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Abstract 

Context: With an increasing number of applications running on a microservices-based cloud 

system (such as AWS, GCP, IBM Cloud), it is challenging for the cloud providers to offer 

uninterrupted services with guaranteed Quality of Service (QoS) factors. Problem Statement: 

Existing monitoring frameworks often do not detect critical defects among a large volume of issues 

generated, thus affecting recovery response times and usage of maintenance human resource. Also, 

manually tracing the root causes of the issues requires a significant amount of time. Objective: 

The objective of this work is to: (i) detect performance anomalies, in real-time, through monitoring 

KPIs (Key Performance Indicators) using distributed tracing events, and (ii) identify their root 

causes. Proposed Solution:  This thesis proposes an automated prediction-based anomaly 

detection and localization system, capable of detecting performance anomalies of a microservice 

using machine learning techniques, and determine their root-causes using a localization process. 

Novelty: The originality of this work lies in the detection process that uses a novel ensemble of a 

time-series forecasting model and three different unsupervised learning techniques that avoid 

defining static error thresholds to detect an anomaly and, instead follow a dynamic approach. 

Experimental Results: The proposed detection system was experimented using different variants 

of ensembles, evaluated on a real-world production dataset out of which two proposed ensembles 

outperformed the existing static rule-based approach with average F1-scores of 86% and 84%, 

average precision scores of 82% and 77% and average recall scores of 91% and 93% respectively 

across 6 experiments. The proposed detection ensembles were also evaluated on the Numenta 

Anomaly Benchmark (NAB) datasets and results show that the proposed method performs better 

than the Numenta’s standard HTM model score. Research Methodology: We adopted an agile 

methodology to conduct our research in an incremental and iterative fashion. Conclusion: The two 

proposed ensembles for anomaly detection perform better than the existing static rule-based 

approach.  

Keywords 

Cloud Computing, Microservices, Monitoring, Anomaly Detection, Distributed Tracing, 

Performance Anomalies, Unsupervised Machine learning, Time series, Localization. 
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Summary for Lay Audience 

 

The stability of the cloud ecosystem is at stake with the continual growth and expansion of cloud 

adoption. For example, sluggish access to data, applications, and web pages frustrate the users and 

employees alike, and some performance problems can even cause application crashes and data 

loss. Existing monitoring frameworks often do not detect serious issues among a large volume of 

issues generated during the cloud system usage. This thus affects the recovery response times and 

effective use of maintenance human resource. We have developed an automated system to detect 

serious performance issues and their root causes that aimed to aid the maintenance team in fixing 

them. 

  

The proposed detection system uses a novel combination of two algorithms to detect anomalies 

and it was evaluated on a real-world dataset from a production environment. The results show 

that two novel detection ensembles perform better than the existing static error thresholding 

approach. We also evaluated the proposed detection methods on the independent datasets with 

favourable outcomes. 
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Glossary of Terms 

Microservices Microservices is a cloud-native architectural approach to 

develop software applications where a single application is 

composed of many loosely coupled and independently 

deployable smaller modules/components. 

Distributed Tracing Distributed Tracing is a method of understanding the flow of 

data as it propagates through the components of applications 

True Positives True Positives (TP) are the number of instances that are 

abnormal or anomalies (such as high response time of a 

system) and the model also predicts it as abnormal. 

True Negatives True Negatives (TN) are the number of instances that are 

normal points and the model also predicts it as normal. 

False Positives False Positives (FP) are the instances that are predicted as 

abnormal when they are normal data points. 

False Negatives False Negatives (FN) are the number of instances that are 

predicted as normal by the models but are abnormal data 

points. 

Precision Precision is the proportion of data points that were correctly 

predicted as anomalies over the total number of data points 

that were predicted as either anomaly or normal 

Recall Recall the proportion of data points that were correctly 

predicted as anomalies over the total number of anomaly 

points 

F1-Score F1-Score measure the harmonic mean of precision and recall 

KNN a density-based anomaly detection technique that assumes 

that the normal data exists around a dense neighborhood 

whereas abnormal data lies far away. 

LOF Local Outlier Factor (LOF) is an unsupervised density-based 

algorithm that relies on k-nearest neighbors and assumes that 
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the density around an outlier will be significantly different 

than the density around its neighbors. 

LSCP LSCP is a framework used for the detection of outliers 

using an ensemble of unsupervised outlier ensembles 

IF Isolation Forest (IF) is an unsupervised learning technique 

that uses the concept of isolation and assumes that an 

anomaly can be easily separated in a few steps while the 

normal points which closer could take more steps to be 

separated. 

OC-SVM One Class SVM is an unsupervised learning technique based 

on the working of the Support Vector Machine (SVM), a 

supervised classifier that tries to find an optimal hyperplane 

having a maximum margin to separate two classes of 

data points. 

LSTM LSTMs are a special kind of RNNs that is capable of 

handling long-term dependencies in the sequential data.  

Gradient Descent It is an optimization algorithm that is used to find the values 

of parameters (weights, bias) of a function (f) that minimizes 

a cost function or loss. 

Learning rate The learning rate controls the size of steps or the amount of 

the weight adjusted with respect to the loss gradient. 

Mahalanobis Distance is a measure of the distance between a point P and a 

distribution D 
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Chapter 1 

1 Introduction 

This thesis focuses on the problem of anomaly detection and localization (i.e., determining 

the faulty component) for a microservices-based cloud environment. In this chapter, we 

describe the context of our topic followed by the issues associated with the Enterprise 

Cloud Applications and Cloud monitoring that motivated us to investigate this topic. We 

then overview the solution approach, its impact, novelty, contribution, and thesis outline. 

1.1 Context 

Cloud computing has come a long way since its inception in the 1950s [110]. It refers to 

the delivery of services such as servers, storage, databases, networking, software, etc., over 

the internet. In short, it means providing IT infrastructure to companies, firms, or individual 

end-users. Based on the different requirements of the companies or customers, the cloud 

offers three different types of services models: Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS) [104]. Enterprises and industries 

across various sectors have been using cloud services to meet their computing demands. 

Until recently, the prevalence of enterprise cloud computing was attributed to factors like 

low cost, safe environment, high capacity, etc. However, with the advancement of 

technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), 

Blockchain,etc., there has been a tremendous increase in the growth of the cloud market 

[105]. A study conducted by International Data Group (IDG) shows that 73% percent of 

enterprises have at least one application or a portion of their infrastructure on the cloud. 

The global cloud market is expected to cross $600 billion by 2024 [7]. 

There has been an increasing demand from users and a rise in new architectural styles since 

the time cloud computing has taken the front stage across most of the IT infrastructure. 

Applications are required to be highly scalable and available on the cloud. In the past, most 

of the organizations adopted the monolithic architectural style, a traditional way of building 

applications, where individual components are combined into a single indivisible unit 
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which means all the functions are managed and served in one place. It comprises of client-

side user interfaces, server-side application, and a database, where the server-side monolith 

application executes logic, handles HTTP requests, retrieves/updates information in the 

underlying databases. Hence, even smaller modifications would consume a considerable 

amount of time and rework in building and deploying the new version since any code 

change affects the whole system thus, making the development process longer [8]. 

Businesses require frequent updates to the application which costs time and resources for 

the organization [9]. The components cannot be scaled independently and since they are 

tightly coupled it is difficult to change the language, framework, or technology. The 

hindrances are not feasible for modern-day enterprises that are trying to keep pace with 

technological advancements happening now and then.   Hence, in order to achieve agility, 

better scalability, speed, and reliability of applications, the modern-day enterprises are 

migrating to Microservices architecture [10,11,20]. 

According to a survey [12] by Nginx, Microservices are entering mainstream projects. 

About 70% of the organizations are either using or investigating microservices amongst 

which 29% of the businesses are using it in production, 16% are using it in development 

environments and 24% are evaluating them. Tech giants like Netflix, Amazon, e-Bay, 

Uber, and other small to medium enterprises have adopted microservices [17].  

1.2 Research Motivation and Problem statement 

Though microservices have several advantages, it becomes complex in terms of its 

management and monitoring due to its nature of the distribution. Maintainability is as 

crucial as the development of enterprise cloud applications. Firstly, with several enterprises 

hosting their applications on the cloud, the stability of the cloud ecosystem is at stake. The 

existing monitoring framework cannot handle and process such a huge volume of data 

collected from various applications or cloud systems. On the other hand, with the cloud-

native microservices architecture, the more complex the software system gets, the harder 

it becomes to analyze and troubleshoot problems. Monitoring the health of the 

microservices-based cloud is essential in order to prevent the failure or degradation of the 

system. Occurrences of performance problems such as degraded performance (slow page 

response) and service downtimes (unreachable service endpoints) have become a norm 
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rather than an exception in a complex environment [15]. These degraded performances are 

an indication of possible future failures.  

Performance issues have had a poor impact on revenues in the past. As per a survey 

conducted by the Aberdeen group, as additional one-second delay in page response can 

reduce page hits, user satisfaction, and sales by 11%, 16%, and 7% respectively. In 2010, 

Amazon had experienced 3-hour intermittent performance issues which resulted in a loss 

of $1.75m in revenue per hour [16]. It is to be understood that the magnitude of the impact 

of poor performance on revenue is proportionate to the operations of the organization. But 

it goes on to show that the impact can be quite significant in certain contexts. 

Performance problems have a direct impact on the Quality of Service (QoS) factors, such 

as Reliability, Availability, Security, and others [16], as well. Prolonged performance 

degradation can affect the reliability and loyalty ratings of the services from the users. In 

March 2019, Facebook and Instagram suffered partial service outages which impacted 

consumers as well as the developers building the apps on the world’s largest social 

network. In June 2019, multiple issues regarding Slack's degraded performance across all 

its services such as login, messaging, posting files, calls, and integrations with other apps 

were reported [18]. In 2019, Google Cloud Platform (GCP) experienced major issues with 

services such as cloud storage and dataflow, which affected multiple products, with major 

APIs getting affected globally. In July 2019, many iCloud users across the world received 

a “Service Unavailable – DNS failure” message for several hours. Though the issue was 

resolved, users still failed to use functions such as Find My iPhone [19]. 

Apart from the adverse impact on revenues and user satisfaction, developers and operations 

teams spend a significant number of hours in diagnosing the root-cause and fixing post 

disruptions of the services. With various performance issues being generated, several 

anomalies/defects go undetected affecting the system adversely by causing 

failures/outages. Secondly, the Operations team or the Site Reliability Engineers (SREs) 

are uncertain as to which defects/issues are to be resolved first and are required to spend a 

lot of time analyzing them. Thirdly, it is difficult to trace the root cause of the issues once 

identified/occurred requiring a huge amount of time and manual effort. 
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Hence, there is a dire need to proactively identify, prioritize and fix the issues in order to 

maintain the health of the cloud system and thereby achieve the IT operational excellence 

and avoid the Service Level Agreements (SLA) violations. Considering the scale and 

dynamism of microservices-based cloud system, there is a need to build an automated 

monitoring framework, generic to all services, which would be capable of detecting the 

performance issues/anomalies by exploiting the services’ behaviour over time, identifying 

its root-cause and reporting them to the operations team. 

1.3 Research Question 

Information from the above section leads to the following important questions: 

RQ1: How do we design an automated monitoring framework or anomaly detection system 

given the scale and dynamic nature of microservices? 

RQ2: How to locate the root cause of the anomalies using the metric data from 

microservices? 

RQ3: How to evaluate or validate the accuracy of the models given the lack of labeled 

data? 

These questions are explored in the core chapters of the thesis as are their responses 

(Chapter 5, Chapter 6, and Chapter 7). 

1.4 Solution Approach 

Our research emphasizes on easing the monitoring process of a microservices-based cloud 

system by developing an automated prediction-based anomaly detection and localization 

system. The system performs two critical functions: 

(i) It detects performance anomalies using a time-series deep learning model and 

an ensemble of unsupervised learning techniques.  It can handle a huge volume 

of data generated from each of the individual microservices and it avoids the 

burden of defining static thresholds used in existing monitoring framework and 

other literature works as discussed in Chapters 3 and 4. 
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(ii) It identifies the casual components of the detected anomalies, which would 

enable the DevOps or IT operations team to fix them so as to maintain a healthy 

cloud environment. 

For this purpose, trace events were collected to understand the communication or flow of 

transactions across microservices in the third-party cloud system. A high-level system was 

designed, based on initial analysis. Iteratively and incrementally, a prototype solution was 

created that automated anomaly detection and component localization. The system consists 

of five modules - Data Extraction Module, Data Pre-Processing Module, Detection 

Module, Localization Module, and Information Module, discussed in detail in Chapter 6.  

We used a time-series deep learning model and unsupervised machine learning techniques 

overviewed in Chapter 2 to perform anomaly detection. In addition, we conducted 

experiments with the resultant system using a dataset from an industry-based 

microservices-based cloud system. We also experimented with the proposed detection 

method on a publicly available benchmark dataset. 

1.5 Impact of the Proposed System 

The proposed solution: (i) detects performance anomalies of a microservice through 

monitoring the performance metric data extracted from the tracing events using a novel 

approach of a prediction-based anomaly detection technique which combines a time-series 

model and unsupervised learning algorithms - LSCP, Isolation forest, and One-Class SVM, 

and (ii) locates the causal components for the detected anomalies. By using the proposed 

combination of  LSTM and an unsupervised learning algorithm, there is no need to 

explicitly set a static threshold to score the anomalies. Instead, it uses a dynamic approach 

by making use of an unsupervised outlier detection technique such as LSCP or Isolation 

Forest, thus making the system entirely automated, unlike the static rule-based thresholding 

approaches which might require updates to the explicit threshold values when the data or 

load varies over time (discussed in Chapter 3 and Section 4.3). 
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The output of the proposed system is an anomaly report that consists of the time-interval 

of the occurrence of an anomaly and a directed acyclic graph of request flow highlighting 

its causal component. 

In a microservices-based cloud environment, multiple instances of all the microservices 

need to be monitored at once. This requires checking the logs of multiple services and track 

one user request through multiple systems. The proposed system is capable to do and eases 

the monitoring process compared to the existing framework which might not be reliable. 

Also, in a microservices-based cloud system with numerous microservices and its multiple 

instances, the proposed system is helpful to locate the root cause of an anomaly. Thus, it 

overcomes the burden of SREs in manually analyzing and tracking the root-cause or faulty 

microservice/component. 

1.6 Novelty 

The novelty of the system lies in the detection module where the anomalies are detected 

by using an ensemble of a time-series deep learning model, LSTM, and unsupervised 

learning algorithms such as (i) LSCP, (ii) Isolation forest, and (iii) Once-Class SVM. The 

idea is to forecast the values of performance metrics (for example, response time) using the 

time-series forecasting model and then use an unsupervised learning algorithm to detect 

the anomalies. This avoids the burden of defining static thresholds used in the existing 

monitoring framework. 

The results show that the two novel detection ensembles (“LSTM+LSCP” and 

“LSTM+Isolation forest”) perform better than the existing static error thresholding 

method, resulting in average F1-scores of 86% and 84%, average precision scores of 82% 

and 77%, and average recall scores of 91% and 93% respectively. 

1.7 Thesis Contribution 

The work involves several contributions which are presented in this section. The thesis 

contribution as a whole is on the system for anomaly detection and localization for a 

microservices-based cloud system and the main contribution is a novel ensemble technique 

used for detecting anomalies in the detection module of the proposed system. This thesis 
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sheds light on microservices, propagation of requests through microservices in the cloud 

system, provides insights on distributed tracing events of microservices. The work explores 

how the performance metric data could be extracted from trace events along with relevant 

features that could be used for the detection and localization process which is one of the 

main contributions. This thesis explains how neural networks such as LSTMs (Long Short-

Term Memory) and various unsupervised outlier detection algorithms are used as general-

purpose anomaly detectors. This work integrates the time series forecasting deep learning 

model with unsupervised outlier detection methods to create an ensemble anomaly 

detection system which is the main contribution. It involves the evaluation of 8 different 

integrated methods: four different ensembles of LSTM with LSCP, one hybrid of LSTM 

with Isolation Forest, LSTM with One-Class SVM, and two different ensembles of LSTM 

with Static thresholding methods across six different set of experiments. This novel 

ensemble was also tested on a public benchmark dataset (Numenta Anomaly Benchmark). 

The final contribution of the work is the identification of the root-cause for the detected 

anomalies. 

1.8 Thesis structure 

Chapter 2 describes the relevant background concepts. Chapter 3 reviews the literature and 

describes the research gap. Chapter 4 details the cloud system and provides an analysis of 

the problems. Chapter 5 provides insights into the research methodology that we followed 

while conducting this research. Chapter 6 gives a detailed design and description of the 

proposed system for anomaly detection and localization. The details of the implementation, 

experiments on the third-party dataset, and their results are discussed and a comparison 

with related work is demonstrated in Chapter 7. Chapter 8 describes the impact of the 

proposed system, discusses the challenges encountered and alternate analysis. It then 

summarizes the thesis work and lists some items for future work. 
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Chapter 2 

2 Background 

This section begins by providing insights on Microservices, followed by theoretical 

concepts of Anomaly Detection such as its challenges, types of anomalies, how machine 

learning could be used for anomaly detection and their evaluation metrics. The second half 

of this section is dedicated to the background on technical concepts required for supporting 

the practical implementation of the idea in this thesis. It starts by explaining the different 

types of unsupervised machine learning algorithms used in our work. Later, the section 

introduces the basic concepts of neural networks such as what a neural network is, how the 

learning of a network takes place and how a neural network could be used for sequential 

data using Recurrent Neural Network and Long Short-Term Memory (LSTM) network. 

2.1 Microservices 

Microservices architecture is a cloud-native architectural approach to develop software 

applications where a single application is composed of many loosely coupled and 

independently deployable smaller modules/components [8,10]. These independent 

modules or services have their own stack, data model, and databases. Each service provides 

its own business functionality and communicates with other services using pre-defined 

network APIs (Application Programming Interface) [9]. It is easier to develop applications, 

scale them faster with new features, and developers have the flexibility and autonomy to 

select the best breed of tools and programming languages to design and deploy each 

service. With the Microservices, as technology evolves, services can be replaced easily to 

reflect the efficient way to better their applications [8,9,10]. 

Applications built using microservices needs to be monitored to avoid possible future 

failure and outages. Without monitoring it is impossible to know if the services are 

provided without violating Service Level Agreements or not. Monitoring a microservices 

application is challenging unlike monitoring a monolith application. Every interaction 

between one service to another dependent service could be a potential point of failure. 



9 

 

Failure of one dependent service could result in upstream effects on the overall 

performance of the application [13]. 

2.2 Anomaly Detection 

An anomaly is an unexpected, rare event or observation that is significantly deviating from 

the majority of normal data. For example, an abnormal behaviour of the system results in 

poor system performance due to high CPU consumption, high latency, etc. The process of 

identifying these unexpected events is termed as anomaly detection [1]. Anomaly detection 

is applicable in a variety of domains such as event detection in sensor networks, intrusion 

detection in cyberspace, in financial transactions, radio frequency transmissions, driving 

patterns, e-commerce, health care, etc. These anomalies are critical as they contain hidden 

significant information that is hard to find. For example, anomalous readings from different 

sensors could mean faulty road or weather conditions that could lead to road accidents or 

abnormal points from MRI images that could indicate the presence of malignant tumors. 

2.2.1 Challenges in Anomaly Detection 

Anomaly detection is a broad and hard problem. There are several challenges in the process 

of detecting anomalies. Some of the common challenges are listed as follows. 

➢ Determining whether an event is normal or abnormal among a given set of 

events can be difficult, especially if the event-value lies close to the “edge” of 

normality and abnormality. 

➢ Anomalies are masked. Certain anomalies arising out of fraudulent activities may 

appear normal thus making it difficult to define normality or normal behavior. 

➢ Considering the dynamic nature of data, the anomalies detected today might not be 

anomalous in the future. 

➢ An anomaly detection system that is effective for one dataset may not be effective 

for another dataset. 

➢ Target labels indicate whether a data point is normal or not. The availability of 

labeled data, and thus the validation of detection models in the absence of label 

information is a huge problem [1]. 
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2.2.2 Types of Anomalies 

Anomalies are broadly classified into three main categories: 

1. Point Anomalies: A single instance of data that deviates from the rest of the data 

points is considered as a point anomaly. 

2. Contextual Anomalies: The abnormality is context-specific. An instance of data 

that is anomalous when viewed in a particular context but normal otherwise is 

considered as a contextual anomaly. For example, usage of air conditioning during 

winter is anomalous whereas, usage during summer is normal. 

3. Collective Anomalies: A group of related data instances is anomalous with respect 

to the entire dataset, but not an individual instance. For example, the response time 

of a single request at the moment might be normal, but the sum of response times 

of requests for a 5-minute interval might result in anomalous system behavior. 

These anomalies are inter-connected. A point anomaly could become contextual if a 

context is applied. Point anomalies could become collective anomalies if they are 

grouped together.  

Apart from the type of anomalies, the detection process needs to consider the nature of 

input data [1]. The input data is a collection of data instances which could be events, 

observations, patterns, or vectors. Each observation is described by a set of attributes or 

features such as response time, CPU utilization, network usage of a system, etc. Input data 

can be univariate or multivariate depending upon the number of attributes. Univariate data 

consists of a single attribute, such as performance data with only response time values as 

its feature. Multivariate data consists of multiple attributes, such as performance data 

consisting of the total number of requests, duration, response code, timestamp, etc. 

Attributes are represented by continuous, binary, or categorical values. The selection of the 

desired detection techniques is dependent on the nature of the data. For example, in 

sequence data such as time-series or genome sequences, the data instances are linearly 

ordered. In spatial sequences such as traffic data, each data instance is related to its 

neighboring instance [1]. 
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2.2.3 Machine Learning for Anomaly Detection 

Machine learning (ML) is a subset of Artificial Intelligence that provides systems the 

ability to automatically learn from data without any human intervention, build models and 

improve from experience without being explicitly programmed to perform the task [2][3]. 

As given in Figure 2.1, a machine learning process creates a model, to make predictions or 

decisions, during the learning phase by training the chosen algorithm on training or sample 

data that has been pre-processed. The model is further evaluated by testing on new, unseen 

data. 

 

Figure 2.1: Machine Learning Process 

The presence of target labels associated with each data instance is another aspect for 

deciding the anomaly detection technique [1]. Target labels provide an indication of 

whether a given data instance is normal or anomalous. Based on the availability of the 

labels, an anomaly detection system can use one of the 3 modes of machine learning 

techniques: Supervised, Unsupervised, and Semi-Supervised. 

Supervised Learning requires a labeled training dataset that contains both normal and 

anomalous points in order to build the model to classify future data points. Unsupervised 

Learning does not require labeled training data and assumes that only a small percentage 

of data is anomalous and the anomaly is statistically different from the normal samples. It 

scores the data solely based on the natural features of the dataset. Distances or density 

scores are used for evaluation of what is normal and what is abnormal. Semi-Supervised 

learning falls between the above two categories. It uses a small amount of labeled data with 
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a large amount of unlabeled data for training the model and assumes that the training data 

consists of labels only for normal class [1-6].  

2.2.4 Metrics to Evaluate Anomaly Detection 

In Anomaly detection, we tend to have only two sets of targets or labels: normal and 

abnormal points. Hence, for such a two-class or binary classification, various techniques 

can be used to evaluate the ML models used for the detection process, provided the label 

information is available to assist the evaluation process.  

2.2.4.1 Confusion Matrix 

The commonly used approach for evaluation is by creating a confusion matrix, which is a 

table of two rows and two columns displaying the actual values and predicted values as 

shown in Table 2.1. 

 Predicted Values 

Normal Class Anomaly Class 

Actual Values 
Normal Class True Negatives (TN) False Positives (FP) 

Anomaly Class False Negatives (FN) True Positives (TP) 

Table 2.1 Confusion Matrix for two classes 

• True Positives (TP) are the number of instances that are actually abnormal or 

anomalies (such as high response time of a system) and the model also predicts it 

as abnormal.  

• True Negatives (TN) are the number of instances that are actually normal points 

and the model also predicts it as normal.  

• False Positives (FP) are the instances that are predicted as abnormal when they are 

actually normal data points, giving false alarms.  

• False Negatives (FN) are the number of instances that are predicted as normal by 

the models, but in reality, they are abnormal data points, indicating a miss during 

the detection process. 
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2.2.4.2 Accuracy 

 Accuracy measures how often the model predicts correctly. It is the proportion of correctly 

classified instances to the total number of instances as given in Equation 2.1. Accuracy is 

not a preferred metric when there is a severe class imbalance.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.1) 

When the dataset class is highly imbalanced the following metrics are used for evaluation 

of the algorithms. 

2.2.4.3 Precision 

Precision is a measure of the accuracy of positive predictions or anomaly identification. It 

is defined as the proportion of data points that were correctly predicted as anomalies over 

the total number of data points that were predicted as either anomaly or normal as given in 

Equation 2.2. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.2) 

2.2.4.4 Recall 

Recall also known as Sensitivity or True Positive Rate (TPR), measures the proportion of 

data points that were correctly predicted as anomalies over the total number of anomaly 

points present in the dataset as given in Equation 2.3. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.3) 

2.2.4.5 F1 Score 

F1 Score is the harmonic mean of precision and recall, as given in Equation 2.4, which 

gives a better measure of incorrectly predicted labels than the Accuracy metric. F1 score 

gives equal weight to both precision and recall measures. 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.4) 
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2.2.4.6 Specificity 

Specificity, also known as True Negative Rate (TNR), measures the proportion of data 

points that were correctly predicted as normal points over the total number of normal points 

present in the dataset, as given in Equation 2.5. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.5) 

   

2.3 Unsupervised Machine Learning Algorithms 

This section provides an overview of the different unsupervised learning algorithms used 

in our proposed Anomaly Detection and Localization system. The section explains the 

following algorithms: K-Nearest Neighbor, Local Outlier Factor, K-Means Clustering, 

Isolation Forest, One-Class Support Vector Machine, Locally Selective Combination of 

Parallel Outlier Ensemble (LSCP). 

