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Abstract

This thesis presents a uniform treatment of different distances used in the applied

topology literature. We introduce the notion of a locally persistent category, which is a

category with a notion of approximate morphism that lets one define an interleaving

distance on its collection of objects. The framework is based on a combination of

enriched category theory and homotopy theory, and encompasses many well-known

examples of interleaving distances, as well as weaker notions of distance, such as the

homotopy interleaving distance and the Gromov–Hausdorff distance.

We show that the approach is not only an organizational tool, but a useful the-

oretical tool that allows one to formulate simple conditions under which a certain

construction is stable, or under which an interleaving distance is, e.g., complete and

geodesic. Being based on the well-developed theory of enriched categories, construc-

tions in the theory of interleavings can be conveniently cast as enriched universal

constructions.

We give several applications. We generalize Blumberg and Lesnick’s homotopy

interleaving distance to categories of persistent objects of a model category and

prove that this distance is intrinsic and complete. We identify a universal property

for the Gromov–Hausdorff distance that gives simple conditions under which an

invariant of metric spaces is stable. We define a distance for persistent metric spaces,

a generalization of filtered metric spaces, that specializes to known distances on

filtered metric spaces and dynamic metric spaces, and use it to lift stability results

for invariants of metric spaces to invariants of persistent metric spaces. We present

a new stable invariant of metric measure spaces, the kernel density filtration, that

encodes the information of a kernel density estimate for all choices of bandwidth. We

study the interleaving distance in the category of persistent sets and show that, when

restricted to a well-behaved subcategory that in particular contains all dendrograms

and merge trees, one gets a complete and geodesic distance.

We relate our approach to previous categorical approaches by showing that cate-

gories of generalized persistence modules and categories with a flow give rise to locally

persistent categories in a way that preserves both metric and categorical structure.

Keywords: Persistence, enriched category, extended pseudo metric, interleaving

distance, quotient metric, weak equivalence.
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Summary for lay audience

Algorithms in data science often require an input as well as a choice of parameters.

In order to avoid arbitrary choices, one can study the evolution of the output of the

algorithms as the parameters range over all possible choices.

In the context of applied topology, many algorithms first construct a representa-

tion of a topological space and then compute an invariant of this space. For example,

many clustering algorithms work by computing the connected components of a

graph that encodes some of the topology of the data set. When letting the param-

eters range over all possible choices, instead of constructing a single topological

space, the algorithm constructs a persistent topological space, that is, a topological

space parametrized by the poset of real numbers, and then computes an invariant

of this persistent space, yielding a parametrized invariant. For example, the con-

nected components of a topological space give a clustering of the space, while the

connected components of a persistent topological space give a hierarchical clustering.

Parametrized invariants are often stable, meaning that they are robust to small pertur-

bations of the input dataset, making them a convenient practical tool. Parametrized

invariants are studied by Topological Persistence.

It was observed in the work of Chazal, Cohen-Steiner, Glisse, Guibas, Oudot,

Bubenik, Scott, Lesnick, and others that category theory can be used to organize

and strengthen stability and consistency results about topological persistence meth-

ods. Categories are used to group mathematical objects with comparable structures

together, such as the collection of all topological spaces.

This thesis studies a notion of category whose objects can be treated as persistent

or parametrized objects. We show the benefits of this approach by recovering and

generalizing previous results in the persistence literature in a uniform way, as well as

giving new applications.
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Chapter 1

Introduction

In this chapter, we motivate the use of persistence when doing topological inference

and the use of category theory when studying persistence. We then describe the main

contributions of the thesis and give an overview of related work.

1.1 Persistence: motivation and context

We start this section by giving two examples of how persistence can be used to consis-

tently estimate topological features of continuous objects from finite samples. The

first example is based on the persistence-based clustering algorithm introduced in

[CGOS13]. The second example is about estimating the homology of a manifold from

a sample, a problem for which many solutions have been proposed (see, e.g., [CL05;

CSEH05; NSW08]).

We then show that category theory helps in formalizing and proving the con-

sistency of the workflow of the examples, by providing us with distances between

suitable relaxations of the topological invariants we wanted to estimate. We conclude

by explaining what kind of metric properties are desirable for the distances category

theory has provided us with.

Example: density-based clustering. Let X ⊆Rd be a finite set of points that we want

to cluster into disjoint groups. Many density-based clustering techniques assume that

X was sampled from an unknown distribution given by a well-behaved probability

density function f :Rd →R. This assumption gives us something to work with: we can

use f to specify a well-defined “true clustering” of the support of f . Given a density
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function f such as the one of Fig. 1.1, one could decide that there should be as many

true clusters as there are modes (local maxima) of the distribution.

Figure 1.1: A density function f :R→R. Figure 1.2: An estimate f̂ :R→R of f .

A problem one is faced with when estimating the modes of f from an estimate f̂

is that one is often only guaranteed that || f − f̂ ||∞ ≤ ε for some small ε, so, even if f̂ is

well-behaved, it could have small, spurious local maxima, as in Fig. 1.2. To address

this problem, many practical approaches to mode estimation construct a tree that

tracks the evolution of the connected components of the superlevel sets of f̂ , then

prune this tree and let the leaves of the pruned tree be the estimated modes ([SN10;

CGOS13; KCBRW16; MH17]).

To formally define such a tree T for a function f , consider the superlevel sets of f ,

which we interpret as a functor F : Rop → Top indexed by the poset Rop = (R,≥):

F (r ) =
{

x ∈Rd : f (x) ≥ r
}
∈ Top.

Composing F with the path components functor π0 : Top → Set, one obtains a per-

sistent set T : Rop → Set, which can be represented as a merge tree, as in Fig. 1.3.

Figure 1.3: The tree T given by the con-
nected components of { f ≥ r }.

Figure 1.4: The tree T̂ given by the con-
nected components of { f̂ ≥ r }.

Note that T has as many leaves as there are modes of f . The goal is to prune the

estimated tree T̂ to make it look like the true tree T . When pruning T̂ , it is useful to

have a measure of prominence of modes. Since one is going to use this measure of

prominence to prune all the modes that are not prominent enough, the measure must

be stable, so that, in particular, the number of sufficiently prominent modes of an
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estimate f̂ is the same as the number of sufficiently prominent modes of f , as long as

|| f − f̂ ||∞ is sufficiently small.

Persistence theory provides us with a stable measure of prominence: the 0-th

persistence diagram of a (sufficiently tame) function f , denoted by PD0( f ). The

persistence diagram PD0( f ) is a collection of points above the diagonal of R2 that has

exactly as many points as there are modes of the function f . One can use the vertical

distance from a point in PD0( f̂ ), which corresponds to a mode of f̂ , to the diagonal of

R2 as a measure of the prominence of the corresponding mode of f̂ . This measure

of prominence is stable in that there is a distance between persistence diagrams, the

bottleneck distance dB , such that the following holds

dB
(
PD0

(
f
)

,PD0
(

f̂
))≤ || f − f̂ ||∞.

This is the 0th case of the celebrated stability theorem for persistence diagrams of

tame functions, originally proven in [CSEH05] and [AFL03].

Figure 1.5: Constructing PD0( f ). Figure 1.6: Constructing PD0( f̂ ).

We see in Fig. 1.6 that, although f̂ has more modes than f , it has exactly three

prominent modes and three significantly less prominent ones, the ones close to the

diagonal, that will have to pruned. We refer the interested reader to [CGOS13] where

a clustering algorithm based on a more sophisticated version of these principles is

introduced and proven consistent.

We haven’t described how we constructed the persistence diagrams of Fig. 1.5

and Fig. 1.6. For the purposes of this introduction, it is enough to know that one can

associate a persistence diagram to every (sufficiently tame) persistent vector space,

that is, to a sufficiently tame (covariant or contravariant) functor R → Veck . This per-

spective was first taken in [CFP01] and [ZC04], and exploited further in [CCSGGO09]

and [CSGO16]. In the example above, the persistence diagram PD0( f ) represents the

persistent vector space Rop → Veck given by composing T : Rop → Set with the free

vector space functor Set → Veck .
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Example: homotopical invariants of discrete metric spaces. Suppose that we want

to estimate the homology of a compact submanifold M ⊆ Rd from a finite sample

X ⊆ M . As a topological space, X is discrete. One way around this problem is to choose

a threshold r ∈ R and to construct a simplicial complex VRc(X )(r ), the Vietoris–Rips

complex of X at distance scale r , as follows. We let the vertex set of VRc(X )(r ) be X ,

and we add an n-simplex {x0, . . . , xn} if and only if d(xi , x j ) ≤ r for all 0 ≤ i , j ≤ n. We

can then geometrically realize this simplicial complex as a topological space which

we denote by VR(X )(r ) ∈ Top. In Fig. 1.7, we give an example of this construction

for a set X that is a sample from a circular shape, for four different values of the

threshold r . Note that there is a natural inclusion VR(X )(r ) →VR(X )(r ′) whenever

r ≤ r ′. This observation turns the Vietoris–Rips complex of X into a persistent space

VR(X ) : R → Top.

Figure 1.7: The Vietoris–Rips complex of a point cloud at four different stages, starting
with r = 0 and ending with r À 0.

If X is a sufficiently good sample of M , one may expect that, for some suitable

range of thresholds, the homology of VR(X )(r ) will be a good approximation to the

homology of M . Persistence lets us quantify this precisely. The following stability

result is a consequence of [CCSGMO09, Theorem 3.1]: if there is ε≥ 0 such that every

point of M is at distance at most ε from a point in X , then dB (PDn(X ),PDn(M)) ≤ 2ε.

Here PDn(X ) denotes the persistence diagram of the persistent vector space R → Veck ,

given by composing VR(X ) : R → Top with the n-th homology functor Top → Veck ,

and likewise for PDn(M). This says that the persistent homology of VR(X ) is a good

approximation of the persistent homology of VR(M).

One then has to relate the persistent homology of VR(M) to the homology of M .

For this, we refer the reader to [Hau95] and [Lat01], and to [KSCRW19] for state of the

art results.

Categorification of persistence. The key point in the examples above was the sta-

bility of persistence diagrams. We say that a procedure is stable if it is uniformly

continuous with respect to suitable metrics on its input set and on its output set. Let
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us now see that, when proving the stability of a procedure in a modular way, category

theory comes in handy.

In Fig. 1.8 and Fig. 1.9 we depict the workflow of the first and second example

above, respectively.

density
functions

−→
persistent

topological
spaces

−→ persistent
sets

−→
persistent

vector
spaces

−→ persistence
diagrams

Figure 1.8: The workflow of the first example.

metric
spaces

−→
persistent

topological
spaces

−→
persistent

vector
spaces

−→ persistence
diagrams

Figure 1.9: The workflow of the second example.

In order to prove that these procedures are stable, one can prove that each of the

steps is stable. This is the point of view advocated in [BSS13], [BS14], and [SMS18].

One of the main advantages of this point of view is modularity, that is, the ability to

make local changes to the workflows and to combine different workflows without

having to reprove the stability of the new workflow from scratch.

In order to prove that each step is stable, one needs a distance for each of the above

collections of objects. Category theory gives us distances for all of the collections of

objects above, and proofs that the mappings between them are stable.

The main categorical construction is the interleaving distance, first introduced

for the category of persistent vector spaces in [CCSGGO09]. Note that the three

intermediate collections of objects in Fig. 1.8 are the objects of the functor categories

TopR, SetR, and VecR
k respectively. In its most basic form, the interleaving distance is

a metric that lets us compare objects of functor categories of the form C R.

Given a functor F : R →C and ε≥ 0, let F ε : R →C denote the functor F shifted to

the left by ε, that is, F ε(r ) = F (r +ε) for every r ∈ R. For r ≤ s ∈ R, let ϕF
r,s : F (r ) → F (s)

denote the structure map of F . We say that that two functors F,G : R → C are ε-

interleaved, if there exist natural transformations α : F → Gε and β : G → F ε such

that β(r +ε)◦α(r ) =ϕF
r,r+2ε and α(r +ε)◦β(r ) =ϕG

r,r+2ε for every r ∈ R. The natural
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transformations α and β can be thought of as being ε-approximate isomorphisms,

although the pair (α,β) is often called an ε-interleaving. One uses these interleavings

to define the interleaving distance, as follows

dI (F,G) = inf{ε≥ 0 : F and G are ε-interleaved }.

As observed in [BS14], thanks to functoriality, if F,G ∈ C R are ε-interleaved and H :

C → D is any functor, then H ◦F and H ◦G are ε-interleaved as objects of DR. This

proves that the intermediate steps in Fig. 1.8 are stable.

Going from persistent vector spaces to persistence diagrams is more subtle. The

stability of this construction with respect to the interleaving distance on persistent

vector spaces and the bottleneck distance on persistence diagram is known as the

algebraic stability theorem, and was first introduced in [CCSGGO09]. A categorical

proof of the algebraic stability result for pointwise finite-dimensional persistent vector

spaces is presented in [BL14], and the fact that barcodes can be seen as the objects of

a functor category of the form C R appears in [EJM15] and [BL20].

To conclude that the workflow presented in Fig. 1.8 is stable, one has to show

that the step going from density functions with the ∞-norm to persistent topological

spaces with the interleaving distance is stable. This is straightforward, and also has

a categorical proof which starts by giving an interpretation of the ∞-norm as an

interleaving distance ([SMS18, Section 3.10.1], [Les15, Remark 5.1]).

One may expect the workflow in Fig. 1.9 to work analogously. One first has to

choose a distance between metric spaces. The Gromov–Hausdorff distance (Defi-

nition 2.2.24) is usually chosen. This distance allows for a very general notion of

similarity between metric spaces, and as a consequence it is not necessarily the case

that if P and Q are Gromov–Hausdorff close, then VR(P ) and VR(Q) are ε-interleaved

for some small ε.

This issue can be resolved by weakening the notion of interleaving between persis-

tent spaces, as done for filtered simplicial complexes in [Mé17] and [CSO14], and for

persistent topological spaces in [BL17]. The solution in [BL17] is particularly natural

from a homotopy-theoretic point of view: Blumberg and Lesnick let X ,Y : R → Top be

ε-homotopy interleaved if there exist weakly equivalent persistent topological spaces

X ′ ' X and Y ′ ' Y such that X ′ and Y ′ are ε-interleaved. Using homotopy interleav-

ings instead of interleavings, they define the homotopy interleaving distance dH I , and
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prove ([BL17, Section 6]):

dH I (VR(P ),VR(Q)) ≤ 2dG H (P,Q).

The rest of the workflow in Fig. 1.9 is stable, since homology is a homotopy-invariant

functor.

Geometry of spaces of persistent objects. When doing statistical inference on

spaces of persistent objects, it is necessary to define probability measures on these

spaces. It is thus desiderable to know that the space being studied is separable and

complete. In practical applications, it is also useful to be able to interpolate between

persistent objects, so one is interested in knowing if the space is intrinsic, and in

having explicit formulas for constructing paths between points.

This kind of analysis for persistence diagrams has been done in, e.g., [MMH11],

[TMMH12], and [FLRWBS14]. Nonetheless, it is often fruitful to study the geometry

of spaces of objects other than persistence diagrams. For example, one may need to

do statistics directly on spaces of trees, on spaces of multi-dimensional persistent

vector spaces, or on spaces of persistent topological spaces, and thus a study of the

geometry of these spaces is needed. See, for example, [Les12; BGMP14; KCBRW16;

CO17; BSN17; BV18; GMOTWW19; Cru19].

1.2 Contributions

1.2.1 Setup

This thesis proposes an approach for defining distances between objects of a category

and provides stability results for these distances, metric results for these distances

(such them being complete or geodesic), and ways of combining distances between

simple objects to get distances between more structured objects.

The approach is based on two notions of similarity: interleaving and weak equiva-

lence. Interleavings are formalized using enriched category theory, while concepts

from categorical homotopy theory are used to handle weak equivalences. One of

the main selling points of the approach is that, by framing interleavings using the

language of enriched categories, we give ourselves access to a very well developed

set of formal tools for working with interleavings. Of particular interest are weighted
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(co)limits.

We introduce the notion of a locally persistent category. A locally persistent cat-

egory is a category enriched in SetR+ , where R+ = ([0,∞),≤) is endowed with the

monoidal product given by sum and SetR+ is endowed with the monoidal product

given by Day convolution. A locally persistent category C is equivalently a category

with extra structure: for each pair of objects x, y ∈C , instead of just having a set of mor-

phisms from x to y , we have a persistent set HomC (x, y) : R+ → Set, indexed by the

non-negative real numbers. For x, y ∈C and ε ∈ R+, we think of the set HomC (x, y)ε

as the set of ε-approximate morphisms from x to y . Composition is required to be

compatible with this structure, meaning that the composite of an ε-approximate

morphism with a δ-approximate morphism is an (ε+δ)-approximate morphism. By

copying the definition of isomorphism, but using approximate morphisms, one gets

the notion of interleaving. One can then use interleavings to define an interleaving

distance for any locally persistent category. We point out that this distance is really an

extended pseudo distance (Definition 2.2.1).

As discussed in Section 1.1, it is sometimes necessary to consider a weaker notion

of interleaving, in which we are allowed to replace objects by weakly equivalent ones.

Following the methodology of categorical homotopy theory, we do this by considering

locally persistent categories together with a class of 0-approximate morphisms that

we declare to be acyclic morphisms. A relative locally persistent category consists of

a locally persistent category together with a class of acyclic morphisms. We define

a weak version of the interleaving distance, the quotient interleaving distance, using

a metric quotient: the quotient interleaving distance is defined to be the greatest

distance that is bounded above by the (strict) interleaving distance and is invariant

under the equivalence relation given by being connected by acyclic morphisms. We

point out again that the quotient interleaving distance is an extended pseudo distance.

As one expects, this framework encompasses standard interleaving distances such

as the interleaving distance on any functor category of the form C R, and homotopi-

cal ones, such as the homotopy interleaving distance on TopR. More interestingly,

distances that at first may not look like interleaving distances arise as quotient inter-

leaving distances. For example, the Gromov–Hausdorff distance and related distances

on metric measure spaces are of this form.
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1.2.2 Structure of the thesis and main results

In Chapter 2, we give background on metric spaces, enriched categories, and model

categories, and study some of the properties of functor categories of the form C R

in detail. The contents of Chapter 2 are either well-known results, or variations of

well-known results. The reader may skip Chapter 2 and refer to it when necessary.

In Chapter 3, we develop the category theory of locally persistent categories. We

extend diagrammatic notation to this setting and study universal constructions that

are particularly relevant when studying metric properties of an interleaving distance,

such as weighted pullbacks, weighted sequential limits, and terminal midpoints. In

Section 3.3, we give the definition of relative locally persistent category and of its

associated quotient interleaving distance.

In Chapter 4, we study the metric properties of quotient interleaving distances.

The results in this section are applied in several examples in Chapter 6. We prove the

following stability result.

Theorem A (Theorem 4.2.2). A locally persistent functor between relative locally per-

sistent categories that maps acyclic morphisms to acyclic morphisms is 1-Lipschitz with

respect to the quotient interleaving distances.

In order to state some consequences of the main results in Chapter 4 concisely,

we introduce the following concepts. We say that an extended pseudo distance is:

complete (Definition 2.2.9) if every Cauchy sequence has a limit, intrinsic (Defini-

tion 2.2.15) if the distance between two points at finite distance is the infimum of

the lengths of paths between these two points, and geodesic (Definition 2.2.14) if the

distance between two points at finite distance is equal to the length of some path

between the points.

We say that a locally persistent category C is powered by representables (Defini-

tion 3.2.6) if, for every y ∈C and ε ∈ R+, there exists yε ∈C such that the persistent

set HomC (x, y)ε+(−) is naturally isomorphic to HomC (x, yε) for every x ∈C . For C a

relative locally persistent category, we let dQI denote its associated quotient interleav-

ing distance and we let C0 denote the underlying category of C , that is, the category

whose objects are the objects of C and such that HomC0 (x, y) = HomC (x, y)0. We fix

C a relative locally persistent category that is powered by representables and such

that powers preserve the acyclic morphisms and limits of C0. For x, y ∈C , we denote

the fact that x and y are connected by a zig-zag of acyclic morphisms by x ' y .

We give a characterization of the quotient interleaving distance.
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Theorem B (Theorem 4.1.4 using Lemma 4.1.5). If C0 admits pullbacks, and acyclic

morphisms are stable under pullback, then

dQI (x, y) = inf
{
ε : ∃x ′ ' x,∃y ′ ' y such that x ′ and y ′ are ε-interleaved

}
.

We give sufficient conditions under which dQI is complete, which can be seen

as a generalization of the completeness result in [Cru19] to quotient interleaving

distances.

Theorem C (Theorem 4.3.3 using Proposition 3.2.15 and Lemma 4.1.5). If C0 admits

pullbacks and sequential limits, and acyclic morphisms are stable under pullbacks and

closed under sequential limits, then dQI is complete.

We give sufficient conditions under which dQI is intrinsic, which generalizes the

fact, proven in [CSGO16, Section 3.4], that interleaving distance on persistent vector

spaces is intrinsic. We also give conditions under which dQI is geodesic, but these are

more technical.

Theorem D (Theorem 4.4.2 using Proposition 3.2.19). If C0 admits finite limits, then

dQI is intrinsic.

We import some well-known constructions on categories of persistent objects to

the theory of locally persistent categories. In Section 4.6 we generalize the interpola-

tion framework of [BSN17] to locally persistent categories and show that the original

framework factors through this generalization in a precise sense. We also show that

the category of locally persistent categories contains the category of metric spaces as a

full subcategory and that, in a rather trivial way, every metric arises as an interleaving

distance. The value of locally persistent categories comes from having extra categori-

cal structure that is compatible with the metric structure. In Section 4.7, we generalize

the notion of observable category of [CCBS14] to locally persistent categories, and

we relate the observable category of a category of persistent objects to a category of

persistent objects satisfying a sheaf condition.

In Chapter 5, we give formal ways of constructing locally persistent categories. Of

special interest is the construction of a locally persistent category of persistent objects

C R for C a locally persistent category, described in Section 5.1.2. The underlying cate-

gory of C R is the category of functors R →C0, but its locally persistent structure takes

into account both the shifts of these functors and the pointwise locally persistent struc-

ture of C . We later use this construction to define the Gromov–Hausdorff-interleaving
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distance on persistent metric spaces. We also relate categories with a flow [SMS18]

to locally persistent categories. We show that to each category with a flow one can

functorially associate a locally persistent category with the same objects and the same

interleaving distance, thus showing that locally persistent categories can be seen as a

generalization of categories with a flow. We argue that, although in most applications

both frameworks apply, the language of locally persistent categories more closely

matches the language of category theory, and avoids coherence arguments with 2-

cells. We view categories with a flow as a streamlined way of constructing locally

persistent categories.

In Chapter 6 we give applications of our main results. In Section 6.1, we extend the

homotopy interleaving distance of [BL17] to persistent objects of a model category,

and prove some metric properties of this distance.

Theorem E (Theorem 6.1.7). Let M be a cofibrantly generated model category. Then

the quotient interleaving distance on the locally persistent category M R is intrinsic and

complete, and satisfies

dQI (x, y) = inf
{
δ≥ 0 : ∃x ′ ' x,∃y ′ ' y, x ′ and y ′ are δ-interleaved

}
.

In Section 6.2, we show that the category of metric spaces, and more generally,

the category of dissimilarity spaces, has the structure of a relative locally persistent

category such that the quotient interleaving distance coincides with twice the Gromov–

Hausdorff distance, and we recover well-known facts about the Gromov–Hausdorff

distance. A dissimilarity space consists of a set X together with a function X ×X →
[0,∞]. We use the characterization of the Gromov–Hausdorff distance as a quotient

interleaving distance to prove the following stability result for invariants of metric

spaces, which can also be interpreted as a universal property of the Gromov–Hausdorff

distance. Let epMet denote the collection of extended pseudo metric spaces. Given

X1 = (X ,d1) and X2 = (X ,d2) extended pseudo metric spaces with the same underlying

set, let d∞(X1, X2) = ||d1 −d2||∞. This metric extends to an extended pseudo metric

on epMet by declaring the distance between metric spaces with different underlying

sets to be infinity.

Theorem F (Proposition 6.2.21). Let P be an extended pseudo metric space and let

V : epMet → P be a function. Assume that V is uniformly continuous (resp. 1-Lipschitz)

with respect to d∞ and the metric on P. If for every surjective and distance preserving
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map X → Y ∈ epMet we have dP (V (X ),V (Y )) = 0, then V is uniformly continuous

(resp. 2-Lipschitz) with respect to the Gromov–Hausdorff distance and the metric on P.

As a corollary of Theorem F, we recover, in Section 6.3, the homotopy stability of

the Vietoris–Rips filtration, proven in [BL17].

In Section 6.4, we study the quotient interleaving distance on the category of

persistent dissimilarity spaces (which in particular contains all persistent metric

spaces, and thus, all filtered metric spaces). We refer to this distance as the Gromov–

Hausdorff-interleaving distance. We explain in what way this distance generalizes

previous distances on filtered metric spaces ([CM10c]) and on dynamic metric spaces

([KM20]). This distance is a useful abstraction: for example, we have the following.

Theorem G (Proposition 5.1.11). Let V : epMet → C R be a locally persistent functor

that maps surjective and distance preserving maps to isomorphisms. Then, V is Lipz-

chitz with respect to the Gromov–Hausdorff distance and the interleaving distance, and

the functor V∗ : epMetR →C R×R, obtained by applying V pointwise, is Lipschitz with

respect to the Gromov–Hausdorff-interleaving distance and the interleaving distance.

The material in Section 6.5 is joint work with Alex Rolle. We define a bi-filtration of

metric measure spaces that generalizes the degree-Rips bi-filtration ([LW15]): for any

suitable kernel K (Definition 6.5.5), metric measure space (X ,dX ,µX ), and s,k > 0, we

let the kernel density filtration of X at s,k be:

KDF(X )(s,k) =
{

x ∈ X :
∫

x ′∈X
K

(
dX (x, x ′)

s

)
dµX ≥ k

}
⊆ X .

We show that this filtration extends to a functor from compact metric probability

spaces to bi-persistent metric spaces and prove the following stability result.

Theorem H (Theorem 6.5.1). The kernel density filtration is uniformly continuous with

respect to the Gromov–Hausdorff–Prokhorov distance on compact metric probability

spaces and the Gromov–Hausdorff-interleaving distance on bi-persistent metric spaces.

Theorem G and Theorem H imply that the persistent homology of the kernel

density filtration is a stable invariant of compact metric probability spaces.

In Section 6.6, we review some distances on the collection of hierarchical cluster-

ings given in the literature. We show that the category of multi-dimensional hierarchi-

cal clusterings has the structure of a relative locally persistent category such that the

quotient interleaving distance recovers known distances on hierarchical clusterings.
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In Section 6.7, we study the locally persistent category SetR of persistent sets. This

category contains many useful subcategories, such as the category of dendrograms

and the category of merge trees. Adapting the definition of q-tame persistent vector

space of [CSGO16], we say that a persistent set is q-tame if the image of every non-

identity structure map is a finite set. We prove the following.

Theorem I (Theorem 6.7.2). The interleaving distance on q-tame persistent sets is

geodesic and complete.

In Section 6.8, we show that the distance on finite filtered simplicial complexes

defined by Mémoli in [Mé17] is the quotient interleaving distance of a relative locally

persistent category structure on the category of finite filtered simplicial complexes.

We use the tools developed in this thesis to recover the fact that Mémoli’s distance is

geodesic. We also show that, after applying geometric realization, Mémoli’s distance

in general does not coincide with the homotopy interleaving distance of Blumberg

and Lesnick, and that, in particular, it is not homotopy invariant.

In Section 6.9, we show that the Wasserstein distances between persistence di-

agrams can be recovered as the interleaving distance of suitable locally persistent

categories.

1.3 Related work

As mentioned in Section 1.1, using category theory to frame and work with interleav-

ings has been the subject of much recent work. Bubenik, de Silva, and Scott study

interleaving distances in the context of categories of generalized persistent modules

([BSS13]), while de Silva, Munch, and Stefanou define an interleaving distance in any

category with a flow ([SMS18]). In the context of categories with a flow, Cruz studies

metric properties of the interleaving distance ([Cru19]).

In parallel, there have been many efforts in defining homotopically meaningful

versions of interleaving distances, meaning interleaving distances that are homotopy

invariant for some notion of weak equivalence. Of relevance to this thesis are Blum-

berg and Lesnick’s homotopy interleaving distance ([BL17]), and Mémoli’s distance

on finite filtered simplicial complexes ([Mé17]). Thus far, there has been no study of

the interplay between interleavings and weak equivalences in a general categorical

framework such as generalized persistent modules or categories with a flow.
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A main contribution of this thesis is offering yet another categorical interpretation

of the theory of interleavings, namely locally persistent categories. We hope to demon-

strate that this language is simpler and closer to usual category theory than previous

approaches, and that it admits a clean and useful homotopical enhancement, namely

the theory relative locally persistent categories, which permits a formal study of the

interplay between weak equivalences and interleavings. Moreover, in Chapter 5, we

show that previous categorical approaches to the theory of interleavings, such as

generalized persistent modules and categories with a flow, can be seen as convenient

ways of constructing locally persistent categories. This makes the theory of locally per-

sistent categories automatically applicable to many important examples considered

in the literature.

This thesis is also influenced by the categorical interpretation of metric spaces

of Lawvere ([Law73]). Locally persistent categories are a categorification of Lawvere

metric spaces in the same way that categories are a categorification of partially ordered

sets.
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Chapter 2

Background

In this chapter, we introduce the necessary background needed to state and prove

the results in this thesis. The material in Sections 2.2 to 2.5 is mostly standard, but we

recall it here for convenience and to establish notation. The material in Section 2.6

is an application of standard results in category theory to the theory of persistence.

It is most likely known to experts but, to best of the author’s knowledge, there is no

reference explaining it.

2.1 Basic notation, categories, and size issues

We will assume familiarity with the language of category theory, and, in particular, with

the notions of category, functor, natural transformation, (co)limit, (co)end, adjunction,

Kan extension, and monad. We recommend the references [Lan98] and [Rie17]. We will

generally denote categories by C , D , etc. , and use C , D, etc. for categories enriched in

a monoidal category different from Set (Section 2.4). If x and y are isomorphic objects

of a category C , we write x ∼= y , and reserve the notation ' for weaker notions, such as

weak equivalence (Section 3.3). If η is a natural transformation between functors F

and G , we write η : F ⇒G if we are regarding F and G as diagrams, and η : F →G if we

are regarding F and G as objects of a functor category.

Particularly relevant kinds of limits and colimits are pullbacks and pushouts, and

sequential limits and sequential colimits, that is, limits indexed by the category

· · ·→ •→•→•,

and colimits indexed by the opposite of the above category. We say that a class
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W of morphisms of a category C is closed under sequential limits if the induced

morphisms from the sequential limit of a sequential diagram of morphisms in W to

each of the objects in the diagram are in W . Dually, W is closed under sequential

colimits if, seen as a class of morphisms of Cop, it is closed under sequential limits.

In this thesis, we will consider small and large sets. One can make this notion

precise by working with a Grothendieck universe U and letting the small sets be the

U -small sets and the large sets be the sets that are not necessarily U -small. Since in

the arguments and results of this thesis there are no hidden size issues or subtleties,

we will not be more precise than this, and we will point out that a certain set is large

or small only when it matters. Every notion that requires an underlying set (such

as the notions of set, metric space, and topological space) gives rise to two possible

collections of instances. For example, there is a category of small sets, which we

denote by Set, and a category of large sets, which we denote by SET. We will use this

notational convention throughout the thesis. For example, we will talk about the

categories of small and large extended pseudo metric spaces, denoted by epMet and

epMET respectively, and about the categories of small and large topological spaces,

denoted by Top and TOP respectively.

2.2 Extended pseudo metric spaces

The contents of this section are standard concepts in metric geometry; a good ref-

erence is [BBI01]. The only difference between [BBI01] and the exposition here is

that we work with extended pseudo metric spaces, a simple generalization of metric

spaces.

2.2.1 Elementary notions

We start with the definitions of extended pseudo metric space and of metric space.

Definition 2.2.1. An extended pseudo metric space (ep metric space) (P,dP ) consists

of a set P and a function dP : P ×P → [0,∞] such that

. dP (p, p) = 0 for all p ∈ P (reflexivity);

. dP (p, p ′) = dP (p ′, p) for all p, p ′ ∈ P (symmetry);

. dP (p, p ′′) ≤ dP (p, p ′)+dP (p ′, p ′′) (triangle inequality).



2.2. EXTENDED PSEUDO METRIC SPACES 17

A function dP satisfying the properties above is called an ep metric.

Remark 2.2.2. Although ep metrics are not as standard as metrics, they induce a

topology in exactly the same way. Namely, given an ep metric space (P,dP ), one

gets a topology by considering the topology generated by the family of open balls

{B(p,ε)}p∈P,ε∈(0,∞).

Definition 2.2.3. A metric space consists of an ep metric space (P,dP ) such that for

every p, p ′ ∈ P, dP (p, p ′) = 0 implies p = p ′, and such that dP doesn’t take the value ∞.

Next we consider morphisms between ep metric spaces.

Definition 2.2.4. A distance non-increasing map (or 1-Lipschitz map) between ep

metric spaces (P,dP ) and (Q,dQ ) consists of a function of sets f : P → Q such that

dP (p, p ′) ≥ dQ ( f (p), f (p ′)).

We can then form a category.

Definition 2.2.5. The category of ep metric spaces, denoted by epMet, is the category

whose objects are ep metric spaces and whose morphisms are distance non-increasing

maps.

Morphisms that don’t increase or decrease the metric will play an important role

when studying the category epMet.

Definition 2.2.6. A distance preserving map between ep metric spaces is a morphism

of ep metric spaces f : P →Q that satisfies dP (p, p ′) = dQ ( f (p), f (p ′)) for all p, p ′ ∈ P.

2.2.2 Properties of a metric

In this section, we define the notions of an ep metric space being complete, compact,

totally bounded, geodesic, and intrinsic. These are natural extensions of the corre-

sponding notions for metric spaces. By an abuse of language, we will sometimes say

that a metric is complete, meaning that the underlying ep metric space is complete.

Similarly, we may say that a metric is compact, totally bounded, geodesic, or intrinsic.

Definition 2.2.7. A sequence {xi }i∈N of elements of an ep metric space (P,dP ) is Cauchy

if for every ε> 0 there exists an n ∈N such that, if i , j ≥ n, then dP (xi , x j ) < ε.
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Definition 2.2.8. A sequence {xi }i∈N of elements of an ep metric space (P,dP ) is conver-

gent if there exists an element x ∈ P such that dP (xi , x) → 0 as i →∞. When this is the

case, we say that x is a limit of the sequence {xi }.

Note that in an ep metric space, a convergent sequence may have multiple distinct

limits. But, of course, all of these have to be at distance zero from each other.

Definition 2.2.9. An ep metric space (P,dP ) is complete if every Cauchy sequence is

convergent.

Definition 2.2.10. An ep metric space (P,dP ) is totally bounded if, for every ε> 0, there

exist finitely many points {pi } ⊆ P such that P ⊆⋃
i B(pi ,ε).

Definition 2.2.11. An ep metric space (P,dP ) is compact if every sequence has a con-

vergent subsequence.

The following lemma has exactly the same proof as its analogue for metric spaces.

Lemma 2.2.12. An ep metric space is compact if and only if it is complete and totally

bounded.

We now turn our attention to geodesic and intrinsic distances. In order to define

these concepts, we need the notion of length of a continuous path in an ep metric

space.

Definition 2.2.13. Let (P,dP ) be an ep metric space, and let f : [a,b] → P be a continu-

ous map. The length of the path f is defined to be the supremum of

N∑
i=1

dP ( f (yi−1), f (yi ))

over all finite collections of points a = y0 ≤ y1 ≤ ·· · ≤ yN = b.

Note that the length of a curve can be infinite.

Definition 2.2.14. An ep metric space (P,dP ) is geodesic if for every p, p ′ ∈ P with

dP (p, p ′) <∞, there is a continuous path f : [a,b] → P such that f (a) = p, f (b) = p ′

and the length of f is equal to dP (p, p ′).

Definition 2.2.15. An ep metric space (P,dP ) is intrinsic if for every p, p ′ ∈ P, the

distance dP (p, p ′) is equal to the infimum over all paths between p and p ′ of the length

of the path.
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Of course, every geodesic metric is intrinsic. When proving that a metric has a

certain property, it is often convenient to prove that a larger space has this property,

and to show that the original space is a retract of this larger space. We conclude this

section by formalizing this situation in the case of ep metrics.

Definition 2.2.16. An ep metric space P is a pseudo retract of an ep metric space Q

if there exist distance non-increasing maps s : P →Q and r : Q → P such that, for all

p ∈ P, we have dP (p,r (s(p))) = 0.

Lemma 2.2.17. If P is a pseudo retract of an ep metric space Q, and Q is complete

(resp. intrinsic, geodesic), then P is complete (resp. intrinsic, geodesic).

Proof. Let {xn} be a Cauchy sequence in P . Then, {s(xn)} is Cauchy in Q. As such, it

has a limit y . This implies that r (y) is a limit for the sequence {r (s(xn))} in P . And,

since dP (r (s(xn)), xn) = 0 for all n, the point r (y) must also be a limit for the original

sequence {xn}.

The same line of reasoning proves the claim about the distance being intrinsic or

geodesic.

2.2.3 Quotients of metrics

The reason why we consider ep metrics and not just metrics will become clear when

we define interleaving distances. But even without this motivation, we can already

show one of its advantages, namely, that we can take quotients of metrics by equiva-

lence relations without having to take a quotient of the underlying set of the metric

space.

Definition 2.2.18. Assume given an ep metric space (X ,d) and an equivalence relation

R ⊆ X × X . We say that the metric d is R-invariant if d(x, y) = d(x ′, y ′) whenever

(x, x ′), (y, y ′) ∈ R.

There is a universal way of turning an ep metric into an R-invariant one, as the

next proposition shows.

Proposition 2.2.19. Given an ep metric space (X ,d) and an equivalence relation R ⊆
X ×X , there is a unique ep metric d/R : X ×X → [0,∞] satisfying the following.

1. d/R (x, y) ≤ d(x, y) for all x, y ∈ X ;
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2. d/R is R-invariant;

3. for any other metric d ′ satisfying (1) and (2), we have d ′ ≤ d/R .

Proof. Condition (3) guarantees that there is at most one ep metric satisfying all

the conditions. Let D be the set of all metrics satisfying (1) and (2). Note that this

set is non-empty, since the metric that is constantly 0 belongs to it. Let d/R (x, y) =
supd ′∈D d ′(x, y). It is straightforward to check that this metric satisfies all the require-

ments.

We give a name to this universal construction.

Definition 2.2.20. The metric determined by conditions (1), (2), and (3) above is called

the quotient ep metric of d by R.

Arbitrary quotients of a metric are generally not very well behaved. An exception

to this is the fact that any quotient of an intrinsic metric is intrinsic. To prove this, we

need the following characterization of the quotient metric.

Lemma 2.2.21. Let (P,dP ) be an intrinsic ep metric space and let R be an equivalence

relation on P. For any p, p ′ ∈ P, let

d(p, p ′) = inf

{ N∑
i=1

dP (yi , y ′
i ) : y0, . . . , yN , y ′

0, . . . , y ′
N ∈ P,

pR y0, y ′
i R yi+1, y ′

N Rp ′
}

.

Then (dP )/R = d.

Proof. It is easy to check that d is an R-invariant ep metric that is bounded above by

dP .

Now, let d ′ be an R-invariant ep metric bounded by dP . Let y0, . . . , yN , y ′
0, . . . , y ′

N ∈ P

such that pR y0 ,p ′R y ′
N , and y ′

i R yi+1. By the triangle inequality, and the fact that d ′ is

R-invariant, it follows that d ′(p, p ′) ≤∑N
i=1 dP (yi , y ′

i ), so d ′ ≤ d .

This means that d satisfies the universal property of the quotient distance, and

thus (dP )/R = d .

We can now prove that any quotient of an intrinsic metric is intrinsic.

Proposition 2.2.22. Let (P,dP ) be an intrinsic ep metric space and let R be an equiva-

lence relation on P. Then (dP )/R is intrinsic.
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Proof. By Lemma 2.2.21, we have

(dP )/R (p, p ′) = inf

{ N∑
i=1

dP (yi , y ′
i ) : y0, . . . , yN , y ′

0, . . . , y ′
N ∈ P,

pR y0, y ′
i R yi+1, y ′

N Rp ′
}

.

Consider, for each n ∈ N, sequences {yn
i } and {y ′

i
n} with 0 ≤ i ≤ Nn such that∑Nn

i=1 dP (yn
i , y ′

i
n) converges to (dP )/R (p, p ′) as n → ∞. Since dP is intrinsic, there

is a path f n
i : [an ,bn] → P between yn

i and y ′
i

n such that its length is less than

dP (yn
i , y ′

i
n) + 1/(nNn). Since (dP )/R (y ′

i , yi+1) = 0, these paths can be glued to a

continuous path in (P, (dP )/R ) whose length is at most

Nn∑
i=1

(
dP (yn

i , y ′
i

n)+ 1

nNn

)
=

Nn∑
i=1

(
dP (yn

i , y ′
i

n)
)+ 1

n

The proposition follows by taking the limit n →∞.

2.2.4 The Gromov–Hausdorff distance

Definition 2.2.23. Let P be a metric space and let A,B ⊆ P be subsets. The Hausdorff

distance between A and B is defined by

d P
H (A,B) = inf

{
ε≥ 0 : B ⊆ Aε, A ⊆ Bε

}
,

where, for a subset A ⊆ P and ε≥ 0, we let Aε = {p ∈ P : ∃a ∈ A,dP (a, p) < ε}.

