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Abstract

The thesis presents several detection and estimation techniques that can be incor-

porated into the fifth-generation (5G) networks. First, the thesis presents a novel

system for orthogonal frequency division multiplexing (OFDM) to estimate the chan-

nel blindly. The system is based on modulating particular pairs of subcarriers using

amplitude shift keying (ASK) and phase-shift keying (PSK) adjacent in the frequency

domain, which enables the realization of a decision-directed (DD) one-shot blind chan-

nel estimator (OSBCE). The performance of the proposed estimator is evaluated in

terms of the mean squared error (MSE), where an accurate analytical expression is

derived and verified using Monte Carlo simulation under various channel conditions.

The system has also extended to exploits the channel correlation over consecutive

OFDM symbols to estimate the channel parameters blindly. Furthermore, a reli-

able and accurate approach has been introduced to evaluate the spectral efficiency

of various communications systems. The metric takes into consideration the system

dynamics, QoS requirements, and design constraints.

Next, a novel efficient receiver design for wireless communication systems that

incorporate OFDM transmission has been proposed. The proposed receiver does

not require channel estimation or equalization to perform coherent data detection.

Instead, channel estimation, equalization, and data detection are combined into a

single operation, and hence, the detector performs a direct data detector (D3). The

performance of the proposed D3 is thoroughly analyzed theoretically in terms of bit

error rate (BER), where closed-form accurate approximations are derived for several

cases of interest, and validated by Monte Carlo simulations. The computational

complexity of D3 depends on the length of the sequence to be detected. Nevertheless,

a significant complexity reduction can be achieved using the Viterbi algorithm (VA).

Finally, the thesis proposes a low-complexity algorithm for detecting anomalies

in industrial steelmaking furnaces operation. The algorithm utilizes the vibration

measurements collected from several built-in sensors to compute the temporal corre-

lation using the autocorrelation function (ACF). Furthermore, the proposed model

parameters are tuned by solving multi-objective optimization using a genetic algo-
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rithm (GA). The proposed algorithm is tested using a practical dataset provided by

an industrial steelmaking plant.

Keywords: OFDM, blind channel estimation, OSBCE, D3, spectral efficiency,

symbol error rate, mean squared error, bit error rate, Gaussian modeling, AIG,

anomaly detection
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Summary for Lay Audience

In wireless communications systems, acquiring the knowledge of channel state infor-

mation (CSI), commonly known as channel estimation (CE), and channel equalization

are two fundamental tasks that a receiver device has to perform in order to extract

the information symbols correctly. Generally speaking, the ultimate objective of de-

signing CE methods is to maximize the data transmission reliability and data rate

speed, while minimizing the complexity and processing delays. However, achieving all

such conflicting objectives into one single design is generally not possible. Therefore,

the system designer has to trade-off some of the objectives based on the availability

of the resources and user experience requirements.

In this study, we present a new method that can perform the CE process with

less data loss and power requirements as compared to conventional methods. Fur-

thermore, this technique does not impose additional computational complexity to

the existing well-known estimators and can be implemented smoothly in the current

fifth-generation (5G) of mobile networks.

Besides, the thesis proposed a second receiver for wireless networks that can sub-

stantially reduce the power and the complexity of the current receivers with the

advantage of the improved reliability. The proposed system was verified using prob-

abilistic analysis and computer simulations over several environmental conditions.

Furthermore, the thesis introduces a low-complexity algorithm for detecting anoma-

lies in industrial steelmaking furnaces operation by using vibration sensory data.

Anomalous data are usually seen as alarms or an alert flag for some problems such as

credit card fraud, health issues, and server crashes. Therefore, the anomaly detection

can be considered as an essential diagnosing tool for manufacturing that may cre-

ate many business perspectives. The proposed algorithm is tested using a practical

dataset provided by an industrial steelmaking plant.
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Chapter 1

Introduction

From healthcare to finance, commerce to transportation, and government to enter-

tainment, wireless systems are shaping the world around us. Over the past decade,

the deployment of Internet of Things (IoT) devices and connected sensors have ex-

perienced an upsurge due to the vast number of applications that rely on these tech-

nologies. Most IoT devices generate live data streams that can be used for detecting

particular phenomena or isolated systems through indirect inference. Recent reports

predict that the number of connected devices will exceed 75 billion by 2025 [1]. To

accommodate such a massive number of devices, IoT and cloud computing have be-

come key technologies that enable efficient monitoring, scalability and maintenance of

the network [2]. With the deployment of the fifth-generation (5G) wireless networks,

industrial 4.0 technologies, which are empowered by the industrial IoT (IIoT) have

enabled a range of new application such as edge computing [3, 4], smart grids [5], and

smart manufacturing [6]. IIoT allows collecting a large amount of data gathered by

various sensors to monitor the progress of the manufacturing process, and predict its

evolution [7]. Consequently, researchers from both academia and industry are devot-

ing efforts to maximize the spectral efficiency of wireless networks by optimizing the

spectrum utilization across all layers of the communications protocol stack.
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Chapter 1. Introduction
1.1. Thesis Outline

At the physical layer, acquiring the knowledge of channel state information (CSI),

commonly known as channel estimation (CE), and channel equalization are two fun-

damental tasks that a receiver has to perform before information symbols extraction

from the received signal. In the literature, CE techniques can be classified based on

their spectral efficiency, estimation accuracy, computational complexity, or the re-

quired observation window size. An efficient estimator is the one that can maximize

the accuracy and spectral efficiency while minimizing the complexity and observation

window size. However, achieving all such objectives simultaneously is not feasible.

Hence, the system designer has to trade-off between these objectives based on the

available system resources and quality of service (QoS) requirements. As a result,

CE processes have to be performed accurately to prevent any system performance

degradation, and with less signaling overhead to maximize the spectral efficiency.

In the context of smart manufacturing, anomaly detection is defined as the process

of identifying odd or rare events, or observations flagging suspicious behavior that

does not confront with the typical nature of the data in an automated manner [5].

Generally speaking, anomalous data are usually seen as alarms or an alert flag for some

problems such as credit card fraud, health issues, and server crashes. Therefore, the

anomaly detection can be considered as an essential diagnosing tool for manufacturing

that may create many business perspectives.

1.1 Thesis Outline

This thesis presents numerous detection and estimation techniques that can be incor-

porated in the 5G networks and beyond from the communication and digital signal

processing side and from the application side in an integrated article format. Chap-

ter 2 proposes a novel one-shot blind channel estimation (OSBCE) technique which

enables estimating the channel without the need to transmit dedicated pilot symbols
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at the transmission by modulating a pair of data subcarriers to the CSI. Chapter 3

presents an extension to the OSBCE by utilizing the correlation of the subcarriers

in the time domains. The results for Chapter 2 and Chapter 3 have been validated

using theoretical analysis and computer simulations. Chapter 4 presents a spectral

efficiency metric for orthogonal frequency division multiplexing (OFDM) that takes

into account several system parameters and QoS constraints. Chapter 5 present a

novel OFDM-based receiver that extracts the information directly from the FFT

outputs without the need to perform channel estimation, channel interpolation, and

channel equalization. The system has been thoroughly analyzed and validated over

several frequency selective channel models. It is worth mentioning that Chapters 2-5

are focusing on performing the estimation at the physical layer using digital signal

processing techniques to perform the channel estimation and to extract the informa-

tion bits in OFDM-bases systems such as the 5G New Radio (NR). On the other

hand, Chapter 6 presents a novel detection technique in the application side of 5G for

anomaly detection in IoT data, which is considered as one of the key applications of

5G networks. The proposed detection algorithm uses vibration IoT sensor measure-

ments based on statistical and signal processing techniques. Chapter 7 concludes the

thesis and provides some suggestions for future research directions.

1.2 Thesis Contributions

The main contributions of each chapter are listed below:

1.2.1 Contribution of Chapter 2

Chapter 2 proposes a novel OFDM-based system is based on modulating particular

pairs of subcarriers using amplitude shift keying (ASK) and phase shift keying (PSK),

which enables the realization of a decision-directed (DD) OSBCE, with complexity
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and accuracy that are comparable to pilot-based channel estimation techniques. The

performance of the proposed estimator is evaluated in terms of the mean squared

error (MSE), where an accurate analytical expression is derived and verified using

Monte Carlo simulation under various channel conditions. The obtained results show

that the MSE of the proposed OSBCE is comparable to pilot-based estimators, which

confirms the efficiency of the proposed OSBCE. The chapter main contributions are:

1. Novel blind OSBCE is introduced for OFDM that enables DD estimation with-

out the need for pilot symbols.

2. Analytical analysis for the SER at MPSK symbols, which are used as pilots for

the subsequent steps. Also, a closed-form expression for the probability density

function (PDF) of the phase error ψ`k in Rayleigh fading channels with imperfect

channel knowledge at the receiver

3. An accurate analytical expression for the MSE in DD manner has been derived.

4. The system is verified under the Long Term Evolution (LTE) downlink physical

(PHY) layer specifications and over practical frequency selective channels.

1.2.2 Contribution of Chapter 3

The chapter presents an estimator that exploits the channel correlation over consec-

utive OFDM symbols to estimate the channel parameters blindly. In the new esti-

mator, particular subcarriers re modulated using M-ary phase shift keying (MPSK),

and subcarriers with the same indices in some consecutive OFDM symbols are modu-

lated using M-ary amplitude shift keying (MASK), replacing the pilots in pilot-aided

systems. Consequently, all subcarriers are data-bearing, which leads to spectral effi-

ciency improvement. The proposed estimator uses the feature that MPSK and MASK

modulated symbols have sufficient CSI that enables them to cooperate in order to de-

tect the MPSK symbols coherently and blindly. Then, the CSI at the corresponding
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MPSK symbols can be acquired in a DD fashion. The performance of the proposed

estimator is evaluated in term of symbol error rate (SER) and mean-squared error

(MSE), where an exact analytical formula is obtained for the SER of binary phase

shift keying (BPSK) symbols in mobile radio channels with various time-varying rates.

The obtained results show that the proposed estimator produces accurate channel es-

timates as compared to pilot-aided and state-of-the-art systems without additional

complexity. The chapter’s main contributions are:

1. The chapter presents a blind channel estimation technique that utilizes the

correlation of consecutive OFDM symbols in the time domain.

2. Closed form SER analysis is present and validated for several channel mobility

conditions.

3. The system was evaluated over several channel doppler frequencies according

to the LTE downlink specifications.

4. A hybrid scheme can be adopted according to the channel conditions on to

maximize the channel estimation accuracy.

1.2.3 Contribution of Chapter 4

In the literature, the spectral efficiency is considered as a key performance indicator

that is used to classify various communications systems, algorithms, and techniques.

However, the classification is typically performed while assuming that all systems have

a static structure, and without considering the quality of service (QoS) requirements

or the constraints imposed by the system design. Therefore, this work presents a

new reliable and accurate approach to evaluate the spectral efficiency of communica-

tions systems while considering the system dynamics, QoS requirements and design

constraints. To demonstrate its effectiveness, the proposed metric is used to eval-
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uate the spectral efficiency of various blind and pilot-aided channel estimation and

synchronization algorithms. The chapter’s main contributions are:

1. The proposed system can be incorporated effectively and efficiently in practical

systems such as LTE-A standard.

2. A new fair and reliable approach has been proposed to compute and compare

the spectral efficiency of various blind and non-blind communications systems.

3. A sub-optimal solution for the bit loading problem has been considered, where

the modulation order for each subcarrier is assigned independently of all other

subcarriers based on its signal-to-noise ratio (SNR), this approach will be de-

noted as the basic allocation (BA) algorithm, and incremental allocation (IA)

algorithm. In such scenarios, the bit error rate (BER) constraint is satisfied

when the BER for each subcarrier is satisfied.

4. The new approach considers the fact that different subcarriers in OFDM systems

may be modulated using different modulation types and orders to satisfy QoS

requirements.

1.2.4 Contribution of Chapter 5

The chapter presents a novel efficient receiver design for wireless communication sys-

tems that incorporate OFDM transmission scheme. The proposed receiver does not

require channel estimation or equalization to perform coherent data detection. In-

stead, channel estimation, equalization, and data detection are combined into a single

operation, and hence, the detector performs a direct data detector (D3). The per-

formance of the proposed D3 is thoroughly analyzed theoretically in terms of BER,

where closed-form accurate approximations are derived for several cases of interest,

and validated by Monte Carlo simulations. The D3 is applied for key practical wire-

less systems such as the LTE and the NR of the 5G system. The obtained theoretical
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and simulation results demonstrate that the BER of the proposed D3 is only 3 dB

away from coherent detectors with perfect knowledge of the CSI in flat and frequency-

selective fading channels for a wide range of SNRs. If CSI is not known perfectly,

then D3 outperforms the coherent detector substantially, particularly at high SNRs

with linear interpolation. The computational complexity of D3 depends on the length

of the sequence to be detected. Nevertheless, a significant complexity reduction can

be achieved using the Viterbi algorithm. The chapter’s main contributions are:

1. Unlike conventional OFDM detectors, this chapter presents a new detector to

regenerate the information symbols directly from the received samples at the

FFT output, which is denoted as the direct data detector (D3). By imple-

menting the D3, there is no need to perform channel estimation, interpolation,

equalization, or symbol decision operations.

2. An efficient implementation using 1-D decomposition of the 2-D search space

and the implementation of Viterbi algorithm (VA) results in a substantial com-

plexity reduced as compared to conventional detectors.

3. Comprehensive complexity analysis comparison of the D3 system as compared

to the pilot-based system with linear interpolation for various modulation or-

ders.

4. The D3 performance is evaluated in terms of complexity, computational power,

BER, where analytic expressions are derived for several channel models and

system configurations. The D3 BER is compared to other widely used detec-

tors such as the maximum likelihood (ML) coherent detector with perfect and

imperfect CSI, multiple symbol differential detector (MSDD), the ML sequence

detector (MLSD) with no CSI, and the per-survivor processing detector.
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1.2.5 Contribution of Chapter 6

In this chapter, a novel low-complexity anomaly detection algorithm is designed by

exploiting the temporal signals collected from multiple sensors. The algorithm is

based on modeling the healthy processes as a Gaussian distribution, and hence, the

anomalous processes can be distinguished based on a threshold set for the Gaussian

PDF. Also, it captures the temporal data obtained by creating new autocorrelation

features. The main contributions of this chapter can be summarized as:

1. The design of a low-complexity and accurate automated anomaly detection

algorithm, based on the joint Gaussian modeling of the sensor vibration signals

from the historical data.

2. The proposed algorithm can detect temporal fluctuations of the vibration signals

by constructing new features that carry autocorrelation information. There-

fore, the algorithm is denoted as autocorrelation integrated Gaussian (AIG)

algorithm.

3. An objective and informative metrics for anomaly detection is proposed in a

time-series data that reflects a better insight into the overall performance of the

anomaly detection of temporal data.

4. Formulate and solve an optimization framework for the hyper-parameter tuning

of the proposed algorithm. The obtained results show a reliable and timely esti-

mation of the anomalous process against the true anomaly labels while keeping

the processing time complexity substantially low both in training and execution

phases.
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Chapter 2

One-Shot Blind Channel Estimation for

OFDM Systems Over Frequency Selective

Fading Channels

2.1 Preamble

1Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation

technique that received tremendous interest from the industry and academia over the

past decade. The catalyst for such interest, is the special features that OFDM has

such as spectral efficiency, immunity to multipath propagation, efficient implementa-

tion using the fast Fourier transform (FFT) pairs, and low-complexity equalization

[2]. Therefore, OFDM is currently adopted by several commercial standards, such

as the second generation digital video broadcasting-terrestrial (DVB-T2) [4], wire-

less local area networks (WLAN) IEEE 802.11 [4], Worldwide Interoperability for

Microwave Access (WiMAX) [5] and Long Term Evolution Advanced (LTE-A) [3].

Moreover, OFDM is adopted in the fifth-generation (5G) new radio (NR) wireless

1A version of this chapter has been published in [1].
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communications standard [7].

Acquiring the knowledge of channel state information (CSI), commonly known as

channel estimation (CE), and channel equalization are two fundamental tasks that

a receiver has to perform prior to information symbols extraction from the received

signal. Generally speaking, most CE techniques reported in the literature can be

classified based on their spectral efficiency, estimation accuracy, computational com-

plexity, or the required observation window size. An efficient estimator is the one that

can maximize the accuracy and spectral efficiency, while minimizing the complexity

and observation window size. However, achieving all such conflicting objectives into

one single design is generally infeasible, and hence, the system designer has to com-

promise some of these objectives based on the available system resources and quality

of service (QoS) requirements. For most practical applications, a reasonable compro-

mise can be achieved by using training symbols, where CSI is estimated at the receiver

side by modulating particular subcarriers at the transmitter side using known sym-

bols, denoted as reference or pilot symbols, and then, use such pilots for CE purposes

[8]-[6]. In LTE-A [3], comb-type pilots are deployed in a time-frequency subcarrier

grid as shown in Fig. 1a, where the pilots occupy about 4.7% of the total number of

subcarriers. The spectral efficiency can be even lower for some other systems, such

as the IEEE 802.11n, where pilot symbols constitute 7.1% of the total subcarriers.

Moreover, in communications systems that involve burst transmission, such as fre-

quency hopping and cognitive radio, the channel coefficients over consecutive OFDM

symbols can be uncorrelated, and hence, pilot symbols are needed in every OFDM

symbol, which degrades the spectral efficiency even further. Therefore, many algo-

rithms have been proposed to estimate the CSI blindly, by utilizing only the received

data symbols [24]-[26], and consequently, improve the spectral efficiency.

In the literature, blind CE is one of the widely addressed issues in wireless com-

munications [9]-[27]. However, the problem remains open because, to the best of our

15



Chapter 2. OSBCE for OFDM Systems Over Frequency Selective Channels
2.1. Preamble

Figure 2.1: Time-frequency grid of LTE-A transmission grid.

knowledge, none of the techniques reported in the literature managed to resolve the

conflicting objectives problem perfectly. For example, several blind estimators are

designed based on the assumption that all subcarriers should be modulated using a

constant modulus (CM) constellation, such as M -ary phase shift keying (MPSK) [10]-

[12]. Although such techniques do not require pilot symbols, they indirectly degrade

the spectral efficiency of the system because they prohibit using spectrally efficient

modulation schemes, such as quadrature amplitude modulation (QAM). Therefore,

it would be more factual to denote such techniques as conditionally-blind, to distin-

guish them from fully blind (FB) systems, which do not require pilot symbols and

do not have any constraints on the modulation type or order. It is worth noting that

conditionally-blind systems are different from semi-blind systems, in which the CE is

performed using both, the pilot and data symbols [25]-[27].

Computational complexity is another critical performance indicator used to com-
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pare various channel estimation techniques. Generally speaking, blind estimation

techniques have higher computational complexity than pilot-based techniques [13],

[14]. The excessive computational complexity is mainly caused by the iterative struc-

ture of such algorithms [14]-[24], or due to the requirements to perform an extensive

search over the solution space [28]. Although the complexity of the system reported

in [28] becomes comparable to pilot-based estimation at high signal-to-noise ratios

(SNRs), such condition can be frequently violated in practical scenarios.

The observation window size specifies the number of OFDM symbols required to

compute the CSI estimates. In CE techniques that require large observation window,

the channel is assumed to be fixed over the observation period [10], [11], [12], [14].

Although such assumption is acceptable for static and slow fading channels, it is not

actually the case for fast fading channels. Moreover, if the observation window size is

very large, then such assumption becomes realizable only for static channels. Chan-

nel estimators that can perform CE within one OFDM block, denoted as one-shot

estimators, usually outperform other estimators with multiple-symbols observation

window [28].

The accuracy of CE techniques is typically evaluated using mean squared error

(MSE), which is supposed to be sufficiently low to minimize the bit error rate (BER)

degradation caused by CE errors [28]. In the literature, the performance of pilot-based

CE is commonly used as a benchmark for comparison [8], [19], [28], because pilot-

based estimation techniques offer reliable estimates and their impact on the BER is

tolerable.

As it can be noted from the aforementioned discussion, pilot-based estimators

have several attractive features in terms of complexity, estimation accuracy, and ob-

servation window size. However, the spectral efficiency remains the major concern.

Practically speaking, the dominant standards such as DVB-T2 [4], WiMAX [5] and

LTE-A [3], are using pilot-based CE, which implies that systems’ designers prefer to
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Figure 2.2: Time-frequency grid of OSBCE transmission grid.

compromise the spectral efficiency, but gain the other advantages. Unlike most of

the work reported in the literature, this work presents a novel one-shot blind chan-

nel estimation (OSBCE) technique which is conditionally-blind, but only a small

fraction of the subcarriers have the modulation-type constraint, and hence, it is spec-

trally efficient. The OSBCE is based on replacing the pilot symbols in conventional

pilot-based systems with MPSK symbols, and the modulation type of the adjacent

subcarriers is limited to M -ary amplitude shift keying (MASK) modulation. Such

configuration allows detecting the MPSK symbols coherently using the partial chan-

nel information embedded in the MASK symbols. Then, the detected MPSK symbols

are used to obtain the full channel information in a decision-directed (DD) manner.

The complexity, observation window and accuracy of the OSBCE are comparable to

pilot-based estimators while the spectral efficiency of the OSBCE is higher than pilot

systems at moderate and high SNRs. The system performance is evaluated in terms

of the symbol error rate (SER) and MSE, where a closed-form formula is derived
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for the SER while the MSE can be efficiently evaluated numerically. The obtained

analytical results are confirmed using Monte Carlo simulation.

Notation: The notation used in this chapter is as follows. Uppercase boldface

letters such as H will denote N × N matrices, whereas lowercase boldface letters

such as x will denote row or column vectors with N elements. Calligraphic letters

with a hat such as Â will denote initial estimates of the variable A, while a regular

symbol with a hat such as Â will denote the final estimate of A. Blackboard symbols

with the subscript such as MQ will denote the set {0, 1, . . . ,MQ − 1} . The Euclidean

norm is denoted as ‖.‖, and the operators ‘ | ’ and ‘ | ’ will denote the conditioning

operation, interchangeably. Furthermore, E [·] denotes the expectation process, the

complex conjugate, transpose, and Hermitian transpose will be denoted as (·)∗, (·)T

and (·)H , respectively.

2.2 OFDM System and Channel Models

Consider an OFDM system withN subcarriers modulated by a sequence ofN complex

data symbols a = [A0, A1, ...., AN−1]T . The data symbols are selected uniformly

from a general constellation such as MPSK, QAM or MASK, with modulation orders

MP ,MQ and MA, respectively. In pilot-based practical OFDM systems [3], NP of the

subcarriers are reserved for pilot symbols, which can be used for channel estimation

and synchronization purposes. For the purpose of this work, we define three sets of

indices for the subcarriers, namely, the set of pilots’ indices V = {v1, v2, . . . , vNP },

the set of subcarriers’ indices adjacent to the pilots T = {t1, t2, . . . , tNP }, and the set

of indices of the remaining data symbols is denoted as U. It is worth noting that the

three sets are disjoint, V ∩ T ∩ U, and ti = vi + 1.

The modulation process can be implemented efficiently using N -point inverse FFT

(IFFT). The output of the IFFT process during the `th OFDM block is given by
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x(`) = FHa(`), where F is the normalized N × N FFT matrix, and hence, FH is

the IFFT matrix. The elements of FH are defined as Fi,k = (1/
√
N)ej2πik/N where

i and k denote the row and column indices i, k ∈ {0, 1, ..., N − 1}, respectively.

For convenience, we drop the block index notation ` in the remaining parts unless

it is necessary to include it. To eliminate inter-symbol-interference (ISI) between

consecutive OFDM symbols and maintain the subcarriers’ orthogonality in frequency-

selective multipath fading channels, a cyclic prefix (CP) of length NCP samples no

less than the channel maximum delay spread (Lh) is formed by copying the last

NCP samples of x and appending them in front of the IFFT output to compose the

OFDM symbol with a total length Nt = N + NCP samples and a duration of Tt

seconds. Then, the complex baseband OFDM symbol during the `th signaling period

x̃ is upsampled, filtered and up-converted to a radio frequency centered at fc before

transmission through the antenna.

At the receiver front-end, the received signal is down-converted to baseband and

sampled at a rate Ts = Tt/Nt. In this work, we assume that the channel is composed of

Lh+1 independent multipath components each of which has a gain hm ∼ CN
(
0, 2σ2

hm

)
and delay m × Ts, where m ∈ {0, 1,..., Lh}. The channel taps are assumed to be

constant over one OFDM symbol, but they may change over two consecutive symbols,

which corresponds to a quasi-static multipath channel [22]. Then, the received signal

after discarding the first NCP CP samples, and computing the FFT can be expressed

as

r = Ha + w (2.1)

where r ∈ CN×1,w denotes the additive white gaussian noise (AWGN) vector,

whose samples are independent and identically distributed (i.i.d.) wk ∼ CN (0, 2σ2
w),

and H denotes the channel frequency response (CFR), which is defined as

H = diag {[H0, H1, . . . , HN−1]} (2.2)
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where Hk =
∑Lh

m=0 hme
−j2πmk/N .

It is worth noting that the diagonal elements of H are highly correlated, par-

ticularly the adjacent elements where the correlation coefficient % , E
[
HkH

∗
k+1

]
is

defined as

% = E

[
Lh∑
n=0

Lh∑
m=0

hnh
∗
me

j2π
−(n−m)k+n

N

]
. (2.3)

Given that hm and hn are mutually independent ∀m 6= n, then E
[
|hn|2

]
= 2σ2

hn

and E [hnh
∗
m] |n 6=m = 0. Thus

% =

Lh∑
n=0

σ2
hn e

j2π n
N . (2.4)

The elements of the FFT output are then fed to a single-tap zero-forcing (ZF) or

minimum mean squared error (MMSE) equalizer, followed by a maximum likelihood

detector (MLD). In this work we consider the ZF equalizer, and hence, the estimated

kth symbol can be expressed as

Âk = arg min
A

(i)
k ,i∈MQ

∣∣∣∣∣ Ĥ∗k|Ĥk|2
rk − A(i)

k

∣∣∣∣∣
2

, k /∈ V (2.5)

where Ĥk is the estimated CFR at the kth subcarrier, A
(i)
k are the trial values

of the data symbols. It is worth noting that single-tap frequency-domain ZF and

MMSE equalizers offer approximately the same performance in quasi-static single-

input single-output (SISO) systems [30], [31]. However, the mathematical analysis of

the MMSE equalizer is more intractable.

