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Abstract

The use of additive manufacturing (AM) in dentistry has gained momentum in recent years.
However, high initial costs and uncertainty surrounding the quality of AM products are
considered barriers to their use. This research compared dental substructures fabricated by

AM versus conventional casting and milling.

Cobalt-chromium alloy rectangular bars and three-unit bridge substructures were fabricated
by AM, casting or milling. Bars manufactured by AM exhibited superior flexural strength,
shear bond strength of porcelain coating, and Vickers hardness. Bridge substructures
fabricated by AM showed similar flexural stiffness to cast, similar flexural loads at failure
to milled and cast, and overall accuracy of fabrication within 12 micrometers. AM
substructures showed exhibited pores primarily within the abutment region comparable to

the milled and cast substructures.

Overall, bars and three-unit bridges manufactured by AM exhibited equal or better

mechanical properties than those fabricated by conventional techniques.



Summary for Lay Audience

Additive manufacturing (AM) is a computerized process of depositing materials layer by
layer to produce three dimensional objects. The use of AM in dentistry has gained
momentum over the last 30 years, with computer-aided design and manufacturing
(CAD/CAM) being used for production of dental restorations. Despite the potential benefits
of AM, dental labs are hesitant to adopt its use due to high costs for initial production, as
well as uncertainty about the quality of the AM products compared to those fabricated using
conventional methods. The objective of this research was to compare dental restorations

made by AM versus the conventional methods of casting and milling.

Metal (cobalt-chromium) alloy bar samples and three-unit bridge substructures were
fabricated by AM and conventional casting and milling methods. Bar samples were
designed to conform to testing standards, and geometrically uniform three-unit bridge
substructures were custom designed for standardized testing. 3D X-ray images were
obtained for a subset of the three-unit-bridge substructures before testing. Bar samples were
mechanically tested to assess bending, hardness, and porcelain coating properties. Three-
unit bridge substructures were mechanically tested to compare the bending properties of
clinically relevant geometries. As well, X-ray images of fabricated three-unit bridges were
used to generate 3D models for investigation of internal porosity and surface geometry

related to the accuracy of fabrication.

Bar samples manufactured by AM exhibited superior bending strength, hardness, and
porcelain coating bond strength compared to cast or milled samples. Three-unit bridges

fabricated by AM and casting showed superior bending stiffness compared to milling, while



no differences were found in bending loads at failure among milled, cast, and AM samples.
Accuracy of fabrication for three-unit bridges were all within 12 micrometers from the ideal

model, with no significant difference among the three groups.

Overall, alloy bar samples and three-unit bridges fabricated by AM showed equivalent or
superior performance to those produced by milling or casting. Results from this thesis
provide information to the dental manufacturing industry regarding the mechanical
performance, internal structure, and accuracy of fabrication of dental restorations

manufactured by AM compared to the conventional methods of milling and casting.
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Chapter 1

1  Literature Review and Background

1.1 Overview

Over the last thirty years, additive manufacturing (AM) or three dimensional (3D) printing
has expanded for routine use in manufacturing processes [1]. AM fabricates an object by
building material up rather than removing it [2]. It has the potential to be beneficial for the
manufacturing industry due to low cost of the manufacturing, fast production, less waste

material, and ability to fabricate components with complex structures [3].

There are a variety of materials used in AM such as polymers, composite, ceramics and
metal alloys [2]. With this diverse group of material options, AM has impacted the
aerospace, automotive, architecture, food and healthcare industries. With regards to the
healthcare and dental industries, there is increasing interest in AM of metal alloys, due to

the increased strength, as well as their established biocompatibility.

AM’s success in the biomedical sector is evident based on its extensive application. It has
been used for fabricating orthopedic prostheses and dental implants, both of which are
replacements to tissues and interface with body parts [4]. As well, AM technology can be
used for medical modelling to produce a 3D anatomical model (i.e., tissue or organ model)
[5], by using the original medical image of the anatomy of interest, converting it to a surface

model file, and printing the final 3D structure.



1.2 Additive Manufacturing (AM)

1.2.1  Definition of Additive Manufacturing

The American Society for Testing and Materials (ASTM) F2792-10) defines additive
manufacturing as “the processes of joining materials to make objects from 3D model data,
usually layer upon layer, as opposed to subtractive manufacturing technologies™ [3]. It is
also known as Rapid Manufacturing or Rapid Prototyping (RP) manufacturing, to describe
the fabrication of any complex geometry components provided as a 3D model, developed

without tooling components [6].
1.2.2  Additive Manufacturing in Dentistry

AM has the capability of producing and customizing parts that fit the patient’s anatomy.
As such, it has direct application to the field of dentistry, which is evident by the recent
demand for 3D printing technology for fabrication of dental devices [7]. There are different
AM systems used in dentistry. Selective Laser Melting (SLM) is one such system and will

be the focus of this thesis.

SLM is used for the production and fabrication of metal dental prostheses and restorations
[13]. SLM is different from the computer-aided design and computer-aided manufacturing
(CAD/CAM) subtractive method of milling. SLM creates 3D objects layer by layer through
selectively melting metal powder with a laser beam [9]. It can be used to fabricate dental
restorations and prostheses with complex geometries[16]. AM has been compared with the
conventional techniques of dental restoration fabrication, which include casting and

milling. SLM products showed higher metal porcelain bond strength and revealed better



results in corrosion and surface properties [9]. The SLM technology enhanced fabricating

versatility, upgraded material properties, and a simplified production processes [15].

1.2.3  Benefits of Additive Manufacturing in Dentistry

AM has many benefits in its application within Dentistry. These include:

1.2.3.1  Shape Complexity

Conventional manufacturing depends on cutting and slicing technologies to produce a
limited number of shapes and structures [12]. For complex hollow structures, several parts
need to be created and assembled. However, with AM technology, complex parts could be
built from pre-designed structures [12]. Complexity of the structures could influence the
shape and geometry in additive manufacturing [13]. Such complex structures are directly
applicable to the dental field since personalization and customization of different designs,

shapes, and sizes of dental prosthetics are required to fit the patient’s anatomy.

1.2.3.2  Functional Complexity

AM allows insertion of components like sensors and deposits of conductive materials. In
biomedical applications, implants may take advantage of embedding functional
components [2]. In addition, AM technology helps to customize medical devices and
implant designs for the certain indications where patients are outside the standard range of
the implant size and design, or for high-level surgical procedures where a single fitting is

required for sufficient matching to the anatomical structures [14].



1.2.3.3  Time Efficiency and Less Manual Labor

For complex structures, production using AM technology reduces the time for
manufacturing. The result is the final product printed directly from CAD models, without
the need for additional tooling or extensive post processing, thereby reducing the cost of
production and ultimately having an impact on the supply chain by simplifying the
manufacturing and assembly [2]. This is useful in dentistry, because the conventional
casting procedure is a complex technique that involves several steps and materials, starting
from making the wax pattern, investing, wax elimination, casting the metal, finishing and
final polishing. Added to that is the dental technologist’s time for each of the individual

steps in the fabrication of a single crown or bridge [15] .

1.2.3.4  Less Waste and Impact on Environment

AM technology can have a positive impact due to less waste produced during
manufacturing. Less material is used or needs to be recovered, since AM uses raw materials
to build parts layer by layer. The leftover materials can be reused for the next processing,
which has a lower impact on the environmental waste and reduces the cost in material [1].
This benefit is directly related to the comparison between AM and milling technologies
used in dentistry. In AM, the part is fabricated layer by layer only using the material
required. In comparison, milling is a subtractive manufacturing method that uses a cutting
blade or sharp knife to remove material in the fabrication of the final part, producing waste

materials and dulling the cutting blade side [16].



1.2.3.5 Design Iteration

Due to access to AM machines, device manufacturers can design components and print in
hours. The printed object can then be used to get feedback on the device’s performance [3].
If not satisfactory, the device design can be refined and reprinted with minimal cost and

time for production. This could lead to better clinical designs and outcomes in dentistry.

1.2.4  Additive Manufacturing/3D Printing Processes

The AM process starts with modelling and runs through three main steps to create the final
3D object [17], as illustrated in the workflow below (Figure 1.1):
1. Data Acquisition: the models can be created through scanning or designing with
Computer Aided Design (CAD) software.
2. Data Processing: the CAD file is converted to a stereolithography (STL) file. The
STL structure is sliced by CAD software to create a bundle of layers.
3. Manufacturing/Printing: the object can be built layer by layer until the final object

is created. Layer thickness is dependent on the machine parameters used.



4 )

Data Acquisition
3D dental model is
obtained from digital
scanning of cast
impression

4 )

Data Processing &
Prosthesis Design
A surface model file

(.stl) of the cast
impression is generated
and used for prosthesis

design (CAD)

=

\ =

4 N

Additive Manufacturing
Prosthesis design is 3D-
printed layer by layer to
produce final dental
prosthesis

Figure 1-1: Process flow for AM technique used in dental manufacturing



1.3 Dental Prostheses Substructures

1.3.1  Types of Dental Prostheses

Fixed Partial Denture (FPD) is defined as “a dental restoration used to replace or restore
the missing teeth, and that is permanently attached to adjacent teeth or dental implants”[18].

FPDs could replace a single missing tooth or multiple missing teeth.

1.3.1.1 Crown

A crown is defined as “a cap to place on the head of the tooth, dental implant, or tooth

substitute” [18]. As illustrated in the Figure 1.2.

The crown could be [19]:
a. Partial Crown: a facing portion of the tooth structure to restore the width of one
or more surfaces of the intact tooth. Materials used are ceramic or composite.
b. Full Crown: a full and complete cover of the tooth structure that is used to
restore multiple defective tooth surfaces and simulate the clinical crown of the
tooth. There are three types which include the full metal crown, porcelain fused

to metal and non-metal crown (only ceramic) cover.



Figure 1-2: Dental stone cast with single crown



1.3.1.2 Bridge

As defined in the Glossary of the Prosthodontics Terms [18] “a bridge is a dental prosthesis
that is luted, screwed, mechanically attached, or otherwise securely retained to natural
teeth, tooth roots, and/or dental implants/abutments that furnish the primary support for the
dental prosthesis and restores teeth in a partially edentulous arch; it cannot be removed by

the patient”. A representative bridge is illustrated in the Figure 1.3.

