↵ect of Perceptiveness

As shown by Theorem 4.4.1, when (�H, �L) 2 [1,1) ⇥ (�1,�1/9] the information designer’s

producer-surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (1, 0, 1, 1, 0, 0).

Since this decision rule is independent of ✏, perceptiveness does not a↵ect the information de-

signer’s producer-surplus-maximizing decision rule when (�H, �L) 2 [1,1) ⇥ (�1,�1/9]. Addi-

tionally, this decision rule represents the instance of when the information designer completely

reveals the state to both players, regardless of their expertise. Because of this, perceptiveness

does not a↵ect producer surplus nor does it a↵ect the obedience constraints for each player.

Theorems 4.4.2 and 4.4.3 show that when (�H, �L) 2 [14/9,1) ⇥ [�1/9, 4/9) or when �H �

1+1
2 (1+✏)( 4

9��L), such that (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9), the information designer’s producer-

surplus-maximizing decision rule is

(�L, �H, ⌘L, ⌘L
D, ⌘

H, ⌘H
D) = (0, 0, 1/2, 0, 0, 0).

Similar to when �L 2 (�1,�1/9], perceptiveness does not a↵ect the information designer’s

producer-surplus-maximizing decision rule nor does it a↵ect the obedience constraints in these

“�H��L” regions. However, with this decision rule, producer surplus simplifies to

PS = 1
2 (1��L) � 1

2 ( 1
9+�L)✏2

which is concave in ✏, since �L 2 [�1/9, 4/9). As illustrated by the oil investment example listed

in Appendix B.2, non-linearity in ✏ indicates that perceptiveness will have an e↵ect. Since

producer surplus is concave in ✏, the value of perceptiveness, in terms of producer surplus, is

negative when either (�H, �L) 2 [14/9,1) ⇥ (�1/9, 4/9), or (�H, �L) 2 [1,14/9] ⇥ (�1/9, 4/9) such that

�H � 1+1
2 (1+✏)( 4

9��L).

When (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9) and �H  1+1
2 (1+✏)( 4

9��L), as shown by Theorems

4.4.4-4.4.7, perceptiveness will a↵ect the information designer’s producer-surplus-maximizing

decision rule since at least one of the decision rule variables is nonlinear in ✏. Regardless

of the four subregions within this “�H��L” region, the OCI
N will bind and the OCI

E will be
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slack. Hence, in this region, perceptiveness will not a↵ect whether either obedience constraint

is binding or slack. However, when (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9), �H��L � 10
9 , and �H 

1+1
2 (1+✏)( 4

9��L),8 substituting the producer-surplus-maximizing decision rule variables into

Equation (4.9) finds that producer surplus equals

(4
9��L) + (1�✏)

( 1
9+�L)(�H�1)

(4
9��L)

,

which is linear in ✏. Therefore, when (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9), �H��L � 10
9 , and �H 

1+1
2 (1+✏)( 4

9��L), perceptiveness does not a↵ect the maximized value of producer surplus.

When (�H, �L) 2 [1,14/9] ⇥ [�1/9, 4/9), �H��L  10
9 , and �H  1+1

2 (1+✏)( 4
9��L), substituting

the producer-surplus-maximizing decision rule variables into Equation (4.9) finds that producer

surplus is nonlinear in ✏, so perceptiveness will a↵ect the maximized producer surplus in Re-

gions 4.3 and 4.4. More specifically, given the region specification that begins this paragraph

as well as9

�H 2 [ 2
(1+✏) (

4
9+✏)��L, 1+1

2 (1+✏)( 4
9��L)],

the second derivative of producer surplus with respect to ✏, when substituting in the producer-

surplus-maximizing decision rule variables, is

5[(�H��L)�10
9 ]

9(14
9 ��H)

. (4.22)

Additionally, given the same initial region specification, but instead supplementing with10

�H 2 [1, 2
(1+✏) (

4
9+✏)��L],

the second derivative of producer surplus with respect to ✏, when substituting in the producer-

surplus-maximizing decision rule variables, is

5[10
9 �(�H��L)]

9(4
9��L)

. (4.23)

Since �H � �L  10
9 in Regions 4.3 and 4.4, Expression (4.22) shows that the second derivative

8This specification corresponds to Regions 4.1 and 4.2.
9This specification corresponds to Region 4.3.

10This specification corresponds to Region 4.4.
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of producer surplus with respect to ✏ is non-positive in Region 4.3; whereas, Expression (4.23)

shows that the second derivative of producer surplus with respect to ✏ is non-negative in Region

4.4. This implies that, if �H ��L <
10
9 , then perceptiveness will provide negative value in terms

of producer surplus in Region 4.3. Whereas, if �H � �L <
10
9 , then perceptiveness will provide

positive value in terms of producer surplus in Region 4.4.