In OFDM-based systems such as LTE-A, the data symbols are arranged in a time-

frequency grid as shown in Fig. 1a, and channel estimation based on such structure

is typically performed over two steps. First, initial channel estimates are obtained at

the positions of pilot symbols using least square estimation (LSE),
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Ĥk =
rk
Ak

, k ∈ V (2.6)

where the pilot symbols values are assumed to be known at the receiver side. By

noting that rk = HkAk + wk, the CFR estimates can be written as

Ĥk = Hk + qk (2.7)

where Hk ∼ CN (0, 2σ2
H) and qk ∼ CN

(
0, 2σ2

w

|Ak|2

)
.

Once the initial CFR Ĥk ∀ k ∈ V is obtained, the CFR Ĥk (`) ∀ k, ` can be

obtained as well given that the pilot grid density satisfies the two-dimensional (2-D)

sampling theorem. Then, optimal interpolation using a 2-D Wiener filter that exploits

the time and frequency correlation of the channel can be invoked at the expense

of substantial implementation complexity [32]. The complexity can be reduced by

decomposing the 2-D interpolation process into two cascaded one dimensional (1-D)

processes, and then use less computationally involved interpolation schemes [33], [34].

The channel estimation in 1-D can be obtained using various techniques such as linear

interpolation [13], parametric estimation [35], or least-square-fitting [36]. It is worth

noting that when nonlinear interpolation is invoked, the initial channel estimates at

the pilots positions Ĥk will be replaced by new estimates obtained from the fitting

polynomial, and thus Ĥk 6= Ĥk [36]. Furthermore, in the special case where Ak

belongs to CM constellation, it is sufficient to know the phase of the CFR to perform

coherent MLD, which can be expressed as

Âk = arg min
A

(i)
k , i∈MP

∣∣∣e−jθ̂k rk − A(i)
k

∣∣∣2 (2.8)

where θ̂k , arg
{
Ĥk

}
is the estimated version of θk , arg {Hk}.
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Figure 2.3: Block diagram of the proposed transmitter.
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Figure 2.4: Block diagram of the proposed receiver.

2.3 The Proposed OSBCE

For most practical channel models, as indicated in Table 2.1, it can be noted that

|%| ≈ 1 and arg {%} ≈ 0, which implies that Hk ≈ Hk+1. Therefore, the FFT output

at subcarriers k and k+1 can be written as

rk = HkAk + wk (2.9)

and

rk+1 ≈ HkAk+1 + wk+1. (2.10)

Moreover, the AWGN at high SNRs can be ignored, and hence (2.10) can be

further simplified to rk+1 ≈ HkAk+1. Consequently, by carefully choosing the mod-

ulation types for the data symbols Ak and Ak+1, the information symbol Ak can be
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Table 2.1: Correlation coefficient % for common channel models (N = 256).

Channel model Channel Profile |%| arg {%}
cost207RAx4 Rural Area (RAx), 4 taps 0.99998 0.00169
cost207TUx6 Typical Urban (TUx), 6 taps 0.99475 0.05616
cost207TUx12 Typical Urban (TUx), 12 taps 0.99556 0.07981
cost207BUx6 Bad Urban (BUx), 6 taps 0.97447 0.19145

recovered blindly without explicit knowledge of Hk. Towards this goal, consider the

case where Ak+1 is modulated using unipolar MASK, Ak+1 ∈ R+, the set of posi-

tive real numbers excluding zero, and Ak is modulated using MPSK. Consequently,

MLD of Ak requires only the knowledge of θ̂k, which can be obtained by noting that

arg {rk+1} , ϑ̂k+1 ≈ θk. Therefore, the preliminary estimate of the CFR phase ϑ̂k+1

can be used to obtain a preliminary estimate of the symbol Ak, where

Âk = arg min
A

(i)
k ,i∈MP

∣∣∣e−jϑ̂k+1 rk − A(i)
k

∣∣∣2 . (2.11)

Furthermore, because Ak+1 ∈ R+ and Ak has CM, the MLD in (2.11) can be also

implemented as

Âk = arg min
A

(i)
k ,i∈MP

∣∣∣rkr∗k+1 − A(i)
k

∣∣∣2 . (2.12)

Once Âk is obtained, we can compute Ĥk in a DD fashion as described in (3.6),

Ĥk =
rk

Âk
. (2.13)

Therefore, the proposed technique can be implemented by replacing the pilot

symbols with data symbols that have CM, and using MASK to modulate the adjacent

subcarriers, Ak+1 ∈ R+. Finally, Ĥk can be obtained from Ĥk using any technique

that is originally used in conjunction with pilot-based systems [13], [35], [36]. The

proposed channel estimator transmitter and receiver block diagrams are depicted in

Figs. 2 and 3, respectively. At the transmitter, the information bits are applied to a

channel encoder, which is an optional function, then the encoded bits are split into

24



Chapter 2. OSBCE for OFDM Systems Over Frequency Selective Channels
2.3. The Proposed OSBCE

three parallel streams each of which is modulated using the corresponding modulation

scheme. The three types of symbols are combined to form one block, and the rest of

the process is similar to conventional OFDM transmission.

As compared to other practical OFDM-based systems such as LTE-A, it can be

noted that the proposed transmitter is generally similar to such systems except that

the pilot subcarriers are replaced with MPSK information symbols and the adjacent

subcarriers are modulated using MASK as shown in Fig. 1b. It is worth noting

that pilot symbols in LTE-A are originally modulated using QPSK, however, they do

not bear information. Moreover, the symbols adjacent to the pilots can be modulated

using QPSK, 16 or 64 QAM, which does not allow extracting the channel information

directly from such modulation schemes. Therefore, MASK is used to estimate the

channel phase directly from the received symbols, and hence allow coherent detection

of the QPSK symbols in the pilots locations.

The MASK modulated symbols Ak+1 can be designed such that the average power

is normalized to unity, Ps = 1
MA

∑MA−1
i=0

(
A

(i)
k+1

)2

= 1. Assuming equally spaced

amplitudes, the amplitude spacing δ , A
(i+1)
k+1 − A

(i)
k+1 [24] can be written as

A
(i)
k+1 = (i+ 1)× δ, i ∈ {0, 1, . . . , MA − 1} (2.14)

where,

δ =

√
6

(2MA + 1)(MA + 1)
. (2.15)

For all other subcarriers other than the pilots’ and their adjacent subcarriers, the

modulation type and order can be chosen arbitrarily. Moreover, although the OSBCE

is applied to LTE-A, it can be applied to other OFDM-based systems where the fre-

quency spacing ∆F and time spacing ∆T can be changed based on the corresponding

system specifications.

As it can be noted from the system description, the computational complexity
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of the OSBCE is equivalent to LSE using pilots. Particularly, when considering

that Âk = Âk, which is mainly the case because for most interpolation techniques

Ĥk ≈ Ĥk. In the case that a new detection is applied after the estimation of Ĥ,

then the only additional complexity, as compared to pilot systems, is NP complex

multiplications and MLD detections applied to the NP MPSK symbols. Therefore,

the proposed OSBCE complexity is generally low, and it is equivalent to pilot-based

channel estimators.

2.4 Symbol Error Rate (SER) Analysis

Because the OSBCE operates as a DD estimator, its MSE depends on the initial

SER, Pr
(
Âk 6= Ak

)
. Therefore, this section is dedicated to the derivation of the

initial SER, then the MSE derivation is presented in the next section.

As it can be noted from (3.11), eliminating the fading channel effect using the

product rkr
∗
k+1 is equivalent to conventional equalization of MPSK symbols, which is

independent of the CFR magnitude |Hk|. However, the equalized samples can be also

written as rk/rk+1 , Sk, where

Sk =
HkAk + wk

Hk+1Ak+1 + wk+1

=
Ak |Hk| ej(θk−ϑ̂k+1) + |wk| ej(arg(wk)−ϑ̂k+1)

|Hk+1Ak+1 + wk+1|
=

1

|rk+1|
(
|Hk| ejψk Ak + ẃk

)
(2.16)

where ψk = θk − ϑ̂k+1, ẃk = |wk| ej(arg(wk)−ϑ̂k+1) is a zero-mean complex Gaussian

random variable whose variance is the same as that of wk. Therefore, the equalized

sample Sk in (2.16) has the form of MPSK symbol equalized using imperfect channel

estimate. However, the conditional BER of BPSK and QPSK modulations in fading

channels with imperfect knowledge of the CFR parameters can be expressed as [26,
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10.14a]

PB,k| [ψk, αk] = Q

(
αk
σw

cos(ψk)

)
(2.17)

and

PB,k| [ψk, αk] =
1

2
Q

(
αk√
2σw

[cos(ψk)− sin(ψk)]

)
+

1

2
Q

(
αk√
2σw

[cos(ψk) + sin(ψk)]

)
(2.18)

where αk = |Hk| is the fading envelope of the kth subcarrier, andQ(x) , 1/
√

2π
∫∞
x
e−t

2/2dt.

Consequently, the conditioning on αk and ψk can be eliminated by averaging (3.20)

and (2.18) over the joint probability density function (PDF) P (ψk, αk). To simplify

the solution, we initially assume that the MASK symbol Ak+1 is fixed, and hence, the

conditional BER can be computed as

PB,k =

∫ ∞
0

∫ π

−π
PB,k| [ψk, αk] P (αk, ψk) dψk dαk. (2.19)

AlthoughAk+1 is not written explicitly in (3.20), (2.18) and the joint PDF P (αk, ψk),

it is actually included in the conditioning on ψk, because ψk = θk−arg {Hk+1Ak+1 + wk+1}.

The joint PDF P (αk, ψk) can be obtained by following the approach reported in

[28], where rk and rk+1 are expressed as

rk = HkAk + wk, Hk , x1 + jx2 = αke
jθk (2.20)

rk+1 = Hk+1Ak+1 + wk+1 , x3 + jx4 = βke
jϑ̂k . (2.21)

The random variables {x1, x2, x3, x4} are all zero-mean Gaussian random vari-

ables, where x1 and x2 are independent, x3 and x4 are independent as well, thus

E [x1x2] = E [x3x4] = 0. Therefore, the joint PDF P (x1, x2, x3, x4) can be described
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by

P (x1, x2, x3, x4) =
1

4π2(σ2
1σ

2
2 − µ2

1 − µ2
2)

× exp

[
−σ

2
2(x2

1 + x2
2) + σ2

1(x2
3 + x2

4)− 2µ1(x1x3 + x2x4)− 2µ2(x1x4 − x2x3)

2(σ2
1σ

2
2 − µ2

1 − µ2
2)

]
.

(2.22)

where σ1, σ2, µ1, and µ2 are given by [35]

σ2
1 , E

[
x2

1

]
= E

[
x2

2

]
=

1

2
E
[
|Hk|2

]
= σ2

H (2.23)

σ2
2 , E

[
x2

3

]
= E

[
x2

4

]
=

1

2
E
[
|rk+1|2

]
=

1

2
E
[
|Hk+1Ak+1 + wk+1|2

]
= σ2

H |Ak+1|2 + σ2
w (2.24)

µ1 + j µ2 ,
1

2
{E [(rk+1)H∗k ]}

= Ak+1

Lh∑
n=0

σ2
hn cos

(
2π

n

N

)
+jAk+1

Lh∑
n=0

σ2
hn sin

(
2π

n

N

)
. (2.25)

By making the transformation from rectangular (x1, x2, x3, x4) to polar coordi-

nates (αk, βk, θk, ϑ̂k), and applying the following change of variables

x1 = αk cos(θk), x2 = αk sin(θk)

x3 = βk cos(ϑ̂k), x4 = βk sin(ϑ̂k), ψk = θk − ϑ̂k (2.26)
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the following joint PDF can be obtained

P (αk, ψk) =

∫ ∞
0

αkβk
2πσ2

1σ
2
2(1− ρ2)

exp

{
− 1

2(1− ρ2)

×
[
α2
k

σ2
1

+
β2
k

σ2
2

− 2
αkβk
σ1σ2

(ρ1 cos(ψk)− ρ2 sin(ψk))

]}
dβk (2.27)

where the correlation coefficients are defined by

ρ1 ,
µ1

σ1σ2

, ρ2 ,
µ2

σ1σ2

, ρ ,
√
ρ2

1 + ρ2
2. (2.28)

Substituting (3.20), (2.18) and (3.15) into (2.19), and using the integral identity

established in [28, Appendix B], we get the closed-form BER conditioned on Ak+1 for

BPSK as

PB,k =
1

2

1− ρ1√
1 + 1

SNR
− ρ2

2

 (2.29)

and for QPSK

PB,k =
1

2

1− 1

2

ρ1 + ρ2√
2 + 1

SNR
− (ρ1 − ρ2)2

+
ρ1 − ρ2√

2 + 1
SNR
− (ρ1 + ρ2)2

 (2.30)

It is worth noting that the SNR per bit γb is defined as

γb ,
E [|HkAk|2]

log2 (MP ) E [|wk|2]

=
Ps
σ2
w

σ2
1

log2 (MP )

=
SNR

log2 (MP )
. (2.31)

Given that the average symbol power Ps = E [|Ak|2] = 1, the SNR per bit γb can

be written as
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γb ,
σ2

1

log2 (MP ) σ2
w

. (2.32)

The parameters σ2, µ1 and µ2 are functions of the MASK symbol Ak+1, and hence

the average unconditioned BER can be obtained by averaging (3.22) and (2.30) over

all possible values of Ak+1. Since A
(i)
k+1 are equally probable, the average P̄B,k becomes,

P̄B,k =
1

MA

MA−1∑
i=0

(
PB,k|A(i)

k+1

)
. (2.33)

Moreover, assuming Gray coding, the SER for QPSK is given by [39, 8.7]

P̄S,k = 2P̄B,k. (2.34)

2.5 Mean Squared Error (MSE) Analysis

The MSE of the initial CFR estimate Ĥk is given by

MSE(Ĥk) = E
[∣∣∣Ĥk −Hk

∣∣∣ 2
]

(2.35)

where

Ĥk =
rk

Âk
= Hk

Ak

Âk
+
wk

Âk
. (2.36)

To simplify the notations, MSE(Ĥk) is written as MSE, unless it is necessary to

write the full expression. Substituting (2.36) into (2.35) gives

MSE = E

[∣∣∣∣Hk
Ak

Âk
+
wk

Âk
−Hk

∣∣∣∣2
]
. (2.37)

Because Âk may take one of two states, the law of total probability can be used

to decompose the MSE as the sum of two conditional scenarios

MSE = (MSE|DC) Pr (DC) + (MSE|DI) Pr (DI) (2.38)

30



Chapter 2. OSBCE for OFDM Systems Over Frequency Selective Channels
2.5. Mean Squared Error (MSE) Analysis

where the events of correct and incorrect decisions are denoted by DC and DI ,

respectively, and Pr (DI) = Pr
(
Âk 6= Ak

)
= PS,k and Pr (DC) = Pr

(
Âk = Ak

)
=

PC,k = 1−PS,k. To simplify the presentation, the two conditional cases are presented

into the following two subsections.

2.5.1 MSE
(
Ĥk|DC

)
For the case of Âk = Ak, the conditional initial channel estimate can be expressed as

Ĥk|DC = Hk|DC +
wk|DC
Ak

. (2.39)

Therefore, the conditional MSE can be computed as

MSE|DC = E

[∣∣∣(Ĥk |DC

)
− (Hk |DC)

∣∣∣2] . (2.40)

It is worth noting that the conditioning on the right hand side of (2.40) is necessary

due to the correlation between the estimated MPSK symbol Âk, Hk and the AWGN

samples wk, which is due to the fact that the event Âk = Ak is generally realized at

high Hk values and low wk values. Therefore, substituting (2.39) in (2.40) gives

MSE|DC = E

[∣∣∣∣wk | DC

Ak

∣∣∣∣2
]
. (2.41)

The result in (2.41) is expected because the process is generally similar to the

conventional LSE. However, wk|DC is a sampled version of wk because the condi-

tioning process on DC eliminates most of the high power noise samples, and hence,

E
[
|wk |DC |2

]
6= E

[
|wk|2

]
. Fig. 4 shows the AWGN variance conditioned on DC

versus SNR as compared to the unconditional AWGN. The channel is modeled as

a typical urban (TUx) multipath channel [45], which is described in Section 5.7. It

can be noticed from the figure that E
[
|wk |DC |2

]
< E

[
|wk|2

]
at low SNRs, and they

converge for SNR & 10 dB. Such behavior is due to the fact that the effect of noise

sampling disappears at high SNRs because the channel fading is the dominant pa-
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rameter that determines the outcome of the detection process. Therefore, it can be

assumed without sacrificing the accuracy that

MSE|DC = E

[∣∣∣∣wk |DC

Ak

∣∣∣∣2
]

≈ E

[∣∣∣∣wkAk
∣∣∣∣2
]

=
1

SNR
. (2.42)

2.5.2 MSE
(
Ĥk|DI

)
For the case where Âk 6= Ak, the MSE can be obtained by substituting

Ĥk|DI = (Hk|DI)
Ak

Âk
+
wk|DI

Âk
(2.43)

in (2.35), which gives

MSE|DI = E

[∣∣∣∣(Hk |DI)
Ak

Âk
+
wk|DI

Âk
− (Hk |DI)

∣∣∣∣2
]
. (2.44)

By assuming that all transmitted symbols are equiprobable [42], we assume, with-

out loss of generality, that the MPSK symbol A
(0)
k = ejπ/MP is transmitted, and

hence, Âk = ejπ(2i+1)/MP , i ∈ {1, 2, . . . ,MP − 1}. By defining ϕk , arg
{
A

(0)
k /Âk

}
,

then (2.44), after some straightforward manipulations becomes

MSE|DI = E

[∣∣∣∣wk |DI

Âk

∣∣∣∣2
]

+ 2E
[
|Hk|2 |DI

]
(1− E [cos(ϕk)|DI ]) . (2.45)

Contrary to the DC case, the conditional noise variance E
{
|wk |DI |2

}
is slightly

higher than the unconditional noise variance E
[
|wk|2

]
at low SNRs, then the differ-

ence disappears for SNR & 40 dB as shown in Fig. 4. Therefore, E
[
|wk |DI |2

]
≈

E
[
|wk|2

]
= 1

SNR
. Similar to the AWGN case, the incorrect decision event DI and
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the CFR Hk are correlated as well. Since most error events occur in deep fading

conditions, then E [α2
k|DI ] � E [α2

k]. Therefore, to evaluate MSE|DI in (2.45), the

terms E [cos(ϕk)|DI ] and E [α2
k|DI ] should be evaluated first.

� E [cos(ϕk)|DI ] :

Because ϕk is a discrete random variable, the conditional expectation can be expressed

as

E [cos(ϕk)|DI ] =
∑
ϕk

Pr (ϕk|DI) cos(ϕk) (2.46)

where ϕk = −2πi
MP

, i ∈ {1, 2, . . . , MP − 1}. For example, Pr
(
ϕk = −2π

MP

)
= Pr

(
Âk = A

(1)
k

)
.

Recalling Bayes’ theorem with mixed distributions, the conditional probability Pr (ϕk|DI)

can be evaluated as

Pr (ϕk|DI) =
1

Pr (DI)
Pr (DI |ϕk) Pr (ϕk) . (2.47)

By noting the definition of ϕk and the fact that the transmitted symbol is A
(0)
k ,

then Pr (DI |ϕk) = 1, and hence,

Pr (ϕk|DI) =
1

PS,k
Pr (ϕk) (2.48)

where

Pr (ϕk) =

∫ 2π(i+1)
MP

2πi
MP

P (Θk)dΘk, i ∈ {1, 2, ...,MP − 1} (2.49)

and

Θk = arg
{
r∗k+1rk

}
. (2.50)

However, at high SNRs Θk ≈ arg{Ak} + ψk, and since it is assumed that Ak =

A
(0)
k = ejπ/MP , then arg{Ak} = π/MP . Therefore (2.49) can be expressed as
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Pr (ϕk) =

∫ π(2i+1)
MP

π(2i−1)
MP

P (ψk)dψk, i ∈ {1, 2, ...,MP − 1} (2.51)

where P (ψk), which can be obtained from (3.15),

P (ψk) =

∫ ∞
0

P (αk, ψk) dβk dαk

=
1− ρ2

2π [1− ζ2
k ]

3
2

ζk arctan

(
ζk√

1− ζ2
k

)
+ 2
√

1− ζ2
k + πζk (2.52)

and ζk = ρ1 cos(ψk) + ρ2 sin(ψk). Finally, Pr (ϕk|DI) is given by

Pr (ϕk|DI) =
1

PS,k

∫ π(2i+1)
MP

π(2i−1)
MP

P (ψk)dψk. (2.53)

To the best of our knowledge, the integral in (2.53) has no closed form expression,

and hence, it will be evaluated numerically.

� E [α2
k|DI ] :

The conditional variance of Hk can be computed as

E
[
α2
k|DI

]
=

∫ ∞
0

α2
kP (αk|DI)dαk (2.54)

Using Bayes’ rule with mixed distributions, the conditional PDF P (αk|DI) can

be evaluated as

P (αk|DI) =
Pr(DI |αk)P (αk)

Pr(DI)

=
(PS,k|αk)P (αk)

PS,k
. (2.55)

By noting that the PS,k = PB,k for the BPSK and using (2.34) for QPSK, then

P (αk|DI) which is given by (2.55) can be simplified to
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P (αk|DI) =
log2 (MP )

PS,k
(PB,k|αk)P (αk). (2.56)

Using the joint PDF P (αk, ψk) in (3.15), and the conditional BER for BPSK (3.20)

or QPSK (2.18), then E [(α2
k|DI)] can be computed as depicted in (2.57),

E
[
α2
k|DI

]
=

log2(MP )

PS,k

∫ ∞
0

∫ ∞
0

∫ π

−π
α2
k (PB,k|ψk, αk) P (αk, βk, ψk)dψk dβk dαk

(2.57)

It is worth mentioning that evaluating the expression in (2.57) analytically is

intractable. However, the expression in (2.57) can be computed numerically. Finally,

the MSE(Ĥk) can be written as

MSE(Ĥk) = (MSE|DC)PC,k + (MSE|DI)PS,k

=
1

SNR
+ 2PS,kE

[
α2
k|DI

]
(1− E [cos(ϕk)|DI ]) . (2.58)

By noting that most of the terms in (2.58) are dependent on Ak+1, then the

unconditional MSE can be expressed as

MSE(Ĥk) =
1

MA

MA−1∑
i=0

(
MSE(Ĥk) | A(i)

k+1

)
. (2.59)

Moreover, by noting that E [α2
k|DI ] ≤ 2σ2

H , and noting that −1 ≤ cos (ϕk) ≤ 1,

and hence an upper and lower bounds can be expressed as

1

SNR
≤ MSE ≤ 1

SNR
+ 8σ2

HP̄S,k. (2.60)

2.6 Spectral Efficiency

In this section, the spectral efficiency of the OSBCE is evaluated in terms of the

throughput, which is defined as the average number of information bits per subcarrier.

In the most general case, each subcarrier in an OFDM grid can be modulated using
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a certain modulation scheme with a particular modulation order. Therefore, the

average number of information bits over one OFDM grid can be expressed as

η =
1

NT ×NF

NT−1∑
`=0

NF−1∑
k=0

log2 [M (`, k)] . (2.61)

where M (`, k) is the modulation order at a given location (`, k), NT and NF are

the time and frequency dimensions of the OFDM grid, respectively. Fig. 1a shows

an example where NT = 14 and NF = 12.

In practical systems, the value of M (`, k) is dynamically selected based on the

system QoS requirements, the system resources, modulation order constrains, and the

channel state information (CSI) [27]. Without loss of generality, consider the case

where the values of M (`, k) can be selected dynamically with the aim of maximiz-

ing the throughput of a particular system under BER, and modulation type/order

constraints. Therefore, the problem can be formulated as

max
M(`,k)∈M

1

NT ×NF

NT−1∑
`=0

NF−1∑
k=0

log2 [M (`, k)] (2.62a)

Subject to:

P̄B ≤ Pth (2.62b)

where M is the set of all possible modulation orders, and (4.6c) is used to guarantee

that the average BER P̄B is less than a prescribed threshold Pth,

P̄B =

∑NT−1
`=0

∑NF−1
k=0 log2 (M (`, k))PB (γ`,k |M,T )∑NT−1
`=0

∑NF−1
k=0 log2 (M (`, k))

≤ Pth (2.63)

where PB (γ`,k |M,T ) is the instantaneous BER for a given value of M and modu-

lation type T , and the instantaneous SNR is denoted by γ`,k = |Ak,`|2 · |Hk,`|2 / (2σ2
w).

Assuming that the possible modulation types are QAM, MPSK and MASK, then

PB
(
γ`,k |MQ, QAM

)
and PB (γ`,k |MP , MPSK) are given in [35], while PB (γ`,k |MA, MASK)

under the Gray coding assumption is given by
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PB (γ`,k |MA, MASK) =
2 (MA − 1)

MA log2 (MA)
Q

(√
3 γk,`

4M2
A + 6MA + 2

)
. (2.64)

It is worth noting that PB for the considered modulation schemes is computed

while assuming perfect knowledge of the instantaneous SNRs γ`,k. Therefore, the

obtained throughput in (2.62) can be considered an upper bound because channel

estimation errors may degrade the SNRs, and hence, reduce the throughput for all

the considered techniques.

For a fair comparison between various systems, the power efficiency should be

also taken into consideration. Therefore, the power per information subcarrier in

the blind system PSC,blind should be equal to that in the pilot-based system PSC,pilot.

