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Title: 

Intra-field Canopy Nitrogen Retrieval from Unmanned Aerial 
Vehicle Imagery for Wheat and Corn Crops in Ontario, Canada 

Abstract 

The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen 

(N) supply to the crop N demand is the subject of intense research due to the environmental 

and economic impact of N fertilization. Excess N could seep into the water supplies around 

the field and cause unnecessary spending by farmers. Understanding the detailed spatial 

information about a crop status is known as a farming management technique called 

precision agriculture, which allows farmers to maximize their yield and profit while reducing 

the inputs of fertilizers, pesticides, water, and insecticides.  

The goal of this study is to document and test the applicability and feasibility of using 

Unmanned Aerial Vehicle (UAV) to predict nitrogen weight of wheat and corn fields in 

south-west Ontario. This is investigated using various statistical modelling techniques to 

achieve the best accuracy. Machine learning techniques such as Random Forests and Support 

Vector Regression are used, which provide more robust models than traditional linear 

regression models. The results demonstrate that most spectral indices have a non-linear 

relationship with canopy nitrogen weight and show high degree of multicollinearity among 

the variables. In this thesis, the final nitrogen prediction maps of wheat and corn fields using 

UAV images and the derived models are provided. 

Keywords 

precision agriculture, precision farming, UAV, nitrogen management, vegetation indices, 

regression, Random Forests, Support Vector Machines, Triticum aestivum, Zea mays 
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Summary for Lay Audience 

The analogy I like to give for the concept of precision agriculture is a person’s desire for a 

cup of coffee from a coffee machine. Imagine trying to invent a coffee machine that can 

predict the quantities of coffee that the customers want. The coffee machine should be able to 

supply you with the right amount of coffee depending on the size of the cup, how tired you 

are, what time of the day it is, etc. All these factors contribute to how much coffee you need. 

For example, if you were very tired one day and inserted a large cup, you would be quite 

disappointed if the coffee machine supplied you with a little amount of coffee. This is how 

the phenomenon of nitrogen supply works with crops. The goal of precision agriculture is to 

accurately supply the agricultural crop’s site-specific need, depending on various factors 

surrounding the crop (e.g. soil, precipitation, temperature, etc). If crops are deficient in 

nitrogen, their growth cycle is likely to be stunted, reducing its yield potential. On the 

contrary, if crops are supplied too much nitrogen, the excess supply can seep into the water 

supply, causing a negative environmental impact and unnecessarily uses up the farmer’s 

nitrogen resources. Because crops cannot communicate their needs of nitrogen to us, 

researchers have performed extensive research using remote sensing techniques on various 

types of crops by estimating how much nitrogen they currently have. If we know how much 

nitrogen the crops have, we can add or reduce the nitrogen application for a particular area 

based on the guideline that the farmer has. This thesis dives into the statistical application of 

drone imagery and regression modelling to predict the quantification of nitrogen status within 

wheat and corn fields. Ultimately, when we predict the values of the nitrogen on a map, we 

are then able to supply it to the farmer for their next nitrogen fertilization application. 
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Glossary 

ASD - Analytic Spectral Device; a handheld equipment used to retrieve spectral components 

of objects, measuring over visible and shortwave infrared wavelength region (325-1000nm). 

Orthomosaic map- a detailed and accurate photo representation of an area, generated by 

many photos stitched together.  

Pix4D - a photogrammetry software that is used to create orthomosaic images and 3D point 

cloud using images. 

R and R Studio - a programming language and free to use open source integrated 

development environment (IDE) used for data cleaning, complex data analysis and data 

visualization. 

Random Forests (RF)- an ensemble learning method using decision trees for classification 

or regression tasks. It builds trees for decision learning using random number of features and 

averages the output value of multiple trees built. 

Regression- a statistical process for estimating the quantitative value of the relationship 

between the response and the explanatory variable(s) in interest.  

Structure from Motion (SfM) – a technique of estimating the 3D structure of a scene from a 

set of 2D images. 

Support Vector Machines (Regression) (SVM or SVR)- a supervised learning method 

used to create decision boundaries known as a hyperplane that help classify or predict data 

points. The dimension of a hyperplane depends on the number of input features.  

Variation- a measurement of how far a set of numbers are spread out from their average 

value. 
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Chapter 1  

1 Introduction 

1.1 Background 

1.1.1 Precision Agriculture 

Agricultural resources are important to society because they are a renewable and dynamic 

natural resource. In Canada, agriculture and the agri-food industry employ approximately 

2.3 million Canadians and contributes over $110 billion annually towards Canada’s GDP, 

making Canada the 5th largest agriculture exporter in the world (Agriculture and Agri-

Food Canada, 2018). In order for farmers to maximize their crop yield and profitability, 

they have been involved in an agricultural management technique called precision 

agriculture, which ensures the precise input of water, fertilizers, herbicides, and 

insecticides to the crops (Barbanti et al. 2018; Xie et al. 2018; Liu et al. 2016). A key 

component of this term is to use information technology that is retrieved from a variety of 

devices, such as: global positioning system (GPS), sensors, robotics, unmanned aerial 

vehicles, and autonomous vehicles (Schmaltz, 2017). One major aspect of precision 

agriculture is nitrogen fertilization management. Specifically, nitrogen is crucial for crops 

because a presence of nitrogen deficiency in the leaf can most likely affect the 

chlorophyll production. Furthermore, crop yield is directly affected by the plant nitrogen 

status (Loel et al. 2014; Munoz-Huerta et. al., 2013). Nitrogen is part of the chlorophyll 

molecule, (The chlorophyll molecule is partially composed of nitrogen) to help the plant 

obtain energy through the sun’s rays. Plants with shortage of nitrogen present will also 

have a lower chlorophyll content, resulting in a non-optimal photosynthesis, greatly 

reducing the plant’s growth. (Milford et al. 1985; Clevers & Kooistra, 2011). The 

deficiency of nitrogen could also be affected by the topography and drainage of the field, 

as the spatial variation of the topography and drainage could also affect the plant’s 

nitrogen content. All these factors can ultimately reduce the plant’s ability to grow 

adequately.   
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1.1.2 Remote Sensing Techniques 

A prerequisite of precision agriculture is the extensive knowledge of the within-field 

information about the crop’s nutrient status (Maes & Steppe, 2019; Zhang & Kovacs, 

2012). To spatially examine the information about a crop, remote sensing technology 

such as unmanned aerial vehicle (UAV), satellite imagery, airborne imagery, and tractor-

based sensors can determine the health of a certain crop, identify diseases, or potentially 

predict potential soil conditions. Different types of sensors: (i) red-green-blue (RGB), (ii) 

multispectral, (iii) hyperspectral, and (iv) thermal exist in remote sensing that contribute 

to a certain application in precision agriculture (Table 1-1). 

Table 1-1. Overview of Applications and Suitability of Different Sensors. Adapted 

from Maes & Steppe, 2019 

Application Type of sensor/camera 

 RGB Multispectral Hyperspectral Thermal 

Drought Stress   S HS 

Pathogen detection HS HS HS S 

Weed detection HS HS HS  

Nutrient status S HS HS S 

Growth vigour (growth 

stage, canopy height 

and biomass) 

HS HS   

Yield prediction S HS   

HS: highly suited; S: suited. 

RGB cameras are relatively cheaper than the other sensors stated above, and have a high 

spatial resolution, although they are limited by its poor spectral resolution. RGB cameras 
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are generally used to generate digital elevation models (DEMs) and crop height maps. 

Multispectral cameras consist of a set of sensors with different lenses, with each sensor 

classifying a small region in the electromagnetic spectrum (ES) (such as: green region, 

red region, etc.). In contrast, hyperspectral sensors cover the full spectrum (400-2500 nm 

spectral region in the ES). Hyperspectral sensors also have the highest potential to 

quantify nutrient status due to the higher number of wavelengths. However, the trade-off 

is that hyperspectral sensors are very expensive along with a large volume of data, thus 

the data retrieved are typically too complex for technical interpretations (Furbank & 

Tester, 2011; White et al. 2012). Therefore, multispectral sensors have been favoured 

over hyperspectral sensors in practical applications (Prey & Schmidhalter, 2019). Lastly, 

thermal sensors are most often low-resolution cameras and consists of one band measured 

in the longwave infrared region (7000-12000nm). These cameras are typically used to 

extract canopy temperature for drought detection (Maes & Steppe, 2019).  

Satellite and aerial images are currently used to monitor crop growth, crop stress, and 

predict yield. However, these images are often limited by weather conditions causing 

fewer cloud-free images over time and provides coarse spatial resolutions compared to 

UAV-based images (Zhang & Kovacs, 2012). Most UAV nitrogen studies have also built 

on the experience of tractor-based nitrogen sensors, due to their limitations on estimating 

the correct nitrogen status (Maes & Steppe, 2019) and the tractor’s ability to drive on 

agricultural sites with difficult soil conditions (Gynp et al, 2016). Regardless of the image 

acquisition method, vegetation indices (VI) have been used extensively to monitor crop 

information from spectral sensor information. VIs are generated by using various spectral 

bands to create different equations to measure several properties of vegetation (Gutierrez-

Rodriguez et al. 2005). The most simple and common VI is commonly known as the 

normalized difference vegetation index (NDVI) (Rousse, 1974). 

NDVI = (NIR – RED) / (NIR + RED)  [1] 

NIR = near infrared region; RED = red region 
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The values of NDVI range between -1 to +1; a value closer to +1 indicates a presence of 

healthy green vegetation (Jones & Vaughan, 2010). These values are of great use since 

the areas of healthy green vegetation are associated with a sufficient amount of nitrogen. 

Due to nitrogen’s direct relation to chlorophyll, healthy vegetation is shown in specific 

VI results considering the chlorophyll’s activity present in the blue, red, green, and near 

infrared region (Inman, Khosla & Mayfield, 2005). However, a disadvantage to the 

popular NDVI is that its values begin to saturate with the response variable (e.g. nitrogen, 

leaf area index) once the canopy has become dense (Xie et al. 2018; Lee et al. 2020). 

Therefore, many other types of VIs have been developed in order to mitigate the 

saturation. For example, ratio vegetation index (RVI) has been used to estimate nitrogen 

status while simultaneously being insensitive to growth stages and crop type (Jordan, 

1969; Muñoz-Huerta et al. 2013). Many researchers have also improved previously 

generated VIs to retrieve certain crop parameters. For example, modified triangular 

vegetation index 2 (MTVI2) is a reworked version of the triangular vegetation index 

(TVI), which was found to be most useful to estimate nitrogen content using 

multispectral images (Haboudance et al. 2004; Broge & Leblanc, 2001; Bagheri et al. 

2013). 

1.1.3 UAV Applications in Precision Agriculture 

The development and application of UAV imagery has greatly expanded in the past 

decade. The application of UAVs is promising because image acquisition with UAV can 

be deployed both quickly and repeatedly. The operation of UAVs are generally at a low 

cost and can be used with greater flexibility than spaceborne and airborne platforms 

(Maresma et al. 2016; Raparelli & Bajocco, 2019; Zha et al. 2020). UAV images provide 

high spatial and temporal resolution for within-field crop monitoring. The flexibility of 

UAV data collection and processing allows the user to retrieve information and produce 

results regarding a particular field in real time. Flexible revisit times are necessary due to 

a quick response to unfavourable crop or field conditions (Zhang & Kovavs, 2012), 

whereas the user does not have the ability to control the revisit time of a satellite imagery.  

A single UAV flight over a crop field can provide hundreds of images depending on the 

size of the field. A technique called Structure-from-Motion (SfM) is used to combine the 
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images into a single mosaic image. SfM is a method used to overlap multiple images as 

input and extracts features and 3D point clouds and generates image mosaics (Westoby et 

al. 2012). Fortunately, there are software programs like Pix4D (Pix4D SA, Lausanne, 

Switzerland) that utilize this technique in order to extract final products for the user. The 

outputs of the UAV images are produced at centimetre level resolutions. This fine level 

resolution also allows for differentiation of individual crops on the imagery.  

1.2 Research Questions 

Statistical approaches based on VIs are very popular in remote sensing due to their 

simplicity, robustness, and accuracy in retrieving targeted crop parameters (Jay et al. 

2016). Certain VIs can be used to estimate structural crop properties, such as LAI 

(Darvishzadeh et al., 2011; Haboudane et al., 2004), green fraction (Comar et al. 2012), 

or biochemical properties such as leaf chlorophyll content (Zarco-Tejada et al. 2004) and 

leaf water content (Colombo et al. 2008). Due to the direct correlation between nitrogen 

content and chlorophyll, spectral VIs are able to quantify the nitrogen status of crops (Jay 

et al. 2016). Therefore, with the use of VIs to quantify nitrogen status of wheat and corn, 

the research questions of this thesis are: 

 

(1) Is the relationship between the crop nitrogen weight and the spectral variable(s) 

linear? Can predictions of nitrogen levels be made using a parametric linear 

regression? 

(2) Can the predictions of nitrogen levels be made using non-parametric machine 

learning models? Which machine learning model provides the best accuracy on 

predicting canopy nitrogen weight using spectral variables?  

(3) By using the generated models, can the UAV prediction maps provide a good 

clear separation of nitrogen values in the map? What spatial resolution is fine enough 

to see the separation of nitrogen values throughout the map while considering the 

processing time? 
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1.3 Research Objectives 

The objective of this thesis is to evaluate different statistical modelling techniques to 

predict nitrogen values in wheat and corn crops using UAV-based images. This thesis is 

an empirical driven research project where the crop parameter (nitrogen) is statistically 

related to the spectral variable(s) of interest. A multispectral sensor is attached to a UAV 

to retrieve reflectance values from various fields in south west Ontario. Therefore, the 

research objectives of this thesis to answer the research questions listed above are: 

(1) Generate parametric regression models to predict crop nitrogen weight within 

wheat and corn fields using multispectral UAV imagery.  

(2) Generate both parametric and non-parametric machine learning regression models 

to predict crop nitrogen weight in corn fields using multispectral UAV imagery.  

 (3)  Generate nitrogen prediction maps using UAV multispectral images and visually 

examine the spatial distribution of nitrogen within the fields.   

Ultimately, these images should be given to farmers in highly accurate, quick and timely 

manner field information for their precision nitrogen fertilization management.  

1.4 Thesis Structure 

To answer the research questions, this thesis is divided into an introduction, two 

academic journal formatted papers, and a conclusion. The introduction (chapter 1) 

provides the background of this research, a brief review on remote sensing techniques 

used for crop monitoring and listed the objectives of the thesis. The next two chapters are 

separate published academic journal-formatted papers. The first paper (chapter 2) 

answers the research questions using a linear regression and attempts to derive 

conclusions without the use of non-linear transformation. This chapter uses ground 

spectral measurements of the canopy using an Analytic Spectral Device (ASD) and 

verified the reflectance values of the UAV images. Due to its similar values of ASD 

ground measurements and UAV derived measurements, chapter 3 directly used the 

reflectance values from the UAV for analysis. The second paper (chapter 3) answers the 
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research questions using nonparametric machine learning techniques such as Random 

Forests and support vector regression (SVR), while using parametric linear regression as 

a baseline comparison. Both studies have a similar data collection method, study area, 

and methodology. The fourth and final chapter of this thesis is the conclusion as it 

states/explains objective answers of this thesis. The 4th chapter also provides some 

limitations and suggestions for chapter 2 and 3. 