2.3.1 K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is a density-based anomaly detection technique that assumes 

that the normal data exists around a dense neighborhood whereas abnormal data lies far 

away. For a given data point, KNN uses its distance to its kth nearest neighbor as the 

outlying score or anomaly score. Distance is used as a way to measure density. Different 

variants of detectors can be used such as:  

a) Largest, which uses the largest value of distance, i.e., distance to kth neighbor as 

the outlying score. 

b) Mean, which uses the average distance to all its k neighbors as the outlier score. 

c) Median, which uses the median of all its distance values to its ‘k’ neighbors as the 

outlier score. 

Distance metrics such as Euclidean, Manhattan (or) Hamming distance can be used to 

compute the distance between data points. If the outlier score is high, then it can be 

considered as an anomaly. 
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2.3.2 Local Outlier Factor 

Local Outlier Factor (LOF) is an unsupervised density-based algorithm that relies on k-

nearest neighbors. The idea behind this algorithm for anomaly detection is that the density 

around an outlier will be significantly different than the density around its neighbors. LOF 

measures the local density deviation of a given data point with respect to its neighbors. The 

data points that have a substantially lower density than their neighbors are considered as 

anomalies. LOF tries to determine how isolated each data point is relative to other data 

points. LOF has 4 steps: 

2.3.2.1 Steps in LOF 

The local outlier factor algorithm involves 4 steps to detect the outliers in the dataset. The 

steps are as follows. 

a) Find K-Distance and K-Neighbors – The first step is to choose a number ‘k’ of 

neighboring points and for a given point ‘p’, find the necessary radius ‘r’ to have 

‘k’ points within a distance ‘r’ from ‘p’. The more isolated a point is, the farther it 

will have to search for its neighboring points, whereas for normal data points it 

doesn’t have to search too far to find its ‘k’ neighbors, as depicted by Figure 2.2. 

[98]. 

 

Figure 2.2: K-Distance for outlier (the red point) is larger than normal points (maroon 

point). Image adapted from [99]. 

b) Compute Reachability Distance - Reachability Distance determines which 

neighbors of a given point ‘p’ also consider that point ‘p’ as its neighbor as given 
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in Figure 2.3. For a point x and one of its neighbors y, reachability distance shows 

how a point y perceives the distance to x. Reachability-Distance for two points x, 

y can be defined as the maximum of the K-Distance of y and the distance between 

x and y. If point x is one of the y’s k-nearest neighbors, then distance(x,y) will be 

less than K-Distance(y). Hence, it makes reachability Distance(x,y) = K-

Distance(y). If point x is not one of y’s k-nearest neighbors, then distance(x,y) will 

be greater than K-Distance(y). Hence, it makes Reachability Distance = 

Distance(x,y). 

 

Figure 2.3: Reachability Distance determines which neighbors of a given point ‘p’ also 

consider that point ‘p’ as its neighbor. The outlier (red point) is not contained in K-

neighbourhood by its neighbor (aqua-colored dots). Image Adapted from [99]. 

c) Determine Local Reachability Distance (LRD) - LRD provides a statistical 

density for each point. For a point x, LRD is equivalent to the inverse of average 

reachability distance of x’s neighbors. LRD tells how far it needs to travel from a 

given point to reach the next point or cluster of points. The lower the LRD is, the 

less dense it is and hence longer it needs to travel. 

d) Local Outlier Factor (LOF) - Each point’s LRD is compared to its neighbors’ 

LRD to compute the LOF for each point. LOF is the average ratio of LRDs of 

neighbors of point x to LRD of point x. For most points values of LOF should be 

close to 1. If LOF >> 1, it indicates that the density of point x is low compared to 

its neighbors and hence, it has to travel longer from point x  to reach next 

point/cluster of points (or) indicates it is far from dense areas. Therefore, the higher 

the LOF, the more it is likely to be an outlier [98, 99]. 
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2.3.3 Isolation Forest 

Isolation Forest (IF) is an unsupervised learning technique that uses the concept of isolation 

instead of distance or density measures [100]. The basic assumption made by this algorithm 

is that anomalies are very and different. The algorithm tries to separate each data point in 

the dataset. The intuition here is that an anomaly can be easily separated in a few steps 

while the normal points which closer could take more steps to be separated. 

2.3.3.1 Steps in Isolation Forest 

 The detection process of an Isolation Forest involves 4 steps. Each step has been explained 

as given. 

a) Sampling - The dataset is sampled for training the model, as given in Figure 2.4.a). 

The sample proportion can be different depending upon the presence of noisy data 

in the underlying dataset. 

 

Figure 2.4: a) Sampling (left). b) A Split value selected to form a tree (right). Image 

Adapted from [101]. 

b) Binary Decision Tree - For the sample drawn from step a), a binary decision tree 

is built. This step randomly selects a feature and then selects a split value between 

the maximum and minimum values of the selected features, as given in Figure 

2.4.b). 

c) Create Forest - The two sub-data set formed by a binary split in previous step b) 

is further split to form a tree. Basically, step b) is repeated iteratively to create a 

collection of trees, a forest. Fewer and different data points are segregated quicker 

i.e., it takes less path for them to be isolated, as given in Figure 2.5. To isolate a 
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sample, the number of splitting required is equivalent to the path length from the 

root node to the leaf node. 

 

Figure 2.5: Data points at the lower right corner are easier to isolate (right). Image 

Adapted from [101]. 

d) Calculate Anomaly Score - Each data point is fed into the trained forest for each 

tree. Anomaly score is calculated for each tree and average is taken across different 

trees to obtain the final anomaly score for an entire forest for a given data point. 

2.3.4 One-Class SVM 

One-Class SVM (OC-SVM) is an unsupervised learning technique based on the working 

of the Support Vector Machine (SVM). SVM is a supervised classifier that tries to find an 

optimal hyperplane having a maximum margin in order to separate two classes of data 

points  [102], as given in Figure 2.6. The idea of SVM for anomaly detection is to learn a 

decision function that is negative for regions with a small density of points and positive for 

high dense regions.  

 

Figure 2.6: Hyperplanes for linearly separable data and non-linear data 
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One Class SVM separates all the data points from the origin and maximizes the distance 

of hyperplane from the origin which results in a binary function returning positive and 

negative values for regions on either side of the hyperplane. The model uses 

hyperparameters such as ‘nu’, known as outlier fraction, which is the proportions of outliers 

expected in the data, kernel type such as ‘rbf’, which enables SVM to project the non-linear 

input into a high dimensional feature space, ‘gamma’ is a kernel co-efficient controlling 

the influence of training samples [103]. The model returns –1 for an outlier and +1 for a 

normal data point. 

2.3.5 Locally Selective Combination of Parallel Outlier Ensembles 

(LSCP) 

Locally Selective Combination of Parallel Outlier Ensembles (LSCP) is a framework used 

for the detection of outliers using an ensemble of unsupervised outlier ensembles [91]. The 

LSCP is a framework available in Python Outlier Detection (PyOD) toolkit. PyOD is an 

open-source, scalable Python toolkit for detecting outliers. 

2.3.5.1 Ensemble Methods and Types 

Ensemble methods use multiple learning algorithms to obtain a better performance that 

could not be achieved by using individual models. In unsupervised outlier ensembles, it is 

quite challenging to build a combination of detectors without labels or ground truth. There 

are 2 variants of ensembles - parallel and sequential. In sequential, the base 

detectors/learners are generated sequentially where the dependence between the learners 

are exploited. In parallel, the base detectors are generated in parallel exploiting the 

independence between the detectors [92].  

2.3.5.2 Advantages of LCSP 

Existing parallel outlier ensembles combine all the base learners without considerable 

selection, limiting the combination benefits since individual detectors may not be capable 

of identifying all the outliers [93]. The performance of ensemble through good detectors 

can be reduced or nullified by the presence of bad detectors while averaging the results. 

Also, the detectors consider all the training points in the dataset to determine the outlier 



20 

 

exploring global data relationships instead of considering the local regions in the dataset. 

LSCP overcomes these limitations by emphasizing on data locality [93].  

LSCP is motivated by the principle of Dynamic Classifier System (DCS) [93], a supervised 

ensemble framework, that the base classifiers are likely to specialize in local regions than 

identify outliers from all the unknown test instances [91]. Based on this idea, LSCP defines 

a local region for each test instance, then identifies the competent base detector(s) in this 

local region which in turn generates an outlier score for the test instances. LSCP explores 

global data relationships by training the detectors on the entire data and explores local data 

relationships by emphasizing locality during detection combination. LSCP is compatible 

with diverse types of base detectors. 

2.3.5.3 Steps in LSCP algorithm 

1. Base Detector Generation - The base detectors used in LSCP can be 

heterogeneous or homogeneous. For homogeneous base detectors, different hyper-

parameters initialization & subsampling of training dataset can be done to introduce 

diversity so that the model can learn distinct characteristics of data. For a given 

training and testing data, the algorithms generate a set of base detectors with 

different values of hyper-parameters, say a set of KNN or LOF detectors with 

distinct neighbors or Minpts. The training set is used to train all the base detectors, 

which are further tested on the same training data resulting in an outlier score matrix 

O(X train) with score vectors from all the base detectors which are normalized 

using Z-normalization [91]. 

2. Pseudo Ground Truth Generation - Since this is an unsupervised technique with 

no labels or ground truth, two methods are used to generate pseudo truth with 

Outlier matrix score O(X train) which can be used by LSCP to evaluate the 

competency of the detector. One is average scores of base detectors (LSCP_A) and 

the other is the maximum of all base detector scores (LSCP_M). This pseudo 

ground truth is generated using training data and used for detector selection alone. 

3. Local region Definition – A set of nearest neighbors for each test instance is 

identified to determine that its local region. Firstly, a new feature space is 

constructed using randomly chosen t groups of [d/2,d] features. Then, using 
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Euclidean distance, ‘k’ nearest training objects to test instances in each group are 

identified. The training objects appearing more than t/2 times define the local region 

for a given test instance. 

4. Model Selection and Combination – For each test instance, local pseudo ground 

truth is determined by fetching values associated with the local region from the 

target in step 2. Local training outlier score is obtained by retrieving outlier scores 

associated with training data in the local region, i.e., outlier score matrix from step 

1. To evaluate base detector competency in the local region, LSCP uses the Pearson 

correlation to measure the similarity between local pseudo ground truth and the 

local detector score. Detector with high similarity is considered as the most 

competent local detector and its score is considered as the final score for that test 

instance. 

5. Dynamic Outlier Ensemble Selection – If only one detector is most similar to the 

pseudo ground truth, then it would be risky to select only one detector for the 

unsupervised problem which can be avoided by selecting a group of detectors. 

There are two variations of LSCP ensemble – Maximum of Average (LSCP_MOA) 

and Average of Maximum (LSCP_AOM). In both cases, a group of detectors is 

selected in the local region of a test instance. LSCP_MOA takes the maximum of 

detector’s predictions as the outlier score whereas LSCP_AOM takes the average 

of detector’s predictions as the outlier score when pseudo target from step 2 is 

calculated using LSCP_M [91]. 

2.4 Neural Network 

A neural network (NN), also known as Artificial Neural Network (ANN), comprises of 

simple computational units called nodes or neurons which use a mathematical or 

computational model for processing information [75]. The working principle of a neural 

network is inspired by the functioning of a human brain [76].  A neural network consists 

of several layers where each layer is made of neurons that are connected through a link. 

Each link is associated with a set of co-efficient or weights. A node receives input along 

with the incoming links which are combined with their respective associated weights as 

depicted in Figure 2.7.  
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Figure 2.7: Functioning of a neuron. A simple network consists of one output neuron 

(Perceptron Model) where inputs are directly fed to the neuron. Image adapted from [79]. 

The products of inputs and weights from all the nodes across a layer are summed and 

further passed to an activation function to generate output signals [76-78]. Activation 

function, also known as a transfer function, acts as a gate determining to what extent an 

output signal should progress further in the next layer [77]. It maps input nodes to output 

nodes based on mathematical operations [80]. There are 3 types of activation functions, 

namely, Linear, Binary, and Non-Linear. Most of the neural networks use non-linear 

transfer functions which helps the model to create a complex mapping between input and 

output when the data is non-linear. Typical non-linear activation functions include: 

Logistic/Sigmoid, Tanh, Rectified Linear Unit (ReLU), Parametric ReLU, Leaky ReLU, 

Softmax, Swish [81]. 

2.4.1 Feedforward Neural Network 

There are various classes of neural networks: Feedforward, Convolutional, Recurrent, 

Autoencoder, Generative Adversarial, etc. In this section, we describe a simple network, 

FFNN, to explain its working mechanism before we learn about LSTM. 

A feedforward neural network (FFNN) is an artificial neural network where information 

flows only in one direction, from input nodes to output nodes without any feedback loops. 

Depending on the number of hidden layers, they can be classified into Single-layer 

perceptron or Multi-layer perceptron [82]. A single layer perceptron does not contain any 

hidden layers and consists of a single layer of output node(s), as depicted in Figure 2.7. A 

multi-layer perceptron consists of input, hidden, and output layers as shown in Figure 2.8. 
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Figure 2.8: Multi-layer Perceptron 

Input Layer - is the first layer of a network, also known as a visible layer since it is the 

exposed part of the network in which each node takes one input value from the dataset. The 

input layer is responsible for passing the input to the next layer, hidden layer, and does not 

perform any operation. 

Hidden Layer(s) - are composed of most of the neurons in the network which are 

responsible for manipulating the incoming data with the weights and biases. 

Output Layer - generates the result for the data passed through the network. It might 

consist of a single node or multiple nodes depending on the number of resultants objects 

expected to be returned. 

2.4.2 Learning Process of Neural Network 

The learning or training of a neural network is an iterative process involving the flow of 

information forward and backward across the layers of neurons. The first phase is forward 

propagation where the network receives input data, which is further passed to the next layer 

where it is transformed and fed to the next subsequent layer. After the data propagates 

across all the hidden layers, it reaches the last layer which generates the output. This 

network generated output is compared with the actual output to determine the error or loss 

using a loss function (such as Mean-Squared Error), to measure how accurate the result is.  



24 

 

 

Figure 2.9: Training of Neural Network using Error back-propagation 

The loss information is propagated backward from the output layer to other layers in the 

network one by one. The neurons of the hidden layers receive a significant fraction of the 

total loss based on their contribution to the output. The process is repeated until all the 

neurons have received the loss information [83]. Later, the weights are adjusted in such a 

way that the error is minimized. This is called optimization which aims at minimizing the 

loss function by tuning the parameters of the network such as the weights and biases. The 

technique used for optimization is called gradient descent which changes the weights in 

small increments by calculating the gradients of the loss function indicating the desired 

direction to reach minima. Gradient(derivative) is a measure of the change in loss value 

corresponding to a small change in network parameters [76]. A hyper-parameter called 

learning rate controls the size of steps or the amount of the weight adjusted with respect to 

the loss gradient, as given in Equation 2.6. This process is done for several epochs or 

iterations over the training dataset. The parameters move closer to their optimal values with 

every epoch. A smaller value of learning rate requires more iterations whereas larger 

learning rates require few epochs.  

  
𝜃 = 𝜃 − 𝛾

𝜕𝐿(𝜃)

𝜕𝜃
 

(New weight = Old weight – Learning rate * Gradient) 
 

(2.6) 

Gradient descent variants Depending upon the amount of data used to compute the 

gradient of the loss function, there exist different variants of gradient descent such as batch, 

mini-batch, stochastic gradient descent, RMSProp, ADAGRAD, ADAM, etc. 
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2.4.3 Limitations of Basic Neural Networks for Sequential Problems 

Vanilla or basic neural network takes in the input of fixed size which limits its usability 

when it comes to sequential data or a ‘series’ input which has no predetermined size. To 

overcome the fixed size issue, multiple sets of vanilla networks could be used, but a single 

instance from a ‘series’ input has a certain relationship with its neighboring instances and 

basic neural networks cannot explore such relationships between consecutive instances of 

a series input [84]. Most of the NNs assume that the data samples are independent of each 

other. Such assumptions do not hold true for data like speech, video, stock market data, 

language, etc., that exhibit temporal dependency. One such mechanism to account for 

sequence data is to use Recurrent Neural Networks (RNNs). 

2.4.4 Recurrent Neural Network 

RNNs are a generalization of feed-forward neural networks (FFNNs) with internal 

memory. It is referred to as recurrent since it performs the same operation for every input 

where the output of current input depends on the past output. RNN adds a looping 

mechanism to FFNN as depicted in the below Figure 2.10, which allows the flow of 

information from one step to the next step. This information is known as the hidden state 

(memory), which represents the previous inputs. 

 

Figure 2.10: Recurrent Neural Network with Looping mechanism 

Figure 2.11 depicts how RNNs can be used for modeling sequential data. As given in the 

diagram, there are ‘t’ instances or samples of data. The network takes in input X(0) to 

generate output h(0), which is fed along with the next input X(1) to generate second output 

h(1). Here, the output h(1) depends on current input, X(1), and its previous output, h(0). 

Similarly, this step is continued further until it generates ‘t’ outputs. This architecture of 
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RNN helps it to uncover the dependencies of input samples with each other and remembers 

the context behind the sequences, for example in language translation, while training. 

 

Figure 2.11: Unrolled Recurrent Neural Network. Image Adapted from [85] 

2.4.5 Limitations of RNN 

RNN suffers from short-term memory, meaning they are capable of handling short-term 

dependencies between the input samples. For example, in language modeling, it is easier 

to predict the next to last word in a sentence “Vehicles stop when traffic signal lights turn 

red” based on the previous ones, because the time gap between the relevant input and the 

place where it is needed to generate output is less. Here, in this example, RNNs does not 

have to understand the context or need not remember information from the previous 

sentences. But if the relevant input and the place where it is needed is separated by 

irrelevant data in between, then the RNN fails. For instance, “My name is XYZ and I was 

born in India...My passion is... I’m fluent in many Indian languages”, the word ‘fluent’ 

indicates the next word to be ‘language’, but to predict which specific language(s), the 

RNN model needs to remember the context of the information from the relevant sentence 

that has been mentioned long ago. RNNs cannot handle such long-term dependencies. This 

is due to the problem of vanishing gradients [86]. 

Vanishing Gradient Problem: 

As mentioned in Section 2.4.2, the gradient descent algorithm tries to find the global 

minima of the loss/cost function. The information travels from input to the output layer and 

the error is calculated and back-propagated back to the starting layer. The training is similar 

for RNN except that the information travels through time where the output from the 

previous time step is used as input for the next time step and error or cost function is 

calculated at every time step.  
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Figure 2.12: Training in RNN through back-propagation. Image adapted from [87]. 

For example, as depicted in Figure 2.12, at a given time step ‘t’, if weights are required to 

be updated, then the cost function/error term, E(t), needs to be backpropagated through the 

network. The weights of every neuron that participated in producing the output associated 

with this cost function are updated. In RNNs, not only the neurons present below the output 

layer at time step ‘t’, but all the neurons far back in time (say t-1, t-2, t-3) contributes to 

the desired output at time step ‘t’. Hence, the error is propagated through the network back 

through all the time steps [87]. 

For instance, to get from x-3 to x-2, x-3 is multiplied by Wrec (Weight Recurring), and to 

get to x-1 from x-2, x-2 is multiplied by Wrec to get to x-1 from x-2. The inputs are 

multiplied by the same value of weights many times. When a value is multiplied by a 

smaller weight, the product result gets reduced quickly. In NNs, weights are generally 

initialized with random values closer to 0 which later gets updated during the training 

process. Hence, if Wrec value is less and when the error is backpropagated, this Wrec will 

be multiplied with x, x-1, x-2, x-3, and so on, causing the gradient to decay to 0, which we 

call it as vanishing gradient problem. Similarly, if Wrec is high, it causes the gradients to 

become too large resulting in exploding gradient problem [87]. As a result, RNNs can 

remember things only for a short duration of time and tends to forget information over 

time. To counter the problem of vanishing gradient, Long-Short Term Memory (LSTM) 

architecture was introduced. 
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2.4.6 Long-Short Term Memory 

LSTM is capable of handling long-term dependencies between the input samples. It can 

selectively forget or remember information and add new information without entirely 

modifying the existing information, unlike RNNs.  An LSTM network comprises of 

memory blocks called cells; the green boxes as shown in Figure 2.13. There are four neural 

network layers (yellow boxes) inside every cell. 

 

Figure 2.13: An LSTM network. Image adapted from [86]. 

Each cell transfers 2 states to the next cell: the cell state and the hidden state. These cells 

are responsible for remembering information that is important and this information can be 

manipulated through gating mechanisms. LSTM consists of 3 gates – Forget Gate, Input 

Gate, and Output Gate. 

2.4.6.1 Forget Gate 

Forget gate is responsible for discarding information that is no longer required (or) of less 

importance by the LSTM.  
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Figure 2.14: Forget Gate of LSTM. Image adapted from [86]. 

 𝑓𝑡 =  𝜎 (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.7) 

As shown in Figure 2.14, the gate takes in two inputs - 𝑥𝑡and ℎ(𝑡−1). 𝑥𝑡 is the input at the 

current time step and ℎ(𝑡−1)is the hidden state/output from the previous cell. The input is 

multiplied by the weight matrices and a bias is added, followed by a sigmoid activation 

function, 𝜎(). Sigmoid activation function, 𝜎(), decides which values to remove and which 

to keep. If it outputs ‘0’ for a particular value in the cell state, the forget gate will tend to 

forget or discard the information. If the sigmoid outputs ‘1’, then the forget gate will 

remember that information. This output, 𝑓𝑡, from the sigmoidal function is multiplied with 

the cell state, 𝐶(𝑡−1) from the previous cell [86]. 

2.4.6.2 Input Gate  

The input gate is responsible for adding new information to the cell state. It involves three 

steps for the addition of new information. 
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Figure 2.15: Input Gate of LSTM. Image adapted from [86]. 

 

 𝑖𝑡 =  𝜎 (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (2.8) 
   
 𝐶̃𝑡 =  𝑡𝑎𝑛 ℎ(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐)  (2.9) 
   
 𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗ 𝐶̃𝑡 (2.10) 

 

1. The first step involves using a sigmoid layer, 𝜎(), which acts as a filter in deciding 

which information to keep and update from 𝑥𝑡 and ℎ(𝑡−1), as given in Figure 2.15 

and described by Equation 2.8. 

2. Next, a tanh layer creates a vector of all possible values from 𝑥𝑡  and ℎ(𝑡−1)that can 

be added to the cell state. 

3. The third step would be multiplying the regulatory output, 𝑖𝑡, from step 1 with the 

vector values, 𝐶̃𝑡, from step 2 and later adding this to the previous cell state, 𝐶𝑡−1. 

These steps make sure that only important information is added to the cell state and 

redundant ones [86, 88]. 

2.4.6.3 Output Gate 

The output gate sends the filtered useful information from the current cell state to the next 

cell. This also involves 3 steps. 
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Figure 2.16: Output Gate of LSTM. Image adapted from [86]. 

 

 𝑜𝑡 =  𝜎 (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) (2.11) 
   

 ℎ𝑡 = 𝑜𝑡  ∗  𝑡𝑎𝑛 ℎ(𝐶̃𝑡)  (2.12) 

 

1. The cell state, 𝐶̃𝑡, from the input gate is put through a tanh layer, as shown in Figure 

2.16, to create a vector of values ranging from –1 and 1. 

2. Next, a sigmoid layer, 𝜎(), uses inputs 𝑥𝑡and ℎ(𝑡−1)to filter the values that are going 

to output from the vector created in step 1, mathematically expressed as given in 

Equation 2.11. 

3. We finally multiply the filter output from step 2, 𝑜𝑡 , with vector values from step 1 

and send it as the hidden state and output for the next cell, mathematically expressed 

as given in Equation 2.12 [86, 88]. 

The current cell state or the result from the output gate of the current cell is fed as input to 

the next cell, where the gates in the next cell repeat the same set of operations as discussed 

above until the last cell has reached in the network layer. 
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Chapter 3 

3 Literature Review 

In this section, we provide a literature review of anomaly detection techniques carried out 

in a distributed environment or computing systems in general, broken into main sections: 

Traditional Statistical approaches and Machine Learning-Based approaches. Under the ML 

approach, we discuss the state-of-the-art anomaly detection techniques used for time-series 

data by supervised, unsupervised, and deep learning techniques. Later, we provide 

information about the research gap identified by analyzing the existing approach. 

3.1  Anomaly detection in a cloud system or general 

computing domain 

Anomaly detection has been extensively studied and is an important topic in various 

domains such as health care, e-commerce, finance, cyberspace, astronomy, ecology, etc., 

[21-28].  Various detection strategies have been proposed in the literature specific to the 

computing domain, such as signature-based, observational, knowledge-driven, and 

detection methods such as statistical, machine learning, etc., [29]. Several existing research 

projects have addressed the specific problem of performance anomaly detection in 

distributed and computing systems in general which is discussed in this chapter later. 

3.1.1 Traditional Statistical Detection Approaches 

Beyond rule-based systems [38, 39] that require upper/lower bounds for performance 

metrics, researchers have exploited various statistical methods such as Markov model [30-

32], correlation analysis [35-37, 42], regression analysis [33,34], gaussian-based 

techniques have been assessed to capture deviations in the system performance metrics. 

Bikash et al., in [36] identify variations in performance metrics in a cluster of Virtual 

Machines (VMs) using correlation analysis. The authors also characterize an anomaly by 

defining an anomaly signature for the pairwise correlations of CPU utilization of the VMs. 

Similarly, the correlation between system metrics, latency, and aggregated workload is 

analyzed and considered as a basis to uncover anomalies by Joao et. al in [35], Bikash et 
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al. in [36], and Manjula et. al in [37]. Yang et al., in [34] and Kang et al., in [33] propose 

a regression-based diagnostic framework to model the relationship between system 

performance and application metrics to detect performance anomalies and determine its 

root-cause.  

Gu et al., in [32] and Tan et al., in [31] describe a system based on Markov chain model to 

capture the changing patterns of different measurement metrics to predict metric values for 

next k time units and further feed to a Bayesian classifier to determine anomaly symptoms. 

