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Abstract 

Delayed drug hypersensitivity reactions (DHRs) are idiosyncratic, T-cell mediated, and can 

present days after exposure to the culprit drug, resulting in varying degrees of skin rashes. 

We hypothesize that differences in activated peripheral T cell subsets and types of mediators 

released produce different clinical phenotypes of drug hypersensitivity reactions to 

sulphnamides and beta-lactam antibiotics.  

We recruited participants with previous DHRs to sulfamethoxazole or beta-lactams . 

Peripheral blood mononuclear cells were isolated from participants. T-cell subset 

proliferation and activation was assessed by T-cell specific surface markers using 3H-

thymidine incorporation and flow cytometry, and secreted cytokines were measured using 

bead-based detection. 

There is insufficient evidence to conclude which T-cell subtypes are involved in different 

DHR clinical presentations. There were no significant differences between DHR participants 

and controls. More participants should be recruited to increase study power and range of 

clinical presentations, and consider alternate methods of identifying T-cells and modulators 

of interest. 
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Summary for Lay Audience 

Delayed drug hypersensitivity reactions (DHRs) are reactions that are somehow caused by 

the immune system interacting with the drug. DHRs typically occur days after taking the 

drug, usually result in a skin rash, and are mediated by T cells. It is still unclear how the T 

cells cause DHRs, however there are several theories. Two commonly prescribed drugs that 

cause these reactions are sulfamethoxazole and beta-lactam antibiotics. We believe that 

reactions mediated by different types of T cells in the blood lead to the various types of skin 

rashes caused by DHRs.  

We recruited participants who had previously visited Dr. Rieder’s drug allergy clinic and had 

previously tested positive for a DHR to either sulfamethoxazole or beta-lactams. We took a 

sample of blood from each participant, isolated a group of blood cells from the samples 

called “peripheral blood mononuclear cells” (PBMCs), which contains T cells. We tested 

these cells in different ways to see how the cells were responding to the drug. We used a 

technique called scintillation counting to determine if the PBMCs were growing when 

incubated with the drug, flow cytometry to see which type of T cell was activated in response 

to the drug, and Luminex to determine which molecules (cytokines) the PBMCs produced 

after incubation. 

We have insufficient evidence to conclude which type of T cell is involved in each skin 

reaction. Overall, we found no differences between T cell subset activation in response to 

exposure to the drug treatment, while other studies have previously found differences. 

Changes in the methods, including increasing number of T cells used in the analysis and 

expanding the number of T cell subsets analyzed by flow cytometry, and increasing the 

cytokines analyzed by Luminex, could improve results. We only recruited eight participants, 

to increase the strength of the conclusions we will need to increase the number of 

participants. We conclude that some changes in methods could improve and produce more 

reliable results. 
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Chapter 1  

1 Introduction 
Drugs and medications are an important part of care for many patients, including some of 

our population’s most vulnerable and sick. However, while many individuals can take a 

drug and benefit from its therapeutic effects, some can experience harmful and 

potentially fatal reactions. Adverse drug reactions cause a number of problems, which in 

addition to the effects on the health of the patient can include unexpected effects due to 

suspected risk of adverse drug reactions including mis-labeling, use of less effective 

medications and overuse of other types of drugs such as antibiotics leading to resistance. 

1.1 Background Information 

1.1.1 Definitions 

There have been many definitions suggested for adverse drug reactions (ADR) since the 

World Health Organization (WHO) published their definition in 1972. Specifically, a 

drug reaction is classified as adverse when, taken at a standard dose, it causes a noxious 

and unintended reaction.1 The WHO also defines a drug as a substance or product whose 

use can benefit the recipient either physiologically or psychologically.1 

An adverse drug event is an undesired outcome that occurs while a patient is taking a 

drug, but the adverse outcome is not necessarily attributable to the drug, for example an 

overdose. This is different from an adverse drug effect, which is an adverse outcome that 

can be attributed to some action of the drug the patient took, an example being a side 

effect.2 

The term “drug allergy”, however, is often used out of context to describe conditions that 

are not mechanistic allergies.3 This unhelpful labeling has prompted Johansson et al. to 

suggest revised nomenclature for mechanistic discussions on ADRs.4 They recommend 

the term ‘hypersensitivity’ be used to describe reproducible signs or symptoms due to 

exposure to a stimulus at a dose that is normally tolerated. They also recommend the term 

‘allergy’ be used only to describe a hypersensitivity reaction that has a specific and 
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defined immunologic mechanism. When there are other mechanisms that are not 

immune-mediated, then non-allergic hypersensitivity can be used.  

1.1.2 Prevalence 

Adverse drug reactions are a burden on the individual and expensive to the health care 

system. In 1994 it was estimated that in the United States 106 000 patients died of 

2,216,000 hospitalized with ADRs as a result of a drug injury.5 ADRs are responsible for 

approximately 5% of all hospital admissions and affected 10-20% of all hospital 

inpatients. In addition to the burden placed on physicians and the healthcare system, 

ADRs increase the cost of an individual’s care and negatively affect their quality of life.6–

10 

1.1.3 Economic Impact 

Of all ADRs, approximately 20% are drug hypersensitivity reactions (DHRs).11,12 Many 

people in the USA (20-35%) report having at least one prior reaction to medication.11,13,14 

However, not all of these reported reactions are true ADRs: only 1-5% of people with a 

reported drug allergy actually have one.11,15 This overreporting can compromise patient 

care, including the prescribing of less effective treatment options and potentially 

increasing the cost of care. For example, using alternative antibiotics has been associated 

with increased treatment failures and higher rates of nosocomial infections (eg. 

Methicillin resistant Staphylococcus aureus, MRSA).11,16,17 People who report penicillin 

allergy also spend longer times in hospital than non-allergic patients,11,18 and have higher 

costs associated with their prescription medications.11,19–22 Treating ADRs is expensive, 

potentially costing thousands of dollars to treat.11,23 Based on a report from Canada, 

performing graded oral challenges in children before prescribing antibiotics based on 

reported allergy is able to save money.11,24 

1.1.4 Difficulties and Considerations in Diagnosing ADRs 

Accurate, reliable, and safe tests are important for both predicting and confirming ADRs. 

Currently, the risks for many ADRs are overestimated, particularly with reactions to 

penicillin. In a recent survey,25 approximately 65% of surveyed patients responded they 
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would not continue to use a drug even if told by their physician that the reaction was not 

caused by the drug in question. A penicillin allergy is the most common drug allergy 

charted during hospital admissions and has been linked to increased time in hospital; 

increased reliance on broad-spectrum antibiotics; and increased prevalence of 

Clostridium difficile, MRSA, and vancomycin-resistant Enterococcus infections.26 There 

are consequences of overdiagnosis of drug allergy, including an increase in drug-resistant 

infections.3,18,27 However, there is no consensus on the extent of over-diagnosis. Drug 

allergies are often self-reported, and the frequency can be as high as 39%.3,28 Sousa-Pinto 

et al., after completing a meta-analysis, found that 8.3% of their participants had self-

reported a drug allergy.3 

In addition to overcoming personal conviction, accurate diagnoses are also important, as 

inaccurate diagnoses prevent patients from being treated with potentially beneficial 

drugs. However, the opposite of this is also true. If a patient is told they are not sensitive 

to a drug and is then treated with the drug, they could be subjected to a potentially fatal 

and avoidable reaction.29,30 Adverse drug reactions can also present similarly to other 

diseases, so it can be difficult to discriminate between the illnesses.30 Some drug-induced 

rashes can be indistinguishable from rashes produced by other agents, such as viruses.31  

ADRs and DHRs typically affect more children and women than men, for reasons that 

can either be physiological or sociological. Women are prescribed more antibiotics than 

men. In a meta-analysis across nine high-income countries, women in general across all 

ages are 27% more likely to receive an antibiotic, and up to 40% more likely in the 16-54 

age group.32 In the USA specifically, women are prescribed more antibiotics for 

respiratory tract infections (RTIs) than men are.32,33 In England in 2019, an analysis by 

Smith et al. found that adult women receive almost twice as many antibiotic prescriptions 

than men, while elderly women specifically receive 67.4% more.34 They also note some 

drugs are simply more commonly prescribed to women than men, however there is still a 

disparity of 70% more prescriptions when urinary tract infections (UTIs) are removed 

from the analysis. In addition to being prescribed more antibiotics alone, women are 

more likely to consult with their general practitioner (GP) more than men. In the USA, 

men visit their GP less, but also exhibit more risk-taking and health-compromising 
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behaviours and conditions than women do, including obesity, smoking, and drinking.32 

Smith et al. describe women seeking primary care 80% more than men across the 12 

conditions they examined.34  

In addition to utilization differences in prescribing, there are potentially pharmacological 

differences in women compared to men that would lead to an increased incidence of 

ADRs. For example, Rademaker demonstrated that cytochrome P450 (CYP45) 3A4 is 

higher in women by up to 40%, which they attribute to different steroid hormones 

affecting CYP3A4 activity due to competitive inhibition.35,36 The author suggests that 

metabolites generated due to drug metabolization by CYP3A4 might be the cause of the 

ADRs. Rademaker also noted the differences in conjugation of drugs between men and 

women – specifically referencing temazepam, which is conjugated and cleared faster in 

men than women.35,37 Kando observed that women have higher concentrations of drug in 

plasma than men and receive more drug due to a smaller body mass.38 In addition, Kando 

reviewed how hormones can also have an influence on ADRs affecting more women.38 

Different levels of estrogen, progesterone, and testosterone may affect enzyme activity 

throughout the menstrual cycle, which can affect the metabolization of drugs.38 

1.2 Classification of ADRs 
The most common classification system for ADRs divides ADRs into two main types: 

Type A and Type B. Type A reactions, the most common, are predictable since the 

reaction is related to the known pharmacological action of the drug. These reactions are 

dose-dependent and essentially exhibit amplified effects of the drug. By reducing the 

dose or eliminating the drug from the patient’s therapy, the reaction can often be 

reversed. Type B reactions, however, are generally more unpredictable due to the 

potential for delayed onset of signs and symptoms. These often do not exhibit a dose-

dependent relationship and the effects are not usually related to the known drug 

pharmacology.39 Type B, or “idiosyncratic adverse drug reactions,” are further 

subdivided into two groups: immune-mediated, or hypersensitivity reactions, and non-

immune mediated reactions. A breakdown of this classification is outlined in Figure 1-1.  
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1.2.1 Non-Immune Mediated Reactions 

Pseudoallergy is another term for a reaction that is clinically a hypersensitivity but is not 

immune-mediated. It is classified here because these reactions imitate other reactions and 

can range from being mild to causing anaphylaxis.40 While pseudoallergy can be similar 

to anaphylaxis, unlike anaphylaxis, pseudoallergy results from mast cells and basophils 

releasing mediators. This process is not mediated by immunoglobulin E (IgE).41,42 This 

leads to histamine release, complement activation, among others.41,43 One example of this 

is vancomycin-induced redman syndrome. Mast cells and basophils degranulate, 

releasing histamine, in a manner which is not IgE-dependent,44 resulting in a flushed face, 

neck, and ears, and is often accompanied by itching.45 

1.2.2 Immune-Mediated Reactions 

These reactions have been further divided into subtypes. These were originally outlined 

by Gell and Coombs46 and have been modified slightly by the addition of further 

subclassifications.  

Type I 

Type I reactions are mediated by IgE, bound to mast cells with Fc-IgE receptors. The 

mast cells release histamine and cause an immediate reaction, including urticaria and 

fatal anaphylaxis. The reaction can start within seconds of a parentally applied drug, or 

within minutes of oral intake. Most of these reactions result in pruritis or urticaria, 

however they can escalate to life-threatening reactions such as anaphylaxis.40 

Type II 

Type II reactions involve the formation of complement-fixing IgG antibodies and 

occasionally IgM that interact with Fc-IgG receptors on macrophages, natural killer (NK) 

cells, granulocytes, etc. In these reactions, immune complex activation occurs on the cell 

surface of erythrocytes, leukocytes, platelets, hematopoietic precursor cells, etc.40 There 

are several ways in which this can occur, including opsonization of cells by activated 

complement components leading to phagocytosis, antibody deposition leading to 

macrophage and neutrophil recruitment, and anti-body-dependent cell-mediated 
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cytotoxicity due to eosinophil degranulation.47 Pichler proposes that, specifically to 

drugs, the drug can be adsorbed to the membrane, creating a new antigenic complex with 

the cell membrane.40 Hemolytic anemia and thrombocytopenia have been listed as side 

effects to various drugs, including penicillin, cephalosporins, quinidine for the former, 

and quinine, quinidine, and sulphonamides for the latter.40 

Type III 

In Type III reactions, immune complexes are formed, which is a common event in a 

normal immune response and does not typically result in symptoms. Efficiency of 

treatment can decrease if immune complexes are formed by drug-protein interactions. It 

is not fully understood why an immune complex disease forms, and several reasons can 

be speculated as to why these occur. An inability to remove complexes can result in 

inappropriate deposition, leading to recruitment of other immune cells, leading to 

hypersensitivity, small vessel vasculitis and/or serum sickness.40  

Type IV 

Type IV are T cell mediated hypersensitivity reactions. Originally, Gell and Coombs did 

not subclassify these reactions, however with new knowledge of the functions of T cells 

and the types of inflammation they cause, these reactions have been further subclassified 

from Type IVa to Type IVd.40  

Type IVa: These are Th1-type immune reactions, involving the activation of macrophages 

by IFN-γ and complement-fixing antibody production. This can possibly lead to co-

activation of CD8+ T cells, leading to a combination of Type IVa and IVc reactions.40 

Type IVb: These are Th2-type immune reactions, with cytokines IL-4, -13, and -5 which 

promote mast cell and eosinophil responses.40  

Type IVc: T cells can migrate to the tissue and kill different cells with cytotoxic 

molecules such as perforin and granzyme B. Cytotoxic T cells (CD8+ T cells) are 

involved in maculopapular or bullous skin diseases, acute generalized exanthematous 

pustulosis (AGEP), and contact dermatitis.40  
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Type IVd: This reaction involves T cells coordinating neutrophilic inflammations in the 

skin, such as in AGEP.40 

 

Figure 1-1: Schematic of ADR classification 

1.3 Pathophysiology of DHRs 
There are several competing hypotheses that attempt to explain the mechanism that drives 

T cell-mediated drug hypersensitivity reactions. Not all drug reactions support a singular 

hypothesis, which led to the development of several hypotheses. These hypotheses are 

modeled in Figure 1-2.  
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Figure 1-1: Schematic of proposed hypotheses of DHR mechanisms 
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1.3.1 The Hapten Hypothesis 

The hapten/pro-hapten mechanism describes how small, low-molecular weight 

compounds (<1000 D) are able to elicit an immune response.40,48–51 The concept of a 

“hapten” driving an immune response was first published around 1935 by Landsteiner 

and Jacobs. They theorized that small molecules themselves were not immunogenic, but 

became immunogenic once bound to a protein.52 Subsequently the hapten hypothesis was 

further elucidated. The hypothesis is essentially that a hapten binds to a carrier molecule 

such as a protein and the modified hapten-carrier molecule can then generate an immune 

response. Similarly, pro-haptens, which are not chemically reactive, are first metabolized 

in the liver where they can then bind to a peptide.40,48,53–55 Beta-lactam antibiotic allergy 

was felt to be an example of a drug reaction that followed the hapten mechanism. This 

process occurs due to nucleophilic attack on the drug molecule, opening the beta-lactam 

ring, resulting in a penicilloyl-protein adduct, which can cause an immune response.56,57 

These drugs often bind to albumin as its carrier protein,58 since it is the most abundant 

protein in serum.57  

1.3.2 The P-I Hypothesis 

A competing hypothesis is the p-i (direct pharmacological interaction of drugs with 

immune receptors) hypothesis, that speculates that chemically inert drugs can activate T 

cells via specific T cell receptors (TCRs) that interact with the specific drugs.40,48,49,59 

This hypothesis postulates that the drug-TCR interaction is independent from metabolism 

and processing. The drug binds to the TCR directly, and the major histocompatibility 

complex (MHC) is not covalently modified. However, MHC binding is still required for 

full T cell activation.60 The p-i hypothesis was developed in response to the 

hapten/prohapten hypothesis stating that a low molecular weight drug must bind to a 

protein to initiate an immune response, and contradicts the necessity of protein binding. 

Specifically, Pichler considers how some chemically inert drugs, which cannot become 

haptenized in the skin, result in positive skin tests.59–62  
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1.3.3 The Danger Hypothesis 

The danger hypothesis was proposed as an alternative to the self/non-self concept of 

immune reactions. Injured cells send danger or alarm signals, which activate antigen-

presenting cells (APCs).63 In this hypothesis, the immune system is triggered by damage 

signals instead of recognizing non-self antigens.63–65 It is suggested that the drug or its 

reactive metabolite must also cause cell damage for a drug reaction to occur.66 One 

possibility is that during drug metabolization, accumulation of reactive metabolites can 

lead to cell death, which generates danger signals.67 It has been suggested that there are 

other factors that can act as a danger signal that would increase a patient’s chance of 

having a drug reaction. Administering a patient with mononucleosis ampicillin will often 

develop a skin rash.66,68 An example is the 50% chance of developing a drug reaction 

when sulfamethoxazole administered to patients with AIDS versus 0.5% in uninfected 

patients.66,69  

1.3.4 The Altered Repertoire Hypothesis 

The altered repertoire hypothesis describes how a drug can interact with human leukocyte 

antigen (HLA) class I molecules, leading to the presentation of altered peptides that can 

cause an immune reaction.70 There has recently been increasing support for this 

hypothesis. As an example, abacavir is able to activate CD8+ cells in an HLA-B*57:01-

restricted manner, leading to a hypersensitivity reaction.71 After deducing that other 

hypotheses could not support this observation, Ostrov et al. found that abacavir can bind 

to the peptide binding groove of HLA-B*57:01 allowing for the presentation of novel 

peptides that appear as foreign, triggering a response from CD8+ cells.72  

1.3.5 Reactive Metabolite Hypothesis 

The reactive metabolite hypothesis suggests that reactive metabolites of a drug are 

responsible for drug reactions, instead of the parent drug.73 This can either be through 

drug metabolism or if the drug damages a cell and produces danger signals.73 The 

reactive metabolite of many drugs is responsible for its activity, and this typically occurs 

during metabolization by enzymes in cells such as hepatocytes.74,75 Drug metabolites can 

accumulate, resulting in an endogenous molecule that can then be taken up by antigen 
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presenting cells and presented to T cells.74 One proposed example is the metabolic 

pathway of sulfamethoxazole, which leads to reactive metabolites.73 This hypothesis has 

been linked to the hapten hypothesis, in that reactive metabolite generation may be the 

initial event triggering an immune response by the creation of a reactive metabolite that, 

when complexed with a cellular macromolecule, acts as a hapten to generate an immune 

response.76 

1.4 Immune-Mediation of DHRs 
The innate immune system (“pro-inflammatory” immune response) is responsible for 

rapid recognition of an antigen. This system consists of neutrophils, macrophages, 

monocytes, NK cells, dendritic cells (DCs), among others, which direct and inform the 

adaptive immune system.77  

The adaptive immune system is responsible for both specific and memory responses, and 

is composed of B cells, αβ T cells, and γδ T cells. Upon recognizing or being presented 

with an antigen, these cells expand to perform specific functions: B cells become plasma 

cells, which make large quantities of immunoglobulins, and T cells (specifically αβ) 

either directly kill cells or recruit other cell types. While most of these cells die after the 

culmination of the immune response, some – such as memory T cells – continue to live 

for many years in order to protect against reinfection after initial contact.77 

1.4.1 Composition of PBMCs 

Peripheral blood mononuclear cells (PBMC) are a cellular population that can be isolated 

from peripheral blood, and essentially consist of any blood cell featuring a single round 

nucleus, which include lymphocytes, monocytes, NK cells, and dendritic cells (DCs).78 

These cells are separated from red blood cells, granulocytes (neutrophils, basophils, and 

eosinophils) by density gradient separation, whereas PBMCs are located in the low-

density layer (ie. less dense than 1.077 g/ml). Although there is some variability across 

individuals, PBMCs are typically composed of approximately 70-90% lymphocytes, 10-

20% monocytes, and 1-2% DCs. Of the lymphocytes, approximately 70-80% are CD3+ T 

cells, 5-10% B cells, and 5-20% NK cells. Typically within CD3+ lymphocytes, CD4+ 

and CD8+ cells are represented in a 2:1 ratio, respectively.78–82  
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1.4.2 Antigen-Presenting Cells 

Antigen-presenting cells (APCs) are cells at the overlap between the innate and acquired 

immune systems. DCs, B cells, and macrophages are all considered to be professional 

APCs. What distinguishes these APCs from other cells is the presence of abundant MHC 

class II receptors. Specifically, DCs and macrophages can detect and phagocytose 

substances (e.g. pathogen-associated molecular patterns (PAMPs), damage-associated 

molecular patterns (DAMPs)), parts of apoptotic cells, process antigen, and move to 

specific tissues (e.g. T cell zone of lymph node). B cells acquire antigen through the B 

cell receptor (BCR).83  

Some other cells, such as mast cells, basophils, eosinophils, neutrophils, innate lymphoid 

cells (ILCs), and CD4+ T cells have also been found to be able to induce MHC class II 

expression. However, this can only occur in certain immune environments and has not 

been researched extensively to conclude their role.83  

1.4.3 Dendritic Cells 

DCs are antigen-presenting cells (APCs) that modulate the immune response by 

stimulating B cells and T cells.84,85 These cells are located in most tissues throughout the 

body. They are stellate and have a multiplicity of MHC molecules on their surface.84,86 

There are two stages in the life of a DC: the immature and the mature stage. As an 

immature DC, these cells have few MHC molecules, capture antigens (with Fcγ and Fcε), 

but they cannot generate the appropriate stimulatory molecules for T cells (CD40, CD54, 

CD86). Immature DCs are able to phagocytose particles,84,87–90 sample antigens in 

phagocytic vesicles,84,91 and then express the appropriate receptors to stimulate T cells. 

Mature DCs, however, are terminally differentiated, and display many MHC class II 

molecules bound to antigen.84,92 They upregulate costimulatory molecules, then move to 

secondary lymphoid tissues to interact with T cells.  

1.4.4 B Cells 

B cells are “bursal” or “bone marrow” derived cells that date back to the origin of 

adaptive immunity in jawed vertebrates more than 500 million years ago.93,94 B cells 
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originate in the primary lymphoid tissue, which in humans is the bone marrow. In 

general, they undergo functional maturation in the spleen or lymph nodes, which are the 

secondary lymphoid organs, and then finally produce antibodies as plasma cells. These 

cells undergo functional rearrangement of Ig loci in the bone marrow: V, D, and J 

sequences at the H chain locus and V and J at the L chain loci.93,95 These allow for a 

diverse repertoire of B cell receptors in the B cell population. 

1.4.5 T Cells 

T cells have been previously shown to be involved with DHRs and it is believed that they 

are the central driver for common and important DHRs.53,54,96–104 However, the role(s) 

that different T cell subtypes and their mediators may have in the pathogenesis of Type 

IV DHRs, if any, have not been fully explored, nor has the impact of different T cells 

responses to clinical phenotypes of DHRs.   

1.4.5.1 Helper T Cells 

T helper cells (Th) are involved in the coordination of the adaptive immune response, 

primarily by the secretion of specific cytokines to recruit other cells toward infected 

areas. These cells are characterized by CD4+.105 Specific cytokine environments and 

master regulators are responsible for the many subtypes of Th cells that have been 

discovered. 

Th1 Cells 

T helper 1 (Th1) cells produce the cytokine interferon-γ (IFN-γ). They function to 

eliminate intracellular pathogens and are involved in two types of hypersensitivity 

reactions: cell-mediated and delayed.106,107 Additionally, Th1 cells are involved in the 

process of producing opsonins, complement-fixing antibodies, and can lead to 

macrophage activation.108  

Both IFN-γ and interleukin-12 (IL-12) are the cytokines in a naïve T cell’s environment 

that promote differentiation to Th1 subtype. IFN-γ inhibits Th2 cell differentiation while 

IL-12 promotes Th1 growth and does not affect Th2 cells.109–112 T-bet is the transcription 

factor that controls the expression of IFN-γ and is imperative for Th1 cell differentiation 
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from naïve CD4+ T cells. T-bet both activates the IFN-γ gene as well as induces 

exogenous production of IFN-γ.113 Th1 cells are found to be involved in organ-specific 

immune disorders, acute allograft rejection, contact dermatitis, among other immune 

disorders.108  

IFN-γ 

Th1 cells are defined by their secretion of IFN- γ, although many cells have been found to 

secrete this cytokine, including B cells, natural killer T cells (NKT), and professional 

APCs114–118 in addition to Th1, CD8+ T cells, and NK cells.114,119,120 Multiple studies have 

found that IFN-y is secreted by PBMCs isolated from study participants with a history of 

delayed type drug hypersensitivity. IFN-γ is secreted when drug-specific PBMCs are 

incubated with sulfamethoxazole (SMX)121 and piperacillin.104 In addition, Beeler et al. 

found that PBMCs from AGEP and severe exanthema patients secreted both IFN-γ and 

interleukin-13 (IL-13).122  

Th2 Cells 

Another subset of helper T cells are T helper 2 (Th2) cells. These are associated with 

extracellular (helminth) responses and stimulating damaged tissue repair. These secrete 

IL-4, -5, -6, -9, -10, and -13.106–108  

The cytokine IL-4 promotes the differentiation of a naïve CD4+ T cell to a Th2 

cell.109,123,124 During Th2 development, the transcription factor GATA-3 is upregulated. 

Conversely, it is downregulated during Th1 development.125–127  

Th2 cells are mediators in a variety of different disorders such as Omenn’s syndrome, 

reduced protection against extracellular pathogens, and chronic Graft vs. Host Disease.108  

IL-4 

IL-4 is a potent regulator of immunity,128 regulating immune functions such as Ig isotype 

class switching, B cell MHC class II expression, and differentiating certain Th cell 

lineages.129 IL-4 is also secreted by mast cells, eosinophils, and basophils in addition to 

Th2 cells.128 It was first described by Howard and Paul as a comitogen of B cells.128,130 
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IL-4 binds to IL-4R alpha. It can either produce type I signaling when also bound to 

gamma chain or type II when bound to IL-13Rα1.128,131,132 This Type I signaling is 

important for the polarization of naïve CD4+ T cells to Th2 cells.128  

IL-13 

IL-13 is a cytokine secreted by Th2 cells.106–108 It is able to induce the expression of MHC 

class II in human B cells and phenotypic changes in human monocytes. It also acts on 

human B cells by inducing proliferation and immunoglobulin production.133–136 In 

general, IL-13 has anti-inflammatory properties and plays a regulatory role in the 

immune response.  

IL-13 is secreted by T cells when drug-specific PBMCs are stimulated with either 

ampicillin (AMP) or SMX.137 It is also secreted by PBMCs from piperacillin-

hypersensitive patients when incubated with the culprit drug.104 Beeler et al. noted that 

PBMCs of patients with severe exanthema and AGEP secreted IL-13 as well as IFN-γ.122  

Th9 Cells 

Th9 cells are generated by naïve CD4+ cells exposed to TGF-ß and IL-4, and are 

characterized by their production of IL-9.138 In contrast, exposing naïve CD4+ cells to IL-

4 only leads to the differentiation of Th2 cells,138 and CD4+ cells to TGF-ß only leads to 

induced regulatory T cells (Treg).138–141 While Th2 cells also produce IL-9, Th9 cells 

produce IL-9 in much greater quantities and have a different role in the immune response 

than Th2 cells.142 These cells also require transcription factors STAT6, PU.1, IRF4, and 

GATA3.138,143–146 Although Th9 cells require such a specific environment to differentiate, 

they do exist in vivo, and can be found in the peripheral blood of allergic patients147 

among CLA+ (cutaneous leukocyte antigen positive) cells in the blood and skin.148,149  

IL-9 

Many cells are able to produce IL-9, including Th9 cells, innate lymphoid cells, mast 

cells, and neutrophils.138,142,150–153 However, Th9 cells produce IL-9 in a greater quantity 

than Th2.144,146 When T cells are activated by either PMA (phorbol myristate acetate) or 
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anti-CD3, IL-9 expression can be induced,154 with the addition of IL-2 further 

upregulating production.155 IL-9 promotes the survival of other cells, such as Th cells, 

mast cells, among others.156–158 IL-9 is also able to expand Th17 and Treg cells.138,159–162 

IL-9/Th9 cells have specifically been implicated in allergy and asthma. While IL-9 levels 

are increased in asthmatic patients,163 it is unknown if it is involved in other instances of 

allergy, such as anaphylaxis and atopic dermatitis.  

Th17 Cells 

T helper 17 (Th17) cells are a subset of Th cells that predominantly secrete IL-17. Th17 

cells were the third Th subset discovered164–166 and target extracellular bacteria and fungi. 