1.5 Study Areas 

The study area for both studies are location in Mt. Brydges and Melbourne, Ontario 

(30km west of London, Ontario) (Figure 1-1). The fields Bale, Century, Crandell, 

Hetzell, Jack North, and McColl are the study sites for chapter 2. The fields JJ and Susan 

are the study sites for chapter 3. Crop lands in this region are dominated by soybeans, 

grain corn, and winter wheat (Statistics Canada, 2016). The topography in southwest 

Ontario is generally flat with hot, humid summers. The study area is situated between 

Lake Huron and Lake Erie, which affects the tendency of frequent thunderstorms and 

heavy precipitation. Southern Ontario is known for its rich, Class 1 agricultural soil as a 

result of the glacial ice-age deposits (Leal, 2016).  
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Figure 1-1. Study areas located in Mt. Brydges/Melbourne, Ontario. White 

represents corn fields and red represents wheat fields 
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Chapter 2  

2 Canopy Nitrogen Retrieval from Unmanned Aerial 
Vehicle Imagery for Wheat and Corn Fields 

2.1 Introduction 

Precision agriculture or precision farming requires detailed spatial information of crop 

status in order to optimize crop inputs such as nutrients, pesticides, seeds or water as a 

function of the crop yield and reduce associated costs (Xie et al. 2018; Liu et al. 2016). 

Crop nitrogen content is one of the good crop status indicators. Indeed, nitrogen is the 

main plant nutrient needed for chlorophyll production, which has a direct impact on plant 

growth and yield. Therefore, the optimization of nitrogen fertilization has become a body 

of intense research due to its environmental and economic impact (Muñoz-Huerta et. al. 

2013). There are two ways to measure crop nitrogen for precision agriculture purposes: 

ground-based and remote sensing methods. Ground-based methods require intensive field 

data collection, which can be time consuming, destructive, and limited to a small spatial 

area, making it impractical for fast and efficient results in most agricultural fields in 

Canada that can reach up to hundreds of acres in size. An alternative is to use remote 

sensing methods. Remote sensing methods are non-destructive and can cover much larger 

spatial areas than the ground-based method. However, remote sensing applications in 

agriculture often require high temporal and spatial resolution imagery. These images are 

often costly or difficult to obtain, if they are acquired by spaceborne or airborne 

platforms (Raparelli & Bajocco, 2019). Satellite imagery could be used to monitor 

nitrogen status across large areas. However, they cannot provide enough spatial and 

temporal accuracy because of their low spatio-temporal resolution (Zheng et al. 2018). 

Thus, this does not give the user much flexibility to determine their spatial or temporal 

resolutions requirements. Optical satellite imagery is also limited to data quality and 

accessibility due to weather conditions such as fog, haze and clouds. This makes them 

unreliable to monitor crop growths (Li et al. 2018). Synthetic aperture radar (SAR) 

imagery has the advantages to be acquired whatever the sky conditions, but SAR systems 

have poor revisiting periods and their images can get very expensive and complex to 

interpret (Zhang & Kovacs, 2012). Sentinel-1 SAR data are freely available but lack to 



14 

 

provide enough spatial resolution (10m) for precise small-scaled applications (Nasrallah 

et al. 2019). 

The use of Unmanned Aerial Vehicle (UAV) imagery is an emerging technology, filling 

in gaps between satellite imagery, aerial photography and field samples (Kelcey & 

Lucieer, 2012). Most UAV studies have also built on the experience of tractor-based N 

sensors, due to their limitations on estimating the correct N status (Maes & Steppe, 2019) 

and its ability to drive on agricultural sites with difficult soil conditions (Gynp et al, 

2016). Image acquisition with UAV can be deployed quickly and repeatedly, at a low 

cost, and with greater flexibility (Maresma, et. al. 2016). Since most agricultural fields in 

Canada have homogenous canopies, a clear advantage over airborne imagery is that 

UAVs can easily achieve high image overlapping of 90% or more, which is more useful 

for mosaicking uniform images (Song, 2016). UAVs can also be equipped with various 

types of equipment such as optical, radar and thermal sensors along with a georeferencing 

system.  

The focus of this study is to test if UAV imagery can be used to retrieve crop nitrogen 

status in a perspective of precision nitrogen fertilization. The two most common remote 

sensing techniques to estimate nitrogen content at the canopy level are: Radiative 

Transfer Model (RTM), which estimates the chlorophyll or nitrogen content by 

describing the interaction between the sun’s light and the crop canopy. An example of an 

RTM is the PROSAIL model, which uses various parameters at the leaf and canopy level 

and can be mathematically inverted to retrieve chlorophyll or nitrogen content from 

spectral data (Clevers & Kooistra, 2011; Clevers & Gitelson, 2013; Hansen & 

Schjoerring, 2003, Botha et al. 2010). The second technique uses empirical methods such 

as machine learning techniques, simple/multiple-linear regression methods to retrieve 

crop nitrogen from spectral data (Clevers & Kooistra, 2011). This project used the second 

technique, due to the complexity of using an RTM. Jay et al. (2017) has also shown that 

empirical methods using vegetation indices provide slightly more accurate estimations of 

chlorophyll and nitrogen content than PROSAIL inversion.  
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Currently, there are several cameras in the commercial market that are available for 

UAV-based precision agriculture. Deng et al. (2018) found that narrowband multispectral 

cameras acquire images with far better quality than broadband cameras. For this study, 

we used a MicaSense RedEdge narrowband multispectral camera attached to a fixed-

wing UAV. Several studies tested linear regression to predict crop from MicaSense 

RedEdge imagery (Walsh et al. 2018; Olson et al. 2019; Sofonia et al. 2019). Almost all 

of these studies have focused on the use of NDVI (Maresma et al. 2016). Very few 

studies have tested the use of other vegetation indices such as the Ratio Vegetation Index 

(RVI). Many studies have avoided the use of RVI and instead, used VIs that perform well 

on single date/growth stages. This study wanted to incorporate multiple dates/growth 

stages and used ratio-based VIs, which was found to have a positive linear relationship 

with nitrogen throughout the growing stage in wheat (Muñoz-Huerta et. al. 2013). 

In this study, we will use an empirical method to statistically relate spectral 

measurements and crop nitrogen contents. The resulting models will then be applied to 

UAV imagery for mapping crop nitrogen content. The objectives of this study are to: (i) 

generate a linear regression model that can be applied to each wheat and corn fields 

throughout the growing season to estimate nitrogen from MicaSense RedEdge imagery 

acquired over corn and winter wheat crops, (ii) determine which spectral variable(s) are 

the best predictor of crop nitrogen linearly; (iii) generate a nitrogen prediction map with 

the entire UAV image and analyse if the UAV images are able to detect any spatial 

variation of nitrogen within the fields. This study attempts to fill in research gaps on 

improving the accuracy of canopy nitrogen prediction throughout the entire growing 

season using UAV-based MicaSense multispectral imagery acquired over wheat and corn 

fields in Southwest Ontario. Figure 2-1 shows the flow chart of the procedure in this 

paper. 
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Figure 2-1. Flowchart of the methodology (chapter 2) 

2.2 Materials and Methods 

2.2.1 Study Area 

The study site was located in Mt. Brydges, Ontario (42°54’N, 81°29’W; 20 km west of 

London, Ontario, Canada). This region is in the humid continental climate zone in 

Canada and the summers are typical hot and humid with an average temperature of 20° C 

and a high of 31° C in July, while experiencing harsh winters. The humidity in this region 

is around 75-80 % in July. The study site in Mt. Brydges is dominated by agricultural 

land with very little urban use. The common agricultural practice in this region is one 

crop harvested per annual cycle. The most dominant crops in this region of Southwest 

Ontario are wheat, corn and soybeans (Liao et al. 2019).  

We collected field data from three hard winter wheat and three grain corn fields in the 

summer of 2018. Winter wheat seeds are usually sawn in October prior to the summer 

and harvested in September following the summer. Winter wheat is predominately 

harvested in south west Ontario and is favoured over spring wheat. Across Canada, 
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winter wheat is harvested on significantly less area than spring wheat, while producing 

considerably higher average yield at 4.3 tonnes per hectare (Larsen, 2012). Corn is 

generally planted in May just before the summer and typically harvested in late 

October/early November once the crop is dried and the starch content is high. Grain corn 

represents almost 95 % of the corn grown in Ontario and is used for livestock feed, 

ethanol fuel, and sweeteners (Hamel & Dorff, 2015).  

Data was collected on a farmer’s field, not an experimental field. A total of four sampling 

dates were collected for both wheat and corn. Fields on average were roughly 16-24 ha in 

size and were dispersed in a 3 km radius.  

2.2.2 Field Data 

In-situ data were collected over 8 sampling points on each field, with one wheat field 

holding 16 sample points from May-to-July 2018 (Figure 2-2). In-situ data included 

ground spectral reflectance and biomass. Ground spectral reflectance spectra between 

325 nm and 1075 nm were acquired using an ASD FieldSpec Handheld v2. Field of view 

(FOV) was measured at 25°. Each sample point had an average of 8-10 readings and was 

measured at a height of roughly 1.5 m directly above the crop. The spectra were obtained 

on relatively cloud-free days between 9am-2pm. Calibration with a white board occurred 

before readings and were re-calibrated if sky conditions changed, such as in the case of 

cloud cover. Spectra reading occurred weekly during the growing season but was 

interrupted for corn when the height of the corn exceeded the user’s height. This protocol 

follows Le Maire et al. (2008) who suggested that canopy spectral reflectance data should 

be retrieved weekly to avoid any nitrogen dilution, due to rapid biomass growth. 
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Figure 2-2 RGB mosaics made with the MicaSense images acquired on May 24th, 

2018 over the wheat fields named at a) McColl, b) Hetzell, c) Bale) and on June 7th, 
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2018 of corn fields named d) Paul, e) Jack North, f) Crandell with ground sample 

point distribution. All fields are located in Mt. Brydges, Ontario 

Crop biomass was measured destructively by removing the crop (at the bottom of the 

stem) immediately after collecting canopy reflectance on a 0.5 m2 block for wheat and 1 

m2 block for corn. The average row distance for wheat was 18 cm and typically had three 

rows of wheat in a 0.5 m2 block. The average row distance for corn was 75 cm and 

typically corn fields had an average of 12-14 plants per 1 m2 area.  

The plant biomass was lightly washed to remove any soil, dust, fertilizer, or spray 

residues on them. Biomass was then weighed at the fresh stage, then dried in 80° C oven 

for a 24-36 hours. Dried biomass weight (scaled at g/m2) was measured then sent to A & 

L Canada Laboratory for plant tissue analysis. The leaves of the oven dried samples were 

grinded into powder form and passed through a 1mm sieve. The leaf nitrogen content 

(expressed as percentage) was then measured using the Laboratory Equipment Company 

(LECO) FP628 nitrogen/protein analyser that uses the total nitrogen combustion method 

at a temperature of 1050° C (AOAC 2006). Wheat leaf nitrogen content (%) throughout 

the growing season ranged between 3.4 % to 6.8 % and corn leaf nitrogen content (%) 

ranged between 2.3 % and 6 %. Both crops had a decrease trend in leaf nitrogen content, 

possibly due to the nitrogen contribution to the crop changes throughout the growing 

season.  

2.2.3 UAV Imagery 

As crop physiology and soil structure change over time, UAV collection is optimal when 

done during or immediately after or before field collection. UAV flights were performed 

the day of or within two days before collecting in-situ ground measurement data. UAV 

flights were performed on May 17th, May 24th, June 7th, and June 19th, 2018 by A & L 

Canada Labs Inc. over the entire fields (Table 2-1). The UAV imagery was acquired by a 

MicaSense Red edge camera using a Dà-Jiāng Innovations (DJI) Matrice 100 quadcopter, 

flown in a zigzag route at 40 m in height and 80 % overlap, with an average of 30-45 min 

of flight time depending on the size of the field. The software used to pre-program the 

flights was MicaSense Atlas Flight mission planner, a free app downloadable on a 
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mobile/tablet device on the Apple app store. The app allows the user to create a flight 

pattern with the desired speed, altitude and overlap parameters. The app also allows the 

ability to pause, stop and resume flights due to any circumstances such as battery change. 

Table 2-1. Summary of UAV flight acquisition in the study (2018) 

Crop Field Date of UAV 

Flight 

Weather 

Condition 

Growth Stage 

Wheat Bale May 24th  27.3° C, Sunny F6/F7 

 Hetzell May 24th  27.3° C, Sunny F6/F7 

  June 7th  23.2° C, Sunny F10 

 McColl May 17th 26.3° C, Sunny F5/F6 

  May 24th 27.3° C, Sunny F7/F8 

Corn Crandell June 7th 23.2° C, Sunny V2 

  June 19th  26.0° C, Sunny V5/V6 

 Jack North June 7th  23.2° C, Sunny V2 

 Paul  June 19th  26.0° C, Sunny V5/V6 

2.2.4 Field Canopy Reflectance Processing 

ASD spectral reflectance data was processed using ViewSpecPro and converted to (.csv) 

files. ASD spectra were averaged at each sample point and divided by the white board 

spectra to compute canopy reflectance spectra. Because the purpose of the study is to test 

if UAV imagery acquired by the MicaSense Red edge camera can be used to monitor 

crop nitrogen, ASD reflectance spectra were converted to reflectance values that 

corresponded to the following 5 MicaSense Red edge bands (Table 2-2): (1) blue, (2) 

green, (3) red, (4) red edge, and (5) near-infrared. Figure 2-3 shows a typical reflectance 

spectrum of both wheat and corn canopies and the corresponding 5 MicaSense bands. 

Both band 1 (blue) and band 2 (green) have a bandwidth of 20 nm, while band 3 (red) 

and band 4 (red edge) have a narrow range of 10 nm. Lastly, band 5 (near infrared) has a 

bandwidth of 40 nm. These reflectances were then used to compute vegetation indices, 

which are algebraic transformation of reflectances in two or more bands. Vegetation 

indices are designed to enhance the contribution of the optical properties of the 

vegetation on the total spectral response of the canopy. Therefore, vegetation indices 

attempt to correct any confounding factors such as reflectance of soil backgrounds in a 

crop (Clevers & Kooistra, 2011). We used the most widely used vegetation indices 

(Table 2-4): RVI, NDVI, Green NDVI, MTVI2, and Red edge NDVI. RVI has been 
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already used to estimate nitrogen status while being insensitive to growth stages and crop 

type (Muñoz-Huerta et al. 2013). NDVI and Green NDVI have been used extensively in 

literature to study various biological parameters including nitrogen (Zhang & Kovacs, 

2012). MTVI2, which is an improved vegetation index of the triangle vegetation index 

(TVI), was found to be useful to estimate nitrogen content with multispectral images 

(Bagheri et al. 2013). Red edge NDVI was common in other studies involving nitrogen 

management (Li et al. 2018; Olson et al. 2019) and was used to test the MicaSense’s red 

edge band capability in predicting nitrogen status. Indeed, red edge-based vegetation 

indices were found to produce the highest R2 with nitrogen in corn fields (Olson et al. 

2019, Clevers & Gitelson, 2012). 

