
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-22-2020 4:00 PM

An Implementation of Power Series in the BPAS Library An Implementation of Power Series in the BPAS Library

Mahsa Kazeminooreddinvand, The University of Western Ontario

Supervisor: Moreno Maza, Marc, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Mahsa Kazeminooreddinvand 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Kazeminooreddinvand, Mahsa, "An Implementation of Power Series in the BPAS Library" (2020).
Electronic Thesis and Dissertation Repository. 7094.
https://ir.lib.uwo.ca/etd/7094

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7094?utm_source=ir.lib.uwo.ca%2Fetd%2F7094&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
We discuss the design and implementation of lazy multivariate power series, univariate polyno-
mials over power series, and their associated arithmetic within the Basic Polynomial Algebra
Subprograms (BPAS) Library. This implementation is employed by lazy variations of Weier-
strass preparation and the factorization of univariate polynomials over power series following
Hensel’s lemma. Our implementation is lazy in that power series terms are only computed
when explicitly requested. The precision of a power series is dynamically extended upon
request, without requiring any re-computation of existing terms. This design extends into
an “ancestry” of power series whereby power series created from the result of arithmetic or
Weierstrass preparation automatically hold on to enough information to dynamically update
themselves to higher precision using information from their “parents”.

Keywords: Power series, Weierstrass preparation theorem, Hensel lemma, Factorization,
C programming, High performance, Data structure, Bifurcation theory

ii

Lay Summary
We explore the design and implementation of lazy multivariate power series, univariate poly-
nomials with power series coefficients, and their associated arithmetic within the Basic Poly-
nomial Algebra Subprograms (BPAS) Library. This implementation is employed by lazy vari-
ations of Weierstrass preparation and the factorization of univariate polynomials over power
series following Hensel’s lemma. Our implementation is lazy in that power series terms are
only computed when explicitly requested. The precision of a power series is dynamically
extended upon request, without requiring any re-computation of existing terms. This design
extends into an “ancestry” of power series whereby power series created from the result of
arithmetic or Weierstrass preparation automatically hold on to enough information to dynami-
cally update themselves to higher precision using information from their “parents”. We further
address the application of these tools in bifurcation theory to analyze singularities of smooth
maps.

iii

Co-Authorship Statement

The results of this thesis are gathered from an accepted paper co-authored with Alexander
Brandt and Marc Moreno Maza entitled “Power Series Arithmetic with the BPAS Library” and
a publication co-authored with Marc Moreno Maza entitled “Detecting Singularities Using the
PowerSeries Library ”. The abstract, Chapters 1–6 and 8 are extracted from the former and the
latter covers Chapter 7.

iv

Acknowledgements

This thesis would not have been possible without support, help and love of many. First and
foremost, I am forever grateful to my supervisor, Professor Marc Moreno Maza for his never-
ending support, invaluable lessons, and precious guidance throughout the program as well as
during the time I worked at ORCCA lab as a visiting scholar in 2015. Marc has provided me
with many opportunities to learn, grow, pursue my interests and acquire hands-on experience.
He has taught me the values of hard work, dedication and perseverance and I have had the
privilege of contributing to several projects in his research group.

I am also deeply thankful to Alexander Brandt who has taught me many lessons, provided
me with numerous technical supports and supervised me in the design and implementation of
the results of this thesis in the BPAS library. His patience and unique method of teaching has
allowed me to learn things at my own pace, make mistake and learn from them.

I would like to thank Dr. Robert Moir who has supervised me realizing a draft implemen-
tation of some of the results of this thesis in Python and also guided me in the early stages of
my first internship at Maplesoft company.

I would like to thank my thesis committee members Professors Lucian Ilie, David Jeffrey,
and Boyu Wang.

I would like to acknowledge Dr. John May and Dr. Erik Postma at Maplesoft Inc. for their
lessons, guidance and support helping me to integrate the new features of the RegularChains
library into Maple 2020. In particular, I very much appreciate Dr. John May for his supervision
throughout the time I was working on the Rubi project.

I would also like to thank Ms. Janice Wiersma, Graduate Affairs Coordinator in Computer
Science Department, for her kind help with various administrative tasks during my studies.

I would like to thank all my friends inside and outside of ORCCA lab for their kind help and
support. I particularly would like to thank Davood who has been very supportive, helped me
with many technical questions, generously shared his experiences with me on different topics
in computer science. A special thank goes to my friend, Elham, who has always been there for
me and given me encouragement.

Last but not least, my deepest love and gratitude goes to my parents, my siblings and my
fiancé for their tremendous support, genuine encouragement and dedication.

v

To my wonderful parents for their endless love, encouragement and support

To my dearest, Mehdi, for his love, support and calm presence

vi

Contents

Certificate of Examination ii

Abstract ii

Lay Summary iii

Co-Authorship Statement iv

Acknowledgements v

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 3
2.1 Power Series . 3
2.2 Weierstrass Preparation Theorem . 7
2.3 Hensel Lemma . 9

3 The Design and Implementation of Lazy Power Series 11
3.1 The Power Series Data Structure, Generators, and Ancestors 13
3.2 Implementing Power Series Arithmetic . 15
3.3 Benchmarks: Power Series Multiplication and Division 17

4 The Design and Implementation of Univariate Polynomials over Power Series 27
4.1 UPOPS Taylor Shift . 27

5 A Lazy Weierstrass Preparation 31
5.1 Benchmarks: Weierstrass Preparation . 34

6 A Lazy Factorization via Hensel’s Lemma 44
6.1 Benchmarks: Factorization via Hensel’s Lemma 45

7 Applications in Bifurcation Theory 49
7.1 Introduction . 49
7.2 Background . 51

vii

7.2.1 Concepts from Singularity Theory . 51
7.2.2 The Extended Hensel Construction . 53
7.2.3 The PowerSeries Library . 54

7.3 Applications . 55
7.3.1 The Pitchfork Bifurcation . 55
7.3.2 The Winged Cusp Bifurcation . 56

8 Conclusions and Future Work 58

Bibliography 58

Curriculum Vitae 62

viii

List of Figures

3.1 Computing 1
f and f · 1

f for f = 1 + X1 + X2 . 19
3.2 Computing 1

f and f · 1
f for f = 1 + X1 + X2 + X3. 20

3.3 Computing 1
f and f · 1

f for f = 2 + 1
3 (X1 + X2) 20

5.1 Applying Weierstrass preparation on family (i) for increasing precisions. 43
5.2 Applying Weierstrass preparation on family (ii) for increasing precisions. . . . 43

6.1 Applying factorization via Hensel’s lemma to the UPOPS f1 = (Z − 1)(Z −
2)(Z − 3) + X1(Z2 + Z) and f2 = (Z − 1)(Z − 2)(Z − 3)(Z − 4) + X1(Z3 + Z). . . 48

7.1 Figures (a) and (b) depict the bifurcation diagrams of g and NF(g), respectively. 52
7.2 On the right: Weierstrass Preparation Factorization for a univariate polynomial with

multivariate power series coefficients. On the Left: Extended Hensel construction
applied to a trivariate polynomial for computing its absolute factorization. 54

7.3 Extended Hensel construction applied to a bivariate polynomial for computing its
Puiseux parametrizations around the origin. 54

7.4 EHC applied to Φ1(x, y, λ). 56
7.5 Pitchfork bifurcation diagram associated with g in Equation (7.9). 56
7.6 The winged cusp bifurcation diagram. 56
7.7 EHC applied to Ψ2(x, y, λ). 57
7.8 Bifurcation diagram associated with g in (7.11). 57

ix

List of Tables

3.1 A comparison of timings (with a time limit of 1800 seconds) for computing the inverse
of the power series 2 + 1

3 (X1 + X2) to a precision between 100 and 2000. 21
3.2 A comparison of timings (with a time limit of 1800 seconds) for computing the inverse

of the power series 1 + X1 + X2 to a precision between 100 and 2000. 22
3.3 A comparison of timings (with a time limit of 1800 seconds) for computing the inverse

of the power series 1 + X1 + X2 + X3 to a precision between 100 and 1200. 23
3.4 A comparison of timings (with a time limit of 1800 seconds) for multiplying 2+ 1

3 (X1 +

X2) by its inverse and updating the terms based on the precision between 100 and 2000. 24
3.5 A comparison of timings (with a time limit of 1800 seconds) for multiplying 1+X1+X2

by its inverse and updating the terms based on the precision between 100 and 2000. . . 25
3.6 A comparison of timings (with a time limit of 1800 seconds) for multiplying 1 + X1 +

X2 + X3 by its inverse and updating the terms based on the precision between 100 and
1200. 26

5.1 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y3 + Y2 + X2Y + X1 to a precision between 10 and 400. 35

5.2 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10 and 400. . . 36

5.3 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y5 + Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10 and

400. 37
5.4 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-

tion results for 1
1+X1+X2

Y6 + Y5 + Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10
and 400. 38

5.5 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y3 + X2Y2 + Y + X1 to a precision between 10 and 460. . . . 39

5.6 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y4 + X2Y3 + Y2 + Y + X1 to a precision between 10 and 420. . . 40

5.7 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-
tion results for 1

1+X1+X2
Y5 + X2Y4 + Y3 + Y2 + Y + X1 to a precision between 10 and

400. 41
5.8 A comparison of timings (with a time limit of 1800 seconds) for Weierstrass prepara-

tion results for 1
1+X1+X2

Y6 + X2Y5 + Y4 + Y3 + Y2 + Y + X1 to a precision between 10
and 400. 42

x

6.1 Factorization via Hensel for (Z−1)(Z−2)(Z−3)+X1(Z2 +Z) to a precision between 25
and 2000. Here, EHC and FVHL stand for the ExtendedHenselConstruction and
FactorizationViaHenselLemma functions, respectively. Note that the benchmarks
were collected with a time limit of 1800 seconds. 46

6.2 Factorization via Hensel for (Z −1)(Z −2)(Z −3)(Z −4) + X1(Z3 + Z) to a precision be-
tween 25 and 2000. Here, EHC and FVHL stand for the ExtendedHenselConstruction
and FactorizationViaHenselLemma functions, respectively. Note that the bench-
marks were collected with a time limit of 1800 seconds. 47

xi

Chapter 1

Introduction

Power series are polynomial-like objects with, potentially, an infinite number of terms. They
play a fundamental role in theoretical computer science, functional analysis, computer algebra,
and algebraic geometry. Power series capture concepts and properties, such as that of a function
limit, that cannot be described with notions and techniques from discrete mathematics. Of
course, the fact that power series may have an infinite number of terms brings interesting
challenges to computer scientists. How to represent them on a computer? How to perform
arithmetic operations effectively and efficiently with them?

One standard approach is to implement power series as truncated power series, that is,
by setting up in advance a sufficiently large accuracy, or precision, and discarding any power
series term with a degree equal or higher to that accuracy. Unfortunately, for some important
applications, not only is such accuracy problem specific, but sometimes cannot be determined
before calculations start, or later may be found to not go far enough. This scenario occurs,
for instance, with modular methods [22] for polynomial system solving [10] based on Hensel
lifting and its variants [34]. It is necessary then to implement power series with data structures
and techniques that allow for reactivity and dynamic updates.

Since a power series has potentially infinitely many terms, it is natural to represent it as
a function, that we shall call a generator, and which computes the terms of that power series
for a given accuracy. This point of view leads to natural algorithms for performing arithmetic
operations (addition, multiplication, division) on power series based on lazy evaluation.

Another advantage of this functional approach is the fact that it supports concurrency in a
natural manner. Consider a procedure which takes some number of power series as input and
returns a number of power series. Assume the generators of the outputs can be determined in
essentially constant time, which is often the case. Subsequent computations involving those
output power series can then start almost immediately. In other words, the first procedure call
is essentially non-blocking, and the output power series can (i) be used immediately as input
to other procedure calls, and (ii) have their terms computed only as needed. This approach
allows for power series terms to computed or “produced” concurrent with being “consumed”
in subsequent computations. These procedure calls can then be seen as the stages of a pipelined
computation [23, Ch. 9].

In this thesis, we present our implementation of multivariate power series (Chapter 3) and
univariate polynomials over multivariate power series “UPOPS” (Chapter 4) based on the
ideas of lazy evaluation. Factoring such polynomials, by means of Hensel’s lemma and its

1

2 Chapter 1. Introduction

extensions and variants, like the extended Hensel construction (EHC) [2, 27] and the Jung-
Abhyankar Theorem [25], is our driving application. We discuss a lazy implementation of
factoring via Hensel’s lemma (Chapter 6) by means of lazy Weierstrass preparation (Chapter 5).
We further highlight one of the applications of the EHC method, which is implemented in
Maple’s PowerSeries library, in bifurcation theory to determine singularities of smooth maps
(Chapter 7). Finally, we summarize the results of this thesis along with a future outlook for our
design and implementation (Chapter 8).

Our implementation is publicly available as part of the Basic Polynomial Algebra Sub-
programs (BPAS) library [6], a free and open-source computer algebra library for polynomial
algebra. The library’s core, of which our power series and UPOPS are a part, is carefully im-
plemented in C for performance. The library also has a C++ interface for better usability. Such
an interface for power series is forthcoming. Our current implementation of multivariate power
series and UPOPS is both sequential and over the field of rational numbers. However, the BPAS
library has the necessary infrastructure, in particular asynchronous generators, see [7], to take
advantage of the concurrency opportunities (essentially pipelining) created by our design based
on lazy evaluation.

Existing implementations of multivariate power series are also available in Maple’s PowerSeries
library [5, 20] and SageMath [30]. The former is similarly based on lazy evaluation, while the
latter uses the truncated power series approach mentioned above. Our experimental results
show that our implementation in BPAS outperforms its counterparts by several orders of mag-
nitude.

Lazy evaluation in computer algebra has some history, see the work of Karczmarczuk [19]
(discussing different mathematical objects with an infinite length of data) and the work of
Monagan and Vrbik [24] (discussing sparse polynomial arithmetic). Lazy univariate power
series, in particular, have been implemented by Burge and Watt [9] and by van der Hoeven [32].
However, up to our knowledge, our implementation is the first for multivariate power series in
a compiled code.

This thesis is a joint work with Alexander Brandt and Marc Moreno Maza; see [1, 20].

Chapter 2

Background

This chapter introduces algebraic concepts, structures and terminologies required throghout
this thesis. We start with formal power series arithmetic and deal with arithmetic in the con-
text of univariate polynomials with multivariate power series coefficients. Next, we discuss the
Weierstrass Preparation Theorem providing the foundation for factorizing univariate polyno-
mials over power series. We end this chapter with a theoretical discussion of Hensel Lemma
which utilizes the above mentioned Theorem in order to factor univariate polynomials over
power series into linear factors.

2.1 Power Series
Definition 1 A non-empty set R with two binary operations called addition (+) and multipli-
cation (·) is called a commutative ring if it satisfies the following conditions

(i) for all x, y ∈ R, x + y = y + x,

(ii) for all x, y, z ∈ R, (x + y) + z = x + (y + z),

(iii) there exists an element 0 ∈ R such that 0 + x = x + 0 = x for all x ∈ R,

(iv) for every x ∈ R there exists −x ∈ R such that x + (−x) = (−x) + x = 0,

(v) for all x, y ∈ R, x · y = y · x,

(vi) for all x, y, z ∈ R, (x · y) · z = x · (y · z),

(vii) there exists an element 0 , 1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R,

(viii) for all x, y, z ∈ R, x · (y + z) = x · y + x · z.

Definition 2 Let R be a commutative ring. A subset I of R is called an ideal when

(i) 0 ∈ I,

(ii) if x, y ∈ I then x + y ∈ I,

3

4 Chapter 2. Background

(iii) if x ∈ I then −x ∈ I,

(iv) if r ∈ R and x ∈ I then both r · x ∈ I and x · r ∈ I.

Definition 3 Let R be a commutative ring and {Ii}
∞
i=1 be an increasing sequence of ideals in R,

that is
I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · ·

We say that R is a Noetherian ring if the sequence is ultimately constant that is there exists
n ∈ N such that In = In+1 = · · · .