The main components of the bridge design are described in Figure 1.4 [19]:
1. Abutments: adjacent teeth that will be prepared to support and lock the other
components of bridge.
2. Pontic: the artificial tooth on the bridge that replaces the missing natural tooth
and helps to restore the function.
3. Retainer: the main appliance that connects and unites the abutment teeth with
the portion of the bridge.

4. Connectors: the secondary appliance that connect the retainers and pontics.

All these components play a major role in the bridge design and biomechanics. The

superiority of the abutment and surrounding healthy bone play an important role in the
successful design of the bridge [19]. If there are enough sound healthy abutments that
support the missing teeth/tooth, the abutment should not transfer stresses to the pontic

[20].
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Figure 1-3: Dental stone cast with three-unit bridge
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Three Unit Bridge

. .

Tooth

Figure 1-4: Components of a three-unit bridge

Colors in the image differentiate the components of the three-unit bridge: connectors (red),

retainers (blue), abutments (green), and pontic ( ).
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1.3.2  Porcelain-Fused-to-Metal (PFM) Restorations

PFM restorations have been widely used as a type of porcelain dental restoration [21], as
shown in Figure 1.5. They consist of many layers of different types of porcelain fused
chemically to the metal substructures and provide support for the porcelain [22]. PFM
restorations are the most popular dental restorations used, due to excellent mechanical
properties, durability of the restoration to withstand wear and stress, in addition to their
cost compared with other metal free restorations [22]. Additionally, PFM restorations have
enough strength that can be used for the long span of bridges or for the posterior teeth

restorations [28].

For a successful PFM crown, the preparation of the crown should meet the requirements of
tooth reduction wherever the metal substructure is porcelain coated. One of the major
challenges associated with the success of PFM’s is selecting of an alloy and ceramic
material with compatible physical properties that contribute to its bond strength and the

natural appearance of the restoration.

1.3.2.1  Porcelain-Metal Bonding

Dental porcelain should be able to chemically bond to the metal substructure. In case
bonding does not occur, the porcelain layer will fail due to its brittleness [24]. When that
occurs, the clinician assesses potential fractures, or any de-bonding of the porcelain layer
from the PFM restoration. This failure will reduce the aesthetic of the restoration and create

stains in the affected area and therefore repair of the restoration maybe required [25].
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Bonding of porcelain to metal occurs as a result of an oxide layer being formed on the
metal surface [23]. Therefore, the alloys for the PFM restoration need a special formula to
help formation of the oxide layer. When the porcelain layer is fused onto the oxidized alloy
surface, the chemical reaction between the oxide layer of the metal and the porcelain creates

an interfacial bond between the porcelain and the metal [23].

Failures of the porcelain metal bond can occur as a result of several reasons [24]. For
example, the metal may have an inadequate oxide layer, which leads to the delamination of
the porcelain due to insufficient bonding. On the other hand, if the oxide layer is thick, it
will be highly porous and full of defects, and failure will occur at the oxide interface [25].
When the oxide layer thickness is a molecular scale, failure will take place within the
ceramic itself, near to the metal-porcelain interface. Researchers believe that microscopic
cracks develop and grow gradually in the area of high stress or where bonding is non-
existent between the porcelain and the metal [23]. When the cracks propagate, catastrophic

failure occurs at the interface, and the porcelain will be delaminated from the metal.

A good bond between the porcelain and metal is achieved when there is proper matching
between the coefficients of thermal expansion of the porcelain and metal [24]. The most
ideal way to make a desirable matching bond is by selecting a porcelain with a coefficients
of thermal expansion slightly less than that of the metal [25]. This allows for the metal to
expand more during heating, and contract during the cooling process. The critical
requirement for proper matching of the coefficients of thermal expansion of porcelain and
metal means that not every type of porcelain is compatible [23] with dental casting alloys.

Therefore, following the manufacturing materials and handling guidelines, to determine
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casting alloys that are compatible with porcelain type, is important for preventing any

failures of the bonding [23].
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Porcelain Coating \
(A) (B) Metal Coping

Figure 1-5: Porcelain-fused-to-metal (PFM) restorations

(A) Porcelain layer for a single crown (left) and three-unit bridge (right). (B) Metal coping
shown for a single crown (left) and three-unit bridge (right).
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1.3.3 Fabrication of Dental Prosthesis Substructures

1.3.3.1  Lost Wax Technique

Casting of the metals are made by fabricating or constructing a hollow mold, pouring the
molten metal that allows the metal to solidify, and separating the new solid cast metal from
the mold [26]. All the metallic contents originate from casting. The cast metals used in the
dental field replace or restore teeth and construct the removable or fixed denture
framework. The framework supports and stabilizes porcelain crowns and bridges such that
the fixed partial denture is strong while accommodating esthetic materials [27]. The casting
processes is used to fabricate many types of dental restorations such as inlays, onlays, full
cast crowns, porcelain fused to metal crowns, ceramic crowns and partial dentures [23].

The porcelain fused to metal is the most commonly used restoration on the market.

After the casting process is completed, the next step is to apply the porcelain layer on top
of the metal surface. The porcelain is composed of primary contents such as silica (SiO5),
feldspar (K20.AL20.6Si0O>), and alumina (AL203) [23]. These crystallization ingredients

are heated together with fluxes such as sodium carbonate or lithium carbonate [26].

Main steps for the casting techniques [25-26], are shown below (Figure 1.6).
1. Producing the wax pattern: The wax pattern is an object to be cast produced. When
the wax pattern forms on a die of the tooth or cast of the arch it accurately replicates

the tooth structure.
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Figure 1-6: Lost wax technique for dental casting

The figure shows the various steps of the lost wax technique, from the initial patient
impression to the final porcelain layer applied to the dental coping. (Image provided with

permission by Mr. Milko Lamos RDT, University of Western Ontario, London, Canada)
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2. Spruing the pattern: Spruing is a material that forms a channel for molten metal that
allows it to travel through the channel and make the restoration. In the simplest case,
the sprue is usually placed on the top of one cusp. If the case is complicated, then
multiple sprues are placed. The other end of the sprue is attached to the cone of the
sprue base. This cone helps to form a depression that allows the investment
materials to guide the molten metal through the sprue hole.

3. Investing: Investing surround the wax pattern and sprue with a stone like product;

this material can withstand the high temperature and forces during the burnout and
casting. Investments are made from a binder that holds the investment materials
together, and a refractory material which resists the heat produced from the burnout
and casting. The investments from the wax pattern are very critical to the success
of the casting. To retain the investment, a casting ring is used to place the sprue
base. The investment material is mixed with power driven vacuum mixer. The water
is added to the powder mixture in the bowl and sprinkled to eliminate air trapped.
The lid is applied to the bowl and vacuum is attached to remove the air. The
materials are poured slowly into the casting ring and loaded around the wax pattern
without forming any bubbles or voids.

4. Burnout the wax: When the investments are completed, the ring is placed into the
oven to burn out the wax pattern and the sprue. The burnout produces the hole that
will be lifted in the investments where the wax pattern and sprue were before,
making the space for the molten metal to flow and pass through it.

5. Casting the materials: casting is the process of the heating and changing the shape

of the wax pattern then converting into cast metal. To accomplish the casting
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process a centrifugal force machine is used. This machine allows the metal to be
accelerated outward by spinning it rapidly. The metal is heated in a crucible made
from ceramic that can resist the heating process. The substances called “flux” is
added to ensure the metal melts without excessive formation of an oxide, which will
affect the final product and quality of the casting. When the metal is melted
completely, the hot casting ring is placed inside the crucible containing the melting
metal and the crucible ring assembly is spun rapidly. The metal inside the crucible
is accelerated into the space that was occupied before by the sprue and wax pattern.
The metal piece to be cast is then heated by a blowtorch or electric current. The
most common heating method for low temperature metal (<1200°C) is the
blowtorch.

Removing the investment and cleaning: The casting is broken out from the
investment and rinsed off with water. Cleaning of the investment materials is
required to prepare the cast for the next steps.

Pickling: The surface of the cast restoration will be covered with a surface oxide
layer, observed as dark appearance. This oxide layer can be easily removed by
placing in an acid solution, which is called pickling. The casting is handled with
insulated tongs and submerged in a boiling hot sulfuric acid for 5 to 10 seconds.
Finishing and polishing: After all the previous steps, the casting is ready for
finishing and polishing processes. First is removing the sprue from the restoration
attachment by using thin carborundum disk on a handpiece. Any rough and gross
surface should be re-contoured by using the coarse carborundum stone or

greenstone. After the re-contouring, the surface of the restoration should as smooth
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as possible. Then a series of polishing steps are applied, starting with the rubber
wheels and impregnated abrasive. After polishing is completed, the restoration
should be a high luster appearances and smooth surfaces.

9. Applying the porcelain layer: In general, the metal is thinned to less than 0.5 mm to
maximize the room for the porcelain. The crown is then degassed in a porcelain
oven. The degassing is the process to remove the impurities at the alloy’s surface
and to for an oxide layer on the metal surface. After degassing, layering techniques

are used to apply the porcelain, which hides the color of the metal substructure.

Limitation of the lost wax casting procedures can be classified in four categories [25,

217]:

1. Distortion: Any sign of distortion marked is related to the wax pattern distortion. It
IS the most common problem when forming and removing the pattern from the tooth
or die. This mainly results from occluded air in the pattern, physical deformation
(molding, carving or removal), release of stresses (trapped) during cooling,
excessive storage time and high temperature during storage.

2. Roughness of the surface and irregularities: This is the most critical point for the
casting processes because the surface of the dental casting should be accurate and
replicate proper the surface of the wax pattern from which it is made. When the
outer surface has excessive roughness, it can be solved by using additional finishing
and polishing.

3. Porosity: This happens within the interior region of the casting or on external
surface. The internal porosity weakens the casting and on the surface causes

discoloration.
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4. Missing or incomplete details: The cause of the incomplete casting is due to the

molten alloy being prevented from filling the mold.

1.3.4 CAD/CAM Milling Technology

The milling system consists of three major components [34-35], which comprise the
processes for the CAD/CAM technology Figure 1.7:

1. Scanner: Scans the dental preparation provided by the dentist and can be intraoral
or extra-oral. For a single crown, the surface data for the tooth being prepared is
scanned. For FPD frameworks, additional occlusal characterization is required,
such as data acquired from the adjacent teeth and the opposing dentitions, as well
as centric occlusion.