Table 2-2. Spectral characteristics of the 5 MicaSense bands 

Band # Name Band Range 

(nm) 

Centre Wavelength 

(nm) 

Bandwidth 

(nm) 

1 Blue 465-485 475 20 

2 Green 550-570 560 20 

3 Red 663-673 668 10 

4 Red edge 712-722 717 10 

5 NIR 820-860 840 40 

Table 2-3. Vegetation indices used in this study 

Index (1) Formula (2) Authors 

GNDVI (NIR-GREEN)/( NIR+GREEN) Gitelson & Merzlyak, 1996 

MTVI2 1.8(NIR-GREEN)-3.75(RED-GREEN)

√(2NIR + 1)2 − 6(NIR − 5√RED) − 0.5

 
Bagheri et al. 2013 

NDVI (NIR-RED)/( NIR+RED) Rouse et al. 1974 

RE_NDVI (NIR-REDEDGE)/(NIR+ REDEDGE) Barnes et al. 2000 

RVI NIR/RED Jordan, 1969 
1 GNDVI = green normalized difference vegetation index; MTVI2 = modified triangular 

vegetation index; NDVI = normalized difference vegetation index; RE_NDVI = red edge 

normalized difference vegetation index; RVI = ratio vegetation index 2 GREEN = green 

reflectance; RED = red reflectance; REDEDGE = red edge reflectance; NIR = near-

infrared reflectance 
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Figure 2-3. Typical reflectance spectrum of wheat and corn plants with the location 

of the 5 MicaSense bands. B1: band 1 (blue); B2: band 2 (green); B3: band 3 (red); 

B4: band 4 (red edge); B5: band 5 (near-infrared). Spectral reflectance of wheat 

taken at McColl field on May 14th, 2018 and corn at Crandell on June 12th, 2018 

2.2.5 Nitrogen Estimation Modelling 

All the modelling was performed in R Studio and figures were produced using the 

“ggplot2” package (Wickham, 2009). To describe the canopy nitrogen status, we used the 

canopy nitrogen weight that is defined by Hansen and Schjoerring (2003) as follows: 

𝐶𝑎𝑛𝑜𝑝𝑦 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑙𝑒𝑎𝑓 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∗ 𝑑𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡    [2] 

Equation 2 assumes that all the leaves from a sample gathered in the field contained the 

same amount of nitrogen. Canopy nitrogen weight (g/m2) has the advantage of being a 

more absolute value, compared to plant or leaf nitrogen content (%), which is a more 

relative value. Absolute values allow the ability to compare the results among different 

fields and dates. Additionally, previous studies have shown that estimating biochemical 

concentrations at the leaf level is difficult. Therefore, focusing on the canopy level is 

optimal (Clevers & Kooistra, 2011).  
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The MicaSense Red edge vegetation index values derived from canopy reflectance 

spectra were used in simple linear regression models as independent variables to estimate 

the canopy nitrogen weight as follows: 

𝐶𝑎𝑛𝑜𝑝𝑦 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑎 + 𝑏 (𝑉𝐼𝐴𝑆𝐷)     [3] 

where VIASD represents the vegetation index values derived from the ASD-simulated 

MicaSense bands. We only considered in our study linear regressions because nonlinear 

regressions such as exponential, power or polynomial can lead to multiple nitrogen 

values for the same VI value. This is not practical as the developed method needs to be 

used by growers to precisely spray fertilizations and there is the need of having a unique 

nitrogen value for each VI value. The relationship between the vegetation index to the N 

status can be misleading if the best-fit function (R2) is not linear because the sensitivity 

between the two will not be constant (Gitelson, 2013). After the analysis of simple linear 

regression of each vegetation index, we also used stepwise regression with backward 

selection of all the calculated VIs to develop a model that have more than one input 

vegetation index. In addition to R2 and root mean square error (RMSE), the performance 

of the model was assessed as a function of possible significant multicollinearity between 

input variables using the “car” package (Fox & Weisberg, 2019) and VIF() function in R 

Studio. Multicollinearity is a statistical phenomenon in which two or more explanatory 

variables are correlated with each other and it reduces the accuracy of the estimates of the 

regression coefficients. Multicollinearity is often an issue and typically needs to be 

formally explored for any analysis using more than one explanatory variable using the 

variance inflation factor (VIF) equation: 

𝑉𝐼𝐹𝑗 =  
1

1−𝑅𝑗
2                                          [4] 

Where R2
j is the R2 from the regression of explanatory variable j to all the other 

predictors in the model. If R2
j is close to one, then multicollinearity exists with that 

explanatory variable, as the VIF value will be large (James et al. 2013). A general rule of 

thumb is that VIF values > 5 present a high degree of multicollinearity and the 

explanatory variable should be removed from the model.  
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2.2.6 UAV Image Processing 

The UAV images were processed using Pix4D (Pix4D SA, Lausanne, Switzerland) to 

generate an orthomosaic image of each field by stitching hundreds of different images 

captured during the same flight into one single 2D image or 3D point cloud and corrected 

for perspective. Because the camera on the UAV travels from point A to point B, Pix4D 

accounts for the differences in distance from when the camera changes its position during 

its route. Pix4D uses the technique called Structure from Motion (SfM). SfM is a 

technique that uses multiple overlapping images from various angles as inputs and 

extracts 3D surface information with matching points that were found in the overlapping 

space between the images (Harwin & Lucieer, 2012; Pricope et al. 2019; Westoby et al. 

2012). The outputs of the mosaic UAV imagery can be produced at centimetre level 

resolutions, which allows the ability to easily differentiate between the soil and the 

canopy on the imagery. Keypoints in Pix4D was left at default 1 image scale. However, 

once the canopy became dense, Pix4D recommends changing the keypoints setting to ½ 

image scale for a higher number of calibrated images (Pix4D documentation, 2020). 

Typically, the mosaic imagery produced will show large areas of missing outputs if the 

number of the calibrated images are low. Therefore, we adjusted the keypoints parameter 

accordingly once the canopy became dense in the later growing stage, particularly in the 

imagery of Hetzell (wheat) on June 7th. The final output of the mosaic image was 

produced at 5 cm/pixel and five ground plates were used for georeferencing. For each 

flight acquisition, each field’s vegetation index image was computed from the mosaic 

image and exported to a (.tif) file. Mosaic images were automatically radiometrically 

corrected in Pix4D.  

The UAV vegetation index images were used to compute a prediction canopy nitrogen 

weight map of each field by applying the following equation to the imagery with the 

ArcMap Raster Calculator: 

𝐶𝑎𝑛𝑜𝑝𝑦 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑎1 + 𝑏1(𝑉𝐼𝑈𝐴𝑉)    [5] 

where VIUAV is the vegetation index values derived from the UAV imagery, while a and b 

are the regression coefficients of Equation 3. After generating the nitrogen prediction 
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map of each field and at each date, root mean square error (RMSE) values were 

calculated by comparing the predicted and actual canopy nitrogen weight values around 

the sample point for each corn or wheat field using the following equation:  

𝑅𝑀𝑆𝐸 =  
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
     [6] 

where Pi represents the predicted canopy nitrogen weight value (g/m2), while Oi 

represents the observed canopy nitrogen weight value (g/m2). n is the number of 

observations in the calculation, and i is the index of summation in increments of 1. A 

polygon shapefile, roughly the size of the ground sample point was used to calculate the 

average value of the canopy nitrogen weight prediction values in ArcMap. 

2.3 Results 

2.3.1 Nitrogen Estimation Modelling 

Canopy nitrogen weight shows an increase trend overtime throughout the growing season 

for both the wheat and corn crops (Figure 2-4). Figure 2-4 also shows that the later 

growing stage has a larger variation in canopy nitrogen weight for both the wheat (June 

4th) and corn crops (June 26th and July 4th), being much more evident in the corn crops 

(Figure 2-4b). By contrast, the early growing stage of the corn crops (June 4th) has very 

little variation in canopy nitrogen weight (Figure 2-4b). This may be due to the small 

amount of biomass present at this early growing stage. 
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a) wheat 

 

b) corn 

 

Figure 2-4. Box plot showing the variation of canopy nitrogen weight (g/m2) as a 

function of the time in the studied wheat and corn fields during the 2018 growing 

season 

In this study we found that there was almost no relationship between the vegetation 

indices and leaf nitrogen content (%) throughout the entire growing season for both 

wheat and corn crops (Table 2-4). The lack of relationship between leaf nitrogen content 

(%) and vegetation indices throughout the growing season was also observed in a study 

on sugar beet crops (Jay et al. 2017), on litchi orchards (Li et al. 2016) and on wheat 

crops (Song, 2016).  
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Table 2-4. R2 between leaf nitrogen (%) and the vegetation indices used in the study 

Crop Vegetation Index R2 

Wheat RVI 0.39 

NDVI 0.38 

GNDVI 0.37 

MTVI2 0.41 

RE_NDVI 0.37 

Corn RVI 0.20 

NDVI 0.39 

GNDVI 0.28 

MTVI2 0.32 

RE_NDVI 0.31 

 

Figures 2-5 and 2-6 presented the regression models between the reflectance of individual 

MicaSense simulated bands and the canopy nitrogen weight for the wheat and corn fields, 

respectively. For all bands except the near-infrared band (band 5), there is a decrease in 

the reflectance as canopy nitrogen weight (g/m2) increases. Out of all the bands, the near-

infrared (band 5) reflectance had the best correlation with canopy nitrogen weight for 

both the wheat and corn fields (R2 = 0.61, R2 = 0.54). Predicting nitrogen with a single 

near-infrared band could be useful. However, it showed signs of saturation after a 

reflectance value of 0.5 (Figures 2-5e and 2-6e). The red edge reflectance has already 

been shown to be sensitive to leaf chlorophyll content in plants (Jones & Vaughn, 2010), 

but also to be less sensitive at higher contents of chlorophyll (saturation effect) (Clevers 

& Kooistra, 2011). This could be also the case for nitrogen as nitrogen is the main 

component of chlorophyll and is well correlated to chlorophyll content (Clevers & 

Kooistra, 2011). The red edge reflectance has been found to be significantly related to 

corn nitrogen weight (Schlemmer et al. 2013; Li et al. 2014). However, in this study, the 

reflectance of the red edge band (band 4) consistently showed a weak correlation with 

canopy nitrogen weight for both the wheat and corn fields (R2 = 0.24, R2 = 0.001). This 

may be due to the red edge position effect that occurs with the sharp position of the sharp 

change in reflectance in the red edge region. This sharp change of reflectance is known to 

be a sensitive indicator of leaf chlorophyll (Jones & Vaughan, 2010; Zarco-Tejada et al. 

2002; Curran et al. 1990). The MicaSense camera has a narrowband of 10 nm in the red 
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edge region, therefore this study may have had weak correlation with canopy nitrogen 

weight as the camera may have not fully captured the red edge position throughout the 

growing season. As shown in Figures 2-5c and 2-6c, green reflectance is also poorly 

related to canopy nitrogen weight, probably because we used data of the entire growing. 

The chlorophyll saturates in the middle to late growing stage, causing the crops reflecting 

the same amount of green wavelength. The green wavelength is closely related to the leaf 

chlorophyll a and b contents (Zhao et al. 2018). However, this result is not in agreement 

with Schlemmer et al. (2013) and Li et al. (2014) who observed a good relationship 

between green reflectances and corn nitrogen weight. We also observed weak 

relationships with either the blue or the red reflectance both crop types (Figures 2-5a, 2-

5b, 2-6a, 2-6b). Similarly as the green reflectance, reflectances in the blue and red bands 

are highly related to chlorophyll contents because both bands correspond to chlorophyll 

absorption bands (Jones & Vaughn, 2010). However, the blue and red bands are 

reflecting less than the green band due to the chlorophyll reflecting more in the green 

wavelength. For the three visible bands (blue, green, and red), the relationship with the 

crop nitrogen weight is negative (Figures 2-5a-c, 2-6a-c). These results are similar to Yao 

et al. (2013) who observed that the reflectance in the visible bands decreases with 

increasing nitrogen (g/m2) for wheat crops. 
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a) Blue  

 

b) Green  

 
c) Red  

 

d) Red-Edge  

 
e) Near-Infrared  

 

Figure 2-5. Relationship between canopy nitrogen weight and the MicaSense 

simulated reflectance in a) the blue MicaSense band, b) the green MicaSense band, 

c) the red MicaSense band, d) the red edge MicaSense band, and e) the near-

infrared MicaSense band for the wheat fields 
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a) Blue  

 

b) Green  

 
c) Red  

 

d) Red-Edge  

 
e) Near-Infrared  

 

Figure 2-6. Relationship between canopy nitrogen weight and the MicaSense 

simulated reflectance in a) the blue MicaSense band, b) the green MicaSense band, 

c) the red MicaSense band, d) the red edge MicaSense band, and e) the near-

infrared MicaSense band for the corn fields 
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As have already been showed in Liu et al. (2016), it is better to use reflectances in more 

than one band for estimating crop nitrogen. One way to do so is to use vegetation indices, 

which are algebraic combinations of multispectral reflectances. Among all the vegetation 

indices we tested, GNDVI produced a consistent lower R2 value (around 0.50) than the 

other vegetation indices for both wheat and corn fields when considering the entire 

growing season (Figures 2-7 and 2-8). Song (2016) also found that GNDVI begins to 

saturate in the later growing season of wheat crops because of leaf senescence, while 

presenting a great relationship with nitrogen in the early/mid growing season. However, 

their relationship between GNDVI and nitrogen was evidently a non-linear exponential 

relationship. NDVI also presented low R2 values because of the saturation of the 

relationship occurring in the later growing season for both the wheat and corn fields. This 

is not in agreement with Hansen and Schjoerring, (2003) who found that NDVI is the 

most useful index to predict nitrogen of wheat using a linear regression model, but these 

authors only considered the early growing stages of the wheat crops. Predicting crop 

nitrogen using NDVI was unreliable in this study because of the saturation of the 

relationship which leads to a large variation in the prediction of nitrogen in the later 

growing stage without increasing the NDVI values. This saturation effect was also 

present for the models with GNDVI, MTVI2 and Red Edge NDVI. The VIs that showed 

saturation in our study was also present in Frels et al. (2018), where the authors used a 

linear regression for each growing stage on wheat as a non-linear relationship was present 

when they combined all of the dates. However, the authors did not produce RVI in their 

list of VIs used in the study to estimate nitrogen status. Overall, most studies using VIs to 

estimate nitrogen have avoided the use of linear regression throughout the growing 

season to avoid the saturation in the later growing stages. On the other hand, the objective 

of this study aimed at achieving a linear relationship over the entire growing season and 

incorporating RVI to estimate nitrogen using linear regression. 

Furthermore, RVI gave a consistent high R2 value for both crops at the individual field 

level (Table 2-5) (around 0.93 for Hetzell) and when the fields are combined in the four 

sampling dates (around 0.66 for wheat and 0.64 for corn) (Figures 2-7 and 2-8). Li et al. 

(2018) working on rice crops found that ratio vegetation indices like RVI performed 

better in linear relationships with nitrogen than NDVI. However, even with RVI, our 
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relationship started to get weaker for the corn fields at the end of the growing stage 

(tasselling stage) because of a greater variation in the canopy nitrogen weight (Figure 2-

8). This could be due to the leaf nitrogen content (%) remaining constant at the later 

growing stage, while the biomass increases. Figure 2-9 presents the best performing 

fields for both wheat and corn’s RVI relationship with canopy nitrogen weight. 

Individually, both Hetzell and Crandell shows the best linear relationship with RVI and 

canopy nitrogen weight throughout the growing season. 