4.6 Conclusion

In this chapter, I study the e↵ect that perceptiveness has on an information design problem in

a market-entry setting. I specifically investigate the e↵ect that perceptiveness has when the

information designer wishes to maximize producer surplus.

I find that perceptiveness a↵ects the information designer’s producer-surplus-maximizing

decision rule when the di↵erence between the high and low market-entry fee states is su�-

ciently small, as depicted by Regions 4.1-4.4. Additionally, perceptiveness provides positive

value, in terms of producer surplus, only when the di↵erence between the high and low state

market-entry fees is su�ciently small and the high state market-entry fee is su�ciently low, as

depicted by Region 4.4. Contrarily, perceptiveness inflicts negative value, in terms of producer

surplus, when the high and low state market-entry fees are both su�ciently high, as depicted

by Regions 2, 3, and 4.3. I also find that, despite perceptiveness a↵ecting the information

designer’s producer-surplus-maximizing decision rule when the di↵erence between the high

and low market-entry fee states is su�ciently small, if such di↵erence is still adequately large,

the maximized value of producer surplus will not change with perceptiveness, as depicted by

Regions 4.1 and 4.2. Finally, I find that perceptiveness has no e↵ect when the low state market-

entry fee is a su�ciently small, negative value, as depicted by Region 1.



Chapter 5

Conclusion

Throughout my thesis, I investigate the value and e↵ect of perceptiveness in various game-

theoretic settings. The first model, covered in Chapter 2, emulates a two-player, one-round

game of poker. The second model, covered in Chapter 3, features a two-player market-entry

game. The third model, covered in Chapter 4, depicts a two-player market-entry game that is

influenced by an information designer who aims to maximize producer surplus.

A player is expert if and only if they know the value of a particular payo↵-relevant param-

eter. Furthermore, a player is perceptive if and only if they know whether their opponent is

expert. I let ✏i represent the probability of player i knowing the value of such payo↵-relevant

parameter. In my first model, the payo↵-relevant parameters of interest are the players’ hand

values, (hi, hj). Here, player i is expert if and only if they know the value of hi. In my second

model, the payo↵-relevant parameters of interest are the players’ market-entry fees, (�i, � j).

Here, player i is expert if and only if they know the value of �i. Lastly, in my third model,

the payo↵-relevant parameter of interest is the market-entry fee, �, which is the same for both

players. Here, player i is expert if and only if they know the value of �.

In each model, I restrict attention to a di↵erent subset of (✏A, ✏B) ordered pairs. In the first

model, I consider

(✏A, ✏B) 2 {(0,0), (0,1), (1,1), (0,1/2), (1,1/2), (1/2,1/2)},

90
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In the second model, I consider (✏A, ✏B) 2 [0,1]2. In the third model, I consider (✏A, ✏B) 2 (0,1)2

such that ✏A = ✏B.

In my thesis, I find that perceptiveness generally has value to players, whether that be

from the perspective of a poker player, a player considering market-entry, or an information

designer in a market-entry game. To draw comparisons between the three models, consider the

information structure where (✏A, ✏B) = (1/2,1/2). This particular information structure is good for

comparison since it represents the information structure in which the perceptiveness of each

player is minimized, and is also featured in my analysis of each model. In order to make the

three models as comparable as possible, I set the model-specific parameters to be as follows.

In Model 1, I set the chip endowment (K) equal to 15. In Model 2, I set the duopoly profit (⇡D)

equal to 4/9, and I set the change in player A’s perceptiveness (µ) equal to 1/5. Lastly, in Model

3, I set the probability of the high-state market-entry fee occurring (h) equal to 1/2, the duopoly

profit (⇡D) equal to 4/9, the monopoly profit (⇡M) equal to 1, the high-state market-entry fee

(�H) equal to 1, the low-state market-entry fee (�L) equal to 0, and the change in the players’

perceptiveness (µ) equal to 1/5.

First, consider Model 1 when (✏A, ✏B) = (1/2,1/2). Suppose player i could choose between a

situation where they must decide whether to go all-in or fold before realizing j’s expertise, or

a situation where Nature can flip a coin to have the uncertainty of j’s expertise realized prior

to i deciding whether to go all-in or fold, with j knowing that i has realized this information.