2. Software/CAD: Used for the 3D planning and design of the restoration. The
software program helps with designing the virtual restoration on a virtual working
cast, and then computing and digitizing the data for the milling parameters.

3. Hardware/CAM: Computerized milling device used for converting the virtual
restoration into the final dental restoration from a solid block of metal or ceramic.
It comprises primarily of the computer used for controlling milling. As a basic rule,
after the CAM fabrication, some manual correction should be applied, and final
polishing with staining colors or veneering materials are required to be carried out

on by the dentist or dental technician.
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Figure 1-7: CAD/CAM milling technique
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There are many advantages of using the CAD/CAM milling system for the fabrication of
crowns and FPD’s:

1. Reduced manual labor [28]: Compared to conventional casting, CAD/CAM milling
has a reduced number steps for fabrication of dental restorations, especially those
requiring a dental technician

2. Quality control [29]: Milling by CAD/CAM allows for quality control of dental
devices. Firstly, it allows optimal device designs based on the material
characterization defined by the CAD software. This prevents degradation by
accounting for residual strain because of the post-processing. Secondly, it provides
reproducible processing times for devices. Added to that, milling prefabricated
ceramic or metal blocks used for milling contain minimal internal defects or
porosity, as confirmed by the manufacturer.

3. Reduced time/cost at appointments [30]: Milled restorations only need one clinical
appointment for completion. This eliminates the need for temporary or provisional
restorations (i.e., re-cementation or lost temporaries), and additional laboratory

fees.

While there are advantages associated with CAD/CAM milling, there are also

disadvantages:

1. The initial cost of the equipment and software is high, and dentist needs to spend
more time and money to learn how to use this equipment. Added to that, without a
large enough volume of restorations, dentists will face a hard time making their

investments pay off [31].
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2. Optical scanning is required to achieve an accurate representation of the tooth of
interest. The scan needs to emphasize a good finish line and duplicate the
surrounding occlusal teeth. in addition, some digital scanners need soft tissue
management, retraction, and moisture control [32].

3. The digital impression system may not save time since it requires multiple steps;
the dentist must first send the images for the clean-up, followed by setting of the
margin by dental technologist. Then, the image is sent to the dental laboratory for
checking the quality of the impression. The completed models and dies are then

sent to the dental lab for final fabrication processes [33].

1.3.5 Metal Additive Manufacturing

Dentistry is one avenue in medical manufacturing that can benefit from AM. Atrtificial
teeth, dental implants, and prosthetics devices can be fabricated rapidly, sometimes within
the dental office [14]. The prosthodontics field can benefit from AM technology,
specifically for the fabrication of fixed partial denture (FPD) and removable partial denture
(RPD) systems. RPD’s are simple and cost effective prostheses that can restore the missing
teeth in the partially edentulous patients [34]. RPD frameworks are commonly made of Co-
Cr alloys because of their suitable mechanical properties, excellent corrosion resistance and
biocompatibility [34]. Traditionally, RPD’s frameworks were fabricated by the lost wax
technique (casting techniques), but then progressed to fabrication with the CAD/CAM
milling system. Currently, metal AM is being explored for fabrication of RPD frameworks

[35].
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Cobalt-chromium (Co-Cr) and titanium (Ti-6A1-4V) are the most commonly used metal
alloys for metal AM in dentistry [36]. They are available as a powder form, with particle
sizes ranging between (20 — 100 pm) [36], [37]. Depending on the manufacturer,
composition of the powder may vary [38], [39]. Metal AM is suitable for the fabrication of
FPD substructures and RPD frameworks because Co-Cr alloys are considered the best
dental base metal in terms of the cost, biocompatibility, handling, mechanical properties,

and the clinical performance [40].

1.3.5.1  Selective Laser Melting Technology (SLM)

SLM is a specific type of AM technology designed to use a high energy laser to melt and
fuse metallic powders [10]. SLM is classified as a powder bed fusion process, utilizing a
high energy laser to melt metal powders layer by layer to produce the final 3D part based
on the CAD file geometry. Before uploading the CAD data to the SLM machine for
printing, the CAD file requires conversion to an STL file to produce slice data for laser
scanning of each layer [41]. The SLM machine used in this study was manufactured by

Renishaw (AM 400, Renishaw, Staffordshire, United Kingdom).

The SLM process is initiated by laying a thin layer of powder on the substrate plate [62].
A high energy laser is used to melt and fuse the metal powders according to the CAD data
fed to the machine in the X-Y axes, followed by a second layer of powder placed on the
plate [41]. The process is repeated until the part is fabricated into the desired geometric 3D
shape. The build chamber is completely sealed as it’s necessary to maintain a precise

temperature for melting of the powder materials [49]. At the end of the build, the excess
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powder is cleaned, removed and recycled and the part is detached from the substrate either

manually or electrically [41]. Figure 1.8 shows the schematic for the SLM process.
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Mirror
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Figure 1-8: Schematic of the selective laser melting (SLM) process

The SLM process occurs in an inert, heated atmosphere. The alloy powder is coated onto
the build platform using a roller, based on a specified layer thickness. A high-powered laser
melts the alloy powder specific to the part layer geometry. This entire process is repeated

layer by layer to fabricate the final 3D-printed part.

(Notes: Dr. Kalman, he thinks this figure is confused)
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Some advantages of using SLM technology [42]:

1.

2.

The use of a range of different materials

The capability to tune properties during the fabricating of parts
Improved functionality

Moderately low cost

Manufacturing of net-shaped components that will be ready to use

On the other hand, SLM has some drawbacks such as [42]:

1.

2.

The processing technique is quite slow (because of the process speed limitations)
Critical size limitations

High power usage

Initial high costs

Time consuming for parameters process optimization

The handling of the powder can be delicate which are very fine particles

The final products surface can be rough (related to the powder particle size and the
system parameters) [42]

Fragile and high temperature materials that cannot tolerate the high internal stress
throughout the manufacturing process can crack. This can be overcome by reducing
the cooling rate (by engaging substrate plate heating) [43]. At the same time, this
could lead to anisotropic microstructure in the material along the building

processing direction [42].
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1.3.5.2  Dental Alloys Used in Metal Additive Manufacturing

Metal alloys have been used as the material of choice for prosthodontic restorations for the
last 25 years [44-45]. The metallic materials are applied for the internal and external
structures and components of many prosthetic restorations [46]. Nowadays, there are a
number of metals used in prosthetic fabrication which include gold, palladium, silver,

nickel, cobalt, and titanium [44].

Alloys are metallic material formed from two or more metals, or from metals with non-
metals [25]. Metal alloys have favorable properties that make them suitable for handling
and manipulation. These include their high elastic modulus and good loading capacity that
make them desirable for dental applications [46]. Added to that, they are biocompatible,
resistant to corrosion, have high static and dynamic strength, high toughness, and show no

evidence of metal ion release into the oral cavity environment [46].

1.35.2.1 Non-Precious Dental Alloys

This group of alloys is based on the non-precious metals, such as chromium, nickel, iron,
tin, lead, magnesium and titanium [24]. These alloys were introduced as an alternative to
gold alloys because of the significant increase in gold prices. Generally, non-precious
alloys are economical and have good physical, chemical and mechanical properties. Non-
precious dental alloys that are commonly used include nickel chrome (Ni-Cr), cobalt

chrome (Co-Cr) and titanium (Ti) based alloys [24].
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1.35.2.2 Titanium (Ti) and Titanium-based Alloys

Titanium and titanium-based alloys are commonly used in dentistry [25] due to their
excellent biocompatibility, lower density and mechanical properties compared to the other
non-precious dental alloys [24]. They can be used for all-metal and metal-ceramic

prostheses, as well as dental implants.

Ti has a high melting point (1668°C) and high rate of oxidation above 900°C. For the metal-
ceramic prostheses, the porcelain is sintered at temperatures below (800°C), which is good
to minimize the oxidation, and prevent the alpha phase from converting to the higher beta
B phase [24]. The high melting temperature of the Ti alloys makes them highly resistant to

sag deformation within the metal frameworks at the porcelain sintering temperatures.

1.3.5.2.3 Cobalt Chrome (Co-Cr) Alloys

The invention of proper casting techniques and materials for making models resistant to
high melting temperatures was made possible through the use of Co-Cr alloys in dentistry
[12]. The application of Co-Cr alloys in dentistry is constantly growing due to their superior
mechanical properties, lower density and cheaper than gold alloys [47]. These alloys
exhibit high melting temperatures and therefore require special casting devices which make
their application rather difficult. Co-Cr based alloys are commonly used for making dental
prostheses such as removable partial dentures, crowns and bridges in metal-ceramic
systems [12]. They also exhibit good bond strength with porcelain, higher mechanical
properties, lower density and superior corrosion resistance compared to other metal alloys

used in prosthodontics [12].
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Cobalt possesses good corrosion resistance and can be used in multi-phase alloys to
improve their mechanical properties [46]. Chromium is the primary alloying element in a
wide variety of cobalt super alloys and is preferably added to improve corrosion resistance.
The main composition of cobalt chrome alloys for metal-ceramic restorations by their

weight percentage (wt.%) and characterizations for each element are as follows [46]:

1. Cobalt (Co): when added to the palladium alloys, it results in an increase in the thermal
coefficient of expansion and an improvement in the mechanical properties. The percentage

weight of Co in cobalt based alloys is around 55-58%.

2. Chromium (Cr): it is the metal that helps improve the solidification solutions during the
hardening stages. Because it has passivity effects that contribute to the corrosion resistance
in nickel and cobalt based alloys, it also provides a good resistance to tarnish. However,
the sigma phase in Cr makes the alloy brittle which can result in the fracture of the cast. As

such, the percentage Cr is limited between 5 to 25%.

3. Molybdenum (Mo): helps improve the resistance to corrosion by forming the passive
layer and have a beneficial effect on thermal expansion coefficient. The percentage Mo in

Co-Cr alloys ranges between 0 to 4 %.

4. Aluminum (Al): added to the Co-Cr alloys to help in etching the surface of the alloys to
create micromechanical retention for the alloy’s surface. The percentage Al in Co-Cr alloys

ranges between 0 to 2%.

