
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-17-2020 3:00 PM

Automated Anomaly Detection and Localization System for a Automated Anomaly Detection and Localization System for a

Microservices Based Cloud System Microservices Based Cloud System

Priyanka Prakash Naikade, The University of Western Ontario

Supervisor: Madhavji, Nazim H., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Priyanka Prakash Naikade 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Other Computer Sciences Commons, and

the Software Engineering Commons

Recommended Citation Recommended Citation
Naikade, Priyanka Prakash, "Automated Anomaly Detection and Localization System for a Microservices
Based Cloud System" (2020). Electronic Thesis and Dissertation Repository. 7109.
https://ir.lib.uwo.ca/etd/7109

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7109?utm_source=ir.lib.uwo.ca%2Fetd%2F7109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Context: With an increasing number of applications running on a microservices-based cloud

system (such as AWS, GCP, IBM Cloud), it is challenging for the cloud providers to offer

uninterrupted services with guaranteed Quality of Service (QoS) factors. Problem Statement:

Existing monitoring frameworks often do not detect critical defects among a large volume of issues

generated, thus affecting recovery response times and usage of maintenance human resource. Also,

manually tracing the root causes of the issues requires a significant amount of time. Objective:

The objective of this work is to: (i) detect performance anomalies, in real-time, through monitoring

KPIs (Key Performance Indicators) using distributed tracing events, and (ii) identify their root

causes. Proposed Solution: This thesis proposes an automated prediction-based anomaly

detection and localization system, capable of detecting performance anomalies of a microservice

using machine learning techniques, and determine their root-causes using a localization process.

Novelty: The originality of this work lies in the detection process that uses a novel ensemble of a

time-series forecasting model and three different unsupervised learning techniques that avoid

defining static error thresholds to detect an anomaly and, instead follow a dynamic approach.

Experimental Results: The proposed detection system was experimented using different variants

of ensembles, evaluated on a real-world production dataset out of which two proposed ensembles

outperformed the existing static rule-based approach with average F1-scores of 86% and 84%,

average precision scores of 82% and 77% and average recall scores of 91% and 93% respectively

across 6 experiments. The proposed detection ensembles were also evaluated on the Numenta

Anomaly Benchmark (NAB) datasets and results show that the proposed method performs better

than the Numenta’s standard HTM model score. Research Methodology: We adopted an agile

methodology to conduct our research in an incremental and iterative fashion. Conclusion: The two

proposed ensembles for anomaly detection perform better than the existing static rule-based

approach.

Keywords

Cloud Computing, Microservices, Monitoring, Anomaly Detection, Distributed Tracing,

Performance Anomalies, Unsupervised Machine learning, Time series, Localization.

iii

Summary for Lay Audience

The stability of the cloud ecosystem is at stake with the continual growth and expansion of cloud

adoption. For example, sluggish access to data, applications, and web pages frustrate the users and

employees alike, and some performance problems can even cause application crashes and data

loss. Existing monitoring frameworks often do not detect serious issues among a large volume of

issues generated during the cloud system usage. This thus affects the recovery response times and

effective use of maintenance human resource. We have developed an automated system to detect

serious performance issues and their root causes that aimed to aid the maintenance team in fixing

them.

The proposed detection system uses a novel combination of two algorithms to detect anomalies

and it was evaluated on a real-world dataset from a production environment. The results show

that two novel detection ensembles perform better than the existing static error thresholding

approach. We also evaluated the proposed detection methods on the independent datasets with

favourable outcomes.

iv

Acknowledgments

First and foremost, I would like to express my sincerest gratitude to my supervisor, Dr. Nazim H.

Madhavji, for giving me the opportunity to do master's program and research under him; for

providing me with continuous guidance and motivation; and most importantly, for having faith in

me throughout the ongoing challenges of research. He continually offered his support, time, and

knowledge throughout these past two years, and always encouraged me to test my abilities, to keep

striving for more. Above all, he is a very kind and understanding person. I’m thankful to the faculty

and staff of the Department of Computer Science for providing all the support and facilities

provided during my masters.

I am grateful to IBM (International Business Machines Corporation) for allowing me to do part of

my research on their premises through an internship program. My sincere thanks to John

Steinbacher and Jonathan Bennett for being an excellent supervising mentor at IBM who not only

guided me throughout the internship but also in my master’s research. Their appreciation for even

the smallest work or updates motivated me to continue doing my work.

I would also like to extend my heartfelt appreciation to my wonderful research team for helping

me throughout my research: Yasmen Wahba and Ahmed Ibrahim. As challenging as research can

be at times, my team made it fun and boosted me with confidence whenever I felt low. I would

also like to thank my fellow lab mates Ibtehal Noorwali, Elham Rahmani, Darlan Arruda, and

others, who supported me when I was a fresher. Even with minimal interactions, watching my

fellow mates strive indirectly taught me what perseverance and hard work can lead to; their

achievements and patience inspired me a lot. Also, I would like to thank my family and friends for

always being there to pat my back during my most stressful moments, for their support and

encouragement throughout my master’s program and life in general.

Finally, I would like to thank all the researchers out there for their incredible work and giving the

world a hope that nothing is impossible if you dare to put forward your feet and proceed with

transforming ideas into reality and not just let it stay in your mind.

v

Table of Contents

Abstract .. ii

Summary for Lay Audience .. iii

Acknowledgments .. iv

Table of Contents .. v

List of Tables ... x

List of Figures .. xii

Glossary of Abbreviations .. xvii

Glossary of Terms .. xviii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Context ... 1

1.2 Research Motivation and Problem statement .. 2

1.3 Research Question .. 4

1.4 Solution Approach .. 4

1.5 Impact of the Proposed System ... 5

1.6 Novelty ... 6

1.7 Thesis Contribution .. 6

1.8 Thesis structure ... 7

Chapter 2 ... 8

2 Background ... 8

2.1 Microservices ... 8

2.2 Anomaly Detection .. 9

2.2.1 Challenges in Anomaly Detection .. 9

2.2.2 Types of Anomalies ... 10

vi

2.2.3 Machine Learning for Anomaly Detection ... 11

2.2.4 Metrics to Evaluate Anomaly Detection ... 12

2.3 Unsupervised Machine Learning Algorithms .. 14

2.3.1 K-Nearest Neighbor .. 14

2.3.2 Local Outlier Factor ... 15

2.3.3 Isolation Forest .. 17

2.3.4 One-Class SVM ... 18

2.3.5 Locally Selective Combination of Parallel Outlier Ensembles (LSCP)19

2.4 Neural Network ... 21

2.4.1 Feedforward Neural Network .. 22

2.4.2 Learning Process of Neural Network .. 23

2.4.3 Limitations of Basic Neural Networks for Sequential Problems 25

2.4.4 Recurrent Neural Network .. 25

2.4.5 Limitations of RNN ... 26

2.4.6 Long-Short Term Memory ... 28

Chapter 3 ... 32

3 Literature Review... 32

3.1 Anomaly detection in a cloud system or general computing domain 32

3.1.1 Traditional Statistical Detection Approaches 32

3.1.2 Machine Learning-Based Detection Approaches 33

3.2 Analysis and Research Gap.. 37

Chapter 4 ... 41

4 Problem Analysis of Cloud System ... 41

4.1 Cloud System ... 41

4.1.1 GraphQL ... 43

vii

4.1.2 Distributed Tracing .. 44

4.2 Concerns with Existing Monitoring .. 47

4.3 Problem Analysis of Monitoring Microservices System 47

Chapter 5 ... 51

5 Research Methodology... 51

5.1 Solution Strategy ... 51

5.2 System Development Methodology ... 55

Chapter 6 ... 59

6 Proposed Solution: Anomaly Detection and Localization System 59

6.1 Generic System Design of the Proposed System .. 59

6.2 Detailed Layout of Proposed System... 61

6.2.1 Raw Data.. 63

6.2.2 Data Extraction Module ... 64

6.2.3 Data Pre-Processing Module .. 67

6.2.4 Anomaly Detector Module ... 69

6.2.5 Localization Module ... 73

6.2.6 Information Module.. 75

Chapter 7 ... 77

7 Experiments and Results ... 77

7.1 Program Libraries .. 77

7.2 Exploratory Data Analysis ... 79

7.3 Experiments on Detection Module .. 82

7.3.1 Experiment 1: Univariate LSTM + Unsupervised Ensemble 82

7.3.2 Experiment 2: Multivariate LSTM + Unsupervised Ensemble 94

7.4 Experiments on the Localization Module ... 98

viii

7.5 Information Module.. 102

7.6 Comparison with Related Work .. 105

7.6.1 Experiment on Numenta Anomaly Benchmark (NAB) dataset 1 108

7.6.2 Experiment on Numenta Anomaly Benchmark (NAB) dataset 2 111

7.7 System development and Testing .. 113

7.8 Summary .. 114

Chapter 8 ... 116

8 Discussion, Conclusion and Future Work ... 116

8.1 Discussion... 116

8.1.1 Impact of our proposed system .. 116

8.1.2 Challenges .. 117

8.1.3 Alternate analysis/aspects for consideration 118

8.2 Threats to validity ... 119

8.3 Conclusion ... 119

8.4 Future Work .. 121

References .. 123

Appendix A .. 131

A.1 Data Extraction Algorithms ... 131

A.1.1 Algorithm to extract Trace IDs from Elasticsearch system 131

A.1.2 Algorithm to get trace information for the collected Trace IDs 133

A.1.3 Algorithm to get request summary information 136

A.1.4 Algorithm to get Individual summary information 138

A.1.5 Algorithm to get all dates of Traces .. 140

A.2 Localization Module – Mapper Function.. 141

A.3 Algorithm for Information Module ... 144

ix

Curriculum Vitae .. 152

x

List of Tables

Table 5.1: Distributed tracing fields of microservices .. 53

Table 5.2: Reasoning for 5-minute interval decision .. 53

Table 7.1: List of Libraries used ... 79

Table 7.2: LSTM Model details for lookback 12 and prediction length 1 83

Table 7.3: Experiment – 1.1 Results: Confusion Matrix of all the tested approaches 88

Table 7.4: Experiment-1.1 Results: Using Evaluation Metrics .. 88

Table 7.5: LSTM Model details for Multistep univariate data ... 91

Table 7.6: Experiment - 1.2 Results: Confusion Matrix of all models for all the experiments 92

Table 7.7: Experiment - 1.2.1 Results: Using Evaluation Metrics ... 93

Table 7.8: Experiment - 1.2.2 Results: Using Evaluation Metrics ... 93

Table 7.9: Experiment - 1.2.3 Results: Using Evaluation Metrics ... 94

Table 7.10: LSTM Model details for Single-Step Multivariate data. ... 95

Table 7.11: Experiment- 2.1 Results: Confusion Matrix of all the tested approaches for anomaly

detection on the test data ... 96

Table 7.12: Experiment - 2.1 Results: Using Evaluation Metrics .. 96

Table 7.13: LSTM Model details for Muti-Step Multivariate data. ... 97

Table 7.14: Experiment - 2.2 Results: Confusion Matrix of all the tested approaches for anomaly

detection on the test data ... 97

Table 7.15: Experiment- 2.2 Results: Using Evaluation Metrics ... 98

xi

Table 7.16: List of existing approaches discussed in Chapter 3 ... 107

Table 7.17: Summary of results across all experiments for the top 3 ensemble methods 107

Table 7.18: Average of the metric scores across all the Univariate experiments 108

Table 7.19: Results for NAB ‘ec2 CPU utilization’ dataset. .. 110

Table 7.20: Results for NAB ‘elb_request_count_8c0756’ dataset .. 112

xii

List of Figures

Figure 2.1: Machine Learning Process ... 11

Figure 2.2: K-Distance for outlier (the red point) is larger than normal points (maroon point).

Image adapted from [99]. .. 15

Figure 2.3: Reachability Distance determines which neighbors of a given point ‘p’ also consider

that point ‘p’ as its neighbor. The outlier (red point) is not contained in K-neighbourhood by its

neighbor (aqua-colored dots). Image Adapted from [99]. .. 16

Figure 2.4: a) Sampling (left). b) A Split value selected to form a tree (right). Image Adapted

from [101]. .. 17

Figure 2.5: Data points at the lower right corner are easier to isolate (right). Image Adapted from

[101]. ... 18

Figure 2.6: Hyperplanes for linearly separable data and non-linear data 18

Figure 2.7: Functioning of a neuron. A simple network consists of one output neuron (Perceptron

Model) where inputs are directly fed to the neuron. Image adapted from [79]. 22

Figure 2.8: Multi-layer Perceptron ... 23

Figure 2.9: Training of Neural Network using Error back-propagation 24

Figure 2.10: Recurrent Neural Network with Looping mechanism ... 25

Figure 2.11: Unrolled Recurrent Neural Network. Image Adapted from [85] 26

Figure 2.12: Training in RNN through back-propagation. Image adapted from [87]. 27

Figure 2.13: An LSTM network. Image adapted from [86]. .. 28

Figure 2.14: Forget Gate of LSTM. Image adapted from [86]. .. 29

Figure 2.15: Input Gate of LSTM. Image adapted from [86]. .. 30

xiii

Figure 2.16: Output Gate of LSTM. Image adapted from [86]. ... 31

Figure 4.1: Flow Diagram depicting the routing of requests through different services 41

Figure 4.2: Data gateway diagram .. 42

Figure 4.3: For multiple cloud-hosted applications .. 42

Figure 4.4: Routing of Requests from App Services till GraphQL Layer 43

Figure 4.5: With REST, 3 requests are made to fetch data from 3 different endpoints. Also, it

over fetches data with additional information. Image Adapted from [90]. 44

Figure 4.6: With GraphQL, only 1 request is sent to the GraphQL server to fetch the required

data. Image Adapted from [90]. .. 44

Figure 4.7: Data flow representation of a trace. Image adapted from [67]. 45

Figure 4.8: Directed Acyclic graph representation of a trace. Each component is labeled with a

Span ID and its corresponding Parent ID. .. 46

Figure 4.9: Multiple Clients or Applications triggers requests to multiple Microservices 48

Figure 6.1: Generalized layout of the proposed detection system .. 60

Figure 6.2: Context Diagram of the Proposed System ... 60

Figure 6.3: Detailed layout of the proposed anomaly detection and localization system 62

Figure 6.4: Trace data stored in the ElasticSearch cluster displayed using the Kibana tool. Under

index: “Cloud-Datalayer” or “datalayer*”, a filter is applied for name: “/datalayer/graphql” to

check the distinct transactions or requests to GraphQL Layer. .. 63

Figure 6.5: Displaying the tracing information for one trace ID or transaction. 64

Figure 6.6: Email Alert after fetching trace information data from ES. 65

Figure 6.7: Data loaded in a Dataframe .. 67

xiv

Figure 6.8: Average Response Time calculated and Status codes split into series are loaded in the

data frame.. 67

Figure 6.9: New features engineered .. 68

Figure 6.10: Average response time (in ms) of the GraphQL component plotted against the x-

axis timestamp .. 70

Figure 6.11: Mahalanobis distance values (y-axis) of error points from the gaussian distribution

plotted against timestamp (x-axis) .. 72

Figure 6.12: The bottom plot shows the Actual Average Response Time values of GraphQL. The

top plot shows the Mahalanobis distance values of prediction error points from its distribution 73

Figure 6.13: Tracing events of requests propagating from component A to C............................. 75

