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Abstract
In this thesis we seek to realize an efficient, generic and parallel implementation of fast

Fourier transforms (FFTs) over finite fields. These FFTs will be used in support of fast mul-
tiplication of polynomials. Our goal is to obtain a relatively high performing parallel imple-
mentation that will run over a variety of finite fields, with characteristics ranging from small
primes (say of a machine-word size) to arbitrarily large primes. To this end, we implement
and compare two Cooley-Tukey Six-Step fast Fourier transforms and a Cooley-Tukey Four-
Step variant, against a high performing specialized FFT already implemented in the Basic
Polynomial Algebra Subprograms (BPAS) library. We use optimization techniques found in
modern day high performance FFT implementations like FFTW by Matteo Frigo and Steven
G. Johnson as well as SPIRAL by [16] . We start with a Six Step parallel algorithm suggested
by Franz Franchetti and Markus Puschel in the Encyclopedia of Parallel Computing and de-
rive two FFT variants, a Six-Step loop-merged variant and a Four-Step loop-merged variant.
We implement and compare these FFTs in both C and C++ programming languages and we
compare our BPAS finite field C++ implementation against a GNU multiple precision (GMP)
implementation. We compare both serial and parallel versions over finite fields with character-
istic primes of size 32 bits and larger. In addition to providing a fair comparison between FFT
implementations with a varying degree of specialization, we optimistically hope to achieve a
relative degree of performance with C++ as compared to C.and we hope to show how well the
different FFTs parallelize and if that relates to the degree of specialization.

Keywords: FFT, Fast Fourier Transform, DFT, Discrete Fourier Transform, DFT over
Finite Fields, Finite Fields, BPAS, C, C++, Gnu MP, Parallel
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Summary for lay audience
The fast Fourier transform (FFT) is used by most scientific disciplines. High performance
implementations of the fast Fourier transform play a crucial role in research areas like cryptog-
raphy, signal processing, and polynomial system solving. On contemporary parallel computing
platforms it is difficult to obtain high-performance FFT implementations. In this paper we de-
rive and implement parallel Cooley-Tukey general radix decimation-in-time six step FFTs that
we can match to various target platforms. Our goal is a competitive parallel FFT over Finite
Fields. We detail and discuss our implementation and optimization effort. Then we analyze the
performance of our implementation and present our findings.
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Chapter 1

Introduction

1.1 Background and objectives

In this thesis we seek to realize an efficient and generic implementation of fast Fourier trans-
forms (FFTs) over finite fields. These FFTs aim at supporting fast multiplication of polyno-
mials. Our goal is to obtain a relatively high performing implementation that will run over
a variety of finite fields, with different sized characteristic primes, and offer a variety of FFT
schemes, either running sequentially or in parallel fashion. This contrasts with the common
practice in the literature to focus on a particular type of finite field and a specific FFT scheme.
Of course, under those constraints, one expects that the resulting code would reach even higher
performance. This is the case in the paper of Victor Shoup [20], or that of Akpodigha Filatei,
Xin Li, Marc Moreno Maza, Éric Schost [10], or that of Joris van der Hoeven [21], or that of
David Harvey, Daniel S. Roche [14], where a fixed FFT scheme is run serially modulo 32-bit
prime numbers. This is also the case in the papers by Svyatoslav Covanov, Davood Moha-
jerani, Marc Moreno Maza, Lin-Xiao Wan where a fixed FFT scheme is run in parallel (on
GPUs in [3] and on multi-core architecture [7]) modulo Generalized Fermat Prime numbers.

To achieve our goal, we implement and compare two Cooley-Tukey Six-Step fast Fourier
transforms and a Cooley-Tukey Four-Step variant against high performing specialized FFTs
already implemented in the Basic Polynomial Algebra Subprograms (BPAS) library [1]. We
use optimization techniques found in modern day high performance FFT implementations over
the field of complex numbers (a context in which computations are performed with floating
point number arithmetic whereas our study relies on symbolic computations) like FFTW by
Matteo Frigo and Steven G. Johnson [12] and SPIRAL [18] by Markus Pschel, Jos M. F.
Moura, Jeremy R. Johnson, David A. Padua, Manuela M. Veloso, Bryan Singer, Jianxin Xiong,
Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson and Nicholas
Rizzolo. We start with a Six Step parallel algorithm suggested by Franz Franchetti and Markus
Puschel in the Encyclopedia of Parallel Computing [11] and derive two FFT variants, a Six-
Step loop-merged variant and a Four-Step loop-merged variant. We implement and compare
the FFTs in both C and C++ programming languages and we compare our BPAS finite field
C++ implementation against a GNU multiple precision (GMP) implementation. We compare
both serial and parallel versions over finite fields with characteristic primes of size 32 bits and
larger. In addition to providing a fair comparison between FFT implementations with a varying
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2 Chapter 1. Introduction

degree of specialization, we optimistically hope to achieve a relative degree of performance
with C++ as compared to C, and we hope to show how well the different FFTs parallelize and
how that relates to the degree of specialization.

1.2 Methodology
The Six-Step Cooley-Tukey decimation-in-time fast Fourier transform

DFTN = LN
K(IM ⊗ DFTK)LN

MDK,M(IK ⊗ DFTM)LN
K . N = KM. (1.1)

uses explicit transpositions throughout the computation and for each recursion step it passes
over the data six times. These data passes make competition against highly optimized serial
fast Fourier transforms like FFTW or specialized prime field FFTs like the one by Svyatoslav
Covanov [6] challenging. To see if we can affect performance vs fast serial FFTs, we use loop-
merging techniques to create a version that we call the loop-merged Six-Step FFT. Finally, we
reverse the initial Four-Step FFT to Six-Step FFT manipulation that was used to create the
Six-Step FFT in [11] and we create a loop-merged Four-Step FFT version. Using the FFT
definitions, we create and optimize three FFT schemes and use them across our FFTs to keep
the playing field as level as possible. We loop-unroll, perform code elimination, and minimize
data movement, for base case FFT kernels of sizes: 2, 4, 8, 16, 32, and 64. Then, we use the
recursive definition to create the three FFTs that reduce a large problem of size N = N1N2 into
N1 problems of size N2 and N2 problems of size N1. We use a radix-2 split to accommodate
two power N. We follow a blocking strategy with respect to data locality and create various
block sizes to accommodate the different sized finite field characteristic primes. Using varying
sized prime field characteristics we run an experiment to compare the serial performance of
our FFTs and we run an experiment to compare the parallel performance of our FFTs. We run
FFTs of different sizes using each of the base case kernels.

1.3 Results
We found that the Six-Step explicit FFT realized the most speedup. Serially, the Six-Step FFTs
couldn’t compete with the serial Four-Step FFTs. We found that the Four-Step Loop-merged
variant performed better than both the Six-Step explicit and loop merged versions. In terms of
parallelism, the Six-Step explicit FFT on average realized the most speedup. Looking at the
overall computation, the areas that benefit the most from parallelism are the areas with more
work. First, the twiddle factor subprogram (consisting of point-wise multiplications of finite
field elements) is the most work intensive area due to the prime field arithmetic followed by the
base case kernels, followed by the stride permutations. In terms of work intensity, we found the
stride permutation subprogram to be light on work and we wanted to see what kind of parallel
speedup we might achieve by using the loop merging technique to push the stride permutations
into the other loops for each recursion step during a computation. Unfortunately, the act of
loop merging introduces an additional copy back loop which reduces the overall effectiveness
of the loop merge by adding another pass through the data. We found that loop merging adds
another level of complexity to the code as well as the parallel computation. Also, it introduces



1.4. Document outline 3

large two power stride memory accesses in the loop merged versions. A local buffer described
in [11] needs to be used to help mitigate the two power stride access issue. Realizing speed
up from parallelism for the loop merged variants was more difficult due to cache penalties
incurred during the computation. We found that our C++ versions were not very competitive
against a high performance serial FFT written in pure C. Nor were they competitive when
compared to our own C versions. We found that we could get the best performance from
our C code. We found the comparison between the C++ and GMP C implementations to
be closer in performance and we attribute the relative closeness of measured time difference
to the memory management going on as GMP field elements grow and shrink in size during
the computation. The GMP manual states, ”mpz t variables represent integers using sign and
magnitude, in space dynamically allocated and reallocated” [13]. The increased complexity
of the loop merged versions made parallelism difficult to achieve using the parallel for loop
construct and the associated overhead doesn’t appear to provide as much benefit for small
prime sized transforms. When analyzing the result, the added complexity and implementation
time to loop merge and block copy the parallel looped merged versions may have out-weighed
the end result. Lastly, due to the blocked nature of our FFTs, a poor choice of block size for
the base case can incur significant performance penalties.

1.4 Document outline
This thesis follows a logical progression that introduces topics and includes relevant back-
ground information for the reader. It is critical to note that, in Chapters 2, 3, 4, and 5, the
background material is taken from the literature. Chapter 6 describes our implementation tech-
niques but we also employ techniques taken from the literature. Chapter 2 includes background
on Finite Fields and Modular arithmetic. Chapter 3 includes background on the Tensor Product
and introduces the Stride Permutation and we detail its implementation. Chapter 4 describes
the Direct Sum and defines the diagonal scaling matrix Dk,m or T n

m twiddle matrix and we de-
tail its implementation. Chapter 5 discusses Fast Fourier Transforms. Chapter 6 describes our
implementation techniques as well as the loop-merging techniques taken from the literature
which we employ. Chapter 7 details our experiment and in Chapter 8 we present our results.



Chapter 2

Finite Field Arithmetic

In this chapter, we define provide some relevant background information about modular arith-
metic, finite fields, and primitive roots of unity.

2.1 Symbol usage

The following is the description of the syntax used in the description of algorithms.

• a = b assigns value b to a

• a == b returns true is a is equal to b

• ~x is a vector

• x[i] is the i-th element in ~x

• xi is the i-th element in ~x

2.2 Modular arithmetic

In this paper we focus on optimizing the components of the fast Fourier transform which will
be used over the different prime fields. In the prime field context, the size of the field charac-
teristic dictates the per-element storage requirements as well as the relative cost of the modular
arithmetic. Naturally, the faster we can perform our basic operations, the faster our overall
computation. A fast Fourier transform over a prime field, in terms of basic operations, con-
sists of modular addition, modular multiplication, and the movement of data. Of these three,
the modular multiplications are the most expensive. The underlying modular arithmetic is dis-
cussed more thoroughly in Putting Furer’s Algorithm into Practice with the BPAS Library by
Linxiao Wang [24].

4



2.3. Primitive nth root of unity 5

2.3 Primitive nth root of unity
The primitive nth root of unity is used in a variety of mathematical algorithms and is central to
the fast Fourier transform. We represent a primitive nth root of unity with the symbol ωn. The
subscript indicates that ω is an nth primitive root.
Formally, ω is a root of unity if

ωn = 1

and, it is primitive if
ωx , 1∀1 <= x < n.

We know from Lagrange’s theorem that if n divides p − 1 then the prime field Z/pZ admits a
nth primitive root of unity. In [24] the following algorithm is derived and will be used in this
paper for finding ωn. We now have a way to calculate ωn for use in our fast Fourier transform.

Procedure 1 Primitive Root Of Unity (p, n)
Input: p: a prime number, n: a two-power integer where n divides p − 1.
Output: ωn

q = (p − 1)/n
d = q(n/2)
c = 0
while cd , −1 mod p do

c = randomnumber()
end while
return cd

2.4 Prime fields in the BPAS library
In algebra, a non-empty set A is a ring whenever A is endowed with two binary operations
denoted + and × such that, both addition and multiplication are associative and both binary
operations admit neutral elements, 0 and 1 respectively. Here, addition must be commutative
and every a ∈ A admit a symmetrical element −a with respect to addition. Additionally,
multiplication is distributive with respect to the addition. The ring A is commutative if the
multiplication of elements ∈ A is commutative and that multiplication of a non-zero element
a ∈ A admits a symmetrical element a−1. A commutative ring A is called a field.
The residue classes modulo a prime number, p, form a field called a prime field. Prime fields
have p elements and are denoted Z/pZ. Here, the notation Z/pZ is used because this is the
quotient ring of Z by the ideal pZ containing all integers divisible by p where 0Z is the {null}
singleton. Arithmetic over a prime field is called modular arithmetic.
In modular arithmetic, we use integer representatives of the residue class mod p. To perform
a modular arithmetic operation, arithmetic is performed on the integer representatives and the
output determines a residue class, which is returned in representative form congruent mod p
[2]. In this paper, we distinguish between two types of prime fields, ”Small” prime fields and
”Big” prime fields. Small prime fields have as a characteristic, primes represented by ≤ 32

https://en.wikipedia.org/wiki/Lagrange's_theorem_(group_theory)
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bits and Big prime fields with a characteristic ¡ 32 bits. The following finite fields have been
implemented by [24] and are found in the BPAS library.

• SmallPrimeField in C A Set of C functions in the BPAS library implementing arithmetic
operations in a prime field of the form GF(p) where p is of machine word size.

• SmallPrimeField C++ Class C++ implementation in the BPAS library of a prime field
of the form GF(p) where p is of machine word size.

• BigPrimeField C++ Class C++ implementation in the BPAS library of a prime field of
the form GF(p) where p is an arbitrary prime number.

• BigPrimeField GMP Class Set of C functions provided by the GNU Multiple Precision
library implementing arithmetic operations in a prime field of the form GF(p) where p is
an arbitrary prime number.

2.5 General modular arithmetic algorithms

The following algorithms is reproduced from the Handbook of Applied Cryptography [15].
The following algorithm converts multiple precision numbers to radix b representation.

Procedure 2 Radix b representation
Input:

a: integer a ≥ 0
b: integer b ≥ 2

Output: the base b representation (anan−1 · · · a1a0)b, where n ≥ 0 and an , 0 if n ≥ 1.
i = 0
x = a
q = bx/bc
ai = x − qb
while a > 0 do

i = i + 1
x = q
q = bx/bc
ai = x − qb

end while
return (aiai−1 · · · a1a0)

The following algorithm handle multiple precision modular addition and is found in [15].
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Procedure 3 Multiple-precision addition
Input:

x: positive integer having n + 1 base b digits.
y: positive integer having n + 1 base b digits.

Output: the sum x + y = (zn+1zn · · · z1z0) in radix b representation
c = 0
for i in 0 to n do

zi = (xi + yi + c) mod b
if ((xi + yi + c) < b) then

c = 0
else

c = 1
end if

end for
zn+1 = c
if z ≥ n then

z = z − (n)
end if
return (zn+1zn · · · z1z0)

The following algorithm handles subtraction and is found in [15].

Procedure 4 Multiple-precision subtraction
Input:

x: positive integer having n + 1 base b digits.
y: positive integer having n + 1 base b digits.
x ≥ y

Output: the difference x − y = (zn+1zn · · · z1z0) in radix b representation
c = 0
for i in 0 to n do

zi = (xi − yi + c) mod b
if ((xi − yi + c) ≥ 0) then

c = 0
else

c = −1
end if

end for
return (znzn−1 · · · z1z0)

The following is a multiple precision multiplication algorithm also found in [15].
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Procedure 5 Multiple-precision multiplication
Input:

x: positive integer having n + 1 base b digits.
y: positive integer having m + 1 base b digits.

Output: the product x · y = (zn+m+1 · · · z1z0) in radix b representation
for i from 0 to n + m + 1 do

zi = 0
end for
for i from 0 to m do

c = 0
for j from 0 to n do

(uv)b = zi+ j + x j · yi + c
zi+ j = v
c = u

end for
zi+n+1 = u

end for
return (zn+m+1 · · · z1z0)

followed by a division algorithm from [15].



2.5. General modular arithmetic algorithms 9

Procedure 6 Multiple-precision division
Input:

x positive integer x = (xn · · · x1x0)b

y positive integer y = (ym · · · y1y0)b

with n ≥ m ≥ 1 and ym , 0
Output: the quotient q = (qn−m · · · q1q0)b) and remainder r = (rm · · · r1r0)b such that x = qy+r,

0 ≤ r < y
for j from 0 to (n − m) do

q j = 0
end for
while (x ≥ ybn−m) do

qn−m = qn−m + 1
x = x − ybn−m

end while
for i from n to m − 1 do

if xi == ym then
qi−m−1 = b − 1

else
qi−m−1 = b(xib + xi−1)/ymc

end if
while (qi−m−1(ymb + ym−1) > xib2 + xi−1b + xi−2) do

qi−m−1 = qi−m−1 − 1
end while
x = x − qi−m−1ybi−m−1

if x < 0 then
x = x + ybi−m−1

qi−m−1 = qi−m−1 − 1
end if

end for
r = x
return (q, r)

Division is an expensive operation and is avoided whenever possible. Next is a classical
multiplication algorithm

Procedure 7 Classical modular multiplication
Input:

x positive integer in radix b representation
y positive integer in radix b representation
m the modulus a positive integer in radix b representation

Output: x · y mod m
compute x · y using multiple-precision multiplication
compute the remainder r when x · y is divided by m
return r
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followed by the Montgomery Multiplication algorithm from [17] but this algorithmic de-
scription is from [15].

Procedure 8 Montgomery Multiplication
Input:

x positive integer in radix b representation x = (xn−1 · · · x1x0)b

y positive integer in radix b representation y = (yn−1 · · · y1y0)b

the modulus, a positive integer in radix b representation m = (mn−1 · · ·m1m0)b

where 0 ≤ x, y < m, R = bn

where gcd(m, b) = 1, m
′

= −m−1 mod b.
Output: xyR−1 mod m

A = 0
for i from 0 to n − 1 do: do

ui = (a0 + xiy0)m
′

mod b
A = (A + xiy + uim)/b

end for
if A ≥ m then

A = A − m
end if
return A

Modular multiplication, Montgomery form, and the REDC algorithm are discussed thor-
oughly in [24].