The former situation corresponds to when i is imperceptive and the latter situation corresponds

to when i is perceptive. My results show that, for instance when K = 15, player i would prefer

to have the uncertainty of j’s expertise realized prior to deciding whether to go all-in or fold.

So, in this situation, perceptiveness is beneficial to player i. This result is generally true for all

stakes regardless of i’s expertise and j’s perceptiveness.1

Next, consider Model 2 when (✏A, ✏B) = (1/2,1/2). As in Model 1, certain qualifications

1There exists some stakes where an expert player i has a negative value of perceptiveness when facing a
perceptive player j. However, this case seems to be a particular exception. Also, for su�ciently low stakes, i’s
value of perceptiveness is zero. This occurs when K = 1, or when i is inexpert, j is perceptive, and K  2+

p
5.
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must be met in order for perceptiveness to have value. For instance, in Model 2, I focus

attention to the “middle equilibrium”. I also consider di↵erent values for duopolistic profit,

similar to how I considered di↵erent stakes in Model 1. However, in general, starting from

(✏A, ✏B) = (1/2,1/2), staying close to this, introducing more perceptiveness to i, and maintaining

focus on the “middle equilibrium”, perceptiveness has value to i. Similar findings can be made

at other (✏A, ✏B) starting points, deviations, and duopolistic profit values.

Model 3 is di↵erent than Models 1 and 2 since Model 3 is normative, whereas Models 1

and 2 are positive. In Model 3, the information designer is trying to determine what could

conceivably be possible in society in order to maximize producer surplus. Since this model

is much more di�cult, as it involves maximizing surplus over the correlated equilibria in a

market-entry game, I had to assume that both players have the same market-entry fee and re-

strict my attention to symmetric decision rules. Hence, I can only consider moving from the

(✏A, ✏B) = (1/2,1/2) starting point by simultaneously changing both players’ probability of being

expert, as well as both players’ perceptiveness. As it turns out, when (h, ⇡D, ⇡M, �H, �L, µi, µ j) =

(1/2,4/9,1,1,0,1/5,1/5), while starting at (✏A, ✏B) = (1/2,1/2), perceptiveness increases the informa-

tion designer’s maximum attainable producer surplus. So, perceptiveness is once again bene-

ficial, just from a di↵erent perspective. Although this comparison has many fixed parameters,

the parameters are fixed in a way that makes the results between the three models roughly

compatible.
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Appendices for Chapter 2

A.1 Payo↵ Grid: Inexpert Agent i Choosing All-In vs. Ex-

pert Agent j

Figure A.1: An inexpert i’s payo↵ from choosing all-in against an expert j using the cut-o↵
strategy, � j, across all possible states.
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Appendices for Chapter 3

B.1 Cournot Competition: Derivation of ⇡D = 4/9

.

I consider a market that follows a linear inverse demand curve and a situation such that the

players’ products are identically-perceived by consumers. Hence, the inverse market demand

curve is

P(qA, qB) = a � bqA � bqB.

Suppose that both players enter the market. This implies that i’s post-entry profit is given by

⇡i,D(qi, qj) = P(qi, qj)qi � MCiqi. (B.1)

I also assume that MCi = 0. Hence, Equation (B.1) simplifies to

⇡i,D(qi, qj) = (a � bqi � bqj)qi. (B.2)

Taking the first-order condition of ⇡i,D(qi, qj) with respect to qi, for i 2 {A,B}, yields

qBR
A (qB) =

a � bqB

2b
(B.3)

and qBR
B (qA) =

a � bqA

2b
. (B.4)
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Substituting qBR
B (qA) into Equation (B.3) yields

q⇤A =
a

3b

Similarly, q⇤B =
a
3b . Substituting q⇤A = q⇤B =

a
3b into Equation (B.2) finds that

⇡i,D(qi, qj) =
a2

9b
. (B.5)

Now suppose that player i enters the market as a monopolist. This implies that i’s post-entry

profit is

⇡i,M(qi, 0) = (a � bqi)qi. (B.6)

Taking the first-order condition of ⇡i,M(qi, 0) with respect to qi yields

q⇤i =
a

2b
.

Substituting q⇤i =
a

2b into Equation (B.6) finds that

⇡i,M =
a2

4b
.

Normalizing ⇡i,M = 1 implies that a2

b = 4. Substituting this into Equation (B.5) yields ⇡i,D = 4/9.