Figure 6.14: Spring layout (top plot) and Kamada Kawai layout (bottom plot) 76

Figure 7.1: a) Total number of Requests for every minute interval captured for over a month (top

plot), b) Total Duration taken by GraphQL service to process those requests (middle plot), c)

Average Response time of GraphQL service for the total number of requests and its processing

time (bottom plot). .. 80

Figure 7.2: a) Total Number of Requests in a day (top plot), b) Total Number of Requests for a

day of the week (leftmost middle plot), c) Total Number of Requests for a time of the day

(rightmost middle plot), d) Total Number of Requests for an hour of the week (bottom plot) 81

Figure 7.3: LSTM Training and Prediction. The model predicted average response time values

for the training set (in blue) and the testing set (in red) is plotted overlapping on top of actual or

expected average response time values (in black). ... 84

Figure 7.4: The bottom plot shows the Actual Average Response Time values (testing set). The

top plot shows the Mahalanobis distance values of prediction error points from its distribution. 84

Figure 7.5: Anomalies detected using a threshold of Mahalanobis distance > 10. 86

xv

Figure 7.6: Anomalies detected using LSTM + LSCP-4 ensemble approach 86

Figure 7.7: Anomalies detected using LSTM + One-Class SVM ensemble approach. 87

Figure 7.8: Average Response Time and Total number of Requests for GraphQL from 16th - 18th

December 2019. .. 90

Figure 7.9: Anomalies Detected by the ‘LSTM + LSCP-4' method for data from 16th - 18th

December 2019. .. 90

Figure 7.10: Experiment 1.2.1 Detection results for ‘LSTM+LSCP-4’ensemble 92

Figure 7.11: Anomalies for GraphQL’s average response time data detected by Detector Module

... 99

Figure 7.12: Anomalies for POST average response time data detected by detector 1 100

Figure 7.13: Anomalies for GET average response time data detected by detector 2 100

Figure 7.14: Anomalies for CACHE average response time data detected by detector 3 100

Figure 7.15: Mapper generated report which consists of details of GraphQL anomalous interval,

i.e., the time interval at which anomaly occurred along with DiGraphs representation by

highlighting the root-cause or causal components in red color. ... 101

Figure 7.16: Mapper results where the root-cause of GraphQL anomaly is unknown (left). 102

Figure 7.17: Trace Graph option generates DAG for the entered transaction ID. 104

Figure 7.18: Output for Summary of Trace and Trace JSON options of Information Module. . 105

Figure 7.19: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB ‘ec2 CPU

utilization’ dataset. .. 109

Figure 7.20: Detection results for ‘LSTM + Isolation Forest’ on NAB ‘ec2 CPU utilization’

dataset. .. 109

xvi

Figure 7.21: Detection results for Numenta’s HTM model on NAB ‘ec2 CPU utilization’ dataset.

... 110

Figure 7.22: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB

‘elb_request_count_8c0756’ dataset ... 111

Figure 7.23: Detection results for ‘LSTM + Isolation forest’ hybrid method on NAB

‘elb_request_count_8c0756’ dataset. .. 112

Figure 7.24: Detection results for Numenta’s HTM model on NAB ‘elb_request_count_8c0756’

dataset. .. 112

xvii

Glossary of Abbreviations

AD Anomaly Detection

ML Machine Learning

KNN K-Nearest Neighbor

LOF Local Outlier Factor

IF Isolation Forest

LSCP Locally Selective Combination of Parallel Outlier Ensembles

LSTM Long Short-Term Memory

OC-SVM One-Class Support Vector Machine

SLR Systematic Literature Review

TP True Positive

TN True Negative

FP False Positive

FN False Negative

JSON JavaScript Object Notation

ES ElasticSearch

xviii

Glossary of Terms

Microservices Microservices is a cloud-native architectural approach to

develop software applications where a single application is

composed of many loosely coupled and independently

deployable smaller modules/components.

Distributed Tracing Distributed Tracing is a method of understanding the flow of

data as it propagates through the components of applications

True Positives True Positives (TP) are the number of instances that are

abnormal or anomalies (such as high response time of a

system) and the model also predicts it as abnormal.

True Negatives True Negatives (TN) are the number of instances that are

normal points and the model also predicts it as normal.

False Positives False Positives (FP) are the instances that are predicted as

abnormal when they are normal data points.

False Negatives False Negatives (FN) are the number of instances that are

predicted as normal by the models but are abnormal data

points.

Precision Precision is the proportion of data points that were correctly

predicted as anomalies over the total number of data points

that were predicted as either anomaly or normal

Recall Recall the proportion of data points that were correctly

predicted as anomalies over the total number of anomaly

points

F1-Score F1-Score measure the harmonic mean of precision and recall

KNN a density-based anomaly detection technique that assumes

that the normal data exists around a dense neighborhood

whereas abnormal data lies far away.

LOF Local Outlier Factor (LOF) is an unsupervised density-based

algorithm that relies on k-nearest neighbors and assumes that

xix

the density around an outlier will be significantly different

than the density around its neighbors.

LSCP LSCP is a framework used for the detection of outliers

using an ensemble of unsupervised outlier ensembles

IF Isolation Forest (IF) is an unsupervised learning technique

that uses the concept of isolation and assumes that an

anomaly can be easily separated in a few steps while the

normal points which closer could take more steps to be

separated.

OC-SVM One Class SVM is an unsupervised learning technique based

on the working of the Support Vector Machine (SVM), a

supervised classifier that tries to find an optimal hyperplane

having a maximum margin to separate two classes of

data points.

LSTM LSTMs are a special kind of RNNs that is capable of

handling long-term dependencies in the sequential data.

Gradient Descent It is an optimization algorithm that is used to find the values

of parameters (weights, bias) of a function (f) that minimizes

a cost function or loss.

Learning rate The learning rate controls the size of steps or the amount of

the weight adjusted with respect to the loss gradient.

Mahalanobis Distance is a measure of the distance between a point P and a

distribution D

1

Chapter 1

1 Introduction

This thesis focuses on the problem of anomaly detection and localization (i.e., determining

the faulty component) for a microservices-based cloud environment. In this chapter, we

describe the context of our topic followed by the issues associated with the Enterprise

Cloud Applications and Cloud monitoring that motivated us to investigate this topic. We

then overview the solution approach, its impact, novelty, contribution, and thesis outline.

1.1 Context

Cloud computing has come a long way since its inception in the 1950s [110]. It refers to

the delivery of services such as servers, storage, databases, networking, software, etc., over

the internet. In short, it means providing IT infrastructure to companies, firms, or individual

end-users. Based on the different requirements of the companies or customers, the cloud

offers three different types of services models: Software as a Service (SaaS), Platform as a

Service (PaaS), and Infrastructure as a Service (IaaS) [104]. Enterprises and industries

across various sectors have been using cloud services to meet their computing demands.

Until recently, the prevalence of enterprise cloud computing was attributed to factors like

low cost, safe environment, high capacity, etc. However, with the advancement of

technologies such as the Internet of Things (IoT), Artificial Intelligence (AI),

Blockchain,etc., there has been a tremendous increase in the growth of the cloud market

[105]. A study conducted by International Data Group (IDG) shows that 73% percent of

enterprises have at least one application or a portion of their infrastructure on the cloud.

The global cloud market is expected to cross $600 billion by 2024 [7].

There has been an increasing demand from users and a rise in new architectural styles since

the time cloud computing has taken the front stage across most of the IT infrastructure.

Applications are required to be highly scalable and available on the cloud. In the past, most

of the organizations adopted the monolithic architectural style, a traditional way of building

applications, where individual components are combined into a single indivisible unit

2

which means all the functions are managed and served in one place. It comprises of client-

side user interfaces, server-side application, and a database, where the server-side monolith

application executes logic, handles HTTP requests, retrieves/updates information in the

underlying databases. Hence, even smaller modifications would consume a considerable

amount of time and rework in building and deploying the new version since any code

change affects the whole system thus, making the development process longer [8].

Businesses require frequent updates to the application which costs time and resources for

the organization [9]. The components cannot be scaled independently and since they are

tightly coupled it is difficult to change the language, framework, or technology. The

hindrances are not feasible for modern-day enterprises that are trying to keep pace with

technological advancements happening now and then. Hence, in order to achieve agility,

better scalability, speed, and reliability of applications, the modern-day enterprises are

migrating to Microservices architecture [10,11,20].

According to a survey [12] by Nginx, Microservices are entering mainstream projects.

About 70% of the organizations are either using or investigating microservices amongst

which 29% of the businesses are using it in production, 16% are using it in development

environments and 24% are evaluating them. Tech giants like Netflix, Amazon, e-Bay,

Uber, and other small to medium enterprises have adopted microservices [17].

1.2 Research Motivation and Problem statement

Though microservices have several advantages, it becomes complex in terms of its

management and monitoring due to its nature of the distribution. Maintainability is as

crucial as the development of enterprise cloud applications. Firstly, with several enterprises

hosting their applications on the cloud, the stability of the cloud ecosystem is at stake. The

existing monitoring framework cannot handle and process such a huge volume of data

collected from various applications or cloud systems. On the other hand, with the cloud-

native microservices architecture, the more complex the software system gets, the harder

it becomes to analyze and troubleshoot problems. Monitoring the health of the

microservices-based cloud is essential in order to prevent the failure or degradation of the

system. Occurrences of performance problems such as degraded performance (slow page

response) and service downtimes (unreachable service endpoints) have become a norm

3

rather than an exception in a complex environment [15]. These degraded performances are

an indication of possible future failures.

Performance issues have had a poor impact on revenues in the past. As per a survey

conducted by the Aberdeen group, as additional one-second delay in page response can

reduce page hits, user satisfaction, and sales by 11%, 16%, and 7% respectively. In 2010,

Amazon had experienced 3-hour intermittent performance issues which resulted in a loss

of $1.75m in revenue per hour [16]. It is to be understood that the magnitude of the impact

of poor performance on revenue is proportionate to the operations of the organization. But

it goes on to show that the impact can be quite significant in certain contexts.

Performance problems have a direct impact on the Quality of Service (QoS) factors, such

as Reliability, Availability, Security, and others [16], as well. Prolonged performance

degradation can affect the reliability and loyalty ratings of the services from the users. In

March 2019, Facebook and Instagram suffered partial service outages which impacted

consumers as well as the developers building the apps on the world’s largest social

network. In June 2019, multiple issues regarding Slack's degraded performance across all

its services such as login, messaging, posting files, calls, and integrations with other apps

were reported [18]. In 2019, Google Cloud Platform (GCP) experienced major issues with

services such as cloud storage and dataflow, which affected multiple products, with major

APIs getting affected globally. In July 2019, many iCloud users across the world received

a “Service Unavailable – DNS failure” message for several hours. Though the issue was

resolved, users still failed to use functions such as Find My iPhone [19].

Apart from the adverse impact on revenues and user satisfaction, developers and operations

teams spend a significant number of hours in diagnosing the root-cause and fixing post

disruptions of the services. With various performance issues being generated, several

anomalies/defects go undetected affecting the system adversely by causing

failures/outages. Secondly, the Operations team or the Site Reliability Engineers (SREs)

are uncertain as to which defects/issues are to be resolved first and are required to spend a

lot of time analyzing them. Thirdly, it is difficult to trace the root cause of the issues once

identified/occurred requiring a huge amount of time and manual effort.

4

Hence, there is a dire need to proactively identify, prioritize and fix the issues in order to

maintain the health of the cloud system and thereby achieve the IT operational excellence

and avoid the Service Level Agreements (SLA) violations. Considering the scale and

dynamism of microservices-based cloud system, there is a need to build an automated

monitoring framework, generic to all services, which would be capable of detecting the

performance issues/anomalies by exploiting the services’ behaviour over time, identifying

its root-cause and reporting them to the operations team.

1.3 Research Question

Information from the above section leads to the following important questions:

RQ1: How do we design an automated monitoring framework or anomaly detection system

given the scale and dynamic nature of microservices?

RQ2: How to locate the root cause of the anomalies using the metric data from

microservices?

RQ3: How to evaluate or validate the accuracy of the models given the lack of labeled

data?

These questions are explored in the core chapters of the thesis as are their responses

(Chapter 5, Chapter 6, and Chapter 7).

1.4 Solution Approach

Our research emphasizes on easing the monitoring process of a microservices-based cloud

system by developing an automated prediction-based anomaly detection and localization

system. The system performs two critical functions:

(i) It detects performance anomalies using a time-series deep learning model and

an ensemble of unsupervised learning techniques. It can handle a huge volume

of data generated from each of the individual microservices and it avoids the

burden of defining static thresholds used in existing monitoring framework and

other literature works as discussed in Chapters 3 and 4.

5

(ii) It identifies the casual components of the detected anomalies, which would

enable the DevOps or IT operations team to fix them so as to maintain a healthy

cloud environment.

For this purpose, trace events were collected to understand the communication or flow of

transactions across microservices in the third-party cloud system. A high-level system was

designed, based on initial analysis. Iteratively and incrementally, a prototype solution was

created that automated anomaly detection and component localization. The system consists

of five modules - Data Extraction Module, Data Pre-Processing Module, Detection

Module, Localization Module, and Information Module, discussed in detail in Chapter 6.

We used a time-series deep learning model and unsupervised machine learning techniques

overviewed in Chapter 2 to perform anomaly detection. In addition, we conducted

experiments with the resultant system using a dataset from an industry-based

microservices-based cloud system. We also experimented with the proposed detection

method on a publicly available benchmark dataset.

1.5 Impact of the Proposed System

The proposed solution: (i) detects performance anomalies of a microservice through

monitoring the performance metric data extracted from the tracing events using a novel

approach of a prediction-based anomaly detection technique which combines a time-series

model and unsupervised learning algorithms - LSCP, Isolation forest, and One-Class SVM,

and (ii) locates the causal components for the detected anomalies. By using the proposed

combination of LSTM and an unsupervised learning algorithm, there is no need to

explicitly set a static threshold to score the anomalies. Instead, it uses a dynamic approach

by making use of an unsupervised outlier detection technique such as LSCP or Isolation

Forest, thus making the system entirely automated, unlike the static rule-based thresholding

approaches which might require updates to the explicit threshold values when the data or

load varies over time (discussed in Chapter 3 and Section 4.3).

6

The output of the proposed system is an anomaly report that consists of the time-interval

of the occurrence of an anomaly and a directed acyclic graph of request flow highlighting

its causal component.

In a microservices-based cloud environment, multiple instances of all the microservices

need to be monitored at once. This requires checking the logs of multiple services and track

one user request through multiple systems. The proposed system is capable to do and eases

the monitoring process compared to the existing framework which might not be reliable.

Also, in a microservices-based cloud system with numerous microservices and its multiple

instances, the proposed system is helpful to locate the root cause of an anomaly. Thus, it

overcomes the burden of SREs in manually analyzing and tracking the root-cause or faulty

microservice/component.

1.6 Novelty

The novelty of the system lies in the detection module where the anomalies are detected

by using an ensemble of a time-series deep learning model, LSTM, and unsupervised

learning algorithms such as (i) LSCP, (ii) Isolation forest, and (iii) Once-Class SVM. The

idea is to forecast the values of performance metrics (for example, response time) using the

time-series forecasting model and then use an unsupervised learning algorithm to detect

the anomalies. This avoids the burden of defining static thresholds used in the existing

monitoring framework.

