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Abstract

Today many brokerage firms use computer algorithms to make trade decisions, submit

orders, and manage orders after submission. This algorithmic trading is required to

maximize execution speed and so minimize the cost, market impact and risk associated

with trading large volumes of securities. Traders place orders to buy or sell a given

amount of a security for a specific price on an exchange. These buy and sell orders

accumulate in the ‘order book’ until they either find a counter-party for execution or are

canceled. All participants can also issue market orders to buy or sell at the best available

prices; these orders are immediately executed on a ‘first come first serve’ basis.

Using high frequency trading (HFT) data on the Toronto Stock Exchange, provided

by the TMX Group, we explore a data driven model to detect a form of high frequency

price manipulation – known as spoofing. A spoofer manipulates prices by placing li-

mit orders which they do not intend to be executed in order to mislead other traders

about the available volume of shares. The hope is that this will cause prices to move in

their favour. We show that a generalized form of volume imbalance is associated with

price movements and this can be manipulated by spoofing strategies. The literature ar-

gues spoofing strategies are detrimental to the integrity of markets and new models are

necessary for regulators to combat them.

The size of the data sets we use definitely qualify for the moniker ‘Big Data’. The

limit order book must be constructed each time an order arrives for a particular stock.

This process is implemented on a distributed data system using Pyspark since it would

be impossible to do so, efficiently, on a local machine. We discuss some issues and

complications that arise from working with very large data sets of this type.

We define a generalized volume imbalance as the weight in a convex combination

of two price change distributions which forms our price change model. Price changes

for different stocks happen at different time scales. We remedy this issue by compa-

ring stocks on time intervals over which they all have the same variance in their price

change distributions. Statistical and goodness of fit tests using Cramer’s V statistic and

Kullback–Leibler divergence, respectively, are implemented to validate our model across

a large collection of stocks. The model is then used to test the sensitivity of the limit

order book to spoofing and derive relationships between the spoofer’s constraints and

their optimal decisions. These results could then be implemented by regulators as a way

to flag periods of the trading day where market conditions make spoofing possible as a

means to improve market surveillance.

Keywords: limit order book, price manipulation, spoofing, data analysis, optimiza-

tion, financial modelling, high frequency trading
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Summary for Lay Audience

Price manipulation is detrimental to the integrity of financial markets. Price ma-

nipulation strategies have always existed, but, since the adoption of computer systems,

new forms of price manipulation are emerging. In the past traders manipulated prices

by injecting false or misleading information into the market in order to capitalize from

resulting price movements and high frequency trading is not immune to these tactics.

Traders can ‘spoof’ the market by strategically commiting specific orders to an exchange

to buy or sell a set number of shares while actually never intending to allow their order

to be executed. The idea is that other traders can see these spoofing orders, act on this

misleading information, and move prices in the spoofer’s favour.

Using high frequency order data on the Toronto Stock Exchange, provided by the

TMX Group, we explore a data driven stock price model which is influenced by the

orders arriving to the exchange. From our model we can calculate the average costs

associated with a spoofer’s optimal decisions to manipulate the market. We analyze this

decision process to gain insights into how regulators can combat this type of illegal trade

behaviour.
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Sharpe ratio with H = 200 and Ṽ = 300. . . . . . . . . . . . . . . . . . . 137

5.11 Comparing net spoofing savings over a delayed market order to spoofing
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Chapter 1

Introduction

1.1 The Stock Price and Manipulation

Ownership of publicly traded companies is divided into shares of stock (or securities).

These shares of stock naturally carry a monetary value which fluctuates over time to

form a price time series – sequence of prices indexed in time order. Everyone has seen

a stock price time series such as the one shown in Figure 1.1 where we see the price of

Bank of Montreal (BMO) stock change over the entire trading day on April 17, 2017.

Figure 1.1: Mid point price for BMO stock on April 17, 2017 for the entire trading day.

One of the first topics covered when one begins to learn mathematical finance is

modelling stock prices using continuous time stochastic processes. This is covered in

detail by any mathematical finance text book, such as [1]. These processes assume

the stock price changes continuously over time. Such stock price models have been

effective tools since the initial work by Bachelier [2] in 1900 which culminated in the

1
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Nobel prize winning research by Black, Scholes, and Merton, on pricing derivatives using

these underlying stochastic processes [3]. Similarly, modelling stock price changes is

instrumental in Markowitz’ classical work in portfolio optimization [4]. However, there

are key aspects of stock price dynamics which are not captured by these models. Namely,

changes in stock prices are not continuous and do not change continuously through time.

Also, there is no such thing as ‘the’ stock price.

(a) Entire Trading Day

(b) Two Minute Snapshot

Figure 1.2: Best ask and best bid for BMO stock on April 17, 2017 for the entire trading
day and a two minute snapshot.

One wishing to purchase a share of stock would find there are different prices quoted

for buyers and sellers and, in fact, there can be many different prices available to both
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groups. The best available price to buy/sell a share of stock is called the best ask/bid

and Figure 1.2 (a) displays the corresponding best ask and bid for BMO on April 17,

2017 over the entire trading day. The price shown in Figure 1.1 was the midpoint price

– the average between the best bid and best ask.

Figure 1.2 (b) also shows how different things look over smaller time scales for the

stock price. Here we see changes in the price are in increments of a penny, also refered to

as a tick, and the prices change nonuniformly over time. However, these discontinuous

price changes have been modelled in mathematical finance with jump diffusion processes

[5] which are discontinuous at finitely many time points.

Prices are not driven by random movements, but by the actions of traders. It is the

aggregate behaviour of traders in the market which drives the stock price. In most cases

this is caused by traders buying and selling stocks over time with the bid and ask prices

reflecting the current supply and demand of the stock. However, there has been a history

of stock price dynamics being caused by manipulation. Two examples from Allen and

Gale [6] are: 1) during the Napoleonic Wars there was stock and bond price manipulation

on the London Stock Exchange where traders conspired with newspapers to spread false

information about the state of the war to profit from the resulting price changes, and 2) in

1901 the managers of American Steel and Wire Company shorted1 their stock then closed

its steel mills causing the stock price to fall and earning themselves a profit after reopening

the mills. The Securities Exchange Act of 1934 was an attempt to make manipulation

more difficult in the United States by regulating information disclosure and monitoring

the trading activities of firm insiders. However, manipulation in financial markets still

exists and has been actively studied.

Literature exists on studying whether a financial model allows for trade-based market

manipulation from buying and selling stocks [7–9], but a considerable amount of work

has gone into the impacts of insider trading and ‘pump and dump’ strategies [6, 10–15].

So called ‘pump and dump’ strategies involve a trader buying stock and then injecting

false information into the market to profit from increased price movements. A form of

this strategy rose to prominance with the adoption of computers and the internet – email

spam [16–18]. A manipulator will buy shares of stock and use email spam or social media

platforms to spread false information in an attempt to get others to buy the same stock,

increasing its price, so the manipulator can sell it at a profit. Manipulation has also

been studied in more exotic cases with derivative markets [19] and dark pools [20]. In

all these cases a key component is the injection of false or misleading information into

1A trader shorts a stock by borrowing shares and immediately selling them with the hope the price
drops and they can buy the stock back and return it at a profit.
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financial markets to influence the behaviour of traders and, by extension, the stock prices

themselves.

Today, stock price dynamics are largely driven by electronic trading and the speed

of execution which modern computers bring to the market. Like the emergence of email

spam as a form of stock price manipulation, the age of high frequency trading (HFT) has

opened up new avenues for manipulators to take advantage of. In the following section

we introduce the mechanisms in which traders can interact with the stock market and

how these interactions lead to price dynamics. In section 1.4 we go into detail on the

form this high speed price manipulation takes – called spoofing.

Our first goal is to motivate and build a data-driven price change model from the

aggregate trader behaviour. The second goal is to then apply this model to the application

of high speed stock price manipulation in order to develop tools which could be used to

aid in the detection of such behaviour. However, we need to present the mechanisms

involved in electronic trading which will be important to incorporate into our model.

1.2 Electronic Trading

Today all brokers use computer systems to submit and manage orders. Algorithmic (algo)

traders use them to make decisions. The reason for using computers is to minimize the

cost, market impact and risk associated with trading large volumes of securities.

There are many different types of traders participating in the market at any given

time. This naturally leads to traders that operate on different time scales. Some traders

buy and hold stock for years as investors, some look to buy quotas of stock for multiple

days, and some buy and sell rapidly at nanosecond timescales. All of these different

traders simultaneously operate in the stock market, but each has different objectives and

different time horizons. This is outside the scope of our work, but how these traders

come together to form the dynamics we see in the stock market is an active field of study

(see for example: [21–24]).

Participants place buy or sell orders to an exchange. These show the intention to buy

or sell a given amount of a security for a specific price. Since all the available stock to

be bought or sold is spread across many different prices there is no such thing as ‘the’

stock price. There is a limited amount that can be bought/sold at any given price, and

traders are actively looking to buy/sell at the best possible prices.

The buy order with the highest price is called the best bid, while the sell order with

the lowest price is called the best offer. The difference between the best bid and best

offer is the spread. The mid price is defined as the average between the best bid and best
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ask. These buy and sell orders accumulate in what is called the limit order book (LOB)

until they find a counter-party for execution or are cancelled. We give the fictitious order

book in Figure 1.3 as an example. We will use this example to illustrate how traders can

interact with it and the effect they have. For the Figure 1.3 example LOB the best bid

is 19.24, the best ask is 19.26, the spread is 0.02, and the mid price is 19.25.

19.20 19.21 19.22 19.23 19.24 19.25 19.26 19.27 19.28 19.29 19.30

Price
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100
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300

400

500

600
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Mid Price = 19.25

Bid Side

Ask Side

Figure 1.3: Example limit order book.

Dealer markets exist where dealers (individual people or firms) post a price at which

they will buy and another at which they will sell a specific stock in order to make money

from the spread. This is analogous to a foreign exchange kiosk – buying and selling

currency at a different price in order to make money from the difference. Alternatively,

one could buy or sell stock in an auction market (such as the Toronto or New York stock

exchange) where there are many such people or firms posting prices in which they are

willing to buy or sell stock. Typically, one refers to the auction market as the stock

market. There exist brokers, known as ‘market makers’, which provide a significant

amount of the new buy/sell orders to the market. These market makers act like the

dealers in the dealer market, but for the auction market. These participants are looking

to take advantage of the difference in price that stocks are bought and sold, called the

spread, by constantly buying and selling without the purpose of holding onto the stock

as an investment. In theory, the faster you can process information and react, the better

your chances of profit. Some brokers pay a premium to an exchange for a faster connection

which gives them a time advantage over other participants. For a discussion of broker

behaviour, see Appendix A.
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The increased speed in which brokers can interact with the LOB gives room for unfair

or outright illegal behaviour by attempting to manipulate markets. This topic will be

discussed later, in section 1.4, but is central to the goal of this work. Once the neccessary

background has been established, we want to build a stock price dynamics model which

can be influenced by a broker’s (potentially) manipulative behaviour so that we can

analyze the conditions under which it is profitable to employ such a strategy and what

kind of payoff they can expect. A better understanding of how and why the limit order

book would be manipulated would provide insights to regulators on how to better detect

it and punish the offending party.

Market participants can interact with the LOB in three ways:

1. Limit orders: as buy/sell limit orders arrive they are added to the ask/bid side of

the LOB. If a buy and sell limit order are placed at the same price they will be

matched and executed.

2. Cancellation: traders may cancel their existing limit orders which are then removed

from the LOB.

3. Market orders: a buy/sell market order will remove shares from the best available

prices on the ask/bid side of the LOB until their total order is completed. Market

orders may end up removing shares deep into the LOB at worse and worse prices.

This is known as ‘walking the book’.

The order book changes constantly as buy/sell orders arrive, buy/sell market orders

arrive, and orders are cancelled. Depending on the stock these changes could be happe-

ning at time scales of a fraction of a nanosecond. The LOB also has a queuing system

aspect. The first limit orders placed at a particular price will be executed first when ma-

tched to an opposite limit or market order - known as ‘first in, first out’.2 This ‘battle’

over queue position is an area of research in its own right [25].

The top panel in Figure 1.4 shows the outcome of the placement of a sell limit order

of 100 shares at 19.28 with our example LOB from Figure 1.3. There are no limit orders

to match, so the sell limit order is added to the existing orders at 19.28. However, this

new order will be executed only after the existing limit orders since it is last in the queue.

The bottom panel shows there are now 300 shares available to be bought at 19.28.

When an order is cancelled that volume of stock at that price is removed from the

order book. The top panel of Figure 1.5 shows a trader cancelling their sell limit order of

2There can be a preference given to certain brokers so that their orders are executed ahead of others
regardless of their position in the queue.
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Figure 1.4: Sell limit order of 100 shares placed at 19.28 for our example limit order book.
After the limit order is placed there are 300 total shares available to be bought for 19.28.
The best bid and ask remain unchanged, so the spread and mid price are unaffected.
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Figure 1.5: Cancellation of sell limit order of 200 shares for our example limit order book.
Since this was the only sell limit order at 19.28 there will be no shares available to be
bought for that price. The best bid and ask remain unchanged, so the spread and mid
price are unaffected.
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200 shares at price 19.28. The bottom panel of Figure 1.5 shows that, since there were

no other sell limit orders at 19.28, there are no longer any available shares to be bought

at this price. Traders may, at no cost, cancel their limit orders at any time while the

market is open. Usually these limit orders are cancelled and placed again at a different

price to reflect the changing attitudes of traders about where the stock prices will be

moving.

19.20 19.21 19.22 19.23 19.24 19.25 19.26 19.27 19.28 19.29 19.30

Price

0

200

400

600

V
ol

um
e

of
sh

ar
es

Mid Price = 19.25

Market Order

Bid Side

Ask Side

19.20 19.21 19.22 19.23 19.24 19.25 19.26 19.27 19.28 19.29 19.30

Price

0

100

200

300

400

500

V
ol

um
e

of
sh

ar
es

Mid Price = 19.255

Bid Side

Ask Side

Figure 1.6: Buy market order of 600 shares is placed on our example limit order book.
600 shares are removed from the ask side of the book at the best available prices. The
best bid is unchanged, but the best ask increases by 0.02. The spread and mid price
increase to 0.03 and 19.255, respectively.

A market order will be matched to the best price and however much stock was ordered

will be removed from the book. The top panel of Figure 1.6 shows a trader placing a

buy market order of 600 shares. Since it is a buy market order it removes shares from

the ask side of the LOB at the best available price until no shares remain at that price

and then begins removing shares at the next available price. In this case 200 shares are

bought for 19.26 per share and the remaining 400 are bought for 19.27 per share. The
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second panel of Figure 1.6 then shows the best ask has moved up to 19.27 because of this

market order. This example illustrates the idea of price impact on the LOB caused by

market orders which remove large amounts of shares from the market. The price impact

of a small enough order may only be temporary and new sell limit orders are placed back

at 19.26 – returning the price back to where you started after a short recovery period.

However, the price impact may also be permanent from a large order as prices move up

and volume is not replaced with new limit orders below the best ask or the best bid

increases to tighten the spread – causing the best ask to not return to where it started.

Since we could not get all 600 shares at the best ask we had to ‘walk the book’ with

our market order. This caused us to pay more per share than if we had been able to fill

the whole order at the best ask. Traders will look to minimize this extra cost of walking

the book by breaking large market orders up into smaller orders which they execute over

some fixed time horizon.

The order and price dynamics of limit order books have been studied before in the

context of general mixture models [26], Markov chains [27], Hawkes processes [28], and

stochastic partial differential equations [29], to name a few. These models do not make

use of the limit order book volumes directly and instead use continuous time stochastic

processes for the prices themselves or to model the intensities and distributions of the

different order types which drive a price process.

The study of optimal placement of limit orders is also of particular interest [8, 9,

30, 31]. These papers also explore whether or not trade-based manipulation can occur

in their limit order book model, but they approximate the volumes in the book with a

continuous shape function of the quoted bid and ask prices. For our model, we aim to

maintain the discrete nature of the book in both prices and share volumes at each price.

1.3 Level 1 and 2 Data

Limit order book data is labeled as either level 1 or level 2 data. Level 1 order book data

consists of just the best bid price, quantity at the best bid, best ask price, quantity at

the best ask, the last traded price, and the last traded quantity. Level 1 data provides

a surface level look at the trading activity of a particular stock ticker. Level 1 data is

publicly available and easy to access, but to know more market details one must examine

level 2 data.

Level 2 order book data requires a paid subscription to the exchange, but comprises

considerably more information. The level 2 data consists of all the orders placed on the

exchange as well as which broker is placing the orders. With the level 2 data one can see
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exactly how many shares are available to be bought or sold at any given price and who

would be the counter-party to the trade.

A sample of the level 2 data provided by TMX is shown in Table 1.1. This particular

collection of data is for the stock AEM, but orders for all stocks are normally mixed

together in the full dataset. The collected data includes all orders placed on the TSX

over any given day with each row corresponding to a single order. The information

provided in each row tells us everything we need to know about the order.

From Table 1.1 we see that columns are time, broker ID, side, book change, price,

order id, seq, reason, other broker id, other order id, best bid, best offer, best bid size,

best offer size, and market state. There is normally another column indicating the stock

ticker for the order, but this was suppressed for readability. Definitions of each column

are provided below.

time

Date and time stamp for order placement in nanoseconds.

broker id

Internal ID code for each broker with the exchange.

side

Side of the limit order book being interacted with.

book change

Change in number of shares.

price

Price placement of order

order id

Assigned ID code for the order

seq Internal sequence of received orders, included because two orders may have the

same time stamp.

reason

Either ‘TRADE’ (matched limit order or market order), ‘BOOKED’ (limit order),

or ‘CANCELLED’ (cancelled limit order).

other broker id

If reason is ‘TRADE’ then this is the broker id of the order on the other side of the

trade.
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other order id

If reason is ‘TRADE’ then this is the order id of the order on the other side of the

trade

best bid

Current best bid price for the given stock ticker.

best offer

Current best ask/offer price for the given stock ticker.

best bid size

Current quantity of shares at the best bid price for the given stock ticker.

best offer size

Current quantity of shares at the best ask/offer price for the given stock ticker.

market state

Current state of market (‘Open’, ‘Closed’, ‘Beginning of day’, etc).

As one can see from Table 1.1, the limit order book needs to be generated from this

much larger dataset of individual orders. For a single stock the number of orders placed

on a given day can be in the hundreds of thousands resulting in raw datasets of several

hundred megabytes for a single day. Generating the limit order book can therefore be

a computationally expensive exercise. The dataset is far too large to interact with on

a single personal computer, so we make use of an Amazon Web Service (AWS) account

provided by TMX to do our analysis. See Section 1.5 for further details of the distributed

data system. Sampling from the dataset does not help alleviate this issue since we need

to know all orders placed up to time t to know what the limit order book looks like at

time t.

One can reproduce the limit order book at a given time by simply summing the book

changes at each price for each side of the limit order book up to that time. The result

will be a collection of tuples (p, q) for each side of the book indicating the number of

shares q at each price p. However, some prices p may be missing from the dataset if no

one has placed a limit order at them. This is fine for display purposes like Figure 1.7,

but when using the data in modelling we will need to know the quantity of shares sitting

at every price p for both sides of the book.

Figure 1.7 displays an actual LOB for ABX stock on April 4, 2017 just after 3:00 PM

that was built from data provided from the Toronto stock exchange.
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Figure 1.7: Order book for American Barrick (ABX) stock.

1.4 Spoofing

In Section 1.2 we covered the various ways traders can interact in the stock market

through limit, market, and cancellation orders. Although traders are assumed to be

placing limit orders in good faith, they may actually be trying to manipulate the order

book in their favour by a process called ‘spoofing’ or ‘layering’. Spoofing and layering

are terms often, but not always, used interchangeably to refer to the act of placing an

ordered sequence of buy/sell orders with no intention of allowing them to be executed.

Spoofing can also refer to placing a single order with no intent to execute as opposed

to layering which is placing multiple orders instead of one [32]. The Financial Industry

Regulatory Authority, Inc. (FINRA)3 instead refers to spoofing as entering limit orders

on one side of the book with the intent of moving the market for a beneficial execution

on the opposite side of the book. However, FINRA refers to layering as enticing other

market participants to join the same side of the book as your spoofing limit order and

trading against them favourably [33].

The reason to place these limit orders – which you have no intention of executing

3FINRA is a private corporation and the largest independent regulator in the United States.
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– is so other traders will see the increased liquidity in the book and react believing

(mistakenly) these orders were placed in good faith. That is, a trader may place their

own limit orders or market orders under the assumption all other trader’s orders are

there to be bought or sold. In essence, the spoofer is tricking other traders into making

decisions they might otherwise not do and then attempt to capitalize on the consequences

of these resulting trades.

To illustrate how this works suppose our spoofer, Alice, wishes to purchase 200 shares

of stock. As shown in Figure 1.8, she could place a market order to the exchange and

collect the shares now.
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Figure 1.8: Alice places a market order to buy her 200 shares. She gets her shares now,
but with no improved price.

Instead, what if Alice attempted to use spoofing to lower the best ask price to get her

200 shares for less money? Figure 1.9 shows the following example of a positive payoff.

Alice places a sell limit order of 400 shares at $19.28 – two ticks above the best ask price

so other traders believe there is a huge demand to sell shares at the current best ask

price. This might lead another trader, Bob, to believe that this increased liquidity to sell
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is because other traders believe the stock price is going to drop and they want to sell their

shares now before it does. Bob wants to sell his shares now before the price drops so he

places a sell limit order at $19.25 – one tick below the best ask price so Bob can have his

limit order executed ahead of everyone. Other traders like Bob follow suit and the best

bid drops to $19.25 with 400 total shares available to be purchased. Alice sees that her

plan has worked and places her market order to buy 200 shares at $19.25 and cancels her

limit order at $19.28. Alice has now made a small profit over having just placed a market

order like Figure 1.8. Since this would all be happening at nanosecond time scales Alice

is able to place spoofing orders and cancel them at extremely high speeds making use of

computer algorithms.

However, the price could move against Alice as shown in Figure 1.10. In Figure 1.10,

Alice places the same sell limit order of 200 shares at $19.28, but now Bob and the other

traders place market orders which remove 500 shares from the ask side of the order book.

This may be because they see a nice wall of stock at $19.28 and believe their market

orders will not go too deep in the book. This causes the best ask to increase to $19.27

when Alice places her market order and cancels her limit order. Unfortunately, Alice has

now paid more for her 200 shares than had she just placed her original market order as

in Figure 1.8.

Things can get even worse for Alice. In Figure 1.11 Alice places her limit order of

200 shares too close to the best ask. Like before, the best ask price increases because of

the market orders from Bob and other traders which causes Alice’s sell limit order to be

executed. Now Alice needs 200 shares to cover her executed limit order on top of the 200

shares she originally wanted to purchase. Alice places a market order of 400 shares to

cover this and ends up paying significantly more than if she had just placed her market

order as in Figure 1.8. From this example it should be obvious how dangerous it is for

Alice to place her spoofing orders close to the touch4 – such orders are more likely to

be executed by market orders which require her to buy them back at a higher price. No

trader wants to buy high and sell low.

The strategy for the spoofer is then to determine how large their limit orders need

to be and at what price to place them in order to manipulate the price in their favour

while also placing the limit orders deep enough into the order book so that they will not

be executed.

Clearly this is a conveniently devised example and this strategy may not always

work out in Alice’s favour. The increased spread could lead to more buy limit orders

which increase the best bid instead and Alice is back where she started. Spoofing is not

4The ‘touch’ refers to the best bid and/or the best ask, simultaneously.
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Figure 1.9: Case where spoofing has positive payoff. Alice places a spoofing sell limit
order of 200 shares at $19.28. Bob and other traders enter sell limit orders totaling 400
shares at $19.25 – 1 tick below the best ask. The best ask has dropped so Alice cancels
her spoof order and places her market order of 200 shares which are lifted at $19.25. The
final result is Alice has acquired her 200 shares, saving $0.01 per share.
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Figure 1.10: Case where spoofing has negative payoff. Alice places a spoofing sell limit
order of 200 shares at $19.28. Bob and the other traders place market orders which
remove 500 shares from the ask side of the order book. This causes the best ask to
increase to $19.27 when Alice cancels her spoofing limit order and places her market
order of 200 shares which are lifted at $19.28. Alice has still acquired her 200 shares, but
she spent $0.02 per share more than she needed to.
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Figure 1.11: Worst case scenario for spoofing. Alice places a spoofing sell limit order of
200 shares at $19.27. Bob and the other traders place market orders which remove 700
shares from the ask side of the order book. Alice’s sell limit order is executed before
she can cancel it – now she must buy her 200 shares plus another 200 from the executed
trade. Alice places a market order for 400 shares which walk the book to $19.29. Alice
has paid more for her original 200 shares than she needed to, but she also had to buy
shares back at a higher price than she sold them. The executed spoofing order cuts
further into Alice’s profits.
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guaranteed to work for the spoofer – whose goal is to increase the odds of favourable

price movements and capitalize when they happen. In what follows we provide a list

of documented instances of spoofing. We see that spoofers are doing this over years on

specific stocks, futures, options, or commodities at high frequencies.

Stocks with large spreads and volatility would be obvious targets for spoofing orders

as their impact would be larger [34, 35]. The large spread would allow traders to place

limit orders below the best ask more easily – this is exactly the desire of a spoofer wishing

to buy shares. Very tight spreads would mean that shares need to be lifted from the best

bid before the best ask can drop. This can obviously happen, but the steps needed in

depleting the volume at the best bid (through cancellations or sell market orders) is more

involved than simply placing a single limit order to lower the best ask.

In the wake of the 2008 financial crisis the United States passed the (2010) Dodd-

Frank act to overhaul regulations on the financial industry. It became “against the law

to spoof, or post requests to buy or sell futures, stocks and other products in financial

markets without intending to actually follow through on those orders.” [36].

In 2014, the US Commodity Futures Trading Commission (CFTC) told the Chicago

Mercantile Exchange & Chicago Board of Trade (CME Group Inc.) to continue develo-

ping spoofing detection [37]. Since then a number of individuals and groups have been

accused and sentenced for spoofing. That same year Michael Coscia was arrested for

spoofing commodity futures markets in the first application of the relevant sections of

the Dodd-Frank Act and was found guilty in 2015 [38]. Each spoofing count brings a

10 year jail sentence plus $1 million in fines. Coscia was sentenced to 3 years in prison

for his crimes. In 2015, Navinder Singh Sarao of the UK was arrested for contributing

to the 2010 flash crash – he pleaded guilty in 2016 [39]. A Canadian, Aleksandr Milrud,

pleaded guilty to US Federal prosecutors for spoofing to earn profits of $1.9 million [40].

Staff of the Ontario Securities Commission (OSC) settled their first spoofing case in

2015 against Oasis World Trading [41]. In this case 0.14% of Oasis’ total trades and 0.04%

of their trade volume was found to be spoofing orders. It was a small number relative

to their total trades, but “a very high proportion” of the total orders and volume of

stocks targeted by Oasis. That is, very little of Oasis’ trading activity was manipulative

on the market except for the stocks they targeted for spoofing where they made up a

significant amount of the orders and volume on the book for that stock. This may imply

it is easier to detect manipulative practices on an individual stock rather than looking

at the aggregate of orders by a trader.

The OSC has also made allegations in 2018 against K2 Investment Fund for spoofing

options on the Montreal Exchange [42]. Fines and bans were placed on K2 and its upper
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management after the investigation. That same year three major financial institutions,

Deutsche Bank, UBS, and HSBC, paid $47 million collectively for manipulating futures

markets [43]. In 2019 a former Bear Stearns and Bank of Nova Scotia trader, Corey

Flaum, pleaded guilty for spoofing precious metal markets [44] and JPMorgan Chase has

also been accused by US Federal prosecutors of spoofing precious metals [45].

The problem facing prosecutors when charging traders with spoofing is proving intent.

A former UBS previous metals trader, Andre Flotron, was acquitted by a jury in Connec-

ticut in 2018 on spoofing charges [46]. The main issue is that most orders on individual

stocks go unfilled (see Appendix A, for example) and canceling orders is not illegal, so its

hard to classify an order as spoofing [34]. What worked in Andre Flotron’s favour was

that the two traders that testified against him recieved non-prosecution agreements which

called into question their trustworthiness, he did not make use of computer algorithms

and allowed orders to stay on the book for up to a minute, and his victims were other

large financial firms that would not come across as sympathetic victims. After only a

few hours of deliberation, Mr. Flotron was found not guilty. Detecting potentially illegal

orders does not prove a trader’s intent to manipulate markets, but methods for detection

are needed to even bring these cases to the courts. Moreover, sophisticated detection

methods may lead to stronger evidence that suspicious orders were placed in bad faith.

All of these cases have come from increased scrutiny of the financial markets. As

the above list of incidents makes clear – spoofing is not limited to just stocks, but has

been detected in futures, options, and commodity markets. Financial regulators have

increased their efforts to detect manipulation and academic research has expanded into

this territory as well in recent years. Machine learning techniques have been applied to

detecting anomalies in limit order book timeseries [47, 48]. Also, we previously discussed

the work in trade-based manipulation for a limit order book model [8, 9], but research

into modelling limit order book spoofing still remains ‘scant’ [49].

Lee et al. [34] take an empirical approach studying the impacts of spoofing on the Ko-

rean Exchange (KRX) using intraday trading data taken from November 2001 - February

2002. This time period was chosen because up to the end of 2001 the KRX disclosed

the volume of shares on both sides of the limit order book in addition to the prices and

volumes 5 ticks from the best ask and best bid. At the start of 2002 the KRX, in an

attempt to stop price manipulation, stopped disclosing the total volume on both sides of

the book, but increased the visible portion of the book from 5 to 10 ticks from the best

ask and best bid. The authors define a spoofing order as a limit order at least twice the

size of the previous day’s average order size placed at least 6 ticks away from the best

ask/bid, followed by a market order on the opposite side of the book and cancellation
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of the spoofing order. The author’s goal was to test, empirically, if there was a statis-

tically significant decrease in spoofing orders after the information disclosure change on

the KRX. They show that during the initial 2 month period the average spoofing order

is 5.6 times larger than the typical limit order and almost all spoofing orders are placed

more than 10 ticks away from the touch. The spoofer places an extremely large order

outside the disclosed portion of the book (so far from the touch that it is very unlikely

to be executed) so that other traders cannot see where it is placed, but they can see the

spoofing order’s impact on the total volume posted on that side of the book. This gives

other traders the impression of an imbalance between the number of shares available to

buy and sell and moves the price and achieving substantial net profits of 67 - 83 basis

points5 over the course of 45 minutes. They also show that spoofers target stocks with

higher return volatility, lower market capitalization, lower price level, and lower mana-

gerial transparency, and trading volume is not a significant determinant of targeting by

spoofers. The opening and closing of the market was also the most active spoofing period.