Definition 2.2.24. The Gromov–Hausdorff distance between metric spaces P and Q

is defined by

dG H (P,Q) = inf
i :P→Z
j :Q→Z

d Z
H (i (P ), j (Q)),

where the infimum is taken over all distance preserving inclusions i and j into a

common metric space Z .

Note that, although one usually restricts P and Q to be compact, the definition

makes sense for general P and Q ([BBI01, Definition 7.3.10]), even if they are ep

metric spaces. At this level of generality, the Gromov–Hausdorff distance is actually
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just an ep metric. The triangle inequality is easy to prove by glueing metrics [BBI01,

Proposition 7.3.16].

In this short section, we give an equivalent characterization of the Gromov–

Hausdorff distance in terms of correspondences. This characterization is well-known,

see for example [BBI01, Section 7.3.3].

Definition 2.2.25. A correspondence R between sets X and Y is a subset R ⊆ X ×Y

such that the induced projections R → X and R → Y are surjective.

Definition 2.2.26. Let R be a correspondence between two metric spaces P and Q. The

distortion of R is defined as

dist(R) = sup
{|dP (p, p ′)−dQ (q, q ′)| : (p, q), (p ′, q ′) ∈ R

}
.

Theorem 2.2.27. For any metric spaces P and Q, we have

2dG H (P,Q) = inf
{
dist(R) : R ⊆ P ×Q a correspondence

}
.

Proof. If dG H (X ,Y ) < r , then there is a metric space Z and distance preserving in-

clusions i : P → Z and j : Q → Z such that d Z
H (i (P ), j (Q)) < r . Let R ⊆ P ×Q be given

by the pairs (p, q) such that dZ (i (p), j (q)) < r . This is a correspondence, since, by

hypothesis, d Z
H (i (P ), j (Q)) < r . Now, if (p, q), (p ′, q ′) ∈ R, then

|dP (p, p ′)−dQ (q, q ′)| ≤ dZ (i (p), j (q))+dZ (i (p ′), j (q ′)) < 2r,

by the triangle inequality of Z and the fact that i and j are embeddings. So dist(R) <
2r .

Going the other way, assume given a correspondence R ⊆ P×Q such that dist(R) =
2r . Consider the metric space Z with underlying set P

∐
Q and metric given by

dZ (p, p ′) = dP (p, p ′)

dZ (q, q ′) = dQ (q, q ′)

dZ (p, q) = inf
{
dP (p, p ′)+dQ (q ′, q)+ r : (p ′, q ′) ∈ R

}
.

To see that this satisfies the triangle inequality, it suffices to check that given p1, p2 ∈ P

and q ∈ Q, we have dZ (p1, p2) ≤ dZ (p1, q)+dZ (q, p2). We do this by applying the
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triangle inequality a few times and the fact that dist(R) = 2r :

dZ (p1, q)+dZ (q, p2)

= inf
(p ′

1,q ′)∈R
(dP (p1, p ′

1)+dQ (q, q ′))+ inf
(p ′

2,q ′′)∈R
(dP (p2, p ′

2)+dQ (q, q ′′))+2r

≥ inf
(p ′

1,q ′)∈R
inf

(p ′
2,q ′′)∈R

dP (p1, p ′
1)+dP (p2, p ′

2)+dQ (q ′, q ′′)+2r

≥ inf
(p ′

1,q ′)∈R
inf

(p ′
2,q ′′)∈R

dP (p1, p ′
1)+dP (p2, p ′

2)+dP (p ′
1, p ′

2)

≥dP (p1, p2) = dZ (p1, p2).

Finally, we must see that the images of P and Q in Z are at Hausdorff distance

less than or equal to r . This follows from the definition of dZ and the fact that the

projections R → P and R →Q are surjective.

2.3 Monoidal categories

In this section we define closed symmetric monoidal categories. For more details,

we refer the reader to [Kel82]. We remark that an understanding of the contents of

this section is not strictly necessary to understand the main concepts in this thesis:

although these concepts are inspired by enriched category theory, we unfold the main

definitions to avoid heavy categorical language whenever possible. It is nonetheless

very helpful to interpret the topics in this thesis using enriched category theory.

In Section 2.6.1, we describe our main example of monoidal category, the category

of persistent sets.

Definition 2.3.1. A monoidal category is a category V together with

1. a functor ⊗ : V ×V → V called the tensor product;

2. an object 1 ∈ V called the tensor unit;

3. for each x, y, z ∈ V , a natural isomorphism

αx,y,z : (x ⊗ y)⊗x
'−→ x ⊗ (y ⊗ z),

called the associator;
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4. for every x ∈ V , a natural isomorphism

λx : 1⊗x
'−→ x,

called the left unitor;

5. for every x ∈ V , a natural isomorphism

ρx : x ⊗1
'−→ x,

called the right unitor;

such that all of the diagrams of the following two forms commute in V :

. the triangle identity:

(x ⊗1)⊗ y x ⊗ (1⊗ y)

x ⊗ y

αx,1,y

ρx ⊗ idy idx ⊗λy

. the pentagon identity:

(w ⊗x)⊗ (y ⊗ z)

((w ⊗x)⊗ y)⊗ z (w ⊗ (x ⊗ (y ⊗ z)))

(w ⊗ (x ⊗ y))⊗ z w ⊗ ((x ⊗ y)⊗ z).

αw,x,y⊗zαw⊗x,y,z

αw,x,y ⊗ idz

αw,x⊗y,z

idw ⊗αx,y,z

There are a few different natural notions of functor between monoidal categories.

We will use lax monoidal functors and strong monoidal functors.

Definition 2.3.2. A lax monoidal functor between two monoidal categories (V ,⊗V ,1V )

and (W ,⊗W ,1W ) is given by

1. a functor F : V →W ;
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2. a morphism ε : 1W → F (1V );

3. for all x, y ∈ V , a morphism

µx,y : F (x)⊗W F (y) → F (x ⊗V y),

natural in x and y;

such that all the following two kinds of diagrams commute in W :

1. associativity diagram:

(F x ⊗W F y)⊗W F z F x ⊗W (F y ⊗W F z)

F (x ⊗V y)⊗W F z F x ⊗W F (y ⊗V z)

F ((x ⊗V y)⊗V z) F (x ⊗V (y ⊗V z))

αF x,F y,F z

µx,y ⊗D id id⊗µy,z

µx⊗V y,z

F (αx,y,z)

µx,y⊗V z

2. unitality diagrams:

1W ⊗W F x F (1V )⊗W F x

F x F (1V ⊗x),

ε⊗ id

λF x µ1V ,x

F (λx)

F x ⊗W 1W F x ⊗W F (1V )

F x F (x ⊗1V ).

id⊗ε

ρF x µx,1V

F (ρ)

If ε and µx,y are isomorphisms, then F is called a strong monoidal functor.

The corresponding notion of natural transformation is the following.
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Definition 2.3.3. Let (V ,⊗V ,1V ) and (W ,⊗W ,1W ) be monoidal categories, and let

(F,εF ,µF ) and (G ,εG ,µG ) be lax monoidal functors from V to W . A monoidal nat-

ural transformation η from F to G consists of a natural transformation η : F ⇒ G

between the underlying functors, such that all of the following two kinds of diagrams

commute in W :

1. respect for monoidal product:

F (x)⊗W F (y) G(x)⊗W G(y)

F (x ⊗V y) G(x ⊗V y),

ηx ⊗W ηy

µF
x,y µG

x,y

ηx⊗V y

2. respect for units:

1W

F (1V ) G(1V ).

εF εG

η1V

The following definition formalizes the notion of a monoidal product being com-

mutative.

Definition 2.3.4. A symmetric monoidal category consists of a monoidal category V

together with, for every x, y ∈ V , a natural isomorphism Bx,y : x ⊗ y → y ⊗x such that

By,x ◦Bx,y = idx⊗y and such that all of the diagrams of the following form commute in

V : the hexagon identity:

(x ⊗ y)⊗x x ⊗ (y ⊗ z) (y ⊗ z)⊗x

(y ⊗x)⊗ z y ⊗ (x ⊗ z) y ⊗ (z ⊗x).

αx,y,z

Bx,y ⊗ idz

Bx,y⊗z

αy,x,z idy ⊗Bx,z

αy,z,x

Finally, the notion of closedness formalizes the idea of having internal homs, that

is, of having objects that represent the collection of morphisms between two objects

of the category.
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Definition 2.3.5. A closed symmetric monoidal category is a symmetric monoidal

category V such that, for all objects x ∈ V , the functor −⊗x : V → V has a right adjoint

functor [x,−] : V → V . For x, y ∈ V , the object [x, y] ∈ V is called the internal hom of x

and y.

2.4 Enriched categories

Monoidal categories serve as a basis for enriching categories. Again, for more details

about enriched category theory, we refer the reader to [Kel82].

2.4.1 Elementary notions

A category enriched in a monoidal category V is, informally, a category where the

hom objects are not sets, but objects of V .

Definition 2.4.1. Let V be a monoidal category. A V -category C (or V -enriched cate-

gory) consists of

. a collection of objects, denoted by obj(C );

. for x, y ∈ obj(C ), an object Hom(x, y) ∈ obj(V ), called the hom-object from x to

y;

. for each x, y, z ∈ obj(C ), a morphism

◦x,y,z : Hom(y, z)⊗Hom(x, y) → Hom(x, z),

called the composition morphism;

. for each object x ∈ obj(C ), a morphism ιx : 1 → Hom(x, x), called the identity

morphism of x;

such that all of the diagrams of the following two forms commute in V :

1. the associativity diagram:

(Hom(y, z)⊗Hom(x, y))⊗Hom(w, x) Hom(y, z)⊗ (Hom(x, y)⊗Hom(w, x))

Hom(x, z)⊗Hom(w, x) Hom(w, z) Hom(y, z)⊗Hom(w, y),

α

◦x,y,z ⊗ id

◦w,x,z ◦w,y,z

id⊗◦w,x,y
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2. the unitality diagram:

Hom(x, x)⊗Hom(w, x) Hom(w, x) Hom(w, x)⊗Hom(w, w)

1⊗Hom(w, x) Hom(w, x)⊗1.

◦w,x,x

ιx ⊗ id
λ

◦w,w,x

id⊗ ιwρ

The following construction lets us compare categories that are enriched over

different monoidal categories and will be important we constructing examples of our

main object of study: locally persistent categories.

Definition 2.4.2. Let V and W be monoidal categories, let F : V →W be a lax monoidal

functor, and let C be a V -enriched category. The change of enrichment of C along F is

the W -enriched category whose objects are the same as the objects of C , and whose hom-

object Hom(x, y) is given by F (HomC (x, y)). Identities and composition are defined

using the (lax) monoidal structure of F .

Example 2.4.3. Fix V a monoidal category. There is a lax monoidal functor V →
Set given by mapping v to HomV (1, v). The change of enrichment gives us a Set-

enrichment for C . The (ordinary) category thus obtained is called the underlying

category of C , and is denoted by C0.

Remark 2.4.4. The change of enrichment construction for a lax monoidal functor

F : V → W between monoidal categories V and W provides us with a change of

enrichment functor

F : V -Cat →W -Cat.

This construction respects natural transformations, that is, given F,G : V →W a lax

monoidal functors and η : F ⇒G a monoidal natural transformation, we get a natural

transformation η : F ⇒G as functors V -Cat →W -Cat.

Definition 2.4.5. Let V be a monoidal category. Given V -enriched categories C and D,

a V -enriched functor F : C →D consists of

. an mapping F : obj(C ) → obj(D);

. for every x, y ∈C , a morphism

Fx,y : HomC (x, y) → HomD(F x,F y);
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such that all of the following two kinds of diagrams commute in V :

1. respect for composition:

HomC (y, z)⊗HomC (x, y) HomC (x, z)

HomD(F y,F z)⊗HomC (F x,F y) HomD(F x,F z)

◦x,y,z

Fy,z ⊗Fx,y Fx,z

◦F x,F y,F z

2. respect for units:

1

HomC (x, x) HomD(F x,F x).

ιx ιF x

Fx,x

The collection of all V -enriched categories forms a category in its own right.

Definition 2.4.6. Let V be a monoidal category. The category of V -enriched categories

is the category whose objects are V -enriched categories and whose morphisms are V -

enriched functors. We denote this category by V -Cat or V Cat.

2.4.2 Constructions with enriched categories

In this section we assume that V is locally small, complete and cocomplete. As in the

non-enriched case, we can take the opposite of an enriched category.

Definition 2.4.7. Let V be a monoidal category. For any V -enriched category C , define

the opposite category C op to be the V -enriched category with the same objects as C ,

hom-object HomC op(x, y) given by HomC (y, x) for every x, y ∈C , identities given by the

identities of C , and composition given by swapping the arguments of the composition

of C .

We can also consider the (tensor) product of two enriched categories.

Definition 2.4.8. Let V be a monoidal category and let C and D be V -enriched cate-

gories. The tensor product of C and D, denoted by C ⊗D, is the V -enriched category
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with objects obj(C ⊗D) = obj(C )×obj(D), hom-object HomC⊗D((x, y), (x ′, y ′)) given

by HomC (x, x ′)⊗HomD(y, y ′), identities given by ιx ⊗V ιy : 1 → Hom((x, y), (x, y)), and

composition given by tensoring the composition of C and D as morphisms in V .

In order to define enriched natural transformations between enriched functors,

we must define (universal) extranatural transformations and ends.

Definition 2.4.9. Let V be a monoidal category, let C and D be V -enriched categories,

and let F : C op⊗C →D be a V -enriched functor. A V -extranatural transformation

θ : d
•−→ F from d ∈D to F consists of, for every c ∈C , a morphism θc : d → F (c,c) in D0,

such all of the diagrams of the following form commute:

HomC (x, y) HomD(F (x, x),F (x, y))

HomD(F (y, y),F (x, y)) HomD(d ,F (x, y)).

F (x,−)

F (−, y) HomD(θx , id)

HomD(θy , id)

Definition 2.4.10. Let V be a monoidal category, let C be a V -enriched category, let F :

C op⊗C → V be a V -enriched functor, and let v ∈ V . A V -extranatural transformation

θ : v
•−→ F is universal if every V -extranatural transformation α : v ′ •−→ F is given by

αx = θx ◦ f for a unique morphism f : v ′ → v in V .

When such a universal transformation exists, it is called an end of F , and it is

denoted by
∫

c∈C F (c,c).

It is easy to check that any two ends of the same functor are isomorphic.

We are ready to define enriched natural transformations between enriched func-

tors.

Definition 2.4.11. Let V be a monoidal category, let C and D be V -enriched categories,

and let F,G : C →D be V -enriched functors. The V -object of natural transformations

between F and G is defined to be
∫

c∈C HomD(F (c),G(c)), whenever it exists. It is denoted

by Hom[C ,D](F,G).

If the enriched category C is small (i.e. , the collection obj(C ) is a set), then the

end exists.

We now wish to extend the above definition to the definition of the enriched

functor category of enriched functors between two fixed enriched categories. In order
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to do this, consider, for each c ∈C

Ec : Hom[C ,D](F,G) =
∫

c ′∈C
HomD(F (c ′),G(c ′)) → HomD(F (c),G(c)),

the canonical morphism out of the end (often referred to as the counit). Observe that

the composite

Hom[C ,D](F,G)⊗Hom[C ,D](H ,F )
Ec⊗Ed−−−−→ HomD(F (c),G(c))⊗HomD(H(c),F (c))
◦−→ HomD(H(c),G(c))

forms an extranatural transformation. This provides us with a morphism

◦H ,F,G : Hom[C ,D](F,G)⊗Hom[C ,D](H ,F ) → Hom[C ,D](H ,G).

Finally, the identity morphisms of D give us extranatural transformations

ιF : 1 → HomD(F (c),F (c)).

Definition 2.4.12. Let V be a monoidal category, let C and D be V -enriched categories,

and let F,G : C → D be V -enriched functors. The functor V -category [C ,D] has as

objects V -enriched functors between C and D, as hom-objects the ones defined in

Definition 2.4.11, and identity morphisms and composition as defined above.

2.4.3 (Co)powers and weighted (co)limits

Since the hom-objects of a V -enriched category C are objects of V , given x, y ∈ C

and k ∈ V it makes sense to talk about k-morphisms between x and y . These are just

morphisms k → HomC (x, y) in V . A 1-morphism (or just morphism) between x and

y is then a morphism 1 → HomC (x, y), or equivalently, a morphism form x to y in the

underlying category C0.

It is often useful to represent k-morphisms between x and y as 1-morphisms

between related objects. This is what the next definition accomplishes.

Definition 2.4.13. Let V be a closed symmetric monoidal category and let C be a V -

enriched category. The copower of an object x ∈ C by an object k ∈ V consists of an
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object k · x ∈C together with, for every y ∈C , a natural isomorphism

HomC (k · x, y) ∼= [k,HomC (x, y)],

where [−,−] denotes the internal hom of V .

Dually, the power of an object y ∈C by k consists of an object yk ∈C together with,

for every x ∈C , a natural isomorphism

HomC

(
x, yk

)∼= [k,HomC (x, y)].

We conclude this section with an extension of the notion of (co)limit to the en-

riched case. The main idea is that, since we are working with an enriched category

and thus have a notion of k-morphism for every k ∈ V , the indexing diagram of a

(co)limit should come with weights that specify what kind of morphism should be

used when constructing (co)cones for the diagram.

For intuition about the notion of weighted (co)limit we recommend [Shu06] for

weighted (co)limits in the context of homotopy theory, [Rut98] for weighted (co)limits

in the context of (Lawvere) metric spaces, and Section 3.2.7, where we interpret some

universal constructions that are relevant to the theory of interleavings as weighted

limits.

Definition 2.4.14. Let V be a closed symmetric monoidal category and let K and C

be V -enriched categories. A weighted limit over an enriched functor F : K →C with

respect to a weight W : K → V consists of an object limW F ∈C together with, for every

c ∈C , a natural isomorphism

HomC

(
c, limW F

)∼= Hom[K ,V ] (W,HomC (c,F (−))) .

Dually, a weighted colimit over F with respect to W consists of an object colimW F ∈
C together with, for every c ∈C , a natural isomorphism

HomC

(
colimW F,c

)∼= Hom[K ,V ] (W,HomC (F (−),c)) .

An enriched category is (co)complete if it admits all small (co)limits with arbitrary

weights.
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2.4.4 Enriched Kan extensions

We now define Kan extensions in the context of enriched category theory. Although

this subject has some subtleties ([Dub70], [Kel82, Section 4]), this won’t be a problem

for us, as we will only use very basic facts and definitions.

Definition 2.4.15. Let V be a monoidal category, let C , C ′, and D be V -enriched

categories with C and C ′ small and D complete, and let G : C → C ′ and F : C → D

be V -enriched functors. The pointwise right Kan extension of F along G, denoted by

RanG F : C ′ →D, is defined by the weighted limit:

(RanG F )(c ′) = limHomC ′ (c ′,G(−)) F.

Dually, if D is cocomplete, the pointwise left Kan extension of F along G is defined by

the weighted colimit:

(LanG F )(c ′) = colimHomC ′ (G(−),c ′) F.

From the definition, we get canonical natural transformations RanG F ◦G ⇒ F and

F ⇒ LanG F ◦G .

A V -enriched functor G : C →C ′ between V -enriched categories is fully faithful

if, for every x, y ∈C , it induces an isomorphism HomC (x, y) → HomC ′(F x,F x ′) in V .

The following result is standard.

Proposition 2.4.16. Let V be a monoidal category, let C , C ′, and D be V -enriched

categories with C and C ′ small and D complete (resp. cocomplete), and let G : C →
C ′ and F : C → D be V -enriched functors. If G is fully faithful, then the natural

transformation RanG F ◦G ⇒ F (resp. F ⇒ LanG F ◦G) is a natural isomorphism.

2.5 Model categories

In this section, we describe the very basics of the theory of model categories, and

give the examples we are interested in. For details, we refer the reader to [Qui67] for

the original description of the theory, and to [Hov07] and [Hir09] for more modern

accounts of it.

We start with the notion of lifting property.
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Definition 2.5.1. Let i : A → B and p : X → Y be morphisms in a category C . We say

that i has the left lifting property with respect to p and that p has the right lifting

property with respect to i if, for every commutative square

A Y

B X

f

i
g

p

there is a morphism h : B → Y such that h ◦ i = f and p ◦h = g .

The following definition formalizes the notion of functorial factorization. For a

category C , we let C→ denote the category of morphisms of C , that is, the category

of functors from the category freely generated by two objects and a single morphism

between them, to C .

Definition 2.5.2. A functorial weak factorization system on a category C consists of a

pair (L,R) of classes of morphisms of C such that there exist functors FL ,FR : C→ →C→

such that

. For every f ∈C→, we have FL( f ) ∈L and FR ( f ) ∈R and FR ( f )◦FL( f ) = f .

. The class L is precisely the class of morphisms having the left lifting property

against every morphism in R, and the class R is precisely the class of morphisms

having the left lifting property against every morphism in L.

We can now give a concise definition of model structure.

Definition 2.5.3. A model structure on a category C consists of three classes of mor-

phisms of C called weak equivalences (denoted by W ), cofibrations (denoted by Cof),

and fibrations (denoted by Fib) such that

1. (2-out-of-3) If f and g are composable morphisms of C and two of f ,g and g ◦ f

are weak equivalences, then so is the third.

2. (Cof,Fib∩W ) and (Cof∩W ,Fib) form two functorial factorization systems of C .

The morphisms in Cof∩W are called trivial cofibrations and the morphisms in

Fib∩W are called trivial fibrations.

It follows from the definition that a model structure, if it exists, it is completely

determined by the weak equivalences and one of the classes Cof or Fib.
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Definition 2.5.4. A model category consists of a complete and cocomplete category

together with a model structure.

Arbitrary model structures can be badly behaved. Many useful model structures

are cofibrantly generated, which intuitively means that one has to check relatively few

things when proving that a certain morphism is a fibration or a trivial fibration. We

now give the formal definitions.

Definition 2.5.5. Let C be cocomplete and let I be a class of morphisms of C .

. We write cell(I ) for the class of morphisms obtained by transfinite composition

of pushouts of coproducts of elements in I .

. We write cof(I ) for the class of retracts of elements of cell(I ).

Definition 2.5.6. A model category is cofibrantly generated if there are small sets of

morphisms I and J of C such that

. cof(I ) is precisely the class of cofibrations of C ;

. cof(J ) is precisely the class of trivial cofibrations of C ;

. I and J admit the small object argument, meaning that the domains of mor-

phisms of I are small relative to cell(I ) and the domains of morphisms of J are

small relative to cell(J ).

Of great use are model structures on functor categories. Thanks to composition-

ality, it is often the case that a model structure on a category C induces a model

structure on a functor category C D . In fact, there are two canonical choices, the

projective model structure, and the injective model structure. We will be interested in

the projective case.

Definition 2.5.7. Let C be a model category, let D be a small category, and consider

the functor category C D . A projective weak equivalence is a morphism of C D that is

an objectwise weak equivalence. A projective fibration is a morphism of C D that is

an objectwise fibration. The projective model structure on C D is the model structure

whose weak equivalences are the projective weak equivalences and whose fibrations

are the projective fibrations, provided it exists.

The following is well-known and appears, for example, in [Hir09, Section 11.6].
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Theorem 2.5.8. If C is a cofibrantly generated model category and D is a small category,

then the projective model structure on C D exists.

We finish this section with the examples most relevant to us. These are some of

the most well-known examples of model categories and go back to Quillen’s work

([Qui67]). They appear as Theorems 2.3.11, 2.4.19, and 3.6.5 of [Hov07], respectively.

Example 2.5.9. Let R be a commutative ring. There is a cofibrantly generated model

structure on Ch(R) such that the weak equivalences are the homology isomorphisms,

and such that every object is fibrant.

Example 2.5.10. There is a cofibrantly generated model structure on Top such that

the weak equivalences are the continuous functions inducing isomorphisms in all

homotopy groups, and such that every object is fibrant.

Example 2.5.11. There is a cofibrantly generated model structure on sSet such that

the weak equivalences are the simplicial maps whose geometric realization is a weak

equivalence of topological spaces, and such that every object is cofibrant.

2.6 Persistent objects

In this section, we study the notion of persistent object, and prove some basic facts

about categories of persistent objects. Persistent objects have also been referred to

as generalized persistent modules ([BSS13]). Although some of the results as stated

cannot be found in the literature, they are consequences of well-known facts in

category theory, and are sometimes used implicitly in the persistence literature.

We regard posets as categories. A monoidal poset (P,⊗,1) consists of a poset P

together with a binary operation −⊗− : P ×P → P and a unit object 1 ∈ P that underly

a (necessarily unique) monoidal structure when interpreting the poset as a category.

The poset ([0,∞),≤) will be denoted by R+. This is a monoidal poset, with

monoidal product given by addition of real numbers. The poset ((−∞,∞),≤) will

be denoted by R, and we will reserve R for the metric space given by the real num-

bers. The poset R is also monoidal, with monoidal product given by addition of real

numbers. If P is a poset and r, s ∈ P , we write s < r whenever s ≤ r and s 6= r .

The main objects of study of this thesis are persistent objects, (i.e. objects of a

functor category C P ) and categories enriched in persistent objects. Persistent objects

can be shifted, as follows.
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Definition 2.6.1. Let (P,⊗,1) be a monoidal poset and let C be a category. Given p ∈ P

and a functor F : P →C , we define the p-shift to the left of F as the functor F p : P →C

given by

F p (q) = F (p ⊗q).

In order to enrich a category over a category of persistent objects, we must give a

monoidal structure for the category of persistent objects. The monoidal product is

given by Day convolution, which we now explain.

2.6.1 Day convolution of persistent objects

Let (P,⊗,1) be a small monoidal category. The category of functors indexed by P with

values in Set inherits a monoidal product called Day convolution ([DK69], [Day70]).

Given two functors F,G : P → Set, the Day convolution F ⊗Day G : P → Set is defined

by

(F ⊗DayG)(p) =
∫ (p1,p2)∈P×P

HomP (p1 ⊗p2, p)×F (p1)×G(p2).

The structure morphisms are defined in a straightforward way, using the universal

property of coends. Since we will only use the definition in the case where the indexing

monoidal category is a poset, we now specialize the above definition to that case.

Let (P,≤,⊗) be a monoidal poset. The Day convolution of two functors F,G : P →
Set is given by

(F ⊗DayG)(r ) =
∫ s⊗t≤r

F (s)×G(t ). (2.6.2)

The indexing poset of the coend is the subposet of P ×P spanned by pairs (s, t ) such

that s ⊗ t ≤ r .

Day convolution automatically gives a closed symmetric monoidal structure. We

now give the formula for the internal hom in the case where the indexing category

is a poset. The internal hom [F,G]Day : P → Set between two functors F,G : P → Set is

given by

[F,G]Day(r ) = Nat(F,Gr ), (2.6.3)

where Gr : P → Set is the r -shift to the left of G .

Our motivating example is the following.

Example 2.6.4. The main case of interest to us is when P is R+. In that case, the

category SetR+ generalizes both dendrograms and ultra metric spaces (Section 6.7.2).
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Categories enriched in SetR+ are the main object of study of this thesis, and are called

locally persistent categories.

When working in a functor category SetP , the representable functors are of special

interest. These are the functors in the (essential) image of the Yoneda embedding,

which we now specialize to our case.

Definition 2.6.5. Let P be a poset and let r ∈ P. Let Y (r ) : P → Set be such that Y (r )(s)

is a singleton set if r ≤ s and the empty set if r > s. The mapping r 7→ Y (r ) provides

us with a functor Y : Pop → SetP , called the coYoneda embedding, or the Yoneda

embedding for simplicity.

We now state a few consequences of the Yoneda lemma. By Eq. (2.6.3) and the

Yoneda lemma, we have

Gr ∼= [Y (r ),G]Day (2.6.6)

and by adjunction and Eq. (2.6.3), we have

[F,G]Day(r ) = Nat(F,Gr ) ∼= Nat(F, [Y (r ),G]Day) ∼= Nat(F ⊗Day Y (r ),G). (2.6.7)

We now give an important result about Day convolution that says that, in a sense,

Day convolution is the most natural monoidal structure on a functor category of the

form SetP . We specialize it to the case of poset-indexed functors, but the results holds

for general indexing monoidal categories.

Lemma 2.6.8. Let P be a monoidal poset. Then, the (co)Yoneda embedding Y : Pop →
SetP is strong monoidal.

Proof. Let r,u, v ∈ P . Using Eq. (2.6.2), we see that

(Y (u)⊗Day Y (v))(r ) =
∫ s⊗t≤r

Y (u)(s)×Y (v)(t ).

By definition of Y (u), we have that Y (u)(s) is a singleton if u ≤ s and the empty set

otherwise. Similarly, Y (v)(t ) is a singleton if v ≤ t and the empty set otherwise. This

implies that ∫ s⊗t≤r

Y (u)(s)×Y (v)(t ) ∼=Y (u + v),

as required.
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2.6.2 Continuity of persistent objects

This section presents two classes of well-behaved persistent objects, and interprets

this well-behaved condition as a (co)sheaf condition. This condition is a completeness

condition, and will become important when proving that an interleaving distance is

geodesic (Section 4.5).

Definition 2.6.9. Let C be a cocomplete category and let P be a poset. A functor F : P →
C is left continuous if for every r ∈ P the canonical morphism

colimF<r → F (r )

is an isomorphism. Here F<r : {r ′ ∈ P : r ′ < r } → C denotes the restriction of F to the

subposet of P given by all elements strictly smaller than r .

Dually, let C be a complete category. A functor F : P →C is right continuous if for

every r ∈ P the canonical morphism

F (r ) → limF>r

is an isomorphism.

Right and left continuous functors enjoy some useful closure properties.

Proposition 2.6.10. Let P be a monoidal poset, and let F,G : P → Set. If G is right

continuous, then the internal hom [F,G]Day is right continuous.

Proof. We simply compute

lim
r ′>r

[F,G]Day(r ′) ∼= lim
r ′>r

Nat(F,Gr ′
)

∼= Nat(F, lim
r ′>r

Gr ′
)

∼= Nat(F,Gr )

∼= [F,G]Day(r ).

Universal property of (−)#. When P is the poset R+ or the poset R, there is a uni-

versal way of turning a functor F : R+ →C into a left or right continuous functor. We

explain the case of right continuity, the case of left continuity being dual. We only

consider the poset R+ for simplicity; the following discussion generalizes to products

of R+ and R.
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Let C be a complete category. Let C R+
right

be the subcategory of C R+ consisting of

right continuous functors. Consider the functor C R+ → C R+
right

that maps a functor

F : R+ →C to the functor F # : R+ →C defined by

F # = lim
r>0

F r ,

where F r denotes the r -shift to the left of F , as in Definition 2.6.1. For every F : R+ →C ,

there is a natural morphism η#
F : F → F #. Moreover, F # is right continuous since

lim
s′>s

F #(s′) = lim
s′>s

lim
r>0

F r (s′) = lim
s′>s

lim
r>0

F (s′+ r ) ∼= lim
s′′>s

F (s′′) ∼= F #(s),

where in the first isomorphism we used the fact the poset map (s,∞)× (0,∞) → (s,∞)

given by mapping (t , t ′) to t + t ′ is coinitial, i.e. for every u > s, there is (t , t ′) ∈ (s,∞)×
(0,∞) such that t + t ′ < u. It is easy to see that (−)# : C R+ → C R+ exhibits C R+

right
as a

reflective subcategory of C R+ , that is, that there is a natural bijection Nat(F #,G) ∼=
Nat(F,G) for F,G : R+ →C and G right continuous, given by precomposition with η#

F .

Monoidality of (−)#. Consider the isomorphism ε : Y (0) →Y (0)# given by the fact

that Y (0) is right continuous, and the natural transformation µF,G : F # ⊗Day G# →
(F ⊗DayG)# that corresponds to the natural morphism ηF⊗DayG : F ⊗DayG → (F ⊗DayG)#

under the composite isomorphism

Nat(F # ⊗DayG#, (F ⊗DayG)#) ∼= Nat(F #, [G#, (F ⊗DayG)#]Day)

∼= Nat(F, [G#, (F ⊗DayG)#]Day)

∼= Nat(F ⊗DayG#, (F ⊗DayG)#)

∼= Nat(G#, [F, (F ⊗DayG)#]Day)

∼= Nat(G , [F, (F ⊗DayG)#]Day)

∼= Nat(F ⊗DayG , (F ⊗DayG)#),

where we used Proposition 2.6.10 and the fact that (−)# is a reflection into right con-

tinuous functors. The following proposition is then a consequence of Day’s reflection

theorem ([Day72]) and Proposition 2.6.10.

Proposition 2.6.11. The morphisms ε and µ exhibit the functor (−)# : C R+ →C R+ as a

lax monoidal functor, and the natural transformation η# : idC R+ ⇒ (−)# as a monoidal

natural transformation.
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Other properties of (−)#. The following result says that, up to arbitrarily small shifts,

F and F # are indistinguishable.

Proposition 2.6.12. Let C be a complete category. Let F : R+ →C and let ε> 0. There

are morphisms F → (F #)ε and F # → F ε such that the composites are equal to the natural

maps F → F 2ε and F # → (F #)2ε.

Proof. On the one hand, we have F → F # given by η. On the other hand, for any ε> 0,

we have F # → F ε by construction. It is enough to show that these maps compose to

the natural maps F → F ε and F # → (F #)ε, and this follows from the universal property

of F #.

Given F : R+ → Set and s ≤ r , let ϕF
s,r : F (s) → F (r ) denote the structure morphism

of F . We deduce the following.

Lemma 2.6.13. Let F : R+ → Set. Given s < r ∈ R+ and a,b ∈ R+(s), if η#
F (a) = η#

F (b) ∈
F #(s), then ϕF

s,r (a) =ϕF
s,r (b).

Continuity as sheaf condition. We conclude this section by interpreting right

(resp. left) continuity as a sheaf (resp. cosheaf) condition, in the case where the

indexing poset is R+ or R.

Remark 2.6.14. Note that R+ is a full subcategory of (R+,≤) = ([0,∞],≤), which is a

frame, that is, a poset with all joins and all finite meets, and such that binary meets

distribute over arbitrary joins.

Any frame is naturally equipped with the structure of a site, where a family of

morphism {Ui →U } is covering precisely if
∨

i Ui =U .

This means that, if C is complete and cocomplete, there is a well-defined sheaf

condition for functors R+ →C . Note that, given r ∈ R+, there are exactly two covering

sieves for r : {r ′ : r ′ > r } and {r ′ : r ′ ≥ r }. This means that a functor F : R+ →C is a sheaf

exactly if F (r ) → limF>r is an isomorphism, so exactly if it is right continuous.

The category R+, being a dense subsite of R+, inherits a site structure with the

same sheaf condition. With this site structure, being left continuous is the same as

being a sheaf. Under this interpretation, the functor (−)# is just sheafification.

The discussion above dualizes, so that being right continuous is equivalent to

being a cosheaf. It also applies to the category R, by seeing it as a dense subsite of

[−∞,∞].
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Chapter 3

Locally persistent categories

To any category C , one can assign the equivalence relation on its collection of objects

where two objects are related exactly if they are isomorphic. Any equivalence relation

on a set has an associated extended pseudo metric, where the distance between two

elements of the set is 0 if they are related and ∞ if they are not. In particular, to every

category C , one can assign an extended pseudo metric on its collection of objects. This

distance is rather discrete, but it completely characterizes the equivalence relation

given by isomorphism.

In this chapter, we study locally persistent categories. These are categories with ex-

tra structure that allows one to define a notion of approximate isomorphism. In these

categories, for each pair of objects and each ε ∈ R+, there is a set of ε-approximate

isomorphisms between them, which are usually referred to as ε-interleavings. When

one composes an ε-approximate isomorphism with a δ-approximate isomorphism,

one obtains an (ε+δ)-isomorphism. What in the case of categories was a discrete

distance, becomes, in this case, a more interesting distance. This is the interleaving

distance associated to a locally persistent category. Concretely, a locally persistent

category is a category enriched in the functor category SetR+ .

Category Locally persistent category
morphism ε-approximate morphism

isomorphism ε-interleaving
equivalence relation

given by isomorphism
interleaving distance

Table 3.1: Translating a few basic notions between categories and locally persistent
categories.
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In many cases, the interleaving distance is “too strict”. For example, as observed in

[BL17], in the locally persistent category of persistent topological spaces, there exist

homotopy equivalent persistent topological spaces whose interleaving distance is

infinite. This problem has been approached in more than one way in the literature.

In [Les12], the author considers the interleaving distance in a homotopy category of

persistent topological spaces, and similarly, in [FLM17], the authors consider the in-

terleaving distance in a homotopy category of R-filtered topological spaces. In [BL17],

the authors relax the notion of interleaving to a notion of homotopy interleaving, and

define the homotopy interleaving distance in the category of persistent topological

spaces. In [Mé17], the author defines a distance between R-filtered finite simplicial

complexes that shares many similarities with the homotopy interleaving distance

of [BL17]. In order to incorporate such interleaving distances into our framework,

we draw inspiration from the solutions of [Mé17] and [BL17] and consider locally

persistent categories with additional homotopical structure that allows one to define

a kind of homotopy interleaving distance, which we call the quotient interleaving

distance. The extra homotopical structure comes in the form of a class of morphisms

of our locally persistent category which we regard as weak equivalences, or acyclic

morphisms.

A category together with a class of morphisms containing all identities is usu-

ally called a relative category. Following this convention, we call locally persistent

categories together with the extra homotopical structure relative locally persistent

categories.

Relative category Relative locally persistent category

homotopy class of morphisms
homotopy class of

ε-approximate morphism
weak equivalence ε-quotient interleaving

equivalence relation
given by weak equivalence

quotient interleaving distance

Table 3.2: Translating a few basic notions between relative categories and relative
locally persistent categories.

The framework presented in this chapter is not just a way of organizing concepts:

we will see in Chapter 4 that, in a locally persistent category, simple categorical

structure (such as weighted (co)limits) gives rise to useful metric structure.

The chapter is structured as follows. In Section 3.1, we introduce locally per-
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sistent categories and the interleaving distance on their collections of objects. In

Section 3.2 we study the category theory of locally persistent categories by describing

diagrammatic reasoning and universal constructions relevant to this setting. Finally,

in Section 3.3, we introduce quotient interleaving distances.

Note that, although we use the language of enriched category theory to motivate

some definitions, the proofs in this chapter don’t rely on any results of enriched

category theory.

3.1 Main definitions

Recall that R+ = ([0,∞),≤,+) and R = ((−∞,∞),≤). We start by defining our main

object of study. In the language of Section 2.4 and Section 2.6.1, we will be studying

categories enriched in SetR+ . Nonetheless, we will unfold definitions as much as

possible, and, in this section, we will not rely on the theory of enriched categories for

our definitions and proofs.

The following is an unpacking of the definition of category enriched in persistent

sets, as defined in Example 2.6.4.

Definition 3.1.1. A locally persistent category C consists of the following data:

. a collection of objects, denoted by obj(C );

. for each x, y ∈ obj(C ) and each ε ∈ R+, a collection of ε-approximate mor-

phisms, denoted by HomC (x, y)ε;

. for each x ∈ obj(C ), an identity morphism, denoted by idx ∈ HomC (x, x)0;

. for each x, y, z ∈ obj(C ) and each ε,δ ∈ R+, a composition operation

−◦− : HomC (y, z)δ×HomC (x, y)ε→ HomC (x, z)ε+δ;

. for each x, y ∈ obj(C ) and each ε≤ δ ∈ R+, a shift operation

Sε,δ : HomC (x, y)ε→ HomC (x, y)δ;

such that
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. identity morphisms act as the identity, in the sense that f ◦ id= id◦ f = f for any

approximate morphism f ;

. composition is associative, so that f ◦ (g ◦h) = ( f ◦ g )◦h for any approximate

morphisms;

. the shift S is a functor, in the sense that Sε,ε : HomC (x, y)ε→ HomC (x, y)ε is the

identity function, and for ε ≤ δ ≤ γ, we have Sδ,γ ◦Sε,δ = Sε,γ : HomC (x, y)ε →
HomC (x, y)γ;

. the functor S respects composition, in the sense that for ε≤ ε′ ∈ R+ and δ≤ δ′ ∈
R+, and objects x, y, z ∈C , the following diagram commutes

HomC (y, z)δ×HomC (x, y)ε HomC (x, z)ε+δ

HomC (y, z)δ′ ×HomC (x, y)ε′ HomC (x, z)ε′+δ′ .

◦

Sδ,δ′ ×Sε,ε′

◦
Sε+δ,ε′+δ′

Notation 3.1.2. For conciseness, we will often refer to ε-approximate morphisms

simply as ε-morphisms, and to approximate morphisms simply as morphisms.

The above definition deserves a few remarks. Firstly, note that the objects of a

locally persistent category C together with the 0-morphisms form a usual category.

We refer to this category as the underlying category of C , and we denote it by C0. In

this sense, a locally persistent category can be interpreted as a category with extra

structure.

Secondly, note that being a locally persistent category is a self-dual notion.

This means that every locally persistent category C has an associated opposite

locally persistent category C op with the same objects, and such that HomC op(x, y)ε =
HomC (y, x)ε for every ε ∈ R+ and x, y ∈ obj(C ). This allows one to dualize the

universal constructions described in Section 3.2 and the results proven in Chapter 4.

We now give some examples of locally persistent categories. These and other

examples are studied in depth in Chapter 6.

One of the most natural examples, and the main motivating example for many

of the categorical approaches to interleaving distances, is the case of the category of

persistent objects in a category C .
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Example 3.1.3. Let C be a category. The category of persistent objects of C is the

functor category C R. For a persistent object X ∈ C R and ε ∈ R+, let X ε ∈ C R be the

shift of X to the left by ε, as in Definition 2.6.1, that is X ε(t ) = X (t +ε). We now endow

the category C R with a locally persistent category structure. An ε-morphism from

a persistent object X to a persistent object Y consists of a natural transformation

X → Y ε. The shift operator, Nat(X ,Y ε) → Nat(X ,Y ε′) for ε′ ≥ ε simply postcomposes

with the natural transformation Y ε → Y ε′ given by the structure morphisms of Y .