The results show that the two novel detection ensembles (“LSTM+LSCP” and

“LSTM+Isolation forest”) perform better than the existing static error thresholding

method, resulting in average F1-scores of 86% and 84%, average precision scores of 82%

and 77%, and average recall scores of 91% and 93% respectively.

1.7 Thesis Contribution

The work involves several contributions which are presented in this section. The thesis

contribution as a whole is on the system for anomaly detection and localization for a

microservices-based cloud system and the main contribution is a novel ensemble technique

used for detecting anomalies in the detection module of the proposed system. This thesis

7

sheds light on microservices, propagation of requests through microservices in the cloud

system, provides insights on distributed tracing events of microservices. The work explores

how the performance metric data could be extracted from trace events along with relevant

features that could be used for the detection and localization process which is one of the

main contributions. This thesis explains how neural networks such as LSTMs (Long Short-

Term Memory) and various unsupervised outlier detection algorithms are used as general-

purpose anomaly detectors. This work integrates the time series forecasting deep learning

model with unsupervised outlier detection methods to create an ensemble anomaly

detection system which is the main contribution. It involves the evaluation of 8 different

integrated methods: four different ensembles of LSTM with LSCP, one hybrid of LSTM

with Isolation Forest, LSTM with One-Class SVM, and two different ensembles of LSTM

with Static thresholding methods across six different set of experiments. This novel

ensemble was also tested on a public benchmark dataset (Numenta Anomaly Benchmark).

The final contribution of the work is the identification of the root-cause for the detected

anomalies.

1.8 Thesis structure

Chapter 2 describes the relevant background concepts. Chapter 3 reviews the literature and

describes the research gap. Chapter 4 details the cloud system and provides an analysis of

the problems. Chapter 5 provides insights into the research methodology that we followed

while conducting this research. Chapter 6 gives a detailed design and description of the

proposed system for anomaly detection and localization. The details of the implementation,

experiments on the third-party dataset, and their results are discussed and a comparison

with related work is demonstrated in Chapter 7. Chapter 8 describes the impact of the

proposed system, discusses the challenges encountered and alternate analysis. It then

summarizes the thesis work and lists some items for future work.

8

Chapter 2

2 Background

This section begins by providing insights on Microservices, followed by theoretical

concepts of Anomaly Detection such as its challenges, types of anomalies, how machine

learning could be used for anomaly detection and their evaluation metrics. The second half

of this section is dedicated to the background on technical concepts required for supporting

the practical implementation of the idea in this thesis. It starts by explaining the different

types of unsupervised machine learning algorithms used in our work. Later, the section

introduces the basic concepts of neural networks such as what a neural network is, how the

learning of a network takes place and how a neural network could be used for sequential

data using Recurrent Neural Network and Long Short-Term Memory (LSTM) network.

2.1 Microservices

Microservices architecture is a cloud-native architectural approach to develop software

applications where a single application is composed of many loosely coupled and

independently deployable smaller modules/components [8,10]. These independent

modules or services have their own stack, data model, and databases. Each service provides

its own business functionality and communicates with other services using pre-defined

network APIs (Application Programming Interface) [9]. It is easier to develop applications,

scale them faster with new features, and developers have the flexibility and autonomy to

select the best breed of tools and programming languages to design and deploy each

service. With the Microservices, as technology evolves, services can be replaced easily to

reflect the efficient way to better their applications [8,9,10].

Applications built using microservices needs to be monitored to avoid possible future

failure and outages. Without monitoring it is impossible to know if the services are

provided without violating Service Level Agreements or not. Monitoring a microservices

application is challenging unlike monitoring a monolith application. Every interaction

between one service to another dependent service could be a potential point of failure.

9

Failure of one dependent service could result in upstream effects on the overall

performance of the application [13].

2.2 Anomaly Detection

An anomaly is an unexpected, rare event or observation that is significantly deviating from

the majority of normal data. For example, an abnormal behaviour of the system results in

poor system performance due to high CPU consumption, high latency, etc. The process of

identifying these unexpected events is termed as anomaly detection [1]. Anomaly detection

is applicable in a variety of domains such as event detection in sensor networks, intrusion

detection in cyberspace, in financial transactions, radio frequency transmissions, driving

patterns, e-commerce, health care, etc. These anomalies are critical as they contain hidden

significant information that is hard to find. For example, anomalous readings from different

sensors could mean faulty road or weather conditions that could lead to road accidents or

abnormal points from MRI images that could indicate the presence of malignant tumors.

2.2.1 Challenges in Anomaly Detection

Anomaly detection is a broad and hard problem. There are several challenges in the process

of detecting anomalies. Some of the common challenges are listed as follows.

➢ Determining whether an event is normal or abnormal among a given set of

events can be difficult, especially if the event-value lies close to the “edge” of

normality and abnormality.

➢ Anomalies are masked. Certain anomalies arising out of fraudulent activities may

appear normal thus making it difficult to define normality or normal behavior.

➢ Considering the dynamic nature of data, the anomalies detected today might not be

anomalous in the future.

➢ An anomaly detection system that is effective for one dataset may not be effective

for another dataset.

➢ Target labels indicate whether a data point is normal or not. The availability of

labeled data, and thus the validation of detection models in the absence of label

information is a huge problem [1].

10

2.2.2 Types of Anomalies

Anomalies are broadly classified into three main categories:

1. Point Anomalies: A single instance of data that deviates from the rest of the data

points is considered as a point anomaly.

2. Contextual Anomalies: The abnormality is context-specific. An instance of data

that is anomalous when viewed in a particular context but normal otherwise is

considered as a contextual anomaly. For example, usage of air conditioning during

winter is anomalous whereas, usage during summer is normal.

3. Collective Anomalies: A group of related data instances is anomalous with respect

to the entire dataset, but not an individual instance. For example, the response time

of a single request at the moment might be normal, but the sum of response times

of requests for a 5-minute interval might result in anomalous system behavior.

These anomalies are inter-connected. A point anomaly could become contextual if a

context is applied. Point anomalies could become collective anomalies if they are

grouped together.

Apart from the type of anomalies, the detection process needs to consider the nature of

input data [1]. The input data is a collection of data instances which could be events,

observations, patterns, or vectors. Each observation is described by a set of attributes or

features such as response time, CPU utilization, network usage of a system, etc. Input data

can be univariate or multivariate depending upon the number of attributes. Univariate data

consists of a single attribute, such as performance data with only response time values as

its feature. Multivariate data consists of multiple attributes, such as performance data

consisting of the total number of requests, duration, response code, timestamp, etc.

Attributes are represented by continuous, binary, or categorical values. The selection of the

desired detection techniques is dependent on the nature of the data. For example, in

sequence data such as time-series or genome sequences, the data instances are linearly

ordered. In spatial sequences such as traffic data, each data instance is related to its

neighboring instance [1].

11

2.2.3 Machine Learning for Anomaly Detection

Machine learning (ML) is a subset of Artificial Intelligence that provides systems the

ability to automatically learn from data without any human intervention, build models and

improve from experience without being explicitly programmed to perform the task [2][3].

As given in Figure 2.1, a machine learning process creates a model, to make predictions or

decisions, during the learning phase by training the chosen algorithm on training or sample

data that has been pre-processed. The model is further evaluated by testing on new, unseen

data.

Figure 2.1: Machine Learning Process

The presence of target labels associated with each data instance is another aspect for

deciding the anomaly detection technique [1]. Target labels provide an indication of

whether a given data instance is normal or anomalous. Based on the availability of the

labels, an anomaly detection system can use one of the 3 modes of machine learning

techniques: Supervised, Unsupervised, and Semi-Supervised.

Supervised Learning requires a labeled training dataset that contains both normal and

anomalous points in order to build the model to classify future data points. Unsupervised

Learning does not require labeled training data and assumes that only a small percentage

of data is anomalous and the anomaly is statistically different from the normal samples. It

scores the data solely based on the natural features of the dataset. Distances or density

scores are used for evaluation of what is normal and what is abnormal. Semi-Supervised

learning falls between the above two categories. It uses a small amount of labeled data with

12

a large amount of unlabeled data for training the model and assumes that the training data

consists of labels only for normal class [1-6].

2.2.4 Metrics to Evaluate Anomaly Detection

In Anomaly detection, we tend to have only two sets of targets or labels: normal and

abnormal points. Hence, for such a two-class or binary classification, various techniques

can be used to evaluate the ML models used for the detection process, provided the label

information is available to assist the evaluation process.

2.2.4.1 Confusion Matrix

The commonly used approach for evaluation is by creating a confusion matrix, which is a

table of two rows and two columns displaying the actual values and predicted values as

shown in Table 2.1.

 Predicted Values

Normal Class Anomaly Class

Actual Values
Normal Class True Negatives (TN) False Positives (FP)

Anomaly Class False Negatives (FN) True Positives (TP)

Table 2.1 Confusion Matrix for two classes

• True Positives (TP) are the number of instances that are actually abnormal or

anomalies (such as high response time of a system) and the model also predicts it

as abnormal.

• True Negatives (TN) are the number of instances that are actually normal points

and the model also predicts it as normal.

• False Positives (FP) are the instances that are predicted as abnormal when they are

actually normal data points, giving false alarms.

• False Negatives (FN) are the number of instances that are predicted as normal by

the models, but in reality, they are abnormal data points, indicating a miss during

the detection process.

13

2.2.4.2 Accuracy

 Accuracy measures how often the model predicts correctly. It is the proportion of correctly

classified instances to the total number of instances as given in Equation 2.1. Accuracy is

not a preferred metric when there is a severe class imbalance.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.1)

When the dataset class is highly imbalanced the following metrics are used for evaluation

of the algorithms.

2.2.4.3 Precision

Precision is a measure of the accuracy of positive predictions or anomaly identification. It

is defined as the proportion of data points that were correctly predicted as anomalies over

the total number of data points that were predicted as either anomaly or normal as given in

Equation 2.2.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.2)

2.2.4.4 Recall

Recall also known as Sensitivity or True Positive Rate (TPR), measures the proportion of

data points that were correctly predicted as anomalies over the total number of anomaly

points present in the dataset as given in Equation 2.3.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.3)

2.2.4.5 F1 Score

F1 Score is the harmonic mean of precision and recall, as given in Equation 2.4, which

gives a better measure of incorrectly predicted labels than the Accuracy metric. F1 score

gives equal weight to both precision and recall measures.

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.4)

14

2.2.4.6 Specificity

Specificity, also known as True Negative Rate (TNR), measures the proportion of data

points that were correctly predicted as normal points over the total number of normal points

present in the dataset, as given in Equation 2.5.

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.5)

2.3 Unsupervised Machine Learning Algorithms

This section provides an overview of the different unsupervised learning algorithms used

in our proposed Anomaly Detection and Localization system. The section explains the

following algorithms: K-Nearest Neighbor, Local Outlier Factor, K-Means Clustering,

Isolation Forest, One-Class Support Vector Machine, Locally Selective Combination of

Parallel Outlier Ensemble (LSCP).

2.3.1 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a density-based anomaly detection technique that assumes

that the normal data exists around a dense neighborhood whereas abnormal data lies far

away. For a given data point, KNN uses its distance to its kth nearest neighbor as the

outlying score or anomaly score. Distance is used as a way to measure density. Different

variants of detectors can be used such as:

a) Largest, which uses the largest value of distance, i.e., distance to kth neighbor as

the outlying score.

b) Mean, which uses the average distance to all its k neighbors as the outlier score.

c) Median, which uses the median of all its distance values to its ‘k’ neighbors as the

outlier score.

Distance metrics such as Euclidean, Manhattan (or) Hamming distance can be used to

compute the distance between data points. If the outlier score is high, then it can be

considered as an anomaly.

15

2.3.2 Local Outlier Factor

Local Outlier Factor (LOF) is an unsupervised density-based algorithm that relies on k-

nearest neighbors. The idea behind this algorithm for anomaly detection is that the density

around an outlier will be significantly different than the density around its neighbors. LOF

measures the local density deviation of a given data point with respect to its neighbors. The

data points that have a substantially lower density than their neighbors are considered as

anomalies. LOF tries to determine how isolated each data point is relative to other data

points. LOF has 4 steps:

2.3.2.1 Steps in LOF

The local outlier factor algorithm involves 4 steps to detect the outliers in the dataset. The

steps are as follows.

a) Find K-Distance and K-Neighbors – The first step is to choose a number ‘k’ of

neighboring points and for a given point ‘p’, find the necessary radius ‘r’ to have

‘k’ points within a distance ‘r’ from ‘p’. The more isolated a point is, the farther it

will have to search for its neighboring points, whereas for normal data points it

doesn’t have to search too far to find its ‘k’ neighbors, as depicted by Figure 2.2.

[98].

Figure 2.2: K-Distance for outlier (the red point) is larger than normal points (maroon

point). Image adapted from [99].

b) Compute Reachability Distance - Reachability Distance determines which

neighbors of a given point ‘p’ also consider that point ‘p’ as its neighbor as given

16

in Figure 2.3. For a point x and one of its neighbors y, reachability distance shows

how a point y perceives the distance to x. Reachability-Distance for two points x,

y can be defined as the maximum of the K-Distance of y and the distance between

x and y. If point x is one of the y’s k-nearest neighbors, then distance(x,y) will be

less than K-Distance(y). Hence, it makes reachability Distance(x,y) = K-

Distance(y). If point x is not one of y’s k-nearest neighbors, then distance(x,y) will

be greater than K-Distance(y). Hence, it makes Reachability Distance =

Distance(x,y).

Figure 2.3: Reachability Distance determines which neighbors of a given point ‘p’ also

consider that point ‘p’ as its neighbor. The outlier (red point) is not contained in K-

neighbourhood by its neighbor (aqua-colored dots). Image Adapted from [99].

c) Determine Local Reachability Distance (LRD) - LRD provides a statistical

density for each point. For a point x, LRD is equivalent to the inverse of average

reachability distance of x’s neighbors. LRD tells how far it needs to travel from a

given point to reach the next point or cluster of points. The lower the LRD is, the

less dense it is and hence longer it needs to travel.

d) Local Outlier Factor (LOF) - Each point’s LRD is compared to its neighbors’

LRD to compute the LOF for each point. LOF is the average ratio of LRDs of

neighbors of point x to LRD of point x. For most points values of LOF should be

close to 1. If LOF >> 1, it indicates that the density of point x is low compared to

its neighbors and hence, it has to travel longer from point x to reach next

point/cluster of points (or) indicates it is far from dense areas. Therefore, the higher

the LOF, the more it is likely to be an outlier [98, 99].

17

2.3.3 Isolation Forest

Isolation Forest (IF) is an unsupervised learning technique that uses the concept of isolation

instead of distance or density measures [100]. The basic assumption made by this algorithm

is that anomalies are very and different. The algorithm tries to separate each data point in

the dataset. The intuition here is that an anomaly can be easily separated in a few steps

while the normal points which closer could take more steps to be separated.

2.3.3.1 Steps in Isolation Forest

 The detection process of an Isolation Forest involves 4 steps. Each step has been explained

as given.

a) Sampling - The dataset is sampled for training the model, as given in Figure 2.4.a).

The sample proportion can be different depending upon the presence of noisy data

in the underlying dataset.