5. Iron (Fe): added to the Co-Cr alloys for the metal-ceramic system for improved hardness

and strengthening the bond of the oxygen to oxide layer. It also helps with enhancing the
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processing ability of the alloys in the cold state. The percentage Fe in Co-Cr alloys ranges

between 0 to 1%.

6. Gallium (Ga): added to the non-silver ceramics to reduce the coefficient of thermal
expansion that’s producing from the absence silver contents. The percentage Ga in Co-Cr

alloys ranges between 0 to 7%.

7. Niobium (Nb): the metal element that provides a good corrosion resistance for Co-Cr

alloys. The percentage Nb in the Co-Cr alloys ranges between 0 to 3%.

8. Tungsten (W): another name wolfram, same as Nb properties are good for resistance to

corrosion. The percentage W in Co-Cr alloys ranges between 0 to 5%.

9. Boron (B): it is a deoxidization agent. It increases hardness of the nickel-based alloys,
reduces the surface tension of the molten alloys, improves the castability, and reduces the
ductility when it is added to the alloys. The percentage B in Co-Cr alloys ranges between

0 to 1%.

10. Ruthenium (Ru): a precious metal belongs to the platinum group. It is a grain refiner to
improve the mechanical properties and resistance to tarnishing. The percentage Ru in Co-

Cr alloys ranges between 0 to 6%.
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1.4 Micro-Computed Tomography (u-CT)

1.4.1 What is Micro-CT?

CT is a scanning process used to produce three dimensional (3D) data that represents an
object, by taking series of X-ray radiographs around a rotation axis, and then reconstructing
a 3D model using algorithms [48]. Micro-CT is a system using a micro-focal spot X-ray
source and high-resolution detector, to allow for more projections in multiple viewing
directions, to produce 3D reconstructed images of samples or objects [49]. Micro-CT
cannot be used with patients. The image is characterized as spatial distribution maps of
linear attenuation coefficients determined by the level of the energy of the X-ray source

and the atomic composition of the material sample [49].

Micro-CT has been used for different research applications in dentistry. These include the
study of the dental material properties, dental anatomy evaluation, and marginal fit analysis
for dental restoration [50]-[53]. Currently, micro-CT is being utilized as a tool for analysis
of the internal structure of additively manufactured parts in the field of medicine and

dentistry [54].

“Micro” indicates the pixel sizes of the image cross-sections are in the micro-meter range.
The X-ray projections are then collected by X-ray panel detectors and reconstructed in
computer software to produce virtual 3D models of the scanned object. Collection of data
is affected by the x-ray absorption and scattering of the material. Hence a material that does
not absorb x-rays will appear as radiolucent (darker appearance due to radiation easily

passing through). The internal structures of the object are obtained by the x-ray projections
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that penetrate the object. Thin scan sections are produced and can be used for structural
analysis depending on the x-ray settings utilized [63]. Micro-CT is used in metrology to
measure the dimensional quality of AM components in the metal industry [55]. SLM
technology provides the versatility and capability to produce and fabricate full dense parts
from metal powder and build it up layer by layer [56]. Micro-CT has high power energy to
penetrate the dense metal produced by SLM and provide an image of the internal structures
of the component. One such micro-CT scanner capable of scanning metal parts is the Nikon

Micro-CT Scanner XTH 225 ST model shown in Figure 1.9.

There are many advantages of micro-CT imaging for research applications:
1. The imaging procedure is non-destructive which can preserve the samples for the
other biological and mechanical test procedures [57]
2. Aids in analyzing the 3D relationship between internal structures [57]
3. Has high contrast resolution, which is higher than Cone-Beam Computed
Tomography (CBCT), thus allowing excellent discrimination of very small

differences in attenuation coefficient (< 1%) [57]
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Filter
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Figure 1-9: Nikon micro-CT scanner (model XTH 225 ST)

The Nikon micro-CT scanner is capable of imaging high density objects, such as the metal

structures investigated in this thesis.
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1.5 Study Rationale

Despite the advantages offered by additive manufacturing for dentistry, the Canadian dental
industry is still on the verge of adopting metal AM in its routine fabrication of dental
devices. This hesitance could be due to the lack of information in the literature regarding
the performance of AM-fabricated dental devices. As such, it is necessary to explore metal
AM relative to conventional forms of dental manufacturing in order to demonstrate its
feasibility and success as a potential contributor to dental device fabrication in Canada.
This thesis aims to evaluate metal AM as a manufacturing method for Co-Cr FPDs, by
analyzing alloy samples and substructures fabricated using this technology and comparing
the data to that obtained for similar samples fabricated using conventional manufacturing
techniques. Therefore, the overall objective of the study is to directly compare dental
substructures prepared using Selective Laser Melting AM technology to those fabricated
with the conventional methods of waxing-casting and milling. The following were
assessed; (i) material and mechanical properties; (ii) qualitative assessment of the internal

porosity; (iii) porcelain adherence; and (iv) the geometric accuracy of fabrication.
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1.6 Objective and Hypotheses

The specific objectives of the research were:

1. To evaluate mechanical properties of alloy samples fabricated using AM, milling
and casting, and compare results of alloy strength, deformation, hardness, and bond

strength with porcelain.

2. To compare three-unit dental bridge substructures fabricated using AM, milling

and casting, for differences in flexural strength and deformation.

3. To investigate the internal porosity of three-unit dental bridge substructures
fabricated by AM, milling and casting, using micro-CT imaging and metallurgic

investigations for internal structure analyses.

4. To compare the geometric accuracy of three-unit dental bridge substructures

fabricated by AM, milling and casting to the ideal surface design (CAD model).
Multiple hypotheses were associated with these objectives:

1. AM alloy samples will demonstrate equal or superior mechanical performance

when compared to conventional cast and milled alloy samples.

2. AM alloy samples will exhibit equal or superior porcelain bonding when compared

to conventional cast and milled alloy samples.
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3. AM three-unit bridge metal substructures will show equivalent or superior fracture
resistance (high flexural strength, low flexural deformation) when compared to

conventional cast and milled metal substructures.

4. AM three-unit bridge metal substructures will demonstrate equal or improved
accuracy of fabrication when compared to conventional cast and milled metal

substructures.

1.7 Thesis Organization

The work presented in this thesis focuses on “Metal Additive Manufacturing for Fixed
Dental Prostheses”.

Thesis Contents:

Chapter 1 presents the background and pertinent literature review of dental manufacturing
techniques, material properties of alloys, and imaging methods used for assessing dental

substructures.

Chapter 2 presents the materials and methods for mechanical testing, assessments of
fabrication accuracy, qualitative analysis for the porosity, and metallurgic analysis used to

compare dental substructures fabricated by AM, milling or casting.

Chapter 3 presents the results of mechanical testing, assessments of fabrication accuracy,
qualitative assessment of the porosity, and metallurgic analysis of dental substructures

fabricated by AM, milling and casting.
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Chapter 4 presents the discussion and conclusions obtained from the mechanical testing,
assessments of fabrication accuracy, porosity, and metallurgic analysis, as they relate to the

comparison of dental substructures fabricated by AM, milling or casting.
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Chapter 2

2  Materials and Methods

2.1 Materials

2.1.1  Cobalt Chromium (Co-Cr) Sample Design and Specifications

Forty-five rectangular Co-Cr alloy bar samples (50 mm x 15 mm x 2 mm) and twenty-
seven Co-Cr alloy three-unit bridges were used for comparison of milling, casting and AM
fabrication methods Figure 2.1. The rectangular bars were made according to specifications
set out in American Society of Materials and Testing standards (ASTM-E290-97a) [58].

Three-unit bridges were made using a custom designed model, standardized for testing.

Rectangular bars and three-unit bridges made out of Co-Cr alloys were produced by
Additive Manufacturing (AM) using Selective Laser Melting (SLM) technology (Renishaw
AMA400; ADEISS, Western University, London, Ontario, Canada), and the conventional
methods of dental manufacturing; lost wax technique dental casting and milling technology

(Rotsaert Dental Laboratories; Hamilton, Ontario, Canada).

Rectangular Co-Cr samples (n=45) were divided in three groups. Fifteen Co-Cr samples
were assigned to each group; Cast Argeloy NP Supreme (Cast), Mill Kera®-Disc (Milled)

and Additive Manufacturing (AM) (Co28Cr6Mo-LC, Gas Atomized Powder, UK).



Figure 2-1: Co-Cr sample designs used for mechanical testing

(A) Three-unit bridge and (B) rectangular bar.
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Three-unit-bridges (n=27) were divided into three groups, with nine samples assigned per
group; Cast Argeloy NP Supreme (Cast), Mill Kera®-Disc (Milled) and Additive
manufacturing (AM) (Co028Cr6Mo-LC, Gas Atomized Powder, UK). Materials

specifications, handling, processing techniques and properties are described in Table 1 [56].

2.2 Methods

2.2.1  Fabrication of Rectangular Bars and Three-Unit Bridge
Substructures

2.2.1.1 Additive Manufacturing (AM)

For AM specimens, a 3D digital design (CAD model) was used to initiate the fabrication
process. Once the design was processed by the SLM machine (Renishaw AM-400), a high
powered and focused laser (70 pum laser diameter, 200W laser power) was used to melt
layers of Co-Cr alloy powder (Co28Cr6No-LC, Renishaw) with layer thickness of 40 um

at a speed of 2 m/s. This resulted in consolidated metal specimens.

2.2.1.2 Milling

For the milled specimens (Kera® Disc), the 3D geometries were digitized with CAD
software, and the Co-Cr alloy block was milled. The final cut was made according to the
dimensions of the digital design using a computerized numerically controlled milling
machine (450i Imes-Icore) following the manufacturing manual [59] (Rotsaert Laboratory

Hamilton, Ontario.)
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Table 1: Chemical Composition of Co-Cr alloys for AM, Milling and Casting.
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2.2.1.3 Casting

Cast specimens were prepared using the wax elimination process at Rotsaert Laboratory
(Hamilton, Ontario, Canada), using protocols for casting and investment according to the

manufacturing materials and industry standards.

2.2.2  Imaging Analysis of Three-Unit Bridges

2.2.2.1  Micro-CT Scanning

Out of the forty-five three-unit-bridge specimens fabricated (n=15 per AM, Cast and milled
groups), five specimens were randomly selected from each group and scanned to obtain
high resolution p-CT images (Nikon, Micro-CT Scanner XTH 225 ST model; Museum of
Ontario Archaeology, London, Ontario, Canada). A plastic holder was 3D printed to mount
the three-unit bridge samples within the micro-CT scanner Figure 2.2. See Appendix (A)
for further set up procedures. The plastic holder was designed to mount three samples per
scan and minimize the setup and takedown in between scans. A custom fixture supported

the plastic holder within the CT scanning machine.