Composition and identities work as in the category C R. Note that the underlying

category of this locally persistent category is precisely the original functor category.

Example 3.1.4. Metric spaces form a locally persistent category, where the ε-

morphisms are the morphisms that don’t increase the distance more than ε. Con-

cretely, we endow the category epMet with the following locally persistent category

structure. An ε-morphism between ep metric spaces P,Q ∈ epMet consists of a func-

tion f : P →Q between the underlying sets such that dP (p, p ′)+ε≥ dQ ( f (p), f (p ′)) for

all p, p ′ ∈ P . The shift operator, sending ε-morphisms to ε′-morphisms for ε≤ ε′, is an

inclusion in this case. The identity morphisms are given by the identity functions, and

composition is just composition of functions. Note that a 0-morphism is precisely a

1-Lipschitz map, and thus the underlying category of this locally persistent category

is our original category epMet.

The following example is a great source of applications. Any category with a flow,

in the sense of [SMS18], gives rise to a locally persistent category. Here we outline the

main idea; details about the constructions are given in Section 5.2.

Example 3.1.5. Let (D,T ) be a category with a flow, that is, a category D together with

a lax monoidal functor T : R+ → End(D). The collection of ε-morphisms between

objects x, y ∈ D is given by the set HomD (x,Tε(y)). The shift operator is given by

postcomposition with the morphism Tε(y) → Tε′(y) for ε ≤ ε′ induced by the flow.

Identities are defined similarly. Composition is a bit more subtle and we don’t describe

it now. One should note that, in this case, the underlying category of the locally

persistent category that we get does not coincide with D in general. The underlying

category is in fact equivalent to the Kleisli category of the monad given by T0 : D → D .

This is not really an issue, as, in practice, the monad T0 is often naturally isomorphic

to the identity, and, in that case, its Kleisli category is just D .

We now unfold the definition of enriched functor between categories enriched in

SetR+ . This is the natural notion of morphism between locally persistent categories.
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Definition 3.1.6. A locally persistent functor F : C → D between locally persistent

categories C and D is given by the following data:

. a mapping F : obj(C ) → obj(D);

. for each x, y ∈C and each ε ∈ R+, a mapping F : HomC (x, y)ε→ HomD(F (x),F (y))ε;

such that

. F respects identities, F (idx) = idF (x);

. F respects composition, F ( f ◦ g ) = F ( f )◦F (g );

. F respects shifts, in the sense that for a morphism f ∈ Hom(x, y)ε and ε≤ δ, we

have Sε,δ(F ( f )) = F (Sε,δ( f )).

Small locally persistent categories together with locally persistent functors form a

category that we denote by lpCat. Similarly, large locally persistent categories together

with locally persistent functors form a category lpCAT.

Many important constructions in the theory of persistence can be interpreted

as locally persistent functors. The following two examples are expanded upon in

Section 6.3.

Example 3.1.7. The Vietoris–Rips and the Čech filtrations give locally persistent func-

tors VR, Č : epMet → TopR.

As explained in the introduction to Chapter 3, the main reason to consider locally

persistent categories is that this extra structure allows for the definition of a kind

of approximate isomorphism, which in turn gives a notion of distance between the

objects of the category. Approximate isomorphisms are called interleavings, and, as

we shall see, they share many properties with isomorphisms.

Definition 3.1.8. Let C be a locally persistent category and let ε,δ ∈ R+. An (ε,δ)-

interleaving between objects x, y ∈ C is given by morphisms f ∈ HomC (x, y)ε and

g ∈ HomC (y, x)δ such that g ◦ f = S0,ε+δ(idx) and f ◦ g = S0,ε+δ(idy ). A δ-interleaving

is a (δ,δ)-interleaving.

Note that a 0-interleaving in a locally persistent category C is precisely an isomor-

phism in the underlying category C0.
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Remark 3.1.9. Interleavings in a locally persistent category correspond to what some-

times is referred to as weak interleavings ([SMS18]). There is a way to define strong

interleavings in a locally persistent category with extra structure. This is discussed in

Section 5.2.2.

In the rest of this section we define the interleaving distance and we show that

locally persistent functors are distance non-increasing.

The following is a simple application of the composition law of a locally persistent

category.

Lemma 3.1.10. If C is a locally persistent category, x, y ∈ C are ε-interleaved, and

y, z ∈C are δ-interleaved, then x and z are (ε+δ)-interleaved.

Proof. Let f ∈ Hom(x, y)ε and g ∈ Hom(y, x)ε witness the fact that x and y are ε-

interleaved, and let h ∈ Hom(y, z)δ and i ∈ Hom(z, y)δ witness the fact that y and z

are δ-interleaved.

Consider the composites h ◦ f ∈ Hom(x, z)ε+δ and g ◦ i ∈ Hom(z, x)ε+δ. In order to

see that these form an (ε+δ)-interleaving between x and z, we compute

(g ◦ i )◦ (h ◦ f ) = g ◦S0,2δ(idy )◦ f

= g ◦Sε,ε+2δ( f )

= S2ε,2ε+2δ(g ◦ f )

= S0,2ε+2δ(idx).

An analogous computation shows that (h ◦ f )◦ (g ◦ i ) = S0,2ε+2δ(idy ).

As a consequence, the interleaving distance, which we now introduce, satisfies the

triangle inequality.

Definition 3.1.11. Let C be a locally persistent category. Define the interleaving dis-

tance dC
I : obj(C )×obj(C ) → [0,∞] as

dC
I (x, y) = inf

{
δ ∈ R+ : x and y are δ-interleaved

}
,

with the convention that the infimum of the empty subset of R+ is ∞. This is an ep

metric on obj(C ).

The proof of the following result is an immediate application of the definitions, but

it is nonetheless one of the most useful results of the theory of interleaving distances.



3.2. CATEGORY THEORY OF LOCALLY PERSISTENT CATEGORIES 49

Theorem 3.1.12. Let F : C → D be a locally persistent functor. Then F is distance

non-increasing, in the sense that for all x, y ∈C we have dC
I (x, y) ≥ dD

I (F x,F y).

Proof. By functoriality of F , aδ-interleaving between x, y ∈C maps to aδ-interleaving

between F (x),F (y) ∈D.

3.2 Category theory of locally persistent categories

In this section, we develop the category theory of locally persistent categories. One of

the most useful tools of categorical reasoning are diagrams. For this reason, we start

by extending the notion of a diagram of objects and morphisms in a category, to a

diagram of objects and approximate morphisms in a locally persistent category.

We then identify three kinds of universal constructions that are particularly rel-

evant when studying distances, and use them to prove properties about the inter-

leaving distance. These are weighted pullbacks, weighted sequential limits, and

terminal midpoints. Although we don’t base any of our arguments on the theory of

enriched categories, we show that the language of enriched category theory is useful

in understanding these constructions, as they are all instances of weighted limits

(Definition 2.4.14).

3.2.1 Diagrams

In this section, we describe how one can use diagrams to reason about locally persis-

tent categories.

Notation 3.2.1. An ε-morphism in a locally persistent category can be drawn as an

arrow with index ε, in the following way. For a locally persistent category C , objects

x, y ∈C , and ε ∈ R+, the notation f : x →ε y means that f is an element of HomC (x, y)ε.

Note that we may write ε either as a superscript or as a subscript. Furthermore, to

keep additional notation to a minimum, we will avoid explicitly writing the index 0

for 0-morphisms.

This notation can be extended to diagrams to get a well-defined notion of commu-

tative diagram, as follows. Given a locally persistent category C , objects x, y, z ∈C ,

ε,δ,γ ∈ R+, and morphisms f ∈ Hom(x, y)ε, g ∈ Hom(y, z)δ, and h ∈ Hom(x, z)γ, we
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say that the diagram

x z

y

h γ

f
ε

g

δ

is commutative (or commutes) if Sγ,max(γ,ε+δ)(h) = Sε+δ,max(γ,ε+δ)(g ◦ f ). In the case

when δ+ε= γ, this just means that h = g ◦ f .

Note that the above notion of commutative diagram is well-defined even if ε+δ
is not equal to γ. Next, we give a convention to avoid writing subscripts for the shift

operation.

Notation 3.2.2. When it is clear from the context, we may omit the explicit shift of a

morphism, so that, if f : x →ε y and δ≥ ε, the morphism S( f ) : x →δ y denotes Sε,δ( f ).

Since we will use interleavings often, we introduce notation for them.

Notation 3.2.3. Given a locally persistent category C , objects x, y ∈C , and ε,δ ∈ R+,

the notation

f : x δ←→ε y : g

means that there are morphisms f : x →ε y and g : y →δ x forming an (ε,δ)-

interleaving.

When labeling these morphisms in a diagram, we will use the convention that

the upper label corresponds to the left-to-right morphism, and the lower label to the

right-to-left morphism. So, if the interleaving above appears in a diagram, we will

label it as follows

x y.
f

εgδ

3.2.2 Diagrams as functors

As is usual in category theory, a diagram in a locally persistent category C can be

equivalently described by a locally persistent functor D →C , for D an indexing locally

persistent category. It is often useful to use diagrams indexed by a locally persistent

category that is freely generated by a locally persistent graph. Let us make this formal.

A locally persistent graph G consists of a set obj(G) and, for each x, y ∈ obj(G), a

persistent set ArrG (x, y) ∈ SetR+ . A morphism f : G → H between locally persistent
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graphs consists of a map f : obj(G) → obj(H) together with, for every x, y ∈ obj(G), a

natural transformation between persistent sets f : ArrG (x, y) → ArrH ( f (x), f (y)). Let

lpGph be the category of locally persistent graphs.

Every locally persistent category can be seen as a locally persistent graph, by for-

getting the composition and the identities. This gives a forgetful functor U : lpCat →
lpGph. This functor has a left adjoint F : lpGph → lpCat, which is defined in [Wol74,

Proposition 2.2] for a general enriching category V . We describe F in our case.

Let G ∈ lpGph. Let F (G) ∈ lpCat have the same objects as G and define

HomF (G)(x, y) = ∐
e0,...,en∈G
e0=x,en=y

ArrG (e0,e1)⊗Day ArrG (e1,e2)⊗Day · · ·⊗Day ArrG (en−1,en),

when x 6= y and

HomF (G)(x, y) =

 ∐
e0,...,en∈G
e0=x,en=y

ArrG (e0,e1)⊗Day ArrG (e1,e2)⊗Day · · ·⊗Day ArrG (en−1,en)


∐

Y (0),

when x = y . Here ⊗Day is the Day convolution tensor product between objects of

SetR+ , defined in Section 2.6.1.

Identities are given by the Y (0) summand in the above equation, and composi-

tion is formal, using the fact that HomF (G)(x, z) contains a summand ArrG (x, y)⊗Day

ArrG (y, z) for every y ∈G .

Note that there is a canonical morphism uG : G →U (F (G)) given by mapping each

object of G to itself and ArrG (x, y) to the corresponding summand in ArrU (F (G))(x, y).

The most important property of F is the following proposition, which tells us

how to map out of a freely generated locally persistent category. The proposition is a

particular case of [Wol74, Proposition 2.2].

Proposition 3.2.4. The functor F : lpGph → lpCat is left adjoint to U : lpCat → lpGph,

with unit given by u. In particular, for every G ∈ lpGph and every C ∈ lpCat, there is a

natural isomorphism

HomlpGph(G ,U (C )) ∼= HomlpCat(F (G),C ).
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3.2.3 (Co)powers

In this section we specialize the notion of copowers and powers (Definition 2.4.13) to

locally persistent categories. Although we use enriched category theory to motivate

the definition, the definition that we give (Definition 3.2.6) and that we use in the rest

of this thesis does not depend on the notion of enrichment.

Recall that a locally persistent category is a category enriched in SetR+ , where the

monoidal structure of SetR+ is given by Day convolution. Recall from Definition 2.3.5

that given functors F,G : R+ → Set, the functor [F,G] : R+ → Set denotes the internal

hom from F to G .

According to Definition 2.4.13, a locally persistent category C is copowered if for

every F ∈ SetR+ and every x, y ∈C , there is an object F · x, and an isomorphism

HomC (F · x, y) ∼= [F,HomC (x, y)],

natural in x, y , and F . Dually, a power of y by F is an object yF that satisfies

HomC (x, yF ) ∼= [F,HomC (x, y)].

In practice, one may be interested in categories that are (co)powered only by a

certain class of functors R+ → Set. Since locally persistent categories are categories

enriched in a copresheaf category, we are especially interested in copowering and

powering by representables. Recall from Definition 2.6.5 that given ε ∈ R+ we let

Y (ε) ∈ SetR+ denote its corresponding representable functor. Concretely, this functor

behaves as follows: given r ∈ R+ we have

Y (ε)(r ) =
; if r < ε

{∗} if r ≥ ε,

with the only possible structure morphisms.

Notation 3.2.5. For simplicity, we denote Y (ε) · x by ε ·x and xY (ε) by xε.

By definition of copower, and the formula Eq. (2.6.7), if C is copowered by a

representable Y (ε), we have, for every r ∈ R+,

HomC (ε · x, y)r
∼= [Y (ε),HomC (x, y)]r

∼= Nat(Y (ε)⊗Y (r ),HomC (x, y)).
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Since the Yoneda embedding is monoidal (Lemma 2.6.8), we have Y (ε)⊗Y (r ) ∼=
Y (ε+ r ). Also, by the Yoneda lemma, natural transformations Y (ε) → F correspond

to elements in F (ε), so

HomC (ε · x, y)r
∼= Nat(Y (ε)⊗Y (r ),HomC (x, y)) ∼= HomC (x, y)ε+r ,

and this is natural in ε, r , x, and y . Dually, if C is powered by representables,

HomC (x, yε)r
∼= HomC (x, y)ε+r .

We use this as our definition.

Definition 3.2.6. Let C be a locally persistent category. We say that C is copowered

by representables if for every x, y ∈C and ε ∈ R+, there exists ε · x ∈C , and an isomor-

phism of functors

HomC (ε · x, y) ∼= HomC (x, y)ε+(−),

natural in ε, x, and y.

Dually, we say that C is powered by representables if for every x, y ∈C and ε ∈ R+,

there exists yε ∈C , and an isomorphism of functors

HomC (x, yε) ∼= HomC (x, y)ε+(−),

natural in ε, x, and y.

Equivalently, a locally persistent category C is powered by representables exactly if

there is a natural isomorphism HomC (x, yε) ∼= HomC (x, y)ε for all x, y ∈C and ε ∈ R+.

Categories of persistent objects are always copowered and powered by representa-

bles, as the following example shows.

Example 3.2.7. Let C be a category, and consider the locally persistent category C R of

persistent objects of C , as in Example 3.1.3.

Given ε ∈ R+, any persistent object X ∈ C R can be shifted to the left and to the

right by ε, by letting X ε(r ) = X (r +ε) and (ε ·X )(r ) = X (r −ε) respectively. These shifts

give a power and a copower of X respectively. This is because, in the locally persistent

category C R, we have

HomC R (ε ·X ,Y )δ ∼= Nat(X ((−)−ε),Y ((−)+δ)) ∼= HomC R (X ,Y )ε+δ ∼= HomC R (X ,Y ε)δ,
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natural in X , Y , δ, and ε, by definition of the locally persistent structure.

Copowers and powers by representables are especially useful when working with ε-

approximate morphisms for ε> 0, as we now explain. Fix a locally persistent category

C that is copowered and powered by representables, x, y ∈C , and ε ∈ R+. There are

natural bijections between Hom(x, y)ε, Hom(ε · x, y)0, and Hom(x, yε)0. In this sense,

working with ε-approximate morphisms for ε > 0 can be reduced to working with

0-morphisms.

We conclude this section by introducing a handy notation to work with copowers

and powers by representables.

Notation 3.2.8. Since the isomorphisms

Hom(x, y)ε ∼= Hom(ε ·x, y)0
∼= Hom(x, yε)0

are natural in x, y , and ε, we will often use them implicitly, so that, for a morphism

f : x →ε y , the corresponding morphisms ε ·x → y and x → yε will also be denoted by

f .

Finally, if no confusion can arise, we may sometimes omit copowers and powers

of morphisms, as follows.

Notation 3.2.9. Given x, y ∈ C , f : x →ε y , and δ ∈ R+, if no confusion can arise, we

may denote the morphisms δ· f : δ·x →ε δ·y and f δ : xδ→ε yδ, given by the functorial

action of copowers and powers by representables, by f : δ · x →ε δ · y and f : xδ→ε yδ,

respectively.

3.2.4 Weighted pullbacks

In this section, we introduce a universal construction that lets us talk about pullbacks

of a 0-morphism along an approximate morphism. We start by specializing the notion

of commutative diagram in a locally persistent category, Notation 3.2.1, to the case of

squares.

Let C be a locally persistent category, and assume given a diagram in C of the
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following form

p b

a c.

f
ε

j k

h
ε

Recall that, according to our notation, j and k are 0-morphisms, and that the above

diagram is commutative if k ◦ f = h ◦ j .

We now define pullbacks of 0-morphisms along approximate morphisms, and

prove some basic properties of this construction.

It is interesting to note that essentially the same definition would work to define

pullbacks of approximate morphisms along approximate morphisms. The reason why

we don’t state it in this generality is because we won’t make use of it.

Definition 3.2.10. Let C be a locally persistent category. A diagram of the form

p b

a c

f
ε

j k

h
ε

is a weighted pullback of h and k if it satisfies the following universal property. For

every object p ′ ∈C , γ ∈ R+, and morphisms j ′ : p ′ →γ a and f ′ : p ′ →ε+γ b making the

following diagram commute, there exists a unique morphism u : p ′ →γ p completing

the diagram

p ′

p b

a c.

f ′

ε+γ

j ′

γ

f
ε

j

u

γ

k

h
ε

In the situation of the previous definition, we refer to j as the weighed pullback

of k along h. Dually, one defines weighted pushouts.
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A very basic, yet very useful, result in category theory says that the pullback of an

isomorphism along any morphism is also an isomorphism. A similar statement holds

for locally persistent categories, if we replace isomorphism by interleaving.

Proposition 3.2.11. Let C be a locally persistent category, and assume given a weighted

pullback

p b

a c.

f
ε

j k

h
ε

If there exists δ ∈ R+ and a morphism i : c →δ a forming an (ε,δ)-interleaving h :

a δ←→ε c : i , then there exists a unique morphism g : b →δ p forming an interleaving

f : p δ←→ε b : g and rendering the following square commutative

p b

a c.

f
ε

j

gδ

k

h
εiδ

Proof. By the universal property, we have a unique morphism g : b →δ p rendering

the following diagram commutative

b

p b

a c.

S0,ε+δ(idb)

ε+δ

i ◦k

δ

f
ε

j

g

δ

k

h
ε

This establishes uniqueness. We must show that f : p δ←→ε b : g is in fact an interleav-

ing. By the commutativity of the above diagram, all that remains to be shown is that



3.2. CATEGORY THEORY OF LOCALLY PERSISTENT CATEGORIES 57

g ◦ f = S0,ε+δ(idp ). To see this, consider the following commutative diagram.

p

b

p b

a c.

Sε,2ε+δ( f )

2ε+δS0,ε+δ( j )

ε+δ

f

ε

S(id)

ε+δ

i ◦k

δ

f
ε

j

g

δ

k

h
ε

The uniqueness part of the universal property of p implies that g ◦ f = S0,ε+δ(idp ),

since S0,ε+δ(idp ) renders the diagram commutative too.

We conclude this section by giving an explicit construction of weighted pullbacks.

Proposition 3.2.12. Let C be a locally persistent category that is powered by representa-

bles and such that pullbacks exist in its underlying category. If powers by representables

preserve these pullbacks, then weighted pullbacks along approximate morphisms exist

in C .

In particular, if C is copowered and powered by representables, and pullbacks exist

in C0, then C admits weighted pullbacks.

In the two cases above, the pullback of k : b → c along h : a →ε c is computed as the

pullback of k : bε→ cε along h : a → cε.

Proof. The second statement follows from the first one by noting that, if C is copow-

ered and powered by representables, then powers preserve all limits that exist in the

underlying category of C , since, in this case, powers are right adjoints.

We now prove the first statement. The statement about the construction of

weighted pullbacks will be clear by construction. Consider the following pullback

p bε

a cε.

f

j k

h
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This gives a commutative square

p b

a c.

f
ε

j k

h
ε

We now proceed to prove its universal property. Given a commutative square

p ′ b

a c,

f ′
ε+γ

j ′
γ

k

h
ε

we use the universal property of pγ to obtain a unique dashed morphism rendering

the following diagram commutative

p ′

pγ bε+γ

aγ cε+γ.

f ′

j ′
f γ

j

u

kε+γ

hγ

Note that pγ is a pullback by the assumption that powers preserve all pullbacks of the

underlying category of C . This gives the unique u : p ′ →γ p rendering the following
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diagram commutative, concluding the proof.

p ′

p b

a c.

f ′

ε+γ

j ′

γ

f
ε

j

u
γ

k

h
ε

3.2.5 Weighted sequential limits

We now turn our attention to a universal construction that will let us prove (met-

ric) completeness of certain interleaving distances. This universal construction is a

straightforward generalization of the notion of sequential limit in usual (Set-enriched)

categories.

Definition 3.2.13. Let C be a locally persistent category. Assume given ε ∈ R+ and

εi ∈ R+ for each i ∈N such that
∑

i εi = ε, objects xi ∈C for each i ∈N, and morphisms

fi : xi+1 →εi
xi for each i ∈N. We depict this situation as follows:

· · · fi−→εi
xi

fi−1−−→εi−1
· · · f1−→ε1 x1

f0−→ε0 x0.

Let εi = ε−∑
j<i ε j . A weighted sequential limit of the above diagram is given by

an object l ∈C and morphisms gi : l →εi
xi , such that fi ◦ gi+1 = gi , and satisfying the

following universal property.

For any object l ′ ∈C , γ ∈ R+, and morphisms g ′
i : l ′ →εi +γ xi , such that fi ◦g ′

i+1 = g ′
i ,

there exists a unique morphism u : l ′ →γ l rendering the following diagram commuta-

tive

l ′

l

· · · xi · · · x1 x0.

g0

ε0

g1

ε1

gi
εi

g ′
0

ε0+γ

g ′
1

ε1+γ

g ′
i

εi +γ

u
γ

fi
εi fi−1

εi−1 f1
ε1 f0

ε0
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Analogously to the case of weighted pullbacks, we recall from classical category

theory that a sequential limit of a diagram where each of the morphisms is an iso-

morphism induces an isomorphism between the limit of the diagram and each of

the objects of the diagram, that is, isomorphisms are closed under sequential limits.

Informally, the following result says that a weighted sequential limit of a diagram

where each of the morphisms forms part of an interleaving induces an interleaving

between the limit an each of the objects of the diagram. Its proof is analogous to the

proof of Proposition 3.2.11.

Proposition 3.2.14. Let C be a locally persistent category and let

l

· · · xi · · · x1 x0.

g0

ε0

g1

ε1

gi
εi

fi
εi fi−1

εi−1 f1
ε1 f0

ε0

be a weighted sequential limit.

Consider δ ∈ R+ and δi ∈ R+ for each i ∈N such that
∑

i δi = δ, and let δi =∑
j<i δ j .

If there are morphisms hi : xi →δi
xi+1 such that fi : xi+1 δi

←→εi
xi : hi forms an (εi ,δi )-

interleaving for every i ∈ N, then there exist unique morphisms ki : xi →
δi

l such

that gi : l
δi
←→εi

xi : ki forms an interleaving for every i ∈N and such that following

diagram is commutative:

l

· · · xi · · · x1 x0.

g0

ε0

g1

ε1

gi

εi

fi
εi fi−1

εi−1 f1
ε1 f0

ε0

hi

δi

ki

δi

hi−1

δi−1

h1

δ1

k1

δ1

h0

δ0

k0

δ0

We conclude this section by giving sufficient conditions for the existence of

weighted sequential limits. The proof of the following result is analogous to the

proof of Proposition 3.2.12.
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Proposition 3.2.15. Let C be a locally persistent category that is powered by repre-

sentables and such that sequential limits exist in its underlying category. If powers by

representables preserve these sequential limits, then weighted sequential limits exist in

C .

In particular, if C is copowered and powered by representables, and sequential

limits exist in C0, then C admits weighted sequential limits.

In the two cases above, the weighted sequential limit of a diagram

· · · fi−→εi
xi

fi−1−−→εi−1
· · · f1−→ε1 x1

f0−→ε0 x0

is computed as the limit of the diagram

· · · fi−→ xεi
i

fi−1−−→ ·· · f1−→ xε1
1

f0−→ xε0
0

3.2.6 Midpoints

We now present a third universal construction. This one is particularly relevant when

proving that an interleaving distance is intrinsic or geodesic. Informally, it defines a

notion of “best” or, more precisely, universal midpoint of an interleaving.

Definition 3.2.16. Let ε,γ,δ ∈ R+ be such that γ+δ= ε. A terminal (γ,δ)-midpoint

of an interleaving f : x ε←→ε y : g consists of an object z and morphisms a : z →γ x and

b : z →δ y rendering the following diagram commutative

z

x y,

a
γ

b
δ

f
εgε

and satisfying the following universal property. For every object z ′, α ∈ R+, and mor-

phisms a′ : z ′ →γ+α x and b′ : z ′ →δ+α y making the following diagram commute, there
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exists a unique morphism u : z ′ →α z completing the diagram

z ′

z

x y.

u
αa′

γ+α

b′

δ+α

a
γ

b
δ

f
εgε

Dually, one has the definition of an initial midpoint.

From the universal property of terminal midpoints, it follows that they are mid-

points in the sense that the interleaving factors through them, as we now show.

Proposition 3.2.17. Let ε,γ,δ ∈ R+ be such that γ+δ = ε. Given a terminal (γ,δ)-

midpoint for an interleaving f : x ε←→ε y : g ,

z

x y,

a
γ

b
δ

f
εgε

there exist unique morphisms c : x →γ z and d : y →δ z forming interleavings with a

and b respectively, and rendering the following diagram commutative

z

x y.

a
γ c

γ

b
δd

δ

f
εgε

Proof. Let us start by constructing c : x →γ z. We do this using the universal property
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of z, as follows.

x

z

x y.

c
γ

S(idx)

2γ

f

γ+δ

a
γ

b
δ

f
εgε

This also shows that if a morphism c as in the statement exists, it must be unique.

To prove that c and a form an interleaving, it remains to be shown that S(idz) = c ◦a.

We do this in the usual way, using the uniqueness part of the universal property of z.

Concretely, consider the diagram

z

z

x y.

2γS(c)

3γ

S( f )

2γ+δ

a
γ

b
δ

f
εgε

Choosing the middle vertical map to be S0,2γ(idz) or c ◦a renders the diagram com-

mutative, so, by uniqueness, we must have S0,2γ(idz) = c ◦a.

The construction of d is symmetrical, and the fact that the triangle in the statement

commutes follows by definition of d and c.

The universal property of terminal midpoints also implies that the above factor-

ization is universal, in the sense that we can compose the factorizations through

different midpoints. As we shall see, this implies that, in a locally persistent category

that admits terminal midpoints, the interleaving distance is intrinsic.

Proposition 3.2.18. Let ε,γ,δ,γ′,δ′ ∈ R+ be such that γ+δ= ε, γ′+δ′ = ε, γ≤ γ′, and

δ≥ δ′, and let f : x ε←→ε y : g be an interleaving.

Given a terminal (γ,δ)-midpoint z and a terminal (γ′,δ′)-midpoint z ′, there are
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unique interleavings such that the following diagram commutes

x z z ′ y,
c γ

c ′

γ′

aγ

j

γ′−γ

b

δ
k

γ′−γ

a′

γ′
b′

δ′

d ′δ′

d

δ

and the composite of the horizontal interleavings is f : x ε←→ε y : g . Here the interleav-

ings c : x γ←→γ z : a, b : z δ←→δ y : d, c ′ : x
γ′←→γ′ z ′ : a′, and b′ : z ′

δ′←→δ′ y : d ′ are the

interleavings of Proposition 3.2.17.

Proof. Since δ+γ′−γ≥ δ′, we can form a diagram

z ′

z

x y,

k
γ′−γa′

γ′

S(b′)

δ+γ′−γ

a
γ

b
δ

f
εgε

which defines the morphism k. The morphism j : z →γ′−γ z ′ is defined symmetrically.

All the required commutativities follow from the uniqueness part of the universal

properties of z and z ′.

We conclude this section by providing sufficient conditions for the existence of

terminal midpoints. This construction is essentially the construction of one parameter

families associated to an interleaving given in [CSGO16, Section 3.4].

Proposition 3.2.19. Let C be a locally persistent category that is powered by repre-

sentables, and such that binary products and pullbacks exist in its underlying category.

If powers by representables preserve these limits, then C admits terminal midpoints.

In particular, if C is copowered and powered by representables, and binary products

and pullbacks exist in C0, then C admits terminal midpoints.

In the two cases above, the terminal (γ,δ)-midpoint of an interleaving f : x ε←→ε y :

g is computed by taking the pullback of the following diagram in the underlying
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category of C :

yδ

xγ xδ+ε× yγ+ε.

(g ,S(id))

(S(id), f )

Proof. The second statement follows, as usual, from the first one, by noting that

the existence of copowers by representables implies that powers by representables

preserve all limits that exist in C0.

Let ε,γ,δ ∈ R+ be such that γ+δ= ε, and let f : x ε←→ε y : g be an interleaving. Let

z ∈C and consider a diagram

z yδ

xγ xδ+ε× yγ+ε.

b

a (g ,S(id))

(S(id), f )

Clearly, the above diagram commutes if and only if the following diagram does:

z

x y.

a
γ

b
δ

f
εgε

This means that, if the first diagram is a pullback, then the second one must be a

terminal (γ,δ)-midpoint diagram. This is because, given z ′ ∈C , a morphism z ′ →α z

is equivalently given by a cone from z ′ to the first diagram powered by α, by the

assumption that powers preserve binary products and pullbacks.

3.2.7 Interpretation as weighted (co)limits

In this short, optional section we interpret the three universal constructions intro-

duced in previous sections, namely weighted pullbacks, weighted sequential limits,

and terminal midpoints, as weighted limits (Definition 2.4.14). We start with weighted

pullbacks.



3.2. CATEGORY THEORY OF LOCALLY PERSISTENT CATEGORIES 66

Consider the locally persistent category K freely generated (Section 3.2.2) by the

diagram

y

x z.ε

Consider further the weight W : K → SetR+ given by

Y (ε)

Y (0) Y (ε).ε

A diagram in a locally persistent category C of the form

b

a c

k
h

ε

is given by an enriched functor F : K → C , and its weighted pullback, in the sense

of Definition 3.2.10, is precisely its weighted limit limW F , in the sense of Defini-

tion 2.4.14.

As noted earlier, the definition of weighted pullback of a 0-morphism along an

approximate morphism can be generalized further to allow pullbacks of approximate

morphisms along approximate morphisms. The above description gives the recipe

for the general case.

Weighted sequential limits are also special cases of weighted limits. We give

the relevant constructions here. Consider the locally persistent category K freely

generated by the diagram

· · · fi−→εi
xi

fi−1−−→εi−1
· · · f1−→ε1 x1

f0−→ε0 x0.

Consider also the weight W : K → SetR+ given by

· · ·→εi
Y

(
εi

)→εi−1
· · ·→ε1 Y

(
ε1

)→ε0 Y
(
ε0

)
.
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Then, the weighted sequential limit of a sequential diagram F : K →C is precisely the

weighted limit limW F .

Finally, terminal midpoints are special cases of weighted limits too. Let K be the

locally persistent category given by the diagram

f : x ε←→ε y : g ,

that is, the unique locally persistent category with set of objects {x, y} and such that

Hom(x, x) = Hom(y, y) =Y (0) and Hom(x, y) = Hom(y, x) =Y (ε). Consider further

the weight W : K → SetR+ given by

Y (γ) ε←→εY (δ).

Then, the terminal (γ,δ)-midpoint of an interleaving F : K → C is precisely the

weighted limit limW F .

After these interpretations, a reader with some familiarity with enriched category

theory may wonder why we need a special kind of limit and powers that respect

that kind of limit to deduce that we have the weighted version of that kind of limit

(for example, in Proposition 3.2.12, Proposition 3.2.15, and Proposition 3.2.19). The

reason is that, in general, in order to have weighted limits, one needs powers and

conical limits. But, if an enriching category V is not conservative (i.e. the functor

Hom(1,−) : V → Set does not reflect isomorphisms), the existence of conical limits in

a V -enriched category does not follow from the existence of limits in the underlying

category ([Kel82, Section 3.1]). As a matter of fact, in order to get conical limits from

limits in the underlying category, it is enough for the powers to respect the conical

limits ([Kel82, Section 3]).

3.3 Relative locally persistent categories

In this section, we consider quotients of interleaving distances. The notion of quotient

of an ep metric that we use is the one from Section 2.2.3.

Definition 3.3.1. Let C be a locally persistent category and let R be an equivalence

relation on the objects of C . Define the quotient interleaving distance (dC
I )/R , an ep

metric on obj(C ), as the quotient of the interleaving distance dC
I by the equivalence

relation R. When no confusion can arise, we sometimes denote it by dC
QI .
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Quotient interleaving distances are better behaved when the equivalence relation

comes from a notion of acyclic morphism, as this lets us use categorical arguments to

prove metric properties.

Definition 3.3.2. A relative category (C ,W ) is given by a category C together with a

class of morphisms W of C that is closed under composition and contains all identities.

The morphisms in the class W are called acyclic morphisms.

We choose “acyclic morphism” over “weak equivalence” to make it clear that these

morphisms need not be the weak equivalences of a model structure.

Definition 3.3.3. Let (C ,W ) be a relative category and x, y ∈ C . A zig-zag between x

and y is given by a finite sequence of morphisms in W of any of the following forms:

x → z1 ← z2 →···← zn → y,

x → z1 ← z2 →···→ zn ← y,

x ← z1 → z2 ←···← zn → y,

x ← z1 → z2 ←···→ zn ← y.

Definition 3.3.4. Given a relative category (C ,W ) and objects x, y ∈C , we say that x

and y are weakly equivalent if they are connected by a zig-zag of acyclic morphisms.

In that case, we write x 'W y, or x ' y if there is no risk of confusion.

Note that being weakly equivalent is an equivalence relation. We can then use

any class of acyclic morphisms in a locally persistent category to define a quotient

interleaving distance.

Definition 3.3.5. A relative locally persistent category is given by a locally persistent

category C and a class of 0-morphisms W such that (C0,W ) is a relative category. The

morphisms in W are called acyclic morphisms.

Definition 3.3.6. The quotient interleaving distance of a relative locally persistent

category (C ,W ) is the quotient ep metric obtained by taking the quotient of the inter-

leaving distance of C by the equivalence relation given by being weakly equivalent. We

denote it by (dC
I )/W , or by (dC

I )/', when no confusion can arise.
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Chapter 4

Metric properties of interleaving dis-

tances

In this chapter, we show that categorical structure in a locally persistent category

can give rise to useful metric structure of its interleaving distance. We give stability

results for functors between locally persistent categories (Section 4.2) and conditions

under which a quotient interleaving distance is complete (Theorem 4.3.3), intrinsic

(Corollary 4.4.5), or geodesic (Section 4.5).

We also give conditions under which a quotient interleaving distance can be

computed as an infimum over interleavings. The characterization of an interleaving

distance as an infimum over interleavings (as in Definition 3.1.11) is lost for general

quotients, but a similar characterization can be recovered under mild hypothesis on

the class of acyclic morphisms (Theorem 4.1.4).

In Section 4.6, we study distance non-increasing maps from a metric space into

a locally persistent category endowed with its interleaving distance, following the

methodology of [BSN17] and generalizing their techniques to the context of locally

persistent categories. We also show that ep metric spaces form a full subcategory of

the category of locally persistent categories.

In Section 4.7, we define the observable locally persistent category of a locally

persistent category, generalizing the methodology of [CCBS14] to locally persistent cat-

egories. This construction defines a metrically equivalent locally persistent category

such that all of its hom-persistent sets are right continuous (Section 2.6.2).

Completeness of the interleaving distance in the context of categories with a flow

([SMS18]) was studied in [Cru19]; we relate our completeness to their result, and apply
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some of our results to categories with a flow in Section 5.2.4. Proofs that a certain

interleaving distance is complete, intrinsic, or geodesic have been given in many

particular examples ([CSEH05], [BSN17], [BV18], [CSGO16]). The techniques that we

use to prove the results in this section share many similarities with the techniques

used in those references. The main difference is that our results are general results

about locally persistent categories that apply in many examples.

The theorems proven in this section are applied in Chapter 6.

4.1 Characterization of the quotient interleaving dis-

tance

In this section, we show that, under mild conditions, a quotient interleaving distance

admits a description as an infimum over interleavings, similar to the one given for the

interleaving distance in Definition 3.1.11. The characterization is given in terms of a

weaker notion of interleaving.

Definition 4.1.1. Let C be a relative locally persistent category. For x, y ∈C and δ ∈ R+,

we say that x and y are δ-quotient interleaved if there exist x ′ ' x and y ′ ' y such that

x ′ and y ′ are δ-interleaved.

Definition 4.1.2. In a locally persistent category C , we say that a class E of 0-

morphisms is stable under weighted pullbacks if the pullback of a morphism in E

along any approximate morphism exists and is again a morphism in E.

Before giving the characterization, we prove a useful lemma about the equiva-

lence relation generated by a class of acyclic morphisms when these are stable under

pullbacks.

Lemma 4.1.3. Let (C ,W ) be a relative category. If W is stable under pullbacks, then for

any pair of objects x, y ∈ C we have x ' y if and only if there exists c ∈ C and acyclic

morphisms c → x and c → y.

Proof. It is clear that if there are acyclic morphisms c → x and c → y , then x ' y , by

definition of the equivalence relation '.

For the converse, assume that x and y are connected by a zig-zag of length greater

than two. This implies that the zig-zag starts as x → k ← k ′ →··· or as x ← k → k ′ ←
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k ′′ →··· . In the first case, we take the pullback of the cospan x → k ← k ′ and compose

the composable morphisms we get, reducing the problem to the second case.

For the second case, we take the pullback of the cospan k → k ′ ← k ′′ and compose

the composable morphisms we get. Since W is closed under composition, we are left

with a zig-zag between x and y of shorter length, so the proof follows by induction.

Theorem 4.1.4. Let (C ,W ) be a relative locally persistent category such that W is stable

under weighted pullbacks. Then

(dC
I )/W (x, y) = inf

{
δ ∈ R+ : x and y are δ-quotient interleaved

}
= inf

{
δ ∈ R+ : ∃ morphisms x ′ → x and y ′ → y in W

such that x ′ and y ′ are δ-interleaved
}
.

The proof is inspired by [Mé17, Proposition 4.1] and [BL17, Section 4].

Proof. Given x, y ∈C , let

d1(x, y) = inf
{
δ ∈ R+ : x and y are δ-quotient interleaved

}
d2(x, y) = inf

{
δ ∈ R+ : ∃ morphisms x ′ → x and y ′ → y in W

such that x ′ and y ′ are δ-interleaved
}
.

We first show that d1 = (dC
I )/W . Let us start by showing that d1 is an extended pseudo

metric. Reflexivity and symmetry are immediate, so we show the triangle inequal-

ity. To prove this, it is enough to show that given w, x, y, z ∈ C with x ' y , an ε-

interleaving w ↔ x, and a δ-interleaving y ↔ z, there exist w ′ ' w , z ′ ' z, and an

(ε+δ)-interleaving w ′ ↔ z ′.
Since the class of acyclic morphisms is stable under pullbacks, there exist c ∈C

and acyclic morphisms e : c → x and f : c → y , by Lemma 4.1.3. To conclude this

part of the proof, we use the fact that acyclic morphisms are stable under weighted

pullbacks and Proposition 3.2.11 to pull back the interleavings we were given along

these maps, as follows

w ′ c z ′

w x y z.

e fe ′ f ′
εε

εε

δδ

δδ
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By hypothesis, e ′ and f ′ are acyclic morphisms. Composing the top-most interleav-

ings, we get an (ε+δ)-interleaving between w ′ and z ′. Now, since d1 is a '-invariant

metric that is bounded above by dI , we have d1 ≤ (dC
I )/W by definition of (dC

I )/W .

On the other hand, suppose that d1(x, y) < δ < ∞. It follows that there exist

x ′, y ′ ∈ C such that x ′ ' x and y ′ ' y and such that x ′ and y ′ are δ-interleaved. By

definition of (dC
I )/W , we must have (dC

I )/W (x, y) < δ, so (dC
I )/W ≤ d1, so (dC

I )/W = d1.

We now prove that d1 = d2. Clearly, we have d1 ≤ d2. So it is enough to show that

d2 ≤ d1. Suppose that d1(x, y) < δ<∞. As before, there are x1, y1 ∈C such that x1 ' x

and y1 ' y and such that x1 and y1 are δ-interleaved. By Lemma 4.1.3, there exist

x2, y2 ∈C and a diagram

x2 y2

x x1 y1 y,
δδ

in which the diagonal morphisms are in W . By taking the following series of (weighted)

pullbacks

x4 y3

x2 x3 y2

x x1 y1 y,

y

δδ

δδy

δδ
x

we obtain acyclic morphisms α : x4 → x and β : y3 → y , and a δ-interleaving between

x4 and y3. It follows that d2(x, y) ≤ δ, so d1 = d2, concluding the proof.

We finish this section by giving useful sufficient conditions for acyclic morphisms

to be stable under weighted pullback.

Lemma 4.1.5. Let (C ,W ) be a relative locally persistent category. Assume that C is

powered by representables, that the underlying category of C admits pullbacks, and

that powers by representables respect pullbacks in the underlying category of C . If W is

stable under power by representables and pullbacks of the underlying category of C ,

then W is stable under weighted pullbacks.

