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Abstract 

Invariant natural killer T (iNKT) cells are a unique unconventional T cell subset that 

recognize glycolipids presented by CD1d expressing cells. The prototypical glycolipid 

agonist of iNKT cells, α-Galactosylceramide (α-GalCer), can induce the rapid release 

of an arsenal of cytotoxic effector molecules and enormous amounts of 

immunomodulatory cytokines as early as two hours after activation. In addition to α-

GalCer, various glycolipid agonists are available that allow for specific, in vivo 

targeting of iNKT cells, and can exert divergent T-helper (TH)1 and/or TH2 immune 

responses. Therefore, the type of response instigated by iNKT cells can profoundly 

influence the nature of downstream immune response pathways. Sepsis and cancer are 

two distinct, detrimental pathologies where dysregulated immune responses play a key 

role in the pathogenesis and disease progression. The extent to which iNKT cells 

contribute to the pathology of sepsis and cancer has not been fully explored. 

Furthermore, whether iNKT cells can be targeted by glycolipid immunotherapy to 

mitigate disease progression has yet to be fully elucidated.  In this thesis, the 

immunomodulatory capacity of iNKT cells were manipulated to skew the host immune 

response towards a protective phenotype. Firstly, using the surgical cecal ligation and 

puncture model on C57BL/6 (B6) mice to induce polymicrobial sepsis, iNKT cells 

were activated with a two-pronged glycolipid immunotherapy. I found that glycolipid 

treatment conferred significant improvements in sepsis morbidity and mortality. 

Moreover, glycolipid treatments induced an alteration in the cytokine milieu, restored 

immunocompetence and NK cell cytotoxicity in septic survivors when compared to 
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vehicle treated controls. Secondly, I discovered a tumoricidal population known as, 

precursors to mature NK (pre-mNK) cells, that robustly expanded in the liver of naïve 

B6 mice, upon α-GalCer injection. Notably, in situ expansion of resident hepatic pre-

mNK cells was found to be dependent on IL-12 and IL-18 signaling. Moreover, α-

GalCer-expanded pre-mNK cells were found to mediate cytotoxicity via the 

granzyme/perforin pathway and significantly contributed to the anti-metastatic activity 

of NK cells in vivo. Collectively, the findings reported in this thesis show novel 

mechanisms by which glycolipid therapies can exploit the immunomodulatory 

potentials of iNKT cells to ameliorate immunopathologies in sepsis and cancer.  
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Summary for Lay Audience 

Invariant natural killer T (iNKT) cells are a special group of immune cells that 

recognize sugar coated fat compounds known as glycolipids. The most commonly used 

glycolipid to study iNKT cells is α-Galactosylceramide (α-GalCer). Upon activation 

with α-GalCer, iNKT cells rapidly produce numerous small proteins that can have 

significant impact on shaping the course of the overall immune response. Although 

sepsis and cancer are two distinct diseases, they are both affected by a severe 

dysfunctional immune response that can exacerbate disease progression. The functional 

role of iNKT cells in sepsis and cancer is not fully known. Considering the 

dysfunctional immune response invariably found in sepsis and cancer, whether iNKT 

cells can be targeted by glycolipids, like α-GalCer, to steer the overall immune response 

towards normalcy is unknown.   In this thesis, glycolipids were used to target iNKT 

cells in live mice to improve disease outcomes in sepsis and cancer. First, using a 

surgical mouse model of sepsis, I found that glycolipid treated mice had greater 

survival than untreated mice. In addition, I found that glycolipid activated iNKT cells 

were able to steer the immune response to produce vastly different proteins in the blood 

and restore immune cell function in septic mice. Second, using a different mouse 

model, I discovered another population known as precursors to mature NK (pre-mNK) 

cells that vastly increased in number in the liver when injected with α-GalCer. This 

expansion was a result of cell division of pre-existing pre-mNK cells in the liver instead 

of newly recruited pre-mNK cells. I uncovered that pre-mNK cell expansion was 

dependent on two soluble proteins, IL-12 and IL-18, which was caused by α-GalCer 
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injection. In terms of function, pre-mNK cells were found to efficiently kill cancer cells 

and contribute to the overall anti-cancer response in live mice. Taken together, these 

findings reveal new ways glycolipids can be used to target iNKT cells to impact the 

immune response to improve outcomes in sepsis and cancer.   
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Preface  

The following thesis describes my PhD journey in exploring the immunomodulatory 

prowess of invariant natural killer T (iNKT) cells when appropriately targeted with their 

glycolipid agonists.  In truth, I started out my PhD with an outlined plan to exclusively 

study iNKT cells in sepsis. However, within a year into my studies. I serendipitously 

discovered a secondary phenotype in one of my experiments purposed for optimization. It 

was this latter discovery that threw me deep into the rabbit hole of cancer immunology. 

Over the next few years, two distinct projects emerged, and the following thesis describes 

my pursuit in applying the steps of scientific inquiry in delineating the unknown.  At first 

glance, the two projects, namely sepsis and cancer, may seem to be in disjunction with each 

other. However, the emphasis of this dissertation is neither sepsis nor cancer, but the 

mechanism of therapeutic intervention. The common thread that flows throughout is the 

targeting of iNKT cells via their glycolipid agonists to galvanize the host immune response 

to respond to two distinct and devastating pathologies.  

This dissertation describes detailed methodology on using surgical, wildtype, and 

transgenic mouse models to determine the truth. Flow cytometry and many in vitro based 

assays were extensively used for endpoint analysis. The following may be of interest for 

researchers that are inclined to study sepsis, tumor immunology, and other immune based 

pathologies.  
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Chapter 1  

 

 

 

 

 

1. Introduction 
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1.1 Sepsis 

The immune response to infection is a robust network of finely tuned interactions with the 

unifying goal of controlling disease. Typically, many infectious diseases caused by 

pathogens, are a result of successful evasion and subversion of the immune response. In 

contrast, sepsis is a life-threatening disease where the immune response is not only directly 

involved, but the problem.  Although sepsis etiology is invariably initiated by an infection, 

whether it be bacterial, fungal or viral, the underlying pathology is caused by an 

overwhelming dysregulated systemic host response to the infection that may lead to 

multiple organ failure and in many cases death. The sheer magnitude of the toll on human 

health is strikingly clear as sepsis kills more people worldwide than prostate cancer, breast 

cancer and AIDS combined (1). Despite major advancements in healthcare and medical 

technology, sepsis remains the leading cause of death in critically ill patients, with morality 

rates of 25-50%, and alarmingly, the incidence rates have risen 71% in the United States, 

from 2003-2007, with a concurrent increase in healthcare cost of 57% (2-5).  The 

conspicuous absence of a cure for sepsis however, is not due to a lack of effort from 

researchers by any means; in the last three decades over 35 clinical trials have been 

conducted without avail. This is due to sundry reasons; the traditional definition of sepsis 

has low sensitivity in catching severe septic events which may have translated into 

inconsistencies in sampling during the clinical trials. Additionally, sepsis was historically 

categorized as predominately a hyperinflammatory syndrome. This dogma had spurred the 

majority of the clinical trials to treat with some type of therapy to block inflammation. It is 

now appreciated that sepsis is a biphasic response with an initial hyperinflammatory phase 

immediately followed by immunosuppression (6, 7).  
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Understanding the pathogenesis of sepsis and its causative role on immune impairment is 

a challenging task. Despite decades of research, the exact mechanisms underlying the 

immunopathogenesis of sepsis which can lead to organ failure and death remain elusive. 

Although sepsis is still an area of intense research, there is no mechanism-based drug 

available with current treatment options limited to antibiotics and largely supportive care. 

Currently, sepsis immunopathology is now recognized as a biphasic syndrome with a 

distinct protracted immunosuppressive phenotype, however its pathogenesis is 

multifactorial which adds to the complexity of the disease. Moreover, a major limitation in 

human studies is the high degree of difficulty to address mechanism-based questions. 

Mouse models of sepsis are typically used to elucidate the undergirding mechanisms but, 

these models have a high degree of variability between them, which may result in 

inconsistent findings between models. Nevertheless, growing evidence suggests that 

therapies that target to boost the immune response may be a promising approach to treat 

sepsis. 

  Sepsis Definitions 

Historically, a patient was diagnosed with sepsis when they exhibited symptoms of 

systemic inflammatory response syndrome (SIRS) in the presence of infection. The 

diagnosis of SIRS requires at least 2 of the following: tachycardia (≥90/min), hypothermia 

(≤36°C) or hyperthermia (≥38°C), tachypnea (≥20 breathes/min) or PaCO2≤32 mm Hg, 

and leukocytosis (≥12 000/μL) or leukopenia (≤4000/μL). Patients were considered to have 

“severe sepsis” when their condition was complicated by hypotension (<90 mm Hg) and/or 

organ failure. Finally, a severe septic patient was further classified to have “septic shock” 
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when, in their hypotensive state, became unresponsive to fluid resuscitation. These criteria 

have been largely unchanged since 1991, but researchers have criticized these definitions 

to be misleading, not comprehensive of the complexity of sepsis pathobiology, and resulted 

in inconsistency for epidemiologic studies and clinical trials (8-10). In 2016, a consensus 

panel of experts have revised the definition of sepsis for the first time in 25 years (8). The 

definition of sepsis has now been revised to include organ dysfunction in the presence of 

infection. Keeping the clinical scenario and early disease management at the forefront of 

discussion, a new beside clinical score to determine organ failure was established. Early 

organ dysfunction was characterized with a Sequential [Sepsis-related] Organ Failure 

Assessment (SOFA) score of 2 points or more (Table 1). The criteria for septic shock was 

also revised to be a subset of sepsis in which particularly profound circulatory, cellular, 

and metabolic abnormalities are associated with a greater risk of mortality than with sepsis 

alone. This new definition will allow for faster and more accurate diagnosis of sepsis, while 

providing more rigorous patient inclusion criteria for future clinical trials. 
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Table 1: Sequential [Sepsis-related] Organ Failure Assessment  

Adopted from Singer et al.  (8) 

 Protracted sepsis and immunosuppression 

Early deaths due to sepsis are typically due to the initial hyperinflammatory phase that 

overwhelms the patient leading to cardiovascular collapse, metabolic abnormalities and 

multiple organ failures. Fortunately, accessibility to modern medical healthcare, especially 

in developed countries, have improved patient prognosis which has led to decreasing 

mortality rates in the USA (3). However, these patients that survive the initial inflammatory 

insult invariably succumb to the protracted immunosuppressive phase of sepsis. In fact, 

more than 60% of deaths due to sepsis occur 7-17 days after admission during the 

protracted phase (11). The protracted sepsis pathology can manifest in a multitude of ways 

including: persistent inflammation and catabolism (12), immune dysfunction (13), decrease 

in human leukocyte antigen (HLA)-DR expression on circulating peripheral 
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monocytes(14), and increased susceptibility to nosocomial infections (6). Of note, HLA-

DR expression on peripheral monocytes has been widely used as a surrogate biomarker 

indicative of systemic immunosuppression and is a strong predictor of nosocomial 

infections (15) and mortality (16) in septic patients. Another piece of evidence for sepsis-

induced immunosuppression is the reactivation of otherwise latent viruses, 

cytomegalovirus (CMV) (17) and herpes simplex virus (HSV) (18) in septic and critically 

ill patients . Taken together, these manifestations suggest a culmination of diverse 

pathways that ultimately cause a functionally impaired immune response even after 

clearance of the initial infection. 

 Although there are several cellular mechanisms that undergird sepsis-induced 

immunosuppression, it is unclear whether these are acting independently or co-dependently 

with each other. Two main pathways that have been implicated are regulatory immune cells 

and apoptosis (19).  Previous studies have highlighted the potential role that regulatory 

subsets, such as T regulatory cells (Tregs) (20) and myeloid derived suppressor cells 

(MDSCs) (21) may have in sepsis. Perhaps as expected, Tregs were found to expanded in 

septic mice and contribute to long term immune dysfunction. Depletion of Tregs during 

sepsis increased T cell proliferation, reduced bacterial burden, as well as improved survival 

to a secondary bacterial challenge (20). Similarly, MDSCs were found to dramatically 

expanded in polymicrobial sepsis, suppressed T cells, and contributed to a T-helper (TH)2 

polarizing immune response. Alternatively, a significant phenotype associated with both 

early and protracted sepsis pathology is the drastic apoptotic depletion of both immune (13, 

22)and gastric parenchymal cells (23). Previous investigations found that T and B cells of 

transgenic mice that overexpressed the anti-apoptotic protein, B cell lymphoma 2 (BCL-
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2), exhibited complete resistance to apoptosis during sepsis leading to improved overall 

survival (24). Furthermore, BCL-2 overexpression in dendritic cells were also conferred a 

survival advantage and led to a reversal of an immunosuppressive phenotype in an 

endotoxic shock model of sepsis (25). 

Two main mechanisms by which apoptosis in sepsis can cause immunosuppression have 

been delineated. The first mechanism is the direct effect of apoptosis which leads to the 

severe loss of immune cells and antigen presenting cells (26). Notably, autopsies of septic 

patients, immediately performed after death, revealed a marked depletion of B cells, CD4 

T cells, and follicular dendritic cells in the spleen compared to control patients (27). The 

loss of these subsets would have a profound impact on both the adaptive, and innate arms 

of immunity. The loss of CD4 T cells and B cells would significantly perturb both cell-

mediated and humoral immune responses which would be critical in clearing persistent 

infections as well as protecting against potential nosocomial infections. Moreover, the loss 

of follicular dendritic cells may also dramatically contribute to sepsis-induced 

immunosuppression as there would be fewer antigen presenting cells (APCs) to activate 

the adaptive immune response. The second mechanism by which apoptosis attributes to the 

impairment of the immune response during protracted sepsis is through the induction of 

anergy and the polarization towards a TH2 response (26). Specifically, the engulfment of 

apoptotic bodies by dendritic cells and macrophages fails to induce the upregulation of co-

stimulatory molecules (28). Consequently, T cells that come into contact with these APCs 

may become anergized or even undergo apoptosis themselves (28). Furthermore, 

engulfment of these apoptotic bodies by APCs has a secondary effect of inducing the 

production of anti-inflammatory cytokines such as IL-10 and TGF-β (29). Not only are 
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these anti-inflammatory cytokines a strong predictor for mortality in sepsis (30), they can 

contribute to the induction of tolerance (31), further exacerbating an immunosuppressive 

and dysfunctional immune response. Whether apoptosis is the only mediator of 

immunosuppression during protracted sepsis is unclear, many research efforts have been 

focused on targeting this phenomenon for potential therapies. 

 Lasting impairments in sepsis survivors 

Sepsis is a highly complex, intricated pathology with a myriad of systemic responses that 

can act in concert and/or in opposition to lead to hypotension and organ failure in response 

to infection. Although, sepsis is now largely characterized as biphasic with acute 

inflammatory syndrome which is invariably followed by a compensatory 

immunosuppressive phase, there is mounting evidence that the physiological implications 

of sepsis-induced immunosuppression reach much further than a patient’s stay in the ICU 

(32). Iwashyna et al. reported, in a long-term study, a whopping 119% increase in sepsis 

survivors in the elderly; however, they found within 3 years of the septic event, 75% of the 

survivors exhibited long term morbidity such as, functional disabilities, and moderate to 

severe cognitive impairment (33, 34). Additionally, symptoms of depression have been 

shown to be a major risk for both septic survivors (35) and their spouses (36). Sepsis-

induced immunosuppression has also been linked with a “global” depression of cytokine 

production and severe depletion of immune effector cells in all age groups (37, 38). 

Researchers are now attributing sepsis-induced immunosuppression to be a key factor in 

contributing to the long-term morbidity associated with septic survivors (32). Although the 

precise mechanism underlying long-term sepsis morbidity and mortality remain uncertain, 
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it is becoming clear that long-term implications of sepsis should be considered as an 

additional phase of sepsis pathology when developing potential therapeutic interventions.    

   Clinical management and prospective immunotherapies 

The historical track record of failed clinical trials notwithstanding, tremendous strides have 

been made in elucidating the important factors for managing sepsis in the clinic (39). 

Unfortunately, there is yet to be a cure for sepsis and current treatments in the ICU are 

largely supportive care. The prevailing strategy for emergency management in the clinic is 

early, goal-directed therapy, which involves rapid diagnosis (within 6 hours) and 

immediate deployment of “resuscitation bundles” which are tailored to address 

cardiorespiratory issues during early sepsis (40). Following the initiation of early, goal-

directed therapy, lung-supportive ventilation is also supplied (39). During this time, blood 

cultures are obtained, and broad-spectrum antibiotics are administered intravenously for 

infection source control(39).   

Other slightly controversial treatment strategies that can be considered are the 

administration of activated protein C (aPC) and corticosteroids. Activated protein C works 

as an anticoagulant which has had some mixed success in clinical trials; treatments were 

shown to be effective and decrease mortality rates by 13% in patients at high risk of death 

(41). In contrast, aPC conferred no beneficial outcomes in severe sepsis patients with low 

death risk (42). Corticosteroid treatments may also be considered as a treatment for septic 

patients in need of critical care, however similar to aPC, their effectiveness when tested in 

clinical trials have proven to be capricious, highlighting the need to perhaps focus research 

efforts on the dose, timing and duration of corticosteroid administration (39).  
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With the advancement of our understanding of the immunopathology of sepsis as a 

syndrome that is initiated by infection but exacerbated by a dysregulated host immune 

response, immunotherapies have taken the forefront of prospective candidates for novel 

treatments. Considering the drastic depletion of lymphocyte populations in septic patients, 

recombinant IL-7 has emerged as an attractive potential therapeutic intervention (43, 44). 

Alternatively, with the recent success of checkpoint inhibitors to enable the immune 

response to overcome a hyporesponsive environment in various cancers (45, 46), it is 

curious to see whether this type of intervention would be effective in treating sepsis. 

Interestingly, blockade of inhibitory markers, programmed cell death protein (PD)-1 and 

PD-L1, were found to improve survival in mice induced with polymicrobial sepsis (47). 

Clinical trials are underway of other potential therapies such as, administration of 

recombinant interferon gamma (IFN-γ) , granulocyte-colony stimulating factor (G-CSF), 

and granulocyte-macrophage colony-stimulating factor (GM-CSF), to address the 

profound defects observed in septic patients in their monocyte and neutrophil, and 

macrophage populations, respectively (19). Sepsis is a life-threatening syndrome that is 

incredibly complex and finding a cure has proven to be profoundly difficult. Due the 

diverse range of etiologies that are linked with sepsis, it is unlikely that any one specific 

therapy will be the cure. Instead, a combinational approach which includes intensive 

supportive care, source control, and rigorous immunotherapies to target the invariable 

immunosuppressive nature of sepsis, may indeed provide the best chance of success in 

managing this devasting disease.  
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 Mouse Models of Sepsis 

Mouse models are widely used as preclinical systems for studying and testing novel 

therapies in sepsis.  Moreover, mouse models have been essential in discovering novel 

biomarkers as both diagnostic and prognostic indicators. There are several sepsis models, 

each with their own distinct strengths and limitations, and researchers have taken advantage 

of these systems to successfully test a plethora of interventions and therapies to improve 

survival outcomes (48). Despite the relative success of these studies, many of these findings 

failed to effectively translate to the clinic, highlighting the complexity of clinical sepsis 

and the paramount importance that these preclinical findings need to be validated in human 

systems as well. Nevertheless, mouse models are still an invaluable tool in elucidating the 

underlying mechanisms of sepsis pathology.  

The differences between mouse sepsis models can be described to follow 1 of 3 variations: 

i) systemic administration of exogenous toxins, such as lipopolysaccharide (LPS); ii) 

systemic administration of pathogens or feces; and iii) surgical models that disrupts the 

endogenous host barrier. LPS is the most commonly used endotoxin to recapitulate septic 

shock (49, 50). LPS is an integral endotoxin found in Gram-negative bacteria and rapidly 

provokes a systemic inflammatory response in a Toll-like receptor (TLR)4-dependent 

fashion, and thus is appropriately named, endotoxic shock. This model is fast, simple, and 

highly reproducible, however there are several caveats. First, this model lacks an infectious 

component which is an essential part of sepsis. Second, although this model induces rapid 

production of pro-inflammatory cytokines, it is absent of any sustained or prolonged 

pathology such as increasing levels of cytokines or immunosuppression, as observed in the 
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clinic (51). While it is true that LPS-challenged mice exhibit increased IL-10 production 

by macrophages (52) and Tregs (53), this fails to translate to global immunosuppression 

(54). Lastly, mice are endotoxin resistant, whereas humans are highly sensitive (48). 

Suffice to say, conclusions drawn from endotoxic shock models need to be taken with a 

healthy dose of skepticism when translating these findings to clinical sepsis. 

Administration of systemic pathogens or feces is another model which is also simple and 

highly reproducible. Systemic injection of individual bacterial pathogens can be done 

either i.v. to induce bacteremia (55), or i.p. to induce peritonitis (56). These models have 

an infectious component adding another layer of complexity which more closely resembles 

clinical sepsis. However, single bacterium models fail to represent the microbial diversity 

that is often seen in polymicrobial sepsis. Furthermore, depending on the strain and species 

of the bacterial strain, a high degree of variability in the immunopathology can be observed 

(51). Many of these limitations are addressed in the Feces-Induced Peritonitis (FIP) model. 