In addition, 96% of the spoofing orders are placed by individuals instead of institutional

investors which they argue is likely because: 1) a large firm would need to spoof consi-

derably to earn profits that interest them which would raise flags to regulators, and 2) it

is not likely for compliance departments within the firms to allow the use of potentially

illegal trading strategies. When the information disclosure change came into effect on

January 2, 2002, the proportion of spoofing orders located 11 ticks and below decreased

from 89% to 40% – succeeding in reducing the total number of spoofing orders on the

KRX.

Wang [35] employs a similar empirical analysis of spoofing in the Taiwan’s index

futures market (TAIFEX). TAIFEX discloses the first 5 ticks on each side of the book,

but not the total volume beyond. For this reason they use a different definition of spoofing

– any order within the disclosed 5 ticks with a size larger than the prior volume on the

5th tick which is followed by a market order on the opposite side of the book, and then

a cancellation of the spoofing order. They find spoofing is associated with all types of

traders, but mostly with individuals, and that spoofing is likely to occur when volume,

volatility, and prices are high. Like Lee et al. [34] they find that spoofing is most common

during the first and last hour of the trading day and is profitable in the majority of cases.

Wang also argues that spoofing destabilizes the market by increasing trade volume along

with the spread and volatility.

Cartea et al. [49] take a mathematical modelling approach to spoofing a limit order

book. They continue the idea in Lee et al. [34] that volume imbalance in the book

5A percent of a percent – 0.01%
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impacts price movements which a spoofer can take advantage. In their model they take

on the role of a spoofer that wishes to liquidate a collection of shares using spoofing

orders at the best bid to incite traders to execute the spoofer’s sell limit order at the

best ask. This is favourable to the spoofer over liquidating their shares by selling at

the best bid as the spoofer will earn the spread in profit. They use a Markov chain

to model the volume imbalance which moves the market between buy heavy, neutral,

and sell heavy regimes. Intensities of the various order types during each regime are

calibrated using Nasdaq high frequency data for a collection of individual stocks. The

spoofer can then influence which regime the market is in using their spoofing orders. The

stock’s price dynamics are then dictated by the different order intensities which change

with the imbalance regime. They also incorporate into their model the possibility of their

spoofing limit orders being executed causing them to purchase shares which would add

to the inventory they need to liquidate. The authors then formulate the maximization of

their profit over a finite time horizon as a dynamic programming problem. This problem

can then be converted into a partial differential equation by standard methods and solved

to yield the optimal spoofing strategy. Cartea et al. [49] find that spoofing increases the

performance of their execution strategy and considerable profit can be made. They argue

spoofing strategies are detrimental to the integrity of markets and their model can be

employed to understand these strategies better in order regulators to combat them.

In chapter 2 we detail the volume imbalance employed by Cartea et al. [49] and use

a generalized form of this statistic in our price manipulation model covered in chapter 3.

1.5 Distributed Data

We briefly touched on some aspects of the data system earlier in this chapter. We

illustrated the type of data in Table 1.1, we described the large size of the raw datasets,

and sketched some of the tools we need to use to work with them. In this section we will

provide more detail about the issues working with very large and complicated data sets.

This section will be particularly useful for readers without a background in big data.

All data was hosted on an Amazon Web Service (AWS) cluster with the ability to

interact with the data by executing scripts in an Apache Zeppelin notebook. Apache

Zeppelin is a front-end for the cluster which allows one to execute code from various

back-end languages such as R and Python. Apache Zeppelin is also fully integrated with

Apache Spark - an open-source distributed general-purpose cluster-computing framework.

With Apache Spark and Zeppelin we can create whatever data sets we want, regardless

of size, and work with them as if they were any small data set loaded into R or Python’s
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Pandas, for example. The advantages are that any calculations done on the data are

done in parallel across the cluster’s nodes and we can load data sets into memory that

would normally crash an ordinary personal computer.

The cluster itself starts with a collection of tables like Table 1.1 which are accessed

through ‘Structured Query Language’ (SQL) queries. Since this is a distributed frame-

work we need to pass our SQL queries through Presto to load the massive data sets across

many executor nodes which are all passed instructions from the driver node. Presto is a

SQL query engine for big data which allows for easy data visualization and investigation.

However, the generated data frame from the Presto SQL query cannot be passed on for

deeper analysis - say optimization or statistical tests. Instead, we pass our SQL que-

ries to Pyspark - an application programming interface (API) which exposes the Spark

programming model to Python. With Pyspark we can use our SQL queries to generate

Pyspark dataframes that can be manipulated with Python-esque scripts.

Anyone with a background in Python’s data analysis library (Pandas) will find it,

syntactically, very similar to Pyspark. In Pyspark the the data manipulation is passed to

the executor nodes and the results are passed back to the driver and collected. This can

be very time consuming if the dataset is large. We are also limited in what we can do

with Pyspark on the dataframe. The built in functions are for handling simple statistics,

groupings, windows, etc, but progress is being made on integration with machine learning

packages. However, we can use user-defined functions (UDFs) to do more complicated

operations by row or column in the dataframe. Again, this can be very time consuming

based on the dataframe size and how complicated the UDF is. To avoid this problem

we can take advantage of Pyspark’s ability to convert Pyspark dataframes into Pandas

dataframes so we have access to all Python libraries to carry out any analysis we want.

For example, the first optimization algorithm we tried would take over 2 hours to run

using UDFs and less than 5 minutes if converted to a Pandas dataframe. The drawback

is that if the data set is too large we risk crashing the entire cluster when we read it into

memory on the driver. This is because it was originally spread out across many nodes.

Size issues with this conversion can mostly be remedied by careful use of assigning

data types to each column. For example, we could convert a column with only a few

different entries into categorical variables. The ‘Side’ column in the data set stores the

string ‘Buy’ or ‘Sell’ which is expensive in a dataframe of several hundred thousand

rows. Since there are only two possible values in each row we can convert all of these

strings to a categorical variables 0 and 1 by ‘Buy’ → 0 and ‘Sell’ → 1. This effectively

turns each multi-byte entry into a single bit. Many columns can also be efficiently stored

as integers instead of floating point numbers. We can even convert our timestamps to
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integers instead of strings by using unix time (the number of seconds that has passed

since midnight UTC on Jan. 1, 1970) and splitting nanosecond portion of the time stamp

into a separate column – also converted to an integer. These easy steps can reduce the

size of our data frame by as much as 75%.

We have outlined the process we use to generate the data sets needed for our analysis

in later chapters. With that in mind, in the following subsection we can discuss some

examples of problems that arose from this project that are typical for data science projects

and the solutions used to fix them.

1.5.1 Examples of Issues Arising in Data Science

Example 1: Missing data One of the most common problems in data science is

missing data. This could be, for example, missing rows in a time series where data was

not collected or missing columns where only partial data was collected. The process of

cleaning data sets is often the most time consuming part of data analysis and in industry

there are usually entire groups dedicated to making sure data is complete and consistent.

Our problem with encountering missing data is that we cannot modify or control how

TMX collects and designs its data sets. Also, since we need to pass SQL queries to the

cluster to generate our data sets we cannot know if we have missing data until after it

has been collected. It would be impractical to read the entire data set of all trading

data across all stocks for years into memory - even distributed over a large cluster. We

need to generalize the code for our analysis enough that we can modify it easily when we

encounter these problems without actually knowing when or how they will appear.

An example of working with missing data happened in our work when generating

our data set for the limit order book on June 15, 2017 for all stocks we analyzed. The

problem was that there were multiple orders, with time stamps after the trading day had

concluded, that had a ‘not a number’ (NaN) stored for the price the order was placed

at. These orders had no reason to be there and it makes no sense to have no price listed

for the orders anyway. When attempting to store these NaN values in the data frame

the code would crash because our price column was set to unsigned integer data types

(after converting dollars to pennies). This problem was never encountered for any other

day. Its likely these entries in the order book table were present because of internal

TMX bookkeeping. The NaN values themselves did not raise suspicion because TMX

uses NaN’s to fill in entries where there is no value – for example, the ‘other broker

id’ column in Table 1.1 for ‘Booked’ or ‘CANCELLED’ orders. While TMX is using

‘NaN’ as a placeholder entry in their data sets this is against the Institute of Electrical
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and Electronics Engineers (IEEE) standard of using ‘NaN’ specifically for undefined or

unrepresentable values such as log(0) or 1
0
, for example.

Its important to have a solid knowledge of what your data is and how you are using

it in order to solve these kinds of problems when they show up. Since these orders with

missing prices appear after the regular trading time we can just drop these entries from

the data set - we do not need trade data after the market closes. Knowing the hours of

when the TSX is active presents this as a solution to our problem. If we knew nothing

about our data we would not expect to be able to throw problematic entries away nearly

so easily.

Example 2: Breaking existing data structure It is frequently helpful to build new

code from an existing code base. For us, our initial code to produce aggregate limit order

book data was written by TMX and gave us a skeleton code to modify for producing

what we needed. Our own code base for our order book analysis was entirely built from

these initial few scripts and never presented a problem until our code would crash for

different stocks on different days with a generic error message attempting to create a

data frame from empty arrays.

In the early hours of the morning, TMX updates the order book for the day by rolling

over any orders that were left from the previous trading day. These orders come in one

at a time at the same time every day. The sell orders appear first until they have all been

added to the book and then the buy orders are added. The initial code by TMX would

begin generating the limit order book a few seconds after this process would start. There

are often very few orders which roll over and both buy and sell orders have filled the

book by the time the code starts preparing data frames to fill with this data. However,

on some days with some stocks the sell orders had not finished rolling in by the time the

data frame tries to collect both sides of the book. It would find an empty buy side and

return errors - crashing the code.

This was never an issue for the original purpose of the code, but became an issue for

us when we modified it for our purposes. Again, like the first example, our knowledge

of how the data is organized gave us an easy solution - just start building and storing

the limit order book shortly before the regular trading time starts. All orders would

have rolled over hours before this happens. Like the previous example this seems like

an easy and obvious solution, but in data science we are often not so lucky to have the

problematic data entries appearing in parts of the data set we would be removing anyway.
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Example 3: Distributing data by incorrect columns When creating a distributed

data frame you need to select what columns of the data frame to partition over the

different nodes. A natural choice would be to partition by time, date, side of the order

book, or stock symbol. For time series outside of finance, say daily rain or snow fall, there

is usually never a problem with time not being unique to each data entry. However, in

the age of electronic algorithmic trading we cannot precisely give a unique time stamp to

an order even down to nano-second timescales. Our problem then arose by partitioning

over time of day and date since for some entries the time was not unique. When the

data set was collected back to the driver node the data set was completely out of order

with column entries from different rows being swapped. Since time is not unique in the

data set we also cannot just reorder it afterwards. No errors would be produced and

the distribution of the change in the best ask would not look out of the ordinary, so you

would never know there was an issue until you plotted, say, the best ask over the trading

day. Always check that your results are consistent when working with data. You may

never know you are using incorrectly generated data if you do not have safety checks set

up throughout your analysis.

Conveniently, TMX already thought of this problem and had a solution built into

the data structure. Looking back to Table 1.1 we have the ‘seq’ column which tracks

the order that all orders arrive to the exchange. Partitioning and ordering by the ‘seq’

column solves our issues with the distributed data frame and sorting in time. If time is

not guaranteed to be unique for your data you always need a way to know how the rows

are ordered. The growing theme across these examples is that having a solid knowledge

of what your data is and how you are going to use it allows you to handle potential

problems.

Example 4: Outliers Another thing that can happen with time series data is that

you can encounter specific days or time periods where you get vastly different results

than usual. Ordinarily, you might expect you simply made a mistake in your code or

your model does not present the consistent results you were expecting. However, with

financial data there can be alternative explanations for what you see.

In chapter 4 we investigate the calibration of the models we present in chapter 3

and find unusual results on the same dates across multiple stocks. In this example, the

dates are May 29, 2017 and July 4, 2017. If we were unable to extract exact dates (or

were never provided dates) we would never know these days correspond to holidays in

the United States where their own exchanges and financial institutions are closed. Our

unusual results are caused by significantly less trading activity because the American
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traders are on holiday when the Canadian traders are still active. We also find similarly

strange results for specific stocks which corresponded to dates surrounding their record

dividend date. This is the date in which the owner of the share is guaranteed to receive

a dividend payment usually a month later.

Since our data is properly labeled and timestamped these kinds of issues are possible

to solve with a little extra work. In our case these outlier points were not a bug, but

a feature of the model – we are able to detect unusual days in the time series from our

model parameters.

1.6 A Look Ahead

Price manipulation has existed in financial markets for a long time, but the introduction

of computer systems and the move towards high frequency trading (HFT) has introduced

new ways to manipulate. Like the pump and dump strategies of the past, spoofing is

a new form of price manipulation through introducing misleading information into the

market. The literature on detecting spoofing is relatively small, so it is important to

develop mathematical models which can combat these strategies.

So far we have covered how stocks are traded electronically through the limit order

book, how this data is stored, and how a spoofer could manipulate prices in the limit order

book. In recent years there has been a considerable up-tick in prosecution of spoofers,

but research needs to be done on better and more efficient detection methods to catch

these people before they do damage to financial markets – either through monetary losses

or distrust in the system. Our goal over the course of this work is to build a model which

can be used to explore the costs associated with spoofing that we saw in Figures 1.8,

1.9, 1.10, and 1.11 in order to determine when and how a spoofer can best profit from

the state of a limit order book. From this model we can develop tools to explore when

a limit order book is most vulnerable to spoofing and give regulators a way to narrow

their search for price manipulation caused by spoofing.

In the following chapters we build up our model for spoofing order detection. When we

talk about price change distributions we are naturally determining a time scale associated

with those changes. In chapter 2 we discuss the implications and complications related

to time scales in the limit order book. Information about volume imbalance has been a

common component in the study of spoofing. We continue with this idea by condensing

the limit order book into a single variable, the volume imbalance ratio, which we analyze

with statistical tests for its predictive power in price changes. These statistical tests will

be an important tool for us to compare models later this work.
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In chapter 3 we introduce our mathematical notation for the limit order book and

derive the equations needed to quantify the payoffs associated with the actions we saw in

Figures 1.8, 1.9, 1.10, and 1.11. We then develop a model for the price change distribution

dependent on the volume imbalance ratio before giving the final optimization problem

for the spoofer on where to place their limit orders for maximum impact. The ultimate

result is a starting point to look for manipulation in the book.

In chapter 4 we discuss the calibration of our model to the limit order book data

we presented in this chapter. The resulting model parameters are then analyzed against

each other as well as with data from the market activity itself. We also return to the

statistical tests conducted in chapter 2 to see which stocks found improvement under

the calibrated model parameters. A goodness of fit of our price change model is also

presented.

In chapter 5 we apply our spoofing cost model to multiple stocks to determine when

spoofing is the optimal decision for purchasing a fixed number of shares. This will provide

an idea of when our model would predict the book is sensitive to price manipulation. We

also explore including risk in the decision making process as spoofing may be profitable,

but the risk of your spoofing limit orders being executed against you may make spoof-

ing undesirable. Incorporating risk into the decision making provides excellent clusters

which allows us to study changes to the decision boundary as we change the spoofer’s

constraints: the volume of shares they are willing to spoof with, and the number of shares

they wish to purchase. We also study the optimal spoofing strategy of a specific stock

and find the shape of book plays a key role in the spoofer’s decisions.

Finally, in chapter 6, we end with a summary of the work and possible directions and

extensions we can take to improve our model.

Figure 1.12 shows a breakdown of the key concepts covered in each chapter as well as

how these concepts are connected. We use arrows between sections to highlight how we

will be returning to specific ideas in later chapters once we have developed the machi-

nery necessary to discuss these topics. For example, in chapter 2 we define the volume

imbalance ratio and conducted statistical tests to show its association with future price

movements. We generalize this definition in chapter 3 and use this definition to calibrate

our model in chapter 4. Afterwards we return to the statistical tests in chapter 2 using

our new model parameters to show improvements in the model over the classical defini-

tion of the imbalance. We also develop our price change model in chapter 3 and analyze

the goodness of fit in chapter 4. At least, the results from our model calibration and

generalized imbalance weights in chapter 4 are fed into our analysis of spoofing detection

in chapter 5.
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Figure 1.12: Breakdown and connections of main concepts of the thesis.



Chapter 2

Features of Limit Order Book Price

Movements

2.1 Introduction

Now that we have covered how stocks are traded electronically by means of the limit

order book we can can explore some deeper features of the book. Our main focus in this

work will be on the features which impact the changes in the best ask price and how

can we write down a model which incorporates these features into the price changes. We

focus on the ask side of the limit order book, but the same methodology can be applied to

the bid side by just flipping replacing ask → bid in all relevant equations and definitions

since there is a conceptual symmetry between the two sides of the book.

Extensive literature exists on features of the limit order book impacting future price

movements. The two most common features used are the current prices, volumes, and

order numbers on both sides of the limit order book. Cont et al. [50] show that the

difference between the order flows on the bid and ask sides of the book, net order flow

imbalance, is an excellent predictors of future prices. Similar work using net order flow

and future price prediction was conducted in [51, 52]. The volumes in the book have

been used frequently in the literature as a predictor variable of future price movements

in machine learning algorithms [53–55] and more standard financial modelling settings

[56, 57]. More recently, studies have been done using the volume imbalance ratio as

a predictor variable which aggregates the limit order book volumes down to a single

number. Cartea et al. [58] being the first to explore this idea and apply it to enhancing

algorithmic trading strategies1. Since then a number of papers have expanded on this

1Their paper on spoofing [49], which we discussed in chapter 1, uses the volume imbalance ratio for
its regime switching mechanism.

31
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work, [59] for example. However, information about depths in the book beyond the best

ask and bid has not been studied in the context of the volume imbalance ratio. Following

in the footsteps of Cartea et al. [49], in chapter 3, we generalize the classical definition of

the volume imbalance in order to include volume information deeper in the book which a

spoofer could influence, and, in turn impact future price movements. Past studies [51, 56]

have shown the depth of book plays a role in determining future price movements and

we aim to continue this study using the volume imbalance ratio.

In this chapter we discuss the time dependence that arises from limit order book

data on price movements as well as one particular feature that has been explored in the

literature in a different context – the volume imbalance ratio. The volume imbalance ratio

is a way of aggregating the volumes in the limit order book at all available prices into

a single feature variable. This variable, defined more precisely later in this chapter, has

been connected by the past literature with limit/market/cancel order frequency on both

sides of the book; the result of these, mediated through the logic of the order book, leads

to price impact. Instead of taking this approach we look directly at volume imbalance

and how it impacts the distributions of price movements as a way of describing how the

shape of the limit order book determines possible prices. When referring to the shape of

the limit order book we follow, for example [8], to mean how the quantities of shares q

at each price p can be thought of as some function q(p) on each side of the book. That

is, a general term to encompass the value, slope, curvature, etc, of q(p) for both sides of

the book.

Before we can discuss the volume imbalance we need to tackle the importance of some

of the properties of the limit order book over time. This includes both the time of day

and the time interval over which the limit order book is observed. From there we can

start to build our model.

2.2 Sampling Time and Price Movements

Care must be taken when investigating the distribution in change of best bid or ask

prices throughout the trading day for a particular stock. Computing a price change

distribution implicitly requires a time step or sampling frequency. This could be when

any order arrives, when a trade occurs, or every 5 or 10 seconds. The choice of frequency

will yield potentially very different results for each distribution.

For example, Figure 2.1 shows the distribution of best ask prices in ticks (of pennies)

for AEM stock on April 17, 2017 for different sampling intervals. We chose AEM stock

because it was the most actively traded stock on April 17, 2017. We observe the peak at
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Figure 2.1: Probability of change in best ask price (in pennies or ticks) for AEM stock
on April 17, 2017. Each subplot shows the distribution of prices when sampling every 1,
5, 10, 20, and 30 seconds, respectively.

0 decreases with an increase in sampling interval. This is because prices have a higher

probability of moving over longer time frames. Not surprisingly, we observe a larger

range of price movements over longer time periods.

The price distributions will also heavily depend on the activity of the stock. The

more active the stock, the larger the price movements we observe at a given sampling

frequency. For less traded stocks we may need to look at significantly larger sampling

times to produce pictures like Figure 2.1. When performing any kind of modelling of

price distributions with limit order book data one needs to be mindful of the sampling

intervals used.

Figure 2.2 compares the distribution in the best ask price for three different stocks

over 5 time intervals. We see each stock exhibits a different time dependency on its price

movements. Even after 60 seconds, XEG resembles HFU at 5 seconds. Similarly, HFU
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Entire Trading Day

(a) XEG (b) HFU (c) CNR

Figure 2.2: Distribution of change in best ask price for XEG, HFU, and CNR stocks on
June 1 - 8, 2017. Each subplot row from top to bottom is the distribution after sampling
1, 5, 15, 30, 60 second time intervals, respectively. Data used is from the entire trading
day for each day.

at 60 seconds resembles CNR at 15 seconds. Also, among these three stocks you would

likely say CNR is most like AEM, shown in Figure 2.1.

In addition to the sampling time problem we also have that different periods of the

trading day display different behaviour. It is well known from past literature that the

first hour of the trading day exhibits a larger number of orders and more frequent price

movements than other hours of the trading day [34, 49, 50, 56, 57, 59]. This is usually

dealt with by excluding data from the first 30 to 60 minutes of the trading day. Comparing

Figure 2.3 to Figure 2.2 we can see that the first hour of the trading day for our three

stocks see more frequent price movements over the same time interval and the movements

you do see are larger. This is odd and possibly due to our small selection of stocks. A

more expansive analysis will be done in the next chapter.

We also have another issue appearing in the final subplot of Figure 2.3 for CNR stock.

The same plot is shown blown up in Figure 2.4. If we take sampling times long enough

we start to lose the structure and symmetry of the price distribution we have at smaller
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First Hour of Trading Day

(a) XEG (b) HFU (c) CNR

Figure 2.3: Distribution of change in best ask price for XEG, HFU, and CNR stocks on
June 1 - 8, 2017. Each subplot row from top to bottom is the distribution after sampling
1, 5, 15, 30, 60 second time intervals, respectively. Data used is from the first hour of
the trading day for each day.

time intervals. It could be because the distribution in Figure 2.4 is a mixture of two or

more distributions that emerges over longer time intervals. This is outside the scope of

this work, but would be an interesting direction. We will end up up limiting ourselves to

time intervals over which this behaviour is not observed.

In contrast to the first hour of the day, taking a look at the final hour of the trading

day in Figure 2.5 we cannot see too much difference from the patterns in the entire

trading day in Figure 2.2. Although Figure 2.5 does not support this, the final 30 to 60

minutes of the trading day are often excluded from other works. This is to exclude the

period of the day where, on top of the continuous trading, traders are canceling their

orders in order to prevent them from staying on the book overnight. The TSX allows

people to cancel and place market orders after the market closes, but not to place new

limit orders.

This would suggest that stocks have their own time scales determined by their price

movements. If we want to investigate collections of stocks and analyze the characteristics
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Figure 2.4: Distribution of change in best ask price for CNR stock over 60 second intervals
during first hour of trading day. Zoomed in picture of the final subplot for CNR stock in
Figure 2.3.

of their price movements we need to be able to compare them ‘apples to apples’. Over

what time scales would XEG and CNR look most similar? We have to fix the time scale

and determine an appropriate way of determining what we mean by ‘most similar’. This

will be expanded on in the next chapter.

2.3 Volume Imbalance Ratio, Prices, and Time

A much studied predictor of limit order book price movements is the volume imbalance

ratio. The volume imbalance ratio is a variable which quantifies the mismatch in the

quantity of shares available to be bought versus sold. Its a function of the shape of the

book and the collection of ratios over the trading day forms a distribution. Cartea et

al. [58] show that the volume imbalance has a strong impact on the frequency of market

orders placed on a particular side of the limit order book. The increased frequency of

market orders would cause prices to move up (down) for the best ask (bid) as liquidity is

removed and orders walk the book. If the volume imbalance can be a predictor for mar-

ket order frequency then it might be a predictor of the distribution of price movements.

A relationship between these two distributions would allow us to investigate the ques-

tion - Does the shape of the limit order book have a hand in determining future price

movements?

If at time t, we can compute the volume of shares at the best bid Vbid(t) and the

volume of shares at the best ask Vask(t) we can calculate the volume imbalance ratio I(t)
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Last Hour of Trading Day

(a) XEG (b) HFU (c) CNR

Figure 2.5: Distribution of change in best ask price for XEG, HFU, and CNR stocks on
June 1 - 8, 2017. Each subplot row from top to bottom is the distribution after sampling
1, 5, 15, 30, 60 second time intervals, respectively. Data used is from the last hour of the
trading day for each day.

by equation 2.3.1.

I(t) =
Vbid(t)− Vask(t)

Vbid(t) + Vask(t)
(2.3.1)

It is clear from equation 2.3.1 that the volume imbalance ratio I(t) ∈ [−1, 1] and

I(t) → 1 as Vbid(t) → ∞ while I(t) → −1 as Vask(t) → ∞ holding the other volume

fixed. That is, an imbalance of 1 (-1) means that all volume is on the bid (ask) side of

the book. We refer to I(t) in equation 2.3.1 as the instantaneous volume imbalance at

time t.

For price movements from order to order we can use the instantaneous imbalance as a

predictor, but when looking at price movements over a specific time interval we need a way

to aggregate the instantaneous imbalance. A simple way to do this would be to just take

the mean of the instantaneous imbalances over the time interval. We start by choosing

equally spaced sample times t1 < t2 < · · · < tM . For a time interval ∆t = tm − tm−1
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we have orders at times s1 < s2 < · · · < sN where tm−1 ≤ s1 and sN ≤ tm. From the

instantaneous imbalances I(s1), I(s2), . . . , I(sN) we define the average imbalance Iavg as

Iavg =
1

N

N∑
i=1

I(si) (2.3.2)

Keep in mind the number of orders N will likely be different for each time interval.

Another approach is to weight each instantaneous imbalance over the time interval. One

would expect that more weight should be applied to the imbalance the longer it goes

without changing. Many orders enter the book and are immediately cancelled and these

orders should have less impact on prices since they do not exist in the book long enough for

people to act upon them. We can incorporate this idea by weighting each instantaneous

imbalance I(si) by the time between successive orders, si+1 − si. Instead of equation

2.3.2 we can define the average time weighted imbalance Iavg between times tm−1 and tm

as

Iavg =
1

sN − s1

N−1∑
i=1

I(si)(si+1 − si) (2.3.3)

We exclude the instantaneous imbalance at sN since the next order would be outside

the time interval and we have no associated next price movement. Figure 2.6 shows our

one period model between times t and t + ∆t and how we aggregate our instantaneous

imbalances into an aggregated average imbalance Iavg.

Figures 2.7 and 2.8 are the time series and histograms of the average imbalance of

AEM stock on April 17, 2017 over 5 second intervals. We can think of the definition

from equation 2.3.2 as having no time weighting as all orders are treated as equal. In

this chapter we use time weighting when we refer to the average imbalance, but compare

results using both methods in a later chapter.

It is difficult to tell what the difference is between the subplots in Figure 2.7. Figures

2.9 and 2.10 depict the mean and variance, respectively, of the 5 second average imbalance

over 10 minute time intervals. The mean is roughly the same for both methods and they

alternate over which is greater throughout the day, but the variance is almost always

greater with time weighting.

The difference in the mean and variance of the average imbalance between the two

aggregation choices may be due to a change in sample size caused by the introduction of

the time weights in equation 2.3.3. Any order that arrives and is immediately cancelled

would be given a weight of approximately zero – effectively removing it from the calcula-

tion and lowering the sample size within that time interval. We can compare the sample



Chapter 2. Features of Limit Order Book Price Movements 39

Figure 2.6: One period model for aggregating instantaneous imbalances into the average
imbalance Iavg. We use the notation Ii = I(si) for the instantaneous imbalances between
time t and t+ ∆t.

(a) Average imbalance (simple mean)

(b) Average imbalance (time weighted mean)

Figure 2.7: Time series of the volume imbalance ratio for AEM stock on April 17, 2017.
Sampling was done every 5 seconds
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(a) Average imbalance (simple mean)

(b) Average imbalance (time weighted mean)

Figure 2.8: Probability density of volume imbalance ratio for AEM stock on April 17,
2017. Sampling was done every 5 seconds.

Figure 2.9: Mean of time series in Figure 2.7 over 10 minute intervals. Mean varies
slightly with both methods having periods being greater than the other.
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Figure 2.10: Variance of time series in Figure 2.7 over 10 minute intervals. Variance is
almost always greater with time weighting.

size in each 5 second bin to Kish’s effective sample size [60] when the mean of the data

is calculated with weights wi. The effective sample size is defined as

neff =
(
∑n

i=1wi)
2∑n

i=1 w
2
i

(2.3.4)

Here the weights wi are taken to be the time differences si+1 − si between orders

in equation 2.3.3. Figure 2.11 compares the sample size of each 5 second bin to the

effective sample size over the trading day. The smaller effective sample size is a possible

explanation for the increased variance when using time weighting. We also see that

when we use time weighting we need significantly fewer samples to achieve roughly the

same mean. This would suggest that there are a few orders in each 5 second bin which

dominate the calculation for the average imbalance.

Figures D.1 and D.2 show the result of replacing the instantaneous imbalance with

random draws from the standard normal distribution to see if it is solely the weighting

which causes the increased variance. We see the same increase in variance as we would

expect (although the gap is much smaller), but the mean for the average imbalance with

both weightings is much closer than we see from the standard normal. Figure D.6 is a

visual test to see if the imbalance is independent and identically distributed. We can see

that this is not the case over short time scales, but is true over longer time scales and

could explain why we see the approach taken to calculate Iavg has little impact on the

mean. We also see that there is an interesting grid appearing based on specific imbalance
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Figure 2.11: Average sample size in 5 second bins over 10 minute intervals. Sample size
is the number of orders in each 5 second bin and the effective sample size is calculated
from the time weights. Effective sample size is also known as Kish’s effective sample size.
Weights are the same as Figure 2.7.

values. It looks like the imbalance is bound between nice rational number values (ex.

1/3, 2/5, 3/4, etc). This may just be an artefact of how algorithms place limit orders

at the best bid/ask over the trading day. Cartea et al. [61] find a similar pattern in the

number of executed orders at particular cents in the stock price. Their interpretation

is “that for some reason (rational or not) there is a preference for providing liquidity at

prices that end in round cent values”. We may be seeing something similar in the volume

imbalance by traders placing orders to move the imbalance to nice round numbers as

well.

Figures D.3, D.4, D.5, and D.7, show the same characteristics as AEM on the same

day to show this is not an isolated case.

Our two different ways of calculating the average imbalance have only a small impact

on the mean while the variance increases from the smaller sample size. The preceding

figures were only for a single stock on a single day and would just be anecdotal evidence

for what we see in Figures 2.9 and 2.10, but the real test will be which weighting scheme

provides better predictive power of price movements.

