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Abstract

A molecular cluster is a set of highly similar genetic sequences from pathogens. If each

of these sample pathogens are infecting a different host, it can imply rapid spread between

hosts. In practice, these clusters are often qualified by a genetic similarity threshold (ie. less

than 0.015 expected substitutions per site between sequences indicates ”high” similarity). This

thesis demonstrates an information-based approach to threshold selection based on the perfor-

mance of models predicting cluster growth. Optimal thresholds maximize the loss of Akaike’s

information criterion (which measures inaccuracy and complexity) associated with predictive

variables. Three sets of North American HIV-1 sequences and two different popular cluster-

ing methods were used to demonstrate this framework, using recency of sequence collection

and patient diagnosis as predictive variables for future clustering. This addresses the issue of

arbitrary, unspecified threshold selection for molecular clustering, showing different optimal

thresholds depending on the source data and clustering algorithm.

Keywords: Bioinformatics, infectious disease, HIV and AIDs
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Lay Summary

If a fast-evolving virus has little time to mutate in one host before being transmitted to the

next, the result is that many hosts share genetically similar viruses. This can be evidence of

an outbreak, and such evidence is vital for public health authorities, especially as similar viral

sequences are collected from new patients (indicating a growth of the outbreak). Such meth-

ods have been particularly well-used for Human Immunodeficiency Virus (HIV), the causative

agent for AIDs. However, it is difficult to establish how genetically similar these viruses need to

be before a group of cases is labelled an outbreak and arbitrary thresholds of similarity are often

used for this task. A poor choice for this threshold can lead to overestimation or the underesti-

mation of the outbreak. Furthermore, this may make the predictive models which estimate how

the outbreak will grow ineffective. This work shows a statistical method which chooses such

a threshold based on how accurately it will predict the growth of outbreaks. Three different

data sets of HIV genetic sequences are used as an example, each of which were collected from

North America. We used two different examples of these sequence-based outbreak detection

methods and found that the ideal threshold of similarity for predicting outbreak growth differs

between location and method.
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Chapter 1

Molecular Clustering in Epidemiology

1.1 Introduction

A common goal of epidemiological analysis is to group a set of patients into ”clusters” based

on a particular feature. Each cluster is a partition of the data set with reduced variation in

that feature, implying important similarities between patients. These can also be thought of

on a pairwise level, with connections drawn between pairs that have similar characteristics.

Observing large clusters can reveal areas in need of public health resource priority and identify

a common or novel source of infection. This has seen use historically, starting with an essay

by John Snow [Sno55] linking an 1854 outbreak of cholera to a specific water pump in Soho,

London. When compared to the more regular distribution of cholera throughout the city, the

unusually high prevalence of 616 recent cases in the Broad street pump service area qualified as

a cluster, sparking investigation by the London board of health and resulting in lasting changes

to London’s wastewater system. To build such clusters, a proximity measure is required to

interpret similarity between cases and a clustering criterion is required to assign patients to

a cluster [HBV01]. For example, a set of clusters established based on temporal and spacial

proximity would indicate several cases of a particular disease or injury occurring in a relatively

small area, over a short period of time. However, the location and time of infection are often

difficult to obtain. Alternatively a set of genetically related pathogens in multiple patients can

constitute a cluster, implying that an infectious agent spread through the population fast enough

to accumulate few mutations. This proximity can be determined by phylogenetic techniques -

the same genetic comparisons which allow for the construction of evolutionary trees.

The criteria for clustering becomes more of a theoretical problem. Similar to other group-

ings, molecular clustering is a binary characteristic (ie. a set of sequences either is or is not

a cluster) based on a continuous measurement (genetic similarity). In practice, this often re-

1



2 Chapter 1. Molecular Clustering in Epidemiology

sults in the use of a threshold in order to define clustering [BPP+19, WHVR+17, DVF+18],

the selection of which has an effect on the degree to which observations aggregate into large

clusters. For molecular clusters, the literature currently does not discuss the effect that thresh-

old selection may have on the outcomes of clustering studies, despite the continuous use of

standardized thresholds. In the following thesis, I will demonstrate how a change in threshold

effects the performance of a predictive model which estimates the growth of known clusters

over time. These demonstrations will use real sequence data published in previous studies, as

well as my own implementations of popular clustering methods. The metric of performance

will provide some basis by which an optimal threshold can be selected, defining ideal thresh-

olds as those which result in the greatest gain in accuracy associated with predictive variables

for a model predicting cluster growth. The differences in optimum threshold between locations

and between clustering method are important, as these illustrate that the best results require

tailoring of this parameter.

1.2 Requirements for molecular clustering

The creation of molecular clusters has several practical and technological requirements. First,

the sequences used as a point of comparison must accumulate mutations relatively quickly,

as some evolutionary divergence must occur within the time scale of a local epidemic (ie.

months). Ideally, the differences in sequence data would become apparent between transmis-

sions - viewing ongoing epidemics in real-time and guiding a public health response toward

large clusters. This makes RNA viruses ideal candidates, as the RNA genome has been noted

for its extremely fast mutation rate [HSH+82]. In particular, viruses within the Retroviridae

family demonstrate an error prone replication cycle due to the low fidelity of reverse transcrip-

tase [SCZ+03], a protein which synthesizes DNA sequences from viral RNA during replication.

This requirement for fast mutation is unlikely to be met for species with a longer generation

time such as parasites, but it can be met for some of the more slowly evolving viruses or bac-

teria by studying genetic differences on the scale of the whole genome [FFRF20, WIH+13].

Another requirement for molecular clustering is a large amount of available data. Fast, next

generation sequence technology is the current method by which this data is obtained, where

pathogen samples are taken from hosts and their whole genomes are assembled from frag-

ments of genetic material [WBL+12, DBC+17]. The novelty of this sequencing power and the

computational demands from even short-sequence comparisons, have limited large molecular

clustering studies to occur only within the last few decades[Tom92]. However as computing
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power increases and the collection of pathogen sequence data becomes a more routine part of

diagnosis, we see a trend towards their use as a standard tool [GL18], as well as a trend towards

large data-bases of sequence data, [SNH+12, FKL+18, SM17].

Molecular clustering is particularly useful for diseases that normally fail to create informa-

tive clusters with space or time criteria. For instance, when diagnostic date is likely to vary

significantly from the actual date of infection due to a long asymptomatic period, time-based

data is not necessarily informative for epidemiology. In addition, geographic location can be

insufficient when trying to explain the pattern of transmissions for diseases with a lower trans-

mission rate, as shared spaces alone may not be sufficient for transmission. Some studies need

to rely on an overlay of complicated social networks to confirm feasible transmission patterns in

this case [WPF+17]. The sexually transmitted Human Immunodeficiency Virus (HIV), which

requires intimate contact for transmission, has a relatively low per-act transmission rate (<2 per

100 exposures [PBB+14]) and manifests with a long and variable asymptomatic period, mak-

ing it an excellent candidate for this clustering approach. HIV also boasts an immensely high

rate of mutation overall [CGG+15], which is partially based on its use of reverse transcription

and RNA genome. This allows researchers to see measurable differences in the viral-genome

between pair of patients months after a transmission between them. HIV is also a remarkably

well studied species, with the full genome sequenced in 1985 [RHP+85], a standardized refer-

ence genome for comparison between studies, and a detailed understanding of gene function

[WDG+09]. Fast, open source software [WBL+12] is available to screen for the presence of

drug resistance in HIV, with the polycistronic pol gene, acting as a regular target [Kan06].

This gene can express mutations which confer resistance to highly active antiretroviral ther-

apy (HAART) [DBK+10]. Because of this, large data sets of pol sequences are available and

regularly obtained Genbank hosts numerous sets of published HIV sequence data sets, which

represent cohort populations of over 1000 individuals each [BKML+11], in addition to the

dedicated HIV sequence database hosted by the Los Alamos National Laboratory in the United

states [FKL+18]. Not only does HIV meet the above criteria for molecular clustering candi-

dates, but it also has no current effective vaccine or cure [MS16], making prevention a vital

part of fighting the disease.

Although many molecular clustering studies focus on HIV for the reasons discussed above,

there are other candidate pathogens for these techniques. Other RNA viruses which infect

humans, such as Flaviviridae and Coronaviridae are major topics in the field of infectious

disease, have widespread prevalence and meet the criterion of relatively fast evolution, when

compared to other bacteria, or parasite-based diseases. The hepatitus C virus (HCV) (a member
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of Flaviviridae) has been well studied through molecular clustering techniques [MDS+19b,

MDS+19a, SDDA+12, JAK+14], paying special attention to injection drug use as a mode of

transmission. Like HIV, HCV requires intimate contact, often manifests no symptoms, and

currently has no available vaccine. Zika virus (another member of Flaviviridae), has shown

the potential for molecular clustering studies, using hundreds of whole genome sequences to

characterize the spread of the virus to new locations [LLH+16, GLK+17, ZMM+15]. Because

the pattern insect-borne diseases like Zika can be deeply complex, conventional contact-tracing

methods are not as useful as phylogenetic studies. A whole-genome based analysis has also

been used to study the spread of coronaviruses, such as Middle East respiratory syndrome

(MERS) in Saudi Arabia [CWK+13] and severe acute respiratory syndrome (SARS) in China

[C+04]. In addition, the global spread of the SARS-like novel 2019 Coronivirus (SARS-CoV-

2) [FFRF20] continues to be a major topic of study, as the amount of patient-matched sequence

data expands [SM17]. Even non-viral species, such as Mycobacterium tuberculosis and Vibrio

cholerae bacteria have been studied through genetic clusters despite their slower mutation rate

[WIH+13, CSH+11].

1.3 Common molecular clustering methods

For the purposes of this work, it is important to discuss some molecular clustering methods in

further detail. Both methods in the following description use aligned sequence data, where an

algorithm has matched sequences by position. This means introducing gaps or blank characters

to account for regions which may not exist in all sequences due to insertion mutations [Lar14].

Because bioinformatics is a fast moving field, it is important to at least note the alternative

methods which may define new standards. For instance, it is becoming more common for

researchers to meet the high computational demands of bayesian tree-building approaches,

allowing accurate, time-scaled phylogenetic trees [YR97, RY96]. Also, parametric methods

define the criterion for clustering based on a model, which avoids some of the difficulties

involved in manual parameter selection [MP17, HPMSR19]. However, these novel methods

are not as commonly used and have not dominated the literature to the same extent that the

following approaches have.

1.3.1 Graph-Based Clustering

The ”network” - or more formally ”graph” structure visualizes data as a set of vertices (points

on a plane) connected by edges (lines which connect the points). This is used to represent epi-
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demiological relationships, with vertices representing individuals infected with the pathogen

and edges representing some epidemiological relationship, such as direct or indirect transmis-

sion. These edges can be given a numerical ”genetic distance”, a simple genetic proximity

measure which indicates the estimated number of point mutations (substitutions of one nu-

cleotide base to another) that have occurred between sequences. Genetic distance is calculated

in a similar manner to the Hamming distance [Ham50], where the number of mismatched char-

acters are counted between two aligned sequences. Like the hamming distance, this is often

reported relative to the length of the sequence, sometimes as a percentage of the sequences that

differ. The modern standard of genetic distance measurement, the TN93 distance [TN93], takes

into account that not all mismatches between sequences are equally likely to occur. For a pair

of pathogen samples from two different patients, a relatively small genetic distance implies

a genetic relatedness and a higher likelihood of close epidemiological relationship between

the hosts: be that a short chain of transmissions, a common source of infection, or a direct

transmission relationship.

Given a set of n sequences we can obtain C(n, 2) genetic distance measurements between

all possible pairs of sequences, where C is the choose function; the binomial coefficient of n

and 2. The set of sequences and their associated distance measurements can be implemented

as a complex, undirected graph with n vertices, each representing a sequence from an infected

individual as described previously. The edges are then weighted with pairwise genetic dis-

tances and clusters are typically defined by imposing a maximum distance threshold for edges,

highlighting only those which are considered highly similar [KPWLBW18, LLR+20, OFP+18,

BPP+19, RLD+17, DVF+18]. The graph (Figure 1.1) is shown as an example from a subset of

published HIV-1B pol sequences [WHVR+17]. All edges within this graph represent a pair-

wise TN93 distance under 0.02, and any individual vertices with no connections to any other

have been removed.

This allows the use of a clustering definition described early, where clusters are simply a

series of connected observations - in this case, a series of vertices (patients) connected by edges

(infected with highly similar pathogens). Although this definition is used for the clustering of

HIV, thresholds are not the only way to define clusters using a network. Other terms that could

apply as clustering criterion could reference the order of vertices (ie. how many edges exist

per vertex) or the average pairwise distance between sequences in a subset. Fast, open-source

software is available to calculate tn93 distances [kPWV18] (https://github.com/veg/tn93) and

to define pairwise graph-based clusters [KPWLBW18], making this method especially popular

and accessible.
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Figure 1.1: An example graph, representing pairwise graph-based clusters from 1200 HIV-
1B pol sequences [WHVR+17]. The vertices are coloured based on how recently the corre-
sponding sequences were collected, with darker red representing the most recently collected
sequences.

1.3.2 Tree-Based Clustering

A bifurcating tree structure reflects the way we often conceptualize evolution; as individual taxa

expanding from a single common ancestor in a series of branching events. For phylogenetic

trees, the terminal ”tips” of the tree represent the sequences used to build it and the ”internal

nodes” represent common ancestors; a diagram is shown below (Figure 1.2).

The horizontal length of branches represent relative amounts of divergence, meaning that

two similar tips are likely to have shorter branches leading to the internal node which rep-

resents their common ancestor. Vertical lengths only exist for clarity and do not represent

divergence. The total branch length traversed along the tree to get from one tip to another is

termed the ”patristic distance” and often acts as a proximity measure, sharing some similari-
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Figure 1.2: An example tree, labelled with terminology

ties with the pairwise genetic distance measurement described in section 1.3.1. However, in

maximum likelihood trees, these branch lengths are not measured empirically from pairwise

sequence comparisons, but instead estimated by a model-fitting process. Maximum likelihood

trees, represent a proposed evolutionary timeline, and the likelihood of this proposition can be

quantified through the use of an evolutionary model, taking in the relative length of branches

and the order of branching events as parameters [LPD00]. For instance a tree that presents two

very different sequences with a relatively short patristic distance and an immediate common

ancestor is not a very likely representation of the actual genetic relationship of these sequences.

Maximum likelihood algorithms [NSVHM15, Sta06] use heuristics to accomplish this, taking

in aligned sequences and outputting the tree with the most likely branching order and branch

lengths. The certainty of the node placements in a tree can be quantified through the process of

”bootstrapping”, which is traditionally a repeated rebuilding of the tree with different segments

of the sequences sampled with replacement. The variation in the tree’s overall topology with

each sample indicates the ancestral relationships that are more likely to vary. Bootstrap values

for internal nodes in the final tree are then reported as the percentage of trees where that node

was held at that particular place with respect to the descendant tips.

Tree-based clusters are often defined as closely related monophyletic clades: specifying a
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Figure 1.3: An example monophyly (left) compared to a paraphyly (right) within a phyloge-
netic tree.

set of tips which converge to a relatively close internal node with high bootstrap certainty. A

monophyletic clade is exemplified in Figure 1.3, where it is contrasted with paraphyly. Simi-

lar to the genetic distance thresholds discussed in the previous method outline, the clustering

criterion used to qualify close relatedness is often a constraint to a maximum patristic dis-

tance within a monophyletic clade, such that no two sequences in a cluster can have a patristic

distance beyond that length [RCHH+13, VLVR+18, WHVR+17]. In addition, a minimum boot-

strap certainty is also sometimes required, specifying that a set of sequences in a cluster must

converge to the same ancestral node with certainty [DOKG+17, RCHH+13]. The tree in Fig-

ure 1.4 is shown as an example built from 20 published HIV-1 B pol sequences [WHVR+17]

using IqTree software [NSVHM15]. Tips sharing a highly confident ancestor (bootstrap ≥ 75)

and no patristic distances greater than 0.04 between them are highlighted in blue to represent

clustering.

For a small sample of highly related sequences, all branch lengths are relatively short and

bootstrap confidence is relatively low. A different expected degree of divergence would ul-

timately change the average patristic distance between sequences placed in the tree, as well

as the certainty of their placement and branching order. The open source ”Cluster-Picker”

[RCHH+13] software package has been created to determine clusters using the clustering crite-

ria mentioned above and is well used in the literature on HIV clustering [RLD+17, WHVR+17,

DOKG+17]

1.4 The Goals of Molecular Clustering

In practice, there are two common goals of molecular clustering. The first is source attribution,

which seeks to determine the potential vector by which a disease entered a new population.
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Figure 1.4: An example tree, built from 20 sequences using maximum likelihood methods
(IqTree, default parameters). The clusters are highlighted in blue based on relatively confident
relationships (Bootstrap ≥ 75) and relatively short terminal branch lengths between cases (≤
0.04). Relative tip size corresponds to terminal branch length, a scale bar is given in the top
left to reference branch lengths, and branch lengths under 0.002 have been resolved to 0.002
for the purposes of clarity.

In this case, connections between individual sequences are taken to represent pairs who are

relatively close to each other in the chain of transmissions defining the epidemic. For maximum

likelihood trees, the direction can also be revealed through paraphyly [VF13], when sequences

from multiple sources share a clade. Looking at the right panel of Figure 1.3 as an example,

the human sequence is nested within the lower subtree of bat sequences. This would point

to a disease which transferred from bats to humans, as it appears that the pathogens found in

humans descended from a subset of those found in bats.

The second use of molecular clustering is ”outbreak detection”, which aims to identify

heterogeneity in the rate of transmission. Large clusters, with very close proximity measures

can often be labelled as outbreaks, as they indicate a pathogen which has been transmitted

through multiple hosts in a short amount of time. Locating an ongoing outbreak can provide

an opportunity for intervention, distributing any available treatment, vaccination, prophylaxis,

or known preventative measures to the population associated with clusters. It also may identify

an area with a higher number of unknown infections, guiding testing and diagnostic efforts.

For HIV, Pre-Exposure Prophylaxis (PREP), is a preventative drug which protects individuals

at high risk from attaining an infection [TKP+12]. In addition, HIV treatment with HAART
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[HCCP04, DBK+10] reduces the chance that an HIV positive individual will transmit the dis-

ease, so confirming a connection to care is of priority importance for individuals in clusters.