The entire set-up (plastic holder and custom fixture) stabilized the samples while the stage
moved during scanning. Images were obtained under specific micro-CT parameters; 220
kV beam energy to ensure full penetration through the Co-Cr samples, 50 pA current, and
11-Watt power, with a voxel resolution 15 pum. A copper filter (1 mm) was used during the
scanning procedure to pre-filter the x-ray energy and help reduce the effect of beam

hardening on the image quality.
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X-ray Source and Filter

Samples on
Rotating
Platform

Figure 2-2: Nikon micro-CT scanner (model XTH 225 ST)

The Nikon system was used to obtain micro CT scans for CoCr three-unit bridge samples.
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The half projection (1570) was performed for 26 minutes. When the scanning was
complete, VG Studio Max 2.2 software (Volume Graphics Inc, Charlotte, NC, USA) was
used for image processing and to generate a VGL file of the 3D reconstructed image (see

Appendix B and C for details). Figure 2.3 describes the workflow of the micro-CT process.

2.2.3  Mechanical Testing

2.2.3.1 Bending Test

2.2.3.1.1 Rectangular Bar Samples

The three-point bending test was conducted on forty five rectangular bar specimens (n=15
for each of Cast, milled and AM) according to ASTM standards (ASTM-E290-97a) [58]
using a universal materials testing machine (Instron series 3345 University Ave, Norwood,
MA, USA), with a 5 kN load cell at a crosshead speed of 1 mm/min. All bar samples were
tested until fracture was reached. The direction of the load was perpendicular to the bar
samples. The three-point bend test setup for the rectangular Co-Cr specimens is shown
below in Figure 2.4. The flexural modulus for all samples was calculated using the

following equation below [58]:

L3m
4 bd3

Ef = (1)

Where,

E¢ = Flexural Modulus of elasticity (MPa)

L = Support span length (mm)

m = Slope of the force vs displacement curve in the elastic region (N/mm)
b = Width of the test bar beam (mm)

d = Depth or thickness of tested bar beam (mm)
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Figure 2-3: Workflow chart for the full micro-CT process
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Figure 2-4: Three-point bend test setup for the rectangular Co-Cr samples
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2.2.3.1.2 Three-Unit Bridge Samples

Similar to the rectangular bar samples, three-point bend testing of the three-unit bridge
samples (n=9 for cast, milled and AM group) was conducted using a universal testing
machine (Instron 8874 series Axial-Torsion Systems, INSTRON®, 825 University Ave,
Norwood, MA, USA). A 10kN load cell was used, and the load was applied with a
crosshead speed of Imm/min until fracture occurred. The force at fracture was recorded.
The three-unit bridge specimens provided in-vitro data to support the potential clinical
performance of the alloy’s substructures. The schematic setup for the three-point bend test

for the three-unit bridges is shown in Figure 2.5.

2.2.3.2 Hardness Test

Post- bend testing, the rectangular bar specimens were sectioned in half, and fractured
regions were eliminated, such that square samples (15 mm x 15mm) could be harvested
Figure 2.6. Three square samples per group (AM, milled & cast) were used for hardness
testing, and ten indentations were obtained at random areas of each sample. Prior to testing,
each sample was ground under water using Buehler® Metaserv Grinding-Polisher (SR-

98553) and silicon carbide papers at different grit sizes (400, 1000 and 2000).

Vickers hardness testing was conducted on the cast, milled and AM samples using an
Omnie Met hardness testing machine (Buehler Lake Bluff, Illinois USA) according to
ASTM (E384-11 1% edition) [60]. The schematic set up of the Vickers hardness tester is
shown in Figure 2.7. A load of 100 N was applied with an inverted square pyramid diamond

indenter for 15s and the size of the Vickers indentation was recorded.
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Figure 2-5: Three-point bending test set up for the three-unit bridge Co-Cr samples



Figure 2-6: Co-Cr square sample used for the Vickers hardness test
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Figure 2-7: Vickers hardness test setup for the Co-Cr square sample
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The Vickers hardness was calculated using the following equation below [60]:

1854.4+P
A== @)

Where:

Hy, = Hardness Vickers, (MPa)

P = Force (g¢)

d? = Mean diagonal length of the indentation (um)

2.2.3.3  Shear Bond Strength

The squared AM, milled & cast Co-Cr alloy samples (n=10) were sent to Rotsaert
Laboratory (Hamilton, Ontario, Canada) for bonding of porcelain buttons (5 mm x 5mm x

2 mm) as seen in Figure 2.8.

The surfaces of all squared Co-Cr alloy samples were finished and sandblasted according
to the manufacturing manual [57-59]. Then, porcelain buttons (IPS InLine® (Conventional
Metal-Ceramic) were applied as specified in the literature [62]. For each group (AM, milled
& cast), square samples were heat treated first before applying the porcelain layer. The
procedure used for bonding the porcelain to the metal alloy substrates was done by the

Rotsaert Laboratory in Hamilton, Ontario.

The shear bond strength test was performed according to ASTM (F1044-05 re-approved
2011) [63], using a universal testing machine (Instron 3345 series, INSTRON®, 825
University Ave, Norwood, MA, USA) and 5 kN load cell, at a crosshead speed of
0.5 mm/min. All specimens were sheared until fracture occurred at the interface between

the porcelain and the CoCr substrate. The shear bond strength experimental set up is shown
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in Figure 2.9. Based on applied forces and cross-section area parallel to the applied force,

the porcelain bond strength was calculated using Equation 3.

F
Cs = 3)

Where,

os = Shear stress (MPa)

F = Applied force (N)

A = Cross sectional area parallel to the applied force (mm?2)

2.2.4  Geometric Accuracy of Fabrication

The micro-CT scans of the three-unit-bridge Co-Cr previously obtained (Section 2.2.2)
were reconstructed and converted from “.image file (vff)” to “.image surface file (stl)”
using a MicroView 3D Image Viewer and Analysis Tool (Parallax Innovation Inc., Ilderton,

ON, Canada) (see the Appendix D for details on method).

The surface file was imported into Geomagic® Qualify 12 (Geomagic, Morrisville, NC)
for analysis of accuracy of fabrication for the AM, milling and casting. This was done by
comparing deviations in the surfaces between the original CAD model of three-unit-bridge
(reference surface) and the final fabricated structures from the different manufacturing
techniques (AM, milled & cast) (test surface). The reference and test surfaces were
compared to one another, to determine any discrepancy between the two surfaces (see
Appendix E). This comparison involved registering the surfaces of the original three-unit
bridge “.stl” as a fixed point of reference, then applying the test surface to determine the

deviation between the two surface profiles.



Figure 2-8: Porcelain bonded to Co-Cr square substrate sample
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Figure 2-9: Shear bond strength test setup
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Measurements of deviation were taken at different locations using the Sectional Based
Analysis Tool in Geomagic® Qualify 12. This allowed for 2D surface deviation
comparisons to be performed along two planer directions. First, the Y-Z sagittal plane was
used to compare the abutment, connector, and pontic regions along the length of side-view
cross section of the three-unit-bridge (Figure 2.10). Second, analysis was done along the
X-Y transverse plane, which allowed comparisons of the abutment, connector, and pontic

regions along the length of the top-view cross section of the three-unit-bridge (Figure 2.11).

2.2.5 Internal Porosity Analysis

2.2.5.1 Micro-CT Imaging

Micro-CT images obtained for the three-unit-bridge Co-Cr samples (AM, milled & cast)
were reconstructed using the VG Studio Max 2.2 (Museum of Ontario Archaeology,
London, ON, Canada), which removed any noise and corrected the grey shade scaling for

the CT image.
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(B)

Figure 2-10: Sagittal plane surface deviation analysis using Geomagic

(A) The 3D color plot shows the change in the reference to the test three-unit bridge. (B)
Sectional profile (Y-Z plane) shows the side-view cross-section comparing the reference
(red profile) and test (black profile) surfaces
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Figure 2-11: Transverse plane surface deviation analysis using Geomagic

(A) The 3D color plot shows the change in the reference to the test three-unit bridge. (B)
Sectional profile (X-Y plane) shows the top- view cross-section comparing the reference

(red profile) and test (black profile) surfaces.
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2.2.6 Analysis of Sectioned Surfaces of Co-Cr alloys

Following bending tests, one three-unit sample from each group (AM, milled & casted)
was used for optical imaging of sectioned surfaces. Each sample was sectioned at two
locations along the length of the three-unit bridge (University Machine Shop, Western
University, London, Ontario, Canada). Following sectioning, each sample was clamped,

cold mounted in epoxy resin, and left to cure overnight.

The samples were then hand ground under water using a Buehler® Metaserv Grinding-
Polisher (SR-98553) and silicon carbide Emery papers (Norton, Black Ice) at each of the
grit sizes 180, 400, 600, 800, 1000, 1500, 2000 and 4000. The final polishing was
conducted using colloidal silica polishing suspension solution (Master Mat TM 2,

Buehler(R), 41 Waukegan Rd, Lake stuff, IL, USA).

The specimen surfaces were examined using optical microscope Nikon Digital Eclipse
Camera DXM 1200 and Nikon CT-1, Version 2-20 software (Engineering Department,

Western University, London, Ontario, Canada) as demonstrated in Figure 2.12.

2.2.7  Statistical Analysis

Statistical analysis of quantitative data was conducted using one—-way analysis of variance
(ANOVA) and Tukey’s multiple comparative test at 95% level of confidence (Graph Pad

Prism 6, GraphPad Software, San Diego, CA).
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Microscope Lens

Figure 2-12: Optical Microscope Image setup using the Nikon Digital Eclipse
Camera DXM 1200 and Nikon ACT-1, Version 2-20 software

(A) Co-Cr sample setup and the orientation under the objective. (B) software image

display.
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Chapter 3

3  Results

3.1 Overview

This chapter describes the properties of metal structures made using AM technology as
compared to those made using the conventional methods of casting and milling. The
following properties were evaluated: bending strength and load at fracture, hardness,

porcelain adherence, accuracy of fabrication, and internal porosity.