Proof. By Proposition 3.2.12, the locally persistent category C admits weighted pull-
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backs. Moreover, by the same result, the weighted pullback of a morphism is com-

puted as a pullback in the underlying category of C of a power of this morphism by a

representable. The result then follows from the fact that W is stable under power by

representables and under pullbacks in the underlying category of C .

4.2 Stability

In this short section, we give simple conditions under which a locally persistent

functor between relative locally persistent categories is distance non-increasing.

In Theorem 3.1.12 we showed that a locally persistent functor between locally

persistent categories induces a distance non-increasing function with respect to the

interleaving distances. To generalize this to quotient interleaving distances, we need

the following general result about quotient metrics.

Lemma 4.2.1. Let f : (X ,d) → (X ′,d ′) be a distance non-increasing map between ep

metric spaces, and let R ⊆ X ×X and R ′ ⊆ X ′×X ′ be equivalence relations. If f maps

R-related elements to R ′-related elements, then f : (X ,d/R ) → (X ′,d ′
/R ′) is distance

non-increasing.

Proof. Consider the ep metric d f on X given by d f (x, y) = d ′
/R ′( f (x), f (y)). It is enough

to show that d f is bounded above by d/R .

Since f maps R-related elements to R ′-related elements, and d ′
/R ′ is R ′-invariant,

d f must be R-invariant. Since f is distance non-increasing with respect to d and d ′,
we have that d f is bounded above by d . So, by the universal property of d/R , we have

that d f is bounded above by d/R , as required.

This directly implies the following stability result.

Theorem 4.2.2. Let F : C →C ′ be a locally persistent functor between relative locally

persistent categories (C ,W ) and (C ′,W ′). If F maps W -related objects to W ′-related

objects, then F is distance non-increasing with respect to the quotient interleaving

distances (dC
I )/W and (dC ′

I )/W ′ .

In particular, if F : C →C ′ is a locally persistent functor between relative locally

persistent categories that maps acyclic morphisms to acyclic morphisms, then F is

distance non-increasing with respect to the quotient interleaving distances.

Another useful stability result is the following.
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Theorem 4.2.3. Let (C ,W ) be a relative locally persistent category such that W is stable

under weighted pullbacks and let P be an ep metric space. Let f : obj(C ) → P be a

function. If f maps W -related objects to points at distance 0 and f is distance non-

increasing (resp. uniformly continuous) with respect to the interleaving distance on C

and the distance on P, then f is distance non-increasing (resp. uniformly continuous)

with respect to the quotient interleaving distance and the distance on P.

Proof. We start by proving the case of uniform continuity. Given ε > 0, let δ > 0 be

such that, if x, y ∈C are δ-interleaved, then dP ( f (x), f (y)) ≤ ε.

Now, assume that x and y are such that
(
dC

I

)
/∼ (x, y) < δ. By Theorem 4.1.4,

there exist x ′ ' x and y ′ ' y such that x ′ and y ′ are δ-interleaved. It follows that

dP ( f (x), f (y)) = dP ( f (x ′), f (y ′)) ≤ ε, using the fact that f maps W -related objects to

points at distance 0.

For the case of 1-Lipschitz maps, note that, in that case, we can take δ= ε.

4.3 Complete interleaving distances

In this section, we give sufficient conditions for a (quotient) interleaving distance to

be complete. We use the notion of weighted sequential limit of Section 3.2.5.

Theorem 4.3.1. Let C be a locally persistent category. If C admits weighted sequential

limits, then dC
I is complete.

As is evident from the proof, is it actually enough for C to admit weighted sequen-

tial limits of morphisms that are part of an interleaving.

Proof. Let {xi }i∈N ⊆C be a Cauchy sequence with respect to the interleaving distance

on C . After taking a subsequence, we can assume that there exist ε ∈ R+ and εi ∈ R+
for each i ∈N such that

∑
i∈Nεi = ε and dI (xi , xi+1) < εi .

By definition, we know that there are interleavings fi : xi+1 εi
←→εi

xi : hi , for each

i ∈N. Let l be the weighted sequential limit of the morphisms fi . By Proposition 3.2.14,

there are interleavings gi : l
εi
←→εi

xi : ki , where εi = ε−∑
j<i ε j . Since εi → 0 as

i →∞, it follows that l is the limit of the sequence {xi } according to the metric dC
I , as

needed.

This is enough to show that the interleaving distance on the category of locally

persistent objects of a category that admits sequential limits is complete.
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Corollary 4.3.2. Let C be a category that admits sequential limits. Then the locally

persistent category C R admits weighted sequential limits and the interleaving distance

on C R is complete.

Proof. By Example 3.2.7, the locally persistent category C R is copowered and pow-

ered by representables. Since C admits sequential limits, so does C R, so C R admits

weighted sequential limits, by Proposition 3.2.15. Theorem 4.3.1 then implies that the

interleaving distance is complete.

To prove that a quotient interleaving distance is complete we need some assump-

tions about the interaction between approximate morphisms and acyclic morphisms.

Theorem 4.3.3. Let (C ,W ) be a relative locally persistent category. If C admits

weighted sequential limits, and W is closed under sequential limits in C0 and weighted

pullbacks, then (dC
I )/' is complete.

Proof. Analogously to the proof of Theorem 4.3.1, let {xi }i∈N ⊆ C be a Cauchy se-

quence with respect to the quotient interleaving distance on C . After taking a sub-

sequence, we can assume that there exist ε ∈ R+ and εi ∈ R+ for each i ∈N such that∑
i∈Nεi = ε and (dC

I )/'(xi , xi+1) < εi .

By Theorem 4.1.4 and Lemma 4.1.3, we may assume that we have objects {ci }i∈N,

{yi }i∈N, and {zi }i∈N, interleavings fi : zi+1 εi
←→εi

yi : hi and acyclic morphisms wi :

ci → yi , vi : ci → zi , for each i ∈N, such that ci ' xi for every i ∈N. Diagrammatically,

we have the following

x2 x1 x0

c2 c1 c0

· · · y2 z2 y1 z1 y0 z0.

∼ ∼ ∼

f2

h2

f1

h1

f0

h0

∼ ∼ ∼ ∼ ∼ ∼ (4.3.4)

Let us introduce some notation to explain the rest of the proof. Let D denote the

following indexing diagram

• •

· · · • • • • •ε2ε2 ε1ε1 ε0ε0
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Formally, this is a freely generated locally persistent category (Section 3.2.2). Then,

Diagram 4.3.4 gives us a locally persistent functor F1 : D →C , where we are forgetting

about the objects xi , and the objects c0 and z0, since they are weakly equivalent to y0.

Intuitively, the rest of the proof works as follows. We would like to perform the

transfinite composition of the interleavings we were given. We cannot quite do this,

since the interleavings are separated by spans of acyclic morphisms. The idea is to pull

back all the interleavings along the acyclic morphisms, to obtain a sequential diagram

of interleavings, and then to take a limit, as we did in the proof of Theorem 4.3.1.

More precisely, we will proceed inductively, and construct diagrams Fn : D →
C for n ∈ N, such that the first n spans of the n-th diagram are spans of identity

morphisms. We will moreover construct natural transformations θn : Fn+1 ⇒ Fn

that are componentwise acyclic morphisms. Having done that, we will take the

limit of the sequential diagram given by the natural transformations θn . This can

be done, since (co)limits in a functor category are computed pointwise, and C is

assumed to have sequential limits. Moreover, since the natural transformations

have acyclic morphisms as components, and these are assumed to be closed under

sequential limits, the limit diagram limn Fn comes with a natural transformation

limn Fn → F1 that is an acyclic morphism in each component. Finally, since the first n

spans of Fn consist of identity morphisms, it follows that all of the spans of limn Fn

consist of identity morphisms. Omitting the identities, we get a sequential diagram

of interleavings, with the i -th object weakly equivalent to xi . Taking the limit of this

final diagram produces a limit for the initial sequence, concluding the proof.

The rest of the proof consists of constructing diagrams Fn : D →C for n ≥ 1 with

the first n−1 spans consisting of identity morphisms, and natural transformations θn :

Fn+1 ⇒ Fn , that are componentwise acyclic morphisms. Of course the first diagram

has to be F1. In order to do this, it is convenient to depict F1 as follows:

· · · • • • • • • • • • • • •∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Here we are emphasizing the fact that the spans consist of acyclic morphisms, and

deemphasizing the specific objects and the “lengths” of the interleavings. We are also

giving the whole diagram in one line, so that the next step is clearer. Consider the

following diagram, which we obtain from the one above by repeating some of the
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acyclic morphisms and taking the pullbacks depicted in the diagram:

· · · • • • • • • • • • • • •

· · · • • • • • • • • • • • •

∼ ∼ ∼ ∼ ∼ ∼

α

∼ y
β

∼ y x ∼w1

∼v1
∼

∼ ∼ ∼ ∼
∼
v2

∼
w2

∼
v1

∼
w1

More precisely, the above diagram is constructed by first taking the pullback of the

right-most interleaving along w1 (which can be done by Proposition 3.2.11), then

taking the pullback of v1 along the second to last interleaving, to obtain the acyclic

morphism α, and finally taking the pullback of α along w2 to obtain β. The morphism

above v2 is given by the composite v2 ◦β.

We let F2 : D → C be the top-most row in the above diagram, and the natural

transformation θ1 : F2 ⇒ F1 have as components the vertical morphisms in the above

diagram. Note that all of the components are acyclic morphisms.

This process can be repeated now on the first two spans, to obtain a diagram

F3 : D → C and a natural transformation with acyclic morphisms as components

θ2 : F3 ⇒ F2, as follows:

· · · • • • • • • • • • • • •

· · · • • • • • • • • • • • •

∼ ∼ ∼ ∼

∼y ∼y ∼∼ x ∼∼x∼x∼x

∼ ∼ ∼ ∼ ∼ ∼

In the above diagram, the bottom row represents F2 and the top row represents F3.

The natural transformation θ2 : F3 ⇒ F2 has as components the vertical maps in the

diagram. The proof follows by induction, taking 3n pullbacks at the n-th stage, as

we’ve been doing.

4.4 Intrinsic interleaving distances

In this short section, we give sufficient conditions for a (quotient) interleaving distance

to be intrinsic. We use the notion of terminal midpoint of Section 3.2.6.

Definition 4.4.1. Let C be a locally persistent category and let ε,γ,δ ∈ R+ be such that

γ+δ= ε. A coherent factorization of an ε-interleaving f : x ε←→ε y : g consists of the
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following data: for each r ∈ [0,ε], an object zr ∈ C , and, for every r ≤ r ′ ∈ [0,ε], an

interleaving fr,r ′ : zr r ′−r
←→r ′−r zr ′ : gr,r ′ such that, for every r ≤ r ′ ≤ r ′′ ∈ [0,ε], we have

fr ′,r ′′ ◦ fr,r ′ = fr,r ′′ and gr,r ′ ◦ gr ′,r ′′ = gr,r ′′ , and such that when r = 0 and r ′ = ε we get

back the interleaving f : x ε←→ε y : g .

The following is then straightforward.

Theorem 4.4.2. Let C be a locally persistent category that admits a coherent factor-

izations of every interleaving. Then, for every δ ∈ R+, an interleaving x δ←→δ y in C

induces a distance non-increasing map [0,δ] → (C ,dC
I ) that sends 0 to x and δ to y. In

particular, dC
I is intrinsic.

Here the metric on [0,δ] is the metric inherited from R. Note that Proposi-

tion 3.2.18 tells us that a locally persistent category that admits terminal midpoints

necessarily admits coherent factorizations of interleavings. As an immediate corollary

of this fact and Theorem 4.4.2, we have the following.

Corollary 4.4.3. Let C be a locally persistent category that admits terminal midpoints.

Then, for every δ ∈ R+, an interleaving x δ←→δ y in C induces a distance non-increasing

map [0,δ] → (C ,dC
I ) that sends 0 to x and δ to y. In particular, dC

I is intrinsic.

This is enough to show that the interleaving distance on the category of locally

persistent objects of a category that admits pullbacks and binary products is intrinsic.

Corollary 4.4.4. Let C be a category that admits pullbacks and binary products. Then

the interleaving distance on the locally persistent category C R is intrinsic.

Proof. By Example 3.2.7, the locally persistent category C R is copowered and powered

by representables. Since C admits pullbacks and binary products, so does C R, so C R

admits terminal midpoints, by Proposition 3.2.19. Corollary 4.4.3 then implies that

the interleaving distance is intrinsic.

The analogous result for quotient interleaving distances is easy to prove in this

case. Since a quotient of any intrinsic ep metric is intrinsic (Proposition 2.2.22), the

following is immediate.

Corollary 4.4.5. Let C be a locally persistent category with an equivalence relation

on its class of objects. If C admits coherent factorizations of interleavings, then dC
QI is

intrinsic. In particular, if C admits terminal midpoints, then dC
QI is intrinsic.
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4.5 Geodesic interleaving distances

In this section we give sufficient conditions under which a (quotient) interleaving

distance is geodesic. We start by addressing the case of non-quotient interleaving

distances, and generalize the result to quotient interleaving distances afterwards.

4.5.1 Geodesic non-quotient interleaving distances

The main question that arises when trying to prove that an interleaving distance

is geodesic is the following. Assume that C is a locally persistent category, and let

x, y ∈ C satisfy dC
I (x, y) = δ; under what conditions is it true that x and y are δ-

interleaved?

This motivates the following definition.

Definition 4.5.1. Let C be a locally persistent category. The distance dC
I reflects inter-

leavings if the following holds for all x, y ∈C and δ ∈ R+: if dC
I (x, y) = δ, then x and y

are δ-interleaved.

Note that, in the hypothesis of the above definition, if dI (x, y) = 0 and the inter-

leaving distance reflects interleavings, then x ∼= y . An interleaving distance satis-

fying the property above is sometimes referred to as a closed interleaving distance

([Les15],[BG18]). The connection with being geodesic is established by the following

result.

Theorem 4.5.2. Let C be a locally persistent category that admits coherent factoriza-

tions of interleavings. If dC
I reflects interleavings, then dC

I is geodesic.

Proof. Let x, y ∈C and δ ∈ R+ such that dC
I (x, y) = δ. Since dC

I reflects interleavings,

there is a δ-interleaving between x and y . By Theorem 4.4.2, we can use a coherent

factorizations of this interleavings to construct a path of length δ between x and y ,

concluding the proof.

Remark 4.5.3. In [Les15, Theorem 6.1], it is shown that the interleaving distance

between finitely presented multi-persistent modules reflects interleavings, and the

proof strategy in fact generalizes to the interleaving distance between objects of a

functor category C Rn
that are left Kan extensions of finite posets Q ,→ Rn . In Proposi-

tion 4.5.12, we show that the main result of this section, Proposition 4.5.11, generalizes

Lesnick’s result.
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The rest of this subsection is devoted to giving sufficient conditions to deduce

that an interleaving distance reflects interleavings. Given a poset P , a category C , a

functor X ∈C P , and r ≤ s ∈ P , recall that we let ϕX
r,s : X (r ) → X (s) denote the structure

morphism of X . The following definition generalizes the notion of q-tame persistent

module ([CSGO16]) to other functor categories C R where the category C has a notion

of “small” or “compact” object.

Definition 4.5.4. Let P be a poset. Let X be an object of SetP (resp. TopP ). We say that

X is q-tame if for every r, s ∈ P such that r < s, the image of ϕX
r,s : X (r ) → X (s) is finite

(resp. compact).

Example 4.5.5. Let X ∈ SetP . Endowing X with the discrete topology objectwise, we

get X ′ ∈ TopP with X as underlying set-valued functor. Then X is q-tame if and only if

X ′ is q-tame.

In order to prove that an interleaving distance reflects interleavings, we need to

be able to construct a δ-interleaving out of a sequence of δn-interleavings for δn → δ

from above. Intuitively, we do this in two steps. The first step is to make the sequence

of δn-interleavings coherent, so that in the second step we can take a categorical limit

of this coherent sequence and get a δ-interleaving. The notion of coherence is the

following.

Definition 4.5.6. Let P be a poset and let X be an object of SetP (resp. TopP ). A compat-

ible family for X consists of an element xr ∈ X (r ) for every r ∈ P, such thatϕX
r,s(xr ) = xs

whenever s ≤ r .

Note that the set of compatible families of a functor X is canonically isomorphic

to the (underlying set of the) limit of X . The following result by Stone gives conditions

under which a functor (N,≥) → Top admits a compatible family.

Proposition 4.5.7 ([Sto79, Theorem 2]). Let X ∈ Top(N,≥) be objectwise compact with

closed structure morphisms. If X is objectwise non-empty, then there exists a compatible

family for X .

We interpret the above theorem as constructing a compatible family, the one in the

conclusion, out of a non-compatible one, the one that makes the functor objectwise

non-empty. The notion of q-tameness allows us to relax the hypothesis of the above

theorem. Before proceeding, we introduce the notion of subfunctor.
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Definition 4.5.8. Let P be a poset and let X : P → Set (resp. X : P → Top) be a functor. A

subfunctor of X is a given by a functor Y : P → Set (resp. Y : P → Top) such that Y (r ) ⊆
X (r ) for every r ∈ P and such that the structure morphisms of Y are the restrictions

of the structure morphisms of X . In the case that X : P → Top, we require Y to have

the subspace topology, and say that Y is a closed subfunctor if Y (r ) ⊆ X (r ) is a closed

subspace for every r ∈ P.

Proposition 4.5.9. Let X ∈ Top(N,≥) be q-tame with closed structure morphisms. If X is

objectwise non-empty, then there exists a compatible family for X .

Proof. Consider the subfunctor Y ⊆ X given by the image of the structure morphisms,

as follows Y (n) =ϕX
n+1,n(X (n +1)). It is enough to construct a compatible family for

Y .

Since X is q-tame, Y is objectwise compact. Moreover, by construction, Y (n) is

closed in X (n). This implies that the structure morphisms of Y are closed, since a

closed set in Y (n+1) is closed in X (n+1), so its image in X (n) is closed, and thus also

closed in Y (n).

Finally, Y is objectwise non-empty, since X is. We can then apply Proposition 4.5.7

to obtain a compatible family for Y , concluding the proof.

The next definition gives a persistent object structure to the collection of all inter-

leavings between a pair of objects.

Definition 4.5.10. Let C be a locally persistent category and let x, y ∈C . The persistent

set of interleavings between x and y is the functor I(x, y) : R+ → Set given by

I(x, y)δ =
{
( f , g ) : f and g form a δ-interleaving between x and y

}
,

for every δ ∈ R+, with the structure maps given by the shift S.

The following is a key result when establishing that an interleaving distance reflects

interleavings.

Proposition 4.5.11. Let C be a locally persistent category and let x, y ∈C . Assume that

the persistent set of interleavings I(x, y) is right continuous, and that for each δ ∈ R+
the set I(x, y)δ can be given a topology such that the structure morphisms of I(x, y)

are continuous and closed and such that I(x, y) : R+ → Top is q-tame. Let δ ∈ R+. If

dC
I (x, y) = δ, then x and y are δ-interleaved.
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Proof. If dC
I (x, y) = δ, then there exists a strictly decreasing sequence S = {δn}n∈N ⊆

R+ converging to δ such that there is a δn-interleaving ( fn , gn) ∈ I(δn) for each n ∈N.

Restrict I to S, as a subposet of R+, and denote it by I|S : S → Top. Note that, as a poset,

S is isomorphic to (N,≥).

We claim that it is enough to construct a compatible family for I|S . This is because

this compatible family gives a compatible family for I|(δ,∞), since S is cofinal in (δ,∞)

because δn → δ. So such a compatible family gives us ( f , g ) ∈ I(δ), by the right conti-

nuity condition of I. By definition of I, the morphisms f and g form a δ-interleaving

between x and y , as required.

We finish the proof by constructing a compatible family for I|S . In order to do

this, we use Proposition 4.5.9. To satisfy the hypothesis, notice that I|S is q-tame with

closed structure morphisms. The elements ( fn , gn) ∈ I(rn) witness the fact that I|S
is objectwise non-empty, so Proposition 4.5.9 gives a compatible family for I|S , as

required.

A simple application is the following.

Proposition 4.5.12. Let n ∈N, C ∈ Cat, and let C ⊆C Rn
be the locally persistent sub-

category spanned by objects X : Rn →C that are isomorphic to a left Kan extension of

a functor PX →C for PX ⊆ Rn a finite subposet. Then the interleaving distance on C

reflects interleavings.

Proof. Let X ,Y ∈C . The functors X and Y can be written as left Kan extensions of

functors P →C for a common finite poset P ⊆ Rn , for example, by letting P = PX ∪PY .

Since X and Y are left Kan extensions of functors P →C , it follows that I(X ,Y ) : R+ →
Set is right continuous, as the value of this functor changes finitely many times and is

continuous from the right at these values. By Proposition 4.5.11, it is then enough to

show that I(X ,Y ) can be lifted to a q-tame persistent topological space.

Let {v1, . . . , vk } ⊆ Rn be the set of values at which I(X ,Y ) changes, I(X ,Y )(r ) be-

ing empty for r < v1. It is then enough to give a topology on I(X ,Y )(vi ) such that

the map I(X ,Y )(vi ) → I(X ,Y )(vi+1) is closed and has compact image for each i < k.

We define the topology inductively. The topology on I(X ,Y )(v1) is the codiscrete

topology, and the topology on I(X ,Y )(vi+1) = Im(ϕvi ,vi+1 )
∐

Im(ϕvi ,vi+1 )c is taken

to be the coproduct topology of the quotient topology on Im(ϕvi ,vi+1 ), induced by

I(X ,Y )(vi+1) → Im(ϕvi ,vi+1 ), and the codiscrete topology on Im(ϕvi ,vi+1 )c .

It is clear that the structure maps are closed, and that these images are also com-

pact, since, in fact, all the spaces are compact, as they are binary coproducts of
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compact spaces.

We now give a result that allows us to check the hypothesis of Proposition 4.5.11

more easily. In order to prove this result, we need the following technical lemma that

identifies a well-behaved class of subfunctors of q-tame functors with closed structure

morphisms.

Lemma 4.5.13. Let X ∈ Top(N,≥) be q-tame with closed structure morphisms. Let Y ⊆ X

be a closed subfunctor. Then Y is q-tame and its structure morphisms are closed.

Proof. Let us start by showing that Y has closed structure morphisms. Since Y (n +1)

is closed in X (n+1), its imageϕn+1,n(Y (n+1)) in X (n) must also be closed. And since

Y (n) is closed in X (n), the image ϕn+1,n(Y (n +1)) must be closed in Y (n).

To see that Y is q-tame, note that ϕn+1,n(Y (n +1)) is closed in ϕn+1,n(X (n +1)),

since it is closed in X (n). Since X is q-tame, ϕn+1,n(X (n +1)) is compact, and thus

ϕn+1,n(Y (n +1)) is compact too.

Theorem 4.5.14. Let C be a locally persistent category. Suppose that for every x, y ∈C

the functor HomC (x, y) : R+ → Set is right continuous, and that for every δ ∈ R+ the set

HomC (x, y)δ admits a T1 topology such that:

1. the structure maps of HomC (x, y) are continuous and closed and the functor

Hom(x, y) : R+ → Top is q-tame;

2. for each x, y, z ∈C and each ε,δ ∈ R+, the composition operation HomC (y, z)δ×
HomC (x, y)ε→ HomC (x, z)ε+δ is continuous.

Then, dC
I reflects interleavings.

Proof. Consider H ∈ TopR+ given by H(δ) = Hom(x, y)δ×Hom(y, x)δ, and K ∈ TopR+

given by K (δ) = Hom(x, x)2δ×Hom(y, y)2δ. Note that composition gives us a continu-

ous natural transformation H → K . Then, the persistent set of interleavings can be

seen as the subfunctor I(x, y) ⊆ H that is the preimage under the composition map

H → K of the elements (S0,2δ(idx),S0,2δ(idy )) ∈ K (δ). Since the spaces considered are

all T1, the subfunctor I(x, y) ⊆ H is closed in H . This implies that I(x, y) is q-tame

with closed structure morphisms, by Lemma 4.5.13. Note also that Hom(x, y) is right

continuous for all x, y ∈C , so the functors H and K are right continuous. Since cate-

gorical limits commute with categorical limits, the functor I(x, y) is right continuous

too. We can then finish the proof by applying Proposition 4.5.11.
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4.5.2 Geodesic quotient interleaving distances

The case of quotient interleaving distances is only slightly more complicated.

Definition 4.5.15. Let C be a relative locally persistent category. The distance dC
QI

reflects quotient interleavings if the following holds for all x, y ∈ C and δ ∈ R+: if

dC
QI (x, y) = δ, then x and y are δ-quotient interleaved.

Note that, in the hypothesis of the above definition, if (dI )/'(x, y) = 0 and the

quotient interleaving distance reflects interleavings, then x ' y . The following is

proven in the same way as Theorem 4.5.2, but using the second characterization of

dC
QI in Theorem 4.1.4.

Theorem 4.5.16. Let (C ,W ) be a relative locally persistent category that admits coher-

ent factorizations of interleavings and such that W is stable under weighted pullbacks.

If dC
QI reflects quotient interleavings, then dC

QI is geodesic.

We conclude this subsection by giving conditions under which a quotient inter-

leaving distance reflects quotient interleavings.

Definition 4.5.17. Let (C ,W ) be a relative locally persistent category such that W is

stable under weighted pullbacks. Let x, y ∈C . The persistent set of quotient interleav-

ings between x and y is the functorQI(x, y) : R+ → SET given by

QI(x, y)δ =
{

(x ′, y ′,u, v, f , g ) : x ′, y ′ ∈C , u : x ′ → x and v : y ′ → y belong to W ,

and f and g form a δ-interleaving between x and y

}
,

for every δ ∈ R+, with the structure morphisms given by shifting the morphisms f and

g .

The following theorem is proven in exactly the same way as Proposition 4.5.11.

Theorem 4.5.18. Let C be a relative locally persistent category and let x, y ∈C . Assume

that the persistent set of quotient interleavingsQI(x, y) is right continuous and that for

each δ ∈ R+ the setQI(x, y)δ can be given a topology such that the structure morphisms

ofQI(x, y) are continuous and closed and such thatQI(x, y) : R+ → TOP is q-tame. Let

δ ∈ R+. If dC
QI (x, y) = δ, then there exist acyclic morphisms u : x ′ → x and v : y ′ → y

such that x ′ and y ′ are δ-interleaved.
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4.6 Higher interpolation in locally persistent categories

In this section, we extend the interpolation framework developed in [BSN17] from

categories of persistent objects to general locally persistent categories. Our main moti-

vation is to show that their framework is most natural when seen from the perspective

of locally persistent categories, as it concerns a fundamental relationship between ep

metric spaces and locally persistent categories. One important consequence of this

relationship is Proposition 4.6.4, namely, that ep metric spaces form a full subcategory

of the category of locally persistent categories, and thus that every distance can be

realized as an interleaving distance, albeit in a rather trivial way.

The key question studied in [BSN17] can be phrased as follows. Let C be a locally

persistent category and let P ⊆Q be an inclusion of metric spaces. Given a distance

non-increasing function P → (
obj(C ),dC

I

)
, under what conditions can this function

be extended to a distance non-increasing function Q → (
obj(C ),dC

I

)
? In [BSN17],

sufficient conditions for the existence of this extension are given in the case when

C is a category of persistent objects of the form C R, for C a category. The sufficient

conditions require the distance non-increasing map P → (
obj(C ),dC

I

)
to be coherent

in a certain sense, and C to be complete or cocomplete. In Section 4.6.1, we extend

this coherence condition and their main result to locally persistent categories. In

Section 4.6.2, we explain in what way our interpolation framework is a generalization

of the one presented in [BSN17].

4.6.1 Extensions of maps from metric spaces

Given a locally persistent category C , we denote the (possibly large) ep met-

ric space given by the objects of C together with the interleaving distance as

met(C ) = (
obj(C ),dC

I

)
. Theorem 3.1.12 tells us that we have a functor

met : lpCAT → epMET

C 7→
(
obj(C ),dC

I

)
.

There is a natural functor going the other way, which we now describe. Given an

ep metric space P , we can construct a locally persistent category cat(P ) by letting
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obj(cat(P )) be the underlying set of P , and

Homcat(P )(p, q)r =
{∗}, if dP (p, q) ≤ r

;, if dP (p, q) > r,

for every p, q ∈ P . Composition is defined in the only possible way, using the triangle

inequality of P . This construction gives a functor cat : epMET → lpCAT.

Some interesting locally persistent categories can be constructed in this way; we

give an example.

Example 4.6.1. Given δ ∈ R+, let 2δ ∈ epMet be the metric space with underlying set

{a,b} and such that d(a,b) = δ. Observe that δ-interleavings in a locally persistent

category C are represented by cat(2δ) in the sense that there is a bijection between

δ-interleavings in C and locally persistent functors cat(2δ) →C .

The functors met : lpCAT� epMET : cat do not form an adjunction. In order to

get an adjunction, one can consider the full subcategory lpCATinterl ⊆ lpCAT spanned

by locally persistent categories where, for every ε ∈ R+, every ε-morphism is part of an

ε-interleaving. The inclusion ι : lpCATinterl → lpCAT has a right adjoint core : lpCAT →
lpCATinterl that maps a locally persistent category C to the locally persistent category

core(C ) with the same collection of objects and such that

Homcore(C )(x, y)ε =
{

f ∈ HomC (x, y)ε : f is part of an ε-interleaving
}

.

It is clear that met factors through core, and that cat factors through ι, that is, that the

following diagram commutes (strictly):

lpCAT lpCATinterl epMET.

core

ι

met

metinterl

catinterl

cat

We have the following adjunction.
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Proposition 4.6.2. The functors metinterl : lpCATinterl� epMET : catinterl form an ad-

junction, with metinterl a catinterl.

Proof. Note, on the one hand, that a distance non-increasing function between metric

spaces is completely determined by its value on the elements of its domain. On the

other hand, if C is a locally persistent category, P an ep metric space, x, y ∈ P , and

ε ∈ R+, then there is at most one morphisms x →ε y in cat(P ). This implies that a

distance non-increasing functor C → catinterl(P ) is entirely determined by its action

on the objects of C . These two observations give a natural bijection between distance

non-increasing maps metinterl(C ) → P and locally persistent functors C → catinterl(P ),

whenever all the morphisms of C are part of an interleaving.

Since the adjunctions ι a core and metinterl a catinterl go in different directions,

they don’t compose to an adjunction between lpCAT and epMET. Nonetheless, there

is a counit c : met◦cat=metinterl ◦catinterl ⇒ idepMET, which, for P a metric space, is

defined as the distance non-increasing map met(cat(P )) → P that sends each element

of P to itself. Note, moreover, that if dP (p, q) = r , then p and q are r -interleaved as

objects of cat(P ). This implies the following.

Lemma 4.6.3. The morphism cP : met(cat(P )) → P is a natural isomorphism of ep

metric spaces for every P ∈ epMET.

Although we won’t need this, it is important to emphasize the following.

Proposition 4.6.4. The functor cat : epMET → lpCAT exhibits the category of (large)

ep metric spaces as a full subcategory of the category of locally persistent category.

Proof. Lemma 4.6.3 implies that cat is faithful. To see that cat is full, we use that

a functor cat(P ) → cat(Q) is completely determined by its action on the objects of

cat(P ), as the hom-persistent sets of cat(Q) are valued in either empty or singleton

sets.

The extension of a distance non-increasing map from a metric space to a locally

persistent category works by extending a corresponding locally persistent functor,

using a Kan extension. In order to do this, given a distance non-increasing map

P →met(C ) we require a locally persistent functor cat(P ) →C representing it. Since

c is an isomorphism, we can assign, to each locally persistent functor F : cat(P ) →C ,

a distance non-increasing map met(F )◦ c−1
P : P →met(C ).
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We use this to define the notion of coherent map from a metric space to a locally

persistent category.

Definition 4.6.5. Let P be an ep metric space and let C be a locally persistent category.

We say that a distance non-increasing map f : P →met(C ) is coherent if there exists a

locally persistent functor F : cat(P ) →C such that met(F )◦ c−1
P = f .

Before going to the main theorem, let us give some examples that show that

interesting problems in the theory of interleaving distances can be phrased as whether

certain maps are coherent or as extension problems.

Example 4.6.6. Let C be a locally persistent category. Then dC
I reflects interleavings

(Definition 4.5.1) if and only if for every δ ∈ R+, every map 2δ→met(C ) is coherent.

Example 4.6.7. Let P be an ep metric space. Then dP is intrinsic if and only if every

distance non-increasing map 2δ→ P can be extended to a distance non-increasing

map [0,δ] → P (endowing [0,δ] with the metric induced by R) where the inclusion

2δ→ [0,δ] maps a to 0 and b to δ.

Example 4.6.8 (cf. second proof of [BV18, Theorem 4.25]). Let P be an ep metric space.

Then dP is complete if and only if every distance non-increasing map {1/2n}n≥0 → P

can be extended to a distance non-increasing map {1/2n}n≥0 ∪ {0} → P , endowing

{1/2n}n≥0 and {1/2n}n≥0 ∪ {0} with the distances induced by R.

We now prove the main theorem. For this we need the following straightforward

lemma.

Lemma 4.6.9. Let P →Q be a distance preserving map between ep metric spaces. Then,

the induced locally persistent functor cat(P ) → cat(Q) is fully faithful.

Theorem 4.6.10 (cf. [BSN17, Theorem 3.6]). Let P,Q ∈ epMet and C ∈ lpCAT, let

f : P →met(C ) be a coherent, distance non-increasing map, and let g : P → Q be a

distance preserving map. If C is complete or cocomplete as an enriched category, then

f can be extended along g , as follows

P met(C )

Q

f

g
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Proof. Assume C is complete (the other case is dual). Since f is coherent, we can

form the following diagram of locally persistent categories

cat(P ) C

cat(Q)

F

cat(g )

where the dotted arrow is the right Kan extension of F along g (Definition 2.4.15),

which exists by completeness of C . The triangle commutes strictly, since cat(g ) is full

and faithful, by Lemma 4.6.9 and Proposition 2.4.16. After applyingmet to the diagram,

we obtain the desired extension, since, by assumption, we have met(F )◦ c−1
P = f .

Example 4.6.11. Using Theorem 4.6.10, and the observations in Example 4.6.8 and

Example 4.6.7, it follows that the interleaving distance of a complete locally persistent

category is intrinsic and complete. This recovers a weak version of Corollary 4.4.3 and

Theorem 4.3.1, as here we are assuming that the locally persistent category admits all

limits, whereas the aforementioned results require the existence of a specific kind of

limit.

4.6.2 Relationship to higher interpolation and extension for persis-

tent modules

The functors met and cat that we described above play the roles of the functors

•R : CAT → epMET and •R : epMET → CAT of [BSN17]. More precisely, we have that,

up to natural isomorphism, the functors •R and •R can be factored as follows

CAT lpCAT epMET,

po

st

•R

met

cat

•R
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where po : CAT → lpCAT maps a category C to its locally persistent category of persis-

tent objects C R, and st : lpCAT → CAT is a generalization of the space-time construc-

tion of [BSN17, Section 2], which we now describe. Given a locally persistent category

C , let st(C ) be the category with objects R×obj(C ), and such that for every r, s ∈ R

and x, y ∈C we have

Homst(C )
(
(r, x), (s, y)

)=
HomC (x, y)s−r , if s − r ≥ 0

;, otherwise.

In particular, [BSN17, Theorem 3.6] follows from Theorem 4.6.10, above.

As a side remark, we note that cat is a kind of Yoneda embedding.

Remark 4.6.12. The functor cat can also be defined by recalling that the Yoneda em-

bedding [0,∞]op → Set[0,∞] is monoidal (Lemma 2.6.8), where the monoidal structure

on [0,∞] is sum and the monoidal structure on Set[0,∞] is given by Day convolution.

Moreover, any functor [0,∞] → Set can be restricted to a functor R+ → Set, and the

restriction operation Set[0,∞] → SetR+ is monoidal. The composite induces a functor

from the category of [0,∞]-enriched categories to the category of locally persistent

categories. Finally, the category of large ep metric spaces (symmetric Lawvere spaces,

[Law73]) is a subcategory of the category of [0,∞]-enriched categories (Lawvere met-

ric spaces). This gives a composite

epMET −→ [0,∞]op-CAT −→ Set[0,∞]-CAT −→ SetR+-CAT = lpCAT,

which is naturally isomorphic to cat.

4.7 The observable category of a locally persistent cate-

gory

In [CCBS14], the observable category of persistent modules is defined. Two descrip-

tions of this category are given, one ([CCBS14, Definition 2.3]) is as a direct construc-

tion, and the other one ([CCBS14, Corollary 2.13]) is as a quotient of the category of

persistent modules by the subcategory of ephemeral persistent modules (i.e. persis-

tent modules all of whose non-identity structure maps are trivial).

The purpose of the observable category is to define a category that is in a sense

simpler than the category of persistent modules, but that still has enough information



4.7. THE OBSERVABLE CATEGORY OF A LOCALLY PERSISTENT CATEGORY 91

so that important invariants of persistent modules factor through this category. In

particular, the property of being q-tame ([CSGO16, Section 2.8]), the undecorated

persistent diagram ([CSGO16, Section 1.6]), and the interleaving distance between

persistent modules are observable invariants, in the sense that they only depend on

the image of the relevant persistent modules in the observable category. Moreover,

in the observable category, any q-tame persistent module is interval-decomposable

([CCBS14, Corollary 3.8]), a fact that is not true in the category of persistent modules.

In [BP19], the notion of ephemeral persistent module is considered in the case

of multi-dimensional persistent modules, and it is used to construct an observable

category of multi-dimensional persistent modules, as a quotient of the category of

multi-dimensional persistent modules by the category of ephemeral modules. It is

proven that, in this generality, the observable category is equivalent to the subcategory

of multi-dimensional modules that are sheaves for a convenient topology on the poset

Rn .

In this section, we associate an observable locally persistent category C # to every

locally persistent category C . We show that the interleaving distance is an observable

invariant, in the sense that the observable locally persistent category gives rise to the

same ep metric space as the original locally persistent category (Proposition 4.7.3).

We also extend one of the main results of [BP19], namely, that the observable category

of the category of persistent objects of a complete category is equivalent to the subcat-

egory of right continuous persistent objects. We do this for 1-dimensional persistent

objects for simplicity, but the same constructions work for higher dimensions.

Recall, from Section 2.6.2, that there is a lax monoidal functor (−)# : SetR+ → SetR+

given by

F # = lim
r>0

F r ,

where F r is the r -shift to the left of F as in Definition 2.6.1, and a monoidal natural

transformation η : idSetR+ ⇒ (−)#. As discussed in Section 2.6.2, the functor (−)# turns

any functor F : R+ → Set into a right continuous functor in a universal way, in the

sense that, if G is right continuous, then morphisms F → G are in bijection with

morphisms F # →G , and this bijection is given by precomposition with the morphism

η#
F : F → F #.

Since the functor (−)# is monoidal, it provides us with a change of enrichment

(−)# : lpCAT → lpCAT.



4.7. THE OBSERVABLE CATEGORY OF A LOCALLY PERSISTENT CATEGORY 92

This functor has the effect of turning the hom-persistent sets of a locally persis-

tent category into right continuous persistent sets. Moreover, by Proposition 2.6.11,

the natural transformation η# is monoidal, so we have a natural transformation

η# : idlpCAT ⇒ (−)# between the functors idlpCAT, (−)# : lpCAT → lpCAT. In particular,

for every locally persistent category C we get a locally persistent functor η#
C

: C →C #.

Definition 4.7.1. The observable locally persistent category of a locally persistent

category C is defined to be C #.

Before proceeding to prove some properties of this construction, we explain its

relationship to the original definition of observable category given in [CCBS14]. Since

it makes things simpler, we generalize their definition to persistent objects in an

arbitrary category C . An observable morphism between persistent objects X ,Y ∈C R

consists of an element of the set limr>0 Nat(X ,Y r ). This definition is equivalent to

[CCBS14, Definition 2.2]. Using this notion of morphism, and the fact that R is a dense

poset, one obtains a well-defined composition, and a category ObC , the observable

category of persistent objects of C .

Note that, for X ,Y ∈C R, we have

lim
r>0

Nat(X ,Y r ) = lim
r>0

HomC R (X ,Y )r = HomC R (X ,Y )#,

where all the equalities are by definition. We deduce the following.

Proposition 4.7.2. For any category C , there is an isomorphism of categories

ObC
∼=

((
C R)#

)
0

.

We now prove that the interleaving distance of a locally persistent category is an

observable invariant.

Proposition 4.7.3. Let C be a locally persistent category and let x, y ∈ C . Then

dC
I (x, y) = dC #

I (x, y).

Proof. Let δ ∈ R+. On the one hand, we have a locally persistent functor η#
C

: C →C #

that is the identity on objects. So, if x and y are δ-interleaved in C , they must be

δ-interleaved in C #.

On the other hand, a δ-interleaving f : x δ←→δ y : g in C #, by definition, consists

of elements f ∈ (
HomC (x, y)#

)
δ and g ∈ (

HomC (y, x)#
)
δ that compose to shifts of the
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identity appropriately. Let us unfold what this means. Recall that, by definition, we

have that (
HomC (x, y)#)

δ = lim
δ′>δ

HomC (x, y)δ′ .