For other transmissible diseases, this may indicate priority populations for available vaccines,

ensuring that individuals at the highest risk of obtaining a new infection are protected. Training

a predictive model to identify the indicators of future clustering is also useful in this context,

allowing the prevention of outbreaks in real-time. The following sub-sections will discuss each

method with further depth using example case studies.

1.4.1 Studies in Source Attribution

In cases of zoonotic infection (ie. diseases which are obtained from animals), source attri-

bution can determine key animal vectors which act as points of entry into populations. For

insect-borne diseases such as malaria, west Nile and Zika virus, this is the primary mode of

transmission. For instance, the 2019 novel Coronavirus pandemic caused by the SARS-CoV-2

virus was initially attributed to bat species in eastern China through a clustering study by Lu,

et al (2020) [LZL+20]. The SARS-CoV-2 genomes taken from 9 individuals who had been in

contact with the Huanan seafood market in Wuhan China, were sorted within the sarbecovirus

sub-genus, a subset of the Betacoronavirus genus. When a maximum likelihood tree was con-

structed, bat-borne SARS-CoV-2 sequences formed a paraphyly with the human SARS CoV-2

sequences, suggesting that the disease had transferred from bats to humans (Similarly to the

configuration previously described in Figure 1.3). However, it is unclear how directly this dis-

ease is transferred and intermediate hosts could have existed. Further work has suggested that

coronavirus sequences taken from pangolin species Manis javanica [ZWZ20] fall within this

same cluster, suggesting that all 3 animals are likely able to host the same virus.

The origin of a major 2010 cholera outbreak discusses transmission directly between human

hosts. Chin et al [CSH+11] obtained genomes from 5 isolates of cholera obtained from patients

within this outbreak. These sequences were found to be more closely to cholera strains from

Bangladesh than from the more local sequence data obtained in Peru, when comparing the

number of substitutions between sequences. The results ultimately implied that the disease

was most likely introduced by international aide forces stationed there in response to a major

earthquake occurring in the same year. For both situations, illuminating the cause of infection

provides extremely valuable information for public health agencies, as future testing efforts can

be guided towards source populations to prevent a growing infected population and control the

ways that an infection could enter a new population.

In the context of direct human-to-human transmission, it becomes important to consider
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the controversies associated with criminalized diseases such as HIV, where epidemiological

association can have legal consequences. Studies with the goal of identifying patient to pa-

tient transmission do exist within Canada and have seen recent use [MPL+20], however, there

are practical challenges and ethical conflicts in the identification of direct transmission rela-

tionships. As implicit in any source attribution method with incomplete sampling, there is the

potential for an unsampled individual to act as a bridge between an alleged donor and receiver

pair - or for two infections to appear as a donor-reciever pair because they have been infected

by the same unsampled source [RHR+19, Poo16, NML+14]. This creates doubt in the accu-

racy of transmission pair classification, as a connection may not exclusively represent direct

transmission [RHR+19]. Furthermore, the potential for patient information to be requested

by subpoena in a status non-disclosure case, has been shown to be counter productive to the

goals of public health, decreasing the likelihood that infected individuals seek treatment or dis-

close their infection [SKS+07, PMO+15, Myk15]. Sequence data exists in ample amounts for

HIV and large-scale source attribution studies are done with regularity in order to discuss the

transmission dynamics of HIV on a larger, population level [DVF+18, LLR+20, HD03, San14].

These seek to identify if there is a particular subpopulation with a higher risk of onward trans-

missions. However, to remain sensitive to the problems of direct patient to patient transmission

analysis, HIV sequence data from patients is anonymized as a standard practice and rarely

published with any associated meta-data that could be traced back to a specific patient.

1.4.2 Studies in HIV Outbreak Detection

In the context of this study, an outbreak will describe a sub-population with an unusually high

disease incidence. Identification of any outbreak often demands large data sets, with enough

variation between observations to contextualize the significance of any incidence change. There

is also an imperative to discover ongoing outbreaks, as the clustering of more recently diag-

nosed cases may indicate an opportunity for intervention. The standard surveillance of drug

resistance mutations has been a major factor in allowing outbreak detection to be done on a

large scale [SNH+12, FKL+18, SM17].

My work has been particularly focused on outbreak detection as it pertains to HIV, because

compared to other uses of molecular clustering, this particular field has seen a remarkably well

developed history and discourse, spanning three decades before the initiation of this study. The

initial studies of HIV transmission using genetic sequences were criminal cases, with one of the

most well known stories in North America being that of the ”Florida Dentist” [SW92], a crim-

inal case in the United States where a dentist was charged with knowingly transmitting HIV to
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multiple patients. Pathogen sequence data from patients and the defendant were admitted as

evidence. The first HIV molecular clustering studies with public health goals occurred slightly

afterwards [HZR+95, LEF+96], showcasing the simple idea that phylogenetic trees can mimic

known transmission patterns of HIV. As it was discovered that the HIV-1 pol gene could confer

drug resistance and the regular sequencing of patient’s viral genome became common as a part

of diagnosis, the available data sparked larger studies with implications for a whole infected

population [Kan06, YVR+01]. The specific methods (HIV-Trace [KPWLBW18] and Cluster-

Picker [RCHH+13]) described earlier in this chapter were developed in the last decade, and the

following case studies describe some examples of their use. Most recently, these methods are

used to prioritize which clusters are the most likely to attain new cases, estimating where new

cases are most likely to appear.

Once an outbreak is identified, the clusters which comprise it are often used to detect spe-

cific risk factors. For instance, a recent study Ragonnet-Cronin, et al (2018) [RCJBS+18]

identified a relatively large pairwise graph-based cluster of 104 HIV-1 sequences from over

2000 patient-matched pol sequences Glasgow, Scotland using a TN93 distance threshold of

0.01 expected substitutions per site. The sequences identified in the cluster shared known drug

resistance mutations E138A and V179E to the pol gene, which potentially conferred a higher

transmission likelihood from individuals who were receiving treatment in the form of non-

nucleoside reverse-transcriptase inhibitor (NNRTIs). In addition, of the individuals identified

in this major cluster, 102 reported injection drug use, which, as a form of blood to blood con-

tact, was also suggested to contribute to the unusually high rate of spread among members.

The identification of this cluster and the analysis of potential causes allows for the support of

specific public health tools based on the demographic. In this case, harm reduction programs

such as needle exchanges and safe injection sites could be suggested as a tailored response. The

genetics of the disease itself is also an important factor, understanding the particular subtype

and likely drug resistance mutation could guide decisions in effective treatment regimes.

For large data sets which are updated over time, it is possible to correlate cluster growth

with certain characteristics and identify key predictors of an outbreak. In this case, known

clusters can be updated to include new cases based on proximity measures between known

clusters and new cases. This essentially means training a predictive model to identify the

frequency of a connection between a known patient and a new patient. Figure 1.5 shows an

example of this, where a circled cluster represents a theoretical target for priority because of

the likelihood to attain two new cases.

A study by Wertheim et al (2018) [WMM+18] implements this predictive method, observ-
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Figure 1.5: An illustration of how cluster growth may be interpreted over time. Older cases
clustering with newer cases as an indication of onward transmission. The prediction of the con-
nections which attach known cases to upcoming cases is prioritized, as it implicates a cluster
with a high likelihood of significant growth. Such a cluster is circled in this figure. Darker red
colour indicates a higher likelihood of onward transmission

ing the growth of graph-based clusters built from 65,736 HIV-1 B pol sequences in New York

City using a TN93 distance threshold of 0.015 expected substitutions per site. The goal of

the study was to train a predictive model to prioritize 500 known cases most likely to connect

to cases which were newly incorporated into the data set. New cases are incorporated on an

annual basis over several years. This effectively defines of binomial regression model of the

following form

log
( P
1 − P

)
= α + β1x1 + β2x2... + βixi (1.1)

where P represents the probability that a cluster will grow (ie. some case in that cluster will

connect to a new case) as a function of some series of predictor variables x, with coefficients

β and intercept α estimated by regression. It was shown that prioritizing whole clusters based

on their size and recent growth yielded more accurate predictions than prioritizing individuals

based on things like risk factor or past transmission history. This demonstrates a key part of

what makes clusters appealing for predictive modelling, that the large partitions smooth out the

stochasticity associated with individual cases. In a more recent study by Billock et al (2019)

[BPP+19], clusters were built from 8,202 HIV-1 B pol sequences corresponding to individuals
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diagnosed with HIV in North Carolina, USA from 2015-2017 using a similar methodology.

Clusters with an average diagnostic date that falls within a year of growth observation period,

clusters with any proportion of cases displaying high virus populations in the blood, or clusters

where over 50% of the members had no named contacts were all at a higher risk of displaying

growth. Potentially confounding variables were taken into account, in this calculation. Interest-

ingly, both of these studies treated cluster growth as a binary outcome, instead of investigating

the magnitude of cluster growth (number of new cases) as a Poisson distributed outcome. A

paper by Le Vu et al, [LVRD+18] describes this an important future goal to allow for more

informed prioritization of clusters given the larger (in some cases international [WLBH+14])

scale of HIV outbreak detection studies In this alternate case, the equation would follow

E[y] = exp (α + β1x1 + β2x2... + βixi) (1.2)

where E[y] represents the number of cases which join a particular cluster as a function of

some series of predictor variables x, with coefficients β and intercept α estimated by regression.

Despite observing populations which likely show different sample coverage, time range and

study area size, both studies described above use the same 0.015 threshold criterion to build

clusters. This threshold was initially based on the distribution of expected genetic distance

between any two pol sequences in the United States given a national level [Kan06, APP+12],

however, it has become a widely used standard at the municipal and state-wide level in North

America. This same threshold has also seen use in different continents [LLR+20, VLVR+18,

RCOAM+10, DOKG+17], despite the potential for differences in population densities, modes

of transmission and sampling efforts. In addition, these thresholds have been treated as equiv-

alents across multiple clustering methods; both the tree-based clustering methods and graph-

based clustering methods described in this chapter. What a connection indicates changes in

response to the threshold chosen, and by extension, so does the interpretation of a molecular

cluster [LVRD+18, RLD+17] In further chapters, I will discuss the benefit of tailoring these

often standardized threshold criteria to the area of study and the method used.



Chapter 2

Applications of the modifiable areal unit
problem

While the previous chapter described how these molecular clustering methods are used in prac-

tice, this chapter will discuss the statistical problem created by the selection of a threshold.

Although this trade-off is not formalized as a problem in the molecular clustering literature

for HIV, the degree to which observations should be aggregated is a well discussed topic in

other fields. In particular, there is a well defined problem described as the modifiable areal

unit problem, which addresses the potential for different spatial partitions of the same data to

change outcomes. If the problem of threshold selection is analogous to the Modifiable areal

unit problem, there may be applicable solutions that can be borrowed for this cause, however,

because genetic data often exists in a dimensionless space, the known solutions to the modi-

fiable areal unit problem must be adapted for use on genetic data. This chapter also aims to

discuss how the data sets are expected respond to a change in threshold under the two popular

clustering methods described previously (graph-based clustering methods such as HIV-Trace

[KPWLBW18] and Tree-Based clustering methods such as Cluster Picker [RCHH+13]). These

response are important to analyze, as they define the potential costs or benefits associated with

threshold changes. These responses may also act as the key points of difference between two

clustering methods, potentially resulting in different optimal thresholds from one clustering

method to another..

15
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2.1 Variance-bias trade offs and the modifiable areal unit

problem

As described in the previous chapter, the partitioning of a data set into discrete clusters can of-

fer important information in an epidemiological context. However, for the clustering methods

described in the previous chapter, the selection of a threshold may introduce a trade off between

bias and variance. Higher, more relaxed clustering thresholds allow more connections to exist,

which leads to a greater proportion of larger clusters, but too much connectivity may begin to

make those connections less meaningful. This also means that a set of clusters with high vari-

ance (ie. many clusters with significant differences between them) also tend to result in high

bias (ie. smaller clusters which do not representative of consistent trends in the whole popu-

lation). Although some molecular clustering studies evaluate the effects of threshold selection

by using multiple thresholds to define clusters [RLD+17, VLVR+18, OFP+18, VAB+17], the

relationship between the number of clusters and the outcomes of molecular cluster analysis is

not well characterized, especially as they apply to predictive models of cluster growth. This

is a well discussed issue in the field of machine learning, where the relationship between de-

pendant and independent variables is not initially specified with a formula [NMB+18, LSG11].

In this case, the variance-bias trade-off must be addressed in order to extrapolate beyond the

initial data set. If a predictive model aims to predict outcomes for a set of partitions, but the

entire data set falls into a single partition then only one prediction and one outcome would be

generated. This is known as ”undertraining”, which results in limited information for the effect

of predictors on outcomes. As an epidemiological example, this would be similar to taking

the average age for a whole population as a single predictor and counting the total number of

deaths by heart disease as a single outcome. If each individual in the population were treated as

an observation with its own predictor (age) and its own outcome (death by heart disease), then

a predictive model which only aims to minimize error would become biased, treating excep-

tional cases as part of the rule. A classic example of overtraining and undertraining a predictive

model is visualized in Figure 2.1, using an R script and simulated data. This represents the con-

sequences of favouring each of the two extremes in the variance-bias trade off discussed above,

where neither a single global mean (blue) or the exact values associated with each observation

(red) represent a pattern which is useful for future analysis. For this example, the true nature

of this relationship is linear, but in an unsupervised machine-learning context, the nature of the

relationships between predictors and outcomes are usually assumed to be complex and beyond

definition by a simple, known model.
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Figure 2.1: A visual example of overtraining and undertraining a predictive model. The pre-
dicted values of single mean of the complete data set (blue), as well as a line which goes
through the values of each point individually (red) each contrast the actual relationship (black)
between predictor and outcome.

Although variance-bias trade offs appear in multiple fields [Nak00, FW91, ZLZ16], the par-

titioning of a data set into k clusters is comparable to a specific type of variance-bias trade-off

problem: termed the modifiable areal unit problem (MAUP) by Openshaw and Taylor (1979)

[Ope77]. The MAUP describes the trade off inherently involved in the partitioning of an area

for a geographic study. Each resulting partition or ”spatial unit” contains a set of observations,

similar to the clusters which are defined based on spatial or genetic proximity measures. There

are two aspects to the MAUP. The first is the ”scaling problem”, which is implicit when se-

lecting a scale for hierarchical data. For instance, spatial units could be defined as nations,

provinces or households for a census study [Nak00]. A parameter which affects scale can then
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define the number of clusters (k), with a set of n observations offering n different possible val-

ues k. The second aspect is the ”zoning problem”, referring to the inherent problem of drawing

borders within a data set. This challenge is well discussed in political gerrymandering research,

where voting outcomes may be biased to over-represent a particular group when borders are

drawn to create voting districts [Won09]. This second aspect complicates the relatively simple

variance-bias trade off discussed above, as it allows the membership of a given partition to vary

without changing the number of partitions. The number of permutations this allows follows

the Stirling partition number series [RD69], a particularly fast growing number series which

scales exponentially with larger data sets, posing computational challenges for any data set

larger than 100 observations.

2.2 The modifiable areal unit problem for molecular cluster-

ing methods

Although the MAUP has been discussed almost exclusively in the field of geography and en-

vironmental statistics [FW91, NB17, JW96], a similar problem occurs when choosing a scale

in the definition of molecular clusters. It is first important to clarify that clusters are a special

type of partition, which are specifically qualified by relatively high connectivity or relatively

low variation in a given proximity measure. The MAUP does not necessarily require its parti-

tions to be clusters, although the geographic context of the MAUP implies that partitions are

assigned on a spatial basis, with all observations in a given partition sharing a fairly constrained

set of possible locations. Although the parameters which control scale may very depending on

the clustering method, a smaller scale would be expected to identify numerous small clusters

and a larger scale would capture a much smaller number of large clusters. Representing indi-

vidual sequences as their own cluster is rarely done when clustering HIV sequence data from

different patients, however it does represent the theoretical lowest scale for the modifiable areal

unit problem and can be thought of as the highest possible number of partitions for a data set.

Fortunately, at a particular scale, the membership of clusters that are formed based on proxim-

ity measures is fixed. This is because the connections between individual sequences cannot be

changed unless without changing the empirical measurements that define them (ie. genetic se-

quence comparisons). The more complex zoning aspect of the MAUP is then not a part of this

study, leaving only the scaling aspect to consider. This hierarchical organization of sequence

data can be shown by creating a tree using the unweighted pair group method with arithmetic

mean (UPGMA) [D’h05], which iterates through all possible ways that a set of sequences
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could be separated into partitions by iterating through a series of collapsing events. A visual

example of this process and how it is interpreted as a tree is illustrated below in three steps,

where partitions are collapsed into an internal node based on the order of largest to smallest

mean pairwise distances (Figure 2.2) .

Figure 2.2: This example of the UPGMA acts on four points in a two-dimensional plane. In
this case, the distance between points is analogous to pairwise genetic distance. The series
of collapsing events is also interpreted as a colour coded tree (right), with branches scaled to
illustrate the relative magnitudes of pairwise distances.

For n sequences, a parameter based on this process would have n − 1 possible values, each

representing a stage in the algorithm and an associated set of partitions. Assigning a value

x to this parameter would then mean stopping at step x of the algorithm, defining how many

partitions the sequences are sorted into. For the remainder of this text, this parameter and

any others which determines the level of aggregation for the data set will be referred to as a

”scaling parameter”. A paper by Bull et, al. (1993) [BHC+93] discusses the use of different

partitioning schemes on large sets of sequence data and considering the advantages of running

separate analysis on different partitions of the data. This approach views the partition decision

as an optimization problem, where a specific scale is most optimal for their classification anal-

ysis. Too large a scale misses the relevant differences between partitions, but too small a scale

erroneously assumes multiple individuals to be separate. The goals of molecular clustering are

similar, as epidemiologists essentially try to classify if pathogen sequences are similar enough

to represent a connection. In order to characterize their molecular cluster analysis, the scaling

parameters must be identified for the tree-based and graph-based clustering methods developed

for HIV.
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2.2.1 Scaling parameters for TN93 graph-based clustering

In the graph-based methods such as HIV-Trace [KPWLBW18], the TN93 distance threshold

imposed upon the edges between vertices (Section 1.3.1) acts as a scaling parameter. As this

threshold is increased, fewer edges are filtered out of the graph, leading to a higher overall

connectivity and a smaller number of clusters. Unlike the finite scale selection for UPGMA

trees (ie. stopping at a specific step in the algorithm), the TN93 threshold is a value imposed

on a continuous measurement. This means that unlike the UPGMA, changes in the threshold

can effect multiple partitions at once. In addition, this is a ”single-linkage” basis for clustering,

meaning that individuals may join a cluster based on a single connection to one of that cluster’s

members. Because of this single linkage characteristic, large clusters are likely to attain new

members simply by virtue of their size [WMM+18], as they contain many potential sequences

to connect to. This also allows long bridges to exist between clusters, as illustrated in Figure

2.3, allowing relatively dissimilar sequences to exist in the same cluster [ST06].