Figure 2.4: a) Sampling (left). b) A Split value selected to form a tree (right). Image

Adapted from [101].

b) Binary Decision Tree - For the sample drawn from step a), a binary decision tree

is built. This step randomly selects a feature and then selects a split value between

the maximum and minimum values of the selected features, as given in Figure

2.4.b).

c) Create Forest - The two sub-data set formed by a binary split in previous step b)

is further split to form a tree. Basically, step b) is repeated iteratively to create a

collection of trees, a forest. Fewer and different data points are segregated quicker

i.e., it takes less path for them to be isolated, as given in Figure 2.5. To isolate a

18

sample, the number of splitting required is equivalent to the path length from the

root node to the leaf node.

Figure 2.5: Data points at the lower right corner are easier to isolate (right). Image

Adapted from [101].

d) Calculate Anomaly Score - Each data point is fed into the trained forest for each

tree. Anomaly score is calculated for each tree and average is taken across different

trees to obtain the final anomaly score for an entire forest for a given data point.

2.3.4 One-Class SVM

One-Class SVM (OC-SVM) is an unsupervised learning technique based on the working

of the Support Vector Machine (SVM). SVM is a supervised classifier that tries to find an

optimal hyperplane having a maximum margin in order to separate two classes of data

points [102], as given in Figure 2.6. The idea of SVM for anomaly detection is to learn a

decision function that is negative for regions with a small density of points and positive for

high dense regions.

Figure 2.6: Hyperplanes for linearly separable data and non-linear data

19

One Class SVM separates all the data points from the origin and maximizes the distance

of hyperplane from the origin which results in a binary function returning positive and

negative values for regions on either side of the hyperplane. The model uses

hyperparameters such as ‘nu’, known as outlier fraction, which is the proportions of outliers

expected in the data, kernel type such as ‘rbf’, which enables SVM to project the non-linear

input into a high dimensional feature space, ‘gamma’ is a kernel co-efficient controlling

the influence of training samples [103]. The model returns –1 for an outlier and +1 for a

normal data point.

2.3.5 Locally Selective Combination of Parallel Outlier Ensembles

(LSCP)

Locally Selective Combination of Parallel Outlier Ensembles (LSCP) is a framework used

for the detection of outliers using an ensemble of unsupervised outlier ensembles [91]. The

LSCP is a framework available in Python Outlier Detection (PyOD) toolkit. PyOD is an

open-source, scalable Python toolkit for detecting outliers.

2.3.5.1 Ensemble Methods and Types

Ensemble methods use multiple learning algorithms to obtain a better performance that

could not be achieved by using individual models. In unsupervised outlier ensembles, it is

quite challenging to build a combination of detectors without labels or ground truth. There

are 2 variants of ensembles - parallel and sequential. In sequential, the base

detectors/learners are generated sequentially where the dependence between the learners

are exploited. In parallel, the base detectors are generated in parallel exploiting the

independence between the detectors [92].

2.3.5.2 Advantages of LCSP

Existing parallel outlier ensembles combine all the base learners without considerable

selection, limiting the combination benefits since individual detectors may not be capable

of identifying all the outliers [93]. The performance of ensemble through good detectors

can be reduced or nullified by the presence of bad detectors while averaging the results.

Also, the detectors consider all the training points in the dataset to determine the outlier

20

exploring global data relationships instead of considering the local regions in the dataset.

LSCP overcomes these limitations by emphasizing on data locality [93].

LSCP is motivated by the principle of Dynamic Classifier System (DCS) [93], a supervised

ensemble framework, that the base classifiers are likely to specialize in local regions than

identify outliers from all the unknown test instances [91]. Based on this idea, LSCP defines

a local region for each test instance, then identifies the competent base detector(s) in this

local region which in turn generates an outlier score for the test instances. LSCP explores

global data relationships by training the detectors on the entire data and explores local data

relationships by emphasizing locality during detection combination. LSCP is compatible

with diverse types of base detectors.

2.3.5.3 Steps in LSCP algorithm

1. Base Detector Generation - The base detectors used in LSCP can be

heterogeneous or homogeneous. For homogeneous base detectors, different hyper-

parameters initialization & subsampling of training dataset can be done to introduce

diversity so that the model can learn distinct characteristics of data. For a given

training and testing data, the algorithms generate a set of base detectors with

different values of hyper-parameters, say a set of KNN or LOF detectors with

distinct neighbors or Minpts. The training set is used to train all the base detectors,

which are further tested on the same training data resulting in an outlier score matrix

O(X train) with score vectors from all the base detectors which are normalized

using Z-normalization [91].

2. Pseudo Ground Truth Generation - Since this is an unsupervised technique with

no labels or ground truth, two methods are used to generate pseudo truth with

Outlier matrix score O(X train) which can be used by LSCP to evaluate the

competency of the detector. One is average scores of base detectors (LSCP_A) and

the other is the maximum of all base detector scores (LSCP_M). This pseudo

ground truth is generated using training data and used for detector selection alone.

3. Local region Definition – A set of nearest neighbors for each test instance is

identified to determine that its local region. Firstly, a new feature space is

constructed using randomly chosen t groups of [d/2,d] features. Then, using

21

Euclidean distance, ‘k’ nearest training objects to test instances in each group are

identified. The training objects appearing more than t/2 times define the local region

for a given test instance.

4. Model Selection and Combination – For each test instance, local pseudo ground

truth is determined by fetching values associated with the local region from the

target in step 2. Local training outlier score is obtained by retrieving outlier scores

associated with training data in the local region, i.e., outlier score matrix from step

1. To evaluate base detector competency in the local region, LSCP uses the Pearson

correlation to measure the similarity between local pseudo ground truth and the

local detector score. Detector with high similarity is considered as the most

competent local detector and its score is considered as the final score for that test

instance.

5. Dynamic Outlier Ensemble Selection – If only one detector is most similar to the

pseudo ground truth, then it would be risky to select only one detector for the

unsupervised problem which can be avoided by selecting a group of detectors.

There are two variations of LSCP ensemble – Maximum of Average (LSCP_MOA)

and Average of Maximum (LSCP_AOM). In both cases, a group of detectors is

selected in the local region of a test instance. LSCP_MOA takes the maximum of

detector’s predictions as the outlier score whereas LSCP_AOM takes the average

of detector’s predictions as the outlier score when pseudo target from step 2 is

calculated using LSCP_M [91].

2.4 Neural Network

A neural network (NN), also known as Artificial Neural Network (ANN), comprises of

simple computational units called nodes or neurons which use a mathematical or

computational model for processing information [75]. The working principle of a neural

network is inspired by the functioning of a human brain [76]. A neural network consists

of several layers where each layer is made of neurons that are connected through a link.

Each link is associated with a set of co-efficient or weights. A node receives input along

with the incoming links which are combined with their respective associated weights as

depicted in Figure 2.7.

22

Figure 2.7: Functioning of a neuron. A simple network consists of one output neuron

(Perceptron Model) where inputs are directly fed to the neuron. Image adapted from [79].

The products of inputs and weights from all the nodes across a layer are summed and

further passed to an activation function to generate output signals [76-78]. Activation

function, also known as a transfer function, acts as a gate determining to what extent an

output signal should progress further in the next layer [77]. It maps input nodes to output

nodes based on mathematical operations [80]. There are 3 types of activation functions,

namely, Linear, Binary, and Non-Linear. Most of the neural networks use non-linear

transfer functions which helps the model to create a complex mapping between input and

output when the data is non-linear. Typical non-linear activation functions include:

Logistic/Sigmoid, Tanh, Rectified Linear Unit (ReLU), Parametric ReLU, Leaky ReLU,

Softmax, Swish [81].

2.4.1 Feedforward Neural Network

There are various classes of neural networks: Feedforward, Convolutional, Recurrent,

Autoencoder, Generative Adversarial, etc. In this section, we describe a simple network,

FFNN, to explain its working mechanism before we learn about LSTM.

A feedforward neural network (FFNN) is an artificial neural network where information

flows only in one direction, from input nodes to output nodes without any feedback loops.

Depending on the number of hidden layers, they can be classified into Single-layer

perceptron or Multi-layer perceptron [82]. A single layer perceptron does not contain any

hidden layers and consists of a single layer of output node(s), as depicted in Figure 2.7. A

multi-layer perceptron consists of input, hidden, and output layers as shown in Figure 2.8.

23

Figure 2.8: Multi-layer Perceptron

Input Layer - is the first layer of a network, also known as a visible layer since it is the

exposed part of the network in which each node takes one input value from the dataset. The

input layer is responsible for passing the input to the next layer, hidden layer, and does not

perform any operation.

Hidden Layer(s) - are composed of most of the neurons in the network which are

responsible for manipulating the incoming data with the weights and biases.

Output Layer - generates the result for the data passed through the network. It might

consist of a single node or multiple nodes depending on the number of resultants objects

expected to be returned.

2.4.2 Learning Process of Neural Network

The learning or training of a neural network is an iterative process involving the flow of

information forward and backward across the layers of neurons. The first phase is forward

propagation where the network receives input data, which is further passed to the next layer

where it is transformed and fed to the next subsequent layer. After the data propagates

across all the hidden layers, it reaches the last layer which generates the output. This

network generated output is compared with the actual output to determine the error or loss

using a loss function (such as Mean-Squared Error), to measure how accurate the result is.

24

Figure 2.9: Training of Neural Network using Error back-propagation

The loss information is propagated backward from the output layer to other layers in the

network one by one. The neurons of the hidden layers receive a significant fraction of the

total loss based on their contribution to the output. The process is repeated until all the

neurons have received the loss information [83]. Later, the weights are adjusted in such a

way that the error is minimized. This is called optimization which aims at minimizing the

loss function by tuning the parameters of the network such as the weights and biases. The

technique used for optimization is called gradient descent which changes the weights in

small increments by calculating the gradients of the loss function indicating the desired

direction to reach minima. Gradient(derivative) is a measure of the change in loss value

corresponding to a small change in network parameters [76]. A hyper-parameter called

learning rate controls the size of steps or the amount of the weight adjusted with respect to

the loss gradient, as given in Equation 2.6. This process is done for several epochs or

iterations over the training dataset. The parameters move closer to their optimal values with

every epoch. A smaller value of learning rate requires more iterations whereas larger

learning rates require few epochs.

𝜃 = 𝜃 − 𝛾

𝜕𝐿(𝜃)

𝜕𝜃

(New weight = Old weight – Learning rate * Gradient)

(2.6)

Gradient descent variants Depending upon the amount of data used to compute the

gradient of the loss function, there exist different variants of gradient descent such as batch,

mini-batch, stochastic gradient descent, RMSProp, ADAGRAD, ADAM, etc.

25

2.4.3 Limitations of Basic Neural Networks for Sequential Problems

Vanilla or basic neural network takes in the input of fixed size which limits its usability

when it comes to sequential data or a ‘series’ input which has no predetermined size. To

overcome the fixed size issue, multiple sets of vanilla networks could be used, but a single

instance from a ‘series’ input has a certain relationship with its neighboring instances and

basic neural networks cannot explore such relationships between consecutive instances of

a series input [84]. Most of the NNs assume that the data samples are independent of each

other. Such assumptions do not hold true for data like speech, video, stock market data,

language, etc., that exhibit temporal dependency. One such mechanism to account for

sequence data is to use Recurrent Neural Networks (RNNs).

2.4.4 Recurrent Neural Network

RNNs are a generalization of feed-forward neural networks (FFNNs) with internal

memory. It is referred to as recurrent since it performs the same operation for every input

where the output of current input depends on the past output. RNN adds a looping

mechanism to FFNN as depicted in the below Figure 2.10, which allows the flow of

information from one step to the next step. This information is known as the hidden state

(memory), which represents the previous inputs.

Figure 2.10: Recurrent Neural Network with Looping mechanism

Figure 2.11 depicts how RNNs can be used for modeling sequential data. As given in the

diagram, there are ‘t’ instances or samples of data. The network takes in input X(0) to

generate output h(0), which is fed along with the next input X(1) to generate second output

h(1). Here, the output h(1) depends on current input, X(1), and its previous output, h(0).

Similarly, this step is continued further until it generates ‘t’ outputs. This architecture of

26

RNN helps it to uncover the dependencies of input samples with each other and remembers

the context behind the sequences, for example in language translation, while training.

Figure 2.11: Unrolled Recurrent Neural Network. Image Adapted from [85]

2.4.5 Limitations of RNN

RNN suffers from short-term memory, meaning they are capable of handling short-term

dependencies between the input samples. For example, in language modeling, it is easier

to predict the next to last word in a sentence “Vehicles stop when traffic signal lights turn

red” based on the previous ones, because the time gap between the relevant input and the

place where it is needed to generate output is less. Here, in this example, RNNs does not

have to understand the context or need not remember information from the previous

sentences. But if the relevant input and the place where it is needed is separated by

irrelevant data in between, then the RNN fails. For instance, “My name is XYZ and I was

born in India...My passion is... I’m fluent in many Indian languages”, the word ‘fluent’

indicates the next word to be ‘language’, but to predict which specific language(s), the

RNN model needs to remember the context of the information from the relevant sentence

that has been mentioned long ago. RNNs cannot handle such long-term dependencies. This

is due to the problem of vanishing gradients [86].

Vanishing Gradient Problem:

As mentioned in Section 2.4.2, the gradient descent algorithm tries to find the global

minima of the loss/cost function. The information travels from input to the output layer and

the error is calculated and back-propagated back to the starting layer. The training is similar

for RNN except that the information travels through time where the output from the

previous time step is used as input for the next time step and error or cost function is

calculated at every time step.

27

Figure 2.12: Training in RNN through back-propagation. Image adapted from [87].

For example, as depicted in Figure 2.12, at a given time step ‘t’, if weights are required to

be updated, then the cost function/error term, E(t), needs to be backpropagated through the

network. The weights of every neuron that participated in producing the output associated

with this cost function are updated. In RNNs, not only the neurons present below the output

layer at time step ‘t’, but all the neurons far back in time (say t-1, t-2, t-3) contributes to

the desired output at time step ‘t’. Hence, the error is propagated through the network back

through all the time steps [87].

For instance, to get from x-3 to x-2, x-3 is multiplied by Wrec (Weight Recurring), and to

get to x-1 from x-2, x-2 is multiplied by Wrec to get to x-1 from x-2. The inputs are

multiplied by the same value of weights many times. When a value is multiplied by a

smaller weight, the product result gets reduced quickly. In NNs, weights are generally

initialized with random values closer to 0 which later gets updated during the training

process. Hence, if Wrec value is less and when the error is backpropagated, this Wrec will

be multiplied with x, x-1, x-2, x-3, and so on, causing the gradient to decay to 0, which we

call it as vanishing gradient problem. Similarly, if Wrec is high, it causes the gradients to

become too large resulting in exploding gradient problem [87]. As a result, RNNs can

remember things only for a short duration of time and tends to forget information over

time. To counter the problem of vanishing gradient, Long-Short Term Memory (LSTM)

architecture was introduced.

28

2.4.6 Long-Short Term Memory

LSTM is capable of handling long-term dependencies between the input samples. It can

selectively forget or remember information and add new information without entirely

modifying the existing information, unlike RNNs. An LSTM network comprises of

memory blocks called cells; the green boxes as shown in Figure 2.13. There are four neural

network layers (yellow boxes) inside every cell.

Figure 2.13: An LSTM network. Image adapted from [86].

Each cell transfers 2 states to the next cell: the cell state and the hidden state. These cells

are responsible for remembering information that is important and this information can be

manipulated through gating mechanisms. LSTM consists of 3 gates – Forget Gate, Input

Gate, and Output Gate.