So, for every δ′ > δ, there is fδ′ ∈ HomC (x, y)δ′ , such that the shift map Sδ′,δ′′ maps

fδ′ to fδ′′ , for δ< δ′ ≤ δ′′ ∈ R+. An analogous discussion applies to g . Let δ′ > 0 and

consider fδ′ : x →δ′ y and g : y →δ′ x as morphisms in the locally persistent category

C . By Proposition 2.6.11, we have a commutative diagram

HomC (y, x)⊗Day HomC (x, y) HomC (x, x)

HomC (y, x)# ⊗Day HomC (x, y)# HomC (x, x)#,

◦

η# ⊗Day η
# η#

◦

relating the composition in C to the composition in C #. Since f and g form an inter-

leaving in C #, we have that gδ′ ◦ fδ′ = η#(S0,2δ′(idx )) in HomC (x, x)#. By Lemma 2.6.13,

this implies that for any δ′′ > δ′ we have gδ′′ ◦ fδ′′ = S0,2δ′′(idx). Together with a sym-

metric argument, this shows that x and y are δ′′-interleaved for every δ′′ > δ′ > δ, in

C . This is enough to show that dC
I (x, y) = δ because δ′′ and δ′ can be taken to be

arbitrarily close to δ, since R+ is dense.

We conclude this section by characterizing the observable locally persistent cate-

gory of a category of persistent objects as a locally persistent category of right contin-

uous persistent objects. Recall from Section 2.6.2 that, for any category C , we let C R
right

be the full subcategory of C R spanned by right continuous persistent objects.

Proposition 4.7.4. Let C be a complete category. Then we have an equivalence of

locally persistent categories

C R
right '

(
C R)#

given by the composite C R
right →C R → (

C R
)#

, with the first functor being the inclusion,

and the second functor being η#
C R .
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Proof. The result follows directly from the fact that, for X ,Y : R →C , we have

Hom(C R)# (X ,Y ) = lim
r>0

HomC R (X ,Y )r

= lim
r>0

HomC R (X ,Y r )

∼= HomC R (X , lim
r>0

Y r )

∼= HomC R (X ,Y #).



95

Chapter 5

Constructing locally persistent categories

As we will see in the examples in Chapter 6, it is often easy to define a locally persistent

category directly, by specifying objects, morphisms, composition, and identities,

much in the same way that many categories are usually described directly. In this

chapter, we provide more principled and systematic ways of constructing locally

persistent categories.

Locally persistent categories are categories whose hom-sets are parametrized by

the poset R+. In Section 5.1, we argue that the hom-sets of many categories are more

naturally parametrized by posets other than R+. We then use the change of enrich-

ment construction to construct locally persistent categories from categories whose

hom-sets are parametrized by other posets. Our main example is given by locally

multi-persistent categories of multi-persistent objects of a locally persistent category.

We explain this construction in Section 5.1.2. We also recall the main constructions of

[BSS13] which allow one to define a locally persistent category structure on categories

of generalized persistent objects.

In Section 5.2, we show that every category with a flow, in the sense of [SMS18],

has an associated locally persistent category with the same objects and interleaving

distance, thus letting one use the language of locally persistent categories to study

the interleaving distance of a category with a flow. We argue that the categorical

framework of locally persistent categories is more amenable to abstract reasoning

than the framework of categories with a flow, and see categories with a flow as a great

source of examples of locally persistent categories.
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5.1 Change of enrichment

A locally persistent category C has, for each pair of objects x, y ∈C and each ε ∈ R+, a

set of ε-morphisms, denoted by HomC (x, y)ε. So, in a precise sense, the collection of

all morphisms between x and y is a set parametrized by the poset R+.

It is often the case that, for a collection of objects C , the morphisms between two

objects x, y ∈C is most naturally parametrized by a poset other than R+.

Definition 5.1.1. Let Q be a monoidal poset and endow the category SetQ with the

monoidal product given by Day convolution. A locally Q-persistent category is a

category enriched in SetQ .

One can unfold Definition 5.1.1 and obtain a definition entirely analogous to

Definition 3.1.1, the only difference being that instead of R+ we have Q, and instead

of + we have the monoidal product of Q.

Example 5.1.2. Let C be any category and let n ∈N. The functor category C Rn
has a

natural structure of locally Rn+-persistent category, where, for ~v ∈ Rn+ and X ,Y ∈C Rn
,

we have

HomC Rn (X ,Y )~v = Nat(X ,Y ~v ),

where Y ~v (~w) = Y (~v + ~w) for every ~w ∈ Rn .

In applications (see, e.g., Section 5.1.2, Section 6.4, and Section 6.5), we construct

locally R2+-persistent categories. We refer to these as locally bi-persistent categories.

In order to define an interleaving distance for a locally Q-persistent category,

one can first turn the locally Q-persistent category into a locally persistent cate-

gory, and then use the usual interleaving distance. A natural way of turning a SetQ -

enriched category into a SetR+-enriched category is by constructing a lax monoidal

functor SetQ → SetR+ , and then using the change of enrichment construction (Defini-

tion 2.4.2). Although not expressed in the language of locally Q-persistent categories,

this is essentially the approach taken in [BSS13].

In [BSS13], two ways of constructing lax monoidal functors of the form SetQ →
SetR+ are studied. The simplest case is when we already have a lax monoidal functor

R+ → Q. We go over this construction in Section 5.1.1. The other case is when we

have a monoidal functor Qop → R+
op = [0,∞]op. We explain this construction in

Section 5.1.3.
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In this thesis, the most important examples of locally multi-persistent categories

are categories of persistent objects of a locally persistent category. In Section 5.1.2,

given a locally persistent category C and n ∈N, we construct a locally Rn+1+ -persistent

category of functors Rn → C0 that takes into account both the locally persistent

category structure of C as well as the shifts that come from the indexing by Rn .

5.1.1 Superlinear families

Let Q be a monoidal poset and assume given a lax monoidal functor R+ →Q. The cat-

egory SetQ is again monoidal, endowing it with Day convolution, and precomposition

with R+ →Q provides us with a lax monoidal functor

SetQ → SetR+ .

Example 5.1.3. Let C be any category and let n ∈N. Consider the SetRn
-enrichment

of the functor category C Rn
described in Example 5.1.2.

Every ~v ∈ Rn+ induces a monoidal functor R+ → Rn given by mapping ε to ε~v . The

change of enrichment construction then endows C Rn
with a locally persistent category

structure C , where, for ε ∈ R+ and X ,Y ∈C Rn
, we have

HomC (X ,Y )ε = Nat(X ,Y ε~v ),

where, as before, Y ε~v (~w) = Y (ε~v + ~w) for every ~w ∈ Rn .

Example 5.1.2 is very important, as it provides an interleaving distance for cate-

gories of multi-parameter persistent objects. These distances were carefully studied in

[Les12]. The same construction allows one to turn any SetRn+-enrichment into a SetR+-

enrichment, given a vector ~v ∈ Rn+. Note that this change of enrichment depends on

the choice of vector ~v ∈ Rn+, so the interleaving distance we obtain also depends on

this vector. A straightforward, but very important property of this construction is

the following, which says that, as long as the vector has non-zero coordinates, the

induced metric is uniquely defined up to a multiplicative constant; in particular, the

topology this metric induces is independent of the choice of vector.

Proposition 5.1.4. Let n ∈N and let C be an Rn+-locally persistent category. Assume

that ~v , ~w ∈ Rn+ are such that all of their coordinates are strictly positive. Then, the

interleaving distance on C obtained by the change of enrichment using~v is bi-Lipschitz

equivalent to the one obtained by the change of enrichment using ~w.
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Proof. Since the coordinates of ~v and ~w are strictly positive, there are ε1,ε2 ∈ R+
such that ε1~v ≥ ~w and such that ε2~w ≥~v . This means that, for X ,Y ∈C , if X and Y

are δ-interleaved using the locally persistent structure induced by ~v , then they are

ε2δ-interleaved using the locally persistent structure induced by ~w . And, conversely,

if they are δ-interleaved using the locally persistent structure induced by ~w , then they

are ε1δ-interleaved using the locally persistent structure induced by ~v .

The formalism of change of enrichment allows us to prove useful properties. As

an example, we have the following.

Lemma 5.1.5. Let Q be a monoidal poset and let F : R+ → Q be a strong monoidal

functor. Let C be a locally Q-persistent category and let CF be the locally persistent

category obtained using the change of enrichment given by F∗ : SetQ → SetR+ . If C is

powered (resp. copowered) by representables, then CF is powered (resp. copowered) by

representables.

Proof. We prove the powering case, the other case being dual. Let ε ∈ R+ and let

X ∈ CF . The power X ε in the SetR+-enrichment is then given by X F (ε), where this

second powering is in the SetQ enrichment.

We conclude this section by recalling the specific change of enrichment given in

[BSS13, Section 2.5]. This construction allows one to endow categories of the form

C P , for P a poset, with a locally persistent category structure.

Let P be a poset, and let TransP be the poset of translations of P . A translation of

P is a monotonic map Γ : P → P such that for all x ∈ P we have x ≤ Γ(x). The partial

order in TransP is given by Γ≤∆ ∈TransP if and only if Γ(x) ≤∆(x) for all x ∈ P . Note

that TransP is a monoidal poset, with monoidal product given by composition of

translations.

An example of a SetTransP -enriched category, studied in [BSS13], is the following

category of generalized persistent modules. Let C be a category and consider the

functor category C P . This category has a SetTransP -enrichment, where

Hom(X ,Y )Γ = Nat(X ,Y ◦Γ).

In [BSS13, Section 2.5], lax monoidal functors of the form R+ →TransP are called

superlinear families.
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Remark 5.1.6. Let P be a poset, let C be a category, and let R+ →TransP be a superlin-

ear family. The locally persistent category structure induced on C P is weakly-powered

(Definition 5.2.12) since this structure comes from the flow R+ →C P given by precom-

position with the superlinear family. We can thus consider the strong interleaving

distance on C P , which is the one described in [BSS13, Definition 2.5.1], or the weak

interleaving distance (recall the discussion in Section 5.2.2). Note that these two

coincide if the superlinear family is a strong monoidal functor.

5.1.2 Persistent objects of a locally persistent category

We now give one of the most important examples of this thesis. Given a locally per-

sistent category C we define a locally bi-persistent category C R whose underlying

category is the category of functors R → C0. That is, the objects of C R are the per-

sistent objects in the underlying category of C . For the morphisms, the idea is that,

for ε,δ ∈ R+, an (ε,δ)-morphism in C R is a natural transformation that shifts the

persistence degree by ε and whose components are δ-morphisms of C .

Definition 5.1.7. Consider the category C R that has as objects the (standard) functors

R → C0 from the poset R to the underlying category of C . This category admits a

SetR+×R+-enrichment, given as follows. For X ,Y ∈C R and ε,δ ∈ R+, let

HomC R (X ,Y )(ε,δ) = Nat(X ,Y ε)δ,

where Y ε is ε-shift to the left of Y and an element α ∈ Nat(X ,Y )δ consists of a family

αr ∈ HomC (X (r ),Y (r ))δ of δ-morphisms of C , for r ∈ R, such thatϕY
r,s ◦αr =αs ◦ϕX

r,s ∈
HomC (X (r ),Y (s))δ for all r ≤ s ∈ R+.

Given ~v = (v1, v2) ∈ R+×R+ let C R
~v denote the locally persistent category whose

structure is given by the change of enrichment construction using ~v , as explained

above.

If (C ,W ) is a relative locally persistent category, let W → denote the class of natural

transformations of (C0)R with all of its components in W . This endows C R
~v with a

relative locally persistent category structure. This construction is well behaved.

Lemma 5.1.8. Let C be a locally persistent category. If C admits copowers or powers

by representables, then so does C R
~v .
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Proof. We prove the powering case, the other case being dual. By Lemma 5.1.5, it is

enough to show that C R is powered by representables whenever C is. Let X ∈C R and

let ε,δ ∈ R+. Then the power X (ε,δ) : R →C0 is given by X (ε,δ)(r ) = X (r +ε)δ, where the

powering on the right hand side of the equality is the powering in C .

The following will be very useful in examples (Section 6.4).

Proposition 5.1.9. Let (C ,W ) be a relative locally persistent category and let ~v ∈
R+ × R+. Assume that C0 admits pullbacks, products, and sequential limits, and

that C is powered by representables and the powering operation respects pullbacks,

products, sequential limits, and morphisms of W . Assume further that W is closed

under sequential limits of C0. Then, the quotient interleaving distance on (C R
~v ,W →) is

intrinsic and complete, and it satisfies(
d

C R
~v

I

)
/'

(X ,Y ) = inf
{
δ : ∃X ′ ' X ,Y ′ ' Y , X ′ and Y ′ are δ-interleaved

}
= inf

{
δ : ∃ morphisms of W →, X ′ → X and Y ′ → Y

such that X ′ and Y ′ are δ-interleaved
}
.

Proof. The underlying category of C R is the functor category (C0)R so it admits pull-

backs, products, and sequential limits since limits are computed pointwise. The

locally persistent category C R
~v is powered by representables by Lemma 5.1.8. These

powers respect pullbacks, products, sequential limits, and morphisms of W → since

all of these are defined pointwise. Also, W → is closed under sequential limits of

(C R)0. It follows that C R admits weighted pullbacks (Proposition 3.2.12), weighted

sequential limits (Proposition 3.2.15), and terminal midpoints (Proposition 3.2.19), so

the quotient interleaving distance is intrinsic (Corollary 4.4.5) and complete (Theo-

rem 4.3.3). The characterization of the quotient interleaving in the statement follows

from Theorem 4.1.4.

Remark 5.1.10. Given C a locally persistent category and any n ∈N, the construction

given in Definition 5.1.7 generalizes immediately to endow (C0)Rn
with a locally Rn+1+ -

persistent category structure. It is clear that Proposition 5.1.9 also generalizes to this

case.

A simple but powerful observation is the following.

Proposition 5.1.11. Let F : C → D be a locally persistent functor between relative

locally persistent categories that maps acyclic morphisms to acyclic morphisms. Then,
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by applying F objectwise, we obtain a locally bi-persistent functor F∗ : C R →DR that

maps acyclic morphisms to acyclic morphism.

5.1.3 Sublinear projections

We start by motivating the discussion with an example based on [BSS13, Section 2.4].

Example 5.1.12. Consider the set of all order-preserving functions Γ : R → R such that

supr∈R |Γ(r )− r | <∞ and Γ(r ) ≥ r for all r ∈ R. Denote this set by S and note that it is

closed under composition. For Γ,∆ ∈ S, say that Γ≤∆ if Γ(r ) ≤∆(r ) for all r ∈ R. This

endows S with the structure of a monoidal poset.

Let C be any category. There is a SetS-enrichment of C R given by Hom(X ,Y )Γ =
Nat(X ,Y ◦Γ). Given X ,Y ∈C R and Γ,∆ ∈ S, we say that X and Y are (Γ,∆)-interleaved

if there are natural transformations X → Y ◦Γ and Y → X ◦∆ that compose to the

structure morphisms X → X ◦∆◦Γ and Y → Y ◦Γ◦∆.

Let F : S → R+ send Γ to supr∈R |Γ(r )− r |. For ε ∈ R+, we say that X and Y are

ε-interleaved if they are (Γ,∆)-interleaved with F (Γ),F (∆) ≤ ε. Taking an infimum, we

get an interleaving ep metric on C R ([BSS13, Theorem 2.3.5]).

We will see how to use the map F described in Example 5.1.12 to give a locally

persistent structure on C R such that the interleaving distance of this locally persistent

category coincides with the interleaving distance of the example.

Remark 5.1.13. Example 5.1.12 is in fact too simple: It is easy to see that the distance

induced by the notion of interleaving in Example 5.1.12 is the usual interleaving

distance in C R, since if we let Sr : R → R be given by adding r , then F (Sr ) = r and for

every Γ : R → R such that F (Γ) = r we have Γ≤ Sr .

Nonetheless the example is useful for understanding the constructions in this

section. A more interesting and useful example is Example 5.1.17.

Let P be a poset. A monotone sublinear projection is given by a lax monoidal

functor TransopP → [0,∞]op, where [0,∞] is a monoidal poset with monoidal product

given by addition of real numbers, such that ∞+ r = r +∞=∞ for every r ∈ [0,∞].

Monoidal functors of the form V op →W op for V and W monoidal categories, are

usually referred to as oplax monoidal functors V →W . We now explain how to get a

lax monoidal functor SetQ → SetR+ out of an oplax monoidal functor Q → R+.

By precomposition, a functor F : Q → R+, gives us a functor

L : SetR+ → SetQ .
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We are seeking a functor going the opposite way so we consider the right adjoint of

L which we denote by R. This right adjoint exists since SetR+ and SetQ are locally

presentable and L preserves colimits, as they are computed pointwise. Nonetheless,

the right adjoint of L is easy to describe concretely.

Lemma 5.1.14. In the situation above, the right adjoint R can be defined as

R(A)(ε) = Nat(Y (ε)◦F, A) ∼=
∐

q∈Q
F (q)≤ε

A(q),

for A ∈ SetQ , where Y : [0,∞]op → Set[0,∞] is the (co)Yoneda functor (Definition 2.6.5).

Moreover, R is lax monoidal.

Proof. Let B ∈ SetR+ . By the (co)Yoneda lemma, we have

B ∼=
∫ ε∈R+

B(ε)×Y (ε).

We can then compute

Nat(B ◦F, A) ∼= Nat

((∫ ε∈R+
B(ε)×Y (ε)

)
◦F, A

)

∼= Nat

(∫ ε∈R+
B(ε)× (Y (ε)◦F ), A

)

∼=
∫ ε∈R+

Nat(B(ε)× (Y (ε)◦F ), A)

∼=
∫ ε∈R+

HomSet (B(ε),Nat(Y (ε)◦F, A))

∼= Nat(B ,Nat(Y (−)◦F, A)) = Nat(B ,R(A)).

To see that R is lax monoidal, one just uses the adjunction L a R and the fact that

L is oplax monoidal. This is a formal argument, and is part of what is often referred to

as doctrinal adjunction ([Kel74]).

We deduce the following.

Proposition 5.1.15 (cf. [BSS13, Section 2.3]). Let P be a poset and let C be a category.

Every monotone sublinear projection F : TransP → [0,∞] induces a locally persistent

category structure on C P by changing the enrichment of C P on SetTransP along the lax
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monoidal functor SetTransP → SetR+ that is the composite of the right adjoint of the

oplax monoidal functor SetR+ → SetTransP given by precomposition with the monotone

sublinear projection F , with the restriction functor SetR+ → SetR+ .

Remark 5.1.16. The interleaving distance of a locally persistent category obtained

using the procedure described in Proposition 5.1.15 coincides with the distance

described in [BSS13, Definition 2.3.2]. To see this, let P be a poset and C be a category.

Then, by definition of the change of enrichment functor in Lemma 5.1.14, the ε-

morphisms from X to Y , objects of the locally persistent category C P , obtained

by using Proposition 5.1.15 are exactly the natural transformations X → Y ◦Γ for

Γ ∈TransP with F (Γ) ≤ ε. Moreover, composition in the locally persistent structure is

defined using the composition in the SetTransP enrichment, so ε-interleavings in the

locally persistent structure correspond to (Γ,∆)-interleavings such that F (Γ),F (∆) ≤ ε.

A good source of monotone sublinear projections are posets endowed with a

metric.

Example 5.1.17 (cf. [BSS13, Section 2.4]). Let P be a poset and let d be a Lawvere

metric on P , that is, an ep metric that is not necessarily symmetric. Assume that d

satisfies d(x, y) ≤ d(x, z) whenever x ≤ y ≤ z ∈ P . Then, the formula

sup{d(x,Γ(x)) : x ∈ P }

defines a monotone sublinear projection TransP → R+.

An interesting instance of this construction is the case of subsets of a fixed metric

space M . The subsets of M are ordered by inclusion, and there is a Lawvere metric on

the set of subsets of M given by the Hausdorff distance.

5.2 Categories with a flow

Let C be a category and let End(C ) be the category of endomorphisms of C . The

objects of End(C ) are functors C →C , and the morphisms are natural transformations.

This is a monoidal category, with monoidal product given by composition of endo-

functors. In [SMS18], the data of a category C together with a lax monoidal functor

T : R+ → End(C ) is called a category with a flow, and to every category with a flow

they assign an ep metric, called the interleaving distance, on the collection of objects

of C .
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It is useful to have some examples in mind. A standard one is any category of

persistent objects C R, where the flow is given by shifting to the left. Another source of

examples is the following.

Example 5.2.1. Let C be a category and c ∈C . An R+-object structure on c is given by

a monoid morphism ψ : R+ → HomC (c,c). This gives a flow on the slice category C /c

that maps r ∈ R+ and f : x → c to ψ(r )◦ f .

As a concrete example, one can take C = Top and c =R as a topological space, to

get a flow on the category of R-filtered topological spaces.

The notion of interleaving makes sense in any category with a flow, so the col-

lection of objects of a category with a flow can be endowed with an ep metric: the

interleaving distance.

In this section, we explain how every flow T : R+ → End(C ) gives rise to a locally

persistent category CT with the same objects as C and much of the same categorical

structure of C , in such a way that the interleaving distance of the locally persistent

category thus obtained coincides with the interleaving distance of the category with a

flow (C ,T ) in the sense of [SMS18]. The main idea is to set

HomCT
(x, y)ε = HomC (x,Tε(y)).

This procedure is useful for a couple of reasons. Firstly, we note that, since cat-

egories with a flow are defined as categories together with a lax monoidal action of

R+, many proofs become a bit lengthy, not because they are conceptually compli-

cated, but because pasting diagrams have to be constructed in order to prove some

coherences. Examples of this phenomenon are the proof of the triangle inequality

of the interleaving distance of a category with a flow ([SMS18, Theorem 2.7]) and

the completeness result of Cruz ([Cru19, Theorem 3]). The procedure that assigns a

locally persistent category to each category with a flow encapsulates these coherences

and uses them once and for all. As a consequence, to prove the triangle inequality for

the interleaving distance of a category with a flow, one can use the corresponding fact

for the interleaving distance of a locally persistent category (Lemma 3.1.10) which

has a very short proof that exactly matches the proof that isomorphisms compose

to isomorphisms in any category. Similarly, our completeness result, although not

weaker nor stronger than the one of [Cru19] (see the discussion in Section 5.2.4), does

not involve any coherences or pasting diagrams (Theorem 4.3.1), and exactly matches

the proof that a transfinite composition of isomorphisms is an isomorphism in any
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category.

Secondly, the results in this section can be interpreted as a way of importing

our general metric results to the world of categories with a flow. For example, in

Section 5.2.4, we give conditions under which the interleaving distance of a category

with a flow is intrinsic and complete, using the results of Chapter 4. So one can think

of this procedure as a way of making the arguments in categories with a flow more

closely match standard arguments in category theory.

As a final remark, we note that, as we point out in Remark 6.9.6, there are inter-

leaving distances that don’t arise naturally from a flow, but that are the interleaving

distance of a natural locally persistent structure.

This section is structured as follows. In Section 5.2.1, we explain how to assign

a locally persistent category to each category with a flow in a metric preserving way.

This is done with a general categorical construction, which can be interpreted as an

enriched Kleisli category construction.

In Section 5.2.3, we compare categories with a flow and locally persistent cate-

gories and we characterize the locally persistent categories that arise from categories

with a flow. The comparison for general flows is more subtle than one may wish, but

becomes very simple in the case of categories where the flow is a strong monoidal

functor (which is the case in many of the most relevant applications).

In Section 5.2.4, we import some of our general metric results to categories with a

flow, and we discuss the relationship between our completeness result and the one

proven in [Cru19].

Finally, in Section 5.2.5, we explain how a straightforward generalization of flows,

that of Q-flows, allows one to endow a category with the structure of a locally Q-

persistent category (Definition 5.1.1).

5.2.1 The enriched Kleisli category construction

We start with the following general procedure, which we call the enriched Kleisli

category construction. It is hard to know who to attribute it to, but we note that the

construction is considered in [Mel].

Let (V ,⊗,1) be a monoidal category. A lax monoidal functor F : V → End(C )

induces a SetV -enrichment of C , where the monoidal structure of SetV is given by

Day convolution. We will denote the enriched category thus obtained by CF .

We explain this construction; a dual construction gives a SetV -enrichment of C ,
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for a lax monoidal functor G : V op → End(C ). We start by defining the hom-functors

by

HomCF (c,d)a = HomC (c,F (a,d)).

The functoriality follows directly from the functoriality of F . To see that this provides

an enrichment, we must define identities and composition.

Since F is monoidal, we have a morphism c → F (1,c) natural in c ∈ C , which,

by Yoneda, gives a natural transformation of functors Y (1) → HomC (c,F (−,c)) =
HomCF (c,c). This gives the identity morphism of c ∈C in the SetV -enrichment of C .

The composite of f ∈ HomCF (c,d)a and g ∈ HomCF (d ,e)b is given by the compos-

ite x
f−→ F (a, y)

F (a,g )−−−−→ F (a,F (b, z)) → F (a ⊗b, z), where the last morphism comes from

the monoidal structure of F . To see that composition is compatible with the functori-

ality of the hom objects, it is better to describe it as follows. Assume given c,d ,e ∈C .

To get a morphism Hom(c,d)⊗Hom(d ,e) → Hom(c,e) we start by computing the

domain, using the Day convolution formula

(
HomCF (c,d)⊗HomCF (d ,e)

)
(a)

∼=
∫ x,y∈V

HomV (x ⊗ y, a)×HomCF (c,d)x ×HomCF (d ,e)y

∼=
∫ x,y∈V

HomV (x ⊗ y, a)×HomC (c,F (x,d))×HomC (d ,F (y,e))

Let ( f ,m,n) ∈ HomV (x ⊗ y, a) × HomC (c,F (x,d)) × HomC (d ,F (y,e)). This gives

f∗ : F (x,F (y,e)) → F (x⊗y,e) → F (a,e) by functoriality, and the fact that F is monoidal.

We can then form the composite f∗ ◦ F (x,n) ◦ m : c → F (a,e). The assignment

( f ,m,n) 7→ f∗ ◦ F (x,n) ◦ m gives a cowedge HomV (−⊗−, a) × HomC (c,F (−,d)) ×
HomC (d ,F (−,e)) → Hom(c,F (a,e)), natural in a ∈ V . This induces a natural trans-

formation Hom(c,d) ⊗ Hom(d ,e) → Hom(c,e), by the universal property of the

coend.

Unitality and associativity are straightforward, although lengthy: one must use

pasting diagrams that are very similar to the ones considered in the proof of [SMS18,

Theorem 2.7]. We won’t give the details here.

In the next result, we specialize the above construction to the case when V = R+,

to get an operation FlCAT → lpCAT, that assigns a locally persistent category to each

category with a flow.

Proposition 5.2.2. Let (C ,T ) be a category with a flow. There is a corresponding locally
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persistent category CT with obj(CT ) = obj(C ), and such that for every x, y ∈ CT we

have HomCT
(x, y)δ = HomC (x,Tδ(y)) and composition is given by mapping

(g , f ) ∈ HomC (y,Tδ(z))×HomC (x,Tε(y))

to the composite

x
f−→Tε(y)

Tε(g )−−−−→Tε(Tδ(z)) →Tε+δ(z),

where the unlabeled morphism is given by the lax monoidal structure of T . Identities

are given by T0(x) ∈ HomC (x,T0(x)).

5.2.2 Weak and strong interleavings in a category with a flow

We now unfold the definition of flow and consider two possible notions of interleaving

in such a category: strong interleavings and weak interleavings. Our goal is to see that

weak interleavings in a category with a flow (C ,T ) correspond to interleavings in its

associated locally persistent category CT . We remark that the description given here

is the usual description of flow ([SMS18, Definition 2.3]). We also remark that, as will

be apparent from the definitions, weak and strong interleavings are equivalent when

the flow is a strong flow (Definition 5.2.9), which is often the case in practice.

Let C be a category. We defined a flow as being a lax monoidal functor T : R+ →
End(C ). This is equivalently given by:

. a functor T : R+ → End(C );

. a natural transformation u : idC ⇒T0;

. for each ε,δ ∈ R+, a natural transformation µε,δ : TεTδ⇒Tε+δ;

such that all of the diagrams of the following shapes commute in End(C ):

1.

Tε

T0Tε Tε

uidTε idTε

µ0,ε

Tε

TεT0 Tε

idTεu idTε

µε,0

(5.2.3)
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2.

TεTδTγ TεTδ+γ

Tε+δTγ Tε+δ+γ

idTεµδ,γ

µε,δidTδ
µε,δ+γ

µε+δ,γ

TεTδ Tε+δ

Tε′Tδ′ Tε′+δ′ .

µε,δ

Tε≤ε′Tδ≤δ′ Tε+δ≤ε′+δ′

µε′,δ′

(5.2.4)

Definition 5.2.5 ([SMS18, Definition 2.6]). Let (C ,T ) be a category with a flow, x, y ∈C ,

δ ∈ R+, and f : x → Tδ(y) and g : y → Tδ(x). We say that f and g form a weak

δ-interleaving between x and y if the following diagram commutes:

T0x x y T0 y

Tδx Tδy

T2δx TδTδx TδTδy T2δy

where the diagonal morphisms are given by f and g and the functoriality of T , and

the remaining morphisms come from the lax monoidal structure of T .

We say that f and g form a strong δ-interleaving between x and y if the following

diagram commutes:

x y

Tδx Tδy

TδTδx TδTδy

where the diagonal morphisms are given by f and g and the functoriality of T , and

the curved morphisms come from the lax monoidal structure of T .

In [SMS18], the interleaving distance in a category with a flow is defined using

weak interleavings. The following result says that the interleaving distance of a cat-

egory with a flow coincides with the interleaving distance of its associated locally

persistent category. The result follows at once from the description of CT given in

Proposition 5.2.2.
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Proposition 5.2.6. Let (C ,T ) be a category with a flow, let x, y ∈ obj(C ), and let δ ∈ R+.

Then x and y are weakly δ-interleaved in the category with a flow (C ,T ) if and only if

they are interleaved in the locally persistent category CT .

One could now ask: is there a notion of strong interleaving in a locally persistent

category? The answer is that there is one, at least when the locally persistent category

comes from a category with a flow. We now explain the precise relationship between

FlCAT and lpCAT, and we characterize the image of the enriched Kleisli category con-

struction FlCAT → lpCAT. The following lemma will help us describe the underlying

category of the enriched Kleisli category of a category with a flow.

Lemma 5.2.7. Let (C ,T ) be a category with a flow. Then the flow structure on T

induces a monad structure on the functor T0 : C →C .

Proof. Recall the description of flow given in Section 5.2.2. The unit of the monad

T0 is given by the natural transformation u : id⇒T0, and the multiplication is µ0,0 :

T0T0 ⇒T0. The axioms of monad are then verified using the two triangles of Diagram

5.2.3 and the first square of Diagram 5.2.4, taking ε= δ= γ= 0.

5.2.3 Categories with a flow vs. locally persistent categories

We now explain some relationships between categories with a flow and locally per-

sistent categories. As most of the proofs of the results in this section are tedious but

simple, and largely a matter of careful bookkeeping, we will give fewer details than in

other sections, emphasizing only the main points.

The enriched Kleisli category construction gives us the right diagonal functor in

the following diagram of categories and functors:

FlCATstrong FlCATs.strong FlCATidem FlCAT

lpCATpow lpCATw.pow lpCATw.pow lpCATw.pow lpCAT

∼ ∼ met. equiv.
met. emb.

met. equiv.

(5.2.8)

We now describe the main constructions that appear in Diagram 5.2.8. For simplicity,

we won’t describe the category structure of all the categories of the diagram, but just

the objects of each of the categories. Similarly, we will define functors only on objects.
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The diagonal arrow in Diagram 5.2.8 is labeled as a being “metrically an embedding”

because the interleaving distance in a category with a flow is equal to the interleaving

distance in its corresponding locally persistent category, by Proposition 5.2.6.

We start with the top row. We can identify different kinds of flow, depending on

their strictness.

Definition 5.2.9. Let (C ,T ) be a category with a flow. If T0 is an idempotent monad,

we say that T is a idempotent flow; if u is a natural isomorphism, we say that T is an

semi-strong flow; and if u and µ are natural isomorphisms, we say that T is a strong

flow. We denote the collection of categories with an idempotent, semi-strong, or strong

flow by FlCATidem, FlCATs.strong, or FlCATstrong respectively.

This definition deserves a few remarks. Firstly, to the best of the author’s knowl-

edge, all the relevant examples of flow are at least idempotent. The reason to consider

idempotent monads is that their Kleisli category is much better behaved than the

Kleisli category of an arbitrary monad: it coincides with the Eilenberg–Moore category

of the monad and it is complete whenever the original category is. As we have seen,

completeness is very relevant when studying metric properties of the interleaving

distance. Secondly, strong flows are also referred to as essentially strict flows in [Cru19].

We call them strong flows as they are precisely strong monoidal functors R+ → End(C ).

We have now defined all the categories and functors in the first row of Dia-

gram 5.2.8, except for the curved arrow going from right to left. To describe this

last functor, we note the following.

Lemma 5.2.10. Let (C ,T ) be a category with a flow. Then, the underlying category of

the locally persistent category CT is isomorphic to the Kleisli category of the monad T0.

Proof. Both categories have as objects the objects of C . Now, by definition, for x, y ∈C ,

a morphism in the Kleisli category of T0 from x to y is given by a morphism x →T0(y)

in C . Moreover, composition in the Kleisli category works in the exact same way as in

Proposition 5.2.2, taking ε= δ= 0. Finally, identities in the Kleisli category are given

by the components of the unit u : id⇒T0, as in the underlying category of the locally

persistent category CT .

The following result says that, in a sense, we can always assume that a flow is a

semi-strong flow, as long as we are willing to modify the original category a bit.
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Proposition 5.2.11. Let (C ,T ) be a category with a flow and let C ′ be the Kleisli cat-

egory of the monad T0. Then, the flow T induces a canonical flow T ′ on C ′. More-

over, for x, y ∈ obj(C ), and δ > 0, we have that x and y are weakly (resp. strongly)

δ-interleaved in C if and only if they are weakly (resp. strongly) δ-interleaved in C ′.

Proof. If (C ,T ) is a category with a flow, let T ′
ε (x) = Tε(x) thought of as a functor

R+ → End(C ′), with C ′ the Kleisli category of T0. This provides us with a well-defined

flow since, in C , the natural transformations id ⇒ Tε and TεTδ ⇒ Tε+δ factor as

id⇒T0 ⇒TεT0 ⇒Tε and TεTδ⇒TεTδT0 ⇒Tε+δT0 ⇒Tε+δ respectively.

The condition on the interleavings follows by a routine check.

Proposition 5.2.11 gives us the curved arrow in the top row of Diagram 5.2.8.

We label this arrow as being “metrically an equivalence” because, regardless of us

choosing the strong or weak interleaving distance, the construction lets us replace

any category with a flow with a category with a semi-strong flow that is (canonically)

metrically equivalent to the original one.

We now describe the bottom row of Diagram 5.2.8. We start by describing the

categories appearing in the bottom row. To motivate the following definition, recall

the definition of being powered by representables Definition 3.2.6, and note that, if

CT is the locally persistent category associated to a category with a flow (C ,T ), the

flow T seems to provide us with powers by representables, since

HomCT
(x, y)ε = HomC (x,Tε(y)) ∼= HomCT

(x,Tε(y))0.

One can check that the structure T provides us with is actually a bit weaker than

being powered by representables. We now formalize this notion.

Definition 5.2.12. Let C be a locally persistent category. A weak power structure on

C consists of, for every y ∈C and ε ∈ R+, an object w(y,ε) ∈C , and for every x, y ∈C

and ε,δ ∈C a function

wpε,δ : HomC (x, w(ε, y))δ→ HomC (x, y)ε+δ,

natural in x, y, ε and δ, and such that wpε,0 is a bijection.

A weak power structure gives us powers by representables only when the functions

wpε,δ are all bijections.
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The collection of locally persistent categories with a weak power structure is

denoted by lpCATw.pow, and the collection of locally persistent categories that are

powered by representables is denoted by lpCATpow. We have now described all the

constructions involved in the second row, and go on to explain the functors between

the first row and the second row of Diagram 5.2.8. All these functors are restrictions of

the diagonal functor on the right of the diagram.

If wp is a weak power structure on a locally persistent category C , we get a functor

Fwp− (−) : R+ → End(C0) given by Fwp
ε (y) = w(ε, y), an isomorphism uwp : x → Fwp

0 (x)

for every x ∈C , and a morphism µwp : Fwp
ε

(
Fwp
δ

(x)
)→ Fwp

ε+δ(x). One can easily check

that this structure satisfies the definition of flow.

Lemma 5.2.13. Let C be a locally persistent category and let wp be a weak power

structure on C . The functor Fwp together with the natural transformations uwp and

µwp constitute a semi-strong flow on C0.

Remark 5.2.14. Lemma 5.2.13 lets us import the definitions of strong interleaving and

strong iterleaving distance into locally persistent categories endowed with a weak

power structure.

Conversely, we have the following, which is again a routine check.

Lemma 5.2.15. If (C ,T ) is a category with a flow, the flow T ′ on the underlying

category of CT , which is equivalently the Kleisli category of T0, provides us with a weak

power structure. A weak power of x ∈C by ε ∈ R+ in CT is given by Tε(x).

Lemma 5.2.13 together with Lemma 5.2.15 give the second vertical equivalence in

Diagram 5.2.8. Moreover, Lemma 5.2.15 gives the fourth vertical functor in Diagram

5.2.8 which we label as surjective and as being “metrically an equivalence” since it

preserves the weak and strong interleaving distances, and since every weakly powered

locally persistent category comes from a category with a flow, by Lemma 5.2.13.

Proposition 5.2.16. Let (C ,T ) be a category with a flow. If T is strong, then the locally

persistent category CT is powered by representables. The power of y ∈ C by ε ∈ R+ is

given by Tε(y).

Proof. Let x ∈C . Then, in CT , we have

HomCT
(x, y)ε+− ∼= HomC (x,Tε+−(y)) ∼= HomC (x,T−Tε(y)) ∼= HomCT

(x,Tε(y))



5.2. CATEGORIES WITH A FLOW 113

as functors R+ → Set. We used the fact that T is strong in the second isomorphism.

Since all of the isomorphisms are natural, this concludes the proof.

A similar argument proves the following.

Proposition 5.2.17. Let C be a locally persistent category that is powered by repre-

sentables. Then the powering gives rise to a strong flow on its underlying category.

Proposition 5.2.16 together with Proposition 5.2.17 give the first vertical equiv-

alence in the diagram, which we label as an equivalence since the data of a locally

persistent category that is powered by representables is equivalent to the data of a cat-

egory with a strong flow, by Proposition 5.2.17 and Proposition 5.2.16. This concludes

the description of Diagram 5.2.8.

5.2.4 Metric properties of categories with a flow

We now use our general metric results proven in Chapter 4 to prove metric results

about the interleaving distance of a category with a flow.

Proposition 5.2.18. Let (C ,T ) be a category with a strong flow.

1. If C admits sequential limits and Tε preserves sequential limits for every ε ∈ R+,

then the locally persistent category CT admits weighted sequential limits.

2. If C admits binary products and pullbacks and Tε preserves these limits for every

ε ∈ R+, then the locally persistent category CT admits terminal midpoints.

Proof. In both cases, CT is powered by representables, by Proposition 5.2.16. More-

over, by assumption, these powers preserve the necessary limits to apply Proposi-

tion 3.2.12, for the first claim, and Proposition 3.2.19, for the second, concluding the

proof.

Combining Proposition 5.2.18 with Theorem 4.3.1 and Corollary 4.4.3 we conclude

the following.

Theorem 5.2.19. Let (C ,T ) be a category with a flow such that T is strong, C is

complete, and Tε preserves limits for all ε ∈ R+. Then the interleaving distance of C is

intrinsic and complete.
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To the best of the author’s knowledge, the result about the interleaving distance

of categories with a flow being intrinsic is new. On the other hand, a completeness

result for categories with a flow has already been proven in [Cru19].

Theorem 5.2.20 ([Cru19, Theorem 4]). Let (C ,T ) be a category with a flow such that

C admits sequential limits and Tε preserves sequential limits for every ε ∈ R+. Then

the interleaving distance of C is complete.

Although our general completeness theorem (Theorem 4.3.1) is neither stronger

nor weaker than the completeness result of [Cru19], since they apply to different

objects, the conditions for completeness in Theorem 5.2.19 are a bit stronger than the

conditions in [Cru19]. The difference is that we assume that the flow T is strong, an

assumption not present in Theorem 5.2.20.

We finish this section by explaining how to use [Cru19, Theorem 4] to strengthen

Theorem 5.2.19.

Proposition 5.2.21. Let C be a locally persistent category. Assume that C admits a

weak power structure. If the underlying category of C admits sequential limits and the

weak powers preserve sequential limits, then the interleaving distance of C is complete.

Proof. The weak power structure provides us with a flow for C0 by Lemma 5.2.13.

Theorem 5.2.20 then tells us that the interleaving distance of the category with a flow

C0 is complete, which proves the claim, since the interleaving distance given by the

flow coincides with the interleaving distance of C , by Proposition 5.2.6.

5.2.5 Q-flows

In Section 5.1, we defined locally Q-persistent categories, which are categories en-

riched in SetQ , for Q a monoidal poset. As argued there, it is often the case that the

most natural SetQ -enrichment of a category is given by a monoidal poset Q different

from R+. The same thing happens with flows.

Definition 5.2.22. Let Q be a monoidal poset and let C be a category. A Q-flow consists

of a lax monoidal functor T : Q → End(C ).

By the enriched Kleisli construction (Section 5.2.1), a Q-flow T on a category C

induces a locally Q-persistent structure on C , which we denote by CT .