Interestingly, IL-17 was discovered before Th17 cells.167–169 When human naïve T cells 

are exposed to IL-1B and IL-6, Th17 cells are differentiated.139,170,171 The transcription 

factor important in the differentiation of Th17 cells is orphan nuclear receptor RORγt.172 

IL-17 does not inhibit Th1 or Th2 cells,173 but IL-12, IFN-γ, and IL-4 inhibit Th17 

cells.165,166,174–177  

While Th17 cells are characterized by IL-17 production, they also produce IL-17F, IL-22, 

and some TNF-α (tumour necrosis factor α), but IL-17A is predominant.164 Th17 cells 

produce TNF-α, IL-21, and IL-22, while it is debated whether they produce IL-

6.106,171,178–180 

Both Th17 cells and IL-17 have been implicated in several human diseases, including 

psoriasis, rheumatoid arthritis, systemic lupus erythematosus, endometriosis, asthma, 

irritable bowel syndrome, multiple sclerosis, atopic dermatitis, contact hypersensitivity, 

among others. In atopic dermatitis specifically, acute atopic dermatitis is associated with 

IL-17, but not chronically.164,181  

IL-17 

Th17 cells are a major producer of IL-17.106 IL-17 includes IL-17A, B, D, E, and F.182 

The functions of IL-17A and F include targeting fibroblasts, endothelial and epithelial 

cells, keratinocytes, macrophages, and stimulating and attracting neutrophils to 
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inflammation.178,183 IL-17 is important in extracellular bacteria defense171 and in the 

mobilization of neutrophils.169,171  

Interestingly, a previous study has shown that when PBMCs isolated from piperacillin-

hypersensitive patients are incubated with piperacillin, no IL-17 is produced. However, it 

is produced when incubated with PHA (phytohemagglutinin).104  

Th22 Cells 

Th22 cells are a terminally differentiated subtype of helper T cells that secrete IL-22. The 

cytokine environment required for the differentiation of naïve CD4+ T cells to Th22 cells 

is TNF-ß (tumour necrosis factor ß) and IL-6.184,185 The master regulator of Th22 cells is 

aryl hydrocarbon receptor.185–187  

Th22 cells were discovered due to their secretion of IL-22, but no signature cytokines of 

other T cell subtypes, such as IFN-γ, IL-4, and IL-17.184,185,187,188 However they do 

secrete small amounts of IL-13 and TNF-ß.184,188 

IL-22 

IL-22 is predominantly secreted by Th22 cells, but is also secreted in small amounts by 

Th1, Th2, and Th17 cells184 and is a member of the IL-10 family of cytokines.186 IL-22 

specifically binds to the IL-22 receptor (IL-22R), a heterodimeric receptor composed of 

IL-10Rß and IL-22Rα chains, which is abundant on epithelial cells.184,189 Specifically, IL-

22R is expressed in skin, liver, pancreas, intestine, lung, and kidney.186,190–192 IL-22 is 

also involved in wound healing.184,188,193 

IL-22 is implicated in some skin rashes, which can be a symptom of a DHR. For 

example, IL-22 is upregulated in psoriasis lesions.186,194–196 IL-22 is also found in greater 

amounts in atopic186,197 and contact dermatitis lesions.186,198  

Regulatory T cells (Treg) 

The immune system has the dual role of simultaneously protecting the host from 

pathogens or tumours while also preventing harm from excessive and harmful responses. 
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If an immune response is misdirected, it can produce an autoimmune disease.79 

Regulatory cells that act to prevent this are characterized as CD4+CD25+FoxP3+.139 Treg 

cells are a dominant mechanism for preventing excessive response and are specialized for 

immune suppression. Autoimmune and inflammatory responses can be caused by 

disruptions in the development or function of Tregs. When an adaptive immune response is 

occurring, both effector cells and Tregs are activated and recruited to the site of 

inflammation to maintain a balanced immune response, in both the quality and magnitude 

of the adaptive immune reaction.79  

Previous work has demonstrated the importance of Tregs are in controlling the immune 

response. Manipulating the thymus, as for example a thymectomy in a newborn, results in 

autoimmune damage and compromised immunity.79 In addition, removing autoimmune-

suppressive T cells from an organism can lead to autoimmune disease, while adding them 

back inhibits autoimmunity.199  

Regulatory T cells have many notable functions, but have important roles in inhibiting 

autoimmunity and protecting against tissue injury.139,200 The cytokine TGF-ß is important 

in differentiating naïve CD4+ T cells into Treg cells.139,201 

1.4.5.2 Cytotoxic T Cells 

Broadly, the role of a cytotoxic T lymphocyte (CTL) is to survey all nucleated body cells 

and destroy any that are a threat.202 When peptides are formed within the cell due to 

protein degradation, CTLs can detect the peptides when presented by MHC class I 

molecules.203 

A CTL needs to be in close contact to the target cell in order to kill it. The first 

mechanism is binding of Fas on the target cell to Fas ligand (FasL) on the effector cell, 

which transfers a death signal.204–206 The second method is performed through granule 

exocytosis. In the presence of calcium (Ca2+), granules are exocytosed into the space 

between the target and effector cells, causing holes to be formed within the target cell 

membrane.207 Examples of these “granules” include perforin,208 and granzymes A and 

B.209  
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Perforin 

Perforin is a protein involved in granule exocytosis in CTLs. Upon polymerization, 

perforin forms pores in the membrane of a target cell.210,211 These pores then disrupt ion 

gradients in a cell and result in osmotic lysis of the target cell.212,213 Both CTLs and NK 

cells express perforin.210,214–216 Perforin has a major role in pathologies such as graft 

rejection and immune responses against viruses.205,210,217,218 When Kagi et al. generated 

perforin-deficient mice, the mice had normal numbers of CD8+ and NK cells, however 

several immune functions were compromised, including antiviral and transplantation 

antigen-specific CTL activity.219 These mice could not clear a lymphocytic 

choriomeningitis virus infection and also had a diminished ability to control the growth 

of tumours. However, even in the absence of perforin, there was some lytic activity 

which was less effective.  

Fas 

Apoptosis-mediated cell killing by CTLs is able to explain the ability of CD8+ cells in 

perforin-deficient mice to kill target cells. The cell surface receptor, FasR, can lead to 

apoptotic cell death.220–222 When FasR- or FasL- mice are generated, they suffer from 

similar pathologies of perforin- mice, including autoimmunity and accumulation of large 

numbers of lymphocytes. FasL- lymphocytes are able to kill cells, but at a reduced rate of 

approximately 10-30% compared to wild type CTLs.220 This residual lysis is probably 

due to perforin-mediated killing. An important finding was that perforin- CTLs were 

inactive against FasR-deficient target cells, meaning that these are the two pathways 

responsible for CTL-mediated cell death. Overall, Lowin concludes that perforin is likely 

responsible for approximately two thirds of CTL-mediated killing, while Fas is 

responsible for the remainder in vivo.220 One downfall of Fas-mediated killing is that 

FasR expression can be different on cells and can be modulated in certain circumstances, 

such as when some viruses are able to downregulate FasR expression on cells.220,221  

Granzyme 
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Perforin only causes membrane damage and is insufficient in explaining DNA 

fragmentation and apoptosis shown in CTL target cells.212,223 Therefore it was 

hypothesized that another molecule must be responsible for the DNA fragmentation and 

apoptosis, once it is released from the CTL and is able to enter the target cell via pores 

made by perforin.212,224 

1.4.5.3 The T Cell Receptor and Activation Markers 

T Cell Receptor 

T cell receptors are found on the surfaces of T cells responsible for recognizing antigen 

from other cells. They are made up of two polypeptides (α and β) linked by disulfide 

bonds. These polypeptides are associated with other invariant CD3 proteins.225–228 The α 

and β polypeptide chains are coded by the rearrangement of germline genes; these 

random associations allow for the production of thousands of different, mature genes.225 

The TCR recognizes antigens when they are bound to an MHC molecule.225  

CD69 

CD69 is an early membrane receptor, a membrane type II C-type lectin,121 and is 

expressed on activated, but not resting, lymphocytes.229 After activation, an early change 

that occurs in T cells is the induction of genes encoding cell surface molecules.230 CD69 

has been detected on cell surfaces within 1-2 hours after activation.230–232 There are other 

activation markers that exist, for example CD25, CD71, and HLA-DR,121,233–235 however 

CD69 is very commonly used for T cells because of how quickly it can be found on cell 

surfaces. T cells that are stimulated through the TCR (CD3) complex express 

CD69,230,232,236–238 therefore mitogens such as PHA and PMA are able to induce the 

expression of CD69 in lymphocytes.230,232,238,239 In addition to lymphocytes, CD69 is 

expressed on all bone-marrow derived cells except RBCs.229,240 In some instances, CD69 

can be expressed on B cells, neutrophils, and freshly isolated monocytes, however the 

mechanisms by which CD69 is induced are different from T cells.230 
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1.5 Drugs Commonly Associated with DHRs 
A number of drugs are associated with ADRs and DHRs, particularly antibiotics 

(especially beta-lactam antibiotics) and anti-convulsants,241,242 as well as NSAIDs (non-

steroidal anti-inflammatory drugs), anti-retrovirals (eg. Abacavir), sulfonamides, and 

allopurinol.242 One issue that is currently lacking in the literature is whether different 

drugs are linked to DHRs caused by different T cell subsets and whether different DHR 

phenotypes are associated with different T cell responses.  

1.5.1 Sulfamethoxazole 

Sulfamethoxazole (SMX) has been previously associated with DHRs. SMX has been 

previously shown to recognize or activate drug-specific T cell clones.55,243 Specifically, 

CD4+ and CD8+ T cells have previously been shown to be involved in reactions to 

SMX.103  

Sulfamethoxazole is typically prescribed with trimethoprim (TMP). Bacteria are obligate 

folic acid synthesizers, as opposed to humans who must obtain folic acid through diet. 

Both SMX and TMP take advantage of bacteria requiring folic acid to survive by 

inhibiting the synthesis of tetrahydrofolic acid, a necessary cofactor for bacterial DNA, 

thymidine, and purines.244 Typically, it is prescribed as 20 parts SMX to 1 part 

TMP.244,245 This is to provide synergistic antibacterial activity as SMX and TMP target 

the folic acid synthesis pathway at different steps, blockading two separate steps prevents 

bacterial resistance to either component alone.244,246  

The primary route of SMX clearance is via metabolism in the liver by N-acetyltransferase 

and N-glucoronyl-transferase; these enzymes lead to the production of non-toxic 

metabolites.243,247 CYP-450 also metabolizes a small amount of SMX into hydroxylamine 

(SMX-HA) which under physiology conditions is rapidly converted to 

nitrososulfonamide (SMX-NO).247,248 SMX-NO is extremely reactive and may be central 

to many hypersensitivity reactions.  
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1.5.2 Beta-lactam antibiotics 

Beta-lactam antibiotics have been previously implicated in T cell-mediated DHRs. It has 

been previously shown that CD4+ and CD8+ T cell clones could be activated by 

piperacillin in patients with cystic fibrosis and beta-lactam antibiotic hypersensitivity.100 

Brander et al. also found a heterogeneous T cell response (of CD4+ and CD8+ T cells) to 

penicillin-hypersensitive individuals.249  

Beta-lactam antibiotics are widely used for treating bacterial infections in humans, but 

can also cause many immune-mediated allergic reactions.250 β-lactam antibiotics inhibit 

cell wall synthesis in bacteria by inhibiting transpeptidases, inducing lysis and cell 

death.34,251 Bacteria have developed a resistance to beta-lactam antibiotics, making many 

drugs ineffective.27,252–254  

The basic structure of a penicillin consists of a beta lactam ring, which is condensed to a 

thiazolidine ring. At position 6 of the structural backbone, there is an amine-bonded side 

chain, which is different depending on the type of penicillin.250 Specifically, amoxicillin 

(AMX) is a type of penicillin. It is prescribed either alone or combined to clavulanic acid 

(CLV).255  

Beta-lactam antibiotics have a ring structure that is responsible for the reactive and 

antibiotic activity.256 Once opening, penicillin is rearranged to metabolic by-products, 

including penicillic acid, penilloic acid, and penicilloic acid. In addition, 6-

aminopenicillanic acid may be formed. Beta-lactamases may produce other metabolites, 

including penicilloic acid. While not anti-bacterial, these metabolites may form 

immunogenic conjugates with proteins.257  

Beta-lactams can cause both immediate reactions (typically occurring one hour after drug 

intake), and non-immediate reactions.258–260 In terms of the non-immediate DHRs, 

maculopapular or morbilliform exanthemas (MPE) are the most common.258,261 It has 

been previously shown that AMX may be mediated via the hapten hypothesis.57 
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1.6 Clinical Phenotype of DHRs 
DHRs can result in a variety of clinical phenotypes, which range in severity. It is not 

always known how some individuals experience a more severe rash than another when 

taking the same drug. Typically, with delayed type DHRs, exanthemas (widespread rash 

that expands quickly) are the most common.262 Several types of lesions also occur, 

including pustular, vesicular, and bullar, however maculopapular is the most common.262 

Examples of skin reactions that can occur include erythema multiforme, drug reactions 

with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson Syndrome and 

Toxic Epidermal Necrolysis (SJS/TEN), maculopapular exanthema, and fixed drug 

eruption.262,263 Some drugs have been previously associated with different eruptions, 

including AMX with bullous skin disease, MPE, and AGEP,49 and NSAIDs, phenytoin, 

SMX, and AMX have been observed to cause FDE. Some of these skin reactions have 

other accompanied symptoms, such as fever (can be seen with DRESS and SJS/TEN) 

headaches, malaise, and fatigue. In some cases, the reaction can induce an autoimmune 

response, with one example occurring with prolonged DRESS potentially leading to 

drug-induced lupus erythematosus. DHRs can also lead to systemic organ involvement. 

Eosinophilia is common, while drug-induced hepatitis,262,264 drug-induced nephritis, and 

serum sickness are more rare.262 

1.6.1 Skin Rashes 

There are many kinds of rashes, and many different diseases or sensitivities can result in 

very similar-looking rashes. Allergies can lead to a set of specific types of rashes. 

Schlossberg outlines several of these distinctive types of reactions well.265 A rash that is 

pruritic is characterized as severe itching.266 Maculopapular rash is a type of eruption 

characterized by macules (spots) and papules (bumps). There are several causes of 

maculopapular rash, including Lyme disease, Rickettsiosis, rubella, EBV (Epstein-barr 

virus), SLE (systemic lupus erythematosus), and allergy, among many more.265 Another 

type of rash are vesico-bullous rashes. Vesicles are small blisters, while bullae are large 

fluid-filled blisters. There are also several causes of these types of rashes, including 

herpes simplex virus, staphylococcemia, HIV (human immunodeficiency virus), and 
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allergy.265 Several cytokines that can be secreted by different T cell subsets have been 

described in association with certain skin rashes (described below).  

1.6.1.1 Stevens-Johnson Syndrome and Toxic Epidermal 
Necrolysis 

A very serious type of rash associated with ADRs are seen in Stevens-Johnson Syndrome 

and Toxic Epidermal Necrolysis (SJS/TEN), which are acute life-threatening illnesses 

that affect the mucous membranes and cause acute epidermal detachment.267–269 SJS and 

TEN are two conditions on a spectrum with varying degrees of skin necrosis defined by 

the percentage of body surface area (BSA) affected. SJS involves <10% BSA, SJS/TEN 

overlap is 10-30% BSA, and TEN is >30% BSA. SJS is fatal in approximately 10% of all 

patients, while TEN is fatal in 30-50%. The vast majority (80-95%) of TEN cases are due 

to ADRs. Other, less common, causes include recent immunization, acute graft-vs-host 

disease, and contrast medium. Early symptoms include fever, malaise, and sore throat 

followed by blistering, target lesions, and various degrees of skin detachment.267,270 The 

skin lesions typically start on the body’s trunk.267,270,271  

Murata et al. determined that increased soluble Fas ligand (sFasL) is associated with SJS-

TEN, by demonstrating that there was increased sFasL in five of seven cases before 

disease onset.272 This difference would set early SJS/TEN apart from other drug 

eruptions. The authors note that since sFasL can be due to cell apoptosis in other 

diseases, it is important that this test is used only on people experiencing a cutaneous 

adverse reaction with high risk for SJS/TEN. Nomura et al. obtained serum samples from 

people at the onset of SJS/TEN and compared the cytokine levels to those of people with 

other delayed-type ADRs.273 They found that patients with TEN had higher levels of 

TNF-α, IL-10 IL-1Rα, IL-6, and GM-CSF. Patients with drug-induced hypersensitivity 

syndrome (DIHS) had increased IL-5 when compared to erythema multiforme (EM) and 

maculopapular (MP) type rashes. DIHS and TEN had high IL-13 levels, while SJS and 

TEN had slightly elevated IFN-γ levels. Pro-inflammatory cytokines and anti-

inflammatory cytokines are especially increased in TEN. Once SJS/TEN symptoms 

improved, IFN-gamma, IL-10, IL-1Rα, and IL-6 levels decreased.273  
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CCL27 is production is augmented by TNF-α in keratinocytes by the NFκB pathway.274 

Wang et al wanted to know if CCL27 influences the course of SJS/TEN. In serum CCL27 

was elevated during SJS/TEN, but low in blister fluid.275 In contrast, they found serum 

TNF-α to be low, while blister TNF-α was high. They concluded that while both 

contribute to progression of SJS/TEN, their effects were different.275 Granulysin has also 

been found to be responsible for widespread keratinocyte death.98,270 Chung and Hung 

found granulysin RNA in the blister cells of SJS/TEN, and granulysin was found to be in 

greater concentrations than other cytotoxic molecules. Upon injecting the skin of mice 

with granulysin, the mice developed an SJS/TEN-like reaction.98,270  

1.6.1.2 Acute Generalized Exanthematous Pustulosis 

Acute generalized exanthematous pustulosis (AGEP) was previously classified as 

psoriasis as it looked similar and was very rare.276 However, Baker and Ryan observed 

that some people presenting with AGEP had no previous history of psoriasis, and their 

illness was acute, short, and did not recur. They therefore attributed it to an infection or 

drugs.277  

AGEP is characterized by a pustular rash with fever over 38 °C96,278 on edematous 

erythema with a high neutrophil count.96 AGEP will spontaneously resolve within 15 

days of onset.96,279  

Approximately 90% of all AGEP cases have been associated with drugs, specifically 

aminopenicillins.96,279 AGEP has been previously associated with IL-8 secretion by T 

cells.96  

1.6.1.3 Drug Reaction with Eosinophilia and Systemic Symptoms 

Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS, also referred to as 

DIHS, Drug Induced Hypersensitivity Syndrome) is a drug reaction that has been found 

to result after treatment with sulfanimide, phenytoin, dapsone, allopurinol, etc.280–284 

DRESS has a late onset (typically 2-8 weeks after use), and also involves fever, 

eosinophilia, skin eruption, and lymphocyte activation.280,285 Chen et al. examined 

DRESS records from 60 former patients in a Taiwan medical centre.280 They found that 
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allopurinol was the most common cause, and the average latency period was 20.7 days. 

Some had other symptoms, including exfoliative dermatitis or blistering/purpuric 

eruption, in addition to the diffuse exanthematous eruption that all patients had. The 

authors also noted some differences in DRESS between patients, therefore questioned 

whether it is one disease or a spectrum. DRESS has been previously associated with IL-5 

and eotaxin secretion.286,287 

1.7 Diagnostic and Predictive Tests for DHRs 

1.7.1 In vivo 

In vivo tests that currently exist have been used to investigate DHRs are provocation tests 

and skin tests. Provocation tests work best for immediate reactions, since delayed 

reaction tests are not standardized enough for dose and symptom duration. There is also 

some difficulty with defining a positive result. Skin tests have been previously 

documented121,259,260,288–290 to have a low sensitivity and are only of utility in immediate 

hypersensitivity. They can be performed using a patch, a skin-prick, or an intracutaneous 

test.121  

1.7.2 In vitro 

1.7.2.1 Lymphocyte Toxicity Assay 

The lymphocyte toxicity assay (LTA) was developed from assays used to study metabolic 

differences between cells of patients and cells of controls. This assay uses isolated 

PBMCs to determine if there is greater cell death of drug hypersensitive patient cells 

compared to the cells of healthy control when incubated with the drug.291 Dr Rieder’s lab 

has had a long experience using these assays as a predictive and mechanistic tool for 

studying DHRs.29 

1.7.2.2 Lymphocyte Transformation Test 

The lymphocyte transformation test (LTT) is a widely used method in studying drug 

hypersensitivity.291 This test has been shown to be useful in exploring hypersensitivity 

reactions.96,102,103,121,292 The basic principle of this test involves measuring the 

incorporation of radio-labelled thymidine (3H-thymidine) in PBMCs to measure cell 
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division.243,291,293,294 The result in counts per minute (cpm) is expressed as a stimulation 

index (SI). Increased proliferation results in a greater SI value, however high SI values 

are not correlated with clinical severity.121  

1.7.2.3 Flow Cytometry to Study Activated T Cell Subsets 

As previously mentioned, CD69 is a marker present soon after T cell stimulation. 

However, there are others including CD25, CD71, and HLA-DR.121,233–235 Two relevant 

papers use flow cytometry to detect CD69 upregulation after drug stimulation include one 

by Nishio101 and another by Beeler and colleagues.295 Beeler et al. observed that CD69 is 

upregulated more in drug-allergic individuals than in non-allergic individuals and suggest 

CD69 as a promising tool for detecting drug-reactive T cells in peripheral blood.295 In 

addition, CD69 measurement by flow cytometry has been used in other allergies as well, 

including delayed hypersensitivity reactions to iodine contrast media.296 

1.8 Rationale 
My research will attempt to fill the gap that exists in the literature concerning the T cell 

phenotypes of drug hypersensitivity reactions. Currently, there are limited numbers of 

papers that link T cell subsets with different reactions. There are some papers that link 

individual cytokines, chemokines, enzymes, or proteins (see section Immune Mediation 

of DHRs) however there is not a full understanding of the physiology of these reactions. 

There are several “hypotheses” that attempt to explain the pathophysiology of these 

reactions, however there are many unknowns and there is no one mechanism more 

supported than the others.  

Flow cytometry has been used previously to study these reactions, however it has been 

limited in favour of other methods, including ELISA/ELISpot, the LTT, and cloning 

drug-specific T cell subsets. Flow cytometry is beneficial because it allows the detection 

of multiple fluorochromes bound to multiple proteins on the cell surface, which is 

beneficial in staining for both cell type and activation. The overall idea would be to 

confirm that the immune cells are dividing in response to drug stimulation, determine 

which immune cells are activated during this stimulation, and which cytokines are 

secreted as a result. Since certain cytokines are associated with specific T cell subsets, 
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these secreted cytokines can be used to determine which T cells could be involved in the 

reactions. Consenting participants with confirmed reactions to sulfamethoxazole and 

beta-lactam antibiotics will be asked to participate in this study. SMX and AMX were 

chosen due how they are both commonly associated with DHRs. The ultimate goal is to 

conduct a comprehensive study of the phenotypes of T cell involvement in specific 

clinical presentations of hypersensitivity reactions to various medications. 

1.8.1 Hypothesis 

I hypothesize that differences in activated peripheral T cell subsets and types of 

mediators released produce different clinical phenotypes of drug hypersensitivity 

reactions to sulphnamides and beta-lactam antibiotics.  

1.8.2 Aims 

In this study, my aim was to study and characterize lymphocytes isolated from peripheral 

blood samples from patients with clinical presentations suggestive of delayed-type drug 

hypersensitivity reactions and compare with drug tolerant controls. To do this, I will use 

different techniques such as scintillation counting, flow cytometry, and multiplex bead-

based assays to measure in vitro PBMC and T cell proliferation. I will use radiolabeled 

thymidine incorporation to measure proliferation in response to treatment, flow 

cytometry to determine activated T cell subsets, and Luminex, a bead-based detection 

assay, to analyze cytokine release of T cell subsets. 
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Chapter 2  

2 Experimental Design and Methods 
This research project is part of a larger drug safety project being conducted in the Rieder 

laboratory. The first stage of the project, being performed by another lab member, is to 

learn about the symptoms that patients with drug hypersensitivity have by completing a 

detailed survey to determine the extent and nature of the reaction. Another component of 

the project is to extract DNA from the isolated PBMCs and study markers in each 

subgroup of patients exhibiting different clinical presentations of drug hypersensitivity. 

My portion of the project was to characterize the T cell phenotypes of the different 

clinical presentations of drug hypersensitivity reactions. To date, while there has been 

some research into the different types of T cells involved in certain DHRs, much is still 

unknown. To do this, I obtained venous blood samples from patients and controls and 

isolated and characterized isolated PBMCs/T cells. A methods schematic is detailed in 

Figure 2-1. Research ethics had been previously obtained by Dr. Rieder’s laboratory for 

this project (REB # 1118833E).  

 

Figure 2-2-1: Schematic of methods used 
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2.1 General Methods 

2.1.1 PBMC Isolation 

We isolated PBMCs from whole blood using density gradient separation. First, 

approximately 15 ml of blood was diluted 1:1 in 1× phosphate buffered saline (PBS, 

protein-free, pH 7.2, Gibco by Life Technologies, catalogue no. 20012-027). Then, 30 ml 

of the blood + PBS 1:1 mixture was carefully layered over 15 ml of Ficoll Histopaque-

1077 (Sigma, catalogue no. 10771), and centrifuged for 20 minutes (increased to 30 

minutes if blood was drawn the day before) at 1500 rpm. The grey PBMC layer was 

transferred to new 50ml tubes by serological pipette, and washed twice, each time with a 

full tube (50 ml) of PBS and centrifuged at 1600 rpm for 10 minutes. The PBMCs were 

diluted to 5 × 106 cells/ml in Roswell Park Memorial Institute (RPMI) medium (+ L-

glutamine, 1640 1×, catalogue no. 11875-093) supplemented with 10% human AB serum 

(Sigma, catalogue no. H3667) by manual counting with a hemocytometer. 

2.1.2 Preparing Universal Mitogen Stimulation Plates 

To prepare for stimulation, anti-CD3 antibody (Ultra-LEAF purified antihuman CD3 

antibody, clone OKT3, Biolegend, catalogue no. 317325) was coated on the bottom of a 

U-bottom 96-well plate. To the required number of labelled wells, 2 µl anti-CD3 

antibody (at 1mg/ml) and 98 µl of 1× protein-free PBS are added. The plate was wrapped 

in parafilm and left in the fridge (4 °C) overnight. The following day, the plates were 

centrifuged at 1600 rpm for 10 minutes and the supernatant decanted before PBMCs or T 

cells were added into coated wells. 

2.1.3 Assessing Proliferation by Scintillation Counting 

For scintillation counting, the stimulants included anti-CD3, the drug the patient was 

sensitive to, or culture media (RPMI + 10% human AB serum) as an unstimulated 

control. The PBMCs were incubated with the stimulant, drug, or media for 54 hrs and 4 

days in an incubator at 37 °C and 5% CO2. Sixteen hours before harvesting the plates, 1 

µCi of tritiated thymidine (Thymidine, [methyl-3H], Perkin Elmer, catalogue no. 

NET027005MC, lot no. 201510) was diluted in culture media 1:10, then 10 µl of the 



31 

 

tritiated thymidine/media mixture was added to both stimulated (by anti-CD3 and drug) 

and unstimulated PBMCs (alternatively, the 3H-thymidine is diluted 1:25 in media, and 

added to all wells with a repeater pipettor if number of wells is very high). The PBMCs 

were then washed and harvested using a cell harvester (Tomtec, Hamden, CT), and the 

thymidine incorporation is assessed using a MicroBeta counter (Micro Beta Jet, Perkin 

Elmer1450 LSC & Luminescence Counter). Proliferation is assessed by calculating the 

stimulation index (SI), by subtracting average background counts per minute (cpm) from 

the average cpm of each type of sample, then dividing by the average of the unstimulated 

wells.  

2.1.4 Assessing Proliferation of T Cell Subsets by Flow Cytometry 

2.1.4.1 Flow Cytometry Protocol 

PBMCs were seeded into a U-bottom 96-well plate, then stimulated in vitro with the drug 

the patient had a reaction to (ie. AMX or SMX) at the test concentrations, or stimulated 

with anti-CD3 (see § Preparing Universal Mitogen and Stimulation Plates section), a T 

cell mitogen, as a controlled comparison. The cells were incubated for 54 hrs in an 

incubator at 37 °C and 5% CO2.  

The PBMCs were stained with eBioscience Fixable Viability Dye eFluor 506 

(ThermoFisher Scientific, catalogue no. 65-0866-14) according to manufacturer’s 

instructions to identify dead cells in the sample. The cells were also stained with 

allophycocyanin (APC) mouse antihuman CD3 (BD Pharmingen, clone UCHT1, 

catalogue no. 561810) to identify all T cells, brilliant violet 421 (BV421) mouse 

antihuman CD8 (BD Horizon, clone RPA-T8, catalogue no. 562429) to identify cytotoxic 

T cells, phycoerythrin (PE) mouse antihuman CD4 (BD Pharmingen, clone RPA-T4, 

catalogue no. 561843) to identify helper T cells, phycoerythrin-cyanine 5 (PE-Cy5) 

antihuman CD69 (eBioscience, clone FN50, catalogue no. 25-0699-41), all according to 

manufacturer’s instructions, to identify activated T cells. Single stain controls were 

performed with Invitrogen UltraComp eBeads (ThermoFisher Scientific, catalogue no. 

01-2222-42). All cells were fixed by resuspension in 100 µl of 4% paraformaldehyde 
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solution and 200 μl of 1× PBS + 3% FBS (foetal bovine serum) prior to flow cytometry 

analysis. Samples were analyzed within 4 days post-fixing. 

2.1.4.2 Flow Cytometry Specifications 

All flow cytometry experiments were performed at the London Regional Flow Cytometry 

Facility at Robarts Research Institute, Western University. The PBMCs were analyzed on 

a Becton Dickinson LSR II analysis cytometer (BD Biosciences), using FACSDiVa 

software (version 8.0.1). The flow cytometer is equipped with a 50 mW Coherent Cube 

402 nm violet diode laser, a 2 mW Coherent Sapphire state 488 nm blue laser, a 50 mW 

Coherent Compass 561 nm solid-state yellow-green laser, and a 40 mW Coherent Cube 

640 nm red diode laser. 

The violet laser trigon was used to detect Brilliant Violet 421 (detector C, with a 450/50 

bandpass (bp) filter and no longpass (lp) mirror), and to detect the fixable viability dye 

(detector B, 525/50 bp, 505 lp). The yellow-green laser octagon was used to detect PE 

(detector E, 582/15 bp), and PE-Cy7 (detector A, 78/60 bp, 755 lp). The red laser trigon 

was used to detect APC (detector C, 670/30 bp). 