Table 2-5. Statistics of the RVI-based regression models (*) as a function of the field 

and the number of dates sampled 

Crop Field Dates 

Sampled 

Regression Model R2 n 

Wheat Bale 3 y = -0.08014 + 0.22515(RVI) 0.80 24 

4 y = -0.701 + 0.351(RVI) 0.75 32 

Hetzell 3 y = -0.2222 + 0.13567(RVI) 0.93 24 

4 y = -0.625 + 0.368(RVI) 0.86 32 

McColl 3 y = -0.36529 + 0.26080(RVI) 0.71 48 

4 y = -2.0454 + 0.4218(RVI) 0.58 64 

Corn Crandell 3 y = 0.9639 + 0.7627(RVI) 0.70 24 

4 y = -2.583 + 1.54(RVI) 0.83 32 

Jack 

North 

3 y = 0.1099 + 1.0457(RVI) 0.67 24 

4 y = -0.944 + 1.37(RVI) 0.81 32 

Paul 3 y = 1.8619 + 0.4708(RVI) 0.37 24 

4 y = -1.0225 + 1.0604(RVI) 0.71 32 

(*) All the models are significant at p-value< 0.001 
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Figure 2-7. Relationship between canopy nitrogen weight and the five vegetation 

indices used in the study for the wheat fields combined 
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Figure 2-8. Relationship between canopy nitrogen weight and the five vegetation 

indices used in the study for the corn fields combined 
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Figure 2-9. Relationship between canopy nitrogen weight and RVI of the best 

performing fields for (a) wheat and (b) corn 

a) Hetzell (wheat) 

 

b) Crandell (corn) 

 

c) Bale (wheat) 

 

d) Jack North (corn) 

 

e) McColl (wheat) 

 

f) Paul (corn) 
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However, as shown in Table 2-5, when the data of the fourth sampling date was removed 

from the regression computation, the relationship between canopy nitrogen weight and 

RVI was not better for the corn fields. This could suggest that data of four sampling dates 

is needed for establishing a good relationship with canopy nitrogen weight for corn fields. 

Adding data from a fifth sampling date could be not useful given the saturation of the 

relationship. By contrast, for the wheat crops, Table 2-5 shows that removing the last 

sample date improved the linear model for all the fields, indicating that data from the first 

three sampling dates in the growing season is enough to model canopy nitrogen weight 

with vegetation indices. This may be due to the shift of nitrogen from the wheat’s stem 

and leaves towards the grain, which is accompanied by the decline of leaf nitrogen 

content (%) at the last sampling date (Yang et al. 2019). Simultaneously due to the rapid 

biomass increase, the last sampling date may have caused a large variation of nitrogen, 

therefore weakening the relationship with vegetation indices as seen in Figure 2-4a.  

A multiple linear regression was also established using stepwise regression on all the 

vegetation indices. However, the related VIF was higher than 10, which indicates a high 

degree of multicollinearity between the input vegetation indices, because some vegetation 

indices are well correlated along with each other, as shown in Table 2-6. 

Table 2-6. Correlation matrix between the vegetation indices used in this study 

 RVI NDVI GNDVI MTVI2 RE_NDVI 

RVI 1.0000     

NDVI 1.0000 1.0000    

GNDVI 0.9598 0.9598 1.0000   

MTVI2 0.9726 0.9726 0.9441 1.0000  

RE_NDVI 0.9478 0.9478 0.9868 0.9397 1.0000 

With the simple linear regression method, since RVI is the best correlated with the 

canopy nitrogen weight among all the vegetation indices, it was used with the UAV 

imagery to derive a canopy nitrogen weight predictive map using Equation 5. However, 

before applying Equation 5, it is necessary to assess if the RVI values computed with the 

UAV imagery are similar as the RVI values computed with the ground-based reflectance 

data. 
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2.3.2 Comparison between the RVI computed with the UAV 
imagery and the ground measurements 

In order to assess whether the RVI computed with the UAV imagery is similar as the RVI 

computed with the ground-based reflectance data, RVI values computed with the UAV 

imagery acquired with the MicaSense multispectral camera was correlated with the RVI 

values computed with the MicaSense-simulated reflectance data for all the fields 

combined (Figure 2-10). The resulting regression line has a R2 of 0.94 and RMSE of 

2.09. We can conclude that the RVI values derived from the UAV imagery are similar to 

those derived from the ASD data. 

 

Figure 2-10. Comparison between ASD-measured and UAV-measured RVI for both 

crops combined 

2.3.3 Crop Nitrogen Weight Predictive Map 

RVI’s linear regression equations of Table 2-5 were entered in the ArcMap Raster 

Calculator to compute canopy nitrogen weight for each image pixel and produce a 

canopy nitrogen weight map for each field and each UAV imagery date (Figure 2-11). 

From the resulting images, canopy nitrogen weight values were extracted around the 

sample points and compared to the measured ones. We achieved a RMSE ranging from 
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0.66 g/m2 to 2.68 g/m2 depending on the field, crop and the date of acquisition (Table 2-

7). The UAV imagery acquired on June 7th over the corn field at Jack North achieved the 

best result with a RMSE of 0.66 g/m2 using the linear regression model with four dates. 

The UAV imagery acquired on May 24th over the wheat field at McColl achieved the 

worst result with a RMSE of 2.68 g/m2 using the linear regression model with four dates. 

The RMSE significantly increased for the wheat fields in Bale and McColl after 

removing data of the 4th sample date from the regression model. For all three corn fields 

in this study, the RMSE decreased when removing data of the 4th sample date from the 

regression model, indicating that data from a minimum of four sampling dates is needed 

for estimating canopy nitrogen weight in corn. 



39 

 

Figure 2-11. Canopy nitrogen weight prediction map with sample points derived 

from the RVI image on May 24th, 2018 for the following wheat fields a) McColl, b) 

Hetzell and c) Bale fields and on June 7th, 2018 for the following corn fields: d) Paul, 

e) Jack North, and f) Crandell fields 
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Table 2-7. RMSE for the RVI-based estimation model of canopy nitrogen weight 

(g/m2) when applied to the UAV imagery as a function of the crop, the field, the date 

of image acquisition, and the number of dates used for deriving the estimation 

model 

Crop Field Date of the 

image 

# of dates in 

the regression 

model 

RMSE (g/m2) 

Wheat Bale May 24 3 1.11 

4 2.36 

Hetzell May 24 3 1.45 

4 1.50 

June 7 3 N/A(*) 

4 2.22 

McColl May 17 3 1.09 

4 2.08 

May 24 3 0.95 

4 2.68 

Corn Crandell June 7 3 1.21 

4 1.05 

June 19 3 3.01 

4 1.83 

Jack North June 7 3 0.83 

4 0.66 

Paul June 19 3 2.21 

4 2.09 

*The UAV acquisition date was outside the dates of the linear regression model 

On the resulting maps of Figure 2-11, high and low canopy nitrogen weight zones are 

displayed in green and in red respectively. This colour scheme allows distinguishing 

easily both zones, particularly in the case of the Hetzell field (Figure 2-11b). Similarly, 

the field of Figure 2-11d has a dark red strip zone that corresponds to bare soil as shown 

on Figure 2-1. Given that all the images have a spatial resolution of 5 cm per pixel, the 

images can easily allow detecting bare soil areas in both the wheat and corn fields and 

can easily separate the crop from the soil in the corn fields. Bagheri et al. (2013) found a 

very poor spatial distribution of nitrogen levels in their nitrogen prediction maps on corn, 

indicating that it is necessary to use variable-rate nitrogen application (applying certain 

amount of nitrogen fertilizer for each area) for differentiating nitrogen zones. However, 
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the authors used a 15 m resolution ASTER multispectral satellite imagery, making the 

spatial resolution inadequate for spatial differentiation of nitrogen status.  

2.4 Conclusion 

In this study, various vegetation indices were used in linear regression models to predict 

canopy nitrogen weight of wheat and corn fields using UAV MicaSense images. First, the 

models were established with MicaSense band-related vegetation indices derived from 

ASD spectra. The best vegetation index to estimate canopy nitrogen weight throughout 

the growing season is RVI for both the wheat and corn crops. RVI had a consistent linear 

relationship with canopy nitrogen weight throughout the entire growing season for the 

wheat crop, while the corn crop had a significant increase variation in nitrogen at the end 

of the growing season. However, the model was still able to predict nitrogen with high 

accuracy on the image gathered on June 7th (RMSE = 0.66 g/m2). For the wheat fields, the 

best prediction was achieved with the image acquired May 24th (RMSE = 0.95 g/m2).  

The UAV nitrogen prediction maps can also detect spatial nitrogen variations within the 

fields. In practice, these results could be useful for farmers on retrieving quick 

information about the field’s nitrogen status. Farmers will be able to know exactly which 

parts of their fields are deficient or excess in the amount of nitrogen present. Ultimately, 

this will lead to a much more efficient spraying program for the farmers as they will 

know precisely how much nitrogen is needed to use with their GPS-enabled nitrogen 

fertilizer. The study uses data acquired over Ontario fields in 2018 and there is the need 

to test the method over other datasets to see how general the developed methodology can 

be.  

 

 

 



42 

 

2.5 References 

AOAC 2006. AOAC Official Method 972.43, Microchemical determination of carbon, 

hydrogen, and nitrogen, automated method, in Official Methods of Analysis of 

AOAC International, 18th edition, Revision 1, Chapter 12, pp. 5-6, AOAC 

International, Gaithersburg, MD.  

Bagheri, N., Ahmadi, H., Alavipanah, S. K., & Omid, M. (2013). Multispectral remote 

sensing for site-specific nitrogen fertilizer management. Pesquisa Agropecuária 

Brasileira, 48(10), 1394-1401. 

Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, 

M., & Lascano, R. J. (2000). Coincident detection of crop water stress, nitrogen 

status, and canopy density using ground based multispectral data. In Proceedings 

of the Fifth International Conference on Precision Agriculture, Bloomington, MN, 

USA (Vol. 1619), 1-15. 

Botha, E. J., Leblon, B., Zebarth, B. J., & Watmough, J. (2010). Non-destructive 

estimation of wheat leaf chlorophyll content from hyperspectral measurements 

through analytical model inversion. International Journal of Remote Sensing, 

31(7), 1679-1697. 

Clevers, J. G., & Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll 

and nitrogen content using red edge bands on Sentinel-2 and-3. International 

Journal of Applied Earth Observation and Geoinformation, 23, 344-351. 

Clevers, J. G., & Kooistra, L. (2011). Using hyperspectral remote sensing data for 

retrieving canopy chlorophyll and nitrogen content. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 5(2), 574-583. 

Curran, P. J., Dungan, J. L., & Gholz, H. L. (1990). Exploring the relationship between 

reflectance red edge and chlorophyll content in slash pine. Tree physiology, 7(1-2-

3-4), 33-48. 

Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral 

remote sensing for precision agriculture: A comparison between different 

cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124-136. 

Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage 

publications. 



43 

 

Frels, K., Guttieri, M., Joyce, B., Leavitt, B., & Baenziger, P. S. (2018). Evaluating 

canopy spectral reflectance vegetation indices to estimate nitrogen use traits in 

hard winter wheat. Field Crops Research, 217, 82-92. 

Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: 

algorithm development for remote sensing of chlorophyll. Journal of Plant 

Physiology, 148(3-4), 494-500. 

Gitelson, A. A. (2013). Remote estimation of crop fractional vegetation cover: the use of 

noise equivalent as an indicator of performance of vegetation indices. 

International Journal of Remote Sensing, 34(17), 6054-6066. 

Gnyp, M. L., Panitzki, M., Reusch, S., Jasper, J., Bolten, A., & Bareth, G. (2016). 

Comparison between tractor-based and UAV-based spectrometer measurements 

in winter wheat. In Proceedings of the 13th International Conference on 

Precision Agriculture, Monticello, IL, USA (Vol. 31). 

Hamel, M. & Dorff, E. (2015). Corn: Canada’s third most valuable crop. Statistics 

Canada. Retrieved from https://www150.statcan.gc.ca/n1/pub/96-325-

x/2014001/article/11913-eng.htm 

Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass 

and nitrogen status in wheat crops using normalized difference vegetation indices 

and partial least squares regression. Remote Sensing of Environment, 86(4), 542-

553. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical 

learning (Vol. 112, pp. 100-102). New York: springer. 

Jay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll 

and nitrogen contents in sugar beet crops from multi-angular optical remote 

sensing: Comparison of vegetation indices and PROSAIL inversion for field 

phenotyping. Field Crops Research, 210, 33-46. 

Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: principles, 

techniques, and applications. Oxford university press.  

Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest 

floor. Ecology, 50(4), 663-666. 



44 

 

Kelcey, J., & Lucieer, A. (2012). Sensor correction of a 6-band multispectral imaging 

sensor for UAV remote sensing. Remote Sensing, 4(5), 1462-1493. 

Larsen, R. J. (2012). Winter-Hardy Spring Wheat Breeding: Analysis of Winter x Spring 

Wheat Germplasm and the Development of Selection Tools (Doctoral 

dissertation). University of Guelph. 

Le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J. Y., Bréda, N., & 

Dufrêne, E. (2008). Calibration and validation of hyperspectral indices for the 

estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf 

area index and leaf canopy biomass. Remote Sensing of Environment, 112(10), 

3846-3864. 

Li, D., Wang, C., Liu, W., Peng, Z., Huang, S., Huang, J., & Chen, S. (2016). Estimation 

of litchi (Litchi chinensis Sonn.) leaf nitrogen content at different growth stages 

using canopy reflectance spectra. European Journal of Agronomy, 80, 182-194. 

Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., & Chen, X. (2014). Improving 

estimation of summer maize nitrogen status with red edge-based spectral 

vegetation indices. Field Crops Research, 157, 111-123. 

Li, S., Ding, X., Kuang, Q., Ata-Ul-Karim, S. T., Cheng, T., Liu, X., & Cao, Q. (2018). 

Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. 

Frontiers in Plant Science, 9, 1834. 

Liao, C., Wang, J., Dong, T., Shang, J., Liu, J., & Song, Y. (2019). Using spatio-temporal 

fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield 

estimates for corn and soybean. Science of The Total Environment, 650, 1707-

1721. 

Liu, Y., Cheng, T., Zhu, Y., Tian, Y., Cao, W., Yao, X., & Wang, N. (2016). 

Comparative analysis of vegetation indices, non-parametric and physical retrieval 

methods for monitoring nitrogen in wheat using UAV-based multispectral 

imagery. In 2016 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS’16), Beijing, China, July, pp. 7362-7365. 

Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned aerial 

vehicles in precision agriculture. Trends in plant science, 24(2), 152-164. 



45 

 

Maresma, Á., Ariza, M., Martínez, E., Lloveras, J., & Martínez-Casasnovas, J. A. (2016). 

Analysis of vegetation indices to determine nitrogen application and yield 

prediction in maize (Zea mays L.) from a standard UAV service. Remote Sensing, 

8(12), 973. 

Muñoz-Huerta, R., Guevara-Gonzalez, R., Contreras-Medina, L., Torres-Pacheco, I., 

Prado-Olivarez, J., & Ocampo-Velazquez, R. (2013). A review of methods for 

sensing the nitrogen status in plants: advantages, disadvantages and recent 

advances. Sensors, 13(8), 10823-10843. 

Nasrallah, A., Baghdadi, N., El Hajj, M., Darwish, T., Belhouchette, H., Faour, G., ... & 

Mhawej, M. (2019). Sentinel-1 Data for Winter Wheat Phenology Monitoring and 

Mapping. Remote Sensing, 11(19), 2228. 

Olson, D., Chatterjee, A., Franzen, D. W., & Day, S. S. (2019). Relationship of drone-

based vegetation indices with corn and sugarbeet yields. Agronomy Journal, 

111(5), 2545-2557. 