The FIP procedure consists of collecting the contents of the cecum from isogenic donor 

mice to produce purified cecal slurry, which can be kept at -80°C for longer term storage 

(57). The cecal slurry is injected i.p. into recipients to induce polymicrobial peritonitis and 

causes a rapid systemic inflammatory response. The advantage of this model is that there 

is minimal variability between recipients, as all mice receive a determined amount of 

pooled slurry. Moreover, the pathology and phenotype of recipients are consistent with 

acute sepsis, and a scoring system allows for standardized monitoring (58, 59). The 

disadvantages are few but important; FIP is still highly artificial as a large bolus of slurry 

is injected at one time rather than prolonged exposure over time. In addition, the FIP model 

induces an acute sepsis immunopathology and the protracted immunosuppressive phase 
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has not been characterized; therefore, whether mice that receive FIP exhibit the biphasic 

sepsis is still yet to be determined. Finally, surgical models that disrupt the host barrier to 

causes fecal leakage into the peritoneum are an attractive alternative that addresses many 

of the aforementioned limitations observed in other models. Of these surgical models, the 

cecal ligation and puncture (CLP) is the most routinely used and will be discussed further 

below.  

 Cecal Ligation and Puncture 

The cecal ligation and puncture model is a surgical procedure which effectively 

recapitulates the clinical manifestations of polymicrobial peritonitis (48). Amongst the 

various sepsis mouse models, CLP is considered the gold standard as it is the only model 

where the subject exhibits both an acute hyperinflammatory response followed by 

immunosuppression (48). The CLP procedure consists of ligation of the distal region of the 

cecum, followed by the perforation of the ligated portion, providing a constant source of 

fecal bacteria leaking into the peritoneum. The length of the ligation, number of 

perforations, and the gauge of the needle, all affect the severity of the septic insult. As a 

result, variability is inherent in this model as slight changes made by the operator, albeit 

unintentional, may affect the prognosis of the mouse. 

This model is ideal in addressing the protracted phase of sepsis and at the same time, 

delineates the cofounding effects contributed by the acute inflammatory response that is 

responsible for early mortality. Immunosuppression in CLP has been well characterized 

and is typified by an impaired Delayed-Type Hypersensitivity (DTH) response (47). The 

DTH response is a classical measurement of the adaptive immune response to a contact 
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hapten. CLP addresses many of limitations of different models previously outlined and is 

considered by researchers to be an essential preclinical test for any potential new 

therapeutics in human sepsis (60). Specifically, CLP induced pathology is mediated by an 

infectious component that is not limited to a singular species. Moreover, due to the slow 

leakage of feces it provides a distinct and sustained host response that can be categorized, 

and it is the only model to date that clearly exhibits an immunosuppressive phase following 

sepsis. As such, researchers have described CLP to be one of the most clinically relevant 

models available to study sepsis (61, 62). 

1.2 Immunopathogenesis of cancer 

Significant strides have been made in the perennial fight against cancer and in the concerted 

effort in finding a cure. Despite this, cancer is still one of the leading causes of death 

worldwide (63, 64) and incidences rates are projected to climb even higher by 2030 (65). 

Weinberg and Hanahan first described, twenty years ago, the underlying pathogenesis of 

cancer and codified them into 6 hallmarks: persistent growth signals, evasion of apoptosis, 

insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis and tissue 

invasion/metastasis (66). Numerous efforts have been employed to target these oncogenic 

events with varied success. Although these hallmarks describe the invariable stages of 

tumorigenesis of all cancer types, the mechanisms by which these outcomes are achieved 

are highly diverse and thus difficult to target (67). The incredible heterogeneity that exists 

within different cancers provide a spectrum of morphological and physiological 

phenotypes (68). The corollary to this is the formation of unique tumor microenvironments 

which select for increased diversity within gene expression, morphology, metabolism and 
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metastatic potential (69, 70). Ultimately the culmination of these factors work to establish 

a tumor ‘friendly’ niche by subverting, evading, and overwhelming the immune response.  

Since the original definition of the hallmarks of cancer, we have come to appreciate the 

essential role of the immune response, or more specifically, the evasion of the immune 

response by the tumor, as another bona fide hallmark of cancer pathogenesis (66) . Of note, 

this section will discuss several of the key mechanisms that cancers employ in evading the 

immune response and the various immunotherapies and mouse models that researchers 

have utilized to test and target these perturbations of immune surveillance by cancer cells. 

However, this is not meant to be an exhaustive description, but rather, a brief overview of 

the content that is relevant within the scope of this thesis. 

 Evasion of the immune response by tumors 

The immune response, classically categorized as innate and adaptive responses that 

comprise the two arms of immunity, is well equipped to recognize and combat virtually a 

limitless pool of antigens and/or epitopes that can be harbored by foreign invaders or 

neoplastic formations. However, cancer cells have a vast number of strategies to avoid 

detection from the immune response. These strategies can be loosely categorized under 

exogenous and/or endogenous pathways. Exogenous pathways would describe 

mechanisms where cancer cells influence other cell types to facilitate tolerance and 

evasion. Conversely, endogenous pathways would describe various mechanisms by which 

cancer cells prevent their own destruction and induce tolerance through the direct 

interaction with immune effector cells. 
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Tumors can exercise exogenous pathways to suppress the immune response thereby 

creating a milieu that effectively causes the effector cells to be functionally inert. This is 

largely mediated by the recruitment of Tregs (71) to the tumor microenvironment or 

through the induction of peripheral CD4+ T cells into Tregs through the production of 

tumor-derived TGF-β (72). In either case, Tregs produce high levels of anti-inflammatory 

cytokine IL-10 which inhibit the function and proliferation of cytotoxic effector cells. 

Another cell population that is often recruited by tumors are MDSCs which act to suppress 

CD8+ T cells as well as promote angiogenesis (73). 

Tumors utilize a number of different endogenous pathways to induce tolerance or promote 

evasion of the immune response. For example, tumors can express the enzyme Indoleamine 

2,3-dioxygenase (IDO), which acts to directly suppress local effector immune cells (74). 

Another critical process of immunosurveillance evasion is immunoediting by tumor cells, 

where surviving colonies are selected to modify their surface proteins, ultimately 

decreasing its immunogenicity, thereby promoting escape (75).  Additionally, tumor cells 

have the ability to “switch off” cytotoxic T and NK cells by targeting the intrinsic 

checkpoints molecules that immune cells possess. The most notable of these checkpoints 

have undoubtedly been the discovery of PD-1  (76) and cytotoxic T-lymphocyte antigen-4 

(CTLA-4)  (77). Incidentally, these discoveries have garnered the 2018 Nobel Prize in 

Physiology or Medicine (78) and are the focus of a tremendous concerted research effort 

for various cancer immunotherapies.    
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 Immunotherapies in cancer 

Among the varied treatment regimen for cancer which include chemotherapy, radiation 

therapy, and surgical procedures, immunotherapies have been the focus of many new 

developments for cancer treatments.  Consequently, a wide range of cancer 

immunotherapies have already been approved by the Food and Drug Administration 

(FDA), and these can be described as, but are not limited to, the following: i) cytokine 

therapies (79, 80) ii) cancer vaccines (81, 82) and iii) monoclonal antibody-based therapies 

(83).  

Current research efforts have largely been focused on targeting checkpoint molecules, such 

as PD-1 and CTLA-4, using monoclonal based-therapies. Defined as checkpoint 

blockade/inhibitors, these monoclonal therapies have found success in treating against 

melanoma (84, 85) , and non-small cell lung cancers (86). These discoveries have led to 

alternative co-inhibitory receptor such as, Tim-3, Lag-3, and TIGIT to be investigated as 

prospective candidates for monoclonal-based checkpoint blockades (87). Moreover, the 

success of checkpoint blockade therapies have spurred on the search for novel co-inhibitory 

targets to be treated in combination with or without current treatment protocols (88). 

 Mouse models of cancer 

The use of mouse models to study cancer have proved to be an invaluable tool in 

determining the various factors that are involved in oncogenesis to cancer progression. 

There is a plethora of models with varying oncogenic events that researchers can choose 

from, each with its own strengths and weaknesses (89). For instance, ectopic or orthotopic 
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injection of syn or xeno-grafts can be performed for the study of tumor growth. These 

collective models are highly reproducible and can recapitulate the tumor 

microenvironment, however, are limited due to their divergent histological phenotypes 

compared to primary cancers (90). For inquiries into the physiology of metastasis, 

intravenous injection of a cancer cell line is routinely used by many, such as the 

prototypical B16 metastatic melanoma model (91). Metastatic models, although widely 

employed, fail to capture the effect of tumor heterogeneity that significantly contributes 

evasion of the immune response (89).  Transgenic or carcinogen-induced tumor models 

alternatively, recapitulate tumor heterogeneity and have predictive power for the 

development of human cancers (89). They are also a useful for the study spontaneous 

formation of cancer (75). Transgenic and carcinogen-induced tumor models however, are 

highly time and labour intensive, and require large sample sizes. Therefore, researchers can 

choose between a range of diverse mouse models with the understanding that any single 

model does not provide a complete translational corollary with human cancer. Importantly, 

mouse models also provide the opportunity for drug discovery in an in vivo setting. 

Moreover, the effect of a given drug on specific signaling pathways and molecular targets 

in relationship with its anti-tumor efficacy can be readily defined and delineated (89). As 

such, the ability of these models to eloquently answer these questions is the prerequisite to 

making it into the human clinical trials and eventually the bedside. 

1.3 Invariant Natural Killer T cells 

Natural Killer T (NKT) cells are a subpopulation of T lymphocytes that have the 

phenotypic properties of both T and NK cells, that recognize lipids and glycolipids instead 
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of peptides. Similar to conventional T cells, they are selected for a functional αβ T cell 

receptor (TCR) during thymic development, and can be further classified into single 

positive (SP) CD4+CD8- or CD4-CD8+ or double negative (DN) CD4-CD8- subtypes (92). 

They constitutively express NK cell surface markers, such as NK1.1 and DX5 in mice or 

CD161 in humans. NKT cells distinguish themselves further from conventional T cells 

with their exception to the rule of classical major histocompatibility complex “(MHC) 

restriction.” NKT cells recognize glycolipids in the context of CD1d, a conserved MHC 

class I-related glycoprotein with a deep hydrophobic antigen-binding groove that allow 

lipids to be presented (93). 

NKT cells can be further characterized by their TCR repertoire. A subset of NKT cells 

express a unique α chain rearrangement (Vα14-Jα18 and Vα24-Jα18 in mice and humans, 

respectively) paired with a limited number of β chains (Vβ8.2, Vβ2 or Vβ7 and Vβ11 in 

mice and humans respectively) (92). Due to their distinct TCR, these cells have been aptly 

named as invariant natural killer T (iNKT) cells. A more varied subset of NKT cells 

includes variant NKT cells that have a more diverse TCRαβ repertoire and have been 

relatively poorly studied and will not be discussed in this thesis. 

The activation of iNKT cells can occur either in a TCR-dependent or -independent manner. 

There are a few but important distinctions between TCR-dependent activation of iNKT 

cells and conventional T cells.  Although, conventional effector T cells are essential and 

effective in controlling infection, they are limited by their long, arduous process of 

activation, which requires TCR and MHC engagement (signal 1) and costimulatory 

molecule interactions (signal 2). After priming, an effective immune response still requires 

clonal expansion and migration into the peripheries which can take as long as 10 days (94). 
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INKT cells however, circumvent this process by leaving the thymus in a partially activated 

state before antigen encounter (95). This allows them to be activated and respond as early 

as 2 hours after infection (96). Alternatively, iNKT cells can be activated independent of 

CD1d engagement by multiple mechanisms. Our lab has previously reported that group II 

bacterial superantigens induced iNKT cell activation by crosslinking specific iNKT cell 

Vβ TCR chains with MHC II (97). Another mechanism, that arguably may be more 

prevalent, is activation via IL-12 and IL-18 signaling  (98). Typically, IL-12 and IL-18 are 

secreted by dendritic cells and other APCs during infection, upon engagement of their 

TLRs. Interestingly, Leite-De-Moraes et al. showed that IL-12 and IL-18-mediated 

activation of iNKT cells induced a 10-fold higher cytokine response compared to TCR 

cross-linking (98). In either case, upon activation iNKT cells secrete copious amounts of 

cytokines, notably IFN-γ and/or IL-4. In addition, they have been shown to produce IL-2, 

IL-5, IL-6, IL-10, IL-13, IL-17, IL-21, TNFα, TGFβ and GM-CSF (96, 99). Furthermore, 

since iNKT cells are activated so early, they have significant influence on the downstream 

activation on other immune effector cells including, dendritic cells, macrophages, 

neutrophils, NK cells and lymphocytes (96). In addition to cytokines, iNKT cells boast an 

impressive arsenal of cytotoxic effector molecules such as perforin, granzymes, Fas ligand 

(FasL) and TNF-related apoptosis-inducing ligand (TRAIL) (100, 101). For this reason, 

iNKT cells have been referred to as “the swiss army knife of the immune system (96).” 

 iNKT cells in sepsis 

The role of iNKT cells in the context of sepsis immunopathology is not completely 

understood. However, there is evidence to suggest that iNKT activation during the 
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hyperinflammatory phase may exacerbate the disease leading to increased mortality. This 

was apparent when Jα18-/- mice, which lack iNKT cells, had reduced mortality due to sepsis 

as well as decreased levels of inflammatory cytokines compared to wild-type mice (102). 

This and other studies strongly indicated that iNKT cells had a pathogenic role, at least in 

acute sepsis (58). However, it was recently revealed that the Jα18-/- mice did not only lack 

iNKT cells but had a ~60% reduction in their TCRα repertoire, calling into question the 

validity of the previous findings that used this transgenic model (103). Nonetheless, there 

is still evidence that suggests a pathogenic role for iNKT in sepsis. Mice that were given 

anti-CD1d blocking antibody prior to sepsis had increased survival compared to isotype, 

however an important caveat is that this antibody neutralizes all NKT cells and not 

exclusively the invariant subtype (104). Therefore, whether iNKT cells are having 

synergistic or antagonistic effects with different NKT subtypes during sepsis, remains to 

be delineated. Our laboratory had investigated the therapeutic application of iNKT 

glycolipid agonists to ameliorate sepsis pathology in mice. Mice that were given the TH2-

skewing glycolipid OCH shortly after FIP were found to have enhanced survival when 

compared to vehicle treated mice (58). However, the FIP model effectively recapitulates 

the acute inflammatory pathology of sepsis, not the protracted immunosuppressive phase. 

Although the protective effects of TH2 polarization by other subsets, such as MDSCs, in 

sepsis is already known (21), the extent to which TH2-skewing of iNKT cells via OCH 

activation mitigates morality and sepsis-induced immunosuppression has never been 

explored. With advancements in our understanding of human sepsis as a biphasic disease, 

it is necessary to use a sepsis model that encapsulates both phases in order to test effective 

immunotherapies that can be translatable to the clinic. 
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 Glycolipid agonists of iNKT cells 

iNKT cells can recognize of a range of exogenous microbially-derived glycolipid agonists 

(105). An important question however, is whether iNKT cells are thymically selected by 

exogenous agonists or if there exists an endogenous ligand that is essential in the 

development and maintenance of this population.  The unaltered presence of iNKT cells in 

germ-free mice suggests the importance of the latter (106), although recent reports suggests 

that the gut microbiota is important for iNKT cell function (107, 108). Zhou et al. first 

described a lysosomal glycosphingolipid with previously unknown function, 

isoglobotrihexosylceramide (iGb3), as an endogenous iNKT cell ligand (109). Mice with 

impaired generation of iGb3 resulted in a severe deficiency of iNKT cells thus lending 

credence to the critical function of endogenous glycolipids in iNKT cell development 

(109). A caveat to this is that humans lack iGb3 synthase and therefore cannot 

endogenously produce iGb3 (110). Interestingly, putative endogenous iNKT cell ligands 

in humans were recently identified by Kain et al. as α-linked glycosylceramides, however 

whether human iNKT cell development is solely dependent on such ligands is yet to be 

determined (111). Nevertheless, for the study of iNKT cells, α-Galactosylceramide (α-

GalCer), which was initially isolated from an extract of a marine sponge species during a 

screening for novel anti-cancer therapeutics, has been most extensively employed for its 

ability to potently induce a robust response (112). The immunomodulatory properties of 

iNKT cells can be potentiated with the use of commercially synthesized homologs of α-

GalCer which is known to induce a robust TH1/ TH2 response (113). α-GalCer is composed 

of a galactose head covalently attached to sphingosine and fatty acyl chains (Fig. 1.1). 

Modifications to the sphingosine and/or fatty acyl chain lengths have been shown to be 
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alter the affinity of the iNKT cell TCR to CD1d as well as the threshold of activation (114). 

For instance, OCH, a truncated analog of α-GalCer, has been shown to skew iNKT cells 

towards a TH2 response (115). Moreover, alternative glycolipids with varying acyl chain 

lengths, such as C20:2, PBS-25 and PBS-128 have also been reported to have polarize 

iNKT cells towards a TH2 bias, and be protective against type 1 diabetes in mice (116, 117) 

(Fig. 1.1). Importantly, due to the impressively conserved homology of the CD1d molecule, 

α-GalCer presented by CD1d is recognized by both mice and humans, which has 

implications for the translation from mice to human studies (118). More recently, numerous 

microbial agonists that directly activate iNKT cells, via CD1d presentation, have been 

identified in Sphingomas species, Borrelia burgdorferi, and Streptococcus pneumonaie 

(93, 119). Indeed, these TH1/TH2 skewing glycolipids provide vital tools for manipulating 

iNKT cells which in turn can shape the course and nature of the downstream immune 

response (Fig. 1.2). Several studies have reported the benefits of this type of 

immunotherapy in autoimmune disease, cancer and allergy (115, 120, 121).  
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Figure 1.1: Structural depiction of various iNKT cell glycolipid agonists. 

Different iNKT cell glycolipid agonists, that are used as potential therapeutic interventions 

in chapters 3 and 4, are depicted.  Specific alterations to the sphingosine and acyl chains 

have been shown to polarize iNKT cells towards a TH2 bias.  
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Figure 1.2: The immunomodulatory potentials of iNKT cells.  

α-GalCer or OCH glycolipid agonists produce divergent responses by iNKT cells 

polarizing them towards either a TH1 of TH2 like phenotype, respectively.  

 

 iNKT cells in cancer 

Due to their “pre-activated state” and their ability to readily produce copious amounts of 

pro- and/or anti-inflammatory cytokines (122), iNKT cells have been shown to mobilize 

immune responses against viral (123) and/or bacterial invaders (124, 125), and arguably 

most notably against cancer (126) . Mouse iNKT cells express the canonical Vα14-Jα18 

rearrangement in their TCRα chain, which is coupled with one of a limited number of Vβ 

chains. In contrast with their conventional T cell counterparts, their specific TCR repertoire 

limits iNKT cell reactivity to select agonists which allows targeting for immunotherapies 

to be more precise. In mice, α-GalCer has been used to promote the anti-tumor activity of 
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iNKT cells against pancreatic cancer (127), liver metastasis of melanoma (128) and 

thymoma (129) cells. In humans, iNKT cells have also been the target of immunotherapy 

in clinical studies against prostate (130) and colorectal carcinomas (131) as well as in 

several clinical trials for multiple solid tumors (126, 132-135). Moreover, the mobilization 

of downstream effector cells via iNKT cell activation is arguably one of the more profound 

impacts of α-GalCer-mediated anti-tumor immunity (126). Several studies have already 

highlighted how iNKT cell activation results in the recruitment and transactivation of CD8+ 

T cells(136) , NK cells (137-139) , and γδ T cells(140) in various in vivo cancer models.  

1.4 Precursor to mature NK cells 

Precursors to mature NK (pre-mNK) cells are typified by a unique B220+ NK1.1+ CD11c+ 

phenotype that shares functional similarities with mature NK (mNK) and conventional 

dendritic cells (DCs). Interestingly, pre-mNK cells were initially defined as interferon-

producing killer dendritic cells (IKDCs), ostensibly due to their capacity to migrate to 

lymph nodes to present antigens, in addition to producing IFN-γ and exhibiting tumoricidal 

activity in vivo (141, 142). However, subsequent studies provided new evidence to suggest 

that IKDCs indeed belonged to  the NK cell lineage due to their strict dependence on the 

Id-2 transcription factor and IL-15 signaling for their development (143-145). Furthermore, 

pre-mNK cells were also determined to be upstream of the mNK cells and did not simply 

bear a unique phenotype of an activated mNK population (146). Specifically, Guitmont-

Desrocher et al. showed upon in vivo activation with either anti-CD40 or poly I:C, mNK 

cells did not upregulate the unique phenotypic markers precluded to pre-mNK cells; on the 

other hand, pre-mNK cells exhibited a propensity to acquire a mNK cell phenotype upon 
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adoptive transfer (146). These findings suggest that pre-mNK cells lie upstream in the NK 

cell developmental pathway with little to no chance of reversion.  

There is a paucity of research on the fundamental developmental processes of pre-mNK 

cells and thus, many questions remain to be answered. For instance, whether mature NK 

cell populations arise strictly from pre-mNK pools or whether there are independent, 

mutually exclusive pathways that give rise to mNK cells is unclear. The various stages of 

NK cell development have been previously outlined into 4 stages of progressive maturation 

and found to be associated with the differential expression of 2 key surface markers, CD27 

and CD11b (147). Stage 1 comprises of CD27lowCD11blow, stage 2 is CD27highCD11blow, 

stage 3 is CD27highCD11bhigh, and stage 4 is CD27lowCD11bhigh. Each stage corresponds 

with changes in the cytokine production and cytotoxic ability of NK cells. A previous study 

has suggested that an intermediate NK (iNK) pool are responsible for producing the stage 

1 population of NK cells and that pre-mNK cells differentiate directly into the stage 2 

population (146). However, whether there are functional discrepancies of mNK cells 

derived from pre-mNK cells or from conventional iNK pools remain unclear, and whether 

these pathways intersect or are mutually exclusive are unknown.  

Another key distinction from conventional mNK cells is the capacity of pre-mNK cells to 

present antigens to both CD4 and CD8 T cells (141).  Furthermore, pre-mNK cells can be 

licensed by tumor cells following killing to cross-present antigens to neighbouring T cells, 

thereby engaging tumor-specific cytotoxic T cells in the host immune response (148, 149). 