2.1.4.3 FlowJo Gating Procedure 

Data was analyzed using FlowJo software (FlowJo, LLC). On FlowJo, the gates were set 

using FMO (fluorescence minus one) controls on the fully stained samples. First, forward 

scatter area (FSC-A) was gated against the aqua viability dye to gate only live cells. Side 

scatter height (SSC-H) was gated against side scatter width (SSC-W), and forward scatter 

height against forward scatter width to gate single cells. Then, CD3 APC was compared 

against SSC-A to gate CD3+ and CD3- stained cells. Within the CD3- population, CD69 

PE-Cy7 was compared against SSC-A to identify with CD3-CD69+ population. Within 

the CD3+ lymphocyte population, CD4 PE was compared against SSC-A to determine the 

CD4+ population. Within this gate, CD69 was compared against SSC to determine the 

CD4+CD69+ population. From the CD3+ population, CD8 was compared against SSC-A 

to determine the CD8+ population. Within this population, CD69 was compared against 

SSC-A to determine the CD8+CD69+ population. 
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2.1.5 Cryopreservation of PBMCs and T Cells 

This method has been adapted from the Canadian Healthy Infant Longitudinal 

Development (CHILD) Study, from their 8-Year Biological Samples Collection and 

Processing SOP, 23 July 2018 edition.297 Once all appropriate experiments were prepared 

with the patient PBMCs and T cells, aliquots of cells were frozen under liquid nitrogen 

for future analysis.  

The 2× freezing medium was prepared by combining 15 ml of heat-inactivated fetal 

bovine serum (FBS), 15 ml of RPMI 1640, and 10 ml of dimethyl sulfoxide (DMSO), 

aliquoted in 3 ml volumes and remainder stored at -20 °C. 

Both T cells and PBMCs are resuspended at 1 × 107 cells/ml in RPMI 1640 + FBS 1:1. 

Labelled cryovials were placed on ice, then 500 μl of PBMC or T cell suspension were 

added to each tube. Then we added 500 µl of 2× freezing medium to each cryovial while 

on ice. 

The Mr Frosty (Nalgene, Thermo Scientific, USA) was prepared by removing the insert 

and adding 250 ml of isopropanol to the container. The vial holder was replaced into the 

container. The isopropanol was changed after every fifth use. The Mr. Frosty was placed 

into the fridge at 4 C more than four hours before it is required. The PBMC and T cell 

aliquots were placed into the Mr. Frosty and then into the -80 °C freezer for 4 to 24 hours 

(typically overnight), and then the samples were placed into the liquid nitrogen long term 

storage tank into a known and recorded location. 

2.2 Specific Experimental Procedures and Methods 

2.2.1 Assessing Highest CD69 Expression on T Cells 

I explored the length of the incubation for incubating isolated PBMCs with the culprit 

drug or universal mitogen (anti-CD3). This experiment was based off of a study by 

Beeler et al.295 The evening before isolating the PBMCs and plating the cells, I coated 21 

wells (three wells per timepoint for five timepoints, five FMO wells, one viability dye 

compensation control well) of a U-bottom 96-well plate with anti-CD3 and PBS, as 

previously described (see § Preparing Universal Mitogen and Stimulation Plates) and 



34 

 

allowed the plate to rest in the fridge. I started with 15 ml healthy volunteer blood and 

LEAF anti-CD3 as the universal mitogen. I did not have access to hypersensitive patient 

samples, so a drug stimulant was not used. I isolated the PBMCs from the 15 ml of blood 

(as described in § PBMC Isolation), suspended the PBMCs in 10 ml of RPMI with 1´ 

penicillin/streptomycin and 10% human AB serum, counted the cells in a hemacytometer, 

and adjusted the concentration to 5 ´ 106 cells/ml. The plate with anti-CD3 coated wells 

was centrifuged at 1600 rpm for 10 minutes, then I decanted the supernatant and added 

200 ul of PBMC suspension to 21 coated wells and 12 uncoated wells. Every 18 hours I 

harvested three wells of anti-CD3 stimulated and three unstimulated samples for flow 

cytometry and stained with Aqua Viability Dye, CD3 APC, CD4 PE, CD8 BV421, and 

CD69 PE-Cy7 (as described in § Assessing Proliferation of T Cell Subsets by Flow 

Cytometry subsection A, Flow Cytometry Protocol) for a total of five timepoints. After 

staining, the PBMCs were suspended in 100 µl 1 × PBS + 3% FBS and 100 µl 4% 

paraformaldehyde for flow cytometer acquisition. Single stain compensation controls for 

CD3 APC, CD4 PE, CD8 BV421, and CD69 PE-Cy7 were made fresh using comp beads. 

In total, 15 stimulated timepoint samples, 15 unstimulated timepoint samples, five FMO 

samples, and five single stain compensation controls were analyzed. To analyze the data, 

the unstimulated values were subtracted from the stimulated values in an attempt to 

normalize.  

2.2.2 Testing Healthy Cells with Concentrations of SMX-HA and 
SMX Parent Drug 

The purpose of this experiment was to determine the magnitude of cell death caused by 

different concentrations of either sulfamethoxazole hydroxylamine reactive metabolite 

(SMX-HA) or sulfamethoxazole parent drug (SMX). As SMX-HA is more reactive than 

SMX and can cause cell death, we used both drugs to determine the best one to use in this 

experiment. The evening before the experiment, I coated nine wells of a U-bottom 96-

well plate with anti-CD3 (see § Preparing Universal Mitogen and Stimulation Plates) for 

flow cytometry. 

I isolated PBMCs from approximately 15 ml of healthy volunteer blood and suspended 

the PBMCs in 10 ml of RPMI 1640 supplemented with 10% human AB serum. Using a 
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hemacytometer, the PBMCs were counted and the concentration was adjusted to 5 × 106 

cells/ml. The 96-well plate was centrifuged at 1600 rpm for 10 minutes, and the 

supernatant decanted. I added 100 µl of healthy PBMCs to each of the anti-CD3 coated 

wells and to 21 non-coated wells. Of the nine anti-CD3 coated wells, five of the 

stimulated wells were for FMOs, one of the stimulated wells was for the viability dye 

single stain control, three stimulated wells were for control wells – to these wells I added 

100 µl RPMI 1640 + 10% human AB serum. I also added 100 µl of media to three 

unstimulated wells to be stained with the full panel of fluorescent antibodies. For 

unstimulated wells, media was added because no drugs were required, but the final 

volume required was 200 µl. Sulfamethoxazole parent drug was added to nine 

unstimulated wells in 200 µM, 100 µM, and 50 µM concentrations, three wells each. 

Sulfamethoxazole hydroxylamine was added to nine unstimulated wells in 100 µM, 50 

µM, and 25 µM concentrations, three wells each. The plate was incubated for 54 hrs. The 

cells were harvested into flow cytometry tubes, stained with viability dye, CD3 APC, 

CD4 PE, CD8 BV421, and CD69 PE-Cy7, acquired on the LSR II flow cytometer with 

FACS Diva and analyzed using FlowJo (see § Assessing Proliferation of T Cell Subsets 

by Flow Cytometry). Once a concentration of SMX-HA was found to potentially cause 

cell death, two more healthy control participants were tested with anti-CD3 and the 

concentration previously found to reduce cell viability, to ensure results were consistent. 

2.2.3 Processing Patient Samples 

2.2.3.1 Recruiting Participants 

Subjects were recruited from patients seen at Dr. Rieder’s Drug Safety Clinic at London 

Health Science Centre, Victoria Hospital in London, Ontario. Prospective patients were 

determined from a database of Dr. Rieder’s DHR patients, on the basis of having 

previously been tested by LTA (Lymphocyte Toxicity Assay) for a T-cell mediated drug 

hypersensitivity reaction to either sulfamethoxazole or beta-lactam antibiotics. The LTA 

testing was either being conducted simultaneously for patients with a high likelihood 

based on clinical history, or one to eight years previously. For these participants, blood 

was drawn either at Robarts Research Institute, London, Ontario by Dr. Rieder, or at 

University Hospital, in London, Ontario by phlebotomy staff. Inclusion criteria were that 
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they had a positive LTA test, or they were in the process of being tested and their clinical 

history strongly suggested DHR, and had a recorded rash or skin condition attributed to 

drug exposure. Patients who were very likely to have had a DHR based on history alone 

who were referred to LTA testing. For these participants, blood was drawn at the same 

time as the blood for the LTA testing. I called previous or current patients and asked if 

they would be willing to provide a sample for the study, or to add one 1-2 tubes of blood 

to their LTA testing. The details of the experiment and their privacy were discussed over 

the phone, and they were sent a copy of the Letter of Information (LOI) with the consent 

forms either in advance or in person before the appointment. Participants were given a 

$10 Tim Horton’s gift card for their time and their sample. 

2.2.3.2 Receipt and Preparation of Participant Samples 

After patient samples were received, a control sample (~15 ml) of blood was drawn from 

a healthy, consenting volunteer. Typically one control was used per one DHR participant. 

The control was ideally someone who has taken the drug the patient participant has a 

hypersensitivity to but did not have an adverse response, or someone who has served as a 

control in previous LTA tests but consistently tests negatively. One control sample and 

one patient sample were analyzed at the same time. Depending on availability of samples, 

the samples were processed and PBMCs were isolated either the same day or the next day 

(see § PBMC Isolation). If PBMCs were isolated the day after blood was collected, an 

extra 10 minutes was added to the centrifugation at the Ficoll separation step for those 

samples only. PBMCs were re-suspended after isolation to 5 × 106 cells/ml in RPMI + 

10% human AB serum. If testing only one drug, 15 ml was prepared, or 20ml for two 

drugs, to accommodate additional wells. 

2.2.3.3 Preparing SMX and AMX to study Activation 

To stimulate PBMCs, four different concentrations were made from analytical grade 

powder for each drug, AMX and SMX. Two serial dilution charts (see Figure 2-2 and 

Figure 2-3) were used for each patient to make the appropriate dilutions. Drugs were 

diluted 1:1 with 100 µL of PBMC suspension to achieve final concentrations of AMX 

1000 µM, 500 µM, 100 µM, and 10 µM; SMX 800 µM, 400 µM, 200 µM, and 100 µM. 
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All drug preparations were made fresh the day of plating, and either used immediately or 

kept in the dark until required (usually only maximum of 1 hr). 

 

Figure 2-2: Serial dilution chart for amoxicillin	
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Figure 2-3: Serial dilution chart for sulfamethoxazole	

2.2.3.4 Assessing Proliferation by Scintillation Counting 

The evening before the PBMCs were plated onto 96-well plates, I made the appropriate 

number of anti-CD3 coated plates. Which plates were made depended on which 

experiments would be conducted the next day – this was important because cell 

harvesting and scintillation counting for proliferation testing could not be performed on a 

weekend due to equipment availability, so the 54 hrs and 4 days scintillation counting 

plates were coated strategically to avoid this. For each control and participant plate at 

both time points, I coated four wells. The following day, 100 ul patient and control 

PBMCs at 5 × 106 cells/ml in RPMI + 10% human AB serum were plated with either 100 

ul of media (RPMI + 10% human AB serum as negative control), anti-CD3 with added 

media to bring volume up to 200 µl, or the 100 µl of the four different concentrations of 

the appropriate drug. Four wells of each condition were plated. At 16 hours before 

harvesting, 1 µCi of 3H-thymidine was added to each well (see § Assessing Proliferation 

by Scintillation Counting for details). See Figure 2-4 for a sample plate layout. 
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Figure 2-4: Sample scintillation counting plate layout 

If two drugs were plated, the wells occupied rows A-H columns 8-11. One plate is made 

for control PBMCs, a second plate is made for patient PBMCs, and two plates are 

processed for each 54 hrs and 4 days incubation period. 

2.2.3.5 Flow Cytometry for Activated CD4 and CD8 T Cells 

The flow cytometry plate cells were harvested into flow cytometry tubes using a plastic 

transfer pipette, and PBS to rinse the wells to ensure all cells were transferred into the 

tubes. The cells were washed with PBS and centrifuged at 1600 rpm for 10 minutes. The 

supernatant was removed by pipette and the cell pellet resuspended in 1 ml of PBS. To all 

tubes except the viability dye FMO, I added 1 μl of viability dye. The anti-CD3 

stimulated PBMCs were stained with one test each of CD3 APC, CD4 PE, CD8 BV421, 

and CD69 PE-Cy7 (see § Assessing Proliferation of T Cell Subsets by Flow Cytometry 

subsection A, Flow Cytometry Protocol, for details) while the FMO tubes were stained 

appropriately (see Figure 2-5 for a sample flow cytometry staining panel for patient 

samples). PBMCs were washed twice with 1 × PBS + 3% FBS, and resuspended in 100 



40 

 

ul 4% paraformaldehyde, to fix the cells, and 200 µl of 1× PBS + 3% FBS. The 

experiment was acquired on the LSR II as soon as possible after staining (within 2-3 

days, depending on availability of the cytometer for a 3-hour time slot). 

 

Figure 2-5: Sample flow cytometry staining panel for patient and control samples 

2.2.3.6 Assessing Cytokine Release 

Isolated PBMCs and T cells from both control and patient samples were stimulated with 

anti-CD3, the drug concentrations, and culture media (unstimulated) in duplicate. The 

evening before plating, two anti-CD3 plates are prepared (see § Preparing Universal 
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Mitogen Stimulation Plates). T cells were only isolated and plated if there were enough 

cells remaining from the patient and control samples to justify isolating them without 

compromising cell numbers for other experiments. The plates were divided into two (one 

half for PBMCs, one half for T cells), and two wells are coated in each half (4 wells total 

per plate). PBMCs were plated in duplicate at 5 × 106 cells/ml in RPMI + 10% human 

AB serum with either media (control), anti-CD3, or the four concentrations of either drug 

(AMX or SMX). After a 3-day incubation at 37 °C and 5% CO2, the supernatant was 

removed from samples, stored in labelled Eppendorf 2 ml tubes, and frozen at -80 C until 

analysis could be completed.  

Stimulated DHS and control participant PBMCs were subjected to Luminex analysis. 

Since the AMX data was more promising, only AMX participants and controls were 

included in the Luminex analysis. Control and DHR 006 participants were not analyzed 

due to heavy RBC contamination in DHS006 samples.  

A custom Luminex kit was ordered from Bio-Rad (Hercules, CA), specific for analytes 

IFN-y, IL-9, IL-22, IL-17A, and IL-13 (PO # 0222850). The analysis was performed 

according to manufacturer’s instructions. The beads were diluted as instructed by the 

manufacturer. Since it was a custom kit, some beads were 2× as concentrated as others, 

so they were diluted appropriately. A plate layout was generated (see Figure 2-6), with all 

blanks, standards, and samples analyzed in duplicate. A standard curve was generated for 

the beads. Bio-Rad suggests neat to 1:10 dilution, but since some of the standards had 

such a high starting concentration, we chose neat to 1:12 dilution to accommodate this, as 

well as to fill up the plate.  

Frozen supernatants were thawed over ice and centrifuged for 3 minutes at 12000 rpm to 

pellet any debris. Since the supernatants were composed of culture media (with added 

protein), no BSA was added to the samples. Then 50 µl of the diluted beads were added 

to each well and washed two times with wash buffer and the magnetic plate. Then, 50 µl 

of samples, standards, and blank were added to each well, covered, and incubated with 

shaking for 1 hr. With 10 mins remaining in the incubation, the antibodies were diluted to 

1× according to instructions. The plate was washed three times with wash buffer and the 
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magnetic plate, then 25 µl of detection antibodies was added to each well. The plate was 

covered and incubated with shaking for 30 mins. With 10 mins remaining in the 

incubation, the streptavidin-PE (SA-PE) was prepared. The plate was washed three times 

with wash buffer and the magnetic plate, then 50 µl of diluted SA-PE was added to each 

well. The plate was covered and incubated for 10 mins. A final round of three washes 

was performed, and each well was resuspended in 125 µl of assay buffer. The plate was 

covered and placed on the shaker until analysis.  

A Bio-Plex 200 readout system (Bio-Rad) was used to analyze the cytokines. This system 

uses Luminex ® xMAP fluorescent bead-based technology (Luminex Corporation, 

Austin, TX). Cytokine levels (pg/ml) were automatically calculated from standard curves, 

generated by the Bio-Plex Manager software (v. 6.1, Bio-Rad, Hercules, CA). 

 

Figure 2-6: Luminex sample plate layout	

S1-S12: standard bead dilutions, D4-D8: DHS participant, C4-C8: control participant. All 

samples were supernatants of PBMCs incubated with AMX.  
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2.3 Statistical Methods 
An ANOVA can be used to test three or more groups without inflating the alpha value, 

which would be the case with multiple comparisons.298 Repeated measures ANOVA 

(rANOVA) was used to perform many of the statistical analyses as the same participants 

were tested repeatedly across the dependent variable. This is beneficial as it reduces the 

error.  

However, one important aspect of rANOVA is sphericity. When sphericity is violated, 

the test becomes too liberal (increases Type I error rate) and therefore might indicate a 

significant result when it should actually be not significant. As a result, there are some 

tests that correct the rANOVA by increasing p to make the test more conservative. We 

chose to analyze sphericity-violated rANOVAs with the Greenhouse-Geisser correction. 

A previous analysis by Muller and Barton (1989) supports the use of the Greenhouse-

Geisser correction (over Huynh-Feldt) due to acceptably controlling for Type I error 

while also maximizing power.299  

While we did use statistical methods when appropriate, it is important to note that the N 

of the study was relatively small for certain tests, it would be prudent to increase the 

number of participants in the study to increase the power.  
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Chapter 3  

3 Experimental Set 1 
It has been previously shown that T cells appear to be key mediators of DHRs.53,54,96–104 

While it is not fully understood how they are involved, it is thought that they, as well as 

their mediators, are primarily responsible for the immunological pathogenesis of these 

reactions. In addition, CD69 has been previously shown to be an activation marker that is 

expressed on the T cell surface rapidly after activation.295 However, CD69 does not 

remain on the cell surface indefinitely, and its quantity can change after activation. For 

our own purposes, it was important to do our own tests to observe what methods would 

work for us. This includes which metabolites to use, length of incubation time, percent of 

CD69 expression.  

3.1 Using SMX Yields more Live Cells than SMX-HA 
In addition to sulfamethoxazole (SMX) parent drug, there are two intermediates that can 

also cause a reaction, however they differed in their toxicity. To decide which form of 

SMX we would use, I tested concentrations of SMX and sulfamethoxazole 

hydroxylamine (SMX-HA). PBMCs from one volunteer donor were incubated with 

culture media (unstimulated), 500µM, 100µM, and 200µM SMX, and 25µM, 50µM, and 

100µM SMX-HA, and analyzed by flow cytometry for the percentage of live cells 

remaining after incubation (Figure 3-1).  
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Figure 3-1: Percentage of live cells after PBMCs from a healthy control were 

incubated with either culture media, SMX, or SMX-HA for 54 hours 

Concentrations of 50µM, 100µM, and 200µM SMX; 25µM, 50µM, and 100µM SMX-

HA for 54 hrs. N = 1.  

Without statistical analysis, given the small sample size (N=1), there do not seem to be 

any differences between the SMX-stimulated samples. However, there was a decrease in 

cell viability when the PBMCs were incubated with 100µM SMX-HA. To confirm, this 

concentration was repeated with two additional healthy controls, increasing the sample 

size to 3 (Figure 3-2). A Student’s t test confirmed that 100µM SMX-HA significantly 

reduces cell viability (p = 0.0017).  
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Figure 3-2: Percentage of live cells remaining after PBMCs from three controls were 

incubated with 100uM SMX-HA for 54 hrs 

The PBMCs incubated with 100µM SMX-HA have a significantly lower number of live 

cells remaining after incubation compared with unstimulated PBMCs with media alone 

(student’s t test, one-way, p = 0.0017). N = 3, ± SEM. 

3.2 Length of Incubation affects Viability of PBMCs  
To determine the best length of time for incubating PBMCs with a stimulant, PBMCs 

were incubated with plate-bound anti-CD3 for five intervals of 18 hours, in an 

experiment similar to Beeler et al.295 First, the percent of live PBMCs remaining after 

incubation was analyzed every 18 hours by flow cytometry (Figure 3-3). There was a 

gradual decrease in viability as the timepoints increased. At 90 hrs, viability decreased to 

an average of approximately 50% viability. Our chosen timepoint of 54 hrs did not differ 

significantly from 18hrs.  
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Figure 3-3: The percent of live cells remaining after PBMCs were incubated with 

plate-bound anti-CD3 at 18 hr intervals for 90 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was a significant 

effect of time on number of live PBMCs remaining. F(1.164, 2.328) = 25.351, p = 0.027. 

N = 3, ± SEM. 

3.3 Percent of T Cells expressing CD69 during Incubation 
PBMCs were also analyzed for percent CD69 expression and MFI of CD69 across CD3+, 

CD3+CD4+, and CD3+CD8+ cell types. Unstimulated percent of CD69 expression 

values were subtracted from anti-CD3 stimulated values. With the CD3+ percent CD69 

and MFI (Figures 3-4 and 3-5), there were no significant timepoints, however the overall 

appearance of the data can be described. With both the percent CD69 and the MFI of 

CD69, 18, 54, and 72 hr timepoints appeared to be the highest. With CD3+CD4+ percent 

CD69 and MFI (Figures 3-6 and 3-7), the trends were different, but again not significant. 

With the percent CD69 (Figure 3-6), there seemed to be an overall decrease in percent 

CD69 expression from the 18 hr to the 90 hr timepoint. With the MFI of CD69 (Figure 3-

7), the 18 hr, 54 hr, and 72 hr timepoints were the highest, however the values were more 
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variable. With CD3+CD8+ percent CD69 and MFI (Figures 3-8 and 3-9), while also 

providing no significant timepoints. 

While there were no significant differences between timepoints (that either caused a 

significantly higher or lower cell viability), the timepoint 54 hrs was chosen for the 

participant experiments. 

 

Figure 3-4: Percentage of CD3+ T cells expressing CD69, assessed by flow 

cytometry, after PBMCs from three healthy control participants were incubated 

with anti-CD3 for 90 hrs for intervals of 18 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on percent CD69 expression on CD3+ T cells. F(1.041, 2.081) = 1.494, p = 

0.346. N = 3, ± SEM. 
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Figure 3-5: MFI of CD69 expressing CD3+ T cells, assessed by flow cytometry,  

after PBMCs from three control participants were incubated with anti-CD3 for 90 

hrs for intervals of 18 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on the MFI of CD69 expression on CD3+ T cells. F(1.072, 2.145) = 0.495, 

p = 0.563. N = 3, ± SEM. 
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Figure 3-6: Percentage of CD3+CD4+ T cells expressing CD69, assessed by flow 

cytometry, after PBMCs from three healthy control participants were incubated 

with anti-CD3 for 90 hrs for intervals of 18 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on % CD69 expression on CD3+CD4+ T cells. F(1.087, 2.173) = 3.660, p = 

0.188. N = 3, ± SEM. 
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Figure 3-7: The MFI of CD69 expressing CD3+CD4+ T cells, assessed by flow 

cytometry, after PBMCs from three healthy control participants were incubated 

with anti-CD3 for 90 hrs for intervals of 18 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on the MFI of CD69 expression on CD3+CD4+ T cells. F(1.072, 2.144) = 

0.362, p = 0.619. N = 3, ± SEM. 
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Figure 3-8: Percentage of CD3+CD8+ T cells expressing CD69, assessed by flow 

cytometry, after PBMCs were incubated with anti-CD3 for 90 hrs for intervals of 18 

hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on percent CD69 expression on CD3+CD8+ T cells. F(1.689, 3.378) = 

1.735, p = 0.296. N = 3, ± SEM. 
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Figure 3-9: The MFI of CD69 expressing CD3+CD8+ T cells, assessed by flow 

cytometry, after PBMCs from three control participants were incubated with anti-

CD3 for 90 hrs for intervals of 18 hrs 

A repeated measures ANOVA was conducted to determine if any time intervals were 

significant. Mauchly’s Test of Sphericity indicated that the assumption of sphericity was 

violated, therefore the Greenhouse-Geisser correction was used. There was no significant 

effect of time on the MFI of CD69 expression on CD3+CD8+ T cells. F(1.216, 2.432) = 

0.744, p = 0.493s. N = 3, ± SEM. 
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Chapter 4  

4 Experimental Set 2 
Both sulfamethoxazole (SMX) and beta-lactam antibiotics (for example, penicillin) have 

been previously shown to elicit DHRs.137,258,259,261 In addition, both are commonly 

prescribed antibiotics. The lymphocyte transformation test (LTT) is an effective 

diagnostic test for delayed type DHRs.96,102,103,121,292 Flow cytometry has been previously 

used to detect CD69 upregulation after drug stimulation.101,295,296 While its use in delayed 

type DHRs has been limited, it is a promising way to detect cellular response using 

surface proteins. In addition, differences in cytokine secretion, which can be analyzed in 

several different ways, are an effective way to study DHRs.137,186,300  The goal was to 

determine if there were patterns among the clinical presentations of people previously 

diagnosed with DHRs to SMX and AMX.  

4.1 Description of Participant Population 
The mean age of DHR participants (Table 4-1) was 50.5 years, with a standard deviation 

of approximately 19.1 years, and the ratio of female to male participants was 7:1. The 

mean age of the control participants (Table 4-2) was 31.125 years, with a standard 

deviation of 13.3, and a female to male participant ratio of 4:4. Student’s t-test confirmed 

that there was a significant difference in average age between the two participant 

populations (Student’s t-test, one-tailed, p = 0.017). All control AMX participants had 

previously taken the drug, while the control participants either had never taken 

sulfamethoxazole or had no recollection.  

It is important to note that within the SMX participants, of the four oldest participants, 

three were DHS participants. Within the AMX participants, of the four oldest, again three 

were DHS.  
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Table 4-1: List of participants with drug allergies that took part in the study, 

recruited from Dr. Michael Rieder’s drug allergy clinic at London Health Sciences 

Centre, in London, Ontario, Canada 

Participant 
identifier 

Age as of 
collection date 

Listed 
sex 

Drug 
tested 

History/symptoms with drug 

DHS001 52 F SMX Rash (unspecified) 

DHS002 72 F SMX No recollection 

DHS003 48 F SMX Oral blistering (SJS?) 

DHS004 51 F AMX Serum-sickness like 

DHS005 22 F AMX Morbilliform rash 

DHS006 63 M AMX SJS 

DHS007 24 F AMX Rash (unspecified) 

DHS008 68 F AMX and 
SMX 

Pruritic rash, requiring 
hospitalization 

 

Table 4-2: List of control participants that participated in the study, recruited from 

Western University, in London, Ontario, Canada 

Participant 
identifier 

Age as of 
collection date 

Listed 
sex 

Drug 
tested 

History/symptoms with drug 

C001 27 F SMX No recollection 

C002 21 F SMX Never taken sulfa 

C003 60 F SMX Never taken sulfa 

C004 41 M AMX Taken before, no adverse 
reactions 

C005 23 M AMX Taken before, no adverse 
reactions 
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C006 24 F AMX Taken before, no adverse 
reactions 

C007 24 M AMX Taken before, no adverse 
reactions 

C008 26 M AMX and 
SMX 

Taken AMX before, unsure 
about SMX 

4.2 Scintillation Counting Results 
Control and SMX/AMX participant PBMCs were also incubated with the drug and 3H-

thymidine to determine if the drug stimulated DHS participant PBMCs, resulting in the 

proliferation of cells and a high stimulation index (SI). SI is a ratio of unstimulated 

PBMCs to drug stimulated PBMCs. Typically, an SI of 2 is required to say that the 

PBMCs are responding to the drug in vitro.  

4.2.1 Scintillation Counting Results from SMX-Hypersensitive 
Participants 

When control and DHR participant PBMCs were incubated with SMX for 54 hrs, there 

was no significant change in SI (Figure 4-1), and there was no trend observed for either 

control or DHR participants (ie. no overall increase or decrease). There were no SIs at or 

greater than 2, therefore none shows a positive proliferative response to the drug 

treatment.  

Control and DHR participant PBMCs were also incubated with SMX for 4 days (Figure 

4-2). Again, none of the concentrations of SMX were found to be significant. None of the 

participants had a SI greater than 1.2.  
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Figure 4-1: SI of control and DHS participants after incubation with SMX for 54 

hrs 

A repeated measures ANOVA was conducted to determine if the concentration of SMX 

had an effect on the proliferation of control and DHS PBMCs. Mauchly’s test of 

sphericity was not significant (p = 0.263), therefore the assumption was met and a 

Greenhouse-Geisser correction was not used. F(4, 24) = 0.443, p = 0.776. N(control) = 4 

and N(DHR) = 4, ± SEM. 
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Figure 4-2: SI of control and DHS participants after incubation with SMX for 4 

days 

A repeated measures ANOVA was conducted to determine if the concentration of SMX 

had an effect on the proliferation of control and DHS PBMCs. Mauchly’s test of 

sphericity was not significant (p = 0.468), therefore the assumption was met and a 

Greenhouse-Geisser correction was not used. F(4, 24) = 3.234, p = 0.029. N(control) = 4 

and N(DHR) = 4, ± SEM. 

4.2.2 Scintillation Counting Results from AMX-Hypersensitive 
Participants 

In addition to SMX, AMX participants were also recruited. Participant PBMCs were 

incubated with AMX for 54 hrs (Figure 4-3). No participant had a SI greater than 1.2, and 

no significant differences between control and DHR participant or unstimulated and drug 

concentration were found. When incubated with AMX for four days, there were no 

significant differences between control and DHR participant, or between unstimulated 

and drug stimulated (Figure 4-4).  
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Figure 4-3: SI of control and DHS participants after incubation with AMX for 54 

hrs 

A repeated measures ANOVA was conducted to determine if the concentration of SMX 

had an effect on the proliferation of control and DHS PBMCs. Mauchly’s test of 

sphericity was not significant (p = 0.606), therefore the assumption was met and a 

Greenhouse-Geisser correction was not used. F(4, 32) = 1.457, p = 0.238. N(control) = 4 

and N(DHR) = 4, ± SEM. 
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Figure 4-4: SI of control and DHS participants after incubation with AMX for 4 

days 

A repeated measures ANOVA was conducted to determine if the concentration of SMX 

had an effect on the proliferation of control and DHS PBMCs. Mauchly’s test of 

sphericity was not significant (p = 0.681), therefore the assumption was met and a 

Greenhouse-Geisser correction was not used. F(4, 32) = 0.296, p = 0.878. N(control) = 4 

and N(DHR) = 4, ± SEM. 