Pix4D Documentation (2020). How to improve the outputs of dense vegetation areas? 

Pix4D. https://support.pix4d.com/hc/en-us/articles/202560159-How-to-improve-

the-outputs-of-dense-vegetation-areas 

Pricope, N. G., Mapes, K. L., Woodward, K. D., Olsen, S. F., & Baxley, J. B. (2019). 

Multi-Sensor Assessment of the Effects of Varying Processing Parameters on 

UAS Product Accuracy and Quality. Drones, 3(3), 63. 

Team, R. C. (2019). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/. 

Raparelli, E., & Bajocco, S. (2019). A bibliometric analysis on the use of unmanned 

aerial vehicles in agricultural and forestry studies. International Journal of 

Remote Sensing, 40, 1-14. 

Rouse, J.W., Jr., Haas, R.H., Schell, J.A., & Deering, D.W. (1974). Monitoring 

vegetation systems in the Great Plains with ERTS. NASA Goddard Space Flight 

Center 3d ERTS-1 Symposium, Greenbelt, United States, January 1974. 

Schlemmer, M., Gitelson, A., Schepers, J., Ferguson, R., Peng, Y., Shanahan, J., & 

Rundquist, D. (2013). Remote estimation of nitrogen and chlorophyll contents in 

https://support.pix4d.com/hc/en-us/articles/202560159-How-to-improve-the-outputs-of-dense-vegetation-areas
https://support.pix4d.com/hc/en-us/articles/202560159-How-to-improve-the-outputs-of-dense-vegetation-areas


46 

 

maize at leaf and canopy levels. International Journal of Applied Earth 

Observation and Geoinformation, 25, 47-54. 

Sofonia, J., Shendryk, Y., Phinn, S., Roelfsema, C., Kendoul, F., & Skocaj, D. (2019). 

Monitoring sugarcane growth response to varying nitrogen application rates: A 

comparison of UAV SLAM LiDAR and photogrammetry. International Journal 

of Applied Earth Observation and Geoinformation, 82, 101878. (in press) 

Song, Y. (2016). Evaluation of the UAV-based multispectral imagery and its application 

for crop intra-field nitrogen monitoring and yield prediction in Ontario. Electronic 

Thesis and Dissertation Repository. 4085. University of Western Ontario. 

Walsh, O. S., Shafian, S., Marshall, J. M., Jackson, C., McClintick-Chess, J. R., Blanscet, 

S. M., & Walsh, W. L. (2018). Assessment of UAV based vegetation indices for 

nitrogen concentration estimation in spring wheat. Advances in Remote Sensing, 

7(02), 71-90. 

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). 

‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for 

geoscience applications. Geomorphology, 179, 300-314. 

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer. 

Xie, Q., Dash, J., Huang, W., Peng, D., Qin, Q., Mortimer, H., & Dong, Y. (2018). 

Vegetation indices combining the red and red edge spectral information for leaf 

area index retrieval. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 11(5), 1482-1493. 

Yang, B., Wang, M., Sha, Z., Wang, B., Chen, J., Yao, X., & Zhu, Y. (2019). Evaluation 

of aboveground nitrogen content of winter wheat using digital imagery of 

unmanned aerial vehicles. Sensors, 19(20), 4416. 

Yao, X., Jia, W., Tian, Y., Ni, J., Cao, W., & Zhu, Y. (2013). Comparison and 

intercalibration of vegetation indices from different sensors for monitoring above-

ground plant nitrogen uptake in winter wheat. Sensors, 13(3), 3109-3130. 

Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. 

(2002). Vegetation stress detection through chlorophyll a+ b estimation and 

fluorescence effects on hyperspectral imagery. Journal of environmental 

quality, 31(5), 1433-1441. 



47 

 

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for 

precision agriculture: a review. Precision Agriculture, 13(6), 693-712. 

Zhao, B., Duan, A., Ata-Ul-Karim, S. T., Liu, Z., Chen, Z., Gong, Z., ... & Ning, D. 

(2018). Exploring new spectral bands and vegetation indices for estimating 

nitrogen nutrition index of summer maize. European journal of agronomy, 93, 

113-125. 

Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., & Yao, X. (2018). A 

comparative assessment of different modelling algorithms for estimating leaf 

nitrogen content in winter wheat using multispectral images from an Unmanned 

Aerial Vehicle. Remote Sensing, 10(12), 20-26 

 

 

 



48 

 

Chapter 3  

3 Using Linear Regression, Random Forests, and 
Support Vector Machine with Unmanned Aerial Vehicle 
Multispectral Images to Predict Canopy Nitrogen 
Weight in Corn 

3.1 Introduction 

Precision agriculture (PA) is a farming management technique that requires detailed 

information on crop status. One of the important crop status indicators is the crop 

nitrogen (N) weight because nitrogen is the main plant nutrient needed for producing the 

chlorophyll, which has a direct impact on the plant photosynthesis and thus on crop 

growth and yield (Lemaire et al. 2004). Therefore, there is a need to understand the 

spatial distribution of crop nitrogen for better use of fertilizers. Ultimately, this 

information leads to a better yield among the crops and reduces costs for the farmer by 

matching the fertilizer supply to its demand (Xie et al. 2018; Liu et al. 2016). 

Traditionally, farmers used to rely on historical weather data, such as precipitation and 

temperature, and their past experiences, such as crop yields, to make decisions on their 

fertilizer operations for the upcoming season (Shahhosseini et al. 2019). Today, there 

have been many advances in technology, such as remote sensing data and machine 

learning algorithms, that can potentially aid farmers’ decision making on fertilizer 

application. Remote sensing-based methods used to measure crop nitrogen are typically 

better than the traditional ground-based methods. Ground-based methods require 

intensive field data collection, which can be time-consuming, destructive, and limited to a 

small spatial area, making it impractical for fast and efficient results. Remote sensing-

based methods are required for most agricultural fields in Canada, given that they can 

reach up to hundreds of ha in size. Remote sensing methods are non-destructive, can 

cover large spatial areas, and have been increasingly used for crop monitoring in 

precision agriculture. Crop monitoring based on remote sensing data can use spaceborne 

or airborne images, but these types of high-resolution imagery are either costly or 

difficult to obtain (Raparelli & Bajocco, 2019). Also, they have limited applicability in 

precision agriculture because of the too coarse temporal and spatial resolutions of the 
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imagery (Zheng et al. 2018; Zhang & Kovacs, 2012). Alternatively, free-of-charge 

Sentinel-1 Synthetic Aperture Radar (SAR) imagery could be used to monitor nitrogen 

status but does not provide enough spatial resolution (10 m) for precise small-scaled 

applications (Nasrallah et al. 2019). Bagheri et al. (2013) also found it difficult to 

differentiate levels of nitrogen status in corn fields using a 15 m Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) multispectral satellite imagery. 

An alternative is to use Unmanned Aerial Vehicle (UAV) imagery. The development and 

application of UAV imagery have increased in the past decade, filling in gaps between 

satellite imagery, aerial photography, and field samples (Kelcey & Lucieer, 2012; Yang 

et al. 2017). Image acquisition with UAV can be deployed quickly and repeatedly, at a 

low cost, and with greater flexibility (Maresma et al. 2016; Zha et al. 2020). The temporal 

resolution of UAVs is superior to the satellite and aerial photography platforms, which is 

easily defined by the user (Turner et al. 2013; Harwin & Lucieer, 2012). The low cost of 

UAVs could also be convinced without the use of purchasing ground control points 

(GCPs) (Turner et al. 2013). 

The focus of this study is to test whether UAV multispectral imagery can be used to 

retrieve the crop nitrogen status over corn fields from a perspective of precision nitrogen 

fertilization. The spatial and temporal variations of the images we acquired were 

determined in order to match the crop requirements of nitrogen as closely as possible. 

One common remote sensing technique to estimate nitrogen content at the canopy level is 

the Radiative Transfer Model (RTM), which estimates the chlorophyll or nitrogen content 

by describing the interaction between the sun’s light and the crop canopy. An example of 

an RTM is the PROSAIL model, which uses various parameters at the leaf and canopy 

level and can be mathematically inverted to retrieve both chlorophyll and nitrogen 

content from spectral data (Lemaire et al. 2004; Clevers & Kooistra, 2011; Clevers & 

Gitelson, 2013; Hansen & Schjoerring, 2003; Botha et al. 2010) . Other sets of remote 

sensing methods are empirical methods, such as machine learning algorithms, or 

simple/multiple-linear regression to retrieve crop nitrogen from canopy spectral data 

(Clevers & Kooistra, 2011). This paper used the second set of methods because empirical 

estimation has already been proven to be easier in estimating nitrogen than the PROSAIL 

model, given that an RTM requires the calibration of numerous parameters (Jay et al. 
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2017). In this study, we tested three empirical methods: (1) linear regression, (2) Random 

Forests, and (3) support vector regression (SVR) to statistically relate spectral 

measurements and canopy-level crop nitrogen weight in the case of two corn fields 

located in southwest Ontario, Canada. Many studies on predicting nitrogen were 

conducted in a controlled experimental condition and predicted nitrogen values at the leaf 

level (Chen et al. 2010; Tian et al. 2011; Mipkokasap et al. 2012; Fan et al. 2019), while 

few studies have been performed on real field conditions (Li et al. 2008). As already 

shown in Liu et al. (2016), it is better to use more than one spectral variable for 

estimating crop nitrogen. Therefore, multiple linear regression, Random Forests, and 

SVR was used in this paper to predict canopy nitrogen using a variety of spectral 

variables. 

The first regression method is a traditional regression approach that has two major 

assumptions (multicollinearity and linear relationship). Most studies using UAV imagery 

have used linear regressions to estimate nitrogen status from vegetation indices (VIs) 

(Zha et al. 2020). The latter two approaches are machine learning techniques that have 

been advanced in recent years and are unaffected by the multicollinearity and linear 

relationship assumptions. In addition, they can handle overfitting (Zha et al. 2020; Kayad 

et al. 2019; Belgiu et al. 2016). Overfitting is a common problem in machine learning 

where the models produced perform poorly on unseen data. Random Forests has become 

popular recently within the remote sensing research community for classification and 

regression purposes. The variable importance plot provided by the Random Forests 

algorithm is very successful in identifying the most relevant input data in the model 

(Belgiu et al. 2016; Osco et al. 2019). Therefore, we used the Random Forests variable 

importance plots to identify the most important variables for canopy nitrogen estimation 

and adjusted the model parameters accordingly. Random Forests modelling has been 

found to perform very well out of all the non-parametric methods in various studies to 

monitor nitrogen content in wheat (Liu et al. 2016), rice (Zha et al. 2020), and citrus trees 

(Osco et al. 2019). Random Forests was also the most accurate machine learning 

approach for monitoring corn yield, which is related to crop nitrogen status (Kayad et al. 

2019). Support vector modelling has also been popular in estimating nitrogen status due 

to its strong ability to decorrelate the input variables and can work with non-linear 
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relationships (Xiong et al. 2019; Wang et al. 2017; Karimi et al. 2008). SVR modelling 

has been found to predict nitrogen concentration with high accuracy in bokchoy (Xiong 

et al. 2019), wheat (Wang et al. 2017), and corn (Karimi et al. 2008). 

Ideally, the relationship between the spectral data and the canopy nitrogen weight should 

be linear because there should be only one canopy nitrogen weight estimation for each 

level of input data, given that the relationship will be used to calibrate an N fertilizer 

sprayer that needs to have an exact determination of the crop N fertilization level. 

However, when the canopy becomes dense, the relationship can saturate and become 

non-linear. This is the case when using some VIs, such as the standard normalized 

difference vegetation index (NDVI), green NDVI, red edge NDVI, and modified 

transformed vegetation index 2 (MTVI2), which has been shown to saturate at high 

canopy densities (Lee et al. 2020). Therefore, this study tested the ability of Random 

Forests and SVR to work with non-linear saturated data, particularly when combining 

datasets throughout the growing cycle.  

The best performing model was applied to the UAV imagery for mapping crop nitrogen 

content at the field level. Deng et al. (2018) found that mounting narrowband 

multispectral cameras on UAVs acquire images with far better quality than broadband 

multispectral cameras. Therefore, the objectives of this study are to (i) generate machine 

learning models to predict crop nitrogen weight in corn fields using UAV multispectral 

imagery, (ii) determine which individual MicaSense spectral bands and VIs have the 

most influence on the Random Forests decision tree when predicting nitrogen, (iii) 

generate nitrogen prediction maps by applying the best model to the entire UAV image 

and analyse whether the UAV images are able to detect any spatial variation of nitrogen 

within the fields. The study evaluates three different modelling approaches for predicting 

nitrogen in corn over different dates and growth stages using UAV multispectral imagery. 

The best algorithm not only fills the research gap between monitoring nitrogen and 

UAVs, but also has practical meaning for future modelling study designs. Ultimately, 

these images should be given to farmers in highly accurate, quick, and timely manner 

field information for their precision nitrogen fertilization management. 
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3.2 Materials and Methods 

3.2.1 Study Area 

The study site is located in Melbourne, Ontario, Canada (Figure 3-1). This region is in the 

humid continental climate zone in Canada and the summers are typically hot and humid, 

with an average temperature of 27 °C during the fieldwork month of July 2019. The 

study site is dominated by agricultural land with very little urban use. The closest large 

urban centre is London, Ontario, just 30 km east of the study site. Corn is generally 

planted in May just before the summer and typically harvested in late October/early 

November once the crop is dried and the starch content is high. 

We collected field data from two corn (Zea mays) fields (labelled as JJ and Susan) in the 

summer of 2019. A total of six sampling dates were collected for corn, with at least a 

week in between each sampling date. Both corn fields together were roughly 60 ha in size 

and situated directly across from each other. The study fields are smaller than the average 

agricultural field sizes in Ontario (100 ha) (Mailvaganam, 2017). However, such field 

sizes are large enough to avoid weak relationships in using spectral data and related VIs 

to predict nitrogen because smaller fields can be more affected by bare soil surrounding 

the fields and the mixing effect of other nearby fields (Frels et al. 2018). Both fields were 

similar in topography and planted at the same time by the same grower, allowing the field 

data collected to be used in a single model. 
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Figure 3-1. Study area of the corn fields (JJ and Susan) shown using red green blue 

(RGB) sensor mosaic imagery taken on July 18th, 2019 in Southwest Ontario, 

Canada. One corner of JJ is missing on the RGB image 

3.2.2 Field Data 

In-situ data were collected over 16 points on each corn field in June and July 2019. 

Whiteboard and red sticks were placed on each sample point, which was a ground control 

point to be identified on the UAV imagery for orthomosaicking. In-situ data included 

destructive biomass collection at each sampling point. Fresh biomass was measured in 

grams by gathering the fresh canopy in a 1 m2 block around the sampling point and 

placed in large plastic bags for transport. Due to the intensive work and heavy weight of 

the fresh corn canopy, only two plants were taken per sample point and upscaled to the 

number of plants in the 1 m2 block. The average row distance for corn was 75 cm and the 

fields typically had an average of 12–14 plants per 1 m2 area. Following the fieldwork, 

biomass was weighed at a fresh stage in grams, then placed in an 80 °C oven for 36–48 

hours. Dried biomass weight (scaled at g/m2) was weighed then sent to A&L Canada 
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Laboratories for plant tissue analysis. The oven-dried samples were ground into a powder 

form and passed through a 1 mm sieve. The leaf nitrogen content (expressed as a 

percentage) was then measured using the Laboratory Equipment Company (LECO) 

FP628 nitrogen/protein analyser that uses the total nitrogen combustion method (AOAC, 

2006). 