B.2 Example: Oil Investment Decision Problem

The value of perceptiveness I study is analogous to the value of testing for oil in the following

decision problem. Consider a risk-neutral oil company that knows that oil exists in a certain

location with a probability of p 2 [0,1]. The company can choose x 2 {0,1}, where x = 1

(x = 0) represents when the company decides to drill (not drill) for oil. The state of the world

is given by s 2 {0,1}, where s = 1 (s = 0) indicates that oil is present (absent). The value from

striking oil is v, while the cost of building an oil rig is c, such that v and c are positive numbers.

The company’s payo↵ function is summarized as
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⇡(v, c, s, x) =

8>>>>>>>>>>><
>>>>>>>>>>>:

v � c if s = 1 & x = 1

�c if s = 0 & x = 1

0 if x = 0.

Given the company’s payo↵ function, the company’s expected payo↵ is

E[⇡(v, c, p, x)] =

8>>>>>><
>>>>>>:

pv � c if x = 1

0 if x = 0.

This implies that the company should drill for oil if p � c
v .

Suppose v = 100, c = 70, and p = 4/5. The oil company should choose to drill (x = 1)

since p > 7/10. By drilling, the company has an expected profit of 10. Now suppose the

company is presented with the opportunity to acquire additional information pertaining to the

probability of striking oil. There is a 50% chance this information will be favourable, allowing

the company to update its beliefs to p = 1. However, there is a 50% chance this information will

be unfavourable, causing the company to update its beliefs to p = 3/5. The company’s expected

profit with this information is 15. Hence, this information is clearly valuable to the company

as it increases the company’s expected profit by 5. This example is graphically depicted by

Figure B.1.1

The value of information in this example comes from the oil company’s ability to make

its decision contingent on the updated probabilities. Without receiving the additional infor-

mation, the company will decide to drill. This decision will remain unchanged in the pres-

ence of favourable information. However, in the presence of unfavourable information, the

company will switch its decision to deciding not to drill. Generally speaking, if one of the

post-information states results in the company switching its decision away from what it would

have previously chosen, the value of information is strictly positive. Otherwise, the value of

1In Figure B.1, the blue solid line represents the company’s expected profit without additional information.
The yellow dashed line represents the company’s expected profit with additional information. The green dotted
line represents the value of information when the probability of striking oil is 4/5.
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Figure B.1: Oil company’s expected profit from striking oil given the probability of striking
oil.

information is zero. Proposition B.2.1 claims that the oil company’s expected profit function

is convex for all p, and strictly convex if and only if a mean-preserving spread of p has bound

values pLow and pHigh such that 0  pLow <
c
v  pHigh  1. In other words, the expected

profit function is strictly convex if and only if the oil company makes its decision based on the

information it acquires. From this, it follows that the value of information is zero if and only

if the information puts the oil company at a mean-preserving spread of p with pLow � c
v or

pHigh <
c
v . Additionally, the value of information is positive if and only if the information puts

the oil company at a mean-preserving spread of p with 0  pLow <
c
v  pHigh  1.
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Proposition B.2.1 Suppose v > c > 0.

E[⇡(p)] =

8>>>>>><
>>>>>>:

pv � c if p � c
v

0 if p < c
v

is convex for all p 2 [0,1], and strictly convex if and only if a mean-preserving spread of p has
bound values pLow and pHigh such that 0  pLow <

c
v  pHigh  1.

Proof Suppose (p1, p2) 2 [0,1]2 such that p1 < p2, v > c > 0, and ↵ 2 [0,1]. If p2 <
c
v , then

E[⇡(↵p1 + (1�↵)p2)] = 0 = ↵E[⇡(p1)]+ (1�↵)E[⇡(p2)], which implies that E[⇡(p)] is convex,

but not strictly convex for all ↵ 2 [0,1]. If p1 � c
v , then

E[⇡(↵p1 + (1�↵)p2)] = (↵p1 + (1�↵)p2)v � c

= ↵(p1v � c) + (1�↵)(p2v � c)

= ↵E[⇡(p1)] + (1�↵)E[⇡(p2)],

which implies that E[⇡(p)] is convex, but not strictly convex for all ↵ 2 [0,1]. Finally, if

p1 <
c
v  p2, then

E[⇡(↵p1 + (1�↵)p2)] = (↵p1 + (1�↵)p2)v � c

= ↵p1v + (1�↵)p2v � c

< ↵c + (1�↵)p2v � c

= ↵(0) + (1�↵)(p2v � c)

= ↵E[⇡(p1)] + (1�↵)E[⇡(p2)],

which implies that E[⇡(p)] is strictly convex for all ↵ 2 [0,1].