Samir et al., in [60] designed a Detection and Localization system for Anomalies (DLA) 

that monitors and analyzes performance-related anomalies in container-based microservice 

architectures. They adopted Hierarchical Hidden Markov Models (HHMM) and 

Correlation Analysis to model the relation between the monitored metrics of the container, 

node and service, and the variation in response time under different load scenarios.  

3.1.2 Machine Learning-Based Detection Approaches 

Due to the scale and complex nature of cloud or distributed environment, there has been a 

tremendous shift in the adoption of machine learning techniques. Machine learning 

approaches are divided into 3 categories, namely supervised, semi-supervised, and 

unsupervised, depending upon the level of supervision required by the models. We also 

discuss the state-of-the-art approaches under each category. This section also provides a 

review of existing literature on deep learning techniques for anomaly detection. 

3.1.2.1 Supervised Learning Approach 

Daniel et al. [43] describe an approach that uses metric data and log information to select 

different classifiers trained via Support Vector Machines using monitoring metrics. The 

technique aims to find anomalies over every time intervals called windows by using 

moving average and entropy of metrics data in each window as additional features for 

training the classifiers.  

In [46], Sauvanaud et al. propose an Anomaly Detection System (ADS) consisting of 3 

modules, designed to detect anomalies by learning the behaviour of services in VMs using 

supervised machine learning techniques such as Random Forests, Neural Networks, 
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Nearest Neighbors, and Naive Bayes on CPU, Memory, Disk, and Network performance 

data.  

Qingfeng et al. [45] designed an Anomaly detection System (ADS) to detect and diagnose 

anomalies in a container-based microservices. The proposed system consists of 3 modules: 

Monitoring module, that collects performance metric data of containers, Data Processing 

Module analyzes data and detects anomalies using SVM, Naïve Bayes, Nearest Neighbors, 

and Random forests algorithms and Fault Injection Module validates the model under 

different system fault conditions. Further, once an anomalous metric in service is detected, 

the time-series data of all the containers running that service is analyzed by the DTW 

algorithm to measure the similarity between the time-series performance data of the given 

containers. And the most anomalous container which has the maximal distance from the 

others is found.  

3.1.2.2 Unsupervised Learning and Deep Learning Techniques 

The most widely used unsupervised anomaly detection technique for point anomalies is K-

Nearest Neighbors (KNN), which calculates an anomaly score based on the distance to 'k' 

nearest neighbors for a given data point used by Bikash et al. in [36], James et. al in [58], 

and Kanishka et. Al in [59]. Breunig et al., in [55] proposed a popular unsupervised method 

for local density-based anomaly detection known as Local Outlier Factor (LOF) where the 

k-nearest-neighbors set is determined for each instance by computing the distances to all 

other instances. LOF has been used for anomaly detection in cloud applications [53], for 

workload patterns [54], network intrusions [57].  

Xiao et al., in [61] developed TaskInsight that detects performance anomalies in cloud 

applications using clustering algorithms by analyzing the system-level metrics, such as 

CPU and memory utilization. The anomaly score of an instance is the distance to the next 

large cluster. The problem of choosing the right number of clusters arises in the clustering 

approach [56]. 

ADVec algorithm developed by Twitter (Vallis et al. [48]) based on the generalized 

Extreme Studentized Deviate (ESD) test, combined with robust statistical approaches and 

piecewise approximation. The technique uses statistical metrics such as median, and 
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median absolute deviation (MAD), and piecewise approximation of the underlying long-

term trend to detect anomalies in the long-term time-series data. It uses the piecewise 

method to approximate the underlying trend in a long-term time series. The trend is 

computed as a piecewise combination of short-term medians. The length of the windows 

in the piecewise approach is chosen such that the windows encompass at least 2 periods of 

any larger seasonality. 

Imam et al. [44] use the Microsoft ML time series algorithm on application log files to 

forecast the performance, detect anomalies, and analyze to determine the application or 

source that caused it. The ML time series algorithms include 2 algorithms : (i) The ARTXP 

algorithm, which is optimized for forecasting the next probable value in a series, (ii) The 

ARIMA algorithm, to improve the accuracy of the long-term forecasting. After forecasting, 

the proposed approach introduces the concept of anomaly index, computed by looking for 

a maximum value across a time-period and comparing it to the average. The technique 

observes a change in anomaly index, its trend, and alerts when the value of the anomaly 

index is large.  

Sasho et al. [47] address the problem of anomaly detection in a large-scale distributed 

environment by proposing an unsupervised response time anomaly detection of Variational 

autoencoders and dynamic error thresholding. Variational autoencoders forecast the metric 

values from distributed tracing records, the forecast errors are modeled as gaussian 

distribution. The validation set is being used for threshold setting where for each window 

per sample in validation set the trained model is applied. Errors between reconstructed and 

an observed window of events not within the high-level of the confidence interval of 

Gaussian distribution is considered as an anomaly. The probability of new test data within 

a high-level of confidence of the Gaussian distribution confidence interval is computed and 

outputs are kept in a queue of size the same as (tolerance) for each new window. The 

tolerance module checks whether the average probability of all the points in the queue is 

greater than the error threshold. If this is the case, the submodule flags this part of the time 

series as unstable and reports an anomaly. 
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Similarly, Haowen et al. [50] propose an unsupervised anomaly detection algorithm, 

Donut, based on dimensionality reduction and generative model, Variational auto-encoder 

(VAE) for seasonal Key Performance Indicators (KPIs) for web applications (e.g., page 

views, number of orders, online users) with local variations. The technique uses an optimal 

threshold value to determine if a data point is an anomaly or not. 

Mohsin et. Al in [56] developed DeepAnt, an unsupervised anomaly detection technique, 

which consists of two modules – time-series predictor and anomaly detector. The predictor 

module uses on Convolutional Neural Network (CNN) to forecast time-series data. The 

actual and forecast value is passed to the detector, which uses Euclidean distance to 

measure the discrepancy and detect the anomalies if the distance measure exceeds beyond 

the threshold set. 

Malhotra et al. [49] proposed a model of stacked Long-Short Term Memory (LSTM) 

networks to enable learning of higher-level temporal features to detect anomalies in time 

series data. The network was trained on normal data and used as a forecaster over a number 

of time steps. The forecast errors were modeled as multivariate gaussian distribution, which 

was used to assess the likelihood of anomalous behaviour. Validation sets were used to 

determine the anomaly cut-off.  If the likelihood or the probability of a test point is greater 

than the threshold then the point is considered as an anomaly.  

Chen et al. [51] designed a framework to integrate unsupervised anomaly detection and 

trend prediction altogether. The framework, SeqVL - Sequential VAE LSTM, combines 

variational auto-encoders and LSTMs, where VAE is used for unsupervised anomaly 

detection and LSTM is used for trend prediction. The detector (VAE) boosts its 

performance by training the model with segments in sequential order that is maintained by 

the predictor (LSTM). The re-encoded time series output from the VAE block is fed to 

LSTM to make robust trend predictions. The squared error of encoder from decoder 

segments is checked against a threshold to detect anomalies.  

Leandro et al. [52] extended eBay’s Atlas algorithm to automatically detect anomalies in 

unlabeled seasonal time series data. The proposed algorithm, MULDER uses a ‘surprise’ 

metric from the time series, which is then statistically analyzed to determine anomalies. A 
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percentile window is applied to the surprise metric (computed by differencing actual and 

expected value) and calculates the 10th and 90th percentile over the subset and later 

performs a 3-standard deviation test within a window of length, n, sliding across the two 

percentile time-series.  

3.2 Analysis and Research Gap 

The papers discussed above were analyzed to identify the research gaps. The analysis of 

the aforementioned existing works is described as follows. 

Several existing works have exploited various statistical methods such as Markov model 

[30-32], correlation analysis [35-37, 42], regression analysis [33,34], etc. Gu et al., in [32] 

and Tan et al., in [31] describe a system based on the Markov chain model along with the 

Bayesian network whereas Samir et al., in [60] use HMM with correlation analysis to 

perform detection of anomalies. Hidden Markov Models perform better only if their 

assumptions hold true such as (i) state transitions depend only on the current state, not on 

anything in the past, and (ii) The total number of states is pre-defined. This might not be 

true when the performance metric data is sequential time-series data, where the future 

values depend on the past and the number of states cannot be fixed in sequential data which 

is dynamic, decreasing the performance of Markov models.  

Many statistical detection techniques often assume that the distribution and density of data 

are known apriori or can be inferred to detect well-known anomalies. They tend to exhibit 

sensitivity in case of load variations when these assumptions do not hold true [40]. For 

non-linear time-series data, to build a statistical method that can describe this data, we 

might need to build a piece-wise function. Hence, statistical correlation methods are 

expensive to learn and require a large volume of training data for non-linear correlations 

[41]. 

Qingfeng et al. in [45], Sauvanaud et al. in [46] and Daniel et al. [43] use supervised 

algorithms such as SVM, Naïve Bayes, Nearest Neighbors, and Random forests to classify 

normal and abnormal data, i.e., find anomalous data/service from the normal data. The 

detection algorithms are trained by the data containing label information on whether a point 
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is an anomaly or not. For practical usage, (i) it is inefficient to label data involving time-

series and concept-shift, given the dynamic nature of data, as the method might fail to 

detect when it encounters a new or unknown anomaly (ii) expensive to label data requiring 

manual efforts and (iii) time-consuming because the real-world data is voluminous. The 

need for labeling might increase when the volume and complexity of the data increases. 

Bikash et al. [36], James et. al [58] and Kanishka et. al[59] use the unsupervised algorithm, 

KNN, for detecting anomalies which is highly dependent on the value of 'k' neighbors and 

might fail if there aren't enough neighbors, and it is computationally expensive. LOF has 

been used in cloud applications by Tian et al. [53], for workload patterns by Tao et al. [54], 

network intrusions by Lazarevic et al. [57].  It assumes that the neighbors of the data 

instances are distributed in a spherical manner, which has limitations when the data tends 

to have a linear distribution, i.e., if the normal data points are distributed in a linear way 

[56]. However, it doesn't fit well for detection purposes in a service-oriented system [53], 

where there are large datasets and high dimensional data with multiple features. Also, the 

aforementioned technique fails to capture the temporal dependency between the data points 

in sequential time-series data. 

In [48], Vallis et al. developed the ADVec algorithm, based on the ESD test combined with 

statistical methods, which has limitations on a large distributed environment based on 

service-oriented and microservice architectures. If the time-series exhibit more than two 

different normal behaviours or operations, similar to the time-series generated by the 

microservices' system, then the algorithm might not be able to learn this normal 

information [47]. Secondly, this approach uses three parameters out of which one is used 

as the anomaly threshold, describing the level of statistical significance to accept or reject 

anomalies. 

In [44] Imam et al., this approach indirectly uses thresholding rule while computing 

anomaly index. Firstly, it is difficult to determine which time-period needs to be used to 

compute anomaly index, given the dynamic nature of data and secondly, it states larger the 

anomaly index, stronger are the signs of an anomaly. The question here is how to determine 

the large value of the index. If the largest anomaly index is determined by sliding across 
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time-periods, then again it is uncertain with respect to choosing time-period/sliding 

window interval as mentioned earlier.  

In [47], Sasho et al. use Variational autoencoders with probability-based dynamic error 

thresholding, where this approach uses window size and confidence interval as the basis 

for thresholding. The tolerance module checks the average probability of all points in each 

window exceeds the error threshold or not. If it exceeds then it declares the entire window 

or time-series as an anomaly. The approach concludes the entire time-series if a single data 

point results in a larger value, whereas the other individual points might not be anomalous. 

The approach seems to not detect point anomalies. Secondly, tolerance or window size 

might never be the same in practical usage and might require an update with the new 

incoming stream of data over time.  

Malhotra et al., in [49], Mohsen et al., in [56], Haowen et al. in [50], and Chen et al., in 

[51] proposed different novel anomaly detection methods for time-series data respectively. 

These methods use a static threshold to score an anomaly which might require an update 

on a timely basis with a new stream of data, because, in a distributed environment such as 

a service-oriented and microservices system, the data can exhibit more than a single case 

of the expected or normal behaviour of the system. With the varying nature of data, it might 

require an update on the static threshold values of parameters being used in their respective 

approaches.  

In [52], Leandro et al., perform a 3 standard deviation test on the percentile time-series 

window. This test being a statistical method might not be feasible for a large scale system 

such as a microservices environment when the data is voluminous with multiple expected 

cases of normal scenarios and window length cannot be fixed when the data is dynamic.  

These studies have shown that traditional statistical methods, machine learning, and deep 

learning approaches can be successfully used for anomaly detection. But most of these 

techniques have considered different methods for static thresholding on distances or errors 

or probability, etc., for scoring an anomaly as the final step irrespective of any algorithm 

used. This static thresholding might not be efficient enough for a large scale dynamic 

distributed environment when the nature of data is dependent on time.  
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However, in this thesis, we complement the existing work and propose an automated 

prediction-based anomaly detection and localization system which is based on an ensemble 

of time-series based deep learning model and unsupervised learning algorithms a dynamic 

thresholding method that is capable of (i) detecting anomalies without any requirement of 

the explicit set-up of thresholds or static anomaly scoring, and (ii) locating the root cause 

of the detected anomalies. Also, we are using tracing events data from a large-scale 

distributed system such as microservices unlike most of the existing literature where the 

related work on time-series anomaly detection using the distributed tracing data in the 

microservices system is limited. 
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Chapter 4 

4 Problem Analysis of Cloud System 

In this chapter, we discuss in detail about the cloud system of our industry collaborator to 

better understand the problems faced by them or in general by other cloud providers.  This 

chapter also describes the problem faced by our industry partner dealing with monitoring 

the performance of the cloud hosting several enterprise applications.  

4.1 Cloud System 

This research work was developed for a third-party cloud platform for monitoring the 

performance of its microservices. As discussed in Chapter 2, microservice is composed of 

loosely coupled services that communicate with each other through service endpoints. In 

the third-party cloud system, there are more than 95 major microservices that call the 

backend API. Figure 4.1 depicts the routing of data requests through microservices or 

components such as App Services, Dashboard, Datalayer and so on, for any enterprise 

application hosted on the cloud serving different purposes such as Catalog, Billing, etc. 

 

Figure 4.1: Flow Diagram depicting the routing of requests through different services 

The clients access the application, the Apps Services requests to open up a Dashboard 

which renders data from Datalayer by sending a request to it. The Datalayer is a central 

arbiter that combines data from multiple backend servers and responds to the Dashboard 

with the response results as shown in Figure 4.2.  
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Figure 4.2: Data gateway diagram 

The system gets complicated with multiple instances of each of the several services 

deployed globally. As known, several enterprise applications are hosted on the cloud, 

increasing the load on Datalayer to access data from the backend services, as shown in 

Figure 4.3. As mentioned earlier, the loading time of the dashboard of applications 

accessed by the clients depends on the response time of the data layer. The response time 

of the data layer further depends on the time taken by all the succeeding components 

through which the requests were routed for the desired action. 

 

Figure 4.3: For multiple cloud-hosted applications  

Out of the many interconnected microservices or components that exist in the cloud system, 

we select an end-to-end flow of a particular set of services as depicted in Figure 4.4.  
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Figure 4.4: Routing of Requests from App Services till GraphQL Layer 

To access the Dashboard, a request is initiated which flows through the components as 

shown in Figure 4.4. The loading time of the Dashboard depends on the time taken by the 

other succeeding components especially, the GraphQL Layer, which is discussed in section 

4.1.1. When the requests flow through these services, the distributed tracing events are 

generated for every component during a transaction and stored in such a way that the events 

from the components are grouped under a single ID for a given transaction or request, 

which is discussed in section 4.1.2.  

4.1.1 GraphQL 

GraphQL is a query language for an API that provides singular endpoints to the consumer 

and controls the data flow. With GraphQL it is possible to request specific data instead of 

asking for all the data from the data sources unlike REST API [89]. Also, to fetch data from 

multiple sources, only 1 request is required, unlike REST API, as shown in Figure 4.5, and 

there is no necessity to check which endpoint is needed to get the data as shown in Figure 

4.6. GraphQL server accepts both POST and GET requests. POST requests are sent in the 

form of a JSON object to the GraphQL server. Each request contains a query, or an 

operation name, or both and may contain variables. A GET request must pass query, 

operation name, and optional variables in the URL. GraphQL also builds a cache of 

frequently requested data in order to save the processor time and effort. 
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Figure 4.5: With REST, 3 requests are made to fetch data from 3 different endpoints. 

Also, it over fetches data with additional information. Image Adapted from [90]. 

 

Figure 4.6: With GraphQL, only 1 request is sent to the GraphQL server to fetch the 

required data. Image Adapted from [90]. 

 

4.1.2 Distributed Tracing 

Distributed tracing has been considered as a baseline necessity for both software 

development and operations by organizations [65]. Distributed Tracing, also known as 

Distributed Request Tracing is a method of understanding the flow of data as it propagates 

through the components of applications. It profiles and monitors applications, especially 
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those in a microservices environment, which can be used to facilitate the DevOps teams to 

pinpoint where failures occur and its root-cause [64]. The difference between Logs and 

Traces is, logs record important checkpoints when servicing a request, whereas a trace 

connects all these checkpoints to form a complete path of how a particular request was 

processed from a client to a server [62]. 

 

Figure 4.7: Data flow representation of a trace. Image adapted from [67]. 

Trace - A single trace is a tree of spans that shows the execution path of a single transaction 

flowing through components in a distributed system [66, 67]. A trace is identified by a 

unique 16-byte sequence called Trace ID. This Trace ID groups and distinguishes spans. 

As shown in Figure 4.7, ‘/messages’ is a trace.  

Span - Span is the basic building block of a trace, representing an individual unit of work 

or a single operation in a trace. For example, as shown in Figure 4.7, sub-calls are made to 

different components like authentication, cache, and database to process the request of 

fetching a message. Span is identified by a Span ID and belongs to a single trace. Spans 

contain references to other spans forming a parent and child relationship. A Span without 

a parent is a root span [67]. A span consists of 11 fields as listed below: 

• Name - A meaningful span name describing what it does. 

• SpanID - Span's unique 8-byte identifier. 

• TraceID - ID of the trace to which a span belongs to. 

• ParentSpanID - Span ID of its parent or NULL, in case of root span. 

• StartTime/EndTime - timestamp recording when span operation started and 

ended. 

• Status - Integer type code defining logical error model. 

• Time events - describes that an event happened at a given time during the 

span’s lifetime. 
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• Link - describes cross-relationship between spans in the same or different 

trace. 

• SpanKind - details the relationships between spans apart from the 

parent/child relationship. 

• TraceOptions - describes if the span is sample or not. 

• Tracestate - a key-value pair to annotate order/position of request. 

 

 

Figure 4.8: Directed Acyclic graph representation of a trace. Each component is labeled 

with a Span ID and its corresponding Parent ID. 

A Trace can be represented as a Directed Acyclic Graph (DAG), as shown in Figure 4.8, 

where nodes are components denoted by Span ID and edges are the references. Based on 

this, as per Figure 4.4, the Data layer will be the parent for the GraphQL component, which 

in turn will be a parent for POST, GET, and CACHE components. 

This information can be captured either manually by logging before and after every 

operation in code or by automated instrumentation. Instrumentation is a process in which 

applications' code is extended to capture trace spans in the path of processing a transaction 

or user request [69]. In Automatic instrumentation, a run-time automated process identifies 

the frameworks and libraries which are in use within an application and instrument those 

libraries to capture tracing information automatically without requiring any code change 

[69]. For example, whenever a request is made to the database, a listener will extract and 

store this information, in an automated instrumentation scenario. Capturing trace manually 

through logging is not advisable since it is not structured well. There are microservices 
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Standards and Tools like OpenCensus, OpenTracing, etc., that are used to extract the traces 

[68]. 

4.2 Concerns with Existing Monitoring 

Existing monitoring systems fire alerts when the key performance indicators exceed a 

given threshold value. However, this is insufficient when network architecture and/or load 

changes over time. The Microservices system has different points of failure than traditional 

codebases and presents significant issues when site reliability engineers attempt to monitor 

and diagnose runtime issues. Ideally, a site reliability engineer should be able to: (i) 

visualize the performance of the system, (ii) be notified when the behaviour of the system 

changes, relative to historical norms, and (iii) be able to quickly identify the root cause 

when a key performance indicator changes. Each of these requirements is arguably 

difficult. Existing monitoring also requires the staff to visualize the underlying metrics data 

(e.g., CPU utilization, Mean Response Time, etc.) using different visualization tools such 

as Kibana, for analyzing and alerting agents upon violation of conditions or threshold.  

“The staff are concerned that when an issue is encountered, the peaks on the graph shoot 

off and often require the operations team to manually validate whether it is an anomaly or 

not. The staff gets multiple alerts at odd times and most of the time the parts are not critical 

and turn out to be false alarms. The staff mention that they do not do very much with the 

data generated by the microservices and are keen on reducing the burden of the monitoring 

process that is being carried out.” 

4.3 Problem Analysis of Monitoring Microservices System 

As mentioned in Chapter 1, there is a tremendous increase in the migration of monoliths to 

microservices due to the several advantages of the later discussed previously. However, it 

has increased the complexity of the existing monitoring framework. Apart from the 

microservices such as Dashboard, Catalog, etc., shown in Figure 4.1, there are more than 

95 major microservices that call the backend API as mentioned earlier. Figure 4.9 depicts 

how complex a large scale distributed system such as a microservices environment gets 

with multiple applications triggering requests from one microservice to other microservices 

to access the backend. For example, the performance (response time) of one microservice 
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depends on the load and its succeeding microservice, i.e., the time taken by microservice 

‘n’ to respond to a request depends on the processing time of its succeeding microservice 

‘n+1’, which in turn depends on the processing time of microservice ‘n+2’ and it goes so 

on. When there is an increasing number of applications being accessed by the clients, the 

response time of the microservices increases, i.e., due to the high load or high volume of 

requests, the time taken by each microservice to process the requests increases, causing 

cascading effects in the response time of the preceding services to respond the client with 

the required information.  

 

Figure 4.9: Multiple Clients or Applications triggers requests to multiple Microservices 

Similar to the above example, several such performance problems occur in a large-scale 

distributed system, differing in the way they manifest themselves and symptoms that they 

show. There are various performance issues due to High CPU load, CPU Thrashing, 

Memory exhausted, I/O bottleneck, Slow Disk I/O, Too many disk I/O operations, 

Deadlocks, Algorithmic complexity, etc. These performance issues are identified by 

different metrics (or) KPIs such as response time of services, error rate, throughput, 

workload, resource utilization, etc. With various issues being generated several 

performance anomalies (such as high response time, high error rate (or) high network 
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utilization) go undetected which might result in potential failure or outages, impacting the 

stability of the cloud system and user experience.  

In microservices, each service and its multiple instances needs to be monitored because 

one service creates multiple copies (instances) to make sure that if one goes down there is 

always another copy of that service available. Therefore, knowing the state of a single 

instance of a single service isn't enough for monitoring a given and hence, metrics of all 

the instances of a given service need to be aggregated. Secondly, in this system, there is a 

need to monitor multiple services at once, and these services might even use different 

technologies. There is a need to check the logs of multiple services and track one user 

request through multiple systems.  

As per the existing monitoring framework described in Section 4.2, each service is 

monitored based on a thresholding approach, where an alert is fired when the key 

performance indicators exceed a given threshold that is set up using a 3-Standard deviation 

rule. With a rule-based thresholding approach, the existing monitoring framework might 

not be reliable to monitors all the instances of all the services at once as discussed above, 

due to the large volume of data and also might be inefficient when the data or load varies 

over time. For example, the average response time of a given service today might be 1000 

ms, but when the request load changes or when a new update is performed on the system, 

it might speed up the processing resulting in average response time to be less than 1000 

ms. Hence, given the dynamic nature of data, this static threshold might require an update. 

But, for a cloud system with more than 95 services, it becomes tedious and time-consuming 

to do so.  

Apart from detecting an issue (an anomaly), analyzing the given issue and identifying the 

causal components for the same is arduous in a microservices environment because of the 

complexity of communications between different microservices. A single user action 

triggers a chain of downstream calls to different microservices as they pass data back and 

forth from a client to its server. In this third-party cloud system with more than 95 

microservices and its multiple instances, it becomes challenging for the SREs analyze and 

to track the root-cause or faulty microservice/component. 
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Hence, to tackle the aforementioned problems, we require an automated anomaly detection 

and localization system that can detect the performance anomalies without using static 

threshold rules. Thus, this would reduce the manual burden of monitoring the services 

visually, and locate the causal components to determine the root cause of the anomaly. 

Also, this would ease the process of monitoring the microservices-based cloud system to 

maintain the health of the cloud system.  
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Chapter 5 

5 Research Methodology 

In this section, we describe the strategy of our solution and the system development 

methodology conducted in our research work. 

5.1 Solution Strategy 

Our research emphasizes on easing the monitoring process of a microservices-based cloud 

system by developing an automated prediction-based anomaly detection and localization 

system, (i) which detects performance anomalies using a time-series deep learning model 

and an ensemble of unsupervised learning techniques that can handle a huge volume of 

data generated from each of the individual microservices and avoid the burden of static 

thresholding approach that is used in the existing monitoring framework and other 

literature works as discussed in Chapter 3 and 4, and (ii) identifies the casual components 

of the detected anomalies.  

As mentioned in Section 4.3, there are more than 95 major microservices such as 

Dashboard, Catalog, Datalayer, etc. Out of the 95+ microservices’ data, we consider a few 

microservices such as App Services, Dashboard, Datalayer, and GraphQL, as shown in 

Figure 4.4, for our analysis in this work and try to detect the performance anomalies of the 

GraphQL service by using the proposed detection and localization system.  