2.4.6.1 Forget Gate

Forget gate is responsible for discarding information that is no longer required (or) of less

importance by the LSTM.

29

Figure 2.14: Forget Gate of LSTM. Image adapted from [86].

 𝑓𝑡 = 𝜎 (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.7)

As shown in Figure 2.14, the gate takes in two inputs - 𝑥𝑡and ℎ(𝑡−1). 𝑥𝑡 is the input at the

current time step and ℎ(𝑡−1)is the hidden state/output from the previous cell. The input is

multiplied by the weight matrices and a bias is added, followed by a sigmoid activation

function, 𝜎(). Sigmoid activation function, 𝜎(), decides which values to remove and which

to keep. If it outputs ‘0’ for a particular value in the cell state, the forget gate will tend to

forget or discard the information. If the sigmoid outputs ‘1’, then the forget gate will

remember that information. This output, 𝑓𝑡, from the sigmoidal function is multiplied with

the cell state, 𝐶(𝑡−1) from the previous cell [86].

2.4.6.2 Input Gate

The input gate is responsible for adding new information to the cell state. It involves three

steps for the addition of new information.

30

Figure 2.15: Input Gate of LSTM. Image adapted from [86].

 𝑖𝑡 = 𝜎 (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.8)

 𝐶̃𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.9)

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (2.10)

1. The first step involves using a sigmoid layer, 𝜎(), which acts as a filter in deciding

which information to keep and update from 𝑥𝑡 and ℎ(𝑡−1), as given in Figure 2.15

and described by Equation 2.8.

2. Next, a tanh layer creates a vector of all possible values from 𝑥𝑡 and ℎ(𝑡−1)that can

be added to the cell state.

3. The third step would be multiplying the regulatory output, 𝑖𝑡, from step 1 with the

vector values, 𝐶̃𝑡, from step 2 and later adding this to the previous cell state, 𝐶𝑡−1.

These steps make sure that only important information is added to the cell state and

redundant ones [86, 88].

2.4.6.3 Output Gate

The output gate sends the filtered useful information from the current cell state to the next

cell. This also involves 3 steps.

31

Figure 2.16: Output Gate of LSTM. Image adapted from [86].

 𝑜𝑡 = 𝜎 (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.11)

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ(𝐶̃𝑡) (2.12)

1. The cell state, 𝐶̃𝑡, from the input gate is put through a tanh layer, as shown in Figure

2.16, to create a vector of values ranging from –1 and 1.

2. Next, a sigmoid layer, 𝜎(), uses inputs 𝑥𝑡and ℎ(𝑡−1)to filter the values that are going

to output from the vector created in step 1, mathematically expressed as given in

Equation 2.11.

3. We finally multiply the filter output from step 2, 𝑜𝑡 , with vector values from step 1

and send it as the hidden state and output for the next cell, mathematically expressed

as given in Equation 2.12 [86, 88].

The current cell state or the result from the output gate of the current cell is fed as input to

the next cell, where the gates in the next cell repeat the same set of operations as discussed

above until the last cell has reached in the network layer.

32

Chapter 3

3 Literature Review

In this section, we provide a literature review of anomaly detection techniques carried out

in a distributed environment or computing systems in general, broken into main sections:

Traditional Statistical approaches and Machine Learning-Based approaches. Under the ML

approach, we discuss the state-of-the-art anomaly detection techniques used for time-series

data by supervised, unsupervised, and deep learning techniques. Later, we provide

information about the research gap identified by analyzing the existing approach.

3.1 Anomaly detection in a cloud system or general

computing domain

Anomaly detection has been extensively studied and is an important topic in various

domains such as health care, e-commerce, finance, cyberspace, astronomy, ecology, etc.,

[21-28]. Various detection strategies have been proposed in the literature specific to the

computing domain, such as signature-based, observational, knowledge-driven, and

detection methods such as statistical, machine learning, etc., [29]. Several existing research

projects have addressed the specific problem of performance anomaly detection in

distributed and computing systems in general which is discussed in this chapter later.

3.1.1 Traditional Statistical Detection Approaches

Beyond rule-based systems [38, 39] that require upper/lower bounds for performance

metrics, researchers have exploited various statistical methods such as Markov model [30-

32], correlation analysis [35-37, 42], regression analysis [33,34], gaussian-based

techniques have been assessed to capture deviations in the system performance metrics.

Bikash et al., in [36] identify variations in performance metrics in a cluster of Virtual

Machines (VMs) using correlation analysis. The authors also characterize an anomaly by

defining an anomaly signature for the pairwise correlations of CPU utilization of the VMs.

Similarly, the correlation between system metrics, latency, and aggregated workload is

analyzed and considered as a basis to uncover anomalies by Joao et. al in [35], Bikash et

33

al. in [36], and Manjula et. al in [37]. Yang et al., in [34] and Kang et al., in [33] propose

a regression-based diagnostic framework to model the relationship between system

performance and application metrics to detect performance anomalies and determine its

root-cause.

Gu et al., in [32] and Tan et al., in [31] describe a system based on Markov chain model to

capture the changing patterns of different measurement metrics to predict metric values for

next k time units and further feed to a Bayesian classifier to determine anomaly symptoms.

Samir et al., in [60] designed a Detection and Localization system for Anomalies (DLA)

that monitors and analyzes performance-related anomalies in container-based microservice

architectures. They adopted Hierarchical Hidden Markov Models (HHMM) and

Correlation Analysis to model the relation between the monitored metrics of the container,

node and service, and the variation in response time under different load scenarios.

3.1.2 Machine Learning-Based Detection Approaches

Due to the scale and complex nature of cloud or distributed environment, there has been a

tremendous shift in the adoption of machine learning techniques. Machine learning

approaches are divided into 3 categories, namely supervised, semi-supervised, and

unsupervised, depending upon the level of supervision required by the models. We also

discuss the state-of-the-art approaches under each category. This section also provides a

review of existing literature on deep learning techniques for anomaly detection.

3.1.2.1 Supervised Learning Approach

Daniel et al. [43] describe an approach that uses metric data and log information to select

different classifiers trained via Support Vector Machines using monitoring metrics. The

technique aims to find anomalies over every time intervals called windows by using

moving average and entropy of metrics data in each window as additional features for

training the classifiers.

In [46], Sauvanaud et al. propose an Anomaly Detection System (ADS) consisting of 3

modules, designed to detect anomalies by learning the behaviour of services in VMs using

supervised machine learning techniques such as Random Forests, Neural Networks,

34

Nearest Neighbors, and Naive Bayes on CPU, Memory, Disk, and Network performance

data.

Qingfeng et al. [45] designed an Anomaly detection System (ADS) to detect and diagnose

anomalies in a container-based microservices. The proposed system consists of 3 modules:

Monitoring module, that collects performance metric data of containers, Data Processing

Module analyzes data and detects anomalies using SVM, Naïve Bayes, Nearest Neighbors,

and Random forests algorithms and Fault Injection Module validates the model under

different system fault conditions. Further, once an anomalous metric in service is detected,

the time-series data of all the containers running that service is analyzed by the DTW

algorithm to measure the similarity between the time-series performance data of the given

containers. And the most anomalous container which has the maximal distance from the

others is found.

3.1.2.2 Unsupervised Learning and Deep Learning Techniques

The most widely used unsupervised anomaly detection technique for point anomalies is K-

Nearest Neighbors (KNN), which calculates an anomaly score based on the distance to 'k'

nearest neighbors for a given data point used by Bikash et al. in [36], James et. al in [58],

and Kanishka et. Al in [59]. Breunig et al., in [55] proposed a popular unsupervised method

for local density-based anomaly detection known as Local Outlier Factor (LOF) where the

k-nearest-neighbors set is determined for each instance by computing the distances to all

other instances. LOF has been used for anomaly detection in cloud applications [53], for

workload patterns [54], network intrusions [57].

Xiao et al., in [61] developed TaskInsight that detects performance anomalies in cloud

applications using clustering algorithms by analyzing the system-level metrics, such as

CPU and memory utilization. The anomaly score of an instance is the distance to the next

large cluster. The problem of choosing the right number of clusters arises in the clustering

approach [56].

ADVec algorithm developed by Twitter (Vallis et al. [48]) based on the generalized

Extreme Studentized Deviate (ESD) test, combined with robust statistical approaches and

piecewise approximation. The technique uses statistical metrics such as median, and

35

median absolute deviation (MAD), and piecewise approximation of the underlying long-

term trend to detect anomalies in the long-term time-series data. It uses the piecewise

method to approximate the underlying trend in a long-term time series. The trend is

computed as a piecewise combination of short-term medians. The length of the windows

in the piecewise approach is chosen such that the windows encompass at least 2 periods of

any larger seasonality.

Imam et al. [44] use the Microsoft ML time series algorithm on application log files to

forecast the performance, detect anomalies, and analyze to determine the application or

source that caused it. The ML time series algorithms include 2 algorithms : (i) The ARTXP

algorithm, which is optimized for forecasting the next probable value in a series, (ii) The

ARIMA algorithm, to improve the accuracy of the long-term forecasting. After forecasting,

the proposed approach introduces the concept of anomaly index, computed by looking for

a maximum value across a time-period and comparing it to the average. The technique

observes a change in anomaly index, its trend, and alerts when the value of the anomaly

index is large.

Sasho et al. [47] address the problem of anomaly detection in a large-scale distributed

environment by proposing an unsupervised response time anomaly detection of Variational

autoencoders and dynamic error thresholding. Variational autoencoders forecast the metric

values from distributed tracing records, the forecast errors are modeled as gaussian

distribution. The validation set is being used for threshold setting where for each window

per sample in validation set the trained model is applied. Errors between reconstructed and

an observed window of events not within the high-level of the confidence interval of

Gaussian distribution is considered as an anomaly. The probability of new test data within

a high-level of confidence of the Gaussian distribution confidence interval is computed and

outputs are kept in a queue of size the same as (tolerance) for each new window. The

tolerance module checks whether the average probability of all the points in the queue is

greater than the error threshold. If this is the case, the submodule flags this part of the time

series as unstable and reports an anomaly.

36

Similarly, Haowen et al. [50] propose an unsupervised anomaly detection algorithm,

Donut, based on dimensionality reduction and generative model, Variational auto-encoder

(VAE) for seasonal Key Performance Indicators (KPIs) for web applications (e.g., page

views, number of orders, online users) with local variations. The technique uses an optimal

threshold value to determine if a data point is an anomaly or not.

Mohsin et. Al in [56] developed DeepAnt, an unsupervised anomaly detection technique,

which consists of two modules – time-series predictor and anomaly detector. The predictor

module uses on Convolutional Neural Network (CNN) to forecast time-series data. The

actual and forecast value is passed to the detector, which uses Euclidean distance to

measure the discrepancy and detect the anomalies if the distance measure exceeds beyond

the threshold set.

Malhotra et al. [49] proposed a model of stacked Long-Short Term Memory (LSTM)

networks to enable learning of higher-level temporal features to detect anomalies in time

series data. The network was trained on normal data and used as a forecaster over a number

of time steps. The forecast errors were modeled as multivariate gaussian distribution, which

was used to assess the likelihood of anomalous behaviour. Validation sets were used to

determine the anomaly cut-off. If the likelihood or the probability of a test point is greater

than the threshold then the point is considered as an anomaly.

Chen et al. [51] designed a framework to integrate unsupervised anomaly detection and

trend prediction altogether. The framework, SeqVL - Sequential VAE LSTM, combines

variational auto-encoders and LSTMs, where VAE is used for unsupervised anomaly

detection and LSTM is used for trend prediction. The detector (VAE) boosts its

performance by training the model with segments in sequential order that is maintained by

the predictor (LSTM). The re-encoded time series output from the VAE block is fed to

LSTM to make robust trend predictions. The squared error of encoder from decoder

segments is checked against a threshold to detect anomalies.

Leandro et al. [52] extended eBay’s Atlas algorithm to automatically detect anomalies in

unlabeled seasonal time series data. The proposed algorithm, MULDER uses a ‘surprise’

metric from the time series, which is then statistically analyzed to determine anomalies. A

37

percentile window is applied to the surprise metric (computed by differencing actual and

expected value) and calculates the 10th and 90th percentile over the subset and later

performs a 3-standard deviation test within a window of length, n, sliding across the two

percentile time-series.

3.2 Analysis and Research Gap

The papers discussed above were analyzed to identify the research gaps. The analysis of

the aforementioned existing works is described as follows.

Several existing works have exploited various statistical methods such as Markov model

[30-32], correlation analysis [35-37, 42], regression analysis [33,34], etc. Gu et al., in [32]

and Tan et al., in [31] describe a system based on the Markov chain model along with the

Bayesian network whereas Samir et al., in [60] use HMM with correlation analysis to

perform detection of anomalies. Hidden Markov Models perform better only if their

assumptions hold true such as (i) state transitions depend only on the current state, not on

anything in the past, and (ii) The total number of states is pre-defined. This might not be

true when the performance metric data is sequential time-series data, where the future

values depend on the past and the number of states cannot be fixed in sequential data which

is dynamic, decreasing the performance of Markov models.

Many statistical detection techniques often assume that the distribution and density of data

are known apriori or can be inferred to detect well-known anomalies. They tend to exhibit

sensitivity in case of load variations when these assumptions do not hold true [40]. For

non-linear time-series data, to build a statistical method that can describe this data, we

might need to build a piece-wise function. Hence, statistical correlation methods are

expensive to learn and require a large volume of training data for non-linear correlations

[41].

Qingfeng et al. in [45], Sauvanaud et al. in [46] and Daniel et al. [43] use supervised

algorithms such as SVM, Naïve Bayes, Nearest Neighbors, and Random forests to classify

normal and abnormal data, i.e., find anomalous data/service from the normal data. The

detection algorithms are trained by the data containing label information on whether a point

38

is an anomaly or not. For practical usage, (i) it is inefficient to label data involving time-

series and concept-shift, given the dynamic nature of data, as the method might fail to

detect when it encounters a new or unknown anomaly (ii) expensive to label data requiring

manual efforts and (iii) time-consuming because the real-world data is voluminous. The

need for labeling might increase when the volume and complexity of the data increases.

Bikash et al. [36], James et. al [58] and Kanishka et. al[59] use the unsupervised algorithm,

KNN, for detecting anomalies which is highly dependent on the value of 'k' neighbors and

might fail if there aren't enough neighbors, and it is computationally expensive. LOF has

been used in cloud applications by Tian et al. [53], for workload patterns by Tao et al. [54],

network intrusions by Lazarevic et al. [57]. It assumes that the neighbors of the data

instances are distributed in a spherical manner, which has limitations when the data tends

to have a linear distribution, i.e., if the normal data points are distributed in a linear way

[56]. However, it doesn't fit well for detection purposes in a service-oriented system [53],

where there are large datasets and high dimensional data with multiple features. Also, the

aforementioned technique fails to capture the temporal dependency between the data points

in sequential time-series data.

In [48], Vallis et al. developed the ADVec algorithm, based on the ESD test combined with

statistical methods, which has limitations on a large distributed environment based on

service-oriented and microservice architectures. If the time-series exhibit more than two

different normal behaviours or operations, similar to the time-series generated by the

microservices' system, then the algorithm might not be able to learn this normal

information [47]. Secondly, this approach uses three parameters out of which one is used

as the anomaly threshold, describing the level of statistical significance to accept or reject

anomalies.