Collectively, these findings show the diverse range of effector functions of pre-mNK cells, 

combining the features of conventional NK and DCs which provide a link between the 

innate and adaptive arms of immunity.  
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There are several outstanding questions regarding pre-mNK cell biology which will be 

briefly discussed however not exhaustively. The unique expression of B220 on pre-mNK 

cells and not mNK cells is arguably the most distinguishing phenotypic feature between 

the populations. Notably, mice deficient for B220 had higher numbers of NK cells (150), 

but exhibited an impairment in cytokine production in immunoreceptor tyrosine-based 

activation motif (ITAM)-containing receptors (151). These results suggest that B220 

expression has deeper implications than solely a biomarker in distinguishing pre-mNK and 

NK cell populations, however further investigations are required to elucidate the nature of 

the relationship between B220 and pre-mNK cells and its potential contribution on NK cell 

function. In addition, pre-mNK cells are present in relatively low abundance compared to 

mNK cells and have, to our knowledge, been exclusively isolated and/or studied in either 

the bone marrow or spleen; thus, the relative distribution of pre-mNK cells among other 

organs and whether these cells actively participate during a systemic immune response 

remain unexplored.  Although extensive research is required to elucidate these outstanding 

questions, the most important contribution of pre-mNK cells and indeed the reason behind 

their serendipitous discovery is their role in cancer. 

 Pre-mNK cells in cancer 

Following the initial discovery of pre-mNK cells, controversy over its lineage ensued 

which caused the research focus to shift towards this point of contention. However, prior 

to the controversy over its lineage, pre-mNK cells were discovered for their prolific 

cytotoxicity against B16-F10 melanoma cells (142). Indeed, the combination 

immunotherapy of imatinib mesylate and IL-2 potentiated their tumoricidal activity against 



29 

 

metastatic melanoma, leading to prominent influxes of pre-mNK cells into tumor beds and 

subsequent tumor clearance (142). Notably, pre-mNK cell cytotoxic activity was found to 

be mediated by TRAIL in a NKG2D-dependent manner (142). This phenomenon was not 

limited to melanoma but was subsequently observed in the context of mouse thymoma and 

lung cancers (152). TRAIL-mediated killing was a surprising finding since NK cell 

cytotoxic activity is largely mediated by the perforin/granzyme pathway, however this was 

evidence that perhaps pre-mNK cells utilizes alternate pathways to exert its tumoricidal 

activity. Indeed, when compared to mNK cells, pre-mNK cells exhibited a similar cytotoxic 

capacity but produced more IFN-γ and TNF-α (143). Some evidence for the underlying 

mechanism for increased cytokine production suggested NKG2D signaling; since various 

tumor cell lines that expressed NKG2D ligands induced production of IFN-γ from pre-

mNK cells and treatment with blocking anti-NKG2D mAb attenuated cytokine production 

(152). It is important to note that IFN-γ production can indirectly promote tumor apoptosis 

as well. Specifically, IFN-γ signaling induces the upregulation of CD95 (Fas) on tumor 

cells (153) as well as sensitize cancers to TNF-α mediated apoptosis (154).  

IL-15 is another key cytokine that is critical for effective pre-mNK cell function. IL-15 

receptor is comprised of the IL-15Rα subunit and share IL-2Rβ and the common γ chain 

receptor to make a heterotrimer. Interestingly, pre-mNK cells do not express IL15Rα, but 

express the β and γ receptor subunits, which confers the ability to receive IL-15 signaling 

through trans-presentation by neighbouring bone marrow derived cells (155). The essential 

nature of IL-15 for pre-mNK cells is illustrated in studies where mice deficient for IL-15 

resulted in functional inert pre-mNK cells (156), whereas exogenous injection of 

recombinant IL-15 in mice potentiated their anti-tumor activity (157).  
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To discuss the role of pre-mNK cells in cancer without addressing their antigen presenting 

ability would provide an incomplete picture of their total contribution to the anti-tumor 

response. A specific subset of CD11b+ pre-mNK cells are able to process tumor antigens 

after killing and cross-present these to cognate CD8 T cells (148). Moreover, pre-mNK 

cells migrate from the tumor beds into the draining lymph nodes while upregulating MHC 

II expression and costimulatory molecules (158). The significance of cross-presentation 

was displayed in the finding that adoptive transfer of pre-mNK cells were protective in 

immunocompetent tumor-bearing mice but not immunodeficient mice (152).   

Pre-mNK cells are an incredibly dynamic population with a broad range of effector 

functions that provide a link between the innate and adaptive immune systems. Although 

they were first discovered for their prolific anti-tumor activity, a lot of the research focus 

has shifted from their cytolytic ability towards questions of their lineage. Their relatively 

low abundance in various tissues is a challenging obstacle with respect to potential 

therapies targeting pre-mNK cells.  Nevertheless, pre-mNK cells remain an attractive 

candidate for therapeutic intervention if these challenges can be overcome.  
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2.1 Rationale 

Invariant natural killer T (iNKT) cells are a unique population of T cells that recognize 

glycolipid antigens in the context of CD1d molecules instead of peptide antigens on major 

histocompatibility complex (MHC) molecules (1). Various glycolipid agonists are 

available to target iNKT cells in vivo to effectively modulate the immune response. They 

have a diverse array of functions which include exerting direct cytotoxic activity against 

CD1d bearing target cells through the upregulation of surface FasL expression and the 

production of soluble mediators such as IFN-γ, TNF-α, granzymes and perforin (2). Unlike 

their conventional naïve T cell counterparts, iNKT cells rapidly produce copious amounts 

of cytokines and chemokines as early as 2 hours after activation (3). The corollary to this 

is that iNKT cells possess the ability to shape the course of the ensuing immune response 

towards a proinflammatory or regulatory nature.  

Sepsis and cancer are two distinct, devastating pathologies where a dysregulated immune 

response contributes to the pathogenesis and progression of the disease. Sepsis is caused 

from dysregulated immune response to systemic infection that may result in organ failure 

and death. Whereas, cancer is formed by the culmination of several factors, including 

evasion of the immune response, that cause host cells to become immortalized and 

malignant. The role of iNKT cells in the contribution of both of these diseases has not been 

fully elucidated. Furthermore, whether iNKT cells can be targeted by glycolipid 

immunotherapy to mitigate disease progression has yet to be fully explored.  Therefore, I 

outlined 2 objectives that would delineate the contribution of iNKT cells in these 

pathologies, using two distinct mouse models of sepsis and cancer. 
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2.2 Objective 1 

 Elucidation of the efficacy of iNKT-cell targeted glycolipid 

immunotherapy in polymicrobial sepsis.  

Sepsis is a catastrophic syndrome which is biphasic in nature. Early death is associated 

with the proinflammatory phase which is typified by a cytokine storm, cell apoptosis, and 

tissue damage (4). Survivors invariably succumb to the latter phase of immunosuppression 

where patients are plagued with persistent organ failure and nosocomial infections (5). 

Previous findings from our lab have shown that TH2 polarizing iNKT cell glycolipid, OCH, 

effectively mitigated morbidity and mortality in an acute mouse model of sepsis (6). 

However, this mouse model did not recapitulate the immunosuppressive phase of sepsis, 

therefore, I investigated whether a novel phase-tailored glycolipid immunotherapy was a 

viable option in curbing both the proinflammatory and immunosuppressive pathologies, 

using the cecal ligation and puncture (CLP) sepsis model (7). Specifically, we proposed to 

administer OCH to dampen the early inflammatory phase of sepsis followed by α-

Galactosylceramide (α-GalCer) injections during the immunosuppressive phase to bolster 

the immune response (Fig. 2.1). I hypothesized that this phase-tailored immunotherapy 

would ameliorate early morbidity and mortality associated with sepsis, as well as restore 

immunocompetence in survivors. In Chapter 3, I show that our proposed immunotherapy 

effectively circumvents iNKT cell anergy and induces a robust cytokine response that 

ameliorates early morbidity and overall sepsis-associated mortality. Moreover, I show that 

the immunotherapy alters the cytokine milieu to be more proinflammatory during 

protracted sepsis which is manifested in a rescuing of immunosuppression in both innate 
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and adaptive immune responses. Finally, I show that OCH can be substituted with select 

alternative TH2 polarizing glycolipid agonists to improve overall mortality. Taken together, 

we show that for the first time that iNKT cells can be targeted to reduce sepsis morbidity, 

mortality, and reverse immunosuppression. 

 

  

Figure 2.1: Proposed iNKT cell specific two-pronged glycolipid immunotherapy.  

Schematic representation of our proposed immunotherapy. Black lines represent the 

progression of sepsis pathology, where the red line indicates the desired outcome from 

our therapeutic intervention in curbing the biphasic pathology of sepsis. 
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2.3 Objective 2 

 Determination of the contribution of iNKT cell activation in 

shaping the anti-cancer immune response. 

One of the definitive hallmarks of cancer progression is the evasion of immune system that 

allow malignant cells to proliferate unchecked (8). As a result, there has been intensive 

research focus on immunotherapies that help arm the host immune response to recognize 

and clear cancers. Activation of iNKT cells by α-GalCer can induce the release of an 

impressive arsenal of cytotoxic effector molecules which has shown promise in controlling 

tumor growth (9). Indeed, iNKT cells can be exploited via α-GalCer to directly kill cancer 

cells, as well as indirectly induce anti-cancer immunity through transactivating many 

downstream effector cells (10). Here, we describe another unique tumoricidal population 

known as precursors to mature NK (pre-mNK) cells (11, 12). Whether iNKT cells can be 

targeted by α-GalCer to transactivate pre-mNK cells to contribute to the anti-cancer 

immune response is unknown and has never been shown. In Chapter 4, I show for the first 

time α-GalCer-mediated activation of iNKT cell induce massive pre-mNK cells expansion 

in several tissue compartments, but most prominently in the liver within a few days. I also 

determined that pre-mNK cell expansion occurs in situ rather than recruitment from 

peripheral lymphoid tissues. Using adoptive serum transfer experiments, I delineated the 

mechanism by which pre-mNK cells expand in the liver was dependent on IL-12 and IL-

18 signaling. Finally, I investigated the function of pre-mNK cells and their contribution 

to anti-cancer immunity and found that they were highly cytotoxic, in both in vitro and in 

vivo settings, and they contributed significantly in controlling metastatic tumor burden. 



64 

 

Together, we have shown for the first time that the therapeutic benefits of targeting iNKT 

cells via α-GalCer injection, also extend towards the transactivation pre-mNK cells and 

involve them in contributing to the overall anti-cancer response.   
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Chapter 3  

 

 

 

 

 

3. Harnessing the versatility of iNKT cells 

in a novel step-wise approach to sepsis 

immunotherapy 
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3.1 Introduction 

Sepsis is a catastrophic syndrome triggered by a dysregulated host response to infection 

leading to hyperinflammation and an early cytokine storm, which could culminate in vital 

organ failure. Although sepsis takes many lives in its early phase, improved critical care 

has resulted in a shift in the mortality pattern of sepsis. Accordingly, most deaths from 

sepsis now occur due to immunosuppression in the protracted phase of the syndrome, in 

which patients succumb to secondary or opportunistic infections (1-3). In addition, sepsis 

may elevate the long-term risk of certain malignancies (4). However, many studies to date 

have focused on early sepsis, and numerous clinical trials targeting antigen-presenting cells 

(APCs), conventional T cells, or their products (e.g., inflammatory cytokines) have failed 

(5, 6). There is increasing appreciation that optimal immunotherapy of sepsis requires a 

two-pronged approach, namely to prevent exaggerated inflammation early on while 

boosting immunity in the protracted phase (2, 3, 6). 

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes with remarkable 

immunomodulatory properties and therapeutic potentials in a variety of disease models and 

settings. They secrete a wide array of inflammatory cytokines copiously and rapidly after 

they detect microbe-derived or synthetic glycolipid antigens (Ags), typified by α-

galactosylceramide (α-GalCer), presented by CD1d (7-10). In doing so, iNKT cells activate 

or regulate the functions of APCs (11, 12) and multiple downstream effector cell types 

belonging to both innate and adaptive arms of immunity (13-17). Importantly, iNKT cells 

are highly versatile entities and can be polarized to produce predominantly T helper 1 
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(TH1)- or TH2-type cytokines (18), a characteristic that has been explored in preclinical 

studies and exploited in clinical trials for cancer and infectious diseases.  

Several studies have suggested a pathogenic role for iNKT cells in murine sepsis (6, 19-

21). We reported increased frequencies of iNKT cells among circulating T cells of septic 

patients and also demonstrated the benefit of skewing iNKT cell responses towards a TH2-

like phenotype in a mouse model of acute intraabdominal sepsis (21). Whether iNKT cell 

polarization can be achieved in a septic phase-tailored fashion has not been addressed 

before. This is perhaps because iNKT cells undergo long-lasting anergy following 

exposure to α-GalCer, which renders them unresponsive to subsequent treatments with this 

glycolipid (22). This represents a major impediment to the success of iNKT cell-based 

immunotherapies for various conditions, including but not limited to sepsis. To address this 

limitation, we devised a two-step treatment regimen that prevented iNKT cell anergy 

through sequential administration of different glycolipid agonists. This approach was 

efficacious in a clinically relevant mouse model of biphasic sepsis in which 

hyperinflammation is followed by immunosuppression.  
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3.2 Materials and Methods 

 Mice 

B6 and BALB/c mice were purchased from Charles River Canada Inc. (St. Constant, 

Quebec). We also maintained a breeding colony of B6 mice in our institutional barrier 

facility. β2M-/- mice on a B6 background were provided by Dr. Anthony Jevnikar (Western 

University). Age-matched cohorts of adult male mice were used in this study. Our animal 

use protocol (AUPs 2010-241) was approved by the Western University Animal Use 

Subcommittee.  

 Glycolipids 

KRN7000 from Funakoshi Co. Ltd was prepared in a vehicle containing 0.5% Tween 20, 

56 mg/mL sucrose and 7.5 mg/mL histidine, heated at 80°C, aliquoted and stored at -80°C. 

Shortly before use, KRN7000 aliquots were thawed, reheated at 80°C for 10 minutes, and 

diluted in sterile PBS for injection. Lyophilized OCH was supplied by the NIH Tetramer 

Core Facility (Atlanta, GA), reconstituted with sterile water and stored at 4°C until use. 

Dry, solvent-free C20:2 was solubilized in a PBS solution containing 1% DMSO and 0.5% 

Tween 20 and stored at -20°C. Aliquots were thawed, sonicated at 37°C for 5 minutes, 

heated at 80°C for 1 minute, and then diluted in PBS for injections. Lyophilized PBS-25 

and PBS-128 were formulated for direct dissolution in water and subsequent injections.  
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 Polymicrobial sepsis models  

In the vast majority of experiments, we employed a sublethal version of CLP with slight 

modifications (23). Ten-twelve-week-old male B6 mice were placed in a plastic chamber 

containing 2% vaporized isofluorane. Once stable, mice were transported into a makeshift 

surgical station where anesthesia was maintained by 1% isofluorane applied through a nose 

cone. The abdominal skin was disinfected using sterile gauze pads presoaked in a 2% 

chlorhexidine solution, wiped with 70% ethanol, and subjected to additional disinfection 

with 0.5% chlorhexidine. Following a midline laparotomy, the distal end of the cecum was 

externalized and ligated at a 0.5-cm distance from the apex. Cecum was then perforated 

twice using a 27-gauge needle. The peritoneal cavity and abdominal skin were closed with 

sutures, and 1 mL of normal saline was administered s.c. behind the ear. Mice were left to 

recover in separate cages under a heat lamp for 30 minutes. For sham mice, the procedure 

was identical except that the cecum was neither ligated nor punctured. All animals were 

injected s.c. with 0.5 mg/kg of buprenorphine twice, once 20 minutes before and again 24 

hours after the surgery.  

To induce severe CLP in separate cohorts of mice, one-third of the cecum was ligated 

followed by 3 perforations made with a 25-gauge needle. In a limited number of 

experiments, we also employed the FIP model of polymicrobial sepsis. Briefly, a slurry 

containing 200 mg/mL of fecal material was prepared in PBS after pooling feces from 20 

age- and sex-matched donors residing in the same barrier environment. To induce FIP, 

mice were injected i.p. with 50 or 100 μL of the above slurry.         
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Animals were closely monitored, and their morbidity was scored in a blinded manner using 

a murine sepsis scoring (MSS) system we previously described (24). Four, 18, 24 and 48 

hours after CLP, each mouse was assigned a score of 0 to 4 for each of several criteria, 

including coat and eye appearance, respiration rate, consciousness level, motility, and 

response to various stimuli. A weight loss of ≥20% and/or unresponsiveness to physical 

provocation were considered experimental endpoints.  

 In vivo treatments 

Four µg of each glycolipid were administered i.p. in a final volume of 200 µL to naïve or 

septic mice as indicated. Primary and secondary glycolipid injections were separated by 4 

days. Control animals received an equal volume of a corresponding vehicle solution. 

In several experiments, 100 μg of a low-endotoxin, azide-free rat anti-mouse PD-1 mAb 

(clone RMP1-14 from Bio X Cell, West Lebanon, NH) were administered i.p. on day 4 

post-priming with α-GalCer or OCH and 20 minutes before a secondary glycolipid 

challenge. Control mice were given 100 μg of a rat IgG2a isotype control (clone 2A3 from 

Bio X Cell).  

Phase-tailored glycolipid immunotherapy of septic mice involved two injections. Mice 

received 4 μg of either OCH or PBS-25 i.p. 4 hours after CLP, which was followed by a 4-

μg i.p. injection of α-GalCer on day 4 post-CLP. Control mice were given the appropriate 

vehicles following the above schedule, and sham controls were left untreated.          
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 Serum cytokine measurements 

Saphenous blood was collected from non-septic mice 2, 8 and 24 hours after a sole 

glycolipid injection or following a secondary challenge. Septic animals that had been 

subjected to CLP before receiving successive injections of OCH and α-GalCer (or 

corresponding vehicles) were bled 12 hours after the secondary α-GalCer (or vehicle) 

treatment. Sera were isolated via centrifugation at 17 × 1000 g for 15 minutes at 4°C, and 

then stored at -80°C. Serum cytokine levels were quantified using ELISA kits from 

ThermoFisher Scientific (Waltham, MA) or a multiplexing platform employing Luminex 

xMAP technology by Eve Technologies (Calgary, AB).  

 Customized gene expression analysis 

Five days after CLP, glycolipid- and vehicle-treated survivors were sacrificed for their 

liver. Hepatic CD3-NK1.1+ cells were stained and sorted, after dead cell and doublet 

exclusion, by a BD FACSAria III cytometer achieving a purity of >99%. RNA was 

extracted using a Purelink RNA Mini Kit (ThermoFisher) and converted to cDNA using 

the Invitrogen SuperScript VILO MasterMix. Samples were plated in singlets and 

quantitative PCR was performed using Custom TaqMan Array 96-Well Fast Plates 

(ThermoFisher) in a StepOnePlus Real-Time PCR System. Changes in gene expression 

were assessed by the ΔΔCT method.  

 Cytofluorimetric analyses 

Mice were sacrificed for their spleen and/or liver, which were mechanically homogenized 

in sterile PBS. Liver tissue homogenates were subsequently placed in a 33.75% Percoll 
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PLUS solution (GE Healthcare, Chicago, IL) and spun at 700 × g, without brake, for 12 

minutes at room temperature to remove parenchymal cells. Brief treatment with ACK lysis 

buffer and filtration through 70-µm pores of a cell strainer rid the resulting splenic and 

HMNC preparations of erythrocytes and debris, respectively. To block Fcγ receptors before 

staining, cells were briefly incubated on ice with 20 µL of culture supernatant from a 

hybridoma producing an anti-CD16/CD32 mAb (clone 2.4G2). Staining then followed 

using fluorophore-conjugated mAbs to surface CD3ε (clone 145-2C11), CD107a (1D4B), 

F4/80 (BM8), I-A/Eb (AF6-120.1), NK1.1 (PK136), and/or intracellular GZM A (GzA-

3G8.5). Labeled mAbs and isotype controls were all from ThermoFisher.  

Cell surface staining was carried out at 4°C for 30 minutes. For intracellular staining, an 

eBioscience Intracellular Fixation & Permeabilization Buffer Set was utilized. To detect 

cytolytic molecules present in hepatic NK cells, bulk HMNCs were co-cultured at a 30:1 

ratio with YAC-1 thymoma cells in the presence of 10 μg/mL brefeldin A (BFA) (Sigma). 

After 4 hours at 37°C and 6% CO2, cells were washed, co-stained with anti-CD3 and anti-

NK1.1 mAbs, fixed and permeabilized, and stained for indicated effector molecules. For 

CD107a staining, anti-CD107a mAb was present at 1 μg/mL in 4-hour cultures containing 

HMNCs, YAC-1 cells, 2 μM monensin (BioLegend, San Diego, CA) and BFA.  Stained 

cells were washed and interrogated using a FACSCanto II flow cytometer, and data were 

analyzed using FlowJo software version 10.  

 51Cr release assays 

YAC-1 cells were grown in RPMI-1640 medium supplemented with 10% heat-inactivated 

FBS, 0.1 mM MEM nonessential amino acids, GlutaMAX-I, 1 mM sodium pyruvate, 10 
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mM HEPES, 100 U/mL penicillin and 100 μg/mL streptomycin, which we simply refer to 

as medium. To prepare target cells for cytotoxicity assays, YAC-1 cells were labeled with 

100 µCi of Na2
51CrO4, with occasional shaking, inside an incubator set at 37°C and 6% 

CO2. After 90 minutes, labeled cells were washed, resuspended in medium, and seeded at 

10,000 cells/well in a U-bottom microtiter plate.     