4.3 Flow Cytometry Results 

4.3.1 Representative Flow Cytometry Charts 

To gate the PBMCs analyzed by flow cytometry, first live cells were gated according to 

viability dye (Figure 4-5-i). Then, single cells were gated until the cells could be gated as 

CD3+ and CD3- (Figure 4-5-v). CD3+ cells were further gated for being CD69+ (4-5-vi), 

CD4+ (4-5-vii), and CD8+ (4-5-viii). Both CD3+CD4+ and CD3+CD8+ T cells were gated 

for CD69 (4-5-x and 4-5-xi, respectively). In addition, CD3- cells were also examined for 

CD69 expression (Figure 4-5-ix). Just as CD69 expression can be represented as dot 

plots, it can also be presented as MFI of CD69 histograms (Figure 4-10). All gating and 

analyses were performed on FlowJo. All participants (both control and DHR) were gated 

in the same way.  
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Figure 4-5: Representative flow cytometry dot plot and gating procedure 

 

Figure 4-6: Representative MFI of CD69 expression histogram 
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4.3.2 Participants were Eliminated According to Cell Viability and 
Percent of CD3+ Cells 

The percent of live cells remaining after incubation with both SMX and AMX was 

assessed for each control and DHR participant. In addition to CD69 expression, cell 

viability and the percent of T cells (CD3+) of total cells acquired were looked at. Cell 

viability was measured using a viability stain that enters cells with compromised cellular 

membranes, and binds to proteins within the cell. Cells positively stained with the dye 

can be gated as dying or dead cells on the flow cytometer and can be excluded from 

subsequent analysis.  

Four DHR participants and three control participants were tested in culture media 

(unstimulated), four concentrations of SMX (100, 200, 400, 800 µM), and anti-CD3 (data 

not shown for anti-CD3). Within the DHR participants (DHS001-003, 008) tested (see 

Figure 4-7), two participants had cell viability under 50% across all conditions (DHS001, 

average cell viability of 38.12%, and 002, average cell viability of 9.18%). Two SMX 

concentrations could not be acquired in DHS008 (100µM and 200µM). Within the three 

control participants (Control001-003) tested (see Figure 4-8), Control002 had less than 

50% viability across all conditions (average cell viability of 14.43%). In Control001, only 

the SMX 800µM condition had viability at slightly under 50%, all other conditioners 

were higher. Because of these low viabilities, DHS001, DHS002, and Control002 were 

excluded from subsequent analyses. 
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Figure 4-7: Percent of live PBMCs analyzed from total number of DHR participant 

PBMCs after incubation with concentrations of SMX, acquired by flow cytometry, 

as a measure of cell viability	

PBMCs were incubated with culture media (unstimulated), anti-CD3, and SMX at 

concentrations 100µM, 200µM, 400µM, and 800µM.  
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Figure 4-8: Percent of live PBMCs analyzed from total number of control 

participant PBMCs after incubation with concentrations of SMX, acquired by flow 

cytometry, as a measure of cell viability	

PBMCs were incubated with culture media (unstimulated), anti-CD3, and SMX at 

concentrations 100µM, 200µM, 400µM, and 800µM. 

In addition to SMX, five DHR participants and four control participants were tested with 

culture media (unstimulated), four concentrations of AMX (10µM, 100µM, 500µM, 

1000µM), and anti-CD3. All participants, both DHR (see Figure 4-9) and control (see 

Figure 4-10), had cell viability greater than 50% (lowest viability was 70.77% and 

greatest was 90.39%), therefore all were included in subsequent analyses.  
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Figure 4-9: Percent of live PBMCs analyzed from total number of DHR participant 

PBMCs after incubation with AMX, acquired by flow cytometry, as a measure of 

cell viability 

PBMCs were incubated with culture media (unstimulated), anti-CD3, and AMX at 

concentrations 10µM, 100µM, 500µM, and 1000µM. 
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Figure 4-10: Percent of live PBMCs analyzed from total number of control 

participant PBMCs after incubation with AMX, acquired by flow cytometry, as a 

measure of cell viability 

PBMCs were incubated with culture media (unstimulated), anti-CD3, and AMX at 

concentrations 10µM, 100µM, 500µM, and 1000µM. 

The percent of CD3+ T cells was also analyzed by flow cytometry. Within the SMX DHR 

participants (see Figure 4-11), the percentages of CD3+ at each concentration were very 

different. DHS001 and DHS002 both had low percent of CD3+ T cells (averages of 

14.85% and 0.54%, respectively). In the SMX control participants (see Figure 4-12), 

Control002 also had a very low percentage of CD3+ T cells acquired (approximately 

1.31% across all conditions).  
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Figure 4-11: Percent of CD3+ cells analyzed from total number of DHR participant 

PBMCs after incubation with SMX, acquired by flow cytometry	

PBMCs were incubated with culture media (unstimulated), anti-CD3, and SMX at 

concentrations 100µM, 200µM, 400µM, and 800µM. 

 

Figure 4-12: Percent of CD3+ cells analyzed from total number of control 

participant PBMCs after incubation with SMX, acquired by flow cytometry	

PBMCs were incubated with culture media (unstimulated), anti-CD3, and SMX at 

concentrations 100µM, 200µM, 400µM, and 800µM. 
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As for AMX control (Figure 4-13) and DHR participants (Figure 4-14), most percentages 

of CD3+ T cells were high, except for DHS006, which was very low (average of 

approximately 0.74% across all conditions). Because of this, DHS006 was removed from 

all subsequent analyses.  

 

Figure 4-13: Percent of CD3+ cells analyzed from total number of DHR participant 

PBMCs after incubation with AMX, acquired by flow cytometry 

PBMCs were incubated with culture media (unstimulated), anti-CD3, and AMX at 

concentrations 10µM, 100µM, 500µM, and 1000µM. 
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Figure 4-14: Percent of CD3+ cells analyzed from total number of control 

participant PBMCs after incubation with AMX, acquired by flow cytometry 

PBMCs were incubated with culture media (unstimulated), anti-CD3, and AMX at 

concentrations 10µM, 100µM, 500µM, and 1000µM. 

4.3.3 Control and DHR Participant Results with SMX Incubation 

Two control and DHR participant results were analyzed after participants had been 

removed, and graphed according to percent of CD69 expression and MFI of CD69 across 

CD3+, CD3+CD4+, CD3+CD8+, and CD3- cell types as a result of incubation with 

increasing concentrations of SMX (Figures 4-15 to 4-30).  

With CD3+ cells (Figure 4-15 to 4-18), there was no increase in proliferation across 

concentrations, and no detectable difference between control and DHR participants. With 

percent CD69 (Figure 4-15), the only participant that had some increase beyond 

unstimulated was DHS008 at 800µM SMX. However, when averaged with DHS003 

(Figure 4-16), the average did not appear to be different from unstimulated. As for the 

individual MFI values (Figure 4-17), all values of control and DHR participant were at or 

below that of unstimulated regardless of concentration, which is also reflected in the 

averaged values (Figure 4-18).  
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It is important to note that as sample size of SMX participants is small, no statistics were 

calculated.  

With helper (CD3+CD4+) T cells, similarly to CD3+, there were no noticeable increases. 

With percent of CD69 expression (Figure 4-19 and 4-20), all normalized values were 

below normalized unstimulated levels. Only DHS008 had an increase between 400µM 

and 800µM SMX, however both values were not greater than unstimulated. MFI values 

were also lower than unstimulated for all concentrations (Figure 4-21 and 4-22). 

Control001 showed an odd increase compared to unstimulated in MFI with 100µM SMX, 

but was below unstimulated for all other concentrations (seen in Figure 4-21).  

As for CD3+CD8+, overall there were no noticeable differences between the 

concentrations of SMX. For percent CD69 (Figure 4-23), again DHS008 had a slight 

increase between 400uM and 800uM SMX, but not greater than unstimulated. 

Control001 had a slight increase over unstimulated for 100µM and 200µM SMX, but 

returned to at or below unstimulated in the higher concentrations. On average (Figure 4-

24), no concentrations showed an effect. With MFI (Figures 4-25 and 4-26), Control001, 

003 and DHS003 all had similar values, with none of the MFI values greater than 

unstimulated, however DHS008 MFI values at 400 and 800µM were very close to 0 

when normalized to unstimulated (Figure 4-25). On average, no overall differences were 

seen between the groups.  

Similar patterns were seen again with CD3- cell types (Figures 4-27 to 4-30). With 

percent CD69 (Figures 4-27 and 4-28), DHS008 showed again an increase between 

400µM and 800µM, which was slightly above unstimulated. Control001 showed an 

increase above normalized unstimulated for all concentrations, while Control003 and 

DHS003 values were all below normalized unstimulated. Overall, none of the average 

values differed from unstimulated (Figure 4-28). With MFI of CD69, Control001, 

Control003, DHS003 all were very similar to unstimulated values across all 

concentrations. Only DHS008 showed a low MFI at 400µM and 800µM concentrations. 

Overall the MFI of control values did not differ from unstimulated (Figure 4-29 and 4-

30), with DHS only slightly lower due to DHS008. 
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Figure 4-15: Percent of CD3+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with SMX 

 

Figure 4-16: Average percent of CD3+ T cells expressing CD69 normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX 
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Figure 4-17: MFI of CD3+ T cells expressing CD69 in individual control and DHS 

participant PBMCs incubated with SMX 

 

Figure 4-18: Average MFI of CD69 on CD3+ T cells normalized to unstimulated 

control, as a result of control and DHS participant PBMCs incubated with culture 

media (unstimulated control) and four concentrations of SMX 

0

0.5

1

1.5

2

2.5

3

3.5

4

Unstimulated 100uM SMX 200uM SMX 400uM SMX 800uM SMX

CD
3 

M
FI

 C
D

69
 n

or
m

al
iz

ed
 t

o 
un

st
im

ul
at

ed

Control001 Control003 DHS003 DHS008

0

0.5

1

1.5

2

2.5

Unstimulated 100uM SMX 200uM SMX 400uM SMX 800uM SMX

CD
3 

M
FI

 C
D

69
 n

or
m

al
iz

ed
 t

o 
un

st
im

ul
at

ed

Control average DHS average



73 

 

 

Figure 4-19: Percent of CD3+CD4+ T cells expressing CD69 in individual control 

and DHS participant PBMCs incubated with SMX 

 

Figure 4-20: Average percent of CD3+CD4+ T cells expressing CD69 normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX 
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Figure 4-21: MFI of CD3+CD4+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with SMX 

 

Figure 4-22: Average MFI of CD69 on CD3+CD4+ T cells normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX 
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Figure 4-23: Percent of CD3+CD8+ T cells expressing CD69 in individual control 

and DHS participant PBMCs incubated with SMX 

 

Figure 4-24: Average percent of CD3+CD8+ T cells expressing CD69 normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX 
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Figure 4-25: MFI of CD3+CD8+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with SMX 

 

Figure 4-26: Average MFI of CD69 on CD3+CD8+ T cells normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX 
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Figure 4-27: Percent of CD3- PBMCs expressing CD69 in individual control and 

DHS participant PBMCs incubated with SMX	

 

Figure 4-28: Average percent of CD3- PBMCs expressing CD69 normalized to 

unstimulated control, as a result of control and DHS participant PBMCs incubated 

with culture media (unstimulated control) and four concentrations of SMX	
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Figure 4-29: MFI of CD3- PBMCs expressing CD69 in individual control and DHS 

participant PBMCs incubated with SMX	

 

Figure 4-30: Average MFI of CD69 on CD3- PBMCs normalized to unstimulated 

control, as a result of control and DHS participant PBMCs incubated with culture 

media (unstimulated control) and four concentrations of SMX	
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4.3.4 Control and DHR Participant Results with AMX Incubation 

A total of four control participants and four DHR participants for AMX were recruited 

for this study, which allowed statistical analyses to be performed, unlike with SMX.  

With CD3+ percent CD69 (Figure 4-31), Control004 was similar or lower to unstimulated 

across all concentrations, Control005 was highest at 10µM AMX but decreased to 

unstimulated levels at 1000µM. Control006 was similar to unstimulated but lowered a lot 

by 1000µM, and Control007 was lower than unstimulated through 500µM, but increased 

slightly past unstimulated at 1000µM. DHS004 was mostly similar to unstimulated 

except at 100µM AMX, and DHS005, while initially lower at than unstimulated at 10µM, 

increased above unstimulated values at 500µM and 1000µM. While DHS007 was 

consistent or lower than unstimulated, DHS008 had a spike at 10µM before returning 

around unstimulated levels. When comparing the average control and DHR participants 

across AMX concentrations (Figure 4-32), there were no significant differences observed. 

There was a slight but not significant increase in DHS averages at 10µM, 500µM, and 

1000µM AMX, and a slight decrease at 100µM, but none were significantly different 

from unstimulated when analyzed by repeated measures ANOVA. Control participant 

averages were very similar to unstimulated values. When a repeated measures ANOVA 

was conducted on the control averages alone, the p value was not significant (> 0.05).  

MFI for each individual participant (Figure 4-33) did not reveal any differences, other 

than DHS007 slightly increasing as concentration increased, and DHS008 was very low 

in comparison to the unstimulated values and the other participants (both control and 

DHS). With the average MFI values (Figure 4-34), other than a very slight but not 

significant increase at 500µM for the control participants, everything was very similar to 

unstimulated values and there were no significant differences between group or 

concentration. When analyzed by repeated measures ANOVA, neither control 

participants or DHS participant MFI levels showed no significant differences between 

treatment concentrations and unstimulated.  
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Figure 4-31: Percent of CD3+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with AMX 

 

Figure 4-32: Percent of CD3+ T cells expressing CD69 normalized to unstimulated 

control, as a result of PBMCs incubated with culture media (unstimulated control) 

and four concentrations of AMX 
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therefore a Greenhouse-Geisser correction was not used. F(4,24) = 0.510, p = 0.729. 

N(control participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures 

ANOVAs were also conducted on CD3+ CD69+ control participants and DHS 

participants separately. For control participants, Mauchly’s Test of Sphericity was 

violated, therefore a Greenhouse-Geisser correction was used. F(1.281,3.842) = 0.043, p 

= 0.897. For DHS participants, Mauchly’s Test of Sphericity was violated, therefore a 

Greenhouse-Geisser correction was used. F(1.443,4.329) = 0.815, p = 0.461.  

 

Figure 4-33: MFI of CD3+ T cells expressing CD69 in individual control and DHS 

participant PBMCs incubated with AMX 
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Figure 4-34: MFI of CD3+ T cells expressing CD69 normalized to unstimulated 

control, as a result of PBMCs incubated with culture media (unstimulated control) 

and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 

significant effect on CD69 expression by CD3+ T cells. Mauchly’s Test of Sphericity was 

insignificant (p = 0.491), the assumption of sphericity was met, and therefore a 

Greenhouse-Geisser correction was not used. F(4,24) = 0.155, p = 0.959. N(control 
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unstimulated at 10µM and 100µM to increase above unstimulated at 500µM and 1000µM 

AMX. DHS007 was consistently lower than unstimulated across all concentrations, and 

DHS008 was close to unstimulated. When comparing average values at the different 

concentrations (Figure 4-36), there were no noticeable differences between the groups 

and unstimulated. A repeated measures ANOVA indicated no significant differences 

between any treatment groups and unstimulated for both control participants and DHS 

participants. Control006 was slightly increased at 100µM, and DHS008 was low across 

all concentrations similar to the other cell types. Individual MFI values did not reveal any 

obvious differences between participants (Figure 4-37). Comparing average MFI values 

(Figure 4-38) did not reveal any significant differences between control and unstimulated 

or differences between any of the AMX concentrations.  

 

Figure 4-35: Percent of CD3+CD4+ T cells expressing CD69 in individual control 

and DHS participant PBMCs incubated with AMX 
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Figure 4-36: Percent of CD3+CD4+ T cells expressing CD69 normalized to 

unstimulated control, as a result of PBMCs incubated with culture media 

(unstimulated control) and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 

significant effect on CD69 expression by CD3+CD4+ T cells. Mauchly’s Test of 

Sphericity was insignificant (p = 0.471), the assumption of sphericity was met, and 

therefore a Greenhouse-Geisser correction was not used. F(4,24) = 0.555, p = 0.697. 

N(control participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures 

ANOVAs were also conducted on CD3+CD69+ control participants and DHS participants 

separately. For control participants, Mauchly’s Test of Sphericity was violated, so a 

Greenhouse-Geisser correction was used. F(1.257,3.772) =0.043, p = 0.893. For DHS 

participants, Mauchly’s Test of Sphericity was violated, so a Greenhouse-Geisser 

correction was used. F(1.508,4.524) = 1.354, p = 0.330. 
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Figure 4-37: MFI of CD3+CD4+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with AMX 

 

Figure 4-38: MFI of CD3+CD4+ T cells expressing CD69 normalized to 

unstimulated control, as a result of PBMCs incubated with culture media 

(unstimulated control) and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 
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therefore a Greenhouse-Geisser correction was used. F(1.832,10.995) = 1.685, p = 0.230. 

N(control participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures 

ANOVAs were also conducted on CD3+CD69+ control participants and DHS participants 

separately. For control participants, Mauchly’s Test of Sphericity was violated, so a 

Greenhouse-Geisser correction was used. F(1.384,4.151) = 0.699, p = 0.496. For DHS 

participants, Mauchly’s Test of Sphericity was violated, so a Greenhouse-Geisser 

correction was used. F(2.073,6.219) = 1.638, p = 0.269.  

CD3+CD8+ cell types did not show many individual differences with CD69 expression 

(Figure 4-39); only control004 showed a slight increase as with increasing concentrations 

with a slight decrease from 500µM to 1000µM, and DHS005 showed an increase as 

concentration increased. No other participants visibly differed from the control. With the 

average percent CD69 values (Figure 4-40), there were no significant differences found 

with the repeated measures ANOVA, either when the data for control and DHS 

participants was combined or when analyzed separately. There was a noticeable 

difference at 100µM AMX between control and DHS participants, where the control 

participant average was slightly higher, but this difference was not significant overall 

with the repeated measures ANOVA. Student’s t-test conducted between the control and 

DHS participants at 100uM had a p value of 0.069. With individual MFI values (Figure 

4-41), all values were similar to unstimulated. When the average MFI values were 

compared (Figure 4-42), no significant differences were observed with a repeated 

measures ANOVA. However, there is a difference seen at 1000µM, where the DHS 

participants mean MFI was slightly higher than control. While this difference was not 

significant with the ANOVA, a one-tailed student’s t-test revealed this comparison to 

have a p value of 0.0034.  
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Figure 4-39: Percent of CD3+CD8+ T cells expressing CD69 in individual control 

and DHS participant PBMCs incubated with AMX 

 

Figure 4-40: Percent of CD3+CD8+ T cells expressing CD69 normalized to 

unstimulated control, as a result of PBMCs incubated with culture media 

(unstimulated control) and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 

significant effect on CD69 expression by CD3+CD8+ T cells. Mauchly’s Test of 
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therefore a Greenhouse-Geisser correction was not used. F(4,24) = 0.714, p = 0.590. 

N(control participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures 

ANOVAs were also conducted on CD3+ CD69+ control participants and DHS 

participants separately. Repeated measures ANOVAs were also conducted on CD3+ 

CD69+ control participants and DHS participants separately. For control participants, 

Mauchly’s Test of Sphericity was violated, so a Greenhouse-Geisser correction was used. 

F(2.026,6.079) = 0.019, p = 0.982. For DHS participants, Mauchly’s Test of Sphericity 

was violated, so a Greenhouse-Geisser correction was used. F (1.439,4.318) = 1.420, p = 

0.318. 

 

Figure 4-41: MFI of CD3+CD8+ T cells expressing CD69 in individual control and 

DHS participant PBMCs incubated with AMX 
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Figure 4-42: MFI of CD3+CD8+ T cells expressing CD69 normalized to 

unstimulated control, as a result of PBMCs incubated with culture media 

(unstimulated control) and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 

significant effect on CD69 expression by CD3+CD8+ T cells. Mauchly’s Test of 

Sphericity was insignificant (p = 0.407), the assumption of sphericity was met, and 

therefore a Greenhouse-Geisser correction was not used. F(4,24) = 1.028, p = 0.412. 

N(control participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures 

ANOVAs were also conducted on CD3+ CD69+ control participants and DHS 

participants separately. For control participants, Mauchly’s Test of Sphericity was 

violated, so a Greenhouse-Geisser correction was used. F(1.669,5.007) = 3.677, p = 

0.107. For DHS participants, Mauchly’s Test of Sphericity was violated, so a 

Greenhouse-Geisser correction was used. F(1.979,5.936) = 1.672, p = 0.265.  

Similar patterns were seen with CD3- cells. With the individual participants (Figure 4-

43), most were very similar to unstimulated. Control004 was slightly lower across all 
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ANOVA. One small noticeable difference was seen again at 1000µM, where the DHR 

percent CD69 value was slightly higher than control. While not significant in the 

ANOVA, a student’s t-test at this concentration had a p value of 0.003. With individual 

MFI values, a few differences are seen (Figure 4-45). For the most part, values were 

consistent around unstimulated. DHS004 however increased from unstimulated as 

concentration increased, and there was a sharp increase in the MFI of CD69 with 

DHS005 at 100µM. DHS007 and DHS008 were consistently lower than unstimulated. 

With the average MFI values (Figure 4-46), there were no significant differences seen. 

The sharp increase of DHS008 is responsible for variability and an increase (but not 

significant) in average MFI values at 100µM.  

 

Figure 4-43: Percent of CD3- PBMCs expressing CD69 in individual control and 

DHS participant PBMCs incubated with AMX 
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Figure 4-44: Percent of CD3- PBMCs expressing CD69 normalized to unstimulated 

control, as a result of PBMCs incubated with culture media (unstimulated control) 

and four concentrations of AMX 

A repeated measures ANOVA was conducted to determine if any concentration had a 

significant effect on CD69 expression by CD3- T cells. Mauchly’s Test of Sphericity was 

insignificant (p = 0.437), the assumption of sphericity was met, and therefore a 

Greenhouse-Geisser correction was not used. F(4,24) = 0.719, p = 0.587. N(control 

participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures ANOVAs 

were also conducted on CD3+ CD69+ control participants and DHS participants 

separately. For control participants, Mauchly’s Test of Sphericity was violated, so a 

Greenhouse-Geisser correction was used. F(2.233,6.700) = 2.833, p = 0.126. For DHS 

participants, Mauchly’s Test of Sphericity was violated, so a Greenhouse-Geisser 

correction was used. F(1.449,4.348) = 1.050, p = 0.396.  
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Figure 4-45: MFI of CD3- PBMCs expressing CD69 in individual control and DHS 

participant PBMCs incubated with SMX 

 

Figure 4-46: MFI of CD3- PBMCs expressing CD69 normalized to unstimulated 

control, as a result of PBMCs incubated with culture media (unstimulated control) 

and four concentrations of AMX 
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Greenhouse-Geisser correction was used. F(1.603,9.621) = 0.646, p = 0.513. N(control 

participants) = 4 and N(DHR participants) = 4, ± SEM. Repeated measures ANOVAs 

were also conducted on CD3+ CD69+ control participants and DHS participants 

separately. For control participants, Mauchly’s Test of Sphericity was violated, so a 

Greenhouse-Geisser correction was used. F(1.611,4.834) = 2.157, p = 0.212. For DHS 

participants, Mauchly’s Test of Sphericity was violated, so a Greenhouse-Geisser 

correction was used. F(1.481,4.443) = 0.477, p = 0.597.  

4.3.5 Comparison of SMX and AMX Grouped Concentrations 

Since four concentrations each of AMX and SMX were used, they were combined in 

increasing concentrations to see if there was any effect on increasing concentration on the 

isolated PBMCs from hypersensitive individuals. Control participants were not included 

in this analysis. Percent CD69 expression and MFI of CD69 values were normalized to 

unstimulated values. See Figures 4-47 to 4-54. 

Across all cell types, there were no significant differences in percent of CD69 expression 

or MFI of CD69 when drug concentration was increased. Overall, there did not seem to 

be any trends that exceeded unstimulated values. Within CD3+ cell types, the second 

concentration (C2) was consistently low in percent CD69 compared to unstimulated and 

other concentrations, but nothing was found by repeated measures ANOVA to be 

significant (Figure 4-47, 4-49, 4-51). There was a slight decrease from unstimulated in 

the MFI of CD69 on CD3+CD4+ cells (Figure 4-50). Within the CD3- cell types, the 

second concentration (C2) appeared to be very high, but also had high variability (Figure 

4-53).  
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Figure 4-47: Average percent of CD69 expression on CD3+ PBMCs isolated from 

hypersensitive participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 0.782, p = 0.553.  
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Figure 4-48: Average MFI of CD69 on CD3+ PBMCs isolated from hypersensitive 

participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 0.130, p = 0.969. 
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Figure 4-49: Average percent of CD69 expression on CD3+CD4+ PBMCs isolated 

from hypersensitive participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 1.468, p = 0.258.  

 

Figure 4-50: Average MFI of CD69 expression on CD3+CD4+ PBMCs isolated from 

hypersensitive participants, combining SMX and AMX concentrations 
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N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4.16) = 1.891, p = 0.161.  

 

Figure 4-51: Average percent of CD69 expression on CD3+CD8+ PBMCs isolated 

from hypersensitive participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 1.604, p = 0.222.  
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Figure 4-52: Average MFI of CD69 of CD69 expression on CD3+CD8+ PBMCs 

isolated from hypersensitive participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 0.758, p = 0.568.  

 

Figure 4-53: Average percent of CD69 expression on CD3- PBMCs isolated from 

hypersensitive participants, combining SMX and AMX concentrations 
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N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was not violated. F(4,16) = 0.475, p = 0.753.  

 

Figure 4-54: Average MFI of CD69 expression on CD3- PBMCs isolated from 

hypersensitive participants, combining SMX and AMX concentrations 

N = 6, ± SEM. A repeated measures ANOVA was used to determine if there were any 

differences among the unstimulated and the increasing drug concentrations of drugs. 

Mauchly’s Test of Sphericity was violated (p = 0.41), therefore a Greenhouse-Geisser 

correction was used. F(1.480,5.921) = 0.559, p = 0.550.  
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percent CD69 expression of 33.10%, while CD3- had 1.27% (student’s t-test, one-tailed, 

p <0.005). This was similar for MFI of CD69 – CD3+ cells had an average MFI of CD69 

of 2.36, while CD3- had 1.27 (student’s t-test, one-tailed, paired, p < 0.01).  

The only instance where there was a significant difference between control and DHS 

participant response to stimulation with anti-CD3 was with the percent of CD3+ cells 

expressing CD69 (Figure 4-57). In this case, 27.68% of CD3+CD4+ cells were 

expressing CD69, which is significantly lower than the control participants, where 

65.42% of CD3+CD4+ cells were expressing CD69 (student’s t-test, one-tailed, p = 

0.043). Meanwhile, there were no significant differences in MFI of CD69 by CD3+CD4+ 

T cells in response to stimulation with anti-CD3 (student’s t-test, one-tailed, p = 0.38), 

see Figure 4-58. There were no other significant differences between any other responses 

to anti-CD3 in the other cell types analyzed (p > 0.05), see Figures 4-55 and 4-56, 4-58, 

4-59 and 4-60, 4-61 and 4-62.   

 

Figure 4-55: Average percent of CD69 expression on CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.39.  
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Figure 4-56: Average MFI of CD69 expression on CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.34.  

 

Figure 4-57: Average percent of CD69 expression on CD3+CD4+ PBMCs isolated 

from control and hypersensitive (DHS) participants stimulated with anti-CD3	
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N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.049.  

 

Figure 4-58: Average MFI of CD69 expression on CD3+CD4+ PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.22.  
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Figure 4-59: Average percent of CD69 expression on CD3+CD8+ PBMCs isolated 

from control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.20.  

 

Figure 4-60: Average MFI of CD69 expression on CD3+CD8+ PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.19.  
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Figure 4-61: Average percent of CD69 expression on CD3- PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.18.  

 

Figure 4-62: Average MFI of CD69 expression on CD3- PBMCs isolated from 

control and hypersensitive (DHS) participants stimulated with anti-CD3	

N = 6, ± SEM. Student’s t-test was used to compare control and DHS anti-CD3-

stimulated values. Student’s t-test, one-tailed, p = 0.12.  
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4.3.7 Combining SMX Concentrations in Control and DHS 
Participants 

In addition to comparing the effect of individual concentrations of SMX to unstimulated, 

the concentrations of SMX were combined by taking the average of percent CD69 

expression and MFI of CD69 and compared to unstimulated (Figures 4-63 to 4-70). 

Drug-stimulated values were normalized to unstimulated values. No significant 

differences were found between control and hypersensitive participants stimulated with 

SMX. However, in three instances, the drug-stimulated percent CD69 or MFI of CD69 

values were observed to be lower than unstimulated: CD3+CD4+ percent CD69 (Figure 4-

65), CD3+CD4+ MFI of CD69 (Figure 4-66), and CD3+CD8+ percent CD69 (Figure 4-

67). All others appeared to be similar to unstimulated.  

 

Figure 4-63: Average percent of CD69 expression of CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to SMX. 

Student’s t-test, p = 0.38.  
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Figure 4-64: Average MFI of CD69 expression of CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM.  Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to SMX. Student’s t-test, 

p = 0.49.  
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Figure 4-65: Average percent of CD69 expression of CD3+CD4+ PBMCs isolated 

from control and hypersensitive (DHS) participants as a result of exposure to 

combined concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to SMX. 

Student’s t-test, p = 0.38.  
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Figure 4-66: Average MFI of CD69 expression of CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to SMX. Student’s t-test, 

p = 0.47.  
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Figure 4-67: Average percent of CD69 expression of CD3+CD8+ PBMCs isolated 

from control and hypersensitive (DHS) participants as a result of exposure to 

combined concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to SMX. 

Student’s t-test, p = 0.42.  