The impact of the volume imbalance on the distribution of price movements for AEM

stock is shown in Figure 2.12. The effect of imbalance is not to translate the distribution,

but to skew it. A heavy positive (negative) imbalance skews the distribution to the right

(left). This would mean it is more likely to see an up (down) price movement when the
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imbalance is positive (negative).

(a) Average imbalance from mean (b) Average imbalance from time weighting

Figure 2.12: Probability of change in best ask price (in pennies or ticks) for AEM stock on
April 17, 2017. Sampling was done every 5 seconds. The top plots show the distribution
of prices unconditional on the volume imbalance. The center is conditional on the volume
imbalance being less than the 25% quantile. The bottom is conditional on the volume
imbalance being greater than the 75% quantile.
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Since AEM was already skewed regardless of the imbalance on April 17, 2017 it is

hard to tell just from looking at the distributions what is really happening. In Figure

2.13 we plot the cumulative distribution function (cdf) for each subplot in Figure 2.12 on

top of each other. We can see that the cdf is skewed left when the imbalance is less than

the 25% quantile and skewed right when greater than the 75% quantile. We can also

see that the time weighting has helped separate the different imbalance regimes from the

unconditional case for the positive price movements, but this is just a single stock and

we will need look at some measure over a larger collection to see how these two ways of

calculating the average imbalance differ.

In these examples we condition on the imbalance taking its more extreme values in

order to magnify the effect, but we will need to use hypothesis testing to determine if

conditioning on the imbalance has a statistically significant impact on price movements

and how large that impact is if it exists. We then conduct two tests for statistical

independence between the price movements and the imbalance.

2.4 Statistical Tests of Volume Imbalance

In this section we explore two tests to provide evidence whether the impact of the volume

imbalance ratio is a predictor of changes in the best ask price. We will focus on the

instantaneous imbalance as a predictor of order-by-order price movements – the current

instantaneous imbalance as a predictor of the price movement caused by the next order.

We also perform the same tests for AEM stock on April 17, 2017 over 5 second intervals

as described in the previous sections of this chapter. So, the average imbalance over 5

seconds as a predictor of the overall price movement from the beginning to the end of the

time interval. We will explore the imbalance and price movements over time intervals

in the next chapter, but give a taste for what is to come in this section. Our examples

in the next subsections will be using the time weighting when calculating the average

imbalance, but we will present the results from both methods in chapter 4.

The purpose of the first test is to determine if the difference between the distribution

of the change in best ask price when the imbalance is positive or negative is statistically

significant. We will call the imbalance coarse because it is binary (positive or negative)

while the price movements are fine because we take the full distribution itself (probability

of seeing each individual tick). For the second test we bin the imbalance into 4 groups to

see if the probability of price movement being up or down dependent on the imbalance bin

is statistically significant. Here things are reversed where the imbalance is fine (broken

into bins) and the price movements are binary (up or down).
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(a) Average imbalance from mean

(b) Average imbalance from time weighting

Figure 2.13: Cumulative probability distribution for the three subplots shown in Figure
2.12.

For our statistical tests we will have two collections of categorical count data to which

we apply Pearson’s chi-squared test for statistical independence. The null hypothesis is

that the two collections are independent of each each other and the test gives us a p-

value for accepting or rejecting the null hypothesis. In our case the statistical population
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is the collection of all time-indexed orders placed on the exchange for a specific stock

over a given time period. At each order we know the instantaneous imbalance prior to

its arrival and the best ask price. Once a time interval ∆t has been specified we can

sample from this population by randomly drawing a time-indexed order and all other

orders ∆t seconds in the future. We can then aggregate the instantaneous imbalances

into the average imbalance via equation 2.3.3 and determine the change in the best ask

price between the first and last order in ∆t.

An issue which can arise with statistical tests is that very large sample sizes can

produce arbitrarily small p-values. To compensate for this we also provide the Cramer’s

V measure [62] from the chi squared value of the test which is independent of sample

size and bound between 0 and 1. A Cramer’s V score of 1 means the two collections

are identical to each other. The measure gives a strength of association between the

two count collections. We also apply a bias correction to the Cramer’s V to get a more

conservative estimate of the strength of association [63]. Details of how p-values and the

Cramer’s V are calculated for Pearson’s chi-square test for statistical independence can

be found in Appendix C.

In the following two subsections we detail the two count collections used in each test

and provide the results for a larger sample of stocks.

2.4.1 Test 1: Coarse Imbalance and Fine Price Movements

For our first test we look at the effect of the sign of the imbalance on the individual

price movement counts order-by-order and over 5 second intervals. Our categorical data

is the number of individual price movements we see when the imbalance is positive or

negative. A common rule for the chi square test is to have 5 or more counts in each cell for

larger contingency tables like Tables 2.1 and 2.2. We then take the largest range of price

movements which satisfy this rule. Order-by-order we take price movements between -3

and 3 ticks and over 5 second time intervals we take the price movements between -5 and

5 ticks. We will use AEM stock on April 17, 2017 for our examples. For the time interval

data we sample 30000 five second intervals throughout the day which can overlap. If the

5 second interval has 1 or fewer orders we discard it.

Table 2.1 summarizes the order-by-order count data. Table 2.2 summarizes the 5

second interval count data. In both cases we see that there is a significantly larger

number of price movements when the imbalance was positive, but there were more overall

downward price movements over the day.

Dividing the counts in each row of Tables 2.1 and 2.2 by the row’s total count we get
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∆pa
Imbalance -3 -2 -1 0 1 2 3 Total by Imbalance
I > 0 37 113 2859 248568 7936 257 71 259841
I < 0 22 84 6193 179684 697 9 7 186696

Total by ∆pa 59 197 9052 428252 8633 266 78 446537

Table 2.1: Counts for order-by-order price movements conditioned on sign of imbalance.
Data for AEM stock on April 17, 2017.

∆pa
Imbalance -5 -4 -3 -2 -1 0 1 2 3 4 5 Total by Imbalance
I > 0 49 132 329 912 2625 9410 2493 1114 638 243 84 18029
I < 0 34 136 339 945 2284 5529 1274 463 209 83 66 11362

Total by ∆pa 83 268 668 1857 4909 14939 3767 1577 847 326 150 29391

Table 2.2: Counts for 5 second interval price movements conditioned on sign of imbalance.
Data for AEM stock on April 17, 2017. Average imbalance calculated using time weights.

the distributions shown in Figure 2.14. Figure 2.14 shows us that, when conditioning

on a negative imbalance, we see more downward price movements and vice versa for the

positive imbalance. This is the case order-by-order and also over the 5 second intervals.

(a) Order-by-order (b) 5 second intervals

Figure 2.14: Distribution of change in best ask price order-by-order and over 5 second
intervals conditioned on the average imbalance being positive or negative. Data from
AEM stock on April 17, 2017.

This is all just initial observation from the count data, but now we can use Tables

2.1 and 2.2 as contingency tables and perform our chi square test on each under the null

hypothesis that the change in the best ask price is independent of the imbalance. The

results of the tests are shown in Table 2.3.

The p-values in both cases imply that we can easily reject the null hypothesis at any

significance level, but the Cramer’s V tells us the strength of the relationship between
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Cramer’s V p-value Correlation
Order-by-order 0.122 0.0 0.123

5 second intervals 0.114 7.33e-76 0.129

Table 2.3: Summary of chi square test for coarse imbalance and fine price movements.
Correlation is taken between change in best ask price and the imbalance.

the imbalance and the count data is meaningful and the correlation between the two is

positive. We report the same test for a large sample of stocks in Table 2.4. We only run

the same test on order-by-order data for other stocks as we still need a way of comparing

stocks which have very different behaviour over the same time interval. This will be

discussed in the next chapter.

Figure 2.15: Cramer’s V for whole day and start of day plotted against each other. Data
is from Table 2.4. The dashed line would represent a totally linear relationship between
the two statistics.

Table 2.4 summarizes our first test across a large sample of stocks using data from the

entire trading day as well as the first hour of the trading day. We see that all p-values

imply we can reject the null hypothesis at any significance level and we have a fairly

strong association between our counts and the sign of the imbalance across all stocks.

Note that some stocks have a much larger Cramer’s V than others - HQU, HSU, VFV,

for example. These stocks have a stronger relationship between the imbalance and price

movements. From Figure 2.15 we see roughly the same Cramer’s V is found in both time

periods giving the impression that order-by-order the imbalance has roughly the same

association to changes in the best ask price regardless of time of day.
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ticker Cramer’s V

HQU 0.244
HSU 0.232
VFV 0.231
HVI 0.185
VUN 0.169
PAAS 0.126
NA 0.126
POW 0.118
HOD 0.118
VGG 0.118
UFS 0.118
CNR 0.116
BMO 0.115
XWD 0.113
IPL 0.11
SLF 0.108
PPL 0.108
KL 0.108
FTS 0.106
AEM 0.105
BAM.A 0.102
HFU 0.0996
PWF 0.0956
ARX 0.0934
PVG 0.092
BIP.UN 0.0865
OR 0.0848
GIL 0.0847
HXU 0.0846
SSO 0.0843
FM 0.0842
T 0.0822
IMO 0.0815
XQQ 0.0807
ERF 0.0797
ZEB 0.0777
RBA 0.0739
FR 0.0739
FSV 0.0724
GIB.A 0.0677
CPG 0.0655
CCO 0.0594
SW 0.0562
IMG 0.0523
GOOS 0.0521
WCN 0.0455
XEG 0.0417
K 0.0411
G 0.0383
TC 0.0288

ticker Cramer’s V

HQU 0.221
HSU 0.184
VFV 0.223
HVI 0.192
VUN 0.16
PAAS 0.13
NA 0.134
POW 0.137
HOD 0.145
VGG 0.123
UFS 0.108
CNR 0.0913
BMO 0.103
XWD 0.128
IPL 0.122
SLF 0.102
PPL 0.104
KL 0.117
FTS 0.113
AEM 0.0866
BAM.A 0.105
HFU 0.0918
PWF 0.108
ARX 0.0923
PVG 0.0956
BIP.UN 0.0618
OR 0.0844
GIL 0.0852
HXU 0.0793
SSO 0.0922
FM 0.0999
T 0.102
IMO 0.0902
XQQ 0.107
ERF 0.083
ZEB 0.0904
RBA 0.0594
FR 0.0747
FSV 0.0773
GIB.A 0.0647
CPG 0.0717
CCO 0.079
SW 0.0409
IMG 0.0631
GOOS 0.0406
WCN 0.0408
XEG 0.063
K 0.0479
G 0.0478
TC 0.0368

Table 2.4: Summary of chi square test for coarse imbalance and fine price movements
order-by-order. Data is taken from June 1-8, 2017. All p-values are zero or very close
(≈ 10−46 at most) to zero. The left subtable uses data from the entire trading day while
the right subtable uses data only from the first hour of the trading day. Tickers are
sorted by magnitude of Cramer’s V for the whole day.



Chapter 2. Features of Limit Order Book Price Movements 50

In the next subsection we break the imbalance down into smaller intervals and looking

at the price direction in each interval. We can then apply the same statistical test to

that count data as we did in this subsection.

2.4.2 Test 2: Fine Imbalance and Coarse Price Movements

This time we divide the imbalance into bins and condition the sign of the price movement

on each imbalance bin. We follow [58] and split the imbalance up into the follow intervals

labeled 1, 2, 3, and 4:

Bin 1: I ∈
[
−1,−1

3

)
Bin 2: I ∈

[
−1

3
, 0
)

Bin 3: I ∈
[
0, 1

3

]
Bin 4: I ∈

(
1
3
, 1
]

Tables 2.5 and 2.6 show the count data for order-by-order and 5 second intervals,

respectively. With these counts we can test how the probability of up and down price

movements changes depending on the bin membership of the volume imbalance. As in

the previous subsection, we can divide each bin count by total in each bin to produce a

distribution for the probability of an up or down movement given the bin. The probabi-

lities are shown in Figure 2.16. One will notice that the total counts in Tables 2.5 and

2.6 are very different than Tables 2.1 and 2.2. This is because we are conditioning on the

change in the best ask being nonzero in Tables 2.5 and 2.6 while a significant number of

samples in Tables 2.1 and 2.2 correspond to no change in the best ask price.

Bin
∆pa 1 2 3 4 Total by ∆pa

∆pa > 0 657 58 1015 7259 8989
∆pa < 0 4051 2253 1484 1527 9315

Total by Bin 4708 2311 2499 8786 18304

Table 2.5: Count data order-by-order price direction conditioned on imbalance bin. Data
from AEM stock on April 17, 2017.

From Figure 2.16 we see order-by-order almost all price movements are down in bins

1 and 2, while almost all price movements are up in bin 4. However, in bin 3 we are still

more likely to see a price drop even though the imbalance is positive. We see a similar

pattern across all stocks we examined. In Figure 2.17 we are looking at the same plot as
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Bin
∆pa 1 2 3 4 Total by ∆pa

∆pa > 0 312 1809 3179 1489 6789
∆pa < 0 991 2785 3078 978 7832

Total by Bin 1303 4594 6257 2467 14621

Table 2.6: Count data over 5 second intervals for price direction conditioned on imbalance
bin. Data from AEM stock on April 17, 2017.

(a) Order-by-order (b) 5 second intervals

Figure 2.16: Probability of change in best ask price being positive or negative conditioned
on the average imbalance being in bins 1, 2, 3, or 4. Data from AEM stock on April 17,
2017.

Figure 2.17: Probability of change in best bid price being positive (orange) or negative
(blue) conditioned on the average imbalance being in bins 1, 2, 3, or 4. Data from AEM
stock on April 17, 2017.

Figure 2.16a except for the change in the best bid price – that is, order-by-order changes

in the best bid. Here the pattern has been reversed and we see that there is a slightly
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higher probability of a price increase even though the imbalance is negative. Again, we

see the same thing across all stocks when looking order-by-order. These two plots would

suggest that one needs a much higher (lower) imbalance in order for the best ask (bid)

to increase (decrease) than decrease (increase). Gould and Bonart [59] found a similar,

but very small, symmetry violation with volume imbalance as well. Focusing on the best

ask, this could be because the best ask price can only increase if all shares at the best

ask are completely removed. This would be caused by traders placing market orders and

we see the best ask will almost only increase if there are few shares left at that price.

The best ask can decrease from a limit order placed 1 tick below if the spread is at least

1 tick. It appears that it is simply easier to decrease prices (given the spread is not zero)

than to increase them. The same argument applies to changes in the best bid price. This

seems to be the case only when looking at price movements order-by-order. As we see in

Figure 2.16b, with 5 second intervals, this pattern disappears.

We have a different story when looking at price movements over 5 second intervals,

but there is still a skew in the probabilities towards needing a larger imbalance for up

movements than one needs a small imbalance for down movements. However, it is not

as severe as it was order-by-order. The price does have a steadily increasing probability

of moving up as we pass from bin 1 to 4. Likewise we have a steady decrease in the

probability of a down movement as we pass from bin 1 to 4.

Before discussing the outcome of the statistical test on Tables 2.5 and 2.6 we take

the opportunity to check a previously studied aspect of price movements in limit order

books [61]. We take the counts in our two tables, but also condition on what the previous

price movement was. The results are converted to probabilities like before and shown in

Figures 2.18 and 2.19.

Order-by-order we see that if there was no previous price movement the probabilities

are very similar to Figure 2.16a. This is likely because order-by-order there are almost

no price movements as shown in Figure 2.14. The interesting result is that if the previous

price movement was up, then the next movement is very likely to be down regardless of

what the imbalance is. Similarly, if the previous price movement was down it is very

likely that the next movement is up regardless of imbalance. This was discussed in [61],

but independent of the volume imbalance. Here we see that the reverting aspect of prices

happens regardless of the imbalance. When prices move, the next most likely move is

in the opposite direction. We do not look at the magnitude of the price movement here

though. Even though prices appear to be reverting we could have the best ask increase

by 2 cents, but then drop 5 cents. This is not in conflict with Figures 2.18 and 2.19, but

is not captured by them either.
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(a) No previous price movement

(b) Previous price move down

(c) Previous price move up

Figure 2.18: Probability of change in best ask price order-by-order being positive or
negative conditioned on the average imbalance being in bins 1, 2, 3, or 4. Also conditioned
on the last price movement being zero, down, or up. Data from AEM stock on April 17,
2017.
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(a) No previous price movement

(b) Previous price move down

(c) Previous price move up

Figure 2.19: Probability of change in best ask price over 5 second intervals being positive
or negative conditioned on the average imbalance being in bins 1, 2, 3, or 4. Also
conditioned on the last price movement being zero, down, or up. Data from AEM stock
on April 17, 2017.
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The output of our statistical test is shown in Table 2.7. Like the first test we still

get p-values which imply we can easily reject the null hypothesis at any significance level

and that the relationship between the imbalance and price movements is positive. The

main difference here is the strength of the relationship given by the Cramer’s V measure.

We get an extremely significant association order-by-order when we break the imbalance

into bins compared to when we looked at just the sign of the imbalance in the previous

subsection. We also get a stronger association over 5 second intervals, but it is much

smaller than order-by-order. This could be because order-by-order we are only looking at

the next price movement while over 5 seconds we are seeing an aggregate of many price

moves and instantaneous imbalances. Some information is possibly lost along the way in

how we choose to aggregate our data, but the positive correlation between the imbalance

and price movements still exists. We should also note that the correlation between the

change in the best ask price and the imbalance is the same in Tables 2.3 and 2.7 because

they use the same sampled data.

Cramer’s V p-value Correlation
Order-by-order 0.676 0.0 0.123

5 second intervals 0.200 3.03e-126 0.129

Table 2.7: Summary of chi square test for fine imbalance and coarse price movements.
Correlation is taken between change in best ask price and the imbalance.

Figure 2.20: Cramer’s V for whole day and start of day plotted against each other. Data
is from Table 2.8. The dashed line would represent a totally linear relationship between
the two statistics.
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ticker Cramer’s V

ZEB 0.953
HOD 0.946
XEG 0.922
XWD 0.897
VUN 0.871
HSU 0.87
PWF 0.837
POW 0.824
VFV 0.81
GIL 0.806
FTS 0.805
PPL 0.803
SLF 0.78
XQQ 0.775
IPL 0.767
ARX 0.767
T 0.761
HXU 0.75
IMO 0.741
BAM.A 0.739
CCO 0.729
PVG 0.723
FM 0.714
G 0.703
CPG 0.702
ERF 0.699
HQU 0.698
NA 0.692
SSO 0.69
BMO 0.687
FR 0.674
PAAS 0.668
CNR 0.668
VGG 0.662
GIB.A 0.651
AEM 0.644
IMG 0.637
OR 0.629
HVI 0.606
HFU 0.591
RBA 0.537
KL 0.528
UFS 0.527
K 0.484
FSV 0.415
WCN 0.381
BIP.UN 0.371
GOOS 0.367
SW 0.351
TC 0.0387

ticker Cramer’s V

ZEB 0.912
HOD 0.954
XEG 0.855
XWD 0.875
VUN 0.75
HSU 0.78
PWF 0.784
POW 0.775
VFV 0.706
GIL 0.726
FTS 0.721
PPL 0.71
SLF 0.699
XQQ 0.704
IPL 0.702
ARX 0.703
T 0.754
HXU 0.685
IMO 0.703
BAM.A 0.645
CCO 0.719
PVG 0.712
FM 0.646
G 0.652
CPG 0.636
ERF 0.661
HQU 0.642
NA 0.655
SSO 0.659
BMO 0.591
FR 0.618
PAAS 0.645
CNR 0.574
VGG 0.597
GIB.A 0.538
AEM 0.622
IMG 0.651
OR 0.565
HVI 0.651
HFU 0.607
RBA 0.506
KL 0.517
UFS 0.454
K 0.684
FSV 0.389
WCN 0.352
BIP.UN 0.314
GOOS 0.326
SW 0.322
TC 0.038

Table 2.8: Summary of chi square test for fine imbalance and coarse price movements
order-by-order. Data is taken from June 1-8, 2017. All p-values are zero or very close
(≈ 10−73 at most) to zero. The left subtable uses data from the entire trading day while
the right subtable uses data only from the first hour of the trading day. Tickers are
sorted by magnitude of Cramer’s V for the whole day.
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In Table 2.8 we report the same test for a large sample of stocks. As in the previous

subsection, we only run the same test on order-by-order data for other stocks as we still

need a way of comparing stocks which have very different behaviour over the same time

interval. All p-values imply we can reject the null hypothesis at any significance level

and we have a very strong association between the binned imbalance and price direction.

Figure 2.20 shows a similar relationship as in Figure 2.15 except the Cramer’s V during

the start of day is usually less than the whole day for this test. This may suggest a

weaker association during the start of day between the imbalance and price movements,

but the association is still strong and the difference between the Cramer’s V in both time

periods is small.

2.5 Conclusions

In this chapter we investigated the impact of time on price movements and how the

volume imbalance ratio can be used as a predictor of future price movements. We saw

that individual stocks have their own time scales over which we see larger and larger

price movements. Care must be taken to determine a way to compare all stocks given

that they may not have similar behaviour at the time scales. We need a way of fixing

the time scale on all stocks so that we can compare any future analysis in an ‘apples to

apples’ way. In chapter 4 we shall explore this comparison between model parameters.

We also saw the problem of dealing with how to aggregate the instantaneous volume

imbalance over a given time interval. We gave two ways of doing this - by taking the mean

and also weighting by the time between successive orders. The analysis that followed only

used the time weighting, but we will come back to this in chapter 4 once we have discussed

how to fix the time intervals for each stock.

We used hypothesis testing in two different ways to test how the volume imbalance

ratio impacts price movements:

1. How the sign of the imbalance influences specific price movements

2. How the value of the imbalance influences price direction

In both cases we found a strong positive relationship order-by-order and also over 5

second intervals for AEM stock on April 17, 2017. We also ran the same tests over a larger

sample of stocks order-by-order and found the same strong relationship in both tests.

All tests showed the association between the volume imbalance ratio and price changes

was statistically significant, but the Cramer’s V allows us to numerically represent the



Chapter 2. Features of Limit Order Book Price Movements 58

strength of that association. We will use the Cramer’s V to compare models under

different parameters once we define a generalized volume imbalance ratio in chapter 3.

The generalized form of the volume imbalance ratio that incorporates volumes beyond the

best bid and best ask. Improvements in the Cramer’s V between models would suggest

a stronger association under different choices in how we calculate the volume imbalance.

These results and the existing literature support the use of the volume imbalance,

and by extension the volumes in the limit order book, to predict the possible future price

movements. In chapter 3 we look at how we incorporate these ideas into a model for

determining price changes based on the orders that interact with the limit order book.

We can use this model to calculate the costs associated with a spoofer’s decision to

manipulate the limit order book. The calibration of our price change model is done in

chapter 4 along with comparisons between the resulting parameters. In chapter 5 we can

use our calibrated models to explore the sensitivity of the limit order book to spoofing

and the conditions under which a spoofer decides to manipulate the book.



Chapter 3

Spoofing Cost Model and

Generalized Imbalance Ratio

3.1 Introduction

In this chapter we develop the notation and mathematical description necessary to ana-

lyze the limit order book. With this notation in place we can build a model for de-

termining the optimal limit order placement to manipulate the best ask price through

the volume imbalance ratio. We saw in the previous chapter that the imbalance has a

statistically meaningful impact on the distribution of the change in best ask price. The

spoofer will place their spoofing limit orders in order to minimize the cost associated

with their spoofing strategy. The spoofer’s strategy will be made exact in this chapter.

The resulting optimal limit order placement will give us a starting point for detecting

manipulation - we will know where to look in the limit order book for spoofing orders.

We start this chapter by defining some initial notation before deriving cost functions

associated with a trader wishing to purchase a number of shares of stock for three cases:

1. Placing a market order for the shares immediately

2. Delaying their market order to see where the best ask moves then placing a market

order

3. Placing a limit order to impact the imbalance which in turn impacts the possible

price movements before placing a market order

The third case will necessitate a model for how the imbalance directly changes the

distribution of the change in best ask price.

59
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We also saw in the previous chapter that our definition of the volume imbalance ratio

was based only on the volume of shares at the best ask and best bid prices. We will

generalize this definition to include all prices on both sides of the book with appropriate

weights assigned to the volumes. We ultimately want to allow the weights at each depth

of the limit order book to be free parameters1 in our model, but we also explore the use

of exponential weights. This is because exponential weights serve as a middle ground

between free weights and the classic definition of all weight assigned to the best bid and

ask. Using either choice of generalized imbalance will allow us to calibrate a model in

which a spoofer can manipulate prices by placing limit orders anywhere in the book -

instead of only at the touch.

We will develop a price change model which uses the volume imbalance ratio as

the weight in a convex combination of two price change distributions: the price change

distributions conditional on I as I → ±1. We will use this model to calculate the

expected costs of the three decisions listed above to determine what a spoofer would do

given a state of the limit order book. The algorithm we use to calibrate our price change

model will be discussed in chapter 4 and we implement it in chapter 5 to explore spoofing

detection.

3.2 Spoofing Cost Model

3.2.1 Notation and Definitions

We start by assigning notation to the volumes and prices of the limit order book as well

as the movements in the best ask price.

Let ~vt = [v−K , . . . , vK ] ∈ R2K+1
≥0 be the volumes in the limit order book at time t with

v0 = 0. We suppress the index t in the components of ~vt for ease of notation. Then, v1

is the number of shares sitting at the best ask price p+
t at time t and v−1 is the number

of shares sitting at the best bid price p−t at time t. Prices p±t are in Canadian dollars

(CAD). K denotes the number of prices we include from each side of the book so that

the volume vK is located at price p+
t + K−1

100
(for ask prices). Another way of saying this

is that the volume vK is K − 1 ticks from the best ask. v−K is then −K + 1 ticks from

the best bid.

Let ϕ(xt; It) = P
[
p+
t+∆t = p+

t + xt
100
|It
]

denote the probability of the change in best

ask price moving xt ∈ Z ticks from time t to time t + ∆t conditional on the average

1We will enforce a constraint where the weight assigned to the best bid and ask is at least as large
as any other weight.
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imbalance over ∆t being It.

This is a one period model from time t to t + ∆t where the spoofer will act at

either time, but not in between. We assume that the corresponding price process pt is

right-continuous on a given filtered probability space (Ω,Ft,P) where Ft is the natural

filtration of the stochastic processes ∆p+
t = xt/100, ∆p−t , and limit order book volumes

~vt. However, for our work we will not need the process ∆p−t . We use the notation that,

for example, pt+∆t = pt+1. The price process is defined as

p+
t+1 = p+

t + xt/100 , (3.2.1)

or

∆p+
t = (p+

t+1 − p+
t ) = xt/100 , (3.2.2)

where the expected value of p+
t+1 given Ft and It is

E[p+
t+1|Ft, It] =

∑
i

(p+
t + i)P [xt = i|Ft, It]

= p+
t +

∑
i

iϕ(i; It)
(3.2.3)

So, for ease of notation, we take pt = p+ at the start of the period with random

variable pt+1 = p+ + xt/100 denoting the best ask price at the end of the period.

Denote the volume of shares on the ask side of the order book N ticks from the best

ask price as:

V +(~vt, N) =
N∑
i=1

vi . (3.2.4)

Denote the volume of shares on the bid side of the order book N ticks from the best

bid price as:

V −(~vt, N) =
−1∑

i=−N

vi . (3.2.5)

Define the generalized inverse of V ± by

U±(~vt, H) = inf {i : V ±(~vt, i) ≥ H} (3.2.6)

The financial intuition here is, given a limit order book ~vt, U
±(~vt, H) gives the limit

order book index i necessary to satisfy a market order of at least H shares.
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Case 1: Immediate Market Order At time t we could to decide to place a market

order based on ~vt and p+
t which would be made immediately after at time t+. This is

represented in Figure 3.1.

Figure 3.1: We see the limit order book at time t and decide to place our market order.
This is sent immediately after at time t+.

If we place a market order for the H shares immediately there may be fewer than H

shares available at the best ask price. We then need to pay a premium for walking the

book. We saw this example in Figure 1.8. Let CMO(~vt, H, p
+) denote the cost of placing

the market order immediately. We choose to simplify the problem by ignoring the time

lag between placement and execution of the market order. It is possible that the price

could move against you after placing the order because of other orders in the queue. This

problem is explored in [64].

If there are at least H shares available at v1 then the cost we pay is p+H. However, if

H > v1 we need to walk the book and remove liquidity at increasing prices until we have

all H shares. We can satisfy our market order by removing liquidity up to and including

index U+(~vt, H). For now we will write U+(~vt, H) = U for clarity. So we pay (p+ + i−1
100

)vi

at each price tick i ∈ [1, U) and purchase the remaining shares H − v1 − · · · − vU−1 at

price p+ + U−1
100

. The associated cost would then be:

CMO(~vt, H, p
+) = p+v1 +

(
p+ +

1

100

)
v2 +

(
p+ +

2

100

)
v3 · · ·+(

p+ +
U − 1

100

)
(H − v1 − · · · − vU−1)

=
U−1∑
i=1

(
p+ +

i− 1

100

)
vi +

(
p+ +

U − 1

100

)(
H −

U−1∑
i=1

vi

) (3.2.7)

We can expand the sums in equation 3.2.7 and group terms to get
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CMO(~vt, H, p
+) =

�
�
�
�
�

p+

U−1∑
i=1

vi +
U−1∑
i=1

i− 1

100
vi + p+H −

�
�
�
�
�

p+

U−1∑
i=1

vi+

U − 1

100
H − U − 1

100

U−1∑
i=1

vi

=
1

100

U−1∑
i=1

ivi −
�
�
�
�
��1

100

U−1∑
i=1

vi + p+H +
U − 1

100
H−

U

100

U−1∑
i=1

vi +

�
�
�
�
��1

100

U−1∑
i=1

vi

= p+H +
U − 1

100
H +

1

100

U−1∑
i=1

ivi −
U

100

U−1∑
i=1

vi

= p+H︸︷︷︸
Market Order

+ G(~vt, H)︸ ︷︷ ︸
Penalty

(3.2.8)

where

G(~vt, H) =
1

100

(U+(~vt, H)− 1)H −
U+(~vt,H)−1∑

i=1

(U+(~vt, H)− i)vi

 (3.2.9)

So we have broken CMO(~vt, H, p
+) into two pieces: the cost if we could have bought

all H shares at the best ask price p+ plus a penalty paid for each share purchased beyond

the best ask denoted by G(~vt, H). Note that the penalty term does not depend on the

best ask price p+.

Since we know ~vt, p
+, and It at time t then CMO(~vt, H, p

+) is known at time t and its

expected value is simply the value of the function. That is,

E
[
CMO(~vt, H, p

+)|Ft, It
]

= CMO(~vt, H, p
+) (3.2.10)

Case 2: Delayed Market Order Instead of placing our market order immediately

we delay it one time period ∆t, so the market order is placed immediately before the end

of the period at time t− + ∆t. This is represented in Figure 3.2.