HMNCs from glycolipid- and vehicle-treated mice were prepared and employed as a source 

of effector cells against 51Cr-labeled YAC-1 cells at indicated ratios. After 4 hours at 37°C 

and 6% CO2, microplates were spun, and a 100-μL co-culture supernatant sample was 

harvested from each well for reading in a γ-counter. Experimental release (ER) values were 

obtained from wells in which effector and 51Cr-labeled target cells were co-present. 

Spontaneous release (SR) and total release (TR) were determined in supernatant samples 

collected from wells in which target cells were suspended in medium or in 1% Triton X-

100, respectively. Specific cytotoxicity against YAC-1 target cells was calculated using the 

following equation: % specific lysis = [(ER - SR) ÷ (TR - SR)] × 100. 

 In vivo killing assays  

The in vivo lytic function of α-GalCer-transactivated NK cells was assayed using a method 

we described elsewhere (16). Erythrocyte-depleted, naïve target splenocytes from WT and 

β2M-/- B6 mice were labeled with two different concentrations of CFSE, typically 0.2 µM 

and 2 µM respectively. Target cells were extensively washed, mixed in equal numbers, and 

co-injected at 1 × 107 total cells in 200 µL PBS into the tail vein of glycolipid- and vehicle-

treated CLP survivors. Three hours later, the recipients were euthanized for their spleen 

and liver in which CFSE-labeled target cells were traced by flow cytometry. Percent 
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specific lysis of β2M-/- target cells was calculated using the following formula: % specific 

killing = {1 - [(CFSEhigh event number in organ ÷ CFSElow event number in organ) ÷ 

(CFSEhigh event number within mixed target cells before injection ÷ CFSElow event number 

within mixed target cells before injection)]} × 100. 

 Evaluation of delayed-type hypersensitivity (DTH) 

On day 4 post-CLP, indicated cohorts of sepsis survivors were injected s.c., behind the ear, 

with 100 μL of a 10-mM 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution (Sigma-

Aldrich, St. Louis, MO). Four days later, mice were challenged via a 50-μL injection of the 

same solution in the left footpad and also received 50 μL of PBS in the right (control) foot. 

After 24 hours, footpad swelling was measured using a digital caliper after deducting the 

baseline thickness recorded prior to the TNBS challenge. In experiments in which septic 

mice received glycolipid immunotherapy, the sensitizing dose of TNBS was given on day 

4 post-CLP and 20 minutes after α-GalCer injection. Sham mice were given an intrafootpad 

(i.f.p.) injection of PBS.  

 Statistical analyses 

Graphpad Prism 5 software was employed to compare various datasets. We used unpaired 

Student t-tests and ANOVA as appropriate, and conducted log rank tests for survival 

analyses. *, ** and *** denote statistically significant differences with calculated p values 

equal to or less than 0.05, 0.01 and 0.001, respectively.  
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3.3 Results 

 OCH-primed iNKT cells retain in vivo responsiveness to α-

GalCer  

Sepsis is a complex syndrome consisting of both hyper- and anti-inflammatory phases. We 

previously proposed the possibility of using iNKT cell glycolipid agonists therapeutically 

for sepsis (6). iNKT cell ligands that either suppress or promote inflammatory responses 

do exist. However, administration of even a single dose of KRN7000 (α-GalCer), the 

prototypic example of such ligands, abrogates or attenuates iNKT cell responses to a recall 

challenge with the same molecule (22). Whether other glycolipid combinations follow the 

same pattern has remained largely unclear. We sought to determine if in vivo priming with 

OCH, a truncated TH2-polarizing analog of α-GalCer (25), alters subsequent iNKT cell 

responses to α-GalCer. We chose to test the impact of sequential treatments with OCH and 

α-GalCer (OCH → α-GalCer) because: i) we previously found OCH treatment alone to be 

protective in the context of feces-induced peritonitis (FIP), a well-established model of 

acute sepsis (21); ii) treatment with α-GalCer relieves immunosuppression in certain other 

models or conditions (26, 27). Therefore, we posited that if iNKT cells retain their full 

responsiveness to α-GalCer following an initial exposure to OCH, the OCH → α-GalCer 

regimen should alleviate both sepsis-induced hyperinflammation and immunosuppression. 

We first tested the above hypothesis in the absence of sepsis. C57BL/6 (B6) mice were 

treated with α-GalCer, OCH or vehicle followed, 4 days later, by a second injection of α-

GalCer and quantitation of serum interleukin (IL)-4 and interferon (IFN)-γ levels (Fig. 

3.1A). As anticipated, pretreatment with the glycolipid vehicle did not prevent subsequent 
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IL-4 and IFN-γ responses to α-GalCer, which reached their peak levels at 2 hours and 

between 8-24 hours, respectively (Fig. 3.1B-C). In vivo exposure to α-GalCer before a 

second treatment with this glycolipid (α-GalCer → α-GalCer) dramatically reduced serum 

IL-4 levels (Fig. 3.1B) and abolished IFN-γ production (Fig. 3.1C). This is consistent with 

previous reports on iNKT cell anergy, which was judged by a hyporesponsive state after 

an ex vivo challenge with α-GalCer (22). In contrast, priming with OCH did not alter the 

magnitude of the recall IL-4 response to α-GalCer (Fig. 3.1B). In addition, the OCH → α-

GalCer treatment resulted in a sharp rise in serum IFN-γ levels, which were even higher 

than the levels detected in the vehicle → α-GalCer cohort at the 2-hour time point (Fig. 

3.1C). IFN-γ levels in the OCH → α-GalCer cohort were maximal at 8 hours and returned 

to the baseline at 24 hours.  
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Figure 3.1: OCH-primed iNKT cells remain responsive to α-GalCer. 

(A) B6 mice were injected i.p. with 4 μg of OCH or α-GalCer, or with vehicle. Four days 

later, mice were challenged with 4 μg of α-GalCer before they were bled via saphenous 

vein at indicated time points (A). Serum IL-4 (B) and IFN-γ (C) levels were quantified by 

ELISA. Error bars represent SEM. Statistical comparisons were carried out using unpaired 

Student’s t-tests. *, ** and *** denote differences between mice treated with OCH → α-

GalCer and those receiving α-GalCer → α-GalCer, with p<0.05, p<0.01 and p<0.001, 

respectively. † and ††† indicate differences between OCH → α-GalCer- and vehicle → α-

GalCer-treated cohorts with p<0.05 and p<0.001, respectively.  
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Next, we extended our findings to another standard mouse strain, namely BALB/c. These 

mice are traditionally considered to be TH2-dominant and are reportedly more vulnerable 

than B6 mice to cecal ligation and puncture (CLP), a surgical procedure that causes sepsis 

(28). Similar to TH1-dominant B6 mice, BALB/c mice that received two doses of α-GalCer 

exhibited severe iNKT cell anergy (Fig. 3.2). However, they were able to launch an 

augmented response to α-GalCer if they had been primed with OCH first (Fig. 3.2).       

 

Figure 3.2: OCH-primed BALB/c mice retain their ability to respond to α-GalCer. 

BALB/c mice were given 4 μg of OCH or α-GalCer, or were injected with vehicle i.p. Four 

days later, they were challenged with 4 μg of α-GalCer and subsequently bled as indicated 

for serum IL-4 (B) and IFN-γ (C) measurements. Error bars represent SEM. Statistical 



82 

 

comparisons were performed using Student’s t-tests. *, ** and *** denote differences 

between animals treated with OCH → α-GalCer and those receiving α-GalCer → α-

GalCer, with p<0.05, p<0.01 and p<0.001, respectively. † and ††† indicate differences 

between OCH → α-GalCer- and vehicle → α-GalCer-treated mice with p<0.05 and 

p<0.001, respectively. 

 The OCH → α-GalCer treatment reduces the severity and 

mortality of sepsis  

Since OCH did not anergize iNKT cells in our two-step stimulation regimen, we tested its 

efficacy as the initial component of a ‘double-hit’ immunotherapeutic protocol for biphasic 

sepsis. This required an in vivo model with low early mortality. Although very informative, 

the FIP model simulates only the acute phase of the syndrome (6). In a pilot experiment, 

intraperitoneal (i.p.) injection of B6 mice (n=3) with 100 μL of a fecal slurry resulted in 

100% mortality within 24 hours. Therefore, we resorted to the CLP model, the gold 

standard of sepsis models in rodents.  

CLP involves laparotomy and ligation of the cecum, which is then perforated to allow fecal 

content to leak into the peritoneal cavity (29). A mild or sublethal form of CLP can be 

conducive to survival in a fraction of septic animals and their progression to an 

immunosuppressed state (6, 23). In our hands, ligating one-third of the cecum, which was 

then punctured thrice with a 25-guage needle, led to severe sepsis that was highly lethal 

within a short period of time (Fig. 3.3). By comparison, ligating a smaller portion of the 

cecum followed by two perforations inflicted by a 27-gauge needle resulted in relatively 
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mild sepsis with a ~40-60% survival rate (Fig. 3.3). Therefore, we proceeded to test the 

efficacy of the OCH → α-GalCer treatment in this model.  

Following a protocol that is schematically illustrated in Fig. 3.4A, mice were subjected to 

mild CLP before they received OCH (or vehicle), monitored for signs of morbidity using 

a scoring system we previously developed (24), re-injected with α-GalCer (or vehicle) and 

continued to be observed. As expected, unlike sham-operated controls, animals that 

underwent CLP showed signs of overt morbidity, which intensified over time before a 

maximum murine sepsis score (MSS) was reached 48 hours after the surgery (Fig. 3.4B). 

We found OCH to significantly minimize the severity of sepsis in this timeframe (Fig. 

3.4B). Furthermore, treating septic mice with OCH → α-GalCer ameliorated their overall 

survival rate reproducibly (Fig. 3.4C). The observed survival advantage was evident early 

after OCH administration (Fig. 3.4C), consistent with low MSS scores recorded for animals 

that had been primed with OCH but not yet challenged with α-GalCer (Fig. 3.4B). Equally 

important, treatment with α-GalCer four days after OCH did not compromise the improved 

survival (Fig. 3.4C). In fact, even in the absence of the initial anti-inflammatory stimulation 

with OCH, α-GalCer on its own failed to worsen the mortality of CLP (Fig. 3.5).  

Taken together, the above results demonstrate that OCH → α-GalCer reduces the morbidity 

and mortality of sublethal CLP, which is afforded by the early OCH hit and not reversed 

by subsequent α-GalCer treatment.     
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Figure 3.3: Procedural changes in CLP surgery results in distinct mortality patterns. 

Severe CLP was induced by externalization of the cecum, the one-third distal region of 

which was ligated and perforated thrice with a 25-gauge needle. To induce a mild, sublethal 

form of CLP, 0.5 cm of the distal cecum was ligated and punctured twice with a 27-gauge 

needle. In sham mice, the cecum was neither ligated nor punctured. Kaplan-Meier survival 

curves for the three cohorts are depicted.  
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Figure 3.4: Treatment with OCH → α-GalCer reduces CLP-induced morbidity and 

mortality. 

B6 mice were subjected to sublethal CLP four hours before they received 4 μg of OCH or 

vehicle i.p. according to a regimen schematically illustrated in A. Animals were monitored, 

and their 48-hour morbidity was recorded in a blinded fashion using a murine sepsis score 

(MSS) described in Materials and Methods. Error bars represent SEM, and * denotes 

p<0.05 of CLP + Veh and CLP + OCH statistical comparison by unpaired Student’s t-tests 

(B). Survivors were treated with 4 μg of α-GalCer or vehicle i.p. (A.C), and continued to 

be monitored. Kaplan-Meier survival curves were generated with a weight loss of ≥20% 
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and/or unresponsiveness to provocation defining the endpoints. * indicates p<0.05 based 

on a log-rank test (C).     

 

Figure 3.5: α-GalCer administration during protracted sepsis, in the absence of prior 

OCH priming, fails to reduce the mortality of CLP. 

Four days after B6 mice had been subjected to sublethal CLP surgery, survivors were 

injected i.p. with 4 μg of α-GalCer or with vehicle. The experimental endpoint was defined 
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as a weight loss of ≥20% and/or a lack of response to physical stimuli. In sham controls, 

the cecum was neither ligated nor perforated. Kaplan-Meier survival curves are shown 

 Sequential treatment with OCH and α-GalCer yields a 

systemic pro-inflammatory cytokine picture  

Given the clear benefit of OCH → α-GalCer in our CLP model, it was pertinent to 

investigate the impact of this regimen on blood cytokine and chemokine levels in the face 

of an ongoing septic challenge. To this end, we used an extensive panel of 

cytokines/chemokines to quantify pro- and anti-inflammatory mediators in the serum of 

CLP survivors 12 hours after they were given the second hit with α-GalCer. This time point 

was chosen because of our interest in relieving sepsis-induced immunosuppression and 

also to closely mimic the timeline used in our iNKT cell anergy experiments (Fig. 3.1). 

Similar to non-septic mice (Fig. 3.1C), CLP survivors that had undergone treatment with 

OCH → α-GalCer had significantly more IFN-γ in their blood (Fig. 3.6). Moreover, they 

had elevated levels of tumor necrosis factor (TNF)-α, IL-2, IL-5, eotaxin, CCL2, CXCL9 

and CXCL10. In contrast, circulating levels of several TH2-polarizing and/or anti-

inflammatory mediators, such as IL-4, IL-10, IL-13 and transforming growth factor (TGF)-

β, were comparable between vehicle → vehicle and OCH → α-GalCer cohorts (Fig. 3.6). 

These findings are consistent with an overall pro-inflammatory signature induced by the 

OCH → α-GalCer treatment. In addition, they reinforce our conclusion that iNKT cells 

from OCH-primed animals maintain their ability to respond to α-GalCer even in a septic 

milieu.      
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Figure 3.6: Treating septic mice with OCH→α-GalCer gives rise to a pro-

inflammatory blood cytokine pattern. 

B6 mice underwent sublethal CLP surgery before they were treated with either OCH→α-

GalCer or vehicle→vehicle as described in Materials and Methods. Saphenous blood was 

collected 12 hours after the second hit, and serum levels of indicated cytokines and 

chemokines were determined using Luminex xMAP multiplexing technology. Error bars 

represent SEM. Statistical analyses were performed by unpaired Student’s t-tests, and * 

and ** denote statistically significant differences with p<0.05 and p<0.01, respectively. 

N.S. indicates a non-significant difference.    

 The OCH → α-GalCer treatment results in NK cell 

transactivation  

Glycolipid-stimulated iNKT cells are known to transactivate a multitude of downstream 

effector cell types, including NK cells that play critical roles in antipathogen immunity. 

This is largely owed to iNKT cells’ capacity to secrete IFN-γ amply and swiftly (30). We 

found OCH → α-GalCer to induce a robust but transient rise in serum IFN-γ levels (Fig. 

3.1C and Fig. 3.2B). Furthermore, iNKT cells harbored by septic mice were not anergized 

by this treatment and remained capable of triggering IFN-γ production (Fig. 3.6).  

To begin to explore the functional significance of the above phenomenon, we examined 

gene expression by NK cells in CLP survivors (Fig. 3.7A). Transcriptomic analyses of 

hepatic NK cells from glycolipid-treated animals revealed elevated mRNA levels of Gzmb, 

Gzma and Perforin, suggesting enhanced cytolytic potentials (Fig. 3.7B). Consistent with 

this signature, non-parenchymal hepatic mononuclear cells (HMNCs) prepared from OCH 
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→ α-GalCer-treated survivors were much more potent than those harvested from vehicle-

treated or sham-operated mice in destroying YAC-1 cells (Fig. 3.7C), the prototypic mouse 

NK cell targets. At the protein level, intracellular granzyme A (GZM A) was highly 

abundant in NK cells, albeit at comparable levels between glycolipid- and vehicle-treated 

mice (93.8 ± 1.9% and 90.8 ± 1.9%, respectively; n=3/group). We found increased cell 

surface expression of CD107a (LAMP-1) in NK cells from OCH → α-GalCer-treated 

animals, suggesting that more efficient degranulation was responsible, at least partially, for 

their augmented cytolytic effector function (Fig. 3.7D).  

To validate our results in an in vivo setting, we took advantage of a CFSE-based killing 

assay, which we recently optimized for transactivated NK cell-mediated cytotoxicity (16). 

In this assay, naïve splenocytes from β2 microglobulin (β2M)-deficient B6 mice that are 

devoid of cell surface MHC class I molecules serve as NK targets. These targets were more 

efficiently removed from both the spleen and the liver of OCH → α-GalCer-treated mice 

(Fig. 3.7E-F), further supporting the conclusion that this therapeutic regimen results in 

greater NK cell-mediated cytotoxicity.    
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Figure 3.7: Sequential treatments of septic mice with OCH and α-GalCer augments 

the expression of cytotoxic effector molecules, degranulation and lytic function by NK 

cells. 

B6 mice were subjected to sublethal CLP before they were injected i.p. with OCH (or 

vehicle) and α-GalCer (or vehicle) (A). Twenty-four hours after the second hit, hepatic 

CD3-NK1.1+ NK cells were stained, FACS-purified and pooled for RNA extraction and 

reverse transcriptase-quantitative PCR using a custom TaqMan gene array. Fold 
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increases/decreases in the expression of indicated genes, relative to the vehicle→vehicle 

control condition, were used to generate a heat map (B). Bulk non-parenchymal hepatic 

mononuclear cells (HMNCs) were co-incubated for 4 hours with 51Cr-labeled YAC-1 

target cells. The 51Cr activity of culture supernatant samples was then determined by a γ 

counter, and the specific lysis of target cells was calculated using a formula that is detailed 

in Materials and Methods (C). In parallel, bulk HMNCs were co-cultured with YAC-1 cells 

in the presence of monensin and brefeldin A. After 4 hours, the surface expression of 

CD107a on NK cells was analyzed by flow cytometry (D). In separate experiments, 24 

hours after the second hit, wild-type and β2M-/- splenocytes, which were respectively 

labeled with a low and a high dose of CFSE, were mixed at a 1:1 ratio and injected via tail 

vein into glycolipid-treated and control CLP survivors. Three hours later, target cells in the 

spleens (E) and in the livers (F) were tracked and distinguished based on their differential 

CFSE labeling intensities, and their relative abundance was used to calculate % specific 

killing of β2M-/- target cells as described in Materials and Methods. Error bars represent 

SEM. Statistical analyses were performed using a two-way ANOVA with Tukey’s post-

hoc test where treated and untreated septic mice were compared (C) or using unpaired 

Student’s t-tests (D-F). * and ** denote differences with p<0.05 and p<0.01, respectively.  

 

 The α-GalCer hit in OCH → α-GalCer-treated mice alleviates 

CLP-induced immunosuppression   

One of the primary goals of our step-wise treatment approach was to avert late 

immunosuppression. As predicted, CLP survivors in our model were immunosuppressed. 
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This was judged by the meager swelling of their footpad that had been injected with a recall 

dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS) following subcutaneous (s.c.) priming 

with this hapten (Fig. 3.8A-B). This was indicative of a suboptimal delayed-type 

hypersensitivity (DTH) response. We also found the splenic F4/80+ macrophages of CLP 

survivors to express low levels of MHC class II molecules (Fig. 3.8C). The above readouts 

were used due to their clinical relevance. Many patients who survive sepsis’s early 

hyperinflammatory phase do not exhibit normal DTH skin reactions to standard Ags (31). 

In addition, HLA-DR expression on CD14+ monocytes is routinely assessed in the clinic 

not only to identify septic patients in an immunosuppressed state but also to monitor the 

efficacy of the immunotherapies they receive (32). 

To evaluate the efficacy of OCH → α-GalCer in reversing immunosuppression, mice were 

given OCH (or vehicle) shortly after they underwent CLP surgery, followed 4 days later 

by TNBS sensitization and α-GalCer (or vehicle) injection. Four days later, they were 

challenged via an intrafootpad (i.f.p.) injection of TNBS and subsequently assessed for 

footpad swelling and MHC II expression (Fig. 3.9A). As with mice treated with OCH → 

α-GalCer without TNBS priming/challenge (Fig. 3.4C), a clear survival advantage was 

manifest in this cohort (Fig. 3.9B). Importantly, OCH → α-GalCer could significantly 

increase footpad swelling as an indication of a partially restored DTH response (Fig. 3.9C). 

We also detected increased expression of I-A/I-E on a per cell basis, as judged by the 

geometric mean fluorescence intensity (gMFI) of staining for these MHC class II 

molecules, on splenic macrophages (Fig. 3.9D-E).  

Of note, in a control experiment in which α-GalCer was administered in the absence of 

prior treatment with OCH, neither the DTH response to TNBS nor the expression of I-A/I-
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E could be recovered (Fig. 3.10A-B).   Collectively, the above results demonstrate that 

OCH → α-GalCer can partially but effectively relieve CLP-induced immunosuppression.  

 

 

Figure 3.8: Sublethal CLP survivors become immunosuppressed. 

As schematically illustrated in A, B6 mice underwent sublethal CLP or sham operation. 

On days 4 and 8 post-operation, animals were sensitized and challenged with TNBS via 

s.c. and i.f.p. routes, respectively. Twenty-four hours after the TNBS challenge, the 

thickness of the injected footpads was measured using a caliper, and the degree of their 

swelling was recorded relative to pre-recall measurement values (B). In addition, CLP 

survivors and sham mice were sacrificed for their spleen in which F4/80+ macrophages 

were evaluated for I-A/Eb expression levels (C). Representative plots and summary data 
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are shown. Error bars represent SEM. Statistical comparisons were made using one-way 

ANOVA with a Tukey’s post-hoc analysis (B) and unpaired Student’s t-tests (C). ** and 

*** denote significant differences with p<0.01 and p<0.001, respectively. 
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Figure 3.9: Administering α-GalCer to OCH-primed CLP survivors restores DTH 

reaction to TNBS and MHC II levels on macrophages. 