Figure 2.3: An example of bridge formation, in this case allowing the circled sets of sequences
to exist within the same cluster.

To Illustrate the effect of pairwise distance threshold as a scaling parameter, a series of net-

works have been constructed from a subset of pol sequences collected in Seattle, USA (Figure

2.4) using three different TN93 distance thresholds to define clusters. The rightmost panel rep-

resents a fairly extreme threshold and a course scale, with few partitions being imposed upon

the data set. Because 0.05 is the expected pairwise distance between any two HIV-1 subtype B

pol sequences found in the United States [APP+12], the threshold of 0.05 chosen for the third

panel fails to specify a truly unusual degree of similarity, as the connections represent com-

mon proximity measures. In the context of a variance-bias trade off, this could be effectively

classified as low variance and undertraining. By contrast, the strict threshold in the first panel

fails to capture many connections at all, resulting in limited information to act upon. This re-

duces the number of connections between cases, resulting in a large number of small clusters,
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often comprised of a single individual. Although this could be seen as the same overtraining

problem as demonstrated earlier, the more significant effect is often the lack of connections

between cases. If the research goal requires some connections to be observed, than this pro-

vides less outcome data. The low number of individuals with connections drawn between them

results in a biased set of clusters, as such a small portion of the overall sample may be effected

by the connections that occur by random chance. Intuitively, a threshold of 0 represents the

lower bound for this clustering method, representing all points as their own partition of size

one, with the exception of completely identical sequences. Again, methods typically would not

call one-sequence single partitions a cluster [WLBH+14], but this exclusion would be driven

by epidemiological interest and doesn’t consider their theoretical importance to an analysis of

scale. The upper bound requires more computation, as this would be defined by the highest

distance in the minimum spanning tree [KVS72], the set of edges which sums to the lowest

total distance while still connecting all individual points in the graph. An important character-

istic here is that a graph where many connections are excluded, still may contain the minimum

spanning tree, resulting in all sequences placed into a single cluster by a relatively low scaling

parameter.

If the connections between cases are treated as a binomial outcome associated with some

predictor, such as patient age difference [DOKG+17] or the difference in time between the date

of diagnosis [RCJBS+18], then the threshold selection process changes the number of growth

events associated with this model. This corresponds to many of the connections which would

indicate priority in Figure 1.5 The limited connectivity shown by the low threshold specified

in the left panel of Figure 2.4 would not just result in the exclusion of potentially relevant

connections between known sequences, but it would also limit the number of connections

which define growth. This has been shown to change the effect size of predictors for clustering

[VLVR+18, OFP+18, RLD+17] and poses a problem more unique to the goal of predictive

clustering, where low scaling parameters have additional negative effects. For studies which

are interested in growth, low clustering thresholds may then underestimate the scale of onward

transmission.

2.2.2 Scaling parameters for maximum likelihood tree-based clustering

In the tree-based methods such as Cluster-Picker [RCHH+13], the Maximum likelihood trees

provide some initial structure through a proposed branching order. This means that mono-

phyletic clades alone can be treated as a partitions, especially those with a high bootstrap sup-

port for their common ancestor as discussed in Section 1.3.2. However, molecular clusters are
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Figure 2.4: An set of graphs built from 153 HIV-1 subtype B pol sequences taken from Seattle
USA in 2010 [WHVR+17]. Edges represent the pairwise TN93 distances between cases, with
each graph showing only the remaining edges beneath a given cutoff threshold. The edges are
scaled for visual clarity, and the placement of points on the plane does not represent genetic
distance.

typically further qualified by imposing specific requirements on the branch-lengths of a sub-

tree. These requirements act as the scaling parameters, with each resulting in a different scale.

The influence of these scaling parameters are not necessarily the same as the pairwise graph-

based method however. For instance, because these maximum branch length criterion are not

based on a single linkage from one sequence to another, tree-based clusters are less tolerant to

divergence between members compared to those built from the graph-based method [RLD+17]

- connecting a sequence to a given cluster requires that that sequence be close to all members

of a given cluster. This manages to avoid the problem of bridging nodes outlined in Figure 2.3,

as all sequences in one cluster must be relatively similar to all the sequences in another cluster

before the two are merged. A criterion for bootstrap certainty is not strictly hierarchical as a

highly confident sub tree may be composed of several sub trees with significantly less confi-

dence. In fact, this would be expected for connections within highly related clusters, as the

context of a highly related tree makes it difficult to establish which sequence relationships are

closest. These are still used as a criterion for clustering in practice [DOKG+17, RCLH+16],
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however they may not necessarily qualify as a scaling parameter.

To demonstrate the effect that branch length threshold selection has on maximum likeli-

hood subtree clusters, a series of subtrees are highlighted in Figure 3.3 as part of a maximum

likelihood tree. These are based on a subset of pol sequences collected in Seattle, USA using

three different thresholds for maximum branch length. The range of meaningful values for this

threshold are bounded more simply by the minimum distance between cases and the maxi-

mum distance between cases. These represent the points at which all cases are represented by

their own individual partition, and all cases are sorted into the same partition (respectively).

Unlike the graph-based clusters built on based on single-linkage connections, the use of a max-

imum branch-length threshold of 0.05 (the expected divergence [APP+12]) may provide a more

reasonable indicator of unusual similarity for large clusters, as this threshold selects sub-trees

where all cases are at or below the expected rate of divergence. However, this may also indicate

a large number of pairs which are connected by chance, thus misleading studies that attempt to

discribe clustering connections as instances of transmission [WHVR+17, DOKG+17]. Again,

the left and right panels represent the same extremes as discussed by the MAUP, with their

associated disadvantages: sparse connections with potentially uninformative clusters and large

clusters with less meaningful connections.

If new sequences were to be added to the data set, they provide new information that may

indicate the presented tree no-longer holds the most likely branching order or branch lengths.

In order to incorporate new sequences into the tree, it is then often necessary to re-construct

the entire tree in order to insure that the most likely evolutionary history is presented. To avoid

this - either in the interest of time or because the expansion of a fixed tree is being simulated -

there are multiple methods that calculate the branch length and most likely placement of new

sequences without changing any characteristics of the tree [MKA10, ICCSS14]. This grafting

of tips onto a fixed tree has been used to simulate cluster growth [LSM19] in an evolutionary

biology context, although has not yet been used in the context of HIV clustering research. If the

growth of clusters is of interest (similarly to Figure 1.5), then it is important consider how this

outcome is effected by the scaling parameter, as newly grafted tips may join known clusters. In

a similar fashion to graph-based clustering, strict maximum branch lengths are likely to prevent

these instances of a new tip joining a known cluster.
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Figure 2.5: A 250-tip subtree shown within a large maximum likelihood tree constructed from
1503 HIV-1 subtype B pol sequences. These were collected in Seattle USA between 2000 and
2011 [WHVR+17]. iqTree software with default settings was used to construct the overall tree
[NSVHM15]. Branches highlighted in blue represent complete monophyletic clades where all
pairwise branch lengths fall below the maximum branch length referenced above the tree.

2.3 Optimal scaling parameters

The selection of scale effectively becomes an optimization problem, and therefore, an external

measurement of performance is needed to assess the quality of a given partition set. While

some molecular clustering studies have discussed the effect of scaling parameters using mea-

surements of complexity [HYW+18], these are fairly infrequent and not commonly used for

the study of HIV. Instead, HIV studies will often receiver operator curves for the detection of

known transmission pairs [RHR+19, MP17], which is often interpreted as a measure of how

accurately clustering connections represent transmission [MPL+20]. The predictive growth

studies referenced in chapter 1, also talk about the fit of a predictive model for future clustering
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connections given a particular threshold [WMM+18, DVF+18, BPP+19]. However, there is no

generally accepted way to assess the information content of a set of clusters which takes into

account the threshold used for clustering. For the purposes of predictive growth modeling in

real-time clustering studies, this becomes important, as extreme clustering thresholds may be

useless to public health, while yielding impressive measurements of fit [HYW+18]. This sec-

tion will discuss which statistical tools can be used to judge the information content of clusters

with respect to the MAUP and move towards a metric to judge predictive clustering models

while taking into account scaling parameters.

Tomoki Nakaya (2000) [Nak00] proposes several information-based solutions to the MAUP,

using an estimation of mortality rate at different administrative scales (ie. districts, cities,

wards, ect.) as an example. One of these solutions treats mortality as a countable outcome

predicted by a Poisson model, and uses the absolute gain in model accuracy as an indicator

of appropriate scale-parameters. In this framework, two predictive models are used to predict

mortality for an area. A ”full” model predicts mortality in the smallest possible administrative

regions with each representing its own partition. The paper’s term for these are ”Basic Spatial

Units” (BSUs). The number of deaths y for some BSU i with death rate αi and population size

Bi is given by yi = αiBi +εi where εi represents some error from the expected number of deaths.

The log-likelihood for the full model is represented by the following equation.

l f =
∑

i

(yi ln(αiBi) − αiBi) (2.1)

The ”restricted” model, makes mortality-rate predictions within aggregated partitions. Each

partition then contains multiple BSUs, but no BSU is contained in multiple different partitions.

In this case, the death rates for all BSUs within a partition j is simplified to be the mean death-

rate for BSUs within the partition. The estimate of mortality for each BSU i within partition j

is then yi = αA
j B j + εi where αA

j represents the mean death rate across all BSUs in partition j.

The log-likelihood for a restricted model with some partition scheme A is represented by the

following equation.

lA =
∑

i

(
yi ln(αA

j Bi) − αA
i Bi

)
(2.2)

Given these equations as well and the likelihood measurements, it is possible to measure

Akaike’s information criterion (AIC) [Aka73], an absolute measure of inaccuracy and model

complexity. The AIC for some model A is calculated as shown below, given that p represents

the number of parameters for the model and l represents the log likelihood of that model in the
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context of outcome data. Therefore, both poor model fit and high model complexity contribute

to the AIC.

AICA = 2p − 2l (2.3)

Given the AIC measurements of the two models, a difference in fit can be calculated as

AICrestricted − AIC f ull, such that negative values would imply that the restricted model outper-

forms the full model.

Because each administrative scale creates a new set of partitions, and each partition adds

to the number of parameters estimating the death rate, p in the AIC calculation is equivalent to

the overall number of partitions at a given scale. Therefore, the reduction in overall likelihood

is counter-balanced by the increases in model complexity, with the full model acting as a base-

line, showing both the highest likelihood and the highest penalty for partitions. Any benefits

from fewer partitions for some restricted model are quantified by a negative value in the AIC

difference. A positive value in this difference would correlate to a partitioning scheme which

sacrificed enough model information (decreasing l) to outweigh the benefits of a simpler set of

estimates (low p).

When considering how this AIC-loss metric applies to predictive molecular cluster mod-

els, it is also necessary to consider that cluster growth is based on connections between in-

dividuals, and would therefore also be effected by the scaling parameter [VLVR+18]. There

is basis for this in ecological research, where this effect has been characterized for binary

classification outcomes, using 11 different metrics to measure performance in response to the

threshold which determines a positive classification [FM08]. However, this goal of binary

classification does not apply to quantitative, Poisson-linked growth outcomes for clusters over

time. Despite common criticism as to the accuracy of genetic clustering techniques for HIV

[VKW+12, Poo16, RLD+17, NML+14], there exists no in-depth analysis which characterizes

the way in which Poisson-linked growth outcomes for each cluster respond to clustering thresh-

old. Furthermore, there is no available framework which informs the selection of an appropriate

threshold based on the characteristics of a data set.

This thesis work aims proposes such a framework by implementing an altered version of

Nakaya’s approach to the modifiable areal unit problem. This framework was developed and

implemented using both tree-based clustering and graph-based clustering methods then demon-

strated on multiple sets of real HIV sequence data in North America. I propose that the the-

oretical optimum threshold value would then provide the greatest amount of information for

the training of a quantitative predictive cluster growth model that estimates which clusters are
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likely to attain the most new cases. Furthermore, I aim to show that this information can be

evaluated with respect to thresholds by calculating the loss of AIC relative to a baseline ”null”

model.

It is my hypothesis that the threshold values used for the identification of HIV clusters

can be optimized through this framework and that this optimization is a necessary step as the

optimal threshold values vary between research locations. The flowchart used to outline this

framework is summarized below in Figure 2.6 and discussed in more detail within the following

chapters

Figure 2.6: The initial flowchart which outline the stages of my optimization framework



Chapter 3

Methods

3.1 Methods overview

This work develops and demonstrates a framework to optimize the selection of a scaling param-

eter for popular threshold-based methods used on HIV such as HIV-Trace and Cluster Picker,

this means choosing the most appropriate threshold (ie. TN93 distance threshold for pairwise

edges or maximum within-subtree patristic distance). Here, the optimal threshold produces

clusters with the greatest information content and this information content will be measured by

AIC loss associated with predictive variables. The outcomes which obtain AIC, are effectively

simulations of real time cluster growth, performed by adding ”new” sequences to the data set,

and observing which known clusters those sequences join. A predictive model observes the set

of connections in known clusters to estimate to associate the likelihood of cluster connections

with some kind of predictor variable. The threshold acts as a scaling parameter by altering the

number of connections for any given clustering method, changing the number of clusters, the

number of connections which could train a predictive model, and the number of growth out-

comes, Adjusting Nakaya’s [Nak00] information-based approach to the modifiable areal unit

problem, performance is measured by a comparison between two models which predict which

predict which clusters new cases will join: a ”null model” with no predictor variables; and a

”proposed model”, with one or more predictor variables associated with connection, such as

risk factor, age difference between patients or patient location. In effect, this replaces the ”full

model” in Nakaya’s approach for a ”null model”, which responds to the same scaling parame-

ter as the proposed model, but assumes all sequences are equally likely to connect to each other

and cluster growth is predicted only by size. The AIC loss calculated between the proposed

model and a null model captures how much accuracy is gained when using a model that allows

28



3.2. HIV data sets and data processing 29

predictor variables to predict connections between individual. Put another way, this measures

how useful the predictor variables are. Optimal thresholds should result in clusters that make

the predictor variables appear most useful (ie. the highest AIC loss). As an example, time lag

is used as a predictor variable, with the proposed model assuming that connections are more

likely between sequences with a similar associated time (either sequence collection date or pa-

tient diagnostic date). It follows that clusters with a large number of recent cases would then

be most likely to grow. The framework is implemented mostly in the R programming language

[R C13], with some supporting scripts written in Python [VRDJ95]. The results in the follow-

ing chapter are obtained from a demonstration on three separate sets of HIV-1 subtype B data

collected in North America. Further interests explored in this project include factors within the

data which may influence the optimum threshold, the robustness of the optimum parameter to

random sub-sampling, the stability of the optimum threshold over time, and the difference in

performance between multiple indicators of time point (ie. date of sequence collection versus

date of diagnosis).

3.2 HIV data sets and data processing

3.2.1 Sequence data

Three different anonomized data sets of aligned HIV-1 pol sequences were obtained for the

purposes of this study. These were population data sets, reported such that individuals are

represented by only one sequence in the alignment. Two of these were publicly accessible

through the Genbank Database [BKML+11] - n = 1648 sequences collected in Seattle, USA

[WHVR+17] and n = 1020, sequences collected in Northern Alberta [VAB+17]. After gaps

were inserted in the alignment process, the lengths of these sequences were 1095bp and 1077bp

for Seattle and Alberta respectively. A Biopython module was used to query Genbank for the

sequence collection date associated with each accession number [CAC+09]. This collection

date was used as the associated timepoint for sequences, separating new versus old cases. The

third data set was collected by the Vanderbilt comprehensive care clinic in Nashville Tennessee

and surrounding area. Patient meta data including the year of sequence collection and year of

patient diagnosis were available as part of this set [DVF+18]. The Tennessee data contained

a total of 2,779 sequences, each 1500 bp in length after alignment. Each data set was fil-

tered to remove any sequences which were annotated as a subtype other than B, as well as

any sequences with ambiguous bases at 5% of the positions, which would generally indicated

a problem during sequencing. This filtration step removed 211 subtype C sequences and 1
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ambiguous sequence from the Alberta data set. 163 sequences with high ambiguity were also

from the Tennessee data set. In addition, the time range of the Seattle data set was adjusted,

removing the sequences collected in 2013 due to an unusually low sample size of 35 sequences

for that year. This likely indicates that sampling was not carried out through the entire length

of the year at the time these sequences were published. The sequences within the Tennessee

data set were also truncated using the Aliview [Lar14] tool due to a poorly aligned terminal

region, reducing the overall sequence length from 1500 bp to 1305 bp. Within the filtered

Tennessee data set, only 2,077 of the remaining 2,616 sequences contained diagnostic years.

Further information regarding each data set after filtration is summarized in the following table

for reference.

Location Seq Length Sample Size Date Range Time Information
Seattle, USA 1095 bp Collection Year 1,613 2000-2012
Northern Alberta, Canada 1077 bp Collection Date 808 2007-2013
Middle Tennessee, USA 1305 bp Collection Year 2,616 2001-2015
-Subset- Diagnostic Year 2,527 1977-2013

Each sequence in the data set had some associated timepoint; either sequence collection

year or the year that the host patient was diagnosed with HIV. Before clustering, the distribu-

tions of time information were collected for all data sets, and summarized in Figure 3.1. These

time points were used to define the time lag between sequences and establish subset of each

data set to be defined as ”new sequences”. Subsets of ”new sequences” contained only the

sequences diagnosed at the newest time point and would later be used to validate the predic-

tive growth models. All data sets contained at least the year of collection for each sequence,

with a relatively even distribution of sampling effort (number of sequences collected per year).

Collection rates averaged 124, 115, and 174 sequences per year for the Seattle, Alberta, and

Tennessee data sets respectively, although all data sets saw fewer sequences collected in the

first few years of sampling. For all data sets, there were over 100 sequences associated with

the newest time point with 110, 110, and 153, for Seattle, Alberta and Tennessee as well as 129

for the diagnostic Tennessee subset. This ensured that there was a sufficient number of cases

to be used for validation.