To find the cost associated with making this decision at time t requires an assumption

or approximation for the shape of the order book at time t+∆t. That is, we do not know

what the shape of the book will be at time t+ ∆t and we need to know this to calculate

the cost of a market order placed at this time. The simplest modelling assumption would
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Figure 3.2: We see the limit order book at time t and decide to delay our market order
to time t+ ∆t. This is sent at time t− + ∆t just before the end of the period.

be that the volumes at each price are the same at both times and translate with the price

movement xt. This is unlikely to be true for the entire order book, but if we only intend

to spoof to buy a small number of shares H we only need to know how much our penalty

G(~vt, H) changes over the trading day for different H. If this effect is small we say we

can approximate the volumes at the first few ticks in the future by the volumes we see

now.

Figure 3.3 shows the impact of purchasing H shares over the entire trading day by

the change in cost of walking the book [G(~vt, H) − G(~vt+1, H)]/H between 5, 30, and

60 second time intervals. Note that G(~vt, H)/H is a per share cost measure. We see

that the difference in the penalty per share is distributed roughly the same over the day

with the exception of a few larger penalties at the beginning of the day. This is to be

expected before the limit order book fills up. We also see no penalty for small orders of

100 shares which is not surprising since the best ask will always have at least 100 shares.2

The penalty also remains symmetric about 0 indicating you are just as likely to benefit

as be harmed by the assumption that the volume remains the same in the first few ticks.

The penalty is almost entirely bounded between ±0.02$ per share. We will ignore this

for now, but one could set G(~vt, H) → G(~vt, H)± γH where γ = 0.02 is an uncertainty

factor for our approximation and we could calculate the best and worst case scenarios for

the cost function under our assumption. Or we could just limit our analysis to orders of

100 shares to completely avoid worrying about this assumption, as shown in Figure 3.3

(a).

We see similar results for ARX stock on April 17, 2017 in Figure D.8. Here we see a

tighter bound even for H = 1000 shares, but the main result that the penalty is bounded

and symmetric still holds. The price for ARX stock was also about $ 18 CAD while

AEM was about $ 46 CAD. The penalty per share is roughly that of AEM even though

the stock price is over twice as much. We see similar results across other stocks with the

penalty being bounded by ±$0.02 per share.

We denote the cost of a delayed market order by CDMO(~vt, H, p
+, xt) where the price

2100 shares is the minimum order size for the book.
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(a) H = 100 (b) H = 300 (c) H = 500

Figure 3.3: Difference in G(~vt, H)/H between different time intervals and H throughout
the trading day. The top, middle, and bottom subplots correspond to time intervals of
5, 30, and 60 seconds, respectively. Data taken from AEM stock on April 17, 2017 for
the entire trading day. Stock price ≈ $46 CAD.

movement xt is in ticks. Since we are assuming the limit order book translates with the

price and the penalty term G(~vt, H) does not depend on p+ the cost is

CDMO(~vt, H, p
+, xt) =

(
p+ +

xt
100

)
H +G(~vt, H)

= p+H +G(~vt, H) +
H

100
xt

= CMO(~vt, H, p
+) +

H

100
xt︸ ︷︷ ︸

Impact of Delay

(3.2.11)

So when the best ask moves xt ticks we pick up an extra term which can work for or

against us. If xt < 0 we benefit for waiting while we lose if xt > 0. If xt = 0 then case 1

and 2 have the same outcome.

For a time interval ∆t, the expected cost for the strategy at time t of delaying our

market order to time t+ ∆t is
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E
[
CDMO(~v,H, p+, xt)|Ft, It

]
=
∑
i

CDMO(~vt, H, p
+, i)ϕ(i; It)

=
∑
i

[
CMO(~vt, H, p

+) +
H

100
i

]
ϕ(i; It)

= CMO(~vt, H, p
+) +

H

100

∑
i

i ϕ(i; It)

= CMO(~vt, H, p
+) +

H

100
E [xt|Ft, It]

(3.2.12)

Case 3: Spoofing With Market Order However, a trader can spoof the order book

by placing limit orders at time t+ on the ask side of the book with a hope of lowering

the best ask price and then, at time t− + ∆t, placing a market order and canceling the

previous limit orders. This is represented in Figure 3.4.

Figure 3.4: We see the limit order book at time t and decide to spoof the book. Our
spoofing orders are sent immediately after at time t+. We then cancel our remaining
limit orders and place a market order at time t− + ∆t.

Denote the volume of the limit orders by ṽt = [ṽ−K , . . . , ṽK ] ∈ R2K+1
≥0 and the change

in the best ask price as xt in ticks. Our limit orders ṽ impact the volume imbalance ratio

I(~vt + ṽt). We suppress the dependency of It on ṽt now for clarity. We define ṽt this way

so we can add ~vt + ṽt to get the limit order book plus our spoofing orders, but we are

limiting our orders to the ask side of the book based on the analysis in chapter 2.

The trade-off of this strategy is that our limit orders can be executed and we would

need to buy more shares to cover our limit orders as in Figure 1.11. We will assume

that if the best ask price moves up xt > 0 ticks then all of our spoofing limit orders

ṽ1, ṽ2, ṽ3, . . . , ṽxt are executed and we need to cover the shares we sold. To get a more

conservative estimate for the cost of spoofing we allow our limit orders at ṽxt to be

executed if the best ask price moves up xt ticks, but this may not be the case in reality.

This means that we are assuming any limit order we place at ṽxt+1 and above will not be

executed before we can cancel it. The total number of shares we would need to purchase
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would be H + V +(ṽt, xt) as our limit orders are all on the ask side.

Let CS(~vt, H, p
+, xt, ṽt) be the cost of placing limit orders ṽt at time t then canceling

all limit orders at time t + ∆t and placing a market order for H + V +(ṽt, xt) shares

after the besk ask price has moved xt ticks. The cost of the market order would be

CDMO(~vt, H + V +(ṽt, xt), p
+, xt) and then we get paid −(p+ + i)ṽi+1, i ∈ [0, xt], for each

limit order that was executed between 0 and xt ticks, inclusive, from the best ask price.

Putting all this together we get

CS(~vt, H, p
+, xt, ṽt) = CDMO(~vt, H + V +(ṽt, xt), p

+, xt) −
xt∑
i=0

(
p+ +

i

100

)
ṽi+1

=
(
p+ +

xt
100

) (
H + V +(ṽt, xt)

)
+

G(~vt, H + V +(ṽt, xt))− p+V +(ṽt, xt) −

1

100

xt∑
i=0

i ṽi+1

= p+H +���
��

��
p+V +(ṽt, xt) +

H

100
xt+

1

100
xtV

+(ṽt, xt) +G(~vt, H + V +(ṽt, xt)) −

���
���

�
p+V +(ṽt, xt)−

1

100

xt∑
i=0

i ṽi+1

= p+H +G(~vt, H + V +(ṽt, xt)) +
H

100
xt +

1

100

xt∑
i=0

(xt − i) ṽi+1

= p+H +G(~vt, H + V +(ṽt, xt)) +

H

100
xt + CLO(ṽt, xt)︸ ︷︷ ︸

Adjusted Buyback Cost

,

(3.2.13)

where

CLO(ṽt, xt) =
1

100

xt∑
i=0

(xt − i) ṽi+1 . (3.2.14)

CLO(ṽt, xt) is an adjustment to the net cost associated with selling spoofing orders

ṽi+1 at price p+ + i/100 then buying them back at price p+ + xt/100. The function

G(~vt, H + V +(ṽt, xt)) then takes into account the cost of walking the book for the H
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shares the spoofer intends to buy, plus the total executed spoofing orders V +(ṽt, xt).

For a time interval ∆t, the expected cost for the strategy at time t after manipulating

It = I(~vt + ṽt) is

E
[
CS(~vt, H, p

+, xt, ṽt)|Ft, It
]

= p+H +
∑
i

G(~vt, H + V +(ṽt, i))ϕ(i; It) +

H

100

∑
i

iϕ(i; It) +
∑
i

CLO(ṽt, i)ϕ(i; It)

= p+H + E
[
G(~vt, H + V +(ṽt, xt))|Ft, It

]
+

H

100
E [xt|Ft, It] + E [CLO(ṽt, xt)|Ft, It]

(3.2.15)

Note the cases that if xt ≤ 0 or ṽt = ~0 then CS(~vt, H, p
+, xt, ṽt) = CDMO(~vt, H, p

+, xt)

as V +(ṽt, xt) = 0 and CLO(ṽt, xt) = 0.

3.2.2 When to Spoof?

For our model, the limit order book ~vt admits a spoofing strategy ṽt if the expected cost

of spoofing is less than the expected cost of a delayed market order or an immediate

market order. That is, using equations 3.2.10 and 3.2.12, we delay our market order if

E
[
CDMO(~vt, H, p

+, xt)|Ft, It
]
< E

[
CMO(~vt, H, p

+)|Ft, It
]

=⇒ (((
((((

(
CMO(~vt, H, p

+) +
H

100
E [xt|Ft, It] <(((((

(((CMO(~vt, H, p
+)

=⇒ E [xt|Ft, It] < 0

(3.2.16)

where the final line is because H > 0. The result here is easy enough to understand

– we delay our market order if we expect the best ask price to drop.

We adopt the following notation to differentiate between expected values taken with

respect to ϕ(xt; I(~vt)) and ϕ(xt; I(~vt + ṽt)).

E [ · ] = E [ · |Ft, I(~vt)]

Ẽ [ · ] = E [ · |Ft, I(~vt + ṽt)]
(3.2.17)

We should note that both expectation values are taken at time t, when we must make

the decision on where to place our spoofing orders ṽt. With this notation we can write

down the condition for spoofing over delaying our market order as
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Ẽ
[
CS(~vt, H, p

+, xt, ṽt)
]
− E

[
CDMO(~vt, H, p

+, xt)
]
< 0

=⇒ Ẽ
[
G(~vt, H + V +(ṽt, xt))

]
+ Ẽ [CLO(ṽt, xt)] +

H

100

(
Ẽ [xt]− E [xt]

)
−G(~vt, H) < 0

(3.2.18)

Equation 3.2.18 is not as simple as 3.2.16 since we choose where we place our limit

orders ṽ. We spoof if it is possible to place our limit orders such that the expected cost of

our executed limit orders and subsequent market orders is less than the penalty we take

for walking the book with a single market order. We also need to consider the difference

in the expected change in the best ask price under both measures. There is a trade off

here with ṽ: the larger the limit orders the more we can influence the imbalance, but the

larger penalty we pay if the price moves against us and those limit orders are executed.

We need to find the optimal ṽt which balances these opposing forces or pushes the payoff

in our favour.

Finally, we can combine equations 3.2.16 and 3.2.18 to get the condition where we

would spoof over immediately placing a market order. This gives us

Ẽ
[
G(~vt, H + V +(ṽt, xt))

]
+ Ẽ [CLO(ṽt, xt)] +

H

100
Ẽ [xt]−G(~vt, H) < 0 (3.2.19)

Equations 3.2.18 and 3.2.19 are very similar except in equation 3.2.19 we gain the

entire benefit of the expected change in the best ask price instead of the difference under

both measures. This reflects the fact it may be better to spoof over immediately placing a

market order, but spoofing may yield no real advantage over simply delaying your market

order.

With our spoofing model and equations developed we are left now with determining

a model for ϕ(xt; It). We look first at how we can impact It through ṽt. In chapter 2 we

used a definition for the volume imbalance ratio that depended only on the volume at

the best ask and best bid. We want to be able to impact the distribution of the change

in the best ask through the imbalance at all price ticks, hence, we need to generalize our

definition of the imbalance ratio to include the entire order book – not just the touch.

3.3 Generalized Imbalance Ratio

We can rewrite equation 2.3.1 for the volume imbalance ratio It with our new notation

as
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It = I(~vt) =
v−1 − v1

v−1 + v1

(3.3.1)

The problem is that we can only impact the imbalance with v−1 and v1, but we want

all orders to influence the imbalance. We saw in Figure 1.11 what can happen if a spoofer

places their limit orders too close to the touch. Without a generalized definition of the

imbalance we can only influence price movements at the touch, so we define the following

as the generalized volume imbalance ratio

I(~vt; ~w,K) =

∑K
i=1 wiv−i −

∑K
i=1wivi∑K

i=1wiv−i +
∑K

i=1wivi

=

∑K
i=1 wi(v−i − vi)∑K
i=1wi(v−i + vi)

,

(3.3.2)

where K ≥ 1 denotes the number of price increments (ticks) we include on both sides

of the book and ~w = [w1, . . . , wK ] ∈ RK
≥0 and

∑K
i=1 wi = 1. The wi is the weight assigned

to the imbalance v−i − vi at tick i. Dividing the sum of these weighted imbalances

by the total weighted volume gives us a volume imbalance ratio between -1 and 1 as

before. Equation 3.3.2 then represents a family of definitions that depend on the choice

of parameters w and K.

For our work we wish to use free weights for ~w which we calibrate to our data, but we

also analyze an intermediate choice for the weights that lies between all weight applied

to the touch (classic definition) and fully free weights – exponentially decaying weights.

The added benefit of calibrating with the exponential weights before the free weights is

that it gives us a numerical check for the free weight results – the free weights should

provide calibration results at least as good as the exponential weights. This is because

the free weights would be able to reproduce the results of the exponential weights if it

were the better choice for the imbalance weights. This statement is made more precise

in the next chapter.

The exponentially decaying weights are defined as wi = exp(−(i − 1)α) for some

constant α ∈ [0,∞). That is, the significance of each volume imbalance diminishes

exponentially as you move deeper into the limit order book with the highest weight

assigned to the best ask and best bid. This is a natural extension to the case where all

weight is applied to the touch, i.e. wi = δ1i and δij is the Kronecker delta function. To

ensure the free weights also assign the highest weight to the touch we add the constraint

w1 ≥ wk ∀k ∈ [1, K] for its calibration. Table 3.1 displays all necessary information

about the three choices for the imbalance weights.
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Weight Name Definition
Only Touch (Classic) wi = δ1i δij = Kronecker Delta
Exponential wi = exp(−(i− 1)α) α ∈ [0,∞)
Free wi subject to w1 ≥ wk ∀k ∈ [1, K]

Table 3.1: Three choices for imbalance weights ~w used to calibrate our model.

Equipped with a general definition we can now write down a model for the distribution

of the change in the best ask price dependent on the volume imbalance ratio I(~v; ~w,K).

3.4 Price Change Distribution Model

With a general volume imbalance ratio we can describe the model we use for ϕ(xt; It) as

influenced by orders placed at the best bid/ask and beyond. Remember from the previous

section that the imbalance is now parameterized by the weights w and parameter K ≥ 1

such that I = I(~vt; ~w,K). We note that ~w andK are fixed in the model and do not depend

on time. Let dp ∈ R2K−1
≥0 be a vector of positive real numbers dpx, x ∈ [−K + 1, K − 1],

such that

dp = {dp−K+1, . . . , dp0, . . . , dpK−1} ,
K−1∑

x=−K+1

dpx = 1 and (3.4.1)

µ =
K−1∑

x=−K+1

xdpx . (3.4.2)

We can then view dp as a probability distribution on the discrete support x ∈ [−K+

1, K − 1]. The reason we do not take the support x ∈ [−K,K] is because all volumes vk,

1 ≤ k ≤ K, should be necessary to determine dpK−1. If the best ask were to move up

2 ticks we would expect the volumes up to 2 ticks from the best ask to be important in

determining the probability of that movement since all these volumes would need to be

depleted for the best ask to move up more than 2 ticks.

From chapter 2 we saw that the distribution of the change in best ask price remains

peaked at zero, but the probability skews left when I → −1, and skews right when I → 1.

Using equation 3.4.1 we define two distributions dp+ and dp− with expected values µ−

and µ+, respectively. We want dp → dp+ as I → 1 and dp → dp− as I → −1. That is,

dp+ and dp− are the distributions for the change in the best ask price as I approaches

1 and -1, respectively. The simplest way to do this is to take ϕ(x; I) as the convex

combination of dp+
x and dp−x . Our unnormalized model for the distribution of the change
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in the best ask price ϕ(x; I) is then

ϕ̃(x; I) = (I + 1)dp+
x + (1− I)dp−x (3.4.3)

with normalization constant∑
x

ϕ̃(x; I) =
∑
x

(I + 1)dp+
x +

∑
x

(1− I)dp−x

= (I + 1)
∑
x

dp+
x + (1− I)

∑
x

dp−x

= I + 1 + 1− I

= 2

(3.4.4)

So our normalized model is

ϕ(x; I) =
I + 1

2
dp+

x +
1− I

2
dp−x (3.4.5)

Due to the skewness and symmetry of the volume imbalance, we assume that

dp+
x = dp−−x (3.4.6)

This guarantees that ϕ(x; I) skews in the direction of the volume imbalance, is sym-

metric about I = 0, and µ+ = −µ−. The last equality is from

µ+ =
∑
x

xdp+
x = −

∑
x

xdp−x = −µ− (3.4.7)

Figure 3.5 gives a preview of dp+, dp−, and ϕ, for AEM stock over 5 second intervals.

We have dp+ and dp− skewing right and left, respectively, as we enforced by equation

3.4.6. Also, ϕ given I = 0 is symmetric about 0 as we enforced by the same equation.

This model would also imply that the probability of the price movements change

independent of I. That is,

∂ϕ(x; I)

∂I
=

dp+
x − dp−x

2
(3.4.8)

If we wanted to incorporate an asymmetry in the distribution as we change I we could

include an extra parameter η ∈ (0, 1) in the unnormalized distribution such that

ϕ̃(x; I) = η(I + 1)dp+
x + (1− I)dp−x (3.4.9)

This biases ϕ(x; I) one way (in this case, against I > 0), so the imbalance does not
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(a) dp+ and dp−

(b) ϕ given I = 0

Figure 3.5: Preview of dp+, dp−, and ϕ for AEM stock over 5 second intervals. Data
used from April 17, 2017 over the entire trading day. We have µ+ = 0.701, σ2

+ = 1.42,
θ+ = 2.55, and κ+ = 11.96.

shift the distribution equally in both directions. We found evidence of this bias against

positive I for AEM stock in Figure 2.16 which we could incorporate this way. Subplot (b)

in Figure 2.16 shows the probability of the price increases less with increasing imbalance

than the probability of the price decreases with decreasing imbalance. The placement

of η in equation 3.4.9 breaks the symmetry about I = 0, but also makes it so that the
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expected value of ϕ(x; I) is 0 at a strictly positive imbalance I which is dependent on

the value of η. However, we will assume the distributions are symmetric to simplify the

model.

Next we will calculate the moments of ϕ in terms of the moments of dp+.

3.5 Moments of Distribution Model

In this section we present the moments of our distribution model. These moments will

allow us to check that our distribution is satisfying the conditions we want and to provide

a better statistical understanding of the model. Each moment is defined as

nth Moment = E[(X − E[X])n] (3.5.1)

for random variable X and n ∈ N. The first and second moments are the mean and

variance, respectively. The skewness and kurtosis are defined in terms of the third and

fourth moments, respectively. These definitions are

Skew[X] =
E[(X − E[X])3]

E[(X − E[X])2]
3
2

(3.5.2)

Kurt[X] =
E[(X − E[X])4]

E[(X − E[X])2]2
(3.5.3)

It should be noted that kurtosis is sometimes defined as the ‘excess kurtosis’ Kurt[X]−
3, but we will use equation 3.5.3 when we refer to the kurtosis. The reason for the use of

excess kurtosis is because the kurtosis of the univariate normal distribution is 3, so the

excess kurtosis is a measure relative to the normal distribution.

Given the volume imbalance I, the change in best ask price x ∼ ϕ, and the conditional

expected value of x is

E [x| I] =
∑
x

xϕ(x; I)

=
I + 1

2

∑
x

xdp+
x +

1− I
2

∑
x

xdp−x

=
I + 1

2
µ+ −

1− I
2

µ−

= Iµ+

(3.5.4)

In the limit cases where I = ±1 the mean is ±µ+ and smoothly moves between these

two values. We also have that the mean is 0 when I = 0 as expected – we forced our
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distribution to be symmetric with equation 3.4.6.

Figure 3.6: E [x| I] where µ+ is taken from Figure 3.5.

Figure 3.6 presents E [x| I] for dp+ in Figure 3.5. As in equation 3.5.4 it varies linearly

with I, is 0 at I = 0, and ±µ+ at I = ±1.

We define the variance σ2
+ of dp+ as

σ2
+ =

∑
x

x2dp+
x −

(∑
x

xdp+
x

)2

=
∑
x

x2dp+
x − µ2

+

=⇒
∑
x

x2dp+
x = σ2

+ + µ2
+

(3.5.5)

Equations 3.4.6 and 3.5.5 imply that σ2
+ = σ2

−. The variance of x given I is
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Var[x|I] =
I + 1

2

∑
x

x2dp+
x +

1− I
2

∑
x

x2dp−x − I2µ2
+

=
I + 1

2

∑
x

x2dp+
x +

1− I
2

∑
x

x2dp+
−x − I2µ2

+

=
I + 1

2

∑
x

x2dp+
x +

1− I
2

∑
x

x2dp+
x − I2µ2

+

=
I + 1

2
(σ2

+ + µ2
+) +

1− I
2

(σ2
+ + µ2

+)− I2µ2
+

= σ2
+ + µ2

+ − I2µ2
+

= σ2
+ + (1− I2)µ2

+

(3.5.6)

We find that the variance of x is largest when I = 0 and decreases as I → ±1. This

is because when the imbalance is 0 we have less information about where prices will be

moving. This is in contrast to when I = ±1 where the distribution will be skewed by the

extreme imbalance in the book like we saw in chapter 2.

Figure 3.7: Var[x|I] where µ+ and σ2
+ are taken from Figure 3.5.

Figure 3.7 presents Var[x|I] for dp+ in Figure 3.5. As in equation 3.5.6 it reaches a

maximum at I = 0 and a minimum at I = ±1 where the minimum is σ2
+.

We now define θ+ and κ+ as the third and fourth moments of dp+, respectively, so

we can write down the Skew[x|I] and Kurt[x|I]. Using the fact that
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E[(X − E[X])3] = E[X3]− 3E[X]E[X2] + 2E[X]3 (3.5.7)

and

E[(X − E[X])4] = E[X4]− 4E[X]E[X3] + 2E[X]2E[X2]− 3E[X]4 (3.5.8)

we can write out the third and fourth moments of our distributions. From Equation

3.5.7, the third moment of dp+ is

θ+ =
∑
x

x3dp+
x − 3µ+

∑
x

x2dp+
x + 2µ3

+

=
∑
x

x3dp+
x − 3µ+(σ2

+ + µ2
+) + 2µ3

+

=⇒
∑
x

x3dp+
x = θ+ + 3µ+σ

2
+ + µ3

+

(3.5.9)

Equations 3.4.6 and 3.5.9 imply that θ+ = −θ−. Equation 3.5.7 then gives the third

moment of ϕ as

E[(x− Iµ+)3|I] = E[x3|I]− 3Iµ+E[x2|I] + 2I3µ3
+

=
I + 1

2

∑
x

x3dp+
x +

1− I
2

∑
x

x3dp−x −

3Iµ+(σ2
+ + µ2

+) + 2I3µ3
+)

=
I + 1

2
(θ+ + 3µ+σ

2
+ + µ3

+) +
1− I

2
(−θ+ − 3µ+σ

2
+ − µ3

+) −

3Iµ+(σ2
+ + µ2

+) + 2I3µ3
+

= I(θ+ + 3µ+σ
2
+ + µ3

+)− 3Iµ+(σ2
+ + µ2

+) + 2I3µ3
+

= θ+I + 2µ3
+I(1− I2)

= I[θ+ + 2µ3
+(1− I2)]

(3.5.10)

The skew of ϕ given I is given by

Skew[x|I] =
E[(x− Iµ+)3|I]

E[(x− Iµ+)2|I]
3
2

= I
θ+ + 2µ3

+(1− I2)

(σ2
+ + (1− I2)µ2

+)
3
2

(3.5.11)
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Equation 3.5.11 shows the skewness of ϕ is 0 when I = 0 because we have forced

the distribution to be symmetric at I = 0. At the limits I = ±1 we have Skew[x|I] =

±θ+/σ
3
+, respectively, which is just the skewness of dp+ and dp− as we should expect.

Figure 3.8: Skew[x|I] where µ+, σ2
+, and θ+ are taken from Figure 3.5.

Figure 3.8 presents Skew[x|I] for dp+ in Figure 3.5. As in equation 3.5.11 the skew

is 0 at I = 0 and moves to ±θ+/σ
3
+ at I = ±1.

From Equation 3.5.8, the fourth moment of dp+ is

κ+ =
∑
x

x4dp+
x − 4µ+

∑
x

x3dp+
x + 6µ2

+

∑
x

x2dp+
x − 3µ4

+

=
∑
x

x4dp+
x − 4µ+(θ+ + 3µ+σ

2
+ + µ3

+) +

6µ2
+(σ2

+ + µ2
+)− 3µ4

+

=
∑
x

x4dp+
x − 4µ+θ+ − 6µ2

+σ
2
+ − µ4

+

=⇒
∑
x

x4dp+
x = κ+ + 4µ+θ+ + 6µ2

+σ
2
+ + µ4

+

(3.5.12)

Equations 3.4.6 and 3.5.12 imply that κ+ = κ−. Equation 3.5.8 then gives the fourth

moment of ϕ as



Chapter 3. Spoofing Cost Model and Generalized Imbalance Ratio 79

E[(x− Iµ+)4|I] = E[x4|I]− 4µ+E[x3|I] + 6µ2
+E[x2|I]− 3µ4

+

=
I + 1

2

∑
x

x4dp+
x +

1− I
2

∑
x

x4dp−x −

4I2µ+(θ+ + 3µ+σ
2
+ + µ3

+) +

6I2µ2
+(σ2

+ + µ2
+)− 3I4µ4

+

= κ+ + 4µ+θ+ + 6µ2
+σ

2
+ + µ4

+ −

4I2µ+(θ+ + 3µ+σ
2
+ + µ3

+) +

6I2µ2
+(σ2

+ + µ2
+)− 3I4µ4

+

= κ+ + 4µ+θ+(1− I2) + 6µ2
+σ

2
+(1− I2) +

µ4
+(1 + 3I2)(1− I2)

= κ+ + (1− I2)[4µ+θ+ + 6µ2
+σ

2
+ + µ4

+(1 + 3I2)]

(3.5.13)

The Kurtosis of ϕ given I is given by

Kurt[x|I] =
E[(x− Iµ+)4|I]

E[(x− Iµ+)2|I]2

=
κ+ + (1− I2)[4µ+θ+ + 6µ2

+σ
2
+ + µ4

+(1 + 3I2)]

(σ2
+ + (1− I2)µ2

+)2

(3.5.14)

From equation 3.5.14 we recover the kurtosis of dp+ and dp− when I = ±1, respecti-

vely. That is, Kurt[x|I] = κ+/σ
4
+ when I = ±1 as we expect.

Figure 3.9 presents Kurt[x|I] for dp+ in Figure 3.5. As in equation 3.5.14, the kurtosis

is κ+/σ
4
+ at I = ±1 with a local minimum at I = 0. Taking the derivative of equation

3.5.14 with respect to I and setting the result to zero allows us to find the extrema of

the kurtosis as

I = 0 and I = ±

√
1 +

κ+µ+ − 2µ3
+σ

2
+ − 3µσ4

+ − 2σ2
+θ+

2µ5
+ + 6µ3

+σ
2
+ + 2µ2

+θ+

for µ+ 6= 0 (3.5.15)

Equation 3.5.15 matches the extrema in Figure 3.9 which are found at I = 0,±0.545.

With equations 3.5.4, 3.5.6, 3.5.11, and 3.5.14, we know how to calculate the measures

of our distribution model once we know the moments of dp+ – as per the examples

depicted in Figures 3.6, 3.7, 3.8, and 3.9.

Putting everything together we can now write down the optimization problem to give

us a starting point for spoofing detection in the limit order book.
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Figure 3.9: Kurt[x|I] where µ+, σ2
+, θ+, and κ+ are taken from Figure 3.5.

3.6 Optimization Problem

We now have a model which allows us to influence the distribution of the best ask price

ϕ by placing spoofing limit orders ṽt in the book ~vt to alter the volume imbalance ratio

I(~vt + ṽt; ~w,K). This in turn has an impact on the cost functional CS(~vt, H, p
+, xt, ṽt)

which we want to minimize. However, we also have conditions given by equations 3.2.16

and 3.2.18 on when to delay our market order and when to spoof, respectively.

Given parameters dp+, ~w, and K, the optimization problem for determining the

optimal limit order placement is

min
ṽt

∑
xt

CS(~vt, H, p
+, xt, ṽt)ϕ(xt; I(~vt + ṽt; ~w,K)) (3.6.1)

We may find a ṽt which minimizes equation 3.6.1, but the expected cost may not

be smaller than simply placing a market order or delaying your market order – spoofing

would not be the optimal strategy. The optimal strategy will depend on the shape of the

limit order book as much as it depends on how the price change distribution is influenced

by the volume imbalance ratio.

In the next chapter we estimate all of our model parameters so that we can solve

equation 3.6.1 over a collection of stocks. The solutions will give us a starting point for



Chapter 3. Spoofing Cost Model and Generalized Imbalance Ratio 81

flagging suspicious behaviour in the limit order book.

3.7 Model Summary

In this chapter we developed the notation and definitions necessary for discussing the

limit order book as well as the costs associated with market orders, delayed market

orders, and spoofing orders in our one period model. We also generalized the definition

of the volume imbalance ratio and used this new definition to allow one to influence the

distribution of the change in the best ask price by adding volume beyond the touch of

the limit order book. We also now have a model for the distribution of the change in

best ask price parameterized by the generalized imbalance ratio.

Our model was a convex combination of two distributions which smoothly transition

to one another through the volume imbalance ratio. We assume that the total distribution

was symmetric about I = 0 while providing a starting point for symmetry breaking

through equation 3.4.9. We also derived the relevant moments of the model and made

checks to show that the results at I = ±1 were consistent with the definitions of dp+ and

dp−.

The next step we take in the following chapter is to calibrate our model using data

provided by TMX for various stocks. To summarize, our model parameters so far are

• ~w: weights in our generalized volume imbalance ratio

• K: depth we take in the limit order book

• dp+: distribution of the change in best ask price when I = 1

Parameters ~w and K tell us how to calculate I(~v; ~w,K) and dp+ will give us our price

distribution. With these pieces we can solve the optimization problem, given by equation

3.6.1, for optimal placement of limit orders to manipulate the best ask price. This will

give us a starting point for flagging possible manipulation in the limit order book as now

we can quantify the costs associated with a spoofer’s decisions to manipulate the limit

order book.