0

20

40

60

80

100

120

140

160

Unstimulated SMX

Pe
rc

en
t 

CD
8+

 c
el

ls
 e

xp
re

ss
in

g 
CD

69
 

no
rm

al
iz

ed
 t

o 
un

st
im

ul
at

ed

Control DHS



110 

 

 

Figure 4-68: Average MFI of CD69 expression of CD3+CD8+ PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM.Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to SMX. Student’s t-test, 

p = 0.26.  
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Figure 4-69: Average percent of CD69 expression of CD3- PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to SMX. 

Student’s t-test, p =  0.43.  
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Figure 4-70: Average MFI of CD69 expression of CD3- PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of SMX 

N(control) = 2, N(DHS) = 2, ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to SMX. Student’s t-test, 

p = 0.33.  

4.3.8 Combining AMX Concentrations in Control and DHS 
Participants 

All of the concentrations of AMX were combined to see if there was any effect between 

unstimulated and AMX in general. Student’s t-tests were performed between control 

AMX and DHS AMX values. No significant differences were found between these 

values with any cell type (Figures 4-71 to 4-78).  

All of the concentrations of AMX were combined to see if there was any effect between 
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AMX and DHS AMX values. No significant differences were found between these 

values with any cell type (Figures 4-71 to 4-78). Similar to SMX results, there were no 

significant differences found between control and hypersensitive participants stimulated 
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with AMX. There were no instances where AMX-stimulated values appeared lower than 

unstimulated.  

 

Figure 4-71: Average percent of CD69 expression of CD3+ PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to AMX. 

Student’s t-test, p = 0.32.  
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Figure 4-72: Average MFI of CD69 of CD3+ PBMCs isolated from control and 

hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4; ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to AMX. Student’s t-

test, p = 0.38.  
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Figure 4-73: Average percent of CD69 expression of CD3+CD4+ PBMCs isolated 

from control and hypersensitive (DHS) participants as a result of exposure to 

combined concentrations of AMX 

N(control) = 4, N(DHS) = 4, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to AMX. 

Student’s t-test, p = 0.28.  
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Figure 4-74: Average MFI of CD69 of CD3+CD4+ PBMCs isolated from control 

and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4; ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to AMX. Student’s t-

test, p = 0.26.  
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Figure 4-75: Average percent of CD69 expression of CD3+CD8+ PBMCs isolated 

from control and hypersensitive (DHS) participants as a result of exposure to 

combined concentrations of AMX 

N(control) = 4, N(DHS) = 4, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to AMX. 

Student’s t-test, p = 0.35.  
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Figure 4-76: Average MFI of CD69 of CD3+CD8+ PBMCs isolated from control 

and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4; ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to AMX. Student’s t-

test, p = 0.11.  
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Figure 4-77: Average percent of CD69 expression of CD3- PBMCs isolated from 

control and hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4, ± SEM. Student’s t-test was used to compare percent of 

CD69 expression between control and DHS participants after exposure to AMX. 

Student’s t-test, p = 0.14.  
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Figure 4-78: Average MFI of CD69 of CD3- PBMCs isolated from control and 

hypersensitive (DHS) participants as a result of exposure to combined 

concentrations of AMX 

N(control) = 4, N(DHS) = 4; ± SEM. Student’s t-test was used to compare MFI of CD69 

expression between control and DHS participants after exposure to AMX. Student’s t-

test, p = 0.38.  

4.4 Cytokine Analysis Results 
Cytokines IFN-y, IL-4, IL-9, IL-13, IL-17A, and IL-22 were analyzed by a custom 

Luminex kit by Bio-Rad. These cytokines were analyzed from the cell culture 

supernatant. Any cytokine secretion, if seen at all, occurred in anti-CD3 stimulated 

samples. Most results were highly variable due to only one sample of four having any 

detectable level of cytokine.  

IFN-7 was the only cytokine that had values in all conditions, however it is likely that 

most of these were extrapolations (specifically values under approximately 19 pg/ml). 

Anti-CD3 stimulation of both control and DHS PBMCs resulted in IFN-y secretion 

(Figure 4-79). Control004 had some secretion of IL-4, and IL-17A in the media (Figure 

4-80, 4-83). Anti-CD4 stimulation resulted in secretion of IL-4 and IL-9 in one DHS 
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participant only, and not in the controls (Figure 4-80, 4-81). IL-22 was also secreted 

when control and DHS participants were stimulated with anti-CD3 (Figure 4-84).  

It is important to note that if a bar is missing from the bar graph, it signifies that the result 

was 0, or that there were no detectable levels of cytokine. 

 

Figure 4-79: Observed concentration of IFN-y in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  
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Figure 4-80: Observed concentration of IL-4 in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  

 

Figure 4-81: Observed concentration of IL-9 in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  
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Figure 4-82: Observed concentration of IL-13 in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  

 

Figure 4-83: Observed concentration of IL-17A in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  
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Figure 4-84: Observed concentration of IL-22 in pg/ml after incubation of PBMCs 

isolated from control and AMX-hypersensitive participants in anti-CD3, media 

(negative control), 100uM AMX, and 500uM AMX 

N(control) = 4, N(DHS) = 4.  

The cytokine concentrations of IL-4, IL-9, IL-13, IL-17A, and IL-22 were secreted in 

much lower concentrations than IFN-γ in response in anti-CD3 stimulation (Figure 4-85). 

However, not all participants had cytokines secreted when stimulated with anti-CD3. All 

participants secreted some amount of IFN-γ upon stimulation (Figure 4-86). For example, 

DHS005 was the only participant secreting IL-4 (Figure 4-87) and IL-9 (Figure 4-88), no 

other participants secreted detectable amounts of these cytokines. DHS005 also secreted 

greater amounts of cytokines when secreted with anti-CD3 compared to the other 

participants. Most participants secreted some small amount of IL-13 and IL-17A (Figures 

4-89 and 4-90).  
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Figure 4-85: Average observed concentration of each cytokine analyzed in result to 

incubation of PBMCs isolated from control and AMX-hypersensitive participants 

with anti-CD3 

N(control) = 4, N(DHS) = 4.  
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Figure 4-86: Observed concentration of IFN-y (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  

 

Figure 4-87: Observed concentration of IL-4 (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  
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Figure 4-88: Observed concentration of IL-9 (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  

 

Figure 4-89: Observed concentration of IL-13 (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  
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Figure 4-90: Observed concentration of IL-17A (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  

 

Figure 4-91: Observed concentration of IL-22 (pg/ml) in response to incubation of 

PBMCs isolated from control and AMX-hypersensitive participants with anti-CD3 

N(control) = 4, N(DHS) = 4.  
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Chapter 5  

5 Discussion 

5.1 Aims and Objectives 
Adverse drug reactions account for approximately 5% of all hospital admissions and 

affect millions annually.5 Of these ADRs, DHRs account for approximately 20%.11,12 

Despite this, diagnosing DHRs is still difficult, resulting in overdiagnosis, reliance on 

substitute antibiotics, and limited understanding of the underlying mechanisms.3,18,27 

There are several competing hypotheses that attempt to explain how these DHRs occur 

(reviewed in § Pathophysiology of DHRs), however there is no consensus.  

The aim of this thesis is to study and characterize lymphocytes from peripheral blood 

samples from participants with clinical presentations suggestive of delayed-type drug 

hypersensitivity reactions by comparing them to healthy controls. Since the underlying 

cause and pathophysiology of T cell-mediated hypersensitivity reactions is still not fully 

understood, the goal was to use a combination of techniques to study drug-specific 

lymphocytes. Previous findings suggest that there are different T cells involved with 

different physical presentations of drug allergy. We hypothesized that differences in 

activated peripheral T cell subsets and types of mediators released have a direct impact 

on the clinical presentations of DHRs. We wanted to determine if there are any cell types 

or cytokines involved in the different clinical presentations we observed and recruited. 

We specifically chose sulfamethoxazole (SMX) and penicillin due to the high number of 

cases typically referred to Dr. Rieder’s clinic. Due to less than optimal cell count for the 
3H-thymidine and flow cytometry experiments, and RBC contamination in PBMCs 

leading to inconsistent cell counts in cytokine analysis, the results are inconclusive. 

However, this work has led to discovery of better methods and insights for 

improvements, optimization, and future studies.  

5.2 SMX Parent Drug was Best Form of Sulfamethoxazole 
Sulfamethoxazole, which inhibits the synthesis of tetrahydrofolic acid in bacteria,244 is 

metabolized in the liver by N-acetyltransferases and N-glucoronul-transferase, resulting 
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in the production of non-toxic metabolites.243 CYP-450 can also metabolize small 

amounts of SMX into two metabolites, SMX-NO and SMX-HA.247,248 Since SMX, SMX-

NO, and SMX-HA can be involved in the immune response,60,122,243 it was important to 

determine if any of these will cause damage to the PBMCs they would be incubated with. 

We know that SMX-HA is a reactive metabolite that can lead to greater cell death, so we 

needed to see if it would cause greater cell death than it would show cell activation. Our 

preliminary experiments used SMX and SMX-HA because SMX-NO was too unstable 

for use under the experiment conditions.  

First, I used PBMCs isolated from one volunteer and incubated these PBMCs with either 

unstimulated media, three concentrations of SMX, or three concentrations of SMX-HA. 

In the highest concentration of SMX-HA (100µM) used, there was a decrease in percent 

cell viability (Figure 3-1), but since sample size was only 1, I repeated the highest 

concentration with PBMCs isolated from two additional volunteers and found a 

significant decrease in percent cell viability after incubation (Figure 3-2). Therefore, we 

chose SMX since it did not negatively affect cell viability like SMX-HA. 

5.3 54 Hour Incubation was the Optimal Length of Time 
We needed to determine what the optimal length of time for incubating PBMCs with 

universal mitogen to minimize cell death and to show maximum activation. Since we 

used CD69 as an activation marker, this would show how CD69 is expressed over a time 

course and allow us to decide how long to incubate the PBMCs with drugs for. If the 

incubation time is not optimal, we would not see the maximum number of CD69-

activated cells, and it would be more difficult to see an effect since dividing cells would 

closely resemble non-dividing cells. This experiment was modeled after a similar 

experiment by Beeler et al.,295 however we added an extra timepoint and used control 

participants only.  

I isolated PBMCs from three volunteers. After incubating the isolated PBMCs for 

intervals of 18 hours for a total of 90 hrs with anti-CD3, and staining for viability and 

CD69, we found a decrease in live cells (Figure 3-3). A rANOVA revealed that there was 

a significant decrease in cell viability as incubation time increased.  
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For determining the optimum length of incubation time for best CD69 expression, no 

significant timepoints were found for any of the cell types (CD3+, CD3+CD4+, 

CD3+CD8+) examined (Figures 3-4 to 3-9). There was considerable variability across all 

timepoints, specifically in the MFI values. There were some noticeable but not significant 

increases at 54 hours for CD3+ and CD8+ cells (Figures 3-3, 3-5), while CD4+ cells had 

the highest CD69 expression at the 18-hour timepoint.  

Overall an incubation time of approximately 54 hours was chosen as a compromise 

between cell viability and CD69 expression. If closer to 90 hours was chosen, that would 

have left only approximately 50% of cells in the sample viable, even if there is no 

significant difference between 54 hours and 90 hours for percent CD69 expression.  

For this experiment, both anti-CD3-stimulated and unstimulated samples were prepared 

for flow cytometry analysis, and the unstimulated values were subtracted from the 

stimulated values. However, it would be wise to repeat this experiment with a 0-hour 

timepoint to better normalize the timepoints in addition to stimulated and unstimulated 

samples at each timepoint.  

5.4 Participant Recruitment 
For this study, patients were recruited from Dr. Michael Rieder’s drug safety clinic at 

London Health Sciences Centre, Victoria Hospital in London, Ontario. This research 

would not be possible without this direct access to ADR patients.  

While we are fortunate to have potential access to a wide number of people of all ages 

seeking an in vitro toxicity assay for potential ADRs, there are some pitfalls. Typically, 

these participants are referred to the clinic by their primary care physician due to a 

suspected previous ADR to a drug their primary care physician is interested in 

prescribing them. However, many times these participants have no real recollection of 

when the reaction occurred, let alone the specifics including type of resulting skin 

reaction or how many days after ingestion of the drug that the reaction occurred. This is 

the primary reason why some cases are described as “rash, unspecified.”  These patients 

are included due to a positive LTA. The LTA test typically occurred sometime in the 
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previous 10 years before this study. It has been previously reported that drug-specific T 

cells can be re-activated after 12 years since previous exposure122 or over 20 years since 

previous exposure.301 Recruitment was challenging, as the participants often would not 

answer phone calls, phone number was out of service and not updated with hospital, no 

interest, no availability, or difficulty accessing RRI due to location of home or work.  

We opted to test adult former patients (>18 years of age at the time of study) due to more 

easily obtained consent and a larger volume of blood drawn. Children and adolescents 

would be more complicated due to parental consent, for example parents might not be 

inclined to have blood drawn from their children for research. Children would also have 

to be taken out of school, or their parents would have to drive them before or after, while 

adults are usually more flexible with schedules and transportation.  

Out of all of Dr. Rieder’s former patients, many were eliminated immediately if the result 

of their LTA was negative. From all of the patients with positive LTAs, we excluded all 

those not positive to sulfamethoxazole and penicillin. I verified the final selected 

patients’ LTA results, confirmed their eligibility to participate with Dr. Rieder, called 

former patients for consent to participate, and explained the contents of the letter of 

information and consent package over the phone (see Appendix §	Letter	of	Information).			

In addition, participants were also recruited directly from Dr. Rieder’s clinic at the same 

time as LTA testing. These participants were asked to participate either because they had 

a strong history indicative of a delayed type ADR to either sulfamethoxazole or 

penicillin, or because they already had testing and were doing a re-test for a different 

drug.  

The participant pool consisted of middle-aged women with the exception of one man.  

Many of the participants eligible to participate were women; I did call prospective male 

participants, however many did not return my phone call. In contrast, the women I spoke 

to seemed very eager to participate in the study. It is also worth noting that while my 

study is biased towards women, ADRs are also more prevalent in women. There are a 

few possible explanations to why more women were recruited. The first being that more 

women tend to access health care services and have more consultations with their GP 
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than men do, and in effect are prescribed more antibiotics. The second reason is women 

are more often diagnosed with an ADR than men. Overall, women are prescribed more 

antibiotics than men,32 especially for conditions such as RTIs,32,33 and UTIs.32 Women 

also seek primary care much more than men do.34,302,303 Women also have physiological 

differences, such as higher levels of CYP450, different levels of hormones, different rates 

of drug conjugation, and differences in body mass.35–38  

Recruitment of participants also depends on the location of the patient themselves. The 

clinic often acquires samples from referred patients who live outside of London, often 

around Toronto or elsewhere throughout Southwestern Ontario. Many of these patients 

have a positive LTA and a history of ADR to the drugs that we are interested in, however 

often it is not possible to acquire a sample due to the participant residing outside of 

London. This can be due to a variety of reasons, some of which were experienced over 

the course of the recruitment of patients. Often, private clinics (ie. Life Labs or 

community health services) are inconsistent with their ability to draw blood for this 

lab/clinic. In addition, patients are often not motivated enough to participate, since it 

often involves driving to University Hospital or Robarts, which is inconvenient for many 

in addition to not wanting an extra blood test. Many of the patients were able to 

participate in this study by simply happening to be in the area at the time. 

It would open up many more opportunities for patient recruitment if we could access 

these samples outside of the London area, or arrange with other clinics around London to 

be able to draw the blood to make it easier for participants who work during the day. 

Currently, University Hospital can do draws from about 8 am until 4 pm daily, but other 

private clinics might be open on the weekends or in the evenings. In the future it would 

be ideal to make arrangements with other hospitals or blood-drawing clinics in other 

cities to access a greater number of participants.  

5.5 Defense of Drug Choice 
Sulfamethoxazole and penicillin were chosen as our culprit drugs of choice, rather than a 

survey of all drugs tested for in the clinic, because these two drugs are some of the most 
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commonly tested for. We were able to obtain a large list of potentially eligible 

participants, some of which had consented to be a part of Dr. Rieder’s database.  

However, there are some of the downsides of these drug choices, one example being 

sulfamethoxazole. SMX is a frequently prescribed antibiotic for UTIs,304 which are 

mostly seen in women. While they can and do occur in men, typically men do not suffer 

from as many UTIs due to increased length of urethra,305–307 among other reasons 

including urethral opening proximity to vaginal mucosa compared to the dry epithelium 

of the glans penis.305,306  

Choosing the appropriate reactive metabolite was important (see section Determining 

Best Form of Sulfamethoxazole). As previously mentioned, SMX-NO, and SMX-HA are 

reactive metabolites of SMX. SMX-NO has previously been used in studies.243 SMX-HA 

is used in Dr. Rider’s LTA analyses. Currently in the lab, we have stock of SMX-HA and 

SMX, however SMX-NO is unstable, so it would not be as useful. We found SMX-HA to 

negatively affect cell viability (Figures 3-1 and 3-2). In addition, it would be interesting 

to use liver microsomal metabolites rather than the AMX parent drug, to allow for 

reactive metabolites to be used in the experiment.102,257  

5.6 Scintillation Counting 
Beeler et al. suggest that a SI of at least 2 is a moderately positive result for DHR when 

using the LTT, while a SI of 3 is a strong positive result.295  

Scintillation counting was performed on both SMX and AMX groups of participants, 

after incubation of 54 hrs (established as incubation length for flow cytometry) and 4 

days. I found none of the concentrations of SMX or AMX caused a significant increase in 

SI at either timepoint (Figure 4-1, 4-3, Figure 4-5, 4-7). In addition, the age of the 

participant did not correlate with any noticeable increase in SI.  

In some of the raw data for the scintillation counting, the cpm were low for anti-CD3-

stimulated PBMCs and some for drug-stimulated samples were indistinguishable from 

unstimulated wells. I learned later on that there was an issue with cell counting and there 

was increased RBC contamination after the experiment was complete. I did not know I 
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was making this error and it was not corrected in time. We had previously attempted this 

when testing different mitogens and T cell stimulants (ex. anti-CD3, PHA, etc) and the 

results were better. In order to improve on this and obtain the results shown in other 

successful LTT studies, the incubation time should be extended to six days and the cell 

counting optimized to decrease RBC contamination.  

Another possibility in the future would be to use CFSE (carboxy fluorescein succinimidyl 

ester) instead of 3H-thymidine incorporation. CFSE is a common flow cytometry-based 

assay to assess cell proliferation, and it works by staining desired cells with CFSE before 

incubation, and quantifying the labelled cells by number of divisions. There is a 

progressive halving of fluorescence with each cell division.308 There are several benefits 

to using CFSE over 3H-thymidine incorporation. First, there is no radiation required and 

therefore no radiation permits or special training would be required. In addition, since it’s 

a flow cytometry-based assay, it can discriminate between cell types, for example 

between CD4+ vs CD8+ cell types dividing, if those surface markers are also stained 

for.308 CFSE is also stably and uniformly incorporated into cells, meaning cells can be 

cultured for weeks and still have measurable levels of CFSE remain in the cells.309–313 

Previous studies have used CFSE to stain T cells for cell proliferation in response to drug 

stimulation after six-122,295,314 or seven-315 day incubations. 

One potential downside of this method would be cost – the flow cytometer is rented with 

a set rate. One bottle of 3H-thymidine can last a long time, one well only requires 1ul, and 

use of the scintillation counter is free to the lab. For the CFSE analysis by flow 

cytometry, a new experiment would have to be set up with CFSE, in addition to all other 

desired fluors (for example, to differentiate T cells from PBMCs, and different T cell 

subsets), with our own FMO and isotype controls. A separate flow cytometry 

appointment would need to be set up aside from CD69 experiments, since staining for 

CD69 is done after only 54 hours of incubation, instead of six days. 

5.7 Flow Cytometry 
Flow cytometry was used with the stimulated PBMCs to determine which type of cell 

(CD3+, CD3+CD4+, CD3+CD8+, CD3-) was expressing CD69. These PBMCs were gated 
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according to cell surface marker expression as dot plots (Figure 4-5) and as histograms 

(Figure 4-6).  

First, flow cytometry results were used to screen participants. Both cell viability and 

percent CD3 cells of total cells acquired were examined. To include participants, it was 

decided that the majority of PBMCs analyzed had to be alive (>50% cell viability after 

staining with fixable viability dye). With SMX participants (consisting of four DHR 

participants and three control participants), two DHS participants had viability less than 

50% (Figure 4-7), and one control participant (Figure 4-8). It is not clear why these 

particular participants (DHS001, DHS002, and Control002) had low cell viability. For 

AMX testing, there were five DHR participants and four control participants. All 

participants had cell viability greater than 50% (Figures 4-9 and 4-10) so no AMX 

participants were excluded on this basis.  

In addition to cell viability criteria, participants were also excluded based on percent of 

CD3+ T cells acquired. If this percentage was too low, there would not be enough to see 

cells in gates further in the flow cytometry analysis. Typically, CD3+ T cells are 

approximately 70% of the composition of PBMCs.78–82,316,317 However, since there is 

individual variation between individuals, we removed participants with less than 30% of 

CD3+ cells acquired. Because of this, for SMX participants, DHS001, DHS002, and 

Control002 were removed – these were previously removed due to low cell viability. Out 

of the AMX participants, DHS006 was removed for a very low percentage of CD3+ T 

cells. This is likely because once the blood was drawn, the laboratory that drew the blood 

refrigerated the sample, causing red blood cell contamination in the PBMC layer during 

Ficoll separation. This tube was centrifuged for longer to attempt to remove more RBCs, 

however the RBC count was still very high which was especially noticeable in the flow 

cytometry results.  

For SMX participants, there was no significant increase in percent CD69 or MFI of CD69 

across any of the cell types (CD3+, CD3+CD4+, CD3+CD8+, CD3-, see Figures 4-15 to 4-

18, 4-19 to 4-22, 4-23 to 4-26, 4-27 to 4-30, respectfully). There was some variability in 

the groups at each concentration, however there were not enough participants to draw 
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conclusions. At the 100µM and 200µM SMX concentrations for DHS participants, one of 

the participants had very low cell numbers at these concentrations so these samples had to 

be removed. 

There were few participants (N < 3 in each control and DHS) in this portion of the study, 

therefore no statistics could be performed. Ideally more participants would be recruited 

with hypersensitivities to SMX. To improve collection and results, red blood cell 

contamination would be reduced at the counting stage, and more cells would be acquired 

by flow cytometry (upwards of 50 000 cells).  

Similar to SMX results, there was no significant increase in percent CD69 or MFI of 

CD69 across any of the cell types (CD3+, CD3+CD4+, CD3+CD8+, CD3-), see Figures 4-

31 to 4-34, 4-35 to 4-38, 4-39 to 4-42, 4-43 to 4-46. There were some noticeable 

increases in a few instances in each cell type, however none of these increases were 

significant. There were two instances in this analysis where there was a noticeable 

difference between control and DHS. At 100µM AMX, the percent of CD69 on control 

CD3+CD4+ cells was higher than the DHS cells. This is unexplained and could be 

attributed to several things, including too few participants and low cell count. In addition, 

with CD3- cells, there was greater CD69 expression on DHS cells compared to control 

cells at 1000µM. There were no other noticeable differences at the other concentrations. 

While this difference could also be attributed to error, this concentration is also high and 

could have had an effect on CD69 expression. Again, there should be a greater number of 

participants, more cells acquired, and use of an isotype control to confirm this.  

In addition to looking at each concentration individually, the increasing concentrations 

were grouped as concentration 1 (C1, 10µM AMX and 100µM SMX), concentration 2 

(C2, 100µM AMX and 200µM SMX), etc (Figures 4-47 to 4-54). This analysis was done 

with results from the DHS participant group across both SMX and AMX participants. 

The goal was to see if there are any noticeable increases across increasing concentrations. 

These were separated according to cell type, percent CD69 expression and MFI of CD69, 

similar to previous analyses. Similar to other results, there were no significant differences 

between unstimulated and increasing concentrations across any cell types.  
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There were only a few noticeable, but not significant, differences. First with CD3+CD4+ 

percent CD69, at C2 (200µM SMX, 100µM AMX) there was an observable decrease 

below unstimulated and the other concentrations, while the other concentrations (1, 3, 4) 

showed no difference from unstimulated. CD3+CD4+ MFI of CD69 had a slight decrease 

across concentrations, however none of these concentrations differed from unstimulated. 

With CD3- MFI of CD69, C2 had large variability, which was different from the other 

concentrations, which did not differ from unstimulated. It is not fully known why these 

small differences occurred, however as with the previous analyses, a larger participant 

group, improved methods, the results would be more accurate.  

Another analysis that was done was to look at how the control and DHS participants 

responded to anti-CD3 stimulation (Figures 4-55 to 4-62). Since anti-CD3 is a positive 

control for all of the participants across both drug types, all participants were combined 

regardless of which drug they had a hypersensitivity to. First, CD3- had a lower percent 

CD69 compared to CD3+ cells, which is still consistent considering while some cells in 

the CD3- population might express CD69, they may not express this protein in the same 

capacity as T cells, or some may not express it at all.  

There was one instance in this analysis where there was a difference between the percent 

of CD69 being expressed between control and DHS cells. CD3+CD4+ control PBMCs 

expressed a significantly higher percent of CD69 when compared to DHS participants 

when stimulated with anti-CD3 (Figure 4-57), however this difference was not reflected 

in the MFI of CD69 (Figure 4-58). This means that more cells expressed similar numbers 

of CD69. The reason for this is unknown so far. 

AMX concentrations were combined to see if control or DHS participant PBMCs reacted 

differently to incubation to amoxicillin in general, regardless of concentration (Figures 4-

71, 4-72 to 4-77, 4-78). There were no significant differences between control and DHS 

participants in either percent of CD69 or MFI of CD69 across all cell types. While this 

analysis does not take into account how the PBMCs would respond in different 

concentrations, it is reasonable to expect some differences across the concentrations that 

would affect CD69 expression.  
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Beeler et al. (2008) demonstrated that 1.9% of CD4+ T cells from drug-allergic 

participants expressed CD69 in response to sulfapyridine, 1.1% in response to tetanus 

toxoid, and 0.1% to media. In our flow cytometry analysis, we did not see this. However, 

when looking at very few PBMCs, our analysis could be only seeing a few stimulated T 

cells. Increasing the number of PBMCs analyzed would increase the number of 

CD4+CD69+ T cells, which would make the difference between CD69- and CD69+ cells 

more distinct. Deciding on where to place the gate for the CD69- T cells was decided by 

FMOs, however isotype controls should be used to place the gate more accurately. This is 

because isotype controls reduce non-specific binding of fluorescent-labeled antibodies. 

Even if we are seeing this 1-2% activation in T cells, it could be lost in the murky area 

between CD69+ and CD69- due to lack of isotype controls.  

With flow cytometry, starting cell count does not matter as much as cells are counted 

during analysis, and analysis is stopped once a certain threshold is reached. In the future, 

a greater number of cells should be analyzed, instead of 10000, closer to 100 000 

PBMCs. This, coupled with decreasing RBC contamination, could show more CD69+ 

cells if they exist in the sample, making a positive response more noticeable.   

There are also some improvements that can be made to the protocol, which can be 

established with improvements in the number of fluorescent channels on a flow 

cytometer, or the availability of such a flow cytometer at Western University. The 

fluorescent antibodies that were used for this experiment included CD3-APC, CD4-PE, 

CD8-BV421, and CD69-PE-Cy7. CD3 is a pan-T cell marker, CD4 is present on Th cells, 

CD8 is present on CTLs, and CD69 is a T cell activation marker.105,225,229,318 These four 

markers are for broad classes of T cells and activation, and we could get more specific 

than this. In the future, we could look at activation of more specific types of Th cells, 

including Th1, Th2, Th9, Th17, Th22, and Treg cells by flow cytometry by introducing 

other markers to the flow panel.  

This study is very underpowered. For the flow cytometry work alone, if looking at drug 

and control, we would need N=28, or N=14 each for patient participants and controls, for 

each drug, for 80% power. This power calculation was performed by using the 
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differences in percent of CD69 T cells in response to drug stimulation observed in the 

study conducted by Beeler et al.295 Adding in different clinical presentations would 

increase the number of participants. With six conditions, drugs, and participant/control 

groups, the required participant number increases to 72, with N = 12 per condition. The 

work completed so far has only 8 participants in total and is therefore incredibly 

underpowered. In addition to making adjustments to the methods, many more participants 

would need to be recruited. One benefit though is that this experiment could be 

considered a pilot project, to further provide insight into future studies.  

5.8 Luminex 
A custom Luminex assay purchased from Bio-Rad was used to assess the concentrations 

of IFN-y, IL-4, IL-9, IL-13, IL-17A, and IL-22 in the cell culture supernatant. Four DHS 

participants and their corresponding controls were selected from the AMX participants. 

DHS006 and Control006 were not chosen due to high RBC contamination and low 

percentage of CD3+ cells observed in flow cytometry results. 

The majority of the samples that expressed any level of cytokine were those stimulated 

with anti-CD3. Anti-CD3 promotes cell proliferation which could lead to greater amounts 

of cytokines released. Few cells in tested cultures would produce undetectable amounts in 

control and drug treatments. However, these results were highly variable because usually 

only one or two participants of the four had a measurable release of cytokines. None of 

the samples incubated with 100µM and 500µM AMX secreted detectable levels of 

cytokines, and most of the control (media) did not secrete any detectable levels of any of 

the cytokines. Only DHS005 secreted low but detectable levels across all six cytokines 

evaluated.  

Given that there are likely inconsistent numbers of cells across samples, a protein 

quantification would be required to compare samples to each other. The total protein 

acquired would be divided by the amount of cytokine secretion to normalize to protein 

content. However, only the supernatant was used and it was frozen to accumulate enough 

samples for Luminex. The cells were centrifuged and the supernatant was collected off 

the top, and the plate and cells were discarded. In addition, the media used was 
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supplemented with 10% human serum, which contains protein. Our original concept was 

to conduct a total protein quantification on the remaining supernatant used for Luminex, 

and use RPMI 1640 + 10% human AB serum as background. This background protein 

quantification would be subtracted from the protein content of the samples. We attempted 

to do this and tested the controls and standard curve with the protein quantification kit. It 

was recommended to use a buffer without protein, such as 1% PBS. After analyzing the 

standard curve prepared in both PBS and RPMI 1640 + 10% human AB serum, the media 

curve was very warped, and it was suggested by BioRad that the media and serum were 

not compatible with the kit. It is also a possibility that the proteins in the kit increased the 

total protein content higher than the upper limit of the kit. In the future, it would be 

beneficial to ensure the PBMC concentration is the same among all participants with 

more accurate cell counting. In addition, conduct protein quantification alongside 

isolating and freezing the supernatant, so that cells could be lysed and a total protein 

quantification could be done on lysed cells. Alternatively it could be done as it was, and 

the supernatant could be frozen and analyzed later. It would also be beneficial to leave 

out the serum if we will be doing a protein quantification.  