Data Decision: In a microservices system, it is important to see how individual services 

communicate and how requests flow through a specific combination of services [62, 63] to 

understand the path of a given transaction. Hence, we use the distributed tracing events 

generated by each service for our analysis which records the network operations for a given 

request to understand the flow of the transaction. As discussed in Section 4.3, the tracing 

events of all the instances of a given service(s) are aggregated and stored at a centralized 

location, in the Elasticsearch system of the production environment, which is further 

extracted using five different python scripts, discussed in Chapter 6. This work uses the 

real-world production environment data of the third-party cloud system.  
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Meta-Data: The tracing events in the form of JSON objects have several data fields out of 

which we describe a few, as tabulated in Table 5.1, that we use in our work. The metadata 

typically contains the following. 

Trace Event JSON Data Fields Description 

traceID 

Transaction ID - A 16 byte ID 

used to uniquely identify a set of 

network operations 

Name 

The URL associated with the 

network operation 

Id 

A 16 byte ID used to identify the 

current / a single network 

operation 

Kind 

Differentiates between incoming 

(SERVER) and outgoing 

(CLIENT) calls 

Timestamp 

The time the operation 

commenced 

Duration 

The time required to complete 

the operation 

Tag 

http.host 

Network identifier for target 

service 

http.method POST/ GET/ NULL 

http.status_code 

A predefined integer indicating 

the success or failure of the 

operation 

environment 

type of enviroment 

(production/development/testing) 

localEndpoint.servicename Microservice name 

parentID 

The span ID of the network 

operation that caused the current 

span 
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Date 

Date of when the transaction 

happened  

Table 5.1: Distributed tracing fields of microservices 

Data Analysis: The trace events were analyzed to select all the possible data fields that we 

could use for monitoring the services. Post analysis, we found that the duration, i.e., the 

time taken by service to process the incoming request is the main key performance 

indicator for our work. While tracking the flow of a given transaction or trace ID through 

different spans (see  Figure 4.4), we realize that we do not want to find the anomalous 

individual transaction that is taking more time, but we want to determine the instance when 

a particular service (say GraphQL service) takes more time to process its incoming 

requests. Therefore, we selectively take the processing time of the GraphQL service for a 

single request.  

Multiple transactions are processed simultaneously at a given time, hence we group the 

transactions in a 5-minute interval. Therefore, for every 5-minute interval, all the Trace 

IDs are grouped to calculate the total number of requests per interval and sum their 

processing time by GraphQL service. The performance metric used for analyzing 

the performance of GraphQL service is the average response time, computed using the 

above two features. The reason for choosing a 5-minute interval is stated below. 

 

5-minute interval 5-minute interval 5-minute interval 

Requests: 10 

Total Time: 5 s 

Requests: 10 

Total Time: 13 s 

Requests: 10 

Total Time: 11 s 

Avg. Res. Time: 0.5 s Avg. Res. Time: 1.3 s Avg. Res. Time: 1.1 s 

Avg. Res. Time:  0.9 s  

Avg. Res. Time: 0.96 s 

Table 5.2: Reasoning for 5-minute interval decision 

For example, let’s assume the average response time of a service is 1 second. As shown in 

Table 5.2, when a 5-minute interval is considered, the average response time of the last 2 

intervals gets detected as anomalies (red-highlighted) since it exceeds more than 1 second. 

However, if a 10-minute or a 15-minute interval is considered, the average response time 
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doesn’t get detected as anomalous, since the total time gets divided by the load or large of 

number requests. And if a 1-minute interval is considered, the system would detect too 

many false positives. Hence, we decide to choose a 5-minute interval. 

During the initial stages of our work, we conducted exploratory analysis on a daily basis 

through scatter plots, histograms, bar graphs, etc., to visualize the pattern in the dataset.  

Anomaly Detection: We performed detection for the two computed features (Total 

number of requests, Total response time for every 5-minute interval) using unsupervised 

learning algorithms such as K-means Clustering, which groups data into clusters and 

identifies the points that are away from the clusters. We also experimented with Gaussian 

Markov models, KNN, Isolation forest, OC-SVM, Angle-Based, and Cluster-Based Outlier 

Detection to identify the outliers using the two input features. As we collected data for over 

a week, we observed that the ‘total number of requests’ feature followed a sequential 

pattern that varied with time. The aforementioned unsupervised algorithms fail to learn the 

temporal characteristics of the sequential data and hence, time-series models were tested 

for our dataset.  

We engineered a new feature “Average response time” of GraphQL using the 2 attributes 

– “Total number of requests” and “Total duration”, to learn its timely pattern and create a 

baseline for the average response time of the GraphQL service. When trace events were 

collected for over three weeks or a month duration, sufficient enough to capture the ‘daily’ 

and ‘weekly’ patterns in the data, we experimented with statistical time-series models such 

as ARIMA (Autoregressive Integrated Moving Average) which works for a stationary 

time-series data, i.e., mean and variance are constant over time.  

An Augmented-Dickey Fuller (ADF) test was conducted to check if the time-series data 

(input data: Average response time, timestamp) is stationary or not.  Since the data is 

stationary with seasonal and trend patterns, it was converted to non-stationary for testing 

the ARIMA model. SARIMA (seasonal ARIMA) was tested as well. Both the ARIMA and 

SARIMA models yielded poor results and took a long time to process the data. Such 

models allow only one independent variable or one feature such as Average response time 

alone.  
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When the time-series data were decomposed into STR components (Seasonality, Trend, 

Residue), after the seasonality was removed, we observe the ‘trend’ to follow an irregular 

pattern/non-linear pattern. To build a statistical method that can describe this time-series 

data, one would need to build a piece-wise function. This might be expensive to learn when 

there is a large volume of data.  

Considering the advantages of LSTM over ARIMA, SARIMA with respect to processing 

speed, no pre-requisites of non-stationary data, allows multivariate data, and the ability to 

handle long term and non-linear time-series data, we choose LSTM for time-series 

forecasting. The predictions made by the algorithms are further utilized for the detection 

process, which is discussed in Chapter 6.  

Localization: For the localization process, we collect the Id, Parent ID, duration, 

http.method, service name, http.host data fields from the trace events for all the 

microservices to understand the communications calls across individual services. We use 

‘Networkx’ python library to analyze and understand the network or the directed graph 

structure connecting different microservices. The intrinsic details of how the casual 

components for an anomaly are located are described in Chapter 6. 

5.2 System Development Methodology 

We adopted agile methodology to conduct our academic research where we broke the entire 

process of research into various stages (described below) that were incremental and 

iterative, rather than following a waterfall approach since it is not flexible for researching 

as it gets complicated while following a sequential series of events and fails to adapt to any 

new requirements with early delivery of small incremental builds. For example, after 

conducting a literature review, analysis when we build a prototype and start the 

implementation, we cannot improvise the prototype model or perform a literature review 

again while we perform the implementation simultaneously. In research, these stages need 

to be iterative and incremental. 

Our agile research protocol involved the following stages: 
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1. Split the research activities – The activities were split into academic research and 

a practical approach to solving the problem posed by our collaborator.  

a) Requirements Gathering from Industry partner - In the preliminary stage, 

we acquired the information from our industry collaborators regarding their 

problems or requirements and goal (see Section 1.2)  We gathered information 

about the cloud system, system functioning, and the performance monitoring 

issues that they were facing. 

b) Performing Systematic Literature Review (SLR) - Based on the 

information provided we started performing a systematic literature review. A 

broad search was carried out to look for what and how different monitoring 

problems were approached in the existing research works across various 

domains and not limited to the computing field. We shortlisted research papers 

that were dealing with Machine Learning since the old technologies or 

traditional approach to solving those problems were outdated or not practical 

in the current times for dealing with time-series data in a microservices 

environment [38, 39]. We later filtered the papers by introducing the 

combination of specific or similar keywords such as ‘Anomaly detection’, 

‘Microservices’, ‘Cloud computing’, ‘Monitoring’, ‘Application performance 

management’, ‘Machine learning’, etc. The study on existing works was 

organized into a spreadsheet to keep track of papers that were reviewed and 

the gathered related work was analyzed for research gaps. 

c) Building Prototype - During the initial stage, based on the literature review 

and gaps analyzed, we shortlisted a few approaches of ML to develop an initial 

prototype or high-level design of the approach as discussed in the previous 

Section 5.1. To test the applicability of the idea we tested the approach on a 

sample data set before we gathered the actual data. Based on the results we 

achieved using several approaches, we improvised the design of our initial 

proposal iteratively and incrementally. 

d) Setting up Infrastructure  - Simultaneously, the infrastructure was set up by 

our collaborator where a cluster in Elasticsearch System was configured to 
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collect data or tracing events from the microservices through Redis while they 

were running in the production environment. 

e) Data Collection and Analysis - During the preliminary stage, the data 

collection process was carried out every day since it was a production-based 

data and we did not have enough historical data to carry out the anomaly 

detection. While the data was incrementally gathered, we processed the data 

which was in the form of JSON objects, and analyzed the patterns via 

visualization tools and graphs to better understand the nature of data to choose 

the right approach. Over 900GB of pickle object files of trace events were 

collected over 5-6 months from June to December 2019. Pickle module helps 

to serialize python object structures like list, dictionaries, etc., into a character 

stream before writing to a file. Using the character stream the python object 

can be reconstructed during de-serialization of the objects using the pickle 

module. 

f) Implementation & Evaluation – During the initial stage, we implemented 

basic unsupervised clustering algorithms, KNN, etc., to detect anomalies in 

the data, and during the intermediate stage when we had collected enough data 

we developed time series models such as ARIMA, SARIMA, Autoencoders, 

since our data is sequential with temporal attributes as discussed in the 

previous Section 5.1. Later with the help of domain experts, we manually 

labeled the data to evaluate our approach. Based on the assessment of results, 

feedback during sprint review meetings, and simultaneous study on existing 

work we improvised our prototype at several stages until we finalized the 

current proposed detection and localization system. 

2. Sprint Planning - We conducted bi-weekly meetings with our supervisor and 

industrial partner for a duration of about 30 minutes to an hour during initial stages 

to brainstorm the ideas from both academic and industry point of view and discuss 

the small goals for the next activity(Stage 1 activities) and plan out its duration.  

3. Sprint Review Meeting - During the review meeting we discussed the results of 

our work carried out and about the technical challenges or difficulties encountered 

during the work, and brainstormed ideas on what could be done next. 
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4. Weekly Meetings - During the preliminary stage, we conducted meetings for 

giving KT (Knowledge Transfer) or training us about the system. We had short 

meetings with our collaborator to update on the ongoing tasks and discussed any 

issues that we were facing. 

All the above stages were performed in an iterative and incremental manner. 
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Chapter 6 

6 Proposed Solution: Anomaly Detection 

and Localization System 

In this chapter, we describe our proposed automated system to utilize the distributed tracing 

events of microservices on the cloud to detect anomalies in the performance metric data 

through monitoring the Key Performance Indicators present in the tracing events and 

further locate its causal component which will facilitate the DevOps or IT operations team 

to take appropriate actions to fix them and maintain a healthy and stable cloud environment. 

6.1 Generic System Design of the Proposed System 

This research proposes an automated anomaly detection and localization framework, which 

collects the distributed tracing events, which is discussed in the later section, generated by 

the running microservices on the cloud, analyzes them to detect the performance anomalies 

in it and identifies the causal or faulty components for the detected anomalies. Figure 6.1 

provides a generic prototype of the proposed detection system, depicting how the control 

is going to flow from one component to another to detect the issues in the microservices-

based cloud environment.  

The data generated by microservices such as logs, metrics, tracing events that fall under 

the categories of both structured and unstructured data are collected and used for further 

analysis. Unsupervised machine learning techniques are applied to the collected data which 

will identify and learn the patterns from different metrics of data such as Network usage, 

Request Arrival, CPU usage, etc., and build a prediction model to generate the underlying 

baseline for each of the performance metrics. This predictive model is further used to make 

future predictions on the unseen data or the new incoming stream of data in real-time. As 

the incoming stream is fed to the model, the model detects the data points that are deviating 

from its learned behaviour or normal behaviour, labels them as anomalies, and sends the 

results to the Alert Management system to take further actions. 
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Figure 6.1: Generalized layout of the proposed detection system 

 

Figure 6.2: Context Diagram of the Proposed System 
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The microservices used in our work are the components - App Services, Dashboard, Data 

Layer, GraphQL Layer, and sub-calls to POST, GET, Cache from GraphQL, that were 

discussed in Chapter 4. Figure 6.2 shows the context diagram of the system where the 

proposed black-box anomaly detection and localization system fits. When the requests flow 

through these microservices (refer Figure 4.4 as well), the tracing events are generated for 

every service or component during a transaction and stored in the ElasticSearch system 

which is used for further analysis by the proposed black-box system as shown in Figure 

6.2. The proposed system further sends an anomaly report to the Alert management system 

when it identifies and locates the anomalies and its causal components respectively. 

6.2 Detailed Layout of Proposed System 

The intrinsic details of the proposed system are shown in Figure 6.3. The proposed system 

has 5 modules - Data Extraction Module, Data Pre-Processing Module, Detection Module, 

Localization Module, and Information Module. The data flow starts from the Data 

Extraction module, where the tracing events of different services are extracted from the 

ElasticSearch (ES) system and further processed using the Data Pre-Processing module. 

The data is further fed to the Detection module and Localization module to detect and 

locate the root cause of the anomalies respectively. The functionality of each module is 

explained in detail as follows. 
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Figure 6.3: Detailed layout of the proposed anomaly detection and localization system 

When the request flows through Apps Services -> Dashboard, Dashboard -> Data Layer, 

Data Layer -> GraphQL Layer (see Figure 4.4), the tracing event data is captured at each 

span/component during this transaction. There could be several such transactions 

happening frequently and flowing through a different set of microservices before reaching 

the GraphQL Layer. We capture all these transactions where requests are made to the 

GraphQL layer on a daily basis to collect the data. Each transaction is stored in an index 

named “cloud-datalayer” in the Elasticsearch (ES) system as shown in Figure 6.2. The data 

captured includes a stream of tracing events generated by OpenTrace library which 

includes trace fields such as Trace ID, Span ID (each step in a transaction), Parent ID, 

duration, status code/error message, annotation, etc., which was discussed in Section 4.1.2. 

The metadata or the data fields of the tracing events used in this work are described in 

Table 5.1. 
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6.2.1 Raw Data 

The raw data stored (refer Table 5.1) in the ElasticSearch system (ES) is extracted into the 

local system for further data pre-processing and analysis. In this section, we discuss the 

raw data or the tracing events stored in ElasticSearch system that is being used for our 

work. To select transactions that have made calls to GraphQL, a filter for ‘name’ field 

equivalent to ‘/datalayer/graphql’ is applied under the index “cloud-datalayer” from ES 

cluster. Figure 6.4 shows the event information with distributed tracing fields for the 

GraphQL layer for a given range of timestamps. These events have data fields such as 

Trace ID, ID/Span ID, Parent ID, Duration, Error codes, etc., which were discussed in 

detail in Section 4.1.2. Every record in the figure is an individual span belonging to their 

associated distinct transaction/trace ID. For example, the first record in Figure 6.4 is a span 

for the red highlighted trace ID or transaction.  

 

Figure 6.4: Trace data stored in the ElasticSearch cluster displayed using the Kibana tool. 

Under index: “Cloud-Datalayer” or “datalayer*”, a filter is applied for name: 

“/datalayer/graphql” to check the distinct transactions or requests to GraphQL Layer. 
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On applying the filter for the ‘traceId’ field with this highlighted trace ID, we can check 

the detailed description of the flow of calls through various components for the highlighted 

transaction ID as shown in Figure 6.5. We can selectively choose the fields that we are 

interested in looking at and as depicted in the figure we can trace out the flow of an entire 

transaction by using parent ID associated with every span or ID. All the rows in Figure 6.5 

are the spans or sub-calls to complete one transaction.  

Every transaction has a varying number of spans that takes a certain amount of time to 

complete its execution. In one minute, hundreds of thousands of transactions/requests get 

processed. In this work, the transactions or trace IDs are grouped for every 5-minutes 

interval. 

1 minute       -> ‘n’ requests (or) transactions 

1 transaction -> ‘m’ spans 

 

Figure 6.5: Displaying the tracing information for one trace ID or transaction. 

6.2.2 Data Extraction Module 

The Data extraction module is responsible for extracting the raw data or trace events from 

the ElasticSearch (ES) system for all the services or components. In this section, we 

describe how data extraction is carried out using 5 steps. 
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1. Trace IDs Collection: The trace IDs of the transactions routing through the 

GraphQL layer is collected from “cloud-datalayer” index for every 5-minutes 

interval. The Trace IDs collected are stored in separate pickle object files for each 

5-minute bucket in our local system instead of JSON files in order to save the 

storage space and for faster processing. Since the data is collected for every 5 

minutes interval, there will be 288 files generated per day. 

2. Fetch Trace Information: The pickle object files generated from step 1 is loaded 

to read the Trace IDs and fetch all its detailed information, i.e., all its span 

information from the “cloud-datalayer” index using the ‘traceId’ field as a filter. 

The ES system returns a maximum of 10,000 JSON objects for any given input 

query. But if there are say, 2000 Trace IDs in any given 5-minute interval and if 

each Trace ID has at least 20 spans, then there will be 2000*20 = 40,000 JSON 

objects/ span details to be fetched from ES for given single query. Hence, to handle 

the size restriction, a simple concept of slicing is used, which slices the TraceIDs 

list from every input file into different smaller bucket lists which are further passed 

to the function to triggering the ES system to fetch trace information one by one. 

An email alert is sent once all the trace ID’s detailed information using 5-minute 

interval files is fetched as given in Figure 6.6. This process also generates 288 files 

per day. 

 

Figure 6.6: Email Alert after fetching trace information data from ES. 

 



66 

 

3. Generate Request Summary Information: All the files generated from Step 2 

above is used to generate summary data of GraphQL requests. Summary data for 

GraphQL indicates the Total number of Requests, Total Duration, and Status codes 

for every 5-minute interval for GraphQL component alone. One trace indicates a 

single request. Hence, the total number of traces is counted, and the duration of 

each trace is aggregated for every 5-minute interval. The summary data is then 

stored in a single pickle file object which is later used in the anomaly detection 

module. 

4. Generate Individual Summary Information: All the files generated from Step 2 

is also used to generate summary information similar to Step 3 for each sub-calls 

or sub-components of GraphQL. By sub-components, we mean the GET, POST, 

and Cache requests from the GraphQL layer as seen in the previous chapter. These 

3 individual requests from  GraphQL are grouped into 3 buckets: GET, POST and 

Cache, and assumed to be individual components as an analogy to successive 

components. This summary information for 3 sub-components is stored in a 

separate pickle file object for each sub-component which is later used in the 

localization module. 

5. Trace-Date Collection: The individual files generated in step 1 that has a list of  

Trace IDs for specific 5-minute intervals or date timestamp is utilized to aggregate 

the trace IDs across all the timestamps. This file is used in the Information module 

as a part of the validation to check if a particular TraceID exists or not, and provide 

the details of the occurrence of a trace if it exists. It consumes a significant amount 

of time to iterate through all the files generated for validation or to check when a 

particular transaction happened. Hence, a list of dictionaries is created which stores 

dates/timestamp of the 5-minute interval as keys and Trace IDs as values for the 

keys for a quick lookup of trace IDs. 

Over 900GB of pickle files were collected on a daily basis over 5-6 months so that there is 

enough data to train the deep learning model. 
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6.2.3 Data Pre-Processing Module 

The unstructured summary data generated and stored in pickle file objects in the Data 

Extraction module is read, formatted, and loaded into data frames in Python notebook for 

further pre-processing and analysis. The ‘Response/status codes’ feature clubbed together 

as a single JSON object is split into series, making each status code a different attribute in 

the dataset. The date interval which doesn’t have any values (with NaN) for a given status 

code is filled with 0’s. 

 

Figure 6.7: Data loaded in a Dataframe 

 

Figure 6.8: Average Response Time calculated and Status codes split into series are 

loaded in the data frame 

Feature Engineering: New features or attributes are engineered from the existing features 

as shown in Figure 6.9. Since the network operation data is grouped into 5-minute buckets, 

the average response time of GraphQL for the 5-minute interval is used as the performance 

indicator. The Average Duration or Average Response Time is calculated as Total 

Duration/Total Requests for every 5-minute interval. New features are engineered out of 

the timestamp such as the day of the week, daylight or night time, the hour of the day, 

weekday or weekend, holiday or non-holiday. Additional features such as average response 
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time 5 minutes back, 1 hour back, 1 day back from the current timestamp are added by 

shifting the values of average duration by 1, 12, 288 values respectively. These new 

features are added since this will help a model to better interpret the patterns or represent 

structures or seasonality in the data. 

 

Figure 6.9: New features engineered 

Feature Scaling: All the features in the dataset are on drastically different magnitude 

scales. For example, the value of the ‘total number of requests’ is ‘1223’ and the value of 

‘total response time’ is ‘728365.917’ as shown in Figure 6.7. Features with differing scales 

can impact the machine learning process where one feature can have more influence than 

the other. Feature rescaling is done by normalization which makes sure that all the features 

are given equal importance [107]. Normalization makes the optimization process of a 

neural network smooth [47]. In this dataset, min-max normalization is used where the 

features are scaled to [0,1] range so that features have a positive range of values rather than 

standardization which produces [-1,1] values, which is not applicable for features like 

response times. Min-Max normalization is formulated as given in Equation 6.1 [47], where 

𝑥′ is the normalized value and 𝑥 is the original value of the feature. 

 
 
 

𝑥′ =  
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)  − 𝑚𝑖𝑛(𝑥)
 (6.1) 

The pre-processed data extracted from a large number of trace events is next used in the 

Anomaly Detector Module. 
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6.2.4 Anomaly Detector Module 

The Anomaly Detector module detects the performance anomalies by using the proposed 

novel combination of a deep learning model and an unsupervised learning algorithm to 

generate a baseline for the expected average response time of the GraphQL component and 

detect anomalies when data deviates from the expected baseline. Firstly, a time-series 

based prediction model is built using LSTM to learn the pattern of the time-series data and 

forecast future values of the features. Later, anomaly detection is performed by applying 

an unsupervised learning approach to prediction errors. The working mechanism of this 

module is explained in detail below. 

6.2.4.1  Training and Testing Datasets 

The dataset used for building the model is a real-world production dataset. The detection 

approach is based on the assumption that the majority of the data is normal and only a few 

anomalies exist in the historical data collected. The data is split into training and testing 

sets. The data used for training is expected to be normal i.e., without any anomalies. Since 

the data was captured from the production environment, the data consists of anomalies. 

Training the data with anomalies is not appropriate as the model has more chances to learn 

the anomaly pattern and would fail to detect anomalies when it encounters one. Hence, for 

training the model we used the portion of data which looks normal based on visualization 

of ‘Average Response Time’ feature of the GraphQL service (for example from 21st 

September to 30th October 2019) as depicted in Figure 6.10, and the last portion of the data 

is used for testing purpose.  

For the time-series prediction model, two variants of data: Univariate data, which consists 

of a single feature - “Average Response Time” and Multivariate data which consists of 

multiple features is used for our experiments which are discussed in Chapter 7. 
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Figure 6.10: Average response time (in ms) of the GraphQL component plotted against 

the x-axis timestamp 

6.2.4.2  Time-Series Forecasting Model 

LSTM model is used for the time-series forecasting. For a time-series prediction, the 

unsupervised problem, i.e., there are features, say Average Response time without any 

labels, is converted into a supervised problem by partitioning the time-series data into two 

features, one as input sequence and the other as the target sequence. The partitioning 

process requires two parameters to be set, namely, lookback as l and future_steps as f using 

which the model predicts the next ‘f’ values by looking back past or previous ‘l’ values. 

For instance, given an unlabeled sequence of time-series values T1, T2, T3, T4, T5, T6, 

T7, T8, T9, T10, for a lookback=3 and future_steps=1, conversion from unsupervised to 

supervised takes place as follows: 

                                    <<Input>>    --->   <<Target>> 
 

                                     T1, T2, T3   --->       T4 

                                     T2, T3, T4   --->       T5 

                                      …........ 

                                      …........ 

                                     T7, T8, T9    --->      T10   

                                     T8, T9, T10  --->      T11 

 

The model learns using the input sequences and target sequences, where past 3 timestep 

values are used to predict the next 1 timestep value. For the given input data of ‘T1-T10’, 

the model predicts ‘T11’ as highlighted above. Both the training and testing dataset is 

partitioned by specifying these two parameters. The model building involves 5 steps – 

Defining, Compiling, Fitting, Evaluating, and Making Predictions. 
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To define a network means setting up the model architecture for which an instance of a 

Sequential model is initiated so that all the layers in a network are stacked sequentially. 

The layers are then created and added in order. The input sequence of partitioned time 

series or training data is reshaped into three-dimensional data, which comprises samples, 

timesteps, and features and fed as an input to the first layer. We then add other hidden 

LSTM layers depending on the requirement. The network usually consists of multiple 

hidden LSTM recurrent layers with a different number of units followed by an output layer 

which is a fully connected dense NN layer used for outputting predictions. The number of 

units in an output layer is the same as the future_steps value, with one neuron for each 

future value. The dropout layer is used between two consecutive recurrent layers to prevent 

over-fitting. Over-fitting is a modeling error where the model works well on a training set 

but performs poorly on a testing set.  

Once the network is defined, it is then compiled. The sequence of layers is transformed 

into a series of matrix transforms during the compilation process. It requires certain 

parameters to be specified for training the network, such as the optimizer and loss function 

parameter. The loss function evaluates the network to determine its loss which the 

optimizer aims to minimize.  

Post compilation, the network is fit. Fitting requires the training data to be specified, both 

the input and target sequence of the partitioned training dataset. The model is trained using 

a back-propagation algorithm (refer Section 2.4.2) for a specified number of epochs and 

optimized by the optimization algorithm and loss function. Batch size is specified that 

controls the number of training samples a network is exposed to before the weights are 

updated within an epoch.  