Now that we have a way to initialize our prime fields and our modular arithmetic defined,
we can begin the development of our FFT subprograms. We organize our optimization ap-
proach into the breaking down of our computation into cache efficient subprograms that can be
executed in parallel. We start by deriving subprograms for each of the three major components
involved in the computation. The major components we identify as the Stride permutation Lk

km,
the Twiddle function Dk,m, and the DFTk base case. Each of these components are developed
following a cache-oblivious blocking strategy which we analyze in terms of work and cache
complexity. Then, we derive a Cooley-Tukey recursive algorithm that lends itself to blocking.
It follows a blocking strategy because we can choose the size of the base case or computational
’block’ used to terminate the recursion. Blocking size is selected such that the size of the block
or working set of elements fit entirely in the cache. Using a blocked recursive algorithm we
create an iterative version of the algorithm that oversees the parallel computation. Our goal is
to perform the computation in a cache-efficient manner. If each of our three subprograms are
cache-efficient then our overall computation should also be cache-efficient.



Chapter 3

Tensor product and the stride permutation

In this chapter, we first review the tensor product which is ubiquitous in FFT literature and
fundamental to the description of FFT algorithms. Next, we relate the idea of matrix transposi-
tion to a permutation of an indexing set. Then, we describe a few key index permutations that
play a key role connecting large Fourier transforms to smaller Fourier transforms.. Finally, we
highlight the significance of the stride permutation and we discuss the cache optimal matrix
transposition subprogram implemented to perform it.

3.1 Tensor product
In this section we discuss the tensor product which is used when discussing FFT algorithms.
Note that I do not claim the proofs and theorems about the tensor product to be mine, they
are found in every modern algebra textbook. These are reproduced here slightly altered to suit
our discussion from [23], [22], and [19], and are included to aid in the development of the
discussion.
The following is modified from [19] to suit our discussion.
Let CN be a N-dimensional vector space of N-tuples of complex numbers.
A typical point a ∈ CN is a column vector

~a =


a0

.

.

.
aN−1

 .
We say that ~a has size N. If the size of ~a ∈ CN is important, we denote ~a as ~aN .
The tensor product of two vectors ~a ∈ CM and ~b ∈ CL is the vector ~a⊗~b ∈ CN , N = ML defined
by

~a =


a0~b
.
.
.

aM−1~b


.

11
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Example 2.1 Tensor product of vectors ~a ∈ CM and ~b ∈ CL

 a0

a1

a2

 ⊗
[

b0

b1

]
=



a0b0

a0b1

a1b0

a1b1

a2b0

a2b1


.

For vectors ~a, ~b, ~c of appropriate sizes

(~a + ~b) ⊗ ~c = ~a ⊗ ~c + ~b ⊗ ~c (3.1)

~a ⊗ (~b + ~c) = ~a ⊗ ~b + ~a ⊗ ~c (3.2)

The tensor product is not commutative. In general,

~a ⊗ ~b , ~b ⊗ ~a.

Consider tensor products ~a ⊗ ~b and ~b ⊗ ~a with ~a ∈ CM and ~b ∈ CL. Identify ~a ⊗ ~b with

MatM×L(~a ⊗ ~b) =
[
a0~b, . . . , aM−1~b

]
,

and ~b ⊗ ~a with
MatL×M(~b ⊗ ~a) =

[
b0~a, . . . , bL−1~a

]
,

we see that interchanging the order of the tensor product corresponds to a matrix transposition.

MatL×M(~b ⊗ ~a) = (MatM×L(~a ⊗ ~b))T .

In example 2.1,  a0

a1

a2

 ⊗
[

b0

b1

]
corresponds to the 3 × 2 matrix [

a0b0 a1b0 a2b0

a0b1 a1b1 a2b1

]
.

and [
b0

b1

]
⊗

 a0

a1

a2


corresponds to the 2 × 3 matrix  a0b0 a0b1

a1b0 a1b1

a2b0 a2b1

 .
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and [
a0b0 a1b0 a2b0

a0b1 a1b1 a2b1

]t

=

 a0b0 a0b1

a1b0 a1b1

a2b0 a2b1

 .
Denote by eM

m , 0 ≤ m < M, the vector of size M with 0 everywhere except the m-th spot
which contains a 1. The resulting set of vectors

{eM
m : 0 ≤ m < M}

is the standard basis of CM.
Set N = ML and form the tensor products eM

m ⊗ eL
l , 0 ≤ m < M, 0 ≤ l < L. Since

eN
l+mL = eM

m ⊗ eL
l , 0 ≤ m < M, 0 ≤ l < L,

the set
{eM

m ⊗ eL
l : 0 ≤ m < M, 0 ≤ l < L}

is the standard basis of CN . As ~a runs over all vectors of size M and ~b runs over all vectors of
size L, the tensor products ~a ⊗ ~b span the space CN .

Theorem 3.1.1 From [22]
If A is a R × S matrix and B an M × L matrix, then

(A ⊗ B)(~a ⊗ ~b) = A~a ⊗ B~b,

for any vectors ~a and ~b of sizes S and L.

Proof The vector ~a ⊗ ~b, 

a0~b
a1~b
.
.
.

as−1~b


(3.3)

consists of consecutive segments
a0~b, a1~b, ..., as−1~b,

each of size L. Since the M × S L matrix formed by the M rows of A ⊗ B is[
a0,0B a0,1B · · · a0,L−1B

]
,

we have that the vector of size M formed from the first M components of (A ⊗ B)(~a ⊗ ~b) is

(a0,0a0 + a0,1a1 + · · · + a0,s−1as−1)B~b.

continuing in this way proves the theorem.
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Theorem 3.1.2 From [22]
If A and C are M × M matrices and B and D are L × L matrices, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Proof Take vectors ~a and ~b of sizes M and L. By theorem 2.1 and, in light of the preceding
discussion,

(A ⊗ B)(C ⊗ D)(~a ⊗ ~b) = (A ⊗ B)(C~a ⊗ D~b) = AC~a ⊗ BD~b, (3.4)

proving the theorem.

3.2 Stride permutations
The Stride permutation is a major component of the Cooley-Tukey six-step FFT. It is repre-
sented by the symbols LN

K and LN
M in

DFTN = LN
K(IM ⊗ DFTK)LN

MDK,M(IK ⊗ DFTM)LN
K . N = KM.

A Stride permutation is simply another name for a transposition. We call this type of transpo-
sition a stride permutation because it permutes the indexing set of an input vector at a given
stride.

3.2.1 Matrix transposition as a permutation of an indexing set
A matrix transpose can be thought of as a permutation of the indexing set. Consider a M × L
matrix

A =
[
am,l

]
0≤m<M,0≤l<L .

for any 0 ≤ x, y < N, where N = ML, we can write uniquely

x = m + lM, 0 ≤ m < M, 0 ≤ l < L.

y = l + mL, 0 ≤ l < L, 0 ≤ m < M,

The vector ~a formed by the matrix A has components given by

ax = am,l, x = l + mL, 0 ≤ m < M, 0 ≤ l < L.,

while the vector ~b formed by the matrix At has components given by

by = am,l, y = m + lM, 0 ≤ m < M, 0 ≤ l < L.

These vectors correspond to permutations of the indexing set,

φ(l + mL) = (m + lM)

and we have
ax = bφ(x), 0 ≤ x < N.
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Example Take M = 2, L = 4 and

~z =
[

z0 z1 z2 z3 z4 z5 z6 z7

]
.

We have
φ = ( 0 2 4 6 1 3 5 7 )

and
~a =

[
z0 z2 z4 z6 z1 z3 z5 z7

]
To form ~a from ~z, we ’stride’ through ~z with length two. In general, to form ~a from ~z, we first
initialize at z0, the 0th component of ~z, and then stride through ~z with length the size of M.
After a pass through ~z, we re-initialize at the 1st component of ~z, and again stride through ~z
with length of size M. After another pass through ~z, we re-initialize now at the 2nd component
of ~z. We repeat this permutation of data until we form ~a.

Example 2.2 Take M = 4, L = 2 and

~z =
[

z0 z1 z2 z3 z4 z5 z6 z7

]
.

We have
φ = ( 0 4 1 5 2 6 3 7 )

and
~a =

[
z0 z4 z1 z5 z2 z6 z3 z7

]
To form ~a from ~z, we ’stride’ through ~z with length 4.

This procedure is an example of a stride permutation.

3.2.2 Radix-2 stride permutations
A radix-2 stride permutation is a permutation with a stride of 2. In general, the term radix-2
means to relate a problem of size n to a problem of half the original size. The radix-2 stride
permutation is appropriately named as it is part of the key to relating a Fourier transform of
size N to a Fourier transform of size N/2. The radix-2 stride permutation is sometimes called
the even-odd sort permutation. Applying the radix-2 stride permutation to ~x results in the vec-
tor being arranged with the even-indexed columns first followed by the odd-indexed columns
second.

y = LN
2 [x0, x1, . . . , xn−1]↔ y =

[
[x0, x2, . . . , xn−1]
[x1, x3, . . . , xn−1]

]
. (3.5)

The action of the radix-2 stride permutation on a matrix A ∈ Cn×n is simply the matrix A
arranged with its even-indexed columns grouped first followed by the odd-indexed columns
second.

ALN
2 =

[
Aeven Aodd

]
.

If the radix-2 stride permutation transposes ~x as a 2 × M array, then the inverse of the radix-2
stride permutation transposes ~x as an M×2 array. The inverse of the radix-2 stride permutation
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is sometimes called the perfect shuffle.
if N = 8,N = 2M and ~x = [x0, x1, x2, x3, x4, x5, x6, x7] then,

y = L8
2x = [x0, x2, x4, x6, x1, x3, x5, x7]

and
x =

[
L8

2

]T
y = [x0, x1, x2, x3, x4, x5, x6, x7].

3.2.3 Radix-P stride permutations
The radix-p stride permutation is key to expressing a Fourier transform of size N as P Fourier
transforms of size N/P. The radix-p stride permutation is sometimes called the Mod P Sort
permutation and it is the generalization of the radix-2 stride permutation above. Continuing
with Van Loan’s approach,
If N = PM and x ∈ AN then the radix-p stride permutation is defined as:

LN
P x =


[
x0, x0+p, . . . , xn−1

][
x1, x1+p, . . . , xn−1

]
· · ·[

xp−1, xp−1+p, . . . , xn−1

]
.

 (3.6)

Lemma 3.2.1 Suppose N = PM and that x, y ∈ An. If y = LN
P x, then

yM×P = xP×M.

Put another way,
yβM+α = xαP+β

for all 0 ≤ α < M and 0 ≤ β < P.
Thus, if

xP×M ≡

 x0,0, . . . , xp−1,0

· · ·

x0,m−1, . . . , xp−1,m−1


and

yM×P ≡

 y0,0, . . . , ym−1,0

· · ·

y0,p−1, . . . , ym−1,p−1

 ,
then

Xβ,α = Yα,β.

Proof If y = LPM
P x then from 2.6 we have

yM×P =
[

x0, x0+p, . . . , xn−1 x1, x1+p, . . . , xn−1 · · · xp−1, xp−1+p, . . . , xn−1

]
= xP×M.

Since
yβm+α =

[
ym×p

]
β,α

=
[
xp×m

]
β,α

= xβ+αp,

the lemma is established.
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Mod P Stride Permutation Example

LN
P x =

[
x0 x3 x6 x9 x1 x4 x7 x10 x2 x5 x8 x11

]
, N = 12, P = 3, M = 4.

The Mod P shuffle permutation is the inverse of the Mod P sort permutation. If N = PM
and LP×M

P transposes x as an P × M matrix then
[
LP×M

P

]T
transposes x as an M × P matrix.

3.3 Stride permutation subprogram
Now that we have seen how the stride permutation works, we will look at how we implement
the function as a cache-optimal subprogram. Recall that the stride permutation is a major
component of the Cooley-Tukey six-step FFT. It is represented by the symbol L in

DFTN = LN
K(IJ ⊗ DFTK)LN

J DK,J(IK ⊗ DFTJ)LN
K .

Proper handling of this function is critical to realizing an efficient FFT. The best suited matrix
transpose as of the writing of this paper is the one described in Cache-Oblivious Algorithms by
Matteo Frigo et al [5]. It is the cache-oblivious rectangular transpose. It uses O (MN) work and
incurs O (1 + MN/L) cache misses, which they show to be optimal. It is a recursive function
that takes a large rectangular matrix and divides the matrix along the larger of the dimensions
calling itself on the subsequent halves. The recursion halts at a base case where all the elements
being transposed as well as the destination auxiliary array fit in the cache. Given a rectangular
matrix A of size M × N and an auxiliary L × M matrix B, If M ≥ N then Transpose(A, B)
partitions A vertically and B horizontally

A = (A1A2), B =

(
B1

B2

)
and recursively executes Transpose(A1, B1) and Transpose(A2, B2). Otherwise, if L > M then
it partitions A horizontally and B vertically

A =

(
A1

A2

)
, B = (B1B2)

and recursively executes the transpositions. The following was proven by Matteo Frigo et al.
in [5] and is reproduced here for convenience.

Lemma 3.3.1 The cache-oblivious matrix transpose algorithm involves O (MN) work and in-
curs O (1 + mn/L) cache misses for an M × N matrix.

[
L12

3 x
]

4×3
=


x0 x1 x2

x3 x4 x5

x6 x7 x8

x9 x10 x11

 = x3×4.

Figure 3.1: Illustration of lemma 2.2.1
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Proof To transpose a matrix we have to visit each element at least once. There are MN ele-
ments. Let Q(m, n) be the cache complexity for transposing a M × N matrix.
Let α be a constant sufficiently small such that sub-matrices of sizes m × n and n × m where
max{m, n} ≤ αL fit entirely in cache even if each row is stored in a different cache line. Distin-
guishing between three cases:

Case 1: max{m, n} ≤ αL. Both matrices fit in O (1) + 2mn/L lines. From the choice of α,
the number of lines is at most Z/L. Therefore Q(m, n) = O (1 + mn/L) .

Case 2: m ≤ αL < n or n ≤ αL < m. Suppose first that m ≤ αL < n, The transposition
algorithm partitions the larger dimension by 2 and recursively calls itself until at some point
n falls into the range αL/2 ≤ n < αL and the whole problem fits in the cache. At this point,
the input array is n rows × m columns in size, it is laid out in row major order and occupies
contiguous memory locations requiring at most O (1 + nm/L) cache misses to be read. Writing
to the output array, which has nm elements in m rows, where in the worst case every row lies
on a different cache line, incurs a cost of at most O (m + nm/L). Since n ≥ αL/2, the total
cache complexity for this base case is O (1 + m). These observations produce the following
recurrence

Q(m, n) ≤

O (1 + m) i f n ∈ [αL/2, αL],
2Q(m, n/2) + O (1) otherwise;

whose solution is Q(m, n) = O (1 + mn/L) . The case n ≤ αL < m is analogous.

Case 3: m, n > αL. As in Case 2, at some point in the recursion, both n and m will fall
in the range [αL/2, αL]. The whole problem then fits in cache and can be solved in at most
O (m + n + mn/L) cache misses. The cache complexity is described with the following recur-
rence

Q(m, n) ≤


O (m + n + mn/L) i f m, n ∈ [αL/2, αL],
2Q(m/2, n) + O (() 1) i f m ≥ n,
2Q(m, n/2) + O (() 1) otherwise;

whose solution is Q(m, n) = O (1 + mn/L).

Theorem 3.3.2 The cache-oblivious matrix-transpose algorithm is asymptotically optimal.

Proof For an M × N matrix, the matrix transposition algorithm must write to mn distinct
elements,which occupy at least [mn/L] = Ω(1 + mn/L) cache lines.

Below we implement and compare the optimal cache oblivious recursive transpose algo-
rithm to the well known iterative blocked transpose algorithm[5]. The following listing con-
tains a comparison of both the iterative blocked transpose and the recursive transpose described
in [5] implemented in C. Following the above result, we use the cache-oblivious recursive trans-
pose algorithm as a subprogram to perform the stride permutations found in the Cooley-Tukey
six-step FFT.
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1 vo id b l o c k e d t r a n s p o s e ( long i n t ∗ A, i n t m, i n t n , l ong i n t ∗ B , i n t
b l o c k s i z e ) {

2 f o r ( i n t i = 0 ; i < n ; i += b l o c k s i z e )
3 f o r ( i n t j = 0 ; j < m; j += b l o c k s i z e )
4 f o r ( i n t k = i ; k < i + b l o c k s i z e ; k++)
5 f o r ( i n t l = j ; l < j + b l o c k s i z e ; l ++)
6 B[ k+ l ∗n ] = A[ l +k∗m] ;
7 f o r ( l ong i n t i =0; i <m∗n ; i ++)
8 A[ i ]=B[ i ] ;
9 }

1 vo id r e c t r a n s p o s e ( l ong i n t ∗ A, i n t r o w s t a r t , i n t numrows , i n t rows ize , i n t
c o l s t a r t , i n t numcols , i n t c o l s i z e , l ong i n t ∗ B , i n t b a s e c a s e ) {

2 i f ( numrows∗ numcols <=2∗ b a s e c a s e ) {
3 t r a n s p o s e (&A[ c o l s i z e ∗ r o w s t a r t + c o l s t a r t ] , numrows , numcols , &B[ c o l s i z e

∗ r o w s t a r t + c o l s t a r t ] ) ;
4 } e l s e i f ( numrows>=numcols ) {
5 r e c t r a n s p o s e (A, r o w s t a r t , numrows / 2 , rows ize , c o l s t a r t , numcols ,

c o l s i z e , B , b a s e c a s e ) ;
6 r e c t r a n s p o s e (A, r o w s t a r t + numrows / 2 , numrows / 2 , rows ize , c o l s t a r t ,

numcols , c o l s i z e , B , b a s e c a s e ) ;
7 } e l s e {
8 r e c t r a n s p o s e (A, r o w s t a r t , numrows , rows ize , c o l s t a r t , numcols / 2 ,

c o l s i z e , B , b a s e c a s e ) ;
9 r e c t r a n s p o s e (A, r o w s t a r t , numrows , rows ize , c o l s t a r t +numcols / 2 ,

numcols / 2 , c o l s i z e , B , b a s e c a s e ) ;
10 }

11 }

Figure 3.2: Blocked transpose (red) vs recursive transpose (blue)
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Chapter 4

Twiddle factors

In this section we discuss the twiddle factors that appear in Cooley-Tukey FFT algorithms. The
twiddle factors matrix is represented by the symbol DK,J in

DFTN = LN
K(IJ ⊗ DFTK)LN

J DK,J(IK ⊗ DFTJ)LN
K .