Other methods we had previously considered included ELISAs (enzyme-linked 

immunosorbent assay) and ELISpot (enzyme-linked immunospot) assays. An ELISpot is 

similar to an ELISA, however the cells are bound to the bottom of a 96-well plate, and 

the cytokines being released are also bound to the bottom of the plate, near the secreting 

cell. When the dye is applied, the cell secreting the cytokine being analyzed turns blue. 

The number of cells secreting the cytokine can be counted. This method would be useful 

if we tried cloning drug-specific T cells.104 ELISAs could be used, however each kit for a 

single cytokine was approximately $600. For this initial attempt, Luminex was less 

expensive. However, if this experiment continues in the future, the ELISAs may be a 

more economical solution. In addition, the ELISA kit has the ability to measure 

additional proteins, including granzyme B, which is secreted by cytotoxic T cells. 

Granzyme B, for example, is not measurable by the Bio-Rad customizable Luminex kit 

we used. This would be relevant due to the involvement of cytotoxic T cells in Stevens-

Johnson Syndrome, for example Chung and Hung 2010, Murata et al. 2008, among 

others.270,272 
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In addition to surface phenotyping greater populations of T cells by flow cytometry, we 

can also look at cytokine secretion using flow cytometry. While Luminex is a viable 

solution, it could be beneficial to try intracellular cytokine staining. One downside to this 

is that the flow cytometer currently available is able to examine 14 colours. We would 

have to carefully choose which cytokines to analyze in order to accommodate the 

viability dye, cell surface markers, and intracellular dyes. However, to accomplish all of 

this at once by flow cytometry, the staining would take more time and the flow cytometer 

would require more fluorescent channels, depending on how many Th cell types are being 

analyzed and how many cytokines would be looked at.  

To correctly power this study for Luminex, a survey of the literature for the difference 

between baseline and stimulated cytokine concentrations for each cytokine would need to 

be done. A smaller difference would require additional participants to support a 

conclusion.  

5.9 Future Studies 
There are many future directions that can be taken with this project. Regarding 

participant recruitment, it would be prudent to focus more on recruiting more age- and 

sex-matched controls. In this current study, the gender profiles of the DHR participants 

differed from those of the controls, as well as the average age was significantly older in 

the DHR compared to the controls. Another interesting avenue to explore would be 

matching the reason the drug was taken. For example, if one participant had a DHR to 

SMX taken for a UTI, then the control would have taken SMX for a UTI but did not have 

a reaction.  

An interesting direction this research could take is to genotype HLA-type participants in 

addition to the in vitro testing done. There are many GWAS (Genome-Wide Association 

Studies) from throughout the globe,319–323 including some in Canada.324 It would be 

beneficial to genotype adult patients recruited, and also extend this to paediatric patients 

as well. These GWAS help to identify culprit genes that contribute to the development of 

ADRs, and are often specific to origin/ethnicity. Genotyping is a huge component of 

personalized medicine. By phenotyping people who have or have had ADRs, we can look 
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for patterns between genes (specifically HLA genes), drug type and clinical presentation. 

This would be extremely beneficial to people who are looking to take a specific drug. 

With so few participants, this is a low-powered study, especially considering the vast 

numbers of different skin reactions that exist and recruiting more people over time to 

increase the number of hypersensitive participants as well as controls to increase the 

power would reveal more promising results.  

Children are some of the most common users of prescription antimicrobials.325 It would 

be very beneficial to include children into this analysis. Children are not just smaller 

versions of adults: the physiology of a child and their ability to metabolize drugs is 

different than that of an adult, in addition to several other differences.326,327 While there 

could be a genetic component to penicillin hypersensitivity in children, it could be 

another underlying pathway resulting in adverse reactions occurring.328 One of the main 

reasons children were excluded from this study is because of the volume of blood 

required for the study. With adults, we drew approximately 15 ml of peripheral blood, 

while in children typically we must draw less because they are smaller. Improving the 

methods, for example by combining the current methods into one large flow cytometry 

panel, could decrease the total number of isolated PBMCs required to acquire the same 

information. This would decrease the amount of blood required to be drawn, which could 

open up this experiment to consenting and assenting children and teenagers.  

In addition to collecting and plating PBMCs for Luminex, I originally isolated CD3+ cells 

for plating for cytokine release. However due to the cost of reagents for one 96-well plate 

and prioritizing PBMCs over isolated T cells, the supernatant for these T cells is still 

frozen. This is important since there would be no RBC contamination unlike in the 

PBMC experiments. The cell count is consistent across all samples and these samples 

could be tested reliably without protein quantification. While limited by not including 

CD3- derived cytokines, it would be interesting to see T cell only derived cytokines 

profiles. Ideally this analysis would be run alongside PBMCs.  

Our current study asked participants who had a DHR diagnosed in previous years, similar 

to previous reports (for example Beeler et al. 2007).295 It would be interesting to continue 
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this research in DHR patients who are currently undergoing a DHR, and also get leftover 

skin biopsy and blister fluid samples from active lesions. Some previous studies have 

done this, and have examined activated T cells and cytokines present in both peripheral 

blood and skin/blister fluid with promising results.275 They also analyzed peripheral 

blood during an active DHR and after resolution. This is important since it can 

demonstrate important diagnostic markers.  

5.10 Conclusions 
Overall, we cannot draw conclusions due to too few subjects and the need for different 

experimental approaches. However, there are several improvements that can be made that 

have been proposed. In the future it would be prudent to adjust the methods, including 

using flow cytometry to measure proliferation instead of scintillation counting. We could 

also expand the number of T cell subsets we analyze, by both increasing the surface 

markers by flow cytometry and the cytokines tested using a bead-based detection assay. It 

would be interesting to look at different drugs in addition to sulfamethoxazole and beta 

lactam antibiotics, to learn more about the role drug type has with DHRs. This study 

could span years to accumulate enough participants and increase power. There is much 

work to be done in the field of drug hypersensitivity; efforts put towards faster 

identification and detection of DHRs can contribute to decreased healthcare burden and 

increased quality of life.  

 



145 

 

References 

 

1. WHO. International Drug Monitoring: The Role of National Centres. 1–48 (1972). 

2. Edwards, I. R. & Aronson, J. K. Adverse drug reactions: definitions, diagnosis, and 

management. The Lancet 356, 1255–1259 (2000). 

3. Sousa-Pinto, B., Fonseca, J. A. & Gomes, E. R. Frequency of self-reported drug 

allergy. Annals of Allergy, Asthma & Immunology 119, 362-373.e2 (2017). 

4. Johansson, S. G. O. et al. Revised nomenclature for allergy for global use: Report of 

the Nomenclature Review Committee of the World Allergy Organization, October 

2003. Journal of Allergy and Clinical Immunology 113, 832–836 (2004). 

5. Lazarou, J., Pomeranz, B. H. & Corey, P. N. Incidence of Adverse Drug Reactions 

in Hospitalized Patients: A Meta-Analysis of Prospective Studies: Survey of 

Anesthesiology 43, 53–54 (1999). 

6. Pirmohamed, M., Breckenridge, A. M., Kitteringham, N. R. & Park, B. K. 

Fortnightly review: Adverse drug reactions. BMJ 316, 1295–1298 (1998). 

7. Einarson, T. R. Drug-Related Hospital Admissions. Ann Pharmacother 27, 832–840 

(1993). 

8. Bates, D. W. et al. Incidence of Adverse Drug Events and Potential Adverse Drug 

Events: Implications for Prevention. JAMA 274, 29–34 (1995). 



146 

 

9. Bates, D. W. The Costs of Adverse Drug Events in Hospitalized Patients. JAMA 

277, 307 (1997). 

10. Classen, D. C., Pestotnik, S. L., Evans, R. S., Lloyd, J. F. & Burke, J. P. Adverse 

Drug Events in Hospitalized Patients: Excess Length of Stay, Extra Costs, and 

Attributable Mortality. JAMA 277, 301–306 (1997). 

11. Li, Y., Minhas, J. S. & Blumenthal, K. G. Economic Impact of Drug Allergy. in 

Drug Allergy Testing 11–18 (Elsevier, 2018). doi:10.1016/B978-0-323-48551-

7.00002-X. 

12. Uetrecht, J. & Naisbitt, D. J. Idiosyncratic Adverse Drug Reactions: Current 

Concepts. Pharmacol Rev 65, 779–808 (2013). 

13. Zhou, L. et al. Drug allergies documented in electronic health records of a large 

healthcare system. Allergy 71, 1305–1313 (2016). 

14. Macy, E. & Ho, N. J. Multiple drug intolerance syndrome: prevalence, clinical 

characteristics, and management. Annals of Allergy, Asthma & Immunology 108, 

88–93 (2012). 

15. Macy, E. & Ngor, E. W. Safely Diagnosing Clinically Significant Penicillin Allergy 

Using Only Penicilloyl-Poly-Lysine, Penicillin, and Oral Amoxicillin. The Journal 

of Allergy and Clinical Immunology: In Practice 1, 258–263 (2013). 



147 

 

16. MacFadden, D. R. et al. Impact of Reported Beta-Lactam Allergy on Inpatient 

Outcomes: A Multicenter Prospective Cohort Study. Clin Infect Dis. 63, 904–910 

(2016). 

17. Baxter, R., Ray, G. T. & Fireman, B. H. Case-Control Study of Antibiotic Use and 

Subsequent Clostridium difficile– Associated Diarrhea in Hospitalized Patients. 

Infect. Control Hosp. Epidemiol. 29, 44–50 (2008). 

18. Macy, E. & Contreras, R. Health care use and serious infection prevalence 

associated with penicillin “allergy” in hospitalized patients: A cohort study. Journal 

of Allergy and Clinical Immunology 133, 790–796 (2014). 

19. Li, M., Krishna, M. T., Razaq, S. & Pillay, D. A real-time prospective evaluation of 

clinical pharmaco-economic impact of diagnostic label of ‘penicillin allergy’ in a 

UK teaching hospital. J Clin Pathol 67, 1088–1092 (2014). 

20. MacLaughlin, E. J., Saseen, J. J. & Malone, D. C. Costs of ß-Lactam Allergies. 

ARCH FAM MED 9, 5 (2000). 

21. Satta, G., Hill, V., Lanzman, M. & Balakrishnan, I. β-lactam allergy: clinical 

implications and costs. Clin Mol Allergy 11, 2 (2013). 

22. Borch, J. E., Andersen, K. E. & Bindslev-Jensen, C. The Prevalence of Suspected 

and Challenge-Verified Penicillin Allergy in a University Hospital Population. 

Basic Clin Pharmacol Toxicol 98, 357–362 (2006). 



148 

 

23. Schlienger, R. G., Oh, P. I., Knowles, S. R. & Shear, N. H. Quantifying the Costs of 

Serious Adverse Drug Reactions to Antiepileptic Drugs. Epilepsia 39, S27–S32 

(1998). 

24. Mill, C. et al. Assessing the Diagnostic Properties of a Graded Oral Provocation 

Challenge for the Diagnosis of Immediate and Nonimmediate Reactions to 

Amoxicillin in Children. JAMA Pediatr 170, e160033 (2016). 

25. Jannic, A. et al. Self-diagnosed drug allergies: the belief of patients. J Eur Acad 

Dermatol Venereol 31, e524–e526 (2017). 

26. Greiwe, J. & Bernstein, J. A. In Vitro and In Vivo Tests for Drug Hypersensitivity 

Reactions. in Drug Allergy Testing 85–95 (Elsevier, 2018). doi:10.1016/B978-0-

323-48551-7.00008-0. 

27. King, E. A., Challa, S., Curtin, P. & Bielory, L. Penicillin skin testing in 

hospitalized patients with β-lactam allergies. Annals of Allergy, Asthma & 

Immunology 117, 67–71 (2016). 

28. Veličković, J. et al. SELF-REPORTED DRUG ALLERGIES IN SURGICAL 

POPULATION IN SERBIA. Acta Clin Croat 54, 8 (2015). 

29. Elzagallaai, A. A. et al. Predictive Value of the Lymphocyte Toxicity Assay in the 

Diagnosis of Drug Hypersensitivity Syndrome. Mol Diag Ther 14, 317–322 (2010). 

30. Uetrecht, J. Idiosyncratic Drug Reactions: Current Understanding. Annu. Rev. 

Pharmacol. Toxicol. 47, 513–539 (2007). 



149 

 

31. Bachot, N. & Roujeau, J.-C. Differential Diagnosis of Severe Cutaneous Drug 

Eruptions: American Journal of Clinical Dermatology 4, 561–572 (2003). 

32. Schröder, W. et al. Gender differences in antibiotic prescribing in the community: a 

systematic review and meta-analysis. J. Antimicrob. Chemother. 71, 1800–1806 

(2016). 

33. Barlam, T. F., Morgan, J. R., Wetzler, L. M., Christiansen, C. L. & Drainoni, M.-L. 

Antibiotics for Respiratory Tract Infections: A Comparison of Prescribing in an 

Outpatient Setting. Infect. Control Hosp. Epidemiol. 36, 153–159 (2015). 

34. Smith, D. R. M., Dolk, F. C. K., Smieszek, T., Robotham, J. V. & Pouwels, K. B. 

Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of 

English primary care. BMJ Open 8, e020203 (2018). 

35. Rademaker, M. Do Women Have More Adverse Drug Reactions?: American 

Journal of Clinical Dermatology 2, 349–351 (2001). 

36. Harris, R. Z., Benet, L. Z. & Schwartz, J. B. Gender Effects in Pharmacokinetics 

and Pharmacodynamics: Drugs 50, 222–239 (1995). 

37. Divoll, M., Greenblatt, D. J., Harmatz, J. S. & Shader, R. I. Effect of age and gender 

on disposition of temazepam. Journal of Pharmaceutical Sciences 70, 1104–1107 

(1981). 

38. Kando, J. C., Yonkers, K. A. & Cole, J. O. Gender as a Risk Factor for Adverse 

Events to Medications: Drugs 50, 1–6 (1995). 



150 

 

39. Pirmohamed, M., Naisbitt, D. J., Gordon, F. & Park, B. K. The danger hypothesis—

potential role in idiosyncratic drug reactions. Toxicology 181–182, 55–63 (2002). 

40. Pichler, W. J. Drug Hypersensitivity Reactions: Classification and Relationship to 

T-Cell Activation. in Drug Hypersensitivity (ed. Pichler, W. J.) 168–189 

(KARGER, 2007). doi:10.1159/000104199. 

41. Zhang, B., Li, Q., Shi, C. & Zhang, X. Drug-Induced Pseudoallergy: A Review of 

the Causes and Mechanisms. Pharmacology 101, 104–110 (2018). 

42. Drug Allergy: An Updated Practice Parameter. Annals of Allergy, Asthma & 

Immunology 105, 259-273.e78 (2010). 

43. Qiu, S. et al. Complement activation associated with polysorbate 80 in beagle dogs. 

International Immunopharmacology 15, 144–149 (2013). 

44. Polk, R. E. et al. Vancomycin and the Red-Man Syndrome: Pharmacodynamics of 

Histamine Release. Journal of Infectious Diseases 157, 502–507 (1988). 

45. Martini, S., Alessandroni, R., Arcuri, S. & Faldella, G. Vancomycin-induced red 

man syndrome presentation in a preterm infant. Pediatr Dermatol 35, e408–e409 

(2018). 

46. Clinical aspects of immunology / edited by P.G.H. Gell and R.R.A. Coombs. 

(Blackwell Scientific Publications, 1963). 

47. Uzzaman, A. & Cho, S. H. Chapter 28: Classification of hypersensitivity reactions. 

allergy asthma proc 33, 96–99 (2012). 



151 

 

48. Pichler, W. J. The p-i Concept: Pharmacological Interaction of Drugs With Immune 

Receptors. World Allergy Organization Journal 1, 96–102 (2008). 

49. Pichler, W. J. Delayed Drug Hypersensitivity Reactions. Annals of Internal 

Medicine 139, 683–693 (2003). 

50. Manfredi, M. et al. Detection of specific IgE to quinolones. Journal of Allergy and 

Clinical Immunology 113, 155–160 (2004). 

51. Gamerdinger, K. et al. A New Type of Metal Recognition by Human T Cells. 

Journal of Experimental Medicine 197, 1345–1353 (2003). 

52. Landsteiner, K. & Jacobs, J. STUDIES ON THE SENSITIZATION OF ANIMALS 

WITH SIMPLE CHEMICAL COMPOUNDS. II. J Exp Med 64, 625–639 (1936). 

53. Naisbitt, D. J. et al. Hypersensitivity Reactions to Carbamazepine: Characterization 

of the Specificity, Phenotype, and Cytokine Profile of Drug-Specific T Cell Clones. 

Mol Pharmacol 63, 732–741 (2003). 

54. Naisbitt, D. J. et al. Characterization of drug-specific T cells in lamotrigine 

hypersensitivity. Journal of Allergy and Clinical Immunology 111, 1393–1403 

(2003). 

55. Schnyder, B., Mauri-Hellweg, D., Zanni, M., Bettens, F. & Pichler, W. J. Direct, 

MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T 

cell clones. J Clin Invest 100, 136–141 (1997). 



152 

 

56. Ariza, A., Montañez, M. I. & Pérez-Sala, D. Proteomics in immunological reactions 

to drugs: Current Opinion in Allergy and Clinical Immunology 11, 305–312 (2011). 

57. Ariza, A. et al. Protein haptenation by amoxicillin: High resolution mass 

spectrometry analysis and identification of target proteins in serum. Journal of 

Proteomics 77, 504–520 (2012). 

58. Yun, J., Cai, F., Lee, F. J. & Pichler, W. J. T-cell-mediated drug hypersensitivity: 

immune mechanisms and their clinical relevance. Asia Pac Allergy 6, 77 (2016). 

59. Zanni, M. P. et al. HLA-restricted, processing- and metabolism-independent 

pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest 102, 

1591–1598 (1998). 

60. Pichler, W. J. et al. Pharmacological Interaction of Drugs with Immune Receptors: 

The p-i Concept. Allergology International 55, 17–25 (2006). 

61. Kanny, G. et al. T cell–mediated reactions to iodinated contrast media: Evaluation 

by skin and lymphocyte activation tests. Journal of Allergy and Clinical 

Immunology 115, 179–185 (2005). 

62. Barbaud, A. Drug patch testing in systemic cutaneous drug allergy. Toxicology 209, 

209–216 (2005). 

63. Matzinger, P. The Danger Model: A Renewed Sense of Self. Science 296, 301–305 

(2002). 



153 

 

64. Matzinger, P. Tolerance, danger, and the extended family. Annual review of 

immunology 12, 991–1045 (1994). 

65. Matzinger, P. & Fuchs, E. Beyond" self" and" non-self": Immunity is a 

conversation, not a war. Journal of NIH Research 8, 35–39 (1996). 

66. Li, J. & Uetrecht, J. P. The Danger Hypothesis Applied to Idiosyncratic Drug 

Reactions. in Adverse Drug Reactions (ed. Uetrecht, J.) vol. 196 493–509 (Springer 

Berlin Heidelberg, 2010). 

67. Uetrecht, J. P. New Concepts in Immunology Relevant to Idiosyncratic Drug 

Reactions: The “Danger Hypothesis” and Innate Immune System. Chem. Res. 

Toxicol. 12, 387–395 (1999). 

68. Pullen, H., Wright, N. & Murdoch, J. McC. HYPERSENSITIVITY REACTIONS 

TO ANTIBACTERIAL DRUGS IN INFECTIOUS MONONUCLEOSIS. The 

Lancet 290, 1176–1178 (1967). 

69. Fischl, M. A. et al. The Efficacy of Azidothymidine (AZT) in the Treatment of 

Patients with AIDS and AIDS-Related Complex. N Engl J Med 317, 185–191 

(1987). 

70. Illing, P. T. et al. Immune self-reactivity triggered by drug-modified HLA-peptide 

repertoire. Nature 486, 554–558 (2012). 



154 

 

71. Chessman, D. et al. Human Leukocyte Antigen Class I-Restricted Activation of 

CD8+ T Cells Provides the Immunogenetic Basis of a Systemic Drug 

Hypersensitivity. Immunity 28, 822–832 (2008). 

72. Ostrov, D. A. et al. Drug hypersensitivity caused by alteration of the MHC-

presented self-peptide repertoire. Proceedings of the National Academy of Sciences 

109, 9959–9964 (2012). 

73. Knowles, S. R., Uetrecht, J. & Shear, N. H. Idiosyncratic drug reactions: the 

reactive metabolite syndromes. The Lancet 356, 1587–1591 (2000). 

74. Naisbitt, D. J., Williams, D. P., Pirmohamed, M., Kitteringham, N. R. & Park, B. K. 

Reactive metabolites and their role in drug reactions. Current Opinion in Allergy 

and Clinical Immunology 1, (2001). 

75. Park, B. K., Naisbitt, D. J., Gordon, S. F., Kitteringham, N. R. & Pirmohamed, M. 

Metabolic activation in drug allergies. Toxicology 158, 11–23 (2001). 

76. Cho, T. & Uetrecht, J. How Reactive Metabolites Induce an Immune Response That 

Sometimes Leads to an Idiosyncratic Drug Reaction. Chem. Res. Toxicol. 30, 295–

314 (2017). 

77. Pennock, N. D. et al. T cell responses: naïve to memory and everything in between. 

Advances in Physiology Education 37, 273–283 (2013). 



155 

 

78. Kleiveland, C. R. Peripheral Blood Mononuclear Cells. in The Impact of Food 

Bioactives on Health: in vitro and ex vivo models (eds. Verhoeckx, K. et al.) 161–

167 (Springer International Publishing, 2015). doi:10.1007/978-3-319-16104-4_15. 

79. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T Cells and 

Immune Tolerance. Cell 133, 775–787 (2008). 

80. Akdis, M., Palomares, O., van de Veen, W., van Splunter, M. & Akdis, C. A. TH17 

and TH22 cells: A confusion of antimicrobial response with tissue inflammation 

versus protection. Journal of Allergy and Clinical Immunology 129, 1438–1449 

(2012). 

81. Crotty, S. Follicular Helper CD4 T Cells (T FH ). Annu. Rev. Immunol. 29, 621–663 

(2011). 

82. Tan, C. & Gery, I. The Unique Features of Th9 Cells and their Products. Crit Rev 

Immunol 32, 1–10 (2012). 

83. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-

presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14, 719–

730 (2014). 

84. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. 

Nature 392, 245–252 (1998). 

85. Fundamental Immunology. (Lippincott-Raven, 1999). 



156 

 

86. Winzler, C. et al. Maturation Stages of Mouse Dendritic Cells in Growth Factor–

dependent Long-Term Cultures. Journal of Experimental Medicine 185, 317–328 

(1997). 

87. Inaba, K., Inaba, M., Naito, M. & Steinman, R. M. Dendritic cell progenitors 

phagocytose particulates, including bacillus Calmette-Guerin organisms, and 

sensitize mice to mycobacterial antigens in vivo. J Exp Med 178, 479–488 (1993). 

88. Moll, H., Fuchs, H., Blank, C. & Röllinghoff, M. Langerhans cells 

transportLeishmania major from the infected skin to the draining lymph node for 

presentation to antigen-specific T cells. Eur. J. Immunol. 23, 1595–1601 (1993). 

89. Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by 

Langerhans cells in vitro. Journal of Experimental Medicine 178, 509–519 (1993). 

90. Svensson, M., Stockinger, B. & Wick, M. J. Bone marrow-derived dendritic cells 

can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 

158, 4229 (1997). 

91. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use 

macropinocytosis and the mannose receptor to concentrate macromolecules in the 

major histocompatibility complex class II compartment: downregulation by 

cytokines and bacterial products. J Exp Med 182, 389–400 (1995). 

92. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory 

stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 

388, 782–787 (1997). 



157 

 

93. LeBien, T. W. & Tedder, T. F. B lymphocytes: how they develop and function. 

Blood 112, 1570–1580 (2008). 

94. Cooper, M. D. & Alder, M. N. The Evolution of Adaptive Immune Systems. Cell 

124, 815–822 (2006). 

95. Brack, C., Hirama, M., Lenhard-Schuller, R. & Tonegawa, S. A complete 

immunoglobulin gene is created by somatic recombination. Cell 15, 1–14 (1978). 

96. Britschgi, M. et al. T-cell involvement in drug-induced acute generalized 

exanthematous pustulosis. J. Clin. Invest. 107, 1433–1441 (2001). 

97. Yawalkar, N. et al. Infiltration of cytotoxic T cells in drug-induced cutaneous 

eruptions. Clinical and Experimental Allergy 9 (2000). 

98. Chung, W.-H. et al. Granulysin is a key mediator for disseminated keratinocyte 

death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med 14, 

1343–1350 (2008). 

99. Daubner, B. et al. Multiple drug hypersensitivity: normal Treg cell function but 

enhanced in vivo activation of drug-specific T cells: Multiple drug hypersensitivity. 

Allergy 67, 58–66 (2012). 

100. El-Ghaiesh, S. et al. Characterization of the Antigen Specificity of T-Cell Clones 

from Piperacillin-Hypersensitive Patients with Cystic Fibrosis. J Pharmacol Exp 

Ther 341, 597–610 (2012). 



158 

 

101. Nishio, D., Izu, K., Kabashima, K. & Tokura, Y. T cell populations propagating in 

the peripheral blood of patients with drug eruptions. Journal of Dermatological 

Science 48, 25–33 (2007). 

102. Luque, I. et al. In vitro T-cell responses to beta-lactam drugs in immediate and 

nonimmediate allergic reactions. Allergy 56, 611–618 (2001). 

103. Mauri-Hellweg, D. et al. Activation of drug-specific CD4+ and CD8+ T cells in 

individuals allergic to sulfonamides, phenytoin, and carbamazepine. The Journal of 

Immunology 155, 462–472 (1995). 

104. Sullivan, A. et al. β-Lactam hypersensitivity involves expansion of circulating and 

skin-resident TH22 cells. Journal of Allergy and Clinical Immunology 141, 235-

249.e8 (2018). 

105. Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat Rev 

Immunol 18, 121–133 (2018). 

106. Damsker, J. M., Hansen, A. M. & Caspi, R. R. Th1 and Th17 cells: Adversaries and 

collaborators. Annals of the New York Academy of Sciences 1183, 211–221 (2010). 

107. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 Cells: Different Patterns of 

Lymphokine Secretion Lead to Different Functional Properties. Annu. Rev. 

Immunol. 7, 145–173 (1989). 

108. Romagnani, S. TH1 and TH2 in Human Diseases. Clinical Immunology and 

Immunopathology 80, 225–235 (1996). 



159 

 

109. Constant, S. L. & Bottomly, K. INDUCTION OF TH1 AND TH2 CD4 + T CELL 

RESPONSES:The Alternative Approaches. Annu. Rev. Immunol. 15, 297–322 

(1997). 

110. Seder, R. A. et al. CD8+ T cells can be primed in vitro to produce IL-4. J. Immunol. 

148, 1652 (1992). 

111. Seder, R. A., GAZZINELLIt, Ricard., SHERt, A. & Paul, W. E. Interleukin 12 acts 

directly on CD4+ T cells to enhance priming for interferon y production and 

diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 5 

(1993). 

112. Hsieh, C.-S., Heimberger, A. B., Gold, J. S., O’GARRAt, A. & Murphy, K. M. 

Differential regulation of T helper phenotype development by interleukins 4 and 10 

in an c43 T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 5 (1992). 

113. Szabo, S. J. et al. A Novel Transcription Factor, T-bet, Directs Th1 Lineage 

Commitment. Cell 100, 655–669 (2000). 

114. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of 

signals, mechanisms and functions. Journal of Leukocyte Biology 75, 163–189 

(2004). 

115. Carnaud, C. et al. Cutting Edge: Cross-Talk Between Cells of the Innate Immune 

System: NKT Cells Rapidly Activate NK Cells. J. Immunol. 163, 4647 (1999). 



160 

 

116. Frucht, D. M. et al. IFN-γ production by antigen-presenting cells: mechanisms 

emerge. Trends in Immunology 22, 556–560 (2001). 

117. Gessani, S. & Belardelli, F. IFN-γ Expression in Macrophages and Its Possible 

Biological Significance. Cytokine & Growth Factor Reviews 9, 117–123 (1998). 

118. Flaishon, L. et al. Autocrine secretion of interferon gamma negatively regulates 

homing of immature B cells. J Exp Med 192, 1381–1388 (2000). 

119. Bach, E. A., Aguet, M. & Schreiber, R. D. THE IFNγ RECEPTOR:A Paradigm for 

Cytokine Receptor Signaling. Annu. Rev. Immunol. 15, 563–591 (1997). 

120. Young, H. A. Regulation of Interferon-γ Gene Expression. Journal of Interferon & 

Cytokine Research 16, 563–568 (1996). 

121. Lochmatter, P., Zawodniak, A. & Pichler, W. J. In Vitro Tests in Drug 

Hypersensitivity Diagnosis. Immunology and Allergy Clinics of North America 29, 

537–554 (2009). 

122. Beeler, A., Engler, O., Gerber, B. O. & Pichler, W. J. Long-lasting reactivity and 

high frequency of drug-specific T cells after severe systemic drug hypersensitivity 

reactions. Journal of Allergy and Clinical Immunology 117, 455–462 (2006). 

123. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the 

development of Th2-like helper effectors. J. Immunol. 145, 3796 (1990). 

124. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. 

Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-



161 

 

4 are required for in vitro generation of IL-4-producing cells. J Exp Med 172, 921–

929 (1990). 