The network later is evaluated on training and validation data using metrics such as the loss 

and accuracy of its prediction. The loss and accuracy plots of training and validation data 

determine the model fitness, if it’s a good fit, underfit, or overfit. Once the performance of 

the fit model is satisfied (good fit), the model is used to make predictions on the testing 

dataset.  
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The LSTM prediction values or forecast errors are further passed to the unsupervised 

ensemble learning algorithms to detect the anomalies which is described in the next section. 

6.2.4.3  Anomaly Detection Process 

The predictions made by the LSTM model is compared with the actual value of the input 

feature to calculate the forecasting errors. The forecasting errors are modeled to fit a 

multivariate gaussian distribution. The error vectors far away from the mean of the 

gaussian distribution are likely to be anomalous. Hence, a distance measure is used to 

compute the distance of every error vector from the distribution. Mahalanobis’ distance 

measure is used in this approach which is an effective multivariate distance metric that 

computes the distance between a point and a distribution. Larger distance value indicates 

that the error vector point is far away from the gaussian distribution indicating that the 

corresponding data point as an anomaly as shown in Figure 6.11.  

 

Figure 6.11: Mahalanobis distance values (y-axis) of error points from the gaussian 

distribution plotted against timestamp (x-axis) 

These distance values can be used as anomaly scores wherein a threshold needs to be set 

for the distance factor in order to detect the anomalies. But this step of static thresholding 

is not advisable since it would require a change in threshold value when the nature of data 

changes. It would require the operations team to update ‘n’ different sets of threshold 

values for ‘n’ different services on a timely basis, which makes it no different than 

traditional statistical methods from the manual efforts' perspective.  

To tackle this, a dynamic anomaly scoring mechanism has been used. The distance values 

computed by Mahalanobis’ distance is fed to an unsupervised outlier detection algorithm 

that detects outlying distance values. The detected distance outliers correspond to the data 
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points that are anomalous. The distance values are fed to three different unsupervised 

outlier detection algorithms – (i) Isolation Forest, (ii) One-Class SVM, and (iii) LSCP – 

Locally Selective Combination of Parallel Outlier Ensembles. LSCP in itself is a parallel 

outlier ensemble that facilitates us to combine the existing unsupervised algorithms such 

as KNN, LOF, Isolation forest, and selects base detectors for test instance in the local 

region [91].  

 

Figure 6.12: The bottom plot shows the Actual Average Response Time values of 

GraphQL. The top plot shows the Mahalanobis distance values of prediction error points 

from its distribution 

The distance values of each error point from its distribution are fed to these unsupervised 

techniques to identify the outlying error points (points lie in the purple region of Figure 

6.12 top plot) which are far away from their distribution. These outlying points indicate 

anomalies and thus, the data points corresponding to these outlying error points are 

declared as anomalies (points within the purple region of Figure 6.12 bottom plot ).  

6.2.5 Localization Module 

The localization module aims to identify the root cause, or the causal component of the 

anomalies detected by the previous module, Detector module. For the detection module, 

the data is considered specific to the GraphQL service as mentioned in Section 6.2.4 (also 
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see Figure 6.3). The detection module uses the proposed LSTM and unsupervised learning 

ensemble to detect anomalies when GraphQL’s average response time deviates from the 

expected baseline. 

 It is known that the total time taken by the GraphQL depends on the time taken by its 

spans/sub-components. Hence, this module determines which of its sub-component is 

responsible for the anomalies, i.e., responsible for degrading the overall GraphQL 

performance. Hence, for the localization module, the request propagated from GraphQL 

service to its sub-components (its child nodes) – POST, GET, CACHE is taken into 

account.  

The total number of requests and the total time taken by each span in the transaction are 

extracted and grouped into 3 common buckets – POST, GET and CACHE using their name 

field from the tracing events data to get the individual summary information for each sub-

components/buckets during the data extraction process as discussed earlier (see Figure 6.3). 

This individual summary information, for 3 sub-components is pre-processed in the data 

pre-processing module before it is fed to the detectors inside the Localization Module (see 

Figure 6.3). 

 The Localization module includes 3 different detectors for each of the 3 sub-components 

and a mapper which receives the results of 3 individual detectors and the GraphQL 

Detector module. The Detection module detects anomalies for GraphQL’s average 

response time data, whereas the 3 individual detectors detect anomalies in case of deviation 

from the expected average response time for each child nodes: POST average response 

time, GET average response time and Cache average response time respectively. Later, the 

mapper uses a simple mapping technique to map the GraphQL detection results with its 

corresponding span/sub-components’ detection results using their timestamps.  
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Figure 6.13: Tracing events of requests propagating from component A to C. 

As depicted in Figure 6.13, consider component C as the GraphQL component and its sub-

components D, E, and F as POST, GET, and Cache respectively. The mapper maps the 

corresponding timestamps of the GraphQL anomaly detection results (i.e., the anomalous 

intervals of GraphQL data) with the timestamps of its span’s anomaly detection results (the 

anomalous intervals of POST, GET, Cache data) and declares a sub-component as the 

causal component when there is a match between the timestamps of their results. The 

mapper generates the results in the form of a report depicting the duration/timestamp of 

anomaly along with the details of its causal components. These results are further sent to 

the alert management system to take further action. 

6.2.6 Information Module 

The information module allows the user to access details of the tracing events (refer Figure 

6.3). When a user wants to access information about a specific transaction,  then they can 

use this module for accessing the event details. The user is presented with different options 

such as Trace Graph View, Trace JSON display, Summary of Trace.  

i) Trace Graph View: generates a Directed Acyclic Graph (DAG) of a particular 

transaction or trace ID, that a user is looking for, along with the details of the parent-

child relationship between the spans. It generates two different layouts of DAG – 

Spring layout and Kamada Kawai layout. Spring layout generates a directed graph 

in a spherical manner whereas Kamada Kawai layout places nodes at hierarchical 

levels, as shown in Figure 6.14. The directed acyclic graph displays the nodes or 
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spans starting from Datalayer(cyan colored node) followed by GraphQL(red node) 

with requests later propagating to POST (blue node), GET(green node), Cache 

(purple node) components. 

 

 

Figure 6.14: Spring layout (top plot) and Kamada Kawai layout (bottom plot) 

ii) Trace JSON display: generates the trace event information in JSON format the 

same as how it is stored in the Elasticsearch system. 

iii)  Summary of Trace: This option provides a summary of the trace ID or transaction 

which includes the total number of spans or nodes in the transaction, Node ID, and 

time taken by each node in milliseconds and how each node is interconnected to 

each other by determining its parent-child relationship. 
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Chapter 7 

7 Experiments and Results 

The proposed approach for anomaly detection using a novel combination of LSTM deep 

learning model and unsupervised ensemble outlier technique - LSCP, is experimented on 

a real-world tracing dataset collected from running microservices that was provided by the 

collaborating organization. The data was collected for a duration of approximately 6 

months from June 2019 to December 2019. As discussed in the previous chapter, the 

tracing events were grouped into 5-minutes interval, processed and key performance 

indicator such as Average response time and other features were used for building a 

detector model to forecast the future average response time of service and further predict 

anomalies using forecast and actual data using the proposed approach. In this section we 

discuss the conducted experiments, present their results and findings. 

7.1 Program Libraries 

The proposed approach was implemented in the Python programming language using 

various libraries as described in Table 6.1. The experiments were conducted on a personal 

computer with following specifications: Processor    Intel(R) Core(TM) i5-7200U CPU @ 

2.50GHz, 2712 Mhz, 2 Core(s), 4 Logical Processor(s),8GB RAM, 1TB HDD and also on 

Google Colaboratory (Colab) that runs on Google Cloud server providing GPU. 

 

Library Name Purpose Description 

pandas 

     ▪pandas.io.json: 

json_normalize 

     ▪DataFrame 

     ▪read_csv 

     ▪concat 

     ▪pandas.tseries.holiday: 

USFederalHolidayCalendar 

Pre-processing pandas offer data structures and operations 

for manipulating numerical tables and time 

series. It is free software released under the 

three-clause BSD license. 

numpy Pre-processing NumPy is adding support for large, multi-

dimensional arrays and matrices, along 

with a large collection of high-level 

mathematical functions to operate on these 

arrays. 
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sklearn 

     ▪preprocessing: 

MinMaxScaler, StandardScaler, 

LabelEncoder 

     ▪sklearn.metrics: 

mean_squared_error, 

confusion_matrix, 

accuracy_score, 

classification_report, 

accuracy_score, precision_score, 

recall_score, f1_score, 

roc_auc_score, 

confusion_matrix 

     ▪sklearn.cluster: KMeans 

     ▪model_selection: 

train_test_split 

     ▪sklearn.ensemble: 

IsolationForest 

     ▪sklearn.svm: OneClassSVM 

Evaluation, Data 

Modelling 

Scikit-learn is a free software machine 

learning library for the Python 

programming language. It features various 

classification, regression, and clustering 

algorithms. It also includes matrices and 

preprocessing operations for the dataset 

json Data Handling JSON (JavaScript Object Notation) 

encoder and decoder 

urllib3 Internet Protocols 

and Support 

urllib3 is a powerful HTTP client for 

Python 

requests Internet Protocols 

and Support 

Requests verify SSL certificates for 

HTTPS requests 

certifi Internet Protocols 

and Support 

Certifi is a selected collection of Root 

Certificates, extracted from the Requests 

project, to validate the trustworthiness of 

SSL certificates verify TLS hosts' identity 

smtplib 

     ▪ SMTPException 

Internet Protocols 

and Support 

Used to send mail to any Internet machine 

with an SMTP or ESMTP listener daemon 

by defining an SMTP client session object. 

pickle Data Persistence Used to serialize and de-serialize Python 

object structure 

elasticsearch Data Access 

Protocol 

Used to access ElasticSearch system using 

python 

time Time access and 

Conversions 

Provides various time-related functions 

datetime 

     ▪ datetime, date, timedelta 

Data Types Provides classes to manipulate dates and 

times 

dateutil.parser Data Types Used to parse most known formats to 

represent a date and/or time 

pydrive 

     ▪pydrive.auth 

     ▪pydrive.drive 

Internet Protocols 

and Support 

PyDrive is a wrapper library of google-api-

python-client used to simplify Google 

Drive API tasks 

google.colab Protocol Colab is cloud service offered by Google 

to run notebooks on its server. It offers 

GPU for free. 
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os Generic Operating 

System Services 

Provides a portable way of using operating 

system dependent functionality such as 

reading a file 

matplotlib  

     ▪pyplot: plot, show 

Data 

Visualization 

To create interactive visualizations in 

Python 

keras 

     ▪models: Sequential 

     ▪layers: LSTM, Dense, 

Dropout 

     ▪callbacks: EarlyStopping 

     ▪optimizers 

Neural Network Keras is an open-source library or high-

level neural networks APIs, written in 

Python and supports multiple back-end 

neural network computation engines 

(TensorFlow, Microsoft Cognitive 

Toolkit, R, Theano, or PlaidML). 

networkx Directed Acyclic 

Graph 

Visualization 

NetworkX is a Python package used to 

create, manipulate complex graphs and 

networks. 

pyod 

     ▪ pyod.models.iforest: IForest 

     ▪ pyod.models.knn: KNN 

     ▪ pyod.models.lof: LOF 

     ▪ pyod.models.lscp: LSCP 

Data Modelling pyod is python toolkit for outlier detection 

and provides various individual 

algorithms, Outlier Ensemble and 

Detector Combination Frameworks 

Table 7.1: List of Libraries used 

7.2 Exploratory Data Analysis 

After the data is pre-processed, it is examined to check the patterns in it visually through 

graphical representations. A subset of data is visualized graphically in order to understand 

the behavior and nature of data such as the request arrival pattern during weekdays and 

weekends as shown in Figure 7.1.a) and processing time for those requests as shown in 

Figure 7.1.b). 
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Figure 7.1: a) Total number of Requests for every minute interval captured for over a 

month (top plot), b) Total Duration taken by GraphQL service to process those requests 

(middle plot), c) Average Response time of GraphQL service for the total number of 

requests and its processing time (bottom plot). 

 

As shown in Figure 7.1.a), we observe the pattern of the total number of requests that the 

GraphQL service receives. It follows a periodic seasonality or repeated patterns (weekly). 

There are fewer requests during the weekends ( such as the lower spikes on 21st & 22nd 

September 2019) compared to the weekdays. And for a given day, there is a large number 

of requests during the daytime compared to the night as shown in Figure 7.2.a). The number 

of requests fluctuates with an increasing trend throughout the day reaching a peak around 

the afternoon which continues to decrease further towards the end of the day. 
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Figure 7.2: a) Total Number of Requests in a day (top plot), b) Total Number of Requests 

for a day of the week (leftmost  middle plot), c) Total Number of Requests for a time of 

the day (rightmost middle plot), d) Total Number of Requests for an hour of the week 

(bottom plot) 

The number of requests is plotted against the day of the week where ‘0’ indicates Monday, 

‘1’ as Tuesday and so on, as shown in Figure 7.2.b) depicting a low number of requests 

during weekends. In Figure 7.2.c), the total number of requests feature is plotted against 

‘time of the day’ where values (1-6) are denoted as follows: 

1 - Midnight: 12 am to 4 am 

2 - Early morning: 4 am-7 am 
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3 - Morning: 7 am-12 pm 

4 - Afternoon: 12 pm-4 pm 

5 - Evening: 4 pm-7 pm 

6 - Night: 7 pm-12 am 

As per Figure 7.2.c), we observe that GraphQL receives a large number of requests during 

the afternoon between 12 pm to 4 pm and least during midnight from 12 am to 4 am, which 

can also be seen in Figure 7.2.d). Once, the data is explored visually to understand the 

pattern, the next step is to accordingly use the data in an appropriate manner to build the 

model. Data Analysis is crucial to understand how to split the series data into input and 

target sequences, and its consequences while training the LSTM time series model. The 

lookback and future_steps parameter provided to the model is highly dependent on the 

nature of the dataset, hence it is visually explored and analyzed beforehand to understand 

its temporal behaviour. 

7.3 Experiments on Detection Module 

The summary data (Total Requests, Total Duration) generated from the Extraction module 

is pre-processed in the Data Pre-processing module, which generates new features 

(Average Response time, weekday/weekend, day of the week, etc.) and normalizes the data 

before it is fed to the Detection module. The dataset consisted of 53,410 samples from June 

2019 till December 2019. By samples, we mean the traces or transactions processed by the 

GraphQL layer. For the first set of experiments on Anomaly detection, the last half portion 

of the data (from 21st September 2019) was considered. We conducted two main 

experiments by modeling two variants of LSTM: Univariate LSTM and Multivariate 

LSTM. Each of these two models was tested for different prediction lengths: Single-Step 

and Multi-Step. The details for these experiments are described as follows: 

7.3.1 Experiment 1: Univariate LSTM + Unsupervised Ensemble 

For experiment 1, univariate data is used to build the LSTM model. In univariate, only one 

feature is considered, which in our case was ‘Average Response Time’, ordered in a timely 

fashion using timestamp feature. The dataset used for the experiment is from 21st 

September to 30th October 2019, resulting in 11521 samples, which is divided into a 62:38 

ratio for training and testing purposes. The data used for training is assumed to not have 
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any sort of anomalies and thus is selectively taken from 21st September until 15th October 

2019 and the remaining 38% until 30th October is used for testing the model. Each of the 

training and testing samples is converted into respective formats of input and target 

sequences required by the LSTM time-series model using the parameters – ‘lookback’ and 

‘future_steps’. The model uses ‘lookback’ number of time steps as its input to predict 

‘future_steps’ number of time steps. The model is tested for various combinations of input 

length and prediction length. Input length or a ‘lookback’ of 12, 24, 48, 288 is chosen, 

which for a 5-minute interval of data represents the usage of the previous 1 hour, 2 hours, 

4 hours, 24 hours values as lookbacks respectively. 

7.3.1.1  Experiment 1.1 - Single Step 

For experiment 1.1, lookback of 12 and prediction length of 1 was used. An LSTM model 

with 5 recurrent layers in total with a decreasing number of neurons [64, 48, 32, 16, 8] from 

top to bottom layer followed by a dense output layer with the number of neurons the same 

as prediction length(future_steps) was built as given in Table 7.2. The first layer with 64 

neurons accepts input samples with a lookback of 12 timesteps and its output is fed to the 

next recurrent layer after a drop out of 20%. Each recurrent layer is followed by a drop out 

layer which stochastically reduces the number of neurons while training to prevent 

overfitting of the model. The prediction model was trained using Adam optimizer with a 

learning rate of 0.0001 and the default values of beta_1 as 0.9, beta_2 as 0.999, epsilon as 

1e-08, decay as 0.0, using Mean Squared Error as loss function and a batch size of 30. The 

model was trained for 100 epochs and during each epoch, 20% of the training samples were 

used for validation purposes. The trained model is evaluated using test data as shown in 

Figure 7.3. 

Experiments Model 

Architecture 

Optimizer Epochs Batch 

Size 

Lookback Future 

Steps 

RMSE 

Experiment 1 LSTM (64) 

Dropout (0.2) 

LSTM (48) 

Dropout (0.2) 

LSTM (32) 

Dropout (0.2) 

LSTM (16) 

Dropout (0.2) 

LSTM (8) 

Dense 

Adam: 

learning 

rate=0.0001 
beta_1=0.9 
beta_2=0.999 
epsilon=1e-08 
decay=0.0 

100 30 12 1 Train Score: 

88.63 RMSE 

 

Test Score: 

145.47 

RMSE 

Table 7.2: LSTM Model details for lookback 12 and prediction length 1  
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Figure 7.3: LSTM Training and Prediction. The model predicted average response time 

values for the training set (in blue) and the testing set (in red) is plotted overlapping on 

top of actual or expected average response time values (in black). 

After forecasting, the forecast errors computed using actual and predicted values were 

modeled using gaussian distribution. Mahalanobis distance measure was used to calculate 

the distances of each error vector point from its distribution using mean and covariance 

variables of the errors. The error points which are far away from the distribution indicates 

that those points as anomalies.  

 

Figure 7.4: The bottom plot shows the Actual Average Response Time values (testing 

set). The top plot shows the Mahalanobis distance values of prediction error points from 

its distribution. 

As shown in Figure 7.4, the points with higher Mahalanobis distance values, shaded in 

purple, indicates the existence of anomalies in that region. This is plotted against actual 
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values where we observe that the shaded region in the bottom plot at the same spots as the 

corresponding top plot shows higher average response time values, which are nothing but 

the anomalies. Hence, a higher Mahalanobis distance value indicates a larger prediction 

error which in turn reflects the corresponding data point as an anomaly.  

To identify the outlying Mahalanobis distance (m_dist) values for anomaly detection, these 

distance values were fed to 3 different types of unsupervised learning techniques: Isolation 

Forest, One-Class SVM, and LSCP methods. Apart from the proposed approach, an 

existing threshold-based approach was experimented using two different values of 

threshold (5, 10) to detect the anomalies and compare its results with the proposed 

approaches.  

For the proposed approaches, the following hyper-parameters were used as follows. An 

Outlier fraction of 0.01 was used for all the 3 techniques to check which error points were 

far away from the Gaussian distribution, i.e., outlying Mahalanobis distance values. For 

the ‘LSTM + LSCP’ ensemble method, 4 different variations of LSCP ensemble methods 

were used. In ‘LSCP-1’ ensemble method, LOF with 10 neighbors and 0.01 contamination 

as parameters, and KNN with default parameters were used as base detectors. In the 

‘LSCP-2’ ensemble, three LOFs each with neighbors 12, 24, 48, and 0.01 contamination 

parameters respectively were used as base detectors along with KNN. In the ‘LSCP-3’ 

ensemble method, four LOFs each with neighbors 12, 24, 48, 60, and 0.01 contamination 

as parameters respectively were used along with KNN. In the ‘LSCP-4’ ensemble, the 

outlier fraction was set to 0.009 instead of 0.01, unlike previous ensembles and four LOFs 

with neighbors 12, 24, 36, 48, and 0.01 contamination along with KNN using neighbors 12 

as parameters were used. 

Comparison of results by ‘LSTM + Isolation Forest’, ‘LSTM + One-Class SVM’, ‘LSTM 

+ LSCP’ and ‘LSTM + Existing Threshold’ approaches are shown below. 
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Figure 7.5: Anomalies detected using a threshold of Mahalanobis distance > 10. 

In Figure 7.5, the black dots in the top plot represents the Mahalanobis distance values of 

prediction errors greater than the cut-off value of 10. The bottom plot shows the actual 

‘average response time’ values (testing set) with anomalies (red dots) detected when a 

threshold of m_dist or Mahalanobis distance greater than 10 is applied. Similarly, the black 

dots in the top plot of Figures 7.6 and 7.7 denote the outlying distance values of forecast 

errors detected by LSCP-4 and OC-SVM respectively. Their bottom plot shows the actual 

average response time values with anomalies detected when its corresponding m_dist 

values were detected as outliers by LSCP-4 and OC-SVM respectively.  

 

Figure 7.6: Anomalies detected using LSTM + LSCP-4 ensemble approach 
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Figure 7.7: Anomalies detected using LSTM + One-Class SVM ensemble approach. 

The data points or peaks falling in the red shaded region of the bottom plots are considered 

as anomalies. These individual data points detected as anomalies can be termed as point 

anomalies. Also, since we group the requests into a 5-minute interval, these anomalies fall 

under the category of collective anomalies as well. This region has been identified as the 

anomaly zone area by the validation experts from the collaborating organization for 

detecting and alerting the points falling in this region as anomalies. 

We have detected anomalies for the testing data and captured their results for all the 

mentioned ensemble approaches as given in Table 7.3 and Table 7.4 which is discussed 

below. As per the anomaly zone identified by the domain experts, we labeled the test data 

manually under their supervision.  

Apart from validating the results visually through graphs for all the individual dates of test 

data, the manually labeled data was used to generate a confusion matrix for each of the 

tested approaches and metrics such as precision, recall, F1-score, specificity, and accuracy 

were calculated. In unsupervised learning, where the data is unlabeled, the results are not 

validated by such techniques and are not appropriate either. But we leveraged the label 

information to validate the unsupervised methods like any other supervised method under 

the guidance of domain experts.  

Confusion Matrix: [[TN FP] [FN TP]] 
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Table 7.3: Experiment – 1.1 Results: Confusion Matrix of all the tested approaches 

Method Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.643 1.000 0.995 0.783 0.995 20 + 0 = 20

LSTM + Threshold 10 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + LSCP1 0.795 0.972 0.998 0.875 0.998 9 + 1 = 10

LSTM + LSCP2 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP3 0.795 0.972 0.998 0.875 0.998 9 + 1 = 10

LSTM + LSCP4 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + Isolation Forest 0.837 1.000 0.998 0.911 0.998 7 + 0 = 7

LSTM + One-Class SVM 0.359 0.389 0.994 0.373 0.989 25 + 22 = 47  

Table 7.4: Experiment-1.1 Results: Using Evaluation Metrics 

Given the fact that in an anomaly detection problem, there is a large proportion of normal 

points and very few outliers in the dataset, we consider the metrics such as precision, recall, 

and F1-score rather than the accuracy metric to evaluate the models for such imbalanced 

datasets. As per the results tabulated in Table 7.4, ‘LSTM + LSCP-4’ and ‘LSTM + 

Threshold10’ has achieved a higher precision score of 87.5%, followed by LSTM + 

Isolation Forest’ with a precision score 83.7% respectively. In terms of recall metric, 

‘LSTM + Isolation Forest’ and ‘LSTM+Threshold-5’ has achieved 100%, followed by 

‘LSTM + LSCP-1’, ‘LSTM + LSCP-3’, ‘LSTM + LSCP-4’ and ‘LSTM + Threshold-10’ 

all with 97.2% respectively. 

➢ 87.5% Precision (~ 
7

8
 fraction) signifies that out of every 8 anomalies detected by 

the ‘model’, 7 of them are identified correctly by the model. 

➢ 100% Recall signifies that the model identifies all the anomalies present in the 

‘system’. If there are 10 anomalies in the system, the model identifies all the10. 

Since it is important to ‘correctly’ identify anomalies (Precision) and also to identify ‘all’ 

anomalies (Recall), we calculate the F1-score which gives equal weightage to both 

precision and recall in order to compare the performance of different models. 
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As shown in Table 7.4, ‘LSTM + LSCP-4’ and ‘LSTM + Threshold-10’ has a higher F1-

score of 92.1% followed by  ‘LSTM + Isolation Forest’ and LSTM + LSCP-3’ with F1-

scores of 91.1% and 87.5% respectively. Among all the ensembles, ‘LSTM+OC-SVM’ has 

the lowest F1-score of 37.3%.  

As per the F1-Score measure, with 92.1% score, the ‘LSTM + LSCP-4’ and ‘LSTM + 

Threshold-10’ models are the best models for this experiment.  

Dual Validation - To reiterate, the dataset was split into training and testing set to train 

the LSTM model to learn the patterns in the data, further predictions were made using the 

test set. The prediction errors/distance values of error points were fed to the second module 

of unsupervised outlier detection methods (LSCP/OC-SVM/IF) to detect the anomalies 

present in the test set. Here, the unsupervised techniques in the second module were 

directly fit and tested on the same test set. Hence, to evaluate the generality of the second 

module, the entire combination of LSTM and unsupervised outlier detection ensemble was 

evaluated as a whole for another sample of data. The data tested previously was a subset 

of historical data. Hence, for the secondary validation of the whole proposed combination, 

a very small sample of data from 16th to 18th December 2019 shown in Figure 7.8, was 

used for evaluation.  

This data was also extracted in the same way as the previous dataset from September to 

October for every 5-minutes interval. The dataset was chosen for specific dates, which are 

around 2 months ahead of the previous dataset, to test the generalization and applicability 

of the proposed ensemble detection model throughout months without requiring re-

training.  Secondly, the length of data is cut short to 2 days rather than using a large dataset 

so as to check the capability of the proposed approach on short term data as opposed to a 

historical large set. For the ‘LSTM + LSCP-4’ method used in experiment 1.1, a dual 

validation was conducted wherein the ‘LSCP-4' in the second module got evaluated for 

unseen data, thus validating the whole ensemble, ‘LSTM + LSCP-4’, a second time. The 

results are captured for this data as given in Figure 7.9. 
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Figure 7.8: Average Response Time and Total number of Requests for GraphQL from 

16th - 18th December 2019. 