In order to understand the structure of the twiddle factors matrix we need to first define the
diagonal scaling matrix DK,J and for that we need the direct sum operator ⊕. Then, we will
look at the structure of the DK,J twiddle factor matrix for different values of K,J and show how
we use them in practice. Then we detail our implementation and discuss the performance of
our twiddle factor function.

4.1 Direct sum

First we need to define the direct sum operator ⊕. For matrices A and B, operator ⊕ is defined
as follows

A ⊕ B =

[
A 0
0 B

]
.

Example 3.1 For n matrices A0 . . . An−1, the ⊕ sum of them is defined as

⊕n−1
i=0 Ai = A0 ⊕ A1 ⊕ · · · ⊕ An−1 =



A0

A1

.
.
.

An−1


where omitted values are zeros.

20
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4.2 Diagonal scaling
Next we need to define the diagonal scaling matrix D = diag(d) = diag(d0, d1, . . . , dn−1).
The diagonal scaling matrix D is the n×n diagonal matrix with diagonal entries d0, d1, . . . , dn−1.

D = diag(d0, d1, . . . , dn−1) = d0 ⊕ d1 ⊕ · · · ⊕ dn−1 =



d0

d1

.
.
.

dn−1


.

The application of D to a vector ~x of size n is the point-wise multiplication of the vector ~d and
the vector ~x.

D~x =



d0x0

d1x1

.
.
.

dn−1xn−1


.

4.3 DK,J twiddle matrices
The DK,J matrix or twiddle matrix is defined as

DK,J = ⊕K−1
k=0 diag(I j,ΩK,J, . . . ,Ω

K−1
K,J ) (4.1)

where ΩK,J = diag(1, ωn, . . . , ω
J−1
n ) and ωn is a primitive nth root of unity.

Now, we look at two types of twiddle matrices relevant to our factorization strategy for the
generic six-step FFT. First is the D2,J twiddle matrix which is otherwise known as the radix-2
butterfly operator, and the second is the DK,J twiddle matrix which is otherwise known as the
radix-k butterfly operator.

4.4 The D2,K twiddle matrix
The D2,2 twiddle matrix is a 4 × 4 diagonal matrix. By definition, the non-diagonal elements
in these matrices are zeros. So we know that the action of this n × n diagonal matrix on an
input vector with n elements results in a point-wise multiplication operation. So, for practical
purposes, we store these sparse n × n matrices as contiguous element vectors of length n. To
illustrate, the 16 element D2,2 twiddle matrix

D2,2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω2

 , (4.2)
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in practice, it is represented as a 4 element contiguous vector

D2,2 ≡ ~d = [1, 1, 1, ω2]. (4.3)

Similarly by definition, the D2,4 twiddle matrix is a 8×8 diagonal matrix. It also has 8 non-zero
elements. So

D2,4 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ω 0 0
0 0 0 0 0 0 ω2 0
0 0 0 0 0 0 0 ω3


(4.4)

in practice becomes
D2,4 ≡ ~d = [1, 1, 1, 1, 1, ω, ω2, ω3]. (4.5)

Following the pattern, the D2,8 twiddle matrix is a 16 × 16 diagonal matrix

D2,8 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ω 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ω2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ω3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ω4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ω5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω7



(4.6)

and has the non-zero entries represented in vector form as

D2,8 =
[
1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω2, ω3, ω4, ω5, ω6, ω7

]
. (4.7)

4.5 DK,J twiddle matrix
The DK,J twiddle matrix is built from the same definition as D2,K and has a similar structure.
The obvious difference is that instead of building the diagonal from 2 sub-vectors like the
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radix-2 twiddle, we build it from K sub-vectors. Large values of K make depiction impractical
so we show a small value K example followed by larger twiddle matrices in contiguous vector
form.

Example D4,4 Twiddle Matrix

D4,4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ω 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ω2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ω3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ω2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ω4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ω6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ω3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω9


D4,4 is represented in vector form as

D4,4 = ~d =
[
1, 1, 1, 1, 1, ω, ω2, ω3, 1, ω2, ω4, ω6, 1, ω3, ω6, ω9

]
.

Example D4,8 Twiddle Matrix D4,8 is represented in contiguous vector form as

D4,8 = ~d =

[1, 1, 1, 1, 1, 1, 1, 1,
1, ω1, ω2, ω3, ω4, ω5, ω6, ω7,
1, ω2, ω4, ω6, ω8, ω10, ω12, ω14,
1, ω3, ω6, ω9, ω12, ω15, ω18, ω21]

.

4.6 Twiddle factors subprogram

The action of the twiddle matrix on an input vector is a point-wise multiplication.
In order to follow the blocking strategy, we start by breaking up the point-wise multipli-

cation into the same size as the chosen base case. For if we design all our subprograms to
be cache-oblivious then the resulting FFT should also be cache-oblivious. We look at three
versions that follow the same blocking strategy. The first is an online version that computes or
scales the twiddle factor mid-computation. The other two, one recursive and one iterative, use
a precomputed twiddle vector.
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4.7 Online twiddle function

The function loops over the n×m elements of the input vector multiplying each element by the
appropriately scaled value of ω. To minimize cache misses we follow the blocking strategy.
Considering the overall blocking strategy, this version of the twiddle function requires m such
that at least 2m elements fit entirely in cache. This way, each iteration of the outer loop results
in the inner loop requesting the first sub-vector of size 2m elements. This results in the first
access of each inner loop causing a cache miss as the required line is not yet loaded into cache.
The next 2m − 1 accesses are hits. One cache miss to fetch the 2m elements of the inner loop
each time results in a O (1 + n/2) cache miss rate.

1 vo id o n l i n e t w i d d l e (ELEMENTS∗ v e c t o r , i n t m, i n t n , ELEMENTS w, s t r u c t
p d a t a P ) {

2 ELEMENTS t ;
3 f o r ( i n t i =0; i <n ; i ++) {
4 f o r ( i n t j =0; j <m; j ++) {
5 t = POW(w, ( i ∗ j ) , P ) ;
6 v e c t o r [ i ∗m+ j ]=MULTIPLY(& v e c t o r [ i ∗m+ j ] ,& t , P ) ;
7 }

8 }

9 }

4.8 Offline twiddle function

The next approach we look at is the offline twiddle function. We take an iterative approach.
Here we afford ourselves an auxiliary array to store precomputed values of ω (twiddle factors).
We now need both the input sub-vector elements and the twiddle factors sub-vector elements to
fit in cache for each iteration of the inner loop. So this function iterates over the J×K elements
in J K-sized blocks.

Lets look at cache misses. During each iteration of the outer loop we perform operations
on 2K elements, K from the input vector and K from the twiddle factors vector. We will have a
cache miss for each of the K element sub vector at J iterations of the inner for loop as neither
of them are in cache. So for this twiddle function we have a O (()1 + 2(J)) cache miss rate.

1 vo id o f f l i n e t w i d d l e (ELEMENTS∗ v e c t o r , i n t m, i n t n , ELEMENTS∗ omegas ,
s t r u c t p d a t a P ) {

2 i n t i , j , i d x ;
3 f o r ( i =0; i <n ; i ++) {
4 f o r ( j =0; j <m; j ++) {
5 i d x = i ∗m+ j ;
6 v e c t o r [ i d x ]=MULTIPLY(& v e c t o r [ i d x ] ,& omegas [ i d x ] , P ) ;
7 }

8 }

9 }
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4.9 Twiddle pre-computation
If n = kq and m = n/k then the following algorithm computes the vector of vectors representing
each diagonal twiddle matrix Dk,m required for each level of the computation tree.

1 ELEMENTS∗∗ precomputeOmegas ( i n t N, i n t r a d i x , ELEMENTS w) {
2 ELEMENTS ∗∗D;
3 i n t i , j , k , l e v e l s ,m;
4 ELEMENTS omega ;
5 l e v e l s = ( i n t ) ( l o g (N) / l o g ( r a d i x ) ) ;
6 D = ma l l oc ( s i z e o f (ELEMENTS∗ ) ∗ ( l e v e l s ) ) ;
7 m = N;
8 omega=w;
9 f o r ( j =1; j <= l e v e l s ; j ++) {

10 ELEMENTS ∗Dj = D[ j −1] = ma l l oc ( s i z e o f (ELEMENTS) ∗m) ;
11 f o r ( i =0; i < r a d i x ; i ++)
12 f o r ( k =0; k<m/ r a d i x ; k++)
13 ∗ ( Dj++) = pow ( omega , k∗ i ) ) ;
14

15 omega ∗= omega ;
16 m /= r a d i x ;
17 }

18 r e t u r n D;
19 }

If n = kq and m = n/k then the following algorithm computes the vector of vectors rep-
resenting each diagonal twiddle matrix D2,k required for each level of base case DFTs in the
computation tree.

1 ELEMENTS∗∗ precomputeBasecaseOmegas ( i n t N, i n t r a d i x , ELEMENTS w) {
2 ELEMENTS ∗∗D;
3 i n t i , j , k , l e v e l s ,m;
4 ELEMENTS omega ;
5 l e v e l s = ( i n t ) ( l o g (N) / l o g ( r a d i x ) ) ;
6 D = ma l l oc ( s i z e o f (ELEMENTS∗ ) ∗ ( l e v e l s ) ) ;
7 m = N;
8 omega=w;
9 f o r ( j =1; j <= l e v e l s ; j ++) {

10 ELEMENTS ∗Dj = D[ j −1] = ma l l oc ( s i z e o f (ELEMENTS) ∗ r a d i x ) ;
11 f o r ( i =0; i <2; i ++)
12 f o r ( k =0; k< r a d i x ; k++)
13 ∗ ( Dj++) = pow ( omega , k∗ i ) ) ;
14

15 omega ∗= omega ;
16 m /= r a d i x ;
17 }

18 r e t u r n D;
19 }

4.10 Twiddle function comparison
Below is a graph of their comparison.
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Figure 4.1: Offline twiddle blue vs online twiddle red
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Chapter 5

The Fourier Transform

In this chapter, we first recall the definition of the Fourier transform. Then, we introduce the
DFT matrix and show how we can relate a DFT of size n to a DFT of size n/2. After, we
discuss the idea behind the Cooley-Tukey factorization and introduce relevant factorizations of
the FFT.

5.1 The DFT matrix

Let A be a ring, and ω ∈ A be an nth primitive root of unity; ωn
n = 1. Let n=jk and recall that

the n-point discrete Fourier transform or (DFTn) on a vector ~x is a matrix-vector product. If
y = [y0, y1, . . . , yn−1] is the DFT of x = [x0, x1, . . . , xn−1] for k = 0, 1, . . . , n-1 then we have

yk =

n−1∑
j=0

ω jk
n x j. (5.1)

So

y = DFTnx,

where DFTn =
[
DFT jk

]
and

[
DFT jk

]
= ω

jk
n is the n × n DFT matrix. Thus,

DFT1 = [1] , DFT2 =

[
1 1
1 −1

]
, and DFT4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9


We can see that the straightforward computation of a N-point Fourier transform requires a
number of arithmetic operations proportional to N2.

27
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5.2 DFT4 in terms of DFT2

The following example is borrowed from Van Loan’s book [22].
If we look at the DFT matrix when n = 4,

DFT4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 .
where ω = ω4 = exp(−2πi/4) = −i. Since ω4 = 1, it follows that

DFT4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .
Now, if we let the even-odd sort 4 × 4 permutation L2 be

L2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and note that

DFT4L2 =


1 1 1 1
1 ω2 ω ω3

1 1 ω2 ω2

1 ω2 ω3 ω

 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i


is just DFT4 with its even-indexed columns grouped first. As I learned in [22], the key to
connecting a DFT4 to a DFT2 is to consider this permutation of DFT4 as a 2× 2 block matrix,
for if we define

D2 =

[
1 0
0 −i

]
= diag(1, ω4)

and recall that

DFT2 =

[
1 1
1 −1

]
then

DFT4L2 =

[
DFT2 D2DFT2

DFT2 −D2DFT2

]
.

Which means that each block of DFT4 is either DFT2 or a diagonal scaling of DFT2.
We see that the stride permutation that grouped even-indexed columns first followed by the
odd-indexed columns was one part of the mechanism for connecting a DFT4 to a DFT2 and
the diagonal scaling matrix or ”twiddle” matrix

D2 =

[
1 0
0 ω4

]
= diag(1, ω4)

the other. These operations are used to establish a general version, assuming n is even, that
connects DFTn to DFTn/2.
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5.3 The Fast Fourier Transform
In the fundamental work of J.W. Cooley and J.W. Tukey [4], the two authors describe a fast
Fourier transform (FFT) algorithm that significantly reduces the computational cost from N2

to an operational count proportional to N log N. The idea was to exploit sparse factorizations
of the DFT matrix to quickly compute a two-power n-point DFT by reducing it to a pair of
half sized n/2-point DFT s. Repetition of the reduction process is called a radix-2 FFT.

5.3.1 Radix-2 FFTs
To best illustrate, we will continue following Van Loan’s approach. Using Theorem 1.2.1 from
his book,
if n = 2m and Dm = diag(1, ωn, . . . , ω

m−1
n ) then

DFTnLn =

[
DFTm DmDFTm

DFTm −DmDFTm

]
=

[
Im Dm

Im −Dm

]
(I2 ⊗ DFTm).

If p and q satisfy 0 ≤ p < m and 0 ≤ q < m, then

[DFTnLn]pq = ω
p(2q)
n = ω

pq
m = [DFTm]pq ,

[DFTnLn]p+m,q = ω
(p+m)(2q)
n = ω

(p+m)q
m = [DFTm]pq ,

[DFTnLn]p,q+m = ω
p(2q+1)
n = ω

p
nω

pq
m = [DmDFTm]pq ,

[DFTnLn]p+m,q+m = ω
(p+m)(2q+1)
n = −ω

p(2q+1)
n = [−DmDFTm]pq .

Using the verifiable facts that ω2
n = ωm and ωm

n = −1, the above four equations confirm the
4 m by m blocks of DFTn have the desired structure. The following is proof of Van Loan’s
corollary 1.2.2 [22]
If n is even then the splitting can be applied recursively and we divide and conquer our way
down to DFT s of size 1.

Corollary 5.3.1 (Van Loan’s corollary 1.2.2) if n = 2m and x ∈ A then

DFTn~x =

[
Im Dm

Im −Dm

] [
DFTm [x0, x2, . . . , xn−1]
DFTm [x1, x3, . . . , xn−1]

]
Proof From Van Loan’s theorem 1.2.1 above we have

DFTn =

[
Im Dm

Im −Dm

] [
DFTm 0

0 DFTm

]
Ln.

The corollary follows by applying both sides to x.

5.3.2 Radix-2 twiddle matrix
For n = 2m define the D2,m twiddle matrix as T ∈ A

Tn =

[
Im Dm

Im −Dm

]
,
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where
Dm = diag(I, ωn, . . . , ω

m−1
n )

and ωn a primitive n-th root of unity. The synthesis of a DFTn from a pair of DFTn/2 proceeds
as follows:

DFTn[x0, x1, . . . , xn − 1] = I1 ⊗ Tn

[
DFTn/2 [x0, x2, . . . , xn−1]
DFTn/2 [x1, x3, . . . , xn−1]

]
descending one level in the computation tree we find a pair of butterfly operators

DFTn/2[x0, x2, . . . , xn−1] = I2 ⊗ Tn/2

[
DFTn/4 [x0, x4, . . . , xn−1]
DFTn/4 [x2, x6, . . . , xn−1]

]
and

DFTn/2[x1, x3, . . . , xn−1] = I2 ⊗ Tn/2

[
DFTn/4 [x1, x5, . . . , xn−1]
DFTn/4 [x3, x7, . . . , xn−1]

]
it follows that

DFTn[x0, x1, . . . , xn−1] = Tn

[
Tn/2 0

0 Tn/2

] 
DFTn/4[x0, x4, . . . , xn−1]
DFTn/4[x2, x6, . . . , xn−1]
DFTn/4[x1, x5, . . . , xn−1]
DFTn/4[x3, x7, . . . , xn−1]

 .
Recognizing a pattern, Cooley-Tukey sought an expression of the form

DFTn~x = At · · · A1Lnx,

where Ln is some permutation and Aq is a direct sum ⊕ of the butterfly operators we know as a
twiddle matrix.

Aq = diag(TL, . . . ,TL) = Ir ⊗ TL

where L = 2q and r = n/L.

5.3.3 The Cooley-Tukey factorization
Lemma 5.3.2 [22] Suppose n = 2q and m = n/2. If DFTmPm = Ct−1 · · ·C1 and

Pn = Ln(I2 ⊗ Pm),

then
DFTnPn = (I1 ⊗ Tn)(I2 ⊗Ct−1) · · · (I2 ⊗C1).

Proof Recall that
DFTnPn = Tn(I2 ⊗ DFTm) (5.2)

and so
DFTnPn = Tn(I2 ⊗Ct−1 · · ·C1PT

m).
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but by the tensor product theorem that (A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

I2 ⊗ (Ct−1 · · ·C1PT
m) = (I2 ⊗Ct−1) · · · (I2 ⊗C1)(I2 ⊗ PT

m)

and so
DFTnPn = Tn(I2 ⊗Ct−1) · · · (I2 ⊗C1)(I2 ⊗ PT

m).

Since
(I2 ⊗ PT

m)−1 = (I2 ⊗ PT
m)T = (I2 ⊗ Pm). (5.3)

the lemma follows.

Next, a non-recursive specification of Pn follows.

Lemma 5.3.3 [22]
Suppose n = 2t, Pn = Ln(I2 ⊗ Pm) and Rq = I2t−q ⊗ Lq

2, then

Pm = Rt−1 · · ·R1.