Consequently,

PSC,blind =
NF ×NT

NF ×NT −NP,RB

PSC,pilot (2.65)

where NP,RB is the number of pilot subcarriers per OFDM grid. However, since the

MASK symbols in the OSBCE are the most sensitive symbols to noise, the additional

power is allocated to them. Consequently, the power of each subcarrier with MASK

modulation will be assigned an additional 3 dB gain.

2.7 Numerical Results

The performance of the proposed OSBCE is evaluated over quasi-static flat and

frequency-selective multipath fading channels, where the channel remains fixed over

one transmission frame that consists of 7 OFDM symbols, but may vary randomly

over consecutive frames. The proposed estimator is compared to pilot-based OFDM

systems with the LTE transmission grid shown in Fig. 2.1. The performance of the

proposed estimator is evaluated in terms of SER and MSE.
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Figure 2.5: Conditional AWGN variance in the case of correct and incorrect decisions
compared to the unconditional variance of AWGN for the TUx channel, MP = 4, MA = 4.

The OFDM system considered follows the LTE downlink physical layer specifica-

tions [3] where the sampling frequency is 3.836 MHz, N = 256 subcarriers, NCP = 18

samples, subcarrier spacing is 15 kHz, total OFDM symbol period is 71.3 µ sec, and

CP period is 4.69 µ sec. Two channel models are used, the flat fading and the TUx

multipath fading model [45], which consists of 9 taps with normalized delays of [0,

1, . . ., 8] samples, and the average taps’ gains 2σ2
hn

, n = [0, 1, . . ., 8] are [0.269,

0.174, 0.289, 0.117, 0.023, 0.058, 0.036, 0.026, 0.008]. In each simulation run, 30×104

OFDM symbols are processed.

The PDF of the phase error ψk over the TUx and flat channels is given in Figs.

2.6 and 2.7, respectively, for SNR = 10, 20 and 30 dB given that Ak+1 = 1. As

expected, the figures show that the phase-error variance (σ2
ψ) decreases as SNR in-

creases, which implies that the channel estimates can be improved by increasing SNR.

However for the TUx channel, Fig. 2.6 shows that the phase error is biased where

E [ψk] = arg {%} 6= 0. Such bias is due to the fact that θk 6= θk+1 in frequency-selective
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Figure 2.6: P (ψ) for different values of SNR over the TUx channel where Ak+1 = 1, MP = 4,
and MA = 4.

channels, and hence, the multiplication process of rkr
∗
k+1 is equivalent to equalization

with biased channel estimates, which causes SER error floors at high SNRs. More-

over, the figures show that σ2
ψ for the TUx channel is larger than that of the flat

fading channel because the instantaneous difference between θk and θk+1 is random,

and hence contributes to σ2
ψ. The figures also show the perfect match between the

analytical and simulation results.

Fig. 2.8 shows P (ψk) for different values of Ak+1 at SNR = 20 dB. It can be

noted that ψk is dependent on Ak+1 where the variance decreases for high values of

Ak+1. Such results imply that minimizing ψk can be obtained by maximizing Ak+1.

However, since the possible values of Ak+1 will affect PS,k+1, then the optimal MASK

amplitudes should be selected such that

ak+1 = arg min
ak+1∈R+

N−1∑
i=0

PS,i (2.66)
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Figure 2.7: P (ψ) for different values of SNR over a flat fading channel where Ak+1 = 1,
MP = 4, and MA = 4.

where ak+1 =
[
A

(0)
k+1, A

(1)
k+1, ..., A

(MA−1)
k+1

]
and 1

MA

∑MA−1
i=0

(
A

(i)
k+1

)2

= 1. However,

solving such multi-objective optimization problem is computationally expensive, and

hence we consider the equally spaced amplitudes for the purposes of this work.

The initial theoretical and simulated SER, Pr(Âk 6= Ak) ∀ k ∈ V, of the MPSK

symbols detected using (3.11) is depicted in Fig. 2.9. The results are presented for

BPSK and QPSK using MA = 4, 8 and 16, over the TUx and flat fading channels. The

figure shows that the theoretical and simulation results match very well. However, a

little difference can be observed for the QPSK case due to the approximation made

in (2.18) [26], and the Gray coding assumption. Moreover, the impact of the channel

frequency selectivity is observed only at high SNRs where an error floor starts to

appear at SNR & 25 dB.

Fig. 2.10 shows the impact of increasing the modulation order MA, as well as

the effect of the frequency selectivity of the channel on the initial SER, Pr(Âk 6= Ak)
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Figure 2.8: P (ψ) for different values of Ak+1 over the TUx channel, SNR = 20 dB, MP = 4,
MA = 4.

∀ k ∈ V. The figure shows that SER increases by increasing MA which can be justified

by noting that for MA1 < MA2 , A
(i)
k+1|MA1 > A

(i)
k+1|MA2 ∀ i ≤ min {MA1 ,MA2}. In

other words, increasing MA will introduce more amplitudes with small values, which

is equivalent to equalization using less reliable channel estimates. The figure also

shows that at high SNRs, the impact of changing MA vanishes for the TUx channel,

because SER is determined by the frequency selectivity of the channel, which caused

the bias of ψk. The flat channel kept at the same trends since SER will always be the

dominant factor. Nevertheless, the initial SER remains sufficiently low to produce

reliable channel estimates.

Fig. 2.11 shows the conditional variance of the CFR for MA = 4, and for MP = 2

and 4. As it can be noted from the figure, the difference between the conditional

and unconditional variances is substantial, and it is inversely proportional to A
(i)
k+1,

which is due to the fact that higher values of A
(i)
k+1 are more immune to fading, i.e.,
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Figure 2.9: Initial theoretical and simulated average SER Pr(Âk 6= Ak) ∀ k ∈ V over the
TUx and flat channels.

making an incorrect decision requires lower values of αk. The results in the figure

confirm the accuracy of the derived analytical expressions, however, the simulation

results for the BPSK show better match because they are exact, while the QPSK

results demonstrate some deviation due to the Gray coding approximation.

Fig. 2.12 presents the theoretical and simulated MSE versus SNR for BSK and

QPSK respectively. As it can be noted from the figure, the analytical and simulation

results match almost perfectly for SNR & 10 dB. However, the theoretical MSE

of the QPSK slightly deviates from the simulation results at low SNRs due to the

approximations made. Nevertheless, the results confirm the efficiency of the OSBCE

because its MSE is comparable to pilot-based LSE for a wide range of SNRs, which

is the lower bound for the MSE of the OSBCE. At very high SNRs, the MSE starts

to diverge again from the lower bound because PS,k suffers from an error floor at such

SNRs. However, the MSE at such high SNRs is much less than what is required to
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Figure 2.10: Initial theoretical and simulated average SER Pr(Âk 6= Ak) ∀ k ∈ V over the
TUx and flat channels for different values of MA, and MP = 4.

provide BERs close to those with perfect knowledge of CSI. Although the derived

upper bound is loose, it is useful to get a general idea about the system MSE with

minimum effort.

Fig. 2.13 presents the final SER, Pr(Âk 6= Ak), of the OSBCE for two different

groups of subcarriers. In one case P̄S,k is computed for all subcarriers, and in the other

case, P̄S,k is computed for subcarriers with index k ∈ U, i.e., all subcarriers except the

MPSK data symbols at pilot locations and the adjacent MASK symbols. In all cases,

the final channel estimates [Ĥ0, Ĥ1, . . . , ĤN−1] are obtained using spline interpolation

of the initial channel estimates Ĥk ∀k ∈ V. The SER results are compared to pilot-

based systems where the initial channel estimates are obtained using LSE, and the

final estimates are obtained using spline interpolation. For all OSBCE cases, the

MASK modulation order MA = 4, and the SNRs per information bit γb for all systems

are identical. As it can be noticed from the figure, the SER of the OSBCE where
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Figure 2.12: MSE of the initial channel estimate Ĥk, MP = 2 and 4, MA = 4.
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Figure 2.13: Overall system SER, Pr(Âk 6= Ak), using spline interpolation for different MQ

values, MP = 4 and MA = 4.

k ∈ U is about 3 dB worse than the pilot-based system at moderate SNR values for

MQ = 4 and 16. The difference increases at high SNRs due to the SER floors of the

MASK modulation. For the SER of all subcarriers case, it can be noted that the

SER when MQ = 4 experiences an additional increase, which is due to the difference

between the SER for MASK and QAM when MA = MQ. For the case of MA = 4

and MQ = 16, it can be noticed that the SER for ∀k and k ∈ U is almost identical,

which implies that the average joint SER of the 4-PSK and 4-ASK pairs is similar to

the 16-QAM [43]. Therefore, under SER constraints, the OSBCE spectral efficiency

could be less than the FB system.

Fig. 2.14 presents the block error rate (BLER) of the OSBCE and pilot-based

systems using turbo coding [3]. The block length is 160 bits, and the channel inter-

leaver is modeled as 512×512 random interleaver. As it can be noted from the figure,

the BLER of the OSBCE is comparable to the pilot based system where the coding
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gain difference is less than 0.5 dB.

Fig. 2.15 presents the MSE of the OSBCE and the subspace estimator reported in

[44]. Because the estimation process in [44] yields the channel impulse response, the

channel impulse response using the OSBCE are obtained by interpolating the initial

channel estimates, and then computing the IFFT. The results are obtained based

on the system and channel models used in [44]. As it can be noted from the figure,

the proposed OSBCE significantly outperforms the subspace estimator for the entire

range of SNRs. Moreover, it is worth noting that the observation window in [44] is

N/NCP OFDM symbols, while it is only one OFDM symbol for the OSBCE.

The average throughput of the OSBCE, CM, pilot and FB system is shown in

Fig. 2.16, where the FB system is used as an upper limit to compare the spectral

efficiency of the considered systems. The modulation order for all the considered

systems varies from 1 ≤ M (`, k) ≤ 64, where the Incremental Allocation Algorithm

[36] is used to solve the optimization problem in (2.62). For the pilot-based system,
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the distribution of the data and pilot subcarriers follows the LTE-A transmission

grid as in Fig. 2.1. As it can be noted from Fig. 2.16, the throughput for all the

considered systems is approximately equal for low SNR values, namely for SNR . 10

dB. In the moderate SNR range, 10 . SNR . 25 dB, it can be noted that the OSBCE

and the pilot-based system provide equivalent throughput while the CM throughput

is well below the OSBCE and pilot-based systems. At high SNRs, the OSBCE and

CM throughput approaches the FB system while the pilot-based saturates at 5.71

bit/subcarrier. Therefore, the OSBCE outperforms the pilot-based and CM for a

wide range of SNRs.

It is worth noting that various approaches have been considered in the literature

to provide the transmitter with the instantaneous SNRs that are required for applica-

tions such as bit loading, beamforming and precoding. Examples for such approaches

are channel feedback [46], channel sounding [47] and channel reciprocity [48]. In

channel feedback techniques, the channel estimates are obtained at the receiver side,

and then fed back to the transmitter. On the contrary, channel sounding and channel

reciprocity techniques do not rely on the receiver because the transmitter directly

estimates the channel coefficients. Therefore, the optimization processes performed

at the transmitter become independent of the channel estimation accuracy at the

receiver side if one of the last two techniques is incorporated.

2.8 Chapter Summary

In this work, a novel blind channel estimator was introduced for OFDM systems

with single transmit antenna based on a hybrid OFDM symbol structure, where

pilot subcarriers in conventional OFDM systems are replaced by MPSK symbols, and

the adjacent subcarriers are modulated using MASK. Therefore, the MASK symbol

can be considered equivalent to the channel frequency response with respect to the
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MPSK symbol, and hence, the MPSK symbol can be immediately detected, and then

used to estimate the channel in a DD manner. The chapter also showed that the

proposed OSBCE can be incorporated effectively and efficiently in practical systems

such as LTE-A standard. The proposed estimator requires one OFDM symbol to

estimate the CFR, which makes it suitable for mobile channels, where the channel

frequently varies in the time domain. Monte Carlo simulation was used to verify

the analytical results, which also confirmed that the OSBCE can produce reliable

channel estimates as compared to pilot-based systems, with similar complexity, but

with improved spectral efficiency. In future work, the proposed technique will be

extended to the multiple transmit antenna case.
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Chapter 3

Blind Channel Estimation using

Cooperative Subcarriers for OFDM

Systems

3.1 Introduction

1 Estimation of channel state information (CSI) and equalization are among the

primary operations at the receiver side to perform coherent information detection.

Consequently, CSI estimation has to be performed accurately to avoid bit error rate

(BER) degradation [2]. In the literature, numerous techniques have been proposed

to obtain the CSI information accurately and effectively. However, pilot-aided CSI

estimation remains the dominant approach in most industrial standards [2]-[7]. The

density and distribution of pilot symbols depend on the channel conditions such as

frequency selectivity and time variation of the channel [3]. For example, the pilot

symbols in LTE-A [3] are distributed in comb-type arrangement in time-frequency

subcarrier grid, where the pilots utilize 4.7% of the system bandwidth. The bandwidth

1A version of this chapter has been published in [1].
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efficiency becomes even lower in systems where pilots are inserted in every OFDM

block [9]. Therefore, blind channel estimation techniques have been considered widely

in the literature [10]-[17] to avoid the spectral losses caused by the pilots. Despite the

claimed spectral efficiency of blind algorithms, a significant number of blind estimators

impose constraints on the modulation type [15]-[17], and hence, degrades the spectral

efficiency indirectly. Moreover, computational complexity is another major concern

for blind estimators [7], [14]. The additional computational complexity is generally

due to the iterative nature of most blind algorithms [14], or because some estimators

have to perform an exhaustive search over the solution space [28], which makes a

wide range of blind estimators computationally prohibitive. Moreover, it is worth

noting that obtaining accurate CSI is crucial for upper layers system adaptation and

dynamic resource allocation operations, which can play a significant role in enhancing

the spectral efficiency [18]-[20].

More recently, Saci et al. [21] proposed a low complexity blind channel estimator

for OFDM-based communication systems, denoted as one-shot blind channel esti-

mator (OSBCE). The proposed estimator exploits the channel correlation between

adjacent subcarriers to estimate the CSI blindly. However, the performance of the

OSBCE is mostly determined by the frequency selectivity of the channel. In this

work, we propose a novel blind channel estimation technique by modifying the frame

structure of the OSBCE. In the proposed scheme, the pilot symbols are replaced

with M -ary phase shift keying (MPSK) symbols, and the subcarriers with the same

subcarriers’ indices in consecutive OFDM symbols are modulated using M -ary am-

plitude shift keying (MASK). The remaining subcarriers can be modulated using any

efficient modulation scheme such as quadrature amplitude modulation (QAM). The

analytical and simulation results show that the proposed estimator provides accurate

channel estimates in channels with sever frequency selectivity.The performance of the

proposed estimator is evaluated using the symbol error rate (SER), where an exact
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closed-form formula is obtained. Moreover, the mean-squared error (MSE) of the

channel frequency response estimates at the MPSK symbols is evaluated using Monte

Carlo Simulations.

3.2 OFDM System and Channel Models

In OFDM systems, a serial data stream is converted into a parallel stream a` = [A`0,

A`1, ...., A`N−1]T to modulate N data symbols during the `th OFDM block. The data

symbols A`k are chosen from constellation such as MPSK, MASK, and QAM, with

modulation orders MP ,MA, and MQ, respectively. In pilot-aided OFDM systems [3],

the transmitted data a` vector is composed of NP subcarriers, which are allocated for

pilot symbols for channel estimation purposes. Consequently, N −NP subcarriers are

bearing information, and therefore, used for data transmission. The set of pilot and

data subcarrier indices are denoted by V and U, respectively.

The modulation process in OFDM is implemented efficiently by feeding the data

a` to an N -point inverse fast Fourier transform (IFFT) process. The output of the

IFFT process during the `th OFDM block is given by,

x` = F
H

a` (3.1)

where F and FH are the normalized N×N FFT and IFFT matrices, respectively.

The elements of FH are defined as FH
i,k =

(
1/
√
N
)
ej2πik/N where i and k are the row

and column indices {i, k} ∈ {0, 1, ..., N − 1}, respectively. To combat inter-symbol-

interference (ISI) between successive OFDM symbols and preserve the orthogonality

among subcarriers, a cyclic prefix (CP) of length NCP samples and duration of TCP

that has to exceed the channel maximum delay spread Dh, is added to compose the

transmitted OFDM symbol x̃`. The symbol x̃` has a total length Nt = N + NCP

samples and a total duration of Tt = Tu + TCP, where Tu is the useful OFDM frame

duration.
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At the receiver end, the received signal will propagate through a multipath fading

channel and additive white Gaussian noise (AWGN) will be added to the signal. In

the scope of this work, the channel is assumed to be composed of Dh + 1 independent

and identically distributed (i.i.d.) multipath components, each of which has a gain

h`m ∼ CN
(
0, 2σ2

hm

)
, and delay m × Ts, where 2σ2

hm
is the normalized power of the

mth multipath component
∑Dh

n=0 2σ2
hn

= 1, m ∈ {0, 1,..., Dh}, and Ts , Tt/Nt. Also,

we assume that a quasi-static multipath channel is adopted [22], in which the channel

taps are constant over one OFDM symbol, but they may vary over two consecutive

symbols. The AWGN samples are modeled as z`n ∼ CN (0, 2σ2
z).

After discarding the CP symbols at the receiver side, the received samples at the

`th OFDM symbol are given by,

y`n =

Dh∑
m=0

h`m x
`
n + z`n. (3.2)

Then, the receiver applies the FFT to the received non-CP sequence y`, where

y` = H`x` + z`, H is an N ×N circulant matrix, and z ∼ CN (0, 2σ2
z i) is the AWGN

vector, where 0 and i are N × 1 zero and unit vectors, respectively. Therefore, the

FFT output can be expressed as,

r` = F y` = FH`FHa` + Fz`. (3.3)

Since the matrix H` is circulant, then, it will be diagonalized by FFT and IFFT

matrices. Hence, we can write (3.3) as,

r` = H`a` + w` (3.4)

where r` ∈ CN×1 , w` ∼ CN (0, 2σ2
wi) is the FFT of the noise vector z`, and H`

denotes the channel frequency response (CFR), H` = diag
{[
H`

0, H`
1, . . . , H`

N−1

]}
,

where H`
k ∼ CN (0, 2σ2

H). In order to extract the information symbols from the

received channel, the received symbols r`k will be fed to a channel equalizer and a

maximum likelihood detector (MLD). In this work, zero forcing (ZF) equalizer is
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used, and then, the estimated output can be expressed as,

Â`k = arg min
A`

k(i)

∣∣∣∣∣∣∣
(
Ĥ`k
)∗

|Ĥ`k|2
r`k − Â`k(i)

∣∣∣∣∣∣∣
2

, i = [0, ..., M − 1], {k, `} ∈ V (3.5)

where Ĥ`
k is the estimated CFR at the subcarrier location {k, `} ∈ V. In OFDM-

based standards such as LTE-A [3], the channel estimation is performed over two

steps:

1. Initial channel estimates are computed at the pilot subcarriers using least squares

estimation (LSE) as,

Ĥ`
k =

r`k
A`k

, {k, `} ∈ V (3.6)

where the pilot symbols values A`k are perfectly known at the receiver side.

2. Estimating the channel at data subcarriers {k, `} ∈ U using interpolation and

fitting techniques such as linear, spline, and two-dimensional (2D) interpolation

[7].

3.3 The Proposed System

Assuming that the channel variations over time are modeled using Jake’s model [23],

and given that hm and hn are mutually independent ∀m 6= n, then E
{
|hm|2

}
= 2σ2

hm

and E {hnh∗m} |n6=m = 0. Then, we can define the time correlation coefficient %t ,

E
{
h`n
(
h`+1
m

)∗}
as,

%t =

{
2σ2

hn
J0 (2πfdTt) , n = m

0, otherwise
(3.7)

where J0 (·) is the Bessel function of the first kind and zero order, and fd is the

maximum Doppler shift. Therefore, for most practical values of Tt and fd in (3.7),

it can be noted that |%t| ≈ 1 and arg {%t} ≈ 0, which implies that H`
k ≈ H`+1

k .
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Figure 3.1: Proposed frame structure.

Consequently, the FFT output at kth subcarrier and OFDM symbols ` and `+ 1 can

be written as,

r`k = H`
kA

`
k + w`k (3.8)

r`+1
k ≈ H`

kA
`+1
k + w`+1

k . (3.9)

Moreover, at high signal-to-noise ratios (SNRs), the noise component w`+1
k in (3.9)

can be neglected such that it can be simplified to r`+1
k ≈ H`

kA
`+1
k . If the symbols A`+1

k

are modulated using a unipolar MASK, A`+1
k ∈ R+ as in [24], and A`k using MPSK

as illustrated in Fig. 3.1. Then, the equalization process of the MPSK symbols can

be expressed by,

Ŝ`k , r`k
(
r`+1
k

)∗
. (3.10)

In this work, we denote the set of MASK subcarrier indices as T. The equaliza-

tion in (3.10) is feasible using the multiplication process because A`k requires only

the knowledge of θ`k , arg
{
H`
k

}
to perform the coherent detection at the MPSK
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symbols r`k, which can be achieved by noting that A`+1
k ∈ R+ and ϑ̂`k , arg

{
r`+1
k

}
≈

arg
{
H`
kA

`+1
k

}
= arg

{
H`
k

}
, where ϑ̂`k is the estimate of θ`k. Therefore, the MLD

output can be expressed as,

Â`k = arg min
A`

k(i)

∣∣∣r`k (r`+1
k

)∗ −A`k(i)
∣∣∣2 , i = [0, ..., MP − 1]. (3.11)

Once Â`k is obtained, we can estimate the CFR Ĥ`
k at locations {k, `} ∈ V using

LSE similar to (3.6) as,

Ĥ`
k =

r`k

Â`k
. (3.12)

3.4 System Performance

In this section, we evaluate the SER of MPSK analytically at the locations {k, `} ∈ V.

For the proposed system, we can express the true and the estimated CFR as,

H`
k , x1 + jx2 = α`ke

jθ`k (3.13)

H`
k = r`+1

k = H`+1
k A`+1

k + w`+1
k , x3 + jx4 = β`ke

jϑ̂`k (3.14)

where α`k and β`k are the fading envelopes of the true and the estimated CFR,

respectively. The random variables {x1, x2, x3, x4} are all zero-mean Gaussian ran-

dom variables, where x1 and x2 are independent, likewise x3 and x4. By making the

transformation of the joint Gaussian PDF in [35] from rectangular (x1, x2, x3, x4) to

polar coordinates (α`k, β
`
k, θ

`
k, ϑ̂

`
k) and defining the phase error as ψ`k , θ`k − ϑ̂`k, then,

the joint PDF can be expressed by,

P (α`k, β
`
k, ψ

`
k) =

α`kβ
`
k

2πσ2
1σ

2
2(1− ρ2)

exp

{
− 1

2(1− ρ2)

×
[(
α`k
)2

σ2
1

+

(
β`k
)2

σ2
2

− 2
α`kβ

`
k

σ1σ2

(ρ1 cos(ψ`k)− ρ2 sin(ψ`k)

]}
(3.15)
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where (ρ1, ρ2, ρ) are defined as,

ρ1 ,
µ1

σ1σ2

, ρ2 ,
µ2

σ1σ2

, ρ ,
√
ρ2

1 + ρ2
2 (3.16)

and (σ2
1, σ

2
2, µ1, µ2) are given in [27] as,

σ2
1 ,

1

2
E
[∣∣H`

k

∣∣2] = σ2
H (3.17)

σ2
2 ,

1

2
E
[∣∣H`

k

∣∣2] =
(
A`k+1

)2
σ2
H + σ2

w (3.18)

µ1 + j µ2 ,
1

2
E
[
H`
kH

`∗
k

]
= A`+1

k σ2
H [J0 (2πfdTs)] . (3.19)

However, BER of BPSK modulation, conditioned on a fixed fading envelope α`k

and phase error ψ`k, is given by [26, 10.14a],

P `
B,k|

[
ψ`k, α

`
k

]
= Q

(
α`k
σw

cos(ψ`k)

)
(3.20)

where Q(x) , 1/
√

2π
∫∞
x
e−t

2/2dt. Therefore, the conditioning on
[
ψ`k, α

`
k

]
can be

removed by evaluating the following integral,

P `B,k =

∫ ∞
0

∫ ∞
0

∫ π

−π
P `B,k|

[
ψ`k, α

`
k

]
· P (α`k, β

`
k, ψ

`
k) dα`k dβ

`
k dψ

`
k. (3.21)

Using the correlation coefficients obtained in (3.16)-(3.19), and the integral iden-

tity established in [27, Appendix B], we get the closed-form BER conditioned on A`+1
k

for BPSK as,

P `
B,k|A`+1

k =
1

2

[
1− A`+1

k [J0 (2πfdTs)]

1 + 1
SNR

]
. (3.22)

Since the transmitted MASK symbols A`+1
k are equally probable, and given that

SER is equal to BER for the BPSK modulation, the unconditional SER can be ob-

tained by averaging over all values of A`+1
k as,

P̄ `
S,k = P̄ `

B,k =
1

MA

MA−1∑
i=0

(
P `
B,k|A`+1

k (i)
)
. (3.23)
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Figure 3.2: Theoretical and simulated P̄ `S,k at MPSK locations {k, `} ∈ V for vehicle speed
V = 20 km/h, MP = 2, and different values of MA.

3.5 Complexity Analysis

In this section, we can analyze the complexity of the proposed estimator by calculat-

ing the number of complex multiplication/division and complex addition/subtraction

required to estimate the CFR in one OFDM symbol. Then, we compare its complex-

ity to the pilot-aided LSE OFDM. To simplify the discussion, the channel estimates

in one OFDM symbol of the proposed system can be obtained using the following

stages:

1. Channel equalization at {k, `} ∈ V: which is represented by the multiplication

r`k
(
r`+1
k

)∗
process: This step requires one complex multiplication per MPSK

symbol. This step is equivalent to the channel equalization in the pilot-aided

system. Therefore, it is not considered an additional complexity.