B6 mice underwent sublethal CLP surgery before they were treated i.p. with indicated 

glycolipids (or vehicles), sensitized s.c. with TNBS and then challenged i.f.p. with TNBS 

following the timeline depicted in A. Kaplan- Meier survival curves were generated with 



97 

 

experimental endpoints defined as a weight loss of ≥20% and/or unresponsiveness to 

physical provocation (B). Twenty-four hours after the TNBS recall, the thickness of the 

injected footpad was measured for each mouse using a caliper, from which the baseline 

pre-challenge thickness was deducted. Error bars represent SEM (C). On day 9 post-CLP, 

survivors were sacrificed, and splenic F4/80+ macrophages were assessed by flow 

cytometry for their expression level of I-A/Eb. Representative histograms (E) and summary 

geometric mean fluorescence intensity (gMFI) data (F) are shown. One-way ANOVA with 

Tukey’s post-hoc tests was employed to determine statistically significant differences with 

p<0.05, p<0.01 and p<0.001, which are denoted by *, ** and ***, respectively. Sham 

controls underwent a surgical procedure in which their cecum was neither ligated nor 

perforated. They also did not receive any treatments with glycolipids (or vehicles).    
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Figure 3.10: α-GalCer administration without prior OCH priming fails to alleviate 

CLP-induced immunosuppression. 

Four days after CLP or sham surgery, survivors were injected i.p. with 4 μg of α-GalCer 

or with vehicle. Animals were sensitized and challenged with TNBS on days 4 and 8 post-

operation via s.c. and i.f.p. routes, respectively. Twenty-four hours later, footpad swelling 

was recorded (A), and the expression level of I-A/Eb on F4/80+ splenic macrophages was 

assessed by flow cytometry (B). Error bars represent SEM.                    

 PBS-25, but not C20:2, is efficacious as the initial hit in the 

biphasic immunotherapy of CLP-induced sepsis  

A number of glycolipids with activities similar to OCH have been previously reported. We 

set out to ascertain whether the beneficial bioactivity of OCH as the initial hit was unique 

to this molecule or could be mimicked by other TH2-skewing iNKT cell agonists. One such 
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agonist is C20:2 (33), which we previously used as a solitary treatment for FIP-induced 

acute sepsis (21). As depicted in Fig. S3.11A and consistent with our previous findings 

(21), administering a single dose of C20:2 to B6 mice resulted in an early IL-4 burst and a 

subsequent IFN-γ response. However, priming with C20:2 resulted in a dwarfed recall 

response to α-GalCer (Fig. 3.11B), indicating that iNKT cells had been anergized. Unlike 

OCH, C20:2 has a relatively long acyl chain. Therefore, we tested two other glycolipids, 

namely PBS-25 and PBS-128 (34, 35), for their capacity to replace OCH since they are 

more similar to OCH in terms of their lipid chain length.  

In our head-to-head comparisons, a single i.p. injection of PBS-25 yielded a higher IL-

4:IFN-γ ratio than did PBS-128 (Fig. 3.12A). Moreover, priming naïve B6 mice with either 

PBS-25 or PBS-128 did not induce iNKT cell anergy since IL-4 and IFN-γ responses to 

second stimulation with α-GalCer were intact in both conditions (Fig. 3.12B). However, 

compared to PBS-128, an initial PBS-25 treatment potentiated less IL-4 and more IFN-γ 

production in response to α-GalCer (Fig. 3.12B). Therefore, we pursued the usage of PBS-

25 in our sepsis model. We found treatment with PBS-25 → α-GalCer to significantly 

reduce the mortality of CLP (Fig. 3.12C), which was reminiscent of the OCH → α-GalCer 

treatment (Fig. 3.4C and Fig. 3.9B). These results suggest that the structure of iNKT cell 

agonists contributes, at least partially, to their anergy-inducing property, or lack thereof.                                 
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Figure 3.11: Pre-exposure to C20:2 compromises iNKT cell responses to α-GalCer. 

Mice (n=3) were injected i.p. with 4 μg of C20:2. Two, 8 and 24 hours later, they were bled 

for serum IL-4 and IFN-γ analyses by ELISA (A). A separate cohort (n=3) was primed i.p. 

with 4 μg of C20:2 four days before animals received a second i.p. injection with α-GalCer. 

Serum IL-4 and IFN-γ levels were measured 2, 8 and 24 hours after the second injection 

(B). Error bars represent SEM 
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Figure 3.12: In vivo priming with PBS-25 does not compromise subsequent iNKT cell 

responses to α-GalCer, and can serve as the initial hit in the immunotherapy of 

biphasic sepsis. 

Four μg of α-GalCer, PBS-128 or PBS-25, glycolipid agonists of iNKT cells with varying 

acyl chain lengths, were injected i.p. into naïve B6 mice, which were bled 2, 8 and 24 hours 

later for serum cytokine analyses. Peak levels of IL-4 and IFN-γ were used to calculate the 

IL-4:IFN-γ ratio for each agonist (A). Separate cohorts of naïve B6 mice were given 4 μg 
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of α-GalCer, PBS-128, PBS-25 or vehicle i.p. Four days later, all animals were challenged 

with a 4-μg i.p. injection of α-GalCer as the second hit, and serum IL-4 and IFN-γ 

concentrations were quantitated by ELISA at indicated time points. Error bars represent 

SEM. Statistical comparisons were performed using unpaired Student’s t-tests. * and *** 

denote differences between cohorts receiving PBS-128→α-GalCer and α-GalCer→α-

GalCer, with p<0.05 and p<0.001, respectively. †† and ††† indicate differences between 

PBS-25/PBS-128→α-GalCer- and vehicle→α-GalCer-treated mice with p<0.01 and 

p<0.001, respectively. Significant differences between PBS-25→α-GalCer- and α-

GalCer→α-GalCer-treated mice with p<0.01 and p<0.001 are denoted by ## and ###, 

respectively (B). Kaplan-Meier survival curves were generated using data from B6 mice 

that were subjected to sublethal CLP before they were treated with PBS-25→α-GalCer or 

with vehicle→vehicle. A log-rank test was employed to perform statistical analysis, and * 

indicates p<0.05 (C).   

3.4 Discussion 

Accumulating evidence suggests that iNKT cells play important roles in acute 

polymicrobial sepsis. Hu et al. demonstrated a substantial drop in hepatic iNKT cell 

frequencies of C57BL/6 and BALB/c mice after severe CLP (20). This was accompanied 

by elevated CD25 and CD69 levels on the surface of residually detectable iNKT cells 

indicating their activation. Moreover, iNKT cell deficiency in Jα18−/− mice was protective 

against CLP. Heffernan and co-workers subsequently reported that following CLP, iNKT 

cells migrate out of the liver to accumulate in the peritoneal cavity, the site of polymicrobial 

infection, where they influence the phagocytic activity of macrophages (36). In addition, 
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these investigators demonstrated a lower bacterial burden in the peritoneal cavity of septic 

Jα18−/− mice compared with their wild-type (WT) counterparts. In a prospective clinical 

study, we found the peripheral blood iNKT:T cell ratio to be higher in patients with sepsis 

than in non-septic trauma patients (21). We also reported that the severity of FIP-induced 

sepsis was low in Jα18−/− mice but worsened when these animals were reconstituted with 

WT iNKT cells. Finally, we found a single injection of OCH within 20 minutes of the fecal 

challenge to reduce the MSS scores and to prolong the survival of septic mice. 

The above studies have painted a generally pathogenic picture of iNKT cells during acute 

sepsis but have fallen short of addressing the role(s) and/or the therapeutic potentials of 

iNKT cells in sepsis-induced immunosuppression, a problem that is common in the clinic 

and potentially fatal. The consequent opportunistic infections that arise can be stubbornly 

difficult to resolve even with broad-spectrum antibiotics and infection source control (1). 

A retrospective review of macroscopic postmortem findings indicated that about 77% of 

surgical ICU patients who had died from sepsis had continuous septic foci (37), suggesting 

a failure to clear infection with the inciting pathogen, nosocomial microbes, or both. 

Immunosuppression in patients with protracted sepsis is evidenced by weak DTH skin 

reactions (31) and frequent reactivation of one or more latent viruses, such as 

cytomegalovirus, Epstein-Barr virus, herpes simplex virus and human herpesvirus-6 (38).  

To date, iNKT cells have not been studied in biphasic sepsis models. In the current 

investigation, we optimized and used a mild, sublethal form of CLP with 

hyperinflammatory and immunosuppressive phases that mimic real-life scenarios (6, 23). 

There has been a general consensus that sequential targeting of iNKT cells induces anergy, 

which can be obviously counterintuitive in therapeutic settings. Here, we have provided 
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strong evidence to the contrary when glycolipid combinations are carefully chosen. We 

designed and employed a step-wise treatment regimen in which OCH (or PBS-25) and α-

GalCer were administered to septic mice sequentially and in a phase-tailored fashion. This 

novel approach reduced the mortality of CLP and remedied the problem of iNKT cell 

anergy. As a result, OCH-exposed iNKT cells retained responsiveness to α-GalCer, which 

was administered in the protracted phase of sepsis to mitigate immunosuppression.  

Since OCH was synthesized and found to polarize iNKT cells towards a TH2-type 

phenotype (25), it has been used to ward off TH1-mediated immunopathology in a wide 

range of conditions. For instance, we employed OCH to reduce morbidity and/or pathology 

encountered in cardiac allotransplantation (39) and in the HLA-DR4-transgenic mouse 

models of rheumatoid arthritis (40) and toxic shock syndrome (41). We also demonstrated 

the therapeutic benefit of OCH in the FIP model of acute sepsis (21).  

In the vast majority of our experiments, we used OCH as the ‘initial hit’ enabling iNKT 

cells to counter sepsis-induced hyperinflammation without undergoing anergy. 

Importantly, the impact of OCH in this capacity could be readily phenocopied through 

treatment with PBS-25, but not with C20:2. Although a potent TH2-polarizing compound, 

C20:2 is a diene with a relatively long and hydrophobic acyl chain and as such structurally 

dissimilar to OCH (33). By contrast, PBS-25 is more similar to OCH in terms of solubility 

in aqueous environments, lipid chain length and affinity for CD1d (34, 35). Therefore, we 

propose that the structure of iNKT cell agonists, especially the length of their lipid chains, 

is a determinant of their ability or inability to escape anergy. This should in turn inform 

whether an agonist can be used in multi-dose treatment modalities for a variety of 

conditions, including sepsis. 
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In our system, the second hit with α-GalCer rescued innate and adaptive responses 

represented by NK cell-mediated cytotoxicity and DTH, respectively. These responses 

largely depend on IFN-γ, a prominent pro-inflammatory cytokine that rose sharply but 

transiently following the second hit. It was therefore not surprising that the IFN-γ-inducible 

chemokines CXCL9 and CXCL10 were also elevated. These chemokines bind and signal 

through CXCR3 to regulate NK cell and T cell trafficking to the site of infection during 

sepsis (42). We also detected increased levels of the potent pleiotropic cytokines IL-2 and 

TNF-α along with CCL2, IL-5 and eotaxin. CCL2 is a monocyte chemoattractant with 

important roles in bacterial clearance in septic animals (43). IL-5 and eotaxin, another IFN-

γ-inducible chemokine (44), are key to eosinophil growth and recruitment. Of note, higher 

IL-5 levels and eosinophil counts may be associated with survival in clinical sepsis (45, 

46) although the reportedly protective property of IL-5 may not be always linked to 

eosinophils (47). The interplay between IL-5, eotaxin and eosinophils in the contexts of 

protracted sepsis and sepsis-induced immunosuppression will need to be further clarified.   

Serum levels of several TH2-type and anti-inflammatory cytokines, namely IL-4, IL-10, 

IL-13 and TGF-β, remained unaltered after sequential treatments with OCH and α-GalCer. 

Therefore, this protocol changed the overall cytokine landscape of sepsis in favor of a pro-

inflammatory profile, which should serve the host well during an immunosuppressive 

phase.   

IFN-γ is a major culprit of early sepsis immunopathology (6). However, its controlled 

release during protracted sepsis likely benefits the host by restoring immunocompetence. 

In our model, systemic administration of α-GalCer in the absence of OCH pretreatment 

was neither deleterious (Fig. 3.5) nor capable of reversing immunosuppression (Fig. 3.10). 
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Intriguingly, however, priming with OCH before α-GalCer treatment culminated in 

upregulated MHC II on macrophages, augmented NK cell-mediated cytotoxicity and 

restored DTH reactions, all of which depend, at least partially, on the activity of IFN-γ. We 

speculate that the OCH → α-GalCer treatment achieves this feat by inducing a transient 

IFN-γ spike, which should be adequate to reverse immunosuppression. By the same token, 

sustained IFN-γ, which is avoided in our regimen, would unleash excessive inflammatory 

responses leading to tissue injury and/or immunological exhaustion. This needs to be taken 

into serious consideration when designing other iNKT cell-based therapies as the second 

hit. α-C-GalCer, a C-glycoside analog of α-GalCer with strong IFN-γ and IL-12 production 

capacities, has been described (48, 49). In addition, α-GalCer-pulsed dendritic cells (DCs) 

may be tested as the second hit in lieu of the free-floating glycolipid (50), especially if 

more than one treatment will be necessary. This approach would not only circumvent iNKT 

cell anergy but may also optimize DC functions in orchestrating adaptive responses (11, 

51) to counter sepsis-induced immunosuppression (52). Regardless of the nature of the 

second hit, a desirable agent or modality will need to be one that will be inflammatory 

enough to boost antimicrobial immunity during protracted sepsis but not too inflammatory 

causing tissue damage and organ failure. 

The next important question is whether α-GalCer can be combined with other treatments 

to maximize the host’s ability to fight secondary infections during protracted sepsis. In a 

set of preliminary experiments, we found the addition of a programmed cell death-1 (PD-

1)-blocking monoclonal antibody (mAb) to our second hit to further boost the IFN-γ 

response but not IL-4 production (Fig. 3.13). The rationale for these experiments was two-

fold. First, interfering with PD-1 signaling is known to prevent α-GalCer-induced anergy 
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(53). This may be particularly important when the second hit may need to be delivered 

repeatedly. Second, a link has been established between PD-1 and the immunological 

shortcomings of septic patients, including their T cell exhaustion. Boomer et al. found high 

frequencies of PD-1+ CD4+ T cells and PD-ligand 1 (PD-L1)+ APCs among the splenocytes 

of septic patients harvested rapidly after their death (54). Moreover, within the postmortem 

lungs of septic patients, the expression of PD-1 by CD4+ cells and that of PD-L1 by 

plasmacytoid pre-dendritic cells were enhanced in comparison with control tissues from 

lung cancer resections. Brahmamdam et al. reported that PD-1 blockade after CLP rescues 

the DTH response of septic mice (55). In a separate study, blocking PD-L1 either before 

or after CLP reduced the mortality of sepsis (56). Also importantly, this approach lowered 

the bacterial burden in the peripheral blood and within the peritoneal cavity of septic mice. 

We are currently investigating how PD-1-based immune checkpoint inhibitors perform as 

part of our second hit (i.e., OCH → α-GalCer plus anti-PD-1/PD-L1) in alleviating sepsis-

induced immunosuppression. 
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Figure 3.13: Blocking PD-1 at the time of the second glycolipid hit enhances α-GalCer-

induced IFN-γ production. 

B6 mice were primed with 4 μg of α-GalCer or OCH. Four days later, indicated cohorts 

were injected with 100 μg of an anti-PD-1 mAb (clone RMP1-14) or an isotype control 20 

minutes before they received a 4-μg i.p. injection of α-GalCer. Mice were bled 2, 8 and 24 

hours after the second glycolipid hit, and serum IL-4 (A) and IFN-γ (B) levels were 

quantified by ELISA. Error bars represent SEM. * denotes p<0.05 using an unpaired 
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Student’s t-test comparing anti-PD-1 treated and isotype treated animals that received OCH 

→ α-GalCer. 

Another attractive pathway that can be targeted is coupled to the IL-7 receptor system, 

which promotes cellular viability and growth. Exposing septic patients’ T cells to 

recombinant human IL-7 (rhIL-7) ex vivo enhances their proliferation, IFN-γ production, 

STAT5 phosphorylation, and Bcl-2 upregulation in response to T cell receptor triggering 

(57). Recently, in a prospective, randomized, placebo-controlled trial, the safety of rhIL-7 

(CYT107) administration to septic patients and its ability to reverse CD4+ and CD8+ 

lymphopenia were verified (58). We noted a significant decrease in serum IL-7 levels of 

septic mice that had been sequentially treated with OCH and α-GalCer (Fig. 3.6). 

Therefore, adding IL-7 to our second hit may present a potential therapeutic opportunity 

by preventing immune cell apoptosis and improving T cell functions to bolster innate and 

adaptive antipathogen immunity. 

In summary, in this investigation, we have taken advantage of the tremendous versatility 

of iNKT cells to design a novel, phase-tailored protocol for the treatment of sepsis-induced 

hyperinflammation and immunosuppression. iNKT cells constitute attractive therapeutic 

targets in sepsis for several reasons. First, the prognosis of sepsis is partially determined 

by the speed with which its treatment gets underway. iNKT cells are among the few T cell 

types that launch swift responses to antigenic stimulation and may, as such, make a 

difference quickly (59). Second, the availability of multiple TH2- and TH1-glycolipid 

agonists of iNKT cells should allow for testing additional new and carefully timed 

protocols similar to what we have described herein. Third, iNKT cell stimulation results in 

secondary activation of downstream effector cell types. As such, targeting iNKT cells will 
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have wide-ranging impacts on ensuing host responses. We assessed the cytolytic effector 

function of transactivated NK cells in this work. However, there are numerous other 

effectors that can be influenced, ideally to the septic host’s benefit. Fourth, glycolipid 

agonists of iNKT cells work beyond the species barrier (60). In fact, some of the same 

glycolipids employed in mouse studies have shown promise in clinical trials for 

malignancies and viral diseases (18). Therefore, we anticipate the findings of this study to 

be translatable. Fifth, iNKT cells are restricted by CD1d, which is monomorphic (61). 

Therefore, glycolipid ligands of iNKT cells, such as those used in this work, should be 

useful in genetically diverse human populations. This is a tempting possibility that warrants 

further investigation.   
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4. Glycolipid stimulation of iNKT cells 

expands a unique tissue-resident population 

of pre-mNK cells endowed with oncolytic 

and anti-metastatic properties 
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4.1 Introduction 

Invariant natural killer T (iNKT) cells comprise a specialized subset of innate-like T 

lymphocytes with remarkable immunomodulatory properties. They express a semi-

invariant TCR with a distinctive Vα14-Jα18 configuration that uniquely recognizes 

naturally occurring and synthetic glycolipid Ags presented within the close cleft of CD1d 

(1, 2). Unlike their conventional counterparts, iNKT cells occur in a partially activated state 

and harbor pre-formed mRNA transcripts coding for several inflammatory cytokines, 

which they can release amply and speedily (3).  

iNKT cells have been heralded for their roles in anticancer immune surveillance (4, 5). 

They can express perforin, granzymes (GZMs), Fas ligand, TNF-α and TRAIL (6-8), and 

directly destroy glycolipid-pulsed mouse target cells in vivo (9) and human CD1d+ tumor 

cells in vitro (8, 10). Arguably, however, the most pronounced feature of iNKT cells is 

their ability to transactivate APCs (11, 12) and multiple effector cell types, including NK 

cells (13, 14), conventional CD8+ T cells (15) and γδ T cells (16). 

CD1d-restricted agonists of iNKT cells are typified by α-galactosylceramide (α-GalCer). 

This α-anomeric glycolipid was initially extracted from a marine sponge, Agelas 

mauritanius, in a screen for anticancer compounds (2, 17) but also exists, in minute 

quantities, in mammalian cells (18). Human iNKT cells can recognize mouse CD1d and 

vice versa (19). Furthermore, both mouse and human iNKT cells are responsive to α-

GalCer (4). Therefore, findings of tumor models in which α-GalCer is therapeutically 

tested are potentially translatable to the clinic. In addition, the monomorphic nature of 
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CD1d dictates that α-GalCer-based or -adjuvanted treatments should target iNKT cells in 

diverse human populations beyond the MHC restriction barrier. 

In mice, α-GalCer has been employed against thymoma (20), melanoma (21) and 

pancreatic adenocarcinoma (22) among other cancers. The beneficial properties of α-

GalCer, α-GalCer-pulsed dendritic cells (DCs) and α-GalCer-expanded iNKT cells have 

also been explored and exploited in clinical trials for multiple human neoplasms (4, 5). 

Despite encouraging results arising from such efforts, the full therapeutic potential of 

glycolipid-activated iNKT cells remains to be fully realized, and the range of downstream 

effectors they transactivate may need to be revisited or even revised.  

While investigating in vivo responses to α-GalCer, we serendipitously found a dramatically 

expanded tissue-resident population with prominent anticancer functions, which turned out 

to be precursors to mature NK (pre-mNK) cells. Pre-mNK cells are phenotypically defined 

as B220+CD11c+MHC-II+NK1.1+ cells, and compose an intermediate in the differentiation 

pathway of conventional NK cells. They were initially called IFN-producing killer 

dendritic cells (IKDCs), due ostensibly to their versatility in migrating to lymph nodes to 

present Ags, in synthesizing copious amounts of IL-12, type I IFN and IFN-γ, and in 

exerting tumoricidal activities (23, 24). Subsequently, IKDCs were reported to belong to 

the NK lineage as evidenced by their strict developmental dependence on IL-15 (25-27) 

and their propensity to acquire a mature NK (mNK) cell phenotype upon adoptive transfer 

(28). In fact, pre-mNK cells were demonstrated to be superior to mNK cells in terms of 

IFN-γ and TNF-α secretion (25).  
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We herein report that priming with α-GalCer expands, activates and alters select tissue-

resident pre-mNK cells through an IL-12/IL-18-dependent mechanism and as such adds a 

powerful new weapon to the immune system’s anticancer arsenal. Our findings define a 

novel communication axis involving two innate-like effector cell types, namely iNKT and 

pre-mNK cells, with clear implications for cancer immunotherapy. We propose that the 

roles fulfilled by pre-mNK cells in the context of α-GalCer-based treatments may have 

been overlooked due to their phenotypic resemblance to plasmacytoid DCs (pDCs) and 

mNK cells.   