In chapter 4 we discuess how we can compare the results across different stocks. From

chapter 2 we saw that different stocks behave differently over different time scales. We

start the next chapter by fixing this time scale, so we can compare the results of our

calibration between stocks. This allows us to explore the relationships between model

parameters and statistics we can draw from activity on the limit order book. We then
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return to the statistical tests in chapter 2 to see improvements in our generalized imba-

lance definitions over using just the touch – increasing Cramer’s V under new parameters

would suggest an increase in the association between changes in the price and the volume

imbalance definition using those same parameters.



Chapter 4

Model Calibration

4.1 Introduction

In this chapter we set up the calibration for the parameters of our price distribution

model, but we first need to resolve a problem we discussed back in chapter 2 – what

do we do about sampling time? The first thing we will do is outline how to choose the

sampling time as a way of comparing the calibration results stock to stock. However,

the calibration itself can be done over any sampling time one chooses. We just want an

initial set of results which is comparable between stocks so as to investigate relationships

between our parameters and statistics we can derive from the limit order book. For

example, these statistics could be the spread, time between limit/market/cancellation

orders, volume traded, or number of each type of order.

We also define the depth of book we take in our model calibration based on the support

of the empirical price change distribution. We then have a method for determining the

optimal sampling time ∆t and depth K, so we provide an algorithm for calibrating our

model to data from the limit order book. With all of our parameters and limit order

book statistics we can investigate any relationships we find between them which provide

a qualitative way of understanding what each parameter represents for a given limit order

book.

We want to calibrate our model using exponential and free imbalance weights ~w,

but they will require different estimation techniques. The free imbalance weights can

be calibrated using maximum likelihood estimation and we will show that a penalized

version of maximum likelihood, maximum a posterior estimation, is required for the

exponential weights. This is due to the exponential weights being parameterized by an

unbounded, positive, real number.

With an optimal sampling time ∆t and model parameters w, K, and dp+, established

83
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for each stock, we can repeat the statistical tests of chapter 2 across the same collection

of stocks in Tables 2.4 and 2.8. We present results for the statistical tests using both

definitions for calculating the imbalance – equations 3.3.1 and 3.3.2. This will give us

a way of comparing if the optimal weights w give an improvement over just using the

volumes at the touch. The weights will also tell us which stocks have price movements

that have strong association to volume imbalances deep in the limit order book.

We then discuss the goodness of fit between the empirical price change distribu-

tion and our calibrated model. We use Kullback–Leibler divergence and probability-

probability plots to argue, numerically and visually, that we have an excellent fit for our

models. We also return to the discussion of how to appropriately aggregate the instan-

taneous imbalances into an average imbalance and show that time weighting removes

negative correlations between the change in the best ask price and the volume imbalance

ratio.

Finally, we present the optimization problem presented to the spoofer which we solve,

in detail, in chapter 5.

4.2 Optimal Sampling Time

Stocks are not the same and people do not trade on all stocks at the same frequency.

The trading activity of a stock varies during the day and even day to day. The higher

the trade volume and frequency the more prices can move in a given time interval. The

time needed to observe a particular variation in the distribution of the best ask price is

dependent on this sampling time ∆t as we saw in chapter 2.

In our calibration we need to specify a sampling time to generate the distribution of a

change in the best ask price. Choosing too small a time interval can give us distributions

with very small variance, i.e. little movement in the price. We want to be able to

compare stocks over time intervals where they show similar movement in their prices. It

is a common theme in financial mathematics that variance and time scales are linked.

For example, the increment of Brownian motion dW t = Wt−Ws with s < t, which many

financial models are built from, is drawn from the normal distribution N (0, t − s) for

time interval ∆t = t − s. The larger the time interval, the larger the variance of the

random variable. We can use this idea to fix a time scale by fixing the variance of the

distribution of the change in the best ask price.

To do this we can pick a benchmark variance σ2
b and then find the sampling time

∆t > 0 which gives an empirical variance σ2
∆t as close to the benchmark as possible. For

each stock we need to find ∆t and σ2
∆t such that
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arg min
∆t>0

|σ2
b − σ2

∆t| (4.2.1)

It just remains to determine what to choose for our σ2
b . When we refer to the optimal

sampling time we mean optimal with respect to σ2
b according to equation 4.2.1. Alterna-

tive methods for determining the time scale could be based on the number of seconds to

see a set number of trades, number of orders, specific amount of volume entering/exiting

the book, etc. For example, Bechler & Ludkovski fix their time scale by the number

of seconds to see 20,000 shares traded in the book [51]. We do not take this approach

because our goal is to model the distribution in the change in the best ask and fixing the

variance guarantees a certain amount of price movement which may be more difficult via

an indirect way like trade volume – it will be more difficult to control the price change

distribution.

Fixing the variance also gives us the advantage that the shape of the distribution

will be heavily determined by the probability that the best ask does not change. Since

the distributions are all peaked at 0, if we fix the variance and the P[x = 0] ≈ 1 then

the probability mass in the tails of the distribution spreads out deep in the support to

achieve the fixed variance. By the same argument, as P[x = 0] decreases the support

will decrease with it. The financial intuition for this is that stocks with a best ask that

changes very little must increase/decrease multiple ticks when it does move in order to

see the same fixed variance as a stock with a best ask which is constantly moving.

Initially, only data for AEM stock on April 17, 2017 was available to us – full access to

TMX’s data came later. From initial analysis of this data we determined that 5 seconds

showed an adequately large support for us to test our model. This is why in chapter 2

our statistical analysis was done over 5 second intervals. The distribution of the change

in the best ask price for AEM on this day had a variance of ≈ 2 ticks and the optimal ∆t

to see a variance of 2 in the change in the best ask price was 5 seconds as well. This will

serve as our benchmark variance for determining the optimal sampling time ∆t. This

result is shown in Figure 4.1.

It is worth repeating that ∆t is just the sampling time we are calibrating our model

over. We can choose any interval we want, but for the purposes of comparing calibration

results we want to pick a sampling time large enough to see a reasonable amount of price

movement.

We can also investigate the intraday optimal sampling time for each stock by finding

σ2
∆t for the first hour, the middle 4.5 hours, then the final hour of trading. That is, 9:30

- 10:30, 10:30 - 15:00, and 15:00 - 16:00. We refer to these as the start, mid, and end
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Figure 4.1: Output of equation 4.2.1 for AEM stock on April 17, 2017 with σ2
b = 2. We

find the optimal number of seconds is ∆t = 5. Data used is from the entire trading day.

periods, respectively.

4.2.1 Optimal Sampling Time Analysis

We select four stocks from the top 100 most active stocks on the TSX during the year

2017 to discuss the optimal time interval. We take AEM, BMO, PPL, and CPG as these

stocks exhibit very different time scales for their price changes – which we will see in this

section. The objective is to minimize the absolute value of the difference of 2 and the

variance of the distribution calculated over increasing interval lengths. Figures 4.2-4.5

show the results for determining the optimal time interval needed to see a variance of 2

in the distribution of the change in the best ask price.

We see that the optimal sampling time for the first hour of the day is always smaller

in our 4 cases than the sampling time over the whole day. This would imply that, at the

beginning of the day, price movements happen more frequently and at a larger intensity

than they do during the rest of the day. We expect this since the beginning of the trading

day is usually the most active time for any stock.

We also see that the general order from smallest to largest interval is the first hour,

whole day, mid day, and the last hour can fall above or below the mid day. This is

shown, for example, in Figures 4.2 and 4.6 where the last hour falls below the mid day
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Figure 4.2: Optimal sampling time for AEM stock on June 9, 2017 to see a variance of
2 in the distribution of the change in best ask price. ∆t = 5, 2, 8, and 7 seconds, for the
whole day, first hour, mid day, and last hour, respectively.

Figure 4.3: Optimal sampling time for BMO stock on June 9, 2017 to see a variance of
2 in the distribution of the change in best ask price. ∆t = 10, 4, 13, and 7 seconds, for
the whole day, first hour, mid day, and last hour, respectively.
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Figure 4.4: Optimal sampling time for PPL stock on June 9, 2017 to see a variance of 2
in the distribution of the change in best ask price. ∆t = 38, 16, 51, and 29 seconds, for
the whole day, first hour, mid day, and last hour, respectively.

Figure 4.5: Optimal sampling time for CPG stock on June 9, 2017 to see a variance of 2
in the distribution of the change in best ask price. ∆t = 51, 28, 59, and 68 seconds, for
the whole day, first hour, mid day, and last hour, respectively.
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and then above the mid day, respectively. However, we do not see the last hour being as

active as the first hour of the day. We saw this back in chapter 2 in Figure 2.5 where the

distribution over the whole day and the final hour appeared very similar.

Figure 4.6: Optimal sampling time for AEM stock on June 8, 2017 to see a variance of
2 in the distribution of the change in best ask price. ∆t = 4, 2, 5, and 6 seconds, for the
whole day, first hour, mid day, and last hour, respectively.

Now we can investigate if any clusters or patterns emerge within an individual stock

or between stocks for the optimal sampling time and any descriptive quantities we can

derive from the stock – say the average spread or volume traded, for example. We take

the stocks BMO, CNR, HFU, HSU, PAAS, and PPL and calculate the optimal sampling

time ∆t for each day between May 29, 2017 and August 04, 2017.

In Figure 4.7 we show the relationship between ∆t and the average daily spread for

the start, mid, and end periods of a day. The spread is largest during the start period of

the day and narrows as the day goes on. The optimal time sampling decreases with the

increasing spread with the optimal time sampling being smallest during the start period.

We see no difference in the optimal sampling time between the mid and end periods, but

the spread is generally wider in the mid period. However, we see 6 points as outliers –

the two blue dots near a spread of 17 ticks, two red dots between a spread of 4 and 5

ticks, and two green dots between a spread of 5 and 6 ticks. These 6 points are the three

periods from May 29, 2017 and July 4, 2017. These two days correspond to the holidays
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in the United States for Memorial Day and Independence Day. Also, these two days see

significantly fewer orders (< 50% as many) and generally larger spreads in all periods.

Figure 4.7: Optimal sampling time ∆t (seconds) against the average spread (ticks) for
CNR stock during start, mid, and end, periods. Each point corresponds to a trading day
between May 29, 2017 and August 4, 2017.

Figure 4.8 depicts the relationship between the ∆t and the average interarrival time

of all orders for each day. We see the optimal sampling time increasing with increasing

average interarrival time. The longer the time between orders, the longer it takes to

see our variance of 2 in the distribution of the change in best ask price. The average

interarrival time is smallest during the start period and then increases into the mid and

end periods. We also have 6 more outlier points corresponding to May 29, 2017 and July

4, 2017. In addition, July 3, 2017 was when the TSX was closed for Canada Day. There

are fewer orders placed during these days so the time between orders increases accordingly.

Interestingly, even in our age of algorithmic trading, we still see a noticeable decrease in
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trading activity on days where the American markets are closed. The American traders

could still place orders in Canada via computer algorithms without needing to actually

place the orders themselves. We see that the same outliers in all stocks we have looked

at on those two days which would suggest either American traders do not operate at near

the same level on their days off or they do not trust letting a computer place their trades

unsupervised.

We also see evidence of why we found little difference between the mid and end periods

for CNR in Figures 2.2c and 2.5c. The two periods cluster together with similar ranges

in ∆t, albeit with the end period having a tighter spread.

Figure 4.8: Optimal sampling time ∆t (seconds) against the average interarrival time
(seconds) of all orders for CNR stock during start, mid, and end, periods. All trading
days between May 29, 2017 and August 4, 2017.

We also see outlier points for some stocks on days that are not holidays. For example,

PPL has data points outside their usual clusters on July 24-26, 2017. This, possibly,
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corresponds to the record dividend date for PPL on July 25. The holder of the share on

that date receives the dividend payment issued on August 15. July 24 sees significantly

slower activity on PPL as holders of the stock are less likely to sell their shares before

they become the holder on record for the dividend payment. Then on July 25 and 26 the

activity picks up as orders are placed to sell shares once the dividend payment has been

locked in.

Similarly, BMO has several unusual points. All of these events were unlikely to have

caused this change in trading behaviour on these days, but we were unable to find any

other news and there was no dividend record date nearby. June 5, BMO announces it is

bringing Android Pay to its Canadian customers with a ≈ 30% drop in order numbers

causing an increase in the average interarrival time, but with a normal average spread.

June 14, BMO announces increasing US$ prime lending rate from 4.00% to 4.25% which

accompanies a significant uptick in activity at the end of the trading day. BMO also

has a share repurchase program complete on July 24 and appointed a new Leader for

Financial Advisors on July 25. The dates July 24-27 then saw unusual spreads and

average interarrival times.

However, there are outliers that we were unable to give possible links to news about

the associated stock. For example, PAAS has an unusually low average interarrival time

on June 14, 2017, but this date has nothing to do with dividends or exact press releases.

So, like the BMO points that are unlikely to have been impacted by the news we did

find, there are many points with no clear explanation for what caused them. This may

indicate something out of the ordinary happening on these dates. It is not clear that this

is caused by manipulation, but the exchange could use this information to scrutinize the

trading behaviour of stocks on these days to look for possible irregularities.

Some stocks also had noticeably different behaviour on August 4, 2017. This was the

Friday before the Ontario civic holiday long weekend where the TSX would be closed on

the Monday. Some of our 6 stocks had an uptick in the number of orders during the day

causing a decrease in the average interarrival time, but ∆t remained large. This was not

the case across all of the 6 stocks though – CNR did not have this issue as we saw in

Figures 4.7 and 4.8.

Figures 4.9, 4.10, and 4.11, show the relationship between ∆t and the average spread

for our 6 stocks on all days except for the days we removed due to their unusual beha-

viour in at least one of our stocks. The figures are for the start, mid, and end periods,

respectively. We see some clear clustering for individual stocks with the general trend

being that smaller spreads lead to longer sampling times. This would make sense as

smaller spreads mean prices have little room to move when they do. Interestingly, HFU
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Figure 4.9: Optimal sampling time ∆t (seconds) against the average spread (ticks) during
the start period of the trading day. Each point corresponds to a trading day between
May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.

Figure 4.10: Optimal sampling time ∆t (seconds) against the average spread (ticks)
during the mid period of the trading day. Each point corresponds to a trading day
between May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.
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Figure 4.11: Optimal sampling time ∆t (seconds) against the average spread (ticks)
during the end period of the trading day. Each point corresponds to a trading day
between May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.

and HSU show very different results compared to BMO, PAAS, PPL, and CNR. HSU

has a spread of ≈ 2 regardless of time period or day in the 10 week sample, but has

no clear relationship with ∆t. Similarly, HFU appears to have no relationship between

the average spread and ∆t, but the average spread decreases over the day like the other

stocks. HFU appears to share characteristics of both HSU and our other stocks, whereas

HSU is obviously different than the rest.

Figures 4.12, 4.13, and 4.14, show the relationship between ∆t and the average in-

terarrival time of all orders for our 6 stocks on all days except for the ones we remove

which had unusual behaviour in at least one of our stocks. The figures are for the start,

mid, and end periods, respectively. Like the average spread we have clear clustering with

the average interarrival time. The general trend is that longer average interarrival times

leads to longer sampling times and this relationship becomes stronger as the trading day

goes on. During the first period the average interarrival times of all stocks are roughly

between 0.2 and 0.5 seconds, regardless of the sampling time. The average interarrival

time then increases in the mid and end periods for each stock with the individual stocks

still clustering together, but the stock clusters separate from each other.

This surface level look at the optimal sampling time ∆t leads to some interesting
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Figure 4.12: Optimal sampling time ∆t (seconds) against the average interarrival time
(seconds) of all orders during the start period of the trading day. All trading days between
May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.

Figure 4.13: Optimal sampling time ∆t (seconds) against the average interarrival time
(seconds) of all orders during the mid period of the trading day. All trading days between
May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.
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Figure 4.14: Optimal sampling time ∆t (seconds) against the average interarrival time
(seconds) of all orders during the end period of the trading day. All trading days between
May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August 4.

clustering with the average spread and average interarrival time of orders within and be-

tween individual stocks. We can also identify clear outliers in the data which correspond

to dividend dates or holidays, but there are also days with unusual results to which we

are unable to assign a cause. This could possibly be used to identify days on which the

exchange could scrutinize trading behaviour, but we have not seen evidence yet that this

is caused by price manipulation. Further investigation would be needed to determine

exactly what is causing these days to be so different from any other both within and

between stocks.

4.3 Depth of Book

In chapter 3 we defined the parameter K as the depth we take from both sides of the

limit order book. So, our limit order book vk has support in [−K,K] with v0 = 0 and v1

(v−1) is the volume at the best ask (bid) price. We also made the argument that the price

change distribution would then have support in [−K + 1, K − 1] since the probability of

the best ask price moving up one tick will depend on the volumes at the first two ticks.

This is because the best ask will move up exactly one tick if only the volume at the first
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tick is completely depleted.

From this we can set the depth of the book K after determining the number of ticks in

the support of the empirical price change distribution over ∆t seconds. Let X denote the

empirical price change distribution with Q1(X) and Q2(X) as the 0.001% and 99.999%

quantiles of X, respectively, defined such that

P [X ≤ Q1(X)] = 0.001%

P [X ≤ Q2(X)] = 99.999%
(4.3.1)

Q1(X) and Q2(X) may not be whole integers so we need to round them to the nearest

integer. Then

K = max(−Q1(X), Q2(X)) + 1 (4.3.2)

However, due to the limitations of our AWS cluster, we generated limit order books

including only the first 15 prices on either side of the order book. So, if K > 15 we take

K = 15 for calculation purposes. Of the 50 stocks we investigated, only 2 of them had

depths larger than 15 after fixing ∆t by equation 4.2.1 – FSV and TC.

Using equation 4.3.2 we calculate the depth K for stocks TC and AEM from their

empirical price change distributions shown in Figure 4.15. Since we have fixed the vari-

ance over time interval ∆t to be as close to 2 as possible given the data we have that the

larger the support of the empirical distribution, the larger the probability that the best

ask price does not change over ∆t. An example of this is shown in Figure 4.15 where

TC has a higher probability of no price movement compared to AEM, which is accom-

panied by twice the depth. In order for a stock which has a high probability of no price

movement to see a variance of 2, the price movements to be large when they actually

happen. Like TC, when the price moves it is usually ±1 or ±2, but movements of ±3 to

±8 ticks occur with almost equal probability to each other. These long tails deep in the

support of the price change distribution happen for any of these low movement stocks.

In Figure 4.16 we show the relationship between the depth K and the probability of

no change in the best ask price using our collection of stocks from the previous section.

As we expect – as the probability of no movement increases to 100%, the depth increases

with it since the variance is fixed. The depth then gives us an idea of the frequency in

which the stock price moves over its optimal time interval ∆t. That is – large depth

means higher probability of no movement in the best ask over ∆t seconds.

The only clear relationship found between the depth K and other statistics drawn

from our data is with the optimal time interval ∆t. In Figure 4.17 we see that, in general,
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(a) TC, K = 20, ∆t = 1

(b) AEM, K = 10, ∆t = 5

Figure 4.15: Empirical price change distributions for TC and AEM stocks. Data taken
from the week June 1-8, 2017 over the full trading day. From equation 4.3.2 the depth
K is 20 and 10 for subplots (a) and (b), respectively.
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Figure 4.16: Depth K against the probability of no change in the best ask price for
BMO, PAAS, PPL, HFU, HSU, and CNR. Data from all three time periods. Each point
corresponds to a trading day between May 29 - August 4, 2017 – excluding May 29, July
4-6, July 24-25, August 4.

Figure 4.17: Depth K against the optimal time interval ∆t for BMO, PAAS, PPL, HFU,
HSU, and CNR. Data from all three time periods. Each point corresponds to a trading
day between May 29 - August 4, 2017 – excluding May 29, July 4-6, July 24-25, August
4.
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price changes which have a variance of 2 over short time scales (less than 5 seconds)

also have larger depth – their prices move less frequently, but they move multiple ticks

when they do. This is because prices can only move after a new order comes into the

book. Order-by-order, the best ask will change with these new incoming orders which is

aggregated over ∆t seconds. The bigger ∆t, the more orders can be included in the time

interval to impact the price movements as seen in Figure 4.18.

Figure 4.18: Average number of orders during ∆t seconds against the optimal time
interval ∆t for BMO, PAAS, PPL, HFU, HSU, and CNR. Data from the start period.
Each point corresponds to a trading day between May 29 - August 4, 2017 – excluding
May 29, July 4-6, July 24-25, August 4.

For a small ∆t the orders which come into the book would have to have a large impact

on the price when they do eventually cause it to move. We see this in Figures 4.19 and

4.18 where a very small ∆t comes with a very small number of average orders and a high

probability of no change in the best ask price. A high probability of no change in the best

ask price means that the price change distribution must have a large support in order to

get a variance of 2. In turn, this gives a large depth in the price change distribution.

Likewise, stocks with longer time scales require time for their small price changes to

accumulate enough to give a variance of 2 in the distribution of the change in best ask

price. These stocks see small price changes order-by-order which add together over ∆t to

give enough movement to see a variance of 2 in the price change distribution. The longer

the time scale, the more orders during ∆t and the smaller the probability of no change
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Figure 4.19: Average number of orders during ∆t seconds against the probability of no
change in the best ask price for BMO, PAAS, PPL, HFU, HSU, and CNR. Data from
the start period. Each point corresponds to a trading day between May 29 - August 4,
2017 – excluding May 29, July 4-6, July 24-25, August 4.

in the best ask price. In turn, this gives a smaller depth in the price change distribution.

4.3.1 Spread and Price Movement

We also found interesting clustering with the average spread and the probability of no

movement in the best ask price. Figure 4.20 shows these clusters for the start period of

our six sample stocks. Like the clusters we saw earlier between the spread and ∆t, the

stocks HFU and HSU are clearly different from the rest. The probability of no movement

in the best ask price as no real impact on the spread of HFU or HSU – this is exactly

what we saw where the spread for these two stocks is roughly consistent regardless of the

other statistics.

However, excluding HFU, we do see the average spread increasing when the best ask

price move less and less. This is consistent with what we have seen so far because we have

fixed the variance so if a stock has a small probability of price movement, the movement

will be large when it happens. Large spreads would facilitate an environment for a stock’s

best ask price to move multiple ticks at a time when an order does finally cause it to

move.
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Figure 4.20: Average spread against the probability of no change in the best ask price
for BMO, PAAS, PPL, HFU, HSU, and CNR. Data from the start period. Each point
corresponds to a trading day between May 29 - August 4, 2017 – excluding May 29, July
4-6, July 24-25, August 4.
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4.4 Price and Imbalance Model Calibration

In this section we present two methods for calibrating our price change distribution model

to the data – dp+ and ~w. The two methods are maximum likelihood estimation (MLE),

and maximum a posteriori estimation (MAP). Details of how these methods are used to

fit our model to the data are presented in Appendix B. One can view the MAP estimate

as a penalized version of the MLE.

To calibrate our model for dp+ and ~w we take 20,000 ∆t second intervals for dates

between June 1-8, 2017. The optimal time interval ∆t is calculated from equation 4.2.1.

We do the same calibration for the first hour of trading. Sometimes a ∆t second interval

has only one or no orders in it and we drop such intervals. This happens at most≈ 400 out

of our 20,000 samples. From this data set we can calculate K using equation 4.3.2. The

ith ∆t second interval then has an associated change in best ask and average imbalance

pair denoted by (xi, I(~v i; ~w,K)) for given weights ~w and depth K.

For each stock we then have optimal time interval ∆t, depth K, and data pairs

(xi, I(~v i; ~w,K)) which we can use to calibrate our model to find dp+ and ~w.

4.4.1 Calibration without Penalty

We first look at maximum likelihood estimation to calibrate our model for exponential

and free imbalance weights. Let N denote the number of ∆t second intervals and data

from the ith interval is denoted by (xi, I(~v i; ~w,K)). We calibrate first using exponential

weights as they serve as an intermediate choice between using only the touch and using

free weights. Once the model is calibrated using exponential weights we can use the value

of the likelihood function to check the results of the free weights – the free weights should

produce a likelihood value at least as good as the exponential weights.

We now write down the calibration problem for exponential and free weights using

maximum likelihood estimation. For the exponential weights we have that the individual

weights ~w are given by

wi = e−(i−1)α (4.4.1)

with α ∈ [0,∞). The largest weight is assigned to the best bid and best ask volumes.

The weights ~w(α) are now entirely parameterized by α. However, we can transform α→
ᾱ ∈ [0, 1) to make our calibration more tractable. We make the following transformation

ᾱ = 1− 1

1 + α
, α =

1

1− ᾱ
− 1 (4.4.2)
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Using maximum likelihood, our calibration problem becomes:

arg min
dp+, ᾱ

1

N

[
−

N∑
i=1

logϕ(xi; I(~v i; ~w

(
1

1− ᾱ
− 1

)
, K))

]
(4.4.3)

with constraints

dp+
x = dp−−x (4.4.4)

K−1∑
x=−K+1

dp+
x = 1 (4.4.5)

0 ≤ ᾱ ≤ 1 (4.4.6)

as maximizing the likelihood is equivalent to minimizing the negative log likelihood.

The factor of 1/N outside the negative log likelihood provides numerical stability while

not affecting the optimization since it is a positive constant.

The calibration problem using maximum likelihood estimation with free weights is

then given by

arg min
dp+, w

1

N

[
−

N∑
i=1

logϕ(xi; I(~v i; ~w,K))

]
(4.4.7)

with constraints

dp+
x = dp−−x (4.4.8)

K−1∑
x=−K+1

dp+
x = 1 (4.4.9)

K∑
k=1

wk = 1 (4.4.10)

w1 ≥ wk ∀k ∈ [1, K] (4.4.11)

The extra constraint in equation 4.4.11 is to ensure that the weight assigned to the

best ask/bid is at least as large as any other weight. We want the volume at the best

bid/ask to be the most important volume in determining the average imbalance. This way

we can also compare our free weight results to the results where we used exponentially
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weighting as the exponential weights assign the largest weight to the touch as well. The

financial intuition here is that the volumes at the best bid and ask will dictate whether

the best ask moves at all, while the volumes at depths beyond the best bid and ask would

determine how deep the price moves when it does.

We also found that removing the constraint made the optimization problem unstable

and often did not converge to a solution. This may be caused by having too much

freedom in the imbalance weights. Adding the constraint solved this issue while also

keeping the free weights conceptually similar to the classic and exponential imbalance

weight definitions.

Ultimately, we want to use the free weights when exploring spoofing detection, but

calibrating with the exponential weights first allows us to numerically check the results

of our higher dimensional free weight calibration for consistency.

4.4.2 Calibration with Penalty

Alternatively, we can take a Bayesian approach and include a penalty function by assu-

ming a prior distribution P (ᾱ) on ᾱ. This is known as maximum a posteriori probability

(MAP) estimation and is given by a slight modification to the maximum likelihood esti-

mation. For the exponential weights, an α of 0 would imply that all depths carry equal

weight in determining the effect of volume imbalance on price changes - which the lite-

rature suggests is not the case [51]. It would also mean a spoofer could place a spoofing

limit order so deep in the book it would not be executed while having a large impact

on the imbalance. Essentially manipulating the book with no downside. There is also

no real difference between an α of 5 or 100 as the exponential weight would decay any

contribution beyond the best ask/bid.

That is, we want to penalize α near 0 and as it approaches +∞. After rescaling α as

we did in the calibration without penalty we can use a beta distribution Beta(ᾱ; a, b) for

P (ᾱ) to penalize our bounds at 0 and 1.

Figure 4.21 shows an example penalty function using the beta distribution. We pe-

nalize the ᾱ = 1 boundary more harshly because of how we rescaled α as our original α

will grow to infinity rapidly for ᾱ > 0.8.

The calibration problem with penalty then becomes

arg min
dp+, ᾱ

1

N

[
−

N∑
i=1

logϕ(xi; I(~v i; ~w

(
1

1− ᾱ
− 1

)
, K))− logP (ᾱ)

]
(4.4.12)
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(a) Prior PDF (b) Prior Penalty

Figure 4.21: Subplot (a) is the beta distribution Beta(ᾱ; a, b) and subplot (b) is negative
log of Beta(ᾱ; a, b). We take a ≈ 2.55, b ≈ 3.42 to be the smallest pair where 95% of the
probability of P (ᾱ) lies in the interval [0.1,0.8] (≈ [0.11,4.00] in the unscaled α).

with constraints

dp+
x = dp−−x (4.4.13)

K−1∑
x=−K+1

dp+
x = 1 (4.4.14)

0 ≤ ᾱ ≤ 1 (4.4.15)

where P (ᾱ) = Beta(ᾱ; a, b) for suitable constants a and b. As in Figure 4.21, we will

take (a, b) ≈ (2.55, 3.42) as this is the smallest pair of numbers for which 95% of the

probability in Beta(ᾱ; a, b) lies in the interval [0.1,0.8]. This way our penalty is almost

entirely applied near our boundaries and should have little impact on ᾱ ∈ [0.1, 0.8].

Figure 4.22 shows the impact of the MAP estimate over MLE for AEM stock on April

17, 2017 for the entire trading day. There is little difference between the optimal ᾱ for

either method as the minimum value falls in the interval with the smallest penalty, but

we have a significant enough penalty to the boundaries of ᾱ.

It should be mentioned that the MAP estimate, unlike the MLE, is not parameteriza-

tion invariant. This is because the maximum likelihood is a function over the parameter

space, while the maximum a posteriori is a probability density over the parameter space.

The MAP estimate is the maximum mode of the posterior density which can change

with reparameterization as regions of the parameter space can be stretched/contracted
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(a) MLE (b) MAP Estimate

Figure 4.22: MLE and MAP estimate for AEM stock on April 17, 2017 for the entire
trading day.

under a non-linear map, but the probability in those regions must be conserved. Ho-

wever, in our calibrations the reparameterization from ᾱ → α had minimal impact on

location of the optimal α outside of the heavily penalized regions of the parameter space.

We also run all calibrations using ᾱ so we can compare results and any impact on the

reparameterization is negligible for our current purposes.

4.5 Statistical Tests for Exponential Weights

Now we can return to the statistical tests we did in chapter 2, but this time we calculate

the average imbalance using the weights found from our model calibration. Again, we

calculate the p-values and Cramer’s V of the test statistic to report the level of association

between the average imbalance and changes in the best ask price.

The results for the coarse imbalance and fine price movement test are presented in

Table 4.1 where we have included the Cramer’s V, CTouch
V and Cα

V, obtained by calculating

the average imbalance using only the volumes at the touch, and from the optimal weights,

respectively. The results in the table are presented for the whole trading day and for the

first hour of the trading day. We also include the optimal ∆t for each stock.

Table 4.2 presents the results from the fine imbalance and coarse price movement test

with the same formatting as Table 4.1.