For the Alberta data set, sequence collection information was also given at the resolution of

complete dates, with September averaging the lowest number of sequences collected per month

(8.5) and December averaging the highest (14.3). The collection rate does not necessarily

correlate to the incidence of HIV during these years, as no estimates were available for time

since infection or the proportion of the epidemic that was sampled. For the sequences collected
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Figure 3.1: (top) Distribution of sequence collection years for the Seattle (blue), Alberta (or-
ange) and Tennessee (red) data sets. Absent bars indicate that no sampling was carried out in
the respective years, and does not reflect an absence of cases. (bottom) Distribution of sample
diagnostic years for the cases in the Tennessee data set. For clarity, this excludes the sparse tail
to the left of this distribution, which would contain cases diagnosed between 1977 and 1997.

in Tennessee with an associated diagnostic date, the early dates of diagnosis were particularly

sporadic, with a total of 429 sequences corresponding to patients diagnosed between 1977 and

1997, compared to 1,648 diagnosed from 1997-2013. For this reason, these years are excluded

from the bottom half of the presented timepoint distribution figure (Figure 3.1 (bottom)) for

clarity. These early timepoints are still included for the purposes of training a predictive model.

Given the extremely early dates of diagnosis for some of these sequences, it is likely that

some of these cases, particularly those tagged before 1980 were diagnosed retrospectively, as

HIV was not nationally reported in the United States until the 1980s [GSF+81]. Across the
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Tennessee diagnostic subset, sequences were collected, on average, 5.39 years after the date

of diagnosis. However, because data surveillance programs did not see widespread use in the

United States until after the year 2000 [OWH+15, CGO+14, WZZ+10], the subset of cases

diagnosed after 2000 (n = 1365) may be more informative, with a mean time lag of 2.20 years

between HIV diagnosis and sequence collection.

3.2.2 TN93 Distances and Tree building

TN93 distances were calculated between all possible pairs of using the open-source TN93

calculation tool associated with HIV-Trace [kPWV18] (https://github.com/veg/tn93) which is

implemented in the C++ programming language [ES90]. Any unknown or ambiguous bases

in the sequence were resolved to whatever base would minimize the distance between se-

quences in the overall alignment. Maximum likelihood trees were built using the open source

IqTree software [NSVHM15] using their ultrafast bootstrap approximation with 1000 boot-

straps [MNvH13]. This contrasts the more traditional method of obtaining bootstrap values

described in the first chapter by using a statistical model to approximate the certainty of place-

ments, instead of fully rebuilding any parts of the tree. A general time reversible model of

evolution as described by [LPSS84] with free rate variation among sites to determine likeli-

hood [Yan95] and optimized base frequencies. These trees did not include the sequences in

the most recent time point, which were withheld to represent new cases in the measurement

of cluster growth. In order to measure growth on a fixed tree, I used the open source pplacer

software (https://github.com/matsen/pplacer) version 1.1 alpha19 [MKA10]. This tool calcu-

lates the branch length and placement of new tips onto a fixed tree, effectively allowing new

tips to be added without requiring the recalculation of the tree. Further, pplacer computes a

posterior probability of that placement, allowing for a metric similar to bootstrap support when

a new node is created through placement. Within pplacer, the guppy command with the sing

subcommand was used to produce a new tree for each new tip, placing each new tip at its most

likely location.

3.3 Implementation of cluster methods

This section aims to clarify the logic which is used by the R code to implement the popular

clustering methods described previously and formally describe how a growth connection was

defined and how the predictive model was trained. For both methods, the associated code

creates clusters, trains a Poisson-linked predictive model based on connected sequences and
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validates that model by adding new sequences to the data set and simulating growth. It also

responds to a given scaling parameter (the TN93 distance threshold for graph-based clustering

and maximum internal patristic for maximum-likelihood subtree based clustering). Minimum

bootstrap criterion is considered as a secondary parameter for clustering, as this is not consid-

ered a requirement for two cases being connected on an individual basis or a requirement for a

new case joining a new cluster.

3.4 Graph-based clusters

3.4.1 Defining Clusters

The first clustering method implemented in this work mirrors the graph-based approach to

clustering taken by methods such as HIV Trace [KPWLBW18]. After all the pairwise TN93

distances are calculated from a set of aligned sequences, they are taken as an edge list for the

creation of a complex, undirected graph. We will let G represent the complete graph built from

vertices V(G) and edges E(G). Initially, this graph contains all possible edges between vertices

G constitutes a training set, reserving a subset of data from the newest timepoint for validation.

Each edge e ∈ E(G) has an associated TN93 distance d(e) and each vertex v ∈ V(G) has an

associated time-point t(v), representing the point at which the sequence was collected or, if

available, the point at which the associated host was diagnosed with HIV. Although timepoint

data is not an inherent part of the graph-based clustering methods, it is the most regularly

available piece of information that could be used to train a predictive model [BKML+11].

Because E(G) initially represents the complete set of edges, it can be assumed that all vertex

pairs {vi, v j} ⊆ V(G) have some edge e(vi, v j) that connects them directly. Efilt(maxd) represents

the set of edges constrained by some maximum distance maxd, implying that for all edges

in Efilt(maxd), d(e) ≤ maxd. Each cluster C is a ”component” of G; a sub-graph containing

edges E(C) and vertices V(C) where for all vertex pairs {vi, v j} ⊆ V(C) there is some set of

edges {Epath(vi, v j) | Epath ⊆ Efilt(maxd)} that connects them indirectly. Finally, single vertices

with no incident edges are considered clusters of size 1. 3.2 shows a list of these features, and

clarifies some important terms that distinguish certain types of edges explained in the following

subsections.
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Figure 3.2: An example graph with four vertices spread across two different time points. Each
illustration clarifies the remaining graph after each a given filter is placed upon it, correspond-
ing to the different subgraphs referenced in the following subsection. The top right illustration
simply clarifies the definition of clusters as a component of a graph.

3.4.2 Predictive model training

For each v in V(G), the ”minimum retrospective edge” ermin(v) can be obtained for a given

vertex v. For all ”retrospective” edges connected to v and another case at an earlier time point

than v, ermin(v) has the smallest distance. The set of all of these edges for G is termed Ermin

and represents important connections for the purposes of predicting cluster growth. Each edge

e(vi, v j) ∈ E(G) has a time lag ∆t(e) = t(vi) − t(v j) which can be used as a predictor for

a given edge’s membership in Ermin ∩ Efilt. |Etot(∆t)| to refer to the total number of edges

e(vi, v j) ∈ Efilt(maxd) such that t(vi) − t(v j) = ∆t. We can then use |Epos(∆t,maxd)| to refer to

the size of intersection Ermin∩Etot(∆t). Given a specific maxd value to limit edges in the graph,

the following logistic regression quantifies how frequently edges with a given time lag appear

as minimum retrospective edges in Efilt(maxd).

log
(

|Epos(∆t,maxd)|
|Etot(∆t)| − |Epos(∆t,maxd)|

)
= α + β∆t (3.1)

If this time lag between vertices has a negative correlation with the likelihood that those

vertices will be connected by a minimum retrospective edge, then it follows that vertices with

a time-point closer to the newest time point tmax are more likely to connect to new vertices.

As will be detailed in the next subsection, this is because new vertices join whichever cluster

is connected to them via their minimum retrospective edge. If the minimum retrospective
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edge of a new vertex is filtered out via maxd, then that case doesn’t join any cluster. We can

then weight each vertex based on time point using the coefficients obtained through regression

w(v) = α + β(tmax − t(v)). The growth prediction for a given cluster R̂proposed(C) will then be

based on the sum of w(v) for each vertex in V(C).

R̂proposed(C) = exp

∑
v∈C

w(v)

 (3.2)

A baseline ”null” model compares to the overall effect of weighted vertices. This would

assume w(v) = 1 for all v ∈ V(T ) and can be calculated as

R̂null(C) = exp (|V(C)|) (3.3)

3.4.3 Validation through growth

In order to obtain an actual growth measurement R(C), we measure the growth of clusters

through the addition of new vertices. A ”new” vertex v′ < V(G) has t(v′) > maxt where maxt

represents the max time-point value from the set {t(v) | v ∈ V(G)}. The ”growth” of G is a

process simulating an update of cluster over time where individual new vertices V(G) through

the following actions. For some new vertex v′, we let e′ represent the minimum retrospective

edge of v′, with some distance d(e′). If d(e′) < maxd, then this edge will connect v′ to some

vertex in V(G). After this growth process, individual clusters may have obtained new vertices,

but because only one minimum retrospective edge exists per new sequence, we can assume

that no new sequence in V ′ was added to multiple clusters. This is done so that no clusters are

”merged” together, step does not change the partitions used in the training step. ”Growth” value

R(C) for individual clusters can be defined as the number of new vertices attained, calculated

as the number of new sequences that join any given cluster.

3.5 Tree-based clusters

3.5.1 Defining Clusters

This mirrors the maximum likelihood subtree approach taken by Cluster Picker [RCHH+13].

We let T represent a midpoint-rooted, phylogenetic tree with internal nodes N(T ), tips V(T ),

branches E(V) and some root node r ∈ N(T ). Each branch e ∈ E(T ) has an associated branch-

length d(e), each tip v ∈ V(G) has an associated time point t(v) and each internal node n ∈ N(G)
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has an associated bootstrap support value b(n). It is important to note that the root node in

a midpoint-rooted tree cannot normally have its own bootstrap support value, as the root is

defined here as the ancestor to all tips. However, we assign b(r) = 0 in order to ensure that even

the lowest possible minimum bootstrap threshold would allow all tips to be sorted into the same

cluster. Each branch e ∈ E(T ) connects either two internal nodes, or one internal node and one

tip. For any two tips {vi, v j} ⊆ V(T ), there exists exactly one set of edges Epath(vi, v j) ⊆ E(T )

that connects them with the minimum number of branches. The patristic distance is the total

branch-length traversed by any particular Epath(vi, v j) and can be calculated by the following

equation

d(Epath(vi, v j)) =
∑

e∈Epath

d(e) (3.4)

A ”subtree” is a monophyletic clade Tni , defined as the subset of nodes and branches

converging to a given internal node ni ∈ N(T ) with branches E(Tni) ⊆ E(T ), internal nodes

N(Tni) ⊆ N(T ), and tips V(Tni) ⊆ V(T ). This is represented in figure 3.3, as are the branch

paths between tips.

Figure 3.3: Some clarification on subtrees and branch paths between tips. The patristic distance
is the total vertical distance traversed throughout the branch path

Any sub-tree Tn has an element t̄(V(Tni)), representing the mean t(v) for all tips in V(Tni) as

well as an element maxd(Tn), representing the largest patristic distance in the tree. Nfilt(maxd,minb) ⊆

N(T ) represent the set of nodes constrained by two parameters maxd and minb, implying that

b(n) ≥ minb and maxd(Tn) ≤ maxd for any n ∈ Nfilt(maxd,minb). A cluster C is defined as

a given sub-tree Tn where n ∈ Nfilt(maxd,minb) and n is not a member of any larger cluster.

Individual tips which are not a member of any cluster can be considered clusters of size 1. We

take maxd and minb as inputs for the following calculations.
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3.5.2 Predictive model training

For T , we may obtain the subset of internal nodes that connect to tips Nmin. These represent

the ”direct ancestors” of at least one tip. Each direct ancestor node n ∈ Nmin has a time lag

∆t(n) which is based on the t values of tips which descend from that n. ∆t(n) can be calculated

in two different ways depending on whether n connects to two tips or one tip and one internal

node. These two cases are shown below in 3.4

Figure 3.4: The two cases that encapsulate how a node n in Nmin will exist in the tree. The two
cases of how time difference are calculated are also shown - either between the time point of
each tip, or the time point of one tip and the mean time point of all tips in a subtree

• For two neighbouring tips {vi, v j} ⊆ V(T ) such that there exists branches {ei(vi, ni), e j(v j, ni)} ⊆

E(T ) and ni ∈ Nmin, the time lag ∆t(ni) can be calculated as |t(vi) − t(vn)|

• For a tip vi ∈ V(T ) with a neighboring internal node n j ∈ N(T ) such that there exists

branches {ei(vi, ni), e j(v j, ni)} ⊆ E(T ) and ni ∈ Nmin, the time lag ∆t(ni) can be calculated

using the mean time values of tips in Tn j: |t(vi) − t̄(Tn j)|

Given maxd, we may limit the number of nodes in Nmin if they meet either one of two

criteria.

• If n ∈ Nmin is connected to two different tips {vi, v j} and d(Etextrmpath(vi, v j)) > maxd

• If n ∈ Nmin is connected to an internal node ni and a tip vi and there exists some tip in

v j ∈ Tni such that d(Epath(vi, v j)) > maxd

Nodes in Nmin then represent an instance where at least one tip meets the clustering criterion

- either clustering with a neighbouring tip, or joining a neighbouring subtree. We will use
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|Ntot(∆t)| to refer to the total number of tips which could theoretically form a node n ∈ Nmin

such that ∆t(n) = ∆t. This will often not include all tips in V(T ) as many tips with more

moderate t(v) values cannot experience the largest time difference possible in the set. We can

then use |Npos(∆t,maxd) to refer to the total number of nodes n ∈ Nmin ∩ N(C) for any cluster

C in the tree such that ∆t(n) = ∆t. The following logistic regression quantifies how frequently

tips join the tree such that their direct ancestor spans a given time lag.

log
(

|Npos(∆t,maxd)|
|Ntot(∆t)| − |Npos(∆t,maxd)|

)
= α + β∆t (3.5)

In order to predict cluster growth, we can then weight each tip based on time point using

using the coefficients obtained through the regression above. w(v) = α + β(tmax − t(v)) The

growth prediction for a given cluster R̂proposed(C) will then be based on the sum of w(v) for each

tip in V(C).

R̂proposed(C) = exp

∑
v∈C

w(v)

 (3.6)

A baseline ”null” model compares to the overall effect of weighted tips. A null point of

comparison with no weight, would assume w(v) = 1 for all v ∈ V(T ). This is calculated by the

following equation

R̂null(C) = exp (|V(C)|) (3.7)

3.5.3 Validation through growth

In order to obtain an actual growth measurement R(C), we measure the growth of clusters

through the addition of ”new” vertices. The ”growth” of T is a process where an individual tip

v′ joins the tree . This creates a new internal node n′, effectively splitting some edge e(ni, vi) ∈

E(T ) into e(ni, n′) and e(n′, vi) such that d(e(ni, n′)) + d(e(n′, vi)) = d(e(vi, ni)). It is important

to note that newly added tips do not split other newly created branches. Each added tip also

creates a new branch e(v′, n′) ∈ E(T ) with branch length d(e′). For clarity, the edge splitting

process is visualized in 3.5.

Given maxd, if the distance from v′ to any tip in the cluster it joins is greater than maxd (ie.

large enough to ”break” the cluster), then we remove the associated tip v′ from consideration.

Otherwise, the tip potentially joins a given cluster. After the growth process, individual clusters

may have obtained new tips. We can define the ”growth” value R(C) for individual clusters as
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Figure 3.5: The edge splitting process, by which new cases are appended to a tree

the number of new cases attained, calculated as the number of new tips that joined a given

cluster.

3.5.4 AIC Calculation

In order to quantify the information content of a particular set of clusters, we use the AIC

measurements associated with our growth models R̂null and R̂proposed given observed growth.

In order to calculate, AIC, first a likelihood measurement must be obtained for the growth

of a given cluster. The likelihood for a proposed model given a set of clusters built at some

threshold maxd is given by the following equation

lmaxd =
∑

i

(
R(Ci) ln(R̂proposed(Ci)) − R̂proposed(Ci)

)
(3.8)

The likelihood of a null model is then given by a similar equation, but substituting R̂proposed

for the proposed R̂null

lT =
∑

i

(
R(Ci) ln(R̂null(Ci)) − R̂null(Ci)

)
(3.9)

The AIC is then calculated for each. Because only the proposed model takes in predictors,

the AIC effectively only penalizes the R̂proposed. The difference AICproposed − AICnull then rep-

resents the loss of AIC that accompanies the use of predictor variables in the predictive model

R̂proposed. This is inspired by the solution to the MAUP proposed by Nakaya et al, [Nak00].

However instead of comparing a set of clusters to a set of completely individual predictor vari-

ables, two different models are compared on the same set of clusters. This is done because

the same parameter which partitions the set of sequences into clusters (maxd) can also control

the cluster growth outcomes. Therefore a null model with no clustering would have either no

outcomes, or outcomes which are inconsistent with the rules by which the data is partitioned.
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Instead, this AIC loss represents the gain in predictive model accuracy associated with a new

predictive variable (time point) in response to a specific maximum distance.

3.6 Framework testing

A default ”run” of this framework reports the above AIC difference calculation responding to

a series of 50 scaling parameter values. These values are used to define maxd in the previous

equations, defining either the largest TN93 distance which could represent an edge in a graph,

or the largest patristic distance allowed in a subtree for the purposes of clustering. The sequence

collection year is used as the default time point for the purposes of assigning t(v) and the default

training set contains all sequences excluding only those collected in the most recent year (which

is withheld for the validation step). For the diagnostic subset of the Tennessee data, the diag-

nostic year of the patient is used. An initial version of the code which executes such a run has

been made public under the name Mountain Plot (https://github.com/PoonLab/MountainPlot)

with an associated publication [CKP20] For the graph-based clustering method, TN93 distance

thresholds of 0 to 0.040 (0.0008 increments) were used as maxd for the retention of edges. For

the maximum-likelihood tree based method, maximum internal patristic distance thresholds

of 0 to 0.15 (0.003 increments) were used as maxd for the classification of some subtrees as

clusters. These were chosen based on the upper and lower bounds of clustering, with the high-

est values in each set of maxd values representing the point at which all sequences are sorted

into the same cluster. In order to assess the effect of bootstrap values as an additional require-

ment for clustering, the confidence requirement for common ancestors (minb) was held static

at 0.90 during these changes to maxd. For runs which do not provide large or consistent AIC

loss, a random model is available as a control, where sequences are weighted randomly using

a random sample from a distribution with a mean of 1 and a standard deviation of 0.25. This

random model then replaces the proposed model, to interpret whether or not the advantages of

the proposed model are meaningful compared to an irrelevant predictor variable.

3.6.1 Robustness testing and time information analysis

The robustness of this framework is assessed through two different tests. The first assesses the

effect of incomplete sampling, a known influence for clustering methods [NML+14]. For the

Tennessee data set, 3 different rounds of 30 random samples are taken without replacement.