2. Information detection at MPSK locations {k, `} ∈ V: which is performed by
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Figure 3.3: P̄ `S,k at MPSK locations {k, `} ∈ V for MP = 2, MA = 4 and different vehicle

speeds V as compared to [21] for different delay spreads σ2 (τ).

computing Â`k using maximum likelihood criterion in (3.11). This step is also

not considered an excess complexity because it is required anyway to recover

the information symbol in the pilot-aided systems.

3. Channel estimation at the MPSK symbols Ĥ`
k: this step requires one complex

division as in (3.12). It is worth noting that this step equivalent to the LSE in

the pilot-aided as in (3.11).

4. Channel estimation at the remaining subcarriers, ∀k ∈ {T ∩ U}: the complexity

of this step depends on the interpolation technique used. However, the same

step is needed for the pilot-aided with the same complexity.

Therefore, the proposed system complexity is equivalent to pilot-aided system with

LSE, which confirms the claimed low complexity. In addition, the complexity the

proposed estimator is identical to the OSBCE.
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3.6 Numerical Results

To evaluate the system performance under various operating conditions, we consider

the downlink physical layer specifications of the LTE-A standard [3], where the carrier

frequency fc = 1.9 GHz, the sampling frequency fs , 1/Ts is 3.836 MHz, N = 256

subcarriers, NCP = 18 samples, subcarrier spacing is 15 KHz, total OFDM symbol

period is Ts = 71.3 µ sec, and CP duration is TCP = 4.69 µ sec. Unless it is mentioned

otherwise, the channel model considered is the typical urban (TUx) multipath fading

model [45], which consists of 9 taps with normalized delays of [0, 1, . . ., 8] samples,

and the normalized path gains of 2σ2
hn

, n = [0, 1, . . ., 8] are [0.269, 0.174, 0.289, 0.117,

0.023, 0.058, 0.036, 0.026, 0.008], which corresponds to a delay spread σ2 (τ) = 3.49,

where the delay spread is defined as,

σ2 (τ) =

∑
i giτ

2
i∑

i gi
−
(∑

i giτi∑
i gi

)2

(3.24)

where gi is the gain of path index i, and τi is the delay of path index j. For

the sake of comparison, other two channel models are used with the delay spreads

σ2 (τ) = 1.73, σ2 (τ) = 20, respectively as defined in [22]. The maximum Doppler

frequency is modeled as a user equipment (UE) in a moving vehicle, which is given by

fd = V
c
fc, where V is the speed of the vehicle, and c is the speed of light, c = 3× 108

m/s. The simulation results are obtained using Monte Carlo simulations, where in

each run, 2× 106 OFDM symbols are generated.

Fig. 3.2 shows the effect of changing the modulation order of the MASK symbols

MA on the SER at MPSK symbols P `
S,k at a vehicle speed of V = 20 km/h and

MP = 2. As it can be seen from the figure, increasing MA will increase the SER as

well. This is due to the fact that MASK symbols are used as channel estimates for

the MPSK symbols, and hence, increasing MA will introduce more small amplitudes,

which leads to less reliable estimates that cause SER degradation.
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Figure 3.4: MSE of the channel estimate H`k at locations {k, `} ∈ V for MP = 2, MA = 4
and different vehicle speeds V as compared to [21] for different delay spreads σ2 (τ).

The effect of the vehicle speed V and the channel frequency selectivity on P `
S,k

is given in Fig. 3.3. On the left side subfigure, the channel is severely frequency

selective and the vehicle speed is high, which causes error floors for both, the proposed

and OSBCE. However, the proposed estimator error floor is lower than the OSBCE.

On the right side subfigure, the channel frequency selectivity is very low while V

moderate. As it can be noted from the figure, the OSBCE starts to outperform the

proposed system at SNR≈ 26 dB. Such behavior can be justified by the fact that

E
[
arg
(
H`+1
k

)]
6= E

[
arg
(
H`
k

)]
at high fd values while E

[
arg
(
H`
k

)]
6= E

[
arg
(
H`
k+1

)]
at high σ2 (τ) values. Therefore, the proposed estimator is more robust at low and

moderate vehicle speeds, while the OSBCE is more robust in channels with mild and

low frequency selectivity. Consequently, the MASK-MPSK grid should be adaptive

based on the channel conditions to achieve the best SER. Furthermore, Figs. 3.2 and

3.3 show perfect matching between the theoretical and simulations results.
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Figure 3.5: SER after spline interpolation at QAM locations {k, `} ∈ U for the proposed
system as compared to LSE, at V = 50 km/h and for different values of MP ,MA and MQ.

Fig. 3.4 presents the MSE as a performance measure for the accuracy of the

proposed channel estimator. As it can be noted, the results are benchmarked against

MSE of the conventional pilot-aided LSE, which is considered a lower bound for the

proposed estimator, that is given by MSE = 1/SNR. As the figure indicates, the

proposed estimator produces channel estimates that are comparable to the pilot-

aided LSE estimates, particularly, at moderate and high values of SNR. Also, the

figure shows that the proposed estimator provides more accurate estimates than the

OSBCE in [21], even when the Doppler frequency is high and channel selectively is

low.

Fig. 3.5 depicts the SER at QAM subcarriers {k, `} ∈ U for V = 50 km/h

after spline interpolation for two different configurations of (MA, MP , MQ). SER

results are compared to the pilot-aided LSE, where spline interpolation is used to

obtain CFR at QAM symbols from the channel estimates H`
k. The results show that
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proposed system has a reliable performance by which the difference is only about

1-2 dB as compared to the pilot-aided LSE. However, the proposed system gains

more power and spectral efficiencies that are consumed by the pilot symbols in the

conventional systems without any additional complexity. It is worth noting that a

thorough study of the spectral efficiency analysis of blind against pilot-aided schemes

has been discussed in the work reported in [21].

In the context of comparing blind algorithms to the pilot-aided estimators, it is

worth mentioning that a fair comparison between the compared systems, the power

efficiency should also be taken into account. Therefore, the power per information

subcarrier in a blind system PSC,blind should be expressed as,

PSC,blind =
NF ×NT

NF ×NT −NP,RB

PSC,pilot (3.25)

where NP,RB is the number of pilot subcarriers per OFDM grid, NF , NT are the

frequency and time dimensions per OFDM grid, receptively. However, the additional

power gained in (3.25) are allocated to the MASK symbols since they are the less

reliable modulation scheme, and hence, the power of each MASK subcarrier will

gain an additional 3 dB gain as derived in Appendix A. However, it is worth noting

that OSBCE system requries one OFDM symbol to perform the channel estimation

process, and hence, denoted as one-shot estimation. On the other hand, the proposed

system in this work needs two OFDM symbols to estation the channel, which is twice

the observation window size of the OSBCE.

3.7 Chapter Summary

In this chapter, a novel blind channel estimator was introduced for OFDM based

systems over mobile radio channels. The proposed transmission frame uses a hybrid

OFDM frame structure to estimate the CSI blindly. In this arrangement, MPSK data
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symbols replace pilot subcarriers in the conventional OFDM systems, and the subcar-

rier with the same pilot subcarrier index in the following OFDM symbol is modulated

using MASK. The MASK symbols are used as CFR estimates to detect the MPSK

symbols. The detected MPSK symbols are then used as pilot symbols to estimate the

CFR at the remaining subcarriers. The system performance was evaluated using LTE

downlink specifications and for various speeds of the UE. Monte Carlo simulations,

verified by the analytical results, showed that the proposed system supports high mo-

bility speeds up to 150 km/h and produces accurate channel estimates comparable to

pilot-aided systems, with improved power and spectral efficiencies. However, signifi-

cant performance improvement can be achieved by using an adaptive time/frequency

configuration.
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Chapter 4

Cross-Layer Spectral Efficiency of

Adaptive Communications Systems with

QoS Constraints

4.1 Introduction

1Bandwidth scarcity is one of the chronic limitations that wireless networks have been

suffering from since the early days of mobile data emergence. The massive and persis-

tent increase of the traffic volume over the past few years made the network scalability

process highly challenging, more frequent and costly. For example, the mobile data

traffic in the second quarter of 2015 has increased by a factor of 18 as compared to the

second quarter of 2010, and is expected to grow by a factor of 10 between 2015 and

2020 [2]. In other words, the data growth in a single decade can be as much as 180

fold. Consequently, researchers from the academic and industrial sectors are devot-

ing extraordinary efforts to maximize the spectral efficiency of wireless networks by

optimizing the spectrum utilization across all layers of the communications protocol

1A version of this chapter has been published in [1].
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stack.

At the physical layer (PHY), tremendous efforts were focused on developing blind

channel estimation and synchronization (CE/SY) techniques. For example, various

blind carrier frequency offset (CFO) estimation, blind symbol timing offset (STO) es-

timation and blind channel estimation algorithms are reported in [3]-[9], and [10]-[24],

respectively. At the upper layers, system adaptation and dynamic resource alloca-

tion have recently received considerable attention due to their potential to improve

the spectral efficiency [25]-[30]. Typically, the spectral gain achieved at the PHY is

considered independent of the operations performed at the upper layers. Therefore,

CE/SY algorithms that do not involve pilot symbols are denoted as blind, and hence

are spectrally efficient. However, a plethora of blind CE/SY algorithms have strict

constraints regarding the modulation type [3]-[24], which might affect the effectiveness

of using various link adaptation techniques at the upper layers, and hence, cross-layer

spectral efficiency evaluation is necessary.

Generally speaking, pilot-aided CE/SY are computationally efficient, produce re-

liable estimates, robust under various operating conditions, and have short observa-

tion windows. Therefore, pilot-aided CE/SY is adopted in most current broadband

wired/wireless applications such as digital audio broadcasting (DAB) [31], fourth

generation (4G) LTE-Advanced [3], and second generation digital video transmission

over cable (DVB-C2) [33]. It is worth noting that all these standards have orthogonal

frequency division multiplexing (OFDM) as a modulation scheme. However, the low

spectral efficiency limitation of pilot-aided techniques has triggered extensive research

to develop blind CE/SY techniques [3]-[24].

To the best of the authors knowledge, no work in the literature has considered

the overall spectral efficiency across multiple layers. Therefore, this work presents a

cross-layer spectral evaluation when particular spectral enhancement techniques are

applied at different layers. Without loss of generality, we apply the proposed approach
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to compute the relative spectral efficiency in the context of OFDM. However, it can

be applied to other systems with different modulation schemes. Contrary to the

case where different layers are treated independently, the obtained results show that

several blind techniques might degrade the overall spectral efficiency as compared to

pilot-aided techniques. Moreover, the results show that the spectral efficiency is a

function of the signal-to-noise ratio (SNR), QoS, channel characteristics, and the link

adaptation algorithm used.

4.2 System and Channel Models

Because OFDM is widely adopted for several practical systems [31]-[33], it will be

used, without loss of generality, in this work to demonstrate the spectral efficiency of

several systems with different frame structures, QoS requirements, and system design

constraints.

4.2.1 OFDM System and Channel models

In OFDM systems, a sequence of N complex symbols is used to modulate N or-

thogonal subcarriers during the `th OFDM block d(`) = [d0(`), d1(`), ..., dN−1(`)]T .

However, NP symbols, denoted as pilots, do not carry information because they are

known at the receiver side. The symbols dk, including the pilots, are usually drawn

uniformly from a quadrature amplitude modulation (QAM), phase shift keying (PSK)

or amplitude shift keying (ASK) constellation. The sequence of data and pilot sym-

bols is modulated using an N -point inverse discrete Fourier transform (IDFT) process

that produces the sequence x(`) = [x0(`), x1(`), · · · , xN−1(`)]T . Thus, x(`) = FHd(`),

where F is the normalized N ×N DFT matrix. Then, the cyclic prefix (CP) is cre-

ated by copying the last Ng samples of the IDFT output and appending them at the

beginning of the symbol to be transmitted. Therefore, the transmitted OFDM block
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consists of Nt = N + Ng samples. The useful part of the OFDM symbol does not

include the Ng prefix samples and has a duration of Tu seconds.

At the receiver front-end, the received signal is applied to a matched filter and

is then sampled at a period Ts = Tu/N . Assuming that the channel is fixed within

one OFDM symbol, dropping the CP samples, and applying the DFT to the received

sequence gives,

y(`) = H(`)d(`) + z(`) (4.1)

where H(`) denotes the channel frequency response during the `th OFDM block

H(`) = diag
(

[H0(`), H1(`), . . . , HN−1(`)]T
)

and z(`) = [z0(`), z1(`),· · · , zN−1(`)]T denotes the additive system noise, which is

modeled as a white Gaussian process with zero mean and variance σ2
z .

To maximize the efficiency of OFDM-based communication systems, the modula-

tion types/orders of the information symbols in d (`) are chosen based on the channel

matrix H (`) [30], which is assumed to be known at the transmitter side via a feedback

channel, and the instantaneous SNR of each subcarrier,

γ`,k =
|Hk (`)|2
σ2
z

|dk (`)|2 . (4.2)

However, to minimize the signaling over the feedback channel, and to exploit the

time/frequency correlation of the channel, the channel information is grouped into

blocks, each of which has NF subcarriers in frequency domain and NT subcarriers in

time domain, which forms one resource block of size NB = NF × NT . Therefore, all

subcarriers within a particular block are assigned to the same modulation type/order.

In LTE, the resource block for FDD 1.4 MHz with normal CP has NF = 12 and

NT = 7, and hence NB = 84. More generally, each subcarrier can be modulated
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using different modulation type and order.

4.2.2 Spectral Efficiency of OFDM Systems

Generally speaking, the spectral efficiency ξ of a communications system is defined

as ξ = RB/W , where RB is the bit rate and W is the bandwidth, and hence, the

unit of ξ is bit/s/Hz. Consequently, the relative spectral efficiency of two different

systems can be defined as ηR = ξ(1)/ξ(2). In the case that the two systems utilize the

same bandwidth then, ηR = R
(1)
B /R

(2)
B . Moreover, if RB is normalized by the total

transmission time, then ηR becomes the ratio of the total number of bits transmitted

by the first system to the total number of bits transmitted by the second system.

In OFDM-based systems, the spectral efficiency is usually computed as the ratio

of the number of data-bearing subcarriers to the total number of subcarriers, and

thus

ηR = 1− NP

N
. (4.3)

However, such definition is valid only when all subcarriers in the system are mod-

ulated using the same modulation type and order. In practice, different subcarriers

can be modulated using different modulation schemes and orders. Therefore, the

relative spectral efficiency between two OFDM-based systems should be computed as

the ratio between the total number of information bits of the first system to those in

the second system over one information (resource) block [3]. Therefore, we can define

the relative spectral efficiency as,

ηR = η(1)|B
η(2)|B =

∑NT−1

`=0

∑NF−1

k=0 log2[Mn,m(`,k)], [n,m]∈M(1)∑NT−1

`=0

∑NF−1

k=0 log2[Mn,m(`,k)], [n,m]∈M(2)
(4.4)

where
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Table 4.1: Mn,m example for n = 1, 2, 3 and different values of m.

n \ m 1 2 3 4 5 6 7

1 (ASK) 1 2 4 8 − − −
2 (PSK) 1 2 4 8 16 − −
3 (QAM) 1 − 4 − 16 − 64

Table 4.2: Time-frequency modulation map example.

`\k 0 1 2 3

0 2, 1 2,m 2,m 2, 1
1 n,m n,m n,m n,m
2 1,m 1,m 1,m 1,m
3 2, 1 2,m 2,m 2, 1

B =


b0,0 b0,1 · · · b0,NF−1

b1,0 b1,1 · · · b1,NF−1
...

...
. . .

...
bNT−1,0 bNT−1,1 · · · bNT−1,NF−1

 . (4.5)

Each element in B represents the number of bits allocated for the corresponding

subcarrier, Mn,m (`, k) is the modulation order at a given location (`, k), and for a

configuration [n,m], where n and m denote the modulation type and order sequence

number, respectively. The set M(.) is the set of all possible values of n and m

for a particular system. For example, assume that a particular system supports

three different modulation schemes with different modulation orders as depicted in

Table 4.1, and the time-frequency grid has NF = 4 and NT = 4. Consequently, the

modulation map M will have the structure given in Table 4.2. As it can be noted

from the table, the four subcarriers in the corners of the table carry no information

because m = 1, the remaining subcarriers in row-0 and row-3 are limited to PSK, but

with any order. The subcarriers in the first row can have any combination of [n,m],

and the subcarriers in the second row are limited to ASK modulation with any m

value.

In practical systems, the map M is specified at the initial stages of the system

design, and then, the values of n and m are dynamically selected based on the system
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QoS requirements, the system resources, and the channel state information (CSI)

[27]. Without loss of generality, consider the case where the values of m and n

can be selected dynamically with the aim of maximizing the spectral efficiency of a

particular system under bit error rate (BER), and modulation type/order constraints.

Therefore, the problem can be formulated as

max
m,n

NT−1∑
`=0

NF−1∑
k=0

log2 [Mn,m (`, k)] (4.6a)

Subject to:

[n,m] ∈M (4.6b)

P̄ ≤ PT (4.6c)

where (4.6b) is used to guarantee that the system uses only the allowed modulation

types and orders, and (4.6c) is used to guarantee that the average BER P̄ is less than

a prescribed threshold PT ,

P̄ =

∑NT−1
`=0

∑NF−1
k=0 log2 (Mn,m (`, k))Pn,m(γ`,k)∑NT−1

`=0

∑NF−1
k=0 log2 (Mn,m (`, k))

≤ PT (4.7)

where Pn,m(γ`,k) is the instantaneous BER for a given [n,m] ∈ M and γ`,k. In

typical bit loading problems, P̄ is computed with the assumption of perfect CSI

knowledge at the transmitter. In spectral efficiency analysis, the accuracy of the

algorithm, SNR and spectral efficiency are correlated. For example, two blind CE

algorithms with different accuracy would actually have different spectral efficiency

values.

As η(i), i ∈ {1, 2} in (4.4) is conditioned on B, the conditioning can be removed

by averaging over all possible values of B,

η(i) =
∑
B

η(i)|B Pr (B) , i ∈ {1, 2} . (4.8)
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However, the set B is selected based on the optimization problem given in (4.6a),

which can be solved only using particular searching algorithms, and thus, it will be

infeasible to compute Pr (B). To simplify the discussion, we consider a sub-optimal

solution of B where the modulation order for each subcarrier is assigned independently

of all other subcarriers based on its SNR, this approach will be denoted as the basic

allocation (BA) algorithm. In such scenarios, the BER constraint is satisfied when

the BER for each subcarrier is satisfied. Thus, the modulation order is selected such

that

Pr (b`,k = q) = Pr (ζq−1 < γ`,k < ζq+1) (4.9)

where ζ−q and ζ+
q are the minimum and maximum SNR values required to chose a

modulation order M = 2q, which satisfies the BER constraint. Since the SNR ranges

are contiguous and non-overlapping, then (4.9) can be written as Pr (b`,k = q) =

Pr (γ`,k ∈ Γq). Therefore,

Pr (B = q) = Pr
(
γ0,0 ∈ Γq0,0 , . . . , γ0,NF−1 ∈ Γq0,NF−1

,

γ1,0 ∈ Γq1,0 , . . . , γ1,NF−1 ∈ Γq1,NF−1

...

γNT−1,0 ∈ Γq0,0 , . . . , γNT−1,NF−1 ∈ ΓqNT−1,NF−1

)
. (4.10)

Since the instantaneous SNRs are correlated in time and frequency domain, the prob-

ability Pr (B = q) can be expressed as

Pr (B = q) = ∫ ζ+
q0,0

ζ−q0,0

. . .

∫ ζ+
qNT−1,NF−1

ζ−qNT−1,NF−1

P (γ0,0, ..., γNT−1,NF−1)

dγNT−1,NF−1...dγ0,0 (4.11)
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where P (γ0,0, ..., γNT−1,NF−1) is the joint probability distribution function (PDF) of

the SNRs within the block. Since the marginal PDF of γ`,k is exponential, then the

joint PDF P (γ0,0, ..., γNT−1,NF−1) is a multivariate exponential, which has no closed-

form representation and can only be expressed by NF ×NT fold integral. Therefore,

evaluating (4.11) for a particular q requires 2NF × NT fold integral. Which is pro-

hibitively complex to be evaluated, even numerically.

4.3 Numerical Results
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Figure 4.1: Average throughput per subcarrier using IA algorithm for PT = 10−3.

In this section, simulation results are presented to evaluate the average throughput

per subcarrier and the relative spectral efficiency. The channel is assumed to be

frequency-selective quasi-static with Rayleigh fading, where the channel remains fixed

within one OFDM symbol, but changes randomly over consecutive symbols. The

channel model considered in this work is the typical urban (TUx) multipath fading

84



Chapter 4. Cross-Layer Spectral Efficiency with QoS Constraints
4.3. Numerical Results

0 10 20 30 40 50

SNR (dB)

50

55

60

65

70

75

80

85

90

95

100

105

η
R
(%

)

LTE
PT = 10−2

PT = 10−3

PT = 10−4

CM

M-LTE

Figure 4.2: Relative spectral efficiency using IA algorithm for an OFDM system with dif-
ferent modulation constraints.

channel model [45] that consists of 9 taps with normalized delays of [0, 1, ..., 8]

and average normalized taps’ gains of [2.69, 1.74, 2.89, 1.17, 0.23, 0.58, 0.36, 0.26,

0.08]/10.

The spectral efficiency for four different systems is considered, which are the fully

blind (FB), constant modulus (CM), LTE and the modified LTE (M-LTE) [3], [34].

The FB system is similar to LTE except that no pilots are used. The CM has no pilots,

but the modulation is limited to PSK. The M-LTE is similar LTE except that pilot

symbols are replaced by unipolar ASK and one of the subcarriers adjacent to the pilot

should have PSK symbols. Moreover, the modulation order M can be set to one to

satisfy the BER requirements. In all considered systems, the appropriate modulation

order is selected such that the average BER is less than PT . The modulation orders

for all subcarriers are computed using the Incremental Allocation (IA) Algorithm [36].

The spectral efficiency of the FB system is considered as η(2) when ηR is computed,
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Figure 4.3: Relative spectral efficiency using BA algorithm for an OFDM system with
different modulation constraints.

because FB has the maximum spectral efficiency.

Fig. 4.1 presents the average throughput per subcarrier, for the FB, CM, LTE, and

M-LTE [3] systems. As it can be noted from the figure, the FB system outperforms

all other systems since it does not require pilots, and it has no modulation-type

constraint. Unlike what is usually assumed, the LTE outperforms CM systems for a

wide range of SNRs. Therefore, sacrificing a few subcarriers as pilots and selecting the

modulation type freely for other subcarriers results in higher throughput as compared

to the case where all subcarriers carry information, but have the CM constraint. The

M-LTE throughput is equivalent to LTE at low SNRs, but it shows higher throughput

at high SNRs.

The relative spectral efficiency ηR of the CM, LTE, and M-LTE systems is pre-

sented in Fig. 4.2 for BER thresholds PT = 10−2, 10−3 and 10−4. As it can be

noted from the figure, the LTE system has a constant spectral efficiency of about
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95%, where the 5% loss is caused by the pilots. Surprisingly, the figure shows that

LTE outperforms the blind M-LTE and CM system for low to medium SNRs. The

figure also shows that the spectral efficiency depends on SNR and PT because both

parameters affect the selection of the modulation orders for the different systems. For

example, in the range of low SNRs, we note that ηR for the CM system is increasing

as a function of SNR, which is due to the fact that majority of the FB system sub-

carriers at this range of SNRs are modulated using M = 1, 2 or 4, which is similar

to the CM case. In the mid-rage SNRs, more subcarriers in the FB system will start

to use 16-QAM, while the CM is mostly limited to M ≤ 8, and hence, ηR decreases.

Finally, at high SNRs, the FB will be mostly using 64-QAM, which is the maximum

allowed modulation order, and hence η(1) of the CM will eventually approach η(2) of

the FB system. Similar to the CM case, the LTE outperforms the M-LTE at low

SNRs. However, the difference is negligible. At high SNRs, the M-LTE outperforms

the LTE noticeably.

On the other hand, Fig. 4.3 depicts the relative spectral efficiency evaluated

using BA algorithm discussed in Subsection 4.2.2 for different BER thresholds. As

the figure indicates, the CM system has a spectral efficiency of about 100% around

SNR = 0 dB. In fact, BA algorithm forces all subcarriers to use BPSK and QPSK

modulation in the CM and FB systems at low SNRs in order to satisfy the BER

PT constraint for each subcarrier, while nulling the ASK symbols in the M-LTE, as

they do not satisfy constraint with the minimum modulation order. As a result, the

relative spectral efficiency of the M-LTE is similar to the LTE system at low SNRs.

However, at moderate and high values of SNRs, the BA algorithm converges to the

same allocation obtained by IA algorithm, which demonstrates the significance of

optimizing the bit allocation scheme to the system’s relative spectral efficiency.

87



Chapter 4. Cross-Layer Spectral Efficiency with QoS Constraints
4.4. Chapter Summary

4.4 Chapter Summary

In this chapter, the concept of spectral efficiency of blind CE/SY techniques was

revisited, where we proposed a new fair and reliable approach to compute and compare

the spectral efficiency of various blind and non-blind communications systems. The

new approach considers the fact that different subcarriers in OFDM systems may be

modulated using different modulation types and orders to satisfy QoS requirements.

Moreover, the proposed approach considers the modulation type constraint on the

overall system spectral efficiency. The obtained results showed that the modulation

type constraint has a significant impact on the system spectral efficiency, which can

make the spectral efficiency of pilot-aided systems higher than that of blind systems

with modulation type constraint.

88



Bibliography

[1] A. Saci, A. Shami and A. Al-Dweik, “Cross-layer spectral efficiency of adaptive

communications systems with QoS constraints,” IEEE 86th Veh. Technol. Conf.

(VTC-Fall), Toronto, ON, 2017.

[2] https://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-

2015.pdf.