Definition 4 Let R be a commutative ring. A non-zero element a ∈ R is called a zero divisor if
a · b = 0 is valid for some non-zero element b ∈ R. The ring R is called an integral domain if it
has no zero divisor.

Definition 5 Assume that R is a commutative ring. A non-zero and non-unit element p ∈ R is
called a prime when for some a, b inR if p divides a · b then p divides a or p divides b. An
integral domain in which every non-zero non-unit element is represented by a product of prime
elements is called a unique factorization domain (UFD).

Definition 6 If for every 0 , x ∈ R there exists an element 1
x ∈ R such that x · (1

x) = (1
x) · x = 1

then R is called a field. Here, a field is denoted by F.

Definition 7 (i) A sequence x1, x2, x3, . . . in F converges to x if for all 0 < ε ∈ F there exists
N ∈ N s.t. for all n ∈ N we have n ≥ N ⇒ | x − xn |< ε.

(ii) A sequence x1, x2, x3, . . . in F is called a Cauchy sequence if for all 0 < ε ∈ F there exists
N ∈ N s.t. for all m, n ∈ N we have m, n > N ⇒ | xm − xn |< ε.

Definition 8 A field F is called complete if every Cauchy sequence in F converges to an ele-
ment of F.

Definition 9 Let R be a commutative ring.

(i) The set RN of all infinite sequences of elements of R indexed by N ∪ {0} constructs the
univariate power series ring R[[X]].

(ii) The ring of multivariate power series in variables X1, . . . , Xn and with coefficients in
R is denoted by R[[X1, . . . , Xn]] and defined recursively as R[[X1]] if n = 1 and as
(R[[X1, ..., Xn−1]])[[Xn]] otherwise.

Let f =
∑

e∈Nn aeXe be a formal power series and d ∈ N. The homogeneous part and
polynomial part of f in degree d are denoted by f(d) and f (d), and defined by

f(d) =
∑

|e|=d
aeXe and f (d) =

∑
k≤d

f(k). (2.1)

Note that e = (e1, . . . , en) is a multi-index, Xe stands for Xe1
1 · · · X

en
n , |e| = e1 + · · · + en, and

ae ∈ R holds.

2.1. Power Series 5

Definition 10 Let f , g ∈ R[[X1, . . . , Xn]]. Then the sum, difference, and product of f and g are
given by

f ± g =
∑

d∈N
(f(d) ± g(d))

f g =
∑

d∈N

(
Σk+`=d (f(k)g(`))

)
.

We consider the following example to clarify this Definition.

Example 1 Let

f =
∑

(e1,e2)

(2e1 + 1)(−1)e1(2e2 + 1)e1 Xe1
1 Xe2

2 , g =
∑

(e1,e2)

(2e1 + 2)(e2)X2e1+1
1 Xe2

2 .

It follows from (2.1) that

f(0) = 1, f(1) = 3X2 − 3X1, f(2) = 5X2
1 + 5X2

2 − 9X1X2, . . .

and
g(0) = 0, g(1) = 0, g(2) = 2X1X2,

Hence,

f ± g = (f(0) ± g(0)) + (f(1) ± g(1)) + (f(2) ± g(2)) + · · ·

= 1 + (3X2 − 3X1) + (5X2
1 + 5X2

2 − 9X1X2 ± 2X1X2) + · · · .

and

f g = (f(0)g(0)) + (f(0)g(1) + f(1)g(0)) + (f(0)g(2) + f(1)g(1) + f(2)g(0)) + · · ·

= 2X1X2 + · · · .

Remark 1 Note that the arithmetic associated with univariate polynomials with power series
coefficients is inherited from that of power series.

Example 2 Let f = X2
2 + Y2, g = 1 + X3

1 + 3X2Y2 + (1 + X1X3)Y6 ∈ R[[X1, X2, X3]][Y] be
univariate polynomials in Y with power series coefficients in R[[X1, X2, X3]]. Then

f ± g = X2
2 ± 1 + Y2 ± (1 + X1X3)Y6

f g = X2
2 + Y2 + X2

2Y6

Definition 11 The order of a formal power series f ∈ R[[X1, . . . , Xn]] is defined as:

ord(f) =

{
min{d | f(d) , 0} if f , 0
∞ if f = 0.

Remark 2 For f , g ∈ R[[X1, . . . , Xn]], we have

6 Chapter 2. Background

ord(f + g) ≥ min{ord(f), ord(g)} and ord(f g) = ord(f) + ord(g).

Now we list several properties of the ring of formal power series.

(a) R[[X1, . . . , Xn]] is an integral domain,

(b) the setM = { f ∈ R[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal ideal of R[[X1, . . . , Xn]],

(c) for all k ∈ N, we haveMk = { f ∈ R[[X1, . . . , Xn]] | ord(f) ≥ k}.

Definition 12 (Krull Topology) Let (fn)n∈N be a sequence of elements of R[[X1, . . . , Xn]] and
let f ∈ R[[X1, . . . , Xn]]. We say that

• (fn)n∈N converges to f if for all k ∈ N there exists N ∈ N s.t. for all n ∈ N we have
n ≥ N ⇒ f − fn ∈ M

k,

• (fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N s.t. for all n,m ∈ N we
have n,m ≥ N ⇒ fm − fn ∈ M

k.

Proposition 1 • We have
⋂

k∈NM
k = 〈0〉

• If every Cauchy sequence in R converges, then every Cauchy sequence of R[[X1, . . . , Xn]]
converges too.

Proposition 2 For all f ∈ R[[X1, . . . , Xn]], the following properties are equivalent

(i) f is a unit

(ii) ord(f) = 0

(iii) f <M.

Proof. This follows from the classical observation that for g ∈ R[[X1, . . . , Xn]], with
ord(g) > 0, the following holds in R[[X1, . . . , Xn]]

(1 − g)(1 + g + g2 + · · ·) = 1

Since (1 + g + g2 + · · ·) is in fact a sequence of elements in R[[X1, . . . , Xn]], proving the above
relation formally requires the use of Krull Topology. �

Definition 13 Let K be a complete field. Consider the formal power series f =
∑
e

aeXe, g =∑
e

beXe, h =
∑
e

ceXe ∈ K[[X1, . . . , Xn]]. Provided that the power series g is invertible. The

quotient h =
f
g is defined as follows

f
g

=

∑
e

aeXe∑
e

beXe =
∑

e

ceXe.

In order to compute h, one can multiply the inverse of g by f or equate the coefficients in
f = gh; that is

ce =
1
b0

(ae −

∞∑
k=1

bkce−k).

2.2. Weierstrass Preparation Theorem 7

The above Definition is illustrated by the following examples.

Example 3 (a) Let f = 1 and g = 1 − 2X1 + X2
1 . Then

h =
f
g

= 1 + 2X1 + 3X2
1 + 4X3

1 + 5X4
1 + · · · .

(b) Let f = 1 − X4 − X1 and g = −2X1X4 + X2
1 + X2X3 + X4

4 + 1. Then

h =
f
g

= 1−X1−X4−X2
1 + 2X1X4−X2X3 + X3

1 −X2
1 X4 + X1X2X3−2X1X2

4 + X2X3X4 + · · · .

2.2 Weierstrass Preparation Theorem
Consider a univariate polynomial with multivariate power series coefficients which is not iden-
tical to zero after evaluating all coefficients at the origin. The Weierstrass Preparation Theorem
is concerned with finding a unique representation for this polynomial in the vicinity of the ori-
gin. This representation is given by two univariate polynomials with multivariate power series
coefficients, one is known as the Weierstrass polynomial and the other one is a unit whose
product gives the original polynomial.

Assume n ≥ 1. Denote by A the ring K[[X1, . . . , Xn−1]] and byM be the maximal ideal of
A. Note that n = 1 impliesM = 〈0〉.

Lemma 1 Let f , g, h ∈ A such that f = gh holds. Assume n ≥ 2. We write f =
∑∞

i=0 fi,
g =

∑∞
i=0 gi and h =

∑∞
i=0 hi, where fi, gi, hi ∈ M

i \Mi+1 holds for all i > 0, with f0, g0, h0 ∈ K.
We note that these decompositions are uniquely defined. Let r ∈ N. We assume that f0 = 0 and
h0 , 0 both hold. Then the term gr is uniquely determined by f1, . . . , fr, h0, . . . , hr−1.

Proof. Lemma 1 is essential to our implementation of Weierstrass Preparation Theorem (WPT).
Hence, we give a proof by induction on r. Since g0h0 = f0 = 0 and h0 , 0 both hold, the claim
is true for r = 0. Now, let r > 0 and we can assume that g0, . . . , gr−1 are uniquely determined
by f1, . . . , fr−1, h0, . . . , hr−2. Observe that to determine gr, it suffices to expand f = gh modulo
Mr+1:

f1 + f2 + · · · + fr = g1h0 + (g2h0 + g1h1) + · · · + (grh0 + gr−1h1 + · · · + g1hr−1) .

gr is then found by polynomial multiplication and addition and a division by h0. �

Example 4 Suppose that f = X2, g = X2 + X1X2
2 , h = 1 − X1X2 ∈ K[[X1, X2]]. As can be seen,

moduloM3

X2 = (X2 + X1X2
2)(1 − X1X2)

Using Lemma 1 we now attempt to derive g1, g2 and g3

f1 = g1h0 =⇒ g1 = X2

f2 = g2h0 + g1h1 =⇒ g2 = 0
f3 = g3h0 + g2h1 + g1h2 =⇒ g3 = 0 − (X2)(−X1X2) = X1X2

2 .

8 Chapter 2. Background

Now, let f ∈ A[[Xn]], written as f =
∑∞

i=0 aiXi
n with ai ∈ A for all i ∈ N. We assume f . 0

mod M[[Xn]]. Let d ≥ 0 be the smallest integer such that ad < M. Then, WPT states the
following.

Theorem 2.2.1 There exists a unique pair (α, p) satisfying the following:

(i) α is an invertible power series of A[[Xn]],

(ii) p ∈ A[Xn] is a monic polynomial of degree d,

(iii) writing p = Xd
n + bd−1Xd−1

n + · · · + b1Xn + b0, we have: bd−1, . . . , b1, b0 ∈ M,

(iv) f = αp holds.

Moreover, if f is a polynomial of A[Xn] of degree d + m, for some m, then α is a polynomial of
A[Xn] of degree m.

We make three remarks before discussing the proof. First, the assumption of the theorem,
namely f . 0 mod M[[Xn]], can always be met, for any f , 0, by a suitable linear change
of coordinates. Second, WPT can be used to prove that K[[X1, . . . , Xn]] is both a unique fac-
torization domain (UFD) and a Noetherian ring. Third, in the context of the theory of analytic
functions, WPT implies that any analytic function (namely f in our context) resembles a poly-
nomial (namely p in our context) in the vicinity of the origin.

Proof. We give a proof of WPT, as this supports our implementation. If n = 1, then writing
f = αXd

n with α =
∑∞

i=0 ai+dXi
n proves the existence of the claimed decomposition. Now

assume n ≥ 2. Let us write α =
∑∞

i=0 ciXi
n with ci ∈ A for all i ∈ N. Since we require α to be

a unit, we have c0 <M. We must then solve for bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . such that for
all m ≥ 0 we have:

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0
...

ad−1 = b0cd−1 + b1cd−2 + · · · + · · · + bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · · + · · · + bd−1c1 + c0

ad+1 = b0cd+1 + b1cd + · · · + · · · + bd−1c2 + c1
...

ad+m = b0cd+m + b1cd+m−1 + · · · + · · · + bd−1cm+1 + cm
...

We will compute each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of the successive pow-
ers of M, that is, M,M2, . . . ,Mr, We start modulo M. By definition of d, the left
hand sides of the first d equations above are all 0 mod M. Since c0 is a unit, each of
b0, b1, . . . , bd−1 is 0 mod M. Plugging this into the remaining equations we obtain ci ≡ ad+i

mod M, for all i ≥ 0. Therefore, we have solved for each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . .
modulo M. Let r > 0 be an integer. We assume that we have inductively determined each
of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of M, . . . ,Mr. We wish to determine them

2.3. Hensel Lemma 9

modulo Mr+1. Consider the first equation, namely a0 = b0c0, with a0, b0, c0 ∈ A. It follows
from the hypothesis and Lemma 1 that we can compute b0 moduloMr+1. Consider the second
equation, that we re-write a1−b0c1 = b1c0. A similar reasoning applies and we can compute b1

moduloMr+1. Continuing in this manner, we can compute each of b2, . . . , bd−1 moduloMr+1.
Finally, using the remaining equations, determine ci mod Mr+1, for all i ≥ 0. �

Example 5 (a) Let f = X2 + X3 + X1X2
3 ∈ K[[X1, X2]][X3] and M = 〈X1, X2〉. Applying

Theorem 2.2.1, moduloM11, gives rise to

p = X2 + X2
2 X1 + 2X3

2 X2
1 + 5X4

2 X3
1 + 14X5

2 X4
1 + X3

α = 1 − X2X1 − X2
2 X2

1 − 2X3
2 X3

1 − 5X4
2 X4

1 − 14X5
2 X5

1 + X1X3.

(b) Let f = X2
1 + X2

2 + (X2 + 1)X2
3 + X3

3 ∈ K[[X1, X2]][X3] and M = 〈X1, X2〉. Applying
Theorem 2.2.1, moduloM5, results in

p = X2
2 + X2

1 − X3
2 − X2X2

1 − X2
2 X2

1 − X4
1 + (−X2

2 − X2
1 + 2X3

2 + 2X2X2
1 − X4

2 + X2
2 X2

1 + 2X4
1)X3 + X2

3

α = 1 + X2 + X2
2 + X2

1 − 2X3
2 − 2X2X2

1 + X4
2 − X2

2 X2
1 − 2X4

1 + X3.

2.3 Hensel Lemma

Broadly speaking, there are two main flavors of Hensel’s Lemma. The most formal, which
is the focus of our study, treats univariate polynomials with multivariate power series coeffi-
cients with the aim of decomposing them into linear factors. In the second one, the multivariate
power series coefficients are truncated up to a certain degree reducing the problem to univari-
ate polynomials with polynomial coefficients. The applications of the latter can be found in
factorization of polynomials, polynomials GCD and etc. Now let f = akYk + · · ·+a1Y +a0 with
ak, . . . , a0 ∈ K[[X1, . . . , Xn]]. We define f = f (0, . . . , 0,Y) ∈ K[Y]. We assume that f is monic
in Y (ak = 1). We further assume K is algebraically closed meaning that every non-constant
element of K[[X1, . . . , Xn]] has a root in K. Thus, there exist positive integers k1, . . . , kr and
pairwise distinct elements c1, . . . , cr ∈ K such that we have

f = (Y − c1)k1(Y − c2)k2 · · · (Y − cr)kr .

Theorem 2.3.1 (Hensel’s Lemma) There exists f1, . . . , fr ∈ K[[X1, . . . , Xn]][Y], all monic in
Y, such that we have:

1. f = f1 · · · fr,

2. deg(f j,Y) = k j, for all j = 1, . . . , r,

3. f j = (Y − c j)k j , for all j = 1, . . . , r.

10 Chapter 2. Background

Proof. The proof is by induction on r. Assume first r = 1. Observe that k = k1 necessarily
holds. Now define f1 := f . Clearly f1 has all the required properties. Assume next r > 1. We
apply a change of coordinates sending cr to 0. That is:

g(X1, . . . , Xn,Y) = f (X1, . . . , Xn,Y + cr)
= (Y + cr)k + a1(Y + cr)k−1 + · · · + ak

WPT applies to g. Hence there exist α, p ∈ K[[X1, . . . , Xn]][Y] such that α is a unit, p is a monic
polynomial of degree kr, with p = Ykr , and we have g = αp. Then, we set fr(Y) = p(Y − cr)
and f ∗ = α(Y − cr). Thus fr is monic in Y and we have f = f ∗ fr. Moreover, we have

f ∗ = (Y − c1)k1(Y − c2)k2 · · · (Y − cr−1)kr−1 .