 

Figure 7.9: Anomalies Detected by the ‘LSTM + LSCP-4' method for data from 16th - 

18th December 2019. 

7.3.1.2  Experiment 1.2 - Multi-Step  

For experiment 1.2, the prediction lengths used is more than 1, i.e., a value of multiple time 

steps ahead is predicted rather than a single time step. Lookback and prediction lengths of 

(lookback, future steps) = (12,12), (24,24) and (48,48) are used for multi-step models.  The 

LSTM model had 5 recurrent layers in total with a decreasing number of neurons [512, 

256, 128, 64, 32] from top to bottom followed by a dense output layer with the number of 

neurons the same as prediction length (future_steps). A drop out of 20% is used after each 

recurrent layer. For experiments under multistep predictions, Adam optimizer with 
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different learning rates was used as given in Table 7.5, and the default values of beta_1 as 

0.9, beta_2 as 0.999, epsilon as 1e-08, decay as 0.0, Mean Squared Error as loss function 

and a batch size of 1024 were used. The model was trained for 200 epochs and during each 

epoch, 20% of the training samples were used for validation purposes. The detection 

procedure has the same steps as mentioned in the previous experiment 1.1. The forecast 

errors are fed to the second module with different unsupervised outlier detection 

approaches forming ensembles:  ‘LSTM + Isolation Forest’, ‘LSTM + One-Class SVM’, 

‘LSTM + LSCP’ and ‘LSTM + Static Threshold’.  

 

For experiments 1.2.1, 1.2.2, and 1.2.3, in LSCP-1 ensemble method, LOF with 10 

neighbors and 0.01 contamination, and KNN with default parameters were used as base 

detectors. In the LSCP-2 ensemble, three LOFs each with neighbors 12, 24, 48, and 0.01 

Experiments Model 

Architecture 

Optimizer Epochs Batch 

Size 

Lookback Future 

 Steps 

RMSE 

Experiment 

1.2.1 

LSTM (512) 

Dropout (0.2) 

LSTM (256) 

Dropout (0.2) 

LSTM (128) 

Dropout (0.2) 

LSTM (64) 

Dropout (0.2) 

LSTM (32) 

Dense 

Adam: 

learning 

rate=0.001 

beta_1=0.9 

beta_2=0.999 

epsilon=1e-08 

decay=0.0 

200 1024 12 12 Train 

Score: 

84.61 

RMSE 

 

Test 

Score: 

131.60 

RMSE 

Experiment 

1.2.2 

LSTM (512) 

Dropout (0.2) 

LSTM (256) 

Dropout (0.2) 

LSTM (128) 

Dropout (0.2) 

LSTM (64) 

Dropout (0.2) 

LSTM (32) 

Dense 

Adam: 

learning 

rate=0.0001 

beta_1=0.9 

beta_2=0.999 

epsilon=1e-08 

decay=0.0 

200 1024 24 24 Train 

Score: 

86.28 

RMSE 

 

Test 

Score: 

121.74 

RMSE 

Experiment 

1.2.3 

LSTM (512) 

Dropout (0.2) 

LSTM (256) 

Dropout (0.2) 

LSTM (128) 

Dropout (0.2) 

LSTM (64) 

Dropout (0.2) 

LSTM (32) 

Dense 

Adam: 

learning 

rate=0.0001 

beta_1=0.9 

beta_2=0.999 

epsilon=1e-08 

decay=0.0 

200 1024 48 48 Train 

Score: 

88.98 

RMSE 

 

Test 

Score: 

134.74 

RMSE 

Table 7.5: LSTM Model details for Multistep univariate data 
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contamination parameters respectively were used as base detectors along with KNN. In the 

LSCP-3 ensemble method, four LOFs each with neighbors 12, 24, 48, 60, and 0.01 

contamination as parameters respectively were used along with KNN. In LSCP-4 

ensemble, outlier fraction was set to 0.009 instead of 0.01 unlike previous ensembles as a 

measure of tuning the hyperparameter to reduce false positives and false negatives, and 

four LOFs with neighbors 12, 24, 36, 48, 60 with 0.01 contamination, and KNN using 

neighbors 12 as parameters were used. 

 

Figure 7.10: Experiment 1.2.1 Detection results for ‘LSTM+LSCP-4’ensemble 

 

Table 7.6: Experiment - 1.2 Results: Confusion Matrix of all models for all the 

experiments 
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Experiment 1.2.1

Methods Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.600 1.000 0.994 0.750 0.995 24 + 0 = 24

LSTM + Threshold 10 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + LSCP1 0.409 0.500 0.994 0.450 0.990 26 + 18 = 44

LSTM + LSCP2 0.727 0.889 0.997 0.800 0.996 12 + 4 = 16

LSTM + LSCP3 0.818 1.000 0.998 0.900 0.998 8 + 0 = 8

LSTM + LSCP4 0.900 1.000 0.999 0.947 0.999 4 + 0 =4

LSTM + Isolation Forest 0.818 1.000 0.998 0.900 0.998 8 + 0 = 8

LSTM + One-Class SVM 0.341 0.389 0.994 0.364 0.989 27+22 = 49  

Table 7.7: Experiment - 1.2.1 Results: Using Evaluation Metrics 

As per the results for experiment 1.2.1 given in Table 7.8, ‘LSTM + LSCP-4’ has 

performed better than all other approaches with higher precision and recall scores of 90% 

and 100% respectively, resulting in F1-Score of 94.7%, highest among other tested 

approaches.  

➢ 90% Precision indicates that out of 10 Anomalies detected by the “model”, 9 of 

them are identified correctly.  

➢ 100% Recall indicates that the model identifies all the anomalies present in the 

“system”. If there are 10 anomalies in the system, the model identifies all the 10. 

‘LSTM + Threshold10’ method has achieved an F1-Score of 92.1% followed by ‘LSTM + 

Isolation forest’ and ‘LSTM +  LSCP-3’ both with an F1-Score of 90%. ‘LSTM + OC-

SVM’ performed poorly with an F1-Score of 36.4%. With the highest F1-Score of 94.7%, 

LSTM+LSCP-4 is the best model for this experiment. 

Experiment 1.2.2

Methods Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.416 0.889 0.990 0.566 0.989 45 + 4 = 49

LSTM + Threshold 10 0.593 0.889 0.995 0.711 0.994 22 + 4 = 26

LSTM + LSCP1 0.409 0.500 0.994 0.450 0.990 26 + 18 = 44

LSTM + LSCP2 0.523 0.639 0.995 0.575 0.992 21 + 13 = 34

LSTM + LSCP3 0.545 0.667 0.995 0.600 0.993 20 + 12 = 32

LSTM + LSCP4 0.725 0.806 0.997 0.763 0.996 11 + 7 = 18

LSTM + Isolation Forest 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + One-Class SVM 0.289 0.361 0.993 0.321 0.987 32 + 23 = 55  

Table 7.8: Experiment - 1.2.2 Results: Using Evaluation Metrics 
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In experiment 1.2.2,  ‘LSTM + LSCP-4’ has achieved a higher F1-Score of 76.3% followed 

by ‘LSTM + Isolation Forest’ and ‘LSTM + Threshold10’ with F1-Scores of 75% and 

71.1% respectively. ‘LSTM + OC-SCM’ and ‘LSTM + Threshold-5’ have performed 

poorly with lowest F1-Scores of 32.1% and 56.6% respectively as displayed in Table 7.8. 

Experiment 1.2.3

Method Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.459 0.944 0.991 0.618 0.990 40 + 2 = 42

LSTM + Threshold 10 0.744 0.889 0.997 0.810 0.997 11 + 4 = 15

LSTM + LSCP1 0.455 0.556 0.994 0.500 0.991 24 + 16 = 40

LSTM + LSCP2 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP3 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP4 0.750 0.917 0.997 0.825 0.997 11 + 3 = 14

LSTM + Isolation Forest 0.727 0.889 0.997 0.800 0.996 12 + 4 = 16

LSTM + One-Class SVM 0.357 0.417 0.994 0.385 0.989 27 + 21 = 48  

Table 7.9: Experiment - 1.2.3 Results: Using Evaluation Metrics 

As per the results in Table 7.9 for experiment 1.2.3,  ‘LSTM + LSCP-4’ has the highest 

F1-Score of 82.5% followed by ‘LSTM + Threshold-10’ and ‘LSTM + Isolation Forest’ 

with F1-Scores of 81% and 80% respectively. ‘LSTM + OC-SCM’ has the lowest F1-Score 

of 38.5%. 

7.3.2 Experiment 2: Multivariate LSTM + Unsupervised Ensemble 

For experiment 2, multivariate data is used to build the LSTM model. In contrast to 

univariate, where only one feature is considered (‘Average Response Time’) multivariate 

uses more than one feature for building the model. In our case, apart from the ‘Average 

response time’ feature, we used other features that were engineered out of timestamps 

during the data pre-processing stage. These features include the day of the week, time of 

the day, daylight, hours of the day, Weekday or weekend, holiday or not, average response 

time 5 minutes back, an hour back, and a day back from the current timestamp. Though 

LSTM is a time-series model in itself, capturing the temporal characteristics of the data, 

we wanted to experiment with how explicit inclusion of features engineered out of 

timestamps creates a difference in model learning and its prediction.  
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The dataset used for the experiment is from 21st September to 30th October 2019, resulting 

in 11521 samples, the same as experiment 1. The data is divided into 62:38 for training and 

testing the model. Both the training and testing samples were converted into respective 

formats of input and target sequences required by the LSTM time-series model using the 

parameters - lookback and future_steps inclusive of all the features. Input length or 

lookback of 12, 24 is chosen, and for a 5-minute interval data, these values indicate usage 

of previous 1 hour, 2 hours values as lookbacks respectively. 

7.3.2.1  Experiment 2.1 - Single Step 

For experiment 2.1, lookback of 12 and prediction length of 1 is used. The LSTM model 

had 7 recurrent layers in total with a decreasing number of neurons [512, 256, 128, 64, 32, 

16, 8] from top to bottom followed by a dense output layer with the number of neurons 

same as prediction length (future_steps = 1). Each recurrent layer is followed by a 20 % 

drop out layer. We trained the prediction model using Adam optimizer with a learning rate 

of 0.00001, used Mean Squared Error for loss function, and a batch size of 256. The model 

was trained for 400 epochs and during each epoch, 20% of the training samples were used 

for validation. Like all previous experiments, the forecast errors are fed to different 

unsupervised outlier detection techniques. 

Experiments Model 

Architecture 

Optimizer Epochs Batch 

Size 

Lookback Future 

 Steps 

RMSE 

Experiment 

2.1 

LSTM (512) 

Dropout (0.2) 

LSTM (256) 

Dropout (0.2) 

LSTM (128) 

Dropout (0.2) 

LSTM (64) 

Dropout (0.2) 

LSTM (32) 

Dropout (0.2) 

LSTM (16) 

Dropout (0.2) 

LSTM (8) 

Dense 

Adam: 
learning 

rate=0.00001 
beta_1=0.9 
beta_2=0.999 
epsilon=1e-08 
decay=0.0 

400 256 12 1 

 

Train 

Score: 

103.86 

RMSE 

 

Test 

Score: 

147.13 

RMSE 

Table 7.10: LSTM Model details for Single-Step Multivariate data. 

For experiment 2.1, all the unsupervised techniques with outlier fraction 0.01 were used 

similar to experiment 1.2.1. In the ‘LSCP-1’ ensemble method, LOF with 10 neighbors, 



96 

 

and KNN with default parameters were used as base detectors. In the ‘LSCP-2’ ensemble, 

three LOFs each with neighbors 12, 24, 48 were used as base detectors along with KNN. 

In the ‘LSCP-3’ ensemble method, four LOFs each with neighbors 12, 24, 48, 60 

respectively were used along with KNN. In LSCP-4 ensemble, outlier fraction was set to 

0.009, and four LOFs with neighbors 12, 24, 36, 48, and KNN with neighbors 12 were used 

in LSCP 4 method. For all the LOFs, for the above four LSCPs, contamination of 0.01 was 

used. 

 

Table 7.11: Experiment-  2.1 Results: Confusion Matrix of all the tested approaches for 

anomaly detection on the test data 

Experiment 2.1

Methods Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.357 0.926 0.990 0.515 0.990 45 + 2 = 47

LSTM + Threshold 10 0.490 0.926 0.994 0.641 0.994 26 + 2 = 28

LSTM + LSCP1 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + LSCP2 0.511 0.889 0.995 0.649 0.994 23 + 3 = 26

LSTM + LSCP3 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + LSCP4 0.649 0.889 0.997 0.750 0.997 13 + 3 = 16

LSTM + Isolation Forest 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + One-Class SVM 0.298 0.519 0.993 0.378 0.990 33 + 13 = 46  

Table 7.12: Experiment - 2.1 Results: Using Evaluation Metrics 

In experiment 2.1,  ‘LSTM + LSCP-4’ has achieved a higher F1-Score of 75% followed 

by LSTM + Isolation Forest’ , ‘LSTM + LSCP-1’ and ‘LSTM + LSCP-3’ all with an F1-

Score of 67.6% respectively. F1-Score of ‘LSTM + Threshold10’ is 64.1% which is quite 

low compared to the ‘LSTM + LSCP-4’ as given in Table 7.12. ‘LSTM + OC-SCM’ and 

‘LSTM + Threshold-5’ yet again performed poorly with lowest F1-Scores of 37.8% and 

51.5% respectively. 



97 

 

7.3.2.2  Experiment 2.2 - Multi-Step 

For the multi-step multivariate LSTM model, a prediction length of 12 is used for a 

lookback of 12 steps. The LSTM model had 5 recurrent layers in total with a decreasing 

number of neurons [512, 256, 128, 64, 32], a dropout of 20%, and trained using Adam 

optimizer with 0.0001 learning rate, and a batch size of 1024 for 300 epochs, as given in 

Table 7.13. The forecast errors were further fed to the mentioned unsupervised outlier 

detection approaches.  

Experiments Model 

Architecture 

Optimizer Epochs Batch 

Size 

Lookback Future 

 Steps 

RMSE 

Experiment 

2.2 

LSTM (512) 

Dropout (0.2) 

LSTM (256) 

Dropout (0.2) 

LSTM (128) 

Dropout (0.2) 

LSTM (64) 

Dropout (0.2) 

LSTM (32) 

Dense 

Adam: 
learning 

rate=0.0001 
beta_1=0.9 
beta_2=0.999 
epsilon=1e-08 
decay=0.0 

300 1024 12 12 Train 

Score: 

101.42 

RMSE 

 

Test 

Score: 

141.08 

RMSE 

Table 7.13: LSTM Model details for Muti-Step Multivariate data. 

For experiment 2.2, all the unsupervised techniques with outlier fraction 0.01 were used. 

The configurations of LSCP-1, LSCP-2, and LSCP-3 were the same as the previous 

experiments (2.1, 1.2) except for LSCP-4. In LSCP-4 ensemble, outlier fraction was set to 

0.009 and five LOFs each with neighbors 12, 24, 36, 60, 72 respectively, KNN with 48 

‘neighbors’ parameter and Isolation forest with 0.01 contamination were used in 

Experiment 2.2.  

 

Table 7.14: Experiment - 2.2 Results: Confusion Matrix of all the tested approaches for 

anomaly detection on the test data 
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Experiment 2.2

Methods Precision Recall Specificity F1-Score Accuracy

Number of 

Misclassified 

Points 

(FP + FN)

LSTM + Threshold 5 0.253 0.704 0.988 0.373 0.986 56 + 8 = 64

LSTM + Threshold 10 0.340 0.630 0.993 0.442 0.991 33 + 10 = 43

LSTM + LSCP1 0.170 0.296 0.991 0.216 0.987 39 + 19 = 58

LSTM + LSCP2 0.213 0.370 0.992 0.270 0.988 37 + 17 = 54

LSTM + LSCP3 0.277 0.481 0.993 0.351 0.990 34 + 14 = 48

LSTM + LSCP4 0.405 0.556 0.995 0.469 0.993 22 + 12 = 34

LSTM + Isolation Forest 0.362 0.630 0.993 0.459 0.991 30 + 10 = 40

LSTM + One-Class SVM 0.102 0.185 0.990 0.132 0.986 44 + 22 = 66  

Table 7.15: Experiment- 2.2 Results: Using Evaluation Metrics 

As per results for experiment 2.2 in Table 7.15, all the models have performed poorly, 

indicating that multistep prediction for multivariate data is not suitable for the detection 

process. The reason could be an increase in the complexity of the model due to the 

sequencing of multiple features for multiple time steps. On comparing the F1-Scores of 

models for this approach, the ranking for the F1-Scores of all the approach goes as follows: 

‘LSTM + LSCP-4’ > ‘LSTM + Isolation Forest’ > ‘LSTM + Threshold10’  > ‘LSTM + 

Threshold5’  > ‘LSTM + LSCP-3’ > ‘LSTM + LSCP-2’ > ‘LSTM + LSCP-1’ >  ‘LSTM 

+ OC-SCM’. 

7.4 Experiments on the Localization Module 

As discussed in Chapter 6, the localization module consists of a mapper and three detectors 

for each of the GraphQL’s spans or sub-components - POST, GET and Cache respectively 

to detect performance anomalies for these spans. The spans corresponding to GraphQL 

data are extracted, pre-processed, and fed to each of its respective detectors as discussed in 

the previous chapter. The mapper receives the anomaly results from the Detection Module 

(for GraphQL), the three individual detectors (for each of GraphQL sub-components: 

POST, GET, Cache), and maps the timestamps of GraphQL anomalies with sub-

component anomalies to identify the sub-component that is responsible for degrading 

GraphQL service’s performance. 
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For this experiment, we considered the data from 18th June to 13th August 2019 to perform 

both the GraphQL anomaly detection (Section 7.3) by feeding the GraphQL data to the 

Detector module and perform localization by feeding GraphQL spans’ data to the Localizer 

module. As per the experiments on the Detector module (Section 7.3), we chose the ‘LSTM 

+ LSCP-4’ ensemble approach to detect the performance anomalies of GraphQL data 

(average response time of GraphQL) as shown in Figure 7.11. Multivariate data is used for 

building the Single-Step model as explained in experiment 2.1. The data was split into 

training and testing sets, where data from 18th June - 15th July 2019 was used for training 

and remaining data for testing the model. 20% of the training data was used as a validation 

set.  

 

Figure 7.11: Anomalies for GraphQL’s average response time data detected by Detector 

Module 

Simultaneously, the spans of GraphQL data are fed to their respective individual detectors 

to detect performance anomalies for sub-components (POST average response time, GET 

average response time, Cache average response time). The three individual detectors also 

use the same ‘LSTM + LSCP’ approach, but with different configurations to forecast the 

expected average response time and detect anomalies when the actual value deviates from 

the expected baseline for each of the sub-components respectively using the unsupervised 

outlier detection method. The anomalies detected for each of the sub-components are 

shown in Figures 7.12, Figure 7.13, and Figure 7.14. 
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Figure 7.12: Anomalies for POST average response time data detected by detector 1 

 

Figure 7.13: Anomalies for GET average response time data detected by detector 2 

 

Figure 7.14: Anomalies for CACHE average response time data detected by detector 3 
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The detected anomalies for GraphQL service from the Detector module and the detected 

anomalies for each of the 3 sub-components from detectors in localizer module is fed to a 

mapper function which uses a simple logic of mapping the timestamps of GraphQL 

anomalous points with the timestamps of each of the anomalous points of POST, GET and 

Cache, to identify which of the sub-components is responsible for degrading the 

performance of the GraphQL service by comparing the time of occurrence of anomalies. 

The identified causal components by the mapper are later sent as a report to the alert 

management system for further action. The report includes the list of anomalous intervals 

of GraphQL service along with the details of root-cause which are described using a 

directed graph or DiGraph representations using the networkx library in python as 

displayed below in Figure 7.15. 

 

Figure 7.15: Mapper generated report which consists of details of GraphQL anomalous 

interval, i.e., the time interval at which anomaly occurred along with DiGraphs 

representation by highlighting the root-cause or causal components in red color. 

As shown in Figure 7.15, the causal components for GraphQL performance anomalies are 

highlighted in red. There could be a single causal component or more than one component 
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responsible for GraphQL performance issues as shown in the results above. Based on our 

experiments, we observed a few results from the mapper, where the reason or root-cause 

for the GraphQL anomaly was not known, as depicted in Figure 7.16. There could be a few 

reasons such as: 

i) Either the GraphQL anomaly detected by the Detector Module might be a 

false anomaly (not a real anomaly) hence, none of the sub-components were 

highlighted as the root-cause. 

ii) The GraphQL anomaly detected by the Detector Module could be a true 

anomaly, but the detector for sub-components might have failed to detect 

all of its true anomalies and hence, none of the sub-components were 

identified as a root-cause by the mapper, or  

iii) Both the GraphQL anomaly from detector Module and anomalies detected 

for sub-components could be accurate, but the root-cause could be an 

external factor other than its sub-components (POST, GET, Cache). 

 

Figure 7.16: Mapper results where the root-cause of GraphQL anomaly is unknown (left). 

7.5 Information Module 

As discussed in Chapter 6, the Information module allows the user to access information 

about tracing events. This module provides 3 options:  

i) Trace Graph: generates directed acyclic graphs (DAG) for a given 

transaction or trace ID along with the details of the parent-child relationship 

between the spans. 
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ii) Trace JSON: generates trace events in JSON format similar to how it is 

stored in the ES system. 

iii) Summary of Trace: provides detailed information of a transaction such as 

when the transaction happened, number of nodes or spans involved, their 

IDs and the time taken by each of spans, how nodes are interconnected by 

describing its parent-child relationship.  

Figure 7.17 and Figure 7.18 displays the output of different options provided by the 

Information Module. In Figure 7.17, the directed acyclic graph includes nodes or spans 

starting from Datalayer(cyan colored node) followed by GraphQL(red node) with requests 

later propagating to POST (blue node), GET(green node), Cache (purple node) 

components. Figure 7.18 shows the output of the Trace JSON option and provides a 

summary of the transaction. 
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Figure 7.17: Trace Graph option generates DAG for the entered transaction ID. 
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Figure 7.18: Output for Summary of Trace and Trace JSON options of 

Information Module. 

 

7.6 Comparison with Related Work 

The detection approach in our proposed system is a novel combination of LTSM and the 

unsupervised algorithms: (i) LSCP, (ii) Isolation Forest, and (iii) OC-SVM. The output of 

LSTM, i.e., forecast errors, was fed to the three unsupervised outlier detection algorithms 

to detect the outlying distance of error points from its distribution to further detect the 

anomalous data points, rather than explicitly setting a threshold on the ‘m-dist’ distance 

value. Many existing approaches (identified in Table 7.16) have used such static thresholds 

irrespective of any algorithms (statistical/ supervised/unsupervised) they choose as 

discussed in Chapter 3 where the details of the existing approaches and the gaps are 

identified.  

The static thresholding approach requires timely updates to its cut-off value as the input 

data changes over time. This might be even more tedious and time-consuming if there are 

various detection modules for every service. If there are hundreds and thousands of 

services, then keeping track of static threshold or cut-off values of detection modules for 

each service will make the monitoring system inefficient. In contrast, by using our 
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approach of the combination of LSTM and (i) LSCP, (ii) Isolation forest, and (iii) OC-

SVM, there is no need to explicitly set the threshold on m_dist value instead it dynamically 

identifies the outlying m_dist values in order to identify its corresponding anomaly data 

points thus making the system entirely automated. 

 

Author 

Proposed 

Model/Framework 

Name 

Methods in 

Algorithms Type of Learning Data Used 

Vallis et. Al [48] AdVec Algorithm 

EDS + Statictical 

method + Piecewise 

approximation Unsupervised 

System Metrics and 

Application 

Metrics 

Imam et. al [44] 

Microsoft ML time 

series algorithm  

 ARTXP algorithm 

+  ARIMA 

algorithm + 

Anomaly Index 

threshold Unsupervised 

Application Log 

Files 

Sasho et al. [47]  - 

Variational 

Autoencoders + 

Probability-based 

dynamic error 

thresholding Unsupervised Distributed traces 

Haowen et al. [50]  Donut 

Dimensionality 

reduction + 

Variational Auto-

Encoder (VAE) + 

Threshold Unsupervised 

Application 

Metrics 

Malhotra et al. [49]  - 

LSTM + Likelihood 

estimation Unsupervised 

ECG, 

Space shuttle, 

power demand, and 

multi-sensor engine 

dataset. 

Chen et al. [51]  SeqVL 

Sequential VAE (+ 

Threshold) + LSTM Unsupervised 

KPI dataset and 

Yahoo dataset 

Leandro et al. [52]  MULDER 

Surprise Metric + 

(10th & 90th) 

Percentiles + 3-

Standard deviation 

test Unsupervised 

NAB  dataset 

(univariate) 

Bikash et al. [36] Cloud PD 

HMM + Correlation 

Analysis, KNN Statistical Method 

 System and 

application metrics 

Daniel et. al [43] - 

SVM + Moving 

Average  Supervised AWS dataset 

Tian et al. [53], Tao 

et al. [54] - LOF Unsupervised 

Cloud applications 

[53], Workload 

patterns [54] 

Sauvanaud et. al 

[46] 

ADS (Anomaly 

Detection System) 

Random Forests, 

Neural Networks, 

Nearest Neighbors, 

and Naive Bayes Supervised 

CPU, Memory, 

Disk, and Network 

performance data 

Samir et al., in [60]  

DLA (Detection and 

Localization System for 

Anomalies) 

Hierarchical Hidden 

Markov Models 

(HHMM) + 

Correlation 

Analysis Statistical Method 

Performance data 

of (services, 

containers, 

nodes ’VM’) 
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Qingfeng et al. [45]  

ADS (Anomaly 

Detection System) 

DTW + (SVM, 

Naïve Bayes, 

Nearest Neighbors, 

and Random forests 

)algorithm Supervised 

Performance data 

of microservice 

containers 

Mohsen et al [56] DeepAnt 

CNN + Euclidean 

Distance Unsupervised 

Yahoo dataset, 

NAB dataset 

Gu et al.[32] ,Tan 

et al.[31]  - 

Markov Chain 

model + Bayesian 

Classifier Statistical Method  

James et. al in [58], 

and Kanishka et. Al 

in [59]. Breunig et 

al., in [55] - KNN Unsupervised  

Xiao et al., in [61]  TaskInsight  Clustering Unsupervised 

System-level 

metrics, such as 

CPU and memory 

utilization 

Table 7.16: List of existing approaches discussed in Chapter 3 

A comparison of the performance of the three proposed novel combination approaches and 

existing static threshold approach was made for every experiment as described in Section 

7.3 (see Table 7.4, Table 7.7, Table 7.8, Table 7.9, Table 7.12, Table 7.15). A summary of 

three topmost approaches has been tabulated as given below in Table 7.17. The results 

show that the proposed novel ‘LSTM + LSCP-4’ hybrid variant detector performs detection 

better with a higher F1-score than the existing static error threshold technique and other 

ensemble approaches across all the experiments.  