4.2 Materials and Methods 

  Mice 

WT B6 mice were purchased from Charles River Canada Inc. (St. Constant, Quebec) or 

bred in our institutional barrier facility. β2M-/- and GFP+ mice, on a B6 background, were 

provided by Drs. Anthony Jevnikar and Steven Kerfoot (Western University), respectively. 

Age- and sex-matched adult mice were used in all experiments. Our animal use protocols 

(AUPs 2010-241 and 2018-093) were reviewed and approved by the Western University 

Animal Use Subcommittee.  

 Cell lines 

YAC-1 mouse lymphoma cells were cultured in RPMI-1640 medium supplemented with 

10% heat-inactivated FBS, GlutaMAX-I, 0.1 mM MEM nonessential amino acids, 1 mM 

sodium pyruvate, 120 U/mL penicillin, 100 μg/mL streptomycin, and 10 mM HEPES. The 

chicken OVA-expressing T cell lymphoma line EG7-OVA was supplied by Drs. Jack 
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Bennink and Jonathan Yewdell (NIAID, NIH) and maintained in RPM1-1640 medium 

containing 10% FBS and 400 µg/mL G418. B16-F10 mouse melanoma cells were grown 

in FBS-supplemented MEM α medium. The B3Z hybridoma with specificity for 

SIINFEKL:H-2Kb was a gift from Dr. Sameh Basta (Queen’s University, Kingston, 

Ontario). B3Z cells were cultured in IMDM medium and 10% FBS in the presence of 

G418.  

 In vivo treatments   

Mice were injected i.p. with 4 μg α-GalCer (Funakoshi Co. Ltd) or with a vehicle 

containing 0.5% Tween 20, 56 mg/mL sucrose and 7.5 mg/mL histidine. Where indicated 

and except in serum transfer experiments, a CD1d-blocking mAb (clone 20H2) or a rat 

IgG1 control (HRPN) was injected i.p. at 500 μg/dose 2 hours before and 24 and 48 hours 

after α-GalCer treatment. In a pilot experiment, an anti-γc mAb (3E12) or a rat IgG2b 

control (LTF-2) was administered using a similar regimen except the experiment was ended 

24 hours post-glycolipid treatment. To deplete B220+ or CD19+ cells, mice were given 200-

μg i.p. injections of an anti-B220 mAb (RA3.3A1/6.1) or an anti-CD19 mAb (1D3) on 

days 1 and 3 post-α-GalCer priming. All the above mAbs and isotype controls were 

purchased from Bio X Cell (West Lebanon, NH).  

FTY720 (Sigma) was reconstituted in water, diluted in PBS, and injected at 1 mg/kg or 3 

mg/kg i.p. (29) 2 hours prior to and 24 hours following α-GalCer treatment.      

Recombinant mouse IFN-γ, IL-12 and IL-18 (PeproTech) were diluted in sterile PBS and 

administered once via tail vein at final concentrations of 10, 4 and 200 ng, respectively. 
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 Serum cytokine quantifications 

Mouse peripheral blood was collected via the saphenous vein, and serum was isolated 

through centrifugation for 15 minutes at 17×1000 g. Samples were stored at -80°C until 

use. ELISA kits from ThermoFisher Scientific was employed to quantitate the cytokine 

content of each sample.  

 Cytofluorimetric analyses 

α-GalCer- and vehicle-treated mice were sacrificed by cervical dislocation. Spleens and 

livers were homogenized in PBS using a glass plunger. Hepatic parenchymal cells were 

removed through centrifugation, without brake, at 700×g for 12 minutes in a 33.75% 

Percoll PLUS solution (GE Healthcare). Lungs were cut into small pieces using sterile 

scissors. The resulting preparation was then treated for 1 hour with 0.5 mg/mL collagenase 

IV (Sigma) in RPMI-1640 containing 10% FBS while being rotated inside a 37°C 

incubator. Splenic, hepatic and pulmonary cell preparations were briefly exposed to ACK 

lysis buffer to eliminate erythrocytes, washed, and filtered through 70-µm pores of a cell 

strainer to remove debris. To block Fcγ receptors, splenic cells, HMNCs and non-

parenchymal lung mononuclear cells were incubated for 5 minutes at 4°C with 20 µL of 

the 2.4G2 hybridoma supernatant containing a CD16/CD32 mAb. Cells were then stained 

with fluorophore-conjugated mAbs to surface B220 (clone RA3-6B2), CD11b (M1/70), 

CD11c (N418), CD27 (LG.7F9), CD49b (DX5), CD69 (H1.2F3), CD107a (LAMP-

1)(1D4B), CD122 (TM-b1), CD218a (P3TUNYA), FasL (MFL3), I-Ab (AF6-120.1), 

NK1.1 (PK136), TRAIL (N2B2), and/or intracellular GZM A (GzA-3G8.5), GZM B 
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(NGZB), IFN-γ (XMG1.2), Ki67 (SolA15), perforin (eBioOMAK-D) and TNF-α (MP6-

XT22). All the above mAbs and corresponding isotype controls were from ThermoFisher.  

Cell surface staining was conducted at 4°C for 30 minutes. Intracellular staining of freshly 

isolated cells was performed using an eBioscience Fixation & Permeabilization Buffer Set. 

To detect cytolytic molecules, splenic cells or HMNCs were first co-cultured with YAC-1 

tumor cells in the presence of 10 μg/mL brefeldin A (BFA)(Sigma) for 4 hours at 37°C and 

6% CO2. Cells were then washed, stained for pre-mNK cell surface markers, fixed, 

permeabilized, stained for indicated intracellular molecules, washed again and analyzed. 

For CD107a staining, anti-CD107a mAb was present in co-cultures that also contained 2 

μM monensin (BioLegend) in addition to BFA.    

Surface staining for S1PR1 was conducted in two steps. First, cells were incubated with an 

unconjugated anti-S1PR1 mAb (clone #713412 from R&D Systems) for 30 minutes at 4°C. 

This was followed by addition of allophycocyanin-labeled goat anti-rat IgG F(ab’)2 

fragments (R&D Systems) for 30 minutes at 4°C in dark. Control samples were incubated 

first with a control rat IgG2a (clone 2A3) and subsequently with the secondary reagent. 

Stained cells were interrogated using a FACSCanto II cytometer, and data were analyzed 

using FlowJo software (Tree Star).         

 Customized gene expression examination  

Two days after α-GalCer or vehicle administration, hepatic B220+CD11c+NK1.1+ cells 

were purified using a BD FACSAria III cytometer after live gating based on forward and 

side scatter profiles and doublet exclusion. The purity of sorted pre-mNK cells was always 
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greater than 95%. A Purelink RNA Mini Kit (ThermoFisher) was utilized to extract RNA, 

which was then converted to cDNA using the Invitrogen SuperScript VILO MasterMix. 

Quantitative PCR was carried out in Custom TaqMan Array 96-Well Fast Plates 

(ThermoFisher) using a StepOnePlus Real-Time PCR System. The ΔΔCT method was 

employed to assess changes in gene expression.  

 Detection of peptide Ag presentation 

Sorted hepatic pre-mNK cells were pulsed with 1 μM SIINFEKL for 45 minutes at 37°C. 

They were then washed and co-incubated at a 1:1 ratio with B3Z cells for 24 hours at 37°C 

and 6% CO2. After washing in PBS, cells were treated with a lysis buffer containing 

0.125% Nonidet P-40, 9 mM MgCl2 and 0.1 mM 2-mercaptoethanol in the presence of 5 

mM ortho-nitrophenyl-β-D-galactopyranoside (ONPG) as the substrate. Four hours later, 

the OD of supernatants was determined at 415 nm. 

To detect Ag cross-presentation in vivo, B6 mice were injected i.p. with α-GalCer or 

vehicle 24 hours before they received 1×106 EG7-OVA tumor cells i.v. Four days later, the 

frequency of SIINFEKL-presenting pre-mNK cells among HMNCs was determined by 

flow cytometry using a PE-conjugated mAb that recognizes SIINFEKL:H-2Kb complexes 

(clone 25-D1.16) (30).     

 Adoptive cell and serum transfer  

Five days after α-GalCer injection into GFP+ mice, animals were euthanized, and hepatic 

B220+CD11c+NK1.1+ and B220-CD11c-NK1.1+ cells were FACS-purified. Sorted 

populations, which were always >95% pure, were injected i.v. into WT B6 recipients, 
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which were subsequently sacrificed for their liver on days 5 and 15 post-transfer. Non-

parenchymal HMNCs were isolated and analyzed for their pre-mNK cell content. 

For adoptive serum transfer experiments, α-GalCer-injected donor WT B6 mice were 

terminally bled at 2-, 6-, 12- and 24-hour time points. Two hundred µL of pooled sera 

collected at each individual time point were transferred via tail vein into a recipient WT B6 

mouse. In a separate setting, 60 µL of serum from the 6-hour time point were combined 

with 200 µL from the 12- or the 24-hour time point, as indicated, and injected into a B6 

mouse. In both scenarios, recipient animals were given a solitary 500-μg i.p. dose of an 

anti-CD1d mAb (20H2) 2 hours before they received serum.  

In several experiments, IFN-γ, IL-12 and/or IL-18 were magnetically removed from serum 

samples. Briefly, sera were incubated for 10 minutes at room temperature with 10 μg/mL 

of biotinylated mAbs to IFN-γ (clone DB1 from ThermoFisher), IL-12 (C17.8, 

ThermoFisher) and/or IL-18 (93-10C, Medical and Biological Laboratories). Streptavidin-

conjugated RapidSpheres (STEMCELL Technologies) were then added to each cocktail 

followed by magnetic separation of the particles as per manufacturer’s instructions. A small 

aliquot of each cytokine-replete and -depleted sample was stored at -80°C for cytokine 

measurements to confirm the procedure’s efficacy, and the remainder was adoptively 

transferred.    

 51-Chromium (51Cr) release assays 

YAC-1 cells were labeled with 100 µCi of Na2
51CrO4 for 90 minutes at 37°C, washed with 

PBS, and used as target cells. Bulk HMNCs or purified hepatic pre-mNK cells from α-

GalCer- and vehicle-treated mice were employed at indicated effector:target ratios against 
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51Cr-labeled YAC-1 cells in 96-well microplates. After 4-hour incubation at 37°C and 6% 

CO2, plates were spun before a 100-µL supernatant aliquot was collected from each well 

and read by a γ-counter. In several experiments, a combination of EGTA (3 mM) and 

MgCl2 (2 mM) was added to co-cultures to block granule exocytosis (31). Alternatively, 

100 nM concanamycin A (CMA) was used to pre-treat effector cells for 1 hour, and was 

also present during 4-hour co-cultures (32). Experimental release (ER) values were 

determined in supernatant samples from wells containing both effector and target cells. 

Spontaneous release (SR) and total release (TR) were obtained from wells in which target 

cells were suspended in medium only or in 1% Triton X-100, respectively. Specific killing 

of YAC-1 cells was calculated using the following formula: % specific lysis = [(ER–SR) 

÷ (TR–SR)] × 100.  

 In vivo cytotoxicity  

Erythrocyte-depleted syngeneic target splenocytes were prepared from WT and β2M-/- B6 

mice, and labeled with 0.2 µM and 2 µM CFSE, respectively. Target cells were washed, 

mixed in equal numbers, and injected at 1×107 cells in 200 µL PBS into the tail vein of 

recipient B6 mice that had been treated 5 days earlier with α-GalCer or vehicle. In several 

experiments, B220+ or CD19+ cells were depleted.  Recipient mice were euthanized 3 

hours later, and CFSE-labeled target cells were detected among HMNCs by flow 

cytometry. A constant number of CFSElow events, typically 2×103, were acquired for each 

sample, and percent specific killing of target cell populations was calculated using the 

following equation: % specific cytotoxicity = {1 - [(CFSEhigh event number in recipient 

mouse ÷ CFSElow event number in recipient mouse) ÷ (CFSEhigh event number among 
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mixed target cells before injection ÷ CFSElow event number among mixed target cells 

before injection)]} × 100.    

 Lung metastasis model 

B6 mice received α-GalCer or vehicle 24 hours prior to an i.v. injection of 5×105 B16-F10 

melanoma cells. In a limited number of experiments, α-GalCer-treated animals also 

received an anti-B220 mAb or an anti-CD19 mAb as described above. Fourteen days after 

melanoma cell injections, α-GalCer- and/or vehicle-treated mice were euthanized, and 

pulmonary metastatic nodules were enumerated. 

 Statistical analyses 

Statistical comparisons were made using Graphpad Prism 5 software. We used unpaired 

Student t-tests and ANOVA as appropriate. Statistically significant differences were 

reported as p<0.05, p<0.01 and p<0.001, which were denoted by *, ** and ***, 

respectively. 
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4.3 Results 

 In vivo priming with α-GalCer gives rise to a suddenly 

enlarged tissue-resident population with phenotypic pre-mNK 

cell characteristics  

While investigating hepatocellular responses to α-GalCer, we found a prominent cell 

population with forward and side scatter profiles consistent with those of lymphocytes (Fig. 

4.1A). At first glance, this was not surprising since α-GalCer induces an early and robust 

proliferative burst in the iNKT cell compartment (33). Intriguingly, however, a substantial 

proportion of the enlarged population expressed CD11c, a classic mouse DC marker that 

is not typically expressed by iNKT cells. This prompted us to further their characterization. 

We found them to also express B220 and NK1.1 (Fig. 4.1A), which are usually considered 

B cell/pDC and NK cell markers, respectively. The only cell type that concomitantly 

expresses CD11c, B220 and NK1.1 is the pre-mNK cell (23, 24) whose tissue presence has 

been reported in the bone marrow, spleen and lymph nodes (23, 24, 26, 34, 35), but never 

in the liver before.  

Wright-Giemsa staining of sorted B220+CD11c+NK1.1+ cells revealed mononuclear cells 

with a basophilic cytoplasm (Fig. 4.2). Upon further cytofluorimetric analyses, these were 

T/B lineage-negative(CD3-/CD19-) cells that also stained positively with monoclonal 

antibodies (mAbs) against CD49b, CD122 (IL-2Rβ) and MHC class II molecules (Fig. 

4.1B), which established their identity as pre-mNK cells at least by immunophenotypic 

standards (36).  
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We confirmed that the observed pre-mNK cell accumulation was secondary to iNKT cell 

activation since it could be significantly reversed by a CD1d-blocking mAb (clone 20H2) 

(Fig. 4.1C). This mAb was efficient in preventing iNKT cell responses since IL-4 and IFN-

γ were virtually undetectable in the serum 2 and 6 hours after α-GalCer injection, 

respectively (Fig. 4.1C). 

Our kinetic experiments demonstrated gradual accumulation of pre-mNK cells after 

glycolipid priming, which became evident after 24 hours and reached a plateau between 

three and five days (Fig. 4.3A). It was most pronounced in the liver, but could also be 

observed within the spleen and the lungs (Fig. 4.3B).  
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Figure 4.1: In vivo stimulation of iNKT cells with α-GalCer enlarges a hepatocellular 

population phenotypically resembling pre-mNK cells.  

(A) B6 mice (n=3) were injected i.p. with either vehicle or α-GalCer. Five days later, 

HMNCs were isolated and analyzed cytofluorimetrically for their forward and side scatter 

characteristics and for their reactivity with mAbs against CD11c, B220 and NK1.1. 

Representative plots are illustrated. (B) CD3-CD19- HMNCs from α-GalCer-treated mice 

(n=3) were further immunophenotyped using mAbs to B220, CD11c, CD49b, CD122 and 

I-A/E. (D) B6 mice (n=4/group) were pre-treated with a CD1d-blocking mAb or isotype 

control 2 hours before and once every 24 hours after α-GalCer administration as applicable. 

Animals were bled, and serum IL-4 and IFN-γ concentrations were quantified at 2 and 6 

hours post-α-GalCer injection, respectively. On day 3, B220+CD11c+NK1.1+ cell 

frequencies among bulk HMNCs were determined by flow cytometry. Error bars represent 

mean ± SEM values, and ** denotes a statistically significant difference with p<0.01 using 

unpaired Student t-test. Filled histograms in A and C represent staining with appropriate 

isotype controls.   



138 

 

 

Figure 4.2: B220+CD11c+NK1.1+ cells are mononuclear with a basophilic cytoplasm. 

B220+CD11c+NK1.1+ cells from α-GalCer-treated mice were sorted, pooled (n=2 in each of two 

independent experiments) and stained with Wright-Giemsa 
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Figure 4.3 α-GalCer-induced pre-mNK cell accumulation is rapid and relatively 

widespread. 

(A) The kinetics of hepatic pre-mNK cell accumulation was studied in α-GalCer-primed 

mice (n=3). (B) Five days after vehicle or α-GalCer administration (n=4/group), the 

frequencies of B220+CD11c+NK1.1+ pre-mNK cells were determined among bulk 

splenocytes and non-parenchymal hepatic or pulmonary mononuclear cells. Representative 

plots from two independent experiments are shown. 
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 Transactivated pre-mNK cells lose their B220 expression and 

mature upon adoptive transfer  

The functional maturity of cells belonging to the NK lineage has been linked to their 

differential expression of CD27 and CD11b (37). We found CD27highCD11blow cells, which 

are among the most immature subsets of NK lineage cells (36, 37), to comprise a sizeable 

proportion of our population of interest (Fig. 4.4). It was therefore pertinent to determine 

whether and how quickly α-GalCer-transactivated hepatic pre-mNK cells may mature. This 

is experimentally achieved via adoptive cell transfer into another animal and monitoring 

for a loss of B220 (28). To this end, α-GalCer was administered to GFP-transgenic (GFP+) 

C57BL/6 (B6) mice followed, 5 days later, by cytofluorimetric isolation of hepatic 

B220+CD11c+NK1.1+ (pre-mNK) and B220-NK1.1+ (control ‘conventional’ NK) cells, 

which were then transferred into separate cohorts of wildtype (WT) B6 mice and tracked. 

As hypothesized, pre-mNK cells lost their B220 dramatically on day 5 and almost 

completely on day 15 post-transfer (Fig. 4.5). We also noticed a gradual disappearance of 

CD11c+ cells, albeit to a much lesser extent. The loss of cell surface receptor expression 

was not a global effect because NK1.1 and CD122 levels were maintained in both pre-

mNK and conventional NK cells (Fig. 4.5).            
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Figure 4.4: Treatment with α-GalCer increases the frequency of immature 

CD27+CD11b- pre-mNK cells among HMNCs 

Five days after treatment with α-GalCer or vehicle, HMNCs were isolated and the 

expression of CD27 and CD11b on pre-mNK cells was assessed by flow cytometry. 

Representative plots (left panel) and cumulative data from 3 mice per group are illustrated. 

Error bars represent SEM. Statistical comparisons were made using two-way ANOVA with 

Bonferroni post-hoc analysis. ** denotes p<0.01. 
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Figure 4.5: α-GalCer-transactivated pre-mNK cells lose B220 expression upon 

adoptive transfer. 

Five days after α-GalCer administration to GFP+ mice, hepatic B220+CD11c+NK1.1+ and 

B220-NK1.1+ cell populations were FACS-sorted and transferred into separate cohorts of 

WT B6 recipients (n=2 per group). Mice were sacrificed on day 5 or day 15 post-adoptive 

transfer for their liver in which GFP+ cells were traced and examined for their expression 

levels of B220, CD11c, NK1.1 and CD122. Representative FACS plots are illustrated. 
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 α-GalCer triggers hepatic pre-mNK cell proliferation in situ 

Next, we set out to determine whether intrahepatic pre-mNK cells had expanded locally or 

emigrated from other sites. We performed a comprehensive gene expression analysis of 

pre-mNK cells sorted from α-GalCer- (n=3) and vehicle-treated mice (n=12). The 

proliferation marker Ki67 was the most upregulated gene, with a 16-fold increase in mRNA 

transcript levels in pre-mNK cells from α-GalCer-treated mice relative to control (Fig. 

4.6A). Proliferating cell nuclear antigen (Pcna) was also increased 4-fold (Fig. 4.6A). In 

contrast, there was a 4-fold drop in the expression of sphingosine-1-phosphate receptor 1 

(S1pr1) (Fig. 4.6A), which encodes a G protein-coupled receptor that mediates lymphocyte 

egress from lymphoid organs and their trafficking into the periphery (38). These results 

suggested that pre-mNK cells had undergone rigorous proliferation following α-GalCer 

administration as opposed to infiltrating the liver.  

We validated the observed changes in Ki67 and S1PR1 expression at the protein level (Fig. 

4.6B-C). In addition, we examined the surface expression of CD69 on hepatic pre-mNK 

cells since CD69 can directly suppress S1PR1 and, in doing so, serves as a tissue retention 

molecule (39, 40). We found an inverse correlation between S1PR1+ and CD69+ pre-mNK 

cell frequencies in α-GalCer-treated animals. Accordingly, a relatively sharp decline in the 

former population was reciprocally accompanied by an equally sharp rise in the latter on 

day 1 post-glycolipid injection (Fig. 4.6C). 