The induction hypothesis applied to f ∗ implies the existence of f1, . . . , fr−1. �

Example 6 (a) Let f = Y2 − 9Y + X1 ∈ K[[X1]][Y] andM = 〈X1〉. Note that

f = Y2 − 9Y = (Y − 9)(Y)

Theorem 2.3.1 provides the following factors moduloM6

f1 = −9 +
1
9

X1 +
1

729
X2

1 +
2

59049
X3

1 +
5

4782969
X4

1 +
14

387420489
X5

1 + Y

f2 =
−1
9

X1 −
1

729
X2

1 −
2

59049
X3

1 −
5

4782969
X4

1 −
14

387420489
X5

1 + Y.

(b) Let f = Y4 + (4 + X1)Y3 − 7Y2 − 10Y ∈ K[[X1]][Y] andM = 〈X1〉. Observe that

f = Y4 + 4Y3 − 7Y2 − 10Y = Y(Y + 5)(Y − 2)(Y + 1)

Applying Theorem 2.3.1, moduloM6, gives

f1 = Y

f2 = 5 +
25
28

X1 +
125

21952
X2

1 +
9375

8605184
X3

1 −
6896875

13492928512
X4

1 +
110046875

755603996672
X5

1 + Y

f3 = −2 +
4

21
X1 −

176
9261

X2
1 +

6416
4084101

X3
1 −

159424
1801088541

X4
1 +

10880
113468578083

X5
1 + Y

f4 = 1 −
1
12

X1 +
23

1728
X2

1 −
331

124416
X3

1 +
21487

35831808
X4

1 −
375985

2579890176
X5

1 + Y.

Chapter 3

The Design and Implementation of Lazy
Power Series

Our power series implementation is both lazy and high-performing. To achieve this, our design
and implementation has two goals:

(i) compute only terms of the series which are truly needed; and

(ii) have the ability to “resume” a computation, in order to obtain a higher precision power
series without restarting from the beginning.

Of course, the lazy nature of our implementation refers directly to (i), while the high-performance
nature is due in part to (ii) and in part to other particular implementation details to be discussed.

Facilitating both of these aspects requires the use of some sort of generating function—a
function which returns new terms for a power series to increase its precision. Such a generating
function, or generator, is the key to high-performance in our implementation, yet also the most
difficult part of the design.

Our goal is to define a structure encoding power series so that they may be dynamically up-
dated on request. Each power series could then be represented as a polynomial alongside some
generating function. A key element of this design is to “hide” the updating of the underlying
polynomial. In our C implementation this is done through a functional interface (in contrast
to an object interface in object-oriented design). This interface has two main functions: one
to return the homogeneous part of a power series, and one to return the polynomial part of a
power series, each for a requested degree. These functions call some underlying generator to
produce terms until the requested degree is satisfied.

Two such functions are shown using Maple-like pseudo-code in Listing 3.1 as homog part ps
and polynomial part ps, respectively. The key element to these functions are their auto-
matic calls to the generating function GEN if the requested degree is greater than the current
degree of the power series.

As a first example, consider, the construction of the geometric series as a lazy power series,
in Maple-style pseudo-code in Listing 3.2. A power series is a data structure holding a poly-
nomial, a generating function, and an integer to indicate up to which degree the power series
is currently known. In this simple example, we see the need to treat functions as first-class
objects. The manipulation of such functions is easy in functional or scripting languages, where

11

12 Chapter 3. The Design and Implementation of Lazy Power Series

1 homog_part_ps := proc(ps, d::integer)
2 if (d > ps[DEG]) then
3 for i from ps[DEG] + 1 to d do
4 ps[POLY] := ps[POLY] + ps[GEN](i)

5 end do;
6 end if;
7 return homogeneous_part(ps[POLY], d);
8 end proc;
9

10 polynomial_part_ps := proc(ps, d::integer)
11 if (d > ps[DEG]) then
12 for i from ps[DEG] + 1 to d do
13 ps[POLY] := ps[POLY] + ps[GEN](i)

14 end do;
15 end if;
16 return truncate_poly(ps[POLY], d);
17 end proc;

Listing 3.1: A lazy power series design where a generating function is called on demand through some top-level
functional interface.

1 geometric_series_ps := proc(vars::list)
2 local homog_parts := proc(vars::list)
3 return d -> sum(vars[i], i=1..nops(vars))ˆd;
4 end proc;
5 ps := table();

6 ps[DEG] := 0;

7 ps[GEN] := homog_parts(vars); #capture vars in closure, return a function

8 ps[POLY] := ps[GEN](0);

9 return ps;
10 end proc;

Listing 3.2: The geometric series as a lazy power series.

dynamic typing and first-class function objects support such manipulation. This manipulation
is further interesting where power series can also be created through manipulation of existing
power series, and thus requires generating functions to be dynamically constructed from exist-
ing power series and their generating functions. For example, when a power series is created
by a arithmetic operation applied to two existing power series.

In support of high-performance we choose to implement our power series in the strongly-
typed and compiled C programming language rather than a scripting language. On one hand,
this allows direct access to our underlying high-performance polynomial implementation [8],
but on the other hand creates an impressive design challenge to effectively handle the need for
dynamic function manipulation. In this chapter we detail our resulting solution, which makes
use of a so-called ancestry in order for the generating function of a newly created power series
to “remember” from where it came. We begin in Section 3.1 with an overview of the basic
power series representation, its data structure, and our solution to generating functions in C.
In Section 3.2 we discuss power series multiplication and division, thus discussing the com-
bination of this data structure with our run-time support for creating a new generator dynam-
ically. Lastly, Section 3.3 presents experimentation of our implementation against SageMath
and Maple showing orders of magnitude improvement in computation time.

3.1. The Power Series Data Structure, Generators, and Ancestors 13

3.1 The Power Series Data Structure, Generators, and An-
cestors

The organization of our power series data structure is focused on supporting incremental gen-
eration of new terms through continual updates. To support this, the first fundamental design
element is the storage of terms of the power series. The current polynomial part, i.e. the
terms computed so far, of a power series are stored in a graded representation. A dense array
of (pointers to) polynomials is maintained whereby the index of a polynomial in this array is
equal to its (total) degree. Thus, this is an array of homogeneous polynomials representing the
homogeneous parts of the power series, called the homogeneous part array. The power series
data structure is a simple C struct holding this array, as well as integer numbers indicating
the degree up to which homogeneous parts are currently known, and the allocation size of the
homogeneous part array.

Using our graded representation, the generating function is simply a function returning the
homogeneous part of a power series for a requested degree. Unfortunately, in the C language,
functions are not readily handled as objects. Hence, we look to essentially create a closure for
the generating function (see, e.g., [29, Ch. 3]), by storing a function pointer along with the
values necessary for the function. For simplicity of implementation, these captured values are
passed to the function as parameters. We first describe this function pointer.

In an attempt to keep the generators as simple as possible, we enforce some symmetry
between all generators and thus the stored function pointers. Namely: (i) the first parameter
of each generator must be an integer, indicating the degree of the homogeneous polynomial
to be generated, and (ii) they must return that homogeneous polynomial. For some generating
functions, e.g. the geometric series, this single integer argument is enough to obtain a particular
homogeneous part. However, this is insufficient for most cases, particularly for generating a
homogeneous part of a power series resulting from an arithmetic operation.

Therefore, to introduce some flexibility in the generating functions, we extend the previous
definition of a generating function to include a finite number of void pointer parameters fol-
lowing the first integer parameter. These additional parameters are to be used by the generating
function to assist in generating the homogeneous polynomial to return. The use of void pointer
parameters is a result of the fact that function pointers must be declared to point to a function
with a particular number and type of parameters. Since we want to store this function pointer
in the power series struct, we would otherwise need to capture all possible function declara-
tions, which is a very rigid solution. Instead, void pointer parameters simultaneously allow
for flexibility in the types of the generator parameters, as well as limit the number of function
pointer types which must be captured by the power series struct. Flexibility arises where these
void pointers can be cast to any other pointer type, or even cast to any machine-word-sized
plain data type (e.g. int or float). In implementation these so-called void generators are
simple wrappers, casting each void pointer to the correct data type for the particular generator,
and then calling the true generator. Section 3.2 provides an example in Listing 3.5.

Our implementation, which supports power series arithmetic, Weierstrass preparation, and
factorization via Hensel’s lemma, currently requires only 4 unique function pointers for these
generators. All of these function pointers return a polynomial and take an integer as the first
parameter. They differ in taking 0–3 void pointer parameters as the remaining parameters. We

14 Chapter 3. The Design and Implementation of Lazy Power Series

1 typedef Poly_ptr (*homog_part_gen)(int);
2 typedef Poly_ptr (*homog_part_gen_unary)(int, void*);
3 typedef Poly_ptr (*homog_part_gen_binary)(int, void*, void*);
4 typedef Poly_ptr (*homog_part_gen_tertiary)(int, void*, void*, void*);
5

6 typedef union HomogPartGenerator {
7 homog_part_gen nullaryGen;

8 homog_part_gen_unary unaryGen;

9 homog_part_gen_binary binaryGen;

10 homog_part_gen_tertiary tertiaryGen;

11 } HomogPartGenerator_u;

12

13 typedef struct PowerSeries {
14 int deg;

15 int alloc;

16 Poly_ptr* homog_polys;

17 HomogPartGenerator_u gen;

18 int genOrder;

19 void *genParam1, *genParam2, *genParam3;

20 } PowerSeries_t;

Listing 3.3: A first implementation of the power series struct in C and function pointer declarations for the possible
generating functions. Poly ptr is a pointer to a polynomial.

call the number of these void pointer parameter the generator’s order. We have thus nullary
generators, unary generators, binary generators, and tertiary generators. We then create a
union type for these 4 possible function pointers and store only the union in the power series
struct. The generator’s order is also stored as an integer in order to choose the correct generator
from the union type to call at runtime.

Finally, these void pointers are also stored in the struct to eventually be passed to the
generator. When the generator’s order is less than maximum, these extra void pointers are
simply set to NULL. The structure of these generators, the generator union type, and the power
series struct itself is shown in Listing 3.3. In our implementation, these generators are used
generically, via the aforementioned functional interface. In the code listings which follow,
these functions are named homogPart PS and polynomialPart PS, to compute the homo-
geneous part and polynomial part of a power series, respectively. Whereas homog part ps
and polynomial part ps in the pseudo-code of Listing 3.1 used generator function objects
generically, our functions, simply use function pointers rather than function objects.

In general, these void pointer generator parameters are actually pointers to existing power
series structs. For example, the operands of an arithmetic operation would become parameters
to the generator of the result. This relation then yields a so-called ancestry of power series.
In this indirect way, a power series “remembers” from where it came, in order to update itself
upon request via its generator. This may trigger a cascade of updates where updating a power
series requires updating its “parent” power series, an so on up the ancestry tree. Section 3.2
explores this detail in the context of power series arithmetic meanwhile it is also discussed as a
crucial part of a lazy implementation of Weierstrass preparation (Chapter 5) and factorization
via Hensel’s lemma (Chapter 6).

The implementation of this ancestry requires yet one more additional feature. Since our
implementation is in the C language, we must manually manage memory. In particular, refer-
ences to parent power series (via the void pointers) must remain valid despite actions from the

3.2. Implementing Power Series Arithmetic 15

user. Indeed, the underlying updating mechanism should be transparent to the end-user. Thus,
it should be perfectly valid for an end-user to obtain, for example, a power series product, and
then free the memory associated with the operands of the multiplication.

In support of this we have established a reference counting scheme. Whenever a power
series is made the parent of another power series (by being set as the value of the child’s
generator parameter) its reference count is incremented. Therefore, the user may “free” a
power series when they are finished with it, and yet the memory persists as long as some other
power series has reference to it. Therefore, a free in this case is merely a decrement of a
reference counter. When the counter falls to 0, the data is actually freed, and moreover, upon
being freed, a child power series will also decrement the reference count of its parents, since
that reference has finally been removed.

In a final complication, we must consider the case when a void pointer parameter is not
pointing to a power series. We resolve this by storing, in the power series struct, a value to
identify the actual type of a void parameter. A simple if condition can then check this type
and conditionally free the generator parameter, if it is not plain data. For example, a power
series or a upops, see Listing 3.4. We implement this as an enumeration instead of a Boolean
so that the implementation is extensible to further parameter types. One may think that storing
both a void pointer, along with an enumeration value which encodes the actual type of that
pointer, to be wasteful. However, the additional memory usage is minimal compared to that
used by the polynomial data itself. Moreover, alternative solutions using, for example, union
types, would still need a way of determining the current valid field in the union for a particular
context.

3.2 Implementing Power Series Arithmetic
With the power series structure fully defined, we are now able to see examples putting its
generators to use. Given the design established in the previous section, implementing a power
series operation is as simple as defining the unique generator associated with that operation. In
this section we present power series multiplication and division using this design. Let us begin
with the former.

As we have seen in Section 2.1, the power series product of f , g ∈ K[[X1, . . . , Xn]] is defined
simply as h = f g =

∑
d∈N

(
Σk+`=d (f(k)g(`))

)
. In our graded representation, continually computing

new terms of h requires simply computing homogeneous parts of increasing degree. Indeed,
for a particular degree d we have (f g)(d) =

∑
k+`=d f(k)g(`). Through our use of an ancestry and

generators, the power series h can be constructed lazily, by simply defining its generator and
generator parameters, and instantly returning the resulting struct. The generator in this case is
exactly a function to compute (f g)(d) from f and g.

In reality, the generator stored in the struct encoding h is the void generator homogPartVoid prod PS
which, after casting parameters, simply calls the true generator, homogeneousPart prod PS.
This is shown in Listing 3.5. There, multiplyPowerSeries PS is the actual power series
operator, returning a lazily constructed power series product. There, the parents f and g are
reserved (reference count incremented) and assigned to be generator parameters, and the gen-
erator function pointer set. Finally, a single term of the product is computed.

Now consider finding the quotient h =
∑

e ceXe which satisfies f = gh for a given power

16 Chapter 3. The Design and Implementation of Lazy Power Series

1 typedef enum GenParamType {
2 PLAIN_DATA = 0,

3 POWER_SERIES = 1,

4 UPOPS = 2,

5 MPQ_LIST = 3

6 } GenParamType_e;

7

8 // An updated PowerSeries struct with reference counts and parameter types.
9 typedef struct PowerSeries {

10 int deg;

11 int alloc;

12 Poly_ptr* homog_polys;

13 HomogPartGenerator_u gen;

14 int genOrder;

15 int refcont;

16 void *genParam1, *genParam2, *genParam3;

17 GenParamType_e paramType1, paramType2, paramType3;

18 } PowerSeries_t;

19

20 void destroyPowerSeries_PS(PowerSeries_t* ps) {

21 --(ps->refCount);

22 if (ps->refCount <= 0) {
23 for (int i = 0; i <= ps->deg; ++i) {
24 freePolynomial(homog_polys[i]);

25 }

26 if (ps->genParam1 != NULL && ps->paramType1 == POWER_SERIES) {
27 destroyPowerSeries_PS((PowerSeries_t*) ps->genParam1);

28 }

29 // repeat for other parameters.
30 }

31 }

Listing 3.4: Extending the power series struct to include reference counting (as the refCount field) and
management of reference counts via destroyPowerSeries PS.

series f =
∑

e aeXe and an invertible power series g =
∑

e beXe. One could proceed by equating
coefficients in f = gh, with b0 being the constant term of g, to obtain

ce =
1
b0

ae −
∑

k+`=e

bkc`

 .
This formula can easily be rearranged in order to find the homogeneous part of h for a given
degree d:

h(d) =
1

g(0)

 f(d) −

d∑
k=1

g(k)h(d−k)

 .
This formula is possible since to compute h(d) we need only h(i) for i = 1, . . . , d − 1. Moreover,
the base case is simply h(0) = f(0)/g(0), a division in K, which is guaranteed since g is invertible
and thus g(0) , 0. The rest follows by induction.