[3] A. Al-Dweik, A. Hazmi, S. Younis, B. Sharif, and C. Tsimenidis, “Carrier fre-

quency offset estimation for OFDM systems over mobile radio channels,” IEEE

Trans. Veh. Technol., vol. 59, pp. 974-979, Feb. 2010.

[4] X. Zeng and A. Ghrayeb, “A blind carrier frequency offset estimation scheme

for OFDM systems with constant modulus signaling,” IEEE Trans. Commun.,

vol. 56, no. 7, pp. 1032-1037, July 2008.

[5] A. Al-Dweik, A. Hazmi, S. Younis, B. Sharif, and C. Tsimenidis, “Blind iterative

frequency offset estimator for OFDM systems,” IET Commun., vol. 4, issue 16,

pp. 2008-2019, Nov. 2010.

[6] J. Oh, J. Kim and J. Lim, “Blind carrier frequency offset estimation for OFDM

systems with constant modulus constellations,” IEEE Commun. Lett., vol. 15,

no. 9, pp. 971-973, Sep. 2011.

89



Bibliography
Bibliography

[7] W. Zhang and Q. Yin, “Blind carrier frequency offset estimation for MIMO-

OFDM with constant modulus constellations via rank reduction criterion,”

IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6809-6815, Aug. 2016.

[8] A. Jayaprakash and G. Reddy, “Covariance fitting based blind carrier frequency

offset estimation method for OFDM systems,” IEEE Trans. Veh. Technol.,

IEEE early access, doi: 10.1109/TVT.2016.2542181, 2016.

[9] A. Al-Dweik, S. Younis, A. Hazmi, B. Sharif and C. Tisimendis, “An efficient

OFDM symbol timing estimator using power difference measurements,” IEEE

Trans. Veh. Technol., vol. 61, no. 2, pp. 509-520, Feb. 2012.

[10] M. Necker and G. Stuber, “Totally blind channel estimation for OFDM on fast

varying mobile radio channels,” IEEE Trans. Wireless Commun., vol. 3, no. 5,

pp. 1514-1525, Sep. 2004.

[11] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace methods

for the blind identification of multichannel FIR filters,” IEEE Trans. Signal

Process., vol. 43, no. 2, pp. 516-525, Feb. 1995.

[12] C.-C. Tu and B. Champagne, “Subspace blind MIMO-OFDM channel estima-

tion with short averaging periods: Performance analysis,” Proc. IEEE Wireless

Commun. Netw. Conf., Las Vegas, NV, Apr. 2008, pp. 24-29.

[13] C.-C. Tu and B. Champagne, “Subspace-based blind channel estimation for

MIMO-OFDM systems with reduced time averaging,” IEEE Trans. Veh. Tech-

nol., vol. 59, no. 3, pp. 1539-1544, Mar. 2010.

[14] F. Gao,Y. Zeng, A.Nallanathan, and T. S.Ng, “Robust subspace blind chan-

nel estimation for cyclic prefixed MIMO OFDM systems,” IEEE J. Sel. Areas

Commun., vol. 26, no. 2, pp. 378-388, Feb. 2008.

90



Bibliography
Bibliography

[15] F. Gao and A. Nallanathan, “Blind channel estimation for MIMO OFDM sys-

tems via nonredundant linear precoding,” IEEE Trans. Signal Process., vol. 55,

no. 2, pp. 784-789, Feb. 2007.

[16] H. Muarkami, “Blind estimation of a fractionally sampled FIR channel for

OFDM transmission using residue polynomials,” IEEE Trans. Signal Process.,

vol. 54, no. 1, pp. 225-234, Jan. 2006.

[17] S. Banani and R. G. Vaughan, “OFDM with iterative blind channel estimation,”

IEEE Trans. Veh. Technol., vol. 59, no. 9, Nov. 2010.

[18] C. Li and S. Roy, “Subspace-based blind channel estimation for OFDM by

exploiting virtual carriers,” IEEE Trans. Wireless Commun., vol. 2, no. 1, pp.

141-150, Jan. 2003.

[19] N. Sarmadi, S. Shahbazpanahi, and A. Greshman, “Blind channel estimation

in orthogonally coded MIMO-OFDM systems,” IEEE Trans. Signal Process.,

vol. 57, no. 6, pp. 2354-2364, Jun. 2009.

[20] W. Ma, B. Vo, T. Davidson, and P. Ching, “Blind ML detection of orthogonal

space–time block codes: Efficient high-performance implementations,” IEEE

Trans. Signal Process., vol. 54, no. 2, pp. 738-751, Jan. 2006.

[21] P. Stoica and G. Ganesan, “Space-time block codes: Trained, blind and semi-

blind detection,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), USA, 2002, pp. 1609-1612.

[22] T. Al-Naffouri and A. Quadeer, “Cyclic prefix based enhanced data recovery in

OFDM,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3406–3410, Jun. 2010.

91



Bibliography
Bibliography

[23] Y. Li, C. Georghiades, and G. Huang, “Iterative maximum likelihood sequence

estimation for space–time coded systems,” IEEE Trans. Commun., vol. 49, no.

6, pp. 948-951, June 2001.

[24] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Maximum-likelihood detection of

orthogonal space–time block coded OFDM in unknown block fading channels,”

IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1637–1649, Apr. 2008.

[25] L. Li, B. Li, H. Li, C. Chen, “Domain optimal bit allocation algorithm for

high efficiency video coding,” IEEE Trans. Circuits Syst. Video Technol, IEEE

Xplore early Access, doi: 10.1109/TCSVT.2016.2598672, 2016.

[26] W. Hachicha, M. Kaaniche, A. Beghdadi and F. Cheikh, “Efficient inter-view

bit allocation methods for stereo image coding,” IEEE Trans. Multimedia, vol.

17, no. 6, pp. 765-777, June 2015.

[27] M. Kalil, A. Shami, A. Al-Dweik, and S. Muhaidat, “Low-complexity power-

efficient schedulers for LTE uplink with delay-sensitive traffic,” IEEE Trans.

Veh. Technol, vol. 64, no. 10, pp. 4551-4564, Oct. 2015.

[28] T. Al-Naffouri, A. Dahman, M. Sohail, W. Xu and B. Hassibi, “Low-complexity

blind equalization for OFDM systems with general constellations,” IEEE Trans.

Signal Process., vol. 60, no. 12, pp. 6395-6407, Dec. 2012.

[29] M. Kalil, A. Shami and A. Al-Dweik, “QoS-aware power-efficient scheduler for

LTE uplink,” IEEE Trans. Mobile Comput., vol. 14, no. 8, pp. 1672-1685, Aug.

2015.

[30] N. Abo Aly, A. Al-Dweik and M. Al-Mualla, “Adaptive OFDM system with

limited feedback using truncated channel impulse response,” in Proc. 15th IEEE

Int. Symposium on Signal Processing and Information Technology (ISSPIT),

UAE, 2015, pp. 197-202.

92



Bibliography
Bibliography

[31] Radio broadcasting systems; digital audio broadcasting (DAB) to mobile,

portable and fixed receivers, ETS Standard 300 401, 1995.

[32] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved

Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,

3GPP Standard TS 36.300, 2011.

[33] Digital video broadcasting (DVB); frame structure channel coding and mod-

ulation for a second generation digital transmission system for cable systems

(DVB-C2), ETSI Standard EN 302 769, 2010.

[34] A. Al-Dweik and Y. Iraqi, “Error probability analysis and applications of

amplitude-coherent detection in f lat rayleigh fading channels”, IEEE Trans.

Commun., vol. 64, no. 5, pp. 2235-2244, May 2016.

[35] ETSI TR 125 943 V9.0.0 (2010-02), Universal Mobile Telecommunications Sys-

tem (UMTS) Deployment Aspects, 3GPP TR 25.943 version 9.0.0 Release 9.

[36] A. Wyglinski, F. Labeau, and P. Kabal, “Bit loading with BER-constraint for

multicarrier systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1383-

1387, July 2005.

93



Chapter 5

Direct Data Detection of OFDM Signals

Over Wireless Channels

5.1 Preamble

1Orthogonal frequency division multiplexing (OFDM) is widely adopted in several

wired and wireless communication standards, such as worldwide interoperability for

microwave access (WiMAX) technologies [2], Long Term Evolution-Advanced (LTE-

A) standard [3], Digital Video Broadcasting (DVB), Terrestrial (DVB-T) and Hand-

held (DVB-H) [4], optical wireless communications (OWC) [5], [6], and recently, it

has been adopted for the fifth-generation (5G) wireless networks [7]. The channel is

typically modeled as frequency-selective for WiMax and LTE-A, flat for OWC in the

presence of atmospheric turbulence [5], [6]. Therefore, OFDM has become the lead

above other modulation schemes at present and in the near future [8].

One of the main advantages of OFDM is that each subcarrier experiences flat

fading even though the overall signal spectrum suffers from frequency-selective fad-

ing. Moreover, incorporating the concept of a cyclic prefix (CP), which is formed

1A version of this chapter has been submitted to IEEE Transactions on Vehicular Technology.
The manuscript of paper in available in the arXiv [1].
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by copying a part of the OFDM symbol of and pre-append it to the transmitted

OFDM block, prevents intersymbol interference (ISI) if the CP length is larger than

the maximum delay spread of the channel. Consequently, a low-complexity single-tap

equalizer can be utilized to eliminate the impact of the multipath fading channel. Un-

der such circumstances, the OFDM demodulation process can be performed once the

fading parameters at each subcarrier, commonly denoted as channel state information

(CSI), are estimated.

In general, channel estimation can be classified into blind [9]-[14], and pilot-aided

techniques [15]-[21]. Blind channel estimation techniques are spectrally efficient be-

cause they do not require any overhead to estimate the CSI, nevertheless, such tech-

niques have not yet been adopted in practical OFDM systems. Conversely, pilot-based

CSI estimation is preferred for practical systems, because typically it is more robust

and less complex. In pilot-based CSI estimation, the pilot symbols are embedded

within the subcarriers of the transmitted OFDM signal in time and frequency do-

main; hence, the pilots form a two dimensional (2-D) grid [3]. The channel response

at the pilot symbols can be obtained using the least-squares (LS) frequency domain

estimation, and the channel parameters at other subcarriers can be obtained using

various interpolation techniques [22]. Optimal interpolation requires a 2-D Wiener

filter that exploits the time and frequency correlation of the channel, however, it is

substantially complex to implement [23], [24]. The complexity can be reduced by de-

composing the 2-D interpolation process into two cascaded 1-D processes, and then,

using less computationally-involved interpolation schemes [25], [26]. Low complexity

interpolation, however, is usually accompanied by error rate performance degradation

[26]. It is also worth noting that most practical OFDM-based systems utilize a fixed

grid pattern structure [3].

Once the channel parameters are obtained for all subcarriers, the received samples

at the output of the fast Fourier transform (FFT) are equalized to compensate for the
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channel fading. Fortunately, the equalization for OFDM is performed in the frequency

domain using single-tap equalizers. The equalizer output samples, which are denoted

as the decision variables, will be applied to a maximum likelihood detector (MLD) to

regenerate the information symbols.

In addition to the direct approach, several techniques have been proposed in the

literature to estimate the CSI or detect the data symbols indirectly, by exploiting the

correlation among the channel coefficients. For example, the per-survivor processing

(PSP) approach has been widely used to approximate the maximum likelihood se-

quence estimator (MLSE) for coded and uncoded sequences [27], [28], [29]. The PSP

utilizes the Viterbi algorithm (VA) to recursively estimate the CSI without interpo-

lation using the least mean squares (LMS) algorithm. Although the PSP provides

superior performance when the channel is flat over the entire sequence, its perfor-

mance degrades severely if this condition is not satisfied, even when the LMS step

size is adaptive [28]. Multiple symbol differential detection (MSDD) can be also used

for sequence estimation without explicit channel estimation. In such systems, the in-

formation is embedded in the phase difference between adjacent symbols, and hence,

differential encoding is needed. Although differential detection is only 3 dB worse

than coherent detection in flat fading channels, its performance may deteriorate sig-

nificantly in frequency-selective channels [30], [31]. Consequently, Wu and Kam [32]

proposed a generalized likelihood ratio test (GLRT) receiver whose performance with-

out CSI is comparable to the coherent detector. Although the GLRT receiver is more

robust than differential detectors in frequency-selective channels, its performance is

significantly worse than coherent detectors.

The estimator-correlator (EC) cross-correlates the received signal with an esti-

mate of the channel output signal corresponding to each possible transmitted signal

[33], [34]. The signal at channel output is estimated with a minimum mean square

error (MMSE) estimator from the knowledge of the received signal and the second
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order statistics of the channel and noise. The channel estimation (CE) may provide

BER that is about 1 dB from the ML coherent detector in flat fading channels but

at the expense of a large number of pilots. Moreover, the BER performance of EC

detectors is generally poor in frequency-selective channels where the CE BER is sig-

nificantly worse than the ML coherent detector [34]. Decision-directed techniques can

also be used to avoid conventional channel estimation. For example, the authors in

[11] proposed a hybrid frame structure that enables blind decision-directed channel

estimation. Although the proposed system manages to offer reliable channel estimates

and BER in various channel conditions, the system structure follows the typical co-

herent detector design where equalization and symbol detection are required.

5.1.1 Motivation and Key Contributions

Unlike conventional OFDM detectors, this work presents a new detector to regener-

ate the information symbols directly from the received samples at the FFT output,

which is denoted as the direct data detector (D3). By using the D3, there is no need

to perform channel estimation, interpolation, equalization, or symbol decision oper-

ations. The D3 exploits the fact that channel coefficients over adjacent subcarriers

are highly correlated and approximately equal. Consequently, the D3 is derived by

minimizing the difference between channel coefficients of adjacent subcarriers. The

main limitation of the D3 is that it suffers from a phase ambiguity problem, which

can be solved using pilot symbols, which are part of a transmission frame in most

practical standards [2], [3]. To the best of the authors’ knowledge, there is no work

reported in the published literature that uses the proposed principle.

The D3 performance is evaluated in terms of complexity, computational power,

and bit error rate (BER), where analytic expressions are derived for several channel

models and system configurations. The D3 BER is compared to other widely used

detectors such as the maximum likelihood (ML) coherent detector [35] with perfect
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and imperfect CSI, multiple symbol differential detector (MSDD) [30], the ML se-

quence detector (MLSD) with no CSI [32], and the per-survivor processing detector

[27]. The obtained results show that the D3 is more robust than all the other consid-

ered detectors in various cases of interest, particularly in frequency-selective channels

at moderate and high SNRs. Moreover, the computational power comparison shows

that the D3 requires less than 35% of the computational power required by the ML

coherent detector.

Notation : In what follows, unless otherwise specified, uppercase boldface and

blackboard letters such as H and H, will denote N ×N matrices, whereas lowercase

boldface letters such as x will denote row or column vectors with N elements. Up-

percase, lowercase, or bold letters with a tilde such as d̃ will denote trial values, and

symbols with a hat, such as x̂, will denote the estimate of x. Letters with apostrophe

such as v́ are used to denote the next value, i.e., v́ , v+1. Furthermore, E [·] denotes

the expectation operation.

5.2 Signal and Channel Models

Consider an OFDM system withN subcarriers modulated by a sequence ofN complex

data symbols d = [d0, d1, ...., dN−1]T . The data symbols are selected uniformly

from a general constellation such as M -ary phase shift keying (MPSK) or quadrature

amplitude modulation (QAM). In conventional pilot-aided OFDM systems [36], NP

of the subcarriers are allocated for pilot symbols, which can be used for channel

estimation and synchronization purposes. The modulation process in OFDM can be

implemented efficiently using an N -point inverse FFT (IFFT) algorithm, where its

output during the `th OFDM block can be written as x(`) = FHd(`) where F is the

normalized N ×N FFT matrix, and hence, FH is the IFFT matrix. To simplify the

notation, the block index ` is dropped for the remaining parts of this chapter unless
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it is necessary to include it. Then, a CP of length NCP samples, no less than the

channel maximum delay spread (Dh), is appended to compose the OFDM symbol

with a total length Nt = N +NCP samples and duration of Tts.

At the receiver front-end, the received signal is down-converted to baseband

and sampled at a rate Ts = Tt/Nt. In this work, the channel is assumed to be

composed of Dh + 1 independent multipath components each of which has a gain

hm ∼ CN
(
0, 2σ2

hm

)
and delay m × Ts, where m ∈ {0, 1,..., Dh}. A quasi-static

channel is assumed throughout this work, and thus, the channel taps are considered

constant over one OFDM symbol, but they may change over two consecutive sym-

bols. Therefore, the received sequence after dropping the CP samples and applying

the FFT can be expressed as,

r = Hd + w (5.1)

where {r,w} ∈ CN×1, wv ∼ CN (0, 2σ2
w) is the additive white Gaussian noise

(AWGN) vector and H denotes the channel frequency response (CFR)

H = diag {[H0, H1, . . . , HN−1]} . (5.2)

By noting that r|H,d ∼ CN (Hd, 2σ2
wIN) where IN is an N ×N identity matrix,

then it is straightforward to show that the MLD can be expressed as

d̂ = arg min
d̃

∥∥∥r−Hd̃
∥∥∥2

(5.3)

where ‖·‖ denotes the Euclidean norm, and d̃ =
[
d̃0, d̃1, . . . , d̃N1

]T
denotes the

trial values of d. As can be noted from (5.3), the MLD requires the knowledge of

H. Moreover, because (5.3) describes the detection of more than one symbol, it is

typically denoted as maximum likelihood sequence detector (MLSD). If the elements

of d are independent, the MLSD can be replaced by a symbol-by-symbol MLD
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d̂v = arg min
d̃v

∣∣∣rv−Hvd̃v

∣∣∣2 . (5.4)

Since perfect knowledge of H is infeasible, an estimated version of H, denoted as

Ĥ, can be used in (5.3) and (5.4) instead of H. Another possible approach to imple-

ment the detector is to equalize r, and then use a symbol-by-symbol MLD. Because

the considered system is assumed to have no ISI or intercarrier interference (ICI),

then a single-tap frequency-domain zero-forcing equalizer can be used. Therefore,

the equalized received sequence can be expressed as,

ř =
[
ĤHĤ

]−1

ĤHr (5.5)

and

d̂v = arg min
d̃v

∣∣∣řv − d̃v∣∣∣2 , ∀v. (5.6)

It is interesting to note that solving (5.3) does not necessarily require the explicit

knowledge of H under some special circumstances. For example, Wu and Kam [32]

noticed that in flat fading channels, i.e., Hv = H ∀v, it is possible to detect the data

symbols using the following MLSD,

d̂ = arg max
d̃

∣∣∣d̃Hr
∣∣∣2

‖ d̃‖
. (5.7)

Although the detector described in (5.7) is efficient in the sense that it does not

require the knowledge of H, its BER is very sensitive to the channel variations.

5.3 Proposed D3 System Model

One of the distinctive features of OFDM is that its channel coefficients over adjacent

subcarriers in the frequency domain are highly correlated and approximately equal.

The correlation coefficient between two adjacent subcarriers can be defined as
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%f , E [HvH
∗
v́ ]

= E

[ Dh∑
n=0

hne
−j2π nv

N

Dh∑
m=0

h∗me
j2πmv́

N

]
=

Dh∑
m=0

σ2
hme

j2πm
N (5.8)

where σ2
hm

= E
[
|hm|2

]
. The difference between two adjacent channel coefficients

is

∆f = E [Hv −Hv́] = E

[ Dh∑
m=0

hne
−j2πmv

N

(
1− e−j2πmN

)]
(5.9)

For large values of N , it is straightforward to show that %f → 1 and ∆f → 0.

Similar to the frequency domain, the time domain correlation defined according to

the Jakes’ model can be computed as [37],

%t = E
[
H`
v

(
H

´̀

v

)∗]
= J0 (2πfdTt) (5.10)

where J0 (·) is the Bessel function of the first kind and 0 order, fd is the maximum

Doppler frequency. For large values of N , 2πfdTs � 1, and hence J0 (2πfdTs) ≈ 1,

and thus %t ≈ 1. Using the same argument, the difference in the time domain ∆t ,

E
[
H`
v −H

´̀
v

]
≈ 0. Although the proposed system can be applied in the time domain,

frequency domain, or both, the focus of this work is the frequency domain.

Based on the aforementioned properties of OFDM, a simple approach to extract

the information symbols from the received sequence r can be designed by minimizing

the difference of the channel coefficients between adjacent subcarriers, which can be

expressed as

d̂ = arg min
d̃

N−2∑
v=0

∣∣∣∣ rvd̃v − rv́

d̃v́

∣∣∣∣2 . (5.11)

As can be noted from (5.11), the estimated data sequence d̂ can be obtained

without the knowledge of H. Moreover, there is no requirement for the channel coef-

ficients over the considered sequence to be equal, and hence, the D3 should perform
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fairly well even in frequency-selective fading channels. Nevertheless, it can be noted

that (5.11) does not have a unique solution because d and −d can minimize (5.11).

To resolve the phase ambiguity problem, one or more pilot symbols can be used as a

part of the sequence d. In such scenarios, the performance of the D3 will be affected

indirectly by the frequency selectivity of the channel because the capability of the

pilot to resolve the phase ambiguity depends on its fading coefficient. Another ad-

vantage of using pilot symbols is that it will not be necessary to detect the N symbols

simultaneously. Instead, it will be sufficient to detect K symbols at a time, which can

be exploited to simplify the system design and analysis.

Using the same approach of the frequency domain, the D3 can be designed to work

in the time domain as well by minimizing the channel coefficients over two consecutive

subcarriers, i.e., two subcarriers with the same index over two consecutive OFDM

symbols, which is also applicable to single carrier systems. It can be also designed to

work in both time and frequency domains, where the detector can be described as

D̂L,K= arg min
D̃L,K

J
(
D̃L,K

)
(5.12)

where DL,K is an L×K data matrix, L and K are the time and frequency detection

window size, and the objective function J
(
D̃
)

is given by

J
(
D̃L,K

)
=
L−1∑
`=0

K−2∑
v=0

∣∣∣∣∣ r`vd̃`v − r`v́
d̃`v́

∣∣∣∣∣
2

+

∣∣∣∣∣ r`vd̃`v − r
´̀
v

d̃´̀
v

∣∣∣∣∣
2

. (5.13)

For example, if the detection window size is chosen to be the LTE resource block,

then, L = 14 and K =12. Moreover, the system presented in (5.13) can be extended

to the multi-branch receiver scenarios, single-input multiple-output (SIMO) as,

D̂ = arg min
d̃

N∑
n=1

L−1∑
`=0

K−2∑
v=0

∣∣∣∣∣r`,nvd̃v − r`,nv́
d̃`v́

∣∣∣∣∣
2

+

∣∣∣∣∣r`,nvd̃`v − r
´̀,n
v

d̃´̀
v

∣∣∣∣∣
2

(5.14)

where N is the number of receiving antennas.
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5.4 Efficient Implementation of D3

It can be noted from (5.12) and (5.13) that solving for D̂, given that NP pilot sym-

bols are used, requires an MKL−NP trials if brute force search is adopted, which is

prohibitively complex, and thus, reducing the computational complexity is crucial.

Towards this goal, the two dimensional (2-D) resource block (RB) can be divided into

a number of one-dimensional (1-D) segments in time and frequency domains in order

to reduce the complexity from order O
(
MK×L−NP

)
to O (M× (KL−NP)). In order

words, the time complexity evolves exponentially as the detection size increases in

the 2-D block, while it grows linearly in the cascaded 1-D block, which is significant

complexity reduction. Fig. 5.1 shows an example of decomposing the 2-D LTE-A RB

into several 1-D segments over time and frequency. As can be noted from the figure,

the RB consists of 168 subcarriers among which 8 subcarriers are pilots. It is worth

noting that there are some rows and columns in the RB that do not have pilots, and

thus, the detection of the entire block can be performed as described in Subsection

5.4.2.

5.4.1 The Viterbi Algorithm (VA)

By noting that the expression in (5.11) corresponds to the sum of correlated terms,

which can be modeled as a first-order Markov process, then MLSD techniques such as

the VA can be used to implement the D3 efficiently. For example, the trellis diagram

of the VA with binary phase shift keying (BPSK) is shown in Fig. 5.2, and can be

implemented as follows:

1. Initialize the path metrics
{

ΓU0 , Γ́
U
0 ,Γ

L
0 , Γ́

L
0

}
= 0, where U and L denote the

upper and lower branches, respectively. Since BPSK is used, the number of

states is 2.

2. Initialize the counter, c = 0.
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Figure 5.1: Example of a 1-D segmentation over the frequency domain for an LTE-A resource
block.

3. Compute the branch metric J cm,n =
∣∣ rc
m
− rć

n

∣∣2, where m is current symbol index,

m = 0 → d̃ = −1, and m = 1 → d̃ = 1, and n is the next symbol index using

the same mapping as m.

4. Compute the path metrics using the following rules,

ΓUć = min
[
ΓUc , Γ́Uc

]
+ J c00 ΓLć = min

[
ΓLc , Γ́Lc

]
+ J c01

Γ́Uć = min
[
ΓUc , Γ́Uc

]
+ J c10 Γ́Lć = min

[
ΓLc , Γ́Lc

]
+ J c11

5. Track the surviving paths, 2 paths in the case of BPSK.

6. Increase the counter, c = c+ 1.

7. if c = K, the algorithm ends. Otherwise, go to step 3.

It is worth mentioning that placing a pilot symbol at the edge of a segment

terminates the trellis. To simplify the discussion, assume that the pilot value is −1,

and thus we compute only J0,0 and J1,0. Consequently, long data sequences can
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Figure 5.2: Trellis diagram of the D3 detector for BPSK.

be divided into smaller segments bounded by pilots, which can reduce the delay by

performing the detection over the sub-segments in parallel without sacrificing the

error rate performance.