A simple and interesting example is the following.
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Example 5.2.23. Assume given two flows T ,T ′ : R+ → End(C ) on a category C . We

would like to use both to define an interleaving distance that takes both possible

shifts into account. We can do this as long as the flows T and T ′ commute in a

coherent way. Concretely, we say that T and T ′ coherently commute if there exists a

lax monoidal functor (T ,T ′) : R+×R+ → End(C ) and a diagram of monoidal functors

and monoidal categories

R+

R+×R+ End(C )

R+

T
id×0

(T ,T ′)

0× id
T ′

that commutes up to natural isomorphism. We can then use this flow to endow C

with a locally bi-persistent structure.
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Chapter 6

Applications

6.1 The homotopy interleaving distance of a locally per-

sistent model category

In this section, we study the quotient interleaving distance of a relative locally per-

sistent category whose acyclic morphisms are the weak equivalences of a model

structure. Concretely, we are given a model category M such that its underlying

category has the structure of a locally persistent category and we let the class of

acyclic morphism of M be the class of weak equivalences. We denote the quotient

interleaving distance obtained using Definition 3.3.6 by (dM
I )/W or (dM

I )/' . We prove

that, under mild hypotheses, this distance is intrinsic and complete, and we provide a

characterization of the distance as an infimum over interleavings (Theorem 6.1.6).

The main motivation for studying these distances comes from the homotopy

interleaving distance, defined by Blumberg and Lesnick in [BL17]. The homotopy

interleaving distance is a distance on the category TopR of persistent topological

spaces and is used to lift the continuity of the Vietoris–Rips filtration, and other

invariants of metric spaces, to the homotopy level. More specifically, in the case of

the Vietoris–Rips filtration this means that the stability of the persistent homology of

the Vietoris–Rips filtration can be proven by first showing that the functor VR : Met →
TopR is Lipschitz and then using the algebraic stability of barcodes ([CCSGGO09,

Theorem 4.4]). This approach is explained in [BL17, Sections 1.2 and 3.2]. We address

the stability of Vietoris–Rips and other related filtrations in Section 6.3.

The lift to the homotopy level is useful since it shows that any stable invariant of

persistent topological spaces that is homotopy invariant can be used to produce a
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stable invariant of metric spaces. Another important example of such an invariant is

the path components functor π0, that maps persistent topological spaces to persistent

sets.

The homotopy interleaving distance between two persistent topological spaces

X ,Y ∈ TopR is defined as

dH I (X ,Y ) = inf
{
δ ∈ R+ : ∃X ′ ' X and Y ′ ' Y such that

X ′ and Y ′ are δ-interleaved
}
.

Note that, with this definition, it is not immediately clear that the homotopy inter-

leaving distance satisfies the triangle inequality ([BL17, Section 4]). We use some of

the techniques in [BL17] to show that such a definition yields a metric in very general

situations (Theorem 6.1.7), including the case of persistent topological spaces, persis-

tent simplicial sets, and persistent chain complexes (Example 6.1.8). Moreover, this

metric coincides with our quotient interleaving distance for locally persistent model

categories, so in particular, dH I =
(
d TopR

I

)
/'. This also lets us apply our metric results

for interleaving distances to prove that such distances are intrinsic and complete,

so in particular, we prove that the homotopy interleaving distance is intrinsic and

complete. Finally, as pointed out in Example 6.1.8, our approach also makes it clear

that the spaces of persistent topological spaces and of persistent simplicial sets are

equivalent as metric spaces.

In order to apply our results, we first restrict our attention to the case where the

acyclic morphisms of M are taken to be the trivial fibrations. We denote the class

of trivial fibrations by tFib = Fib∩W , and consider the quotient of the interleaving

distance by tFib, which we denote by (dM
I )/tFib.

We start with a lemma about the stability of trivial fibrations.

Lemma 6.1.1. Let M be a locally persistent category with a model structure on its

underlying category such that M is copowered and powered by representables, and

such that powers preserve trivial fibrations. Then, trivial fibrations are stable under

weighted pullbacks.

Proof. The category M is complete, copowered, and powered. We use Lemma 4.1.5.

If f is a trivial fibration, then f ε is again a trivial fibration by hypothesis, so the result

follows from the fact that, in any model category, trivial fibrations are stable under

pullbacks.



6. THE HOMOTOPY INTERLEAVING DISTANCE OF A LOCALLY PERSISTENT MODEL CATEGORY 118

We can now give a more concrete description of (dM
I )/tFib.

Proposition 6.1.2. Let M be a locally persistent category with a model structure on

its underlying category such that M is copowered and powered by representables, and

such that powers preserve trivial fibrations. Then,

(dM
I )/tFib(x, y) = inf

{
δ : ∃x ′ 'tFib x, y ′ 'tFib y, x ′ and y ′ are δ-interleaved

}
.

Proof. Lemma 6.1.1 tells us that trivial fibrations are stable under weighted pullbacks.

Thus we can apply Theorem 4.1.4, which says that the quotient interleaving distance

can be computed as an infimum over interleavings, as in the statement.

Our next goal is to establish that, under the hypotheses of Proposition 6.1.2, the

quotient interleaving distance (dM
I )/tFib is intrinsic and complete.

Proposition 6.1.3. Let M be a locally persistent category with a model structure on

its underlying category such that M is copowered and powered by representables, and

such that powers preserve trivial fibrations. Then, (dM
I )/tFib is intrinsic and complete.

Proof. This is a simple application of Corollary 4.4.5 and Theorem 4.3.3. The hypothe-

ses of Corollary 4.4.5 are satisfied since M is complete, copowered and powered by

representables, so M has terminal midpoints by Proposition 3.2.19.

Similarly, the completeness hypotheses of Theorem 4.3.3 are satisfied by the

completeness of M and it being copowered and powered by representables, using

Proposition 3.2.15. For the other hypothesis, note that, by Lemma 6.1.1, trivial fibra-

tions are stable under weighted pullbacks and that trivial fibrations are always closed

under sequential limits.

We now use the above propositions to prove analogous theorems about the dis-

tance we are really interested in, namely, the interleaving distance of M quotiented

by the equivalence relation given by weak equivalence. We start with a useful lemma.

Lemma 6.1.4. Let M be a model category. Any two fibrant and weakly equivalent

objects are connected by a zig-zag of trivial fibrations.

In the following proof we use standard facts about model categories that can be

found in, e.g., [Hov07, Section 1.2].
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Proof. Let x ' y ∈M be fibrant. Let α′ : c ′ → x be a cofibrant replacement. Since y is

fibrant, and c ′ ' y , there is a weak equivalence β′ : c ′ → y . Consider the morphism

α′×β′ : c ′ → x × y and factor it as a trivial cofibration g : c ′ → c followed by a fibration

f : c → x×y . Since x and y are fibrant, the projections πx : x×y → x and πy : x×y → y

are fibrations. Composing f with the projections to x and y , we get fibrations α =
πx ◦ f : c → x and β=πy ◦ f : c → y . To see that these are trivial fibrations, recall that

α′ : c ′ → x and β′ : c ′ → y are weak equivalence and use the 2-out-of-3 property, noting

that α′ =α◦ g and β′ =β◦ g .

It follows that, for fibrant objects, the equivalence relation induced by weak equiv-

alences is the same as the equivalence relation induced by trivial fibrations. More

specifically, two fibrant objects are connected by a zig-zag of weak equivalences if and

only if they are connected by a zig-zag of trivial fibrations.

Lemma 6.1.5. Let M be a locally persistent category with a model structure on its

underlying category and assume that M admits a locally persistent fibrant replace-

ment functor F : M → M . Then, the functor F : M → M together with the identity

functor idM : M →M exhibit the ep metric space (M , (dM
I )/W ) as a pseudo retract of

(M , (dM
I )/tFib).

See Definition 2.2.16 for the notion of pseudo retract of ep metric spaces.

Proof. Both the identity and the fibrant replacement functor are locally persistent.

Moreover, if x 'W y in M , then, F x 'tFib F y in M by Lemma 6.1.4, and x 'tFib y in M

clearly implies x 'W y in M . So idM and F give well-defined distance non-increasing

maps F : (M , (dM
I )/W ) → (M , (dM

I )/tFib) and id : (M , (dM
I )/tFib) → (M , (dM

I )/W ).

Finally, we must show that for every x ∈ M , we have (dM
I )/W (F x, x) = 0. This is

clear, since F x and x are weakly equivalent.

We are ready to prove the main theorem of this section.

Theorem 6.1.6. Let M be a locally persistent category with a model structure on its

underlying category such that M is copowered and powered by representables, and

such that powers preserve trivial fibrations. Assume that M admits a locally persistent

fibrant replacement functor M →M . Then, (dM
I )/W is intrinsic and complete and it

satisfies

(dM
I )/W (x, y) = inf

{
δ : ∃x ′ ' x,∃y ′ ' y, x ′ and y ′ are δ-interleaved

}
.
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Proof. To prove that the distance is intrinsic and complete, it is enough to show that

(dM
I )/tFib is intrinsic and complete, by Lemma 6.1.5 and Lemma 2.2.17. And to show

this, we just use Proposition 6.1.3.

Now, for the formula, note that

(dM
I )/W (x, y) = (dM

I )/tFib(F x,F y)

= inf
{
δ : ∃x ′ 'tFib F x, y ′ 'tFib F y, x ′ and y ′ are δ-interleaved

}
= inf

{
δ : ∃x ′ 'W x, y ′ 'W y, x ′ and y ′ are δ-interleaved

}
,

where in the first equality we used the pseudo retraction, the second equality is by

Proposition 6.1.2, and the final equality follows from the fact that F is locally persistent

functor that is homotopy invariant.

The main application we have in mind is the following. Let M be a cofibrantly

generated model category and consider the functor category M R with its projec-

tive model structure (Definition 2.5.7). Recall that the projective model structure

is characterized by the fact that the weak equivalences and fibrations are defined

pointwise.

The category M R is locally persistent and copowers and powers by representables

are given by shifting to the right and to the left respectively (Example 3.2.7). In partic-

ular, these shifts preserve trivial fibrations. Finally, any functorial fibrant replacement

M → M provides us with a locally persistent fibrant replacement M R → M R, so

applying Theorem 6.1.6, we deduce the following.

Theorem 6.1.7. Let M be a cofibrantly generated model category and let the class of

acyclic morphisms of the locally persistent category M R be the class of natural transfor-

mations that are componentwise weak equivalences. Then, the quotient interleaving

distance (dM R

I )/' is intrinsic and complete, and it satisfies(
dM R

I

)
/' = inf

{
δ : ∃x ′ ' x, y ′ ' y, x ′ and y ′ are δ-interleaved

}
.

We note that the same theorem holds for categories of the form M Rn
for n > 1.

We conclude the section with a few applications.

Example 6.1.8. Recall from Example 2.5.9, Example 2.5.10, and Example 2.5.11 that

there are cofibrantly generated model structures on the categories of chain complexes

(over some commutative ring R), simplicial sets, and topological spaces. These give
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us relative locally persistent categories Ch(R)R, sSetR, and TopR that satisfy the hy-

pothesis of Theorem 6.1.7. In particular, we get quotient interleaving distances for all

of these categories. These distances are intrinsic and complete, and have the form of

the homotopy interleaving distance of [BL17].

These locally persistent categories are closely related. For example, one can use

the geometric realization and singular complex functors |− | : sSet�Top : S to obtain

analogous locally persistent functors |− | : sSetR�TopR : S between the correspond-

ing locally persistent categories. Since these functors form a Quillen equivalence, it

follows that the ep metric spaces
(
sSetR,

(
d sSetR

I

)
/'

)
and

(
TopR,

(
d TopR

I

)
/'

)
are equiva-

lent, in the sense that, after identifying points at distance 0, they become isometric.

Another interesting homotopy invariant locally persistent functor is the chain

complex functor C hR : sSetR → Ch(R)R. It follows from Theorem 4.2.2 that this functor

is distance non-increasing.
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6.2 The Gromov–Hausdorff distance on dissimilarity

spaces

In this section, we prove that the Gromov–Hausdorff distance can be interpreted as a

quotient interleaving distance and use our results about metric properties of quotient

interleaving distances to recover some well-known facts about the Gromov–Hausdorff

distance.

In Section 6.2.1, we study the Gromov–Hausdorff distance on the collection of

dissimilarity spaces, a very weak version of metric spaces: a dissimilarity space con-

sists of a set X together with a function X × X → [0,∞]. Of course, every ep metric

space gives rise to a dissimilarity space, so, in Section 6.2.2, we restrict our attention

to the Gromov–Hausdorff distance on ep metric spaces and on compact ep metric

spaces. Here, we use our results on quotient interleaving distances being complete

and geodesic to recover the well-known facts that, when restricted to compact met-

ric spaces, the Gromov–Hausdorff distance is complete and geodesic, and that two

compact metric spaces are at distance zero if and only if they are isometric.

In the case of dissimilarity spaces, the hypotheses of our results are verified by

abstract considerations, since the locally persistent category of dissimilarity spaces is

very well behaved. When proving that the Gromov–Hausdorff distance is geodesic

when restricted to compact ep metric spaces, we verify the hypotheses of our results

by using well-known constructions that feature in the standard proofs of the fact that

the Gromov–Hausdorff distance is geodesic ([INT16], [CM18b]). In this sense, the

proof that we give is not new, only the point of view is.

6.2.1 Gromov–Hausdorff distance on dissimilarity spaces

In [Seg16] the notion of network is considered. A network consists of a finite set X

together with a dissimilarity function d : X ×X → R+ such that d(x, x) = 0 for all x ∈ X .

Networks can be seen as generalized finite metric spaces: they need not satisfy the

triangle inequality or symmetry, only reflexivity. The thesis [Seg16] is concerned with

algorithmic transformations of networks, and in particular, with clustering algorithms

and their stability. In order to formulate stability, the author generalizes the Gromov–

Hausdorff distance to networks. This is our starting point. We consider a slightly more

general notion of network, similar to the generalization considered in [CM18a], which

we call dissimilarity space. Let R+ = [0,∞].
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Definition 6.2.1. A dissimilarity space consists of a set X together with a function

dX : X ×X → R+.

Example 6.2.2. Of course, any ep metric space is in particular a dissimilarity space.

Another important family of dissimilarity spaces is given by merge functions. A merge

function on a set X is given by a function m : X×X → R+ such that, for every x, y, z ∈ X ,

we have

m(x, z) ≥ min(m(x, y),m(y, z)).

In Section 6.6.3, we explain how merge functions can be used to encode one-

parameter hierarchical clusterings.

The definition of the Gromov–Hausdorff distance using correspondences general-

izes to dissimilarity spaces.

Definition 6.2.3. The Gromov–Hausdorff distance between dissimilarity spaces X

and Y is given by

dG H (X ,Y ) = 1

2
inf

{
dist(R) : R ⊆ X ×Y correspondence

}
,

where, as usual, dist(R) = sup
{|dX (x, x ′)−dY (y, y ′)| : (x, y), (x ′, y ′) ∈ R

}
.

We give a few remarks about this definition. Firstly, the fact that the above distance

is in fact an ep metric is proven by composing correspondences, as usual. Secondly,

note that, for X and Y dissimilarity spaces and R a correspondence between them,

dX (x, x) can be strictly greater than 0, so the case |dX (x, x)−dY (y, y)| for (x, y) ∈ R

is relevant. Finally, this definition specializes to [Seg16, Equation 5.82] when the

dissimilarity spaces happen to be networks and, by Theorem 2.2.27, the definition

also specializes to the Gromov–Hausdorff distance on metric spaces.

The goal of this section is to show that the ep metric of Definition 6.2.3 is a quotient

interleaving distance, and that our theorems imply that this distance is intrinsic and

complete. We start by defining the locally persistent category of dissimilarity spaces.

A morphism of dissimilarity spaces f : X → Y consists of a function f : X →
Y between the underlying sets, such that dX (x, x ′) ≥ dY ( f (x), f (x ′)) for all x, x ′ ∈
X . Together with composition of functions and identity functions, this endows the

collection of dissimilarity spaces with the structure of a category. We temporarily let

Hom(X ,Y ) denote the set of morphisms between two dissimilarity spaces X and Y .

Given a dissimilarity space X and ε ∈ R+, consider ε·X , the dissimilarity space with

the same underlying set as X and distance given by dε·X (x, y) = dX (x, y)+ε. Similarly,
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given ε ∈ R+, let X ε be the dissimilarity space with the same underlying set as X and

distance given by dX ε(x, y) = max(0,dX (x, y)−ε).

Definition 6.2.4. Let Diss denote the locally persistent category whose objects are

dissimilarity spaces, and such that

HomDiss(X ,Y )ε = Hom(ε ·X ,Y ) = Hom(X ,Y ε).

Identities and composition are defined in the obvious way. With this locally

persistent structure, interleavings have a particularly simple description.

Lemma 6.2.5. A δ-interleaving between dissimilarity spaces X and Y is given by func-

tions of sets f : X → Y and g : Y → X such that f and g are inverse bijections, and such

that |dX (x, x ′)−dY ( f (x), f (x ′))| ≤ δ for all x, x ′ ∈ P.

Also by construction, we deduce the following.

Lemma 6.2.6. The locally persistent category Diss is copowered and powered by rep-

resentables. Copowers are given by ε ·X and powers are given by X ε, for X ∈ Diss and

ε ∈ R+.

The fact that the locally persistent category Diss is copowered and powered by

representables is one of the main reasons to work in this category, rather than working

directly with metric spaces. The other reason is that the underlying category of Diss is

complete, and limits have a very concrete description.

Lemma 6.2.7. The underlying category of Diss is complete.

Proof. It is enough to show that Diss has arbitrary products and pullbacks. Let {Xi }i∈I

be a family of dissimilarity spaces. Let

X =∏
i∈I

Xi and dX ({xi }, {x ′
i }) = sup

i∈I
dXi (xi , x ′

i ).

It is clear that (X ,dX ), together with the natural projections X → Xi , satisfies the

universal property of the product.

For pullbacks, let X
f−→ Z

g←− Y be a cospan of dissimilarity spaces, and let

P = {(x, y) ∈ X ×Y : f (x) = g (y)} and dP ((x, y), (x ′, y ′)) = max(dX (x, x ′),dY (y, y ′)).

It is again straightforward to see that (P,dP ), together with the natural projections

P → X and P → Y , satisfies the universal property of the pullback.
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As usual, combining powers, copowers, and limits of the underlying category, we

obtain all the limits that are relevant for the study of the interleaving distance of a

locally persistent category.

Lemma 6.2.8. The locally persistent category Diss admits weighted pullbacks, weighted

sequential limits, and terminal midpoints.

Proof. Since Diss is copowered and powered by representables and is furthermore

complete, the claims follow from Proposition 3.2.12, Proposition 3.2.15, and Proposi-

tion 3.2.19.

We now define the acyclic morphisms to endow Diss with a relative locally persis-

tent category structure.

Definition 6.2.9. An acyclic morphism between dissimilarity spaces is a surjective and

distance preserving morphism.

We are interested in the quotient interleaving distance
(
d Diss

I

)
/'. We have the

following.

Proposition 6.2.10. Acyclic morphisms between dissimilarity spaces are stable under

weighted pullback.

Proof. The locally persistent category Diss is complete and copowered and powered

by representables. We use Lemma 4.1.5, so it is enough to show that powers preserve

acyclic morphisms and that acyclic morphisms are stable under pullbacks of the

underlying category.

By the description of powers (Lemma 6.2.6), it is clear that the power of a surjective

map f : X → Y is surjective. Since dX (x, x ′) = dY ( f (x), f (x ′)) implies max(dX (x, x ′)−
ε,0) = max(dY ( f (x), f (x ′))−ε,0), we deduce that powers preserve acyclic morphisms.

By the description of pullbacks in the proof of Lemma 6.2.7, it is clear that a pull-

back of a surjective map is surjective. To see that a pullback of a distance preserving

map is distance preserving, let

P = {(x, y) ∈ X ×Y : f (x) = g (y)} and dP ((x, y), (x ′, y ′)) = max(dX (x, x ′),dY (y, y ′))

be the pullback of a cospan X
f−→ Z

g←− Y and assume that g is distance preserving.
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Given (x, y), (x ′, y ′) ∈ P , we have

dP ((x, y), (x ′, y ′)) = max(dX (x, x ′),dY (y, y ′))

= max(dX (x, x ′),dZ (g (y), g (y ′)))

= max(dX (x, x ′),dZ ( f (x), f (x ′))),

where in the second equality we used the fact that g is distance preserving and in the

third one we used the fact that (x, y), (x ′, y ′) ∈ P . Since f is distance non-increasing,

we have dP ((x, y), (x ′, y ′)) = dX (x, x ′), as required.

We can then deduce the following.

Theorem 6.2.11. The quotient interleaving distance on dissimilarity spaces is intrinsic

and complete and satisfies

(
d Diss

I

)
/' (X ,Y ) = inf

{
δ : ∃X ′ ' X ,Y ′ ' Y , X ′ and Y ′ are δ-interleaved

}
= inf

{
δ : ∃ acyclic morphisms X ′ → X and Y ′ → Y

such that X ′ and Y ′ are δ-interleaved
}
.

Proof. The facts that the distance is intrinsic and complete follow from Corollary 4.4.5

and Theorem 4.3.3, using Lemma 6.2.8 and Proposition 6.2.10, and noting that acyclic

morphisms are clearly closed under sequential limits.

The description of the quotient interleaving distance follows from Theorem 4.1.4.

We conclude this section by relating the quotient interleaving distance of Diss to

the Gromov–Hausdorff distance.

Theorem 6.2.12. For X and Y dissimilarity spaces we have

(
d Diss

I

)
/' (X ,Y ) = 2dG H (X ,Y ).

Proof. We use the second characterization of the quotient interleaving distance of

Theorem 6.2.11.

Assume that 2dG H (X ,Y ) < δ. Then, there is a correspondence R ⊆ X ×Y such

that dist(R) < δ. Consider the ep metric space R X , with underlying set given by R

and metric given by dR X ((x, y), (x ′, y ′)) = dX (x, x ′). With this definition, the projection
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πX : R X → X is an acyclic morphism of dissimilarity spaces. Construct, analogously,

the metric space RY .

Now, consider the bijection R X → RY given by the identity. Let us see that this

function, and its inverse, do not increase the distance more than δ.

|dR X ((x, y), (x ′, y ′))−dRY ((x, y), (x ′, y ′))| = |dX (x, x ′)−dQ (y, y ′)| ≤ dist(R) < δ.

So the identity functions R X → RY and RY → R X form a δ-interleaving, by

Lemma 6.2.5, and thus
(
d Diss

I

)
/' (X ,Y ) ≤ δ.

For the converse, assume given α : X ′ → X and β : Y ′ → Y acyclic morphisms such

that X ′ and Y ′ are δ-interleaved. Using Lemma 6.2.5, let the interleaving be given by a

bijection f : X ′ → Y ′. Define a correspondence R ⊆ X ×Y , where (x, y) ∈ R if and only

if f (α−1(x))∩β−1(y) 6= ;. Since α and β are surjective, this defines a correspondence.

Assume (x, y), (x ′, y ′) ∈ R. Let a ∈ X ′ be such that α(a) = x and β( f (a)) = y , which

exists by construction. Similarly, let b ∈ X ′ be such that α(b) = x ′ and β( f (b)) = y ′.
Then

|dP (x, x ′)−dQ (y, y ′)| = |dX ′(a,b)−dY ′( f (a), f (b))| ≤ δ,

so dist(R) ≤ δ and thus 2dG H (X ,Y ) ≤ δ, concluding the proof.

6.2.2 The Gromov–Hausdorff distance on metric spaces

We now consider the full locally persistent subcategory epMet ⊆ Diss of ep metric

spaces, and show that its quotient interleaving distance is equal to twice the usual

Gromov–Hausdorff distance. We also show that the quotient interleaving distance

on ep metric spaces inherits completeness from the quotient interleaving distance of

Diss. We then recover the facts that, when restricted to compact metric spaces, the

Gromov–Hausdorff distance is geodesic and restricts to a non-pseudo distance on the

collection of isometry classes of compact metric spaces. Finally, we prove a stability

result for functions out of the collection of all ep metric spaces and give an alternative

characterization of the acyclic morphisms between ep metric spaces.

Consider the category epMet (Definition 2.2.5) of ep metric spaces with the locally

persistent category structure given by

HomepMet(P,Q)ε =
{

f : P →Q a set map : ∀p, p ′ ∈ P,dP (p, p ′)+ε≥ dQ ( f (p), f (p ′))
}
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as in Example 3.1.4. Note that, by regarding an ep metric space as a dissimilarity space

in the natural way, the locally persistent category epMet is a full locally persistent

subcategory of the locally persistent category Diss. We prove a few properties of this

embedding. First, a dissimilarity space is an ep metric space if and only if it is weakly

equivalent to one.

Lemma 6.2.13. If P ∈ epMet and X ∈ Diss are such that P ' X , then X ∈ epMet. If, in

addition, P is a compact ep metric space, then so is X .

Proof. We start with the first claim. Since, by definition, P ' X if and only if they are

connected by a zig-zag of acyclic morphisms, by induction, it is enough to show that if

α : P → X is an acyclic morphism, then X is an ep metric space, and that if α : X → P

is an acyclic morphism, then X is an ep metric space. In both cases, we have to check

that dX (x, x) = 0 for every x ∈ X , and that dX satisfies the triangle inequality. In the

first case, we use the fact that α is surjective and preserves distances, in the second

case we just use the fact that α preserves distances.

The proof of the second claim uses exactly the same strategy as the proof of the

first claim.

The locally persistent subcategory epMet ⊆ Diss is not closed under powering by

representables in Diss, as the following example shows. In fact, one can show that

epMet does not admit powers by representables.

Example 6.2.14. Let P be the metric space with three points {a,b,c} such that

dP (a,b) = 1, dP (b,c) = 1, and dP (a,c) = 2. If ε = 1, then the dissimilarity space

Pε doesn’t satisfy the triangle inequality, since dPε(a,b) = 0, dPε(b,c) = 0, but

dPε(a,c) = 1.

Let epMetc denote the full locally persistent subcategory of Diss spanned by

compact ep metric spaces. This is a relative locally persistent category, where the

acyclic morphisms are taken to be the 0-morphisms that are acyclic morphisms of

Diss. Similarly, consider the relative locally persistent category epMet.

Proposition 6.2.15. The locally persistent categories epMet and epMetc admit

weighted sequential limits of morphisms that are part of an interleaving.

Proof. Assume given ε ∈ R+ and εi ∈ R+ for each i ∈ N such that
∑

i εi = ε and let

εi = ε−∑
j<i ε j . Let

· · · Xi · · · X1 X0

fi
εi

fi−1
εi−1

f1
ε1

f0
ε0

(6.2.16)
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be a weighted sequential limit diagram of dissimilarity spaces such that, for every i ,

the morphism fi is part of an εi -interleaving.

We now show the following two facts. If all of the dissimilarity spaces are ep metric

spaces, then so is the sequential limit; and if all of the dissimilarity spaces are compact

ep metric spaces, then so is the sequential limit.

To prove that Diss admits sequential limits, we used Proposition 3.2.15. To satisfy

the hypotheses, we proved that Diss is copowered and powered by representables

and that its underlying category admits sequential limits. By Proposition 3.2.15, the

sequential limit of Diagram 6.2.16 is computed by taking the categorical limit of

· · · fi−→ X εi
i

fi−1−−→ ·· · f1−→ X ε1
1

f0−→ X ε0
0 (6.2.17)

in the underlying category of Diss. By Lemma 6.2.5, all the maps in Diagram 6.2.17

are bijections, so we can assume that all the dissimilarity spaces Xi have the same

underlying set X and possibly different metrics di : X ×X → R+.

Then, the limit of the diagram can be taken to have underlying set X and metric

dX given by

dX (x, y) = lim
i

max
(
0,di (x, y)−εi

)= lim
i

di (x, y),

by the description of powers in Diss (Lemma 6.2.6). Here, the limit is just a metric limit,

which exist since the sequence {di (x, y)}i∈N is Cauchy, as |di+1(x, y)−di (x, y)| ≤ εi → 0.

The above implies that the generalized metric on the limit X is a uniform limit

of the generalized metrics di . So, if all of the generalized metrics satisfy the triangle

inequality, so does dX , and if all of the generalized metrics are compact, so is dX ,

concluding the proof.

Our next goal is to prove that the Gromov–Hausdorff distance is geodesic when

restricted to compact ep metric spaces. Although the locally persistent category Diss

admits terminal midpoints, it is not the case that the locally persistent subcategory

epMet is closed under this construction. So we prove that epMet admits coherent

factorizations of interleavings by hand. Although not stated in this language, this

construction was first performed in [Stu12] in the case of metric measure spaces, and

then specialized to metric spaces in [CM18b].

Proposition 6.2.18. The locally persistent category epMet admits coherent factoriza-

tions of interleavings. If the interleaving is between two compact ep metric spaces, then
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the factorization can be taken so that every object in the factorization is a compact ep

metric space.

Proof. Assume given an ε-interleaving between ep metric spaces P and Q. Let f : P →
Q be the bijection representing the interleaving. Given γ+δ= ε, define an ep metric

space Mγ with underlying set P and metric given by

δ

ε
dP + γ

ε
f ∗(dQ ),

where f ∗(dQ )(p, p ′) = dQ ( f (p), f (p ′)).

The identity function Mγ→ P is a γ-interleaving since∣∣∣∣dP −
(
δ

ε
dP + γ

ε
f ∗(dQ )

)∣∣∣∣= ∣∣∣γ
ε

(dP − f ∗(dQ ))
∣∣∣≤ γ

ε
ε= γ,

A similar computation shows that f : Mγ→Q gives a δ-interleaving. To see that these

factorizations are coherent, note that the identity function gives functions Mγ→ M ′
γ

for every γ≤ γ′ ∈ [0,ε], and that an analogous computation to the one above shows

that this function is a (γ′−γ)-interleaving.

To prove that Mγ is a compact ep metric space when P and Q are, note that a

sequence of elements in Mγ has a subsequence that converges in P , which in turn,

has a subsequence that converges in Q, and thus, converges in Mγ.

Lemma 6.2.19. The quotient interleaving distance on epMetc reflects quotient inter-

leavings.

This proof is essentially a rewording of the standard proof that the Gromov–

Hausdorff distance is geodesic [CM18b, Theorem 1.2].

Proof. We apply Theorem 4.5.18, so we must check that, for P,P ′ ∈ epMetc , the persis-

tent set of quotient interleavingsQI(P,P ′) : R+ → SET is right continuous, and that we

can lift it to a q-tame persistent topological space with closed structure maps.

Let us instantiate the definition of the persistent set of quotient interleavings to

this case:

QI(P,P ′)δ =
{

(Z , Z ′,u, v, f , g ) : Z , Z ′ ∈ epMetc ,

u : Z → P, v : Z ′ → P ′ surjective and distance preserving,

f and g form a δ-interleaving between P and P ′
}

.
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The structure morphisms are just inclusions in this case, since, by Lemma 6.2.5, f and

g are inverse bijections that don’t distort the distances more than δ, and thus, they

don’t distort the distances more than δ′ for any δ′ ≥ δ.

We first prove that QI(P,P ′) is right continuous. To see this, we note that the

structure morphisms are the natural inclusions, and that if a pair of inverse bijections

f and g doesn’t distort the metric more than δ′ for every δ′ > δ, then it doesn’t distort

the metric more than δ.

To liftQI(P,P ′) to a persistent topological space, we follow a classical construction.

Let corr(P,P ′)δ denote the set of all correspondences between P and P ′ of distortion at

most δ. For δ′ ≥ δ we have a natural inclusion corr(P,P ′)δ ⊆ corr(P,P ′)δ′ so corr(P,P ′) :

R+ → Set is a persistent set. Now, the Hausdorff distance (Definition 2.2.23) endows

the set of subsets of P×P ′ with an ep metric. We can then give corr(P,P ′)δ the subspace

topology. We note two facts about this topology. First, in the Hausdorff distance,

any set is at distance zero from its closure. Second, by Blaschke’s theorem [BBI01,

Theorem 7.3.8], the set of subsets of P ×P ′ endowed with the Hausdorff distance is a

compact ep metric space.

Let Rn ⊆ P ×P ′ be a sequence of closed subsets with limit R ⊆ P ×P ′, which can

be taken to be closed. We make the following two claims: if Rn is a correspondence

for each n ∈N, then R must be a correspondence, and if the distortion of all the corre-

spondences Rn is bounded by some δ, then the distortion of R is also bounded by δ.

The proofs of these claims are elementary (see, e.g., [CM18b, Proof of Proposition 1.1]).

We deduce that, when endowed with the topology induced by the Hausdorff metric,

the persistent topological space corr(P,P ′) : R+ → Top is q-tame with closed structure

morphisms.

We now construct a natural transformationQI(P,P ′) ⇒ corr(P,P ′) with surjective

components. This lets us transport the topology on corr(P,P ′) to a topology onQI(P,P ′)
that is q-tame with closed structure maps, finishing the proof.

Given P
u←− Z

f−→ Z ′ v−→ P ′, we can consider the function (u, v ◦ f ) : Z → P ×P ′, and

its image R ⊆ P×P ′. If P
u←− Z

f−→ Z ′ v−→ P ′ is a δ-quotient interleaving, that is, it belongs

toQI(P,P ′)δ, then R is a correspondence whose distortion is bounded above by δ. So

we have constructed a function QI(P,P ′)δ → corr(P,P ′)δ. To conclude the proof, we

must show that, for each δ, the function QI(P,P ′)δ → corr(P,P ′)δ is surjective. This

follows from the fact that every correspondence R with distortion bounded above

by δ gives rise to a δ-quotient interleaving P ← R Z ↔ R Z ′ → P ′ as in the proof of

Theorem 6.2.12.
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Theorem 6.2.20. The quotient interleaving distance of epMet coincides with twice the

Gromov–Hausdorff distance and it is intrinsic and complete.

The quotient interleaving distance of epMetc coincides with twice the Gromov–

Hausdorff distance and it is geodesic and complete. Moreover, if P,Q ∈ epMetc are

compact (non-pseudo) metric spaces such that (d
epMetc
I )/'(X ,Y ) = 0, then they are

isometric.

Proof. By Theorem 6.2.12 and Theorem 6.2.11 we know that the first claim holds for

the relative locally persitent category Diss. To see that it holds for the locally persistent

subcategory epMet, we use Lemma 6.2.13 to see that epMet is closed under acyclic

morphisms, Proposition 6.2.15 to see that it is closed under weighted sequential limits

of morphisms that are part of interleavings, and Proposition 6.2.18 to see that it admits

coherent factorizations of interleavings.

The same analysis shows that the quotient interleaving distance of epMetc coin-

cides with twice the Gromov–Hausdorff distance and is complete. To see that it is

geodesic, and that it restricts to a non-pseudo metric on isometry classes, we use

Lemma 6.2.19 and Proposition 6.2.18 to satisfy the hypothesis of Theorem 4.5.16.

We now prove a useful stability result for maps out of the collection of ep met-

ric spaces. This can be regarded as a universal property of the Gromov–Hausdorff

distance.

Proposition 6.2.21. Let P be an ep metric space and let f : epMet → P be a function.

Assume that for every ε> 0 there exists δ> 0 such that if d1 and d2 are two ep metrics

on a set X such that ||d1 −d2||∞ ≤ δ, then dP ( f (X ,d1), f (X ,d2)) ≤ ε. Assume further

that, if there is a surjective and distance preserving map of ep metric spaces X → Y ,

then dP ( f (X ), f (Y )) = 0. Then, f is uniformly continuous with respect to the Gromov–

Hausdorff distance and the distance dP on P. If above we can take δ = cε, then f is

2c-Lipschitz.

Proof. This follows from the stability result Theorem 4.2.3, using the fact that the quo-

tient interleaving distance is twice the Gromov–Hausdorff distance (Theorem 6.2.12),

and the characterization of interleavings in epMet (Lemma 6.2.5).

We finish this section by giving an alternative description of acyclic morphisms

between ep metric spaces.

Given an ep metric space P , consider the equivalence relation on the underlying

set of P where p ∼ p ′ if and only if dP (p, p ′) = 0. By the triangle inequality, if p ∼ q
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and p ′ ∼ q ′, then dP (p, p ′) = dP (q, q ′). This means that the quotient set P = P/∼
inherits a well-defined distance dP ([p], [p ′]) = dP (p, p ′). Note that the construction

(−) : epMet → epMet is a functor between categories (not locally persistent categories),

since the morphisms in epMet are distance non-increasing.

Definition 6.2.22. A morphism f : P →Q between ep metric spaces is a pseudo isome-

try if f : P →Q is an isometry.

Lemma 6.2.23. For two ep metric spaces P and Q the following are equivalent:

1. P and Q are isometric as metric spaces.

2. P and Q are connected by a zig-zag of pseudo isometries.

3. P and Q are connected by a zig-zag of acyclic morphisms of dissimilarity spaces.

Proof. Note that any acyclic morphism of dissimilarity spaces between ep metric

spaces is necessarily a pseudo isometry, so (3) implies (2). The fact that (2) implies

(1) follows at once from the fact that objects connected by a zig-zag of isomorphisms

must be isomorphic.

We now show that that (1) implies (3). Note that the quotient map P → P is

distance preserving and surjective, so it is an acyclic morphism of dissimilarity spaces

for any P . So, if P and Q are isomorphic, we have a zig-zag P → P ∼= Q ← Q, and

thus a diagram P → P ←Q consisting of acyclic morphisms of dissimilarity spaces,

concluding the proof.
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6.3 Stability of Vietoris–Rips and related filtrations

In this section, we show that the very simple stability result of Theorem 4.2.2 implies

the stability of the Vietoris–Rips filtration. This result was first proven in this generality

in [BL17], using the homotopy interleaving distance.

The proof that we give here is essentially a rewording of the proof in [Mé17], only

using the language of locally persistent categories. The point is to show that, once

this language is set up, the proof can be split into two orthogonal parts: showing that

Vietoris–Rips is a locally persistent functor, and showing that Vietoris–Rips preserves

acyclic morphisms. In Section 6.4, we give another application of this methodology,

namely, we prove the stability of a parametrized Vietoris–Rips filtration that maps

persistent metric spaces to bi-persistent topological spaces.

Let sCpx denote the category of simplicial complexes. An object of sCpx consists

of a set X together with a family of finite and non-empty subsets SX of X such that

if σ ∈ SX and τ ⊆ σ with τ 6= ;, then τ ∈ SX . Given (X ,SX ) and (Y ,SY ) simplicial

complexes, a morphism from X to Y consists of a function of sets f : X → Y such that,

for every σ ∈ SX , we have f (σ) ∈ SY .

Definition 6.3.1. Let P be a metric space. Define the Vietoris–Rips filtration of P as the

following persistent simplicial complex VRc(X ) : R → sCpx. For r ∈ R, let VRc(X )(r ) =
(X ,SX (r )) with

SX (r ) = {
{x0, . . . , xn} : d(xi , x j ) ≤ r for all 0 ≤ i , j ≤ n

}
.

The structure maps are the natural inclusions.

Note that the definition of the Vietoris–Rips filtration doesn’t make any use of the

triangle inequality of P . In fact, exactly the same definition works for P a dissimilarity

space (Definition 6.2.1).

In order to show that the Vietoris–Rips filtration is stable, we extend it to a locally

persistent functor.

Lemma 6.3.2. The Vietoris–Rips filtration VRs : Diss → sCpxR is a locally persistent

functor.

Proof. We have defined VRs on objects. We must now show that, given ε ∈ R+ and

a morphism f ∈ HomDiss(X ,Y )ε between dissimilarity spaces X and Y , there is an
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induced morphism HomsCpxR (X ,Y )ε, and that this mapping respects identities and

composition.

Let f ∈ HomDiss(X ,Y )ε be an ε-morphism between dissimilarity spaces X and

Y . Given r ∈ R, let VRs( f )(r ) : VRs(X )(r ) → VRs(Y )(r + ε) be the map of simplicial

complexes that sends x ∈ X to f (x) ∈ Y . To see that it is simplicial, we must show that if

σ⊆VRs(X )(r ) is a simplex, then f (σ) ⊆VRs(X )(r +ε) is also a simplex. This is because,

ifσ= {x0, . . . , xn}, then dX (xi , x j ) ≤ r for all 0 ≤ i , j ≤ n, and thus dY ( f (xi ), f (x j )) ≤ r+ε
for all 0 ≤ i , j ≤ n, since f ∈ HomDiss(X ,Y )ε.

The fact that this mapping preserves identities and composition is evident.

Recall that there is a geometric realization functor | − | : sCpx → Top (see, e.g.,

[Spa12, Chapter 3, Section 1]). We will need the following version of Quillen’s Theo-

rem A.

Lemma 6.3.3. Let f : X → Y be a map of simplicial complexes such that f is surjective

on the underlying sets, and such that σ ⊆ X is a simplex of X if and only if f (σ) is a

simplex of Y . Then | f | : |X |→ |Y | is a weak equivalence of topological spaces.

Proof. There are at least to ways to prove this. One option is to choose arbitrary orders

on the underlying sets of X and Y in such a way that f preserves the orders. These

orders induce two simplicial sets Xs and Ys and a simplicial map fs : Xs → Ys as follows.

We let the n-simplices of Xs be given by lists (x0, . . . , xn) such that {x0, . . . , xn} ∈ SX and

such that xi ≤ xi+1. The simplicial set Ys is defined analogously, and the simplicial

map fs is defined in the only possible way, after prescribing that fs((x)) = ( f (x)) for

every x ∈ X . It is straightforward to see that the preimage of every simplex of Ys along

fs is contractible, by assumption, and thus that fs is a weak equivalence of simplicial

sets. This implies that | fs | : |Xs |→ |Ys | is a weak equivalence of topological spaces, but

| fs | : |Xs | → |Ys | is equal to | f | : |X | → |Y |, after identifying |X | with |Xs | and |Y | with

|Ys |.
The other option is to let PX be the poset SX . The poset PX can be seen as a

category, and thus as a simplicial set. The geometric realization of PX is naturally

homeomorphic to the realization of X : the poset PX corresponds to the barycentric

subdivision of X . Performing the same construction with Y , we get a diagram of
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topological spaces

| PX | | PY |

| X | | Y |

|P f |

' '
| f |

in which the vertical maps are homeomorphisms. Now, by assumption, and Quillen’s

theorem A ([Qui73]), the top horizontal map is a weak equivalence, and thus, | f | is a

weak equivalence.