In our graded representation, where power series are updated with successive homoge-
neous parts, this formula yields a generator for a power series quotient. The realization of
this generator in code is simple, as shown in Listing 3.6. This code, like all power series
operations, follows a symmetric pattern to power series multiplication. The division opera-
tion dividePowerSeries PS merely allocates a power series and initializes it lazily with a
single term. The void generator is homogPartVoid quo PS which calls the true generator

3.3. Benchmarks: Power SeriesMultiplication and Division 17

1 Poly_ptr homogPart_prod_PS(int d, PowerSeries_t* f, PowerSeries_t* g) {

2 Poly_ptr sum = zeroPolynomial();

3 for (int i = 0; i <= d; i++) {
4 Poly_ptr prod = multiplyPolynomials(

5 homogPart_PS(d-i, f), homogPart_PS(i,g));

6 sum = addPolynomials(sum, prod)

7 }

8 return sum;
9 }

10

11 Poly_ptr homogPartVoid_prod_PS(int d, void* param1, void* param2) {

12 return homogPart_prod_PS(d, (PowerSeries_t*) param1,
13 (PowerSeries_t*) param2);

14 }

15

16 PowerSeries_t* multiplyPowerSeries_PS(PowerSeries_t* f, PowerSeries_t* g) {

17 if (isZeroPowerSeries_PS(f) || isZeroPowerSeries_PS(g)) {
18 return zeroPowerSeries_PS();
19 }

20 reserve_PS(f); reserve_PS(g);

21 PowerSeries_t* prod = allocPowerSeries(1);

22 prod->gen.binaryGen= &(homogPartVoid_prod_PS)

23 prod->genParam1 = (void*) f;

24 prod->genParam2 = (void*) g;

25 prod->paramType1 = POWER_SERIES;

26 prod->paramType2 = POWER_SERIES;

27 prod->deg = 0;

28 prod->homogPolys[0] = homogPart_prod_PS(0, f, g);

29 return prod;
30 }

Listing 3.5: Computing the multiplication of two power series, where homogPart prod PS is the generator of
the product.

homogPart quo PS. The only trick to this generator for the quotient is that it requires a ref-
erence to the quotient itself. This creates an issue of a circular reference in the power series
ancestry. To avoid this, we abuse our parameter typing and label the quotient’s reference to
itself as plain data.

3.3 Benchmarks: Power Series Multiplication and Division

We now look to compare our implementation against SageMath [30], and Maple 2020. In
Maple 2020, the unexposed PowerSeries library [5, 20] provides lazy multivariate power
series, meanwhile the built-in (and thus exposed) mtaylor command provides truncated taylor
series expansions. Similarly, SageMath includes only truncated power series. In these latter
two, an explicit precision must be used and truncations cannot be extended once computed.
Consequently, our experimentation only measures computing a particular precision, thus not
using our implementation’s ability to resume computation. We compare against all three; see
Figures 3.1–3.3.

In SageMath, the multivariate power series ring R[[X1, . . . , Xn]] is implemented using the
univariate power series ring S [[T]] with S = R[X1, . . . , Xn]. In S [[T]], the subring formed
by all power series f such that the coefficient of T i in f is a homogeneous polynomial of
degree i (for all i ≥ 0) is isomorphic to R[[X1, . . . , Xn]]. By default, Singular [11] underlies the

18 Chapter 3. The Design and Implementation of Lazy Power Series

1 Poly_ptr homogPart_quo_PS(int d, PowerSeries_t* f, PowerSeries_t* g, PowerSeries_t* h) {

2 if (d == 0) {
3 return dividePolynomials(homogPart_PS(0, f), homogPart_PS(0, g));
4 }

5

6 Poly_ptr s = homogPart_PS(d, f);

7 for (int i = 1; i <= deg; ++i) {
8 Poly_ptr p = multiplyPolynomials(homogPart_PS(i, g), homogPart_PS(d-i, h));

9 s = subPolynomials(s, p);

10 }

11 return dividePolynomials(s, homogPart(0, g))
12 }

13

14 Poly_ptr homogPartVoid_quo_PS(int d, void* p1, void* p2, void* p3) {

15 return homogPart_prod_PS(d, (PowerSeries_t*) p1,
16 (PowerSeries_t*) p2,

17 (PowerSeries_t*) p3);

18 }

19

20 PowerSeries_t* dividePowerSeries_PS(PowerSeries_t* f, PowerSeries_t* g) {

21 if(!isInvertible_PS(g)) {
22 exit(DIVISION_BY_ZERO)

23 }

24

25 reserve_PS(f); reserve_PS(g);

26 PowerSeries_t* quo = allocPowerSeries(1);

27 quo->gen.ternaryGen= &(homogPartVoid_quo_PS)

28 quo->genParam1 = (void*) f;

29 quo->genParam2 = (void*) g;

30 quo->genParam3 = (void*) quo;

31 quo->paramType1 = POWER_SERIES;

32 quo->paramType2 = POWER_SERIES;

33 quo->paramType3 = PLAIN_DATA; //abuse this to avoid chicken-and-egg
34 quo->deg = 0;

35 quo->homogPolys[0] = homogPart_quo_PS(0, f, g, quo);

36 return quo;
37 }

Listing 3.6: Computing the division of two power series, where homogPart quo PS is the generator of the
quotient.

multivariate polynomial ring S while Flint [18] underlies the univariate polynomials used in
univariate power series. Python 3.7 interfaces and joins these underlying implementations. To
see exactly how SageMath works consider f ∈ K[[X1, X2]] with the goal is to compute 1

f and
f · 1

f to precision d. One begins by constructing the power series ring in X1, X2 over Q with the
default precision set to d as R.<x,y> = PowerSeriesRing(QQ, default prec=d). Then
g = fˆ-1 returns the inverse, and h = f * g the desired product, to precision d.

Throughout this thesis our benchmarks were collected with a time limit of 1800 seconds on
a machine running Ubuntu 18.04.4 with an Intel Xeon X5650 processor running at 2.67 GHz,
with 12x4GB DDR3 memory at 1.33 GHz. Tables 3.1– 3.6 contain the experimental data for
our comparison of power series multiplication and inversion in Maple ’s PowerSeries library,
SageMath and BPASḞigures 3.1–3.3 gather data from Tables 3.1– 3.6 in a graphical manner.

The first set of benchmarks are presented in Figure 3.1 where the power series f = 1 +

X1 + X2 is both inverted and multiplied by its inverse. Figures 3.2 and 3.3 present the same
but for f = 1 + X1 + X2 + X3 and f = 2 + 1

3 (X1 + X2), respectively. In all cases, f · 1
f in-

cludes the time to compute the inverse. Note that power series arithmetic densify computations

3.3. Benchmarks: Power SeriesMultiplication and Division 19

and many other examples have been tried too. It is clear that our implementation is orders of
magnitude faster than existing implementations. This is due in part to the efficiency of our un-
derlying polynomial arithmetic implementation [8], but also to our execution environment. Our
implementation is written in the C language and fully compiled, meanwhile, both SageMath
and Maple have a level of interpreted code, which surely impacts performance. We note that,
through truncated power series as polynomials, the dense multiplication of a power series by
its inverse is trivial for SageMath and mtaylor.

The current experimentation deals with power series obtained by applying power series
arithmetic operations to multivariate polynomials. We note that that both Maple ’s PowerSeries
library and its BPAS counterpart allow the creation of a power series from the function return-
ing the sum of its terms of a given degree. Therefore, power series corresponding to analytic
functions (around a given point) such as exponential and trigonometric functions can be ma-
nipulated by Maple ’s PowerSeries library and its BPAS counterpart.

Figure 3.1: Computing 1
f and f · 1

f for f = 1 + X1 + X2

20 Chapter 3. The Design and Implementation of Lazy Power Series

Figure 3.2: Computing 1
f and f · 1

f for f = 1 + X1 + X2 + X3.

Figure 3.3: Computing 1
f and f · 1

f for f = 2 + 1
3 (X1 + X2)

3.3. Benchmarks: Power SeriesMultiplication and Division 21

Precision BPAS SAGE MAPLE

100 0.011 0.204 0.361
150 0.027 0.895 0.856
200 0.055 2.565 1.673
300 0.156 12.091 4.433
400 0.344 39.724 9.634
500 0.646 99.996 17.548
600 1.080 211.187 29.167
700 1.506 403.023 46.710
800 2.425 710.182 71.584
900 3.314 1167.297 108.798
1000 4.409 broken pipe 152.951
1100 5.761 broken pipe 229.669
1200 7.379 broken pipe 332.585
1300 9.271 broken pipe 432.806
1400 11.511 broken pipe 608.408
1500 14.055 broken pipe 714.256
1600 17.039 broken pipe 796.811
1700 20.373 broken pipe 806.888
1800 24.159 broken pipe 930.397
1900 29.203 broken pipe 1220.259
2000 33.781 broken pipe 1295.920 (broken pipe)

Table 3.1: A comparison of timings (with a time limit of 1800 seconds) for computing the inverse of the
power series 2 + 1

3 (X1 + X2) to a precision between 100 and 2000.

22 Chapter 3. The Design and Implementation of Lazy Power Series

Precision BPAS SAGE MAPLE

100 0.007 0.025 0.274
200 0.029 0.201 1.116
300 0.065 0.729 2.582
400 0.116 1.739 4.772
500 0.185 3.421 8.071
600 0.274 6.297 12.294
700 0.382 10.109 18.152
800 0.508 15.357 25.957
900 0.658 22.407 35.927
1000 0.822 31.804 50.107
1100 1.017 45.404 69.030
1200 1.236 61.040 92.274
1300 1.473 79.589 125.599
1400 1.742 101.757 180.372
1500 2.022 128.574 262.254
1600 2.312 160.460 430.225
1700 2.608 200.519 726.641
1800 2.954 243.718 778.142
1900 3.295 292.257 740.904
2000 3.666 349.944 945.301

Table 3.2: A comparison of timings (with a time limit of 1800 seconds) for computing the inverse of the
power series 1 + X1 + X2 to a precision between 100 and 2000.

3.3. Benchmarks: Power SeriesMultiplication and Division 23

Precision BPAS SAGE MAPLE

25 0.106
50 1.006
75 4.928
100 0.285 9.713 19.232
125 33.604 64.895
150 82.300 191.896
200 2.245 366.490 NaN
300 7.250 NaN NaN
400 17.747 NaN NaN
500 36.123 NaN NaN
600 65.098 NaN NaN
700 108.834 NaN NaN
800 168.567 NaN NaN
900 250.236 NaN NaN
1000 354.211 NaN NaN
1100 483.245 NaN NaN
1200 728.184 NaN NaN

Table 3.3: A comparison of timings (with a time limit of 1800 seconds) for computing the inverse of the
power series 1 + X1 + X2 + X3 to a precision between 100 and 1200.

24 Chapter 3. The Design and Implementation of Lazy Power Series

Precision BPAS SAGE MAPLE

50 0.008 0.023 4.414
100 0.022 0.225 65.688
150 0.064 0.965 333.282
200 0.111 2.401 1110.165
300 0.316 10.847 5999.789 (broken pipe)
400 0.699 35.605
500 1.675 88.789
600 2.163 185.971
700 3.236 356.137
800 4.646 629.802
900 6.465 1045.676
1000 8.644 1622.464
1100 11.369 broken pipe
1200 14.616 broken pipe
1300 18.653 broken pipe
1400 22.924 broken pipe
1500 28.029 broken pipe
1600 33.868 broken pipe
1700 40.708 broken pipe
1800 48.148 broken pipe
1900 56.575 broken pipe
2000 66.104 broken pipe

Table 3.4: A comparison of timings (with a time limit of 1800 seconds) for multiplying 2 + 1
3 (X1 + X2)

by its inverse and updating the terms based on the precision between 100 and 2000.

3.3. Benchmarks: Power SeriesMultiplication and Division 25

Precision BPAS SAGE MAPLE

100 0.015 0.0293 60.344
150 316.485
200 0.059 0.2200 969.457
300 0.135 0.7710 NAN
400 0.241 1.7090 NAN
500 0.387 3.0840 NAN
600 0.569 5.6390 NAN
700 0.787 9.0150 NAN
800 1.058 13.7430 NAN
900 1.370 20.0860 NAN
1000 1.749 28.5770 NAN
1100 2.166 40.7380 NAN
1200 2.609 54.4120 NAN
1300 3.126 71.1180 NAN
1400 3.688 90.8250 NAN
1500 4.284 114.6030 NAN
1600 4.976 142.5150 NAN
1700 5.716 175.8220 NAN
1800 6.485 214.3160 NAN
1900 7.330 257.2930 NAN
2000 8.279 306.8480 NAN

Table 3.5: A comparison of timings (with a time limit of 1800 seconds) for multiplying 1 + X1 + X2 by
its inverse and updating the terms based on the precision between 100 and 2000.

26 Chapter 3. The Design and Implementation of Lazy Power Series

Precision BPAS SAGE MAPLE

25 2.434
50 65.252
75 573.291
100 0.580 9.820 3066.104(Broken pipe)
125 30.476
150 74.160
200 4.592 361.645 NAN
300 16.173 NAN NAN
400 40.578 NAN NAN
500 82.647 NAN NAN
600 149.638 NAN NAN
700 250.315 NAN NAN
800 386.936 NAN NAN
900 567.054 NAN NAN
1000 710.227
1100 980.659
1200 1341.075

Table 3.6: A comparison of timings (with a time limit of 1800 seconds) for multiplying 1 + X1 + X2 + X3
by its inverse and updating the terms based on the precision between 100 and 1200.

Chapter 4

The Design and Implementation of
Univariate Polynomials over Power Series

A univariate polynomial with multivariate power series coefficients, i.e. a univariate polyno-
mial over power series (UPOPS), is implemented as a simple extension of our existing power
series. Following a simple dense univariate polynomial design, our UPOPS are represented as
an array of coefficients, each being a pointer to a power series, where the index of the coef-
ficient in the array implies the degree of the coefficient’s associated monomial. Integers are
also stored for the degree of the polynomial and the allocation size of the coefficient array. In
support of the underlying lazy power series coefficients, we add reference counting a UPOPS.
The UPOPS struct can be seen in Listing 4.1.

1 typedef struct UPOPS {
2 int deg;

3 int alloc;

4 PowerSeries_t** data;

5 PowerSeries_t** weierstrassFData; //see Chapter 5

6 int fDataSize;

7 int refcount;

8 } UPOPS_t;

Listing 4.1: The univariate polynomial over power series struct.

The arithmetic of UPOPS is inherited directly from its coefficient ring, our lazy power
series, and follows a naive implementation of univariate polynomials (see, e.g. [33, Ch. 2]).
Through the use of our lazy power series, our implementation of UPOPS is automatically lazy
through each individual coefficient’s ancestry. Lazy UPOPS addition, subtraction, multiplica-
tion, and negation follow easily. For completeness, we present simple algorithms for addition
and multiplication of UPOPS in Algorithm 1 and Algorithm 2, respectively.

4.1 UPOPS Taylor Shift
One important operation on univariate polynomials over power series, which is not inherited
directly from our power series implementation is Taylor shift. This operation takes a UPOPS

27

28Chapter 4. The Design and Implementation of Univariate Polynomials over Power Series

Algorithm 1 AddUnivariatePolynomialOverPowerSeries(f , g)

Input: f =
∑k

i=0 aiY i, g =
∑`

i=0 biY i, ai, bi ∈ K[[X1, . . . , Xn]]
Output: h =

∑max (k,`)
i=0 ciY i = f + g

1: d = min k, `
2: for i = 0 to d do ci = ai + bi

3: for i = d + 1 to k do ci = ai

4: for i = d + 1 to ` do ci = bi

5: return h =
∑max (k,`)

i ciY i

Algorithm 2 MultiplyUnivariatePolynomialOverPowerSeries(f , g)

Input: f =
∑k

i=0 aiY i, g =
∑`

i=0 biY i, ai, bi ∈ K[[X1, . . . , Xn]]
Output: h =

∑k+`
i=0 ciY i = f g

1: for i = 0 to k + ` do ci = 0
2: for i = 0 to k do
3: for j = 0 to ` do
4: ci+ j = ci+ j + ai × b j

5: return h =
∑k+`

i ciY i

f ∈ K[[X1, . . . , Xn]][Y] and returns f (Y + c) for some constant c ∈ K. Normally, the shift
operator would be defined for any element of the ground ring K[[X1, . . . , Xn]], however our use
of Taylor shift in applying Hensel’s lemma (see Chapter 6), requires only shifting by elements
of K, and we thus specialize to that case.