To more definitively rule out the possibility that α-GalCer mobilizes pre-mNK cells to 

amass in select tissues, we employed two separate doses of FTY720 (aka. fingolimod), an 

immunomodulatory compound that causes S1PR1 downregulation and inhibits 
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lymphocytes’ emigration from lymphoid organs (38). FTY720 administration 2 hours 

before and 24 hours after α-GalCer injection significantly lowered T cell numbers, but not 

pre-mNK cell numbers in the liver and in the spleen (Fig. 4.6D).  

Collectively, the above findings indicate that tissue-resident pre-mNK cells downregulate 

their expression of S1PR1, upregulate CD69, and proliferate locally in response to systemic 

α-GalCer treatment.     
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Figure 4.6: Tissue accumulation of pre-mNK cells following α-GalCer treatment is 

due to their in situ expansion. 

 (A) B6 mice were injected i.p. with vehicle (n=12) or α-GalCer (n=3). Two days later, pre-

mNK cells were FACS-sorted and pooled before RNA was extracted for quantitative RT-

PCR. A heat map was generated to demonstrate fold changes in transcript levels of 

indicated genes in pre-mNK cells isolated from α-GalCer-primed mice relative to those 

sorted from vehicle-treated controls. (B) Two days after treatment with vehicle- or α-

GalCer, HMNCs were stained for surface B220, CD11c and NK1.1 as well as intracellular 

Ki67, and the percentages of Ki67+ cells among pre-mNK cells were determined by flow 

cytometry. Each symbol represents an individual mouse. (C) Surface expression of CD69 

and S1PR1 by hepatic pre-mNK cells was assessed at indicated time points after α-GalCer 

administration (n=4/time point). Error bars represent SEM. (D) Mice were injected with 

indicated doses of FTY720 or with PBS 2 hours before and 24 hours after they received α-

GalCer. Five days later, HMNCs and splenocytes were harvested and subjected to staining 

with anti-CD3, -B220, -CD11c and -NK1.1 mAbs. B220+CD11c+NK1.1+ pre-mNK cells 

and CD3+NK1.1- T cells were then enumerated by flow cytometry. Error bars represent 

SEM for 6 mice per group from two independent experiments. Statistical comparisons were 

made using unpaired Student’s t-test (B) or a two-way ANOVA with Bonferroni post-hoc 

test (D).  *, ** and *** denote differences with p<0.05, p<0.01 and p<0.001, respectively. 
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 IL-12 and IL-18 mediate pre-mNK cells’ tissue expansion 

following glycolipid administration   

We sought to uncover the mechanism underlying pre-mNK cell expansion in our system. 

α-GalCer stimulation of iNKT cells induces the production of a myriad of cytokines that 

modify the biological behavior of multiple downstream effector cell types. Our transcript 

analyses pointed to altered expression of several cytokine receptors in transactivated pre-

mNK cells (Fig. 4A), suggesting that inflammatory cytokines may be involved. IL-15 is 

known to promote pre-mNK cell expansion (41). However, α-GalCer treatment did not 

change the expression levels of two IL-15R subunits, namely Cd132 [common γ (γc) chain, 

which is also shared by receptors for IL-2, -4, -7, -9 and -21] and Cd122 (which constitutes 

a component of both IL-2R and IL-15R) (Fig. 4.4A). We did not include Il-15rα in our 

array simply because pre-mNK cells are reportedly devoid of this molecule (41). Il-15rα is 

found instead on the surface of Ag-presenting cells that trans-present IL-15 to other 

immunocytes (42).  

We then shifted our focus onto other cytokines that activate NK cells and other innate-like 

lymphocytes. Of note, Il-21r and Il-12r2 transcripts were each elevated over 4-fold (Fig. 

4.6A). In vivo blockade of CD132 before and after α-GalCer administration failed to 

prevent pre-mNK cell expansion, thus ruling out a role for γc chain cytokines, including 

IL-15 and IL-21 (data not shown). We then zeroed in on IL-12 and cytokines with which 

it synergizes. We injected mice with recombinant IL-12, IL-18 and IFN-γ in several 

combinations in lieu of α-GalCer. The only combination that induced hepatic pre-mNK 

cell accumulation was IL-12 plus IL-18 (Fig. 4.7A). We also observed a moderate 
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reduction in Il-18r mRNA levels two days after α-GalCer treatment (Fig. 4.6A), a finding 

we validated by flow cytometry at a slightly later time point. Three days after the injection 

of α-GalCer or vehicle, 36.5 ± 2.4% and 62.3 ± 1.4% of hepatic pre-mNK cells expressed 

CD218a (IL-18Ra), respectively (n=3/group). In addition, we found a marginal decrease in 

the gMFI of CD218a in α-GalCer-primed animals (1,180 ± 4) compared with controls 

(1,317 ± 19). These changes likely reflect activation-induced IL-18R downregulation at 

later time points following α-GalCer treatment.                       

Previous studies have shown that serum IL-12 reaches its peak level at 6 hours post-α-

GalCer injection (43, 44). In addition, IL-18 typically follows IL-12 and plateaus between 

12 and 24 hours after in vivo priming with select inflammatory stimuli (45). In order to first 

demonstrate that circulating cytokines mediate the accumulation of pre-mNK cells, we 

obtained serum samples at several time points after α-GalCer treatment, which were then 

pooled and transferred into naïve B6 mice (Fig. 4.7B). This was followed by pre-mNK cell 

enumeration in the liver. Transferring pooled sera prepared at 2-, 6, or -12-hour time point 

did not result in pre-mNK cell expansion, and neither did combined sera collected at 6- and 

24-hour time points (Fig. 4.7B). Strikingly, however, a combination of samples from 6- 

and 12-hour time points worked synergistically to recapitulate the effect of α-GalCer (Fig. 

4.7B). Of note, in these experiments, we injected a CD1d-blocking mAb into the recipients 

prior to serum transfer. This was to avoid false positive results due to the presence of free-

floating α-GalCer in transferred sera.  

The above time points are consistent with the peaks of serum IL-12 and IL-18 among other 

soluble mediators. To confirm the roles of IL-12 and IL-18, we used a previously 

established protocol to remove cytokines from serum samples. Unlike cytokine-replete 
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sera, IL-12/IL-18-depleted samples failed to expand hepatic pre-mNK cells (Fig. 4.7C). 

Therefore, α-GalCer-triggered pre-mNK cell expansion is dependent on the synergistic 

functions of IL-12 and IL-18.     

                      

 

Figure 4.7: Hepatic pre-mNK cell expansion in response to α-GalCer is dependent on 

IL-12 and IL-18. 

 (A) Naïve B6 mice (n=3-4 per group) were injected with indicated recombinant cytokines 

followed, 3 days later, by determination of pre-mNK cell frequencies in the liver by flow 

cytometry. (B) B6 mice were primed with α-GalCer or injected with vehicle before they 

were bled at indicated time points. Sera were isolated, pooled as indicated, and adoptively 

transferred into B6 mice (n=3/group) that had received a CD1d-blocking mAb two hours 
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earlier. Three days after serum transfer, hepatic pre-mNK cell frequencies were determined 

by flow cytometry. (C) Sera collected at 6 and 12 hours post-α-GalCer injection were 

pooled. An aliquot was depleted of IL-12 and IL-18. Cytokine-replete and -depleted serum 

samples were then transferred into separate cohorts of anti-CD1d-pretreated mice (n=3) 

and pre-mNK cell percentages were determined. Error bars represent SEM. Statistical 

analyses were performed using a one-way ANOVA with Tukey’s post-hoc analysis (A) or 

unpaired Student’s t-test (C). * and *** denote differences with p<0.05 and p<0.001, 

respectively.  

 α-GalCer treatment causes pre-mNK cells to lose their cross-

presentation capacity 

Splenic and bone marrow-derived pre-mNK cells are capable of cross-presenting peptide 

Ags to T cells, thus engaging the adaptive arm of antitumor immunity (35, 46, 47). We 

explored whether α-GalCer-transactivated hepatic pre-mNK cells can similarly serve as 

Ag-presenting cells. When pulsed with SIINFEKL, a synthetic peptide corresponding to 

the immunodominant epitope of chicken ovalbumin (OVA257-264), purified hepatic pre-

mNK cells were able to activate B3Z cells (Fig. 4.8A), a CD8+ hybridoma line that 

recognizes SIINFEKL in the context of H-2Kb. Therefore, hepatic pre-mNK cells had 

retained their MHC-I expression and peptide presentation capacity. It was, however, more 

important to determine whether pre-mNK cells’ in vivo interactions with malignant cells 

could result in tumor Ag-derived peptide cross-presentation. To this end, we inoculated 

vehicle- and α-GalCer-pretreated B6 mice with EG7-OVA lymphoma cells via tail vein. 

Four days later, non-parenchymal hepatic mononuclear cells (HMNCs) were isolated, and 
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the percentage of SIINFEKL-presenting pre-mNK cells was determined using a mAb 

against SIINFEKL:H-2Kb complexes (clone 25-D1.16)(30). Interestingly, a “25-D1.16+” 

fraction was clearly detectable among pre-mNK cells sorted from vehicle-treated mice, and 

at a lowered frequency among those isolated from glycolipid-treated animals (Fig. 4.8B). 

Therefore, α-GalCer administration impairs Ag cross-presentation by pre-mNK cells, a 

finding that is also consistent with decreased I-a/e, Cd40 and Cd80 transcript levels (Fig. 

4.6A).                       

 

Figure 4.8: α-GalCer-transactivated hepatic pre-mNK cells are unable to cross-

present tumor Ags. 

 (A) B6 mice (n=4 from two independent experiments) were euthanized 5 days after they 

were injected with α-GalCer. Hepatic pre-mNK cells were FACS-sorted and pulsed with 

SIINFEKL before they were co-cultured with B3Z cells. After 24 hours, cells were lysed 

in the presence of ONPG, and the OD415nm of supernatants was determined 4 hours later. 

(B) EG7-OVA tumor cells were injected i.v. into B6 mice that had received α-GalCer- or 
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vehicle 24 hours earlier (n=3 per group). Four days after the metastatic tumor challenge, 

SIINFEKL:H-2Kb complexes were detected via staining with 25-D1.16. Histograms 

representing two independent experiments yielding similar results are depicted. Error bars 

represent SEM. An unpaired Student’s t-test (A) and one-way ANOVA with Tukey’s post-

hoc analysis (B) were used for statistical comparisons. *p<0.05, **p<0.01, ***p<0.001.  

 α-GalCer-transactivated pre-mNK cells kill tumor cells via 

granule exocytosis and exhibit anti-metastatic activity   

Pre-mNK cells reportedly express TRAIL and kill tumor targets (23). It was therefore 

critical to test whether the expanded hepatic pre-mNK cells retained their oncolytic arsenal 

and functions. We found unfractionated HMNCs from α-GalCer-treated mice to readily 

and dose-dependently destroy YAC-1 lymphoma cells (Fig. 4.9), a classic mouse NK cell 

target. To directly assess pre-mNK cell-mediated cytotoxicity, we also employed purified 

hepatic pre-mNK cells from glycolipid-primed animals against YAC-1 cells. In certain 

experiments, CMA or a combination of EGTA and MgCl2 was added to co-cultures. CMA 

increases the pH of lytic granules to accelerate the degradation of perforin (48). 

EGTA/MgCl2 chelates extracellular Ca++, which is required at several steps during the 

perforin/GZM pathway (49, 50). Purified pre-mNK cells from α-GalCer-treated mice could 

efficiently lyse YAC-1 cells (Fig. 4.10A). However, this response was completely 

abolished in the presence of either EGTA/MgCl2 or CMA in co-cultures (Fig. 4.10A), 

clearly implicating the granule exocytosis pathway in our system. This notion was 

supported by increased expression of CD107a, a degranulation marker, among hepatic pre-

mNK cells after they had established an immunological synapse with YAC-1 cells (Fig. 
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4.10B). To identify the cytotoxic effector molecules pre-mNK cells utilized to kill tumor 

cells, we determined the frequencies of FasL+, TRAIL+, TNF-α+, GZM A+ and GZM B+ 

pre-mNK cells from α-GalCer-treated mice after they had engaged YAC-1 cells. 

Surprisingly, GZM A, but not TRAIL (or any other mediators for that matter), was 

upregulated (Fig. 4.10C). Also interestingly, α-GalCer treatment alone had resulted in 

elevated levels of GZM A on a per cell basis as judged by the geometric mean fluorescence 

intensity (gMFI) of its staining (Fig. 4.10C). 

To measure pre-mNK cell-mediated cytotoxicity in vivo, we modified and used a 

previously described protocol (51). We co-injected CFSElow WT B6 splenocytes (control 

target cells) and CFSEhigh β2 microglobulin (β2M)-/- splenocytes (NK-sensitive target cells) 

into α-GalCer-treated mice. Labeled targets were tracked using their differential CFSE 

fluorescence. The peak corresponding to β2M-/- target cells was always smaller, indicating 

that they had been eliminated (Fig. 4.10D). To determine the partial contribution of pre-

mNK and conventional NK cells, we used an anti-B220 mAb that depletes the former but 

not the latter. This approach resulted in significantly reduced cytotoxicity (Fig. 4.10D), 

indicating that pre-mNK cells were partially responsible for elimination of β2M-/- target 

cells. To rule out a role for B220+ B cells in this model, we used an anti-CD19 mAb in 

parallel. This mAb should remove B cells but not pre-mNK cells. As anticipated, anti-

CD19 administration failed to diminish the lysis of β2M-/- cells (Fig. 4.10D). 

Finally, we tested the anti-metastatic capacity of transactivated pre-mNK cells using the 

B16-F10 melanoma model. This model was chosen because it is responsive to α-GalCer 

treatment (52), which we first verified (Fig. 4.11 and Fig. 4.10E). In addition, pre-mNK 

cells reportedly fulfill a protective role against metastatic B16-F10 melanoma (23). We 
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found depletion of B220+ cells, but not CD19+ cells, to partially repress α-GalCer’s anti-

metastatic activity and almost double the number of pulmonary metastatic nodules (Fig. 

4.10E). Taken together, the above results demonstrate that α-GalCer selectively boosts the 

expression of GZM A by hepatic pre-mNK cells and imparts a primarily oncolytic and anti-

metastatic phenotype to these unique cytotoxic lymphocytes.      

         

Figure 4.9: Bulk HMNCs from α-GalCer-treated mice are able to lyse YAC-1 cells. 

HMNCs were isolated from vehicle- or α-GalCer-treated mice and used against 51Cr-

labeled-YAC-1 target cells at indicated ratios. Percent specific cytotoxicity was calculated 

after 4 hours using a formula that is described in Methods. Error bars represent SEM (n=3).                                              
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Figure 4.10: Transactivated pre-mNK cells are oncolytic and partially protective 

against metastatic B16 melanoma. 

 (A) Hepatic pre-mNK cells were FACS-sorted from α-GalCer-primed mice (n=4) and used 

as effector cells against 51Cr-labeled YAC-1 target cells in 4-hour co-cultures containing 

or lacking a combination of EGTA and MgCl2 or CMA. The 51Cr activity of culture 

supernatants was quantitated using a γ-counter. (B) Bulk HMNCs were isolated from α-

GalCer-treated mice and co-incubated with YAC-1 cells in the presence of BFA and 

monensin.  Four hours later, the surface expression of CD107a on pre-mNK cells was 

determined by flow cytometry. Representative plots and cumulative data from two 

independent experiments (n=5 per group) are shown. (C) HMNCs from α-GalCer-primed 
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mice (n=3) were co-incubated with YAC-1 cells in the presence of BFA before surface or 

intracellular staining for indicated effector molecules. The expression of each molecule by 

pre-mNK cells was analyzed by flow cytometry. In addition, the gMFI of GZM A staining 

in pre-mNK cells is shown shortly after HMNC isolation (n=3/group). (D) CFSElow WT 

splenocytes (control target cells) and CFSEhigh β2M-/- splenocytes (MHC-I-deficient target 

cells) were mixed in equal numbers and injected i.v. into naïve mice or mice that had been 

primed with α-GalCer and also injected with an anti-B220 mAb, an anti-CD19 mAb or 

PBS as described in Methods. Three hours later, target cells were identified in the liver 

using their differential CFSE fluorescence, and percent in vivo cytotoxicity against each 

target population was calculated using a formula that is also provided in the Methods. 

Representative contour plots demonstrate the efficacy of anti-B220 in depleting pre-mNK 

cells. For in vivo killing assays, representative histograms and cumulative data from two 

independent experiments are shown. (E) Five hundred thousand B16-F10 melanoma cells 

were injected i.v. into vehicle-treated mice or α-GalCer-primed animals that had previously 

received anti-B220, anti-CD19, or PBS. Two weeks later, metastatic nodules in the lungs 

were enumerated. Results are depicted as fold change in nodule numbers relative to 

vehicle-treated mice in three independent experiments. All error bars represent SEM. 

Statistical analyses were performed using Student’s t-tests (B and C) or one-way ANOVA 

with Neuman-Keuls post-hoc test (D and E). * denotes p<0.05. 
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Figure 4.11: α-GalCer administration lowers the pulmonary metastatic burden of 

B16-F10 melanoma. 

Five hundred thousand B16-F10 melanoma cells were injected i.v. into B6 mice that had 

been pretreated 24 hours earlier with either vehicle or α-GalCer. Two weeks after the 

injection of tumor cells, lungs were harvested and imaged. Representative images shown 

from two independent experiments are shown. 

 

 

 

 



157 

 

4.4 Discussion 

Although pre-mNK cells were discovered more than a decade ago, only a precious little is 

known about immunoregulatory mechanisms that control or modify their abundance and 

activities. In this work, we have identified and characterized a novel population of pre-

mNK cells that amass in select tissues, especially in the liver, following α-GalCer 

administration and that are endowed with potent cytolytic and anti-metastatic properties.  

Previous investigations have found pre-mNK cells in the spleen, lymph nodes and bone 

marrow, at low frequencies (23, 24, 26, 34, 35). We now describe a liver- and lung-resident 

population that can be dramatically enlarged through α-GalCer priming, likely due to their 

local expansion as opposed to their recruitment from other sites. This is in agreement with 

the notion that pre-mNK cells are rapidly recycling cells by nature (28). We found 

increased levels of Ki67 and CD69, decreased S1PR1 expression, and the failure of 

FTY720 to prevent the observed accumulation. We are cognizant of previous reports that 

S1PR1 and S1PR5 can both mediate NK cell trafficking (53, 54). However, we focused 

our efforts on FTY720-sensitive S1PR1 because our gene array analyses showed only a 

modest change in S1pr5 transcript levels in pre-mNK cells (Fig. 4.6A). Interestingly, 

Walzer et al. found that NK cells from S1PR5-/- mice were unable to home to several tissue 

compartments with the notable exception of the liver (53), the prominent site of pre-mNK 

cell accumulation following α-GalCer treatment in our model. Although tissue recruitment 

was not responsible for the observed numerical rise in hepatic pre-mNK cells, it will be 

important to explore the migratory properties of these cells in the future.  
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Pre-mNK cell differentiation is typically dependent on IL-15 receptor signaling (41), and 

their proliferation can be triggered by a combination of IL-15 and IL-18 (27). However, α-

GalCer treatment did not alter IL-15 receptor levels in hepatic pre-mNK cells, and our 

mechanistic experiments revealed a previously unappreciated role for IL-12 and IL-18 in 

pre-mNK cell expansion. We also found a higher percentage of IL-18R+ pre-mNK cells in 

vehicle-treated mice when compared with their α-GalCer-transactivated counterparts. IL-

18R downregulation in α-GalCer-treated mice may have followed an early burst of IL-12, 

which may have initially elevated the expression level of IL-18R. IL-12-induced IL-18R 

upregulation has been previously reported in other cell types (55). IL-12 and IL-18 are 

known for their ability to activate innate and innate-like lymphocytes, and our findings 

widen their range of functions by introducing pre-mNK cells as one of their cellular targets. 

The cross-talk between iNKT and pre-mNK cells represents a new intercellular 

communication cascade following treatment with α-GalCer. The importance of this 

cascade is several-fold. First, pre-mNK cells can now be viewed as a downstream effector 

cell type mediating some of the beneficial effects of α-GalCer. Given pre-mNK cells’ 

phenotypic and functional similarities to several other cell types (e.g., DCs and mNK cells), 

they may have been given a mistaken identity in the past. Many investigations have taken 

advantage of an anti-NK1.1 mAb to delineate the roles of α-GalCer-transactivated NK cells 

in destroying tumor cells in vitro (56, 57) and in lowering metastatic tumor burden in vivo 

(58). While this approach is widely accepted and still valid, it may ignore pre-mNK cells’ 

potential participation in such responses. In this study, pre-mNK cells were indeed partially 

responsible for oncolytic and anti-metastatic activities of α-GalCer. By the same token, 

Fujii et al. described a splenic CD3-CD11c+ population capable of producing IFN-γ two 
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hours after an i.v. injection of α-GalCer (12). This was before IKDCs/pre-mNK cells found 

their way into the literature. Therefore, the possibility that such IFN-γ-producing “DCs” 

may have contained a pre-mNK cell component is not far-fetched. 

Pre-mNK cells can serve as Ag-presenting cells in adaptive immunity (24, 35, 46, 47). 

They typically express MHC-I and MHC-II, which should enable them to activate CD8+ 

and CD4+ T cells. We were able to detect SIINFEKL:H-2Kb complexes on the surface of 

hepatic pre-mNK cells after i.v. inoculation of an OVA-expressing lymphoma cell line. 

This provides direct evidence in support of a role for pre-mNK cells in tumor Ag cross-

presentation in vivo. Interestingly however, while α-GalCer-transactivated pre-mNK cells 

maintained their expression of MHC-I, they lost their ability to cross-present SIINFEKL. 