Proof If t = 1, P2 = L2 = I2 the lemma holds. By induction, assume if m = 2t−1 = n/2, then

Pm = R̄t−1 · · · R̄1.

where R̄q = I2t−1−q ⊗ L2q. But from the previous lemma and (A ⊗ B)(C ⊗ D) = (AC ⊗ BD) we
have

Pn = Ln(I2 ⊗ Pm) = Ln(I2 ⊗ R̄t−1 · · · R̄1) = Ln(I2 ⊗ R̄t−1) · · · (I2 ⊗ R̄1). (5.4)

Using the fact that IP ⊗ (Iq ⊗ A) = Ipq ⊗ A,

I2 ⊗ R̄q = I2 ⊗ (I2t−1−q ⊗ L2q) = I2t−q ⊗ L2q = Rq q = 1, . . . , t − 1.

Observe Rt = Ln Completing the proof.

Theorem 5.3.4 Cooley-Tukey Radix-2 Factorization Originally, [4], but, this example is bor-
rowed from [22].
If n = 2q, then

DFTn = At · · · A1Pn

where Pn is defined as Rt · · ·R − 1 and Aq = Ir ⊗ Tn, L = 2q, r = n/L,m = L/2 Tn is the D2,m

radix-2 twiddle matrix, defined in the twiddle factor chapter.

Proof if n = 2 then Pn = Ln = In, DFTn = T2 and the theorem holds by lemma 4.3.2:

DFT2P2 = DFT2 =

[
1 1
1 −1

]
= I2 ⊗ T2.

For n = 2t it can be seen that,
if we define At = I1 ⊗ Tn and Aq = I2 ⊗ Cq for q = 1 to t − 1 then lemma 4.3.2 provides the
necessary inductive step.
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5.4 Radix-P FFTs
We just saw how to factor a FFT into 2 smaller FFTs. We can now discuss how to factor a FFT
into p smaller FFTs.

Theorem 5.4.1 Radix-P splitting [22] If n = pm then

DFTnLn
p = DFTp ⊗ Imdiag(Im,Ωp,m, . . . ,Ω

p−1
p,m )(Ip ⊗ DFTm),

where diag(Im,Ωp,m, . . . ,Ω
p−1
p,m ) is the Dp,m twiddle matrix from the twiddle matrix chapter.

Proof since LN
p sorts the matrix by columns modp we have

DFTnLN
p =

[
DFTn[x0, xp, . . . , xn−1] DFTn[x1, x1+p, . . . , xn−1] · · · DFTn[xp−1, xp−1+p, . . . , xn−1]

]
.

Now think of DFTnLn
p as a p × p block matrix with m × m blocks

DFTnLn
p = (Gqr),G ∈ Am×m, o ≤ q, r, < p. (5.5)

it follows that Gqr = DFTnX[qm, (q + 1)m − 1], for r from 0 to n − 1 with stride p and thus,[
Gqr

]
k j

= ω(qm+k)(r+ jp)
n = ωqr

p ω
kr
n ω

k j
m .

using the identities ωmqr
n = ω

qr
p , ω

pk j
n = ω

k j
m , and ωqm jp

n = (ωn
n)q j = 1. if by the right-hand side of

the radix-p splitting theorem,

(DFTp ⊗ Im)diag(Im,Ωp,m, . . . ,Ω
p−1
p,m )(Ip ⊗ DFTm) = Hqr,H ∈ Am×m,

then
[
Hqr

]
qr

= ω
qr
p Ωr

p,mDFTm. Since

[
Hqr

]
k j

= ωqr
p

[
Ωr

p,m

]
kk

[DFTm]k j = ωqr
p ω

kr
n ω

k j
m =

[
Gqr

]
k j

holds for all k and j, the theorem follows.

Now, if we set p = 2, in the preceding theorem, we get

DFTnLn
2 = (DFT2 ⊗ In/2)diag(In/2,Dn/2)(I2 ⊗ DFTn/2).

where

(DFT2 ⊗ In/2)diag(In/2,Dn/2) =

[
In/2 Dn/2

In/2 −Dn/2

]
.

is the radix-2 twiddle matrix used in radix-2 splitting. So we now have a way to relate a DFTn

to DFTn/p.
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5.5 Cooley-Tukey Four-Step FFT
If we look at the preceding theorem and arrange it into four parts we get

DFTn = (DFTk ⊗ Im)Dk,m(Ik ⊗ DFTm)Ln
k (5.6)

what is known as the Four-Step Cooley-Tukey general-radix decimation-in-time fast Fourier
transform. It is built from a pair of DFTs, the twiddle matrix and the stride permutation. We
can manipulate this equation from [11] with

A ⊗ B = Lmn
n (B ⊗ A)Lmn

m . (5.7)

We apply the manipulation (5.11) to the equation (5.10) above, substituting (DFTk ⊗ Im) for
(A ⊗ B). This gives us

DFTn = (DFTk ⊗ Im)Dk,m(Ik ⊗ DFTm)Ln
k

= Lmk
k (Im ⊗ DFTk)Lmk

m Dk,m(Ik ⊗ DFTm)Lmk
k

which results in the Cooley-Tukey general-radix decimation-in-time Six-Step fast Fourier trans-
form.

5.6 Cooley-Tukey Six-Step FFT
The Cooley-Tukey Six-Step fast Fourier transform is given by

DFTn = Ln
k(Im ⊗ DFTk)Ln

mDn
k,m(Ik ⊗ DFTm)Ln

k , n = km. (5.8)

It is built from two stages of parallel DFT s, a twiddle diagonal, and three global transpositions.

We use the definitions 4.10 and 4.12 to create generic FFT functions that we can use with
a range of DFTk base case kernels that work over a variety of finite fields. The algorithm
performs a right side expansion of the Cooley-Tukey six-step FFT. We do this by first creating
loop-unrolled base case DFT s that compute DFTk. Then we expand the right side DFTms
until the DFTk base case is reached and computed directly. The base case kernel k is selected
following our overall blocking strategy.
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Our overall strategy is to break down a large FFT into small FFTs that can be computed in an
cache-oblivious manner. To this end, all the elements of each base case FFT input vector as
well as the twiddle vector must fit in the cache to avoid expensive memory accesses. Our FFT
will work over a variety of finite fields with different size characteristics so we want a variety
of sizes to help meet this restriction. We have chosen to implement base case DFT s of size 2,
4, 8, 16, 32, and 64 for both Six-Step and Four-Step variants.

6.1 FFT base cases
For our base case FFTs we use radix-2 splitting and reduce each base case to a base case of
size 2 which is then computed directly.
Given

DFTN = Lkm
k (Im ⊗ DFTk)Lkm

m Dk,m(Ik ⊗ DFTm)Lkm
k

we reduce DFTN where N = km by recursively applying their definitions. We will now create
our base case equations for N = 4, 8, 16, 32, 64.

6.1.1 DFT4

We know

DFT2 =

[
1 1
1 −1

]
.

So to begin, we set
DFT4 = L4

2(I2 ⊗ DFT2)L4
2D2,2(I2 ⊗ DFT2)L4

2

6.1.2 DFT8

Next, we set
DFT8 = L8

2(I4 ⊗ DFT2)L8
4D2,4(I2 ⊗ DFT4)L8

2.

We have DFT4

DFT4 = L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ DFT2)L4
2

34
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and

DFT2 =

[
1 1
1 −1

]
.

Putting it all together we have

DFT8 = L8
2(I4 ⊗ DFT2)L8

4D2,4(I2 ⊗ (L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ DFT2)L4
2))L8

2. (6.1)

6.1.3 DFT16

Recall that
DFTN = LN

K(IJ ⊗ DFTK)LN
J DK,J(IK ⊗ DFTJ)LN

K .

Set
DFT16 = L16

2 (I8 ⊗ DFT2)L16
8 D2,8(I2 ⊗ DFT8)L16

2 .

Where
DFT8 = L8

2(I4 ⊗ DFT2)L8
4D2,4(I2 ⊗ DFT4)L8

2,

DFT4 = L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting that together we have DFT16 unrolled as

DFT16 = L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 .

(6.2)

6.1.4 DFT32

Recall that
DFTN = LN

K(IJ ⊗ DFTK)LN
J DK,J(IK ⊗ DFTJ)LN

K .

Set
DFT32 = L32

2 (I16 ⊗ DFT2)L32
16D2,16(I2 ⊗ DFT16)L32

2 .

Where
DFT16 = L16

2 (I8 ⊗ DFT2)L16
8 D2,8(I2 ⊗ DFT8)L16

2 ,

DFT8 = L8
2(I4 ⊗ DFT2)L8

4D2,4(I2 ⊗ DFT4)L8
2,

DFT4 = L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting the pieces together we have DFT32 unrolled as

DFT32 = L32
2 (I16⊗DFT2)L32

16D2,16(I2⊗(L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 ))L32

2 .
(6.3)
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6.1.5 DFT64

Recall that

DFTN = LN
K(IJ ⊗ DFTK)LN

J DK,J(IK ⊗ DFTJ)LN
K .

Set

DFT64 = L64
2 (I32 ⊗ DFT2)L64

32D2,32(I2 ⊗ DFT32)L64
2 .

Where

DFT32 = L32
2 (I16 ⊗ DFT2)L32

16D2,16(I2 ⊗ DFT16)L32
2 ,

DFT16 = L16
2 (I8 ⊗ DFT2)L16

8 D2,8(I2 ⊗ DFT8)L16
2 ,

DFT8 = L8
2(I4 ⊗ DFT2)L8

4D2,4(I2 ⊗ DFT4)L8
2,

DFT4 = L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting all the pieces together we have the Six-Step DFT64 unrolled as

L64
2 (I32⊗DFT2)L64

32D2,32(I2⊗(L32
2 (I16⊗DFT2)L32

16D2,16(I2⊗(L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 ))L32

2 ))L64
2 .

(6.4)

6.1.6 Four-Step FFT base cases

For our base case FFTs we use radix-2 splitting and reduce each base case to a base case of
size 2 which is then computed directly.
Given

DFTN = (DFTk ⊗ Im)Dk,m(Ik ⊗ DFTm)Lkm
k

we reduce DFTN where N = km by recursively applying their definitions. We will now create
our base case equations for N = 4, 8, 16, 32, 64.

6.1.7 Four-Step DFT4

We know

DFT2 =

[
1 1
1 −1

]
.

So to begin, we set

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2.
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6.1.8 Four-Step DFT8

Next, we set
DFT8 = (DFT2 ⊗ I4)D2,4(I2 ⊗ DFT4)L8

2

where
DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4

2.

and

DFT2 =

[
1 1
1 −1

]
.

Putting it all together we have

DFT8 = (DFT2 ⊗ I4)D2,4(I2 ⊗ ((DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2))L8

2.

6.1.9 Four-Step DFT16

Next, we set
DFT16 = (DFT2 ⊗ I8)D2,8(I2 ⊗ DFT8)L16

2

where
DFT8 = (DFT2 ⊗ I4)D2,4(I2 ⊗ DFT4)L8

2,

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting it all together we have the Four-Step DFT16 unrolled as

DFT16 = (DFT2 ⊗ I8)D2,8(I2 ⊗ ((DFT2 ⊗ I4)D2,4(I2 ⊗ ((DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2))L8

2))L16
2

6.1.10 Four-Step DFT32

Repeating the process for DFT32, Set

DFT32 = (DFT2 ⊗ I16)D2,16(I2 ⊗ DFT16)L32
2

where
DFT16 = (DFT2 ⊗ I8)D2,8(I2 ⊗ DFT8)L16

2 ,

DFT8 = (DFT2 ⊗ I4)D2,4(I2 ⊗ DFT4)L8
2,

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting it all together we have the Four-Step DFT32 unrolled as

DFT32 = (DFT2⊗I16)D2,16(I2⊗((DFT2⊗I8)D2,8(I2⊗((DFT2⊗I4)D2,4(I2⊗((DFT2⊗I2)D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 ))L32

2
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6.1.11 Four-Step DFT64

Repeating the process for DFT64, Set

DFT64 = (DFT2 ⊗ I32)D2,32(I2 ⊗ DFT32)L64
2

where
DFT32 = (DFT2 ⊗ I16)D2,16(I2 ⊗ DFT16)L32

2 ,

DFT16 = (DFT2 ⊗ I8)D2,8(I2 ⊗ DFT8)L16
2 ,

DFT8 = (DFT2 ⊗ I4)D2,4(I2 ⊗ DFT4)L8
2,

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2,

and

DFT2 =

[
1 1
1 −1

]
.

Putting it all together we have the Four-Step DFT64 unrolled as

DFT64 = (DFT2⊗I32)D2,32(I2⊗((DFT2⊗I16)D2,16(I2⊗((DFT2⊗I8)D2,8(I2⊗((DFT2⊗I4)D2,4(I2⊗((DFT2⊗I2)D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 ))L32

2 ))L64
2 .

6.2 Loop unrolling a FFT base case
We will begin our first example by taking the Six-Step DFT4 and implementing it in the C
language.
To maximize efficiency, we first pre-compute and pass in to our function all of the different ωn

twiddle factors required during the base case computation. Next, we minimize data movement
by keeping track of the indices during the stride permutations of the base case FFTs and then
apply operations to the appropriate elements rather than actually moving around the data. Fi-
nally, we eliminate any unnecessary or ”dead” code.
We know DFT2 as

DFT2 =

[
1 1
1 −1

]
.

We implement the function DFT2() as
1 vo id f f t 2 (ELEMENTS∗ x , ELEMENTS∗ y , s t r u c t P r i m e p t r ∗ P ) {
2 ELEMENTS tmp = 0 ;
3 tmp = ADD( x , y , P ) ;
4 ∗y = SUB( x , y , P ) ;
5 ∗x = tmp ;
6 }

We also need a way to swap two elements of a vector so we use the swap() function listed
below.

1 vo id swap (ELEMENTS∗ x , ELEMENTS∗ y ) {
2 ELEMENTS tmp = 0 ;
3 tmp = ∗y ;
4 ∗y = ∗x ;
5 ∗x = tmp ;
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6 }

7

8 f a s t b p a s s w a p ( long i n t ∗ a , l ong i n t ∗ b ) {
9 a s m v o l a t i l e (

10 ” xchg \%0,\%1\n\n ” :
11 ”+g ” (∗ a ) , ”+g ” (∗ b ) :
12 : ) ;
13 }

We start with an input vector of size 4

A =
[

a0 a1 a2 a3

]
,

and we begin the loop-unroll by applying the first stride permutation.

L4
2A =

[
a0 a2 a1 a3

]
(6.5)

Next, we perform our two base case DFT2s on the two tuples

DFT2(a0, a2) DFT2(a1, a3). (6.6)

Now we need the D2,2 twiddle matrix.
So we have

D2,2 =

[
1 1
1 ω2

]
. (6.7)

We do not compute any unnecessary multiplications and apply our twiddle factors to only the
affected elements.

Ignore Compute
a0 = a0 × 1
a2 = a2 × 1
a1 = a1 × 1

a3 = a3 × omega2

.

After the twiddle we perform an L4
2 stride permutation

L4
2A =

[
a0 a1 a2 a3

]
and then the second round of DFT2s on the given tuples

DFT2(a0, a1) DFT2(a2, a3) (6.8)

and finish with the last L4
2 stride permutation[

a0 a2 a1 a3.
]
. (6.9)

Putting this into C code we have
1 vo id f f t 4 (ELEMENTS∗ x , ELEMENTS∗ omegas , s t r u c t P r i m e p t r ∗ P ) {
2 / / L 2 ˆ4 ( I 2 o t i m e s f f t 2 ) L 2 ˆ4 T 2 ˆ4 ( I 2 o t i m e s f f t 2 ) L 2 ˆ4
3 / / 0 1 2 3
4 / / L 2 ˆ4 <−−x
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5 / / 0 2 1 3
6 / / I 2 o t i m e s DFT 2
7 f f t 2 (&x [0] ,& x [ 2 ] , P ) ;
8 f f t 2 (&x [1] ,& x [ 3 ] , P ) ;
9 / / T 2 ˆ4

10 / / {wˆ0 wˆ 1 } ˆ 0 o p l u s {wˆ0 wˆ 1 } ˆ 1
11 / / 1 1 o p l u s 1 w 4
12 x [ 3 ] = MULTIPLY(&x [3] ,& omegas [ 0 ] , P ) ;
13 / / L 2 ˆ4
14 / / 0 1 2 3
15 / / I 2 o t i m e s DFT 2
16 f f t 2 (&x [0] ,& x [ 1 ] , P ) ;
17 f f t 2 (&x [2] ,& x [ 3 ] , P ) ;
18 / / L 2 ˆ4
19 / / 0 , 2 , 1 , 3 <−− need t o a c t u a l l y swap 2 and 1
20 swap(&x [1] ,& x [ 2 ] ) ;
21 }

.
We can do the same with the Four-Step DFT4. The same code results.

1 vo id f o u r s t e p f f t 4 (ELEMENTS∗ x , ELEMENTS∗ omegas , s t r u c t P r i m e p t r ∗ P ) {
2 / / L 2 ˆ4
3 / / 0 , 2 , 1 , 3
4 / / I 2 \ o t i m e s DFT 2
5 f f t 2 ( x [ 0 ] , x [ 2 ] ) ;
6 f f t 2 ( x [ 1 ] , x [ 3 ] ) ;
7 / / D { 2 , 2 }
8 x [ 3 ] = MULTIPLY( x [ 3 ] , omegas [ 0 ] , P ) ;
9 / / ( DFT 2 \ o t i m e s I 2 )

10 f f t 2 ( x [ 0 ] , x [ 1 ] ) ;
11 f f t 2 ( x [ 2 ] , x [ 3 ] ) ;
12 / / pe r fo rm minimum d a t a movement
13 swap ( x [ 2 ] , x [ 1 ] ) ;
14 / / same as s i x − s t e p
15 }

.

Now we unroll the Six-Step DFT8. We start with an input vector of size 8

A =
[

a0 a1 a2 a3 a4 a5 a6 a7

]
,

and we begin by applying the first stride permutation.

L8
2A =

[
a0 a2 a4 a6 a1 a3 a5 a7

]
(6.10)

next, we apply the first stride permutation from the first term of the substituted DFT4

L4
2A =

[
a0 a4 a2 a6 a1 a5 a3 a7

]
(6.11)

we then apply the DFT2s on the twice stride permuted matrix A

I2 ⊗ (...(I2 ⊗ DFT2))A. (6.12)
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which results in DFT2s on the elements given in the following DFT2 tuples

DFT2(a0, a4) DFT2(a2, a6) DFT2(a1, a5) DFT2(a3, a7). (6.13)

Now we need the D2,2 twiddle matrix.
So we have

D2,2 =

[
1 1
1 ω2

]
. (6.14)

We do not compute any unnecessary multiplications and apply our twiddle factors to only the
affected elements.