Let us begin with a description of the particular problem. Given f =
∑k

i=0 aiY i we want to
obtain f (Y + c) =

∑k
i=0 ai(Y + c)i. Since the coefficients of f are lazy power series, our goal is

to compute f (Y + c) lazily as well. That is, to compute f (Y + c) in a way which relies on the
underlying lazy power series arithmetic to yield a lazily computed UPOPS. Since our UPOPS
are represented in a dense fashion, we compute the coefficients of f (Y + c) as a polynomial in
Y:

f (Y + c) = a0 + a1(Y + c) + a2(Y + c)2 + a3(Y + c)3 + . . .

= (a0 + ca1 + c2a2 + c3a3 + . . .)

+(a1 + 2ca2 + 3c2a3 + . . .)Y

+(a2 + 3ca3 + . . .)Y2

+(a3 + . . .)Y3 + . . .

The coefficients of the expansion of f (Y +c) create a triangular shape of linear combinations of
the original coefficients of f . These linear combinations arise from the binomial expansion of
(Y + c)i and are closely related to the Pascal triangle. Let S be a triangular matrix encoding the
coefficients of the binomial expansion (Y + c)i, for i = 0, . . . , k, the vector A be the coefficients

4.1. UPOPS Taylor Shift 29

of f , and the vector B be the coefficients of f (Y + c). With k = 3 we have:

S =


1
1 c
1 2c c2

1 3c 3c2 c3

 , A =


a0

a1

a2

a3

 , B =


b0

b1

b2

b3

 .
Then we can verify that bi as the inner product of the i-th sub-diagonal of S with the lower
k + 1 − i elements of A, where k is the degree of f , for i = 0, . . . , k. In particular for i = 0, the
coefficient b0 is the inner product of the diagonal of S and the vector A.

Recalling that c ∈ K, the construction of bi can be performed in a graded fashion from the
linear combinations of homogeneous parts of a j for j ≤ i. The homogeneous part of degree
d, bi(d) , can be computed from only a j(d) , for j ≤ i. Therefore, a generator for bi is easily con-
structed from the homogeneous parts of a j, for j ≤ i, using multiplication by elements ofK and
polynomial addition. Therefore, in precisely this manner, we can construct the entire UPOPS
f (Y + c) in a lazy manner through initializing each coefficient bi with a so-called linear combi-
nation generator, see Algorithm 3. That same algorithm is presented as in our actual C code as
Listing 4.2. Finally, updating the coefficients of f (Y+c) can be performed automatically, just as
in any power series, by calling its generator via homogPart PS or polynomialPart PS (see
Section 3.1). Since the main application of Taylor shift is factorization via Hensel’s lemma, we
leave its evaluation to Chapter 6 where benchmarks for factorization are presented.

Algorithm 3 LinearCombinationGenerator(d, f , S, i)

Input: f =
∑k

j=0 a jY j, S ∈ Kk+1×k+1 a lower triangular matrix of coefficients of (Y + c) j for
j = 0, . . . , k, the index i of the coefficient bi for which to generate, d the requested degree

Output: bi(d) , the homogeneous part of degree d of bi.
1: bi(d) := 0
2: for ` = i to k do
3: j := ` + 1 − i
4: bi(d) := bi(d) + S `+1, j× homogPart PS(d, a`)

5: return bi(d)

30Chapter 4. The Design and Implementation of Univariate Polynomials over Power Series

1 Poly_ptr linearCombGen_PS(int d, long long i, mpq_t* S, Upops_t* A) {

2 int k = A->deg + 1;

3 Poly_ptr ret = zeroPolynomial();

4 for (int l = i; l < k; ++l) {
5 int j = l - i;

6 Poly_ptr homog = multiplyByRational(homogPart_PS(d, A->data[l]), S[l*k+j]);

7 ret = addPolynomials(ret, homog);

8 }

9 return ret;
10 }

11

12 Poly_ptr linearCombGenVoid_PS(int d, void* p1, void* p2, void* p3) {

13 return linearCombGen_PS(d, (long long) p1, (mpq_t*) p2, (Upops_t*) p3);
14 }

15

16 Upopt_t* Taylor_shift_initialization(mpq_t c_r, Upops_t* f) {

17 mpq_t* S = getPascalTriLowerMat(c_r, k);

18 Upops_t* B = allocateUnivariatePolynomialOverPowerSeries_UPOPS(f->deg+1);

19

20 for (int row = 0; m <= f->deg; ++row) {
21 B->data[row] = allocatePowerSeries_PS(1);

22 B->data[row]->polys[0] = linearCombGen_PS(0, row, S, f);

23 B->data[row]->deg = 0;

24

25 reserve_UPOPS(f);

26 B->data[row]->genOrder = 3;

27 B->data[row]->genParam1 = (void*) n;

28 B->data[row]->genParam2 = (void*) S;

29 B->data[row]->genParam3 = (void*) f;

30 B->data[row]->paramType1 = PLAIN_DATA;

31 B->data[row]->paramType2 = PLAIN_DATA;

32 B->data[row]->paramType3 = UPOPS;

33 B->data[row]->gen.tertiaryGen = &(linearCombGenVoid_PS);

34 }

35

36 B->deg = f->deg;

37 return B;
38 }

Listing 4.2: Computing the Taylor shift of a UPOPS lazily using a linear combination generator over the power
series coefficients of the original UPOPS.

Chapter 5

A Lazy Weierstrass Preparation

In this chapter we consider the application of Weierstrass Preparation Theorem (WPT) to uni-
variate polynomials over power series. Let f , p, α ∈ K[[X1, . . . , Xn]][Y] where f =

∑d+m
i=0 aiY i,

p = Yd +
∑d−1

i=0 biY i, and α =
∑m

i=0 ciY i. From the proof of WPT (Theorem 2.2.1), we have that
f = αp implies the following equalities:

a0 = b0c0

a1 = b0c1 + b1c0
...

ad−1 = b0cd−1 + b1cd−2 + · · · + bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · · + bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(5.1)

Following the proof, we wish to solve these equations modulo successive powers of M,
the maximal ideal of K[[X1, . . . , Xn]]. This implies that we will be iteratively updating each
power series b0, . . . , bd−1, c0, . . . , cm by adding homogeneous polynomials of increasing degree,
precisely as we have done for all lazy power series operations thus far. To solve these equations
modulo Mr+1, both the proof of WPT and the algorithm operates in two phases. First, the
coefficients b0, . . . , bd−1 of p are updated using the equations from a0 to ad−1, one after the
other. Second, the coefficients c0, . . . , cm of α are updated.

Let us begin with the first phase. A simple rearrangement of the equations a0 to ad−1 shows
their successive dependency where first solving for bi−1 where it appears on the right hand side
of an equation allows the next equation to be solved for bi.

a0 = b0c0

a1 − b0c1 = b1c0

a2 − b0c2 − b1c1 = b2c0
...

ad−1 − b0cd−1 − b1cd−2 + · · · − bd−2c1 = bd−1c0

(5.2)

Consider that b0, . . . , bd−1, c0, . . . , cm are known moduloMr and a0, . . . , ad−1 are known modulo
Mr+1. Using Lemma 1 the first equation a0 = b0c0 can then be solved for b0 modulo Mr+1.

31

32 Chapter 5. A LazyWeierstrass Preparation

From there, the expression a1 − b0c1 then becomes known modulo Mr+1. Notice that the
constant term of b0 is 0 by definition, thus the product b0c1 is known moduloMr+1 as long as
b0 is known moduloMr+1. Therefore, the entire expression a1 − b0c1 is known moduloMr+1

and Lemma 1 can be applied to solve for b1 in the equation a1 − b0c1 = b1c0. This argument
follows for all equations, therefore solving for all b0, . . . , bd−1 moduloMr+1.

In the second phase, we look to determine c0, . . . , cm moduloMr+1. Here, we have already
computed b0, . . . , bd−1 modulo Mr+1. A rearrangement of the remaining equations of (5.1)
shows that each ci may be computed moduloMr+1:

cm = ad+m

cm−1 = ad+m−1 − bd−1cm

cm−2 = ad+m−2 − bd−2cm − bd−1cm−1
...

c0 = ad − b0cd − b1cd−1 − · · · − bd−1c1

(5.3)

Consider the second equation. ad+m−1 and bd−1 are known modulo Mr+1 and bd−1 ∈ M by
definition. Then, the product bd−1cm is known modulo Mr+1 and we easily find cm−1 modulo
Mr+1. The same follows for cm−2, . . . , c0.

With these two sets of re-arranged equations, we have seen how the coefficients of p and α
have been updated modulo successive powers ofM. That is to say, how they can be updated by
adding homogeneous parts of successive degrees. This design lends itself to be implemented as
generator functions. Let us now see how we can successfully create generators for this purpose.

The first challenge to this design is that each power series coefficient of p is not indepen-
dent, and must be updated in a particular order. Moreover, to generate homogeneous parts of
degree d for the coefficients of p, the coefficients of α must also be updated to degree d − 1.
Therefore, it is a required side effect of each generator of b0, . . . , bd−1, c0, . . . , cm that all other
power series are updated. To implement this, the generators of the power series of p are a mere
wrapper of the same underlying updating function which updates all coefficients from being
known moduloMr to moduloMr+1 simultaneously. This so-called Weierstrass update follows
two phases as just explained.

In the first phase of Weierstrass update, one must use Lemma 1 to solve for the homoge-
neous part of degree r for each b0, . . . , bd−1. To achieve this effectively, our implementation
follows two key points. The first is an efficient implementation of Lemma 1 itself. Consider
again the equations of Lemma 1 for f = gh moduloMr+1:

f(1) + f(2) + · · · + f(r) = (g(1) + g(2) + · · · + g(r))(h(0) + h(1) + · · · + h(r))

=
(
g(1)h(0)

)
+

(
g(2)h(0) + g(1)h(1)

)
+ · · ·+(

g(r)h(0) + g(r−1)h(1) + · · · + g(1)h(r−1)
)
.

(5.4)

The goal is to obtain g(r). What one should realize is that computing g(r) requires only a fraction
of this formula. In particular, we have

f(r) = g(r)h(0) + g(r−1)h(1) + · · · + g(1)h(r−1), (5.5)

and g(r) can be computed with simply polynomial addition and multiplication, followed by the
division of a single element of K, since h(0) has degree 0.

33

Algorithm 4 WeierstrassUpdate(f , p, α, F)

Input: f =
∑d+m

i=0 aiY i, p =
∑d

i=0 biY i, α =
∑m

i=0 ciY i, ai, bi, ci ∈ K[[X1, . . . , Xn]] satisfying
Theorem 2.2.1, F = {Fi | Fi = ai−

∑i
k=0 bkci−k, i = 0, . . . , d−1}, with b0, . . . , bd−1, c0, . . . , cm

known moduloMr, the maximal ideal of K[[X1, . . . , Xn]].
Output: b0, . . . , bd−1, c0, . . . , cm known moduloMr+1, updated in-place.

. phase one
1: for i = 0 to d − 1 do
2: s := 0
3: for k = 1 to r − 1 do
4: s := s + homogPart PS(r − k, bi) × homogPart PS(k, c0)
5: homogPart PS(r, bi) := (homogPart PS(r, Fi) − s) / homogPart PS(0, c0)

. phase two
6: for i = 0 to m do
7: homogPart PS(r, ci) . force an update of ci for next update.

The second key point is that, in order to compute g(r), i.e. the homogeneous parts of degree
r of b0, . . . , bd−1, we must first find f(r), i.e. the homogeneous parts of degree r of a0, a1 − b0c1,
a2 − b0c2 − b1c1, etc. from (5.2). A nice result of our existing power series design is that we
can define some lazy power series, say Fi, such that Fi = ai −

∑i
k=0 bkci−k. These Fi can then

be automatically updated via its generators when the bk are updated. The implementation of
phase one of Weierstrass update is then simply a loop over solving equation (5.5), where f(r) is
automatically obtained through the use of generators on the power series Fi.

Phase two of Weierstrass update follows the same design as in the definition of those Fi

power series. In particular, from (5.3) we can see that each cm, . . . , c0 is merely the result of
some power series arithmetic. Hence, we simply rely on the underlying power series arithmetic
generators to be the generators of cm, . . . , c0.

With the above discussion, we have fully defined a lazy implementation of Weierstrass
preparation. It begins with an initialization, which simply uses lazy power series arithmetic to
create F0, . . . , Fd−1, cm, . . . , c0, and initializes each b0, . . . , bd−1 to 0. Then, the generators for
b0, . . . , bd−1 all call the same underlying Weierstrass update function. This function is shown
in Algorithm 4, which is split into two phases as our discussion has suggested. In our imple-
mentation, we store a pointer to the array of F0, . . . , Fd−1 in the UPOPS struct of p for ease of
calling Weierstrass update (see Listing 4.1).

Notice that, although phase one requires updating each bi in order from i = 0 to d − 1,
the same is not true for c0, . . . , cm. This second phase is embarrassingly parallel and could be
performed with a parallel map. Structuring Weierstrass preparation as a lazy operation also
naturally exposes further concurrency opportunities, as in the case of factorization via Hensel’s
lemma, see Chapter 6.

34 Chapter 5. A LazyWeierstrass Preparation

5.1 Benchmarks: Weierstrass Preparation
In this section, we report on the experimental data of the implementation of Weierstrass prepa-
ration in BPAS against that of Maple’s PowerSeries library. We have studied two families of
examples for d ≥ 3:

1
1 + X1 + X2

Yd + X2Yd−1 + . . . + Y + X1

1
1 + X1 + X2

Yd + Yd−1 + . . . + X2Y + X1

The results are shown in Tables 5.1- 5.8 and Figures 5.1 and 5.2 gather data from these
Tables in a graphical manner. Not only is our implementation orders of magnitude faster than
Maple, but the difference in computation time further increases with increasing precision (total
degree in X1, X2). This can be attributed to the efficient underlying power series arithmetic we
have implemented, as well as our smart implementation of Lemma 1. Consider the following
example

1
1 + X1 + X2

Y3 + Y2 + X2Y + X1

Applying Weierstrass Preparation modulo terms of degree 4 gives the following

p = X1 + X2X1 − X2
1 + X2

2 X1 − 4X2X2
1 + 5X3

1

+(X2 − X1 + X2
2 − 2X1X2 + 3X2

1 + X3
2 − 6X2

2 X1 + 13X2X2
1 − 14X3

1)Y + Y2

α = 1 − X2 + X1 + 2X1X2 − 4X2
1 − X3

2 + 4X2
2 X1 − 11X2X2

1 + 18X3
1

+(1 − X2 − X1 + X2
2 + 2X1X2 + X2

1 − X3
2 − 3X2

2 X1 − 3X2X2
1 − X3

1)Y

5.1. Benchmarks: Weierstrass Preparation 35

Precision BPAS MAPLE

10 0.002 0.247
20 0.020 3.279
30 0.073 20.315
40 0.200 85.156
50 0.442 210.591
60 0.863 541.932
70 1.526 1024.378
80 2.460 NAN
90 3.708 NAN
100 5.415 NAN
110 7.715 NAN
120 10.738 NAN
130 14.631 NAN
140 19.551 NAN
150 25.665 NAN
160 33.132 NAN
170 42.719 NAN
180 53.362 NAN
190 66.691 NAN
200 82.007 NAN
210 100.508 NAN
220 123.160 NAN
230 146.332 NAN
240 175.616 NAN
250 208.458 NAN
260 245.851 NAN
270 288.241 NAN
280 339.781 NAN
290 394.882 NAN
300 456.991 NAN
310 523.884 NAN
320 601.067 NAN
330 692.865 NAN
340 783.561 NAN
350 889.407 NAN
360 1006.675 NAN
370 1136.410 NAN
380 1280.674 NAN
390 1448.138
400 1622.192

Table 5.1: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y3 + Y2 + X2Y + X1 to a precision between 10 and 400.