This may be due, at least partially, to the expansion of the CD27+CD11b- fraction of hepatic 

pre-mNK cells by α-GalCer (Fig. 4.4) since Terme et al. reported that pre-mNK cells’ 

cross-presentation capacity resides within their CD11b+ subset (46).  

α-GalCer-transactivated hepatic pre-mNK cells exhibited cytotoxicity against NK targets, 

namely YAC-1 thymoma and β2M-/- splenocytes. They relied on granule exocytosis for 

their oncolytic function and expressed high levels of GZM A, which was evident even 

before conjugate formation with YAC-1 cells. The tumoricidal activity of pre-mNK cells 

was initially reported to be TRAIL-dependent (23). However, α-GalCer-transactivated pre-

mNK cells lack TRAIL and likely employ GZM A to kill tumor targets. Of note, we also 

noticed a ~16-fold increase in GZM K expression by these cells at the mRNA level (Fig. 

4.6A). However, a reliable anti-mouse GZM K mAb is not available at this point to enable 

validation of this finding at the protein level.  
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The above results, together with the intact anti-metastatic activity of α-GalCer-

transactivated pre-mNK cells, indicate that exposure to this clinically relevant glycolipid 

skews pre-mNK cell responses away from an Ag-presenting phenotype in favor of NK-like 

antitumor behaviors. This may be a unique property of α-GalCer and potentially other 

glycolipid agonists of iNKT cells. In fact, stimulation with CpG oligodeoxynucleotides 

skews pre-mNK cells in the opposite direction and results in their loss of NK-like functions, 

upregulation of MHC-II and costimulatory molecules, and acquisition of DC-like Ag-

presenting activity (24).  

Taieb et al. found IKDCs/pre-mNK cells to produce more IFN-γ in comparison with mNK 

cells and to exert prolific cytotoxicity against B16-F10 melanoma cells (23). These cells 

proliferated in response to a combination of imatinib mesylate and IL-2 and infiltrated 

pulmonary metastases of B16-F10. Taieb et al. also isolated B220+NK1.1+ pre-mNK cells 

from mice that had been treated with imatinib plus IL-2 and adoptively transferred them 

into melanoma-bearing Rag2-/-Il2rg-/- mice. They found a lower tumor burden in animals 

that had received pre-mNK cells, but not in recipients of mNK cells. In our work, we used 

a WT, non-transgenic mouse model and cell-depleting mAbs to establish a similarly 

protective role for α-GalCer-transactivated pre-mNK cells. In contrast, Wilson et al. 

suggested that pre-mNK cell depletion augments the protective effects of adoptively 

transferred melanoma-specific CD4+ T cells in melanoma-bearing RAG-/- mice (59). It is 

noteworthy that in order to deplete pre-mNK cells, the authors used a mAb (clone HB220) 

that targets the CD45RB isoform of B220. In our hands, this mAb was inefficient in 

appreciably removing pre-mNK cells (data not shown). In addition, the experimental 

systems used in the two studies are fundamentally different. We examined the efficacy of 
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α-GalCer and α-GalCer-transactivated pre-mNK cells in a pulmonary metastasis model in 

WT mice. By comparison, Wilson et al. addressed the role of pre-mNK cells in regulation 

of CD4+ T cell-mediated immunity against primary melanoma established in 

immunodeficient mice. Such stark differences likely account for the different conclusions 

reached. 

Although pre-mNK cells may express higher levels of certain inflammatory and effector 

molecules in comparison with mNK cells on a per cell basis (23, 25), their therapeutic value 

is shadowed by their relative paucity. However, this limitation may be remedied by 

treatments that expand pre-mNK cells without hampering their anticancer potentials. This 

may be particularly important for tumors that arise from the liver or metastasize to this 

organ, for instance through the portal vein circulation, since hepatic pre-mNK cell 

expansion can be profound. We posit that iNKT cell-based glycolipid immunotherapies 

should be regarded as examples of such treatments.  

CD56bright and HLA-DR+ subsets of human NK cells have been proposed to be the mouse 

pre-mNK cell counterparts (36). In contrast to ‘classical’ CD56dim NK cells, which are 

often considered the main executors of NK cell-mediated anti-tumor responses, the 

CD56bright population has been viewed as an immunomodulatory subset. However, this 

paradigm was shifted by a recent report that upon priming with IL-15, CD56bright NK cells 

exhibit markedly enhanced degranulation, cytotoxicity and cytokine production (60). In a 

phase I clinical trial, imatinib mesylate plus IL-2 expanded the HLA-DR+ NK cell 

population and improved the progression-free survival and overall survival of patients with 

refractory solid tumors (61). On the other hand, α-GalCer-based therapies have shown 
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promise in several clinical trials for cancer (4). It is tempting to speculate an additive or 

synergistic effect through combining imatinib, IL-2 and α-GalCer.  

Finally, it will be interesting to determine whether the antitumor activities of pre-mNK 

cells can be further amplified through treatment with TH1-polarizing α-GalCer analogs 

such as α-C-GalCer (62) or α-GalCer/α-C-GalCer pulsed DCs that may be superior to free-

floating glycolipids (63). Much work lies ahead in characterizing circulating and tissue-

resident pre-mNK cell subsets in mice and humans and in deciphering the regulatory 

mechanisms and therapeutic modalities that dictate or alter their functional attributes.       
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5.1 Discussion 

INKT cells are a potent immunomodulatory population that serves as a bridge between 

innate and adaptive arms of immunity. The impact of iNKT cell activation on the overall 

immune response is truly pleiotropic and thus have tremendous potential as an 

immunotherapeutic. For instance, iNKT cells: i) are rapidly activated; ii) produce massive 

amounts of immunoregulatory cytokines and chemokines, iii) can transactivate many 

downstream effector cells; iv) have a range of endogenous and exogenous glycolipid 

agonists which provide more nuanced targeting approaches; and v) glycolipid agonists 

presented on the monomorphic CD1d molecule has direct implications for the clinic and 

importantly, circumvents many stumbling blocks associated with genetically diverse 

human populations. In this thesis, I outlined two disparate diseases in cancer and sepsis, 

where a dysregulated immune response contributes to a pivotal aspect of the 

pathogenesis. Moreover, whether immunomodulatory manipulation of iNKT cells via its 

glycolipid agonists to mitigate or reverse the immunopathology present in sepsis and 

cancer was unclear. To this end, I sought to illuminate the potential of glycolipid-

mediated activation of iNKT cells as a therapeutic candidate in two distinct models of 

polymicrobial sepsis and cancer.  
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 INKT cells can be manipulated using a two-pronged glycolipid 

immunotherapy to improve sepsis morbidity, mortality, and 

immunosuppression.   

In chapter 3, I employed the CLP model, considered the gold standard for polymicrobial 

sepsis (1), and administered a two-pronged glycolipid immunotherapy (OCH → α-GalCer) 

to sequentially curb the proinflammatory and immunosuppressive phases of sepsis. As a 

result, treatment conferred a significant reduction in disease severity during the first 48 

hours post CLP, which translated to a marked increase in overall survival (Fig 3.4B-C). 

Furthermore, survivors that received OCH → α-GalCer exhibited a reversal of 

immunosuppression compared to controls, as measured by DTH test and MHC II 

expression of splenic macrophages (Fig. 3.9C-E). Multiplex cytokine readouts on day 4 

post CLP showed that OCH → α-GalCer treated mice exhibited an altered cytokine milieu 

with proinflammatory cytokines, (IL-2, IFN-γ, and TNF-α) and chemokines (CCL2, 

CXCL9, and CXCL10) all significantly elevated compared to untreated septic mice (Fig 

3.6). Finally, I show that that OCH → α-GalCer treatment also augments the transactivation 

of downstream NK cells compared to control (Fig 3.7). Collectively, these findings build 

a case that a glycolipid-based immunotherapy approach effectively targets iNKT cells to 

have pleiotropic effects that confer a survival advantage, alters the cytokine environment, 

and restores immunocompetence in the host. These findings, at first glance, may seem at 

odds with previous studies purporting a pathogenic role of iNKT cells in sepsis (2-4). 

Importantly, these studies examined the contribution of iNKT cells at baseline and thus has 

no bearing on the type of response iNKT cells may have when therapeutically manipulated. 

Indeed, iNKT cells are capable of producing enormous amounts of proinflammatory 
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cytokines rapidly, and therefore, it is most likely the case that during sepsis, iNKT cells are 

easily susceptible to contribute to the early cytokine storm which has deleterious effects on 

the host. Despite this, here we report that therapeutic intervention with glycolipid agonists 

can skew the iNKT cell response to confer a protective effect. This is most aptly observed 

in the clear differences in the cytokine environment between treated and untreated septic 

mice (Fig 3.6).  

Mice primed with either OCH or select TH2-polarizing glycolipids (PBS-25 and PBS-128) 

failed to induce iNKT cell anergy. Although several mechanisms that contribute to iNKT 

cell anergy have been described, these may be acting independently from each other. 

Alterations in acyl chain length on the sphingosine moiety has been linked with iNKT cell 

anergy and is a factor which effects the loading and stability of glycolipid compounds on 

CD1d, which in part, contributes to the polarization of differential TH1 or TH2 responses 

(5). However, acyl chain variances may not be essential in inducing iNKT cell anergy since 

mice primed with α-GalCer-loaded dendritic cells conferred hyperresponsiveness to 

secondary activation (6), which suggests the co-stimulatory/-inhibitory signals provided by 

the APC is a determining factor. Alternatively, the mouse homolog of HLA-E, Qa-1, which 

is highly upregulated on iNKT cells after free-floating α-GalCer but not OCH injections, 

has been identified as a key regulator of iNKT cell anergy (7).  A systematic approach is 

necessary in delineating which of these pathways are involved that allows the 

circumvention of iNKT cell anergy by OCH, PBS-25, and PBS-128 and whether these are 

contributing to their protective effect in polymicrobial sepsis.   

Although the specific mechanism by which OCH → α-GalCer treatment improves survival 

and immunosuppression has yet to be fully elucidated, one can speculate that the effect of 
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the glycolipid immunotherapy is multi-factorial. Piliponsky et al. recently reported that 

adequate TNF-α levels during sepsis was essential for myeloid cell effector function, 

bacterial clearance, and survival (8). We also observed significantly elevated levels of 

TNF-α in the serum of treated mice (Fig. 3.6). It is tempting to speculate that increased 

TNF-α levels may play a part in our model as well. To add another layer of complexity, 

Roquilly et al. recently linked sepsis-induced immunosuppressed to “paralyzed DCs” 

which exhibited drastically reduced antigen presenting capacity and cytokine production 

(9). It is noteworthy that iNKT cells possess the remarkable ability to activate and mature 

APCs (10-12); therefore, it is possible that the upregulation of MHC II expression on 

splenic macrophages and the restoration of DTH responses in the immunotherapy treated 

mice were largely due to the intercellular cross-talk between iNKT cells and APCs (Fig 

3.9C-E).  

Importantly, I also delineated that our two-pronged glycolipid immunotherapy did not 

work indiscriminately with any TH2 polarizing agonist. I showed that substituting OCH 

with C20:2 or PBS-25 glycolipids, either resulted in anergy (Fig 3.11A-B) or 

responsiveness, respectively (Fig 3.12B). Notably, a significant survival advantage could 

be recapitulated when septic mice were treated with PBS-25 → α-GalCer (Fig. 3.12C).   

In this chapter, a number of statistical comparisons were performed using repeated 

Student’s t test when comparing multiple groups (Fig 3.1; Fig 3.2; Fig. 3.4; Fig. 3.12; Fig 

3.13). Although these analyses were adjusted for the number of comparisons made which 

increases the threshold of statistical significance, there are still limitations to this method 

over a conventional ANOVA analysis for multiple groups. Notably, no comparison lost its 
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statistical significance when re-analyzed using either a one-way or two-way ANOVA, as 

appropriate.     

There is a cacophony of complex pathways that are involved in sepsis pathology that 

culminates to a severely dysregulated immune response leading to organ failure. It is 

unlikely that any one pathway takes precedence over all others, and thus finding a cure has 

proven to be incredibly complicated and difficult. More recent preclinical studies are now 

uncovering previously unsuspecting cell types such as basophils (8), and mast cells (13) to 

contribute to sepsis In this chapter, I provide evidence that another unconventional cell 

type, iNKT cells, can be targeted using phase-tailored glycolipid agonists to skew the 

immune response towards homeostasis during sepsis. Future investigations are required to 

further elucidate the specific mechanism by which this immunotherapy confers protection 

against sepsis. 

 α-GalCer-activated iNKT cells mediate the expansion and 

activation of pre-mNK cells and skews them towards an anti-

cancer phenotype.  

In chapter 4, I serendipitously discovered a distinct B220+CD11c+NK1.1+ population that 

dramatically accumulated in the liver after a α-GalCer i.p injection (Fig 4.1A). To rule out 

the possibility that α-GalCer had an off-target effect to cause this accumulation, I employed 

a blocking mAb, anti-CD1d, effectively blocking activation of iNKT cells by α-GalCer. As 

expected, I confirmed that this distinct population in the liver was mediated by iNKT cells 

(Fig 4.1B).  Previously classified as IKDCs and later renamed to pre-mNK cells, these cells 

were heralded to be prolific tumoricidal activity, produce proinflammatory cytokines, like 
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IFN-γ and TNF-α, and surprisingly were shown to present antigens to cognate CD4 and 

CD8 T cells (14-16). Following further immunophenotyping, we confirmed that pre-mNK 

cells also accumulated in the spleen and lungs following α-GalCer administration, albeit 

most prominently in the liver (Fig. 4.3B).  

Considering the rapid nature of pre-mNK cell accumulation in the liver after α-GalCer 

injection (Fig. 4.3A), I was curious to see whether pre-mNK cells were being expanded in 

their respective tissues or whether these cells were being recruited from the periphery. 

Indeed, hepatic pre-mNK cells upregulated proliferation marker, Ki67, after α-GalCer 

injection, at both the transcript (Fig 4.6A) and protein level (Fig 4.6B). Furthermore, 

hepatic pre-mNK cells downregulated transcript levels of immune cell trafficking receptor, 

S1PR1 (Fig 4.6A), which interestingly enough, had an inverse relationship with tissue 

retention molecule, CD69 (Fig 4.6C). These findings suggested that pre-mNK cells were 

being trapped in the liver upon α-GalCer administration and were proliferating in situ. 

Using a chemical inhibitor which blocks cell recruitment, FTY720, I confirmed in vivo, 

that α-GalCer-mediated activation of iNKT cells induced the expansion of a resident 

population of pre-mNK cells in the liver (Fig 4.6D).  

The relative paucity of pre-mNK cells in vivo make them difficult to isolate and target for 

cellular therapeutics. Currently, there are no known methods that specifically expand pre-

mNK cell numbers in vivo (17). Previous studies have shown combinational therapy with 

chemotherapeutic drug, imatinib mesylate and IL-2, non-specifically expanded pre-mNK 

cells (14), whereas in vitro experiments have found pre-mNK cells proliferate in response 

to IL-15 stimulus (18). Thus, I wanted to elucidate the signaling pathways by which iNKT 

cells induced pre-mNK expansion. I hypothesized pre-mNK cell expansion was mediated 
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through a soluble mediator, therefore an adoptive serum transfer assay was performed. 

Interestingly, we showed that only the combination of serum collected at 6 and 12 hours 

post α-GalCer injection induced pre-mNK cell expansion in a naïve host (Fig 4.7B). I also 

showed that I could recapitulate this phenotype with exogenous recombinant IL-12 and IL-

18 injection (Fig. 4.7A). To link these two findings, I depleted IL-12 and IL-18 in the serum 

sample and found that pre-mNK cell expansion was significantly attenuated (Fig. 4.7C). 

Together, these findings uncover another aspect of iNKT cell mediated pre-mNK cell 

expansion through IL-12 and IL-18 signaling.  

One distinguishing feature of pre-mNK cells is their ability for antigen presentation (19, 

20). However, I observed that α-GalCer-expanded pre-mNK cells lost the ability to cross 

present tumor peptides ex vivo (Fig 4.8B). Importantly, Terme et al. reported that the cross-

presentation function of pre-mNK cells were limited to the CD11b+ subset (21). In our 

own model, pre-mNK cells in vehicle treated mice predominantly expressed CD11b, 

however, α-GalCer-mediated expansion resulted in a significant decrease in the CD11b+ 

subset (Fig. 4.4). Therefore, the loss of antigen presentation may be at least partially due 

to the decrease in CD11b expressing subsets.  

Finally, I confirmed that expanded pre-mNK cells still retained their prolific tumoricidal 

activity. Following cell sorting by flow cytometry, I plated purified pre-mNK cells, with 

cancer target cells which showed their efficient killing of these targets were mediated by 

degranulation (Fig 4.10A). Intracellular cytokine staining revealed that granzyme A was 

the likely effector molecule mediating the killing (Fig. 4.10C). This was important as pre-

mNK cells were thought to mediate killing by TRAIL and this was the first report which 

showed an alternative pathway (14).  Using two different assays, we showed that α-GalCer-
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expanded pre-mNK cells contributed significantly to NK cell mediated killing in vivo (Fig. 

4.10E-F).   

Here we show for the first time that iNKT cells can be targeted via α-GalCer to induce the 

expansion and activation of pre-mNK cells, allowing them to participate in metastatic 

surveillance. This is especially important as it reveals a novel target of α-GalCer as an 

immunotherapeutic. Certainly, numerous studies have already shown the protective effects 

of α-GalCer administration in cancer bearing mice (12, 22-25), however the extent to which 

expanded pre-mNK cells were contributing to these phenotypes is unknown and warrants 

further investigation. 

5.2 Limitations 

Limitations remain in our interpretations of the data that may require further validation and 

are interesting lines of investigations to pursue. In chapter 3, we found that OCH → α-

GalCer treatment was beneficial in enhancing survival and rescuing immunosuppression 

in septic mice. One limitation to this interpretation is whether OCH injection as the initial 

hit is necessary in alleviating sepsis pathology. Although I have shown that α-GalCer 

treatment alone on day 4 after CLP neither changed survival (Fig 3.5) nor rescued 

immunosuppression (Fig 3.10), this does not address whether an alternate combination of 

a two-pronged glycolipid immunotherapy would confer a therapeutic benefit. This is a 

valid objection and is currently being investigated, albeit not in this dissertation. Another 

limitation lies within the CLP model. While it is true that CLP is considered the gold 

standard for mouse models of sepsis, there are limitations in capturing the complexities of 

clinical sepsis. Notably, mice subjected to CLP are left to recover on their own without any 
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source control interventions by antibiotics or peritoneal washes. Mice that are immediately 

treated with antibiotics following CLP have been shown to make full recovery with 

minimal septic pathology (26), therefore the pathology observed in CLP subjected mice 

does not fully mimic what is observed in the clinic where virtually all septic patients are 

treated with some form of anti-microbial agent. Nevertheless, the CLP model is essential 

in determining the physiological changes in responses to a severe infectious insult.  

In chapter 4, I discovered that pre-mNK cells were transactivated and involved in the anti-

cancer response. One key finding was that when using the established B16 metastatic 

melanoma model, mice depleted of pre-mNK cells in vivo exhibited in an increase in 

overall tumor burden (Fig 4.10). Although this model is routinely used to determine the 

immune response against metastatic forms of cancer, there are a few limitations with this 

interpretation. First, intravenous injection of B16 melanoma cells circumvents the basic 

nature of aggressive metastatic cells that extravasate through the physical barrier into the 

blood. Second, the accumulation of nodules observed in the lungs of B16-melanoma 

injected mice are not selected for their metastatic ability but rather their capacity to colonize 

a tissue for growth. Finally, it is unclear whether the decrease in overall tumor burden is a 

direct result of cytotoxic activity by immune effector cells or other factors, such as nutrient 

deprivation, that would prevent neoplastic proliferation in secondary tissues. Thus, 

interpretation of the data should be made with careful considerations to these limitations.   
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5.3 Conclusion 

The overarching focus of this thesis is to emphasize that the impressive immunomodulatory 

capacity of iNKT cells can be harnessed using glycolipid agonists to shape the course and 

nature of the ensuing immune response. Among the diverse choice of glycolipid agonists, 

α-GalCer has been the most extensively studied (27) and is discussed extensively in this 

thesis. It should be noted that potential side effects have been observed in mouse models, 

dependent on the route of α-GalCer injection. For instance, both intravenous and intranasal 

administration of α-GalCer has been shown to induce a cytokine storm (28) and airway 

hypersensitivity (29), respectively. Nevertheless, this thesis shows how one can 

efficaciously approach glycolipid immunotherapies to treat two devastating diseases in 

sepsis and cancer. In chapter 3, I outlined how strategic tailoring of glycolipid agonists can 

curb the biphasic pathology of sepsis. These findings are quite timely as treatments aiming 

to restore the severe immune dysregulation caused by sepsis is being intensively 

investigated (30, 31). Future studies may consider combinational therapies including 

glycolipid agonists with other immune boosting agents such as recombinant IL-7 or anti-

PD-1 therapies. In chapter 4, I discovered a novel mechanism by which glycolipid agonists 

can be used to mediate the involvement of pre-mNK cells in the anti-cancer response. There 

are still many unanswered questions that need to be addressed going forward. First, what 

is the fate of the expanded pre-mNK populations following α-GalCer administration? It 

would be interesting to see whether these populations contract back to baseline levels or 

whether their augmented numbers are sustained. Second, are pre-mNK cells regulated by 

MHC molecules the same way mNK cells are? Finally, a definitive human equivalent of 

pre-mNK cells still needs to be identified and whether expansion can be induced, via α-
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GalCer, has yet to be determined. This thesis uncovers new and exciting methods in which 

glycolipid agonists of iNKT cells can be used to galvanize the host’s immune response in 

combating severe immune-related diseases. 
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