Ignore Compute
a0 = a0 × 1
a4 = a4 × 1
a2 = a2 × 1

a6 = a6 × omega2

a1 = a1 × 1
a5 = a5 × 1
a3 = a3 × 1

a7 = a7 × omega2

.

We follow with another L4
2 stride permutation

L4
2A =

[
a0 a2 a4 a6 a1 a3 a5 a7

]
and follow with another round of DFT2s on the given tuples

DFT2(a0, a2) DFT2(a4, a6) DFT2(a1, a3) DFT2(a5, a7) (6.15)

and another L4
2 stride permutation

[
a0 a4 a2 a6 a1 a5 a3 a7

]
(6.16)

followed by a multiplication by the D2,4 twiddle factor matrix

D2,4 =



1
1
1
1
1
ω
ω2

ω3


. (6.17)
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again we apply our twiddle factors to only the affected elements.

Ignore Compute
a0 = a0 × 1
a4 = a4 × 1
a2 = a2 × 1
a6 = a6 × 1
a1 = a1 × 1

a5 = a5 × omega
a3 = a3 × omega2

a7 = a7 × omega3

.

Next comes an L8
4 stride permutation[

a0 a1 a4 a5 a2 a3 a6 a7

]
. (6.18)

Followed by I4 ⊗ DFT2s on the following tuples

DFT2(a0, a1) DFT2(a4, a5) DFT2(a2, a3) DFT2(a6, a7) (6.19)

Ending with an L8
2 stride permutation[

a0 a4 a2 a6 a1 a5 a3 a7

]
. (6.20)

Putting this into C code we have
1 vo id DFT8 (ELEMENTS ∗a , ELEMENTS ∗ omega ) {
2

3 / / DFT 2s on permuted i n d i c e s
4 DFT2 ( a [ 0 ] , a [ 4 ] ) ;
5 DFT2 ( a [ 2 ] , a [ 6 ] ) ;
6 DFT2 ( a [ 1 ] , a [ 5 ] ) ;
7 DFT2 ( a [ 3 ] , a [ 7 ] ) ;
8

9 / / D ( 2 , 2 ) t w i d d l e f a c t o r
10 a [ 6 ] = a [ 6 ] ∗ omega [ 2 ] ;
11 a [ 7 ] = a [ 7 ] ∗ omega [ 2 ] ;
12

13 / / DFT 2s on permuted i n d i c e s
14 DFT2 ( a [ 0 ] , a [ 2 ] ) ;
15 DFT2 ( a [ 4 ] , a [ 6 ] ) ;
16 DFT2 ( a [ 1 ] , a [ 3 ] ) ;
17 DFT2 ( a [ 5 ] , a [ 7 ] ) ;
18

19 / / D ( 2 , 4 ) t w i d d l e f a c t o r
20 a [ 5 ] = a [ 5 ] ∗ omega [ 1 ] ;
21 a [ 3 ] = a [ 3 ] ∗ omega [ 2 ] ;
22 a [ 7 ] = a [ 7 ] ∗ omega [ 3 ] ;
23

24 / / DFT 2s on permuted i n d i c e s
25 DFT2 ( a [ 0 ] , a [ 1 ] ) ;
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26 DFT2 ( a [ 4 ] , a [ 5 ] ) ;
27 DFT2 ( a [ 2 ] , a [ 3 ] ) ;
28 DFT2 ( a [ 6 ] , a [ 7 ] ) ;
29

30 / / f i n a l p e r m u t a t i o n
31 swap ( a [ 1 ] , a [ 4 ] ) ;
32 swap ( a [ 3 ] , a [ 6 ] ) ;
33 }

Where a points to the input vector and omega points to a precomputed vector containing the
powers of ω.

Figure 6.1: DFT16 right-expanded using radix-2 splitting

L16
2 (I8 ⊗ DFT2)L16

8 D2,8(I2 ⊗ ( )L16
2

L8
2(I4 ⊗ DFT2)L8

4D2,4(I2 ⊗ ( )L8
2

L4
2(I2 ⊗ DFT2)L4

2D2,2(I2 ⊗ ( )L4
2

DFT2

(6.21)

We repeat the above process for DFT16, DFT32, and DFT64. We use our stride permutation
function to automate index calculations. The code for the both the six-step and four-step base
case FFTs when loop-unrolled and optimized is identical.

Next, we look at the operation count in our loop-unrolled DFT8. We count 24 modular
additions from the twelve DFT2 butterflies, and only 5 modular multiplications by twiddle
factors. We see a reduction in the number of modular multiplications in the loop-unrolled
versions due to the removal of unnecessary multiplications by twiddle factors where ωk j == 1.
The reduction in modular multiplications increases as the size of the DFTk loop-unrolled base
case increases. At some point the working set no longer fits in cache, causing cache capacity
misses resulting in heavy performance penalties. In terms of cache misses, the base case input
vector and the twiddle vector fit entirely in cache. The first access results in a miss but all
subsequent accesses are hits.

6.3 General FFT function

While loop-unrolling the different sized base cases, a recognizable pattern emerges.
First we need to perform a series of stride permutations. Lx

k for x = kn, . . . , k2.
This series of stride permutations is followed by a round of base case DFTs. Next, we perform
a repeating group of operations. The repeating group represents a level of recursion and, in
the case of the Six-Step FFT, consists of a twiddle, followed by a stride permutation, followed
by base case DFTs, finishing with a stride permutation. Below is DFT16 colour-coded to help
identify the components. The series of stride permutations (in red), the first set of base case
DFT s (in black) followed by the repeating group of a twiddle, a shuffle stride permutation,
base case DFT s, followed by a sort stride permutation.
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DFT16 = L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 .

We see that the Four-Step FFT follows the same pattern. The Four-Step starts with the same
series of stride permutations followed by the first round of base case DFT s and the it repeats a
D2,m twiddle operation and a (DFT2 ⊗ Im) operation for each level of recursion.

DFT16 = (DFT2 ⊗ I8)D2,8(I2 ⊗ ((DFT2 ⊗ I4)D2,4(I2 ⊗ ((DFT2 ⊗ I2)D2,2(I2 ⊗ DFT2)L4
2))L8

2))L16
2

The pattern described above is used to derive our general FFT function. It falls out of the
right-side recursive expansion of a Cooley-Tukey decimation-in-time FFT . In both cases, we
begin by recursing down the computation tree performing the right-side ”even/odd sort” stride
permutations and making recursive calls on the sorted halves for each level of the descent from
kn to k2. The recursion terminates after performing the n = 2 · k iteration containing the L4

2
stride permutation because the general FFT function calls the DFTbasecase kernel for n = k1

and the DFTbasecase kernel performs its own permutations.
The next step in the right-side expansion is to perform the right-side base case DFT kernels

(coloured in black). Since N = km, there will be m of the right-side base case DFTk kernel
calls.

DFT16 = L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 .

We perform these DFTk kernels in parallel and in cache-sized blocks. After the right-side
base case DFTk kernels, each leaf node computes its repeating group of operations (coloured
first in green, second in teal, and blue) for that level of recursion in the tree. For each level of
the recursion tree, at each leaf node, we perform a twiddle, followed by inner ”shuffle” stride
permutations. Then, the left side base case FFT kernels are performed followed by the outer
”sort” stride permutations. When a leaf node finishes the last of its group operations, the result
is returned to the parent. When we get back to the top of the recursion tree, the parent finishes
its group of operations and the computation is complete.
If n = 2q and n == b and the ωn diagonal Dk, j twiddle matrices are available then, the general
function for the Six-Step FFT computes DFTn by calling the base case DFTb kernel–the DFTb

kernel computes the DFTb directly using the radix-2 loop-unrolled base cases detailed above.
Otherwise, if n >= b · m then the general FFT function right expands the DFTn, n = bm into
m DFTbs and b DFTms.
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Procedure 9 General function for the Six-Step FFT in pseudo code
Input: X input vector of size N
Input: n log2(N)
Input: w primitive nth root of unity
Input: b size of basecase
Input: DN** pointers to arrays of precomputed powers of wn for the twiddle matrix at each

level of recursion
Input: DB* pointer to precomputed powers of omega for the chosen basecase size
Output: DFTnX

for (i = 0; i < n − log2(b); i + +) do
for ( j = 0; j < pow(2, i); j + +) do

Lpow(2,n−i)
2 (X[ j ∗ pow(2, n − i)])

end for
end for
for (i = 0; i < N; i+ = b) do

DFTb(X[i],DB)
end for
for (i = n − log2(b) − 1; i >= 0; i − −) do

m = pow(2, n − i);
for ( j = 0; j < pow(2, i); j + +) do

index = j ∗ m
D2,m/2(X[index],DN[i])
Lm

m/2(X[index])
end for
for ( j = 0; j < pow(2, i); j + +) do

index = j ∗ m
for (z = 0; z < m/2; z + +) do

idx = index + z ∗ 2
DFT2(x[idx])

end for
end for
for ( j = 0; j < pow(2, i); j + +) do

index = j ∗ m
Lm

2 (X[index])
end for

end for
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Similarly, If n = 2q and n == b and theωn diagonal Dk, j twiddle matrices are available then,
the general function for the Six-Step Merged FFT computes DFTn by calling the base case
DFTb kernel–the DFTb kernel computes the DFTb directly using the radix-2 loop-unrolled
base cases detailed above. Otherwise, if n >= b · m then the general Six-Step Merged FFT
function right expands the DFTn, n = bm into m DFTbs and b DFTms.

Procedure 10 General function for the Loop Merged Six-Step FFT in pseudo code
Input: X input vector of size N
Input: n log2(N)
Input: w primitive nth root of unity
Input: b size of basecase
Input: DN** pointers to arrays of precomputed powers of wn for the twiddle matrix at each

level of recursion
Input: DB* pointer to precomputed powers of omega for the chosen basecase size
Input: Y* scratch array of size N
Output: DFTnX

for (i = 0; i < n − log2(b); i + +) do
for ( j = 0; j < pow(2, i); j + +) do

Lpow(2,n−i)
2 (X[ j ∗ pow(2, n − i)])

end for
end for
for (i = 0; i < N; i+ = b) do

DFTb(X[i],DB)
end for
for (i = n − log2(b) − 1; i >= 0; i − −) do

m = pow(2, n − i);
for ( j = 0; j < pow(2, i); j + +) do

idx = j ∗ m
for (z = 0; z < m/2); z + + do

tmp = X[(idx + z) + m/2] ∗ DN[i][z + m/2]
Y[idx + z] = X[idx + z] + tmp
Y[idx + z + m/2] = X[idx + z] − tmp

end for
for (z = 0; z < m; z + +) do

X[idx + z] = Y[idx + z]
end for

end for
end for
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Similarly, If n = 2q and n == b and the ωn diagonal Dk, j twiddle matrices are available
then, the general function for the Four-Step FFT computes DFTn by calling the base case
DFTb kernel–the DFTb kernel computes the DFTb directly using the radix-2 loop-unrolled
base cases detailed above. Otherwise, if n >= b · m then the general Four-Step FFT function
right expands the DFTn, n = bm into m DFTbs and b DFTms.

Procedure 11 General function for the Four-Step FFT in pseudo code
Input: X input vector of size N
Input: n log2(N)
Input: b size of basecase
Input: DN** pointers to arrays of precomputed powers of wn for the twiddle matrix at each

level of recursion
Input: DB* pointer to precomputed powers of omega for the chosen basecase size
Output: DFTnX

for (i = 0; i < n − log2(b); i + +) do
for ( j = 0; j < pow(2, i); j + +) do

Lpow(2,n−i)
2 (X[ j ∗ pow(2, n − i)])

end for
end for
for (i = 0; i < N; i+ = b) do

DFTb(X[i],DB)
end for
for (i = n − log2(b) − 1; i >= 0; i − −) do

currentn = 1 << (log2(N) − i);
m = currentn >> 1;
for (int j = 0; j < (1 << i); j + +) do

index = j ∗ currentn;
for (z = 0; i < m; i + +) do

a = X[index + z] ∗ DN[i][index + z]
b = X[index + z + m] ∗ DN[i][index + z + m]
X[index + z] = a + b;
X[index + z + m] = a − b;

end for
end for

end for

6.4 General FFT function optimization
We look at ways to optimize the general FFT algorithm. First, we pre-compute our twiddle
matrices and pass in respective pointers. Next, we look at reducing the number of times our
algorithms pass through the data set during the computation using loop-merging and by treating
the initial permutations as data access into the smaller block-parallel DFT s by pre-shuffling the
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input array. Then we look at reducing our operation count using dead code elimination. Finally,
we parallelize our code using Cilk.

6.4.1 Pre-shuffling the input vector

The pre-shuffle function is a recursive function that follows the same factorization path as the
FFT computation. The same radix is used. The function propagates the permutations as data
access into the smaller DFT s. We allow ourselves a degree of freedom as to whether or not
these initial permutations (coloured in red) are performed ”online” or ”offline”. We have im-
plemented versions with both but since we are already pre-computing our twiddle factors, we
will pre-shuffle the input vector.

DFT16 = L16
2 (I8⊗DFT2)L16

8 D2,8(I2⊗(L8
2(I4⊗DFT2)L8

4D2,4(I2⊗(L4
2(I2⊗DFT2)L4

2D2,2(I2⊗DFT2)L4
2))L8

2))L16
2 .

The input to the pre-shuffle function is a pointer to the vector to be pre-shuffled, the size of
the vector, and the size of base case to halt the recursion. The function performs the ”even-
odd sort” stride permutation (coloured in red) and then makes a recursive call on each of the
permuted halves. The recursion terminates when the size of the input vector is the same size
as the base case. The Four-Step and Six-Step FFT equations both start with the Lkm

k stride
permutation and both FFTs make the same recursive calls on each of the permuted halves so
we create the recursive pre-shuffle function for both FFTs.

Figure 6.2: Recursive pre-shuffle
1 vo id r e c p r e s h u f f l e v e c t o r (ELEMENTS∗ X, i n t n , i n t k ) {
2 i f ( n==k ) {
3 r e t u r n ; / / do n o t h i n g and r e t u r n
4 } e l s e {
5 i n t m = ( n>>1) ;
6 s t r i d e p e r m u t a t i o n (&X[ 0 ] , 2 ,m) ;
7 spawn r e c p r e s h u f f l e v e c t o r (&X[ 0 ] ,m, k ) ; / / c i l k s p a w n t h i s c a l l
8 r e c p r e s h u f f l e v e c t o r (&X[m] ,m, k ) ; / / t h e n c i l k s y n c a f t e r t h i s c a l l
9 sync ;

10 }

11 }

An iterative version follows.
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Figure 6.3: Iterative pre-shuffle
1 vo id p r e s h u f f l e v e c t o r (ELEMENTS∗ v e c t o r , i n t N, i n t b a s e c a s e ) {
2 i n t b a s e c a s e l o g 2 = ( i n t ) ( l o g ( b a s e c a s e ) / l o g ( 2 ) ) ;
3 i n t n l o g 2 = ( i n t ) ( l o g (N) / l o g ( 2 ) ) ;
4 f o r ( i n t i =0; i <n l o g 2 −b a s e c a s e l o g 2 ; i ++) { / / f o r each l e v e l o f

r e c u r s i o n
5 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
6 p f o r ( i n t j =0; j <pow ( 2 , i ) ; j ++) { / / c i l k f o r each d f t node a t t h i s l e v e l
7 s t r i d e p e r m u t a t i o n (& v e c t o r [ j ∗ ( pow ( 2 , n l o g 2 − i ) ) ] , 2 , pow ( 2 , ( n l o g 2 − i )

−1) ) ;
8 % / / s t r i d e p e r m u t a t i o n (& v e c t o r [ j ∗(1<<( n l o g 2 − i ) ) ] ,2 ,1 < < ( ( n l o g 2 − i )

−1) ) ;
9 }

10 }

11 }

We can see that by pre-shuffling the input vector we eliminate a pass through the data set
at each level of recursion during the computation.

6.4.2 Loop merging
We use loop merging to minimize the number of times the algorithm passes through the data
set. If we look at the Six-Step FFT we see that for each recursion step, we pass through the data
six times. Now we minimize the number of times we pass through the data after our pre-shuffle
and first block of base case DFT s.

6.4.3 Loop merging example
We start with a simple example, this equation contains a L16

8 stride permutation and a block of
DFT2s.

(I8 ⊗ DFT2)L16
8

What happens when we apply this equation to input ~x is a loop to perform the shuffle stride per-
mutation followed by a loop to execute a round of DFT2 that happen in order on the elements
of ~x. To merge these loops we can perform a single loop over the elements of x and execute
the round of DFT2s at the same stride as the L16

8 stride permutation.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

~x after L16
8 becomes

x0 x8 x1 x9 x2 x10 x3 x11 x4 x12 x5 x13 x6 x14 x7 x15

and the DFT2s get performed on the following tuples

DFT2(x0, x8) DFT2(x1, x9) DFT2(x2, x10) DFT2(x3, x11) DFT2(x4, x12) DFT2(x5, x13) DFT2(x6, x14) DFT2(x7, x15)

Now we combine the two in a for loop
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1 / / x [ 1 6 ] ;
2 / / y [ 1 6 ] ;
3 f o r ( i =0 i <8; i ++) {
4 y [ i ]= x [ i ] + x [ i +8 ] ;
5 y [ i +1]=x [ i ]−x [ i +8 ] ;
6 }

and we see that the result is the same. DFT2s are performed on the following tuples.

Loop iteration DFT2Tuple
0 DFT2(x0, x8)
1 DFT2(x1, x9)
2 DFT2(x2, x10)
3 DFT2(x3, x11)
4 DFT2(x4, x12)
5 DFT2(x5, x13)
6 DFT2(x6, x14)
7 DFT2(x7, x15)

Now, lets add a D2,8 twiddle matrix to our example.