We aggregate the results in Table 4.1 of the Cramer’s V in Figure 4.23. We have

plotted CTouch
V against Cα

V and compare the results against a relationship where the two

values are the same – given by the dashed blue line. We see that there is an overall

improvement in the association between the average imbalance and changes in the best
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ticker ∆t α CTouch
V Cα

V

CNR 6 2.16 0.163 0.171
GIL 41 4.05 0.151 0.166
XWD 237 5.48 0.141 0.158
XQQ 126 7.28 0.123 0.158
HXU 38 4.95 0.122 0.136
PPL 22 4.31 0.113 0.113
IMO 21 6.78 0.112 0.122
G 62 0.0202 0.112 0.235
GIB.A 11 1.66 0.109 0.133
FSV 1 0.447 0.108 0.0757
BMO 10 3.39 0.105 0.108
ARX 42 4.31 0.105 0.12
NA 19 4.05 0.105 0.106
T 67 4.61 0.104 0.125
WCN 4 0.559 0.103 0.108
UFS 8 0.419 0.103 0.151
BIP.UN 15 2.69 0.102 0.115
HOD 36 0.00598 0.102 0.246
PAAS 21 1.13 0.101 0.139
FR 74 0.01 0.101 0.167
BAM.A 27 0.608 0.101 0.131
IPL 53 8.02 0.0932 0.109
FM 78 8.18 0.088 0.106
HQU 28 0.525 0.0879 0.182
AEM 5 0.593 0.0875 0.137
RBA 18 1.2 0.0867 0.12
ERF 68 0.01 0.0864 0.201
PWF 46 0.00598 0.0819 0.158
CPG 55 7.42 0.0807 0.0787
FTS 42 5.31 0.08 0.102
K 326 4.94 0.0788 0.0928
ZEB 180 0.01 0.0751 0.207
SLF 18 3.95 0.0723 0.0764
IMG 281 5.74 0.0665 0.0792
KL 78 6.77 0.0629 0.0713
CCO 122 0.01 0.062 0.138
OR 37 0.01 0.0602 0.147
HVI 88 0.012 0.0592 0.0753
TC 1 0.512 0.0556 0.0804
GOOS 2 1.14 0.0555 0.0593
POW 67 7.01 0.0539 0.0658
HSU 58 0.01 0.0514 0.245
SW 5 4.26 0.0505 0.0588
VUN 179 0.399 0.0453 0.238
VFV 112 0.00799 0.0438 0.109
SSO 61 0.00398 0.0304 0.105
HFU 34 0.01 0.0278 0.123
XEG 246 0.00598 0.0245 0.308
VGG 190 0.0202 0.0238 0.181
PVG 45 0.00398 0 0.114

ticker ∆t α CTouch
V Cα

V

CNR 1 1.46 0.0963 0.108
GIL 10 1.66 0.123 0.155
XWD 109 6.32 0.121 0.149
XQQ 18 6.11 0.175 0.196
HXU 11 6.21 0.243 0.261
PPL 9 3.04 0.106 0.0995
IMO 7 2.74 0.0653 0.0692
G 20 0.01 0.0843 0.245
GIB.A 3 1.08 0.0873 0.108
FSV 1 0.247 0.119 0.0818
BMO 3 1.59 0.086 0.0872
ARX 15 5.73 0.102 0.106
NA 6 4.61 0.07 0.0673
T 13 2.22 0.0969 0.125
WCN 1 0.263 0.0604 0.0906
UFS 2 0.656 0.097 0.117
BIP.UN 5 0.791 0.0727 0.1
HOD 29 0.00799 0.0556 0.32
PAAS 8 1.82 0.107 0.143
FR 24 0.0202 0.0417 0.0862
BAM.A 7 1.13 0.091 0.125
IPL 18 6.89 0.0624 0.075
FM 19 6.48 0.0283 0.0328
HQU 1 2.3 0.132 0.135
AEM 2 0.549 0.112 0.146
RBA 5 0.934 0.0875 0.131
ERF 25 5.51 0.114 0.12
PWF 18 5.92 0.0699 0.0789
CPG 21 7.42 0.0871 0.0862
FTS 13 2.26 0.0872 0.0894
K 99 5.73 0.168 0.185
ZEB 42 0.0161 0.139 0.211
SLF 5 3.59 0.0942 0.0991
IMG 57 0.981 0.0261 0.0786
KL 21 6.77 0.131 0.137
CCO 27 6.22 0.102 0.108
OR 14 0.00598 0.0722 0.0948
HVI 28 0.00799 0.0354 0.104
TC 1 0.878 0.0388 0.0483
GOOS 1 3.59 0.051 0.0685
POW 20 6.11 0.0948 0.109
HSU 19 0.01 0.0414 0.253
SW 1 0.823 0.0558 0.0926
VUN 74 0.226 0.0292 0.332
VFV 45 0.00799 0.1 0.125
SSO 15 3.01 0.0558 0.083
HFU 8 0.01 0.0152 0.179
XEG 75 0.00598 0.0547 0.351
VGG 76 0.354 0.0874 0.182
PVG 15 0.0202 0 0.0254

Table 4.1: Summary of chi square test for coarse imbalance and fine price movements
over ∆t seconds. Data is taken from June 1-8, 2017. All p-values are zero or very close
(≈ 10−46 at most) to zero. The left subtable uses data from the entire trading day while
the right subtable uses data only from the first hour of the trading day. Tickers are
sorted by magnitude of Cramer’s V for the whole day.
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ticker ∆t α CTouch
V Cα

V

CNR 6 2.16 0.284 0.286
GIL 41 4.05 0.281 0.277
GIB.A 11 1.66 0.264 0.278
XQQ 126 7.28 0.22 0.221
HXU 38 4.95 0.205 0.205
XWD 237 5.48 0.2 0.201
IMO 21 6.78 0.193 0.193
T 67 4.61 0.191 0.192
BIP.UN 15 2.69 0.19 0.199
RBA 18 1.2 0.188 0.205
G 62 0.0202 0.187 0.278
HQU 28 0.525 0.186 0.212
PPL 22 4.31 0.182 0.184
BMO 10 3.39 0.177 0.178
UFS 8 0.419 0.177 0.245
WCN 4 0.559 0.175 0.224
BAM.A 27 0.608 0.172 0.167
ARX 42 4.31 0.166 0.169
FM 78 8.18 0.165 0.165
FSV 1 0.447 0.164 0.136
AEM 5 0.593 0.163 0.204
NA 19 4.05 0.162 0.161
PAAS 21 1.13 0.153 0.189
IPL 53 8.02 0.15 0.15
HOD 36 0.00598 0.149 0.319
SW 5 4.26 0.147 0.153
GOOS 2 1.14 0.144 0.164
FTS 42 5.31 0.139 0.14
PWF 46 0.00598 0.137 0.178
ERF 68 0.01 0.123 0.236
SLF 18 3.95 0.116 0.12
CCO 122 0.01 0.113 0.166
FR 74 0.01 0.106 0.196
VUN 179 0.399 0.103 0.27
CPG 55 7.42 0.102 0.102
TC 1 0.512 0.0999 0.141
KL 78 6.77 0.0938 0.0935
OR 37 0.01 0.0843 0.207
IMG 281 5.74 0.0808 0.0835
ZEB 180 0.01 0.0787 0.193
HFU 34 0.01 0.0782 0.163
K 326 4.94 0.0728 0.0673
POW 67 7.01 0.0698 0.0697
VFV 112 0.00799 0.0692 0.107
HSU 58 0.01 0.066 0.272
SSO 61 0.00398 0.0656 0.129
HVI 88 0.012 0.0624 0.0552
VGG 190 0.0202 0.0497 0.201
XEG 246 0.00598 0.0286 0.357
PVG 45 0.00398 0.0277 0.0995

ticker ∆t α CTouch
V Cα

V

CNR 1 1.46 0.29 0.289
GIL 10 1.66 0.256 0.293
GIB.A 3 1.08 0.273 0.287
XQQ 18 6.11 0.32 0.319
HXU 11 6.21 0.43 0.429
XWD 109 6.32 0.173 0.17
IMO 7 2.74 0.132 0.128
T 13 2.22 0.202 0.202
BIP.UN 5 0.791 0.162 0.207
RBA 5 0.934 0.244 0.298
G 20 0.01 0.121 0.336
HQU 1 2.3 0.255 0.252
PPL 9 3.04 0.141 0.135
BMO 3 1.59 0.174 0.177
UFS 2 0.656 0.193 0.234
WCN 1 0.263 0.187 0.253
BAM.A 7 1.13 0.189 0.206
ARX 15 5.73 0.162 0.164
FM 19 6.48 0.0609 0.06
FSV 1 0.247 0.182 0.0998
AEM 2 0.549 0.236 0.257
NA 6 4.61 0.121 0.124
PAAS 8 1.82 0.199 0.217
IPL 18 6.89 0.141 0.141
HOD 29 0.00799 0.0881 0.393
SW 1 0.823 0.202 0.226
GOOS 1 3.59 0.162 0.166
FTS 13 2.26 0.142 0.151
PWF 18 5.92 0.111 0.112
ERF 25 5.51 0.168 0.166
SLF 5 3.59 0.174 0.174
CCO 27 6.22 0.161 0.163
FR 24 0.0202 0.0527 0.0872
VUN 74 0.226 0.0393 0.383
CPG 21 7.42 0.122 0.122
TC 1 0.878 0.103 0.0715
KL 21 6.77 0.235 0.234
OR 14 0.00598 0.124 0.141
IMG 57 0.981 0.0565 0.0351
ZEB 42 0.0161 0.171 0.222
HFU 8 0.01 0.0654 0.241
K 99 5.73 0.239 0.241
POW 20 6.11 0.115 0.114
VFV 45 0.00799 0.108 0.15
HSU 19 0.01 0.0859 0.319
SSO 15 3.01 0.106 0.112
HVI 28 0.00799 0.0399 0.105
VGG 76 0.354 0.124 0.206
XEG 75 0.00598 0.0577 0.421
PVG 15 0.0202 0.0274 0.0351

Table 4.2: Summary of chi square test for fine imbalance and coarse price movements
over ∆t seconds. Data is taken from June 1-8, 2017. All p-values are zero or very close
(≈ 10−46 at most) to zero. The left subtable uses data from the entire trading day while
the right subtable uses data only from the first hour of the trading day. Tickers are
sorted by magnitude of Cramer’s V for the whole day.
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ask price for this statistical test across all stocks, with the exception of the stock FSV

who’s points lie well below the dashed blue line.

FSV is a stock with an average spread of over 25 ticks, ∆t = 1 second, and an average

interarrival time of ≈ 0.6 seconds. Running the calibration multiple times often yielded

different results each time depending on the time intervals we sampled over the week.

FSV is a very inactive stock which would require special care in that we likely need more

data and sample more points. It may also be that our restriction of looking at stocks

over time intervals where they show a variance of 2 ticks in the change in the best ask

price is unfair to stocks which move very little or move many ticks at a time when they

do move. This was the only stock encountered in our list that exhibited this behaviour,

but there are very likely more stocks like this as we look at less active stocks.

Aside from FSV we have the greatest improvement in the Cramer’s V with our cali-

bration on stocks with small α values. This makes sense as these are stocks where the

association with the imbalance increases as we take volumes deeper in the book. Some

stocks have an optimal α which just reproduces the imbalance taking only the touch as

these stocks are more likely to have their price dynamics determined by the volumes at

the touch.

Similarly, we aggregate the results in Table 4.2 of the Cramer’s V in Figure 4.24. We

see the same improvement from stocks in each α category as in Figure 4.23 with FSV

being the only outlier again for the same reasons stated before.

Both statistical tests show that there are some stocks which gain significant impro-

vement in the association between the average imbalance and changes in the best ask

price while others see little to no benefit. This may imply there are some stocks which

have their price dynamics influenced more heavily than others by volumes deeper in

the book than by volumes only at the touch. This dependency on the depth of book

may make these particular stocks more vulnerable to manipulation. Prices could still be

manipulated at the touch, but it would be a much riskier strategy in our model.

The take away here is that we see a statistically significant increase in our desired

association by capturing information deeper in the limit order book for some stocks. It

is also good to see some stocks which gain nothing from orders placed deeper in the book

and whose price dynamics are most associated with the touch. It would have been very

surprising to see an across the board improvement in all stocks using our model, so we

are at least able to say that the existing literature involving only the touch is still very

relevant across most of the stocks we presented in Tables 4.1 and 4.2.
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Figure 4.23: CTouch
V against Cα

V for chi square test for coarse imbalance and fine price
movements. The blue dashed line would be the relationship that both Cramer’s V values
are the same. We separate the Cramer’s V values by the optimal α of each stock. The
intervals are chosen based on the regions we assigned our penalties to in Figure 4.21.

4.6 Calculating Average Imbalance Over ∆t

Returning to a point we left in chapter 2 – we decided to calculate the average imbalance

using time weighting instead of taking a simple mean. Now that we have an algorithm for

determining our sampling time ∆t we can come back to another reason for choosing the

time weight over the simple mean, in addition to the reasons presented back in chapter

2.

When calculating the correlation between the average imbalance and the change in

the best ask price using a simple mean for the average imbalance we often found negative

correlations between these two variables after calibrating for the optimal α. Regardless of

the α picked, we would always see a negative correlation even after resampling from the

larger data set. This might not be too surprising if the optimal α was found to be small

so as to incorporate volumes deeper in the book when calculating the imbalance, but this

was the case even for stocks with large α where only the touch is used in the calculation.

No matter the model we should find a positive correlation between the volumes at the

touch and the price dynamics because the best ask can never increase without the volume
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Figure 4.24: CTouch
V against Cα

V for chi square test for fine imbalance and coarse price
movements. The blue dashed line would be the relationship that both Cramer’s V values
are the same. We separate the Cramer’s V values by the optimal α of each stock. The
intervals are chosen based on the regions we assigned our penalties to in Figure 4.21.
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at the best ask going to zero so the best ask moves to the next highest price with a non-

empty volume. Also we should see prices almost never decreasing unless the best bid

volume has been depleted. Of course, if the spread is large enough we could have new

limit orders come in below the best ask which causes it to decrease, but even stocks with

tight spreads of a 1 tick would appear to have negative correlations between imbalance

and price movements.

Figure 4.25: Comparison between average imbalance with and without time weighting
captured by the correlation between the average imbalance and the change in best ask
price. The average imbalance is calculated using the calibrated α. Data is taken from
June 1-8, 2017 for the entire trading day across the stocks presented in Table 4.1. The
dashed blue line would represent identical correlation using both methods.

In Figure 4.25 we show the two methods for calculating the average imbalance and

their impact on the correlations between this average imbalance and price movements.

The time weighting approach completely removed the negative correlations we would

find after our calibrations. This is not to say that the time weighting always increased

correlation. There are stocks that had their correlations decreased, but still positive. Our

arguements back in chapter 2 were statistical and financial in nature, but here we can see

the impact of one method over the other in finding a predictor of price dynamics which is

consistent across all stocks we investigated – that is we no longer found any stocks with

strong negative correlations. We would still find some stocks with very small negative

correlations (≈ −0.02, for example), but we would argue this is really no different than
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a very small positive correlation in our case and that we would find no correlation at all

if taking a sufficient number of samples.

4.7 dp+ Goodness of Fit

We would like to have a goodness of fit for the calibrated dp+ for each stock when

compared to the respective empirical distribution of price movements. We refer to the

calibrated distribution dp+ here because the contraints we apply to our price change

model dp made it fully determined by dp+ and the imbalance weights wi. After the

calibration we have all the model parameters which we can plug into equation 3.4.5 to get

our fitted distribution for the change in the best ask price given some average imbalance I.

To compare our fitted distribution to the empirical we then need an estimate of I over the

entire relavent time period. We simply take the mean of the average imbalances calculated

for each ∆t time sample as our estimate for the stock’s overall average imbalance.

We need a way to compare two discrete distributions – one way involves the Kull-

back–Leibler (KL) divergence [65] in equation 4.7.1.

DKL(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(4.7.1)

where P (x) and Q(x) are two discrete distributions over the support X . Typically,

P (x) is taken to be the empirical distribution and Q(x) is the fitted distribution. We

should note that the KL divergence is not a metric on the space of probability distribu-

tions as it is not symmetric and it does not satisfy the triangle inequality. Instead, the

KL divergence is a measure of how much information is lost when approximating P by

Q. The KL divergence is zero for identical distributions and is unbounded to positive

infinity.

Figure 4.26 presents a histogram of the KL divergence for the stocks presented in

Tables 4.1 and 4.2. Overall the KL divergence is small across all stocks and provides

evidence of a good fit for our model price change distribution.

We can also show the fitted distribution to the empirical distribution as in Figure 4.27.

The fitted distributions provide an excellent approximation to the empirical distribution

except for at ±1 and ±2 ticks. This was not the case across all stocks, but for many the

empirical distribution was not symmetric about 0 when not conditioning on the average

imbalance. Any discrepancies we found with our fits were likely because of the modelling

assumption that the change in the best ask price is a symmetric distribution. Returning

to Figures 2.16a and 2.17 we saw that order-by-order the probability of the best ask



Chapter 4. Model Calibration 115

Figure 4.26: Histogram of the KL divergence calculated for each stock after calibration.
We are comparing the empirical price change distribution to the fitted distribution with
the average imbalance taken to be the mean of the sampled average imbalances.

increasing or decreasing was not symmetric about I = 0. This asymmetry extends over

∆t as in Figure 2.16.

Figure 4.28 shows the probability-probability (PP) plot of the distributions in Figure

4.27. A PP plot displays the value of the cumulative distribution function at each tick

for the empirical and fitted price change distributions against each other. A perfect fit

to the data would have all black points lying on the dashed blue line. Again, here we

can see the two distributions do not completely match at ticks ±1 and ±2. However, we

get a very good approximation in the tails. We use AEM here as a representative plot

because none of our other fits are any worse than the one we present here.

Future work would be to incorporate the imbalance asymmetry in the model to see

if this remedies the problem in our distribution fit, but for now we at least have a fairly

accurate model for how the distribution of changes in the best ask price are impacted

through the average imbalance. Though we may not have a perfect fit at all ticks, we do

have a great fit deep in the tails of the distribution so that the least likely price movements

will be properly incorporated in the cost functions we derived in chapter 3. It is important

to fit the least likely events to properly capture the profits and losses the spoofer realizes

in the worst (large price increase) or best (large price decrease) case scenarios. These

events may be unlikely, but a spoofer would want to have them incorporated in their
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Figure 4.27: Empirical and fitted price change distributions for AEM stock on April 17,
2017 over the entire trading day. The average imbalance is the mean of the sampled
average imbalances.

Figure 4.28: Probability-probability plot for the two distributions in Figure 4.27. The
CDF of the two distributions is evaluated at each tick in the support and plotted against
each other. The points would lie on the dashed blue line if the two distributions were
identical.
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expected costs to properly account for the risks associated with placing spoofing orders

deep in the book. This would allow the spoofer to, in theory, make better decisions.

4.8 Exponential and Free Imbalance Weights

Tables 4.1 and 4.2 show that there are many stocks with α ≈ 0 even after the pen-

alty. This value of α would imply that all volumes up to depth K carry roughly equal

weight when determining how to calculate the average imbalance which has the highest

association to changes in the best ask price. It is unlikely all weights would be equally

important, but due to our choice of exponentially decreasing weights if a stock has a

significant enough correlation to volumes deep in the book then α ≈ 0 is the only choice

in order to capture that volume.

We now present the results for the free weights using the stocks BMO, CNR, HFU,

HSU, PAAS, and PPL calibrated weekly between May 29, 2017 and August 04, 2017 for

the entire trading day. We will then compare the free and exponential weights from the

two calibrations and then return to the two statistical tests using the free weights.

In Figure 4.29 we show free and exponential weights determined by our calibrations

for BMO, CNR, and HSU stocks during the week of May 29 - June 2, 2017 over the entire

trading day. We use these three examples to show the outcome of the free calibration

when we have a large, medium, and small α, respectively. In each case the free weights

still pick up the exponentially decaying portion near the touch, but we also see weights

deeper in the order book for CNR and HSU. Even with the free weights BMO still only

wants the volume at the touch for best determining movements in the best ask price,

while CNR and HSU benefit from information several ticks into the book.

CNR has free weights deep in the book which we cannot capture with the exponential

weights without giving more weights to the volumes that have a weaker association to

the price dynamics – you would not be able to include the weights at 6, 7, or 8 ticks

without giving increasing weight to ticks 4 and 5, for example. However, this is not an

issue for HSU as the weights are so strong a few ticks into the book that the unimportant

volumes (ticks 2, 7, and 8) are overshadowed by the increased association in the price

dynamics we get from including the several volumes that do matter (ticks 3,4,5, and 6).

We see the same patterns emerge in each of the stocks over the 10 week period. We

just present these three examples to showcase the three ‘regimes’ (small, medium, and

large α) of α when calibrating with free weights.

In Figures 4.30 and 4.31 we plot the Cramer’s V for our two statistical tests using the

free weights as well as the exponential weights. We see that the free weights either give
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(a) BMO, α ≈ 5.79

(b) CNR, α ≈ 1.71

(c) HSU, α ≈ 0.0108

Figure 4.29: Free and exponential weights for BMO, CNR, and HSU calibrated using
data from May 29 - June 2, 2017 over the entire trading day.
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Figure 4.30: CFree
V against Cα

V for chi square test for coarse imbalance and fine price
movements. The blue dashed line would be the relationship that both Cramer’s V values
are the same. We separate the Cramer’s V values by the optimal α of each stock. The
intervals are chosen based on the regions to which we assigned our penalties in Figure
4.21.

back the same results we had originally or they greatly improve the association of the

average imbalance and changes in the best ask price. Clearly, the free weights provide

a better association as they will be at least as good as the exponential weights while

also giving more flexiability in which volumes are incorporated in calculating the average

imbalance. Interestingly, we also see that the improvements are not isolated to one α

category as even stocks with a large α found improvements by including volumes deeper

in the book.

The first test in Figure 4.30 has some stocks with no improvement over the exponential

weights as this test is only against the sign of the average imbalance in predicting price

movements – the changes to the weights may not have any statistically significant change
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Figure 4.31: CFree
V against Cα

V for chi square test for fine imbalance and coarse price
movements. The blue dashed line would be the relationship that both Cramer’s V values
are the same. We separate the Cramer’s V values by the optimal α of each stock. The
intervals are chosen based on the regions to which we assigned our penalties in Figure
4.21.

to the sign of the imbalance calculated from either weight choice. However, Figure 4.31

shows the second test where we broke the average imbalance into bins. Changing the

weights can change the average imbalance enough that our observations are moved from

one bin to another. The increased granularity of the imbalance in the second statistical

test can then pick up improvements in how the imbalance is calculated when there is no

change in sign. This could be why we see such huge improvements in Figure 4.31 over

Figure 4.30.
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4.9 Conclusions

In this chapter we introduced an algorithm for fitting our model parameters ~w, K, and

dp+ to stock data in a given time period over some time interval ∆t. In order to compare

the results across stocks we decided to fix ∆t for each stock based on a benchmark variance

in changes in the best ask price. This way we are comparing all stocks over time intervals

where they have approximately the same variance. We then found relationships between

∆t, the average spread, and average interarrival time of orders which also cluster for

each stock during different periods of the day. Increasing spreads and decreasing average

interarrival times are associated with decreasing ∆t. We also found that we could spot

outliers within the data using these parameters and stock statistics which were linked to

holidays in Canada and the United States and dividend dates. There were other outliers

which we were unable to pin to any specific event associated with the stock.

With a time interval ∆t set we could discuss price movements. We then defined the

depth of book K based on the support of the distribution of the change in the best

ask price. Since we had fixed the variance we had forced a relationship between K and

the probability of no change in the best ask price. We then found increasing depth was

associated with decreasing ∆t which we motivated based on the number of orders a stock

receives during ∆t and how this related to movements in the stock price. We also found

clusters for each stock during different time periods using the average spread and the

probability of no movement in the best ask price.

With some meaning assigned to our model parameters we then calibrated our model

to stock data using MAP estimation – maximum likelihood estimation with penalty.

Here we assumed the weights ~w decayed exponentially as one included more depth in the

book and were parameterized by α – the exponential decay constant. With our calibrated

model parameters we repeated the two statistical tests we ran in chapter 2 for the average

imbalance calulated from α. We found improvements across many stocks over using only

the volume at the touch, but mostly for stocks with smaller α. This would be because

the smaller the α the more volumes we incorporate deeper in the limit order book.

We also returned to the point of why we used time weighting over taking a simple mean

for calulating the average imbalance. We found that we often had negative correlations

between the volume imbalance and changes in the best ask price even when using just

the volumes at the touch. This was against conventional wisdom of how the limit order

book operates and when we used time weighting these negative correlations vanished.

We then provided evidence of goodness of fit for dp+ based on the Kullback-Leiber

divegerence and probability-probability plots. Overall we had excellent fits for the price
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change distributions, but there was still a discrepancy between the two distributions.

This was likely caused by our assumption that the distribution is symmetric about the

average imbalance I as we had evidence of an asymmetry from our statistical tests in

chapter 2. Our fits were still very good, but this would be one avenue of improvement in

future work.

Since we found many stocks had α values close to zero we also had our calibration

with free weights ~w to see if we could find which volumes in the book these stocks had the

most association with their price movements. We chose a particular constraint on ~w to

be consistent with our exponential weights. The results of the free weights then included

the results of the exponential decaying weights, but we also found important volumes

beyond the touch that were not included by the original results. We repeated our two

statistical tests again using the free weights and found that all stocks either benefited

from applying weights deeper in the book or were no worse off. This is further statistical

evidence that information about the volumes beyond the touch in the limit order book

give us a better association with price dynamics.

In the next chapter we can finally implement our spoofing model from chapter 3 using

parameters we generate from our calibration algorithm.



Chapter 5

Spoofing Detection

5.1 Introduction

Now that we have a methodology for calibrating our model we can solve the optimization

problem we originally presented in chapter 3. That is, we want to buy H shares and we

need to determine if we should immediately place a market order at time t for the H

shares or should we delay our market order to t + ∆t. Alternatively, as the spoofer, we

could spoof the book at time t and delay our market order to time t + ∆t, cancel our

spoofing orders, and lower our cost of purchasing the H shares.

We derived expressions for the expected cost associated with each of these three

decisions. We just need to compare which option saves us the most money for purchasing

H shares, bearing in mind that the option to spoof the book also involves an optimization

problem for picking where to place our spoofing limit orders. We compare two methods

of determining the optimal strategy – comparing expected costs, and a hybrid using

expected costs and the Sharpe ratio.

In this chapter we determine the optimal decision at each time throughout the day

for multiple stocks to see if there are periods throughout the day where the limit order

book is susceptible to spoofing, and if so, how much more profitable is spoofing the book?

This will depend on the number of shares H we wish to purchase as well as the number of

shares Ṽ that we spoof with. We show that incorporating risk into the spoofer’s decision

making process yields better decision clusters which allow us to explore the dependency

on the boundary between spoofing and placing market orders based on H and Ṽ .

We also analyze the optimal spoofing strategy with BMO stock using four example

limit order books taken from the data. We show that the spoofer’s strategy not only

depends on H and Ṽ , but the initial volume imbalance and the predicted shape of the

book when the spoofer needs to make their decision. We argue that properly modelling a

123
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spoofer’s prediction of the shape of the order book in the next time period is important

to determining how they will act as to better combat them.

5.2 Determining the Optimal Strategy

From chapter 3 we wrote down equations for the cost associated with our three strategies

- market order, delayed market order, and spoofing. We then choose the strategy which

yields the smallest expected cost. We also round each result to the nearest penny when

making our strategy decision. Spoofing may yield the lowest cost between the three

strategies, but if it is not lower by at least a penny then there is no practical reason to

take the risk in spoofing. We take this more conservative approach to decision making

because spoofing may always yield a numerically lower cost than delaying a market order

(due to manipulating the imbalance), but if that cost is only lower by some negligible

amount then we argue the spoofer cannot justify the risk associated with manipulating

the book.

Since one could, in theory, always gain an advantage by spoofing the book with an

arbitrarily large number of shares we have to limit our investigation to a finite number.

Also, limit orders of 100 shares are the smallest possible order one can place on the

book1 and orders are in increments of 100 shares. This significantly reduces the size of

our solution space and we can even solve the optimization problem by brute force in some

cases. Given parameters dp+, ~w, and K, the optimal spoofing strategy is obtained by

solving the optimization problem

min
ṽt

∑
xt

CS(~vt, H, p
+, xt, ṽt)ϕ(xt; I(~vt + ṽt; ~w,K)) (5.2.1)

Subject to

0∑
i=−K

ṽi = 0,
K∑
i=1

ṽi ≤ Ṽ , ṽi ≥ 0 and ṽi ∈ 100N ∀i ∈ [−K,K] (5.2.2)

The first condition in equation 5.2.2 is to further reduce the solution space, but by

construction we would never spoof the bid side of the book because that would push the

volume imbalance against us. The second condition limits the total size of our spoofing

orders to Ṽ . The final condition forces all spoofing orders to be 0 or multiples of 100

shares. The solution to equation 5.2.1 subject to 5.2.2 then gives the optimal spoofing

strategy. We, as the spoofer, decide how many shares Ṽ we are willing to spoof with.

1Orders less than 100 shares go to a separate book called Oddlot. This book has lower liquidity.
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We cannot assume that all orders would have happened exactly the same over ∆t

if we place a spoofing order at the start of the time period, so we cannot calculate the

average imbalance in the same way as we did for the calibration. We can only use the

information we have at time t. We have to make our optimal spoofing decision based on

the assumption that the imbalance we create from our spoofing order remains constant

over ∆t. There is no other option in the absence of data on how the market would react

to specific limit order sizes and placement to model the market dynamics over the time

interval based on our choices at time t.2 This is where a multi-period model would come

into play where we could update our strategy at multiple times over the day – which

would be a more realistic spoofing strategy. This work is, however, a first step towards a

more complicated and complete model to capture the behaviour of a market manipulator.

Figure 5.1: Calibrated weights ~w for BMO stock on April 17, 2017 over the entire trading
day. ∆t = 5 seconds and K = 10.

As an example, Figures 5.1 and 5.2 show the weights ~w and the optimal limit order

placement for a specific limit order book configuration for BMO stock on April 17, 2017.

Optimal limit order placement is decided using the free imbalance weights. We spoof

with up to 500 shares and wish to purchase 1000 shares. From the weights in Figure

5.1 we can easily tell that the volume imbalance heavily favours the best ask to decrease

over ∆t = 5 seconds. For purchasing 1000 shares with this limit order book the expected

2One would need considerable money and resources to test this type of market sensitivity to limit
order placement.
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Figure 5.2: Optimal limit order placement for spoofing with example book for BMO
stock taken on April 17, 2017. This is a stylized figure where we only show the first 15
prices in the bid and ask sides of the book and ignore the spread. Ṽ = 500 and we use
the free weights for calculating the imbalance.

cost savings are $2.50 if we spoof and $2.36 if we delay our market order, implying an

improved cost of $0.14 with spoofing.

We now need to compare this results to our other two available choices – delayed and

immediate market orders. Instead of using the expected cost of all three strategies, we

can subtract the cost of an immediate market order to see the expected net cost savings.