In [44] Imam et al., this approach indirectly uses thresholding rule while computing

anomaly index. Firstly, it is difficult to determine which time-period needs to be used to

compute anomaly index, given the dynamic nature of data and secondly, it states larger the

anomaly index, stronger are the signs of an anomaly. The question here is how to determine

the large value of the index. If the largest anomaly index is determined by sliding across

39

time-periods, then again it is uncertain with respect to choosing time-period/sliding

window interval as mentioned earlier.

In [47], Sasho et al. use Variational autoencoders with probability-based dynamic error

thresholding, where this approach uses window size and confidence interval as the basis

for thresholding. The tolerance module checks the average probability of all points in each

window exceeds the error threshold or not. If it exceeds then it declares the entire window

or time-series as an anomaly. The approach concludes the entire time-series if a single data

point results in a larger value, whereas the other individual points might not be anomalous.

The approach seems to not detect point anomalies. Secondly, tolerance or window size

might never be the same in practical usage and might require an update with the new

incoming stream of data over time.

Malhotra et al., in [49], Mohsen et al., in [56], Haowen et al. in [50], and Chen et al., in

[51] proposed different novel anomaly detection methods for time-series data respectively.

These methods use a static threshold to score an anomaly which might require an update

on a timely basis with a new stream of data, because, in a distributed environment such as

a service-oriented and microservices system, the data can exhibit more than a single case

of the expected or normal behaviour of the system. With the varying nature of data, it might

require an update on the static threshold values of parameters being used in their respective

approaches.

In [52], Leandro et al., perform a 3 standard deviation test on the percentile time-series

window. This test being a statistical method might not be feasible for a large scale system

such as a microservices environment when the data is voluminous with multiple expected

cases of normal scenarios and window length cannot be fixed when the data is dynamic.

These studies have shown that traditional statistical methods, machine learning, and deep

learning approaches can be successfully used for anomaly detection. But most of these

techniques have considered different methods for static thresholding on distances or errors

or probability, etc., for scoring an anomaly as the final step irrespective of any algorithm

used. This static thresholding might not be efficient enough for a large scale dynamic

distributed environment when the nature of data is dependent on time.

40

However, in this thesis, we complement the existing work and propose an automated

prediction-based anomaly detection and localization system which is based on an ensemble

of time-series based deep learning model and unsupervised learning algorithms a dynamic

thresholding method that is capable of (i) detecting anomalies without any requirement of

the explicit set-up of thresholds or static anomaly scoring, and (ii) locating the root cause

of the detected anomalies. Also, we are using tracing events data from a large-scale

distributed system such as microservices unlike most of the existing literature where the

related work on time-series anomaly detection using the distributed tracing data in the

microservices system is limited.

41

Chapter 4

4 Problem Analysis of Cloud System

In this chapter, we discuss in detail about the cloud system of our industry collaborator to

better understand the problems faced by them or in general by other cloud providers. This

chapter also describes the problem faced by our industry partner dealing with monitoring

the performance of the cloud hosting several enterprise applications.

4.1 Cloud System

This research work was developed for a third-party cloud platform for monitoring the

performance of its microservices. As discussed in Chapter 2, microservice is composed of

loosely coupled services that communicate with each other through service endpoints. In

the third-party cloud system, there are more than 95 major microservices that call the

backend API. Figure 4.1 depicts the routing of data requests through microservices or

components such as App Services, Dashboard, Datalayer and so on, for any enterprise

application hosted on the cloud serving different purposes such as Catalog, Billing, etc.

Figure 4.1: Flow Diagram depicting the routing of requests through different services

The clients access the application, the Apps Services requests to open up a Dashboard

which renders data from Datalayer by sending a request to it. The Datalayer is a central

arbiter that combines data from multiple backend servers and responds to the Dashboard

with the response results as shown in Figure 4.2.

42

Figure 4.2: Data gateway diagram

The system gets complicated with multiple instances of each of the several services

deployed globally. As known, several enterprise applications are hosted on the cloud,

increasing the load on Datalayer to access data from the backend services, as shown in

Figure 4.3. As mentioned earlier, the loading time of the dashboard of applications

accessed by the clients depends on the response time of the data layer. The response time

of the data layer further depends on the time taken by all the succeeding components

through which the requests were routed for the desired action.

Figure 4.3: For multiple cloud-hosted applications

Out of the many interconnected microservices or components that exist in the cloud system,

we select an end-to-end flow of a particular set of services as depicted in Figure 4.4.

43

Figure 4.4: Routing of Requests from App Services till GraphQL Layer

To access the Dashboard, a request is initiated which flows through the components as

shown in Figure 4.4. The loading time of the Dashboard depends on the time taken by the

other succeeding components especially, the GraphQL Layer, which is discussed in section

4.1.1. When the requests flow through these services, the distributed tracing events are

generated for every component during a transaction and stored in such a way that the events

from the components are grouped under a single ID for a given transaction or request,

which is discussed in section 4.1.2.

4.1.1 GraphQL

GraphQL is a query language for an API that provides singular endpoints to the consumer

and controls the data flow. With GraphQL it is possible to request specific data instead of

asking for all the data from the data sources unlike REST API [89]. Also, to fetch data from

multiple sources, only 1 request is required, unlike REST API, as shown in Figure 4.5, and

there is no necessity to check which endpoint is needed to get the data as shown in Figure

4.6. GraphQL server accepts both POST and GET requests. POST requests are sent in the

form of a JSON object to the GraphQL server. Each request contains a query, or an

operation name, or both and may contain variables. A GET request must pass query,

operation name, and optional variables in the URL. GraphQL also builds a cache of

frequently requested data in order to save the processor time and effort.

44

Figure 4.5: With REST, 3 requests are made to fetch data from 3 different endpoints.

Also, it over fetches data with additional information. Image Adapted from [90].

Figure 4.6: With GraphQL, only 1 request is sent to the GraphQL server to fetch the

required data. Image Adapted from [90].

4.1.2 Distributed Tracing

Distributed tracing has been considered as a baseline necessity for both software

development and operations by organizations [65]. Distributed Tracing, also known as

Distributed Request Tracing is a method of understanding the flow of data as it propagates

through the components of applications. It profiles and monitors applications, especially

45

those in a microservices environment, which can be used to facilitate the DevOps teams to

pinpoint where failures occur and its root-cause [64]. The difference between Logs and

Traces is, logs record important checkpoints when servicing a request, whereas a trace

connects all these checkpoints to form a complete path of how a particular request was

processed from a client to a server [62].

Figure 4.7: Data flow representation of a trace. Image adapted from [67].

Trace - A single trace is a tree of spans that shows the execution path of a single transaction

flowing through components in a distributed system [66, 67]. A trace is identified by a

unique 16-byte sequence called Trace ID. This Trace ID groups and distinguishes spans.

As shown in Figure 4.7, ‘/messages’ is a trace.

Span - Span is the basic building block of a trace, representing an individual unit of work

or a single operation in a trace. For example, as shown in Figure 4.7, sub-calls are made to

different components like authentication, cache, and database to process the request of

fetching a message. Span is identified by a Span ID and belongs to a single trace. Spans

contain references to other spans forming a parent and child relationship. A Span without

a parent is a root span [67]. A span consists of 11 fields as listed below:

• Name - A meaningful span name describing what it does.

• SpanID - Span's unique 8-byte identifier.

• TraceID - ID of the trace to which a span belongs to.

• ParentSpanID - Span ID of its parent or NULL, in case of root span.

• StartTime/EndTime - timestamp recording when span operation started and

ended.

• Status - Integer type code defining logical error model.

• Time events - describes that an event happened at a given time during the

span’s lifetime.

46

• Link - describes cross-relationship between spans in the same or different

trace.

• SpanKind - details the relationships between spans apart from the

parent/child relationship.

• TraceOptions - describes if the span is sample or not.

• Tracestate - a key-value pair to annotate order/position of request.

Figure 4.8: Directed Acyclic graph representation of a trace. Each component is labeled

with a Span ID and its corresponding Parent ID.

A Trace can be represented as a Directed Acyclic Graph (DAG), as shown in Figure 4.8,

where nodes are components denoted by Span ID and edges are the references. Based on

this, as per Figure 4.4, the Data layer will be the parent for the GraphQL component, which

in turn will be a parent for POST, GET, and CACHE components.

This information can be captured either manually by logging before and after every

operation in code or by automated instrumentation. Instrumentation is a process in which

applications' code is extended to capture trace spans in the path of processing a transaction

or user request [69]. In Automatic instrumentation, a run-time automated process identifies

the frameworks and libraries which are in use within an application and instrument those

libraries to capture tracing information automatically without requiring any code change

[69]. For example, whenever a request is made to the database, a listener will extract and

store this information, in an automated instrumentation scenario. Capturing trace manually

through logging is not advisable since it is not structured well. There are microservices

47

Standards and Tools like OpenCensus, OpenTracing, etc., that are used to extract the traces

[68].

4.2 Concerns with Existing Monitoring

Existing monitoring systems fire alerts when the key performance indicators exceed a

given threshold value. However, this is insufficient when network architecture and/or load

changes over time. The Microservices system has different points of failure than traditional

codebases and presents significant issues when site reliability engineers attempt to monitor

and diagnose runtime issues. Ideally, a site reliability engineer should be able to: (i)

visualize the performance of the system, (ii) be notified when the behaviour of the system

changes, relative to historical norms, and (iii) be able to quickly identify the root cause

when a key performance indicator changes. Each of these requirements is arguably

difficult. Existing monitoring also requires the staff to visualize the underlying metrics data

(e.g., CPU utilization, Mean Response Time, etc.) using different visualization tools such

as Kibana, for analyzing and alerting agents upon violation of conditions or threshold.

“The staff are concerned that when an issue is encountered, the peaks on the graph shoot

off and often require the operations team to manually validate whether it is an anomaly or

not. The staff gets multiple alerts at odd times and most of the time the parts are not critical

and turn out to be false alarms. The staff mention that they do not do very much with the

data generated by the microservices and are keen on reducing the burden of the monitoring

process that is being carried out.”

4.3 Problem Analysis of Monitoring Microservices System

As mentioned in Chapter 1, there is a tremendous increase in the migration of monoliths to

microservices due to the several advantages of the later discussed previously. However, it

has increased the complexity of the existing monitoring framework. Apart from the

microservices such as Dashboard, Catalog, etc., shown in Figure 4.1, there are more than

95 major microservices that call the backend API as mentioned earlier. Figure 4.9 depicts

how complex a large scale distributed system such as a microservices environment gets

with multiple applications triggering requests from one microservice to other microservices

to access the backend. For example, the performance (response time) of one microservice

48

depends on the load and its succeeding microservice, i.e., the time taken by microservice

‘n’ to respond to a request depends on the processing time of its succeeding microservice

‘n+1’, which in turn depends on the processing time of microservice ‘n+2’ and it goes so

on. When there is an increasing number of applications being accessed by the clients, the

response time of the microservices increases, i.e., due to the high load or high volume of

requests, the time taken by each microservice to process the requests increases, causing

cascading effects in the response time of the preceding services to respond the client with

the required information.

Figure 4.9: Multiple Clients or Applications triggers requests to multiple Microservices

Similar to the above example, several such performance problems occur in a large-scale

distributed system, differing in the way they manifest themselves and symptoms that they

show. There are various performance issues due to High CPU load, CPU Thrashing,

Memory exhausted, I/O bottleneck, Slow Disk I/O, Too many disk I/O operations,

Deadlocks, Algorithmic complexity, etc. These performance issues are identified by

different metrics (or) KPIs such as response time of services, error rate, throughput,

workload, resource utilization, etc. With various issues being generated several

performance anomalies (such as high response time, high error rate (or) high network

49

utilization) go undetected which might result in potential failure or outages, impacting the

stability of the cloud system and user experience.

In microservices, each service and its multiple instances needs to be monitored because

one service creates multiple copies (instances) to make sure that if one goes down there is

always another copy of that service available. Therefore, knowing the state of a single

instance of a single service isn't enough for monitoring a given and hence, metrics of all

the instances of a given service need to be aggregated. Secondly, in this system, there is a

need to monitor multiple services at once, and these services might even use different

technologies. There is a need to check the logs of multiple services and track one user

request through multiple systems.

As per the existing monitoring framework described in Section 4.2, each service is

monitored based on a thresholding approach, where an alert is fired when the key

performance indicators exceed a given threshold that is set up using a 3-Standard deviation

rule. With a rule-based thresholding approach, the existing monitoring framework might

not be reliable to monitors all the instances of all the services at once as discussed above,

due to the large volume of data and also might be inefficient when the data or load varies

over time. For example, the average response time of a given service today might be 1000

ms, but when the request load changes or when a new update is performed on the system,

it might speed up the processing resulting in average response time to be less than 1000

ms. Hence, given the dynamic nature of data, this static threshold might require an update.

But, for a cloud system with more than 95 services, it becomes tedious and time-consuming

to do so.

Apart from detecting an issue (an anomaly), analyzing the given issue and identifying the

causal components for the same is arduous in a microservices environment because of the

complexity of communications between different microservices. A single user action

triggers a chain of downstream calls to different microservices as they pass data back and

forth from a client to its server. In this third-party cloud system with more than 95

microservices and its multiple instances, it becomes challenging for the SREs analyze and

to track the root-cause or faulty microservice/component.

50

Hence, to tackle the aforementioned problems, we require an automated anomaly detection

and localization system that can detect the performance anomalies without using static

threshold rules. Thus, this would reduce the manual burden of monitoring the services

visually, and locate the causal components to determine the root cause of the anomaly.

Also, this would ease the process of monitoring the microservices-based cloud system to

maintain the health of the cloud system.

51

Chapter 5

5 Research Methodology

In this section, we describe the strategy of our solution and the system development

methodology conducted in our research work.

5.1 Solution Strategy

Our research emphasizes on easing the monitoring process of a microservices-based cloud

system by developing an automated prediction-based anomaly detection and localization

system, (i) which detects performance anomalies using a time-series deep learning model

and an ensemble of unsupervised learning techniques that can handle a huge volume of

data generated from each of the individual microservices and avoid the burden of static

thresholding approach that is used in the existing monitoring framework and other

literature works as discussed in Chapter 3 and 4, and (ii) identifies the casual components

of the detected anomalies.

As mentioned in Section 4.3, there are more than 95 major microservices such as

Dashboard, Catalog, Datalayer, etc. Out of the 95+ microservices’ data, we consider a few

microservices such as App Services, Dashboard, Datalayer, and GraphQL, as shown in

Figure 4.4, for our analysis in this work and try to detect the performance anomalies of the

GraphQL service by using the proposed detection and localization system.

Data Decision: In a microservices system, it is important to see how individual services

communicate and how requests flow through a specific combination of services [62, 63] to

understand the path of a given transaction. Hence, we use the distributed tracing events

generated by each service for our analysis which records the network operations for a given

request to understand the flow of the transaction. As discussed in Section 4.3, the tracing

events of all the instances of a given service(s) are aggregated and stored at a centralized

location, in the Elasticsearch system of the production environment, which is further

extracted using five different python scripts, discussed in Chapter 6. This work uses the

real-world production environment data of the third-party cloud system.

52

Meta-Data: The tracing events in the form of JSON objects have several data fields out of

which we describe a few, as tabulated in Table 5.1, that we use in our work. The metadata

typically contains the following.