3.2 Mechanical Properties of the Rectangular Bar Specimens

3.2.1  Three Point Bend Test for Rectangular Bar Specimens

When comparing flexural strength, AM specimens exhibited greatest maximum flexural
stress (2219 +14 MPa) and load at fracture (2.696 + 0.010 kN) under three-point bending
(p<0.05), with cast samples withstanding significantly higher stresses (1489 + 38 MPa)
and loads at fracture (1.95 £ 0.03 kN) compared to milled samples (stress: 1057 + 23 MPa;
load at fracture: 1.42 + 0.03 kN) ) (p<0.05). Despite these significant differences in flexural
strength, the flexural modulus values of AM (131.94 + 1.88 MPa), milled (128.17 = 0.80
MPa), and cast (125.23 + 4.69 MPa) samples were not significantly different (p>0.05) as
shown in the Figure 3.1. Flexural stress and load are both indicative of the forces required
for material failure, while flexural modulus indicates the stiffness or tendency of the

material to deform prior to failure.



63

3.2.2  Vickers Hardness for Bar Samples

Vickers hardness measures the sample’s resistance to localized deformation due to a
constant force load applied from a sharp object. Vickers hardness data indicated that
samples fabricated by AM exhibited significantly greater hardness (490.17 + 2.58 MPa)
compared to milled or cast samples (p<0.05). Between milling and casting, the cast samples
showed significantly greater hardness (406.44 + 3.36 MPa) than the milled samples (337.01

+ 3.11 MPa) (p<0.05) (Figure 3.2).

3.2.3  Shear Bond Strength for Bar Samples

Shear bond strength defines the maximum stress required to detach the porcelain coating
layer from the metal surface. Overall, AM (31.50 + 2.15 MPa) and milled ( 30.79 + 2.78
MPa) samples demonstrated significantly greater shear bond strength compared to a cast
samples (24.87 £ 1.094 MPa) (p<0.05), with no significant differences found between AM

and milled samples (p>0.05) (Figure 3.3).



150

100

Flexural Modulus (MPa)

Z

Flexural Load (kN)

0

(B)

AM

2500[

2000

=
a
(@}
(=)

1000 ez

Flexural Stress (MPa)

o2
(=}
o

(=)

G

AM

Milled

Milled

Milled

Cast

Cast

64

Figure 3-1: Mechanical properties of Co-
Cr alloy bar samples fabricated by AM,

milling or casting

Data are mean values of flexural modulus
(A), flexural load (B) and flexural stress (C)
for AM, milled and cast samples. Error bars
represent the standard error of the mean
(SEM), n=15 samples for each group. The
same lowercase letters indicate no
significant differences between groups
(p>0.05).
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Figure 3-2: Vickers Hardness of Co-Cr alloy bar samples fabricated by AM, milling

or casting

Data are means + SEM, n= 10 samples for each group. Significant differences (p<0.05)
were observed among AM, milled and cast samples as indicated by different lowercase

letters.



66

40;
T
: |
< 30\
o e
-
( 20{EEEEE
T SR
o e
m : Zﬁi
810- . E E
o |
@ S
AM Milled Cast

Figure 3-3: Shear bond strength of porcelain coating on Co-Cr alloy specimens made

by AM, milling or casting

Data are means + SEM, n= 10 samples for each group. The same lowercase letters indicate

no significant differences between groups (p>0.05).
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3.3 Mechanical Properties of Three-Unit Bridges

3.3.1 Three Point Bend Test for Three-Unit Bridge samples

When comparing loads at failure, three-unit bridge substructures fabricated using AM
showed similar flexural loads at failure (5.78 = 0.062 kN) compared to milled (5.71 + 0.12
kN) and cast (6.27 £ 0.16 kN) samples (p>0.05). While comparing the flexural stiffness of
the materials prior to failure, AM (5.77 £ 0.12 kN/mm) and cast (5.91 + 0.11 kKN/mm)
substructures showed significantly greater stiffness than milled samples (4.68 + 0.25
kN/mm) (p<0.05). However, no significant differences were found between the AM and

Cast samples (p>0.05) (Figure 3.4).

3.4 Internal Porosity Analyses

3.4.1  Porosity Assessment using Micro-CT Imaging

Based on qualitative assessment of micro-CT images, AM samples consistently showed
porosity in the abutment region of the three-unit bridges, compared to milled and cast
substructures. In comparison, random distributions of small voids were observed only in
the connecter and pontic regions of AM and cast substructures (Figure 3.5). No voids were

apparent in the milled samples.
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Figure 3-4: Mechanical
properties of Co-Cr three-
unit bridge substructures
fabricated by AM, milling

or casting

Data are means £+ SEM, n=9
samples for each group. The
same  lowercase letters
indicate  no  significant
differences between groups
(p>0.05).
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Abutment Connector Pontic

AM
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Figure 3-5: Representative cross-sectional micro-CT images of AM, milled and cast

three-unit bridges

The red arrows indicate the voids within the abutment region of the AM substructure.
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3.4.2  Porosity Assessment using Optical Imaging

Qualitative analysis of porosity from optical imaging showed porosity in the abutment
region of the AM sample, consistent with that observed from micro-CT imaging (Figure
3.6). Voids were observed in the abutment regions of the milled and cast substructures, but
these were smaller and fewer than that observed with AM. When comparing porosity in the
connector regions (Figure 3.7), all the three groups showed voids. However, cast samples
exhibited larger and greater numbers of voids within the connector compared to AM and

milled samples.

3.5 Geometric Accuracy of Fabrication
The original CAD model of the three-unit bridge design and micro-CT surface models for
AM, milled and cast substructures were compared. Results showed that all micro-CT
models (AM, milled and cast) exhibited surface deviations within 12 micrometers from the
ideal CAD model. There were no significant differences among the AM (9.03 £ 1.13 pm
& 10.26 £ 1.57 pm), milled (6.73 £ 0.29 pum & 8.76 £ 1.33 um) and cast (5.80 = 1.71 um
& 5.51 = 0.99 pum) sample for surface deviations in YZ and XY planes, respectively

(p>0.05) (Figure 3.8).
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AM
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Cast

Figure 3-6: Optical images of the abutment for AM, milled and cast three-unit bridge
substructures

Magnified regions within the abutments are shown at right (scale bars are 100 pum).
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Figure 3-7: Optical images of the connector for the AM, milled and cast three-unit
bridge substructures

Magnified regions within the abutments are shown at right (scale bars are 100 um).
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Figure 3-8: Accuracy of fabrication of three-
unit bridge substructures produced by AM,
milling or casting.

The original CAD model of the three-
unit bridge design and micro-CT
surface models for AM, milled and cast
substructures were compared. (A)
Surface deviation in the YZ plane, and
(B) Surface deviation in the XY plane
(um). Data are means + SEM, n =5
samples for each group. The same
lowercase letters indicate no significant

difference between groups (p>0.05).
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Chapter 4

4.1 Discussion

Among the different techniques of fabrication for dental Co-Cr restorations, AM
continues to show promise in its ability to meet the limitations of conventional
manufacturing. These include shape and functional complexity, time efficiency and less
manual labor, less waste and impact on environments, and design alteration. However,
within the Canadian dental manufacturing industry, its application has not been widely
adopted, as compared to other international industries [9], [64], [65]. The reason for this
could be due to lack of the literature regarding the performance of AM technology for the
fabrication dental devices. It is necessary to explore metal AM compared to conventional
manufacturing methods in order to demonstrate and show its potential success for dental
device fabrication in Canada. The studies described in this thesis addressed the lack of
information in the literature regarding the performance of AM fabricated restorations

compared to conventionally manufactured ones.

Overall, the findings from this thesis show promise for AM as a potential method
for the fabrication of dental devices, when compared to conventional manufacturing. As
shown, dental specimens fabricated using AM technology performed equivalent to or better
than samples fabricated using conventional manufacturing, based on results from
mechanical testing. When comparing quantitative and qualitative results from porosity
analysis, AM samples showed similar or superior results to samples produced by milling

or casting. No significant differences in accuracy of fabrication were found among the AM,
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milled and cast samples, where all deviations were within 12 micrometers from the ideal

CAD model.

The differences in the mechanical properties and behavior among the rectangular
bar specimens and three-unit bridge substructures fabricated by AM, milling and casting
provided information regarding their potential clinical performance. Three-point bend tests
were used to assess the mechanical properties of the Co-Cr alloys from the three different
fabrication methods (AM, milling, casting). Three-point bending was meant to simulate the
most common loading mechanism expected for FPDs, bending under the forces of
mastication. Bend tests were performed on sample rectangular bars designed from (ASTM-
E290-97a) standards, to report on the bending properties specific to alloy compositions
used with the various fabrication methods. These results provided data associated with
standardized reporting on the flexural properties of alloys. Based on the results of
mechanical properties, the AM specimens showed greater flexural load and stress at
fracture compared with the cast and milled samples. Among the three groups, similar
flexural modulus was found. These results indicate that AM specimens showed greatest
strength in resisting fracture compared to milled and cast samples. However, all three

samples (AM, mill, cast) showed similar stiffness for the duration of loading.

Additionally, bend testing was performed on three-unit bridges fabricated by AM,
milling and casting, to provide stress-strain data for designs that were clinically relevant
for dental applications. When comparing the results of three-point bending for the three-
unit bridges, it was observed that fracture occurred at the level of the connector region. The
connectors appeared to deform, followed by crack propagation, resulting in eventual

fracture of the specimen. AM, cast and milled samples showed similar flexural loads at
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failure. However, AM and cast showed higher flexural stiffness compared to milled

samples.

These results of three-point bend testing were different from that found by @ilo et
al. [40]. In their study, three-unit bridges were fabricated with AM, casting and milling,
but fracture of the connectors were not observed. However, there was severe deformation
in the walls of the crown, followed by ruptures along the occlusal surface from the crown
margin [40]. As well, in their study, AM exhibited the highest stiffness compared to
samples prepared by casting or milling [40]. Similarly, Han et al. stated that AM was
superior to conventional techniques of manufacturing fixed dental restorations [65], while
Wau et al. stated that the yield and tensile strengths of the AM were statistically higher than

the cast alloy [66].