We denote these as µS and µDMO for the relative savings of spoofing and a delayed market

order, respectively. That is,

µS = E
[
CS(~vt, H, p

+, xt, ṽt) |Ft, I(~vt + ṽt)
]
− CMO(~vt, H, p

+)

µDMO = E
[
CDMO(~vt, H, p

+, xt) |Ft, I(~vt)
]
− CMO(~vt, H, p

+)
(5.2.3)

We can bring CMO(~vt, H, p
+) outside the expected value since it is Ft measurable.

This way we can also compare the savings seen across different limit order book states

since the costs are recorded relative to the immediate market order option for each time

period.

In Figure 5.3 we show the decision process for picking the optimal strategy based

purely on the expected net cost of the three options. We place an immediate market

order if we cannot save money by spoofing or delaying our market order. We spoof

or delay our market order if we can expect to save money and we choose the option
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µDMO < 0

µS < 0

µS < µDMO

Spoof DMO DMO

µS < 0

Spoof MO

Y

Y

Y N

N

N

Y N

Figure 5.3: Decision tree using only expected costs to determine optimal strategy. The
three options: Spoof, DMO, and MO, refer to spoofing, delayed market order, and im-
mediate market order, respectively.

which yields the greatest savings. However, using only the expected net savings in the

decision making process also ignores the risk associated with spoofing or delaying our

market order. We can incorporate the risk through the Sharpe ratio [66], S, defined for

an investment as

S =
µ− r
σ

(5.2.4)

where µ is the expected rate of return, r is the risk-free rate, and σ is the standard

deviation or volatility. One can think of the Sharpe ratio as the net return per unit of

increased risk. To unpack the Sharpe ratio we first subtract the risk-free rate from the

expected return of our investment since if µ < r we would have been better off investing

in the risk-free asset (usually taken to be a government bond). We then divide the excess

return by the volatility as a stand-in for the risk associated with the investment. This is

done to compare the ratio of excess returns to risk for a collection of different investments

(stocks, for example) that could make up a portfolio. Ideally, one wants to maximize

their return per unit of risk and would invest in assets with the highest Sharpe ratio.

Since we are looking at such small time intervals we can take r ≈ 0 in our case3. The

volatility σ for the cost of spoofing or delaying a market order is then given by

3A large risk free rate of 5% per year would yield 1.05
1

250×6.5×60×60 − 1 = 8.34 × 10−7% per second.
Assuming approximately 250 trading days with 6.5 hours of trading per day.
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σ2
S = Var

[
CS(~vt, H, p

+, xt, ṽt)− CMO(~vt, H, p
+) |Ft, I(~vt + ṽt)

]
σ2

DMO = Var
[
CDMO(~vt, H, p

+, xt)− CMO(~vt, H, p
+) |Ft, I(~vt)

] (5.2.5)

and the simple returns from spoofing and the delayed market order relative to the

immediate market order are given by

Spoofing Return = E

[
CS(~vt, H, p

+, xt, ṽt)− CMO(~vt, H, p
+)

CMO(~vt, H, p+)

∣∣∣∣Ft, I(~vt + ṽt)

]
=

µS

CMO(~vt, H, p+)

DMO Return = E

[
CDMO(~vt, H, p

+, xt)− CMO(~vt, H, p
+)

CMO(~vt, H, p+)

∣∣∣∣Ft, I(~vt + ṽt)

]
=

µDMO

CMO(~vt, H, p+)

(5.2.6)

Similarly, the volatility of each strategy relative to the immediate market order is

given by

Spoofing Volatility = Var

[
CS(~vt, H, p

+, xt, ṽt)− CMO(~vt, H, p
+)

CMO(~vt, H, p+)

∣∣∣∣Ft, I(~vt + ṽt)

]
=

σ2
S

CMO(~vt, H, p+)2

DMO Volatility = Var

[
CDMO(~vt, H, p

+, xt)− CMO(~vt, H, p
+)

CMO(~vt, H, p+)

∣∣∣∣Ft, I(~vt + ṽt)

]
=

σ2
DMO

CMO(~vt, H, p+)2

(5.2.7)

then finally putting equations 5.2.6 and 5.2.7 together we get the Sharpe ratio as

SS =
µS

σS

SDMO =
µDMO

σDMO

(5.2.8)

The advantage of using the Sharpe ratio is that spoofing may yield a lower expected

cost than delaying the market order, but the improved return on the strategy may not

be worth the increased risk.
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µDMO < 0

µS < 0

SS < SDMO

Spoof DMO DMO

µS < 0

Spoof MO
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Figure 5.4: Decision tree using expected costs and Sharpe ratio to determine optimal
strategy. The three options: Spoof, DMO, and MO, refer to spoofing, delayed market
order, and immediate market order, respectively.

In Figure 5.4 we show a slightly different decision making process from Figure 5.3.

In this case if we can expect to save money from both spoofing and delaying our market

order we choose the option which yields the highest savings per unit of risk – represented

by the Sharpe ratio. Spoofing will always be riskier than delaying our market order

because our spoofing limit orders have a chance to be executed against us. Taking into

account the Sharpe ratio gives us a way to quantify if that increased risk is worth the

associated expected savings.

With our optimal strategy criteria established we can investigate how our decisions

change over time for a given stock and their possible dependency on the number of shares

H we wish to buy and the number of shares Ṽ we are willing to spoof with.

5.3 Spoofing Payoff and Optimal Strategy

5.3.1 Spoofing Criteria

To investigate the difference between our two decision criteria when both µS < 0 and

µDMO < 0 we use the calibration presented in Figure 5.1 for BMO stock on April 17,

2017. The optimal decision for both criteria is presented in Figure 5.5 for the time period

10:30 – 11:30 AM over 5 second intervals. In this example we also use the free weights

when calculating the imbalance and we aim to buy H = 200 shares and spoof with up to



Chapter 5. Spoofing Detection 130

Ṽ = 500 shares. Using the Sharpe ratio over just the net-expected cost gives more regions

where we would delay our market order instead of spoofing the book. To understand what

is happening here we first look at the impact spoofing has on the imbalance at the start

of each 5 second time period. The optimal decisions (as color coded in the figures) are

being made after rounding µS and µDMO to the nearest penny.

Figure 5.6 shows the pre- and post-spoofing imbalance for each 5 second interval

presented in Figure 5.5. We see a clear divide between immediately placing a market

order and either spoofing or delaying the market order. We see that we immediately

place the market order when the pre-spoofing imbalance is initially positive and cannot

be made sufficiently negative with our spoofing order. We then spoof when we can drive

the imbalance negative so it is more likely for the best ask to decrease over the next 5

seconds. When using the net-expected cost criteria we delay our market order only if the

imbalance is already so negative that we cannot make it better for us with a spoofing

order, but when we use the Sharpe ratio there is a new region of points where we delay

over spoofing. These points lie in the region where the imbalance is already so negative

we can hardly improve it, but we can still get a modest improvement by still spoofing.

Why would we delay the market order over spoofing then? We have to see what is

happening between the net savings, µS and µDMO, and the Sharpe ratios, SS and SDMO.

In Figure 5.7 we compare the two criteria inequalities, µS − µDMO and SS − SDMO.

We see there is a region where using only the expected net savings determines that we

should spoof instead of delaying our market order even though the net savings on our

spoofing strategy is smaller per unit of volatility than the delayed market order strategy.

That is, the net savings with spoofing may be better, but that net savings is not worth

the associated increased risk which is captured by the Sharpe ratio.

Then in Figure 5.8 we compare the net savings, µS − µDMO, to the spoofing strategy

Sharpe ratio SS. We see that when the spoofing strategy has a positive cost we place an

immediate market order as delaying the market order or spoofing will more than likely

increase our cost of buying H shares. We then spoof the book if SS is negative with a net

savings sufficiently greater than the net savings on delaying the market order. We also see

in the limit that the µS−µDMO → 0 we delay our market orders instead of spoofing as the

net savings is not there to justify spoofing. The Sharpe ratio then captures the fact that

the net savings of spoofing over delaying the market order is not worth the associated

increased risk. Going back to Figure 5.6 we have that there are times where we can

spoof to push the imbalance further negative than it already is, but the increased risk of

exposing ourselves to our limit order being executed can offset the small improvement in

the expected net savings.



Chapter 5. Spoofing Detection 131

(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.5: Optimal strategy over 5 second intervals from 10:30 AM – 3:00 PM on April
17, 2017 for BMO stock using both selection criteria. The black line is the best ask price
time series. You place an immediate market order in the green regions, a delayed market
order in the blue regions, and spoof in the red regions. H = 100 and Ṽ = 200.
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(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.6: The pre- and post-spoofing imbalance for each 5 second time period in Figure
5.5 labeled by optimal strategy using both selection criteria. The post-spoofing imbalance
is determined by the imbalance after the optimal spoofing order – even if spoofing was
not the optimal decision.
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(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.7: Comparing net spoofing savings and Sharpe ratio over a delayed market
order for each 5 second time period in Figure 5.5 labeled by optimal strategy using both
selection criteria.
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(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.8: Comparing net spoofing savings over a delayed market order to spoofing
Sharpe ratio for each 5 second time period in Figure 5.5 labeled by optimal strategy
using both selection criteria.
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Figures 5.9, 5.10, and 5.11 compare the decision clusters with increasing H and Ṽ .

Increasing Ṽ gives the spoofer an increased ability to manipulate prices, so the spoofing

decision becomes a profitable investment over the delayed market order and optimal

decisions switch from the delayed market order to spoofing. In both cases we see that

using the Sharpe ratio makes better clusters compared to using expected net savings as

it provides a distinct boundary between the two decisions.

Ultimately, both criteria yield similar results, but using the Sharpe ratio could narrow

our search for potential price manipulators to time periods where not only was it profi-

table to spoof the book, but the potential profit earned was worth the risk of spoofing as

well. If we are to catch people attempting to manipulate the limit order book of every

stock each day we will need ways to save time and narrow down where to look for when

the books were most vulnerable. This was an example of a single stock over one hour,

but the purpose was to illustrate how our model could be used in practice.

5.3.2 Decision Boundary, H, and Ṽ

In Figure 5.6 we can see there is a clear decision boundary between the immediate market

order choice and either spoofing or delaying the market order. This decision boundary is

dependent on the number of shares H we wish to purchase and the number of shares Ṽ

we are willing to spoof with. We want to know if we can extract some general decision

rules based on the initial imbalance of the book, H, and Ṽ which a spoofer may use or

the exchange may use to narrow their search down for possible price manipulators. These

rules will of course vary between stocks and the time of day, but we want to see if some

simple ‘rules of thumb’ can be gained from our model.

We present the results using the free weights for the imbalance as this allows for limit

order placement deeper in the book with a larger association between the imbalance

and changes in the best ask price. This gives a ‘worse case scenario’ for the book’s

vulnerability to spoofing. We also found our model would predict almost no advantage to

spoofing when using exponential weights – the risk of spoofing near the touch completely

removed the advantages of moving the best ask price in a favourable direction. The

free weights allow for the same limit order placement near the touch as the exponential

weights, so even if that was the best spoofing order placement it would be captured with

the free weights anyway.

We determine the decision boundary using a support vector machine (SVM) with a

linear kernel. This will find the linear boundary between the classes, immediate market

orders and the spoofing/delayed market orders, which separates both classes on either
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(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.9: Comparing net spoofing savings over a delayed market order to spoofing
Sharpe ratio for each 5 second time period in Figure 5.5 labeled by optimal strategy
using both selection criteria. H = 200 and Ṽ = 200 for this case.



Chapter 5. Spoofing Detection 137

(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.10: Comparing net spoofing savings over a delayed market order to spoofing
Sharpe ratio for each 5 second time period in Figure 5.5 labeled by optimal strategy
using both selection criteria. H = 200 and Ṽ = 300 for this case.
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(a) Net-Expected Cost Criteria

(b) Sharpe Ratio Criteria

Figure 5.11: Comparing net spoofing savings over a delayed market order to spoofing
Sharpe ratio for each 5 second time period in Figure 5.5 labeled by optimal strategy
using both selection criteria. H = 300 and Ṽ = 300 for this case.
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side of the boundary and has the largest distance between the boundary and points in

both class. We also perform a linear regression for the pre- and post-spoofing imbalance

as seen in Figure 5.6 so that the intersection of our SVM boundary and the regression line

will approximate the location of the boundary. The intersection point will be referred to

as the ‘midpoint’ of the decision boundary. We can then see how this midpoint moves

as we change H and Ṽ for different stocks. An example of this process is presented in

Figure 5.12 where the SVM boundary is the dashed black line and the regression line is

in solid black.

Figure 5.12: Example decision boundary for AEM stock on April 17, 2017 using data
from 10:30 AM – 3:00 PM over 5 second intervals. H = 100 and Ṽ = 300. Decision
boundary midpoint determined by the intersection of the regression line (solid black) and
the support vector (dashed black).

Figure 5.13 presents the results of the boundary midpoint’s movement from changing

H and Ṽ for AEM stock on April 17, 2017 using data from 10:30 AM – 3:00 PM over 5

second intervals. We excluded the first and last hours as there are some 5 second intervals

where there is not enough shares available within the first 15 ticks of the best ask price

to fulfill a market order of say, 1000 shares, and definitely not enough if the spoofing

orders are also executed. This would prevent us from calculating the cost of walking the

book when buying that many shares.

The points, which increase to the right, are color coded by the number of shares Ṽ

with which we are willing to spoof. Within each color the points move up with increasing
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H. There are a few things to note in the figure. First, the number of shares we are willing

to spoof with for a given H, in general, increases the initial imbalance we are willing to

spoof at. This is intuitive as the more shares we spoof with the more impact with can

have on the imbalance to push prices in our favour. Second, the more shares we need

to purchase increases the spoofer’s willingness to manipulate prices even if they cannot

move the imbalance much with their spoofing orders – likely because the book is in a

state where they cannot push the imbalance negative without a massive spoofing order.

This would reflect the spoofer’s willingness to take risks for the smallest chance to lower

the best ask because they intend to purchase so many shares that any price improvement

they get is worth it.

Figure 5.13: Midpoint of decision boundary for changing H and Ṽ for AEM stock on
April 17, 2017 using data from 10:30 AM – 3:00 PM over 5 second intervals. For a given
Ṽ , points move up the graph with increasing H. H ∈ [100, 200, 300, 400, 700, 1000].

We also see the same patterns and behaviour in Figures 5.14 and 5.15 for BMO and

CNR stock on the same day over the same time period and also over 5 second intervals.

We only present these three cases for brevity, but this pattern was consistent across all

stocks we investigated. In short, increasing H causes the spoofer to manipulate prices

even if they cannot influence the imbalance as much as they would like and increasing Ṽ

causes the spoofer to manipulate more often because they have more shares to impact

the imbalance.

In addition to this, we can look at the dependency of the slope and intercept for the
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Figure 5.14: Midpoint of decision boundary for changing H and Ṽ for BMO stock on
April 17, 2017 using data from 10:30 AM – 3:00 PM over 5 second intervals. For a given
Ṽ , points move up the graph with increasing H. H ∈ [100, 200, 300, 400, 700, 1000].

Figure 5.15: Midpoint of decision boundary for changing H and Ṽ for CNR stock on
April 17, 2017 using data from 10:30 AM – 3:00 PM over 5 second intervals. For a given
Ṽ , points move up the graph with increasing H. H ∈ [100, 200, 300, 400, 700, 1000].
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regression line on H and Ṽ . In Figure 5.16 we present the exponential and free imbalance

weights for AEM and BMO stock to keep in mind how the imbalance is being calculated

for these two stocks. The key difference is that BMO has 2 spots beyond the touch which

have a strong association to movements in the best ask price – compared to the one spot

for AEM stock. AEM also has a significant weight deep in the book compared to the

smaller weights for BMO.

In Figures 5.17 and 5.18 we present the impact of H and Ṽ on the slope and intercept

of the regression line for AEM and BMO stock. Both AEM and BMO have decreasing

slope and intercept with increasing Ṽ because increasing Ṽ allows for a larger impact

on the post-spoofing imbalance. However, we see a difference in the dependency in the

slope and intercept on H for BMO, but not for AEM. This is because AEM has only a

single tick location deeper in the book where a spoofer can place orders to manipulate

prices, but BMO has two. The only way to impact the imbalance through H is by the

optimal spoofing strategy defined in equation 5.2.1, so the optimal strategy is changing

depending on the number of shares a spoofer wishes to buy.

It is also clear why the optimal strategy is changing – the spoofing orders are being

rearranged to give largest impact on the post-spoofing imbalance that is possible. This is

interesting because this would, by Figure 5.16, mean that riskier orders are being placed

at tick 6 instead of tick 7 to capture that extra weight when calculating the imbalance.

Likewise, when H is small the imbalance is smaller than it could be for a given Ṽ which

implies the spoofing orders are placed at tick 7 to have a smaller chance of being executed.

The more shares the spoofer wants to buy, the more risk they are willing to take to cut

costs. This is an important insight as it provides evidence the spoofer’s strategy will

change depending on the number of shares they want to buy and this will need to be

considered when employing detection technology to catch spoofers purchasing different

amounts of H.

When there are multiple locations at which spoofing can impact the imbalance deeper

in the book we see the optimal strategy changing with H. To understand why this is

happening we can look deeper into how BMO’s optimal spoofing strategy changes with

H and Ṽ .

5.4 BMO Optimal Spoofing Strategy

We found in the previous section that when we have two available locations to spoof

and a fixed number of shares to spoof with we are faced with allocating our ‘spoofing

resources’ optimally. This did not occur with AEM as there was only one location deep
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(a) AEM

(b) BMO

Figure 5.16: Comparing exponential and free imbalance weights for BMO and AEM on
April 17, 2017 using the entire trading day over 5 second intervals.
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(a) AEM

(b) BMO

Figure 5.17: Comparing the dependency of the slope of the regression line on H and Ṽ
for AEM and BMO stock on April 17, 2017 using the entire trading day over 5 second
intervals.
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(a) AEM

(b) BMO

Figure 5.18: Comparing the dependency of the intercept of the regression line on H and
Ṽ for AEM and BMO stock on April 17, 2017 using the entire trading day over 5 second
intervals.
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in the book with a nonzero weight. Also, for BMO, in Figure 5.16 (b) there is more

weight at tick 6 than tick 7 – because of this, it may be optimal to place spoofing orders

at tick 6 to gain the impact of the larger weight. If tick 7 had the larger weight you

would always spoof that location since it is less risky and carries a larger impact on the

imbalance.

From Figures 5.17 and 5.18 we see both the slope m and intercept b of the regression

line Ipost-spoof = mIpre-spoof + b of Figure 5.12 with increasing H for a fixed Ṽ . This is

caused by the spoofing orders being shifted to the larger weight tick 6 to the smaller

weight tick 7 – thus giving a smaller impact on I after spoofing. However, the regression

slope and intercept are just capturing an aggregate over the entire day of this behaviour,

so we can take specific limit order book examples from the day and investigate the optimal

spoofing order placement for a given H and Ṽ to see how the controls change in each

case.

We choose four different limit order books for BMO on April 17, 2017 as shown in

subplot (a) of Figures 5.19, 5.20, 5.21, and 5.22 to represent large positive, small positive,

small negative, and large negative imbalances, respectively. In subplot (b) we show the

objective surface of the expected spoofing cost µS for different values of ṽ6 and ṽ7 with

H = 300. We know from the previous optimizations of BMO on April 17, 2017 that

those were the only locations where spoofing orders were placed. We also have a large

red point at (ṽ6, ṽ7) = (0, 0) representing the case where we do not spoof – this would

be the value of µDMO. Moving out from this red point are lines of constant Ṽ with the

optimal allocation of the spoofing shares for each Ṽ being represented by a black point.

For example, in Figure 5.19, the first line is Ṽ = 100 where we can place either 100 shares

at tick 6 or 100 shares at tick 7 – these are the two points closest to the red point. In

this case placing 100 shares at tick 6 provides the biggest expected cost reduction. For

Ṽ = 200 we have 3 points now – 200 shares at tick 6, 200 shares at tick 7, or 100 shares

on each. Here the optimal strategy is again to place all 200 shares on tick 6. This process

is repeated until we find the global minimum at (ṽ6, ṽ7) = (0, 3700).

We should also note the existence of a global minimum for our four cases and that

the spoofer would not just place an infinite number of shares at either tick 6 or tick 7

to drive the imbalance to -1. The fear of their spoofing orders being executed is strong

enough that even with infinite resources the spoofer can still lose if they are not allocated

properly. Clearly, for these cases, the spoofer realizes diminishing returns when spoofing

with an increasing number of shares. This is not a proof of the convexity of the problem,

but it suggests that convexity may be provable in some cases.

Interestingly, it is not just the initial imbalance that determines how much the spoofer
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(a) Large positive imbalance ≈ 0.35

(b) µS by strategy for H = 300

Figure 5.19: Example limit order book for BMO stock on April 17, 2017 with large
positive imbalance. The second plot is the surface µS as a function of the spoofing
volumes ṽ6 and ṽ7 – the volumes placed 5 and 6 ticks from the best ask, respectively.
The large red point represents the case where Ṽ = 0 which is the expected net savings
for a delayed market order. The path of black points leading to the largest point is the
optimal strategy for increasing Ṽ to the global minimum at (ṽ6, ṽ7) = (0, 3700) with
µS = −0.0601. The imbalance after spoofing is I ≈ −0.238.
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(a) Small positive imbalance ≈ 0.062

(b) µS by strategy for H = 300

Figure 5.20: Example limit order book for BMO stock on April 17, 2017 with small
positive imbalance. The second plot is the surface µS as a function of the spoofing
volumes ṽ6 and ṽ7 – the volumes placed 5 and 6 ticks from the best ask, respectively.
The large red point represents the case where Ṽ = 0 which is the expected net savings
for a delayed market order. The path of black points leading to the largest point is the
optimal strategy for increasing Ṽ to the global minimum at (ṽ6, ṽ7) = (0, 2500) with
µS = −0.327. The imbalance after spoofing is I ≈ −0.327.
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(a) Small negative imbalance ≈ −0.024

(b) µS by strategy for H = 300

Figure 5.21: Example limit order book for BMO stock on April 17, 2017 with small
negative imbalance. The second plot is the surface µS as a function of the spoofing
volumes ṽ6 and ṽ7 – the volumes placed 5 and 6 ticks from the best ask, respectively.
The large red point represents the case where Ṽ = 0 which is the expected net savings
for a delayed market order. The path of black points leading to the largest point is the
optimal strategy for increasing Ṽ to the global minimum at (ṽ6, ṽ7) = (200, 2500) with
µS = −0.206. The imbalance after spoofing is I ≈ −0.263.
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(a) Large negative imbalance ≈ −0.58

(b) µS by strategy for H = 300

Figure 5.22: Example limit order book for BMO stock on April 17, 2017 with large
negative imbalance. The second plot is the surface µS as a function of the spoofing
volumes ṽ6 and ṽ7 – the volumes placed 5 and 6 ticks from the best ask, respectively.
The large red point represents the case where Ṽ = 0 which is the expected net savings
for a delayed market order. The path of black points leading to the largest point is the
optimal strategy for increasing Ṽ to the global minimum at (ṽ6, ṽ7) = (0, 2900) with
µS = −0.807. The imbalance after spoofing is I ≈ −0.684.
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can impact the book. The actual shape of both sides of the book is just as important

for determining just how negative the imbalance can be brought through spoofing. For

example, in Figure 5.20 the imbalance after spoofing at the global minimum is ≈ −0.327

while in Figure 5.21 the imbalance after spoofing is ≈ −0.263 even though Figure 5.20

has an initial positive imbalance while Figure 5.21 has a small negative imbalance. The

initial imbalance does not tell the whole story: the imbalances of some limit order books

are more sensitive to spoofing than others simply due to how the volume of shares are

spread over both sides of the book.

In each of the four figures we see that the optimal strategy moves from allocating all

shares at tick 6 to tick 7 with increasing Ṽ . In all cases, except Figure 5.21, all shares

are eventually placed entirely at tick 7. In Figure 5.21 the spoofer will still place 200

shares at tick 6 even at the global minimum. This is behaviour we see in multiple cases

for H and Ṽ for each of our four limit order books. The spoofer is willing to take the

extra risk with these 200 shares for the increased impact on the imbalance because even

if they are executed they would not walk the book according to Figure 5.21 (a) since the

200 executed shares at tick 6 plus the 300 shares we buy is equal to the 500 shares at

the best ask. So, the shape of the limit order book near the touch is also important for

determining optimal spoofing strategies. We see these results because we have made the

modelling assumption that the book would remain constant over ∆t, but this is obviously

not typically the case. Because of this the spoofer is able to allocate their spoofing shares

to locations that are guaranteed they minimize the distance they walk the book. A more

accurate model would have the spoofer evaluating expected values not only with respect

to changes in the best ask, but also changes to the volumes near the best ask given the

current state of the book. However, the modelling required there is much harder.

The impact of the shape of the book on the objective function is even more clear

in Figure 5.22 (b) with the obvious changes in slope at specific points. Since the book

already has a large negative imbalance there is little improvement from spoofing and

changes in the objective function are mostly determined by the costs associated with

executed spoofing orders and walking the book to recover those shares while still having

to purchase H shares. If we follow the points away from the red point where all spoofing

shares are placed at tick 6 we see obvious changes in slope at Ṽ = 500, 800, and 2900.

Combining with the H = 300 we also have to purchase, these three quantities correspond

to the 800, 300, and 2100 shares at the first three ticks of the ask side of the limit order

book. We do not see such clear changes in the objective function caused by the shape of

the book in the other cases because we can impact the imbalance more and benefit from

the increased probability of the best ask decreasing – this smooths out the surface and
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removes edges we see in Figure 5.22 (b).

In Figures 5.23, 5.24, 5.25, and 5.26 we present the optimal spoofing strategy for our

four limit order books for different values of H and increasing values of Ṽ . For each

value of Ṽ we plot the number of shares placed at tick 6 and tick 7 in blue and green,

respectively. The more shares the spoofer wishes to buy the more risk they are willing to

take with their spoofing orders if Ṽ is small since they want to influence the book as best

they can with what limited resources they have available, but as the spoofer is willing

to spoof with increasing shares they are instead placed at the less risky tick 7. There is

then a transition period between these two cases where the spoofer mixes their spoofing

orders between the two locations. Then, as seen in Figure 5.21, the spoofer is still willing

to leave some shares at tick 6 in the limit Ṽ → ∞ based on how deep they would have

to walk the book to recover those shares if they were executed.

For example, in Figure 5.23 (b), the spoofer still leaves 100 shares at tick 6. They

are already buying 400 shares and, according to Figure 5.19 (a), would already walk the

book one tick to the right of the best ask and leave 100 shares at this position. So, the

spoofer could have 100 shares executed against them and not have to walk the book to

recover them. Again, in Figure 5.23 (c) the spoofer leaves 600 shares at tick 6 because

buying 600 shares would cause you to walk the book two ticks from the best ask anyway

with 600 shares left at that position.

This behaviour is not followed in all cases for H and Ṽ for each limit order book

snapshot, but for the cases it is we are able to see why the spoofer would still risk some

amount of shares being executed. In some cases the spoofer could impact the imbalance

enough at tick 7 that the risk of any shares being executed at tick 6 is not worth it – as

in Figures 5.24 (b), 5.25 (a), or 5.26 (b) for example. These results further emphasize the

importance of properly modelling the shape of the book at the next time period given

the current shape.

We have seen that minimize spoofing order execution is important for the strategy of

the spoofer. Built into the model is the idea that the spoofer attempts to minimize their

risks while maximizing their profits through lower the expected cost of their intended

market order. Just like the previous section it may be more paramount to the spoofer to

minimize the expected net savings relative to the risk associated with that net savings –

minimizing the Sharpe ratio of their spoofing strategy rather than the pure savings itself.

In this spirit we can also see how the optimal strategy from Figures 5.19, 5.20, 5.21, and

5.22 changes under a different minimization criteria. So, rather than minimize µS with

respect to (ṽ6, ṽ7) we minimize SS.

This is similar to the optimization problem in equations 5.2.1 and 5.2.2, but we write
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Large Positive Imbalance

(a) H = 200

(b) H = 400

(c) H = 600

Figure 5.23: Optimal spoofing order placement with changing H and Ṽ for large positive
imbalance as seen in Figure 5.19.
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Small Positive Imbalance

(a) H = 200

(b) H = 400

(c) H = 600

Figure 5.24: Optimal spoofing order placement with changing H and Ṽ for small positive
imbalance as seen in Figure 5.20.
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Small Negative Imbalance

(a) H = 200

(b) H = 400

(c) H = 600

Figure 5.25: Optimal spoofing order placement with changing H and Ṽ for small negative
imbalance as seen in Figure 5.21.
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Large Negative Imbalance

(a) H = 200

(b) H = 400

(c) H = 600

Figure 5.26: Optimal spoofing order placement with changing H and Ṽ for large negative
imbalance as seen in Figure 5.22.
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Large Positive Imbalance

(a) SS by strategy for H = 300

(b) µS by strategy for H = 300

Figure 5.27: Comparison of optimal spoofing strategy for limit order book in Figure 5.19
using Sharpe ratio SS instead of expected net savings µS. Both strategies are plotted
together in subplot (b) with green points representing the Sharpe ratio strategy. The
largest green point being the global minimum for the Sharpe ratio at (ṽ6, ṽ7) = (0, 3300).
If a line of Ṽ = constant has only a black point then the two strategies are the same. At
the Sharpe ratio minimum we have µS = −0.0551, SS = −0.00734, and I = −0.202. At
the expected cost minimum SS = −0.00696.
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Small Positive Imbalance

(a) SS by strategy for H = 300

(b) µS by strategy for H = 300

Figure 5.28: Comparison of optimal spoofing strategy for limit order book in Figure 5.20
using Sharpe ratio SS instead of expected net savings µS. Both strategies are plotted
together in subplot (b) with green points representing the Sharpe ratio strategy. The
largest green point being the global minimum for the Sharpe ratio at (ṽ6, ṽ7) = (0, 1500).
If a line of Ṽ = constant has only a black point then the two strategies are the same. At
the Sharpe ratio minimum we have µS = −0.272, SS = −0.0539, and I = −0.291. At the
expected cost minimum SS = −0.0414.
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Small Negative Imbalance

(a) SS by strategy for H = 300

(b) µS by strategy for H = 300

Figure 5.29: Comparison of optimal spoofing strategy for limit order book in Figure 5.21
using Sharpe ratio SS instead of expected net savings µS. Both strategies are plotted to-
gether in subplot (b) with green points representing the Sharpe ratio strategy. The largest
green point being the global minimum for the Sharpe ratio at (ṽ6, ṽ7) = (200, 1400). If a
line of Ṽ = constant has only a black point then the two strategies are the same. At the
Sharpe ratio minimum we have µS = −0.179, SS = −0.0437, and I = −0.182. At the
expected cost minimum SS = −0.0358.
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Large Negative Imbalance

(a) SS by strategy for H = 300

(b) µS by strategy for H = 300

Figure 5.30: Comparison of optimal spoofing strategy for limit order book in Figure 5.22
using Sharpe ratio SS instead of expected net savings µS. Both strategies are plotted
together in subplot (b) with green points representing the Sharpe ratio strategy. The
largest green point being the global minimum for the Sharpe ratio at (ṽ6, ṽ7) = (0, 500).
If a line of Ṽ = constant has only a black point then the two strategies are the same. At
the Sharpe ratio minimum we have µS = −0.780, SS = −0.225, and I = −0.604. At the
expected cost minimum SS = −0.170.
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it here for clarity:

min
ṽt

E [ CS(~vt, H, p
+, xt, ṽt) |Ft, I(~vt + ṽt)]− CMO(~vt, H, p

+)√
Var [ CS(~vt, H, p+, xt, ṽt) |Ft, I(~vt + ṽt)]− CMO(~vt, H, p+)

(5.4.1)

Subject to

0∑
i=−K

ṽi = 0,
K∑
i=1

ṽi ≤ Ṽ , ṽi ≥ 0 and ṽi ∈ 100N ∀i ∈ [−K,K] (5.4.2)

Subplot (a) in Figures 5.27, 5.28, 5.29, and 5.30 gives the optimal spoofing strategy

according to the Sharpe ratio SS. Subplot (b) plots the optimal strategy according to

SS and µS on the same objective surface µS. However, the optimal strategy according to

the Sharpe ratio is given by green points with the global minimum a large green point.