Single Step Experiment 1.1 91.70% 91.10% 92.10%

Experiment 1.2.1 94.70% 90.00% 92.10%

Experiment 1.2.2 76.30% 75.00% 71.10%

Experiment 1.2.3 82.50% 80.00% 81.00%

Single Step Experiment 2.1 75.00% 67.60% 64.10%

Multi Step Experiment 2.2 46.90% 45.90% 44.20%

LSTM + 

Threshold-10

F1-Score

Prediction 

Steps

Multi Step

Data Experiments

Univariate 

Data

Multivariate 

Data

LSTM + 

LSCP4 

F1-Score

LSTM + 

Isolation 

Forest

F1-Score

 

Table 7.17: Summary of results across all experiments for the top 3 ensemble methods 

As shown in Table 7.17, for the Univariate Single-Step experiment, the ‘LSTM-LSCP-4’ 

hybrid achieved an F1-Score of 91.7% and for Multi-Step experiments of 12, 24, 48 

prediction time steps, the ensemble model performed detection with an F1-Score outcome 
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of 94.7%, 76%, 82.5% respectively. For Multivariate Single-Step, the ‘LSTM-LSCP4’ 

model achieved a moderate F1-Score of 75% whereas, for Multi-Step experiment of 12 

prediction length, it scored comparatively less with an F1-Score of 46.9%, which was still 

higher than the F1-Scores of other tested ensembles. The ensemble methods: ‘LSTM + 

Isolation Forest’ and ‘LSTM-Threshold10’ performed moderately with a decent score of 

F1-Score metric whereas ‘LSTM + OC-SVM’ hybrid performed consistently bad resulting 

in low F1-Score measures. 

The average scores of precision, recall, and F1-score measures were calculated for the top 

three models that we used across all the experiments under univariate data as described in 

Section 7.3.1 (see Experiment 1.1, 1.2.1, 1.2.2, 1.2.3).  

 

Method F1-Score 

Average 

Precision 

Average 

Recall 

Average 

LSTM+Threshold 10 
84.08% 77.17% 93.06% 

LSTM+LSCP4 86.30% 82.29% 90.97% 

LSTM+Isolation 

Forest 84.03% 76.61% 93.06% 

Table 7.18: Average of the metric scores across all the Univariate experiments 

The average F1-Score of the ‘LSTM+LSCP4’ ensemble approach is the highest compared 

to the existing static thresholding – ‘LSTM+Threshold-10’ and the ‘LSTM+Isolation’ 

ensemble methods as shown in Table 7.18. 

7.6.1 Experiment on Numenta Anomaly Benchmark (NAB) dataset 

1 

Since the above experiments were conducted on the third-party cloud system’s dataset, we 

also evaluated the performance of our approach by experimenting on the Numenta 

Anomaly Benchmark (NAB) Dataset. NAB [108] platform provides access to real-world, 

labeled data files across multiple domains and is used by various researchers to validate the 

performance of their detection models. We used Numenta’s “ec2_cpu_utilization_825cc2” 

dataset on our proposed approach to detect the anomalies and compared them with 

Numenta’s results. The detection results of the proposed ‘LSTM + LSCP-4’ and ‘LSTM + 
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Isolation Forest’ hybrid methods results are shown in Figure 7.19 and Figure 7.20 

respectively. 

 

Figure 7.19: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB ‘ec2 CPU 

utilization’ dataset. 

 

Figure 7.20: Detection results for ‘LSTM + Isolation Forest’ on NAB ‘ec2 CPU 

utilization’ dataset. 
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Based on Numenta’s standard scores [109], Numenta’s HTM model results in the following 

TP, TN, FN, and FP as shown in Figure 7.21. 

 

Figure 7.21: Detection results for Numenta’s HTM model on NAB ‘ec2 CPU utilization’ 

dataset. 

Method Precision Recall Specificity F1-Score Accuracy

LSTM + Isolation Forest 0.743 0.076 0.997 0.138 0.905

LSTM + LSCP4 0.657 0.067 0.996 0.122 0.903

Numenta's HTM model 0.889 0.023 0.999 0.045 0.902  

Table 7.19: Results for NAB ‘ec2 CPU utilization’ dataset. 

On comparing, the results for the proposed combinations and Numenta’s HTM benchmark 

scores as given in Table 7.19, we observe that the proposed novel combination for anomaly 

detection performs better than the Numenta’s standard scores, where ‘LSTM + Isolation 

forest’ has higher F1-score of 13.8%  followed by ‘LSTM + LSCP-4’ with F1-Score of 

12.2%, whereas Numenta’s HTM model results in a low F1-score of 4.5%. 
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7.6.2 Experiment on Numenta Anomaly Benchmark (NAB) dataset 

2 

We conducted another experiment on a different dataset from the NAB platform – 

“elb_request_count_8c0756” dataset. The detection results of the proposed ‘LSTM + 

LSCP-4’ and ‘LSTM + Isolation Forest’ hybrid methods results are shown in Figure 7.22 

and Figure 7.23 respectively. 

 

Figure 7.22: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB 

‘elb_request_count_8c0756’ dataset 
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Figure 7.23: Detection results for ‘LSTM + Isolation forest’ hybrid method on NAB 

‘elb_request_count_8c0756’ dataset. 

Based on Numenta’s standard scores [109], Numenta’s HTM model results in the following 

TP, TN, FN, and FP as shown in Figure 7.24. 

 

Figure 7.24: Detection results for Numenta’s HTM model on NAB 

‘elb_request_count_8c0756’ dataset. 

Method Precision Recall Specificity F1-Score Accuracy

LSTM + Isolation Forest 0.441 0.037 0.994 0.069 0.882

LSTM + LSCP4 0.5 0.051 0.993 0.093 0.881

Numenta's HTM model 0.75 0.007 1 0.015 0.883  

Table 7.20: Results for NAB ‘elb_request_count_8c0756’ dataset 
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On comparing, the results for the proposed combinations and Numenta’s HTM benchmark 

scores as given in Table 7.20, we observe that the proposed novel combination for anomaly 

detection performs better than the Numenta’s standard scores, where ‘LSTM + LSCP’ has 

higher F1-score of 9.3%  followed by ‘LSTM + Isolation forest’ with F1-Score of 6.9%, 

whereas Numenta’s HTM model results in a low F1-score of 1.5%. 

The experiments on both the NAB datasets show that our approaches resulted in low F1-

scores, but it does perform better than the standard benchmark score of the Numenta HTM 

model. 

7.7 System development and Testing 

In this section, we describe the approach towards the development and testing of our 

proposed system. All the modules of the proposed system were developed individually as 

separate python programs. The development and testing for an individual module were 

performed simultaneously. For example, in the data extraction process (refer Section 6.2.2) 

the 5 steps were developed as a separate program where each script (say Step 2) was 

executed after the successful execution of another (Step 1). Unit testing was carried out for 

each program (steps 1-5) in the data extraction module, followed by Integration testing of 

all the programs (steps 1-5) within the extraction module. Similarly, the unit testing and 

integration testing was carried out for all the modules. 

 In the post-development phase, we conducted the verification and validation procedure for 

each of the scripts. Verification is an internal process to evaluate whether or not a product, 

service, or system complies with a requirement or specifications. Validation is an assurance 

that a product, service, or system meets the user’s expectations.  

Data Extraction Phase Verification: The TraceID collection and Get Trace Information step 

(see Section 6.2.2) was verified by comparing the number of transactions or trace IDs 

fetched by our program script with the total number of trace IDs that were shown in the 

ElasticSearch system of the third-party cloud system. Summary information (Total 

requests, Total Duration) was verified by comparing the graphical representations of the 
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features collected by our programs with the graphical representation for that dataset on the 

Kibana tool (visualization tool for ES). 

Data Pre-processing Phase Verification: Post feature scaling the dataset was plotted and 

compared with the data in third-party through visualization plots in Kibana for the 

verification process. 

The Detection process was verified using the visual plots and evaluation metrics such as 

F1-Score by making use of the label information. The detection results were validated by 

domain experts visually. The proposed novel approach for anomaly detection was also 

evaluated on two different benchmark datasets available on the NAB platform as shown in 

Sections 7.6.1 and 7.6.2. 

7.8 Summary 

In this chapter, we discuss tools and libraries used in the experiments, its implementation 

details, and their results for the proposed prediction-based automated hybrid anomaly 

detection and localization system. 

In the experiments described in Section 7.3, the detector module of the system was 

implemented using the proposed novel hybrid approach, and the existing static error 

thresholding technique to compare the effectiveness of the proposed detection 

methodology. For time-series prediction, both univariate and multivariate data were used 

for the experiments. For both the variations of data, two different versions of the time-

series LSTM models: Single-step and Multi-step LSTM, were built to perform prediction-

based anomaly detection and then combined with the three unsupervised outlier detection 

algorithms to detect the outlying distance of error points from its distribution to further 

detect the anomalous data points.  A total of 8 different hybrid models were tested: four 

LSTM with LSCP ensemble models, one LSTM with Isolation Forest, LSTM with One-

Class SVM, and two LSTM with Static thresholding methods. 

The implementation details of the localization module were also described and 

demonstrated to show how the root-cause of detected anomalies were identified for the 
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given dataset (see Section 7.4), and further, the functionality of the Information module 

was also described in Section 7.5. 

A comparison of the proposed detection approach with the related study is described in 

Section 7.6, where the proposed novel detection approach is also tested on a benchmark 

dataset (NAB) and its results are compared with existing Numenta’s HTM results, followed 

by the next section describing the System development and testing carried out in our work. 
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Chapter 8 

8 Discussion, Conclusion and Future Work 

In this chapter, we discuss the challenges, impact of our work, and different threats to 

validity. We conclude the thesis and describe future work that we plan to explore.  

8.1 Discussion 

In this section, we discuss the results and impact of our proposed system, the challenges 

that we encountered in our work, and the different aspects that we could have explored. 

8.1.1 Impact of our proposed system 

The proposed automated anomaly detection and localization system: (i) detects 

performance anomalies of a microservice through monitoring the performance metric data 

extracted from the tracing events using a novel approach of a prediction-based anomaly 

detection technique which combines a time-series model and unsupervised learning 

algorithms - LSCP, Isolation forest, and One-Class SVM, and (ii) locates the causal 

components for the detected anomalies. By using the proposed combination of  LSTM and 

an unsupervised learning algorithm, there is no need to explicitly set the threshold 

on m_dist value. Instead, it dynamically identifies the outlying m_dist values in order to 

identify its corresponding anomaly data points by using an unsupervised outlier detection 

technique such as LSCP or Isolation Forest, thus making the system entirely automated, 

unlike the static rule-based thresholding approaches (see Table 7.16) which can be 

inefficient when the data or load varies over time, as discussed in Chapter 3 and Section 

4.3. The proposed detection ensemble identifies point anomalies and also collective 

anomalies since we group the data into 5-minute intervals. 

The output of the system is an anomaly report that consists of the time-interval of the 

occurrence of the anomaly and a directed acyclic graph highlighting its causal component, 

as shown in Figure 7.15. 
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The proposed system is not limited to GraphQL service as shown in the demonstration of 

our work but can be adapted to other services as well for time-series anomaly detection.  

In a microservices-based cloud environment where multiple instances of all the 

microservices need to be monitored at once, which requires to check the logs of multiple 

services and track one user request through multiple systems, the proposed system is quite 

capable to handle such cases while easing the monitoring process compared to the existing 

framework (see Section 4.2) which might not be as reliable or simple. 

In a microservices-based cloud system with numerous microservices and its multiple 

instances, the proposed system helps to in locating the root cause of an anomaly and 

overcomes the challenges of SREs in manually analyzing and tracking the root-cause or 

faulty microservice/component. 

8.1.2 Challenges 

The biggest challenge that we faced during our work was the absence of label information. 

The availability of labeled data and benchmark datasets is a major issue in the field of 

anomaly detection research in general. Many research works [45, 46] have dealt with this 

issue by training a model on normal data and then injecting artificial anomalies in the 

dataset and further verify if the trained model detects the injected anomalies or not. The 

problem with this approach is that anomalies are uncertain and might have different 

patterns due to which the trained model might not be effective for a real-world dataset. In 

our case, we used the real-world production data from a third-party cloud microservices, 

but the problem was the absence of label information.  

Based on our exploratory data analysis, we observed the presence of anomalies in our data 

which is quite obvious, given the fact that the data was extracted from a production 

environment. As a result, it was challenging to train a model using production data as there 

were chances that the model would learn the anomaly patterns along with the normal data 

and later identify an anomaly as a normal data point. To mitigate this effect, we collected 

data for a long duration (six months) in order to identify the portion of data which seemed 
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normal and sufficient enough for training a deep learning model, under the guidance of 

domain experts.  

8.1.3 Alternate analysis/aspects for consideration 

As far as the localization technique is considered, the list of possible root-causes is limited 

only to its calls to sub-components or child nodes. For example, for GraphQL service the 

localization module limits the causal components to POST, GET, and Cache, but there 

might be other external factors that could be a reason for degrading GraphQL service’s 

performance such as an outage for a certain interval of time might result in lower peaks or 

even ‘0’ requests, causing the average response time of GraphQL to drop to ‘0’ during that 

interval. With no further requests propagated to its sub-components, this might show the 

response times for them (POST, GET, and Cache) to be ‘0’. In such cases, as per the logic 

used by the mapper, the causal component for GraphQL’s performance degradation issue 

will either be POST/GET/Cache or all of them respectively, but the actual root-cause here 

tends to be an overall cloud outage. Similarly, there could be other external factors that are 

responsible for GraphQL downtime apart from its dependency on sub-components - 

POST/GET/Cache.  

The proposed detection technique was tested on datasets that exhibited additive 

seasonality. However, an alternative could be to test the proposed hybrid model on datasets 

with multiplicative seasonality or different kind of trend patterns in a time-series, such as 

the exponential trend in the rise of COVID-19 cases.  

Also, apart from creating a baseline for the ‘average response time’ feature, a baseline for 

the ‘total number of requests’ (request arrival pattern) and ‘error rate’ pattern for each of 

the response codes could be generated and used for analysis to verify how such patterns 

could help improve the detection accuracy. The proposed detection ensemble identifies 

point anomalies and also collective anomalies since we group the data into 5-minute 

intervals. The detection technique can also consider other contextual or external factors to 

detect the contextual anomalies. 
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8.2 Threats to validity 

1. The data used in our experiments are specific to GraphQL service and hence, the 

results will vary for other services’ data. The data feature used for our experiments 

is Average response time and other time-related features in case of multivariate data 

and hence the model should be reconfigured and tuned for different services and 

other metrics such as CPU, memory usage, as input features. 

2. The data used for our experiment lies between June to December 2019. There was 

a notable change in the data from June to September 2019 due to various factors 

like production deployment, system configurations, etc., during that period. Hence, 

the model was configured for the last portion of the data. It is assumed that there 

will not be a huge notable difference in the average response time feature of the 

data based on our testing (Dual Validation in Section 7.3.1.1). 

3. The model seems capable and promising for real-time anomaly detection, but it 

should be deployed in the production environment and tested for real-time 

streaming data for better assessment. The speed of the data extraction as 5-minutes 

interval and pre-processing stages might be slow and result in delays during real-

time detection and might require optimization to speed up the process. 

4. The proposed work assumes that the causal components are directly dependent on 

the GraphQL service, which are basically its spans or sub-components. As 

discussed in the previous section, there could be external factors degrading the 

GraphQL service’s performance. 

5. The proposed detection method is capable of detecting point-based anomalies and 

collective anomalies, but not contextual anomalies. 

8.3 Conclusion 

In this thesis, we developed an automated prediction-based anomaly detection and 

localization system, (i) which detects performance anomalies using a time-series deep 

learning model and an ensemble of unsupervised learning techniques that can handle a 

huge volume of data generated from each of the individual microservices and avoid the 

burden of static thresholding approach that is used in the existing monitoring framework 
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and other literature works as discussed in Chapter 3 and 4, and (ii) identifies the casual 

components of the detected anomalies.  

The motivation behind this research is to make the performance anomaly detection along 

with the localization process of the root causes smooth and accurate with no intervention 

required by the operations team. This idea is not a contribution to a specific service or 

product or cloud-based systems but to all fields from different domains where the data is 

time-series related data. Unlike existing techniques, our proposed system doesn’t require 

any static thresholds or cut-offs for scoring the anomalies and is completely automated.  

We developed the proposed system which consists of five modules: Data Extraction, Data 

Pre-processing, Anomaly Detection module, Localization module, and Information 

module. The novelty of the proposed system lies in the anomaly detection process of the 

Detection module that uses a novel combination of LSTM and unsupervised learning 

algorithms: (i) LSCP, (ii) Isolation forest, (iii) One-Class SVM, which avoids static 

thresholding to score the anomaly and follows a dynamic approach using the unsupervised 

learning algorithms.  Another aspect of novelty in this work is using the LSCP model for 

univariate data, which hasn’t been tested in the existing work previously. 

We conducted experiments on a real-world time-series dataset of microservices from the 

production environment and the Numenta Anomaly Benchmark dataset. Based on our 

results on production dataset, we conclude that the proposed novel combination of ‘LSTM 

+ LSCP’ and ‘LSTM + Isolation Forest’ are effective anomaly detectors with average F1-

scores 86% and 84%, average precision scores of 82 % and 77%, and average recall scores 

of 91% and 93% respectively. They use the concept of prediction-based automated 

anomaly detection without having to explicitly set any thresholds or cut-offs for scoring 

anomalies and instead use unsupervised outlier detection ensemble – LSCP, Isolation forest 

for identifying anomalies. The localization module was also experimented using data from 

a third-party cloud system. 

We wanted to experiment how the ensemble performs when LSTM includes additional 

features (day of the week, weekday/weekend, holiday/non-holiday, etc.,.) extracted out of 

timestamps as input even though LSTM is a time-series model in itself which learns 
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complex dynamics within the temporal ordering of input sequences. Based on our results, 

it shows that the ensemble experimented using multivariate data for both single-step and 

multi-step LSTM models did not perform as good as ensembles using univariate LSTM 

models. This concludes that the inclusion of timely features to an LSTM does not improve 

the performance of the LSTM model. 

In our work, the production data used was specific to GraphQL service and its sub-

components – POST, GET, Cache. However, our proposed system is not limited to 

GraphQL and its spans alone and can be used for any time-series data in a microservices-

based cloud environment. 

8.4 Future Work 

Here, we list several future work items: 

1. The main problem in the anomaly detection field is the absence of label information 

which creates a problem in determining the effectiveness of the approach. Labeling 

the data manually in order to evaluate the detection technique is a challenging task. 

Hence, to generate label information, a feedback loop can be implemented where a 

domain expert would send feedback regarding the detected anomalies if the 

detected anomalies are true or false. Based on domain experts' input the model can 

retrain using the feedback and learn the behavior of the data to predict anomalies 

during its encounter in the real-time production environment. 

2. Further, the nature of data varies with time. Hence, the model requires an update or 

re-training. But doing this manually on a regular basis would be tedious and hence 

automatic re-training will be required which can be done when the label 

information is available. 

3. Also, one can test the proposed system for real-time anomaly detection by 

implementing it in a production environment once the set-up and system integration 

are done. The proposed detection technique can be tested on different varieties of 

benchmark time-series datasets.  

4. The data related to contextual or external factors responsible for anomalies in the 

localization module can be collected for future analysis and features such as error 
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rates, not considered in the current version of our proposed system, can be taken 

into account. 
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Appendix A 

A.1 Data Extraction Algorithms 

A.1.1 Algorithm to extract Trace IDs from Elasticsearch system 

 

#!/usr/bin/env python 
import urllib3 
import certifi 
import pandas as pd 
import pickle 
import json 
import time 
from datetime import datetime, date, timedelta 
from elasticsearch import Elasticsearch 
 
def datetime_range(start, end, delta): 
    current = start 
    while current < end: 
        yield current 
        current += delta 
 
dts = [dt.strftime('%Y-%m-%dT%H:%M:%S') for dt in  
       datetime_range(datetime(2019, 8, 30, 23, 55), datetime(2019, 9, 2, 0),  
       timedelta(minutes=5))] 
credentials = "" 
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) 
es = Elasticsearch(['https://priyanka.naikade@****.com:******@bss-*******-
p00.compose.direct:15117/'], verify_certs=False ) 
 
#get trace IDs of all the graphql requests. max len will be 10,000 due to size 
parameter 
traceinfolist = []  
trIDs = [] 
 
for i in dts: 
    from_time = i 
    to_time = datetime.strptime(i, '%Y-%m-%dT%H:%M:%S') + 
timedelta(minutes=5) 
    res3 = es.search(index="cloud-datalayer*", body = { 
        'size' : 10000, 
        'query': { 
        'bool': { 
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          'filter': [ 
            { 
              'range': { 
                'date': { 
                  'from': from_time, 
                  'to': to_time 
                } 
              } 
            }, 
            { 
              'term': { 
                'name.keyword': { 
                  'value': '/datalayer/graphql' 
                } 
              } 
            } 
          ] 
        } 
      }   
        }) 
     
    for doc in res3['hits']['hits']: 
        trIDs.append(doc['_source']['traceId']) 
 
    picklefilename = "trIDs"+str(to_time)+".pickle" 
    pickle_out = open(picklefilename,"wb") 
    pickle.dump(trIDs, pickle_out) 
    pickle_out.close() 
    print("*****************************") 
    time.sleep( 5 ) 
    traceinfolist = [] 
    trIDs = [] 
    print("\n\n------------------------------------end------------------------------------------") 
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A.1.2 Algorithm to get trace information for the collected Trace IDs 

 

#!/usr/bin/env python 
import urllib3 
import certifi 
import pandas as pd 
import pickle 
import json 
import time 
#import simplejson 
import time 
from datetime import datetime, date, timedelta 
import os 
from elasticsearch import Elasticsearch 
import smtplib 
from smtplib import SMTPException 
 
 
start = time.time() 
credentials = "" 
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) 
es = Elasticsearch(['https://priyanka.naikade@****.com:******@bss-
*******p00.compose.direct:15117/'], verify_certs=False ) 
 
#Slicing list of trace IDs for max size limit issue while fetching data from 
Elasticsearch 
def slicelist(listdata, num): 
    avg = len(listdata) / float(num) 
    print(avg) 
    outlistset = [] 
    last = 0.0 
    while last < len(listdata): 
        outlistset.append(listdata[int(last):int(last + avg)]) 
        last += avg 
    return outlistset 
 
# Get the directory path from the user where all the input files are present 
dirpath = "/home/priyanka/thesis/ESdata/tidfiles/" 
files = os.listdir(dirpath) 
# Looping through every file present in the folder and storing its information in a 
list 
for each_file in files: 
    new_filename = "Info" + each_file 
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    #get trace IDs of all the graphql requests. max len will 10,000 due to size 
parameter 
    traceinfolist = []  
    trIDs = [] 
 
 
    filepath = "/home/priyanka/thesis/ESdata/tidfiles/" + each_file 
    pickle_trlist = open(filepath,"rb") 
    trlist_orig = pickle.load(pickle_trlist) 
    transactions_dict = {} 
    trans_list = [] 
    troutlist = slicelist(trlist_orig,20) 
    tinf =[] 
 
    for trlist in troutlist: 
        data = es.search(index="cloud-datalayer*", body = { 
            'size' : 10000, 
            'query': { 
            'bool': { 
              'filter': [ 
                   { 
                     'terms':{ 
                            'traceId.keyword': trlist 
 
                        } 
                    } 
                  ] 
            } 
          }}) 
 
        ''', 
              'sort': [ 
                { 'traceId.keyword':   { "order": "asc" }} 
              ]''' 
 
        for doc in data['hits']['hits']: 
            tinf.append((doc['_source'])) 
            key = doc['_source']['traceId'] 
            if key in transactions_dict.keys():  
                #parent already present so appendd child values to the existing key in the 
dictionary") 
                transactions_dict[key].append((doc['_source'])) 
            else: 
                #new parent so add in the dictionary") 
                transactions_dict[key] = [(doc['_source'])]    
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    print("\n writing to files\n") 
    pickle_out = open(new_filename,"wb") 
    pickle.dump(transactions_dict, pickle_out) 
    pickle_out.close() 
    print(new_filename,"done writing") 
 
end = time.time() 
ttaken = end -  start 
print("\n time taken:",ttaken) 
 
#Send an email notification 
to = 'priyanka*****@gmail.com' 
gmail_user = 'priyanka*****@gmail.com' 
gmail_pwd = '******' 
smtpserver = smtplib.SMTP("smtp.gmail.com",587) 
smtpserver.ehlo() 
smtpserver.starttls() 
smtpserver.ehlo 
smtpserver.login(gmail_user, gmail_pwd) 
header = 'To:' + to + '\n' + 'From: ' + gmail_user + '\n' + 'Subject: ES files extracted 
\n' 
#print(header) 
msg = header + '\n Trace Info Objects from ES extracted \n\n time taken : ' + 
str(ttaken) 
smtpserver.sendmail(gmail_user, to, msg) 
print('done!') 
smtpserver.close() 
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A.1.3 Algorithm to get request summary information 