36 Chapter 5. A LazyWeierstrass Preparation

Precision BPAS MAPLE

10 0.002 0.273
20 0.021 3.804
30 0.097 24.839
40 0.290 79.437
50 0.668 229.678
60 1.321 539.220
70 2.333 1132.865
80 3.847 NAN
90 5.985 NAN
100 8.969 NAN
110 12.891 NAN
120 18.044 NAN
130 25.172 NAN
140 33.356 NAN
150 43.436 NAN
160 56.074 NAN
170 71.667 NAN
180 90.146 NAN
190 112.311 NAN
200 139.663 NAN
210 168.948 NAN
220 204.669 NAN
230 248.443 NAN
240 294.819 NAN
250 349.257 NAN
260 412.409 NAN
270 483.739 NAN
280 565.858 NAN
290 656.939 NAN
300 763.749 NAN
310 873.289 NAN
320 1005.939 NAN
330 1146.149 NAN
340 1304.197 NAN
350 1482.199 NAN
360 broken pipe NAN
370 broken pipe
380 broken pipe
390 broken pipe
400 broken pipe

Table 5.2: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10 and 400.

5.1. Benchmarks: Weierstrass Preparation 37

Precision BPAS MAPLE

10 0.004 0.304
20 0.033 4.651
30 0.133 24.930
40 0.394 94.599
50 0.898 249.586
60 1.762 567.922
70 2.947 1152.821
80 4.682 NAN
90 7.124 NAN
100 10.502 NAN
110 14.973 NAN
120 20.864 NAN
130 28.498 NAN
140 38.012 NAN
150 50.166 NAN
160 64.837 NAN
170 83.171 NAN
180 104.395 NAN
190 129.709 NAN
200 160.147 NAN
210 195.474 NAN
220 237.051 NAN
230 285.917 NAN
240 343.213 NAN
250 405.442 NAN
260 478.299 NAN
270 562.075 NAN
280 657.658 NAN
290 764.034 NAN
300 885.143 NAN
310 1021.389 NAN
320 1182.772 NAN
330 1333.249 NAN
340 1531.011 NAN
350 1744.344 NAN
360 broken pipe
370 broken pipe
380 broken pipe
390 broken pipe
400 broken pipe

Table 5.3: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y5 + Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10 and 400.

38 Chapter 5. A LazyWeierstrass Preparation

Precision BPAS MAPLE

10 0.003 0.325
20 0.033 4.371
30 0.153 30.760
40 0.475 88.231
50 1.110 251.065
60 2.164 600.943
70 3.649 1212.061
80 5.853 NAN
90 9.108 NAN
100 13.103 NAN
110 18.964 NAN
120 26.314 NAN
130 35.949 NAN
140 48.637 NAN
150 62.361 NAN
160 80.877 NAN
170 103.936 NAN
180 135.512 NAN
190 160.955 NAN
200 198.786 NAN
210 242.428 NAN
220 306.591 NAN
230 355.826 NAN
240 423.311 NAN
250 504.435 NAN
260 594.056 NAN
270 696.032 NAN
280 811.279 NAN
290 941.532 NAN
300 1098.941 NAN
310 1258.003 NAN
320 1446.503 NAN
330 1651.794 NAN
340 broken pipe
350 broken pipe
360 broken pipe
370 broken pipe
380 broken pipe
390 broken pipe
400 broken pipe

Table 5.4: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y6 + Y5 + Y4 + Y3 + Y2 + X2Y + X1 to a precision between 10 and 400.

5.1. Benchmarks: Weierstrass Preparation 39

Precision BPAS MAPLE

10 0.001 0.151
20 0.011 1.729
30 0.037 10.031
40 0.105 37.609
50 0.253 105.318
60 0.536 258.575
70 0.986 539.848
80 1.711 998.493
90 2.634 1780.272
100 3.862 NAN
110 5.496 NAN
120 7.602 NAN
130 10.404 NAN
140 13.824 NAN
150 18.093 NAN
160 22.945 NAN
170 29.113 NAN
180 36.442 NAN
190 45.028 NAN
200 55.040 NAN
210 66.827 NAN
220 80.244 NAN
230 96.138 NAN
240 113.384 NAN
250 133.796 NAN
260 156.909 NAN
270 181.917 NAN
280 211.414 NAN
290 244.005 NAN
300 280.072 NAN
310 319.831 NAN
320 367.431 NAN
330 414.084 NAN
340 469.168 NAN
350 528.372 NAN
360 593.875 NAN
370 666.165 NAN
380 742.869 NAN
390 832.976 NAN
400 920.777 NAN
410 1020.612 NAN
420 1129.975 NAN
430 1247.622 NAN
440 1379.826 NAN
450 1512.082 NAN
460 1664.595 NAN

Table 5.5: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y3 + X2Y2 + Y + X1 to a precision between 10 and 460.

40 Chapter 5. A LazyWeierstrass Preparation

Precision BPAS MAPLE

10 0.001 0.161
20 0.012 1.757
30 0.045 10.645
40 0.138 40.499
50 0.342 108.484
60 0.720 258.809
70 1.351 539.721
80 2.290 1021.864
90 3.605 1803.078
100 5.414 NAN
110 7.719 NAN
120 10.842 NAN
130 14.886 NAN
140 19.964 NAN
150 26.209 NAN
160 33.974 NAN
170 42.916 NAN
180 53.829 NAN
190 66.768 NAN
200 81.864 NAN
210 99.576 NAN
220 119.933 NAN
230 145.626 NAN
240 169.923 NAN
250 200.974 NAN
260 235.357 NAN
270 275.140 NAN
280 319.773 NAN
290 367.182 NAN
300 426.221 NAN
310 489.159 NAN
320 552.589 NAN
330 625.719 NAN
340 712.574 NAN
350 806.494 NAN
360 906.838 NAN
370 1017.376 NAN
380 1131.829 NAN
390 1262.769 NAN
400 1409.174 NAN
410 1576.995 NAN
420 1724.758 NAN

Table 5.6: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y4 + X2Y3 + Y2 + Y + X1 to a precision between 10 and 420.

5.1. Benchmarks: Weierstrass Preparation 41

Precision BPAS MAPLE

10 0.001 0.166
20 0.011 1.795
30 0.045 9.983
40 0.145 37.168
50 0.369 114.697
60 0.799 270.756
70 1.543 566.299
80 2.646 1071.545
90 4.197 1895.376(broken pipe)
100 6.372 NAN
110 9.320 NAN
120 13.292 NAN
130 18.088 NAN
140 24.403 NAN
150 32.124 NAN
160 41.091 NAN
170 52.217 NAN
180 65.604 NAN
190 81.333 NAN
200 99.469 NAN
210 120.958 NAN
220 145.547 NAN
230 175.619 NAN
240 206.118 NAN
250 242.600 NAN
260 284.389 NAN
270 331.255 NAN
280 382.335 NAN
290 442.263 NAN
300 511.319 NAN
310 580.384 NAN
320 665.154 NAN
330 747.303 NAN
340 844.106 NAN
350 955.535 NAN
360 1071.794 NAN
370 1205.771 NAN
380 1352.387 NAN
390 1500.987 NAN
400 1669.323 NAN

Table 5.7: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y5 + X2Y4 + Y3 + Y2 + Y + X1 to a precision between 10 and 400.

42 Chapter 5. A LazyWeierstrass Preparation

Precision BPAS MAPLE

10 0.001 0.172
20 0.007 2.431
30 0.045 12.726
40 0.139 50.591
50 0.357 129.982
60 0.790 271.258
70 1.335 572.419
80 2.471 1078.278
90 4.179 1930.709(Broken pipe)
100 6.330 NAN
110 9.300 NAN
120 13.148 NAN
130 18.101 NAN
140 24.315 NAN
150 31.992 NAN
160 41.338 NAN
170 53.367 NAN
180 66.056 NAN
190 82.582 NAN
200 101.408 NAN
210 121.978 NAN
220 147.209 NAN
230 175.750 NAN
240 208.157 NAN
250 245.306 NAN
260 287.679 NAN
270 335.511 NAN
280 388.080 NAN
290 453.190 NAN
300 514.074 NAN
310 587.441 NAN
320 669.546 NAN
330 761.345 NAN
340 860.185 NAN
350 968.260 NAN
360 1089.307 NAN
370 1221.999 NAN
380 1363.928 NAN
390 1536.889 NAN
400 1687.272 NAN

Table 5.8: A comparison of timings (with a time limit of 1800 seconds) for Weierstrass preparation
results for 1

1+X1+X2
Y6 + X2Y5 + Y4 + Y3 + Y2 + Y + X1 to a precision between 10 and 400.

5.1. Benchmarks: Weierstrass Preparation 43

Figure 5.1: Applying Weierstrass preparation on family (i) for increasing precisions.

Figure 5.2: Applying Weierstrass preparation on family (ii) for increasing precisions.

Chapter 6

A Lazy Factorization via Hensel’s Lemma

In Section 2.3 we have seen the description of Hensel’s lemma for univariate polynomial over
power series. Specifically, that the proof by construction provides a mechanism to factor UP-
OPS. In this chapter we look to obtain a lazy implementation of this construction.

Recall that the proof of Theorem 2.3.1 provides a mechanism to factor a UPOPS f ∈
K[[X1, . . . , Xn]][Y] into factors f1, . . . , fr based on Taylor shift and repeated applications of
Weierstrass preparation. The construction begins by first factorizing the polynomial f̄ =

f (0, . . . , 0,Y) ∈ K[Y], obtained by evaluating all variables in power series coefficients to 0,
into linear factors. This can be performed with a suitable (algebraic) factorization algorithm
for K. For simplicity of presentation, let us assume that f̄ factorizes into linear factors over
K, thus returning a list of roots c1, . . . , cr ∈ K with respective multiplicities k1, . . . , kr. The
construction then proceeds recursively, obtaining one factor at a time.

Let us describe one step of the recursion, where f ∗ describes the current polynomial to
factorize, initially being set to f . For a root ci of f̄ ∗, we perform a Taylor shift to obtain
g = f ∗(Y + ci) such that g is general in Y of order ki. The Weierstrass preparation theorem can
then be applied to obtain p and α ∈ K[[X1, . . . , Xn]][Y] where p is monic and of degree ki. A
Taylor shift is then applied in reverse to obtain fi = p(Y − cr), a factor of f , and the UPOPS to
factorize in the next step as f ∗ = α(Y − cr). The full procedure for obtaining all factors of f is
shown as an iterative process, instead of recursive, in Algorithm 5.

The beauty of this algorithm is that it is immediately a lazy algorithm with no additional
effort. Using the underlying lazy operations of Taylor shift (Section 4.1) and Weierstrass prepa-
ration (Chapter 5), the entire factorization is performed lazily, returning a factorization nearly
instantly. The power series coefficients of these factors can automatically be updated later
using their generators, which are simply Taylor shift operations on top of a Weierstrass update.

Notice, however, that the order in which factors are created matters. Indeed, the first factor
to be created can be updated independent of the rest, since it is the result of a single Weierstrass
preparation. However, later factors are created by applying Weierstrass preparation on some α,
the result of a previous Weierstrass preparation. Therefore, the ancestry of later factors is much
deeper, and a cascade of updates through several different Weierstrass updates are required to
update these later factors with deep hierarchies. A useful optimization which could then be
made is to order the creation of the factors so that more important ones are created first.

Notice too the opportunities for concurrency exposed from a lazy Taylor shift and lazy
Weierstrass. The factors f1, . . . , fr are created from successive applications of Weierstrass

44

6.1. Benchmarks: Factorization via Hensel’s Lemma 45

Algorithm 5 HenselFactorization(f)

Input: f =
∑k

i=0 aiY i, ai ∈ K[[X1, . . . , Xn]].
Output: f1, . . . , fr satisfying Theorem 2.3.1.

1: f̄ = f (0, . . . , 0,Y)
2: c1, . . . , cr := obtain roots of f̄ . by some appropriate factorization algorithm
3: f ∗ = f
4: for i = 1 to r do
5: g := f ∗(Y + ci)
6: p, α := WeierstrassPreparation(g)
7: fi := p(Y − ci)
8: f ∗ := α(Y − ci)
9: return f1, . . . , fr

preparation. They in essence form a pipeline of processes [23, Ch. 9]. Updating one fac-
tor simultaneously causes its associated α from Weierstrass preparation to be updated. This
in turn allows the next factor to be updated since this α is the input into the next Weierstrass
preparation. This concurrency is on top of that available within a single Weierstrass prepara-
tion.

6.1 Benchmarks: Factorization via Hensel’s Lemma
In this section we compare our implementation of factorization via Hensel’s lemma in BPAS
against that of Maple’s PowerSeries library. In the latter, two functions are available for this
operation: ExtendedHenselConstruction (EHC) and FactorizationViaHenselLemma
(FVHL). FVHL has the same specifications as Algorithm 5 while EHC factorizes UPOPS over
the field of Puiseux series in X1, . . . , Xn, see [2]. Our tests use two UPOPS f , one of degree 3
and one of degree 4, such that f̄ splits into linear factors over Q; in this way the output is the
same for our BPAS code, EHC and FVHL.

Tables 6.1 and 6.2 show the results of this experimentation. As an example, consider the
first UPOPS:

f = (Z − 1)(Z − 2)(Z − 3) + X1(Z2 + Z).

Applying the Hensel factorization modulo terms of degree 5 results in the following branches

Z = 1 − X1 + 3X2
1 −

27
2

X3
1 +

291
4

X4
1

Z = 2 + 6X1 + 30X2
1 + 402X3

1 + 5610X4
1

Z = 3 − 6X1 − 33X2
1 −

777
2

X3
1 −

22731
4

X4
1

Figure 6.1 gathers data from Tables 6.1 and 6.2 in a graphical manner for the two UPOPS.
Our implementation is orders of magnitude faster. We observe that the gap between our imple-
mentation and EHC increases both as UPOPS degree increases and as power series precision
increases. A theoretical comparison, in terms of complexity analysis, between the EHC and
Algorithm 5 is work in progress.

46 Chapter 6. A Lazy Factorization via Hensel’s Lemma

Precision BPAS EHC FVHL

25 4.541
50 38.989
100 0.029 1.596 450.451
150 LostConnectionKernel
200 0.106 7.836 NAN
300 0.264 23.359 NAN
400 0.516 52.362 NAN
500 0.891 100.546 NAN
600 1.420 175.084 NAN
700 2.064 280.707 NAN
800 2.817 430.611 NAN
900 3.778 636.562 NAN
1000 5.000 898.689 NAN
1100 6.430 1249.207 NAN
1200 8.259 1750.483 NAN
1300 10.253 NAN NAN
1400 12.697 NAN NAN
1500 15.519 NAN NAN
1600 18.951 NAN NAN
1700 22.698 NAN NAN
1800 26.908 NAN NAN
1900 31.866 NAN NAN
2000 37.372 NAN NAN

Table 6.1: Factorization via Hensel for (Z − 1)(Z − 2)(Z − 3) + X1(Z2 + Z) to a precision be-
tween 25 and 2000. Here, EHC and FVHL stand for the ExtendedHenselConstruction and
FactorizationViaHenselLemma functions, respectively. Note that the benchmarks were collected
with a time limit of 1800 seconds.

6.1. Benchmarks: Factorization via Hensel’s Lemma 47

Precision BPAS EHC FVHL

25 7.525
50 56.198
100 0.101 22.991 662.591
150 LostConnectionToKernel
200 0.849 339.767 NAN
300 2.987 1668.969 NAN
400 7.312 NAN NAN
500 14.702 NAN NAN
600 26.057 NAN NAN
700 42.447 NAN NAN
800 64.853 NAN NAN
900 94.576 NAN NAN
1000 132.263 NAN NAN
1100 179.757 NAN NAN
1200 238.469 NAN NAN
1300 309.627 NAN NAN
1400 393.539 NAN NAN
1500 493.704 NAN NAN
1600 608.882 NAN NAN
1700 703.081
1800 844.859
1900 1006.340
2000 1189.676

Table 6.2: Factorization via Hensel for (Z − 1)(Z − 2)(Z − 3)(Z − 4) + X1(Z3 + Z) to a precision
between 25 and 2000. Here, EHC and FVHL stand for the ExtendedHenselConstruction and
FactorizationViaHenselLemma functions, respectively. Note that the benchmarks were collected
with a time limit of 1800 seconds.