5.4.2 Resource Block Detection

As can be noted from Fig. 5.1, the segmentation process can be applied directly

to any row or column given that has one or more pilots. Nevertheless, there are

some rows and columns that do not have pilots. In such scenarios, the detection, for

example, can be performed in two steps as follows:

1. Detect all rows (frequency domain subcarriers) with pilots, i.e., rows 1, 5, 8 and

12.

2. As a result of the first step, each column (time domain subcarrier) has either

pilots, data symbols whose values are known as a result of the detection in the

first step, or both, as in the case of columns 1, 4, 7 and 10. Therefore, all

remaining subcarriers can be detected using the symbols detected in the first

step.

It is worth noting that the number and distribution of the pilot symbols in the RB

impact the error rate performance, power and spectral efficiency of the system. For

example, the first frequency segment shown in Fig. 5.1 consists of seven subcarriers,
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two of them are allocated for pilots. By defining the throughput, or the spectral

efficiency, as the ratio of the number of information symbols to the total number of

symbols per segment, then the throughput of the first frequency and time segments in

Fig. 5.1 is about 83.3% and 85.7%, respectively. Nevertheless, the system throughput

is determined by the total number of pilots and information subcarriers within an

RB rather than a segment. By noting that there are only eight pilots among the

168 resource elements , then the throughput loss is about 4.7% and the throughput

is about 95.2%. The same argument can be applied to the power efficiency of the

system where 4.7% of the power will be allocated to pilots.

5.4.3 System Design with an Error Control Coding

Forward error correction (FEC) coding can be integrated with the D3 in two ways,

based on the decoding process, i.e., hard or soft decision decoding. For the hard

decision decoding, the integration of FEC coding is straightforward where the output

of the D3 is applied directly to the hard decision decoder (HDD).

For the soft decision decoding, we can exploit the coded data to enhance the

performance of theD3, and then use theD3 output to estimate the channel coefficients

in a decision-directed manner. The D3 with coded data can be expressed as

d̂ = arg min
ũ∈U

N−2∑
v=0

∣∣∣∣ rvũv − rv́
ũv́

∣∣∣∣2 (5.15)

where U is the set of all codewords modulated using the same modulation used

at the transmitter. Therefore, the trial sequences ũ are restricted to particular se-

quences. For the case of convolutional codes, the detection and decoding processes

can be integrated smoothly since both of them are using the VA. Such an approach

can be adopted with linear block codes as well because trellis-based decoding can be

also applied to block codes [38].
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Figure 5.3: Single-sided pilot segment.
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Figure 5.4: Double-sided pilot segment.

5.5 Error Rate Analysis of the D3

The system BER analysis is presented for several cases according to the pilot and

data arrangements. For simplicity, each case is discussed in separate subsections. To

make the analysis tractable, we consider BPSK modulation in the analysis while the

BER of higher-order modulations is obtained via Monte Carlo simulations.

5.5.1 Single-Sided Pilot

To detect a data segment that contains K symbols, at least one pilot symbol should

be part of the segment in order to resolve the phase ambiguity problem. Conse-

quently, the analysis in this subsection considers the case where there is only one

pilot within the K symbols, as shown in Fig. 5.3. Given that the FFT output vector

r = [r0, r1, . . . , rN−1] is divided into L segments each of which consists of K symbols,

including the pilot symbol, then the frequency domain D3 detector can be written as,

d̂l = arg min
d̃

K−2+l∑
v=l

∣∣∣∣ rvd̃v − rv́

d̃v́

∣∣∣∣2 K ∈ {2, 3, . . . , N − 1} (5.16)

where l denotes the index of the first subcarrier in the segment, and without loss

of generality, we consider that l = 0. Therefore, by expanding (5.16) we obtain,

d̂0 = arg min
d̃

(
r0

d̃0

− r1

d̃1

)(
r0

d̃0

− r1

d̃1

)∗
+ · · · +

(
rK−2

d̃K−2

− rK−1

d̃K−1

)(
rK−2

d̃K−2

− rK−1

d̃K−1

)∗
(5.17)
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which can be simplified to,

d̂0 = arg min
d̃

∣∣∣∣ r0

d̃0

∣∣∣∣2 +

∣∣∣∣ r1

d̃1

∣∣∣∣2 + · · ·+
∣∣∣∣ rK−1

d̃K−1

∣∣∣∣2 − r0

d̃0

r1

d̃∗1
− r0

d̃∗0

r1

d̃1

− · · ·

− rK−2

d̃K−2

rK−1

d̃∗K−1

− rK−2

d̃∗K−2

rK−1

d̃K−1

. (5.18)

For BPSK,
∣∣∣rv/d̃v∣∣∣2 = |rv|2, which is a constant term with respect to the maximization

process in (5.18), and thus, they can be dropped. Therefore, the detector is reduced

to

d̂0 = arg max
d̃0

K−2∑
v=0

<
{
rvrv́

d̃vd̃v́

}
. (5.19)

Given that the pilot symbol is placed in the first subcarrier and noting that dv ∈

{−1, 1}, then d̃0 = 1 and d̂0 can be written as

d̂0 = arg max
d̃0 /∈d̃0

1

d̃1

<{r0r1}+
K−2∑
v=1

1

d̃vd̃v́
<{rvrv́} . (5.20)

The sequence error probability (PS), conditioned on the channel frequency re-

sponse over the K symbols (H0) and the transmitted data sequence d0 can be defined

as,

PS|H0,d0 , Pr
(
d̂0 6= d0

)∣∣∣
H0,d0

(5.21)

which can be also written in terms of the conditional probability of correct detec-

tion PC as,

PC |H0,d0 = 1− Pr
(
d̂0 = d0

)
|H0,d0 . (5.22)

Without loss of generality, we assume that d0=[1, 1,. . . , 1] , 1 . Therefore,

PC |H0,1 = Pr

(
K−2∑
v=0

<{rvrv́} = max
d̃0

{
K−2∑
v=0

<{rvrv́}
d̃vd̃v́

})
. (5.23)
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Since d0 has K−1 data symbols, then there are 2K−1 trial sequences, d̃
(0)
0 , d̃

(1)
0 ,. . .,

d̃
(ψ)
0 , where ψ = 2K−1−1, and d̃

(ψ)
0 =[1, 1,. . . , 1] . The first symbol in every sequence is

set to 1, which is the pilot symbol. By defining
∑K−2

v=0
<{rvrv́}
d̃v d̃v́

, An, where d̃vd̃v́ ∈ d̃
(n)
0 ,

then (5.23) can be written as,

PC |H0,1 = Pr (Aψ > Aψ−1, Aψ−2, . . . , A0) (5.24)

which, as depicted in Appendix B, can be simplified to

PC |H0,1 =
K−2∏
v=0

Pr (<{rvrv́} > 0) . (5.25)

To evaluate PC |H0,1 given in (5.25), it is necessary to compute Pr (<{rvrv́} > 0),

which can be written as

Pr (<{rvrv́} > 0) = Pr

rIvrIv́ − rQv rQv́︸ ︷︷ ︸
rSP
v,v́

> 0

 . (5.26)

Given that d0=[1, 1,. . . , 1] , then rIv = <{rv} = HI
v + wIv and rQv = ={rv} =

HQ
v + wQv . Therefore, rIv , r

Q
v , rIv́ and rQv́ are independent conditionally Gaussian

random variables with averages HI
v , HQ

v , HI
v́ and HQ

v́ , respectively, and the variance

for all elements is σ2
w. To derive the PDF of rSP

v,v́, the PDFs of rIvr
I
v́ and rQv r

Q
v́ should be

evaluated, where each of which corresponds to the product of two Gaussian random

variables. Although the product of two Gaussian variables is not usually Gaussian,

the limit of the moment-generating function of the product has Gaussian distribution.

Therefore, the product of two variables X ∼ N (µx, σ
2
x) and Y ∼ N (µy, σ

2
y) tends to

beN (µxµy, µ
2
xσ

2
y+µ2

yσ
2
x) as the ratios µx/σx and µy/σy increase [39]. By noting that in

in (5.26) E
[
rxy
]

= Hx
y , x ∈ {I,Q} and y ∈ {v, v́} and σrxy = σw, thus E

[
rxy
]
/σrxy � 1

∀ {x, y}. Moreover, because the PDF of the sum or difference of two Gaussian random

variables is also Gaussian, then, rSP
v,v́ ∼ N (µ̄SP, σ̄

2
SP) where µ̄SP = HI

vH
I
v́ +HQ

v H
Q
v́ and

σ̄2
SP = σ2

w

(
|Hv|2 + |Hv́|2 + σ2

w

)
. Consequently,
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PC |H0,1 =
K−2∏
v=0

Pr
(
rSP
v,v́ > 0

)
=
K−2∏
v=0

[
1−Q

(√
2µ̄SP

σ̄2
SP

)]
(5.27)

and

PS|H0,1 = 1−
K−2∏
v=0

[
1−Q

(√
2µ̄SP

σ̄2
SP

)]
(5.28)

where Q (x) , 1√
2π

∫∞
x

exp
(
− t2

2

)
dt. Since HI

v and HQ
v are independent, then, the

condition on H0 in (5.28) can be removed by averaging PS over the PDF of HI
0 and

HQ
0 as,

SEP |d=1=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

2K fold

SEP |H0,d=1 fHI
0

(
HI

0 , H
I
1 , . . . , H

I
K−1

)
×

fHQ
0

(
HQ

0 , H
Q
1 , . . . , H

Q
K−1

)
dHI

0dH
I
1 . . . dH

I
K−1dH

Q
0 dH

Q
1 . . . dH

Q
K−1. (5.29)

Because the random variables HI
i and HQ

i ∀i in (5.29) are real and Gaussian, their

PDFs are multivariate Gaussian distributions [35],

fX (X0, X1, . . . , XK−1) =
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

)√
(2π)K|Σ|

(5.30)

where µ is the mean vector, which is defined as,

µ = E [X] = [E [X1] ,E [X2] , . . . ,E [XK−1]]T (5.31)

and Σ is the covariance matrix, Σ = E
[
(X− µ) (X− µ)T

]
.

Due to the difficulty of evaluating 2K integrals, we consider the special case of flat

fading, which implies that Hv = Hv́ , H and
(
HI
)2

+
(
HQ
)2

, α2, where α is the

channel fading envelope, α = |H|. Therefore, the SEP expression in (5.28) becomes,

PS|α,1 = 1−
[

1−Q
(√

α2

σ2
w (α2 + σ2

w)

)]K−1

. (5.32)
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Recalling the Binomial Theorem, we get

(a+ b)n =
n∑
v=0

(
n

v

)
an−vbv,

(
n

v

)
,

n!

(n− v)!v!
. (5.33)

Then the SEP formula in (5.32) using the Binomial Theorem in (5.33) can be

written as,

PS|α,1 = 1−
K−1∑
v=0

(K − 1

v

)
(−1)v

[
Q

(√
α2

σ2
w (α2 + σ2

w)

)]v
. (5.34)

The conditioning on α can be removed by averaging over the PDF of α, which is

Rayleigh. Therefore,

f (α) =
α

σ2
H

e
− α2

2σ2
H . (5.35)

And hence,

PS|1 =

∫ ∞
0

PS|α,1 f (α) dα. (5.36)

Because the expression in (5.32) contains high order of Q-function Qn (x), eval-

uating the integral analytically becomes intractable for K > 2. For the special case

of K = 2, PS can be evaluated by substituting (5.34) and (5.35) into (5.36) and

evaluating the integral yields the following simple expression,

PS|1 =
1

2 (γ̄s + 1)
, γ̄s ,

E
[
|dv|2

]
E
[
|H|2

]
2σ2

w

(5.37)

where γ̄s is the average signal-to-noise ratio (SNR). Moreover, because all data

sequences have an equal probability of error, then PS|1 = PS, which also equivalent

to the bit error rate (BER). It is interesting to note that (5.37) is similar to the

BER of the differential binary phase shift keying (DBPSK) [35]. However, the two

techniques are essentially different as D3 does not require differential encoding, has

no constraints on the shape of the signal constellation, and performs well even in
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frequency-selective fading channels.

To evaluate PS for K > 2, we use an approximation for Q (x) in [40], which is

given by

Q (x) ≈ 1√
2π (x2 + 1)

e−
1
2
x2

, x ∈ [0,∞). (5.38)

Therefore, by substituting (5.38) into the conditional SEP (5.34) and averaging

over the Rayleigh PDF (5.35), the evaluation of the SEP becomes straightforward.

For example, evaluating the integral for K = 3 gives,

PS|1 =
ζ1

π
Ei (1, ζ1 + 1) eζ1+1, ζ1 ,

1

2γ̄s

(
1

γ̄s
+ 1

)
(5.39)

where Ei (x) is the exponential integral (EI), Ei (x) , −
∫∞
−x

e−t

t
dt. Similarly, PS

for K = 7 can be evaluated to,

PS|1 =
ζ2

64π3

[
eζ+3 (2ζ2 + 6)2 Ei (1, ζ2 + 3)− 4 (ζ2 + 1)

]
, ζ2 ,

1

2γ̄s

(
1

4γ̄s
+ 1

)
.

(5.40)

Although the SEP is a very useful indicator for the system error probability per-

formance, the BER is actually more informative. For a sequence that contains KD
information bits, the BER can be expressed as PB = 1

Λ
PS, where Λ denotes the

average number of bit errors given a sequence error, which can be defined as

Λ =

KD∑
m=1

mPr (m) . (5.41)

Because the SEP is independent of the transmitted data sequence, then, without

loss of generality, we assume that the transmitted data sequence is d
(0)
0 . Therefore,

Λ =

KD∑
m=1

mPr

(∥∥∥d̂0

∥∥∥2

= m

)
(5.42)

where
∥∥∥d̂0

∥∥∥2

, in this case, corresponds to the Hamming weight of the detected

112



Chapter 5. Direct Data Detection of OFDM Signals Over Wireless Channels
5.5. Error Rate Analysis of the D3

sequence d̂0, which can be expressed as

Pr

(∥∥∥d̂0

∥∥∥2

= m

)
= Pr

(
d

(0)
0 →

⋃
i

d
(i)
0

)
,
∥∥∥d(i)

0

∥∥∥2

= m (5.43)

where d
(0)
0 → d

(i)
0 denotes the pairwise error probability (PEP). By noting that

Pr
(
d

(0)
0 → d

(i)
0

)
6= Pr

(
d

(0)
0 → d

(j)
0

)
∀i 6= j, then deriving the PEP for all cases of

interest is intractable. As an alternative, a simple approximation is derived.

For a sequence that consists of KD information bits, the BER is bounded by

1

KD
PS ≤ PB ≤ PS. (5.44)

In practical systems, the number of bits in the detected sequence is generally not

large, which implies that the upper and lower bounds in (5.44) are relatively tight,

and hence, the BER can be approximated as the middle point between the two bounds

as,

PB ≈
PS

0.5 (1 +KD)
. (5.45)

The analysis of the general 1×N SIMO system is a straightforward extension of

the single-input single-output (SISO) case. To simplify the analysis, we consider the

flat channel case where the conditional SEP can be written as,

PS|α = 1−

1−Q

√√√√ ∑N
i=1 α

2
i

σ2
w

(
Nσ2

w +
∑N

i=1 α
2
i

)
K−1

. (5.46)

Given that all the receiving branches are independent, the fading envelopes will

have Rayleigh distribution αi ∼ R (2σ2
H) ∀i, and thus,

∑N
i=1 α

2
i , a will have Gamma

distribution, a ∼ G (N , 2σ2
H),

f (a) =
(
2σ2

H

)N
e−2σ2

Ha aN−1

Γ (N )
. (5.47)

Therefore, the unconditional SEP can be evaluated as,
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PS =

∫ ∞
0

PS|α fA (a) da. (5.48)

For the special case of N =2, K = 2, PS can be evaluated as,

PS =
1

2
+Q

(
κ√
γ̄s

)[
2γ̄s

(
γ̄s√

2
+ 2

)
− eκ2

]
− γ̄s

κ√
2π

(5.49)

where κ ,
√

2 + γ̄s. Computing the closed-form formulas for other values of N

and K can be evaluated following the same approach used in the SISO case.

5.5.2 Double-Sided Pilot

Embedding more pilots in the detection segment can improve the detector’s perfor-

mance. Consequently, it worth investigating the effect of embedding more pilots in the

SEP analysis. More specifically, we consider double-sided segment, d̃0 = 1, d̃K−1 = 1,

as illustrated in Fig. 5.4. In this case, the detector can be expressed as,

d̂0 = arg max
d̃0

<{r0r1}
d̃1

+
<{rK−2rK−1}

d̃K−2

+
K−3∑
v=1

<{rvrv́}
d̃vd̃v́

, K ∈ {3, 4, . . . , N − 1} .

(5.50)

From the definition in (5.50), the probability of receiving the correct sequence can

be derived based on the reduced number of trials as compared to (5.20). Therefore,

PC |H0,1 = Pr
(

(<{r0r1}+ <{rK−2rK−1})∩

<{r1r2} ∩ <{r2r3} ∩ · · · ∩ < {rK−4rK−3} > 0
)

(5.51)

which, similar to the single-sided case, can be written as,

PC |H0,1 = Pr

([
K−3∏
v=0

Pr (<{rvrv́}) +
K−2∏
v=1

Pr (<{rvrv́})
]
> 0

)
. (5.52)

Therefore,
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PS|H0,1 = 1−

1−Q

√2
√

2µ̄SP

σ̄2
SP

× K−3∏
v=1

[
1−Q

(√
2µ̄SP

σ̄2
SP

)]
. (5.53)

For flat fading channels, the SEP expression in (5.53) can be simplified by following

the same procedure in Subsection 5.5.1, for the special case of K = 3, the SEP

becomes,

PS =

(
Υ

2
−
√

2

)
1

Υ
, Υ ,

√
8γ̄s +

√
2

(
4 +

1

γ̄s

)
. (5.54)

For K > 3, the approximation of Qn (x), as illustrated in Subsection 5.5.1, can be

used in (5.53) to average over the PDF in (5.35). For example, the case K = 4 can

be evaluated as,

PS =
1

8πγ̄s
(Ω1 − 1) eΩ1Ei (1,Ω1) , Ω1 , 1 +

√
2

4γ̄s

(
1 +

1

4γ̄s

)
. (5.55)

For K = 6,

PS =
Ω1 − 1

4π2

[
1−

[
(Ω1 − 1) eΩ2 + 2

]
Ei (1,Ω2)

]
, Ω2 , 2 +

√
2

γ̄s

(
8 +

1

32γ̄s

)
(5.56)

For the double-sided pilot, PB = PS for the case of K = 3, while it can be

computed using (5.45) for K > 3.

5.6 Complexity Analysis

The computational complexity is evaluated as the total number of primitive oper-

ations needed to perform the detection. The operations that will be used are the

number of real additions (RA), real multiplications (RM), and real divisions (RD)

required to produce the set of detected symbols d̂ for each technique. It worth noting

that one complex multiplication (CM) is equivalent to four RM and three RA opera-
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tions, while one complex addition (CA) requires two RA. To simplify the analysis, we

first assume that constant modulus (CM) constellations such as MPSK is used, then,

we evaluate the complexity for higher-order modulation such as quadrature amplitude

modulation (QAM) modulation.

5.6.1 Complexity of Conventional OFDM Detectors

The complexity of the conventional OFDM receiver that consists of the following

main steps with the corresponding computational complexities:

1. Channel estimation of the pilot symbols, which computes Ĥk at all pilot subcar-

riers. Assuming that the pilot symbol dk is selected from a CM constellation,

then Ĥk = rkd
∗
k and hence, NP complex multiplications are required. Therefore,

R
(1)
A = 4NP and R

(1)
M = 4NP .

2. Interpolation, which is used to estimate the channel at the non-pilot subcarri-

ers. The complexity of the interpolation process depends on the interpolation

algorithm used. For comparison purposes, we assume that linear interpola-

tion is used, which is the least complex interpolation algorithm. The linear

interpolation requires one complex multiplication and two complex additions

per interpolated sample. Therefore, the number of complex multiplications re-

quired is N − NP and the number of complex additions is 2 (N −NP ). And

hence, R
(2)
A = 7 (N −NP ) and R

(2)
M = 4 (N −NP ).

3. Equalization, a single-tap equalizer requires N −NP complex division to com-

pute the decision variables řk = rk
Ĥk

= rk
Ĥ∗k

|Ĥ∗k|2
. Therefore, one complex di-

vision requires two complex multiplications and one real division. Therefore,

R
(3)
A = 6 (N −NP ), R

(3)
M = 8 (N −NP ) and R

(3)
D = (N −NP ).

4. Detection, assuming symbol-by-symbol minimum distance detection, the detec-

tor can be expressed as d̂k = arg mind̃i J
(
d̃i

)
, ∀i ∈ {0, 1, . . . ,M − 1} where
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J
(
d̃i

)
=
∣∣∣řk − d̃i∣∣∣2 . Assuming CM modulation is used, expanding the cost

function and dropping the constant terms we can write J
(
d̃k

)
= −řkd̃∗k− ř∗kd̃k.

We can also drop the minus sign from the cost function, and thus, the objective

becomes maximizing the cost function d̂k = arg mind̃i J
(
d̃i

)
. Since the two

terms are complex conjugate pair, then −řkd̃∗k − ř∗kd̃k = 2<
{
řkd̃
∗
k

}
, and thus

we can write the detected symbols as,

d̂k = arg max
d̃k

(
<{řk}<

{
d̃∗k

}
−={řk}=

{
d̃∗k

})
(5.57)

Therefore, the number of real multiplications required for each information sym-

bol is 2M , and the number of additions is M . Therefore, R
(4)
A = (N −NP )M

and R
(4)
M = 2 (N −NP )M .

Finally, the total computational complexity per OFDM symbol can be obtained by

adding the complexities of the individual steps 1→ 4, as:

RCM
A =

4∑
i=1

R
(i)
A = (13 +M)N − (10 +M)NP (5.58)

RCM
M =

4∑
i=1

R
(i)
M = 2N (6 +M)− 2NP (4 +M) (5.59)

RCM
D =

4∑
i=1

R
(i)
D = N −NP . (5.60)

For higher modulation orders, such as QAM, the complexity of the conventional

OFDM receivers considering addition division operations is computed following the

same steps 1→ 4 above, and found to be as:
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RQAM
A =

4∑
i=1

R
(i)
A =6NP + (13 + 2M) (N −NP ) (5.61)

RQAM
M =

4∑
i=1

R
(i)
M = 8NP + (12 + 4M) (N −NP ) (5.62)

RQAM
D =

4∑
i=1

R
(i)
D = NP + 2M (N −NP ) (5.63)

5.6.2 Complexity of the D3

The complexity of the D3 based on the VA is mostly determined by the branch and

path metrics calculation. The branch metrics can be computed as

J cm,n =
|rc|2∣∣∣d̃m∣∣∣2 −

rcr
∗
ć

d̃md̃∗n
− r∗crć

d̃∗md̃n
+
|rc|2∣∣∣d̃n∣∣∣2 . (5.64)

For CM constellation, the first and last terms are constants, and hence, can be

dropped. Therefore,

J cm,n = − rcr
∗
ć

d̃md̃∗n
+

r∗crć

d̃∗md̃n
. (5.65)

By noting that the two terms in (5.65) are the complex conjugate pair, then

J cm,n = −2<
{
rcr
∗
ć

d̃md̃∗n

}
. (5.66)

From the expression in (5.66), the constant “−2” can be dropped from the cost

function, however, the problem with be flipped to a maximization problem. Therefore,

by expanding (5.66), we get,

J cm,n = <

<{rc}<{r∗ć} − ={rc}={r∗ć}+ j [−<{rc}={r∗ć}+ ={rc}={r∗ć}]
<
{
d̃md̃∗n

}
+ j=

{
d̃md̃∗n

}
 .

(5.67)
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By defining d̃md̃
∗
n , ũm,n, and using complex numbers identities, we get (5.68),

J cm,n =
[<{rc}<{r∗ć}+ ={rc}={r∗ć}]<{ũm,n} − [−<{rc}={r∗ć}+ ={rc}={r∗ć}]={ũm,n}

< {ũm,n}2 + ={ũm,n}2 .

(5.68)

For CM, <{ũm,n}2 + ={ũm,n}2 is constant, and hence, it can be dropped from

the cost function, which implies that no division operations are required.

To compute J cm,n, it is worth noting that the two terms in brackets are independent

of {m,n}, and hence, they are computed only once for each value of c. Therefore, the

complexity at each step in the trellis can be computed asRA = 3×2M , RM = 4+2×2M

and RD = 0, where 2M is the number of branches at each step in the trellis. However,

if the trellis starts or ends by a pilot, then only M computations are required. By

noting that the number of full steps is N − 2NP − 1, and the number of steps that

require M computations is 2 (NP − 1), then the total computations of the branch

metrics (BM) are:

RBM
A =

(
3× 2M

)
(N − 2NP − 1) + 2 (3×M) (NP − 1)

RBM
M =

(
4 + 2M+1

)
(N − 2NP − 1) + 2 (NP − 1) (4 + 2M)

RBM
D = 0

The path metrics (PM) requireRPM
A = (N − 2NP − 1)+M (NP − 1) real addition.

Therefore, the total complexity is:

RCM
A = (N − 2NP − 1)

(
5× 2M

)
+ 7M (NP − 1) (5.69)

RCM
M = (N − 2NP − 1)

(
4 + 2M+1

)
+ 2 (NP − 1) (4 + 2M) (5.70)

RCM
D = 0 (5.71)

For QAM modulation, the most general case for the branch metrics of the D3 will

be used as,
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Table 5.1: Computational complexity comparison using different values of N , NP = N/4,
for BPSK.

N 128 256 512 1024 2048

ηRA 0.58 1.07 1.21 1.27 1.31

ηRM 0.77 0.72 0.68 0.64 0.61

RD 96 192 384 768 1536

ηP 0.20 0.21 0.22 0.26 0.31

J cm,n =

∣∣∣∣ rcd̃m − rć

d̃n

∣∣∣∣2 . (5.72)

The branch metric in (5.72) requires one complex addition, CA = 1, one complex

multiplication, CM = 1, and two complex divisions, CD = 2, per branch metrics.