 

#Get requests Summary from ES files along with response codes 
import os 
import pickle 
import json 
import requests 
import time 
from datetime import datetime, date, timedelta 
from dateutil.parser import parse 
 
dirpath = '/mnt/c/Users/Priyanka Naikade/trinfoES/' 
tags = ('traceId','date','duration') 
newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp', 
'duration','http.host','http.status_code') 
files = os.listdir(dirpath) 
graphql_time = {} 
v ={} 
cd={} 
graphql_timelist = [] 
codes=[] 
 
# Looping through every file present in the folder and storing its information in a 
list 
for each_file in files: 
    c=0 
    total = 0 
    codes = [] 
    filepath =  dirpath + each_file 
    pickle_trinf = open(filepath,"rb") 
    trinfo = pickle.load(pickle_trinf) 
    for t in trinfo: 
        #t is key trace ID, trinfo list 
        #for every transaction we need only certain fields like ID, parentID, duration for 
graph creation 
        #so removed some key fields from the inner dictionary 
        for span in trinfo[t]: 
            #print(span['name'],":",span['duration']) 
            if(span['name'] == '/datalayer/graphql'): 
                #graphql_time[span['name']] = span['duration'] 
                t = span['duration']/1000 
                total = total + t 
                         
            #get all response codes in list 
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            for tagname in span['tags']: 
                #tagname - tagnames 
                if(tagname == 'http.status_code'): 
                    #print(span['tags']['http.status_code']) 
                    codes.append(span['tags']['http.status_code']) 
         
    #get count for every distinct response code  
    cde=0 
    for i in set(codes): 
        for rc in codes: 
            if i == rc: 
                cde=cde+1 
         
        cd[i] = cde 
        cde = 0 
             
             
    #print(each_file,":",total) 
    date = (each_file[9:28]) 
    graphql_time["k"]= date 
    v["count"]= len(trinfo) 
    v["duration"]=total 
    graphql_time["v"]=v 
    graphql_time["rescodes"]=cd 
    graphql_timelist.append((graphql_time)) 
    graphql_time = {} 
    v ={} 
    cd ={} 
     
pickle_out = open("/home/priyanka/ESrequestSummarywithcodes2.pickle","wb") 
pickle.dump(graphql_timelist, pickle_out) 
pickle_out.close() 
print("end") 
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A.1.4 Algorithm to get Individual summary information 

 

import os 
import requests 
import json 
import pickle 
 
#get Individual Summary --> requests, total duration of cache, get, post, every 5mins 
interval  
dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/" 
tags = ('traceId','name', 'id', 'parentId','date','timestamp', 'duration','tags') 
newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp', 
'duration','http.host','http.status_code') 
                 
files = os.listdir(dirpath) 
IndividualSummary = {} 
v={} 
IndividualSummarylist =[ ] 
# Looping through every file present in the folder and storing its information in a 
list 
for each_file in files: 
    t, ct, pt, gt, ot, total = 0,0,0,0,0,0 
    tgraph, GRAPH, CACHE, tcache, POST, tpost, tget, GET ,othercategory, tother=[ ],[ 
],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ] 
    cacheduration, cacherequests, postduration, postrequests, getduration, 
getrequests, graphqlduration, otherduration,otherrequests = 0,0,0,0,0,0,0,0,0 
    filepath =  dirpath + each_file 
    pickle_trinf = open(filepath,"rb") 
    trinfo = pickle.load(pickle_trinf) 
    for t in trinfo: 
        #t is key trace ID, trinfo list 
        #for every transaction we need only certain fields like ID, parentID, duration for 
graph creation 
        #so removed some key fields from the inner dictionary 
        for span in trinfo[t]: 
            #print(span['name'],":",span['duration']) 
            if(span['name'] == '/datalayer/graphql'): 
                #graphql_time[span['name']] = span['duration'] 
                t = span['duration']/1000 
                tgraph.append(t) 
            elif(span['name'].startswith('CACHE')): 
                ct = span['duration']/1000 
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                tcache.append(ct) 
            elif(span['name'].startswith('POST')): 
                pt = span['duration']/1000 
                tpost.append(pt) 
            elif(span['name'].startswith('GET')): 
                gt = span['duration']/1000 
                tget.append(gt) 
            else: 
                ot = span['duration']/1000 
                tother.append(ot) 
 
    GRAPH.extend(tgraph) 
    CACHE.extend(tcache) 
    POST.extend(tpost) 
    GET.extend(tget) 
    othercategory.extend(tother) 
    graphduration= sum(GRAPH) 
    graphrequests = len(GRAPH) 
    cacheduration = sum(CACHE) 
    cacherequests = len(CACHE) 
    postduration = sum(POST) 
    postrequests = len(POST) 
    getduration = sum(GET) 
    getrequests = len(GET) 
    otherduration = sum(othercategory) 
    otherrequests = len(othercategory) 
     
    date = (each_file[9:28]) 
    IndividualSummary["k"]= date 
    v["graphRequests"]= graphrequests 
    v["graphDuration"]= graphduration 
    v["cacheRequests"]= cacherequests 
    v["cacheDuration"]= cacheduration 
    v["postRequests"]= postrequests 
    v["postDuration"]= postduration 
    v["getRequests"]= getrequests 
    v["getDuration"]= getduration 
    v["otherRequests"]= otherrequests 
    v["otherDuration"]= otherduration 
    IndividualSummary["v"]=v         
    IndividualSummarylist.append((IndividualSummary)) 
    IndividualSummary = {} 
    v ={}     
    
pickle_out = open("/home/priyanka/IndividualSummarylist2.pickle","wb") 
pickle.dump(IndividualSummarylist, pickle_out) 
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pickle_out.close() 
 
 

 

A.1.5 Algorithm to get all dates of Traces 

 

import requests 
import os 
import pickle 
import json 
 
dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/" 
files = os.listdir(dirpath) 
# Looping through every file present in the folder and storing its information in a 
list 
Date_traceIDs = {} 
for each_file in files: 
    filepath =  dirpath + each_file 
    pickle_trinf = open(filepath,"rb") 
    trinfo = pickle.load(pickle_trinf) 
    fname = each_file[9:-7] 
    traces = [] 
    for t in trinfo: 
        traces.append(t)    
    Date_traceIDs[fname]=traces 
 
pickle_out = open("/home/priyanka/AllDate_traceIDs2.pickle","wb") 
pickle.dump(Date_traceIDs, pickle_out) 
pickle_out.close() 
 
print("End") 
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A.2 Localization Module – Mapper Function 

 

def mapper(df_test, cachedf_test, postdf_test, getdf_test): 

 df_test.loc[df_test['lscpoutlier_3']==1, 'Date'].tolist() 

 graphqlanomalies = [] 

 graphqlanomalies = df_test.loc[df_test['lscpoutlier_3']==1, 'Date'].tolist() 

 cacheanomalies = [] 

 cacheanomalies = cachedf_test.loc[cachedf_test['lscpoutlier_more']==1, 

'Date'].tolist() 

 postanomalies = [] 

 postanomalies = postdf_test.loc[postdf_test['lscpoutlier_more']==1, 'Date'].tolist() 

 getanomalies = [] 

 getanomalies = getdf_test.loc[getdf_test['lscpoutlier_more']==1, 'Date'].tolist() 

 cdict = {} 

 cano = [] 

 for i in graphqlanomalies: 

  if i in cacheanomalies: 

   print(i) 

   cano.append(i) 

    

 cdict['cache'] = cano 

 pdict = {} 

 pano = [] 

 for i in graphqlanomalies: 

  if i in postanomalies: 

   #print(i) 

   pano.append(i) 

    

 pdict['post']= pano 

 gedict = {} 

 geano = [] 

 for i in graphqlanomalies: 

  if i in getanomalies: 

   #print(i) 

   geano.append(i) 

    

 gedict['get']= geano 

 anodict = {} 

 for i in graphqlanomalies: 

  if (i in cacheanomalies) & (i in postanomalies) & (i in getanomalies): 

   print(i) 

   anodict[i] = ['cache','post','get'] 

  elif (i in cacheanomalies) & (i in postanomalies) & (i not in getanomalies): 

   #print(i) 

   anodict[i] = ['cache','post'] 
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  elif (i in cacheanomalies) & (i not in postanomalies) & (i not in 

getanomalies): 

   anodict[i] = ['cache'] 

  elif (i not in cacheanomalies) & (i in postanomalies) & (i in getanomalies): 

   anodict[i] = ['post','get'] 

  elif (i not in cacheanomalies) & (i not in postanomalies) & (i in 

getanomalies): 

   anodict[i] = ['get'] 

  elif (i not in cacheanomalies) & (i in postanomalies) & (i not in 

getanomalies): 

   anodict[i] = ['post'] 

  elif (i in cacheanomalies) & (i not in postanomalies) & (i in getanomalies): 

   anodict[i] = ['cache','get'] 

  elif (i not in cacheanomalies) & (i not in postanomalies) & (i not in 

getanomalies): 

   anodict[i] = ['none'] 

    

 #generate color request flow graph for each anomalous interval and visualize 

using graphs  

 for key,val in anodict.items(): 

  print("\nAnomalous Interval:",key,"\nCausal Component red-highlighted 

in graph") 

  G = nx.DiGraph() 

  map(G.add_node, range(6)) 

 

  #Add all nodes along with their color information.  

  #Datalayer-black, graphql-green, Cache- Blue, POST-cyan, GET- red 

  k = ['Dashboard','Datalayer','GraphQL','POST','GET','CACHE'] 

  G.add_node('Dashboard',pos=(1,3),color='yellowgreen') 

  G.add_node('Datalayer',pos=(2,3),color='yellowgreen') 

  G.add_node('GraphQL',pos=(3,3),color='yellowgreen') 

   

  if val == ['none']: 

   G.add_node('POST',pos=(4,3),color='yellowgreen') 

   G.add_node('GET',pos=(4,4),color='yellowgreen') 

   G.add_node('CACHE',pos=(4,2),color='yellowgreen') 

  elif val == ['cache','post','get']: 

   G.add_node('POST',pos=(4,3),color='red') 

   G.add_node('GET',pos=(4,4),color='red') 

   G.add_node('CACHE',pos=(4,2),color='red') 

  elif val == ['cache','post']: 

   G.add_node('POST',pos=(4,3),color='red') 

   G.add_node('GET',pos=(4,4),color='yellowgreen') 

   G.add_node('CACHE',pos=(4,2),color='red') 

  elif val == ['cache']: 

   G.add_node('POST',pos=(4,3),color='yellowgreen') 
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   G.add_node('GET',pos=(4,4),color='yellowgreen') 

   G.add_node('CACHE',pos=(4,2),color='red') 

  elif val == ['post','get']: 

   G.add_node('POST',pos=(4,3),color='red') 

   G.add_node('GET',pos=(4,4),color='red') 

   G.add_node('CACHE',pos=(4,2),color='yellowgreen') 

  elif val == ['post']: 

   G.add_node('POST',pos=(4,3),color='red') 

   G.add_node('GET',pos=(4,4),color='yellowgreen') 

   G.add_node('CACHE',pos=(4,2),color='yellowgreen') 

  elif val == ['get']: 

   G.add_node('POST',pos=(4,3),color='yellowgreen') 

   G.add_node('GET',pos=(4,4),color='red') 

   G.add_node('CACHE',pos=(4,2),color='yellowgreen') 

  elif val == ['cache','get']: 

   G.add_node('POST',pos=(4,3),color='ywllowgreen') 

   G.add_node('GET',pos=(4,4),color='red') 

   G.add_node('CACHE',pos=(4,2),color='red') 

   

 

  G.add_edge('Dashboard','Datalayer') 

  G.add_edge('Datalayer','GraphQL') 

  G.add_edge('GraphQL','POST') 

  G.add_edge('GraphQL','GET') 

  G.add_edge('GraphQL','CACHE')    

  pos=nx.get_node_attributes(G,'pos') 

  red_nodes=[n for n,d in G.nodes(data=True) if d['color']=='red'] #graphql 

  yellowgreen_nodes=[n for n,d in G.nodes(data=True) if 

d['color']=='yellowgreen'] #cache 

 

  #draw respective color category nodes 

 

 nx.draw(G,pos,alpha=0.7,nodelist=yellowgreen_nodes,node_color='yellowgreen',

node_size=4500,node_shape='s') 

 

 nx.draw(G,pos,alpha=0.7,nodelist=red_nodes,node_color='red',node_size=4500,n

ode_shape='s') 

  nx.draw_networkx_labels(G,pos,font_color='b') 

  nx.draw_networkx_edges(G,pos, width=1,arrowsize=10) 

  plt.figure(figsize=(30, 20)) 

  plt.show(block=False) 

 

 

mapper(df_test, cachedf_test, postdf_test, getdf_test) 
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A.3 Algorithm for Information Module  

To display Summary of a transaction, request flow diagram for a given trace ID 

entered by the user 

 

#code to fetch information/summary for the input trace ID - option 4 
def GenerateListsforSingleTrace(SingleTraceInfoList): 
    tags = ('date','timestamp','traceId','http.status_code','http.host') 
    #includedtags = ('id','parentId','duration') 
    #for every transaction we need only certain fields like ID, parentID, duration for 
graph creation 
    #so removed some key fields from the inner dictionary 
    original_list=SingleTraceInfoList 
    new_list = [{k: v for k, v in d.items() if k not in tags} for d in original_list] 
    #overwrite dictionary value i.e value for trace ID 
    SingleTraceInfoList=new_list 
     
    #create a list of dictinaries which has info of individual spans [ ID1 : parent, 
duration, ID2: parent, duration..]  
    spans_list = [] 
    eachspan ={} 
    #Get total number of nodes involved in a transaction and their IDs 
    listofnodes=[] 
    listofnodes2 =[] 
    #Get Node & their duration given in json objects which included chil's duration as 
well 
    Id_Duration_given = {} 
 
    #Modified list ---looping through the list of spans within the transaction 
    for s in SingleTraceInfoList: 
        listofnodes.append(s['id']) 
        listofnodes.append(s['parentId'])              
        eachspan[s['id']]=s 
        Id_Duration_given[s['id']]=s['duration'] 
         
    spans_list.append(eachspan)  
     
    NumofNodes = len(list(set(listofnodes))) 
    #print("ID-duration:",Id_Duration_given) 
 
    #Iterate through spans_list 
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    #Create a dictionary for graph -- {parent1:[child1, child2], parent2: [child1]} 
    parentchild = {} 
    for spans in spans_list: 
        #looping through the list of spans within the transaction 
        for each in spans: 
            #print(each) #each is key-ID, spans[each]=values -duration,parentID 
            #print("Parent",spans[each]['parentId'],":","ID",each) 
            pkey = spans[each]['parentId'] 
            child = each 
            #if key/parent ID doesn't exist 
            if pkey in parentchild.keys():  
                #parent already present so appendd child values to the existing key in the 
dictionary") 
                parentchild[pkey].append(child) 
            else: 
                #new parent so add in the dictionary") 
                parentchild[pkey] = [child] 
    return NumofNodes,list(set(listofnodes)), spans_list, parentchild, 
Id_Duration_given 
    
 
#Get the individual node's duration because the json adds up the duration of child 
node & CPU to the parent node 
#This has considered only child nodes duration and has ignored the CPU/network 
duration or time gaps between the spans 
def GetIndividualNodesDuration(Id_Duration_given,parentchild): 
    #loop through ID-duration because it starts from graphql node and not the nodes 
before graphql/which calls graphQl 
    ID_individual_duration = {} 
    total_child_duration = 0 
    for idd in Id_Duration_given: 
        #print(idd,Id_Duration_given[idd]) 
        #check if the node has any child --i.e., check if it's a parent/key in parentchild 
dictionary 
        if idd in parentchild.keys(): 
            #check how many childs and calculate the sum of duration of all its childrens 
            #print(parentchild[idd]) 
            for c in parentchild[idd]: 
                total_child_duration += Id_Duration_given[c] 
 
            pduration = Id_Duration_given[idd] - total_child_duration 
            # add to dictionary 
            ID_individual_duration[idd]=pduration/1000 
 
        else: 
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            #Set the given duration as it's individual duration since it doesn't have any 
child 
            ID_individual_duration[idd]=Id_Duration_given[idd]/1000 
 
    return ID_individual_duration 
         
     
#call the respective functions for every transaction information 
 
def GetSingleTransactionInfo(single_transaction): 
    NumofNodes, listofnodes, spans_list, parentchild, Id_Duration_given = 
GenerateListsforSingleTrace(single_transaction) 
    ID_individual_duration = 
GetIndividualNodesDuration(Id_Duration_given,parentchild) 
 
    return NumofNodes, listofnodes, spans_list, parentchild, 
Id_Duration_given,ID_individual_duration 
 
 
def CreateCategoryBuckets(ID_individual_duration, spans_list): 
    #creating buckets to append timestamps of graphql, chache, post 
    # use spanlist, ID_individual_duration list to get the names&time for grouping into 
respective buckets 
    # ID_individual_duration is adictionary  
    tCACHE = [] 
    tPOST = [] 
    tGRAPHQL = [] 
    tGET = [] 
    tothercategory = [] 
    nodedict = {} 
    nodecolors = {} 
    for kid, v in ID_individual_duration.items(): 
        #print(kid,v) 
        for s in spans_list: 
            for i in s: 
                if (kid == i): 
                    #print("\n name of kid:",i,":",s[i]['name']) 
                          
                    if(s[i]['name'] == '/datalayer/graphql'): 
                        namepart = "GraphQL-" 
                        nodecolors[kid] = "red" 
                    elif(s[i]['name'].startswith('CACHE')): 
                        namepart = "CACHE-" 
                        nodecolors[kid] = "purple" 
                    elif(s[i]['name'].startswith('POST')): 
                        namepart = "POST-" 
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                        nodecolors[kid] = "blue" 
                    elif(s[i]['name'].startswith('GET')): 
                        namepart = "GET-" 
                        nodecolors[kid] = "green" 
                    else: 
                        namepart = "" 
                        nodecolors[kid] = "cyan" 
 
                     
                    nodedict[namepart+kid] = v 
                     
    #print("\n nodedict:", nodedict) 
    for k,v in nodedict.items(): 
        if(k.startswith('CACHE')): 
            tCACHE.append(v) 
        elif(k.startswith('POST')): 
            tPOST.append(v) 
        elif(k.startswith('GET')): 
            tGET.append(v) 
        elif(k.startswith('GraphQL')): 
            tGRAPHQL.append(v) 
        else: 
            tothercategory.append(v) 
     
    return nodedict, tCACHE, tPOST, tGET, tGRAPHQL, tothercategory,nodecolors 
 
     
def drawrequestflowgraph(NumofNodes,parentchild,nodecolors): 
    G = nx.DiGraph() 
    map(G.add_node, range(NumofNodes)) 
    
    #Add all nodes along with their color information.  
    #Datalayer-cyan, graphql-red, POST- Blue, CACHE-purple, GET- green 
    for k,v in nodecolors.items(): 
        G.add_node(k,color = v) 
    #Datalyer node is absent in nodecolors dictionary. hence mention black for the 
root node explicitly  
    for p in parentchild: 
        if(p not in nodecolors.keys()): 
            G.add_node(p,color='cyan') 
         
    #iterate through list to find edges between nodes (from parent to child) 
    for p in parentchild: 
        print(p) 
        for c in parentchild[p]: 
            G.add_edge(p,c) 
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    pos = nx.spring_layout(G)     
    pos2 = nx.kamada_kawai_layout(G) 
    #G.nodes is a dictionary with keys: node name and color 
    red_nodes=[n for n,d in G.nodes(data=True) if d['color']=='red'] #graphql 
    purple_nodes=[n for n,d in G.nodes(data=True) if d['color']=='purple'] #cache 
    blue_nodes=[n for n,d in G.nodes(data=True) if d['color']=='blue'] #POST 
    green_nodes=[n for n,d in G.nodes(data=True) if d['color']=='green'] #GET 
    cyan_nodes=[n for n,d in G.nodes(data=True) if d['color']=='cyan'] #Datalayer 
root 
     
 
    #draw respective color category nodes 
    nx.draw_networkx_nodes(G,pos,nodelist=red_nodes,node_color='red',alpha=0.7) 
    
nx.draw_networkx_nodes(G,pos,nodelist=purple_nodes,node_color='purple',alpha=
0.7) 
    
nx.draw_networkx_nodes(G,pos,nodelist=blue_nodes,node_color='blue',alpha=0.7) 
    
nx.draw_networkx_nodes(G,pos,nodelist=green_nodes,node_color='green',alpha=0.7
) 
    
nx.draw_networkx_nodes(G,pos,nodelist=cyan_nodes,node_color='cyan',alpha=0.7)     
        
    nx.draw_networkx_edges(G,pos) 
    #nx.draw_networkx_labels(G,pos,font_color='w') 
    plt.figure(figsize=(25, 15)) 
    plt.show(block=False) 
     
     #draw respective color category nodes 
    nx.draw_networkx_nodes(G,pos2,nodelist=red_nodes,node_color='red',alpha=0.7) 
    
nx.draw_networkx_nodes(G,pos2,nodelist=purple_nodes,node_color='purple',alpha
=0.7)     
    
nx.draw_networkx_nodes(G,pos2,nodelist=blue_nodes,node_color='blue',alpha=0.7) 
    
nx.draw_networkx_nodes(G,pos2,nodelist=green_nodes,node_color='green',alpha=0.
7) 
    
nx.draw_networkx_nodes(G,pos2,nodelist=cyan_nodes,node_color='cyan',alpha=0.7
) 
        
    nx.draw_networkx_edges(G,pos2) 
    #nx.draw_networkx_labels(G,pos,font_color='w') 
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    plt.figure(figsize=(25, 15)) 
    plt.show(block=False) 
 
 
def lookupfortraceID(inputTraceID): 
    traces = open("AllDate_traceIDs.pickle","rb") 
    #traces = open("/home/priyanka/Date_traceIDs.pickle","rb") 
    datetrace = pickle.load(traces) 
    #s="9e82268b99b44ebc92d117ae73481fa8" 
    checkdate = "" 
    dictdata = {} 
    listofdictdata = [] 
    for k,v in datetrace.items(): 
        #print(k,":",v) 
        for i in range(len(v)): 
            if(v[i]==inputTraceID): 
                print(inputTraceID," present in", k) 
                checkdate = k 
    return checkdate 
 
def lookupfortraceIDInfo(inputTraceID,checkdate): 
    #dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/" 
    tags = ('traceId','name', 'id', 'parentId','date','timestamp', 'duration','tags') 
    newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp', 
'duration','http.host','http.status_code') 
 
 
    #files = os.listdir(dirpath) 
    trinfocnt = {} 
    tinfc = [] 
    trinfocount = [] 
    #trfilename = "InfotrIDs" + checkdate + ".pickle" 
 
    pickle_trinf = open("InfotrIDs2019-06-27 13 10 00.pickle","rb") 
    trinfo = pickle.load(pickle_trinf) 
    for t in trinfo: 
        if(t == inputTraceID): 
            #t is key trace ID, trinfo list 
            #for every transaction we need only certain fields like ID, parentID, duration 
for graph creation 
            #so removed some key fields from the inner dictionary 
            original_list=trinfo[t] 
            new_list = [{k: v for k, v in d.items() if k in tags} for d in original_list] 
            for d in new_list: 
                for tg in tags: 
                    if tg not in d.keys(): 
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                        d[tg] = "" 
     
            for d in new_list: 
                if 'tags' in d.keys(): 
                    if ('http.host') in d['tags'].keys(): 
                        d['http.host']= d['tags']['http.host'] 
                    else: 
                        d['http.host']= "" 
                    if ('http.status_code') in d['tags'].keys(): 
                        d['http.status_code']= d['tags']['http.status_code'] 
                    else: 
                        d['http.status_code']= "" 
     
            new_list = [{k: v for k, v in d.items() if k in newtags} for d in new_list] 
     
            #overwrite dictionary value i.e value for trace ID 
            trinfo[t]=new_list 
            singletraceinfo = trinfo[t] 
            NumofNodes, listofnodes, spans_list, parentchild, 
Id_Duration_given,ID_individual_duration = 
GetSingleTransactionInfo(singletraceinfo) 
            nodedict, tcache, tpost, tget, tgraphql, tothercategory,nodecolors = 
CreateCategoryBuckets(ID_individual_duration, spans_list) 
                                        
    return original_list, NumofNodes, parentchild, nodedict,nodecolors 
                      
 
topt = input("Choose the below options: \n1.Get Trace Information \n2.Go Back\n") 
    if topt == "1": 
        traceid = input("Enter trace ID:\n") 
        checkdate = lookupfortraceID(traceid) 
        if(checkdate == ""): 
            print("Trace ID not found. Please enter a valid trace ID") 
        else: 
            original_list, NumofNodes, parentchild, nodedict,nodecolors = 
lookupfortraceIDInfo(traceid,checkdate) 
            while True: 
                traceopt = input("Choose the below options: \n1.Trace Graph \n2.Trace 
JSON \n3.Summary of Transaction \n4. Go Back \n") 
                if traceopt == "1": 
                    print("Request Flow Graph for the entered trace ID:",traceid,"\n") 
                    print("\nParent-Child:", parentchild) 
                    drawrequestflowgraph(NumofNodes,parentchild,nodecolors) 
                elif traceopt == "2": 
                    print("JSON for Trace ID:",traceid,"\n",original_list) 
                elif traceopt == "3": 
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                    print("\n***************************Summary of every single 
transaction****************************************") 
                    print("\nTransaction ID:",traceid,"Number of Nodes in 
transaction:",NumofNodes) 
                    print("\nNodes and Time Taken by Nodes (in ms):\n",nodedict) 
                    print("\nParent-Child:", parentchild) 
                elif traceopt == "4": 
                    break; 
                else: 
                    print("Please enter a valid option!") 
    elif topt == "2": 
        break; 
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