125. Yagi, R., Zhu, J. & Paul, W. E. An updated view on transcription factor GATA3-

mediated regulation of Th1 and Th2 cell differentiation. International Immunology 

23, 415–420 (2011). 

126. Kurata, H., Lee, H. J., O’Garra, A. & Arai, N. Ectopic Expression of Activated Stat6 

Induces the Expression of Th2-Specific Cytokines and Transcription Factors in 

Developing Th1 Cells. Immunity 11, 677–688 (1999). 

127. Zhu, Y. I. & Stiller, M. J. Dapsone and sulfones in dermatology: Overview and 

update. Journal of the American Academy of Dermatology 45, 420–434 (2001). 

128. Gadani, S. P., Cronk, J. C., Norris, G. T. & Kipnis, J. IL-4 in the Brain: A Cytokine 

To Remember. J.I. 189, 4213–4219 (2012). 

129. Brown, M. A. IL-4 Production by T Cells: You Need a Little to Get a Lot. J 

Immunol 181, 2941–2942 (2008). 

130. Howard, M. et al. Identification of a T cell-derived b cell growth factor distinct from 

interleukin 2. The Journal of Experimental Medicine 155, 914–923 (1982). 

131. Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J. & Paul, W. E. THE IL-4 

RECEPTOR: Signaling Mechanisms and Biologic Functions. Annu. Rev. Immunol. 

17, 701–738 (1999). 



162 

 

132. Callard, R. E., Matthews, D. J. & Hibbert, L. IL-4 and IL-13 receptors: are they one 

and the same? Immunology Today 17, 108–110 (1996). 

133. de Waal Malefyt, R. et al. Effects of IL-13 on phenotype, cytokine production, and 

cytotoxic function of human monocytes. Comparison with IL-4 and modulation by 

IFN-gamma or IL-10. J. Immunol. 151, 6370 (1993). 

134. McKenzie, A. N. et al. Interleukin 13, a T-cell-derived cytokine that regulates 

human monocyte and B-cell function. Proceedings of the National Academy of 

Sciences 90, 3735–3739 (1993). 

135. Punnonen, J. et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE 

synthesis and CD23 expression by human B cells. Proceedings of the National 

Academy of Sciences 90, 3730–3734 (1993). 

136. Cocks, B. G., de Waal Malefyt, R., Galizzi, J.-P., de Vries, J. E. & Aversa, G. IL-13 

induces proliferation and differentiation of human B cells activated by the CD40 

ligand. Int Immunol 5, 657–663 (1993). 

137. Lochmatter, P., Beeler, A., Kawabata, T. T., Gerber, B. O. & Pichler, W. J. Drug-

specific in vitro release of IL-2, IL-5, IL-13 and IFN-γ in patients with delayed-type 

drug hypersensitivity. Allergy 64, 1269–1278 (2009). 

138. Kaplan, M. H. Th9 cells: differentiation and disease. Immunol Rev 252, 104–115 

(2013). 



163 

 

139. Bettelli, E. et al. Reciprocal developmental pathways for the generation of 

pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006). 

140. Josefowicz, S. Z. & Rudensky, A. Control of Regulatory T Cell Lineage 

Commitment and Maintenance. Immunity 30, 616–625 (2009). 

141. Wan, Y. Y. & Flavell, R. A. ‘Yin-Yang’ functions of transforming growth factor-

beta and T regulatory cells in immune regulation. Immunol Rev 220, 199–213 

(2007). 

142. Soroosh, P. & Doherty, T. A. Th9 and allergic disease. Immunology 127, 450–458 

(2009). 

143. Chang, H.-C. et al. The transcription factor PU.1 is required for the development of 

IL-9-producing T cells and allergic inflammation. Nat Immunol 11, 527–534 (2010). 

144. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with 

TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells. Nat Immunol 9, 1347–1355 

(2008). 

145. Staudt, V. et al. Interferon-Regulatory Factor 4 Is Essential for the Developmental 

Program of T Helper 9 Cells. Immunity 33, 192–202 (2010). 

146. Veldhoen, M. et al. Transforming growth factor-β ‘reprograms’ the differentiation 

of T helper 2 cells and promotes an interleukin 9–producing subset. Nat Immunol 9, 

1341–1346 (2008). 



164 

 

147. Jones, C. P., Gregory, L. G., Causton, B., Campbell, G. A. & Lloyd, C. M. Activin 

A and TGF-β promote TH9 cell–mediated pulmonary allergic pathology. Journal of 

Allergy and Clinical Immunology 129, 1000-1010.e3 (2012). 

148. Purwar, R. et al. Robust tumor immunity to melanoma mediated by interleukin-9–

producing T cells. Nat Med 18, 1248–1253 (2012). 

149. Cortelazzi, C., Campanini, N., Ricci, R. & Panfilis, G. Inflammed Skin Harbours 

Th9 Cells. Acta Derm Venerol 93, 183–185 (2013). 

150. Uyttenhove, C., Simpson, R. J. & Van Snick, J. Functional and structural 

characterization of P40, a mouse glycoprotein with T-cell growth factor activity. 

Proceedings of the National Academy of Sciences 85, 6934–6938 (1988). 

151. Van Snick, J. et al. Cloning and characterization of a cDNA for a new mouse T cell 

growth factor (P40). The Journal of Experimental Medicine 169, 363–368 (1989). 

152. Hültner, L. et al. Mast cell growth-enhancing activity (MEA) is structurally related 

and functionally identical to the novel mouse T cell growth factor P40/TCGFIII 

(interleukin 9). Eur. J. Immunol. 20, 1413–1416 (1990). 

153. Renauld, J., Vink, A., Louahed, J. & Van Snick, J. Interleukin-9 is a major anti-

apoptotic factor for thymic lymphomas. Blood 85, 1300–1305 (1995). 

154. Renauld, J. C. et al. Human P40/IL-9. Expression in activated CD4+ T cells, 

genomic organization, and comparison with the mouse gene. J. Immunol. 144, 4235 

(1990). 



165 

 

155. Houssiau, F. A., Renauld, J. C., Fibbe, W. E. & Van Snick, J. IL-2 dependence of 

IL-9 expression in human T lymphocytes. J. Immunol. 148, 3147 (1992). 

156. Goswami, R. & Kaplan, M. H. A Brief History of IL-9. J.I. 186, 3283–3288 (2011). 

157. Noelle, R. J. & Nowak, E. C. Cellular sources and immune functions of interleukin-

9. Nat Rev Immunol 10, 683–687 (2010). 

158. Wilhelm, C., Turner, J.-E., Van Snick, J. & Stockinger, B. The many lives of IL-9: a 

question of survival? Nat Immunol 13, 637–641 (2012). 

159. Eller, K. et al. IL-9 Production by Regulatory T Cells Recruits Mast Cells That Are 

Essential for Regulatory T Cell-Induced Immune Suppression. J.I. 186, 83–91 

(2011). 

160. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function 

of FoxP3+ natural regulatory T cells. Proceedings of the National Academy of 

Sciences 106, 12885–12890 (2009). 

161. Elyaman, W. et al. Notch Receptors and Smad3 Signaling Cooperate in the 

Induction of Interleukin-9-Producing T Cells. Immunity 36, 623–634 (2012). 

162. Lu, L.-F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. 

Nature 442, 997–1002 (2006). 

163. Erpenbeck, V. J. et al. Increased Messenger RNA Expression of c-maf and GATA-3 

After Segmental Allergen Challenge in Allergic Asthmatics. Chest 123, 370S-371S 

(2003). 



166 

 

164. Tesmer, L. A., Lundy, S. K., Sarkar, S. & Fox, D. A. Th17 cells in human disease. 

Immunological Reviews 223, 87–113 (2008). 

165. Harrington, L. E. et al. Interleukin 17–producing CD4+ effector T cells develop via 

a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6, 1123–

1132 (2005). 

166. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by 

producing interleukin 17. Nat Immunol 6, 1133–1141 (2005). 

167. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a 

novel cytokine receptor. Immunity 3, 811–821 (1995). 

168. Yao, Z. et al. Human IL-17: a novel cytokine derived from T cells. The Journal of 

Immunology 155, 5483–5486 (1995). 

169. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce 

proinflammatory and hematopoietic cytokines. The Journal of Experimental 

Medicine 183, 2593–2603 (1996). 

170. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ 

in the Context of an Inflammatory Cytokine Milieu Supports De Novo 

Differentiation of IL-17-Producing T Cells. Immunity 24, 179–189 (2006). 

171. Stockinger, B. & Veldhoen, M. Differentiation and function of Th17 T cells. 

Current Opinion in Immunology 19, 281–286 (2007). 



167 

 

172. Ivanov, I. I. et al. The Orphan Nuclear Receptor RORγt Directs the Differentiation 

Program of Proinflammatory IL-17+ T Helper Cells. Cell 126, 1121–1133 (2006). 

173. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces 

autoimmune inflammation. Journal of Experimental Medicine 201, 233–240 (2005). 

174. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. 

Journal of Experimental Medicine 204, 1849–1861 (2007). 

175. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. 

Interleukins 1β and 6 but not transforming growth factor-β are essential for the 

differentiation of interleukin 17–producing human T helper cells. Nat Immunol 8, 

942–949 (2007). 

176. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 

17–producing helper T cells. Nat Immunol 8, 950–957 (2007). 

177. Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded 

by IL-2 and inhibited by IL-27/STAT1. Nat Med 13, 711–718 (2007). 

178. Kolls, J. K. & Lindén, A. Interleukin-17 Family Members and Inflammation. 

Immunity 21, 467–476 (2004). 

179. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of 

inflammatory T cells. Nature 448, 480–483 (2007). 



168 

 

180. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and 

cooperatively enhance expression of antimicrobial peptides. Journal of 

Experimental Medicine 203, 2271–2279 (2006). 

181. Toda, M. et al. Polarized in vivo expression of IL-11 and IL-17 between acute and 

chronic skin lesions. Journal of Allergy and Clinical Immunology 111, 875–881 

(2003). 

182. Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family 

and IL-17 receptors. Cytokine & Growth Factor Reviews 14, 155–174 (2003). 

183. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: 

conditions of disease induction affect dominant effector category. Journal of 

Experimental Medicine 205, 799–810 (2008). 

184. Eyerich, K. & Eyerich, S. Th22 cells in allergic disease. Allergo J Int 24, 1–7 

(2015). 

185. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of 

interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T 

cells. Nat Immunol 10, 857–863 (2009). 

186. Fujita, H. The role of IL-22 and Th22 cells in human skin diseases. Journal of 

Dermatological Science 72, 3–8 (2013). 



169 

 

187. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a 

human helper T cell population that has abundant production of interleukin 22 and 

is distinct from TH-17, TH1 and TH2 cells. Nat Immunol 10, 864–871 (2009). 

188. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in 

epidermal immunity and remodeling. J. Clin. Invest. JCI40202 (2009) 

doi:10.1172/JCI40202. 

189. Dumoutier, L., Van Roost, E., Ameye, G., Michaux, L. & Renauld, J.-C. IL-TIF/IL-

22: genomic organization and mapping of the human and mouse genes. Genes 

Immun 1, 488–494 (2000). 

190. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, 

inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12, 

383–390 (2011). 

191. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Functional Biology of the IL-22-IL-

22R Pathway in Regulating Immunity and Inflammation at Barrier Surfaces. in 

Advances in Immunology vol. 107 1–29 (Elsevier, 2010). 

192. Zenewicz, L. A. & Flavell, R. A. Recent advances in IL-22 biology. International 

Immunology 23, 159–163 (2011). 

193. Rendon, J. L. & Choudhry, M. A. Th17 cells: critical mediators of host responses to 

burn injury and sepsis. Journal of Leukocyte Biology 92, 529–538 (2012). 



170 

 

194. Boniface, K. et al. A role for T cell-derived interleukin 22 in psoriatic skin 

inflammation: IL-22 in psoriatic skin inflammation. Clinical & Experimental 

Immunology 150, 407–415 (2007). 

195. Wolk, K. et al. IL-22 Increases the Innate Immunity of Tissues. Immunity 21, 241–

254 (2004). 

196. Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial 

defense, cellular differentiation, and mobility in keratinocytes: a potential role in 

psoriasis. Eur. J. Immunol. 36, 1309–1323 (2006). 

197. Ferran, M. et al. Streptococcus Induces Circulating CLA+ Memory T-Cell-

Dependent Epidermal Cell Activation in Psoriasis. Journal of Investigative 

Dermatology 133, 999–1007 (2013). 

198. Ramirez, J.-M. et al. Activation of the aryl hydrocarbon receptor reveals distinct 

requirements for IL-22 and IL-17 production by human T helper cells. Eur. J. 

Immunol. 40, 2450–2459 (2010). 

199. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-

tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains 

(CD25). Breakdown of a single mechanism of self-tolerance causes various 

autoimmune diseases. J. Immunol. 155, 1151 (1995). 

200. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-

tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–

562 (2004). 



171 

 

201. WanJun, C. et al. Conversion of peripheral CD CD25 naive T cells to CD4 CD25 

regulatory T cells by TGF-induction of transcription factor foxp3. J. Exp. Med 198, 

1875–1886 (2003). 

202. Andersen, M. H., Schrama, D., thor Straten, P. & Becker, J. C. Cytotoxic T Cells. 

Journal of Investigative Dermatology 126, 32–41 (2006). 

203. Castelli, C. et al. T‐cell recognition of melanoma‐associated antigens. Journal of 

cellular physiology 182, 323–331 (2000). 

204. Trapani, J. A. Target cell apoptosis induced by cytotoxic T cells and natural killer 

cells involves synergy between the pore-forming protein, perforin, and the serine 

protease, granzyme B. Australian and New Zealand Journal of Medicine 25, 793–

799 (1995). 

205. Vignaux, F. & Golstein, P. Fas-based lymphocyte-mediated cytotoxicity against 

syngeneic activated lymphocytes: A regulatory pathway? Eur. J. Immunol. 24, 923–

927 (1994). 

206. Golstein, P., Ojcius, D. M. & Young, J. D.-E. Cell Death Mechanisms and the 

Immune System. Immunol Rev 121, 29–65 (1991). 

207. Podack, E. R. & Dennert, G. Assembly of two types of tubules with putative 

cytolytic function by cloned natural killer cells. Nature 302, 442–445 (1983). 

208. Tschopp, J. & Nabholz, M. Perforin-Mediated Target Cell Lysis by Cytolytic T 

Lymphocytes. Annu. Rev. Immunol. 8, 279–302 (1990). 



172 

 

209. Jenne, D. E. & Tschopp, J. Granzymes, a Family of Serine Proteases Released from 

Granules of Cytolytic T Lymphocytes upon T Cell Receptor Stimulation. Immunol 

Rev 103, 53–71 (1988). 

210. Kagi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated 

cytotoxicity. Science 265, 528–530 (1994). 

211. Podack, E. R., Young, J. D. & Cohn, Z. A. Isolation and biochemical and functional 

characterization of perforin 1 from cytolytic T-cell granules. Proceedings of the 

National Academy of Sciences 82, 8629–8633 (1985). 

212. Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a natural 

born killer. Immunol Rev 193, 31–38 (2003). 

213. Podack, E. R. & Konigsberg, P. J. Cytolytic T cell granules. Isolation, structural, 

biochemical, and functional characterization. The Journal of Experimental Medicine 

160, 695–710 (1984). 

214. Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth 

component of complement (C9). Nature 334, 525–527 (1988). 

215. Garcia-Sanz, J. A. et al. Perforin is present only in normal activated Lyt2+ T 

lymphocytes and not in L3T4+ cells, but the serine protease granzyme A is made by 

both subsets. The EMBO Journal 6, 933–938 (1987). 



173 

 

216. Kawasaki, A., Shinkai, Y., Yagita, H. & Okumura, K. Expression of perforin in 

murine natural killer cells and cytotoxic T lymphocytesin vivo. Eur. J. Immunol. 22, 

1215–1219 (1992). 

217. Pircher, H. et al. Viral escape by selection of cytotoxic T cell-resistant virus variants 

in vivo. Nature 346, 629–633 (1990). 

218. Russell, J. H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune 

lpr/lpr mice have a defect in antigen-stimulated suicide. Proceedings of the National 

Academy of Sciences 90, 4409–4413 (1993). 

219. Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly 

impaired in perforin-deficient mice. Nature 369, 31–37 (1994). 

220. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. Cytolytic T-cell cytotoxicity is 

mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994). 

221. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen 

Fas can mediate apoptosis. Cell 66, 233–243 (1991). 

222. Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of 

apoptosis. Science 245, 301–305 (1989). 

223. Duke, R. C., Chervenak, R. & Cohen, J. J. Endogenous endonuclease-induced DNA 

fragmentation: an early event in cell-mediated cytolysis. Proceedings of the 

National Academy of Sciences 80, 6361–6365 (1983). 



174 

 

224. Russell, J. H. Internal Disintegration Model of Cytotoxic Lymphocyte-Induced 

Target Damage. Immunol Rev 72, 97–118 (1983). 

225. Marrack, P. & Kappler, J. The T cell receptor. Science 238, 1073 (1987). 

226. Allison, J. P., Mcintyre, B. W. & Bloch, D. Tumor-specific antigen of murine T-

lymphoma defined with monoclonal antibody. The Journal of Immunology 129, 

2293–2300 (1982). 

227. Samelson, L. E., Harford, J. B. & Klausner, R. D. Identification of the components 

of the murine T cell antigen receptor complex. Cell 43, 223–231 (1985). 

228. Weiss, A., Imboden, J., Shoback, D. & Stobo, J. Role of T3 surface molecules in 

human T-cell activation: T3-dependent activation results in an increase in 

cytoplasmic free calcium. Proceedings of the National Academy of Sciences 81, 

4169–4173 (1984). 

229. Sancho, D., Gómez, M. & Sánchez-Madrid, F. CD69 is an immunoregulatory 

molecule induced following activation. Trends in Immunology 26, 136–140 (2005). 

230. Ziegler, S. F., Ramsdell, F. & Alderson, M. R. The activation antigen CD69. Stem 

Cells 12, 456–465 (1994). 

231. Yokoyama, W. M. et al. Characterization of a cell surface-expressed disulfide-

linked dimer involved in murine T cell activation. J. Immunol. 141, 369 (1988). 

232. Testi, R., Phillips, J. H. & Lanier, L. L. Leu 23 induction as an early marker of 

functional CD3/T cell antigen receptor triggering. Requirement for receptor cross-



175 

 

linking, prolonged elevation of intracellular [Ca++] and stimulation of protein 

kinase C. The Journal of Immunology 142, 1854–1860 (1989). 

233. Lanier, L. et al. Interleukin 2 activation of natural killer cells rapidly induces the 

expression and phosphorylation of the Leu-23 activation antigen. The Journal of 

experimental medicine 167, 1572–1585 (1988). 

234. Testi, R. et al. Preferential involvement of a phospholipase A2-dependent pathway 

in CD69-mediated platelet activation. The Journal of Immunology 148, 2867–2871 

(1992). 

235. Lopez-Cabrera, M. et al. Molecular cloning, expression, and chromosomal 

localization of the human earliest lymphocyte activation antigen AIM/CD69, a new 

member of the C-type animal lectin superfamily of signal-transmitting receptors. 

The Journal of experimental medicine 178, 537–547 (1993). 

236. Testi, R., Phillips, J. & Lanier, L. T cell activation via Leu-23 (CD69). The Journal 

of Immunology 143, 1123–1128 (1989). 

237. Bjorndahl, J., Nakamura, S., Hara, T., Jung, L. & Fu, S. M. The 28-kDa/32-kDa 

activation antigen EA 1. Further characterization and signal requirements for its 

expression. The Journal of Immunology 141, 4094–4100 (1988). 

238. Cebrián, M. et al. Triggering of T cell proliferation through AIM, an activation 

inducer molecule expressed on activated human lymphocytes. The Journal of 

Experimental Medicine 168, 1621–1637 (1988). 



176 

 

239. Hara, T., Jung, L., Bjorndahl, J. & Fu, S. Human T cell activation. III. Rapid 

induction of a phosphorylated 28 kD/32 kD disulfide-linked early activation antigen 

(EA 1) by 12-o-tetradecanoyl phorbol-13-acetate, mitogens, and antigens. The 

Journal of experimental medicine 164, 1988–2005 (1986). 

240. Testi, R., D’Ambrosio, D., De Maria, R. & Santoni, A. The CD69 receptor: a 

multipurpose cell-surface trigger for hematopoietic cells. Immunology Today 15, 

479–483 (1994). 

241. Gomes, E. R. & Demoly, P. Epidemiology of hypersensitivity drug reactions. 

Current opinion in allergy and clinical immunology 5, 309–316 (2005). 

242. Böhm, R., Proksch, E., Schwarz, T. & Cascorbi, I. Drug Hypersensitivity: 

Diagnosis, Genetics, and Prevention. Deutsches Ärzteblatt International 115, 501 

(2018). 

243. Schnyder, B. et al. Recognition of Sulfamethoxazole and Its Reactive Metabolites 

by Drug-Specific CD4 + T Cells from Allergic Individuals. J Immunol 164, 6647–

6654 (2000). 

244. Masters, P. A., O’Bryan, T. A., Zurlo, J., Miller, D. Q. & Joshi, N. Trimethoprim-

Sulfamethoxazole Revisited. Arch Intern Med 163, 402 (2003). 

245. Bushby, S. R. M. Trimethoprim-Sulfamethoxazole: In Vitro Microbiological 

Aspects. Journal of Infectious Diseases 128, S442–S462 (1973). 



177 

 

246. Darrell, J. H., Garrod, L. P. & Waterworth, P. M. Trimethoprim: laboratory and 

clinical studies. Journal of Clinical Pathology 21, 202–209 (1968). 

247. Dorn, J. M. & Volcheck, G. W. Sulfonamide Drug Allergy. in Drug Allergy Testing 

145–156 (Elsevier, 2018). doi:10.1016/B978-0-323-48551-7.00014-6. 

248. Cribb, A. E., Miller, M., Leeder, J. S., Hill, J. & Spielberg, S. P. Reactions of the 

nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced 

glutathione. Implications for idiosyncratic toxicity. Drug Metabolism and 

Disposition 19, 900–906 (1991). 

249. Brander, C. et al. Heterogeneous T cell responses to beta-lactam-modified self-

structures are observed in penicillin-allergic individuals. J. Immunol. 155, 2670 

(1995). 

250. Padovan, E., Mauri-Hellweg, D., Pichler, W. J. & Weltzien, H. U. T cell recognition 

of penicillin G: Structural features determining antigenic specificity. Eur. J. 

Immunol. 26, 42–48 (1996). 

251. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A 

Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 

130, 797–810 (2007). 

252. Smith, P. W. et al. Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past 

To Help Discover Long-Acting Oral Drugs in the Future. ACS Infect. Dis. 4, 1439–

1447 (2018). 



178 

 

253. Sun, J., Deng, Z. & Yan, A. Bacterial multidrug efflux pumps: Mechanisms, 

physiology and pharmacological exploitations. Biochemical and Biophysical 

Research Communications 453, 254–267 (2014). 

254. Talbot, G. H. β-Lactam antimicrobials: what have you done for me lately?: Future 

of β-Lactam antimicrobials. Annals of the New York Academy of Sciences 1277, 76–

83 (2013). 

255. Torres, M. J. et al. Clavulanic acid can be the component in amoxicillin-clavulanic 

acid responsible for immediate hypersensitivity reactions. Journal of Allergy and 

Clinical Immunology 125, 502-505.e2 (2010). 

256. Cohen, N. C. .beta.-Lactam antibiotics: geometrical requirements for antibacterial 

activities. J. Med. Chem. 26, 259–264 (1983). 

257. Daniele Canzani, F. A. Penicillin G’s function, metabolites, allergy, and resistance. 

J Nutr Hum Health 1, 28–40 (2017). 

258. Blanca, M. et al. Update on the evaluation of hypersensitivity reactions to 

betalactams. Allergy 64, 183–193 (2009). 

259. Torres, M. J. et al. Diagnosis of immediate allergic reactions to beta-lactam 

antibiotics. Allergy 58, 961–972 (2003). 

260. Romano, A. et al. Diagnosis of nonimmediate reactions to beta-lactam antibiotics. 

Allergy 59, 1153–1160 (2004). 



179 

 

261. Cohen, A. D., Friger, M., Sarov, B. & Halevy, S. Which intercurrent infections are 

associated with maculopapular cutaneous drug reactions? A case-control study: 

Infections and cutaneous drug reactions. International Journal of Dermatology 40, 

41–44 (2001). 

262. Brockow, K. Drug Allergy. in Drug Allergy Testing 19–26 (Elsevier, 2018). 

doi:10.1016/B978-0-323-48551-7.00003-1. 

263. Lockwood, S. J. & Saavedra, A. P. Cutaneous Reactions to Drugs. in Drug Allergy 

Testing 53–72 (Elsevier, 2018). doi:10.1016/B978-0-323-48551-7.00006-7. 

264. Podevin, P. & Biour, M. Drug-induced “allergic hepatitis”. Clinical Reviews in 

Allergy and Immunology 13, 223–244 (1995). 

265. Schlossberg, D. Fever and rash. Infectious Disease Clinics 10, 101–110 (1996). 

266. Bosonnet, L. Pruritis: scratching the surface. Eur J Cancer Care 12, 162–165 

(2003). 

267. Roujeau, J.-C., Stern, R. S., Correia, O., Shapiro, S. & Kaufman, D. W. Medication 

Use and the Risk of Stevens–Johnson Syndrome or Toxic Epidermal Necrolysis. 

THE NEW ENGLAND JOURNAL OF MEDICINE 8 (1995). 

268. Lyell, A. Toxic epidermal necrolysis (the scalded skin syndrome): A reappraisal. Br 

J Dermatol 100, 69–86 (1979). 

269. Roujeau, J. C. & Stern, R. S. Severe adverse cutaneous reactions to drugs. New 

England Journal of Medicine 331, 1272–1285 (1994). 



180 

 

270. Chung, W.-H. & Hung, S.-I. Genetic Markers and Danger Signals in Stevens-

Johnson Syndrome and Toxic Epidermal Necrolysis. Allergology International 59, 

325–332 (2010). 

271. Bastuji-Garin, S. et al. Clinical classification of cases of toxic epidermal necrolysis, 

Stevens-Johnson syndrome, and erythema multiforme. Archives of dermatology 

129, 92–96 (1993). 

272. Murata, J., Abe, R. & Shimizu, H. Increased soluble Fas ligand levels in patients 

with Stevens-Johnson syndrome and toxic epidermal necrolysis preceding skin 

detachment. Journal of Allergy and Clinical Immunology 122, 992–1000 (2008). 

273. Nomura, Y. et al. Evaluation of serum cytokine levels in toxic epidermal necrolysis 

and Stevens-Johnson syndrome compared with other delayed-type adverse drug 

reactions: Letters to the Editor. The Journal of Dermatology 38, 1076–1079 (2011). 

274. Vestergaard, C., Johansen, C., Otkjaer, K., Deleuran, M. & Iversen, L. Tumor 

necrosis factor-α-induced CTACK/CCL27 (cutaneous T-cell-attracting chemokine) 

production in keratinocytes is controlled by nuclear factor κB. Cytokine 29, 49–55 

(2005). 

275. Wang, F. et al. Diverse expression of TNF-α and CCL27 in serum and blister of 

Stevens–Johnson syndrome/toxic epidermal necrolysis. Clin Transl Allergy 8, 12 

(2018). 

276. Roujeau, J. C. Acute generalized exanthematous pustulosis. Analysis of 63 cases. 

Archives of Dermatology 127, 1333–1338 (1991). 



181 

 

277. BAKER, H. & RYAN, T. J. GENERALIZED PUSTULAR PSORIASIS. British 

Journal of Dermatology 80, 771–793 (1968). 

278. Beylot, C., Doutre, M.-S. & Beylot-Barry, M. Acute generalized exanthematous 

pustulosis. in vol. 15 244–249 (1996). 

279. Roujeau, J.-C. Neutrophilic drug eruptions. Clinics in dermatology 18, 331–337 

(2000). 

280. Chen, Y.-C., Chiu, H.-C. & Chu, C.-Y. Drug Reaction With Eosinophilia and 

Systemic Symptoms: A Retrospective Study of 60 Cases. Arch Dermatol 146, 1373 

(2010). 

281. Myers, G. B., Heide, E. V. & Balcerski, M. Exfoliative dermatitis following 

sulfanilamide. Journal of the American Medical Association 109, 1983–1984 

(1937). 

282. Merritt, H. H. & Putnam, T. J. Sodium diphenyl hydantoinate in treatment of 

convulsive seizures: toxic symptoms and their prevention. Archives of Neurology & 

Psychiatry 42, 1053–1058 (1939). 

283. Tomecki, K. J. & Catalano, C. J. Dapsone hypersensitivity: the sulfone syndrome 

revisited. Archives of dermatology 117, 38–39 (1981). 

284. Singer, J. Z. & Wallace, S. L. The allopurinol hypersensitivity syndrome. 

Unnecessary morbidity and mortality. Arthritis & Rheumatism: Official Journal of 

the American College of Rheumatology 29, 82–87 (1986). 



182 

 

285. Wolf, R., Orion, E., Marcos, B. & Matz, H. Life-threatening acute adverse 

cutaneous drug reactions. Clinics in Dermatology 23, 171–181 (2005). 

286. Choquet-Kastylevsky et al. Increased levels of interleukin 5 are associated with the 

generation of eosinophilia in drug-induced hypersensitivity syndrome: IL-5 AND 

DRUG HYPERSENSITIVITY SYNDROME. British Journal of Dermatology 139, 

1026–1032 (1998). 

287. Roujeau, J.-C. Clinical heterogeneity of drug hypersensitivity. Toxicology 209, 123–

129 (2005). 

288. Torres, J. et al. Diagnostic evaluation of a large group of patients with immediate 

allergy to penicillins: the role of skin testing. Allergy 56, 850–856 (2001). 

289. Padial, A. et al. Non-immediate reactions to β-lactams: diagnostic value of skin 

testing and drug provocation test. Clin Exp Allergy 38, 822–828 (2008). 