Each round of sampling took a different proportion of the sequences (0.4, 0.6 and 0.8) to

investigate the effect of sampling density on maximum AIC loss. The framework is then run
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on each sample using the graph-based clustering method. For practical reasons, this test was

limited to the significantly faster graph-based clustering method, as a feasible way to quickly

re-construct many maximum likelihood trees is not yet part of this framework. In order to

insure a large enough sample, only the Tennessee data set was used, to prevent the stochastic

associated with small samples less than 800 sequences each. This test was run on both the

complete data set and the diagnostic subset. The second test assesses the way that outcomes of

the framework may change over time, simulating continued use of the same data set while new

cases are sequentially added. A separate set of samples from the middle Tennessee data sets

were selected using a set of sliding maximum collection dates ranging from 2011 to 2015 for

the full data sets. For the diagnostic subset, the maximum diagnostic dates ranged from 2007 to

2011. Finally, when a run directly compares the complete Tennessee data set, to the diagnostic

subset the more complete data set is filtered. This is done in order to ensure this comparison is

not confounded by differences in the size of the validation set. For instance, for the Tennessee

data set the number of sequences with a collection date of 2015 (the newest collection year)

was reduced to 129 in order to equal the number of cases with a diagnostic date of 2013 (the

newest diagnostic date).
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Results

4.1 Genetic variation in populations

4.1.1 Pairwise TN93 distances

The pairwise TN93 distances between all sequences were calculated using open source soft-

ware affiliated with the publication of HIV-TRACE [kPWV18]. The means of the resulting

distributions were 0.545, 0.563, and 0.576, for sequences collected in Seattle, Alberta and Ten-

nessee. The portion of this distribution containing distances at or below 0.05 was used in future

analysis and is summarized in Figure 4.1. Although these distributions contain a large number

of observations and a relatively even skew, normality was not assumed. The Seattle and Alberta

data sets appeared normal through a Shapiro test [SF72] on a random sample of 5000 sequence

(p<0.001), but the Tennessee data set did appear normal to the same extent (n = 5000, p>0.1).

Given this outcome, normality was not assumed for these observations. Because these dis-

tances were not normally distributed, pairwise ranked-sum Wilcoxon tests [Geh65] were then

used to determine differences between data sets as opposed to a statistical test which requires

a normal distribution for data.

Using a pairwise series of these tests, each data set was determined to be differ significantly

(p<0.001) from all other distributions. The subset of Tennessee data annotated with diagnostic

dates, also differed significantly compared to the complete set (Wilcoxon test, p<0.001) with

a lower mean TN93 distance of 0.0555. Because of this, the individuals in this data set with

associated diagnostic dates cannot be assumed to be a truly representative sample of the whole

data set with regards to expected divergence between sequences. The highest distance in the

range of thresholds used in the analysis of graph-based methods is 0.04 expected substitutions

per site. Therefore, distances above 0.05 are excluded from figure 4.1 for clarity as they do not

42
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Figure 4.1: (top) Histogram, representing the distribution of pairwise TN93 distances for the
Seattle (blue), Alberta (orange) and Tennessee (red) data sets of HIV-1 subtype B pol se-
quences. An expanded section of the bar plots in the range (0, 0.03) is provided as a figure
inset to clarify differences among the distributions. (bottom) Distribution of pairwise TN93
distances for the full data set of HIV-1 subtype B pol sequences collected in Middle Tennessee
(pink), compared to the subset of sequences with associated diagnostic dates (dark red). The
height of each bin has been re-scaled to reflect the total number of pairwise comparisons, for
which the majority (above 0.05) were excluded from analysis.

appear in any of the graphs used to define clusters and do not represent any connections that

would contribute to cluster growth. These distances were still obtained to analyze the overall

average distances calculated above, as well as the normality of distributions and the differences

between distributions. Within the Alberta data set, this check of the overall pairwise distance

distribution identified an outlier sequence (genbank ID KU190160), with unusually high TN93

distances to all other sequences, ranging from 0.52 to 0.61 expected substitutions per cite.
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Upon visual inspection through aliview software [Lar14], this did not appear to be based upon

unusual ambiguity or a frame-shift error that could be easily corrected through the addition

of gaps and did not effect the rest of the alignment in a significant way. In addition, the use

of the COMET subtyping tool [SLT+14], confirmed that this was, in fact, a subtype B pol

sequence, as opposed to a mislabelled sequence of a different subtype. This individual can have

a misleading effect on the overall distribution of mean pairwise distances between sequences,

especially given that the Alberta data set contains the smallest number of sequences. For

instance excluding this sequence reduces the mean pairwise distance in the data set from 0.0563

to 0.0548. However, given that any sequence above 0.04 is excluded at even the most relaxed

thresholds used in the analysis, this sequence is unlikely to have any effect on the following

results as it is excluded from any and all clusters. As shown in the highlighted section of the

bottom component of Figure 4.1 (top), the Alberta data set has a heavier left-tail compared

to the two American data sets, containing a higher number of sequence pairings with a TN93

distance below 0.03. Within the Alberta data set, the 0.1% quantile represented was marked

by a distance of 0.005 compared to 0.020 and 0.015 for Seattle and Tennessee respectively.

Although this is unlikely to result in any major differences in the overall distribution, it is

likely to represent large differences in a clustering analysis, which focuses more exclusively on

highly similar pairs of sequences.

4.1.2 Patristic distances in maximum-likelihood trees

Iqtree [NSVHM15] was used to construct maximum likelihood trees from the three data sets

using a general time reversible model of evolution [LPSS84] with free rate variation among

sites to determine likelihood [Yan95] as well as optimized base frequencies and 1000 itera-

tions of the ultrafast bootstrap algorithm [MNvH13]. Given the large size of these trees, each

data set is difficult to visualize in its entirety, however, the figures highlighting specific sub-

trees within the tree (Figures 4.11,4.12, 4.13, and 4.14 ), show these clusters in the context

of a complete tree. The pairwise patristic distances were significantly larger than the pairwise

TN93 distances calculated directly between sequences (Wilcoxon Test, p<0.001), with means

closer to 0.075. Despite this, the overall branch lengths of each tree suggested no specific tree

encountered significant problems during construction, with average branch lengths of 0.0122,

0.0097, and 0.0105 for Seattle, Alberta and Tennessee trees respectively. Long branch lengths

overall would indicate that the trees settled on a model where all sequences were unrelated. The

average terminal branch lengths (from tips to their common ancestors) were all above these av-

erages, with mean values of 0.020, 0.013, and 0.016. This is often taken as indication that the
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virus evolves rapidly within hosts, but less rapidly on a population level and that a less divergent

sample of virus is transmitted [LF12]. The poorly aligned sequence from Alberta (KU190160)

was effectively represented as an outlier with an extremely long terminal branch length (1.3)

in the final tree; this is a visible feature in 4.12. The outlier sequence only rejoins the other

descendants at the root of the tree, meaning that it would participate in no clusters, unless the

complete tree was labeled a cluster. For each of these trees, terminal branch lengths were sig-

nificantly greater (Wilcoxon test, p<0.001) for the tips which were added on to the fixed tree

using pplacer [MKA10], with mean branch lengths of 0.024, 0.017 and 0.027 (Seattle, Alberta

and Tennessee) from new tips to newly created nodes. A separate tree was constructed for the

subset of the Tennessee data set with diagnostic dates using the same parameters for IqTree

4.14. This differed significantly from the tree constructed from the complete data set, holding

an average terminal branch length of 0.017, an average branch length to new tips of 0.024 and

an average overall branch length of 0.011 (Wilcoxon Test, p<0.001). This is consistent with

the differing TN93 branch lengths between the diagnostic subset and the complete set of TN93

distances.

All pairwise patristic distances were calculated for each tree using the dist.nodes function

within the ape R package. The patristic distances between pairs of tips are summarized below

in Figure 4.2

The Seattle, Alberta and Tennessee data sets, hold respective mean pairwise patristic dis-

tances of 0.079, 0.085, and 0.088 with the largest distances in each set being 0.186, 2.71, and

0.174. The diagnostic subset held a mean patristic distance of 0.082 and a maximum patris-

tic distance of 0.156. All three pairwise comparisons between these distributions resulted in

significant differences by a Wilcoxon rank sum test (p<0.001). Disregarding, the outlier se-

quence, the Alberta set holds a mean patristic distance more similar to that of Seattle, (0.078)

and a maximum patristic distance of 0.147, which is actually included in the range of maxi-

mum patristic distances used for analysis (0 to 0.15). The relative order of these distributions

does not contradict the distributions of TN93 distances, with the Tennessee data set seeing the

highest divergence overall, and the diagnostic subset representing a more similar set of cases.

Further, the relatively left-weighted tail of the Alberta distribution is visible in the distribution

of pairwise patristic distances 4.2, with a 0.1% quantile of 0.008, compared to 0.030 and 0.021

for the Seattle and Middle Tennessee distributions.
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Figure 4.2: (top) Histograms representing the distribution of Patristic distances between tips in
a maximum likelihood tree made from HIV-1 subtype B pol sequences from the Seattle (blue)
and Alberta (orange) data sets. (bottom) Distribution of Patristic distances between tips in a
maximum likelihood tree made from the full set of HIV-1 subtype B pol sequences collected in
Tennessee (pink) compared to the subset of those sequences with associated diagnostic dates
(dark red).

4.2 Time lag affects cluster growth

For both methods, the probability that a pair of sequences are connected is modeled as a func-

tion of the time-lag ∆t between them. This also captures any change probability that sequences

with a more recent time point connect to any member of the subset of new sequences. Any in-

creased probability can inform relatively increased weights of recent cases in clusters, as they

increase the likelihood of a connection to a new case. The connections of interest were calcu-

lated separately from clusters, in order to specify that a connection which defines growth based
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on the closest connection between a new sequence and older sequence, not just a connection

beneath a given threshold. For graph-based methods, this stipulation prevents the ambiguous

case of one sequence joining multiple clusters simultaneously. For tree-based methods,the

inherent tree structure ensures that no one sequence joins two clusters at the same time; never-

theless, the particular node a sequence is closest to still provides information, referencing that

tip’s location within a cluster. When obtaining an AIC loss measurement between two differ-

ent models that predict cluster growth, the number of these close connections would change

in response to a threshold, thus changing the effectiveness of the proposed model. A greater

number of these is more informative as a proposed model based on time is not informative if

connections rarely occur regardless of time.

4.2.1 Growth defined by graph-based connections

The connections which represent growth events for graph-based methods are specifically mini-

mum retrospective edges, meaning that the edge of interest from a vertex with some time point

t must be the shortest TN93 distance compared to all other edges to vertices with a time point

less than t. To review the graph-based model of cluster growth introduced in Chapter 3, the

following equation models the number of minimum retrospective edges at a particular time lag

|Epos(∆t)|, where |Etot| is the total number of minimum retrospective edges that could occur at

that time lag.

log
(

|Epos(∆t)|
|Etot(∆t)| − |Epos(∆t)|

)
= α + β∆t (4.1)

For each data set, the effect of time lag on minimum retrospective edge frequency was

viewed with the complete set of pairwise TN93 distances in Figure 4.3 A and B. This figure

includes those measured from new sequences which would normally be censored for model

training. The effect size (ie. the α in the above equation) for the Seattle, Alberta and Tennessee

data sets was then measured as −0.416, −0.402 and −0.235 when using collection date to

measure time lag and −0.467 when using diagnostic date in the Tennessee data set. This implies

that the log odds of a minimum retrospective edge connection were lower with increasing

time lag between cases. Despite these negative trends, time lag between sequences showed

no clear effects on overall genetic distances for any of the data sets, which is accounted for

by the previous observation that the vast majority of edges have TN93 distances at or above

the expected pairwise distance between any two sequences. Sequences with closer collection

dates do become more commonly linked when a threshold is imposed upon the graph however.
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When excluding distances above 0.015, the proportion of remaining edges between sequences

collected or diagnosed in the same year (ie.∆t=0) is 0.192 in Seattle, 0.223 in Alberta, 0.127

in Tennessee, and 0.138 for the diagnostic subset of Tennessee. This compares to proportions

of 0.090, 0.178, 0.082, and 0.052 in the complete graph Also important, for the Seattle and

Tennessee data sets, the mean time lag for minimum retrospective edges was significantly

smaller (Wilcoxon test, sample of 5000, p<0.05) than the mean time differences for all edges

in the graph. No significant effect was identified for the Alberta data set, however, likely in part

due to a limited range of possible time differences (1-5 years). Unexpectedly, in the diagnostic

Tennessee subset, cases diagnosed in 1992, maintained a high degree of connectivity after

filtering out edges above a TN93 distance of 0.015. Per sequence, an average of 3.39 of these

high-similarity edges connect to individuals diagnosed in a year other than 1997 This compares

to a much lower average of 1.27±0.81 across all other years, potentially over-representing the

frequency of growth for cases from this year.

4.2.2 Growth as defined connections in maximum likelihood tree

For tree-based methods, an instance of growth is represented by the placement of an individual

tip onto the tree. This means that ”direct ancestor” nodes for a given tip are counted in the place

of minimum retrospective edges, as they represent the most immediate internal node associated

with the sequence - the closest location with respect to the rest of the tree. These nodes have

an associated time lag ∆t, which is calculated between the tip and the other descendant of its

direct ancestor. If that other descendant is a subtree as opposed to a single tip, the average time

of all tips in the subtree is taken for this calculation. To review the tree-based model of cluster

growth introduced in Chapter 3, the following equation models the number of direct ancestor

nodes with a particular time lag |Npos(∆t)|, where |Ntot| is the total number of direct ancestor

nodes that could occur at that time lag.

log
(

|Npos(∆t)|
|Ntot(∆t)| − |Npos(∆t)|

)
= α + β∆t (4.2)

For each data set, the effect of time lag on direct ancestor node frequency was viewed for

each tree as shown in Figure 4.3 B and C.

Because these trees were built before the addition of new tips, the newest sequences were

excluded from this data. The trees built from Seattle, Alberta and Tennessee sequences had a

total of 1,014, 478, and 1,696 possible direct ancestor nodes respectively, with the diagnostic

subset holding 1,342. This number varies depending on how often multiple tips share the same
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Figure 4.3: (A) Minimum retrospective edge frequency with respect to time lag for the Seattle
(blue), Alberta (orange) and Tennessee (red) data sets. This is calculated as the number of
minimum retrospective edges with a given time lag, over the number of possible minimum
retrospective edges with that time lag. (B) Minimum retrospective edge frequency with respect
to time lag for the diagnostic subset of the Tennessee data (red) compared to the full set using
collection dates (pink). (C) Direct ancestor node frequency with respect to time lag for the
Seattle (blue), Alberta (orange) and Tennessee (red) data sets. This is calculated as the number
of minimum retrospective edges with a given time lag, over the number of possible minimum
retrospective edges with that time lag. (D) Direct ancestor node frequency with respect to
time lag for the diagnostic subset of the Tennessee data (red) compared to the full set using
collection dates (pink).
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direct ancestor. The effect size (ie. the α in the above equation) for the Seattle, Alberta and

Tennessee data sets was then measured as −0.227, −0.315 and −0.266 when using collection

date to measure time difference and −0.189 when using diagnostic date in the Tennessee data

set. This implies that the log odds of a direct ancestor node were lower with increasing time

lag between the two descendants. These odds decayed with similar consistency to the graph-

based outcomes, with the Alberta data set appearing visibly steeper than the others due to its

relatively short time frame and lower number of cases. Also consistent with the graph-based

method was the lack of a relationship between the time lag for a pairs of tips and the patristic

distances. However, a filtering step once again illustrates the relatively high number of closely

related sequences collected in the same year. When a filter is used to only consider only pairs

of sequences with a patristic distance below 0.015 the proportion of these pairs with a time lag

of 0 increases from 0.090 to 0.243 for Seattle, from 0.179 to 0.262 for Alberta, from 0.081 to

0.148 for the full set of Tennessee data and from 0.052 to 0.194 for the diagnostic subset of

the Tennessee data. The time lag associated with immediate ancestor nodes was significantly

smaller than the time lag between all tips in the tree (Wilcoxon test, sample of 5000, p<0.001

)) for all trees, including that which was made from sequences collected in Alberta.

4.3 Effect of cluster threshold

4.3.1 Cluster frequency

Various TN93 thresholds were imposed upon the training partitions of each data set to form

clusters using a graph based clustering method. These thresholds act as scaling parameters and

their effects are summarized in Figure 4.4.

The TN93 threshold for edges effect the number of clusters created for graph-based clus-

tering methods (Figure 4.4 A). At the lower bound of the TN93 cutoff threshold, almost every

individual sequence is considered its own cluster, resulting in a total number of clusters close to

the total number of sequences in each data set. The exceptional clusters that do contain multi-

ple sequences are bound together by some TN93 distances of 0, which are particularly frequent

(n = 33) in the Alberta data set. By comparison, the highest threshold used (a TN93 distance

threshold of 0.04) places most cases into a single large cluster. For all data sets, including the

diagnostic subset, this resulted in over 90 percent of all sequences placed into a single cluster.

Although, this is a higher threshold than what is normally used in this context [APP+12], it

does not represent the absolute upper bound for any data set, as no data set reached a point

where all sequences were placed into a single cluster.
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Figure 4.4: Several characteristics of graph based clusters which respond to a change in TN93
threshold. The number of individual clusters (including clusters of size 1) A, the proportion
of new cases from the data set involved in growth B, the number of clusters which experience
some growth C and the proportion of the training set which is counted as positive (ie. the
proportion of minimum retrospective edges below the threshold) D.

The TN93 threshold also limits the number of connections which contribute cluster growth

(new sequences joining known clusters) and events which act as the basis for training predictive

models (minimum retrospective edges and direct ancestors). The proportion of new cases

that joined clusters, as well as the proportion of minimum retrospective edges included after

filtering the edges, increased steadily in response to the TN93 distance threshold (Figure 4.4

B and D) for all data sets. No data set contained 100 % of either of these edges at the most

relaxed threshold, meaning that for all data sets, some new sequences did not participate in

cluster growth, and some minimum retrospective edges were never included in the training set.

Conversely, at the most strict distance threshold (ie. 0 expected substitutions per site), all data

sets experienced some growth outcomes and had several minimum retrospective edges present

for model training. However, these vary in how they are distributed across clusters. The number

of clusters which are growing reaches an intermediate peak for all data sets, with Alberta’s
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occurring earliest at a threshold of 0.0120 and Seattle’s occurring latest (0.0216), albeit after a

long period with no change (Figure 4.4 C). This is another indicator of information content, as

this would ultimately correspond to the maximum variance in cluster size and growth.