(I8 ⊗ DFT2)L16
8 D2,8

The action of a D2,8 twiddle matrix on a vector ~x is a point-wise multiplication.

D2,8 = [ 1 1 1 1 1 1 1 1 1 ωn ω2
n ω3

n ω4
n ω5

n ω6
n ω7

n ]

D2,8 = D[16] = [ d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 ]

and

~x = [ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ]

Our twiddle function simply loops over the elements and multiplies x[i] with D[i]. So, the way
to merge these loops is to simply perform the D2,8 twiddle while we have our vector elements
in cache. The D2,8 twiddle matrix contains 16 powers of ωn. We simply point-wise multiply
the elements with their twiddle counterparts right before we perform the DFT2. Integrating
this change into our previous loop results in the following code

1 x [ 1 6 ] ;
2 y [ 1 6 ] ;
3 a ;
4 b ;
5 f o r ( i =0 i <8; i ++) {
6 a = x [ i ] ∗ D[ i ] ; / / p o i n t −wise m u l t i p l i c a t i o n
7 b = x [ i +8] ∗ D[ i +8 ] ; / /

8 y [ i ]= a + b ;
9 y [ i +1]= a − b ;

10 }



6.4. General FFT function optimization 51

which produces exactly the same result as if we multiplied the elements using a loop first. To
finish our loop merging example we add one last L8

2 stride permutation to our equation

L8
2(I8 ⊗ DFT2)L16

8 D2,8.

Without loop merging, after the DFT2s, we simply loop over the elements of x and perform
an even/odd sort permutation. To merge this loop we need to modify our loop output so that
it writes to our result array the same way it would be after we perform the newly added L8

2
stride permutation. We see that the un-merged code writes its output in order and then the sort
takes and arranges the even elements first and odd elements second. This means that the even
elements get stored in the first 8 indexes and the odd indexed elements get moved to the second
half of the vector and are now at a stride of 8 from their original locations.
First, original x0 stays in the same spot but original x1 moves to x8,
next, original x2 moves to x1 and original x3 moves to x9,
next, original x4 moves to x2 and original x5 moves to x10,
next, original x6 moves to x3 and original x7 moves to x11,
next, original x8 moves to x4 and original x9 moves to x12,
next, original x10 moves to x5 and original x11 moves to x13,
next, original x12 moves to x6 and original x13 moves to x14,
next, original x14 moves to x7 and original x15 stays at x15,
We can clearly see that the first elements of the previous DFT2 tuples get written in order they
were processed to the first half of the output array, while the second elements of the DFT2

tuples get written in the order they were processed to the second half of the output array. To
achieve this we simply write our output to match our pattern above. The first DFT2 tuple
element is at output y[i] while the second output is written to y[i + 8]. Integrating the changes
into our code example

1 x [ 1 6 ] ;
2 y [ 1 6 ] ;
3 a ;
4 b ;
5 f o r ( i =0 i <8; i ++) {
6 a = x [ i ] ∗ D[ i ] ; / / p o i n t −wise m u l t i p l i c a t i o n
7 b = x [ i +8] ∗ D[ i +8 ] ; / /

8 y [ i ]= a + b ;
9 y [ i +8]= a − b ;

10 }

again produces the exact same result as the un-merged code. We worked through this with a
specific value for m = 8 but this generalizes when matrices are of appropriate sizes for n=2m.
To make this generalize we can simply substitute a general m for the value 8 in our examples
which produces the following code.

Ln
2(Im ⊗ DFT2)Ln

mD2,m, where n = 2m.

1 x [ n ] ;
2 y [ n ] ;
3 a ;
4 b ;
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5 f o r ( i =0 i <m; i ++) {
6 a = x [ i ] ∗ D[ i ] ; / / p o i n t −wise t w i d d l e m u l t i p l i c a t i o n
7 b = x [ i +m] ∗ D[ i +m] ; / /

8 y [ i ]= a + b ;
9 y [ i +m]= a − b ;

10 }

6.4.4 Loop merged Six-Step FFT

The example we worked through produced roughly the same code as we use in our loop merged
version of the Six-Step FFT. In figure 6.4 there are three main for loops to perform the twid-
dles,shuffle permutations,l.h.s.DFT2s and sort permutations, while in figure 6.5 these three
main loops are merged into one loop. Merging these for loops reduced the number of times we
pass through the working data set.

Figure 6.4: Six-Step FFT before loop merge code listing
1 vo id SIX STEP FFT K 2 N (ELEMENTS∗ v e c t o r , i n t N, i n t n l o g 2 , ELEMENTS∗∗

t w i d d l e , s t r u c t P r i m e p t r ∗ P ) {
2 f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) {
3 f f t 2 (& v e c t o r [ i ∗2] ,& v e c t o r [ i ∗2+1] , P ) ;
4 }

5 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) {
6 i n t m = 1<<( n l o g 2 − i ) ;
7 f o r ( i n t j =0; j <(1<< i ) ; j ++) {
8 i n t i n d e x = j ∗m;
9 t w i d d l e p c (& v e c t o r [ i n d e x ] ,m/ 2 , 2 , t w i d d l e [ i ] , P ) ;

10 s t r i d e p e r m u t a t i o n (& v e c t o r [ i n d e x ] ,m/ 2 , 2 ) ;
11 }

12 f o r ( i n t j =0; j <(1<< i ) ; j ++) {
13 i n t i n d e x = j ∗m;
14 f o r ( i n t z =0; z<m / 2 ; z++) {
15 i n t i d x = i n d e x+z ∗2 ;
16 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
17 }

18 }

19 f o r ( i n t j =0; j <(1<< i ) ; j ++) {
20 s t r i d e p e r m u t a t i o n (& v e c t o r [ j ∗m] , 2 ,m / 2 ) ;
21 }

22 } / / end r e c u r s i o n s t e p
23 } / / end SIX STEP FFT K 2 N

becomes
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Figure 6.5: Six-Step FFT after loop merge code listing
1 vo id LOOP MERGED DFT K 2 N (ELEMENTS∗ v e c t o r , i n t N, i n t n l o g 2 , ELEMENTS∗∗ DN

, s t r u c t P r i m e p t r ∗ P , ELEMENTS∗ Y) {
2 f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) { / / b a s e c a s e r h s f f t 2 s
3 i n t i d x = i ∗2 ;
4 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
5 }

6 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) { / / f o r each l e v e l o f r e c u r s i o n s t a r t i n g
from t h e b a s e c a s e t o n

7 i n t n = 1<<( n l o g 2 − i ) ;
8 i n t m = n>>1;
9 / / l oop merge L 2 ˆ n ( I m o t i m e s f f t 2 ) L m ˆ n T m ˆ n

10 f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / # of d f t nodes f o r t h i s l e v e l o f
r e c u r s i o n can be done c o n c u r r e n t l y

11 i n t i d x = j ∗n ;
12 f o r ( i n t z =0; z<m; z++) {
13 ELEMENTS t1 , t 2 ;
14 t 1 = t 2 = 0 ;
15 t 1 = MULTIPLY(& v e c t o r [ i d x+z ] ,&DN[ i ] [ z ] , P ) ;
16 t 2 = MULTIPLY(& v e c t o r [ ( i d x+z )+m] ,&DN[ i ] [ z+m] , P ) ;
17 Y[ i d x+z ] = ADD(& t1 ,& t2 , P ) ;
18 Y[ i d x+z+m] = SUB(& t1 ,& t2 , P ) ;
19 } / / end L 2 ( I m o t i m e s f f t 2 ) L m T m
20 f o r ( i n t z =0; z<n ; z++) { / / need t o copy r e s u l t back
21 v e c t o r [ i d x+z ]=Y[ z ] ;
22 } / / end copy f o r loop
23 } / / end merged loop
24 } / / end l e v e l l oop
25 } / / end merged DFT N 2

6.4.5 Four-Step FFT

We repeat the same process for the Four-Step FFT. We treat the initial L2m
2 stride permutation

as we do in the SIx-Step FFT and perform our base case DFTs in a blocked fashion. This
Four-Step FFT loop merge is straightforward, we merge a D2,m twiddle with a DFT2 ⊗ Im. We
simply point-wise multiply our elements with their respective twiddles before we do our l.h.s
DFT2s and while we have them in the cache.



54 Chapter 6. The Generic Fast Fourier Transform

Figure 6.6: Four-Step FFT after loop merge code listing
1 vo id LOOP MERGED FOUR STEP FFT K 2 N (ELEMENTS ∗ v e c t o r , i n t N, i n t n l o g 2 ,

ELEMENTS∗∗ t w i d d l e , s t r u c t P r i m e p t r ∗ P ) {
2 f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) { / / pow ( 2 , n l o g 2 −1)
3 i n t i d x = i ∗ 2 ;
4 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
5 }

6 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) { / / f o r each l e v e l o f r e c u r s i o n
7 i n t n=1<<( n l o g 2 − i ) ; / / pow ( 2 , n l o g 2 − i )
8 i n t m=n>>1; / / m=n / 2
9 f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / f o r each node a t c u r r e n t l e v e l o f

r e c u r s i o n
10 i n t i n d e x = j ∗n ;
11 f o r ( i n t z =0; z<m; z++) { / / DFT 2 \ o t i m e s I m D {2 ,m}
12 ELEMENTS tmp = 0 ;
13 / / MULTIPLY(& v e c t o r [ i n d e x+z ] ,& t w i d d l e [ i ] [ z ] , P ) ; / / m u l t i p l i c a t i o n

by one i n a D {2 ,m} Twiddle
14 tmp = MULTIPLY(& v e c t o r [ i n d e x+z+m] ,& t w i d d l e [ i ] [ z+m] , P ) ;
15 v e c t o r [ i n d e x+z+m]=SUB(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
16 v e c t o r [ i n d e x+z ]=ADD(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
17 }

18 }

19 }

20 }

6.4.6 Dead code elimination

We want to reduce our operation count in our general FFTs. We have places where we can do
this. The twiddle function is an area where we can eliminate unnecessary multiplications. If
we look at the structure of the radix-2 twiddle matrix,

D2,4 ≡ ~d = [1, 1, 1, 1, 1, ω, ω2, ω3], (6.22)

or

D2,8 =
[
1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω2, ω3, ω4, ω5, ω6, ω7

]
. (6.23)

we see that we have m + 1 multiplications by 1 in every multiplication of a twiddle matrix. We
can eliminate these operations and their storage requirements. First, we remove the m ones by
simply adjusting our twiddle functions and our twiddle pre-computation routines. Then, we
can remove the last unnecessary one in m + 1 by removing the unnecessary multiplication by
adjusting the loop to start at 1 rather than 0.
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Figure 6.7: Twiddle function code listing
1 vo id t w i d d l e p c (ELEMENTS∗ v e c t o r , i n t m, i n t n , ELEMENTS∗ omegas , s t r u c t

P r i m e p t r ∗ P ) {
2 i n t i , j , i d x ;
3 f o r ( i =0; i <n ; i ++) {
4 f o r ( j =0; j <m; j ++) {
5 i d x = i ∗m+ j ;
6 v e c t o r [ i d x ]=MULTIPLY(& v e c t o r [ i d x ] ,& omegas [ i d x ] , P ) ;
7 }

8 }

9 }

becomes

Figure 6.8: Twiddle function parallel code listing
1 vo id t w i d d l e p c (ELEMENTS∗ v e c t o r , i n t m, i n t n , ELEMENTS∗ omegas , s t r u c t

P r i m e p t r ∗ P ) {
2 i n t j , i d x ;
3 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
4 p f o r ( j =1; j <m; j ++) {
5 i d x = m+ j ;
6 v e c t o r [ i d x ]=MULTIPLY(& v e c t o r [ i d x ] ,& omegas [ j −1] , P ) ;
7 }

8 }

Now we look at our loop merged versions. We can see that the first element in the second
round of base case DFT2 is always multiplied by a twiddle with a value of one. We can take
any 2-power value for n, construct the D2,m twiddle matrix and see that it is always the case.
We can remove this multiplication from our routine. We follow the same plan and pull the first
DFT2 out in front of the loop, we remove the unnecessary multiplication, and adjust the loop
counter accordingly.
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Figure 6.9: Four-Step FFT code listing
1 vo id FOUR STEP FFT K 2 N (ELEMENTS ∗ v e c t o r , i n t N, i n t n l o g 2 , ELEMENTS∗∗

t w i d d l e , s t r u c t P r i m e p t r ∗ P ) {
2 f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) { / / pow ( 2 , n l o g 2 −1)
3 i n t i d x = i ∗ 2 ;
4 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
5 }

6 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) {
7 i n t n=1<<( n l o g 2 − i ) ; / / pow ( 2 , n l o g 2 − i )
8 i n t m=n>>1; / / m=n / 2
9 f o r ( i n t j =0; j <(1<< i ) ; j ++) {

10 i n t i n d e x = j ∗n ;
11 ELEMENTS tmp = 0 ;
12 / / F i r s t DFT p u l l e d o u t f r o n t and pe r fo rmed w i t h o u t t h e

m u l t i p l i c a t i o n by 1
13 tmp = ADD(& v e c t o r [ i n d e x +0] ,& v e c t o r [ i n d e x+m] , P ) ;
14 v e c t o r [ i n d e x+m]=SUB(& v e c t o r [ i n d e x +0] ,& v e c t o r [ i n d e x+m] , P ) ;
15 v e c t o r [ i n d e x +0]= tmp ;
16 / / l oop a d j u s t e d a c c o r d i n g l y
17 f o r ( i n t z =1; z<m; z++) {
18 / / removed u n n e c e s s a r y MULTIPLY(& v e c t o r [ i n d e x+z ] ,& t w i d d l e [ i ] [ z ] , P )

by one of t h e f i r s t DFT 2 e l e m e n t
19 tmp = MULTIPLY(& v e c t o r [ i n d e x+z+m] ,& t w i d d l e [ i ] [ z+m] , P ) ;
20 v e c t o r [ i n d e x+z+m]=SUB(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
21 v e c t o r [ i n d e x+z ]=ADD(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
22 }

23 }

24 }

25 }

At this point, all redundant operations have been pruned from our computation tree and we
can parallelize our algorithm.

6.4.7 Parallelization
We chose our DFT s because they each express exploitable forms of parallelism. The Six-Step
FFT is built from two stages of block-parallel DFT s coloured in blue

DFTN = Lkm
k (Im ⊗ DFTk)Lkm

m Dk,m(Ik ⊗ DFTm)Lkm
k

and the Four-Step FFT has a block-parallel DFT , in blue, and a vector-parallel DFT in red

DFTN = (DFTk ⊗ Im)Dk,m(Ik ⊗ DFTm)Lkm
k .

In our loop merged versions we run both types of DFT loops in parallel using Cilk (see figures
6.14 and 6.15 on pages 59 and 60). Cilk uses the keyword cilk for to express a parallel for
loop as well as the cilk spawn and cilk sync constructs used to express the fork-join idiom. In
our Six-Step FFT (figure 6.13 on 58) we parallelize both block-parallel DFT s and parallelize
our twiddle function (see figure 6.8 on page 55) and the stride-permutation function (see figure
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6.12 on page 57). We use Cilk with a macro switch to quickly change between parallel and
serial versions (see figure 6.10) and we also use macros to control the grain size of the parallel
for loops (see figure 6.11).

Figure 6.10: Parallel macro example
1 # d e f i n e PARALLEL 0
2 # i f d e f PARALLEL
3 # d e f i n e p f o r c i l k f o r
4 # d e f i n e spawn c i l k s p a w n
5 # d e f i n e sync c i l k s y n c
6 # e l s e
7 # d e f i n e p f o r f o r
8 # d e f i n e spawn
9 # d e f i n e sync

10 # e n d i f

Figure 6.11: Parallel grain size macro example
1 # d e f i n e GRAINSIZE 1 8
2 # d e f i n e GRAINSIZE 2 4
3 # d e f i n e GRAINSIZE 3 2

Figure 6.12: Transpose parallel code listing
1 vo id t r a n s p o s e (ELEMENTS∗ A, i n t m, i n t n , ELEMENTS∗ B) {
2 l ong i n t N=0;
3 N = m∗n ;
4 # pragma c i l k g r a i n s i z e = GRAINSIZE 3
5 p f o r ( i n t i =0; i <n ; i ++) { / / 0 ,1
6 f o r ( i n t j =0; j <m; j ++) { / / 0 . . 8
7 B[ j ∗n+ i ] = A[ i ∗m+ j ] ; / / B[ i d x b ]=A[ i d x a ]
8 }

9 }

10 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
11 p f o r ( i n t i =0; i <N; i ++) {
12 A[ i ]=B[ i ] ;
13 }

14 }
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Figure 6.13: Six-Step FFT parallel code listing
1 vo id SIX STEP FFT N 2 (ELEMENTS∗ v e c t o r , i n t N, i n t n l o g 2 , ELEMENTS∗∗ t w i d d l e

, P r i m e p t r ∗ P , ELEMENTS∗ B) {
2 i n t idx ,m;
3 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
4 p f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) {
5 f f t 2 (& v e c t o r [ i ∗2] ,& v e c t o r [ i ∗2+1] , P ) ;
6 }

7 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) { / / f o r each l e v e l o f r e c u r s i o n
8 m = 1<<( n l o g 2 − i ) ; / / s i z e o f c u r r e n t d f t n
9 # pragma c i l k g r a i n s i z e = GRAINSIZE 2

10 p f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / l oop t h r o u g h each node of L 2 ˆm ( I m / 2
\ o t i m e s DFT 2 ) L m / 2 ˆm D {2 ,m / 2 } ˆm and do L m / 2 ˆm D {2 ,m / 2 } ˆm p a r t

11 i d x = j ∗m;
12 t w i d d l e p c (& v e c t o r [ i d x ] ,m/ 2 , 2 , t w i d d l e [ i ] , P ) ;
13 s t r i d e p e r m u t a t i o n (& v e c t o r [ i d x ] ,m/2 ,2 ,&B[ i d x ] , 2 ) ;
14 }

15 # pragma c i l k g r a i n s i z e = GRAINSIZE 2
16 p f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / l oop t h r o u g h each node of L 2 ˆm ( I m / 2