3.2.3 UAV Imagery 

UAV imagery collection is optimal when collected weekly and immediately before field 

data collection as crop physiology and soil structure change over time (Figure 3-2). UAV 

flights were performed before the field data collection to ensure that the biomass was 

present at the sampling points in the imagery. UAV flights were performed on June 26th, 

3 July, July 10th, July 18th, and July 31st using a MicaSense RedEdge narrowband camera 

mounted on a Dà-Jiāng Innovations (DJI) Matrice 100 quadcopter (Table 3-1). The 

growth stages of the corn are also described in Table 3-1, where V(n) represents the 

vegetation stage and the amount of leaves present, excluding the initial emergence leaf. 

Flights were flown by pilots of A&L Canada Labs Inc. over the entire fields, flown in a 

zigzag route and 50 m in height, and 80–85% overlap. Our past studies (Lee et al. 2020) 

have indicated that a high overlap is required for corn as the canopy becomes very dense 

in the middle-late growing season. 

  

Figure 3-2. Ground photos of corn (2019) taken on June 26th (left) and July 31st 

(right) 
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Table 3-1. Summary of UAV flight acquisition for JJ and Susan in the study (2019) 

UAV Flight Date Weather Relative Humidity Corn Growth Stage 

26 June 27 °C, Sunny 69% V1/V2 

3 July 30.1 °C, Sunny 58% V3/V4 

10 July 30.8 °C, Sunny 45% V5 

18 July 29.3 °C, Sunny 70% V6 

23 July 24.3 °C, Sunny 73% V7/V8 

31 July 25.3 °C, Sunny 60% V9 

 

3.2.4 UAV Image Processing 

Figure 3-3 shows the flowchart of the methodology in this study. The UAV images 

gathered in the summer of 2019 were processed using a photogrammetry software called 

Pix4Dmapper (Pix4D SA, Lausanne, Switzerland). Pix4Dmapper was used to generate an 

orthomosaic image of each field by stitching hundreds of different images captured 

during the same flight into one single 2D image and corrected for perspective. Pix4D 

uses the technique called Structure from Motion (SfM) and has been well-suited for UAV 

data as it combines images from multiple angles (Harwin & Lucieer, 2012). The 

mosaicked images were then exported to individual (.tif) files. The mosaic images were 

automatically radiometrically corrected in Pix4D with a spatial resolution of 5 cm/pixel. 

The mosaic images were scaled to 15 cm/pixel to reduce the computing time given the 

high number of pixels for a single field. For example, the Susan field scaled at 5cm/pixel 

is approximately 529 million pixels per each layer. 
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Figure 3-3. Flowchart of the methodology (Chapter 4) 

3.2.5 Vegetation Indices 

Reflectance values of the sample points were extracted from the MicaSense mosaic 

images. Five reflectance values of each sample point were acquired by the MicaSense 

RedEdge camera in the following bands: (1) blue, (2) green, (3) red, (4) red edge, and (5) 

near-infrared (Table 3-2) (Figure 3-4). 

Table 3-2. Spectral characteristics of the 5 MicaSense bands 

Band 

# 

Name Band Range 

(nm) 

Centre Wavelength 

(nm) 

Bandwidth 

(nm) 

1 Blue 465-485 475 20 

2 Green 550-570 560 20 

3 Red 663-673 668 10 

4 Red edge 712-722 717 10 

5 Near-infrared (NIR) 820-860 840 40 
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Figure 3-4. Spectral response curve for the MicaSense RedEdge Camera. The 

brown line is a typical reflectance profile of a green vegetation canopy. Figure 

derived from Tagle Casapia, 2017 

These surface reflectance values were then used to compute 29 VIs that are commonly 

used to estimate canopy nitrogen variables (Table 3-3). These indices are intended to 

enhance the contribution of the optical properties of the vegetation on the total spectral 

response of the canopy. Therefore, VIs attempt to correct any confounding factors such 

as reflectance of soil backgrounds in a crop, particularly at the early stages of the growth 

cycle (Clevers & Kooistra, 2011). 
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Table 3-3. Vegetation indices used in the study 

Index (1) Formula (2) Authors 

BNDVI (NIR − BLUE)/(NIR + BLUE) Wang et al. 2007 

CI_Green (NIR/GREEN) − 1 Gitelson et al. 2003 

CI_RE (NIR/REDEDGE) − 1 Gitelson et al. 2003 

EVI 
 

2.5(NIR − RED)

(NIR + 6RED − 7.5BLUE) + 1
  

Huete et al. 2002 

GARI 
 

NIR − [GREEN-1.7(BLUE-RED)]

NIR + [GREEN − 1.7(BLUE − RED)
  

Gitelson et al. 1996 

GDVI NIR − GREEN Tucker et al. 1979 

GNDVI (NIR − GREEN)/(NIR + GREEN ) Gitelson; Merzlyak, 

1998 

GOSAVI (NIR − GREEN)/(NIR + GREEN + 0.16) Sripada et al. 2005 

GRVI (GREEN − RED)/(GREEN + RED) Sripada et al. 2006 

GSAVI 1.5[(NIR − GREEN)/NIR + GREEN + 0.5)] Sripada et al. 2005 

ISR RED/NIR Fernandes et al. 2003 

MCARI [(REDEDGE-RED) − 0.2(REDEDGE-GREEN)] 

*(REDEDGE/RED) 

Daughtry et al. 2000 

MCARI1 1.2[2.5(NIR-RED) − 1.3(NIR − GREEN)] Haboudane et al. 2004 

MCARI2 
 
3.75(NIR − RED) − 1.95(NIR − GREEN)

√(2NIR + 12) − (6NIR − 5√RED) − 0.5
  

Haboudane et al. 2004 

MSAVI 
 
2NIR + 1 − √(2NIR + 1)2 − 8(NIR − RED)

2
  

Qi et al. 1994 

MSR 
 
(NIR/RED)-1

√(
NIR
RED) + 1

  
Chen, 1996 

MTVI1 1.2[1.2(NIR − GREEN) − 2.5(RED − GREEN) Haboudane et al. 2004 

MTVI2 
 
1.8(NIR − GREEN)-3.75(RED − GREEN)

√(2NIR + 1)2  − 6(NIR − 5√RED) − 0.5

  
Haboudane et al. 2004 

NDVI (NIR − RED)/(NIR + RED) Rouse et al. 1974 

OSAVI 1.6[(NIR − RED)/(NIR + RED + 0.16)] Rondeaux; Steven; 

Baret, 1996 

RDVI 
 

(NIR-RED)

√(NIR + RED)
  

Roujean; Breon, 1995 

RE_NDVI (NIR − REDEDGE)/(NIR + REDEDGE) Gitelson; Merzyak, 1994 

RGBVI (GREEN2 − BLUE*RED)/(GREEN2 + BLUE*RED) Bendig et al. 2015 

RVI NIR/RED Jordan, 1969 

SARVI 
 
(1 + 0.5)(NIR − y)

(NIR + 𝑦 + 0.5)
  

Rondeaux; Steven; 

Baret, 1996 

SAVI (NIR − RED)(1 + 0.5)/(NIR + RED + 0.5) Huete, 1988 

TVI 
 
120(NIR − GREEN) − 200(RED − GREEN)

2
  

Broge; Leblanc, 2001 

VARI (GREEN − RED)/(GREEN + RED − BLUE) Gitelson et al. 2002 
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WDRVI (0.2*NIR − RED)/(0.2*NIR + RED) Gitelson, 2013 
1 BNDVI = blue normalized difference vegetation index; CI_Green = chlorophyll 

index green; CI_RE = chlorophyll index red edge; EVI = enhanced vegetation 

index; GARI = green atmospherically resistant index; GDVI = green difference 

vegetation index; GNDVI = green normalized difference vegetation index; 

GOSAVI = green optimized soil adjusted vegetation index; GRVI = green ratio 

vegetation index; GSAVI = green soil adjusted vegetation index; ISR = infrared 

simple ratio; MCARI = modified chlorophyll absorption ratio index; MSAVI = 

modified soil adjusted vegetation index; MSR = modified simple ratio; MTVI = 

modified triangular vegetation index; NDVI = normalized difference vegetation 

index; OSAVI = optimized soil adjusted vegetation index; RDVI = renormalized 

difference vegetation index; RE_NDVI = red edge normalized difference 

vegetation index; RGBVI = red green blue vegetation index; RVI = ratio 

vegetation index; SARVI = soil atmospherically resistant vegetation index; SAVI 

= soil adjusted vegetation index; TVI = triangular vegetation index; VARI = 

visible atmospherically resistant index; WDRVI = wide dynamic range vegetation 

index; 2 BLUE = blue reflectance; GREEN = green reflectance; RED = red 

reflectance; REDEDGE = red edge reflectance; NIR = near-infrared reflectance; 

y = (RED−1)*(BLUE-RED). 

3.2.6 Canopy Nitrogen Weight Estimation 

To describe the canopy nitrogen status, we used the canopy nitrogen weight that is 

defined by Hansen and Schjoerring (2003) as follows: 

𝐶𝑁𝑊 = (𝑁𝑝𝑙𝑎𝑛𝑡𝑠 ∗
𝑊𝑑

2
) ∗ 𝐿𝑁𝐶    [7] 

where CNW is the canopy nitrogen weight (g/m2), Nplants is the number of plants in the 

1m2 sampling point, Wd is the dry biomass weight (g/m2) of two plants in the 1m2 

sampling point, and LNC is the leaf nitrogen content (%). 

Equation (7) assumes that all the leaves from a sample gathered in the field contained the 

same amount of nitrogen. Canopy nitrogen weight (g/m2) has the advantage of being a 

more absolute value, compared to plant or leaf nitrogen content (%), which is a relative 

value. Absolute values allow the ability to compare the results among fields and dates. 

Previous studies have shown that estimating biochemical concentrations at the leaf level 

is difficult. Therefore, focusing on the canopy level is optimal (Clevers & Kooistra, 

2011). Li et al. (2008) have also found that canopy nitrogen weight is more strongly 

correlated with spectral data than the other agronomic variables, such as Soil Plant 
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Analysis Development (SPAD) readings, plant nitrogen concentration%, nitrate content, 

and soil mineral N. 

3.2.7 Canopy Nitrogen Weight Modelling 

All modelling was performed using R programming language in R Studio (R Version 

3.6.1) (R Core Team, 2019). The first modelling approach is the simple/multiple linear 

regression. We avoided using all the variables in the multiple linear regression to predict 

nitrogen as VIs are known to be highly intercorrelated with each other. Such 

multicollinearity between explanatory variables reduces the accuracy of the estimates of 

the regression coefficients (James et al. 2013). This makes the results of multiple linear 

regression difficult to interpret and unreliable with an increased number of variable 

inputs. Therefore, the linear regression model was established with the top six and top 12 

most influential variables as determined by the Random Forests variable importance plot. 

The second modelling approach used Random Forests. This is a decision tree 

nonparametric algorithm used for classification or regression. The algorithm selects a 

random number of samples from the training dataset chosen by the analyst. Afterward, 

the randomly chosen samples are used to develop a decision tree based on the most 

important variables. Trees are split at each node depending on the most contributing xi (i
th 

explanatory variable) to y (response variable). For each prediction of ŷ (predicted value of 

the response variable), it constructs a multitude of decisions trees and outputs the average 

value. Figure 3-5 shows an example of the decision tree modelling steps for the Random 

Forests model using the dataset. Hyper-tuning the parameters of Random Forests was 

unnecessary due to the results remaining unchanged after altering the number of trees of 

500 and mtry parameter at default. The parameter mtry is the number of variables used 

for splitting at each tree node for decision tree learning. Random Forests in R defines the 

mtry by dividing the number of predictive variables divided by 3. 
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Figure 3-5. An example of a generalized decision tree model in Random Forests (R 

Studio) using all the spectral variables 

The third modelling approach is SVR which is also a form of nonparametric modelling 

that defines boundaries in a high-dimensional space using a hyperplane. A hyperplane is 

a flat affine subspace of a dimension p-1, where p is the number of dimensions. In two 

dimensions, the hyperplane is a flat one-dimensional subspace (straight line) and splits 

the training data into different sections in a two-dimensional plot. The notion of (p-1) 

applies for any number of dimensions, while anything p > 3 is difficult to visualize 

(James et al. 2013). If the relationships of the data are nonlinear, SVR uses a nonlinear 

kernel function. We used the Radial Basis Kernel when performing SVR, which tricks 

the data into a higher-dimensional space to separate the data into different sections using 

the radial distance between the observations. Hyper-tuning the SVR model using a tune 

grid-search with the function tune() using different combinations of cost and gamma 

found that the best performing combinations were 2 and 0.5 for our dataset, respectively. 

Random Forest decision trees and support vectors can work with non-linear relationships, 

whereas traditional linear regression models cannot. Most VIs on corn begin to saturate 

with nitrogen in the middle stage of the growing cycle, making the relationship more 

non-linear. Relationships that are non-linear between the dependent and independent 

variable(s) are not practical because they can lead to the prediction of multiple nitrogen 
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values for the same VI value. The relationship between the VI to the N status can be 

misleading if the best-fit function (R2) is not linear because the sensitivity between the 

two will not be constant (Gitelson, 2013). Therefore, the information derived from the 

linear model can cause uncertainty to the growers to precisely spray fertilization due to 

the need of having unique nitrogen value for each VI value. Therefore, Random Forests 

and SVR were used to mitigate the uncertainty of non-linear VI values and canopy 

nitrogen weight, particularly with Random Forest’s robustness to non-linear data 

(Louppe, 2014) and low variance in model prediction (Čeh et al. 2018). 

Both Random Forest and SVR modelling were performed in R Studio using the 

“randomForest” (Liaw et al. 2002) and “e1071” (Meyer et al. 2018) packages, 

respectively. Linear regression modelling was performed in R Studio using the lm() 

function. The independent samples of 29 VIs and 5 individual MicaSense bands were 

then used to generate the linear, Random Forests and SVR models. The canopy nitrogen 

weight and VI values of July 3rd, July 10th, and July 18th were randomly split into a 70% 

calibration set and 30% for the validation set. The dates of July 3rd, July 10th, and July 

18th were used for the modelling due to the availability of the entire dataset of both UAV 

and in-situ ground measurements for those dates. The calibration dataset was used to 

generate the models and the resulting models were compared with each other. The 

validation set was not used in the modelling but was used to test each modelling approach 

by using new datasets and avoiding overfitting. For both the calibration and validation 

datasets, the quality of the models was assessed using the R2 and the Root Mean Square 

Error (RMSE). R2 is measured from 0–1 and indicates how well the data fits the goodness 

of fit line and is calculated using the following equation: 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦𝑖̂)

2

∑(𝑦𝑖 − 𝑦̅)2
 [8] 

where yi is the associated observed value in the dataset or formed in a vector as y = 

[y1,….,yn]
T, ŷ is the predicted value of the associated yi, and ȳ is the mean of the observed 

data. 
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RMSE measures how far on average the predicted values are from the measured ground 

truth values and is calculated using the following equation: 

𝑅𝑀𝑆𝐸 =  
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

𝑛
 [9] 

where Pi is the predicted canopy nitrogen weight value (g/m2), Oi is the observed canopy 

nitrogen weight value (g/m2), n is the number of observations, and i is the index of 

summation in increment of 1. 