We can compose the Vietoris–Rips filtration with the geometric realization functor

to get a locally persistent functor

VR= |−|◦VRs : Diss → TopR.

Proposition 6.3.4. The locally persistent functor VR : Diss → TopR maps acyclic mor-

phisms to weak equivalences.

Proof. The acyclic morphisms of Diss are the surjective and distance preserving

maps. Note that, if f : X → Y is a surjective and distance preserving map between

dissimilarity spaces, then, for every r ∈ R, the morphism of simplicial complexes

VRs( f ) :VRs(X )(r ) →VRs(Y )(r )

is surjective on underlying sets and has the property that σ ⊆ X is a simplex of

VRs(X )(r ) if and only if f (σ) ⊆ Y is a simplex of VR(Y )(r ), since f is distance preserv-

ing. It then follows from Lemma 6.3.3 that

VR( f )(r ) = |VR( f )(r )| : |VR(X )(r )|→ |VR(Y )(r )|

is a weak equivalence of topological spaces.

We then have the following.

Theorem 6.3.5 (cf. [BL17]). The mapping VR : Diss → TopR is 2-Lipschitz with respect

to the Gromov–Hausdorff distance and the homotopy interleaving distance.

Proof. By Theorem 4.2.2, we have that VR is 1-Lipschitz with respect to the quotient

interleaving distance on Diss and the quotient interleaving distance on TopR, using
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Proposition 6.3.4 and Lemma 6.3.2. But the quotient interleaving distance on Diss is

twice the Gromov–Hausdorff distance (Theorem 6.2.12), and the quotient interleaving

distance on TopR is the homotopy interleaving distance (Theorem 6.1.7).

Alternatively, to prove Theorem 6.3.5 in the case of ep metric spaces, one can

use the universal property of the Gromov–Hausdorff distance (Proposition 6.2.21).

This universal property can actually be used to prove the stability of many related

invariants of metric spaces. These include, for example, the Čech filtration, the

persistent homology of the filtrations given in [Cho19a] (called nerve functors there),

as well as the filtrations introduced in [CCMSW17]. The methodology is always the

same: one shows that the invariant maps strict interleavings to close-by invariants,

and acyclic morphisms to invariants at distance 0.
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6.4 The Gromov–Hausdorff-interleaving distance on

persistent dissimilarity spaces

One of the advantages of having a categorical framework to define distances, such as

the one developed in this thesis, is compositionality. In this context, this refers to the

process of combining distances on simple objects to get a distance on a class of more

structured objects. An example of this is the formation of a locally persistent category

C R of persistent objects of a locally persistent category C , described in Section 5.1.2.

This locally persistent category structure takes into account the shifts of the objects of

C R as well as the “pointwise” locally persistent structure of C . In this section, we give

three applications of this construction.

In Section 6.4.2, we use the quotient interleaving distance on the category of per-

sistent dissimilarity spaces to generalize the Gromov–Hausdorff distance on filtered

metric spaces considered in [CCSGMO09] and [CM10c]. In Section 6.4.3, we prove the

stability of a parametrized version of the Vietoris–Rips filtration, that maps persistent

metric spaces to bi-persistent topological spaces. In Section 6.4.4, we use the quotient

interleaving distance on a relative locally persistent category category of bi-persistent

dissimilarity spaces to generalize the λ-slack interleaving distance on dynamic metric

spaces introduced in [KM20].

The purpose of these examples is not the generalization of the distances in itself,

but to show how our framework allows one to easily combine distances such as the

Gromov–Hausdorff distance and the interleaving distance in order to compare objects

that have both a metric structure and a persistent structure.

6.4.1 Persistent dissimilarity spaces

In this section, we show how to use the theory developed in this thesis to define a

distance on persistent dissimilarity spaces and, in particular, on persistent metric

spaces that takes into account metric perturbations and persistence perturbations.

Recall from Section 6.2.1 that there is a locally persistent category of dissimilarity

spaces that generalizes the locally persistent category of metric spaces. We now

specialize Definition 5.1.7 to dissimilarity spaces and define a locally bi-persistent

category of persistent dissimilarity spaces. The idea is that, for ε,δ ∈ R+, an (ε,δ)-

morphism is a morphism that shifts the persistence degree by ε and that is allowed to

increase the metric by at most δ.
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Definition 6.4.1. Consider the category DissR the has as objects the standard functors

R → Diss0 from the poset R to the category of dissimilarity spaces with distance non-

increasing maps. This category admits a SetR+×R+-enrichment, given as follows. For

X ,Y ∈ DissR and ε,δ ∈ R+, let

HomDissR (X ,Y )(ε,δ) = Nat(X ,Y (ε,δ)),

where Y (ε,δ)(r ) is the dissimilarity space with underlying set Y (ε+ r ) and metric given

by

max(dY (ε+r )(y, y ′)−δ,0),

for y, y ′ ∈ Y .

From now on, fix ~v ∈ R+ × R+. As explained in Section 5.1.2, we get a locally

persistent category DissR
~v where an ε-morphism is given by an (ε~v)-morphism in the

locally bi-persistent category DissR. Concretely, if ~v = (v1, v2), for X ,Y ∈ DissR and

ε ∈ R+, we have

HomDissR
~v

(X ,Y )ε = Nat(X ,Y (εv1,εv2)).

As also explained in Section 5.1.2, the locally persistent category DissR
~v inherits

a class of acyclic morphisms from Diss, which endows DissR
~v with the structure of a

relative locally persistent category.

Definition 6.4.2. Let X ,Y ∈ DissR
~v and let f : X → Y be a 0-morphism. We say that f is

an acyclic morphism if all of its components are surjective and distance preserving.

Definition 6.4.3. The quotient interleaving distance on DissR
~v is called the Gromov–

Hausdorff-interleaving distance.

We remark that the Gromov–Hausdorff-interleaving distance actually depends on

the vector ~v , but, by Proposition 5.1.4, any two choices of such ~v with strictly positive

coordinates will yield bi-Lipschitz equivalent distances.

The Gromov–Hausdorff-interleaving distance is well behaved.

Proposition 6.4.4. The Gromov–Hausdorff-interleaving distance on DissR
~v is intrinsic
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and complete, and satisfies:(
d

DissR
~v

I

)
/'

(X ,Y ) = inf
{
δ : ∃X ′ ' X ,Y ′ ' Y , X ′ and Y ′ are δ-interleaved

}
= inf

{
δ : ∃ acyclic morphisms X ′ → X and Y ′ → Y

such that X ′ and Y ′ are δ-interleaved
}
.

Proof. This follows at once from Proposition 5.1.9.

Remark 6.4.5. As explained in Remark 5.1.10, for every n ∈N, we can construct a locally

Rn+1+ -persistent category DissRn
of multi-persistent dissimilarity spaces. Moreover,

given ~v ∈ Rn+1+ we obtain a relative locally persistent category DissRn

~v . We also refer

to the quotient interleaving distance of this relative locally persistent category as the

Gromov–Hausdorff-interleaving distance. As is clear, Proposition 6.4.4 also holds for

this distance.

6.4.2 Filtered metric spaces

We now show that the Gromov–Hausdorff-interleaving distance generalizes the dis-

tance on finite filtered metric spaces used in [CM10c].

In [CM10c], multi-parameter hierarchical clustering algorithms are studied. The

algorithms they study take as input a finite filtered metric space. A finite filtered

metric space consists of a finite metric space (X ,dX ) together with a filtering function

fX : X → R, which is not required to satisfy any assumptions. Let ffMet denote the

collection of all finite filtered metric spaces. Let X ,Y ∈ ffMet, and let R ⊆ X ×Y be a

correspondence between the underlying sets. The filtered distortion of R is given by

dist f (R) = max
(
dist(R), ||πX ◦ fX −πY ◦ fY ||∞

)
,

where dist(R) denotes the distortion of R as a correspondence between metric spaces

(as in Definition 2.2.26). The following distance between finite filtered metric spaces

is given in [CM10c, Definition 2]:

D(X ,Y ) = inf
R⊆X×Y

correspondence

dist f (R).

We now explain how the metric D can be interpreted as a quotient interleaving
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distance. Given X ∈ ffMet, let f −1
X ∈ DissR be given by

f −1
X (r ) = f −1

X ((−∞,r )) ∈ Diss,

for every r ∈ R. The structure maps are given by the natural inclusions f −1((−∞,r )) ⊆
f −1((−∞,r ′)) for r ≤ r ′ ∈ R. This gives a mapping ffMet → DissR, which lets us inter-

pret the collection of finite filtered metric spaces as a full locally persistent subcategory

of DissR.

Theorem 6.4.6. Let ~v = (1,1). Let X ,Y ∈ ffMet. Then(
d

DissR
~v

I

)
/'

( f −1
X , f −1

Y ) = D(X ,Y ).

We use the same methodology as in the proof of Theorem 6.2.12. For simplicity,

we write DissR instead of DissR
~v .

Proof. Let R ⊆ X ×Y be a correspondence such that dist f (R) ≤ δ. Consider the fi-

nite pseudo metric space R X with underlying set R and where dR X ((x, y), (x ′, y ′)) =
dX (x, x ′). Define a function fR X : R X → R by fR X = fX ◦πX . Consider then the per-

sistent dissimilarity space given by f −1
R X : R → Diss. Define, analogously, a persistent

dissimilarity space f −1
RY : R → Diss. The projections πX : R X → X and πY : RY → Y

induce acyclic morphisms f −1
R X → f −1

X and f −1
RY → f −1

Y of DissR. Moreover, as in the

proof of Theorem 6.2.12, the identity R X → RY induces a δ-interleaving between f −1
R X

and f −1
RY , so

(
d DissR

I

)
/' ( f −1

X , f −1
Y ) ≤ δ.

The other direction is more interesting. Assume that
(
d DissR

I

)
/' ( f −1

X , f −1
Y ) < δ. By

the second characterization of the quotient interleaving distance in Proposition 6.4.4

there exist persistent dissimilarity spaces S and T , acyclic morphisms α : S → f −1
X and

β : T → f −1
Y , and a δ-interleaving between S and T , given by natural transformations

ϕ and ψ. Let S′ be the colimit of S, seen as a functor S : R → Diss0. Similarly, let T ′ be

the colimit of T . By the interleaving, there is a bijectionϕ′ : S′ → T ′ that doesn’t distort

the metric more than δ, that is, ϕ′ is a δ-interleaving of dissimilarity spaces. There are

also surjective and distance preserving functions α′ : S′ → X and β′ : T ′ → Y , which

are just the colimit of the acyclic morphisms S → f −1
X and T → f −1

Y respectivelly.

Define the relation R ⊆ X ×Y as follows. We have (x, y) ∈ R if and only if | fX (x)−
fY (y)| ≤ δ and ϕ′(α′−1(x))∩β′−1(y) 6= ;. Assume for the moment that R is a corre-

spondence. By the same argument in the proof of Theorem 6.2.12, the distortion
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of R is bounded by δ, so the filtered distortion of R is also bounded above by δ, by

construction of R.

It only remains to be shown that R is a correspondence. We show that every x ∈ X

is related to some y ∈ Y , a symmetric argument finishes the proof. To see this, let

x ∈ X and let r = fX (x). So x ∈ f −1
X (r ) and x ∉ f −1

X (r ′) for every r ′ < r . It is enough to

show that there is y ∈ f −1
X (r +δ) such that (x, y) ∈ R and such that y ∉ f −1

X (r ′) for every

r ′ < r −δ.

Given x ′ ∈ S(r ), which exists, since the components of α are surjective, consider

ϕ(x ′) ∈ T (r +ε). We now show that (x,β(ϕ(x ′))) ∈ R, concluding the proof. To prove

this, we must show that fY (β(ϕ(x ′))) ≥ r − ε. If this is not the case, then there is

y ′′ ∈ T (r ′) with r ′ < r −ε such that y ′′ maps to ϕ(x ′) under the structure map T (r ′) →
T (r +ε). By the interleaving, we must have α(ψ(y ′′)) = x, but then ψ(y ′′) ∈ S(r ′+ε)

and r ′+ε < r . This is a contradiction, since if x ′ ∈ S(r ) is such that α′(x ′) = x then

there is no x ′′ ∈ S(r ′) for r ′ < r that maps to it under the structure map S(r ′) → S(r ), as

x ∉ f −1
X (r ′).

6.4.3 Parametrized Vietoris–Rips

The Gromov–Hausdorff-interleaving distance is a good abstraction since it lets us lift

stable invariants of metric spaces to stable invariants of persistent metric spaces. In

this section, we show how this works in the case of the Vietoris–Rips filtration.

Since VR : Diss → TopR is a locally persistent functor, it induces a locally bi-

persistent functor VR∗ : DissR → TopR2
, that is, a SetR2

-enriched functor between

SetR2
-enriched categories. Choosing ~v = (v1, v2) ∈ R+×R+, we get a locally persistent

functor VR∗ : DissR
~v → TopR2

~v .

Since the acyclic morphisms of DissR
~v and TopR2

~v are the natural transformations

all of whose components are acyclic morphisms, it follows from Proposition 6.3.4 that

VR∗ preserves acyclic morphisms. From Proposition 5.1.11, we deduce the following.

Theorem 6.4.7. The mapping VR∗ : DissR
~v → TopR2

~v that applies the Vietoris–Rips

filtration componentwise to a persistent dissimilarity space is 1-Lipschitz.

6.4.4 Dynamic metric spaces

We now give a high-level explanation of how to use quotient interleaving distances

to recover the λ-slack interleaving distance on dynamic metric spaces introduced in



6.4. THE GROMOV–HAUSDORFF-INTERLEAVING DISTANCE ON PERSISTENT DISSIMILARITY SPACES 143

[KM20].

In [KM20], dynamic metric spaces are studied. A dynamic metric space consists

of a finite set X together with a function dX :R×X ×X → [0,∞) such that

. for every r ∈R, the function dX (t ) : X ×X → [0,∞) is a pseudo metric;

. for every x 6= x ′ ∈ X , the function dX (−)(x, x ′) : R→ [0,∞) is not identically 0

and continuous.

A distance between dynamic metric spaces is also introduced, called the λ-slack

interleaving distance ([KM20, Definition 2.10]). This distance takes distortion in time

as well as distortion of the metric into account, and is defined using tripods, which

are a simple generalization of correspondences. We will not describe this metric here,

but we will provide an equivalent characterization of this metric, using the machinery

of this thesis.

We instantiate the multi-dimensional case of Definition 6.4.3 (Remark 6.4.5) to

the case of tri-persistent dissimilarity spaces. We do this by using the isomorphism of

posets R ∼= Rop that maps r to −r .

Definition 6.4.8. Consider the category DissRop×R that has as objects the standard

functors Rop×R → Diss0 from the poset Rop×R to the category of dissimilarity spaces

with distance non-increasing maps. This category admits a SetR+×R+×R+-enrichment,

given as follows. For X ,Y ∈ DissRop×R and ε1,ε2,δ ∈ R+, let

HomDissR (X ,Y )(ε1,ε2,δ) = Nat(X ,Y (ε1,ε2,δ)),

where Y (ε1,ε2,δ)((t1, t2)) is the dissimilarity space with underlying set Y (t1 −ε1, t2 +ε2)

and metric given by

max(dY (t1−ε1,t2+ε2)(y, y ′)−δ,0),

for y, y ′ ∈ Y .

As in Section 6.4, we fix ~v = (v1, v2, v3) ∈ R+×R+×R+ and we let the Gromov–

Hausdorff-interleaving distance on DissRop×R be the quotient interleaving distance of

DissRop×R
~v , where the acyclic morphisms are the componentwise acyclic morphisms.

We now explain how to use the Gromov–Hausdorff-interleaving distance to compare

dynamic metric spaces. We start with one of the main constructions of [KM20].

Let DMS denote the collection of all dynamic metric spaces. We can interpret DMS

as a full locally persistent subcategory of DissRop×R using the following construction.
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Given (X ,dX ) ∈ DMS, let F (X ) ∈ DissRop×R be defined as follows. If t1 > t2, let

F (X )(t1, t2) =;,

and if t1 ≤ t2, let

F (X )(t1, t2) =
(

X ,
∨

t∈[t1,t2]
dX (t )(−,−)

)
∈ Diss

where ∨t∈[t1,t2]dX (t )(−,−) : X ×X → [0,∞] denotes the function that, at x, x ′ ∈ X , takes

the value

inf
t∈[t1,t2]

dX (t )(x, x ′).

Using the characterization of the quotient interleaving distance of DissRop×R
~v as

an infimum over quotient interleavings (as in Proposition 6.4.4), one can show that

the λ-slack interleaving distance between dynamic metric spaces is equivalent to

the quotient interleaving distance

(
d

DissRop×R
~v

I

)
/'

restricted to dynamic metric spaces.

More specifically, the λ-slack interleaving distance is obtained by taking ~v = (1,1,λ).
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6.5 Stability of the kernel density filtration

In this section, we define a filtration on compact metric probability spaces and show

that it is stable with respect to the Gromov–Hausdorff–Prokhorov metric. This filtra-

tion is a generalization of the degree-Rips bi-filtration ([LW15]), for which a stability

theorem related to the one presented here has been established in unpublished work

of Blumberg and Lesnick. The kernel density filtration and its stability appears in

[RS20] and is joint work with Alexander Rolle.

Fixing a sufficiently well-behaved kernel K (Definition 6.5.5), we assign, to each

compact metric probability space X , the bi-filtration of X that maps s,k to{
x ∈ X :

∫
x ′∈X

K

(
dX (x, x ′)

s

)
dµX ≥ k

}
.

This filtration is formally defined in Section 6.5.2, where we interpret it as a functor

KDF(X ) : R×Rop → Diss.

The category DissR×Rop
has a relative locally persistent category structure (Re-

mark 6.4.5). We will prove the following.

Theorem 6.5.1. The mapping KDF, from compact metric probability spaces to

DissR×Rop
, is uniformly continuous with respect to the Gromov–Hausdorff–Prokhorov

distance and the quotient interleaving distance. If KDF is constructed using the

uniform kernel, then it is 2-Lipschitz.

As a direct consequence of Theorem 6.5.1 and Theorem 6.4.7, we get the following.

Corollary 6.5.2. For X a compact metric probability space, we have an associated

three-parameter persistent module Hn ◦VR◦KDF(X ) : R×R×Rop → Veck obtained by

taking n-th homology with coefficients in a field k of the Vietoris–Rips filtration applied

objectwise to the filtration KDF(X ) : R×Rop → Diss. This construction is uniformly

continuous with respect to the Gromov–Hausdorff–Prokhorov distance and the inter-

leaving distance on three-parameter persistent vector spaces, using the direction vector

~v = (1,1,1). If KDF is defined using the uniform kernel, then the above construction is

2-Lipschitz.

In order to prove the theorem, we extend the filtration to a more general class of

objects: weighted dissimilarity spaces.
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6.5.1 The Gromov–Hausdorff–Prokhorov metric

We start by recalling the definition of the Gromov–Hausdorff–Prokhorov metric.

Definition 6.5.3. Let µ,ν be Borel probability measures on a metric space Z . The

Prokhorov distance between µ and ν is

dP (µ,ν) = inf
{
ε> 0 : µ(A) ≤ ν(Aε)+ε and ν(A) ≤µ(Aε)+ε for all closed sets A ⊆ Z

}
,

where for a subset A ⊆ Z and ε≥ 0, we let Aε = {z ∈ Z : ∃a ∈ A,dZ (a, z) < ε}.

Definition 6.5.4. Let (X ,µX ), (Y ,µY ) be compact metric probability spaces. The

Gromov–Hausdorff–Prokhorov distance between (X ,µX ) and (Y ,µY ) is

dG HP (X ,Y ) = inf
i , j

(
max(d Z

H (i (X ), j (Y )), dP (i∗µX , j∗µY ))
)

,

where the infimum is taken over all isometric embeddings i : X → Z and j : Y → Z into

a common metric space Z .

Say that two metric probability spaces (X ,µX ) and (Y ,µY ) are isometry-equivalent

if there is a bijective isometry ψ : X → Y such that ψ∗(µX ) =µY . Then, the Gromov–

Hausdorff–Prokhorov distance is a metric on the set of isometry-equivalence classes

of compact metric probability spaces; see, e.g., [Mie09].

6.5.2 The kernel density filtration

We now formally define the kernel density filtration. For this, we restrict our attention

to a general well-behaved class of kernels.

Definition 6.5.5. A kernel is a non-increasing function K : R+ → R+ that is continuous

from the right and such that 0 < ∫ ∞
0 K (r )dr <∞.

Note that, in particular, K (0) > 0 and limr→∞ K (r ) = 0.

Example 6.5.6. Many kernels used for density estimation are kernels in the above

sense. We will be particularly interested in K = 1{r<1} : R+ → R+, with K (x) = 1 if x < 1

and K (x) = 0 otherwise. We refer to this as the uniform kernel.
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Definition 6.5.7. Let K be a kernel, and let X be a metric probability space. Define the

local density estimate of a point x ∈ X at scale s > 0 as

(
µX ∗Ks

)
(x) :=

∫
x ′∈X

K

(
dX (x, x ′)

s

)
dµX .

Given s,k ∈ R, let X[s,k] ⊆ X be the sub-metric space given by

X[s,k] =


{

x ∈ X :
(
µX ∗Ks

)
(x) ≥ k

}
, if s,k > 0

X , if k ≤ 0

;, if s ≤ 0 and k > 0.

Note that, since K is non-increasing, we have X[s,k] ⊆ X[s′,k ′] ⊆ X whenever s′ ≥ s and

k ′ ≤ k. This forms a 2-parameter filtration of X , which we call the kernel density

filtration of X .

The following lemma will be useful when proving the stability of the kernel density

filtration.

Lemma 6.5.8. Let K be a kernel, and let X be a metric probability space. Let K −1 :

R>0 → R+ be defined as K −1(t) = min{u : K (u) ≤ t }. Then K −1 is a non-increasing

function with compact support, and we have, for every x ∈ X ,

(
µX ∗Ks

)
(x) =

∫ ∞

0
µX

(
B(x, sK −1(r ))

)
dr.

Proof. Since K (r ) → 0 as r →∞, for every t > 0 the set {u : K (u) ≤ t } is non-empty.

Moreover, K is continuous from the right, so the set has a minimum, and thus K −1

is well-defined. The fact that K −1 is non-increasing is clear, and the fact that it has

compact support follows from the fact that K is bounded.

To prove the statement about
(
µX ∗Ks

)
, we need the following fact about K −1: for

every s, t ∈ R+ we have K −1(t) > s if and only if t < K (s). We prove this now. Having

t < K (s) is equivalent to s not belonging to the set {u : K (u) ≤ t }, which in turn is

equivalent to s being strictly less than any u such that K (u) ≤ t . This last statement is
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equivalent to s < min{u : K (u) ≤ t } = K −1(t ). We finish the proof by computing∫
x ′∈X

K

(
d(x, x ′)

s

)
dµX =

∫
x ′∈X

∫ ∞

0
1{

r<K
(

d(x,x′)
s

)}dr dµX

=
∫

x ′∈X

∫ ∞

0
1{d(x,x ′)<sK −1(r )}dr dµX

=
∫ ∞

0

∫
x ′∈X

1{d(x,x ′)<sK −1(r )}dµX dr

=
∫ ∞

0
µX

(
B(x, sK −1(r )

)
dr.

6.5.3 Weighted dissimilarity spaces and stability of the kernel den-

sity filtration

In order to prove the stability of the kernel density filtration, it is convenient to

generalize it so that its domain category becomes a relative locally persistent category.

The idea is to first prove the stability with respect to the quotient interleaving distances,

and then relate the quotient interleaving distance of the domain to the Gromov–

Hausdorff–Prokhorov distance.

Definition 6.5.9. A weighted dissimilarity space consists of a dissimilarity space

(X ,dX ) together with a function MX : X ×R+ → [0,∞) such that, for x ∈ X and r ≤
s ∈ R+, we have MX (x,r ) ≤ MX (x, s).

For X a dissimilarity space, the number MX (x,r ) ∈ [0,∞) should be interpreted as

the measure of the ball of radius r centered at x.

Example 6.5.10. Any metric probability space (X ,dX ,µX ) can be seen as a weighted

dissimilarity space. In order to do this, we define

MX (x,r ) =µX (B(x,r )).

We now define a locally bi-persistent category of weighted dissimilarity spaces.

The idea is that, for ε,δ ∈ R+, an (ε,δ)-morphism between weighted dissimilarity

spaces is a function that doesn’t increase the metric more than ε and that doesn’t

decrease the measure more than δ.

Definition 6.5.11. Let wDiss be the locally bi-persistent category that has as objects

all weighted dissimilarity spaces and has morphisms given as follows. Let X and Y be
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weighted dissimilarity spaces and let ε,δ ∈ R+. Define

HomwDiss(X ,Y )(ε,δ) =
{

f : X → Y function of sets :

∀x, x ′ ∈ X ,dX (x, x ′)+ε≥ dY ( f (x), f (x ′))

∀x ∈ X ,∀r ≥ 0, MX (x,r ) ≤ MY ( f (x),r +ε)+δ}
,

with composition and identities given by composition of functions and identity func-

tions.

Example 6.5.12. Distance non-increasing and measure preserving maps f : X →
Y between metric probability spaces are (0,0)-morphisms in the above locally bi-

persistent structure.

Lemma 6.5.13. The locally bi-persistent category wDiss is copowered and powered by

representables.

Proof. For Y ∈ wDiss we let Y (ε,δ) have the same underlying set as Y and distance and

measure given by

dY (ε,δ) (y, y ′) = max
(
dY (y, y ′)−ε,0

)
,

MY (ε,δ) (y,r ) = MY (y,r +ε)+δ

respectively. For X ∈ wDiss we let (ε,δ)·X have the same underlying set as X , distance

and measure given by

d(ε,δ)·X (x, x ′) = dX (x, x ′)+ε,

M(ε,δ)·X (x,r ) = max
(
M ′

X (x,r )−δ,0
)

respectively, where M ′
X (x,r ) = MX (x,r −ε) if r −ε≥ 0 and M ′

X (x,r ) = 0 otherwise.

We define a relative locally persistent category structure on wDiss by letting the

acyclic morphisms be the 0-morphisms that are surjective and that preserve both the

measure and the metric.

Definition 6.5.14. A 0-morphism between weighted dissimilarity spaces f : X → Y

is an acyclic morphism if it is surjective, we have dX (x, x ′) = dY ( f (x), f (x ′)) for every

x, x ′ ∈ X , and we have MX (x,r ) = MY ( f (x),r ) for every x ∈ X and r ∈ R+.
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Lemma 6.5.15. The underlying category of wDiss admits pullbacks, and acyclic mor-

phisms are stable under pullback.

Proof. Let X
f−→ Z

g←− Y be a cospan in the underlying category of wDiss. The pullback

has as underlying set P = {(x, y) ∈ X ×Y : f (x) = g (y)} and distance and measure given

by

dP ((x, y), (x ′, y ′)) = max(dX (x, x ′),dY (y, y ′)),

MP ((x, y),r ) = min(MX (x,r ), MY (y,r )).

respectively. The universal property follows at once from the fact that the underlying

set of P is the pullback of the corresponding cospan of the underlying sets. Note that

the underlying dissimilarity space of P is the pullback of the corresponding cospan of

dissimilarity spaces, as in the proof of Lemma 6.2.7.

Now, if g is surjective, distance preserving, and measure preserving, we have that

πX : P → X is also surjective and distance preserving, by Proposition 6.2.10. To see

that it is also measure preserving, we compute

MP ((x, y),r ) = min(MX (x,r ), MY (y,r ))

= min(MX (x,r ), MZ (g (y),r ))

= min(MX (x,r ), MZ ( f (x),r )),

where in the second equality we used the fact that g is measure preserving and in the

third equality we used the fact that (x, y) ∈ P . Since f is measure non-decreasing, we

have MP ((x, y),r ) = MX (x,r ), as required.

The following is straightforward, using the characterization of powers (Lemma 6.5.13).

Lemma 6.5.16. Let ε,δ ∈ R+ and let f : X → Y be an acyclic morphism between

weighted dissimilarity spaces. Then f (ε,δ) : X (ε,δ) → Y (ε,δ) is an acyclic morphism.

We let wDiss be the relative locally persistent category whose ε-morphisms are

the (ε,ε)-morphisms in the above locally bi-persistent structure, and whose acyclic

morphisms are the acyclic morphisms defined above.

Lemma 6.5.17. Acyclic morphisms of wDiss are stable under weighted pullback.

Proof. The locally persistent category wDiss admits weighted pullbacks
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We define a relative locally persistent category structure on DissR×Rop
by letting it

be a locally persistent category of persistent objects of Diss, and letting the acyclic

morphisms be the natural transformations all of whose components are surjective and

distance-preserving, as we did in Section 6.4.4. We choose ~v = (1,1,1). We refer to the

quotient interleaving distance on DissR×Rop

~v as the Gromov–Hausdorff-interleaving

distance.

From now on, we fix a kernel K . Thanks to the formula in Lemma 6.5.8, the

definition of the kernel density filtration extends to dissimilarity spaces, since the

integral in Lemma 6.5.8 is always defined for dissimilarity spaces, as it is an integral of

a monotonic function. So we have a mappingKDF : wDiss → DissR×Rop

(1,1) from weighted

dissimilarity spaces to bi-persistent dissimilarity spaces given by

KDF(X )(s,k) =


{x ∈ X : (MX ∗Ks) (x) ≥ k} , if s,k > 0

X , if k ≤ 0

;, if s ≤ 0 and k > 0.

where

(MX ∗Ks) (x) :=
∫ ∞

0
MX

(
x, sK −1(r )

)
dr.

The following is the key lemma in proving that KDF is stable. In order to state it

concisely, we need the following definition.

Definition 6.5.18. A weighted dissimilarity space Y is bounded with constant M if

there exists M ≥ 0 such that MY (y,r ) ≤ M for all y ∈ Y and r ≥ 0. The collection of all

weighted dissimilarity spaces bounded with constant M is denoted by wDissM .

Example 6.5.19. The weighted dissimilarity space associated to any metric probability

space is bounded with constant 1.

Lemma 6.5.20. Let K be a kernel and let r ′ ∈ (0,K (0)). Let f : X → Y be an ε-morphism

between weighted dissimilarity spaces and assume that Y is bounded with constant M.

Let x ∈ X . Then

(MX ∗Ks) (x) ≤ (
MY ∗Ks+εs

)
( f (x))+εk ,

for εs = ε
K −1(r ′) and εk = MK (0)

(
K (0)

r ′ −1
)
+K (0)ε.

Proof. We know that (MX ∗Ks) (x) = ∫ K (0)
0 MX

(
x, sK −1(r )

)
dr , since, if r > K (0), then

K −1(r ) = 0. Note that, by the assumption that f is an ε-morphism, we have that, for
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any radius R ≥ 0,

MX (x,R) ≤ MY
(

f (x),R +ε)+ε
so we can bound the local density estimate of x as follows.

(MX ∗Ks) (x) ≤
∫ K (0)

0
MY ( f (x), sK −1(r )+ε)+ε dr =

∫ K (0)

0
MY (y, sK −1(r )+ε) dr+K (0)ε.

Since K −1 is non-increasing, and r ′ < K (0), it follows that K −1(r r ′/K (0)) ≥ K −1(r ) for

every r ≥ 0. Moreover, for any 0 ≤ r ≤ K (0), we have K −1(r r ′/K (0)) ≥ K −1(r ′). These

two considerations imply that, for 0 ≤ r ≤ K (0), we have

sK −1(r )+ε≤ (
s +ε/K −1(r ′)

)
K −1 (

r r ′/K (0)
)

.

Combining this with the above bound for the local density estimate of x we get

(MX ∗Ks) (x) ≤
∫ K (0)

0
MY

(
f (x),

(
s +ε/K −1(r ′)

)
K −1 (

r r ′/K (0)
))

dr +K (0)ε

= K (0)

r ′

∫ r ′

0
MY

(
f (x),

(
s +ε/K −1(r ′)

)
K −1 (r )

)
dr +K (0)ε

≤ K (0)

r ′
(
MY ∗K(s+ε/K −1(r ′))

)
( f (x))+K (0)ε.

Finally, note that, for 0 ≤ a ≤ M <∞ and c ≥ 1, we have ca ≤ a +M(c −1). Since

Y is bounded, there is M ≥ 0 with MY (y,r ) ≤ M for all y ∈ Y and r ∈ R+. This implies

that any local density estimate of Y is bounded by M ·K (0). So we have that

(MX ∗Ks) (x) ≤
(
MY ∗K(s+ε)/K −1(r ′))

)
( f (x))+MK (0)

(
K (0)

r ′ −1

)
+K (0)ε,

as required.

We now extend KDF to a functor.

Lemma 6.5.21. Let M ≥ 0. The mapping KDF : wDissM → DissR×Rop
extends to a func-

tor between the underlying categories. Moreover, this functor maps acyclic morphisms

to acyclic morphisms.

Proof. Let f : X → Y be a 0-morphism between bounded weighted dissimilarity

spaces. If we take ε= 0 in Lemma 6.5.20 and we let r ′ → K (0) we see that if x ∈ X[s,k]
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then f (x) ∈ Y[s,k]. This gives us the functor in the statement.

We now prove that the functor maps acyclic morphisms to acyclic morphisms,

concluding the proof. If f : X → Y is an acyclic morphism of weighted dissimilarity

spaces, then the induced functions X[s,k] → Y[s,k] are distance preserving for every

s,k ≥ 0. Moreover, if y ∈ Y[s,k], let x ∈ X such that f (x) = y . Since f is measure

preserving, the local density estimate of x is equal to the local density estimate of y ,

so x ∈ X[s,k], and thus X[s,k] → Y[s,k] is also surjective.

We can now prove the stability of KDF with respect to the quotient interleaving

distances.

Theorem 6.5.22. Let M ≥ 0. The kernel density filtration KDF : wDissM → DissR×Rop

is uniformly continuous with respect to the quotient interleaving distance and the

Gromov–Hausdorff-interelaving distance. If KDF is constructed using the uniform

kernel, then it is 1-Lipschitz.

Proof. By Lemma 6.5.20, KDF maps ε-interleavings to ε′-interleavings, where

ε′ = max

(
ε

K −1(r ′)
, MK (0)

(
K (0)

r ′ −1

)
+K (0)ε

)
.

Note that ε′ can be made arbitrarily small by first taking r ′ sufficiently close to K (0)

and then choosing ε. So KDF is uniformly continuous with respect to the interleaving

distances.

Moreover, KDF maps weakly equivalent objects to weakly equivalent objects, so

it is uniformly continuous with respect to the quotient interleaving distances, by

Theorem 4.2.3, using the fact that the acyclic morphisms of DissR×Rop
are stable under

weighted pullback.

For the last statement, note that, if K is the uniform kernel, then K (0) = 1 and

K −1 = K . So, letting r ′ → 1, we see that we can take ε′ = ε.

We now relate the quotient interleaving distance on wDiss to the Gromov–

Hausdorff–Prokhorov distance. This is the last ingredient in the proof that KDF is

stable.

Theorem 6.5.23. Let X and Y be compact metric probability spaces. Then, we have(
d

wDiss(1,1)

I

)
/' (X ,Y ) ≤ 2dG HP (X ,Y ).
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Proof. Assume that there is a metric space Z and embeddings i : X → Z and j : Y → Z

such that

dP (i∗(µX ), j∗(µY )) < ε and d Z
H (i (X ), i (Y )) < ε.

Let R ⊆ X×Y be the correspondence such that (x, y) ∈ R if and only if dZ (i (x), j (y)) < ε.

This is a correspondence since d Z
H (i (X ), i (Y )) < ε. Consider the weighted dissimilarity

space R X defined as follows. The underlying set of R X is simply R. For (x, y), (x ′, y ′) ∈
R X , we have dR X ((x, y), (x ′, y ′)) = dX (x, x ′). Finally, for (x, y) ∈ R X and r ≥ 0, we let

MR X ((x, y),r ) =µX (B(x,r )). With this definitions, the map πX : R X → X is an acyclic

morphism of wDiss.

Define RY in an analogous way. It is then enough to show that the identity map

R X → RY is part of a 2ε-interleaving. In order to show this, we must show that it

doesn’t increase the metric more than 2ε and that, for every (x, y) ∈ R and every r ≥ 0,

we have

µX (B(x,r )) ≤µY (B(y,r +2ε))+2ε.

The first statement follows from the definition of the correspondence R. For the

second one, we compute

µX (B(x,r )) = i∗(µX )(B(i (x),r ))

≤ j∗(µY )(B(i (x),r )ε)+ε
≤ j∗(µY )(B(i (x),r +ε))+ε
≤ j∗(µY )(B( j (y),r +2ε))+ε
=µY (B(y,r +2ε))+ε,

using the fact that dP (i∗(µX ), j∗(µY )) < ε:

The stability of KDF follows.

Proof of Theorem 6.5.1. This follows at once from Theorem 6.5.22 and Theorem 6.5.23.



6.6. THE CORRESPONDENCE-INTERLEAVING DISTANCE ON HIERARCHICAL CLUSTERINGS 155

6.6 The correspondence-interleaving distance on hier-

archical clusterings

In this section, we propose a distance to compare hierarchical clusterings, the

correspondence-interleaving distance, and show that it can be interpreted as a

quotient interleaving distance, which lets us deduce that the distance has good metric

properties. We also explain in what way the correspondence-interleaving distance is

a generalization of the distances considered in [CM10a] and [EBW15].

The main definitions of this section appear in [RS20] and are joint work with

Alexander Rolle.

In Section 6.6.1, we define the notion of hierarchical clustering and the correspondence-

interleaving distance as they appear in [RS20]. In Section 6.6.2, we show that this

distance is a quotient interleaving distance and prove some metric properties of

this distance, using the theory developed in this thesis. In Section 6.6.3, we explain

how the correspondence-interleaving distance is a generalization of other distances

between hierarchical clusterings that have been considered in the literature.

6.6.1 The correspondence-interleaving distance

Definition 6.6.1. Let X be a set. A clustering of X is a subpartition of X , that is, a set

of non-empty, disjoint subsets of X . The elements of a clustering are called clusters.

Definition 6.6.2. Let X be a set. The poset of clusterings of X , denoted C(X ), is the

poset whose elements are the clusterings of X , and where S ¹ T ∈ C(X ) if, for each

cluster A ∈ S, there is a (necessarily unique) cluster B ∈ T such that A ⊆ B.

Let R>0 = ((0,∞),≤).

Definition 6.6.3. Let X be a set. A covariant hierarchical clustering of X is an order-

preserving map H : R>0 → C(X ). A contravariant hierarchical clustering of X is an

order-preserving map H : Rop
>0 →C(X ).

An important motivating example is the following:

Example 6.6.4. If f :Rd →R is a probability density function, and X = supp( f ), then

there is a contravariant hierarchical clustering H( f ) of X , where, for r > 0, H( f )(r ) is

the set of connected components of {x ∈ X : f (x) ≥ r }.
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A well-known covariant hierarchical clustering is given by the single-linkage hier-

archical clustering algorithm:

Example 6.6.5. Let X be a metric space. We denote by SL(X ) the single-linkage

covariant hierarchical clustering of X , where, for r > 0, SL(X )(r ) is the partition of X

defined by the smallest equivalence relation ∼r on X with x ∼r y if dX (x, y) ≤ r .

We can consider multi-parameter hierarchical clusterings that are covariant in

some parameters, and contravariant in others.

Definition 6.6.6. Let n ≥ 1, and let ~v ∈ {−1,1}×n . Let R~v
>0 be the product poset R~v

>0 =
R1 ×·· ·×Rn , where

Ri =
R>0 if vi = 1

Rop
>0 if vi =−1 .

Definition 6.6.7. Let X be a set, let n ≥ 1, and let ~v ∈ {−1,1}×n . A ~v-hierarchical

clustering of X is a map of posets H : R~v
>0 →C(X ).

Notation 6.6.8. Let ~v ∈ {−1,1}×n . We write~ε= (ε1, . . . ,εn) ≥ 0 if εi ≥ 0 for 1 ≤ i ≤ n. For

~r = (r1, . . . ,rn) ∈ R~v
>0, we write~r +~v~ε for (r1+v1ε1, . . . ,rn+vnεn) and we write~r +~v~ε> 0

if ri + viεi > 0 for all 1 ≤ i ≤ n.

Definition 6.6.9. Let H and E be~v-hierarchical clusterings of a set X , and let~ε≥ 0. We

say that H and E are~ε-interleaved if, for all~r ∈ R~v
>0 such that~r +~v~ε> 0, we have the

following relations in C(X ):

H(~r ) ¹ E(~r +~v~ε) and E(~r ) ¹ H(~r +~v~ε) .

As an example, we have the following stability result.

Proposition 6.6.10. Let f , g :Rd →R≥0 be probability density functions with the same

support. If || f − g ||∞ < ε, then H( f ) and H(g ) are ε-interleaved.

Proof. For every r ≥ ε, we have { f ≥ r } ⊆ {g ≥ r −ε}, and {g ≥ r } ⊆ { f ≥ r −ε}. This

implies that, after taking connected components, every connected component of

{ f ≥ r } is included in a connected component of {g ≥ r −ε}, and that every connected

component of {g ≥ r } is included in a connected component of { f ≥ r −ε}.

To compare hierarchical clusterings of different sets, we use correspondences.

If ψ : Y → X is a function between sets, and S = {Ci }i∈I is a clustering of X , then

ψ∗(S) = {ψ−1(Ci )}i∈I is a clustering of Y . This defines a map of posets ψ∗ : C(X ) →
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C(Y ). So if H is a ~v-hierarchical clustering of X , then there is a ~v-hierarchical cluster-

ing ψ∗(H) of Y , defined by the composition

ψ∗(H) : R~v
>0

H−→C(X )
ψ∗
−−→C(Y ) .