48 Chapter 6. A Lazy Factorization via Hensel’s Lemma

Figure 6.1: Applying factorization via Hensel’s lemma to the UPOPS f1 = (Z − 1)(Z − 2)(Z − 3) + X1(Z2 + Z) and
f2 = (Z − 1)(Z − 2)(Z − 3)(Z − 4) + X1(Z3 + Z).

Chapter 7

Applications in Bifurcation Theory

7.1 Introduction
Consider the smooth map

Φ : Rn × Rm −→ Rn, Φi(x,α) = 0, i = 0, . . . , n (7.1)

where the vectors x = (x1, . . . , xn) and α = (α1, . . . , αm) represent state variables and param-
eters, respectively. We assume that Φi(0, 0) = 0. The smooth map Φ is called singular when
det(dΦ)(0,0) = 0. The local zeros of a singular map may experience qualitative changes when
small perturbations are applied to the parameters α. These changes are called bifurcation.
Local bifurcation analysis of zeros of the singular smooth map (7.1) plays a pivotal role in
exploring the behaviour of many real world problems [14–16, 21]. Lyapunov-Schmidt reduc-
tion is a fundamental tool converting the singular map (7.1) into g : Rp × Rm −→ Rp with
p = n − rank(dΦ0,0). The reduction is achieved through producing an equivalent map to (7.1)
made up of a pair of equations and making use of the Implicit Function Theorem. This solves
the n − 1 variables of x in the first equation; thereafter, substituting the result into the second
one gives an equation for the remaining variable. It is proved that the local zeros of the map
g are in one-to-one correspondence with the local zeros of Φ; for more details see [16, Pages
25–34]. Hence, the study of local zeros of (7.1) is facilitated through treating their counterparts
in g. Singularity theory is an approach providing a comprehensive framework equipped with
effective tools for this study. The pioneering work of René Thom established the original ideas
of the theory which was then extensively developed by John Mather and V. I. Arnold. The book
series [16] written by Marty Golubitsky, Ian Stewart and David G. Schaeffer is a collection
of significant contributions of the authors in dealing with a wide range of real world problems
using singularity theory techniques as well as explaining the underlying ideas of the theory in
ways accessible to applied scientists and mathematicians particularly those dealing with bifur-
cation problems in the presence of parameters and symmetries. The singularity theory tools are
applied to the problems that have emerged as an output of the Lyapunov-Schmidt reduction.
Following [16, Page 25], we focus on the reduction when rank(dΦ0,0) = n−1, m = 1 and refer
to α1 = λ as the bifurcation parameter. In other words, we consider the following map

g : R × R −→ R g(x, λ) = 0. (7.2)

49

50 Chapter 7. Applications in Bifurcation Theory

Two smooth maps are regarded as germ-equivalent when they are identical on some neighbor-
hood of the origin. In fact, a germ-equivalence class of a smooth map is called a germ. We
denote by Ex,λ the space of all scalar smooth germs which is a local ring withMEx,λ = 〈x, λ〉Ex,λ

as the unique maximal ideal; see also [16, Page 56] and [14, Page 3]. Due to the existence
of germs with infinite Taylor series and flat germs (whose Taylor series is zero), there does
not exist a computational tool to automatically study local bifurcations in Ex,λ. This has moti-
vated the authors of [14] to propose circumstances under which the computations supporting
the bifurcation analysis in Ex,λ are transferred to smaller local rings and verify that the corre-
sponding results are valid in Ex,λ. For instance, the following theorem permits the use of formal
power series K[[x, λ]] ring as a smaller computational ring in computation of algebraic objects
involved in the analysis of bifurcation.

Theorem 7.1.1 ([14, Theorem 4.3]) Suppose that { fi}
m
i=1 ∈ Ex,λ. For k,N ∈ N with k ≤ N,

Mk
K[[x,λ]] ⊆ 〈J

N f1, . . . , JN fm〉K[[x,λ]] iff Mk
Ex,λ
⊆ 〈 f1, . . . , fm〉Ex,λ

where Mk = 〈xα1λα2 : α1 + α2 = k〉 and JN fi is the sum of terms of degree N or less in the
Taylor series of fi.

This, along with other criteria in [13, 14], highlights the importance of alternative rings in
performing automatic local bifurcation analysis of scalar and Z2-equivariant singularities.

The work presented here addresses one of the applications of the so-called Extended Hensel
Construction (EHC) invented by Sasaki and Kako, see [28]. We show that the EHC can be used
in computing the reduced system g ∈ Ex,λ, which, as a result, leads to determining the type of
singularity hidden in system (7.1).

This EHC has been studied and improved by many authors. In particular, the papers [2–
4] present algorithmic improvements (where the EHC relies only linear algebra techniques
and univariate polynomial arithmetic) together with applications of the EHC in deriving real
branches of space curves and consequently computing limits of real multivariate rational func-
tions. The same authors implemented their version of the EHC as the ExtendedHenselConstruction
command of the PowerSeries library 1.

The EHC comes into two flavors. In the case of bivariate polynomials it behaves as Newton-
Puiseux algorithm while with multivariate polynomials it acts as an effective version of Jung-
Abhyankar Theorem. In both cases, it provides a factorization of the input object in the vicinity
of the origin. We believe that this capability makes the EHC a desirable tool for an automatic
derivation of the zeros of a polynomial system locally near the origin. The rest of this paper
is organized as follows. In Section 7.2, some of the ideas in singularity theory are reviewed.
We then discuss the EHC procedure followed by an overview on the PowerSeries Library.
Finally, our proposed approach is illustrated through two examples revealing pitchfork and
winged cusp bifurcations.

1http://www.regularchains.org/downloads.html

http://www.regularchains.org/downloads.html

7.2. Background 51

7.2 Background

7.2.1 Concepts from Singularity Theory
In this section we explain the materials required for defining recognition problem of a sin-
gular germ. These concepts are accompanied by examples. We skip the technical details of
singularity theory-related concepts as they are beyond the scope of this paper. The interested
readers are referred to [12,14,16] for the principal ideas, algebraic formulations and automatic
computation of the following objects.
Contact equivalence. We say that two smooth germs f , g ∈ Ex,λ are contact equivalent when

g(x, λ) = S (x, λ) f (X(x, λ),Λ(λ)) (7.3)

is held for a smooth germ S (x, λ) ∈ Ex,λ and local diffeomorphisms ((x, λ) −→ (X(x, λ),Λ(λ))) :
R2 −→ R2 satisfying

S (x, λ), Xx(x, λ),Λ(λ) > 0

Normal form. Bifurcation analysis of local zeros of g in (7.2) requires computing a contact
equivalent germ to g which has simpler structure and makes the analysis efficient. Indeed, each
step of this analysis, for instance recognition problem, involves normal form computation. To
be more precise, the simplest representative of the class of g ∈ Ex,λ under contact equivalence
is called a normal form of g.

Example Consider the smooth germ g(x, λ) = sin(x3) − λx + exp(λ3) − 1 ∈ Ex,λ. Note that
g(0, 0) = ∂

∂xg(0, 0) = 0; therefore, the origin is the singular point of g. The procedure in [14,
Section 6] returns x3 − λx as the normal form of g denoted by NF(g). The equation x3 − λx = 0
is called the pitchfork bifurcation problem and the bifurcation diagram for pitchfork is defined
by the local variety {(x, λ) | x3 − xλ = 0}. When λ smoothly varies around the origin, the
number of solutions of the pitchfork bifurcation problem changes from one to three; see Figure
7.1.

Now, modulo monomials of degree≥ 5, we compute the transformation (X(x, λ), S (x, λ),Λ(λ))
through which g is converted into NF(g) in (7.3).

X(x, λ) := x + λ2 + λx + λ2x + λx2 + x3,

S (x, λ) := 1 − λ + 2λx + x2,

Λ(λ) := λ.

Recognition problem. Let g ∈ Ex,λ be a singular germ. Recognition problem for a normal
form of g computes a list of zero and non-zero conditions on derivatives of a singular germ
f ∈ Ex,λ under which f is contact-equivalent to g. The proposed algorithm in [16, Pages
86–93], divides monomials (in Ex,λ) into three categories; low, intermediate and high order
terms. Low order terms refer to the monomials of the form xα1λα2 that do not participate in
the representation of any germ equivalent to g. The high order terms consist of the monomials
xα1λα2 which do not change the structure of the local zeros of g when they are present; that is,
adding xα1λα2 to g creates a germ contact equivalent to g. Due to the sophisticated structure of
intermediate order terms we skip defining them here and instead introduce intrinsic generators

52 Chapter 7. Applications in Bifurcation Theory

(a) (b)

Figure 7.1: Figures (a) and (b) depict the bifurcation diagrams of g and NF(g), respectively.

xα1λα2 which contribute to every equivalent germ and provide information about intermediate
order terms. Low order terms and intrinsic generators are identified through the following
theorem.

Theorem 7.2.1 [16, Theorems 8.3 and 8.4, Page 88] Suppose that f , g ∈ Ex,λ and there exists
a positive integer k such thatMk

Ex,λ
⊂ 〈g, x ∂

∂xg, λ ∂
∂xg〉Ex,λ .

(a) if f is equivalent to g and xα1λα2 belongs to low order terms of g then ∂α1

∂xα1
∂α2

∂λα2 f (0, 0) = 0.

(b) furthermore, assume that xα1λα2 belongs to intrinsic generators of g. If f is equivalent to
g then ∂α1

∂xα1
∂α2

∂αα2 f (0, 0) , 0.

Example For the smooth germ g given by Example 7.2.1, we deduce the vector spaceR{1, λ, x, x2}

as low order terms. It follows from Theorem 7.2.1(a) that any germ f equivalent to g satisfies

f (0, 0) =
∂

∂λ
f (0, 0) =

∂

∂x
f (0, 0) =

∂2

∂x2 f (0, 0) = 0 (7.4)

Moreover, the higher order terms of g are determined by the ideal

〈x4, λ4, x3λ, xλ3, x2λ2〉Ex,λ + 〈x2λ, λ3, xλ2〉Ex,λ + 〈λ2〉Ex,λ

which means that adding/removing any monomial, taken from this ideal, to/from g gives a new
germ equivalent to g. Finally, the corresponding intrinsic generators of g are described via
{x3, λx} verified by Theorem 7.2.1(b) that for any germ f equivalent to g the following is valid

∂3

∂x3 f (0, 0) , 0,
∂

∂λ

∂

∂x
f (0, 0) , 0 (7.5)

To sum up, the recognition problem for a normal form of g is characterized by (7.4) and (7.5).

7.2. Background 53

7.2.2 The Extended Hensel Construction
This part is summarized from [2].

Notation 1 Suppose that K is an algebraic number field whose algebraic closure is denoted by
K. Assume that F(X,Y) ∈ K[X,Y] is a bivariate polynomial with complex number coefficients.
Let also F be a univariate polynomial in X which is monic and square-free. The partial degree
of F w.r.t. X is represented by d. We denote by K[[U∗]] =

⋃∞
`=1 K[[U

1
`]] the ring of formal

Puiseux series. Hence, given ϕ ∈ K[[U∗]], there exists ` ∈ N>0 such that ϕ ∈ K[[U
1
`]] holds.

Thus, we can write ϕ =
∑∞

m=0 amU
m
` , for some a0, . . . , am, . . . ∈ K. We denote by K((U∗)) the

quotient field of K[[U∗]]. Let ϕ ∈ K[[U∗]] and ` ∈ N such that ϕ = f (U
1
`) holds for some

f ∈ K[[U]]. We say that the Puiseux series ϕ is convergent if we have f ∈ K〈U〉. We recall
Puiseux’s theorem: if K is an algebraically closed field of characteristic zero, the field K((U∗))
of formal Puiseux series over K is the algebraic closure of the field of formal Laurent series
over K; moreover, if K = C, then the field C(〈Y∗〉) of convergent Puiseux series over C is
algebraically closed as well.

The purpose of the EHC is to factorize F(X,Y) as F(X,Y) = G1(X,Y) · · · Gr(X,Y), with
Gi(X,Y) ∈ K(〈Y∗〉)[X] and degX (Gi) = mi, for 1 ≤ i ≤ r. Thus, the EHC factorizes F(X,Y)
over K(〈Y∗〉), thus over C(〈Y∗〉).
Newton line. We plot each non-zero term c XexYey of F(X,Y) to the point of coordinates (ex, ey)
in the Euclidean plane equipped with Cartesian coordinates. We call Newton Line the straight
line L passing through the point (d, 0) and another point, such that no other points lie below L.
The equation of L is ex/d + ey/δ = 1 for some δ ∈ Q. We define δ̂, d̂ ∈ Z>0 such that δ̂/d̂ = δ/d
and gcd(̂δ, d̂) = 1 both hold.
Newton polynomial. The sum of all the terms of F(X,Y) which are plotted on the Newton
line of F is called the Newton polynomial of F. We denote it by F(0). Observe that the Newton
polynomial is a homogeneous polynomial in (X,Yδ/d). Let ζ1, . . . , ζr ∈ K be the distinct roots
of F(0)(X, 1), for some r ≥ 2. Hence we have ζi , ζ j for all 1 ≤ i < j ≤ r and there exist
positive integers m1 ≤ m2 ≤ · · · ≤ mr such that, using the homogeneity of F(0)(X,Y), we have

F(0)(X,Y) = (X − ζ1Yδ/d)m1 · · · (X − ζrYδ/d)mr .

The initial factors of F(0)(X,Y) are G(0)
i (X,Y) := (X − ζiYδ/d)mi , for 1 ≤ i ≤ r. For simplicity,

we put Ŷ = Y δ̂/d̂.

Theorem 7.2.2 (Extended Hensel Construction) We define the ideal

S k = 〈XdY (k+0)/d̂, Xd−1Y (k+̂δ)/d̂, . . . , X0Y (k+d̂δ)/d̂〉, (7.6)

for k = 1, 2, Then, for all integer k > 0, we can construct G(k)
i (X,Y) ∈ C〈Y1/d̂〉[X], for

i = 1, . . . , r, satisfying

F(X,Y) = G(k)
1 (X,Y) · · ·G(k)

r (X,Y) mod S k+1, (7.7)

and G(k)
i (X,Y) ≡ G(0)

i (X,Y) mod S 1, for all i = 1, . . . , r.

54 Chapter 7. Applications in Bifurcation Theory

Figure 7.2: On the right: Weierstrass Preparation Factorization for a univariate polynomial with mul-
tivariate power series coefficients. On the Left: Extended Hensel construction applied to a trivariate
polynomial for computing its absolute factorization.

Figure 7.3: Extended Hensel construction applied to a bivariate polynomial for computing its Puiseux
parametrizations around the origin.

7.2.3 The PowerSeries Library

The PowerSeries library consists of two modules, dedicated respectively to multivariate
power series over the algebraic closure of Q, and univariate polynomials with multivariate
power series coefficients. Figure 7.2 illustrates Weiertrass Preparation Factorization. The
command PolynomialPart displays all the terms of a power series (or a univariate polyno-
mial over power series) up to a specified degree. In fact, each power series is represented by
its terms that have been computed so far together with a program for computing the next ones.
A command like WeiertrassPreparation computes the terms of the factors p and α up to
the specified degree; moreover, the encoding of p and α contains a program for computing
their terms in higher degree. Figures 7.2 and 7.3 illustrate the Extended Hensel Construc-
tion (EHC)2 For the case of an input bivariate polynomial, see Figure 7.3, this coincides with
the Newton-Puiseux algorithm, thus computing the Puiseux parametrizations of a plane curve
about a point; this functionality is at the core of the LimitPoints command. For the case of a
univariate polynomial with multivariate polynomial coefficients, the EHC is a weak version of
Jung-Abhyankar Theorem.

2The factorization based on Hensel Lemma is in fact a weaker construction since: (1) the input polynomial
must be monic and (2) the output factors may not be linear.