\ o t i m e s DFT 2 ) L m / 2 ˆm D {2 ,m / 2 } ˆm and do ( I m / 2 \ o t i m e s DFT 2 ) p a r t
17 i d x = j ∗m;
18 # pragma c i l k g r a i n s i z e = GRAINSIZE 2
19 p f o r ( i n t z =0; z<m / 2 ; z++) { / / a t each node do ( I m / 2 \ o t i m e s DFT 2 )
20 i n t i n d e x = i d x+z ∗2 ;
21 f f t 2 (& v e c t o r [ i n d e x ] ,& v e c t o r [ i n d e x +1] , P ) ;
22 }

23 }

24 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
25 p f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / l oop t h r o u g h each node of L 2 ˆm ( I m / 2

\ o t i m e s DFT 2 ) L m / 2 ˆm D {2 ,m / 2 } ˆm and do L 2 ˆm p a r t
26 i d x= j ∗m;
27 s t r i d e p e r m u t a t i o n (& v e c t o r [ i d x ] , 2 ,m/2 ,&B[ i d x ] , 2 ) ;
28 }

29 }

30 } / / end DFT N 2
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Figure 6.14: Six-Step merged FFT parallel code listing
1 vo id SIX STEP MERGED FFT N 2 (ELEMENTS∗ v e c t o r , c o n s t i n t N, c o n s t i n t n l o g 2

, ELEMENTS∗∗ DN, P r i m e p t r ∗ P , ELEMENTS ∗Y) {
2 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
3 p f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) { / / p a r a l l e l b a s e c a s e FFT 2s
4 i n t i d x = i ∗2 ;
5 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
6 }

7 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) { / / f o r each r e c u r s i o n s t e p s t a r t i n g
from t h e b a s e c a s e t o n

8 i n t n = 1<<( n l o g 2 − i ) ; / / n l o g 2=6 i =0 n=64 m=32
9 i n t m = n>>1;

10 # pragma c i l k g r a i n s i z e = GRAINSIZE 2
11 p f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / f o r each d f t node a t t h i s r e c u r s i o n

s t e p
12 i n t i d x = j ∗n ;
13 # pragma c i l k g r a i n s i z e = GRAINSIZE 3
14 p f o r ( i n t z =0; z<m; z++) { / / do L 2 ˆ n ( I m o t i m e s f f t 2 ) L m ˆ n T m ˆ n
15 ELEMENTS t 2 ;
16 t 2 = 0 ;
17 t 2=MULTIPLY( v e c t o r [ ( i d x+z )+m] ,DN[ i ] [ z+m] , P ) ;
18 Y[ i d x+z ]=ADD( v e c t o r [ i d x+z ] , t2 , P ) ;
19 Y[ i d x+z+m]=SUB( v e c t o r [ i d x+z ] , t2 , P ) ;
20 } / / end L 2 ( I m o t i m e s f f t 2 ) L m T m
21 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
22 p f o r ( i n t z =0; z<n ; z++) { / / copy r e s u l t back
23 v e c t o r [ i d x+z ]=Y[ i d x+z ] ;
24 } / / end copy f o r loop
25 } / / end merged loop
26 } / / end r e c u r s i o n s t e p loop
27 } / / end DFT N
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Figure 6.15: Four-Step FFT parallel code listing
1 vo id FOUR STEP FFT K 2 N (ELEMENTS ∗ v e c t o r , i n t N, i n t n l o g 2 , ELEMENTS∗∗

t w i d d l e , P r i m e p t r ∗ P ) {
2 # pragma c i l k g r a i n s i z e = GRAINSIZE 1
3 c i l k f o r ( i n t i =0; i <(1<<( n l o g 2 −1) ) ; i ++) { / / pow ( 2 , n l o g 2 −1)
4 i n t i d x = i ∗ 2 ;
5 f f t 2 (& v e c t o r [ i d x ] ,& v e c t o r [ i d x +1] , P ) ;
6 }

7 f o r ( i n t i =n l o g 2 −1−1; i >=0; i −−) { / / f o r each r e c u r s i o n s t e p
8 i n t n=1<<( n l o g 2 − i ) ; / / pow ( 2 , n l o g 2 − i )
9 i n t m=n>>1; / / m=n / 2

10 # pragma c i l k g r a i n s i z e = GRAINSIZE 2
11 c i l k f o r ( i n t j =0; j <(1<< i ) ; j ++) { / / do ( DFT 2 \ o t i m e s I m ) D {2 ,m} f o r

each FFT node a t r e c u r s i o n s t e p
12 i n t i n d e x = j ∗n ;
13 ELEMENTS a ;
14 / / F i r s t FFT 2 p u l l e d o u t f r o n t and pe r fo rmed w i t h o u t t h e

m u l t i p l i c a t i o n by 1
15 a=ADD(& v e c t o r [ i n d e x ] ,& v e c t o r [ i n d e x+m] , P ) ;
16 v e c t o r [ i n d e x+m]=SUB(& v e c t o r [ i n d e x ] ,& v e c t o r [ i n d e x+m] , P ) ;
17 v e c t o r [ i n d e x ]= a ;
18 # pragma c i l k g r a i n s i z e = GRAINSIZE 3
19 p f o r ( i n t z =1; z<m; z++) { / / l oop a d j u s t e d a c c o r d i n g l y
20 ELEMENTS tmp = 0 ;
21 / / removed u n n e c e s s a r y MULTIPLY(& v e c t o r [ i n d e x+z ] ,& t w i d d l e [ i ] [ z ] , P )

by one of t h e f i r s t DFT 2 e l e m e n t
22 tmp = MULTIPLY(& v e c t o r [ i n d e x+z+m] ,& t w i d d l e [ i ] [ z+m] , P ) ;
23 v e c t o r [ i n d e x+z+m]=SUB(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
24 v e c t o r [ i n d e x+z ]=ADD(& v e c t o r [ i n d e x+z ] ,& tmp , P ) ;
25 }

26 }

27 }

28 }

We have our three general functions. An explicit Six-Step FFT 6.13, a loop-merged Six-
Step FFT 6.14 and a Four-Step FFT 6.15. After optimization, all FFTs require that the input
vector be pre-shuffled and the pre-computed twiddle matrices passed in and a base case size
selected. The BPAS library wrapper can perform the pre-computations and the pre-shuffle
when we have the size of the transform and the field characteristic. Given the size of the field
characteristic we can experimentally find or compute the best-performing size of base case
DFT block.



Chapter 7

Experimentation

In this chapter we first discuss the generality of our FFT schemes and how we switch between
contexts. Next, we discuss the experimental setup. Then, we benchmark our FFTs in a serial
fashion against the high performance FFT already implemented in the BPAS library by Svy-
atoslav Covanov [6]. Then, we run a serial vs parallel experiment for the arbitrary big prime
field. Next, we run an experiment using a generalized Fermat prime field version. Lastly, we
measure our C++ implementation against a C version to measure the performance penalty and
conclude with observations.

7.1 Genericity and context switching

We have our three generic FFT schemes: Six-Step FFT from Procedure 9 on Page 45, Six-
Step Merged FFT from Procedure 10 on Page 46, and the Four-Step FFT from Procedure 11 on
Page 47. We call these three FFT schemes generic because the underlying finite field arithmetic
is not specialized, on the contrary of the highly optimized FFT codes [6, 7] against which we
compare our more generic FFT codes. Properties such as: problem size, base case size, type
of prime number, and implementation language, are generally selected beforehand and with
a particular FFT scheme in mind. In this context, we want to compare these three generic
schemes against the specialized FFTs from [6] and [7].

All three of the generic FFT schemes use the same loop-unrolled base cases and the base
case size selection is the basis for an overall blocking strategy with respect to data locality.
Experimental data is collected for each base case size for each size of input vector. Templates
can be used for the loop-unrolled base cases, the stride permutation related functions, and the
twiddle related functions. We can define macros as in figure 7.1 on page 62 and use the same
code for each of the three FFT schemes to generate code for all three C++ Prime Fields. The
C++ Fields have a common interface. The field multiplication scheme is encapsulated by the
class and the field elements are created in the correct representation for their respective fields.

61
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Figure 7.1: C++ prime field macros
1 # d e f i n e ADD(X,Y) X+Y
2 # d e f i n e SUB(X,Y) X−Y
3 # d e f i n e MULTIPLY(X,Y) X∗Y
4 # d e f i n e POW(X,Y) XˆY
5 # d e f i n e SWAP(Y) swap (X,Y)

When we switch from C++ to C or when we want to take advantage of special field prop-
erties, we lose some generality. Switching to the C classes requires different initialization
schemes and involves the passing around of pointers to initialized structures containing field
properties. Field properties include the characteristic prime as well as data that is required for
the multiplication algorithms. These differences are handled using the preprocessor and con-
ditional inclusions (see figure 7.2 on page 62). For example, when switching from the small
prime field C++ to the small prime field C version, we need to convert elements in and out
of Montgomery representation before and after the computation and it uses a slightly different
interface (because of a pointer to a data structure) which the code needs to accommodate (see
figure 7.3).

Figure 7.2: Conditional inclusion code snippet
1 # i f d e f SMALLPRIMEFIELD C
2 f o r ( i n t i = 0 ; i < n ; i ++) {
3 a [ i ]=CONVERT IN( a [ i ] , P ) ;
4 b [ i ]=CONVERT IN( b [ i ] , P ) ;
5 # i f d e f DEBUG
6 cout <<” a [ ”<< i <<” ]= ”<<a [ i ]<< e n d l ;
7 cout <<” b [ ”<< i <<” ]= ”<<b [ i ]<< e n d l ;
8 # e n d i f
9 }

10 # e n d i f

Figure 7.3: C small prime field macros
1 # d e f i n e ADD(X, Y, P ) s m a l l p r i m e f i e l d a d d (X, Y, P )
2 # d e f i n e SUB(X, Y, P ) s m a l l p r i m e f i e l d s u b (X, Y, P )
3 # d e f i n e MULTIPLY(X, Y, P ) s m a l l p r i m e f i e l d m u l (X, Y, P )
4 # d e f i n e POW(X, Y, P ) s m a l l p r i m e f i e l d e x p (X, Y, P )
5 # d e f i n e SWAP(X,Y) swap (X,Y)
6 # d e f i n e CONVERT IN(X, P ) s m a l l p r i m e f i e l d c o n v e r t i n (X, P )
7 # d e f i n e CONVERT OUT(X, P ) s m a l l p r i m e f i e l d c o n v e r t o u t (X, P )

When we switch from the C++ big prime field to the big prime field C (GMP) version, we
need a pointer to the modulus and the interface changes by the addition of a result operand that
the code needs to accommodate (see Figure 7.4). Additionally, the size of the characteristic
prime can affect the algorithms used by the GMP library. For this reason, in the big prime field
C (GMP) experiment we use the same 128-bit prime named P2 in the table 7.1 on page 64
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throughout to avoid any algorithm changes during the experiment. GMP breaks down multiple
precision numbers into limbs which in the case of a 128 bit number like P2 would be 2 limbs
per field element using a 64-bit limb size. It selects arithmetic algorithms based on the number
of limbs. Since the number of limbs per field element is dictated by the size of the field
characteristic, the underlying GMP algorithms remain consistent for each FFT scheme at each
particular input size throughout the experiment.

Figure 7.4: C big prime field macros
1 # d e f i n e ADD(R , X, Y, P ) mpz add (R , X,Y) ; mpz mod (R , R , P )
2 # d e f i n e SUB(R , X, Y, P ) mpz sub (R , X,Y) ; mpz mod (R , R , P )
3 # d e f i n e MULTIPLY(R , X, Y, P ) mpz mul (R , X,Y) ; mpz mod (R , R , P )
4 # d e f i n e POW(R , X, Y, P ) mpz powm (R , X, Y, P )
5 # d e f i n e SWAP(X,Y) mpz swap (X,Y)

When we switch from arbitrary big prime field C to a generalized Fermat prime field C,
the interface for the arithmetic functions changes. Now, the result of each type of arithmetic
operation overwrites the first of the input operands with the result. This difference requires
the use of a facade to modify the behaviour so that the operations no longer overwrite the first
operand. The facade has to make a copy of the first operand, perform the operation using the
copy (to preserve the original operand), and then return the result. Next, as in [24] the base
case twiddle multiplications get replaced by multiplications by powers of R. This multiplication
algorithm is discussed in [24] and the specialized FFT from [24] is used as the benchmark FFT
in our generalized Fermat prime field experiment. The arbitrary inter-element multiplication
function is also discussed in [24] and replaces the generic multiplication algorithm during the
experiment (see Figure 7.5 on Page 63). As before, any necessary data structures need to be
initialized and accommodated using the preprocessor and conditional inclusions.

Figure 7.5: C generalized Fermat prime field macros
1 # d e f i n e ADD(R , X, Y, K, P ) R= a d d i t i o n b i g e l e m e n t s (X, Y, K, P . r a d i x )
2 # d e f i n e SUB(R , X, Y, K, P ) R= s u b t r a c t i o n b i g e l e m e n t s (X, Y, K, P . r a d i x )
3 # d e f i n e MULTIPLY(R , X, Y, K, P ) R= g f p f m u l t i p l i c a t i o n (X, Y, K, &

t c r t d a t a g l o b a l , &t l h c d a t a g l o b a l )
4 # d e f i n e MULPOWR(R , X, Y, K, P ) R=mult pow R (X, Y, K, P . r a d i x )
5 # d e f i n e POW(R , X, Y, K, P ) mpz powm (R , X, Y, K, P )
6 # d e f i n e SWAP(X,Y) mpz swap (X,Y)
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Table 7.1: Primes table
Label Prime

P1 655360001
P2 92323792361095168002 + 1
P3 8646911284551372804 + 1
P4 7205764901350932488 + 1
P5 32429435754276454416 + 1
P6 32425917317080678432 + 1

7.2 Experimental setup

We generate a randomized input vector and use the same input data for the various FFTs and
compare the runtimes of our various base case block sizes. Each FFT version gets the same field
characteristic and value of ωn as input for each of the problem sizes. The serial experiment is
run on a single core of a 2.66 GHz Intel Xeon CPU, while the parallel experiment is run on the
same 2.66 GHz Intel Xeon CPU but with 12 cores. We use macros to switch between serial and
parallel versions. The preprocessor macro switch adds/removes parallel code to/from the serial
code. Following the recommendations in [11], our test harness initializes our data structures
including our twiddle matrices and kernel twiddle vectors. Then we perform a warm-up run
in advance of the experiment. Next, we read the current time, call our kernel multiple times
and then read the time again. We then divide the time difference by the number of kernel calls.
We use the same test harness structure and collect data in the same fashion for all experiments.
Various bash scripts are used for the collation of data. Table 7.1 on Page 64 lists the prime
numbers used in the following experiments.

7.3 Serial small prime field C: generic vs specialized bench-
mark

In this section we benchmark our code against a specialized high performance FFT in the BPAS
library created by Svyatoslav Covanov. The graphs from figure 7.6 on page 65 use a log-log
axis. The experiment uses input sizes ranging from 21 to 221 and base case sizes: 2,4,8,16,32,
and 64. The generic FFTs use an arbitrary prime P1 and use the same arithmetic as found
in the small prime field c++ class. The specialized benchmark FFT uses a specific prime,
4179340454199820289, and specialized arithmetic. Looking at figure 7.6 on page 65, we can
see from the results that serial execution of the Six-Step explicit FFT is slowest for all serial
runs with all the different size K, in every benchmark test. We attribute this to the 3 additional
passes through the data for each recursion step when compared to the other FFT schemes. The
Six-Step merged and Four-step merged FFTs perform better due to having to pass through the
data less times at each recursion step. Finally, we see that, out of the three FFTs, The Four-step
loop merged FFT is closest to the benchmark, next the Six-Step loop-merged FFT, followed by
the Six-Step explicit.
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Figure 7.6: Serial small prime field C benchmark.
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7.4 Serial VS parallel C++ big prime experiment (generic)
In this section we compare the C++ versions of the arbitrary big prime field in a serial vs
parallel experiment. The field characteristic is labeled P2 in the table 7.1 on page 64 and has a
value of 85236826359346144956638323529482240001. The experiment uses input sizes that
range from 21 to 220 and base case sizes: 2,4,8,16,32, and 64. The generic FFTs all use an
arbitrary prime P2 and the same arithmetic. We run our serial experiment on a single core of
a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz Intel Xeon CPU but
with 12 cores. We compile all implementations with option -o2 to obtain further optimization.
The graphs in figure 7.7 use a log-log axis.

Looking at figure 7.7 on page 67 the largest input size for base case 2, we realize a speedup
of 2.03 for the Six-Step explicit FFT while the Six-Step loop merged has a measured speedup
of 0.75 and Four-Step loop merged version has a measured speedup of 0.82. For the basecase
kernels four in size, at the largest input size, we see that the Six-Step explicit shows a measured
speed up of 2.08 while the Six-Step loop merged version measured a speed up of 1.15 and the
Four-Step speed up was measured at 1.16.
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Figure 7.7: Serial vs parallel C++, K = 2 P2 and K = 4 P2
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Next, we compare the C++ versions of the arbitrary big prime field in a serial vs parallel
experiment with base case values 8 and 16. The field characteristic is labeled P2 in the table 7.1
on page 64 and has a value of 85236826359346144956638323529482240001. The experiment
uses input sizes that range from 21 to 220. The generic FFTs all use an arbitrary prime P2 and
the same arithmetic. We run our serial experiment on a single core of a 2.66 GHz Intel Xeon
CPU and the parallel experiment on a 2.66 GHz Intel Xeon CPU but with 12 cores. We compile
all implementations with option -o2 to obtain further optimization. The graphs from figure 7.8
on page 69 use a log-log axis.
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Figure 7.8: Serial vs parallel C++, K = 8 P2 and K = 16 P2
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Looking at figure 7.8 on page 69, for our base case kernels of size 8, at the largest transform
size we measure a speedup of 2.55 for the Six-Step, 1.56 speed up for the Six-Step loop merged,
and, a speed up of 1.61 for the Four-Step. From the same figure 7.8 on page 69, looking now
at the base case kernels of size 16, at the largest transform size we measure a speedup of 3.56
for the Six-Step, 2.7 speed up for the Six-Step loop merged, and, a speed up of 2.65 for the
Four-Step.