The same adjustment of clustering threshold was repeated for tree based clustering methods

using maximum internal patristic distances for a subtree. Initially, this was done without any

restrictions on bootstrap certainty, in order to compare to the effects of the maximum TN93

distance threshold more directly. The trends shown in Figure 4.4 are ultimately repeated in

response to the change in maximum patristic distance threshold which specifies subtrees as

clusters (Figure 4.5).
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Figure 4.5: Several characteristics of clustering which respond to a change in maximum pa-
tristic distance threshold. The number of individual clusters (including singletons) A, the pro-
portion of new cases from the data set involved in growth B, the number of clusters which
experience some growth C and the proportion of the training set which is counted as positive
(ie. the proportion of direct ancestors below the threshold) D

The peak for the number of growing clusters again occurs earliest for the Alberta Data set

(at a maximum patristic distance threshold of 0.0144) compared to the other three (0.0224, for

Seattle and Tennessee, 0.0240 for the diagnostic subset of the Tennessee data). As is true of
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the most relaxed threshold for the graph-based clustering methods, the highest threshold used

(maximum patristic distance of 0.15) does not place any data set into a single cluster, as the

range of thresholds used does not contain the maximum patristic distances for any of these.

Because the maximum likelihood tree construction settings did not allow for true ”polytomies”

(pairs of tips with no branch length between them), the lowest threshold of 0 placed all se-

quences in their own cluster. Further differing from the graph-based trends in clustering, the

proportion of new sequences connecting to a given cluster (Figure 4.5 B) and the proportion

of potential outcomes for the logistic model predicting growth (Figure 4.5 D), increase quickly

with more relaxed cutoffs, eventually reaching a point where all new sequences are connected

to a cluster and all potential direct ancestor nodes are included in the predictive model training.

Furthermore, the majority of this information is present before the greatest number of growing

clusters has occurred (Figure 4.5 C), implying that a large number of new cases are dispersed

across an appropriately large number of clusters.

The model for tree-based cluster growth does not incorporate bootstrap certainty for either

training or growth measurement, so the use of a bootstrap threshold only had an effect on the

number of clusters created. With a threshold of 0.90 for bootstrap certainty limiting clusters,

the number of cases that were considered singletons (individual sequences in their own cluster

of size 1) increased for all data sets, particularly at the largest maximum distance thresholds,

where an additional 421, 400, and 278 singletons were created for Seattle, Tennessee and the

diagnostic Tennessee subset respectively. Due to the outlier sequence from the North Alberta

data set, the highest confidence requirement and most relaxed cutoff threshold effectively divide

all sequences in the data set from this single outlier, creating no additional singletons. How-

ever, without this outlier, the next largest patristic distance in the Alberta set (0.148) would be

included within the clustering threshold allowing for the existence of a single cluster.

4.3.2 Obtaining AIC loss and optimizing threshold

For each clustering method, AIC measurements were obtained for two cluster growth models.

The first is a null model (introduced in the previous chapter as R̂null) which assumes that all

individuals in clusters are equally likely to connect to new cases. The second is a proposed

model (introduced in the previous chapter as R̂proposed) which assigns higher weights to se-

quences collected or diagnosed more recently. The relative weighting for newer cases is based

off of the effect sizes established in the log-linked training models described in the previous

section 4.2 - which measures the same connections that indicate growth as a function of time

lag between sequences. For each data set, the loss of AIC was calculated in a reasonable time
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frame across 51 different thresholds, with each run of the program finishing in under 10 min-

utes using modest computational resources - a single 1.6 GHz processor with 8 GBs RAM.

This involved the creation of clusters, training of the predictive growth model and growth mea-

surement. The current implementation only requires the creation of a maximum likelihood tree

and the calculation of TN93 distances once. Importantly, this time complexity is effected by

the number of pairwise edges for graph-based methods, but not for tree-based methods, mean-

ing that the most relaxed thresholds held the largest computational demands in this case. For

tree-based methods, the largest computational demands were based on the highest number of

clusters, meaning that computation time is shortest for the most relaxed clustering threshold.

The resulting AIC loss calculated by the difference AICproposed − AICnull is shown in the

following figures (4.6 and 4.9) and constitutes the primary outcome of this framework. For the

graph-based clustering method, the loss in AIC associated with the proposed model reaches a

central minimum for all data sets, corresponding to TN93 thresholds of 0.0152, 0.0104, and

0.0160 respectively (Figure 4.6 (left)).
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Figure 4.6: The AIC loss for a graph-based predictive growth model in response to the TN93
thresholds used to define clustering. Loss is calculated between a proposed model, which
weights clusters more heavily based on the recency of members, and a null model which
weights all cases equally The greatest loss in AIC is highlighted. (left) shows the model per-
formance responding to threshold for each location dated with collection dates, while (right)
shows this response for the Tennessee diagnostic subset of the compared to the full data set
(with the set of new sequences filtered to to only include 129 sequences)

This is interpreted as the point where the additional information provided by case weights
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contributes the most. The relative depth (quantity of AIC loss) and location (threshold which

produces the largest AIC loss) of these minima is of particular interest, as it illustrates the

different optimal scaling parameters for each data set for the purposes of information. The

relatively strict threshold leading to the largest AIC loss in Alberta matches loosely corresponds

the earlier observations in Figure 4.4 C, where the largest number of growing clusters occurred

earlier for this data set. Another important difference is between diagnostic dates and collection

dates in the time-based predictive model. For the diagnostic subset of the Tennessee data, the

overall profile of AIC loss is consistent with the full set, however the loss is amplified, owing

to the relative difference in the effect of time when using recent patient diagnosis compared to

recent sequence collection (Figure 4.6 (left)). For all data sets, these profiles of AIC loss change

asymmetrically, with strict TN93 thresholds producing stochastic changes in AIC loss to the

left of the minimum. Some of these even corresponded to positive AIC differences, suggesting

that the use of a weighted model acted as a misleading predictor of cluster growth and the

rare connections between cases were ultimately driven by chance. For example, a threshold

of 0.068 produces a peak AIC gain for the Seattle data set, corresponding to a small set of

edges that made it appear as though closer sequence collection dates implied less frequent

connections between cases. To the right of these optimal values, the AIC loss approaches 0

more steadily, as the large number of growth cases and the more complete training sets offer

more stable predictive models, but suffer from a lower number of clusters and an overall lack

of variation in potential cluster membership.

The following figures 4.7 and 4.8 show each set of clusters at their optimum threshold, using

open source graphviz software [EGK+01] implementing the Kamada and Kawai algorithm

for visualization [KK89]. These optimum cutoff thresholds, reveal key distinctions between

large clusters and fast growing clusters showing tangible examples that explain the differences

in performance between a model which only considers cluster size and the proposed model,

which acknowledges the effect of collection date recency. For example, at the optimum cutoff

threshold of 0.016, the Seattle data set shows a large cluster of 28 individuals which only

grows by 2 (labeled as Se1), while the largest growth of 6, is seen by a smaller but more recent

cluster of 10 individuals (Se2). This fastest growing cluster has a mean collection year of

2010.5, compared to the larger, yet older cluster, with a mean collection year of 2007.4. Similar

situations are visible in all cluster sets at these thresholds, with the largest cluster failing to

attain the largest number of new cases. The labels NA1 and Tn1 in 4.7 also indicate relatively

large clusters which don’t grow as much as clusters with a more recent average collection

date. In the diagnostic subset of the Tennessee data, these differences are most dramatic 4.8,
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where the fastest growing (Tn Diag2) cluster of 58 sequences obtains 6 new sequences with a

mean diagnostic date of 2007.1, while the largest cluster of 73 sequences (Tn Diag1) obtains

no new sequences, containing a mean collection of 1999.7. The extremely high connectivity

of these early sequences could correspond to the unusually high connectivity of sequences

from the early 90’s that was previously identified for sequences with a pairwise distance under

0.015 expected substitutions per site. These older clusters possibly indicate past outbreaks -

transmission chains that are unlikely to connect to new cases.

Se2

Se1

Tn1

Tn2

NA1

NA2

Figure 4.7: Graphs created from each data set at the optimal TN93 threshold parameters. 0.016
for Seattle (blue), 0.0104 for Alberta (orange), and 0.0152 for Tennessee (red). Relative sizes
of dots indicate how recently sequences were collected. Darker dots indicate new cases. The
largest cluster is labelled with an identifier and a 1 (ex. id1) and the cluster which obtains the
most new sequences is labeled with an identifier and a 2 (ex. id2) for each data set. Clusters of
size 1 are excluded for clarity.

The corresponding profiles for tree-based clustering methods are more complex - in part

owing to a much larger step size (0.003 vs. 0.0008) and a much wider range of scaling param-

eters being explored (0 to 0.15 vs. 0 to 0.04). It then appears less specific which maximum

distance threshold is optimal for these methods. These profiles are detailed in the following

figure 4.9, with the largest AIC loss highlighted.
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Tn_Diag2

Tn_Diag1

Figure 4.8: A graph created from the subset of the Tennessee data set with diagnostic dates
at the threshold for TN93 distance (0.0152). Relative sizes of dots indicate how recently the
patient associated with the sequence was diagnosed. Darker dots indicate new cases. The
largest cluster is labeled with an identifier and a 1 (ex. id1) and the cluster which obtains the
most new sequences is labelled with an identifier and a 2 (ex. id2). Clusters of size 1 are
excluded for clarity.

Because these profiles have a less clear minimum value, they are compared to a control,

where a random model is used to weight individual sequences (Figure 4.10). This is ultimately

done to ensure that the differences between the null and proposed model for tree based methods

are not simply due to random chance.

The random model leads to regular fluctuations between positive and negative AIC differ-

ence values with more thresholds providing a situation where a random model is outperformed

by the null model. By comparison, the proposed model is more structured with larger negative

components, however, there is no clear asymptotic relationship with 0, as all sequences join

the same cluster. For the Seattle data set, the AIC loss falls to its largest negative value at a
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Figure 4.9: The AIC loss for a tree-based predictive growth model in response to the Maximum
patristic distances thresholds used to define clustering. Loss is calculated between a proposed
model, which weights clusters more heavily based on the recency of members, and a null
model which weights all cases equally The greatest loss in AIC is highlighted. (left) shows
the model performance responding to threshold for each location dated with collection dates,
while (right) shows this response for the Tennessee diagnostic subset of the compared to the
full data set (with the set of new sequences filtered to to only include 129 sequences).

relatively high maximum patristic distance threshold of 0.096, marking the center of a wide

range of stable AIC loss values from 0.072 to 0.129. The Alberta data set sees this optimal

threshold at a lower maximum distance of 0.051 and sees a similar magnitude of loss to Seattle

(-22 vs. -23) before rising gradually to a value of 0. The Tennessee data set was noteworthy

for a much earlier optimum than the other two data sets - inconsistent with the relaxed optimal

parameters seen in the graph-based clustering methods. After a significant portion of positive

AIC differences (ie. poor threshold choices) from 0.033 to 0.066, a second area of more con-

sistent negative values occurred, with a minimum loss of -19 at a maximum patristic distance

of 0.12. For the subset of Tennessee data with diagnostic dates, a similar sharp, local minimum

value occurs at 0.006 before a brief region of positive differences and much more prominent

minimum occurring at a maximum distance of 0.063 figure 4.9 (right). Interestingly, these

two characteristics in the profile of the Diagnostic subset occur at earlier scaling parameters

when compared to the full data set and appear to span a shorter span of threshold values. This

loosely corresponds to the relatively lower and narrower distribution of pairwise patristic dis-

tances seen in (Figure 4.2 (bottom)). The AIC values for both the null model and predictive
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Figure 4.10: The AIC loss for a tree-based predictive growth model in response to the Max-
imum patristic distances thresholds used to define clustering. Loss is calculated between a
random model, which weights individual cases randomly with a mean of 1±0.25, and a mini-
mum of 0 and a null model which weights all cases equally The greatest loss in AIC is high-
lighted. (left) shows the model performance responding to threshold for each location dated
with collection dates, while (right) shows this response for the Tennessee diagnostic subset of
the compared to the full data set (with the set of new sequences filtered to to only include 129
sequences)
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0.02

Figure 4.11: The complete maximum likelihood tree constructed from HIV-1 B pol sequences
collected from patients in Seattle, USA. Specific subtrees within it are highlighted to show the
extent of important cluster formation using the optimized maximum patristic distance threshold
(0.096). Blue highlighted regions indicate the 20 clusters in the data set which obtain more than
one new case.
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0.05

Figure 4.12: The complete maximum likelihood tree constructed from HIV-1 B pol sequences
collected from patients in Northern Alberta, Canada. Specific subtrees within it are highlighted
to show the extent of important cluster formation, using the optimized maximum patristic dis-
tance threshold (0.054). Orange highlighted regions indicate the 14 clusters in the data set
which obtain more than one new case. Due to highly divergent sequences, branch lengths are
limited at 0.06.
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0.02

Figure 4.13: The complete maximum likelihood tree constructed from HIV-1 B pol sequences
collected from patients in Nashville and Surrounding Area, USA. Specific subtrees within it are
highlighted to show the extent of important cluster formation, using the optimized maximum
patristic distance threshold (0.024). Red highlighted regions indicate the 9 clusters in the data
set which obtain more than one new case.
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0.01

Figure 4.14: The complete maximum likelihood tree constructed from HIV-1 B pol sequences
collected from patients in Nashville and Surrounding Area, USA. Specific subtrees within it are
highlighted to show the extent of important cluster formation, using the optimized maximum
patristic distance threshold (0.063). Red highlighted regions indicate the 16 clusters in the data
set which obtain more than one new case.
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model are higher for these tree based methods, owing to the fact that these simulations are

dealing with a much higher number of large clusters, and much more dispersed growth 4.5.

At an optimum value of 0.096, the Seattle data set has a similar situation to its optimal set of

graph based clusters, where the maximum growth is seen by a recent cluster of 12 individuals

with an average sequence collection date of 2009.2, despite the existence of 35 clusters with a

larger size. Although all cases are arguably somewhat recent within the Alberta data set due

to the limited time range, the cluster which obtains the highest number of cases (11) under the

optimum threshold of 0.051 is again smaller than the largest cluster over all (10 vs. 25) while

ultimately being comprised of more recent cases (mean collection year of 2010.5 vs. 2009.5).

For the Tennessee data set, the initial optimum seen at a maximum patristic distance reveals a

highly recent cluster: 4 individuals with mean collection date of 2012.2. This cluster obtains 3

new cases, and the 3 largest clusters (sizes 16, 11 and 10) have less recent collection dates and

obtain no cases. At a maximum patristic distance of 0.053, a different set of clusters is obtained

for this data set, which indicates a much lower importance for the sequence collection date as

much less recent clusters begin to obtain new cases by virtue of their size - this corresponds

to brief range of positive values seen in the profile of AIC loss values. The prioritized cluster

corresponding to multiple new cases at optimal thresholds are highlighted within the context of

the complete tree in figures 4.11, 4.12, 4.13 and 4.14. At optimal thresholds, the membership of

these clusters ultimately differed between the tree based and graph-based methods, especially

in the case of the Seattle data set, where this optimal threshold differs so drastically. For the

Seattle data set, only 16 percent of sequence pairs which shared a cluster under one of the

clustering methods at optimal thresholds, shared a cluster in both methods at their respective

optimal thresholds. The equivalent measurements for the other two data sets are 34 percent for

Alberta and 28 percent for Tennessee. These differences are ultimately due to a much larger

proportion of cases joining clusters under the tree-based method, compared to the graph-based

method at their respective optimal thresholds.

4.3.3 Robustness and further optimization

The TN93 distances are a fast and independent measurements which allowed for the assess-

ment of how robust these optimal parameters are to subsampling and use over time. This

involved the repeated recalculation of AIC loss for graph-based predictive clustering models

using multiple random resamples of the full data sets without replacement. Because of its large

size, and consistent number of sequences sampled per year the Tennessee data was used for

these robustness tests. The full data set in Figure 4.15 was compared to the diagnostic subset
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in Figure 4.16 after filtering a number of cases from the new year such that each had an equally

large set of new sequences (n = 129). This random sub-sampling (without replacement) shows

the occasional movement of the optimum distance threshold, with an interquartile range of

0.0144 to 0.0168 for the full Tennessee data set and 0.0152 to 0.0168 for the diagnostic subset.

A smoothed spline function was used to obtain a trend based on the AIC loss values for each

subsample at each threshold. This function obtained its highest negative value at a threshold

of 0.0152 for the complete data set and 0.0160 for the diagnostic subset. Interestingly, the use

of this smoothed function obtains a different optimal value for the diagnostic subset compared

to then single complete run (0.0152). This process also illustrates the relative vulnerability to

stochastic changes associated with the earliest section of the plot, with a visibly wider set of

AIC difference values for thresholds below 0.012 visible in each data set. Finally, the different

sampling proportions reveal an important characteristic about the magnitude of AIC loss for

both diagnostic data and collection date data, as the overall amplitude of these runs decreases

with smaller sampling proportion, due to a loss of information used to train and validate the

predictive models.

An additional series of runs were performed on subsets of the Tennessee data set with

subsamples and specific time ranges in mind. This series of runs progressively right-censored

the range of case collection dates from a maximum year of 2015 to a maximum year of 2011

and the range of diagnostic dates from a maximum year of 2011 to a maximum year of 2007

(Figure 4.17). The TN93 Thresholds which obtain the largest AIC loss vary based on this

time range, from 0.0136 to 0.0176 for the diagnostic subset and from 0.0112 to 0.052 for the

complete data set. These values are well outside of the interquartile range established earlier

in figures 4.15 and 4.16. No particular trend can be claimed to be associated with a shortening

time frame, although based on the effects of smaller sample size, the depth of the AIC loss

would be expected to decrease, as was clear in the smaller random sample sizes for each data

set. Interestingly, the complete set of Tennessee data saw the smallest maximum depth of AIC

loss when the data set was most complete (Figure 4.17 (red)), implying that the inclusion of

cases with the most recent collection date decreases the difference in performance between the

proposed and null models.