Therefore, the total path metric complexity is:

RQAM
A = 5MNP + 10M (N −NP ) (5.73)

RQAM
M = 4MNP + 8M (N −NP ) (5.74)

RQAM
D = 2MNP + 4M (N −NP ) (5.75)

To compare the complexity of the D3, we use the conventional detector using LS

channel estimation, linear interpolation, zero-forcing (ZF) equalization, and MLD,

denoted as coherent-L, as a benchmark due to its low complexity. The relative com-

plexity is denoted by η, which corresponds to the ratio of the D3 complexity to the

conventional detector, i.e., ηRA denotes the ratio of real additions and ηRM corresponds

to the ratio of real multiplications. As depicted in Table 5.1, RA for D3 less than

coherent-L only using BPSK for N = 128, and then it becomes larger for all the other

considered values of N . For RM , D3 is always less than the coherent-L, particularly

for high values of N , where it becomes 0.61 for N = 2048. It is worth noting that RD

in the table corresponds to the number of divisions in the conventional OFDM since

the D3 does not require any division operations. For a more informative comparison

between the two systems, we use the computational power analysis presented in [41],
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Table 5.2: Computational complexity comparison using different values of N , NP = N/4,
for 16-QAM and 64-QAM.

M 16 64

N 512 2048 512 2048

ηRA 1.25 1.25 1.64 1.64

ηRM 0.52 0.47 0.64 0.62

ηRD 0.98 0.98 0.99 0.99

ηP 0.94 0.84 0.91 0.80

where the total power for each detector is estimated based on the total number of

operations. Table 5.1 shows the relative computational power ηP , which shows that

the D3 detector requires only 0.2 of the power required by the coherent-L detector

for N = 128 and 0.31% for N = 2048.

It is also worth considering the complexity analysis for higher modulation orders

that require division operations such as 16-QAM and 64-QAM since they widely

used in modern wireless broadband systems [2], [3]. Table 5.2 shows the rations of

real multiplications, multiplications, divisions, and lastly the ration of the overall

computational power for 16-QAM and 64-QAM considering N = 512 and N = 2048.

Unlike the CM modulus case, the D3 requires division operations, where it is very

comparable to conventional OFDM receivers in terms of the division computational

resources. Although, the total number of computational addition resources needed

is higher in D3 by 25% − 65%, Nevertheless, the overall computational resources in

D3 is less than the conventional OFDM reveries by %6− 20% due to the significant

saving in the multiplication operations of the D3.

Besides, it is worth noting that linear interpolation has lower complexity as com-

pared to more accurate interpolation schemes such as the spline interpolation [42],

[43], which comes at the expense of the error rate performance. Therefore, the results

presented in Table 5.1 can be generally considered as upper bounds on the relative

complexity of the D3, when more accurate interpolation schemes are used, the relative
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Table 5.3: Computational complexity comparison using hard and soft VA for different values
of K, N = 2048.

K 3 4 5 6 7

Soft 0.96 0.97 0.97 0.98 0.99

Hard 0.24 0.26 0.28 0.33 0.41

complexity will drop even further as compared to the results in Table 5.1.

5.6.3 Complexity with Error Correction Coding

To evaluate the impact of the complexity reduction of the D3 in the presence of FEC

coding, convolutional codes are considered with soft and hard decision decoding using

the VA. BPSK is the modulation considered for the complexity evaluation and the

code rate is assumed to be 1/2. For decoding of convolutional codes, the soft VA

requires n× 2K addition or subtractions and multiplications per decoded bit, where

1/n is the code rate and K is the constraint length [44]. Therefore, for 1/2 code

rate, RA = RM = 2K+1. Given that each OFDM symbol has N coded bits and N/2

information bits, the complexity per OFDM symbol becomesRA = RM = N×2K . For

the hard VA, N×2K XOR operations are required for the branch metric computation,

while N × 2K−1 additions are required for the path metric computations. Because

the XOR operation is a bit operation, it’s complexity is much less than the addition.

Assuming that addition is using an 8-bit representation, then the complexity of an

addition operation is about eight times the XOR. Therefore, RA, in this case, can be

approximated as N
(
2K + 2K−2

)
.

As can be noted from Table 5.3, the complexity reduction when soft VA is used

less significant as compared to the hard VA. Such a result is obtained because the

soft VA requires the CSI to compute the reliability factors, which requires N − NP

division operations when the D3 is used. For hard decoding, the advantage of the D3

is significant even for high constraint length values.
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5.7 Numerical Results

This section presents the performance of the D3 detector in terms of BER for several

operating scenarios. The system model follows the LTE-A physical layer (PHY) spec-

ifications [3], where the adopted OFDM symbol has N = 512, NCP = 64, the sampling

frequency fs = 7.68 MHz, the subcarrier spacing ∆f = 15 kHz, and the pilot grid fol-

lows that of Fig. 5.1. The total OFDM symbol period is 75 µ sec, and the CP period

is 4.69 µ sec. The channel models used are the flat Rayleigh fading channel, the typi-

cal urban (TUx) multipath fading model [45] that consists of 6 taps with normalized

delays of [0, 2, 3, 9, 13, 29] and average taps gains are [0.2, 0.398, 0.2, 0.1, 0.063, 0.039],

which corresponds to a severe frequency-selective channel. The TUx model is also

used to model a moderate frequency-selective channel where the number of taps in

the channel is 9 with normalized delays of [0, 1, . . ., 8] samples, and the average taps

gains are [0.269, 0.174, 0.289, 0.117, 0.023, 0.058, 0.036, 0.026, 0.008]. The chan-

nel taps gains are assumed to be independent and Rayleigh distributed. The Monte

Carlo simulation results included in this work are obtained by generating 106 OFDM

symbols per simulation run. Throughout this section, the ML coherent detector with

perfect CSI will be denoted as coherent, while the coherent with linear and spline

interpolation will be denoted as coherent-L and coherent-S, respectively. Moreover,

the results are presented for the SISO system, N= 1, unless it is mentioned other-

wise. The SNR in the obtained results is defined as the ratio of the average received

signal power to the average noise power regardless of the number of pilots. Such an

approach is followed because the proposed system in this work is evaluated in the

context of the LTE RB, which has a fixed structure. For more general comparisons,

the power and spectral efficiency of all considered systems should be identical. It is

worth noting that the considered channel model is widely used in the literature for

4G, and hence, it was adopted in the work. In addition, the new channel models

have been studied for 5G from [46, Table 7.7.1-5. CDL-E., page 66] are similar to the
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adopted channel for several cases of interests.

Fig. 5.5 shows the BER of the single-sided (SS) and double-sided (DS) D3 over

flat fading channels for K = 2, 6 and 3, 7, respectively, and using BPSK. The number

of data symbols KD = K − 1 for the SS and KD = K − 2 for the DS because there

are two pilot symbols at both ends of the data segment for the DS case. The results

in the figure for the SS show that K has a noticeable impact on the BER where the

difference between the K = 2 and 6 cases is about 1.6 dB at BER of 10−3. For the DS

segment, the BER has the same trends of the SS except that it becomes closer to the

coherent case because having more pilots reduces the probability of sequence inversion

due to the phase ambiguity problem. The figure shows that the approximated and

simulation results match very well for all cases, which confirms the accuracy of the

derived approximations.

The effect of the frequency selectivity is illustrated in Fig. 5.6 for the SS and DS

configurations usingKD = 1. As can be noted from the figure, frequency-selective

channels introduce error floors at high SNRs, which is due to the difference between

adjacent channel values caused by the channel frequency selectivity. Furthermore, the

figure shows a close match between the simulation and the derived approximations.

The approximation results are presented only for K = 2 because evaluating the BER

for K > 2 becomes computationally prohibitive. For example, evaluating the integral

(5.29) for the K = 3 requires solving a 6-fold integral. The results for the frequency-

selective channels are quite different from the flat fading cases. In particular, the

BER performance drastically changes when the DS pilot segment is used. Moreover,

the impact of the frequency selectivity is significant, particularly for the SS pilot case.

Fig. 5.7 shows the BER of the 1×2 SIMO D3 over flat fading channels for SS and

DS pilot segments. It can be noted from the figure that the maximum ratio combiner

(MRC) BER with perfect CSI outperforms the DS and SS systems by about 2 and

3 dB, respectively. Moreover, the figure shows that the MLSD [32] and the D3 have
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Figure 5.5: BER using SS and DS pilots for different values of K over flat fading channels using

BPSK, N = 1.
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Figure 5.6: BER in frequency-selective channels using BPSK, KD = 1 and N = 1.
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Figure 5.7: BER of D3 and MLSD [32] SISO and SIMO using SS and DS pilots, flat fading,
BPSK, N = 1, 2, and KD = 1.

equivalent BER for the SISO and SIMO scenarios. The figure also shows the BER of

the 1Ö2 SIMO systems as compared to the SISO case.

Figs. 5.8 shows the BER of the SISO and 1×2 SIMO MLSD, coherent, coherent-S

and coherent-L systems over frequency-selective channels. For both SISO and SIMO,

the BER of all the considered techniques converges at low SNRs because the AWGN

dominates the BER in the low SNR range. For moderate and high SNRs, the D3

outperforms all the other considered techniques except for the coherent, where the

difference is about 3.5 and 2.75 dB at BER of 10−3 for the SISO and SIMO systems,

respectively.

Fig. 5.9 compares the BER of the D3, PSP [27], MLSD [32], MSDD [30], and

the coherent detector over the 6-taps channel using BPSK. As can be noted from the

figure, the D3 noticeably outperforms all other detectors for SNR & 15 dB, which

indicates that the D3 is more robust to the frequency selectivity of the channel.
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Figure 5.8: BER of the SISO D3 and MLSD [32] over the 6-taps frequency-selective channel
using QPSK, KD = 1, N = 1, 2.
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Figure 5.9: BER of the D3 for K = 7 DS using BPSK compared to several other sequence
detectors over 6-taps frequency-selective channel.
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Figure 5.10: BER of the D3 for K = 7 DS over the 6-taps frequency-selective channel using
16-QAM, compared with MLSD [32].

Moreover, the figure shows the D3BER using VA which, as expected, is identical to

the BER obtained using (5.11). It is worth noting that all the systems considered in

the figure are implemented using the DS segment where K = 7, and thus, they are

evaluated under similar throughput conditions. However, the BER sensitivity of each

technique to the number of pilot symbols could be different from other techniques,

which implies that some of these techniques might be able to provide roughly the

same BER but using fewer pilot symbols. The same argument applies to the power

efficiency as well, because the power allocated per information bit becomes different

for various systems. However, because the LTE RB is used as the basis for testing

all systems, then the current comparison can be considered generally fair. In the

worst case scenario, i.e., considering that all other systems are fully blind, then the

throughput power loss is only 4.7% as described in Subsection 5.4.2, which has a

negligible effect on the BER.
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Fig. 5.10 shows the BER for the D3, MLSD [32], coherent, coherent-L and

coherent-S using 16-QAM. As can be noted from the figure, the MLSD slightly out-

performs the D3 at low SNRs, and the coherent-S outperforms the D3 at high SNRs.

However, the coherent-S has generally much higher complexity.

Fig. 5.11 shows the simulated BER of the D3 system when it is used to detect

a complete RB as described in Subsection 5.4.2. The channel model is similar to

the 6-taps used described above, and the channel gain variation over consecutive

OFDM symbols is generated using the Jakes’s model, where the maximum Doppler

frequency fd = V
c
fc, where V is the speed of the vehicle, c is the speed of light,

c = 3 × 108 m/s, and the carrier fc = 1.9 GHz. The channel is considered quasi-

static, i.e., the channel remains constant over the OFDM symbol period, but changes

over consecutive symbols. As the figure indicates, the D3 is more immune to channel

mobility at 50 km/h as compared to pilot-based systems as it did not have an error

floor. For the high mobility case, V = 300 km/h, the D3 BER exhibited an error floor

at about 6× 10−4, which is much lower than the error floor of the coherent detector

with linear and spline interpolation.

Fig. 5.12 shows the simulated BER of the D3 using convolutional codes with

hard decision decoding, using the widely used (171, 131) convolutional code with

a block length of 256 bits, and a 512 × 512 channel block interleaver. Moreover,

the results without interleaver are considered, which corresponds to the case of slow

fading channels with very long coherence time. As it can be noted from the figure,

the BER of the D3 and coherent-L are comparable for the considered range of SNR

when the block interleaver is used. On the contrary, with no interleaving, the D3

offers about 5 dB advantage at 10−6. Both detectors are approximately 3 dB away

from the coherent detector with perfect CSI. It is wor
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Figure 5.11: BER for the SISO D3, coherent-L, and coherent detector for a complete LTE
RB using the 6-taps channel and BPSK for different mobility values.
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Figure 5.12: Coded BER for the SISO D3, coherent-L, and coherent detector for K = 7 DS
over the 6-taps frequency-selective channel using BPSK.
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5.8 Conclusion and Future Work

This work proposed a new receiver design for OFDM-based broadband communica-

tion systems. The new receiver performs the detection process directly from the FFT

output symbols without the need of experiencing the conventional steps of channel

estimation, interpolation, and equalization, which led to a considerable complexity

reduction. Moreover, the D3 system can be deployed efficiently using the VA. The

proposed system was analyzed theoretically where simple closed-form expressions

were derived for the BER in several cases of interest. The analytical and simula-

tion results show that the D3 BER outperforms the coherent pilot-based receiver in

various channel conditions, particularly in frequency-selective channels where the D3

demonstrated high robustness.

Although the D3 may perform well even in severe fading conditions, it is crucial to

evaluate its sensitivity to various practical imperfections. Thus, we will consider in our

future work the performance of the D3 in the presence of various system imperfections

such as phase noise, synchronization errors and IQ imbalance. Moreover, we will

evaluate the D3 performance in mobile fading channels, where the channel variation

may introduce intercarrier interference. In addition, the D3 has been considered in

this work for SIMO systems, it can be also applied to multiple-input multiple-output

(MIMO) systems. Nevertheless, the system design and performance analysis require

a dedicated work, and hence, the MIMO case will be considered in our future work.
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Chapter 6

Autocorrelation Integrated

Gaussian Based Anomaly

Detection using Vibration Sensory

Data

6.1 Preamble

1Over the past decade, the deployment of Internet of Things (IoT) devices and con-

nected sensors have experienced an upsurge due to the vast number of applications

that rely on these technologies. Most IoT devices generate live data streams that

can be used for detecting particular phenomena or isolated systems through indirect

inference. Recent reports predicts that the number of connected devices will exceed

75 billion by 2025 [1]. To accommodate to such massive number of devices, IoT and

cloud computing are key technologies that enable efficient monitoring, scalability and

maintenance of the network [2]. With the deployment of the fifth-generation (5G)

1A version of this chapter has been submitted to the IEEE Sensors Journal.
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wireless networks, industrial 4.0 technologies, which is empowered by the industrial

IoT (IIoT) have enabled a range of new application such as edge computing [3, 4],

smart grids [5], and smart manufacturing [6]. IIoT allows collecting a large amount

of data gathered by various sensors to monitor the progress of the manufacturing

process, and predict its evolution [7].

The staggering amount of data live streams generated by a massive number of IoT

devices makes it difficult for a human-based monitor to be used. This has facilitated a

continuous shift towards the use of artificial intelligence (AI) based technologies such

as machine learning, deep learning, and even natural language processing to create

better intelligent solutions capable of addressing the critical engineering problems

currently facing the industrial sector [8, 9]. Another aspect that assisted in the

shift is the ability to offload the computational capabilities to the cloud [10] making

adoption and implementation of developed solutions quick and efficient. One of the

pivotal machine learning applications in the industrial field is anomaly detection,

defined as the process of identifying odd or rare events, or observations that flag

suspicious behavior that does not confront with the nature of the typical data trends

[11, 12]. The term anomalous data is typically associated with alarms or a flag

for popular problems such as credit card fraud, health issues, server crashes, etc.

Therefore, anomaly detection can be considered as an essential diagnosing tool for

assembly lines of industrial processes.

In the context of steel manufacturing applications, steelmaking furnaces convert

molten iron into steel via decarburization using high-pressure oxygen [13]. The in-

jection of oxygen is a controlled process that generates multiple chemical reactions

in the liquid steel bath, temporarily increasing its energy and volume. This allows

for multiple potentially harmful events to occur, especially when the volume of the

liquid bath reaches or exceeds the volume of the resulting in a material overflow.

Such undesired events in steelmaking plants are quite costly and more impactful is
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the disruption it causes to the flow of the factory while the harmful and wasted raw

products are removed, and the operations are being reset back to normal. However,

the complex nature of the chemical reactions and the high variability of the raw

material leads to increasing the unpredictability of the conversion process [14]. The

adverse effects of material overflow are significant, and they include losses in yield

due to iron oxides droplets and pellets exiting in the furnace, damage to fume hoods,

and even the furnace itself, build-ups of solid ferrous material on furnace structures

[15]. Apart from the direct economic costs, molten material spill-out leads to higher

health and safety costs, and in most cases to environmental fines.

While the mechanism that controls such events is understood, existing preventa-

tive countermeasures have resulted in less than ideal outcomes. However, anomaly

detection algorithms can be considered as the most effective methods because it al-

lows for high unimpeded productivity while providing timely alerts when the process

is deviating from its normal evolution. Towards this goal, several vibration sensors

are deployed around the steel furnace main body and remain active to monitor the

melting process and identify the occurrences of anomalous events.

6.1.1 Related Work

Anomaly detection has gained tremendous research in diversified application such

as fraud detection [16], intrusion detection [17], and predictive fault tolerance [18].

Anomaly detection algorithms are typically classified based on the input format into

either point or contextual [19]. Point anomalies occur on a spot check based sampling

within the data sample. On the other hand, contextual anomaly detection aims to

detect anomalies based on the entire or a window of the data samples. In both types,

several machine learning algorithms have been proposed in recent literature to develop

anomaly detection algorithms [19], [20]. Machine learning techniques, such as support

vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and neural networks
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(NN), perform the anomaly detection task by relying on previous experimental data

that are usually labeled as being normal “0” or anomalous “1” labeled [20]. However,

since anomalous events occur less frequently than their normal counterparts, the

trained machine learning algorithm results are typically poor-performing capability

in predicting the anomaly class due to the high imbalance in training data [20].

A different family of anomaly detection algorithms are based on reconstructing

the input data, which is referred to as autoencoders [21, 22, 23]. Autoencoders are

built by training a NN on the normal data and then reconstruct it. In other words,

the input data will be used as both an input and an output to the NN, and hence,

depending on the reconstruction error of the input, it can be used efficiently in several

anomaly detection applications. Nevertheless, autoencoders are not able to identify

the temporal correlation of input data. Other methods are proposed in literature

such as recurrent NN (RNN) [24], and long short term memory (LSTM) networks

[25], which are capable of learning from sequence and time-series data. Although

they can be effective in detecting anomalies, their architectures are computationally

complex, and cannot be a feasible anomaly detection solution for IoT sensor devices

with limited computational and memory resources.

Alternatively, anomaly detection algorithms that are based on the principal com-

ponent analysis (PCA) have been considered in the literature [26], [27]. The main

concept of PCA-based algorithms is based on singular value decomposition (SVD)

process, which is widely used in many engineering applications such as control sys-

tems, signal processing and wireless systems applications for dimensionality reduction

[26]. The PCA can be configured as a detector by decomposing the weighted energy

collected by the first component and its reconstruction error. The architecture in [26]

is deployed on a cloud cluster to achieve for the system monitoring. Also, it is worth

mentioning that the work in [27] finds the optimal subset of features using the genetic

algorithm (GA) prior to deploy the PCA model in order to reduce the computational
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complexity. Nevertheless, the PCA-based models are detecting anomalies based on

the sample level, and consequently, not suitable for contextual time-series data.

Another class of anomaly detection algorithms are based on finding the distri-

bution models for normal samples, and hence, detect anomalies that do not fit the

models [28]. This class of algorithms is commonly known in the literature as density-

based algorithms. If labels are given in the dataset, the probability density function

(PDF) is built using the normal samples, and then consider the scattered samples of

the PDF as anomalies. The normal process can be modeled as a Gaussian PDF [29],

Poisson distribution [30], or hidden Markov chain [31]. Density-based methods are ef-

fective in detecting anomalies in low dimensional datasets [28], but fail to capture the

time variation between samples, which are not effective enough in high-dimensionality

datasets [28].

6.1.2 Contributions

In this chapter, a novel low-complexity anomaly detection algorithm is designed by

exploiting the temporal signals collected from multiple sensors. The algorithm is

based on modeling the healthy processes as a Gaussian distribution, and hence, the

anomalous processes can be distinguished based on a threshold set for the Gaussian

PDF. Also, it captures the temporal data obtained by creating new autocorrelation

features. The main contributions of this chapter can be summarized as follows:

1. Design of a low-complexity and accurate automated anomaly detection algo-

rithm. Based on the joint Gaussian modeling of the sensor vibration signals

from the historical data.

2. The proposed algorithm can detect temporal fluctuations of the vibration signals

by constructing new features that carry autocorrelation information. There-

fore, the algorithm is denoted as autocorrelation integrated gaussian (AIG)
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algorithm.

3. Propose an objective and informative metrics for anomaly detection in a time-

series data that reflects a better insight into the overall performance of the

anomaly detection of temporal data.

4. Formulate and solve an optimization framework for the hyper-parameter tuning

of the proposed algorithm. The obtained results show a reliable and timely esti-

mation of the anomalous process against the true anomaly labels while keeping

the processing time complexity both in training and execution phases substan-

tially low.

6.2 Sensor Data Description and Feature Engineer-

ing

The dataset used for developing and testing the model presented in this work is a

proprietary and confidential dataset obtained from a privately owned steelmaking

plant. The dataset is comprised of the captured measurements of several identical

IoT-based vibration sensors, each of which operates at a particular bandwidth inside

a steel furnace process during the steelmaking process.

6.2.1 Sensor Data Description

The individual sensors’ readings captured before being considered as input ready

are filtered to reduce the measurement noise. Two reference vibration signals are

considered for the analysis stage, here referred as long-range (LR) and short-range

(SR) signals, where LR signals are averaged over a shorter period than the SR signals.

Moreover, LR and SR are measured over 4 frequency bands, and hence, it is referred

to HRi,LRi, i ∈ [1, . . . , 4]. More details about the characteristics of the signals are
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Figure 6.1: Example of vibration sensor measurements.

the proprietary information of the company and therefore, cannot be disclosed in this

article. The IoT sensor measurements are time-dependable as results of the variation

during the process, and then, the measurements are recorded periodically with the

sampling frequency fs. Finally, the true anomaly tags are given in the datasets.

Fig. 6.1 shows the most two anomaly distinctive sensor measurements indicating all

anomalous regions as it will be described in Section 6.2.2. As can be noted from Fig.

6.1, the LR signals exhibit a clearly smoother copy of the HR readings, and both can

be seen as a filtered version of the actual vibration signals.

6.2.2 Feature Importance Ranking

Several importance feature ranking techniques can be invoked to rank the importance

of each vibration measurement with respect to their relation to the occurrence of

anomalies. As a design choice, we chose to implement Lasso regression as it is well

known to be a robust technique for ranking and sorting the significance of features
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against a specific target variable, which suits our current objective, the anomaly flag

quite readily. Lasso regression adds an L1 penalty term to the conventional cost

function as [32],

J (θ) =
m∑
i=1

(
yi −

∑
j

xijθj

)2

+ λ
∑
j

|θj| (6.1)

where m is the number of examples in the dataset, λ is the penalty tuning param-

eter, and θj is the weight of feature j. After applying the method of Gradient Descent

(GD) to the cost function in (6.1), the least significant features will be nulled first

during the run of the GD algorithm. For instance, Fig. 6.2 shows that SR3, LR2 are

the least important ones, while LR1 and SR1 are leading the most important features

for determining the anomaly detection process. Consequently, LR1 and SR1 will be

used as main signals throughout this work to reduce the feature space complexity and

the noise from other measurements.

0 20 40 60 80 100
Number of Interations

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

LR3

SR1

LR1

SR4

LR2

LR4

SR3
SR2

Figure 6.2: Feature importance ranking using Lasso regression.
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6.2.3 Data Preprocessing

To accurately model the process using Gaussian distribution, the data collected from

the vibration sensors should follow the normal distribution. Therefore, the Box-Cox

transformation is used to transform non-Gaussian data into a Gaussian distribution.

The transformation can be implemented as [33]:

x̆i =

{
xλi −1

λ
if λ 6= 0.

log [xi] if λ = 0.
(6.2)

The value of λ is chosen to maximize the log-likelihood function (LLF).

As can be observed from Fig. 6.3, the features LR1 and SR1 have right-skewed

distributions since all values of both features are always positive.
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Figure 6.3: PDF of the LR1 and SR1 before Box-Cox transformation.

After the transformation, the distribution of the transformed data and the ap-

proximated Gaussian PDF is shown in Fig. 6.4. As can be noted, the transformed

data fit better the Gaussian distribution, which will eventually lead to more accurate

modeling.
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Figure 6.4: PDF of the LR1 and SR1 after Box-Cox transformation.

6.3 Density-based Anomaly Detection Algorithms

6.3.1 Gaussian-Based Algorithm Description

Since the sensors’ measurements have been reshaped into Gaussian-distributed data,

the anomaly detection algorithm can be finally be modeled using the following straight

forward steps:

1. A subset of features X are chosen, whose xi ∈ {1, 2, . . . , n} are deemed to

be indicative of the anomalous examples, i.e., unusual values when anomalous

examples occur. If all vibration measurements are used, then n = 8.