The model providing the lowest RMSE on the validation set was applied to the whole 

UAV images for predicting the spatial distribution of the canopy nitrogen weight in each 

field. To combine all the VI and MicaSense individual band images into a single data 

frame, the “raster” package (Hijmans, 2019) was used in R Studio. Individual VI and 

MicaSense band (.tif) files were imported into R Studio and combined using the stack() 

function. Afterward, the raster:predict() function was used to predict each pixel in the 

multi-layered (.tif) file using the best model. Finally, the writeRaster() function was used 

to generate the prediction map in (.tif) format, while the map characteristics were 

visualized using ArcMap. 

3.3 Results 

3.3.1 MicaSense Spectral Profile 

Figure 3-6 shows the spectral profile of the MicaSense centre wavelengths for the dates 

of July 3rd, July 10th, and July 18th that were used in the modelling. The reflectance values 

of each point were averaged for both fields to represent the MicaSense band’s reflectance 

for each date. 
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Figure 3-6. Spectral profile of the MicaSense reflectance using the centre 

wavelength for each band 

3.3.2 Nitrogen Statistics 

The leaf nitrogen content (%) in corn ranged between 2.24 % and 6.15 % throughout the 

growing season. The leaf nitrogen content had a decreasing trend in values, possibly due 

to the nitrogen contribution to the crop changes throughout the growing season (Table 3-

4). Crop biomass is the cumulative production of plant photosynthesis throughout the 

growing season. Table 3-5 shows the summary statistics of the dried biomass weight 

(g/m2). 

Table 3-4. Summary statistics of the calibration and validation set for leaf nitrogen 

content % 

  Calibration Set Validation Set 

Date Growth Stage Min. Max. Average Min. Max. Average 

 July 3rd V3/V4 3.97 5.93 5.15 4.39 6.15 5.41 

July 10th V5 2.57 4.51 3.61 2.29 4.29 3.48 

July 18th V6 2.24 4.05 3.64 2.97 4.31 3.60 



65 

 

Table 3-5. Summary statistics of the calibration and validation set for dry biomass 

(g/m2) 

  Calibration Set Validation Set 

Date Growth Stage Min. Max. Average Min. Max. Average 

 July 3rd V3/V4 2.3 14.27 5.31 1.29 19.7 4.64 

July 10th V5 23.8 140.3 50.75 21.4 75.11 37.63 

July 18th V6 30.0 210.6 89.32 35.0 148.9 80.9 

The canopy nitrogen weights (derived from Equation (7)) in corn presented a gradual 

increase of variation throughout the growing cycle (Figure 3-7). Figure 3-7 also shows 

that there is very little variation in canopy nitrogen weight in the early growing stage of 

the corn crops. By contrast, there is a larger variation in canopy nitrogen weights in the 

later growing season, due to the increase of biomass weight. One outlier is shown in 

Figure 3-7 but was not removed as it remained consistent throughout the growing cycle, 

indicating that this was not due to measurement error. Because the data collection and 

processing are the same for each sample point, the chances of measurement errors 

occurring on the same sample point three times are unlikely. 

 

Figure 3-7. Box plot showing the variation of canopy nitrogen weight (g/m2) as a 

function of the date of field measurements in JJ and Susan corn field during the 

2019 growing season. The dots on the graph represent outliers 
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3.3.3 Variable Importance Plot 

Using the variable importance plot in R Studio, the best spectral variables that were 

important in the decision tree modelling are shown in (Figure 3-8). A large value of 

IncNodePurity indicates that the explanatory variables are an important predictor for 

canopy nitrogen. The red-edge band performed the worst out of all the individual 

MicaSense bands with canopy nitrogen. MSR performed the best out of all the VIs in the 

variable importance table, while GDVI and GARI had no weight. 

 

Figure 3-8. Variance Importance plot using the function varImpPlot() in R Studio. 

Higher IncNodePurity values indicate more impact on nitrogen 
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3.3.4 Calibration and Validation Models 

Table 3-6 shows the statistics of the linear regression, Random Forests, and SVR applied 

to the calibration dataset. All computational processing times were quick (< 15 seconds), 

while computer hardware and larger sample sizes may factor processing speeds. Linear 

regression with 12 variables shows a great relationship with canopy nitrogen weight with 

(R2 = 0.87) and an RMSE of 4.03 g/m2. Multiple regressions of all the variable inputs 

were produced using the calibration data but the results are misleading due to the high 

degree of multicollinearity. None of the coefficients in the multiple linear regression 

using all the VIs were significant at α = 0.05, indicating that the model was very sensitive 

to the multicollinearity present. Therefore, the model generated using multiple regression 

of all the variables was not applied to the validation dataset to avoid 

misleading/unreliable results. SVR performed well on the calibration set, while the 12-

variable input model performed better than the 34-input variable model from the 

importance plot. This may be due to the higher degree of dimensions when adding more 

variables into the support vector model. Random Forests with all the variable 

combinations performed the best on the calibration set compared to the other two 

regression methods. An R2 of 0.95 and RMSE of 2.25 g/m2 were achieved (Figure 3-9a). 
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Table 3-6. Statistics for the calibration of canopy nitrogen model using various 

modelling approaches (n=63)1 

Input Variables 
Number of 

Variables 
Model 

RMSE 

(g/m2) 
R2 

All VIs and 5 MicaSense bands 34 RF 2.25 0.95 

MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red2, OSAVI, RGBVI, CI_RE, 

Blue2, RE_NDVI 

12 RF 2.31 0.94 

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 RF 2.63 0.93 

MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red2, OSAVI, RGBVI, CI_RE, 

Blue2, RE_NDVI 

12 SVR 3.98 0.87 

12 Linear 4.03 0.87 

All VIs and 5 MicaSense bands 34 SVR 4.08 0.87 

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 
6 Linear 4.20 0.85 

6 SVR 4.28 0.85 

MSR 1 Linear 4.41 0.83 

All VIs and 5 MicaSense bands 34 Linear 9.14 0.58 
1 All models are significant at p-value < 0.001; 2 MicaSense individual band. RMSE, Root 

Mean Square Error. 

 

 
(a) Calibration 

 
(b) Validation 

Figure 3-9. Predicted versus measured canopy nitrogen weights when applying 

Random Forests model to the top 12 variables for (a) the calibration dataset and (b) 

validation dataset 
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When applying the models on the validation dataset, Table 3-7 also shows that Random 

Forest’s top 12 and 34 variables performed the best out of all the other models. This is 

due to Random Forest’s strong ability to avoid overfitting. Table 3-7 also shows that 

linear regression did not perform as well as the non-parametric Random Forests and 

SVR. This may be due to the nature of the non-linear relationship of several VIs on 

canopy nitrogen. The difference in RMSE between Random Forests models in Table 3-7 

was only 0.01 g/m2, making the model with 12 variables more realistic in terms of 

processing time. Figure 3-9b shows the predicted and measured canopy nitrogen weight 

on the validation dataset using the Random Forests model applied to the top 12 variables. 

The model with 12 variables was able to predict lower values of canopy nitrogen weight 

with very high accuracy but struggled to provide a high accuracy on predicting the higher 

values of canopy nitrogen weight. This may be due to the large variation of canopy 

nitrogen values on July 18th. 

Linear regression performed the worst on the validation set compared to Random Forests 

and SVR, indicating that the calibration model showed some degree of overfitting and 

cannot work well compared to Random Forests. Interestingly, Table 3-7 shows that using 

all the variables performed marginally better than using all the top 12 variables in both 

the Random Forest and SVR models. The Random Forests importance plot was able to 

identify the variables with no or little effect on the model, reducing the processing time 

significantly when removing them. Removing the unused variables could also mitigate 

the errors caused in a higher dimensionality dataset. These results show that adding more 

independent variables does not necessarily mean that this will produce higher accuracy, 

and in fact might hurt the modelling performance. 
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Table 3-7. Statistics when applying various modelling approaches to the validation 

dataset (n = 28)1 

Input Variables 
Number of 

Variables 
Model 

RMSE 

(g/m2) 
R2 

All VIs and 5 MicaSense bands 34 RF 4.51 0.85 

MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red2 OSAVI, RGBVI, CI_RE, 

Blue2, RE_NDVI 

12 RF 4.52 0.85 

All VIs and 5 MicaSense bands 34 SVR 4.58 0.84 

MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red2, OSAVI, RGBVI, CI_RE, 

Blue2, RE_NDVI 

12 SVR 4.74 0.84 

MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red2, OSAVI, RGBVI, CI_RE, 

Blue2, RE_NDVI 

12 Linear 4.78 0.85 

MSR, ISR, RVI, NDVI, BNDVI, WDRVI 6 RF 5.21 0.83 

MSR 1 Linear  5.47 0.82 
1 All models are significant at p-value < 0.001; 2 MicaSense individual band. 

3.3.5 Crop Nitrogen Weight Predictive Map 

As already shown in Figure 3-9b, there is a good agreement between the predicted and 

measured canopy nitrogen weight, particularly in the lower value ranges. Using our best 

model (Random Forests with 12 variables), we computed the canopy nitrogen weight for 

each image pixel with the 12 layers of VI and individual MicaSense bands in R Studio. 

Figure 3-10 shows the resulting canopy nitrogen prediction map of the UAV images of 

July 3rd, July 10th, and July 18th, 2019. The low and high canopy nitrogen weight zones 

are displayed in red and green, respectively. This color scheme allows the nitrogen level 

to be distinguished easily between the two colors, particularly on July 18th, in which the 

canopy nitrogen weight has a large variation. Given that all the images were downscaled 

to 15 cm per pixel, the images can still easily detect bare soil areas and can separate the 

crop from the soil in the corn fields. Most of the red pixels in the July 3rd image are 

mostly dominated by the soil, instead of the corn canopy (Figure 3-10a). However, as the 

plant height and density increases, it is harder to detect between the soil and the corn on 

July 10th, while showing variation in the canopy nitrogen level (Figure 3-10b). Both the 

low and high areas of canopy nitrogen weight on the field are also consistent throughout 

the three prediction images. 
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(a) July 3rd 

 
(b) July 10th  

 
(c) July 18th  
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Figure 3-10. Canopy nitrogen prediction map derived when applying the RF model 

to the top 12 variable images for a) July 3rd, b) July 10th, and c) July 18th for the JJ 

and Susan fields. The locations of the ground sampling points are also given with a 

black dot 

The RMSE of each nitrogen prediction map generated with the 12 variable Random 

Forests model were calculated using equation 9 (Table 3-8). The prediction of July 3rd 

canopy nitrogen values was very accurate at 0.62 g/m2 RMSE. July 10th produced a high 

RMSE, possibly due to the single value of high canopy nitrogen weight from figure 3-7. 

In the later growing stage, July 18th produced an RMSE of 3.68 g/m2.  

Table 3-8. RMSE for the 12 variable Random Forests model applied to each UAV 

imagery 

Date Growth Stage RMSE (g/m2) 

July 3rd V3/V4 0.62 

July 10th V5 4.11 

July 18th V6 3.68 

 

3.4 Discussion 

Our study used five different MicaSense multispectral bands to derive various VIs to 

predict canopy nitrogen weight. Values of the in-situ canopy nitrogen weight saw an 

increase in variation on July 10th and July 18th. This is due to the rapid increase in 

biomass between the dates. This could be explained by the crop biomass variation 

increasing due to the factors that contribute to the crop’s growth, such as the absorption, 

utilization, and transformation of solar energy; climate; and nutrient/water management 

(Yue et al. 2017; Campos et al. 2018). 
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Individual bands were tested to predict canopy nitrogen in all the models along with the 

VIs. Both the MicaSense green band and red-edge band performed poorly in the model 

compared to the other bands. The green wavelength is closely related to the leaf 

chlorophyll a and b contents, in which nitrogen is used for plant photosynthesis (Zhao et 

al. 2018). The poor performance in the model may be due to the chlorophyll saturating in 

the middle to the late growth stages, causing the crops to reflect the same amount of 

green wavelength. However, our results are not in agreement with Schlemmer et al. 

(2013) and Li et al. (2014), who observed a good relationship between the green 

reflectance and corn nitrogen weight. The red-edge spectral region is an interesting 

region, in which the position of the sharp change in reflectance (known as the red-edge 

position) is particularly known to be a sensitive indicator of leaf chlorophyll content 

(Jones & Vaughan, 2010; Zarco-Tejada et al. 2002; Curran et al. 1990). The red-edge 

position changes in the wavelength of 680–800 nm depending on the strength of the 

absorption of chlorophyll (Baranoski & Rokne, 2005). Therefore, the narrowband of 

10nm in the MicaSense red-edge band may have not fully captured the red-edge position 

throughout the growing season, whereas another sensor with different band ranges could 

have captured it. A possible consideration in the future would be to fly two cameras 

simultaneously and compare the results. Furthermore, the red-edge reflectance has been 

also found to be significantly related to corn nitrogen weight in Schlemmer et al. (2013) 

and Li et al. (2014). Such difference in both green and red-edge reflectance can be 

explained by the fact that their study focused more on predicting nitrogen at individual 

growth stages, while our study considered all the growth stages in the model. All the top 

six VIs in the variable importance table use the near-infrared and red bands, indicating 

that they are both critical to the prediction of nitrogen. This is probably due to the 

chlorophyll absorption present in the red region and high reflectance of near-infrared 

energy for leaf development of healthy vegetation. However, the near-infrared band alone 

does not have a good relationship with canopy nitrogen weight, and therefore it must be 

included with other bands under the form of VIs. Interestingly, NDVI (the most 

commonly used VI in literature) did not perform as well as the top VIs in the variable 

importance plot. This is because NDVI is known to saturate with canopy nitrogen weight 

once the canopy of the crop becomes dense (Lee et al. 2020). 
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The use of the variable importance plot in Random Forests to eliminate spectral variable 

inputs was also performed in Osco et al. (2019) on predicting canopy nitrogen in citrus 

trees. The authors used the top five and ten variables of 33 spectral variables and found 

there was a slight decrease in the model performance. Similar to our results, Osco et al. 

(2019) found a decrease in performance relatively small, and the trade-off between the 

number of spectral indices used and obtained accuracy is something that should be 

considered. However, Osco et al. (2019) used a different list of VIs, but the application of 

the variable importance plot was the same. Random Forests performed poorly on corn in 

Fan et al. (2019) (R2 = 0.60) compared to partial least squares regression (R2 = 0.80) on 

the validation dataset. However, the authors used nitrogen content percentage at the leaf 

level and found weak correlation with most of the spectral variables, while our study 

incorporated our nitrogen values at the canopy level (g/m2). Random Forests with 

spectral variables on the validation set performed much better at the canopy level (R2 = 

0.85), probably due to the spectral variables having a good correlation with nitrogen at 

the canopy level. 

Our study on SVR modelling lines up with the results of Karimi et al. (2008). The authors 

found that SVR performed better and more consistent than its multiple linear regression 

counterpart in their study. The difference in results of Random Forests and SVR in our 

study are not too far apart in model performance. However, the concepts and outputs of 

Random Forests are a lot easier to interpret than the concepts and outputs of support 

vector machines. 

Zha et al. (2020) found Random Forests performed better than SVR, multiple linear 

regression and artificial neural networks on predicting nitrogen content in rice using 

spectral indices. A model comparison study using spectral indices in Liu et al. (2016) also 

found Random Forests to perform better than the other non-parametric machine learning 

models in wheat. This could mean that the performance of Random Forests on nitrogen 

using spectral indices could be consistent on other types of crops and possibly give 

consistent results in different regions of Canada. Since different regions provide different 

climates, a comparison of the soil and nitrogen status in the crops could be studied. A 

consideration of future study could involve comparing Random Forests to other machine 
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learning models or deep learning using spectral indices on other types of crops. However, 

delving into deep learning requires a huge training dataset in order to be effective. 