Definition 6.6.11. Let H and E be~v-hierarchical clustering of sets X and Y respectively,

and let R ⊆ X ×Y be a correspondence. Let~ε≥ 0. We say that H and E are~ε-interleaved

with respect to R if π∗
X (H ) and π∗

Y (E ) are~ε-interleaved as ~v-hierarchical clusterings of

R.

Definition 6.6.12. Let H and E be~v-hierarchical clustering of sets X and Y respectively.

Define the correspondence-interleaving distance

dC I (H ,E) = inf{ε≥ 0 : there is a correspondence R ⊆ X ×Y

such that H ,E are (ε, . . . ,ε)-interleaved with respect to R} .

6.6.2 The locally persistent category of hierarchical clusterings

We now interpret the correspondence-interleaving distance as a quotient interleaving

distance and use this to prove some metric properties of this distance.

Let n ≥ 1 and let ~v ∈ {−1,1}×n . Let hCl~v be the following locally Rn+-persistent

category. An object of hCl~v consist of a set X together with a ~v-hierarchical clustering

HX on X . Given (X , HX ) and (Y , HY ) objects of hCl~v , an~ε-morphism from (X , HX ) to

(Y , HY ), for~ε ∈ Rn+, consists of a function of sets ψ : X → Y such that, for every~r ∈ R~v
>0

such that~r +~v~ε> 0, we have that HX (~r ) ¹ψ∗(HY )(~r +~v~ε). Composition and identities

are given by composition of functions and identity functions.

In order to get a locally persistent category, we perform a change of enrichment,

as in Section 5.1. For simplicity, we choose the vector (1, . . . ,1) ∈ Rn+. So, from now

on, hCl~v denotes the locally persistent category where a δ-morphism is a (δ, . . . ,δ)-

morphism in the SetRn+-enrichment of hCl~v described above.

An acyclic morphism ψ : (X , HX ) → (Y , HY ) consists of a 0-morphism ψ : X → Y

such that ψ is surjective, and such that ψ∗(HY ) = HX . This endows hCl~v with the

structure of a relative locally persistent category.

This relative locally persistent structure is well behaved.
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Lemma 6.6.13. Let n ≥ 1 and let ~v ∈ {−1,1}×n . The relative locally persistent category

hCl~v is copowered and powered by representables, and its underlying category admits

pullbacks, binary products, and sequential limits. In particular, hCl~v admits weighted

pullbacks, weighted sequential limits, and terminal midpoints. Moreover, acyclic

morphisms are closed under weighted pullbacks.

We describe the construction of the limits, but we don’t check the universal prop-

erties.

Proof. Let X = (X , HX ) ∈ hCl~v and let ε ∈ R+. Let X ε = (X , Hε
X ) be the ~v-hierarchical

clustering with X as underlying set, and such that

Hε
X (~r ) =

{X } if~r +~v~ε 6> 0

HX (~r +~v~ε) if~r +~v~ε> 0.

By definition of the locally persistent structure of hCl~v , we have

HomhCl~v (X ,Y )ε+− ∼= HomhCl~v (X ,Y ε),

isomorphism of functors, natural in X , Y , and ε, so hCl~v admits powers by representa-

bles. Analogously, we define ε ·X = (X ,ε ·HX ) by

ε ·HX (~r ) =
; if~r −~v~ε 6> 0

HX (~r −~v~ε) if~r −~v~ε> 0,

which shows that hCl~v is copowered by representables.

To define products and pullbacks, we first define two operations on hierarchical

clusterings. Let X be a set and let H ,E : R~v
>0 → C(X ) be ~v-hierarchical clusterings

of X . The product of H and E , denoted by H ×E : R~v
>0 → C(X ) is the ~v-hierarchical

clustering of X whose clusters at~r ∈ R~v
>0 are {C ×D : C ∈ H(~r ),D ∈ E(~r )}. If Y ⊆ X is

any subset, let H |Y : R~v
>0 →C(Y ) be the ~v-hierarchical clustering of Y whose clusters

at~r ∈ R~v
>0 are {C ∩Y : C ∈ H(~r ) s.t. C ∩Y 6= ;}.

Let X ,Y ∈ hCl~v . Let X ×Y := (X ×Y ,π∗
X (HX )×π∗

Y (HY )). This is a product in the

underlying category of hCl~v . Pullbacks are defined in a similar way. Given a cospan

X → Z ← Y of ~v-hierarchical clusterings, let P be the pullback of the cospan given by

the underlying sets of X , Y , and Z , seen as a subset of X ×Y . Define a hierarchical

clustering on P by HP = (HX×Y )|P . This provides a pullback for the original cospan.
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For sequential limits, we define another operation between hierarchical cluster-

ings. Let {Hi } be a family of ~v-hierarchical clusterings of a fixed set X . Let
⋂

i Hi :

R~v
>0 → C(X ) be the ~v-hierarchical clustering of X whose clusters at ~r ∈ R~v

>0 are

{
⋂

i Ci : Ci ∈ Hi (~r ) s.t.
⋂

i Ci 6= ;}.

Let

· · ·→ Xi+1 → Xi →···→ X0

be a sequential diagram in the underlying category of hCl~v . Consider the hierarchi-

cal clustering (X , HX ) whose underlying set is the sequential limit of the sequential

diagram of the underlying sets, and such that HX = ⋂
i π

∗
Xi

(HXi ). This provides a

sequential limit in the underlying category of hCl~v .

Using Proposition 3.2.12, Proposition 3.2.19, and Proposition 3.2.15 we conclude

that hCl~v admits weighted pullbacks, weighted sequential limits, and terminal mid-

points

To check that acyclic morphisms are closed under weighted limits, it is enough

to check that they are closed under powers by representables and under pullbacks

in the underlying category, by Proposition 3.2.12. Both facts follow directly from the

construction of powers and pullbacks.

As usual, we deduce the following.

Theorem 6.6.14. Let n ≥ 1 and let ~v ∈ {−1,1}×n . The quotient interleaving distance on

hCl~v is intrinsic and complete and satisfies(
d hCl~v

I

)
/' (X ,Y ) = inf

{
δ : ∃X ′ ' X ,Y ′ ' Y , X ′ and Y ′ are δ-interleaved

}
= inf

{
δ : ∃ acyclic morphisms X ′ → X and Y ′ → Y

such that X ′ and Y ′ are δ-interleaved
}
.

Proof. The facts that the distance is intrinsic and complete follow from Corollary 4.4.5

and Theorem 4.3.3, using Lemma 6.6.13 and noting that acyclic morphisms are clearly

closed under sequential limits.

The description of the quotient interleaving distance follows from Theorem 4.1.4.

We conclude by showing that
(
d hCl~v

I

)
/' coincides with the correspondence-

interleaving distance.



6.6. THE CORRESPONDENCE-INTERLEAVING DISTANCE ON HIERARCHICAL CLUSTERINGS 160

Theorem 6.6.15. Let n ≥ 1 and let ~v ∈ {−1,1}×n . Then, for all X ,Y ∈ hCl~v , we have(
d hCl~v

I

)
/' (X ,Y ) = dC I (X ,Y ).

Proof. We use the second characterization of the quotient interleaving distance of

Theorem 6.6.14.

Given a correspondence R ⊆ X × Y such that π∗
X (HX ) and π∗

Y (HY ) are δ-

interleaved, we have acyclic morphisms πX : (R,π∗
X (HX )) → (X , HX ) and πY :

(R,π∗
Y (HY )) → (Y , HY ), and a δ-interleaving between (R,π∗

X (HX )) and (R,π∗
Y (HY ))

given by the identity function of R. So
(
d hCl~v

I

)
/' (X ,Y ) ≤ δ.

Conversely, given acyclic morphisms α : Z → X and β : W → Y and a δ-

interleaving between Z and W , we see that the interleaving gives us a bijection

ψ : Z → W between the underlying sets, and thus we get a function (α,β◦ψ) : Z →
X ×Y , whose image is a correspondence R ⊆ X ×Y . This correspondence shows that

dC I (X ,Y ) ≤ δ, as needed.

6.6.3 Comparison to previous distances on hierarchical clusterings

Using correspondences and interleaving distances to compare hierarchical clusterings

has already been considered in the literature. We now briefly explain the relation-

ship between the correspondence-interleaving distance and distances considered in

[CM10a] and [EBW15].

In their work on the stability of the single-linkage hierarchical clustering algorithm

[CM10b], Carlsson and Mémoli compare dendrograms (which are covariant hierar-

chical clusterings with some tameness conditions) (X1,D1) and (X2,D2) on finite sets

X1 and X2 by associating to them ultra metric spaces (X1,dD1 ) and (X2,dD2 ) in a stan-

dard way and using the Gromov–Hausdorff distance to compare these ultra metric

spaces. This was explained in Section 6.7.2. By unfolding the definitions, one sees

that dC I (D1,D2) = 2dG H
(
(X1,dD1 ), (X2,dD2 )

)
. So, the correspondence-interleaving

distance is a generalization of the Carlsson-Mémoli distance on dendrograms.

The merge distortion metric of Eldridge, Belkin, and Wang [EBW15] is also closely

related to the correspondence-interleaving distance.

Definition 6.6.16. A merge function on a set X consists of a function m : X×X → [0,∞]

that is symmetric and satisfies m(x, z) ≥ min(m(x, y),m(y, z)) for all x, y, z ∈ X .
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To every hierarchical clustering H on a set X one can assign a merge function

ηH on X by letting ηH (x, y) = sup{r > 0 : ∃C ∈ H(r ), x, y ∈ C } for every x, y ∈ X . On

the other hand, given m : X × X → [0,∞] a merge function, and r > 0, let X[r ] = {x ∈
X : m(x, x) ≥ r } ⊆ X , and define an equivalence relation on X[r ] where x ∼[r ] y if and

only if m(x, y) ≥ r . This defines a hierarchical clustering H(m) of X where, for r > 0,

H(m)(r ) = X[r ] / ∼[r ].

Definition 6.6.17. Let X be a set. A cluster tree of X is given by a family T of subsets

of X with the property that whenever A and B are distinct elements of T , then one of

the following is true: A∩B =;, A ⊆ B, or B ⊆ A.

Given sets X1 and X2 and a correspondence R ⊆ X1 × X2, as well as cluster trees

T1 and T2 on X1 and X2 respectively, together with functions h1 : X1 →R≥0 and h2 :

X2 →R≥0, Eldridge, Belkin, and Wang define the merge distortion dR ((T1,h1), (T2,h2)).

Furthermore, to each pair (T ,h), they define an associated merge function [EBW15,

Definition 6], which yields a hierarchical clustering H(T ,h). By unrolling the defini-

tions, one sees that

dR ((T1,h1), (T2,h2)) = inf{ε : H(T1,h1) and H(T2,h2) are ε-interleaved w.r.t. R} .

So the infimum over all correspondences between X1 and X2 of the merge distor-

tion with respect to that correspondence is equal to the correspondence-interleaving

distance between the hierarchical clusterings H(T1,h1) and H(T2,h2).
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6.7 The interleaving distance on persistent sets

In this section, we study the interleaving distance on the locally persistent category

SetR, and on a better behaved subcategory, which we define below. Our starting point

is the following straightforward corollary of our theory.

Theorem 6.7.1. The interleaving distance on the locally persistent category SetR is

intrinsic and complete.

Proof. The category Set is complete, so we just apply Corollary 4.4.4 and Corol-

lary 4.3.2.

Although an explicit counterexample may be difficult to construct, it doesn’t seem

to be the case that the interleaving distance on SetR is geodesic. In order to get a

geodesic distance, we restrict our attention to a better behaved subcategory. Recall

that, given X ∈ SetR and r ≤ s ∈ R, we let ϕX
r,s : X (r ) → X (s) denote the structure

morphism of X . Recall from Definition 4.5.4 that an object X ∈ SetR is q-tame if the

image of ϕX
r,s is a finite set whenever r < s. Recall from Definition 2.6.9 that an object

X ∈ SetR is right continuous if the canonical function X (r ) → lim X>r is a bijection.

Here X>r : {r ′ ∈ R : r ′ > r } → Set is the restriction of the functor X .

We consider the locally persistent category of q-tame, right continuous persistent

sets, which we denote by SetR
righ,tame, and the locally persistent category of q-tame

persistent sets SetR
tame. The main result that we prove is the following.

Theorem 6.7.2. The interleaving distances on SetR
tame and SetR

righ,tame are geodesic

and complete. Moreover, if X ,Y ∈ SetR
righ,tame and dI (X ,Y ) = 0, then X and Y are

isomorphic.

The locally persistent category SetR
righ,tame contains many interesting subcate-

gories: the category of dendrograms in the sense of [CM10b] and the category of

complete ultra metric spaces ([Ack13]) are both full subcategories of (the underlying

category of) SetR
righ,tame.

The reason why the interleaving distance is geodesic when restricted to q-tame,

right continuous persistent sets is that, in a sense, these persistent sets behave like

compact metric spaces. In Section 6.7.2, we make this statement precise and discuss

some connections between dendrograms and ultra metric spaces.
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6.7.1 Interleaving distance on q-tame persistent sets

The following results are the main building blocks in showing that the interleaving

distance on SetR
righ,tame is geodesic and complete.

Proposition 6.7.3. The locally persistent category SetR
righ,tame is copowered and pow-

ered by representables, and admits binary products and pullbacks. In particular,

SetR
righ,tame admits terminal midpoints.

Proof. The locally persistent category SetR is copowered and powered by representa-

bles and these are given by shifts (Example 3.2.7). Clearly, shifts preserve the properties

of being q-tame and right continuous, so SetR
righ,tame is copowered and powered by

representables.

Since limits commute with limits, a product or pullback of right continuous per-

sistent sets must be right continuous. Moreover, since limits in SetR are computed

pointwise and finite limits of finite sets are finite sets, we conclude that a finite limit

of q-tame objects of SetR must be q-tame.

The last claim then follows from Proposition 3.2.19.

Proposition 6.7.4. The locally persistent category SetR
righ,tame admits weighted sequen-

tial limits of morphisms that are part of an interleaving.

Proof. We know that SetR admits weighted sequential limits, by Corollary 4.3.2. We

must show that if all the objects in a weighted sequential limit are q-tame and right

continuous, and all the morphisms in the diagram are part of an interleaving, then

the weighted sequential limit is also q-tame and right continuous.

By Proposition 3.2.15, the weighted sequential limit is computed as a (categorical)

sequential limit of q-tame and right continuous objects. This implies that the limit is

right continuous, by the fact that limits commute with limits. The fact that the limit is

q-tame requires just a bit more work.

By Proposition 3.2.14, the weighted sequential limit of a diagram where each

morphism is part of an interleaving is δ-interleaved with some object of the diagram

for arbitrarily small δ ∈ R+. In particular, the weighted sequential limit of the diagram

is δ-interleaved with a q-tame persistent set for arbitrarily small δ. This implies that

the limit must be q-tame too, since every non-identity structure map of the limit

factors through a non-identity structure map of a q-tame persistent set.
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Our next goat is to prove that the interleaving distance on q-tame and right con-

tinuous persistent sets is geodesic. We will be using Theorem 4.5.14. We start by

constructing an enrichment of SetR
righ,tame in persistent topological spaces.

For every n ∈N, let n = [−n,n] ⊆ R denote the corresponding subinterval. Given

X ∈ SetR, consider X |n : n → Set the restriction to the interval n. Each natural

transformation in HomSetR (X ,Y )ε = Nat(X ,Y ε) induces a natural transformation

Nat(X |n,Y ε|n), by restriction. Further restrictions let us form a sequential diagram of

sets

· · ·→ Nat(X |n+1,Y ε|n+1) → Nat(X |n,Y ε|n) →···→ Nat(X |1,Y ε|1) → Nat(X |0,Y ε|0).

This construction is clearly natural in X , Y , and ε. Since a natural transformation

is defined by its components, the limit of the above diagram is naturally isomorphic

to the set HomSetR (X ,Y )ε. Let the topology of HomSetR (X ,Y )ε be the sequential limit

topology, where each set in the sequential diagram is given the discrete topology. By

naturality, this provides an enrichment in TopR+ for the locally persistent category

SetR, and thus for the locally persistent category SetR
righ,tame.

Theorem 6.7.5. The interleaving distance on q-tame, right continuous persistent sets

is complete and geodesic. Moreover, if two q-tame and right continuous persistent sets

are at interleaving distance 0, then they are isomorphic.

Proof. Completeness follows from Proposition 6.7.4 and Theorem 4.3.1. Assuming

that the interleaving distance on SetR
righ,tame reflects interleavings (Definition 4.5.1),

the fact that this distance is geodesic follows from Theorem 4.5.2 and Proposition 6.7.3,

and the second claim follows immediately. So it remains to be shown that the in-

terleaving distance of SetR
righ,tame reflects interleavings. In order to do this, we use

Theorem 4.5.14.

Consider the TopR+-enrichment of SetR
righ,tame constructed above. Applying The-

orem 4.5.14, it is enough to show that HomSetR (X ,Y ) is a q-tame, right continuous

persistent topological space, whenever X and Y are q-tame, right continuous persis-

tent sets, and that HomSetR (X ,Y )ε is T1 for every ε.

The fact that HomSetR (X ,Y )ε is T1 is clear, since its topology is a sequential limit

of discrete topologies. Right continuity of HomSetR (X ,Y ) follows directly from Propo-

sition 2.6.10.

We conclude the proof by showing that HomSetR (X ,Y ) is a q-tame persistent

topological space whenever X and Y are q-tame persistent sets. Let ε< δ, we must
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show that the image of the map

Nat(X ,Y ε) → Nat(X ,Y δ)

given by postcomposition with Y ε → Y δ is a compact set. We will show that it is a

sequential limit of finite sets. The image of Nat(X ,Y ε) → Nat(X ,Y δ) is isomorphic to

the sequential limit of the images of the maps Nat(X ,Y ε) → Nat(X |n,Y δ|n) for n ∈N.

It is then enough to show that the images of these maps are finite sets.

Fix n ∈N and consider a natural transformation f ∈ Nat(X ,Y ε). The image of f in

Nat(X |n,Y δ|n) is given by the natural transformation whose component r ∈ n is given

by

ϕY
r+ε,r+δ ◦ fr = fr+δ−ε ◦ϕX

r,r+δ−ε. (6.7.6)

Denote the image of f by g . We will show that there are finitely many possible

natural transformations g ∈ Nat(X |n,Y δ|n) whose components are of the form given

in Eq. (6.7.6) for some f ∈ Nat(X ,Y ε).

Again, fix n ∈ N and consider a natural transformation f ∈ Nat(X ,Y ε). Let γ =
(δ−ε)/2 and let M ∈N be the smallest natural number such that −n +γ(M −2) ≥ n.

For each 0 ≤ i ≤ M , consider the map f−n+γi : X (−n +γi ) → Y (−n +γi +ε). Since f

is a natural transformation, for r ∈ [−n,n], if we let 0 ≤ i ≤ M be the smallest natural

number such that −n +γi ≥ r , we have that the r -component gr : X (r ) → Y (r +δ) of

the corresponding natural transformation g ∈ Nat(X |n,Y δ|n) is equal to

ϕY
−n+γ(i+1)+ε,r+δ ◦ f−n+γ(i+1) ◦ϕX

−n+γi ,−n+γ(i+1) ◦ϕX
r,−n+γi .

This shows that the natural transformation g is completely determined by the func-

tions

f ′
i = f−n+γ(i+1) ◦ϕX

−n+γi ,−n+γ(i+1) : X (−n +γi ) → Y (−n +γ(i +1)+ε) (6.7.7)

for 0 ≤ i ≤ M . Since there are finitely many i such that 0 ≤ i ≤ M is then enough

to show that there are only finitely many possible functions f ′
i of the form given in

Eq. (6.7.7) for some f ∈ Nat(X ,Y ε).

Fix n ∈N and consider a natural transformation f ∈ Nat(X ,Y ε). Fix i such that

0 ≤ i ≤ M . The function f ′
i defined in Eq. (6.7.7) is completely determined by the value

of f−n+γ(i+1) on the image of ϕX
−n+γi ,−n+γ(i+1), which is a finite set by the tameness of
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X . Moreover, by naturality of f , we have

f ′
i =ϕY

−n+γi+ε,−n+γ(i+1)+ε ◦ f−n+γi ,

so the image of f ′
i is finite, by tameness of Y . Together, these last two facts say

that f ′
i is completely determined by assigning each of the finitely many elements of

the image of ϕX
−n+γi ,−n+γ(i+1) to one of the finitely many elements of the image of

ϕY
−n+γi+ε,−n+γ(i+1)+ε, so there are finitely many possible functions f ′

i of the form given

in Eq. (6.7.7), concluding the proof.

Proof of Theorem 6.7.2. By Theorem 6.7.5, it is enough to show that the inclusion of

SetR
righ,tame into SetR

tame induces an isometry with respect to the interleaving distances.

To see this, note that, by Proposition 2.6.12, for any X ∈ SetR
tame, we have that

dI (X , X #) = 0. Since X # is right continuous, it is enough to show that X # is q-tame as

well. This is true since X and X # are ε-interleaved for arbitrarily small ε> 0.

6.7.2 Persistent sets and ultra metric spaces

In this section, we give precise meaning to the statement that q-tame and right

continuous persistent sets are like compact metric spaces. We start with a bit of

context.

In [CM10b], the stability of hierarchical clustering algorithms is studied. The input

of a hierarchical clustering algorithm is taken to be a finite metric space X and the

output is taken to be a dendrogram on X .

Definition 6.7.8. A dendrogram on a finite set X is given by a function Θ : [0,∞) →
partitions(X ) such that:

. Θ(0) is the discrete partition of X ;

. there is t0 such that Θ(t0) is the codiscrete partition of X ;

. if r ≤ s, then Θ(r ) refines Θ(s);

. for every r there is an ε> 0 such that Θ(r ) =Θ(r +ε).

In order to get a metric between dendrograms, they embed the collection of

dendrograms into the category of ultra metric spaces and use the Gromov–Hausdorff

distance between metric spaces.
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Definition 6.7.9. An ultra ep metric dP on a set P is an ep metric such that for every

p, p ′, p ′′ ∈ P we have dP (p, p ′′) ≤ max(dP (p, p ′),dP (p, p ′′)).

It is easy to see that, given a dendrogram Θ on a finite set X , the following defines

an ultra metric on X :

dΘ(x, x ′) = inf
{

t ∈ [0,∞) : x and x ′ belong to the same equivalence class of Θ(t )
}

.

For any finite set X , this construction gives a bijection between ultra metrics on X

and dendrograms on X ([CM10b, Theorem 9]).

Now, a dendrogram Θ on X also gives rise to a persistent set Θ : R+ → Set, as

follows. Note that Θ : [0,∞) → partitions(X ) can be regarded as a persistent partition

of X , but a partition of X is just a set of subsets of X , so there is a forgetful functor

partitions(X ) → Set that forgets that the subsets happen to be subsets of X . Then, as a

persistent set, Θ : R+ → Set is just the composite of Θ with this forgetful functor.

This construction embeds the collection of all dendrograms of finite sets into the

category of persistent sets. With not much more work, one can see that, combining

this construction with a generalization of the construction above that allows for

possibly infinite ultra metric spaces, one can embed the category of ultra metric spaces

(with distance non-increasing maps between them) into the category of persistent

sets. This result is not new, and in fact this perspective allows one to generalize ultra

metric spaces to Γ-valued ultra metrics, for Γ a complete lattice ([PCR96], [PCR97]).

We now explain a stronger connection between persistent sets and ultra metric

spaces, established in [Ack13], and we strengthen this connection.

An extended ultra metric space is an ep ultra metric space such that only equal

points are at distance 0 from each other. Recall that X ∈ SetR+ is right continuous if, for

every r ∈ R+, the natural map X (r ) → limr ′>r X (r ′) is a bijection. We say that X ∈ SetR+

is separated if the natural map X (r ) → limr ′>r X (r ′) is an injection. Of course, every

right continuous persistent set is separated. Finally, we say that X ∈ SetR+ is flabby if

all of its structure morphisms are surjective.

In [Ack13], the following equivalence of categories is proven. We state the theorem

for the lattice Γ= R+, but the theorem in the paper works for any complete lattice.

Theorem 6.7.10 ([Ack13]). There is an equivalence of categories between the category

of extended ultra metric spaces and distance non-increasing maps and the category of

flabby and separated objects of SetR+ . The equivalence is given by mapping X to SL(X ),

the single-linkage clustering of X , taken as a persistent set.
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Moreover, an extended ultra metric space is complete if and only if its corresponding

persistent set is right continuous.

We give a few remarks. Firstly, the notion of completeness in the theorem is the

one of Definition 2.2.9. Secondly, although the theorem is not stated in exactly the

same language as in [Ack13], it is straightforward to do the translation by recalling that,

as discussed in Remark 2.6.14, right continuous persistent objects are sheaves for the

canonical topology associated to the frame R+. Thirdly, the fact that the equivalence

is given by the single-linkage construction is evident from [Ack13, Definition 3.13].

Finally, as explained above, the single-linkage of an ultra metric space X is the per-

sistent set SL(X ) : R+ → Set such that SL(X )(r ) = X /∼r where x ∼r y if and only if

dX (x, y) ≤ r .

We can strengthen the above theorem further by classifying the compact extended

ultra metric spaces, using q-tameness. This result gives some insight into why q-

tameness allows us to extract a coherent family out of a non-coherent one (Propo-

sition 4.5.9). The notion of compactness in the following result is the one of Defini-

tion 2.2.11.

Theorem 6.7.11. Under the correspondence of Theorem 6.7.10, an extended ultra

metric space is totally bounded if and only if its corresponding persistent set is q-tame.

In particular, an extended ultra metric space is compact if and only if its corresponding

persistent set is q-tame and right continuous.

Proof. Let us start with the first statement. Note that a flabby persistent set Y is q-

tame if and only if, for every r > 0, we have that Y (r ) is finite. So let X be an extended

ultra metric space. On the one hand, if X is totally bounded, given r > 0, we can cover

X with finitely many open balls of radius r , so SL(X )(r ) has finite cardinality. On the

other hand, if for r > 0 we have that SL(X )(r ) has finite cardinality, choose finitely

many xi such that each equivalence class of SL(X )(r ) is represented by one of the

points xi . Since the metric of X is ultra, it follows that X ⊆⋃
i B(xi ,ε), as required.

The second claim follows at once from the first one and Lemma 2.2.12.

Informally, we conclude that right continuity is like completeness, and q-tameness

is like total boundedness.
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6.8 Mémoli’s dF distance on finite filtered simplicial

complexes

For X a set, let P (X ) denote the set of subsets of X . A finite filtered simplicial

complex (X ,FX ) consists of a finite set X together with a function FX : P (X ) → R that

respects inclusions. That is, if σ⊂ τ ∈P (X ), then FX (σ) ≤ FX (τ).

Given a finite filtered simplicial complex (X ,FX ) and a surjective function f : Z →
X from a finite set Z , we get an induced finite filtered simplicial complex (Z , f ∗(FX )),

where f ∗(FX )(σ) = FX ( f (σ)) for every subset σ⊆ Z .

In [Mé17], the following ep metric between finite filtered simplicial complexes is

defined:

dF (X ,Y ) = inf

{
max
σ⊆Z

∣∣ f ∗(FX )(σ)− g∗(FY )(σ)
∣∣} ,

where the infimum is taken over all finite sets Z and surjective functions f : Z → X

and g : Z → Y .

It is claimed in [Mé17] that this distance is geodesic. This is justified by construct-

ing a path of length at most δ between X and Y , given a finite set Z and surjective

functions f : Z → X and g : Z → Y such that maxσ⊆Z
∣∣ f ∗(FX )(σ)− g∗(FY )(σ)

∣∣≤ δ. We

note that it is not explicitly justified why, if dF (X ,Y ) = δ, then there exist Z , f , and g

as above (in the language of [Mé17], why there is a minimizing tripod). Nonetheless,

it is not too hard to fill this gap.

In this section, we give a relative locally persistent category structure to the collec-

tion of finite filtered simplicial complexes and we show that its quotient interleaving

distance is geodesic and that if two elements are at distance 0, then they are weakly

equivalent. We also show that this distance coincides with dF , thus providing a

proof that dF is geodesic. It is interesting to note that the paths we construct for the

geodesics, which are obtained from general arguments (Corollary 6.8.3), are not the

same as the paths given in [Mé17, Section 6.1].

Finally, we show that Mémoli’s distance and the homotopy interleaving distance

induce different metrics on the collection of finite filtered simplicial complexes (Re-

mark 6.8.9).

The collection of finite filtered simplicial complexes can be endowed with a locally

persistent category structure where an ε-morphism from (X ,FX ) to (Y ,FY ) is given by

a function f : X → Y such that, for every subset σ⊆ X , we have FX (σ) ≤ FY ( f (σ))+ε.

We denote this locally persistent category by ffsCpx.
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An acyclic morphism f : (X ,FX ) → (Y ,FY ) is given by a 0-morphism such that

f : X → Y is surjective and such that FX (σ) = FY ( f (σ)).

In ffsCpx, it is easy to construct copowers and powers by representables.

Lemma 6.8.1. The locally persistent category ffsCpx is copowered and powered by

representables.

Proof. Let ε ∈ R+ and let X ,Y ∈ ffsCpx. Let the underlying set of ε · X ∈ ffsCpx be

X and let Fε·X (σ) = FX (σ)− ε for every σ ⊆ X . Similarly, let the underlying set of

Y ε ∈ ffsCpx be Y and let FY ε(τ) = FY (τ)+ε for every τ ⊆ Y . It is then clear that, for

every δ ∈ R+, we have

HomffsCpx(X ,Y )ε+δ ∼= HomffsCpx(X ,Y ε)δ ∼= HomffsCpx(ε ·X ,Y )δ,

and that these isomorphisms are natural in X , Y , δ, and ε.

We can also construct binary products and pullbacks.

Lemma 6.8.2. The underlying category of ffsCpx admits binary products and pull-

backs.

Proof. Given X ,Y ∈ ffsCpx, their product X ×Y ∈ ffsCpx has as underlying set the

product of the underlying sets of X and Y , and FX×Y (σ) = max(FX (πX (σ)),FY (πY (σ)))

for every σ⊆ X ×Y . The fact that this is a categorical product is clear, as the universal

property can be verified directly.

Pullbacks are similar. Let X → Z ← Y be a cospan in ffsCpx. Define P ∈ ffsCpx

with underlying set the pullback of the cospan formed by the underlying sets of X ,

Z , and Y , and FP (σ) = max(FX (πX (σ)),FY (πY (σ))), for every σ ⊆ P . The universal

property is easy to verify.

Proposition 3.2.12 and Proposition 3.2.19 then allow us to conclude the following.

Corollary 6.8.3. The locally persistent category ffsCpx admits weighted pullbacks and

terminal midpoints.

Acyclic morphisms behave well with respect to weighted pullbacks, as the follow-

ing result shows.

Lemma 6.8.4. Acyclic morphisms in ffsCpx are stable under weighted pullback.
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Proof. By Lemma 4.1.5, it is enough to show that acyclic morphisms are stable under

pullbacks and under powering by representables, and this is clear by the construction

of pullbacks and powers.

This allows us to characterize the quotient interleaving distance, prove that it is

geodesic, and prove that the quotient interleaving distance coincides with dF .

Theorem 6.8.5. For X ,Y ∈ ffsCpx we have(
d ffsCpx

I

)
/' (X ,Y ) = inf

{
δ : ∃X ′ ' X ,Y ′ ' Y , X ′ and Y ′ are δ-interleaved

}
= inf

{
δ : ∃ acyclic morphisms X ′ → X and Y ′ → Y

such that X ′ and Y ′ are δ-interleaved
}
.

Proof. This follows directly from Theorem 4.1.4, using Lemma 6.8.4.

Lemma 6.8.6. The distance (d ffsCpx
I )/' reflects quotient interleavings.

Proof. We apply Theorem 4.5.18, so we must check that, for X , X ′ ∈ ffsCpx, the persis-

tent set of quotient interleavings QI(X , X ′) : R+ → SET is right continuous, and that

we can lift it to a q-tame persistent topological space with closed structure maps.

Let us instantiate the definition of the persistent set of quotient interleavings to

this case:

QI(X ,Y )δ =
{

(Z , Z ′,u, v, f , g ) : Z , Z ′ ∈ epMetc ,

u : Z → X , v : Z ′ → X ′ are acyclic morphisms,

f and g form a δ-interleaving between X and X ′
}

.

The structure morphisms are just inclusions in this case, since, by definition of the

locally persistent category structure of ffsCpx, the functions f and g are inverse

bijections between the underlying sets of Z and Z ′ such that, for every σ⊆ Z , we have

|FZ (σ)−FZ ′( f (σ))| ≤ δ.

We first prove that QI(X , X ′) is right continuous. This follows from the fact that

the structure morphisms are the natural inclusions, and, if a pair of inverse bijections

f and g between Z and Z ′ satisfy |FZ (σ)−FZ ′( f (σ))| ≤ δ′ for every δ′ > δ, then they

satisfy the analogous condition for δ.

To lift QI(X , X ′) to a persistent topological space, we map into a simpler persis-

tent topological space and pull back the topology. Let QIb(X , X ′)δ be the subset of
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QI(X , X ′)δ of δ-quotient interleavings X ← Z ↔ Z ′ → X ′ such that the underlying

subset of Z is equal to the underlying subset of Z ′, and both are a subset of X × X ′.
For each δ ∈ R+, we can endowQIb(X , X ′)δ with the discrete topology, which makes

QIb(X , X ′) : R+ → Top into a q-tame persistent topological space with closed structure

morphisms, since this persistent set takes values in finite sets.

Given a δ-quotient interleaving X
u←− Z

f−→ Z ′ v−→ X ′ we have a set map (u, v ◦ f ) :

Z → X ×X ′, and its image gives us a subset S ⊆ X ×X ′. Together with the projections

to X and X ′, we get a diagram of sets X
πX←−− S

id−→ S
πX ′−−→ X ′. Now, we can use πX and

πX ′ to endow S with two structures of finite filtered simplicial complex, by pulling

back the structures from X and X ′ respectively, and thus obtain a diagram of finite

filtered simplicial complexes X
πX←−− S

h−→ S′ πX ′−−→ X ′. By construction, h is part of a

δ-interleaving and πX and πX ′ are acyclic morphisms of finite filtered simplicial

complexes, so X
πX←−− S

h−→ S′ πX ′−−→ X ′ is an element ofQIb(X , X ′)δ. This provides us with

a natural transformation QI(X , X ′) ⇒ QIb(X , X ′), where naturality follows from the

fact that the structure morphisms of both persistent sets are the natural inclusions.

The components of the above natural transformation are surjective since the

compositeQIb(X , X ′) ⇒QI(X , X ′) ⇒QIb(X , X ′) is the identity. We can then pull back

the topology on QIb(X , X ′) to get a persistent topological space structure QI(X , X ′) :

R+ → TOP that is q-tame and such that all of the structure maps are closed, concluding

the proof.

We can now prove that (d ffsCpx
I )/' is geodesic.

Theorem 6.8.7. The distance (d ffsCpx
I )/'(X ,Y ) is geodesic and if (d ffsCpx

I )/'(X ,Y ) = 0

then X ' Y .

Proof. This follows from Theorem 4.5.16, using Lemma 6.8.6 and Corollary 6.8.3 to

satisfy the hypotheses.

We now show that (d ffsCpx
I )/' coincides with the distance dF presented in [Mé17].

Proposition 6.8.8. We have (d ffsCpx
I )/'(X ,Y ) = dF (X ,Y ).

We use the same methodology as in the proof of Theorem 6.2.12.

Proof. We use the second characterization of the quotient interleaving distance of

Theorem 6.8.5.
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Given f : Z → X and g : Z → Y such that

max
σ⊆Z

∣∣ f ∗(FX )(σ)− g∗(FY )(σ)
∣∣≤ δ

we have (Z , f ∗(FX )) ' X and (Z , g∗(FY )) ' Y , and (Z , f ∗(FX )) and (Z , g∗(FY )) δ-

interleaved. So (d ffsCpx
I )/'(X ,Y ) ≤ dF (X ,Y ).

Going the other way, given α : X ′ → X and β : Y ′ → Y acyclic morphisms such

that X ′ and Y ′ are δ-interleaved, we let Z be the underlying set of X ′, which is in

bijection with the underlying set of Y ′ under a bijection γ : X ′ → Y ′ that represents the

interleaving between Y ′ and X ′. We moreover define functions Z → X and Z → Y by

α and β◦γ respectively. It follows that dF (X ,Y ) ≤ (d ffsCpx
I )/'(X ,Y ), as required.

We conclude this section by proving that Mémoli’s distance does not coincide with

the homotopy interleaving distance in general.

Remark 6.8.9. There is a locally persistent functor

R : ffsCpx → TopR

given by applying geometric realization. This locally persistent functor maps acyclic

morphisms to weak equivalences. To see this, we apply Lemma 6.3.3. This implies

that, for X ,Y ∈ ffsCpx, we have

dF (X ,Y ) ≥ dH I (R(X ),R(Y )).

We now show that, in general, the distances do not agree on finite filtered simplicial

complexes. Consider, on the one hand, the set X = {a,b}. Let r ≥ 0 and consider the

filtration of the simplicial complex {{a}, {b}, {a,b}} given by FX ({a}) = 0, FX ({b}) = r ,

and FX ({a,b}) = r . Consider, on the other hand, the set Y = {c} and the filtration of the

simplicial complex {{c}} given by FY ({c}) = 0. Both these filtered simplicial complexes

are empty before 0 and pointwise contractible after 0, and thus dH I (R(X ),R(Y )) = 0.

Since Y is a singleton, for any set Z there is exactly one set map Z → Y . By

inspection, this fact implies that dF (X ,Y ) = r . Since r is arbitrary, we see that dF can

be arbitrarily larger than dH I , and thus that dF and dH I are non-equivalent metrics

on the collection of finite filtered simplicial complexes.
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6.9 Towards distances on persistence diagrams as inter-

leaving distances

In this short section, we recover the Wasserstein distances on persistence diagrams

as interleaving distances of locally persistent categories. We conclude the section by

outlining future work in this direction.

Definition 6.9.1. Let q ∈ [1,∞]. The metric space Hq is defined as the subspace

Hq = {
(x, y) ∈ [−∞,∞]2 : x ≤ y

}⊆ [−∞,∞]2

with distance

dHq

(
(x, y), (x ′, y ′)

)= (|x −x ′|q +|y − y ′|q)1/q

if q ∈ [1,∞) and

dHq

(
(x, y), (x ′, y ′)

)= max
(|x −x ′|, |y − y ′|)

if q =∞. Here |x −x ′| denotes the distance between x and x ′ in [−∞,∞].

Let ∆⊆Hq be the set of points of the form (x, x) ∈Hq . We refer to ∆ as the diagonal.

Informally, a persistence diagram is usually defined to be a multiset of points

of Hq that has countably many off-diagonal points, and such that each point in the

diagonal has countably infinite multiplicity. There are many ways in which this can

be formalized; we prefer the following.

Definition 6.9.2. A persistence diagram consists of a set X together with a function

ψX : X →Hq such thatψ−1
X (Hq \∆) is countable and such that the restrictionψX |ψ−1

X (∆) :

ψ−1
X (∆) →∆ has countably infinite fibers.

We will usually denote a persistence diagram (X ,ψX ) by its underlying set X .

Let I be a set and let {xi }i∈I be a collection of elements of [0,∞]. Define their sum∑
i∈I xi ∈ [0,∞] as ∑

i∈I
xi := sup

J⊆I
J finite

∑
i∈J

xi .

Definition 6.9.3. Let p, q ∈ [1,∞], let X and Y be persistence diagrams, and let f : X →
Y be a function of sets. The p-distortion of f is defined as

distp ( f ) =
( ∑

x∈X
dHq

(
ψX (x),ψY ( f (x))

)p

)1/p

.
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for p ∈ [1,∞), and as

distp ( f ) = sup
x∈X

dHq

(
ψX (x),ψY ( f (x))

)
.

for p =∞.

Definition 6.9.4. Let p ∈ [1,∞]. The locally persistent category of persistence diagrams,

denoted by PDp
q, is the locally persistent category whose objects are persistence diagrams

and whose morphisms are given by

HomPDp
q
(X ,Y )ε =

{
f : X → Y injective function of sets : distp ( f ) ≤ ε} ,

for X ,Y ∈PDp
q. Composition and identities are given by composition of functions and

identity functions, respectively.

The restriction to injective functions is so that composition is well-defined, in the

sense that, for f : X → Y and g : Y → Z functions between persistence diagrams, and

p ∈ [1,∞], we have distp (g ◦ f ) ≤ distp (g )+distp ( f ).

The following result is immediate from the definitions. For a definition of the

`p [`q ] matching (or Wasserstein) distance see, e.g., [Cho19b].

Proposition 6.9.5. Let p, q ∈ [1,∞]. The interleaving distance of PDp
q coincides with

the `p [`q ] matching (or Wasserstein) distance on persistence diagrams.

Remark 6.9.6. We note that, when p 6=∞ or q 6=∞, the locally persistent category of

persistence diagrams does not arise as a category with a flow in any natural way. When

p = q =∞, there is a category with a flow whose objects are persistence diagrams (or

barcodes), and whose interleaving distance is the bottleneck distance; in fact, this

category with a flow is a functor category of the form C R. This structure and its usage

to formulate the induced matching theorem, a refinement of the algebraic stability

theorem, is the subject of [BL20].

Two important directions of work remain to be explored. One direction includes

finding possibly larger locally persistent categories of persistence diagrams in which

we can apply our theorems to deduce that the interleaving distance is complete and

geodesic. For now, we refer the reader to [Cho19b] for the study of geodesics in spaces

of persistence diagrams, and to [MMH11] for the completeness of these spaces.

The other direction includes connecting these locally persistent categories of

persistence diagrams with locally persistent categories of persistent vector spaces in
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order to obtain a categorical proof of the algebraic stability theorem ([CCSGGO09]).

We believe that this can be done by rephrasing the main result of [BL14] as a theorem

about locally persistent categories.
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