Next, we compare the C++ versions of the arbitrary big prime field in a serial vs parallel
experiment with base case values 32 and 64. The field characteristic is labeled P2 in the table
7.1 on page 64 and has a value of 85236826359346144956638323529482240001. The experi-
ment uses input sizes that range from 21 to 220. The generic FFTs all use an arbitrary prime P2
and the same arithmetic.

We run our serial experiment on a single core of a 2.66 GHz Intel Xeon CPU and the parallel
experiment on a 2.66 GHz Intel Xeon CPU but with 12 cores. We compile all implementations
with option -o2 to obtain further optimization. The graphs from figure 7.9 on page 71 use a
log-log axis.

Looking at figure 7.9 on page 71, for our base case kernels of size 32, at the largest trans-
form size we measure a speedup of 3.7 for the Six-Step, 2.76 speed up for the Six-Step loop
merged, and, a speed up of 2.74 for the Four-Step. Looking at the base case kernels of size 64
from figure 7.9 on page 71, we see better speedup when using the larger kernel sizes.
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Figure 7.9: Serial vs parallel C++, K = 32 P2 and K = 64 P2
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7.5 Serial VS parallel GMP
In this section we compare the C versions of the arbitrary big prime field in a serial vs parallel
experiment. The field characteristic is labeled P2 in the table 7.1 on page 64 and has a value
of 85236826359346144956638323529482240001. The experiment uses input sizes that range
from 21 to 222 and base case sizes: 2,4,8,16,32, and 64. The generic FFTs all use an arbitrary
prime P2 and the same arithmetic for both serial and parallel runs. We run our serial experiment
on a single core of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz Intel
Xeon CPU but with 12 cores. We compile all implementations with option -o2 to obtain further
optimization. The graphs 7.10 on page 73 use a log-log axis and uses base case sizes 2 and 4.
The field characteristic is labeled P2 in the table 7.1 on page 64 and has a value of
85236826359346144956638323529482240001. We run our serial experiment on a single core
of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz Intel Xeon CPU but
with 12 cores. We compile all implementations with option -o2 to obtain further optimization.
Figure 7.10 on page 73 shows that for our GMP experiment using base case kernels of size
2 at the same transform size measured a speed up of 9.08 for the Six-Step, 0.3 speed up for
the Six-Step loop merged, and a speed up of 0.34 for the Four-Step. Figure 7.10 on page 73
shows that for our GMP experiment using base case kernels of size 4 at the same transform
size measured a speedup of 4.93 for the Six-Step, 0.21 speed up for the Six-Step loop merged,
and a speed up of 0.28 for the Four-Step. The graphs 7.11 on page 74 use a log-log axis and
uses base case sizes 8 and 16. The field characteristic is labeled P2 in the table 7.1 on page 64
and has a value of
85236826359346144956638323529482240001. We run our serial experiment on a single core
of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz Intel Xeon CPU but
with 12 cores. We compile all implementations with option -o2 to obtain further optimization.
We can see from the graph in figure 7.11 on page 74 that for our GMP experiment using base
case of size 8, at the same input size, we measure a speedup of 1.62 for the Six-Step, 0.28 speed
up for the Six-Step loop merged, and 0.26 speed up for the Four-Step. Also in figure 7.11 on
page 74, using base case size 16, we measure the greatest speedup of 0.64 for the Six-Step,
0.19 speed up for the Six-Step loop merged, and a speed up of 0.21 for the Four-Step.

The graphs 7.12 on page 75 use a log-log axis and use base case sizes 32 and 64. The field
characteristic is labeled P2 in the table 7.1 on page 64 and has a value of
85236826359346144956638323529482240001. We run our serial experiment on a single core
of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz Intel Xeon CPU but
with 12 cores. We compile all implementations with option -o2 to obtain further optimization.
Looking at figure 7.12 on page 75, for our GMP experiment using base case kernels of size 32,
we measure the greatest speedup as 1.19 for the Six-Step, 0.46 speed up for the Six-Step loop
merged, and a speed up of 9.41 for the Four-Step. Also from figure 7.12 on page 75, for our
GMP experiment using base case kernels of size 64, we measure the greatest speedup of 1.47
for the Six-Step, 0.96, speed up for the Six-Step loop merged, and a speed up of 0.31 for the
Four-Step.
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Figure 7.10: Serial vs parallel GMP, K = 2 P2 and K = 4 P2
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Figure 7.11: Serial vs parallel GMP, K = 8 P2 and K = 16 P2
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Figure 7.12: Serial vs parallel GMP, K = 32 P2 and K = 64 P2
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7.6 C VS C++ small prime field experiment
In this section we compare the serial C and C++ versions of the small prime field. The field
characteristic is labeled P1 in the table 7.1 on page 64 and has a value of 655360001. The
experiment uses input sizes that range from 21 to 221 and base case sizes: 2,4,8,16,32, and 64.
We run our serial experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile all
implementations with option -o2 to obtain further optimization.

The figure 7.13 on page 77 uses base case values 2 and 4. It has a log-log axis and the field
characteristic is P1.
We see from figure 7.13 on page 77 that our C++ versions are not as competitive against our

C version. The overhead appears to be consistent. We see that we get the best performance
from our C code.

The next experiment uses input sizes that range from 21 to 221 and base case sizes 8 and
16. We run this serial experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile
all implementations with option -o2 to obtain further optimization. The figure 7.14 on page 78
uses a log-log axis and the field characteristic is labeled P1 in the table 7.1 on page 64 with
a value of 655360001. We see from figure 7.14 on page 78 that our C++ versions are not as
competitive against our C version. The overhead appears to be consistent. We see that we get
the best performance from our C code.

The next experiment uses input sizes that range from 21 to 221 and base case sizes 32 and
64. We run our serial experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile
all implementations with option -o2 to obtain further optimization. The figure 7.15 on page 79
uses a log-log axis and the field characteristic is labeled P1 in the table 7.1 on page 64 with a
value of 655360001. Again we see from figure 7.15 on page 79 that our C++ versions are not
as competitive against our C version. The overhead appears to be consistent. We see that we
get the best performance from our C code.

In the small prime field C vs C++ experiments, the C++ classes have layers of inheritance
affecting performance. If classes lower down in inheritance have data members then offsets are
required to maintain pointer arithmetic and obviously this isn’t without performance cost. By
carrying around additional pointers and other inherited data [5], the actual field element data
isn’t necessarily contiguously laid out in memory, as in the C version with direct function calls
[9]. Also, calling virtual functions is more expensive than calling non-virtual functions because
C++ uses the virtual pointers to get to the appropriate virtual table. Then it has to index the
virtual table to find the appropriate function to call. With at least 8 layers of inheritance for the
field classes there is non-trivial overhead that is associated with the measured slow down.
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Figure 7.13: SPF C vs C++,K = 2 P1 and K = 4 P1
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Figure 7.14: SPF C vs C++,K = 8 P1 and K = 16 P1
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Figure 7.15: SPF C vs C++,K = 32 P1 and K = 64 P1
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7.7 C VS C++ big prime field experiment
In this section we look at the C vs C++ comparison of the generic FFTs over a big prime field.
The next experiment uses input sizes that range from 21 to 220 and base case sizes 2 and 4.
We run our serial experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile all
implementations with option -o2 to obtain further optimization. The figure 7.16 on page 81
uses a log-log axis and the field characteristic is labeled P2 in the table 7.1 on page 64 and has
a value of 85236826359346144956638323529482240001. We see from figure 7.16 on page 81
that our C++ versions are not as fast as our GMP version. The difference appears consistent.
We see that we get the best performance from our C based GMP code.

The next experiment uses input sizes that range from 21 to 220 and base case sizes 8 and
16. We run our serial experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile
all implementations with option -o2 to obtain further optimization. The figure 7.17 on page 82
uses a log-log axis and the field characteristic is labeled P2 in the table 7.1 on page 64 and has
a value of 85236826359346144956638323529482240001. We see from figure 7.17 on page 82
that our C++ versions are not as fast as our GMP version. The difference appears consistent.
We see that we get the best performance from our C based GMP code. The next experiment
uses input sizes that range from 21 to 220 and base case sizes 32 and 64. We run our serial
experiment on a single core of a 2.66 GHz Intel Xeon CPU. We compile all implementations
with option -o2 to obtain further optimization.

The figure 7.18 on page 83 uses a log-log axis and the field characteristic is labeled P2 in
the table 7.1 on page 64 and has a value of
85236826359346144956638323529482240001.

We see from figure 7.18 on page 83 that our C++ versions are not as fast as our GMP
version. The difference appears consistent. We see that we get the best performance from our
C based GMP code.
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Figure 7.16: BPF C vs C++, K = 2 P2 and K = 4 P2
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Figure 7.17: BPF C vs C++,K = 8 P2 and K = 16 P2

22 26 210 214 218 222
10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 8

(a) Six-Step

23 27 211 215 219 223
10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 16

C + +

C(GMP)

(b) Six-Step

22 26 210 214 218 222

10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 8

(c) Six-Step Merged

23 27 211 215 219 223
10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 16

(d) Six-Step Merged

22 26 210 214 218 222

10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 8

(e) Four-Step

23 27 211 215 219 223
10−5

10−4

10−3

10−2

10−1

100

101

102

Input size

Ti
m

e

BPF GMP vs C++ K 16

(f) Four-Step



7.7. C VS C++ big prime field experiment 83

Figure 7.18: BPF C vs C++,K = 32 P2 and K = 64 P2
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7.8 Generalized Fermat prime field C serial benchmarks
In this section we compare the C versions of the generic FFTs over a generalized Fermat prime
field against the FFT specifically designed for generalized Fermat prime fields from [24] in
a serial experiment. The field characteristics change based on the input size and radix. The
primes range from P3 to P6 from the table 7.1 on page 64. The experiment uses input sizes
that range from K2 to K3 for K = 8, K = 16, K = 32, and K = 64. The generic FFTs all
use the same prime as the one required by the specialized FFT. We run our serial experiment
on a single core of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz
Intel Xeon CPU but with 12 cores. We compile all implementations with option -o2 to obtain
further optimization.

The graphs from figure 7.19 on page 85 use a log-log axis. It has input sizes that range
from K2 to K3 for K = 8, K = 16. When K = 8, P3 = 8646911284551372804 + 1 and when
K = 16, P4 = 7205764901350932488 + 1. Looking at the figure 7.19 on 85 we can see that
the generic code is slower when K = 8 and e = 2 when K = 8 and e = 3. However, it performs
better when K = 16 and e = 3 then when K = 16 and e = 2 in this serial experiment.

The graphs from figure 7.20 on page 86 use a log-log axis. The experiment has input sizes
that range from K2 to K3 for K = 32, K = 64.When K = 32, P5 = 32429435754276454416 + 1
and when K = 64, P6 = 32425917317080678432 + 1. Serially, when looking at the figure 7.20
on 86 we can see that the generic code is close when K = 32 and e = 2 when K = 64 and
e = 2. However, it doesn’t keep up to the specialized benchmark FFT when K = 32 and e = 3
and K = 64 and e = 3 in this serial experiment.
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Figure 7.19: GFPF vs benchmark K = 8 P3 and K = 16 P4
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Figure 7.20: GFPF vs benchmark K = 32 P5 and K = 64 P6
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7.9 Generalized Fermat prime field C parallel benchmarks
In this section we compare the C versions of the generic FFTs over a generalized Fermat prime
field against the FFT specifically designed for generalized Fermat prime fields from [24] in a
parallel experiment. The field characteristics change based on the input size and radix. The
primes range from P3 to P6 from the table 7.1 on page 64. The experiment uses input sizes
that range from K2 to K3 for K = 8, K = 16, K = 32, and K = 64. The generic FFTs all
use the same prime as the one required by the specialized FFT. We run our serial experiment
on a single core of a 2.66 GHz Intel Xeon CPU and the parallel experiment on a 2.66 GHz
Intel Xeon CPU but with 12 cores. We compile all implementations with option -o2 to obtain
further optimization.

The graphs from figure 7.21 on page 88 use a log-log axis. It has input sizes that range
from K2 to K3 for K = 8, K = 16. When K = 8, P3 = 8646911284551372804 + 1 and when
K = 16, P4 = 7205764901350932488 + 1. Looking at the figure 7.21 on 88 we can see that the
generic code is faster during this parallel experiment.

The graphs from figure 7.22 on page 89 use a log-log axis. The experiment has input sizes
that range from K2 to K3 for K = 32, K = 64.When K = 32, P5 = 32429435754276454416 + 1
and when K = 64, P6 = 32425917317080678432 + 1. Looking at the figure 7.22 on 89 we can
see that the generic code is close when K = 32 and e = 2 when K = 64 and e = 2. However,
it doesn’t keep up to the specialized benchmark FFT when K = 32 and e = 3 and K = 64 and
e = 3 in this parallel experiment.
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Figure 7.21: GFPF vs benchmark parallel K = 8 P3 and K = 16 P4
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Figure 7.22: GFPF vs benchmark parallel K = 32 P5 and K = 64 P6
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Table 7.2: Cachegrind Summary Legend
I refs I cache reads
I1 misses I1 cache read misses
LLi misses LL cache instruction read misses
D refs D cache reads
D1 misses D1 cache read misses
LLd misses L2 cache data read misses
LL ref D cache writes
LL misses D1 cache write misses

Table 7.3: Six-Step FFT Cachegrind Summary K=32
I refs: 9,747,963
I1 misses: 13,769
LLi misses: 2,881
I1 miss rate: 0.14%
LLi miss rate: 0.03%
D refs: 4,020,200 (2,578,150 rd + 1,442,050 wr)
D1 misses: 17,312 ( 12,627 rd + 4,685 wr)
LLd misses: 8,447 ( 4,697 rd + 3,750 wr)
D1 miss rate: 0.4 % (0.5% + 0.3%)
LLd miss rate: 0.2% (0.2% + 0.3%)
LL refs: 31,081 ( 26,396 rd + 4,685 wr)
LL misses: 11,328 ( 7,578 rd + 3,750 wr)
LL miss rate: 0.1% (0.1% + 0.3%)

7.10 Memory Profile
Tables 7.3 , 7.4 , and 7.5 on pages 90 and 91 are the summary statistics of a cache-miss profiler
called Cachegrind [8]. Cache accesses for instructions come first, followed by cache accesses
for data, followed by combined instruction and data figures for the L2 cache.
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Table 7.4: Six-Step Merged FFT Cachegrind Summary K=32
I refs: 9,747,963
I1 misses: 13,769
LLi misses: 2,881
I1 miss rate: 0.14%
LLi miss rate: 0.03%
D refs: 4,020,200 (2,578,150 rd + 1,442,050 wr)
D1 misses: 17,312 ( 12,627 rd + 4,685 wr)
LLd misses: 8,447 ( 4,697 rd + 3,750 wr)
D1 miss rate: 0.4% (0.5% + 0.3%)
LLd miss rate: 0.2% (0.2% + 0.3%)
LL refs: 31,081 ( 26,396 rd + 4,685 wr)
LL misses: 11,328 ( 7,578 rd + 3,750 wr)
LL miss rate: 0.1% (0.1% + 0.3%)

Table 7.5: Four Step FFT Cachegrind Summary K=32
I refs: 9,747,963
I1 misses: 13,769
LLi misses: 2,881
I1 miss rate: 0.14%
LLi miss rate: 0.03%
D refs: 4,020,200 (2,578,150 rd + 1,442,050 wr)
D1 misses: 17,312 ( 12,627 rd + 4,685 wr)
LLd misses: 8,447 ( 4,697 rd + 3,750 wr)
D1 miss rate: 0.4% (0.5% + 0.3%)
LLd miss rate: 0.2% (0.2% + 0.3%)
LL refs: 31,081 ( 26,396 rd + 4,685 wr)
LL misses: 11,328 ( 7,578 rd + 3,750 wr)
LL miss rate: 0.1% (0.1% + 0.3%)
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7.11 Observations
We found that the Six-Step explicit FFT realized the most speedup. Serially, the Six-Step FFTs
couldn’t compete with the serial Four-Step FFTs. We found that the Four-Step Loop-merged
variant performed better than both the Six-Step explicit and loop merged versions. In terms of
parallelism, the Six-Step explicit FFT on average realized the most speedup.

Looking at the overall computation, the areas that benefit the most from parallelism are the
areas with more work. First, the twiddle factor subprogram (consisting of point-wise multi-
plications of finite field elements) is the most work intensive area due to the multiplications
followed by the base case kernels, followed by the stride permutations.

In terms of work intensity, we found the stride permutation subprogram to be lightest on
work and we wanted to see what kind of parallel speedup we might achieve by using the loop
merging technique to push the stride permutations into the other loops for each recursion step
during a computation.

Unfortunately, the act of loop merging introduces an additional copy back loop which re-
duces the overall effectiveness of the loop merge by adding another pass through the data. We
found that loop merging adds another level of complexity to the code as well as the parallel
computation. Also, it introduces large two power stride memory accesses in the loop merged
versions.

The difference in performance between our C and C++ versions is not inconsequential.
The additional weight of the pointers and the pointer offset calculations are still not negligible
on modern architectures. For competitive code, it is better to build specialized subprograms
using C rather than C++. The difference in measured performance between the C vs C++

experiment is larger than the difference between the GMP vs C++.
We found that our C++ versions were not competitive against a high performance serial

FFT. Nor were they competitive when compared to our own C versions. We found that we
could get the best performance from our C code. We found the comparison between the C++

and GMP C implementations to be closer in performance. The GMP class performs mem-
ory management online, the manual states, ”mpzt variables represent integers using sign and
magnitude, in space dynamically allocated and reallocated” [13].

The increased complexity of the loop merged versions made parallelism difficult to achieve
using the parallel for loop construct. The effort taken to merge the loops was not proportional
to the result and becomes hard to justify when the very nature of the Six-Step explicit stride
permutations align the field elements in a less complicated and more cache friendly way for
the FFTs that follow.

Finally, it is worthy to note that due to the blocked nature of our FFTs, a poor choice of
block size for the base case can incur significant performance penalties and it was difficult to
get accurate measurements for the smallest values for N for the generic FFTs.
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