2. Estimate the PDF of each feature xi ∈ X from the training samples, normal

samples, {x1, x2, . . . , xn}. It is worth noting that the central limit theorem can

be invoked, and hence, the distribution of each feature can be assumed to be

Gaussian with mean µ and co-variance Σ, which can be estimated as
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µ = [E [x1] ,E [x2] , . . . ,E [xn]]T (6.3)

where

E [xi] =
1

m

m∑
k=1

x
(k)
i (6.4)

and

Σ = (X − µ) (X − µ)T (6.5)

whose elements are

Σi,j = (xi − µi) (xj − µj) (6.6)

where

X = [x1, x2, . . . , xn]T (6.7)

3. Finding the joint Gaussian PDF using the parameters computed in step 2 as

[34],

fX1,X2,...,Xn (x1, x2, . . . , xn) =
1√

(2π)n |Σ|
×

exp

(
−1

2
(X − µ)T Σ−1 (X − µ)

)
. (6.8)

If only one feature is used, then

f (xi) =
1√

2πσ2
i

exp

(
− (xi − µi)2

2σ2
i

)
(6.9)

where
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µi =
1

m

m∑
k=1

x
(k)
i (6.10)

σ2
i =

1

m

m∑
k=1

(
x

(k)
i − µi

)2

. (6.11)

4. For a new sample Xnew = [x1, x2, . . . , xn], compute the probability,

y̆ = (Pr {Xnew} < ε) (6.12)

where

Pr {Xnew} = fX1,X2,...,Xn (x1, x2, . . . , xn) (6.13)

if true, flag it as an anomaly y̆ = 1, otherwise, consider it as normal y̆ = 0.

5. Buffer the output results obtained in Step 4 to a particular sliding window with

a delay Dw, then perform the decision based on a decision policy Π, where

Π ∈ [1, 2, . . . ,Dw], such that the final alarm output is as follows:

ŷ =
[
y̆(n) + y̆(n−1) + · · ·+ y̆(n−Dw) > Π

]
(6.14)

=
Dw∑
i=1

y̆(n−Dw) > Π. (6.15)

This step is used to smooth the alarm decisions and maintain the time depen-

dencies between the samples.

The perfect threshold value εopt is the one that can maximize the detection rate and

minimize false alarms. More formally,

εopt = arg max
ε̃
J (θ, ε̃) (6.16)
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where J (θ, ε̃) is a performance metric. To better illustrate how the model works,

Fig. 6.5 shows the contour plot of the two features LR1 and SR1 jointly as a function

of the anomaly tag. As it can be observed from the figure, the majority of the normal

examples reside around the mean of their joint Gaussian PDF, while the outliers are

located at the edges of the joint density. Therefore, by setting a suitable threshold,

we will be able to depreciate normal and anomalous distributions based on the feature

measurements. The optimization part will be discussed in Section 6.5. A summary

of the Gaussian-based algorithm is outlined in Algorithm 1.

Contour Plot of the Joint PDF "Normal"

-4 -3 -2 -1 0 1
-4

-3

-2

-1

0

1

Contour Plot of the Joint PDF "Anomaly"

-4 -3 -2 -1 0 1
-4

-3

-2

-1

0

1

Figure 6.5: Contour plot of the joint distribution of LR1 and SR1 of the normal and anomaly
examples.
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Input: X = [x1, x2, . . . , xn]
Output: Alarm Output, ŷ ∈ [0, 1]

1 PDF est. (mean):

µ =
[

1
m

∑m
k=1 x

(k)
1 , 1

m

∑m
k=1 x

(k)
2 , . . . , 1

m

∑m
k=1 x

(k)
n

]T
2 PDF est. (co-variance):

Σ = (X − µ) (X − µ)T

3 Evaluate the prob. of each sample:

y̆i = 1√
(2π)n|Σ|

exp
(
−1

2
(X − µ)T Σ−1 (X − µ)

)
4 Determine the anomaly flag per

sample:
if y̆i < ε then

ẙ = 1
end
else

ẙ = 0
end

5 Buffer the anomaly flags for w
ẙ = [̊y1, ẙ2, . . . , ẙw]

6 Determine the flag w
if
∑

ẙ > Π then

ŷ = ~11×w
end
else

ŷ = ~01×w
end

Algorithm 1: Gaussian-Based Anomaly Detection Algorithm.
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6.3.2 Autocorrelation Integrated Gaussian-based (AIG) Al-

gorithm

The main drawbacks of the algorithm described in Section 6.3.1 is that it cannot

carry any information that captures the temporal variation and correlation between

the data samples during the model building phase. In other words, any decision

made at sample tn does not depend on the decision at sample tn−1, which is a clear

shortcoming of the model presented in Section 6.3.1, and consequently, affecting the

detection capabilities. To overcome this problem, new features are created based on

the autocorrelation function (ACF). More specifically, from each measurement signal,

xi ∈ X i ∈ [1, 2, . . . , n], we can create the autocorrelation matrix defined as:

RXiXi
, XiX

T
i (6.17)

where (·)T denotes the transpose operation, and Xi is a measurement signal that

is collected as a function of time over a window w such that:

Xi =
[
x

(n)
i , x

(n−1)
i , . . . , x

(n−w)
i

]T
(6.18)

Then, we can expand (6.17) as,

RXiXi
,



1stfeature︷ ︸︸ ︷
x

(n)
i x

(n)
i

2ndfeature︷ ︸︸ ︷
x

(n)
i x

(n−1)
i . . .

wthfeature︷ ︸︸ ︷
x

(n)
i x

(n−w)
i

x
(n−1)
i x

(n)
i x

(n−1)
i x

(n−1)
i . . . x

(n−1)
i x

(n−w)
i

...
...

. . .
...

x
(n−w)
i x

(n)
i x

(n−w)
i x

(n−1)
i . . . x

(n−w)
i x

(n−w)
i

 (6.19)

Once the matrix is obtained, then we can use each column as a feature in the

algorithm described in Section 6.3.1 following the steps. It is worth mentioning the

dimensionality of the feature space has increased by a factor of w as compared to the

conventional Gaussian based approach. For simplicity, the pseudocode of the AIG

algorithm is given in Algorithm 2.
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Input: X = [x1, x2, . . . , xn]
Output: Alarm Output, ŷ ∈ [0, 1]

1 Buffer w samples for each input feature:

Xi =
[
x

(1)
i , x

(2)
i , . . . , x

(w)
i

]
, i ∈ [1, 2, . . . , n]

2 Create auto-correlation features from each input feature:
RXiXi

= XiX
T
i

3 PDF est. (mean):

µ =
[

1
m

∑m
k=1 x

(k)
1 , 1

m

∑m
k=1 x

(k)
2 , . . . , 1

m

∑m
k=1 x

(k)
n×w

]T
4 PDF est. (co-variance):

Σ = (X − µ) (X − µ)T

5 Evaluate the prob. of each sample:

y̆i = 1√
(2π)n|Σ|

exp
(
−1

2
(X − µ)T Σ−1 (X − µ)

)
6 Determine the anomaly flag per

sample:
if y̆i < ε then

ẙ = 1
end
else

ẙ = 0
end

7 Buffer the anomaly flags for w
ẙ = [̊y1, ẙ2, . . . , ẙw]

8 Determine the flag w
if
∑

ẙ > Π then

ŷ = ~11×w
end
else

ŷ = ~01×w
end

Algorithm 2: AIG Algorithm.

6.3.3 Evaluation Metrics

In the context of anomaly detection in time-series data, conventional evaluation met-

rics such as accuracy, F1-score, and area under the curve (AUC) are not comprehen-

sive enough to act as an accurate indicator of the detection model’s performance. This

is due to the fact that the aforementioned metrics format of measuring on sample-

by-sample bases, while the aim of this work is to develop an algorithm for contextual

time-series data. Therefore, we relied on a different set of measures capable of assess-

ing the performance of the time-series anomaly detection algorithms:
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1. Number of correctly detected anomalies: Any alarm that is being gen-

erated between during the anomaly process will count as a correctly detected

anomaly.

2. Number of missed alarms: if no alarm is generated during the anomaly

period, it will be considered a missed alarm.

3. Number of false alarms: any flagged alarm when there is no anomaly is a

false alarm.

4. True detection rate: the ratio between the number of correctly detected

anomalies and the total number of anomalies.

5. Average delay: the mean of the time delay between the start time of the

anomaly and start time of the generated alarms.

The perfect alarm based on these metrics is the one that maximizes the number of

correctly detected anomalies and the true detection rate while minimizing the number

of missed alarms, number of false alarms, and the average delay.

6.4 Time Complexity and Memory Requirements

There is no unified metric to evaluate the computational complexity of anomaly detec-

tion algorithms. However, we can analyze the complexity of the proposed algorithm

in Section. 6.3.2 by breaking down the algorithm major steps, and evaluate the

computational requirements for each step. To simplify the discussion, the algorithm

requires the following computations:

1. Computing the auto-correlation matrix RXiXi
, XiX

T
i : Given that

Xi ∈ Rw×1 as w being the window size. Therefore, XiX
T
i can be seen as a

matrix multiplication process with a complexity of O (w2) for a single-window
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size. Consequently, it requires O (mw × w2) to span the entire dataset, where

mw is the number of windows in the training dataset. In terms of memory

requirements, we need to store a matrix of size m× n temporary only for using

it in the subsequent steps.

2. Calculating the mean of each feature as in (6.3): This operation requires

O (m× n) , where m is the number of the data points and n is the number

of features used. Also, we need only to store these values permanently in a

one-dimensional array of size 1× n.

3. Evaluating the co-variance matrix: This step is more complex than step

(2) since it involves matrix multiplication. Noting that Xi ∈ Rm×1, then similar

to step (1) given that we ignore the mean subtraction, this step needs O (m2).

The matrix needs to be stored temporary in an n× n array.

4. Co-variance matrix inversion: This operation is necessary to compute the

joint Gaussian pdf (6.8). The complexity of the inversion operation depends on

the implementation algorithm used. Assuming that Gauss-Jordan Elimination

is adopted, then this step requires O (n3). Unlike the previous step, this matrix

needs to be stored “permanently” in an n× n array.

5. Co-variance matrix determinant: This step is also required to compute

(6.8). Assuming that the Laplace expansion algorithm is used in this step, the

computational cost of this step is O (n!). This value is going to be stored only

in a single memory location permanently.

Although steps (1) → (5) may involve some expensive computational operations,

more precisely steps (4) and (5), they are only required for the training phase. In

other words, these processes can be implemented offline and store the outcomes of step

(2), (4) and (5) in specific memory locations, which can not affect any delay-sensitive

applications.
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For real-time deployment, we need the following:

1. Buffer: w samples in temporary memory location

2. Compute the auto-correlation matrix: As we saw earlier, it only requires

O (w2), and storing the w × w matrix in a temporary storage location

3. Evaluating the probability in (6.8): the requires O (n3) complexity

4. Alarm decision: This step needs only a simple logic gate.

As we can observe from the analysis, the major computational requirements of the

algorithm are solely implemented offline, and the memory requirements remain min-

imal with the only need for it is to store a relatively small singular matrix. On the

other hand, the real-time deployment needs are only buffering few samples and then

perform straightforward matrix multiplication which is relatively cheap to evaluate

for most practical values of w and n.

6.5 Optimizing the Performance of the Proposed

Alarm

In order to enhance the efficiency of the proposed detection algorithms in Sections

6.3.1 and 6.3.2, optimizing the proposed algorithm is critical for improving the per-

formance with respect to the cost functions. To properly evaluate the performance of

the proposed algorithm, fair and quantified metrics should be proposed. These met-

rics are based on evaluation metrics in Subsection 6.3.3. Therefore, we can formulate

the problem as:

� Cost functions
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J1 (ε, w,Π) =
∑[

~1⊕ y
]
∩ ŷ (6.20)

J2 (ε, w,Π) = Ts · E
{[
~0⊕ y

]
∩ ŷ
}

(6.21)

where (6.20) is the number of false alarms and (6.21) is the average delay as

defined is Subsection 6.3.3.

� Objective function

min
x

F (x) = [J1, J2] ,∀x ∈ {ε, w,Π} (6.22)

� Subject to:

0 < ε ≤ 1 (6.23)

1 ≤w ≤ wmax (6.24)

1 ≤Π ≤ w (6.25)

As can be noted from the cost functions in (6.20)-(6.21), and from the underlying

decision variables of each cost function, the optimization problem is a multiobjective

mixed-integer non-linear programming (MINLP). In the context of this work, GA

can be invoked to find the set of optimal points over the objective space. It is worth

mentioning that GA is widely used in solving both constrained and unconstrained

optimization problems that are based on natural selection, the process that drives

biological evolution. The algorithm starts with an initial generation of candidate

solutions that are tested against the objectives functions [35]. Consequently, the

subsequent generation evolves from the first process through selection, crossover, and

mutation.
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6.6 Numerical Results

In this section, we validate the AIG algorithm performance on the dataset described

in Section 6.2. The results are benchmarked against the true anomaly tags, which are

given in the dataset, and compared with SVM and RF algorithms using the evaluation

metrics presented in Subsection 6.3.3. The SVM algorithm is trained with a Gaussian

kernel, and the RF classifier is trained with 50 trees. The results are based on the

most two important signals which are obtained from the feature ranking are SR1 and

LR1 measurements. The λ values for the LR1 and SR1 used in the Box-Cox model

are λLR1 = −0.8977 and λHR1 = −0.8691, respectively. In addition, The number of

newly constructed time features is set to w = 10. The validation of the AIG anomaly

algorithm was conducted on an Intel Core i7 machine with 16 GB of RAM.

To start deploying the algorithm efficiently, the optimization problem formulated

in Section 6.5 is solved, and the set of the optimal allocations is found as shown in

the Pareto front allocation in Fig. 6.6. It is worth mentioning that each point on

the Pareto front figure is mapped to a set of decision variables, {ε,Dw,Π}. Since no

point is a dominant solution to another, the choice of the solution will be left to the

operator to determine the best compromise between the two objectives: the number

of false alarms and the average detection delay.

Fig. 6.7 shows the computing time complexity that is needed for training the

model as well as deploying the algorithm for online detection for several new time

features w. As Subfig. 6.7a indicates, the time required to complete the training task

ranges between 70 to 300 seconds, where 250, 000 samples are used in the training

task. It also suggests that adding new time features to enhance the time tracking

of the process may cost more computational resources. Nevertheless, this step is

required to be performed less frequently and offline. On the hand, Subfig. 6.7b

shows the computational time needed to perform the detection “ on the fly” per

one experiment for various time features w. As can be noted from the figure, the
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Figure 6.6: Pareto front of the two objective functions.

execution processing time varies from 8 − 55 milliseconds. It is worth mentioning

that the average experiment duration is 500 seconds, which imply that the processing

time is negligible as compared to the process duration, which makes the proposed

AIG algorithm a practical solution for real-time anomaly detection algorithm.

To validate the performance of the AIG algorithm, first, we chose the hyper-

parameters from one of the solutions on the Pareto front with decision variables

ε = 0.0719,Dw = 106, Π = 11. The validation in Fig. 6.8 is conducted on two experi-

ments, the first with one anomaly period, and the second has two anomaly durations

throughout the process. The experiment in Subfig. 6.8a shows that the AIG flags the

alarm with a delay that is less than 10 seconds, with no flagged false alarm. On the

other side, the AIG algorithm was also able to correctly detect both anomaly regions

with an average delay per alarm of 38 seconds. This delay can be compensated by

choosing a point that provides less delay on the Pareto front, however, more false

alarms will be generated by the algorithm.

Fig. 6.9 shows the time complexity requirements for the training and the execu-

tion phase. As the figure indicates, the AIG has a considerable shorter training time
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Figure 6.7: Time complexity of the AIG algorithm as a function of the number of the new
time features w.

as compared to the SVM, and about 70% of the time required by the RF algorithm.

This advantage is extremely important in the context of the IIoT, since re-training

the model parameters is conducted frequently in order to cope with the process evo-

lutions over time. On the other hand, the execution time, as shown in Fig. 6.9, is

substantially low for the AIG as compared to RF and SVM, which makes the AIG

algorithm a preferred option for real-time deployment.

To compare the detection performance of the AIG to other well established algo-

rithms, the results for the evaluation metrics presented in Section 6.3.3 are presented

in Fig. 6.10. As illustrated in the figure, the AIG shows a the has the highest number

of truly detecting anomalies while maintaining the minimum number of false alarms.

Furthermore, the AIG shows a detection success rate of approximately 95%, and 90%,

82% for the RF and SVM, respectively. In addition, it shows that the AGI missed

one alarm as compared to two, four alarms the RF and SVM, respectively. The

main cause for performance degradation of the RF and SVM is the class imbalance

of the dataset, which leads to poor performance of the algorithms on the test dataset

[36]. On the other hand, the Subfigure 6.10e shows that the AIG Average delay is
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Figure 6.8: AIG anomaly detection algorithm assessment.

slightly higher than other classifiers by a slight margin. Nevertheless, the algorithm

outperforms RF and SVM in 4 out of 5 performance metrics.

6.7 Conclusions

This chapter proposed a low-complexity anomaly detection algorithm for vibration

sensor measurements presented in a time-series format. The proposed AIG algorithm

is based on the Gaussian modeling of each measurement as well as an ACF to capture

any temporal signal variations. The model parameters were tuned to optimize the

set of objectives using multiobjective GA optimization. The obtained results were

compared with conventional supervised learning algorithms such as SVM and RF. The

results showed that the AIG outperformed the SVM and RF in most performance

evaluation metrics with the advantage of a significant reduction in time complexity

during both the training and execution phases, which highlights the AIG suitability

for delay-sensitive applications and limited computational resources devices.
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Figure 6.9: Time complexity comparison between AIG, RF and SVM.
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Figure 6.10: Evaluation metrics of the AIG as compared with the RF and SVM.
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Chapter 7

Conclusions and Future Directions

In this chapter, the main conclusions of this thesis and future research venues are

given below:

7.1 Conclusions

� A novel blind channel estimator was introduced for OFDM systems with single

transmit antenna based on a hybrid OFDM symbol structure, where pilot sub-

carriers in conventional OFDM systems are replaced by MPSK symbols, and the

adjacent subcarriers are modulated using MASK. Therefore, the MASK symbol

can be considered equivalent to the channel frequency response with respect to

the MPSK symbol, and hence, the MPSK symbol can be immediately detected,

and then used to estimate the channel in a DD manner.

� The proposed OSBCE can be incorporated effectively and efficiently in practical

systems such as LTE-A standard. The proposed estimator requires one OFDM

symbol to estimate the CFR, which makes it suitable for mobile channels, where

the channel frequently varies in the time domain.

� Closed-form analytical analysis for the SER at MPSK symbols has been derived,
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which are used as pilots for the subsequent steps. Also, a closed-form expression

for the PDF of the phase error ψ`k in Rayleigh fading channels with imperfect

channel knowledge at the receiver and an accurate analytical expression for the

MSE in DD manner has been derived.

� An extension to OSBCE has been introduced where it exploits the correlation

between two consecutive OFDM systems to perform the channel estimation.

The system performance was evaluated using LTE downlink specifications and

for various speeds of the UE. Monte Carlo simulations, verified by the analytical

results, showed that the proposed system supports high mobility speeds up to

150 km/h and produces accurate channel estimates comparable to pilot-aided

systems, with improved power and spectral efficiencies. However, significant

performance improvement can be achieved by using an adaptive time/frequency

configuration.

� A new fair and reliable approach to compute and compare the spectral efficiency

of various blind and non-blind communications systems was proposed. The

new approach considers the fact that different subcarriers in OFDM systems

may be modulated using different modulation types and orders to satisfy QoS

requirements. Moreover, the proposed approach considers the modulation type

constraint on the overall system spectral efficiency.

� The obtained spectral efficiency results showed that the modulation type con-

straint has a significant impact on the system spectral efficiency, which can

make the spectral efficiency of pilot-aided systems higher than that of blind

systems with modulation type constraint.

� A new receiver that performs the detection process directly from the FFT out-

put symbols without the need of experiencing the conventional steps of channel

estimation, interpolation, and equalization, which led to a considerable com-
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plexity reduction. Moreover, the D3 system can be deployed efficiently using

the VA.

� The D3 was analyzed theoretically where simple closed-form expressions were

derived for the BER in several cases of interest and in terms of complexity anal-

ysis. The analytical and simulation results show that the D3 BER outperforms

the coherent pilot-based receiver in various channel conditions, particularly in

frequency-selective channels where the D3 demonstrated high robustness with

a remarkable complexity reduction for different modulation types and orders.

� A low-complexity anomaly detection algorithm for vibration time-series sensor

measurements was proposed. The algorithm is based on Gaussian modelling

of each measurement as well as autocorrelation function to capture the tempo-

ral signal variations. Then, the performance of the system was optimized by

tuning the hyperparameters of the proposed system against several objective

functions. The model parameters can be tuned to optimize the set of objectives

using multi-objective genetic optimization. The obtained results show that the

AIG is efficient from both sides, the time complexity and the performance ca-

pabilities, which makes the AIG suitable for delay-sensitive applications and

limited computational resources devices.

7.2 Future Work

� The OSBCE system presented in Chapter 2 did not consider synchronization

errors such as carrier frequency offset (CFO). As a future extension of the

work, designing a joint channel estimation and a carrier frequency estimation

to mitigate the inter-carrier interference is an interesting work to be considered.

� We plan on extending the D3system presented in Chapter 5 to work in a MIMO
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configuration. The challenge is to implement a complexity efficient algorithm

in MIMO since the number of cases will increase as the number of antenna

increases.

� The D3 can be extended to assess the performance of the D3 in the presence

of various system imperfections such as phase noise, synchronization errors and

IQ imbalance.

� The design of the D3to work fully blindly without the need to use pilot symbols

for phase ambiguity resolutions is a future extension of the presented D3 system

to improve the spectral efficiency.

� In order to further reduce the system’s complexity, the design of a joint channel

encoding with data detection of theD3 system to reduce the system’s complexity

in a coded-system environment will be considered.

� Implement a hybrid detection algorithm to utilize neural networks and long

short term memory (LSTM) networks to work in parallel with the AIG algo-

rithm presented in Chapter 6 in order to further improve the detection capabil-

ities.

� Since processes are non-stochastic process, then, training the algorithm should

be done frequently to cope with the process evolutions and variations. There-

fore, optimizing the retraining time of AIG is crucial for keeping the performance

at desirable levels.
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The total power PT across all subcarriers can be written as

PT = Psc ×N (A.1)

where Psc is the power consumed by each subcarrier. Then, in blind systems, the

power per information subcarrier P blind
sc,inf can be expressed by

P blind
sc,inf =

PT
N
. (A.2)

Similarly, the power per information subcarrier for the pilot-aided systems P pilot
sc,inf

is given by

P pilot
sc,inf =

PT
N −NP

. (A.3)

The excess power per information subcarrier is the difference between the power

per information subcarrier in blind and pilot-aided systems, which can be written as

Psc,exc =
PT

N −NP

− PT
N
. (A.4)

Therefore, we can write the total excess power as

PT,exc = N × Psc,exc
= N

(
PT

N −NP

− PT
N

)
. (A.5)
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Since the MASK symbols have the worst BER performance, the total excess power

will be allocated to the NP MASK symbols. Thus

PMASK,exc =
PT,exc
NP

=
N

NP

(
PT

N −NP

− PT
N

)
=

N

NP

(
N

N −NP

− 1

)
P blind
sc,inf . (A.6)

Consequently, the power per MASK subcarrier can be computed as

PMASK = P blind
sc,inf +

N

NP

(
N

N −NP

− 1

)
P blind
sc,inf .

Let α = N/NP , then

PMASK = α

(
N

N − N
α

− 1

)
P blind
sc,inf + P blind

sc,inf

= α

(
1

1− 1
α

− 1

)
P blind
sc,inf + P blind

sc,inf (A.7)

Because α� 1 for most practical systems, then we can write

lim
α→∞

PMASK = 2P blind
sc,inf . (A.8)

Therefore, doubling the MASK symbols’ power satisfies (3.25).
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By defining the events Aψ > An , Eψ,n, n ∈ {0, 1, . . . , ψ − 1}, then,

PC |H0,1 = P

(
ψ−1⋂
n=0

Eψ,n

)
(B.1)

Using the chain rule, PC |H0,1 can be written as,

PC |H0,1 = Pr

(
Eψ,ψ−1|

ψ−2⋂
n=0

Eψ,n

)
Pr

(
ψ−2⋂
n=0

Eψ,n

)
. (B.2)

For K = 2, ψ = 1, d̃
(0)
0 = [1, −1], d̃

(1)
0 = [1,1], and thus,

PC |H0,1 = Pr (E1,0)

= Pr (<{r1r2} > <{−r1r2})
= Pr (<{r0r1} > 0) (B.3)

For K = 3, ψ = 4, d̃
(0)
0 = [1, 1, −1], d̃

(1)
0 = [1, −1, −1], d̃

(2)
0 = [1, −1, 1] and

d̃
(3)
0 = [1, 1,. . . , 1] . Using the chain rule

PC |H0,1 = Pr (E3,2|E3,1, E3,0) Pr (E3,1, E3,0)

= Pr (E3,2|E3,1, E3,0) Pr (E3,1|E3,0) Pr (E3,0) (B.4)

However, Pr (E3,0) = Pr (A3 > A0), and thus

175



Appendix B.

Pr (E3,0) = Pr (<{r0r1 + r1r2} > <{r0r1 − r1r2})
= Pr (<{r1r2} > <{−r1r2})
= Pr (<{r1r2} > 0) . (B.5)

The second term in (B.4) can be evaluated by noting that the events E3,1 and E3,0

are independent. Therefore Pr (E3,1|E3,0) = Pr (E3,1), which can be computed as

Pr (E3,1) = Pr (<{r0r1 + r1r2} > <{−r0r1 + r1r2})
= Pr (<{r0r1} > <{−r0r1})
= Pr (<{r0r1} > 0) (B.6)

The first term in (B.4) Pr (E3,2|E3,1, E3,0) = 1 because if A3 > {A1, A0}, then

A3 > A2 as well. Consequently,

PC |H0,1 = Pr (<{r0r1} > 0) Pr (<{r1r2} > 0) . (B.7)

By induction, it is straightforward to show that PC |H0,1 can be written as,

PC |H,d=1=
K−2∏
n=0

Pr (<{rnrń} > 0) . (B.8)
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