Trace Event JSON Data Fields Description

traceID

Transaction ID - A 16 byte ID

used to uniquely identify a set of

network operations

Name

The URL associated with the

network operation

Id

A 16 byte ID used to identify the

current / a single network

operation

Kind

Differentiates between incoming

(SERVER) and outgoing

(CLIENT) calls

Timestamp

The time the operation

commenced

Duration

The time required to complete

the operation

Tag

http.host

Network identifier for target

service

http.method POST/ GET/ NULL

http.status_code

A predefined integer indicating

the success or failure of the

operation

environment

type of enviroment

(production/development/testing)

localEndpoint.servicename Microservice name

parentID

The span ID of the network

operation that caused the current

span

53

Date

Date of when the transaction

happened

Table 5.1: Distributed tracing fields of microservices

Data Analysis: The trace events were analyzed to select all the possible data fields that we

could use for monitoring the services. Post analysis, we found that the duration, i.e., the

time taken by service to process the incoming request is the main key performance

indicator for our work. While tracking the flow of a given transaction or trace ID through

different spans (see Figure 4.4), we realize that we do not want to find the anomalous

individual transaction that is taking more time, but we want to determine the instance when

a particular service (say GraphQL service) takes more time to process its incoming

requests. Therefore, we selectively take the processing time of the GraphQL service for a

single request.

Multiple transactions are processed simultaneously at a given time, hence we group the

transactions in a 5-minute interval. Therefore, for every 5-minute interval, all the Trace

IDs are grouped to calculate the total number of requests per interval and sum their

processing time by GraphQL service. The performance metric used for analyzing

the performance of GraphQL service is the average response time, computed using the

above two features. The reason for choosing a 5-minute interval is stated below.

5-minute interval 5-minute interval 5-minute interval

Requests: 10

Total Time: 5 s

Requests: 10

Total Time: 13 s

Requests: 10

Total Time: 11 s

Avg. Res. Time: 0.5 s Avg. Res. Time: 1.3 s Avg. Res. Time: 1.1 s

Avg. Res. Time: 0.9 s

Avg. Res. Time: 0.96 s

Table 5.2: Reasoning for 5-minute interval decision

For example, let’s assume the average response time of a service is 1 second. As shown in

Table 5.2, when a 5-minute interval is considered, the average response time of the last 2

intervals gets detected as anomalies (red-highlighted) since it exceeds more than 1 second.

However, if a 10-minute or a 15-minute interval is considered, the average response time

54

doesn’t get detected as anomalous, since the total time gets divided by the load or large of

number requests. And if a 1-minute interval is considered, the system would detect too

many false positives. Hence, we decide to choose a 5-minute interval.

During the initial stages of our work, we conducted exploratory analysis on a daily basis

through scatter plots, histograms, bar graphs, etc., to visualize the pattern in the dataset.

Anomaly Detection: We performed detection for the two computed features (Total

number of requests, Total response time for every 5-minute interval) using unsupervised

learning algorithms such as K-means Clustering, which groups data into clusters and

identifies the points that are away from the clusters. We also experimented with Gaussian

Markov models, KNN, Isolation forest, OC-SVM, Angle-Based, and Cluster-Based Outlier

Detection to identify the outliers using the two input features. As we collected data for over

a week, we observed that the ‘total number of requests’ feature followed a sequential

pattern that varied with time. The aforementioned unsupervised algorithms fail to learn the

temporal characteristics of the sequential data and hence, time-series models were tested

for our dataset.

We engineered a new feature “Average response time” of GraphQL using the 2 attributes

– “Total number of requests” and “Total duration”, to learn its timely pattern and create a

baseline for the average response time of the GraphQL service. When trace events were

collected for over three weeks or a month duration, sufficient enough to capture the ‘daily’

and ‘weekly’ patterns in the data, we experimented with statistical time-series models such

as ARIMA (Autoregressive Integrated Moving Average) which works for a stationary

time-series data, i.e., mean and variance are constant over time.

An Augmented-Dickey Fuller (ADF) test was conducted to check if the time-series data

(input data: Average response time, timestamp) is stationary or not. Since the data is

stationary with seasonal and trend patterns, it was converted to non-stationary for testing

the ARIMA model. SARIMA (seasonal ARIMA) was tested as well. Both the ARIMA and

SARIMA models yielded poor results and took a long time to process the data. Such

models allow only one independent variable or one feature such as Average response time

alone.

55

When the time-series data were decomposed into STR components (Seasonality, Trend,

Residue), after the seasonality was removed, we observe the ‘trend’ to follow an irregular

pattern/non-linear pattern. To build a statistical method that can describe this time-series

data, one would need to build a piece-wise function. This might be expensive to learn when

there is a large volume of data.

Considering the advantages of LSTM over ARIMA, SARIMA with respect to processing

speed, no pre-requisites of non-stationary data, allows multivariate data, and the ability to

handle long term and non-linear time-series data, we choose LSTM for time-series

forecasting. The predictions made by the algorithms are further utilized for the detection

process, which is discussed in Chapter 6.

Localization: For the localization process, we collect the Id, Parent ID, duration,

http.method, service name, http.host data fields from the trace events for all the

microservices to understand the communications calls across individual services. We use

‘Networkx’ python library to analyze and understand the network or the directed graph

structure connecting different microservices. The intrinsic details of how the casual

components for an anomaly are located are described in Chapter 6.

5.2 System Development Methodology

We adopted agile methodology to conduct our academic research where we broke the entire

process of research into various stages (described below) that were incremental and

iterative, rather than following a waterfall approach since it is not flexible for researching

as it gets complicated while following a sequential series of events and fails to adapt to any

new requirements with early delivery of small incremental builds. For example, after

conducting a literature review, analysis when we build a prototype and start the

implementation, we cannot improvise the prototype model or perform a literature review

again while we perform the implementation simultaneously. In research, these stages need

to be iterative and incremental.

Our agile research protocol involved the following stages:

56

1. Split the research activities – The activities were split into academic research and

a practical approach to solving the problem posed by our collaborator.

a) Requirements Gathering from Industry partner - In the preliminary stage,

we acquired the information from our industry collaborators regarding their

problems or requirements and goal (see Section 1.2) We gathered information

about the cloud system, system functioning, and the performance monitoring

issues that they were facing.

b) Performing Systematic Literature Review (SLR) - Based on the

information provided we started performing a systematic literature review. A

broad search was carried out to look for what and how different monitoring

problems were approached in the existing research works across various

domains and not limited to the computing field. We shortlisted research papers

that were dealing with Machine Learning since the old technologies or

traditional approach to solving those problems were outdated or not practical

in the current times for dealing with time-series data in a microservices

environment [38, 39]. We later filtered the papers by introducing the

combination of specific or similar keywords such as ‘Anomaly detection’,

‘Microservices’, ‘Cloud computing’, ‘Monitoring’, ‘Application performance

management’, ‘Machine learning’, etc. The study on existing works was

organized into a spreadsheet to keep track of papers that were reviewed and

the gathered related work was analyzed for research gaps.

c) Building Prototype - During the initial stage, based on the literature review

and gaps analyzed, we shortlisted a few approaches of ML to develop an initial

prototype or high-level design of the approach as discussed in the previous

Section 5.1. To test the applicability of the idea we tested the approach on a

sample data set before we gathered the actual data. Based on the results we

achieved using several approaches, we improvised the design of our initial

proposal iteratively and incrementally.

d) Setting up Infrastructure - Simultaneously, the infrastructure was set up by

our collaborator where a cluster in Elasticsearch System was configured to

57

collect data or tracing events from the microservices through Redis while they

were running in the production environment.

e) Data Collection and Analysis - During the preliminary stage, the data

collection process was carried out every day since it was a production-based

data and we did not have enough historical data to carry out the anomaly

detection. While the data was incrementally gathered, we processed the data

which was in the form of JSON objects, and analyzed the patterns via

visualization tools and graphs to better understand the nature of data to choose

the right approach. Over 900GB of pickle object files of trace events were

collected over 5-6 months from June to December 2019. Pickle module helps

to serialize python object structures like list, dictionaries, etc., into a character

stream before writing to a file. Using the character stream the python object

can be reconstructed during de-serialization of the objects using the pickle

module.

f) Implementation & Evaluation – During the initial stage, we implemented

basic unsupervised clustering algorithms, KNN, etc., to detect anomalies in

the data, and during the intermediate stage when we had collected enough data

we developed time series models such as ARIMA, SARIMA, Autoencoders,

since our data is sequential with temporal attributes as discussed in the

previous Section 5.1. Later with the help of domain experts, we manually

labeled the data to evaluate our approach. Based on the assessment of results,

feedback during sprint review meetings, and simultaneous study on existing

work we improvised our prototype at several stages until we finalized the

current proposed detection and localization system.

2. Sprint Planning - We conducted bi-weekly meetings with our supervisor and

industrial partner for a duration of about 30 minutes to an hour during initial stages

to brainstorm the ideas from both academic and industry point of view and discuss

the small goals for the next activity(Stage 1 activities) and plan out its duration.

3. Sprint Review Meeting - During the review meeting we discussed the results of

our work carried out and about the technical challenges or difficulties encountered

during the work, and brainstormed ideas on what could be done next.

58

4. Weekly Meetings - During the preliminary stage, we conducted meetings for

giving KT (Knowledge Transfer) or training us about the system. We had short

meetings with our collaborator to update on the ongoing tasks and discussed any

issues that we were facing.

All the above stages were performed in an iterative and incremental manner.

59

Chapter 6

6 Proposed Solution: Anomaly Detection

and Localization System

In this chapter, we describe our proposed automated system to utilize the distributed tracing

events of microservices on the cloud to detect anomalies in the performance metric data

through monitoring the Key Performance Indicators present in the tracing events and

further locate its causal component which will facilitate the DevOps or IT operations team

to take appropriate actions to fix them and maintain a healthy and stable cloud environment.

6.1 Generic System Design of the Proposed System

This research proposes an automated anomaly detection and localization framework, which

collects the distributed tracing events, which is discussed in the later section, generated by

the running microservices on the cloud, analyzes them to detect the performance anomalies

in it and identifies the causal or faulty components for the detected anomalies. Figure 6.1

provides a generic prototype of the proposed detection system, depicting how the control

is going to flow from one component to another to detect the issues in the microservices-

based cloud environment.

The data generated by microservices such as logs, metrics, tracing events that fall under

the categories of both structured and unstructured data are collected and used for further

analysis. Unsupervised machine learning techniques are applied to the collected data which

will identify and learn the patterns from different metrics of data such as Network usage,

Request Arrival, CPU usage, etc., and build a prediction model to generate the underlying

baseline for each of the performance metrics. This predictive model is further used to make

future predictions on the unseen data or the new incoming stream of data in real-time. As

the incoming stream is fed to the model, the model detects the data points that are deviating

from its learned behaviour or normal behaviour, labels them as anomalies, and sends the

results to the Alert Management system to take further actions.

60

Figure 6.1: Generalized layout of the proposed detection system

Figure 6.2: Context Diagram of the Proposed System

61

The microservices used in our work are the components - App Services, Dashboard, Data

Layer, GraphQL Layer, and sub-calls to POST, GET, Cache from GraphQL, that were

discussed in Chapter 4. Figure 6.2 shows the context diagram of the system where the

proposed black-box anomaly detection and localization system fits. When the requests flow

through these microservices (refer Figure 4.4 as well), the tracing events are generated for

every service or component during a transaction and stored in the ElasticSearch system

which is used for further analysis by the proposed black-box system as shown in Figure

6.2. The proposed system further sends an anomaly report to the Alert management system

when it identifies and locates the anomalies and its causal components respectively.

6.2 Detailed Layout of Proposed System

The intrinsic details of the proposed system are shown in Figure 6.3. The proposed system

has 5 modules - Data Extraction Module, Data Pre-Processing Module, Detection Module,

Localization Module, and Information Module. The data flow starts from the Data

Extraction module, where the tracing events of different services are extracted from the

ElasticSearch (ES) system and further processed using the Data Pre-Processing module.

The data is further fed to the Detection module and Localization module to detect and

locate the root cause of the anomalies respectively. The functionality of each module is

explained in detail as follows.

62

Figure 6.3: Detailed layout of the proposed anomaly detection and localization system

When the request flows through Apps Services -> Dashboard, Dashboard -> Data Layer,

Data Layer -> GraphQL Layer (see Figure 4.4), the tracing event data is captured at each

span/component during this transaction. There could be several such transactions

happening frequently and flowing through a different set of microservices before reaching

the GraphQL Layer. We capture all these transactions where requests are made to the

GraphQL layer on a daily basis to collect the data. Each transaction is stored in an index

named “cloud-datalayer” in the Elasticsearch (ES) system as shown in Figure 6.2. The data

captured includes a stream of tracing events generated by OpenTrace library which

includes trace fields such as Trace ID, Span ID (each step in a transaction), Parent ID,

duration, status code/error message, annotation, etc., which was discussed in Section 4.1.2.

The metadata or the data fields of the tracing events used in this work are described in

Table 5.1.

63

6.2.1 Raw Data

The raw data stored (refer Table 5.1) in the ElasticSearch system (ES) is extracted into the

local system for further data pre-processing and analysis. In this section, we discuss the

raw data or the tracing events stored in ElasticSearch system that is being used for our

work. To select transactions that have made calls to GraphQL, a filter for ‘name’ field

equivalent to ‘/datalayer/graphql’ is applied under the index “cloud-datalayer” from ES

cluster. Figure 6.4 shows the event information with distributed tracing fields for the

GraphQL layer for a given range of timestamps. These events have data fields such as

Trace ID, ID/Span ID, Parent ID, Duration, Error codes, etc., which were discussed in

detail in Section 4.1.2. Every record in the figure is an individual span belonging to their

associated distinct transaction/trace ID. For example, the first record in Figure 6.4 is a span

for the red highlighted trace ID or transaction.

Figure 6.4: Trace data stored in the ElasticSearch cluster displayed using the Kibana tool.

Under index: “Cloud-Datalayer” or “datalayer*”, a filter is applied for name:

“/datalayer/graphql” to check the distinct transactions or requests to GraphQL Layer.

64

On applying the filter for the ‘traceId’ field with this highlighted trace ID, we can check

the detailed description of the flow of calls through various components for the highlighted

transaction ID as shown in Figure 6.5. We can selectively choose the fields that we are

interested in looking at and as depicted in the figure we can trace out the flow of an entire

transaction by using parent ID associated with every span or ID. All the rows in Figure 6.5

are the spans or sub-calls to complete one transaction.

Every transaction has a varying number of spans that takes a certain amount of time to

complete its execution. In one minute, hundreds of thousands of transactions/requests get

processed. In this work, the transactions or trace IDs are grouped for every 5-minutes

interval.

1 minute -> ‘n’ requests (or) transactions

1 transaction -> ‘m’ spans

Figure 6.5: Displaying the tracing information for one trace ID or transaction.

6.2.2 Data Extraction Module

The Data extraction module is responsible for extracting the raw data or trace events from

the ElasticSearch (ES) system for all the services or components. In this section, we

describe how data extraction is carried out using 5 steps.

65

1. Trace IDs Collection: The trace IDs of the transactions routing through the

GraphQL layer is collected from “cloud-datalayer” index for every 5-minutes

interval. The Trace IDs collected are stored in separate pickle object files for each

5-minute bucket in our local system instead of JSON files in order to save the

storage space and for faster processing. Since the data is collected for every 5

minutes interval, there will be 288 files generated per day.