Vickers hardness is a test that measures the ability of the alloy to resist the local
permanent deformation. In this thesis, AM samples exhibited the highest resistance to
deformation compared to the milled and cast samples. Similar results were found in the
study by Han et. al., where AM samples were harder compared to the cast and milled
samples. @ilo et al. also reported that the AM method performed better in hardness testing

than milled and cast [40].

Shear bond strength testing evaluated the strength of the porcelain bond with the
metal interface for AM, cast and milled samples. According to the International Standard
for metal-ceramic systems in dentistry (ISO 9693:2012), the minimum acceptable bond
strength is 25 MPa [67]. The mean bond strength values found in this thesis for samples

prepared from AM, cast and milled Co-Cr alloys all exceeded the minimum values defined
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in 1SO 9693:2012. In this study, AM and milled exhibited the highest bond strength
compared to cast samples. Similar results were found by Ekren et. al. when comparing
selective laser melting and selective laser sintering AM technologies, reporting average
bond strength values in excess of the minimum requirements of 1SO 9693:2012 [45].
Similarly, Ren et. al. showed that AM exceeded the minimum value, which gives an
indication that AM fabrication is an acceptable technique for metal-ceramic bond strength

in a clinical application [68].

Based on the micro-CT and optical imaging analyses of internal porosity, the AM
specimens showed consistent distribution of large voids within the walls of the abutment
of the three-unit bridge, while the milled and cast had fewer and smaller voids in the
abutment region. The reason for the voids within the internal surface of the AM abutments
is probably due to the AM laser process parameters for the thin wall section. The laser beam
may not have appropriately melted the Co-Cr powder particles adjacent to the center of the

structures [39]-[62].

The contradiction of the qualitative porosity results may be due to the definition of
voids in the micro-CT images. The voids observed during qualitative analysis (i.e., visual
inspection of optical images) may not have a greyscale value equivalent to that of air, and
therefore was not identified and quantified in the micro-CT analyses. As well, the size of
the voids relative to the resolution of the micro-CT system may have affected the detection

of a micro-void for the future quantitative assessments.

The presence of internal porosity within the AM and cast three-unit bridges did not

have a negative effect on the mechanical performance of the substructures. AM and cast
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three-unit bridges showed similar flexural loads at fracture, and greater flexural stiffness,
compared to the milled equivalents. Similarly, Wits et. al. investigated the porosity of AM
parts by focusing on the capability to produce a near full dense part, and validated it using
two techniques of measuring porosity: CT and microscopic images [53]. They found that
the non-uniformity of pore distributions did not affect the tensile testing results from the
metal-based AM technology [53]. Future studies will aim to investigate the effect of
porosities on the fatigue properties of AM samples, since microstructure is not only related
to strength, stiffness, and hardness, but generally also important to fatigue behavior.

When the CAD model of the three-unit bridge design and micro-CT model for the
AM, milled and cast substructures were compared to determine the accuracy of fabrication,
no significant differences were found among the AM, milled and cast samples for surface
deviations in XY and YZ planes. This thesis reported the accuracy of fabrication, which is
a comparison of the final fabricated three-unit bridge geometry relative to the original CAD
design. This measure was used to determine how well the final fabricated structure met the
specifications of the design. All final fabrications (AM, milled and cast) were within 12
micrometers of the CAD model design.

A better clinical measure of final fabrication geometry would be marginal fit.
Marginal fit quantifies the marginal seal at the tooth-crown interface. It is an important
factor for the prevention of recurrent caries, periodontal diseases and longevity of the
restoration [69]. In vivo studies have shown correlation between the marginal fit and the
plaque accumulation; larger marginal discrepancy led to microalgae’s and periodontal
inflammation around the restoration [70]. Such a measure was assessed by Zuskova et. al.,

where overall fit was compared between milled and AM technology. On average, milled
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samples were shown to have a better overall fit compared to the AM group [71]. Future
studies will aim to assess marginal fit of AM samples relative to those fabricated by the

conventional methods of dental manufacturing.

4.2 Conclusions

Within the limitations of this in vitro study, the following conclusions were drawn:

1. For the rectangular Co-Cr bar samples, it was determined:

a. AM samples showed significantly higher flexural stress and hardness

compared to the milled and cast equivalents.

b. AM samples exhibited slightly higher flexural modulus than cast and milled

samples.

c. AM and milled samples showed greater shear bond strength compared to
cast equivalents. All bond strength values (AM, milled, cast) were greater
than 25 MPa, which is critical for the metal-ceramic interface bond, as

determined by ISO standards for the dental materials.

2. For aclinically representative Co-Cr three-unit bridge design, it was determined:

a. AM, milled and cast samples showed similar flexural loads at fracture.

b. AM and cast samples showed greater flexural stiffness compared to milled

equivalents.
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3. Based on the qualitative assessment of internal porosity within the three-unit bridge

samples, it was determined:

a. AM samples showed consistent voids along the abutment region of the

three-unit bridge compared to the cast and milled samples.

Overall, the clinical implication for Co-Cr dental frameworks or substructures
fabricated by AM technology is promising and comparable to those manufactured by

conventional casting or milling.
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Appendices

Appendix A: Set-up of Micro-CT Nikon XT 225 ST model

1.

2.

3.

Plug-in and turn on the machine.

Login screen enter the password and select run the program.

Once you are signed in the inspect-X-software are appeared and two windows will
appear as shown on the Appendix (A.1). One for the image view and the other one
control view. Image view that have tools to determine the appropriate KV, MA and
position of the sample. Control view that shows the auto-condition of the unit as
well as the scan area.

Position the sample on the Jigs and make sure the handle of the sample is secured
and oriented parallel to the beam area.

Look at the “Control view” window as shown on the Appendix (A.2): if the systems
good and interlocks are set, a green check mark will be visible at the bottom of the
window and X-ray indicators will be green. Then set the “x-ray off” as shown on
the picture.

If the green check mark is an “X” and x-ray indicators is white and set to “no x-ray
interlock” that mean the cabinet door is not closed properly or the key interlock is
set “off”

Check the system status using the (i) (Big blue i) icon if necessary.

System setup screen, as shown on the Appendix (A.3):

At “Control View”: after determining the system is ready to go, starter for setup the

screen and locate the auto-condition setti
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9. Auto-condition setup for the CT scan, as shown on the Appendix (A.4):

a. Step1:

b. Step 2:

Ensure no samples have been left on the stage and “Home” the
manipulator icon.

Click “Ok” when the dialog box appears.

Status bar will pop up during the home process. The status bar will

tell you when the homing has completed.

Use default setting (do not change max KV, should be at 225)
Select auto-condition

X-ray control area will change from green “x-ray off” box to a red
“auto-condition” that mean x-ray are now on and the unit is auto-
conditioning. Let the auto-condition start and leave it for 5 minutes

to reach the maximum KV then select the “stop” bottom.

10. Running a CT scan:

a. Step1,

as shown on the Appendix (A.5):

Select CT tab, then the window will show the image of the sample.
Make sure the sample is secure and centered on the stage.

Select “new sample” then the next window will be appearing on the

tab list.



b. Step 2:
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From the information bar: a box will appear and requesting a Data
base name. then naming your data set in the location shown at the

picture, as shown on the Appendix (A.6).

Once the file name, click on the nest tab called “position + optimize “

c. Step3:

d. Step 4.

From the “position and optimize “icon, that helps to set the

parameters of the three-unit-bridge samples for the CT scan image.

. Switch the x-ray on, as shown on the Appendix (A.7)

Adjust the manipulator position: unlocked all the tilt plane (Y and
X) to let the manipulators stage moved up and down and press save
for this setting.
Voxel size choose at (15 micron) resolutions, geometric
magnification at (13.332) and magnification at (80).
Adjust the parameters for the image CT scan:

a. Beam energy for KV= 220

b. Beam current for MA= 50

c. Power for W=11

d. Histogram value should always between the 10000 to

65000.

From the “correction”, move the sample out of the view them enter

your current (50 uA) and the energy (220 KV), then select “New”
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shading correction or updating the old correction with the same
setting using the drop-down tab and then press “update” option, as
shown on the Appendix (A.8).

Image window should appear as below, with the object out of the
view prior to shading correction. A dialog box will appear where you
select the filtration which is Cupper size (1 mm) then press
“generate” the two-dialog option will appear on the screen to
reminding you to move your object and check the filter if it there, as
shown on the Appendix (A.9).

Once the shading correction is completed, then select the “Acquired

data set”

. From the “Acquired data set”, this tab where you can find the option

to “Minimize ring artificate” to the (4), that indicates the four
direction, followed with optimization Number of the projection

(1570) half projection, and number of frames to average (3).

. The estimation of the scanning time is provided (26) minutes

Select the computer that will process the image for the
reconstructions stage that want to acquire the data set to “Drop-down
new” then press “acquire” option, as shown on the Appendix (A.10).
Then press the play bottom to run the CT machine.

Notes: this steps and parameters can be used for the multiple CT

scans and no need to change any of them.
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Appendix A-2: Control view commands bar and view display.
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Appendix A-4: Auto-conditioning the CT.
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Appendix A-9: Image view window display.

Appendix A-10: Acquired data set and CT-run.
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Appendix B: 3D-Pro program setup for CT-reconstruction

1.

2.

Select the file > open
Locate the file you want to open
Double left clicks on the file to lunch the processing sequencing
Once the file is open you will be brought you to the first step in the image processing
sequence, as shown on the Appendix (B.1)
Image tab 1: check the projection image and extra projection image couple time -
to make sure if there is any significant different in the object while its movements
occurred during the CT scan image.
Center of rotation tab: if the object had a minimal movement during the scan
acquisition, then proceed to the “center of rotation”
Select the slice from “accuracy” tab by choosing “standard”, then under the slice
selection choose “Dual” then press start, when the center of rotation is completed,
the upper and lower pixel are changed and will be marked as found. Then repeat the
same step for the “high quality” under the “accuracy” tab. Press start, when the
center of rotation is complete, the upper and lower pixels will be marked as found
too, as shown on the Appendix (B.2).
Beam Hardening Correction:
e When the center of rotation has been found, proceed to set up tab.
e See the red line doesn’t go through of the material in different density.
e Position of the line across the object
e Then check the re-constructed are present.

e Then select start, that will take several minutes to complete the process.
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e The histogram shows, the line drawn across the object, then the line
cross to it as shown on the figure as cupping characteristics of beam
hardening. When it shows “flat peaks” or near to it. Once the all the 6
percent on the histogram are good, followed to the corresponding to the
best projection. Usually the percent 1, 2 or 3 proceed to the “volume
tab”, as shown on the Appendix (B.3)

9. Volume tab:

e Select and shrink the region of interest (ROI) for volume re-construction
by moving the red (ROI) around the object of interest.

e Select the output of the format, then click “start” to proceed
immediately.

e Then saved all the file on the VGL then exported to the other program

VG. Studio.
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Appendix B-1: The image tab processing.
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Appendix B-2: Center of Rotation Setup.
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Appendix B-3: Beam Hardening setup.
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Appendix C: GG Studio Max Tools setup
1. Open the file on VG studio from drop-down option

2. Import-=>from the 2" set of the drop-down options select “VGi volume”

3. VGi volume file selected dialog box will appear, as shown on the Appendix (C.1)

4. Select browse to locate the volume file you want to use

5. locate and select the desired volume file from saved location on the computer or

external hard drive

6. once the file selected, then return to the VGi volume file selected dialog, as shown
on the Appendix (C.2).The file name will appear, then select “next” from the option

provided at the bottom of the dialog box.