This oil investment decision problem and subsequent analysis to derive the value of in-

formation was inspired by Section 12.5 of DeGroot (2005). In such section, DeGroot (2005)

develops optimal bounded sequential decision procedures that feature a statistician deciding

whether to observe an additional observation at some arbitrary positive cost. By finding where

the oil company is indi↵erent between having the pre-information expected profit in addition

to the cost of acquiring such information and the post-information expected profit, I am able to

infer the value of this information.
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B.3 Proof of Corollary 3.4.5

Proof To prove that perceptiveness has zero value and e↵ect for i when their opponent j enters

the market with the same probability regardless of j’s expertise, it is su�cient to show that

agent i’s best response and ex-ante expected payo↵ is independent of ✏ j when � j = ⌘ j.

Suppose (✏i, ✏ j) 2 (0,1)2 and that j enters the market with probability ⇢ j regardless of j’s

expertise (� j = ⌘ j = ⇢ j). Further suppose that i is expert. Equation (3.2) shows that i’s best

response will be �BR
i (⇢ j) = 1 � ⇢ j(1�⇡D). Moreover, Equation (3.17) shows that i’s ex-ante

expected payo↵ will be EUEX
i (�i, ⇢ j) = �i(1� ⇢ j(1�⇡D)� 1

2�i). Now suppose that i is inexpert.

Equation (3.4) shows that i’s best response will be

⌘BR
i (⇢ j) =

8>>>>>>>>>>><
>>>>>>>>>>>:

{1} if ⇢ j <
1

2(1�⇡D)

{0} if ⇢ j >
1

2(1�⇡D)

[0,1] if ⇢ j =
1

2(1�⇡D) .

Finally, Equation (3.19) shows that i’s ex-ante expected payo↵ will be EUIX
i (⌘i, ⇢ j) = ⌘i( 1

2 �

(1�⇡D)⇢ j). Therefore, if � j = ⌘ j, i’s best response and ex-ante expected payo↵ will be inde-

pendent of ✏ j. Since i’s perceptiveness is defined by ✏ j, i’s best response and ex-ante expected

payo↵ will be independent of i’s perceptiveness if � j = ⌘ j.2

2Recall that i’s degree of perceptiveness is depicted by |✏ j � 1
2 |, as described in Footnote 11 of Chapter 3.
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Appendices for Chapter 4

C.1 Microfoundations

Player i’s profit upon entering the market is given by ⇡i = (a�bqj�bqi)qi��i. When i decides

to not enter the market, i earns zero profit. Therefore, if neither player enters the market, zero

quantity will be produced and no surplus will be realized.

If both players enter, they will each produce a quantity of Qi,D =
a

3b , thereby making

QT,D =
2a
3b and PD =

a
3 .1 In this case, consumer surplus is CS D =

2a2

9b , total producer surplus2 is

PS T,D =
2a2

9b ��i�� j, and total surplus is TS D =
4a2

9b ��i�� j. Furthermore, player i’s producer

surplus is PS i,D =
a2

9b � �i, so ⇡D =
a2

9b . The subscript labelled as “D” indicates the duopolistic

case. Figure C.1 graphically depicts the surplus regions arising from a duopoly.

Finally, if only one player enters, the player, i, entering the market will produce a quantity of

QT,M =
a
2b , while the other player will produce nothing, thereby making PM =

a
2 .3 In this case,

consumer surplus is CS M =
a2

8b , total producer surplus, which is solely realized by the player

entering the market, is PS T,M =
a2

4b � �i, hence ⇡M =
a2

4b , and total surplus is TS M =
3a2

8b � �i.

1These values can be obtained by using standard unconstrained optimization techniques, taking first-order
conditions with respect to qi.

2When calculating producer surplus, I include the market-entry fee as opposed to excluding it. Thus, producer
surplus here can be considered as earned profit.

3Again, these values can be obtained by using standard unconstrained optimization techniques, taking first-
order conditions with respect to qi.
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The subscript labelled as “M” indicates the monopolistic case. Figure C.2 graphically depicts

the surplus regions arising from a monopoly.

Throughout my analysis, I normalize ⇡M = 1. This implies a normalization of a2

b = 4.

Subsequently, for Cournot competition, ⇡D =
4
9 , CS D =

8
9 , PS T,D =

8
9 � �i � � j, and TS D =

16
9 � �i � � j. Also, for Cournot competition when i enters the market and j does not enter the

market, CS M =
1
2 , PS T,D = 1 � �i, and TS D =

3
2 � �i.

Figure C.1: Diagram displaying the consumer and post-entry producer surplus for a duopoly
under Cournot competition.
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Figure C.2: Diagram displaying the consumer and post-entry producer surplus for a monopoly
under Cournot competition.
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