If only a black point is present for a line of constant Ṽ then the two strategies coincide.

The optimal strategy according to the Sharpe ratio follows a similar path to the one

found from the expected cost, but ultimately the global minimum is always found using

fewer spoofing shares. The structure of the Sharpe ratio is also interesting in that as

Ṽ → ∞ the Sharpe ratio asymptotes to 0 since the variance grows to infinity as you

spoof with an increasing number of shares. The other limit, as Ṽ → 0, determines how

large a cost reduction the spoofer can expect for their risk. If the red point lies too far

above zero there may be no global minimum at all or it may lie so far out in the surface

the net savings is still too risky (as in Figure 5.27). If it lies too far below zero the

optimal strategy will be to do nothing at all (as in Figure 5.30). However, in between

these extremes gives the spoofer an opportunity to see real cost savings for their risk.

For example, in Figure 5.27, the imbalance is initially so positive that a spoofer would

need to spoof with 3300 shares to see an expected cost reduction on the purchase of only

300 shares. This is a significant risk to take on comparatively small market order, and

the Sharpe ratio of less than 1% return per unit of risk reflects this. In Figures 5.28

and 5.29, the imbalance is small enough that the spoofer can find a solid return for their

risk using only 1500 and 1600 spoofing shares, respectively. However, in Figure 5.30, the

imbalance is already so in favour of the spoofer that spoofing with more than 500 shares

only hurts the Sharpe ratio.

In the previous sections we used the expected cost of spoofing the book for determining

the optimal strategy, but the Sharpe ratio builds in the actions one would expect from

a spoofer attempting to manipulate the book with the smallest amount of risk to their

orders. This may lead to further interesting results if we repeated our previous analysis

under this new optimization criteria, but the expected net savings at the point which
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minimizes the Sharpe ratio is never significantly worse and we would not expect the

results of the previous sections to deviate much from what we have presented. The

major different between the two methods would be when looking into the book for specific

spoofing orders because when using the Sharpe ratio to determine the optimal strategy

the spoofer is not willing to risk as many spoofing shares compared to if they are driven

purely by achieving the largest possible cost reduction. We would need access to already

labeled data sets which include known spoofing orders into order to make any judgment

on which method would provide a more accurate strategy to what a spoofer might actually

do in reality.

5.5 Conclusions

This chapter is a culmination of the model building and calibration we presented in the

previous chapters. Equipped with the tools needed to explore the costs associated with

spoofing limit order books we were able to analyze the sensitivity of the book for a given

stock throughout the day as well as draw some general rules from the aggregated results.

We started by establishing two criteria for determining whether a spoofer would either

immediately place a market order, delay their market order to the next time period, or

spoof the book combined with a delayed market order. These two criteria were based

on the expected cost reduction and the Sharpe ratio – the latter being used to take

into account the risk associated with the execution of the spoofing orders against the

spoofer. We found that the Sharpe ratio criteria provided a more consistent decision

boundary between these three possible actions as the Sharpe ratio punished spoofing the

book with a considerable volume of shares to earn tiny cost reductions of a couple of

pennies on market orders of hundreds of shares. This gave better clusters between the

decisions to spoof and immediately place a market order. The improvement between

these two clusters allowed us to explore the dependency of the boundary between them

as a function of H and Ṽ .

We then used these decision boundaries to determine a relationship between the

number of shares H the spoofer wishes to buy, the number of shares Ṽ they are willing

to spoof with, and the decision boundary between spoofing and immediately placing a

market order. We explored this relationship for AEM, BMO, and CNR stocks and found

that a spoofer is willing to spoof a more positive imbalanced book with increasing Ṽ . A

spoofer aiming to purchase more shares was also more willing to manipulate the book

even if their spoofing orders were less able to make large impacts on the imbalance – a

spoofer was willing to take more risks the more shares they needed to purchase.
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From this analysis of the decision boundary we found that BMO showed different

behaviour from AEM and CNR because there were two locations a spoofer could impact

the imbalance deep in the book as opposed to the single location for the other two stocks.

The more risky locations carried more weight in the imbalance, so the spoofer needed to

properly allocate their spoofing shares to balance risk with return. This balancing act

made a spoofer more willing to take risks the more shares they wanted to buy as well

as if they had a smaller number of shares to spoof with. The spoofer was less willing

to take risks the more shares they had available to manipulate the book with. We also

found that the shape of book at the next time period was important for determining

the optimal strategy based on the costs associated with walking the book to buy H and

recover any spoofing shares executed by movement in the best ask against the spoofer.

Finally, we explored how different the optimal spoofing strategy would be if the Sharpe

ratio was used to take into account risk based on how effective this was in determing

the spoofer’s ultimate strategy between spoofing, delayed market orders, and immediate

market orders. We found that a spoofer was less willing to risk a large number of shares

using the Sharpe ratio and the strategies themselves reflected more accurately what one

would naively expect from a spoofer without attempting to model their behaviour. We

do not believe this alternative strategy would drastically change the decision boundary

analysis, but would be possibly more effective when attempting to flag limit orders in the

book as suspicious. However, this type of work would require an actual labelled data set

which included limit orders which were already deemed as spoof orders by some regulator

of the exchange.
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Conclusions and Future Work

6.1 Summary of Conclusions

The goal of this project was to develop a model which would allow us to explore the

conditions under which a spoofer may attempt to manipulate a limit order book in order

to gain insights into identifying potential illegal behaviour for regulators to investigate

further. Not only is it difficult to find the figurative ‘needle in a haystack’, but one also

needs evidence to the spoofer’s intent to illegally spoof the book. We take the approach

of stepping back from individual broker IDs to look at the aggregate behaviour of the

book in response to the orders placed, so that we can find a general relationship between

the shape of the book and movements in the best ask or bid. Then, a regulator could

check to see if an individual trader was attempting to abuse this general relationship

through spoofing limit orders. Since we did not have access to individual trader IDs or

labeled cases of actual spoofing we were only able to probe the vulnerability of the limit

order book to a potential spoofer using our new model.

The spoofer pads the limit order book with limit orders they never intend to execute in

an attempt to get other traders to move prices in the spoofer’s best interest. The spoofer

manipulates the shape of the book itself to gain an advantage, so the natural start for a

model would be to use a statistic which captures shape information about the limit order

book and is correlated to price movements – the volume imbalance ratio. We provided

initial statistical tests across 50 different stocks which support the existing literature that

positive/negative price movements accompany positive/negative imbalance ratios.

The usual definition of the volume imbalance ratio involves only volumes of shares at

the best ask and best bid of the book, but we want to be able to capture the imbalance

deeper into the book. We use a generalized definition of the imbalance which uses weights,

w, applied to each share volume in the book. We assume the weights are the same

164
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for the bid and ask side. The first natural extension of this is to allow exponentially

decaying weights from the touch, so the volumes at the best bid/ask remain the most

important when calculating the imbalance ratio. Then, we can relax the exponentially

decaying weight assumption and allow the weights to be free parameters, but still with

the constraint that the largest weight is applied to the best ask/bid. The statistical tests

we performed on the classical imbalance definition gave consistent results for these two

new methods and also provided increased association between changes in the best ask and

the imbalance ratio as we move from the classical definition → exponentially decaying

weights → free weights. With a generalized form of the imbalance including information

about volumes deeper in the limit order book we set up a model for how changes in the

best ask are impacted through the volume imbalance.

With price changes one needs to also talk about the time interval ∆t over which

the price changed. Aggregating the instantaneous imbalances over ∆t into an average

imbalance was done by weighting the imbalances by the length of time the book remained

in that state. This method removed the negative correlations between price changes and

the imbalance ratio that we saw for some stocks when aggregating the instantaneous

imbalances with a simple arithmetic mean. We set ∆t for all stocks as the ∆t that gives

the closest variance in the change in the best ask price to 2. This way we can compare

them since each stock has its own time scale in which prices move – some move more over

smaller time intervals, for example. Our specific choice of how to fix ∆t was to allow us

to compare results between stocks, but ∆t is a free parameter which can be set based on

what time scales one wishes to examine the book.

Our model incorporates the imbalance into the distribution of the change in the

best ask price by using the imbalance as the weight in a convex combination of two

distributions, dp+ and dp−, representing the change in the best ask price if I = 1, and

I = −1, respectively. If we know dp+ we also know dp− by the assumed symmetry

constraints of our model. The other model parameter is the depth of book, K, which we

define based on the support of the empirical price change distribution. So, after fixing

∆t we have three model parameters dp+, K, and w.

Using maximum a posteriori (maximum likelihood) estimation for the exponential

(free) weight model we calibrated a model for each stock using data from different time

periods. Investigating the model parameters which came out of the calibrations gave

insights into relationships between ∆t, K, the average spread, the average interarrival

time of orders, and the probability of no movement in the best ask price. We were also

able to visually identify outliers in the data which corresponded to American holidays or

days related to financial events. We found a clear dependence of the model parameters
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with the time period of the trading day which was consistent with the usual beliefs in

trade activity over time. We used a large number of stocks over a small time period to

investigate the relationship between price changes and the imbalance. However, we had to

select a smaller number of stocks when investigating the model parameters over a longer

time period due to the computational time needed to run over a hundred calibrations

for each stock. In both cases the calibrations provide excellent fits to the data which we

explored through the KL divergence and repeating our statistical tests from earlier in the

work for both the exponential and free imbalance weights. We found many stocks with a

significantly increased association when weight was given to the depth of book, but also

stocks in which the classic imbalance definition was still optimal.

With an analysis of the model parameters completed we could apply our model to the

problem of spoofing detection. We determined the optimal strategy a spoofer would take

with ∆t = 5 seconds given a limit order book and compare the pay off to immediately

making a market order, or waiting to place a market order at the start of the next time

period. We found that comparing the Sharpe ratio of the three strategies, rather than

the expected value, we got consistent results for three clusters where the spoofer would

determine their strategy. We can then use these values to determine what periods of

the day spoofer was most optimal in which a regular could use to limit their search for

manipulators.

We then tested the decision boundary between an immediate market order and spoof-

ing the book as we changed the number of shares H the spoofer intends to purchase and

the number of shares Ṽ that the spoofer is willing to risk manipulating the book. As

Ṽ increases the spoofer is willing to manipulate the book as it is increasingly positively

imbalanced while as H increases the spoofer is willing to manipulate even if their optimal

spoofing strategy has a smaller impact on the imbalance – the spoofer is willing to take a

bigger risk the more shares they need to buy. We noticed, however, that one stock had a

different behaviour which was attributed to the optimal imbalance weights. There were

two locations in which a spoofer could place limit orders to most impact the imbalance

with the location closest to the touch carrying more weight. How the spoofer allocated

their shares, for a given H, then depended on the number of shares Ṽ they were willing

to spoof with. The fewer the shares the spoofer has for manipulation the riskier they

are willing to be with them. As they are willing to spoof with more shares they start

to move them to the less risky position. The shape of the book played heavily into how

the shares were allocated in order to minimize the impact of walking the book in case

their spoofing limit orders were executed. We found that there was a global minimum in

the cases were investigated for BMO stock which tells us a spoofer would not arbitrarily
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spoof with an increasing number of shares – that there is a point where spoofing with

more only hurts the spoofer.

Based on the success of using the Sharpe ratio for the optimal decision making process

we also checked using the Sharpe ratio to determine the optimal spoofing strategy instead

of the expected value of the cost. The Sharpe ratio provided a more conservative strategy

when spoofing in that the spoofer was using less shares at the global minimum of the

Sharpe ratio. Also, the Sharpe ratio more accurately reflected what one would expect a

manipulator to do in a very positively or negatively imbalanced limit order book – we

would not expect a spoofer to manipulate with many shares, if at all in these cases. The

optimal strategies according to both objective functions could then be used by regulators

to look for traders placing orders of similar sizes in similar locations during the vulnerable

periods of the trading day for the limit order book on a given stock.

Overall, we completed an analysis and application of a one period model in which the

shape of the limit order book determines the distribution of the change in the best ask

price. The model itself could be used in other applications, but we focused on testing the

sensitivity of the book to this type of manipulation through the volume imbalance ratio

as well as determining the optimal strategy a spoofer would take as predicted by our

model. This provides a starting point for further investigation into price manipulating

behaviour by traders abusing the nature of high frequency trading. In the following

section we discuss possible improvements to the model and directions of research to take

based on results from this work.

6.2 Future Work

There are significant directions we can take to improve and expand this work, but first

we will talk about what we can do with the existing model setup. To start, a further

investigation into a proper way of fixing ∆t for a given stock based on some external

objective function. That is, we would like to find some optimal time interval over which

a spoofer is most likely to operate on a given stock rather than simply fixing ∆t to

whatever we want and then investigating the expected costs over that time interval.

From this we could analyze more illiquid stocks or stocks which would require longer

time intervals. Based on the results of this work the longer the time interval the larger

the support of the price change distribution which would require us to know more about

the volumes deeper in the book. We only took the first 15 prices on each side of the book

based on memory restrictions, but we may be required to store information significantly

further into the book than that to investigate spoofing over larger time intervals. We



Chapter 6. Conclusions and Future Work 168

could also look into alternative models for weighting the instantaneous imbalances when

aggregating them into an average imbalance over ∆t. We only looked at taking a simple

mean and using time weighting in this work, but there may be better ways to calculate

the average imbalance.

We also saw in chapter 2 that the average imbalance does not affect the probability of

an up or down movement equally. An average imbalance of -0.2 gave a higher probability

of the best ask decreasing than an average imbalance of 0.2 gave for the best ask increa-

sing. However, for simplicity, we built into our model that the change in the best ask was

symmetric about a zero imbalance. Further study needs to be done into this behaviour

and how best to model it. A starting point would be to introduce a new parameter into

the price change distribution model which breaks this symmetry and can be calibrated

with the other model parameters. Alternatively, we could drop the symmetry constraint

in the distribution so that dp− is not completely determined by dp+ and becomes a

new distribution we need to find. The downside to this is that we would be introducing

significantly more parameters than a single parameter to break the symmetry.

In this work we looked at three different ways of calculating the instantaneous imba-

lance – using only the touch, exponentially decaying weights, and free weights. Ideally,

one would find a distribution (or mixture of distributions) to model the imbalance weig-

hts with fewer parameters than the free weights use. Over fitting would be less of a risk if

we can reduce the model parameters as much as possible. Also, if we can find an appro-

priate weight model we could perform cluster analysis based on the weight parameters

for collections of stocks or even single stocks over time.

Along with new models for the imbalance weights we saw in chapter 5 that the shape

of the book itself is important for determining the strategy costs as they also impact the

optimal spoofing strategy. The importance is introduced through the impact of walking

the book at the end of the time period which we would need to estimate at the start

of the time interval. In our work we assumed the shape of the book remained constant

which we found to work for and against the spoofer roughly equally, so if the process was

repeated enough times the spoofer would ‘win’ as often as they ‘lose’ from the modeling

assumption. However, if a spoofer does not manipulate the book regularly they would

ideally want a way to model the volume of shares near the touch to prevent themselves

from spoofing the book during a period where the costs associated with walking the

book would destroy the profits they made from spoofing. If we modeled the volumes

at the end of the time interval conditional on the volumes at the start of the time with

a distribution then the cost of walking the book would be calculated with an expected

value with respect to this distribution.
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After discussing ways we can expand on the existing model we can discuss about how

we can extend it beyond a simple one period model and introduce the bid side of the

book into the problem. We only looked at the problem of spoofing the ask side of the

book in order to lower the best ask and buy shares at a discount1, but some traders may

actually be spoofing both sides of the book as part of their strategy. In order for us to

model this we would need a joint distribution of the change in the best ask and best

bid prices dependent on the average imbalance. This joint distribution would also be

constrained by the spread since the best bid cannot be greater than or equal to the best

ask. A model of the full joint distribution would give us the ability to investigate any

price manipulation strategy either or both sides of the limit order book.

To further give the model realism we would like to expand the implementation of

the spoofer’s decisions into a multi-period model rather than a single time step. This

way the spoofer could update their strategy continuously over the entire trading day

until the optimal times to place their market orders. If we want to avoid the problems

associated with estimating the cost of walking the book with a delayed market order we

could have the spoofer placing multiple 100 share market orders throughout the day as

they spoof the book to totally avoid these extra costs. This could be implemented as a

dynamic programming problem. Alternatively, one could model the price change joint

distribution as a general mixture or hidden Markov model where the regime changes come

from changes in the average imbalance. These would be significantly more complicated

models, but should provide a more realistic approach to replicating a spoofer’s behaviour

so a regular would know what to look for.

The ultimate goal of this work was to highlight an application of our price change

model to spoofing detection. Since we did not have access to a labeled data set of known

examples of spoofing we were only able to do a type of sensitivity analysis or optimal

control given the states of the order book. With data sets of a known spoofer operating

during the day we would be able to actually develop techniques which should at least

be able to detect them. We also only had access to the broker ID for each action taken

on the limit order book. There are too many traders operating under any given broker

ID to make the claim that a broker’s behaviour may be suspicious when a collection of

potentially manipulative orders were actually being placed by multiple traders. If we had

the trader IDs we could at least look for times during the trading day a trader was acting

in a manner according to our spoofing model which could be grounds for a regulator

to flag them, but is not concrete evidence of illegal behaviour. A fully labeled data

1Spoofing the bid side to increase the best bid and sell shares at a higher was conceptually the same
due to the symmetry of the book.
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set of known spoofing examples would provide further insights into the model building

procedure and allow us to backtest any results of the models.
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Appendix A

Broker Behaviour

Individual traders go through brokers in order to place orders on the exchange. The trader

ID’s are hidden even in the level 2 data and are usually only available to regulatory bodies

in the financial industry. However, we can see the aggregate activity of these traders

through the broker ID’s in the level 2 data. The actions of all active brokers during the

market open on AEM stock on April 17, 2017 is shown in Figure A.1. The total number

of booked orders by broker ID for the same day and stock ticker is shown in Figure A.2.

The broker ID’s shown in the figure have been changed from their true values in the

dataset in order to keep their identities anonymous.

From Figure A.1 we can see that not all brokers share the same activity on AEM

stock on this day. Similar plots can be made for other stocks on any given day of the

year. For example, brokers 0 through 8 cancel almost all orders they book on AEM

stock. This would suggest algorithmic traders use these brokers to place and quickly

cancel limit orders throughout the day while making very few market orders. Brokers 9

through 18 also cancel many of their orders, while allowing some to be executed as well

as placing market orders. Brokers 19 through 25 cancel very few orders and mostly book

orders and trade. Brokers 9 through 25 are likely to be made up of mixes of algorithmic

traders as well as real people placing orders on the exchange.

Figure A.2 gives us a better picture of which brokers are acting as market makers for

AEM stock on April 17, 2017. Brokers 0, 2, 3, 4, 5, 6, and 8 are clearly contributed the

most limit orders to the order book on this day with broker 4 dominating the rest. It is

also interesting to note that these are the same brokers that also cancel almost all orders

they place on the order book.

Figures A.3 and A.4 show the total number of shares booked and cancelled on the

limit order book by broker ID. Here we can see that the brokers we highlighted from

Figure A.2 also place large numbers of shares on the limit order book in addition to
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Figure A.1: Ratio of cancelled, trade, and booked orders to total orders for all active
brokers on AEM stock on April 17, 2017. The broker ID’s displayed above are not the
true broker ID’s in the dataset.

Figure A.2: Total booked orders for all active brokers on AEM stock on April 17, 2017.
The broker ID’s displayed above are not the true broker ID’s in the dataset. Same broker
ID’s as Figure A.1
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placing the most orders. All other brokers contribute relatively little shares to book.

We see the same situations across other stock tickers where a small number of brokers

are driving the dynamics of the limit order book through large and frequent limit order

placements and cancellations.

Figure A.3: Total booked shares of AEM stock on April 17, 2017. Green/red for shares
booked on buy/sell side of limit order book. Same broker ID’s as Figure A.1

Figure A.5 shows the total number of shares traded on the limit order book by broker

ID. Even though brokers 0 through 6 make up most of the activity on the book there are

still brokers that execute trades throughout the day either by market orders or allowing

what few limit orders they have to be matched. The point here is that even though all

brokers are initiating trades on the book there are only a few which provide the vast

majority of the liquidity to the market.
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Figure A.4: Total cancelled shares of AEM stock on April 17, 2017. Green/red for shares
cancelled on buy/sell side of limit order book. Same broker ID’s as Figure A.1

Figure A.5: Total traded shares of AEM stock on April 17, 2017. Green/red for shares
traded on buy/sell side of limit order book. Same broker ID’s as Figure A.1



Appendix B

Maximum a Posteriori Estimation

Say we want to estimate parameters of a distribution, but we want to incorporate our prior

knowledge or belief in how the parameters of the model are distributed. For example,

if we had a new baseball player to the major leagues and we wanted to determine the

probability of this player hitting a home run given that he has only been up to bat once

and struck a home run on his first swing. We have a single data point suggesting, naively,

that he has a 100% probability of hitting a home run. However, we know this could not

possibly be true since no one has ever had such a home run batting average. Given our

limited data set for this new player - how can we incorporate our past knowledge of other

player’s home run batting averages to estimate the probability for this new player? A

technique for doing this is the maximum a posteriori (MAP) estimation.

The maximum likelihood estimator (MLE) for data X = (x1, x2, . . . , xn) with proba-

bility distribution f(X|θ) parameterized by θ is:

θ? = arg max
θ∈Θ

L(θ|X) = arg max
θ∈Θ

n∏
i=1

f(X|θ) (B.0.1)

where L(θ|X) is the likelihood function.

If instead we assume that θ itself is a random variable with prior distribution g(θ)

then we can calculate the posterior distribution f(θ|X) using Bayes’ theorem.

f(θ|X) =
f(X|θ)g(θ)∫

Θ
f(X|φ)g(φ)dφ

(B.0.2)

The maximum a posteriori estimation is then the mode of the posterior distribution

f(θ|X) which gives:
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θ? = arg max
θ∈Θ

n∏
i=1

f(xi|θ)g(θ)∫
Θ
f(xi|φ)g(φ)dφ

(B.0.3)

However, ∫
Θ

f(xi|φ)g(φ)dφ (B.0.4)

is independent of θ and strictly positive so can be ignored without affecting the

maximum of equation B.0.3. Substituting in the definition of L(θ|X) we get

θ? = arg max
θ∈Θ

n∏
i=1

f(xi|θ)g(θ) = arg max
θ∈Θ

L(θ|X)g(θ) (B.0.5)

as the MAP estimation. We can think of this procedure as assuming some initial

prior distribution g(θ) on θ which is updated by data through the likelihood function

to assign new probabilities to the θ parameters by the posterior distribution. As we see

more data the changes in our beliefs are reflected in the posterior distribution. Again,

like MLE, one usually sees this written in the form of minimizing the negative log of the

MAP estimator. So, the alternative MAP estimation is:

θ? = arg min
θ∈Θ

[
−

(
n∑
i=1

log f(xi|θ)

)
− log g(θ)

]
(B.0.6)

A few things to note are that if we take g(θ) as the uniform distribution over Θ then

the MAP estimation is equivalent to MLE. Also, MAP estimation is the maximum mode

of the posterior distribution unlike the MLE which was the maximum of the likelihood

function. The MAP estimation is also not invariant under reparameterization since g(θ)

is the prior for random variable θ, so if we map θ → θ̂ the prior distribution for θ̂ may

not be g(θ̂). We would need to determine the new prior for θ̂ from the Jacobian of the

reparameterization.

From equation B.0.6 we can also view the MAP estimator as applying a penalty to

the MLE where we penalize values of θ ∈ Θ we deem unlikely from past experience or

belief.
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Statistical Tests

C.1 Pearson’s Chi-Squared Test

Pearson’s chi-squared test is a statistical test for sets of categorical data to determine

how likely the difference between the sets came from random chance. So named because

Pearson’s test statistic χ2 asymptotically approaches the χ2-distribution.

The test is a way for determining the significance level α in which we can reject the

null hypothesis H0 that the sets of categorical data are independent of each other. The

alternative hypothesis H1 is that the sets of categorical data are not independent. We

only use two sets of categorical data in this thesis so we can restrict our case to two data

sets: X1 and X2. This is usually written as:

H0 : ‘Variable X1 is independent of variable X2’ (C.1.1)

H1 : ‘Variable X1 is not independent of variable X2’ (C.1.2)

To calculate χ2 we need to construct a R×C contingency table like Table 2.5 where

R is the number of rows and C is the number of columns. For Table 2.5, R = 2 and

C = 4. The test statistic χ2 is then calculated by:

χ2 =
R∑
i=1

C∑
j=1

(oij − eij)2

eij
(C.1.3)

where
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oij is the observed cell count in the ith row and jth column of the table (C.1.4)

eij is the expected cell count in the ith row and jth column of the table (C.1.5)

and

eij =

(
R∑
`=1

o`j

)(
C∑
k=1

oik

)
n

(C.1.6)

n =
R∑
i=1

C∑
j=1

oij (C.1.7)

The χ2 statistic is then compared to the critical value χ2
crit from the χ2-distribution

with degrees of freedom dof = (R−1)(C−1) and chosen significance level α. If χ2 > χ2
crit,

then we say we can reject the null hypothesis at the α significance level.

For example, using Table 2.5, we have oij and eij as:

oij =

[
657 58 1015 7259

4051 2253 1484 1527

]
(C.1.8)

eij =

[
1184.76 1021.88 37.71 2009.05

1143.30 986.12 35.42 1938.73

]
(C.1.9)

Then using Equation C.1.3, χ2 = 8355.99 with dof = 3. A significance level α = 0.999

would give χ2
crit = 16.266 so we could easily reject the null hypothesis that the two sets

are independent at the 99.9% significance level. A χ2 = 8355.99 would mean we could

reject the null hypothesis at some significance level arbitrarily close to 1.

A p-value for the test can be computed as

p-value = P
[
X ≥ χ2|H0

]
(C.1.10)

where X is distributed by the χ2-distribution with 3 degrees of free and χ2 is the test

statistic we calculated above. That is, the p-value is the probability of observing a test

statistic at least as extreme as χ2 under the null hypothesis.

To give us an idea of how strong the association between the two data sets is we can

calculate the Cramer’s V statistic.
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C.2 Cramer’s V

The Cramer’s V is a statistic which can be calculated from the χ2 statistic that is inde-

pendent of the sample size and bound between 0 and 1. A Cramer’s V statistic of 1 would

imply the two data sets are identical, 0 would imply they are totally independent. This

gives a measure of association between the data sets used to calculate the test statistic.

The advantage here is if we find our tests producing p-values arbitrarily close to zero then

we can use the Cramer’s V to differentiate between which data sets have the strongest

association.

The Cramer’s V, CV, is defined as

CV =

√
ϕ2

min(R− 1, C − 1)
(C.2.1)

with the Phi coefficient defined as

ϕ2 =
χ2

n
(C.2.2)

We can introduce a bias correction to give a more conservative estimate of the asso-

ciation with a small modification to our definitions [63].

ϕ̃2 = max

(
0, ϕ2 − (R− 1)(C − 1)

n− 1

)
(C.2.3)

R̃ = R− (R− 1)2

n− 1
(C.2.4)

C̃ = C − (C − 1)2

n− 1
(C.2.5)

C̃V =

√
ϕ̃2

min(R̃− 1, C̃ − 1)
(C.2.6)

From the previous example, we had χ2 = 8355.99, n = 18304, R = 2, and C = 4.

Plugging these into Equation C.2.6 we find the C̃V = 0.676. From our test we have clear

statistical significance between our two data sets and their corresponding association is

very strong.



Appendix D

Additional Plots

Figure D.1: Mean of time series in Figure 2.7 over 10 minute intervals after replacing the
instantaneous imbalance with random draws from normal distribution with mean 0 and
variance 1.
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Figure D.2: Variance of time series in Figure 2.7 over 10 minute intervals after replacing
the instantaneous imbalance with random draws from normal distribution with mean 0
and variance 1.

Figure D.3: Mean of average imbalance over 10 minute intervals. Mean varies slightly
with both methods having periods being greater than the other. Data from ARX stock
on April 17, 2017 for the entire trading day.
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Figure D.4: Variance of average imbalance over 10 minute intervals. Variance is almost
always greater with time weighting. Data from ARX stock on April 17, 2017 for the
entire trading day.

Figure D.5: Average sample size over 10 minute intervals. Effective sample size is also
known as Kish’s effective sample size. Data from ARX stock on April 17, 2017 for the
entire trading day.
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(a) Instantaneous Imbalance (b) Normal Random Draw

Figure D.6: Future value of volume imbalance ratio It+1, t orders from current imbalance
ratio It. The top, middle, and bottom subplots are for 1, 10, and 100 orders respectively.
The left subplots are the actual instantaneous imbalance ratio and the right subplots are
replacing It with random draws from N (0, 1). Data was taken from AEM stock on April
17, 2017 for the entire trading day.
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Figure D.7: Future value of volume imbalance ratio It+1, t orders from current imbalance
ratio It. The top, middle, and bottom subplots are for 1, 10, and 100 orders respectively.
Data was taken from ARX stock on April 17, 2017 for the entire trading day.
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Figure D.8: Difference in G(~vt, H)/H between different time intervals and H throughout
the trading day where H = 1000. The top, middle, and bottom subplots correspond to
time intervals of 5, 30, and 60 seconds, respectively. Data taken from ARX stock on
April 17, 2017 for the entire trading day. Stock price ≈ $18 CAD.
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