Finally, bootstrap support was used to explore the potential of further optimization for the

tree based methods, although as discussed in chapter two, bootstrap support does not act as a

scaling parameter under the strictest definitions. A bootstrap support threshold of 90 percent

had the effect of flattening the AIC loss profiles explored in Figure 4.9, limiting the return to

an AIC loss of 0 for the Seattle and Tennessee data sets (Figure 4.18 (right)). This corresponds
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Figure 4.15: left The AIC loss for a graph-based predictive growth model in response to the
TN93 thresholds used to define clustering. Loss is calculated between a proposed model,
which weights clusters more heavily based on the recency of members, and a null model which
weights all cases equally. 30 random draws of 3 different sample sizes were taken from the full
Tennessee data set and run. A smoothed spline function (black) calculates the general trend
and the minimum value of this function is highlighted. The interquartile range for the threshold
which obtains the largest AIC loss is also highlighted. right The kernal density function for
the location of the highest AIC loss

to many large clusters becoming unable to collapse further due to their dependence on an

uncertain parent node. This effectively offers the ability to keep sequences separated into a

higher number of clusters, while still maintaining a high proportion of the set of new sequences

involved in growth. This also allows for a high proportion of direct ancestor nodes to be

included in the data set. Given this bootstrap requirement, the minimum number of clusters

for Seattle, Alberta and Tennessee are 702, 110, 728 respectively. For Seattle this appears to

allow for a larger AIC loss than either the highlighted local minimum at 0.054 or the previously

identified minimum of 0.096 can obtain, with the final three threshold values obtaining AIC

loss values of -38.
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Figure 4.16: left The AIC loss for a graph-based predictive growth model in response to the
TN93 thresholds used to define clustering. Loss is calculated between a proposed model,
which weights clusters more heavily based on the recency of members, and a null model which
weights all cases equally. 30 random draws of 3 different sample sizes were taken from the
subset of the Tennessee data set with diagnostic dates and run A smoothed spline function
(black) calculates the general trend and the minimum value of this function is highlighted. The
inter-quartile range for the threshold which obtains the largest AIC loss is also highlighted.
right The kernal density function for the location of the highest AIC loss
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Figure 4.17: The AIC loss for a graph-based predictive growth model in response to the TN93
thresholds used to define clustering. Loss is calculated between a proposed model, which
weights clusters more heavily based on the recency of members, and a null model which
weights all cases equally. right 5 different subsets of the Tennessee data set with diagnos-
tic dates were taken, each representing date ranges with a progressively later final year. right
5 different subsets of the Tennessee data set with diagnostic dates, each represents date ranges
with a progressively later final year.
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Figure 4.18: The AIC loss for a tree-based predictive growth model in response to the max-
imum patristic distances thresholds used to define clustering. Trees and clusters are further
restricted by a minimum bootstrap requirement of 90 percent certainty. Loss is calculated
between a proposed model, which weights clusters more heavily based on the recency of mem-
bers, and a null model which weights all cases equally The greatest loss in AIC is highlighted.
(left) shows the model performance responding to threshold for each location dated with col-
lection dates, while (right) shows this response for the Tennessee diagnostic subset of the
compared to the full data set (with the set of new sequences filtered to to only include 129
sequences)



Chapter 5

Discussion

In this chapter, I will summarize the key results of my thesis work, mainly focusing on the im-

plications of differing AIC loss results between different clustering methods and different data

sets. The actual threshold which obtains optimum clustering values, as well as the magnitude

of AIC loss associated with that threshold are both of particular interest. The metric chosen

to measure performance is also specific to the prediction of cluster growth, and the merits of

that goal are compared to other traditional uses of molecular clusters, specific to HIV. Finally,

this section will discuss the future work necessary to improve upon this framework and make

it easier to implement.

5.1 Direct comparisons

The data sets I have analyzed in the previous chapters are associated with three previously

published studies, each of which uses molecular clusters of HIV sequences to make sugges-

tions about public health priority. This offers an interesting point of comparison, as the clusters

identified in those studies will inevitably differ from those identified here due to the use of

different threshold parameters. In addition, the goal of my work differs, as the use of predictive

growth models on clusters is not always common in the literature. These studies all aim to

treat clustering connections between patients as an indication of direct transmission, while my

work defines clusters as an indication that a sub population containing the associated sample of

cases may be experiencing an elevated rate of transmission. Ultimately, it would not be appro-

priate to compare the ”accuracy” of these outcomes, unless they too aimed to predict onward

transmission with the associated data. Unfortunately, the study which incorporates the North-

ern Alberta data set uses a fundamentally different tree-building method based on Bayesian

70
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statistics [YR97, VAB+17]. This is difficult to compare directly, as the branch lengths in their

tree are scaled to estimate time, not just the similarity of sequence data [BLD+12]. Both other

studies (using the sequence data from Seattle and Tennessee) can be more easily compared to

my results, although the methods used to construct maximum likelihood trees differed. These

utilized FastTree software [PDA10] which uses heuristics to approximate the maximum like-

lihood tree instead of converging to it with more certainty. What this tree represents does not

differ fundamentally from those that I have built with IqTree [NSVHM15], it simply uses a

different algorithm which prioritizes speed and does not explore the possible values for branch

length and branching order to the same extent as other more commonly used tree-building

methods. This results in a limited maximum precision value for these branch lengths unless

additional measures are taken. Another important difference is that neither of these studies use

the same quantitative predictive model of clustering that I have demonstrated in chapters 3 and

4 to make statements at the level of populations. Instead, they both focus on more individ-

ual connections, utilizing available meta data such as age, injection drug use, race and sexual

behavior (particularly whether or not the individual associated with a sequence self-identifies

as a man who has sex with other men) to determine whether or not these characteristics are

associated with sequence clustering. This means that the definition of clusters is restricted to a

size greater than 1, as sequences with no connections and sequences with at least 1 connection

are being compared as the positives and negatives in a logistic regression, similar to studies

mentioned previously in chapter 1 [DOKG+17, VLVR+18]. Also, because of the retrospective

nature, the associations with known clusters does not necessarily indicate a high-likelihood

of onward transmission. Even if a population level analysis was done, these clusters would

only be indicating what may have driven past outbreaks [LVRD+18]. This was supported by

my results, as the largest clusters identified in the previous results were not always associated

with onward transmission. Finally, it’s important to note that these studies both use slightly

larger data sets than what was available for my project, showing sequences from 1,953 individ-

uals in Seattle and 2,915 from Tennessee. This compared to the 1,648 and 2,779 individuals

represented in my work.

Keeping those caveats in mind, I will clarify how these previous studies could have ob-

tained additional information through the use of a predictive model at the population level in

combination with threshold optimization. In addition, I will reiterate the critiques stated in the

literature about how this study goal may be less beneficial to prevention efforts. I will begin

with the Seattle data set, which comes from a study by Wolf, et al [WHVR+17]. This study

aimed to use strict thresholds to retrospectively show connections that indicate a high likelihood
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of direct transmission between individuals. As discussed in chapter 1, there are a number of

problems associated with this goal, for instance, the similarity of two individual sequences may

indicate infection by the same source, not transmission between hosts [VF13]. The tree-based

Cluster Picker [RCHH+13] method was used, with a maximum patristic distance of 0.015 and

a bootstrap requirement of 0.95 to define a set of 42 clusters with a size greater than 1, repre-

senting a total of 168 individuals (8.6% of the data set). By comparison, the optimal maximum

patristic distance I identified for tree-based clustering was 0.096, which identifies 277 clusters

of size two or greater, even when constrained by a confidence requirement of 0.95. These clus-

ters represent the sequence data of 918 individuals - more than half (61%) of the total training

set in my results. This suggests that their thresholds limit the range of cluster sizes, resulting

in mostly the clusters of size 2 (”dyads”) that were discussed as potential transmission pairs.

Similarly to another case study by De Olivera , et al [DOKG+17], the primary outcome of this

study was the unusually high rate of adolescents (age 13-24) connecting with non-adolescents

(mean age 34 years), suggesting that interventions should be aimed at age-discrepant pairs due

to the apparent regularity with which they were observed. The highly strict clustering thresh-

old used by Wolf identifies connections that are very unlikely to appear by chance compared to

those identified in my work, however this still does not reliably imply direct transmission For

instance, their use of multiple sequences from the same patient does not support these pairs

consistently. The primary phylogeny was constructed with the first sequence collected from

each individual, however a second phylogeny was constructed with the same method using all

sequences. This allowed multiple sequences from the same individual to exist in the tree, with

the expectation that individual sequences that formed clusters with the first sequence sampled

from a given host would form clusters with all sequences sampled from that host. The paper

states that only 24 of the 42 clusters identified in the first tree were also present in the second,

indicating that clustering between sequences can be dependent on within-host evolution of the

virus [LF12, LRP06]. This implies that theoretically, real transmissions between patients may

not appear consistently depending on whether or not sequences were taken closer to the time

of infection, clarifying the importance of fast sampling time for this form of molecular cluster

analysis.

For the original study using the Tennessee data set [DVF+18], Dennis, et al interpreted

clusters using a similar assumption about connections (ie. that they representing transmission

events), although their primary results were not as dependent on this assumption. Interest-

ingly, the clusters in this study were not defined as subtrees with a maximum branch-length re-

quirement similar to the Cluster-Picker method. Dennis, et al used single-linkage graph-based
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methods to define clusters, with a maximum distance of 0.015 identifying a connection be-

tween sequences. However, the pairwise distances were calculated using the patristic distances

from FastTree, instead of the TN93 distance calculator used as a component of HIV-TRACE

[KPWLBW18]. In this case, a much greater proportion of the study population was linked to

clustering compared to the Seattle study, with 1113 individuals in 292 clusters. This is asso-

ciated with the single linkage requirement for graph-based clustering methods. At the optimal

threshold obtained in my work for graph-based methods (TN93 distance threshold of 0.016), a

total of 1205 individuals were sorted into 259 clusters of size 2 or greater using a graph based

method. This resulted in slightly larger clusters overall, with the largest cluster containing 86

individuals at the optimized threshold compared to 39 individuals at the threshold chosen in

Dennis’ study. Going beyond cluster size however, Dennis focused on identifying clusters with

at least one sequence collected between the years of 2011 and 2015, as well as any associated

meta-data such as the over-representation or under-representation of a particular risk factor in

these clusters. While this is more indicative of onward transmission likelihood, the window for

what was defined as recent was relatively large compared to the indications of recency used in

my study (5 years), with roughly a third of all clustered sequences (32%) considered recent.

It is also based on collection date, which may vary significantly from when infections took

place, especially given that this study had such a wide range of diagnostic dates. Given that the

primary results of this study were not as interested in transmission pairs as Wolf, the relatively

high number of larger clusters is helpful for this study as it captures a larger percentage of the

individuals enrolled in the study. However, the model in question classifies priority clusters

based on whether or not they contain recent cases instead of quantifying how many recent in-

dividuals they contain, making it difficult to compare the benefits of information content. The

question of whether or not a cluster will attain any recent cases is very different from how many

recent cases will a cluster obtain, and in large epidemics with large variations in cluster growth,

the latter helps establish a better understanding of priority [LVRD+18].

5.2 Scaling parameter response

For both clustering methods, the threshold for proximity measures (TN93 distance and patristic

distance) acts as a scaling parameter for the modifiable areal unit problem [FW91]. As these

thresholds were relaxed, each data set was divided into fewer clusters, with both tree-based

and graph-based clustering methods showing similar relationships between cluster number and

threshold. The upper and lower bounds of scale are not reached for all runs of the framework,
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however, the range of thresholds used in this study expands beyond the range of thresholds

used in the field [VLVR+18, RLD+17, WPF+17, OFP+18], showing the behaviour of cluster-

ing techniques beyond what is seen in practice. At extremely high clustering thresholds, new

sequences were not distributed across a large number of clusters leading to uninformative es-

timates of growth (panels A and C for Figures 4.4 and 4.5). At extremely low thresholds,

most if not all individuals constitute their own cluster. Because this threshold value also effects

growth outcomes (as shown in panel B and D for Figures 4.4 and 4.5), the accuracy of growth

predictions became less relavent than the complete lack of connections to new cases, as clus-

tering connections in general were either extremely rare or not at all present. This demanded

a modified version of Nakaya’s solution to the modifiable areal unit problem [Nak00] in order

to identify central optimal thresholds for the purposes of predictive model performance. Using

this original solution, the information content for a set of clusters would be measured by com-

paring clustered data to a data set with no clustering and therefore, no outcomes. This would

lead to a more trivial result, as the information content would increase unidirectionally as the

threshold relaxes. The inevitable result is the selection of an ”optimal” extreme threshold that

shows all possible connections between sequences, resulting in all new cases joining a single,

large cluster. Instead, the results of this study show a comparison between two models that both

partition the data set into clusters, with the difference being whether or not predictive variables

are used to determine the log likelihood of individuals in clusters connecting to new sequences.

This means that the scaling parameter which obtains the largest AIC loss represents the point

where the use of predictive variables provides the most additional information.

Although the distribution of cluster size is expected to be exponential for both clustering

methods [Poo16], the previous comparisons to published work demonstrate that the number

of clusters created under a given threshold is a key difference. As the scaling parameter is

increased, clusters defined by the graph-based method aggregate together at a much more rapid

rate compared to the tree-based methods due to the requirement that only one edge is needed

to collapse two clusters into a single cluster [ST06]. This is an important distinction, as a

relatively low number of edges in the pairwise graph need to exist before all cases are members

of the same cluster. For tree-based clustering, two groups of sequences only come together if

all edges between the sequences in each cluster are below a given threshold. Despite this

difference, the standard thresholds used for the graph-based clustering methods (a maximum

distance of 0.015) are often translated to tree-based methods as a similar default [APP+12,

VLVR+18, WMM+18, BPP+19], meaning that tree-based methods are inherently less prone

to large clusters, an observation which is also noted by Rose, et all in their use of both HIV-
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TRACE [KPWLBW18] and Cluster Picker [RCHH+13] on the same data set [RLD+17]. My

results also demonstrate how an additional requirement for certainty also limits the existence

of large clusters for tree-based methods. For the purposes of this predictive framework, it was

important to treat this separately from the distance parameter, as highly uncertain connections

between new cases and old cases are still counted as growth. The placement of a new tip

onto a fixed tree through the use of a tool such as pplacer [MKA10], reports the most likely

location given a model of evolution. If this likelihood is low, it may be because the tip is not

closely related to any other sequence, in which case it is unlikely to be included in any known

clusters due to the distance requirement. The alternative is that it is highly related to multiple

sequences, implying that this tip should join a known cluster, but clarity is needed as to which.

It follows that certainty requirements do nothing to constrain the number of connections used

to train or test the predictive model, they only limit the size of clusters. This explains the lack of

a central optimum for the runs which were limited by a bootstrap certainty requirement shown

in Figure 4.18, as the most permissive distance requirements for these runs would eventually

lead to the largest possible clusters allowed by a given bootstrap requirement. Although this

was associated with a relatively high amount of stable AIC loss, this state does not necessarily

act as an optimum for all data sets. The Seattle data set sees its greatest AIC loss at this point,

however, the North Alberta and Tennessee data sets still see optimal parameters well before

this state, with their final ”stable state” closer to an even performance between a proposed and

null model.

5.2.1 Location of maximum AIC loss

The threshold which produces the maximum AIC loss when comparing between a null model

and a proposed model of cluster growth is arguably the most important result of this framework,

as it effectively represents the point where our choice of predictor variables is most effective

given the data and clustering method. Because of the complex nature of factors which lead to

predictive model performance, it is difficult to determine exactly which characteristics lead to a

particular optimum value, as there are many which can contribute to predictive model accuracy.

However, perhaps the most identifiable factor shown in my study results is expected rate of

variation between sequences, which has been well studied with respect to HIV clustering. For

instance, a slow sampling rate can allow for a high amount of divergence to occur in the infected

population between the time of infection and the time of sampling [LRP06]. A higher threshold

may be more appropriate for the detection of clusters in this situation, as the expected diversity

between individuals may be higher. Previous work has also discussed the opposite situation,
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where samples with a recent infection were over-represented in clusters simply due to the

fact that they had been sampled recently [VKW+12]. The proportion of the population which

is represented in the sample (”sampling density”) has also been described as an important

factor in clustering [NML+14, DFGC17]. Incomplete sampling, where only a small portion of

the infected population is captured in the study reduces the frequency of clustering possibly

demanding a threshold which is more relaxed in order to obtain meaningful clusters. The

scale of the study is inherently associated with these factors; for example, observing HIV on a

global scale [WLBH+14] would come with the expectation of a much lower sampling density,

compared to a more feasible statewide or province-wide surveillance program [NMC+14]. This

was observed in this study’s results, where the more rural study setting of Northern Alberta

[VAB+17] produced different optimal scaling parameters compared to the urban centers of

Seattle and Nashville (for the Tennessee data set), in response to the higher number of similar

sequences between hosts shown in Figure 4.6 and 4.9. In addition, different rates of diversity

are expected depending on the region of the genome being studied, as some locations are able

to accumulate a greater number of mutations [NML+15]. Although the pol gene is highly

available due to its association with drug resistance mutations [Kan06] and displays a high

rate of variation [HCCP04], the env gene responsible for encoding the spike proteins which

surround the viral capsule has even more extensive diversity [LJM+95, MSCB96]. This gene is

used less frequently in clustering, however in the context of an incredibly rapid outbreak which

is captured early, the additional diversity may be useful for distinguishing between closely

related individuals [BKK+01, MWT+90]. Alternatively, a lower threshold could be used to

distinguish unusually similar pairs within the context of the outbreak, but identical sequences

put a theoretical lower bound on threshold selection for a given gene of interest.

Beyond the effects that study design may have on the expected variation between sequences,

the selection of a new threshold may also be necessary for the study of different subtypes of

the virus [KGY+01, GIA+04]. Due to the potential for HIV to recombine, extensive varia-

tion in sequence data and recombinant subtypes can occur in a location where HIV has been

endemic and circulating for an extended period of time. Ongoing HIV epidemics in Africa

[BJRP+06, VKR+03, TBS+99] may be challenging to investigate for this reason, especially

using a threshold developed based on the expected variation between two individual’s infec-

tions in North America. For an entirely new disease of interest, the process of selecting an

appropriate threshold becomes an important initial step before clustering methods are applied.

This is particularly relevant in the context of the ongoing SARS CoV2 pandemic, as sequence

databases quickly grow in size [SM17] and molecular clusters are used to observe outbreaks
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[RB20]. The much slower rate of evolution for SARS CoV2 often demands the use of whole

genome sequences to see this variation [FFRF20]. Although this study uses HIV as an exam-

ple due to the availability of data, this framework is applicable to any pathogen with significant

variation between hosts, and could be applied to other diseases which have already been studied

through molecular clustering techniques such as Zika [FFI+14, GLK+17], SARS [C+04], HCV

[JAK+14, SDDA+12, MDS+19a] or malaria [HYW+18] in order to improve the performance

of predictive models which are used to identify areas of public health priority.