Another drawback is the computational cost such as memory and processing power in 

order to tackle the datasets effectively with deep learning. 

3.5 Conclusions 

In this study, different regression methods were used to predict canopy nitrogen weight of 

corn using UAV MicaSense multispectral images. These models were established using 

the individual MicaSense bands and their associated VIs derived from the UAV 

reflectance values. Using the top 12 variables (in order: MSR, WDRVI, RVI, NDVI, ISR, 

BNDVI, Red band, OSAVI, RGBVI, CI Red edge, Blue band, and Red edge NDVI) 

derived with the Random Forests importance plot performed the best on estimating 

canopy nitrogen weight throughout the three dates in corn crops. Using the Random 

Forests model applied to the top 12 variables (RMSE = 4.52 g/m2) on the validation 

performed marginally worse than the Random Forests model using all the variables 

(RMSE = 4.51 g/m2), indicating that adding more variables into the model does not 

always improve its accuracy. However, because the difference of the accuracy is 

marginally different, this removes the unnecessary processing time of generating the 22 

other VI images. 

The UAV nitrogen prediction map can also detect spatial nitrogen variations within the 

field, especially in the July 18th image where the canopy nitrogen weight showed a large 

variation with the field data. In practice, these results could be useful for farmers in 

retrieving fast information about a field’s nitrogen status, as they will know exactly 

which parts of their fields are in excess or deficient in the amount of nitrogen present. 

Practically, these results could be obtained on the day of the UAV flight, depending on 

the size of the field and the number of images acquired. Ultimately, this will lead to a 

much more efficient fertilizer application program for the farmers as they will know 

precisely how much nitrogen is needed in a particular spot with their GPS-enabled 

fertilizer spreader. 
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This study used data acquired over southwest Ontario fields in 2019 and there is the need 

to test the method over other datasets, such as different zones in Canada or a different 

crop. This will give an idea of how the developed method can be generalized and applied 

to different parts of Canada and whether it can be used on different crops. The study used 

MicaSense images with five spectral bands and there is a need to test different cameras 

that capture different wavelengths to understand which multispectral bands perform the 

best on predicting nitrogen using empirical regression techniques. Finally, another future 

consideration of this study can involve comparing the canopy nitrogen prediction map 

with other field spatial information, such as drainage and soil. This information can give 

a better idea on the contributions of nitrogen content that occur below the canopy. 
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4 Chapter 4 

This chapter presents the responses of the objectives of this thesis, possible future studies 

and the limitations of this research. 

4.1 Conclusion 

The responses to the objectives of this thesis are presented: 

(1) Linear regression was used to predict wheat and corn in chapter 2 using ground 

spectral reflectance calibrated to the MicaSense RedEdge camera bands. Ground 

ASD spectra were verified with the UAV reflectance with an R2 of 0.94, 

indicating that the two measurements are well matched. The best performing 

linear regression with the VIs in the study was RVI. RVI performed the best on 

both wheat and corn and on all the fields in the study. The study found that the 

other VIs presented a saturation effect in the later growing stages, making 

predictions unreliable. Multiple regression was also evaluated and avoided due to 

the high degree of multicollinearity of all the spectral indices (VIF >10). This 

study has also found that three sampling dates of wheat performed better than 

using four sampling dates. Removing the fourth sampling date could mean that 

the later growing stage of wheat may not give much sensitive information in the 

overall model. Overall, the best performing wheat field had an RMSE of 0.95 

g/m2 on the date of May 24th imagery. The best performing corn field had an 

RMSE of 0.66 g/m2 on the June 7th imagery. 

(2) The methodology of chapter 3 learned from the results of chapter 2 and used 

different regression methods on predicting canopy nitrogen weight, using non-

parametric tests for non-linear datasets. Chapter 2 showed that most vegetation 

indices presented a non-linear relationship and that multicollinearity was present 

when performing multiple linear regression. Therefore, chapter 3 used machine 

learning techniques like Random Forests and SVR that work well with non-linear 

datasets and mitigate the effect of multicollinearity among the explanatory 

variables. Random Forests’ variable importance plot was used to determine the 

most contributing spectral variable on canopy nitrogen weight in corn. Random 
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Forests with all 34 explanatory variables was found to be the best performing 

model compared to SVR and linear regression on canopy nitrogen weight. 

However, in realistic practical terms, Random Forests with 12 variables was used 

to generate the final nitrogen prediction map as the difference of model’s RMSE 

of 12 and 34 explanatory variables was 0.01 g/m2, while the processing time was 

significantly reduced. SVR also produced good results; however, the concepts and 

interpretations of Random Forests are easier than support vector machines. 

Furthermore, the best performing nitrogen prediction map using the 12 variable 

Random Forests had an RMSE of 0.62 g/m2 on the July 3rd imagery. The best 

result of chapter 3 (RMSE = 0.62 g/m2) is an improvement over the best result of 

chapter 2 (RMSE = 0.66 g/m2) on corn fields. Both Random Forests and SVR 

performed better than linear regression in chapter 3. 

(3) The final products of chapter 2 and chapter 3 were nitrogen prediction maps using 

UAV multispectral imagery. Both chapters used the MicaSense RedEdge 

multispectral camera. In chapter 2, a 5cm/pixel spatial resolution imagery was 

used to produce the nitrogen map, while chapter 3 downscaled the resolution to 

15cm/pixel due to the processing time of using multi-layered raster images. Both 

imageries were able to finely separate the soil from the crop in the early growth 

stages of the imagery. Most importantly, both chapters were able to identify the 

different areas of highs and lows of canopy nitrogen weight. This information is 

practical for farmers as they can identify the areas of their fields that are in excess 

or deficient in nitrogen.  

4.2 Limitations 

Several limitations exist in this thesis in both chapters 2 and 3. The first limitation is the 

distribution of the sample points throughout the entire field. Sample points were often 

weighted towards one side of the field. The issue with this is the enormous size of the 

fields. Evenly distributing the sample points throughout the entire field was not realistic 

in terms of labour. Temperatures during the fieldwork sometimes reached up to 35°C, 

while carrying equipment and the biomass of the crop. Therefore, the study’s sample 

points were not able to fully capture the entire area of certain fields. A suggestion for 
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future research for this limitation is by having multiple teams retrieving the data in 

different sections of the field simultaneously. However, this would require more 

fieldwork members and a multiple set of equipment. This could get very costly, 

particularly with ASD equipment costing tens of thousands of dollars (depending on the 

model). 

Another limitation was the limited number of cameras used in the study. Only one 

multispectral camera (MicaSense RedEdge) was used for both chapter 2 and chapter 3. 

Using a hyperspectral camera could have given a comparison of the results, as 

multispectral cameras capture certain wavelengths in the ES, whereas the hyperspectral 

would capture the entire spectrum of interest. However, limitation is the UAV being able 

to handle the weight of all sensors simultaneously. Two separate flights could have been 

flown; however, this would have to rely on the weather remaining the same for both of 

the flights.  

4.3 Discussion and Future Work 

Possible future studies could be proposed from the results of this thesis. As pointed out in 

the response from objective 1, removing the later growing stage of wheat from the overall 

model improved the relationship between canopy nitrogen weight and RVI. Therefore, 

specific study analysing the later growing stage of wheat separately or an insight on how 

to incorporate the later growing stage into the overall model could be proposed.  

The results of chapter 2 indicated that the relationship between the canopy nitrogen 

weight and VIs presented a non-linear relationship. A linear fit was only shown in RVI in 

chapter 2, while NDVI, GNDVI, MTVI2 and RE_NDVI showed a saturated relationship. 

The linear fit for the latter VI was shown for visual purposes and not used for prediction. 

Therefore, this allowed a modification of the analysis of chapter 3 to include non-

parametric modelling that can specifically work with non-linear data and highly 

intercorrelated variables. Chapter 3 proposed a set of machine learning methods to 

predict canopy nitrogen weight in corn: Random Forests and SVR to compare along with 

linear regression. The results have shown that non-parametric models perform better than 

traditional parametric regression models when using spectral indices due to its non-linear 
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relationship. Various non-parametric models such as: kernel ridge regression, principal 

components regression, and Gaussian process regression exist and could be used to 

compare with Random Forests and SVR on predicting canopy nitrogen weight. 

Insights on other explanatory variables could be included in future models that capture 

the prediction of canopy nitrogen weight. Other spatial field information, such as 

drainage and soil information could be used in future models along with spectral VIs. 

This information can give a better idea on the contributions of nitrogen content that occur 

below the canopy and could possibly give another direction into analysing plant nitrogen 

stress. 
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5 Appendix 

Appendix A - Field Nitrogen Summary Statistics 

Table A-1. Summary statistics of the nitrogen measurements for wheat in the 2018 

field campaign 

Date Field Plant 

Nitrogen % 

(mean) 

Plant 

Nitrogen 

% (sd) 

Canopy 

Nitrogen 

Weight 

(mean) (g/m2) 

Canopy 

Nitrogen 

Weight (sd) 

(g/m2) 

May 7th McColl 5.85 0.39 1.98 0.60 

Bale 6.23 0.41 0.64 0.19 

Hetzell 5.98 0.61 0.53 0.19 

May 14th McColl 5.30 0.39 2.95 1.29 

Bale 5.01 0.16 1.42 0.36 

Hetzell 5.67 0.36 1.25 0.53 

May 25th McColl 4.05 0.39 6.41 1.44 

Bale 4.80 0.48 4.91 0.23 

Hetzell 4.86 0.52 5.02 1.31 

June 4th  McColl 4.69 0.33 11.25 2.83 

Bale 4.77 0.45 9.62 3.08 

Hetzell 4.56 0.57 8.61 1.65 
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Table A-2. Summary statistics of the nitrogen measurements for corn in the 2018 

field campaign  

Date Field Plant 

Nitrogen % 

(mean) 

Plant 

Nitrogen 

% (sd) 

Canopy 

Nitrogen 

Weight 

(mean) (g/m2) 

Canopy 

Nitrogen 

Weight 

(sd) (g/m2) 

June 4th Crandell 5.29 0.32 2.35 0.39 

Jack North 5.65 0.17 2.65 0.49 

Paul 4.93 0.41 2.10 0.56 

June 12th Crandell 4.10 0.43 5.26 1.81 

Jack North N/A N/A N/A N/A 

Paul 3.56 0.54 5.12 2.31 

June 20th Crandell 3.79 0.23 9.31 3.54 

Jack North 3.01 0.36 8.88 2.93 

Paul 3.28 0.35 6.83 1.16 

June 26th Crandell 3.87 0.28 28.49 8.54 

Jack North 3.42 0.30 14.63 2.73 

Paul 3.57 0.44 19.13 6.63 

July 4th Crandell 3.78 0.42 69.39 20.72 

Jack North 3.60 0.53 45.86 15.65 

Paul 3.87 0.55 58.96 15.84 
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Table A-3. Summary statistics of the nitrogen measurements for corn in the 2019 

field campaign 

Date Field Plant 

Nitrogen % 

(mean) 

Plant 

Nitrogen 

% (sd) 

Canopy 

Nitrogen 

Weight (mean) 

(g/m2) 

Canopy 

Nitrogen 

Weight 

(sd) (g/m2) 

June 25th  JJ 5.55 0.35 0.28 0.21 

Susan N/A N/A N/A N/A 

July 3rd JJ 4.96 0.63 2.29 1.18 

Susan 5.48 0.31 1.02 0.29 

July 10th  JJ 3.44 0.59 14.37 8.76 

Susan 3.75 0.55 7.93 2.58 

July 18th  JJ 3.66 0.27 23.00 12.26 

Susan 3.71 0.31 19.18 10.54 

July 23rd  JJ 3.66 0.54 32.45 8.96 

Susan 3.63 0.18 27.06 10.05 

July 31st  JJ 3.76 0.25 61.28 17.27 

Susan 3.50 0.31 32.22 9.95 
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Appendix B - Field and Lab Photos 

 

Figure B-1. Landscape photo of wheat field taken on May 2nd, 2019 
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Figure B-2. Bird’s eye view of wheat taken on May 27th, 2019 
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Figure B-3. Close-up photo of wheat taken on July 2nd, 2019 
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Figure B-4. Landscape photo of corn taken on July 18th, 2019 with biomass 

collection 
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Figure B-5. Close-up photo of (dent) corn just before harvesting on October 25th, 

2019 
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Figure B-6. Retrieving spectral reflectance data from corn using ASD (Robin Kwik, 

GITA lab) 
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Figure B-7. UAV (DJI Matrice 100) prior to take-off. Calibration panel is shown 

beside 
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Figure B-8. UAV (DJI Matrice 100) flying over corn field at early growth stage 
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Figure B-9. Using scale to weigh biomass of corn at A and L Canada Laboratory 
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Appendix C – R Code 

Figure C-1. R code for modelling Random Forests, Support vector regression and 

Linear regression 

https://gist.github.com/hwangl5/eec9653b840901d8475e6bb55f0e73b2 

##############Splitting data into train and valid########### 

set.seed(123);train <- sample(nrow(data), 0.7*nrow(data), replace = F) 

trainset <- data[train,] 

validset <- data[-train,] 

 

####packages for RF and SVR modeling. Linear regression is defaulted in R#### 

library(randomForest); library(e1071) 

 

###Random Forests model of training set#########   the "." indicates to use all the 

variables in the dataframe######## 

RFmodelT<- randomForest(Nitrogen ~., data = trainset) 

 

#### Apply the model on both calibration and validation set###### 

predictT <- predict(RFmodelT, newdata= trainset) 

predictV <- predict(RFmodelT, newdata= validset) 

 

###calculate RMSE of the model##### 

rmsemodT <- sqrt(mean((predictT - trainset$Nitrogen)^2)) 

rmsemodV <- sqrt(mean((predictV - validset$Nitrogen)^2)) 

 

###### follow same steps for SVM and Linear regression############ 

###### functions for SVM is "SVM() and Linear regresison is "lm()" 

 

 

 

 

 

 

 

 

https://gist.github.com/hwangl5/eec9653b840901d8475e6bb55f0e73b2


102 

 

Figure C-2. R code for using the models generated to predict multi-layered raster 

images 

https://gist.github.com/hwangl5/659b4ce5b7732c2487b7335d9caea4db 

#### install packages prior to calling the library function ##### 

library(raster); library(sp); library(rgdal); library(raster); library(rasterVis) 

 

####list.files functions loop through your folder and will look for all the images that 

end with "tif" #### 

fs<- list.files(path="D:/2019 thesis/Susanb_July18/", pattern = "tif$", full.names = T) 

 

####create variable name rasterstack and use the function stack on the list of files that 

were formed in the fs variable 

rasterstack <- raster::stack(fs)  

 

####predict function is used to call the rasterstack dataframe and predict each pixel 

with the random forest model created or any model 

prediction <-raster::predict(object=rasterstack,model =RFmodelT, fun=predict) 

 

####this function will take in the prediction dataframe and create a raster file. The 

second parametre is the location and name of file  

##### you wish to name it ##### 

writeRaster(prediction, "D:/2019 thesis/Susanb_July18/PredictionJuly18sb.tif") 

 

  

https://gist.github.com/hwangl5/659b4ce5b7732c2487b7335d9caea4db
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