290. Bousquet, P., Pipet, A., Bousquet‐Rouanet, L. & Demoly, P. Oral challenges are 

needed in the diagnosis of β‐lactam hypersensitivity. Clinical & Experimental 

Allergy 38, 185–190 (2008). 

291. Elzagallaai, A. A. & Rieder, M. J. In vitro testing for diagnosis of idiosyncratic 

adverse drug reactions: Implications for pathophysiology: In vitro testing for 

idiosyncratic adverse drug reactions. Br J Clin Pharmacol 80, 889–900 (2015). 



183 

 

292. Hertl, M., Geisel, J., Boecker, C. & Merk, H. F. Selective generation of CD8+ T-

cell clones from the peripheral blood of patients with cutaneous reactions to beta-

lactam antibiotics. Br J Dermatol 128, 619–626 (1993). 

293. Pichler, W. J. & Tilch, J. The lymphocyte transformation test in the diagnosis of 

drug hypersensitivity. Allergy 59, 809–820 (2004). 

294. Yawalkar, N. et al. T Cells Isolated from Positive Epicutaneous Test Reactions to 

Amoxicillin and Ceftriaxone are Drug Specific and Cytotoxic. Journal of 

Investigative Dermatology 115, 647–652 (2000). 

295. Beeler, A., Zaccaria, L., Kawabata, T., Gerber, B. O. & Pichler, W. J. CD69 

upregulation on T cells as an in vitro marker for delayed-type drug hypersensitivity. 

Allergy 0, 071115092114001-??? (2007). 

296. Torres, M. J. et al. Monitoring non-immediate allergic reactions to iodine contrast 

media: Non-immediate reactions to iodine contrast media. Clinical & Experimental 

Immunology 152, 233–238 (2008). 

297. Subbarao, P. Canadian Healthy Infant Longitudinal Development (CHILD) Study 8-

Year Biological Samples Collection and Processing SOP. (2018). 

298. Kim, T. K. Understanding one-way ANOVA using conceptual figures. Korean J 

Anesthesiol 70, 22 (2017). 



184 

 

299. Muller, K. E. & Barton, C. N. Approximate Power for Repeated-Measures ANOVA 

Lacking Sphericity. Journal of the American Statistical Association 84, 549–555 

(1989). 

300. Beeler, A., Engler, O., Gerber, B. O. & Pichler, W. J. Long-lasting reactivity and 

high frequency of drug-specific T cells after severe systemic drug hypersensitivity 

reactions. Journal of Allergy and Clinical Immunology 117, 455–462 (2006). 

301. Schnyder, B., Helbling, A., Kappeler, A. & Pichler, W. J. Drug-induced 

papulovesicular exanthema. Allergy 53, 817–818 (1998). 

302. Williams, D. R. The health of men: structured inequalities and opportunities. 

American journal of public health 98, S150–S157 (2008). 

303. Eberhardt, M. S. et al. Health, United States, 2001, with urban and rural health 

chartbook. (2001). 

304. Mehnert-Kay, S. A. Diagnosis and Management of Uncomplicated Urinary Tract 

Infections. 72, 6 (2005). 

305. Lipsky, B. A. Urinary tract infections in men: epidemiology, pathophysiology, 

diagnosis, and treatment. Annals of Internal Medicine 110, 138–150 (1989). 

306. Sobel, J. Pathogenesis of urinary tract infections. Host defenses. Infectious disease 

clinics of North America 1, 751–772 (1987). 

307. Kunin, C. M. Detection, prevention, and management of urinary tract infections. 

(Lea & Febiger, 1987). 



185 

 

308. Luzyanina, T. et al. Computational analysis of CFSE proliferation assay. Journal of 

mathematical biology 54, 57–89 (2007). 

309. Banks, H. T. et al. A new model for the estimation of cell proliferation dynamics 

using CFSE data. Journal of Immunological Methods 373, 143–160 (2011). 

310. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow 

cytometry. Journal of immunological methods 171, 131–137 (1994). 

311. Parish, C. R. Fluorescent dyes for lymphocyte migration and proliferation studies. 

Immunol Cell Biol 77, 499–508 (1999). 

312. Quah, B. J. C., Warren, H. S. & Parish, C. R. Monitoring lymphocyte proliferation 

in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein 

diacetate succinimidyl ester. Nat Protoc 2, 2049–2056 (2007). 

313. Wallace, P. K. et al. Tracking antigen-driven responses by flow cytometry: 

Monitoring proliferation by dye dilution: Tracking Cell Proliferation. Cytometry 

73A, 1019–1034 (2008). 

314. Hanafusa, T., Azukizawa, H., Matsumura, S. & Katayama, I. The predominant drug-

specific T-cell population may switch from cytotoxic T cells to regulatory T cells 

during the course of anticonvulsant-induced hypersensitivity. Journal of 

Dermatological Science 65, 213–219 (2012). 

315. Tsuge, I. et al. Allergen-specific T-cell Response in Patients with Phenytoin 

Hypersensitivity; Simultaneous Analysis of Proliferation and Cytokine Production 



186 

 

by Carboxyfluorescein Succinimidyl Ester (CFSE) Dilution Assay. Allergology 

International 56, 149–155 (2007). 

316. Corkum, C. P. et al. Immune cell subsets and their gene expression profiles from 

human PBMC isolated by Vacutainer Cell Preparation Tube (CPTTM) and standard 

density gradient. BMC Immunol 16, 48 (2015). 

317. Autissier, P., Soulas, C., Burdo, T. H. & Williams, K. C. Evaluation of a 12-color 

flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in 

humans. Cytometry 9999A, NA-NA (2010). 

318. Zhang, N. & Bevan, M. J. CD8+ T Cells: Foot Soldiers of the Immune System. 

Immunity 35, 161–168 (2011). 

319. Karlin, E. & Phillips, E. Genotyping for Severe Drug Hypersensitivity. Curr Allergy 

Asthma Rep 14, 418 (2014). 

320. Yip, V. L. M. & Pirmohamed, M. The HLA-A*31:01 allele: influence on 

carbamazepine treatment. PGPM Volume10, 29–38 (2017). 

321. Amstutz, U. et al. HLA-A*31:01 and HLA-B*15:02 as Genetic Markers for 

Carbamazepine Hypersensitivity in Children. Clin Pharmacol Ther 94, 142–149 

(2013). 

322. Büyüköztürk, S. et al. Cutaneous drug reactions to antiepileptic drugs and relation 

with HLA alleles in the Turkish population. Eur Ann Allergy Clin Immunol 50, 36 

(2018). 



187 

 

323. Chang, C.-C. et al. Association of HLA-B*15:13 and HLA-B*15:02 with 

phenytoin-induced severe cutaneous adverse reactions in a Malay population. 

Pharmacogenomics J 17, 170–173 (2017). 

324. Berka, N., Gill, J. M., Liacini, A., O’Bryan, T. & Khan, F. M. Human leukocyte 

antigen (HLA) and pharmacogenetics: screening for HLA-B*57:01 among human 

immunodeficiency virus–positive patients from southern Alberta. Human 

Immunology 73, 164–167 (2012). 

325. McCaig, L. F. & Hughes, J. M. Trends in antimicrobial drug prescribing among 

office-based physicians in the United States. Jama 273, 214–219 (1995). 

326. Palmieri, T. L. Children are not little adults: blood transfusion in children with burn 

injury. Burns & Trauma 5, s41038-017-0090-z (2017). 

327. Raes, A., Van Aken, S., Craen, M., Donckerwolcke, R. & Walle, J. V. A reference 

frame for blood volume in children and adolescents. BMC Pediatr 6, 3 (2006). 

328. Elzagallaai, A., Greff, M. & Rieder, M. Adverse Drug Reactions in Children: The 

Double-Edged Sword of Therapeutics. Clin. Pharmacol. Ther. 101, 725–735 

(2017). 



188 

 

Appendices 

List of Abbreviations 
ADR – adverse drug reaction 

AGEP – acute generalized exanthematous pustulosis  

AMX – amoxicillin 

APC – antigen presenting cell 

BCR – B cell receptor  

BSA – body surface area 

CBZ – carbamazepine 

CCR – chemokine receptor 

CD – cluster of differentiation 

CLA – cutenaous leukocyte antigen 

Cpm – counts per minute 

CTL – cytotoxic T cell 

DAMP – danger-associated molecular patterns 

DC – dendritic cell  

DHR – drug hypersensitivity reaction 

DIHS – drug-induced hypersensitivity syndrome 

DNA – deoxyribonucleic acid 

DRESS – drug rash with eosinophilia and systemic symptoms 
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DRESS – drug reaction with eosinophilia and systemic symptoms 

EM – erythema multiforme 

FACS – fluorescence-activated cell sorter 

FasL – Fas ligand 

GP – general practitioner 

GVHD – Graft vs Host Disease 

GWAS – genome wide association study 

HLA – human leukocyte antigen 

IFN-y – interferon-gamma 

Ig – immunoglobulin 

IL – interleukin 

ILC – innate lymphoid cell  

LTA – lymphocyte toxicity assay 

LTE – lymphocyte transformation test 

MHC – major histocompatibility complex 

MPE – maculopapular exanthemas 

MRSA – methicillin resistant staphyllocaucus aureus  

NK – natural killer 

NKT – natural killer T cells 

NSAID – non-steroidal anti-inflammatory drugs 
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p-i – direct pharmacological interaction of drugs with immune receptors 

PAMP – pathogen-associated molecular patterns 

PBMC – peripheral blood mononuclear cell  

PBS – phosphate buffered saline, pH = 7.2 

PE – phycoerythrin 

PE-Cy7 – phycoerythrin cyanine-7 

Pen – penicillin  

PMA – phorbol myristate acetate 

R – receptor (ie. IL-4R) 

rANOVA – repeated measures analysis of variance 

RBC – red blood cell  

RNA – ribonucleic acid 

RPMI – Roswell Park Memorial Institute (media)  

RTI – respiratory tract infection 

SI – stimulation index 

SJS – Stevens-Johnson Syndrome 

SJS – Stevens-Johnson Syndrome 

SLE – systemic lupus erythematosus 

SMX – sulfamethoxazole 

SMX-HA – sulfamethoxazole hydroxylamine  
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SMX-NO – nitrososulfonamide 

Strep – streptomycin 

Tc – cytotoxic T cell (also see CTL) 

TCR – T cell receptor 

TEN – Toxic Epidermal Necrolysis 

TGF-b – tumour growth factor 

TH – helper T cell 

TMP – trimethoprim 

TNF – tumor necrosis factor 

TNF-b – tumour necrosis factor 

Treg – regulatory T cells  

UTI – urinary tract infection 

ViD – viability dye 

WHO – World Health Organization 
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Title	of	Study:	Characterizing	T-cell	phenotype	in	patients	with	hypersensitivity	reactions	to	
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Background	
Adverse	drug	reactions	are	a	serious	problem	and	are	among	the	top	five	causes	of	all	deaths	in	
Canada	and	the	United	States.	We	know	that	some	people	who	take	a	drug	suffer	an	adverse	
reaction	while	others	can	take	the	same	drug	without	any	adverse	effects.	Some	of	these	adverse	
reactions	are	mediated	by	cells	in	the	immune	system	that	circulate	through	the	blood.	We	would	
like	to	learn	more	about	how	these	cells	differ	between	patients	with	a	history	of	drug	reaction	
and	those	without.		
	
	
Purpose	of	Study	
The	purpose	of	our	research	is	to	prevent	adverse	drug	reactions	and	the	subsequent	skin	rashes	
through	improved	understanding	of	the	physical	features	of	involved	immune	cells	and	their	
secretions.	These	studies	will	help	to	find	out	what	role	different	cell	types	and	their	respective	
secretions	have	in	predicting	who	will	have	adverse	drug	reactions	and	what	type	of	adverse	skin	
reaction	will	result.		
	
Since	not	all	of	the	immune	cells	and	cell	secretions	involved	in	different	responses	to	drugs	have	
been	discovered	yet,	we	would	like	to	bank	your	biological	sample	to	study	in	the	future.	This	way,	
we	can	go	back	and	test	different	types	of	cells	present	in	your	sample,	or	look	at	different	
secretions	that	those	cells	produce	when	stimulated	with	the	drug.			
	
The	exact	plan	for	these	future	studies	is	not	known	at	this	time	since	it	will	depend	on	other	
discoveries	being	made	in	the	area	of	pharmacological	and	immunological	research.	
		
	
Invitation		
You	are	being	invited	to	participate	in	a	study	looking	at	immune	cells	in	your	peripheral	blood	
(specifically,	blood	from	a	vein	in	your	arm),	and	then	have	the	unused	sample	of	your	cells	
isolated	from	blood	stored	for	future	use	in	research	studies.	This	process	is	referred	to	as	
biobanking.		
	
	
Participation		
Before	you	decide	to	consent,	it	is	important	for	you	know	why	we	wish	to	collect	and	bank	your	
peripheral	immune	cells	and	what	will	be	done	with	them.	This	consent	form	will	tell	you	what	
will	be	collected	and	stored,	where	it	will	be	stored,	who	will	have	access	to	it,	how	it	may	be	used	
in	the	future,	and	the	possible	benefits,	risks,	and	discomforts	associated	with	providing	a	sample.	
	
If	you	wish	to	participate	in	this	study,	you	are	invited	to	sign	this	form.	Participation	in	this	study	
is	voluntary,	therefore	you	have	the	right	to	refuse	to	allow	us	to	obtain	a	blood	sample	and/or	
have	your	isolated	immune	cells	banked.	Refusing	to	participate	or	have	your	cells	banked	will	not	
affect	your	participation	in	this	study	nor	will	refusing	to	participate	in	the	study	as	a	whole	affect	
your	present	or	future	medical	care.	
	
Please	take	time	to	read	the	following	information	carefully	and	to	discuss	it	with	your	family,	
friends,	and	doctor	before	you	decide.			



	
Procedures	
As	part	of	this	study,	a	small	amount	of	your	blood	(approximately	15-20	millilitres,	or	3-4	
teaspoons)	will	be	drawn	using	a	needle	from	a	vein	in	your	arm.	
	
Once	the	blood	is	collected,	the	peripheral	blood	mononuclear	cells	(PBMCs;	immune	cells	that	are	
in	circulation	through	arteries	and	veins)	will	be	isolated.	The	cells	will	be	examined	for	how	they	
respond	to	stimulation	with	the	drug	that	caused	the	adverse	reaction.	Then,	we	would	like	to	take	
a	portion	of	the	isolated	PBMCs	and	freeze	them	for	future	analysis.	Upon	consent,	your	samples	
will	be	labelled	with	a	unique	numeric	code	so	that	your	name	will	not	be	attached	to	the	sample.	
Only	the	study’s	Principal	Investigator	and	his	designates	will	hold	the	key	containing	your	unique	
numeric	code	with	your	identifying	information.	This	sample	will	be	held	frozen	at	Robarts	
Research	Institute,	Western	University.		
	
We	are	also	asking	your	permission	to	keep	some	information	obtained	from	your	medical	
records.	This	information	is	only	pertinent	to	the	adverse	drug	reaction	you	experienced	to	
sulfamethoxazole	or	beta-lactam	antibiotics.	Only	the	relevant	information	obtained	from	these	
records	will	be	stored	in	our	secure	study	databases	located	at	Robarts	Research	Institute.	This	
information	will	be	identified	using	the	same	study	identity	number	as	the	biological	sample.	No	
information	that	could	identify	you	personally	will	be	included.		Only	the	study	investigators	will	
have	access	to	the	database.		
	
Every	measure	will	be	taken	to	ensure	your	privacy.	The	cells	you	provide	will	only	be	used	for	
research	described	in	this	consent	form.	You	will	not	receive	the	results	of	this	or	any	future	tests.	
Your	participation	in	this	study	will	not	become	part	of	your	medical	record.	The	analyses	
conducted	by	our	investigators	are	focused	on	the	response	of	cells	upon	stimulation	by	the	
specific	drug	you	have	an	adverse	reaction	to	and	a	control	stimulant.	Therefore	it	is	extremely	
unlikely	that	we	will	uncover	any	new	information	relevant	to	your	health	or	overall	
wellbeing.	However,	in	the	rare	event	that	this	occurs,	the	biobank	will	be	requested	to	re-identify	
you	so	that	we	can	notify	your	physician	of	our	findings.	
	
	
Responsibilities	
After	your	blood	sample	has	been	taken	you	do	not	need	to	do	anything	else	to	participate	in	this	
study.	
	
	
Risks	and	Discomforts	
Blood	withdrawing	is	identical	to	any	blood	sample	taking	for	routine	blood	tests	at	a	hospital	or	a	
medical	lab.	The	possible	harms	and	discomforts	of	the	study	mostly	involve	the	collection	of	the	
blood	sample.	There	may	be	some	slight	pain	and	discomfort	when	the	needle	is	inserted	into	the	
vein	for	blood	collection,	and	some	minor	bleeding,	bruising,	swelling,	or	feeling	faint	or	dizzy	
after	it	is	removed.	
	
	
	



Benefits	
The	research	that	may	be	done	with	your	biological	sample	is	not	expected	to	benefit	you	or	your	
family	members	directly.	However,	we	hope	that	the	information	gained	from	these	studies	can	be	
used	in	the	future	to	improve	the	safety	and	efficacy	of	beta-lactam	antibiotics	and	
sulfamethoxazole.	
	
	
Withdrawal	
It	is	possible	to	withdraw	from	the	study	at	any	stage	upon	your	request.	All	your	samples	will	be	
properly	destroyed	and	data	will	be	deleted.	
	
	
Confidentiality		
Protecting	your	privacy	is	our	number	one	priority.	Your	rights	to	privacy	are	legally	protected	by	
federal	and	provincial	laws	that	require	safeguards	to	ensure	that	your	privacy	and	personal	data	
are	respected.	These	laws	also	give	you	the	right	of	access	to	the	information	that	has	been	
provided	and,	if	need	be,	an	opportunity	to	correct	any	errors	in	this	information.	In	most	cases,	
your	personal	information	or	information	that	could	identify	you	will	not	be	revealed	to	any	third	
party,	including	your	family	members	and	your	physician,	without	your	expressed	consent.		
	
You	will	be	assigned	a	unique	study	code	number	as	a	participant	in	this	study.	This	number	will	
not	include	any	personal	information	that	could	identify	you	(for	example	it	will	not	include	your	
Ontario	Health	Insurance	Card	number,	or	Social	Insurance	Number,	your	initials,	etc.).	Only	this	
number	will	be	used	on	any	research-related	information	collected	about	you	during	the	course	of	
this	study,	so	that	your	identity	will	be	kept	confidential.	Only	the	Principal	Investigator,	the	study	
coordinator,	and	the	person	collecting	your	blood	sample	will	have	access	to	the	names	of	
participants	in	this	study.	Lists	of	participants	will	be	kept	locked	in	the	office	of	the	study	
coordinators.	All	computer	files	will	be	kept	encrypted	and	locked	with	restricted	access	
passwords	known	only	to	the	investigators.	Information	about	the	drugs	you	take	and	your	blood	
sample	will	be	sent	to	our	analysis	center,	at	the	Robarts	Research	Institute,	for	analysis.	
	
No	information	or	records	that	disclose	your	identity	will	be	published,	nor	will	any	information	
or	records	that	disclose	your	identity	be	removed	or	released	without	your	consent	unless	
required	by	law.		
	
Name,	address,	and	phone	number	are	collected	in	the	rare	instance	that	we	need	to	contact	you	
regarding	any	unclear	information.	This	extra	contact	will	be	minimal,	and	we	do	not	expect	to	
contact	every	patient	enrolled.		
	
Since	your	sample	and	information	will	be	kept	for	many	years	or	until	it	is	used	entirely	or	
withdrawn,	we	will	update	our	security	measures	for	protecting	your	data	and	for	preserving	your	
sample	as	they	become	available.		
	
	
	
	



Contact	Person(s)	for	Participants	
If	you	have	any	questions	about	the	study	and/or	treatment	and	care,	you	may	contact	Dr.	
Abdelbaset	(Baset)	Elzagallaai,	the	study	coordinator 	

	or	Christine	Caron 		
	
	
No	Waiver	of	Rights	
You	do	not	waive	any	legal	rights	by	signing	this	consent	form.	
	



Consent	Form	–	Research	Copy	
	
Title	 of	 Study:	 Characterizing	 T-cell	 phenotype	 in	 patients	 with	 hypersensitivity	 reactions	 to	
sulfonamides	and	beta-lactam	antibiotics	
	
I	have	read	the	accompanying	letter	of	information	and	have	had	the	nature	of	the	study	explained	
to	me	and	I	agree	to	participate	in	the	study.	All	questions	have	been	answered	to	my	satisfaction.			
	
	
Participant’s	Date	of	Birth	 	
	
	

		 																																																																				 	
Participant’s	Name	(please	print)	 Name	of	Person	Obtaining	Informed	Consent	(please	print)	
	
	

		 																																																																				 	
Participant’s	(or	Guardian’s)	Signature		 Signature	of	Person	Obtaining	Informed	Consent		
	
	
Date	 	 										Date	 	
	
	
	 	



Consent	Form	–	Participant	Copy	
	
Title	 of	 Study:	 Characterizing	 T-cell	 phenotype	 in	 patients	 with	 hypersensitivity	 reactions	 to	
sulfonamides	and	beta-lactam	antibiotics	
	
I	have	read	the	accompanying	letter	of	information	and	have	had	the	nature	of	the	study	explained	
to	me	and	I	agree	to	participate	in	the	study.	All	questions	have	been	answered	to	my	satisfaction.			
	
	
Participant’s	Date	of	Birth	 	
	
	

		 																																																																				 	
Participant’s	Name	(please	print)	 Name	of	Person	Obtaining	Informed	Consent	(please	print)	
	
	

		 																																																																				 	
Participant’s	(or	Guardian’s)	Signature		 Signature	of	Person	Obtaining	Informed	Consent		
	
	
Date	 	 										Date	 	
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Curriculum Vitae 
Academic	Background	
September	2017	–		
August	2020	

Western	University	
Master	of	Science	in	Pathology	and	Laboratory	Medicine	
student	under	the	supervision	of	Dr.	Michael	Rieder	

January	2014	–		
April	2017		

Algoma	University	
Undergraduate	student	in	Honours	Bachelor	of	Science	in	
Biology,	minor	in	Psychology	

	
Awards	and	Scholarships	Received	
2018	 Dr.	Frederick	Winnett	Luney	Graduate	Research	Award	
2017	 NSERC-USRA	Scholarship	

Algoma	University	Dean’s	Honour	List	
2016	 Algoma	University	Academic	Achievement	Scholarship	

NSERC-USRA	Scholarship	
Algoma	University	Dean’s	Honour	List	

2015	 Algoma	University	Academic	Achievement	Scholarship	
NSERC-USRA	Scholarship	
Algoma	University	Dean’s	Honour	List	

2014	 Lake	Superior	State	University	Dean’s	List	
2013	 Lake	Superior	State	University	Canadian	Student	Entrance	

Scholarship	
Sault	Ste.	Marie	Zonta	Scholarship	
Kewadin	Club	Scholarship	

	
Work	Experience	
	
September	2018	–	
present		

Graduate	Teaching	Assistant	(full	time,	140	hours	per	semester)	
–	Western	University,	Department	of	Biology:	Introductory	
Biology	(BIOL1001/1201A,	BIOL1002/1202A)	skills	sessions	B	
teaching	assistant,	involves	co-leading	approximately	40	
students	through	a	wet	lab	environment,	grading	assignments,	
proctoring	midterms	and	final	exams,	entering	grades	
	

May	2017	–		
August	2017;	
May	2016	–		
August	2016;	
May	2015	–			
August	2015,		
	

NSERC	Undergraduate	Student	Research	Assistant	–	Algoma	
University:	Received	NSERC-USRA	grant	to	work	in	Algoma	
University’s	plant	biochemistry	lab	under	the	supervision	of	Dr.	
Isabel	Molina	on	projects	involving	the	study	of	suberin	
deposition	in	poplar	trees	

September	2015	–	
April	2016	

Research	Assistant	–	Algoma	University,	Department	of	Biology:	
Worked	in	plant	biochemistry	lab	at	Algoma	University	under	
the	supervision	of	Dr.	Isabel	Molina,	studying	suberin	deposition	
in	poplar	tree	studies		
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January	2015	–	
December	2015	

Teaching	Assistant	–	Algoma	University,	Department	of	Biology:	
Introductory	Chemistry	(CHMI1006)	course	teaching	assistant;	
duties	involved	helping	students,	grading	tests,	quizzes,	
assignments,	and	holding	tutorial	sessions	for	the	classes	

	
September	2014	–	
December	2014	

Teaching	Assistant	–	Algoma	University,	Department	of	Biology:	
Introductory	chemistry	(CHMI1006)	lab	teaching	assistant;	
duties	included	supervising	the	students	during	lab	experiments,	
answering	questions,	and	helping	the	lab	instructor		
	

September	2014	–		
April	2016	

Tutor	–	Algoma	University:	Tutor	for	a	variety	of	subjects,	
including	general	chemistry	and	organic	chemistry	

	
Research	Experience	
	
September	2017	–	
present		

Western	University	–	London,	Ontario:	MSc	student	
• Supervisor	Dr.	Michael	Rieder	
• Project	involves	studying	pathophysiology	of	drug	

hypersensitivity	reactions,	specifically	culturing,	
stimulating,	and	staining	immune	cells,	and	assessing	
phenotype	and	cytokines		

2015	–	2017	 Algoma	University	–	Sault	Ste.	Marie,	Ontario:	NSERC-USRA	
Scholarship	

• Supervisor	Dr.	Isabel	Molina	
• Involved	in	continual	research	experiments	surrounding	

Populus	sp.	wounding	experiments	and	mutant	analysis	
August	2016,		
August	2017	

University	of	California	San	Diego	–	San	Diego,	California	
• Part	of	NSERC-USRA	scholarship	
• Supervisor	Dr.	Laurie	Smith,	collaboration	with	Dr.	Isabel	

Molina	
• Collecting	and	phenotyping	corn	leaves	as	part	of	

National	Science	Foundation	project	on	drought-resistant	
maize	

2016	–	2017	 Algoma	University	–	Sault	Ste.	Marie,	Ontario:	Thesis	student	
• Supervisor	Dr.	Isabel	Molina		
• Involved	in	determining	gene	responsible	for	unique	bark	

phenotype	in	Populus	717	mutant	using	forward	genetics	
and	to	determine	whether	mutation	is	related	to	suberin	
deposition	

2015	–	2016	 Algoma	University	–	Sault	Ste.	Marie,	Ontario	
• Supervisor	Dr.	Isabel	Molina	
• Plant	Biochemistry	
• Hired	part-time	to	begin	growing	cuttings	of	mutant	

Populus	ssp.	717	mutant	and	performing	lipid	analyses	on	
suberin	and	associated	waxes,	while	also	performing	
general	lab	duties	such	as	TLC	on	other	lab	projects	
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Conference	Experience	
	
June	2019	 Canadian	Society	of	Pharmacology	and	Therapeutics	Joint	Annual	

Conference,	“From	Base	to	Summit:	Pharmacology	at	its	Peak”,	
Calgary,	Alberta	
Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	
Mediated	Drug	Hypersensitivity	Reactions	

April	2019	 London	Health	Research	Day,	London,	Ontario	
• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	

Mediated	Drug	Hypersensitivity	Reactions	
March	2019	 Western	University	Department	of	Pathology	Research	Day,	

London,	Ontario	
• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	

Mediated	Drug	Hypersensitivity	Reactions	
June	2018	 Robart’s	5th	Annual	Research	Retreat,	London,	Ontario	

• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	
Mediated	Drug	Hypersensitivity	Reactions	

May	2018	 Canadian	Society	of	Pharmacology	and	Therapeutics	Joint	Annual	
Conference,	“Translating	Innovative	Technology	to	Patient	Care”,	
Toronto,	Ontario	

• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	
Mediated	Drug	Hypersensitivity	Reactions	

London	Health	Research	Day,	London,	Ontario	
• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	

Mediated	Drug	Hypersensitivity	Reactions	
April	2018	 Western	University	Department	of	Pathology	Research	Day,	

London,	Ontario		
• Presented	poster	Investigating	the	Pathophysiology	of	T-Cell	

Mediated	Drug	Hypersensitivity	Reactions	
March	2017	
	

Ontario	Biology	Day	2017	Undergraduate	Conference	at	
Laurentian	University,	Sudbury,	Ontario	

• Presented	undergraduate	thesis	poster	Characterization	of	
a	Mutant	Poplar	Hybrid	(Populus	sp.)	with	an	Abnormal	Bark	
Phenotype	

	 • 	
	
Leadership,	Outreach,	and	Volunteer	Experiences	
	
October	2018—
present		

Vice	President	of	Social	Events	with	Western	Pathology	
Association	

• Planning	social	events	for	undergraduate	and	graduate	
students	as	well	as	staff	and	faculty	in	the	Pathology	
department	to	help	with	teambuilding	and	morale	

May	2018	 Volunteer	at	Science	Rendezvous	event	with	the	Western	
Pathology	Association’s	“Crime	Scene	Investigation”	booth	at	
Western	University,	London,	Ontario	
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April	2017	 Volunteer	at	Sault	Ste.	Marie’s	Science	Festival	“Hangar	After	
Dark”	event	at	the	Canadian	Bushplane	Heritage	Centre,	Sault	
Ste,	Marie,	Ontario		

2015—2016	 President	of	the	Algoma	University	Biology	Club	
April	2016	 Science	Fair	at	Algoma	University	

• Presented	overview	of	ongoing	research	conducted	in	Dr.	
Isabel	Molina’s	laboratory	

January	2015—	
April	2016	

General	Chemistry	Teaching	Assistant	
• Created	and	conducted	tutorial	sessions	for	first	year	

students		
September	
2014—	
April	2015	

Community	Ecology	Lab	Volunteer	
• Duties	included	sorting	and	counting	seeds	of	various	

species	after	collection	from	field	for	future	analysis	and	
experimentation		

September	
2014—December	
2014	

General	Chemistry	Lab	Teaching	Assistant	
• Aided	students	in	performing	lab	experiments	for	first	

year	general	chemistry	
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