A less discussed issue is the stability of this optimum value, as well as the consequences

of choosing a threshold other than the optimum value. The sudden spike in AIC loss seen

for the Seattle and Tennessee data sets using the tree-based clustering method represent an

interesting decision for the purposes of long-term study design. This low clustering threshold

results in a set of clusters which provide a high amount of usable information, with the use

of sequence time-point acting as a relatively good predictor of cluster growth. This would

offer impressive results for a purely retrospective study on the association of clusters with

a given predictor. However the potential for this optimum value to move as the data set is

updated with new cases is also demonstrated with the graph-based clustering methods shown in

Figure 4.17. This kind of stochastic behaviour was particularly associated with lower threshold

values, with a low threshold value subject to change drastically in its ability to effectively

represent epidemics The same low threshold values were also most likely to be associated

with positive values in AIC difference, indicating sections where the use of predictor variables

were counterproductive. Consistent AIC loss associated with a particular threshold parameter

over time is then a useful characteristic for an ongoing study. If such a consistent optimum

is not found, it is then important to constantly update the parameters used to identify clusters

and track growth using a small window for updates (ie. measuring growth on a monthly or

quarterly basis), in order to ensure the criterion for clustering does not become outdated by the

time it is used to measure growth.

5.2.2 Depth of maximum AIC loss

The depth of AIC loss can be driven by some combination of two factors. The first is the poor

performance (High AIC) of a null model, which would indicate that cluster size alone is a poor

predictor of cluster growth. This is particularly true within the field of HIV, as previous studies

have affirmed the need for some predictive variable beyond population size to accurately predict

cluster growth [LVRD+18]. In part, this can be accounted for by the low, per-act transmission

rate [PBB+14] and a number of active treatment and testing programs [oHU+16] which keep
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unrestrained exponential growth of an epidemic rare. The more important and highly variable

aspect of the AIC loss measurement however, is the proposed model, which in the case of

this study, estimates larger growth for clusters with a large number of recent cases. This is a

relatively simple model and it is therefore important to classify this work as a proof of concept.

The results are only intended to show that a central optimum threshold parameter exists for the

purposes of predicting future cluster growth, and that the selection of this threshold has non-

trivial effects on the data set. Recent collection date is only one possible indicator of a likely

connection to new sequences, and this framework scales well with additional parameters due

to it’s use of AIC as a measurement of model fit. The penalization of excessively complicated

models counters the threat of the same over-fitting situation described in chapter two.

The AIC for this predictive model, even at it’s most optimal parameters still indicates a

relatively small effect, with a consistent but narrow margin between the performance of the

null model and the proposed model. This is shown in the supplementary figure 5.1, which

offers a slightly more detailed view of the AIC loss calculation.

This is especially important in the case of the tree-based clustering model (Figure 4.9) ,

where a random model was used for visual comparison (Figure 4.10 ) to insure the the patterns

of AIC loss were not just based on random effects. The smaller AIC loss values are an indi-

cation that the proposed model did not outperform the null model to the same extent in these

methods compared to the graph-based methods. It is tempting to conclude that graph-based

clustering methods were more effective in this task, however, these results are also dependant

on how cluster growth was defined, the predictor variable used (time lag) and how the pro-

posed model was trained. Certain characteristics inherent to the tree structure could explain

this: for example, the way that time lag is sometimes calculated between an individual tip and

a neighboring node due to the bounds of the framework. The same Bayesian methods used in

the Alberta study [VAB+17] which scale tree branches to indicate time could be employed for

future implementations of tree-based cluster growth models in this framework. However, even

with the profiles shown in this study, it is worth noting that the tree-based optima appeared less

”sharp” than those found in the graph-based methods, indicating that these methods may be

overall less specific in their effective threshold values.

Although small, the magnitude of AIC loss at optimal values was sufficient to quantify

actual improvements in model performance [SIK86, HYW+18]. Furthermore, when using the

same data set and the same clustering method, an increased AIC loss is associated with a

more representative predictor variable. For instance, because diagnostic date is closer to the

time of infection, it is expected to be better representative of time point in an epidemiological
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Figure 5.1: Akaike’s Information Criterion (AIC) shown for both the null model and proposed
model performing in a cross validation test using various TN93 distance thresholds to partition
the Seattle data set. Red represents a higher AIC for the proposed model, light blue represents
a higher AIC for the null model. The optimal point established in AIC loss calculation is
highlighted with a dotted line.

context. This is visible in the plots where models based on the diagnostic date are compared

to models based on the collection date such as the rightmost panels in Figures 4.6 and 4.9. In

addition, comparing between Figures 4.15 and 4.16 can show that this difference is robust to

re-sampling and Figure 4.17 shows that this difference is somewhat robust over time. Given

that the full Tennessee data set is the largest, it was expected that the ample amount of data

for predictive model training would be result in a relatively effective proposed model and some

of the greatest magnitudes of AIC loss in the study. Instead, the relatively small AIC loss

at the optimal parameter appears somewhat counter-intuitive. This correlates to the limited

effect size of the time-based predictive model, implying that collection dates are a particularly

poor indicator of actual infection time for Tennessee. Given the left panel of Figure 4.17,

where some of the lowest optimal AIC loss values were seen when the cases with the newest

collection dates were included, this appears to be particularly true for the most recent years of
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sample collection. The availability of diagnostic dates helps clarify this, as the performance

of the proposed model increases dramatically in the comparisons mentioned above. Within

this same data set, the unusually high connectivity for cases diagnosed in the early 90s is an

important, albeit incidental outcome, as it may point to a past outbreak in that time-frame. A

large number of transmissions may have occurred in a short time-frame, but the associated

patient sequences were collected over a longer period of time. This is acknowledged as a

weakness of time-based clustering models for HIV, especially those which rely on sample

collection date, as the time lag between infection and collection can vary so largely [DFGC17,

HYW+18]. If my goal was to show these results to the public health authorities associated with

each site, other predictive models of cluster growth which take in a larger amount of patient

meta data would be necessary for a more certain identification of clusters with a high risk of

onward transmission. Variable selection algorithms such as LASSO [Mei07] determine the

predictors with the greatest effect on cluster growth and have already been implemented in

some predictive studies [WMM+18]. This produces effective predictive models which would

the become tailored to the study location and more robust to change. In combination with

an optimal range of scaling parameters accounting for any changes that might occur due to

sub-sampling, this could offer more consistent predictions of clusters at a high risk of onward

transmission.

5.3 Applications and novel components of the presented frame-

work

5.3.1 Optimization based on predictive model outcomes

Predicting the growth of clusters in near real time is a relatively recent innovation [BPP+19,

WMM+18, LPA+14, RCLH+16], with the more common alternative use for population-based

clusters being the retrospective identification of characteristics associated with clustering [VAB+17,

WHVR+17, DVF+18, RCJBS+18, DOKG+17]. These regularly assess recent clusters as a point

of high priority [RCJBS+18, DVF+18], which inspired the use of time point to weight cases in

my example proposed model. Although purely retrospective clustering studies can be useful in

determining areas of low genetic diversity within a given sample, the potential to intervene and

prevent an outbreak is dependent on the ability to determine the drivers of future transmission

[LVRD+18]. Figure 4.17 shows that the effectiveness for a given predictor variable is shown

to fluctuate and over the course of several years, studies have identified differences in the key
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drivers of a given epidemic [RCLH+16]. The outcomes used to validate this framework are

intended to ensure that clusters are prioritized based on their likelihood to associate with fu-

ture transmission events. This also does not require that connections between cases represent

actual direct transmissions, avoiding some of the previously mentioned inaccuracies with the

assumption of direct transmission [Poo16, VF13]. In addition, observing heterogeneity on the

level of populations, does not make any specific individual liable in a source attribution case,

avoiding the specific problems associated with a hesitation to seek treatment or diagnosis given

the criminalization of HIV [SKS+07].

The need for some selection process for scaling has been stated in the literature [Poo16],

and the information-based metric provided by this framework allows for a less threshold-

dependant comparison between clustering methods, as the optimization step ensures that clus-

tering method performance is being judge at it’s most optimal parameters. For example, the

use of any distance threshold above 0.05 for graph-based methods would likely result in a

singular large cluster containing most, if not all cases. As shown by the AIC loss profiles of

graph based methods (Figure 4.6), this provides no real difference in performance between a

proposed model and a null model, as both are likely to predict large growth for the single large

cluster, which will obtain new cases indiscriminately. For a tree-based clustering method on

the same data, high clustering thresholds provide the most difference between a null model and

proposed model. This suggests that the information associated with the predictor variables is

most significant with a more relaxed clustering threshold. Comparing both clustering methods

at the same threshold could produce differences in performance purely based on the choice

of scaling parameter. New alternatives to the clustering methods used in the field are quickly

being developed [MP17, HPMSR19], often without depending on the manual selection of a

scaling parameter. For these newer methods which automatically select a scaling parameter,

the threshold optimization step is built into the definition of clusters. Therefore, in order to

fairly compare the performance of such a parametric method to a threshold-based method, the

parameters of the threshold based method should be optimized. The entirety of the AIC loss

profile also allows for comparison in a larger context, providing information such as robustness

to sub-sampling (4.15 and 4.16), change of optimal paramaters over time 4.17 and required pre-

cision for optimal parameters (ie. the breadth of acceptable scaling parameters). This is not

strictly based on predictive model accuracy, but does speak to the re-usability and reliability of

a particular method, an important component of performance.
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5.3.2 Acknowledging the differences in optimal scaling parameters

The main objective for this study was to discuss the effect of threshold selection on molecular

clusters and move towards location-specific threshold parameters as opposed to standardized

parameters for the study of population-level HIV transmission dynamics. This addresses the

occasional poor performance of standardized clustering thresholds due to the effect of study-

dependent characteristics, a well discussed issue in the literature [RLD+17, Poo16, LVRD+18,

VLVR+18]. As discussed in Chapter 1, the initial standard TN93 threshold choice of 0.015

is based on the expected distribution of pairwise TN93 distance between any two HIV pol se-

quences in the United states [APP+12], representing the 5% quantile for this distribution. In the

context of that study, pairwise distances under that length indicate a level of similarity unlikely

to arise by chance. Even disregarding the change in diversity expected with a different viral

subtype or gene of interest [BKK+01, LJM+95], Figures 4.1 and 4.2 show that diversity for

the subtype B pol gene within North America differs visibly from site to site. The associated

profile of AIC loss in the previous figures (4.6 and 4.9) show that the differences between study

sites lead to distinct differences in optimal threshold for the same subtype. The fact that the

optimal TN93 threshold for the Alberta sequence data exists well outside of the IQR shown

for the random subsampling tests on the Tennessee data 4.16 indicates a high likelihood that

these differences are not simply random. For graph-based methods, using the Northern Alberta

optimum threshold of 0.0104 for either of the other two data set results in a predictive model

which does worse than a null model with no predictors. In tree-based methods, these differ-

ences are also very important, as the use of the optimal maximum patristic distance for Alberta

leads to some of the worst possible performance for the Tennessee data set. For public health,

this implies that priority clusters identified using a conventional threshold may have a poor

basis for their high-priority label, as the predictive model that indicates their high likelihood

of onward transmission may be less accurate than model which uses only cluster size. It is

important to address that even once priority clusters have been identified, effective interven-

tion cannot be assumed. However, some success has been seen in specific HIV cluster-based

responses [SPP+17, GAM+15, IOGT+13], decreasing the prevalence of the disease based on

well-prioritized public health intervention. In addition, retrospective analysis of the 2011 Scott

County outbreak in the US suggest that the identification of clusters could have effectively

prevented an enormous rise in HIV prevalence [GC18]. Due to the widespread nature of the

virus, consistent effectiveness of HIV surveillance tools is extremely important [WLBH+14].

The global HIV programme UNAIDS [oHU+16] set the ambitious ”90-90-90” goal for the cur-

rent year (2020). This had three components: 90 percent of HIV positive individuals globally
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should be aware of their status, 90 percent of diagnosed patients should be accessing treatment,

and 90 percent of the individuals on treatment should have the amount of virus circulating in

their blood suppressed to undetectable levels. These goals are not currently met on a global

scale: 79% of the HIV-positive individuals know their status, 60% of diagnosed individuals

are on antiretroviral therapy and only 53% of the individuals on anti-retroviral therapy have

undetectable viral loads [oHUU+19]. Although the original goal has been criticized in the lit-

erature for being unrealistic within the given time-frame [BNN17], it’s worth noting that many

specific areas achieved this goal quickly [GSL+17, XLB+16, GCK+17], indicating that the lack

of widespread success may be due in part to consistency of surveillance effectiveness, as pop-

ulations with poor access to treatment are unidentified and outbreaks are not met with a fast

intervention. With the optimization of these common HIV clustering tools, there is a potential

for some of these disparities to be mitigated, allowing for a better overall detection of priority

clusters in a wider range of contexts. These prevention efforts offer some hope in reducing HIV

prevalence, despite the lack of a vaccine or cure, inspiring further work to refine the clustering

techniques used to guide prevention and detection efforts.

5.4 Conclusions

1. Molecular clustering methods which require the manual selection of a parameter must

first consider the context of the study site, taking into account the expected variation be-

tween sequences. A failure to do so could result in a set of clusters which fail to capture

epidemiological dynamics in an informative way, either providing such infrequent con-

nectivity between sequences that few conclusions can be made or such frequent connec-

tivity between sequences that those connections become less meaningful for the purposes

of prioritization.

2. An intermediate optimal threshold can be identified for both the tree-based clustering

methods similar to Cluster Picker [RCHH+13] and the graph-based methods similar to

HIV-TRACE [KPWLBW18] using an information-based metric from the application of

predictive clustering models. This estimates the growth of known clusters by viewing the

connections within them. In order to avoid the selection of extreme thresholds (which

may offer perfect, yet uninformative fit to such a model), a difference in AIC (Akaike’s

Information Criterion) can be used as an information-based metric, showing the gain in

accuracy offered by the use of predictor variables. The optimal threshold is then that

which results in the greatest AIC loss calculated between a proposed and null model.
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3. The optimal threshold varies depending on the research location, and may vary within

a location over time, or in response to incomplete sampling. The magnitude associated

with this optimum (ie. largest AIC loss), is difficult to compare between locations, but

may become larger with a change in response to a more accurate proposed model (ex.

using recent diagnosis to predict onward transmission instead of recent sequence collec-

tion).

4. The optimal value can allow for a less context dependent comparison of predictive mod-

els and molecular clustering methods, allowing for comparison in the light of threshold

parameters that are known to provide informative clusters.
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5.5 Future directions

There are several potential future works associated with this project. Most relevant to the re-

sults presented here, is the need for an efficient way to obtain the same information regarding

robustness of optimal values for tree-based methods. The advantage of single-linkage graph

based methods is speed, allowing many iterations of the graph-building process to happen quite

quickly. Unfortunately, the same cannot be said for maximum likelihood tree-based methods,

with the tree-building algorithms used here taking hours to complete, even with impressive

computing resources. Alternatives such as FastTree exist [PDA10], however, methods which

more accurately represent the evolutionary divergence between sequences would be prefer-

able. Even disregarding the robustness of such methods to time or sub-sampling, there are

other fundamentally different tree-building methods to consider. For instance, Bayesian tree

building approaches are becoming a new standard for molecular clustering studies [YR97,

VAB+17, BHK+14], providing more detailed information about the probability of the observed

tree. While the maximum likelihood methods described previously try to determine the best pa-

rameters of an evolutionary model by maximizing the likelihood of the data, Bayesian methods

consider the probability of the parameters given the data (the ”posterior probability”) as well as

considering the probability of the parameters themselves (the ”prior” probability). These tools

are also computationally intensive, but accommodating such tree-building methods in future

implementations of this framework may be more representative of the new standards used in

the field. The differences seen in the AIC loss profiles for tree and graph based methods could

also indicate a relatively ineffective predictive model for tree based methods. A limitation of

this study was that my implementation of graph-based methods had the benefit of significantly

more peer review [CKP20] prior to this report, as well as a clear methodology outlined in the

literature [WMM+18, BPP+19]. The use of pplacer [MKA10] to simulate the growth of known

clusters using a maximum likelihood tree is much more novel, and further experimentation

with the definition of growth and the calculation of time-lag between sequences would be valu-

able, potentially revealing a context where these methods perform significantly better. This

would allow for more confident and fair comparison between the outcomes obtained by each

clustering method.

Code which implements this framework to optimize TN93 distance thresholds for graph-

based clustering methods has been released under the general public license v3.0 under the

name ”MountainPlot” (https://github.com/PoonLab/MountainPlot), with an associated publi-

cation [CKP20] in an effort to translate this work into a usable, open-source tool. However,

there are currently many limitations to the current release as a piece of software. Ideally, fur-
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ther releases could allow for different proposed models, tree based methods, robustness testing

(seen in Figures 4.17, 4.15, 4.16), and comparison to a random model’s AIC loss profile. In ad-

dition, a more user-friendly interfacing could do more to help a broad audience use this work,

given that the end users of this framework would be more likely to be public health agencies

and not bioinformaticians. There is also an additional application of the modifiable areal unit

problem termed the modifiable temporal unit problem [CA14], which discusses the agglomer-

ation of time points into different resolutions (ie. viewing the data at the resolution of years,

months, weeks or days). This can be done in parallel with the other threshold-based optimiza-

tion, obtaining an optimal precision of time information. I compiled some preliminary results

using the Northern Alberta data set and the Graph-based clustering methods and presented

them in virtual poster form at the Canadian Association for HIV Research conference in May

2020 [Cha]. This involved running an altered version of the framework discussed in previous

chapters, using numerous different time-frame granularities while keeping the threshold used

to define clustering constant. Establishing a method of accomplishing this task for tree based

methods and implementing this into MountainPlot is another dimension of optimization which

could improve predictive model performance for models which use some degree of time-point

information.
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Valerie Delpech, Andrew J Leigh Brown, and Samantha Lycett. Automated

analysis of phylogenetic clusters. BMC bioinformatics, 14(1):317, 2013.



BIBLIOGRAPHY 99

[RCJBS+18] Manon Ragonnet-Cronin, Celia Jackson, Amanda Bradley-Stewart, Celia

Aitken, Andrew McAuley, Norah Palmateer, Rory Gunson, David Goldberg,

Catriona Milosevic, and Andrew J Leigh Brown. Recent and rapid transmis-

sion of hiv among people who inject drugs in scotland revealed through phy-

logenetic analysis. The Journal of infectious diseases, 217(12):1875–1882,

2018.

[RCLH+16] Manon Ragonnet-Cronin, Samantha J Lycett, Emma B Hodcroft, Stéphane
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