7.3. Applications 55

7.3 Applications
In this section we are concerned with two smooth maps Φ,Ψ : R2 × R → R2 whose state vari-
ables and bifurcation parameter are denoted by (x, y) and λ, respectively. Since the Jacobian
matrix of each map is not full rank at the origin, the Implicit Function Theorem fails at solving
(x, y) as a function of λ locally around the origin. This causes bifurcations to reside in local
zeros of each singular smooth map. We recall that these bifurcations are treated via first apply-
ing the Lyapunov-Schmidt reduction to a singular smooth map ending up with a reduced map
of the form (7.2) and then passing the result through singularity theory techniques. Here, we
follow the same approach except that we employ the ExtendedHenselConstruction com-
mand to compute the reduced map. The latter factorizes one of the equations around the origin
and the resulting real branches that go through the origin are plugged in the other one to obtain
the desired map (7.2). Once the map is computed we use the concept of recognition problem
to identify the type of singularity.

7.3.1 The Pitchfork Bifurcation
In spite of simple structure, the pitchfork bifurcation is highly observed in physical phenom-
ena mostly in the presence of symmetry breaking. For instance, [17] reports on spontaneous
mirror-symmetry breaking through a pitchfork bifurcation in a photonic molecule made up of
two coupled photonic-crystal nanolasers. Furthermore, authors in [26] study the pitchfork
bifurcation arising in LugiatoLefever (LL) equation which is a model for a passive Kerr res-
onator in an optical fiber ring cavity. Finally, [13, Example 4.1] captures pitchfork bifurcation
while analyzing the local bifurcations of Chua’s circuit. Here, we consider the exercise 3.2 on

[16, Page 34]. Suppose that Φ : R2 × R→ R2 is defined by
(
Φ1

Φ2

)
where

Φ1(x, y, λ) = 2x − 2y + 2x2 + 2y2 − λx (7.8)
Φ2(x, y, λ) = x − y + xy + y2 − 3λx.

To obtain the reduced system g in (7.2) we pass Φ1 to the ExtendedHenselConstruction
giving rise to the branches in Figure 7.4. Note that the second branch is not of interest as it
does not pass the origin. Substituting the first branch into Φ2, modulo monomials of degree
≥ 4, results in

g(y, λ) = 2y3 −
5
2

yλ +
9
2

y2λ −
5
4

yλ2. (7.9)

Given g in (7.9), the low order terms and the intrinsic generators are determined byR{1, y, λ, y2}

and {yλ, y3}, respectively. Thus, Theorem 7.2.1 implies that g satisfies the recognition problem
for pitchfork

f (0, 0) =
∂

∂y
f (0, 0) =

∂

∂λ
f (0, 0) =

∂2

∂y2 f (0, 0) = 0

∂

∂y
∂

∂λ
f (0, 0) , 0,

∂3

∂y3 f (0, 0) , 0

This proves that the original system Φ has pitchfork singularity located at the origin.

56 Chapter 7. Applications in Bifurcation Theory

Figure 7.4: EHC applied to Φ1(x, y, λ).

Figure 7.5: Pitchfork bifurcation diagram associated with g in Equation (7.9).

7.3.2 The Winged Cusp Bifurcation

The winged cusp bifurcation problem is defined by the equation x3 +λ2 = 0 and its correspond-
ing bifurcation diagram {(x, λ) | x3+λ2 = 0} is exhibited via Figure 7.6. Singularity theory tools

Figure 7.6: The winged cusp bifurcation diagram.

have been utilized in the area of chemical engineering with the aim of studying the solutions of
the continuous flow stirred tank reactor (CSTR) model. This study proves that the winged cusp
bifurcation is the normal form for describing the organizing center of the bifurcation diagrams
of the model produced by numerical methods. It, further, unravels more bifurcation diagrams
that have not been reported through these numerical methods; see [15,16,31,35]. Now assume

7.3. Applications 57

that Ψ : R2 × R→ R2 is given by
(
Ψ1

Ψ2

)
where

Ψ1(x, y, λ) = −2x + 3y + λ2 + y3 + x4 (7.10)
Ψ2(x, y, λ) = 2x − 3y + y2λ + x3.

Applying the ExtendedHenselConstruction to Ψ2 leads to the branches in Figure 7.7.

Figure 7.7: EHC applied to Ψ2(x, y, λ).

Substituting the first branch into Ψ1, modulo monomials of degree ≥ 4, yields

g(y, λ) =
35
8

y3 + λ2 + y2λ. (7.11)

Figure 7.8: Bifurcation diagram associated with g in (7.11).

As {1, y, λ, y2, yλ} spans the space of low order terms and intrinsic generators are {λ2, y3},
Theorem 7.2.1 guarantees that g satisfies the recognition problem for the winged cusp

f (0, 0) =
∂

∂y
f (0, 0) =

∂

∂λ
f (0, 0) =

∂2

∂y2 f (0, 0) =
∂

∂y
∂

∂λ
f (0, 0) = 0

∂2

∂λ2 f (0, 0) , 0,
∂3

∂y3 f (0, 0) , 0

Chapter 8

Conclusions and Future Work

Throughout this thesis we have explored the design and implementation of lazy multivari-
ate power series, employing them in Weierstrass preparation and the factorization of univari-
ate polynomials over power series via Hensel’s lemma. Our implementation in the C lan-
guage is orders of magnitude faster than existing implementations in SageMath and Maple’s
PowerSeries library. In part, this is due to overcoming the challenge of working with dynamic
generator functions in a compiled language, rather than using a more simplistic scripting lan-
guage.

Yet, still more work can be done to further improve the performance of our implementation.
The implementation of our arithmetic follows naive quadratic algorithms; instead, relaxed algo-
rithms [32] should be integrated into our implementation to improve its algebraic complexity.
Further, as mentioned in the case of Weierstrass preparation and in factorization via Hensel’s
lemma, there are opportunities for concurrency in their implementation as lazy operations. This
concurrency can be exploited with parallel programming techniques including a parallel map
and parallel pipeline to yield further improved performance.

58

Bibliography

[1] Brandt Alexander, Mahsa Kazemi, and Marc Moreno Maza. Power series arithmetic with
the BPAS library. To Appear in Lecture Notes in Computer Scienc, 2020.

[2] Parisa Alvandi, Masoud Ataei, Mahsa Kazemi, and Marc Moreno Maza. On the extended
hensel construction and its application to the computation of real limit points. J. Symb.
Comput., 98:120–162, 2020.

[3] Parisa Alvandi, Masoud Ataei, and Marc Moreno Maza. On the extended hensel con-
struction and its application to the computation of limit points. In Proceedings of the
2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC
17, pages 13–20, New York, NY, USA, 2017. Association for Computing Machinery.

[4] Parisa Alvandi, Mahsa Kazemi, and Marc Moreno Maza. Computing limits of real mul-
tivariate rational functions. In Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC ’16, pages 39–46, New York, NY, USA,
2016. ACM.

[5] Parisa Alvandi, Mahsa Kazemi, and Marc Moreno Maza. Computing limits with the
regularchains and powerseries libraries: from rational functions to zariski closure. ACM
Commun. Comput. Algebra, 50(3):93–96, 2016.

[6] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani,
R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, Linxiao Wang, Ning Xie, and Yuzhen
Xie. Basic Polynomial Algebra Subprograms (BPAS), 2020. www.bpaslib.org.

[7] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Yuzhen Xie. On the paral-
lelization of triangular decomposition of polynomial systems. In International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2020, Proceedings, pages 22–29.
ACM, 2020.

[8] Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, and Marc Moreno Maza.
Algorithms and data structures for sparse polynomial arithmetic. Mathematics, 7(5):441,
2019.

[9] William H Burge and Stephen M Watt. Infinite structures in scratchpad ii. In European
Conference on Computer Algebra, pages 138–148. Springer, 1987.

59

www.bpaslib.org

60 BIBLIOGRAPHY

[10] Xavier Dahan, Marc Moreno Maza, Éric Schost, Wenyuan Wu, and Yuzhen Xie. Lifting
techniques for triangular decompositions. In ISSAC 2005, Beijing, China, 2005, Proceed-
ings, pages 108–115, 2005.

[11] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. Singu-
lar 4-1-1 — A computer algebra system for polynomial computations. http://www.
singular.uni-kl.de, 2018.

[12] Majid Gazor and Mahsa Kazemi. A userguide for singularity, March 2018.

[13] Majid Gazor and Mahsa Kazemi. Normal form analysis of z2-equivariant singularities.
International Journal of Bifurcation and Chaos, 29(2):1950015–1–1950015–20, 2019.

[14] Majid Gazor and Mahsa Kazemi. Singularity: A maple Library for Local Zero Bifurca-
tion Control of Scalar Smooth Maps. Journal of Computational and Nonlinear Dynamics,
15(1), 2019.

[15] M. Golubitsky and B. L. Keyfitz. A qualitative study of the steady-state solutions for a
continuous flow stirred tank chemical reactor. SIAM J. Math. Anal., 11(2):316–339, 1980.

[16] Martin Golubitsky and David G. Schaeffer. Singularities and groups in bifurcation theory.
Vol. I, volume 51 of Applied Mathematical Sciences. Springer-Verlag, New York, 1985.

[17] Philippe Hamel, Samir Haddadi, Fabrice Raineri, Paul Monnier, Gregoire Beaudoin,
Isabelle Sagnes, Ariel Levenson, and Alejandro M. Yacomotti. Spontaneous mirror-
symmetry breaking in coupled photonic-crystal nanolasers. Nature Photonics, 9:311–
315, 2015.

[18] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2015.
Version 2.5.2, http://flintlib.org.

[19] Jerzy Karczmarczuk. Generating power of lazy semantics. Theor. Comput. Sci., 187(1-
2):203–219, 1997.

[20] Mahsa Kazemi and Marc Moreno Maza. Detecting singularities using the powerseries
library. In Maple in Mathematics Education and Research - Third Maple Conference,
MC 2019, Proceedings, pages 145–155. Springer, 2019.

[21] Isabel Labouriau. Applications of singularity theory to neurobiology. PhD Thesis, War-
wick University, 1984.

[22] M Lauer. Computing by homomorphic images. In Computer Algebra, pages 139–168.
Springer, 1983.

[23] M. McCool, J. Reinders, and A. Robison. Structured parallel programming: patterns for
efficient computation. Elsevier, 2012.

[24] Michael B. Monagan and Paul Vrbik. Lazy and forgetful polynomial arithmetic and
applications. In Computer Algebra in Scientific Computing, 11th International Workshop,
CASC 2009, Proceedings, pages 226–239, 2009.

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://flintlib.org

BIBLIOGRAPHY 61

[25] Adam ParusiÅski and Guillaume Rond. The AbhyankarJung theorem. Journal of Alge-
bra, 365:29 – 41, 2012.

[26] J Rossi, R Carretero-González, P G Kevrekidis, and M Haragus. On the spontaneous
time-reversal symmetry breaking in synchronously-pumped passive kerr resonators. Jour-
nal of Physics A: Mathematical and Theoretical, 49(45):455201, 2016.

[27] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel construction.
Japan J. Indust. and Appl. Math., 1999.

[28] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel construction.
Japan J. Indust. and Appl. Math., 1999.

[29] Michael L. Scott. Programming Language Pragmatics (3. ed.). Academic Press, 2009.

[30] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1),
2020. https://www.sagemath.org.

[31] A. Uppal, W. H. Ray, and A. B. Poore. The classification of the dynamic behavior of con-
tinuous stirred tank reactorsinfluence of reactor residence time. J. Chemical Engineering
Science, 31(3):205–214, 1976.

[32] Joris van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput., 34(6):479–542,
2002.

[33] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, NY, USA, 2 edition, 2003.

[34] Joachim von zur Gathen. Hensel and Newton methods in valuation rings. Mathematics
of Computation, 42(166):637–661, 1984.

[35] Y. V. Zeldovich and U. A. Zisin. On the theory of thermal stress. flow in an exother-
mic stirred reactor, ii.study of heat loss in a flow reactor. Journal of Technical Physics,
11(6):501–508, 1941.

Curriculum Vitae

Name: Mahsa Kazeminooreddinvand

Education
University of Western Ontario
London, ON
Sep 2018 – Jul 2020 M.Sc. in Computer Science

Isfahan University of Technology
Isfahan, Iran
Sep 2012 – Jun 2018 Ph.D. in Applied Mathematics (Dynamical Systems)

Shiraz University
Shiraz, Iran
Sep 2008 – Sep 2010 MSc in Applied Mathematics (Dynamical Systems)

Related Work & Experience:
Maplesoft, Waterloo
June 2020 - present R & D Intern

The University of Western Ontario
Sep 2018 - Jul 2020 Teaching Assistant

Maplesoft, Waterloo
May 2019 - Sep 2019

The University of Western Ontario
Nov 2015 - Nov 2016 Visiting Scholar

Isfahan University of Technology
Sep 2012 - Jun 2018 Teaching Assistant and Course Instructor

Qatar University
Jun 2010 Visiting Scholar

62

BIBLIOGRAPHY 63

Publications:

• Alexander Brandt, Mahsa Kazemi and Marc Moreno Maza, Power Series Arithmetic with
the BPAS Library, To Appear in Lecture Notes in Computer Science, 2020.

• Majid Gazor and Mahsa Kazemi, Singularity : A Maple library for local zero bi-
furcation control of scalar smooth maps J. Computational and Nonlinear Dynamics,
Transactions of the American Society of Mechanical Engineers (ASME) 15(1) (2019):
011001–0110010.

• Mahsa Kazemi and Marc Moreno Maza, Detecting Singularities Using the PowerSeries
Library Communications in Computer and Information Science, (2020): 145–155.

• Amir Hashemi and Mahsa Kazemi, Parametric standard bases and its applications Lec-
ture Notes in Computer Science 1166 (2019): 179–196.

• Majid Gazor and Mahsa Kazemi, Normal form analysis of Z2-equivariant singularities
International Journal of Bifurcation and Chaos, 29 (2019): 1950015–1950035.

• Parisa Alvandi, Masoud Ataei, Mahsa Kazemi and Marc Moreno Maza, On the Extended
Hensel Construction and its Application to the Computation of Real Limit Points Journal
of Symbolic Computation, 98 (2019): 120–162.

• Majid Gazor, Amir Hashemi and Mahsa Kazemi, Groebner bases and multi-dimensional
persistent bifurcation diagram classifications ACM Communications in Computer Alge-
bra, 52(4) (2018): 120–122.

• Majid Gazor and Mahsa Kazemi, A userguide for Singularity arXiv preprint arXiv:1601.00268,
(2016).

• Parisa Alvandi, Mahsa Kazemi and Marc Moreno Maza, Computing limits of real mul-
tivariate rational functions Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation (ISSAC), (2016): 39–46.

• Parisa Alvandi, Mahsa Kazemi and Marc Moreno Maza, Computing limits with the Reg-
ularChains and PowerSeries libraries: from rational functions to zariski closure ACM
Communications in Computer Algebra, 50(3) (2016): 93–96.

• Majid Gazor and Mahsa Kazemi, Z2 -equivariant standard bases for submodules asso-
ciated with Z2-equivariant singularities ACM Communications in Computer Algebra,
50(4) (2016): 170–172.

	An Implementation of Power Series in the BPAS Library
	Recommended Citation

	Certificate of Examination
	Abstract
	Lay Summary
	Co-Authorship Statement
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Power Series
	Weierstrass Preparation Theorem
	Hensel Lemma

	The Design and Implementation of Lazy Power Series
	The Power Series Data Structure, Generators, and Ancestors
	Implementing Power Series Arithmetic
	Benchmarks: Power Series Multiplication and Division

	The Design and Implementation of Univariate Polynomials over Power Series
	UPOPS Taylor Shift

	A Lazy Weierstrass Preparation
	Benchmarks: Weierstrass Preparation

	A Lazy Factorization via Hensel's Lemma
	Benchmarks: Factorization via Hensel's Lemma

	Applications in Bifurcation Theory
	Introduction
	Background
	Concepts from Singularity Theory
	The Extended Hensel Construction
	The PowerSeries Library

	Applications
	The Pitchfork Bifurcation
	The Winged Cusp Bifurcation

	Conclusions and Future Work
	Bibliography
	Curriculum Vitae