7. after the “next” option the new set it will shows then select “import” option

8. the dialog box provides the “load as” options, that’s allow the VG studio to handle
the volume file and changing the size and type of the file, as shown on the Appendix

C3

9. to change the file size and type. Select the “load as” tools, the new tab will show and

changed from the “32 in bite” to “16 un sight”, as shown on the Appendix (C.3).

10. Then from the Histogram bar bottoms to view the grey scale that represents the

acquired volume. Then minimized the window and start reducing the maximum and

minimum grey scale values of the histogram.
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11. Scroll the mouse over the redline along the right border of the histogram and move
it close to the edge of the histogram peak to the right side, as shown on the Appendix

(C.4)

12. Once the histogram grey scale is defined, then refer to the “load as” dialog box and

click “finish” then the project will now begin import. Make file and name related to the

“16-bite”, as shown on the Appendix (C.3).

13. Then hit back for the file and choose export file and should be under the 16-bite,

then choose file type is “tiff” (.tif) and save the file follow this type of the file.

Appendix C-1: Opening/Importing a Volume File.
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Appendix C-2: Select the file volume.

Appendix C-3: Changing the file size and volume under the Load file.
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Appendix C-2: The histogram grey scale border.
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Appendix D: Analysis of the Geometric Surface Deviation

After the scanning protocol is complete, the image obtained from the micro-CT scanner
is reconstructed previously for the porosity analysis into (.vff) files to be presented as a
3D volume object. This construction done by the Micro-View 3D Image Viewer and
Analysis Tools (Parallax Innovation, llderton, ON). Once the files are constructed, they
are converted to surface files (.stl) within the micro-view, to be exported to, and analyzed
with Geomagic ® Qualify (Geomagic, Morrisville, NC). All the series of steps used for
the analysis of the micro-CT data files, from the conversion of the re-constructed images
(.vff) into surfaces (.stl) to the analysis tools used within Geomagic ® Qualify described

below.

Step 1: Conversion of (.vff) to (.stl) in Micro-view:

I.  Open the(.vff) image file. The file within Micro-view, File = open - select file.
The file should contain a series of image slices which make up the volume of the
imaged object. By placing the mouse pointer rolled over the image volume and
left clicking while dragging the mouse, the orientation of the image volume can
be selected and manipulated.

[l.  Within the Micro-view program, the “Tool and Application” tab should be in the
left side of the window. Press on the “Standard ROI” icon under the tool and
application tab. That will provide a yellow region of interest (ROI) box in the
image volume of the right.

Ill.  Within the standard ROI tab, the “Box” tool and “Millimeter” unit is set as the
default options. These defaults setting may remain the same or it vary from

object to other.
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IV.  The select the region of interest from which the surface files will be created,
place the mouse and rolled over each of the walls of the yellow ROI box, and
click on the mouse wheel to extend these walls in the horizontal and vertical
directions over desired region. This is well causing a change in the ROI size and
center of (X, Y, Z) coordinates, that shown on the tab located on the left of the
program window. The “ROI size” and “ROI center” coordinates can be changed
to make fine adjustments to the region of interests.

V. Once the desired “ROI” is shown within the yellow ROI box, choose the
“Visualize” tab on the tool bar located at the top of the program window, and

choose the “Iso-surface” option.

VI.  Under the “Iso-surface properties” of the “Iso-surface” tab fill the desired image
threshold value (Note: for each sample threshold were selected through the
histogram grey scale of the image CT by choose the margin area of the three-
unit bridge and make a line crossing over the air and metal (the line should be
equal on each side) then take the median of the high and low threshold and
divided by 2 to give an average of the threshold for each sample). That required
for certain of the iso-surface. Adjust the surface quality factor to (75%) and click
the “update” icon. This will create the desired surface from the image ROI on
the right. Once the surface is deemed suitable, select the “Save Surface” option,
and save the resultant iso-surface as a (.stl) file to the desired location, as shown

on the Appendix (D.1)

Step 2: Analysis of Surface Deviation between the original 3D virtual (3UB) model and

the (3UB) dental manufactured from 3D-printing, milled and casted.
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Open the (.stl) containing the iso-surface of the (3UB) dental manufactured
model. File = open - select file

The file should appear within the “Model Manager” tab to the left of the
program window. Right click on the select the option “Set as Reference” this
will show as “REF-“appearing adjacent to the file name in the Model
Manager window.

Import the (.stl) containing the iso-surface of the original 3D virtual (3UB)
model: File = Import - Select file

Right click the imported file in the (Model Manager) tab and select the option
“Set as Test” appearing adjacent to the file name in the (Model Manager)
window.

Select the “Rectangular Icon” the 6™ icon from the top located on the vertical
toolbar at the right of the program window. Use this option to highlight the
rectangular faces of the three-unit bridge by outlining the edges of the faces
within the rectangular cursor.

Once all faces of the three-unit bridge are highlighted for “REF- “and
“TEST-“surfaces, click on the “Home” tab located at the top of the program
window, and select “Best Fit” option. By applying the best fit alignments
tool, all surfaces of the three-unit bridge will be registered.

To compare the surface deviation between the 3UB dental manufactured
sample and original 3D virtual 3UB model iso-surface, click on the “Home”

tab at the top of the program window, and select the “3D compares”. This
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will create a 3D-color plot comparing the deviation in the References and
Test surfaces, as shown on the Appendix (D.2a)

The cross section through the iso-surface, along the (X, Y, Z) planes could
also be compared, to determine the change in surface deviation through each
section. On the “Home” tab click the “Section Through Object” to select the
plane along the which analysis is desired. For the compare on the 3UB dental
manufacture model deviation through the three-plane direction (X-Y), (X-
Z), and (Y-Z) plane, as shown on the Appendix (D.2b)

To analysis the section through the object select “2D dimension” from
“Home” tab at the top of the program window, as shown on the Appendix
(D.2c). This tool allows the user to select various locations along the
references (3UB dental manufacture model) profiles to determine the vertical
and horizontal deviation of the test (original 3D virtual 3UB model) surface
relative to the references surface at the (X-Y) plane. Followed with the cross
section of the object at the (X-Z) plane and the center of the model at (Y-Z)
plane.

To determine the point from the left tab window, it will be a mode between
two point of the “REF- “and “TEST-“then selected different point and
analysis it.

After finishing all the three sectional planes comparing and analysis, then

the report it will be generated for the 3D and 2D comparison.



# MicroView - FAmicroCT files\Nelson-Mai- 3UB-CastS14 [2018-04-08 11.55.38]\Nelson-Mai-3UB-Cast514_01\Nelson-Mai-3UB-CastS14.vgi — m]
File Edit Tools Process Visualize Analyze Plugins Window Help

Wiewers

1: Nelson-Mai-3UB-CastS14.vgi > 3: Default View x

w [ ] L [ ] Z-Slice [ ]
# MicroView - F:\microCT files\Nelson-Mai-3UB-CastS14 [2018-04-09 11.55.39]\Nelson-Mai-3UB-CastS14_01\Nelson-Mai-3UB-CastS14.vgi == m}
File Edit Tools Process Visualize Analyze Plugins Window Help
T = Viewers
Tools & Apps Standard ROI 5 Isosurface - Xg, 1: Nelson-Mai-3UB-CastS14.vgi < i T4

| Isosurface Parameters

Image Threshold: 1010.165

75
Surface Quality Factor (%): 0 P o

o @ 100

Decimation Factor (%): 0

Surface Color:

[J Enable Image Smoothing

[ Clip Surface with current ROl
Surface Information

Area:

Volume:

Polygon Count:

Region Count:

Commands

Clear Save Surface

Update

-~

Appendix D-1: ROI and the Iso-surface properties.
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Appendix D-2: (a) 3D color plot, (b) Comparison between the reference and test, (c)
2D comparison
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Appendix E: Metallurgical Analysis setup using the Nikon Digital Eclipse Camera

DXM 1200 & Nikon ACT-1, Version 2-20

Starting the ACT-1 from the Start menu:
First, check that the camera is properly connected to the PC. Then, turn ON the
power to PC. Click on the Start button at the lower corner of the screen. The Start

menu appears.

. Click on Programs and select ACT-1 from the Programs List.

. The ACT-1 window will open.

Capturing Images:

Click on the Image on the command bar. Then select the scale and magnification
you want to use for the Live image (10x) Yellow lens.

Then, hit the Exposure button.

ACT-1 In Exposure Operation dialog box appears during image capture. Click on
the STOP button if you wish to stop image capture.

Saving and Loading the setting file:

1. File menu command list: Click on File in the menu bar. Then, select Setting/Save

in the File menu command list. The Save Setting File dialog box appears.

. Save Setting File dialog box: choose where to save the setting file. Click on the

down arrow button at the right side of the Save in box and select a location from
the drop-down list. Next, type in a setting filename as “JPG” file style. Then, click
on the Save button.

Loading a setting file:
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1. File menu command list: Click on File in the menu bar. Then, select Setting/Load in
the File in the File menu command list. The Load Setting File dialog box appears.

2. Load Setting File dialog box: Select where the setting file has been created and
saved. Click on the down-arrow button at the right side of the Look in box and select
the location from the drop-down list. Select the target setting file. Click on the Open

button.
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