2. Fetch Trace Information: The pickle object files generated from step 1 is loaded

to read the Trace IDs and fetch all its detailed information, i.e., all its span

information from the “cloud-datalayer” index using the ‘traceId’ field as a filter.

The ES system returns a maximum of 10,000 JSON objects for any given input

query. But if there are say, 2000 Trace IDs in any given 5-minute interval and if

each Trace ID has at least 20 spans, then there will be 2000*20 = 40,000 JSON

objects/ span details to be fetched from ES for given single query. Hence, to handle

the size restriction, a simple concept of slicing is used, which slices the TraceIDs

list from every input file into different smaller bucket lists which are further passed

to the function to triggering the ES system to fetch trace information one by one.

An email alert is sent once all the trace ID’s detailed information using 5-minute

interval files is fetched as given in Figure 6.6. This process also generates 288 files

per day.

Figure 6.6: Email Alert after fetching trace information data from ES.

66

3. Generate Request Summary Information: All the files generated from Step 2

above is used to generate summary data of GraphQL requests. Summary data for

GraphQL indicates the Total number of Requests, Total Duration, and Status codes

for every 5-minute interval for GraphQL component alone. One trace indicates a

single request. Hence, the total number of traces is counted, and the duration of

each trace is aggregated for every 5-minute interval. The summary data is then

stored in a single pickle file object which is later used in the anomaly detection

module.

4. Generate Individual Summary Information: All the files generated from Step 2

is also used to generate summary information similar to Step 3 for each sub-calls

or sub-components of GraphQL. By sub-components, we mean the GET, POST,

and Cache requests from the GraphQL layer as seen in the previous chapter. These

3 individual requests from GraphQL are grouped into 3 buckets: GET, POST and

Cache, and assumed to be individual components as an analogy to successive

components. This summary information for 3 sub-components is stored in a

separate pickle file object for each sub-component which is later used in the

localization module.

5. Trace-Date Collection: The individual files generated in step 1 that has a list of

Trace IDs for specific 5-minute intervals or date timestamp is utilized to aggregate

the trace IDs across all the timestamps. This file is used in the Information module

as a part of the validation to check if a particular TraceID exists or not, and provide

the details of the occurrence of a trace if it exists. It consumes a significant amount

of time to iterate through all the files generated for validation or to check when a

particular transaction happened. Hence, a list of dictionaries is created which stores

dates/timestamp of the 5-minute interval as keys and Trace IDs as values for the

keys for a quick lookup of trace IDs.

Over 900GB of pickle files were collected on a daily basis over 5-6 months so that there is

enough data to train the deep learning model.

67

6.2.3 Data Pre-Processing Module

The unstructured summary data generated and stored in pickle file objects in the Data

Extraction module is read, formatted, and loaded into data frames in Python notebook for

further pre-processing and analysis. The ‘Response/status codes’ feature clubbed together

as a single JSON object is split into series, making each status code a different attribute in

the dataset. The date interval which doesn’t have any values (with NaN) for a given status

code is filled with 0’s.

Figure 6.7: Data loaded in a Dataframe

Figure 6.8: Average Response Time calculated and Status codes split into series are

loaded in the data frame

Feature Engineering: New features or attributes are engineered from the existing features

as shown in Figure 6.9. Since the network operation data is grouped into 5-minute buckets,

the average response time of GraphQL for the 5-minute interval is used as the performance

indicator. The Average Duration or Average Response Time is calculated as Total

Duration/Total Requests for every 5-minute interval. New features are engineered out of

the timestamp such as the day of the week, daylight or night time, the hour of the day,

weekday or weekend, holiday or non-holiday. Additional features such as average response

68

time 5 minutes back, 1 hour back, 1 day back from the current timestamp are added by

shifting the values of average duration by 1, 12, 288 values respectively. These new

features are added since this will help a model to better interpret the patterns or represent

structures or seasonality in the data.

Figure 6.9: New features engineered

Feature Scaling: All the features in the dataset are on drastically different magnitude

scales. For example, the value of the ‘total number of requests’ is ‘1223’ and the value of

‘total response time’ is ‘728365.917’ as shown in Figure 6.7. Features with differing scales

can impact the machine learning process where one feature can have more influence than

the other. Feature rescaling is done by normalization which makes sure that all the features

are given equal importance [107]. Normalization makes the optimization process of a

neural network smooth [47]. In this dataset, min-max normalization is used where the

features are scaled to [0,1] range so that features have a positive range of values rather than

standardization which produces [-1,1] values, which is not applicable for features like

response times. Min-Max normalization is formulated as given in Equation 6.1 [47], where

𝑥′ is the normalized value and 𝑥 is the original value of the feature.

𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (6.1)

The pre-processed data extracted from a large number of trace events is next used in the

Anomaly Detector Module.

69

6.2.4 Anomaly Detector Module

The Anomaly Detector module detects the performance anomalies by using the proposed

novel combination of a deep learning model and an unsupervised learning algorithm to

generate a baseline for the expected average response time of the GraphQL component and

detect anomalies when data deviates from the expected baseline. Firstly, a time-series

based prediction model is built using LSTM to learn the pattern of the time-series data and

forecast future values of the features. Later, anomaly detection is performed by applying

an unsupervised learning approach to prediction errors. The working mechanism of this

module is explained in detail below.

6.2.4.1 Training and Testing Datasets

The dataset used for building the model is a real-world production dataset. The detection

approach is based on the assumption that the majority of the data is normal and only a few

anomalies exist in the historical data collected. The data is split into training and testing

sets. The data used for training is expected to be normal i.e., without any anomalies. Since

the data was captured from the production environment, the data consists of anomalies.

Training the data with anomalies is not appropriate as the model has more chances to learn

the anomaly pattern and would fail to detect anomalies when it encounters one. Hence, for

training the model we used the portion of data which looks normal based on visualization

of ‘Average Response Time’ feature of the GraphQL service (for example from 21st

September to 30th October 2019) as depicted in Figure 6.10, and the last portion of the data

is used for testing purpose.

For the time-series prediction model, two variants of data: Univariate data, which consists

of a single feature - “Average Response Time” and Multivariate data which consists of

multiple features is used for our experiments which are discussed in Chapter 7.

70

Figure 6.10: Average response time (in ms) of the GraphQL component plotted against

the x-axis timestamp

6.2.4.2 Time-Series Forecasting Model

LSTM model is used for the time-series forecasting. For a time-series prediction, the

unsupervised problem, i.e., there are features, say Average Response time without any

labels, is converted into a supervised problem by partitioning the time-series data into two

features, one as input sequence and the other as the target sequence. The partitioning

process requires two parameters to be set, namely, lookback as l and future_steps as f using

which the model predicts the next ‘f’ values by looking back past or previous ‘l’ values.

For instance, given an unlabeled sequence of time-series values T1, T2, T3, T4, T5, T6,

T7, T8, T9, T10, for a lookback=3 and future_steps=1, conversion from unsupervised to

supervised takes place as follows:

 <<Input>> ---> <<Target>>

 T1, T2, T3 ---> T4

 T2, T3, T4 ---> T5

 …........

 …........

 T7, T8, T9 ---> T10

 T8, T9, T10 ---> T11

The model learns using the input sequences and target sequences, where past 3 timestep

values are used to predict the next 1 timestep value. For the given input data of ‘T1-T10’,

the model predicts ‘T11’ as highlighted above. Both the training and testing dataset is

partitioned by specifying these two parameters. The model building involves 5 steps –

Defining, Compiling, Fitting, Evaluating, and Making Predictions.

71

To define a network means setting up the model architecture for which an instance of a

Sequential model is initiated so that all the layers in a network are stacked sequentially.

The layers are then created and added in order. The input sequence of partitioned time

series or training data is reshaped into three-dimensional data, which comprises samples,

timesteps, and features and fed as an input to the first layer. We then add other hidden

LSTM layers depending on the requirement. The network usually consists of multiple

hidden LSTM recurrent layers with a different number of units followed by an output layer

which is a fully connected dense NN layer used for outputting predictions. The number of

units in an output layer is the same as the future_steps value, with one neuron for each

future value. The dropout layer is used between two consecutive recurrent layers to prevent

over-fitting. Over-fitting is a modeling error where the model works well on a training set

but performs poorly on a testing set.

Once the network is defined, it is then compiled. The sequence of layers is transformed

into a series of matrix transforms during the compilation process. It requires certain

parameters to be specified for training the network, such as the optimizer and loss function

parameter. The loss function evaluates the network to determine its loss which the

optimizer aims to minimize.

Post compilation, the network is fit. Fitting requires the training data to be specified, both

the input and target sequence of the partitioned training dataset. The model is trained using

a back-propagation algorithm (refer Section 2.4.2) for a specified number of epochs and

optimized by the optimization algorithm and loss function. Batch size is specified that

controls the number of training samples a network is exposed to before the weights are

updated within an epoch.

The network later is evaluated on training and validation data using metrics such as the loss

and accuracy of its prediction. The loss and accuracy plots of training and validation data

determine the model fitness, if it’s a good fit, underfit, or overfit. Once the performance of

the fit model is satisfied (good fit), the model is used to make predictions on the testing

dataset.

72

The LSTM prediction values or forecast errors are further passed to the unsupervised

ensemble learning algorithms to detect the anomalies which is described in the next section.

6.2.4.3 Anomaly Detection Process

The predictions made by the LSTM model is compared with the actual value of the input

feature to calculate the forecasting errors. The forecasting errors are modeled to fit a

multivariate gaussian distribution. The error vectors far away from the mean of the

gaussian distribution are likely to be anomalous. Hence, a distance measure is used to

compute the distance of every error vector from the distribution. Mahalanobis’ distance

measure is used in this approach which is an effective multivariate distance metric that

computes the distance between a point and a distribution. Larger distance value indicates

that the error vector point is far away from the gaussian distribution indicating that the

corresponding data point as an anomaly as shown in Figure 6.11.

Figure 6.11: Mahalanobis distance values (y-axis) of error points from the gaussian

distribution plotted against timestamp (x-axis)

These distance values can be used as anomaly scores wherein a threshold needs to be set

for the distance factor in order to detect the anomalies. But this step of static thresholding

is not advisable since it would require a change in threshold value when the nature of data

changes. It would require the operations team to update ‘n’ different sets of threshold

values for ‘n’ different services on a timely basis, which makes it no different than

traditional statistical methods from the manual efforts' perspective.

To tackle this, a dynamic anomaly scoring mechanism has been used. The distance values

computed by Mahalanobis’ distance is fed to an unsupervised outlier detection algorithm

that detects outlying distance values. The detected distance outliers correspond to the data

73

points that are anomalous. The distance values are fed to three different unsupervised

outlier detection algorithms – (i) Isolation Forest, (ii) One-Class SVM, and (iii) LSCP –

Locally Selective Combination of Parallel Outlier Ensembles. LSCP in itself is a parallel

outlier ensemble that facilitates us to combine the existing unsupervised algorithms such

as KNN, LOF, Isolation forest, and selects base detectors for test instance in the local

region [91].

Figure 6.12: The bottom plot shows the Actual Average Response Time values of

GraphQL. The top plot shows the Mahalanobis distance values of prediction error points

from its distribution

The distance values of each error point from its distribution are fed to these unsupervised

techniques to identify the outlying error points (points lie in the purple region of Figure

6.12 top plot) which are far away from their distribution. These outlying points indicate

anomalies and thus, the data points corresponding to these outlying error points are

declared as anomalies (points within the purple region of Figure 6.12 bottom plot).

6.2.5 Localization Module

The localization module aims to identify the root cause, or the causal component of the

anomalies detected by the previous module, Detector module. For the detection module,

the data is considered specific to the GraphQL service as mentioned in Section 6.2.4 (also

74

see Figure 6.3). The detection module uses the proposed LSTM and unsupervised learning

ensemble to detect anomalies when GraphQL’s average response time deviates from the

expected baseline.

 It is known that the total time taken by the GraphQL depends on the time taken by its

spans/sub-components. Hence, this module determines which of its sub-component is

responsible for the anomalies, i.e., responsible for degrading the overall GraphQL

performance. Hence, for the localization module, the request propagated from GraphQL

service to its sub-components (its child nodes) – POST, GET, CACHE is taken into

account.

The total number of requests and the total time taken by each span in the transaction are

extracted and grouped into 3 common buckets – POST, GET and CACHE using their name

field from the tracing events data to get the individual summary information for each sub-

components/buckets during the data extraction process as discussed earlier (see Figure 6.3).

This individual summary information, for 3 sub-components is pre-processed in the data

pre-processing module before it is fed to the detectors inside the Localization Module (see

Figure 6.3).

 The Localization module includes 3 different detectors for each of the 3 sub-components

and a mapper which receives the results of 3 individual detectors and the GraphQL

Detector module. The Detection module detects anomalies for GraphQL’s average

response time data, whereas the 3 individual detectors detect anomalies in case of deviation

from the expected average response time for each child nodes: POST average response

time, GET average response time and Cache average response time respectively. Later, the

mapper uses a simple mapping technique to map the GraphQL detection results with its

corresponding span/sub-components’ detection results using their timestamps.

75

Figure 6.13: Tracing events of requests propagating from component A to C.

As depicted in Figure 6.13, consider component C as the GraphQL component and its sub-

components D, E, and F as POST, GET, and Cache respectively. The mapper maps the

corresponding timestamps of the GraphQL anomaly detection results (i.e., the anomalous

intervals of GraphQL data) with the timestamps of its span’s anomaly detection results (the

anomalous intervals of POST, GET, Cache data) and declares a sub-component as the

causal component when there is a match between the timestamps of their results. The

mapper generates the results in the form of a report depicting the duration/timestamp of

anomaly along with the details of its causal components. These results are further sent to

the alert management system to take further action.

6.2.6 Information Module

The information module allows the user to access details of the tracing events (refer Figure

6.3). When a user wants to access information about a specific transaction, then they can

use this module for accessing the event details. The user is presented with different options

such as Trace Graph View, Trace JSON display, Summary of Trace.

i) Trace Graph View: generates a Directed Acyclic Graph (DAG) of a particular

transaction or trace ID, that a user is looking for, along with the details of the parent-

child relationship between the spans. It generates two different layouts of DAG –

Spring layout and Kamada Kawai layout. Spring layout generates a directed graph

in a spherical manner whereas Kamada Kawai layout places nodes at hierarchical

levels, as shown in Figure 6.14. The directed acyclic graph displays the nodes or

76

spans starting from Datalayer(cyan colored node) followed by GraphQL(red node)

with requests later propagating to POST (blue node), GET(green node), Cache

(purple node) components.

Figure 6.14: Spring layout (top plot) and Kamada Kawai layout (bottom plot)

ii) Trace JSON display: generates the trace event information in JSON format the

same as how it is stored in the Elasticsearch system.

iii) Summary of Trace: This option provides a summary of the trace ID or transaction

which includes the total number of spans or nodes in the transaction, Node ID, and

time taken by each node in milliseconds and how each node is interconnected to

each other by determining its parent-child relationship.

77

Chapter 7

7 Experiments and Results

The proposed approach for anomaly detection using a novel combination of LSTM deep

learning model and unsupervised ensemble outlier technique - LSCP, is experimented on

a real-world tracing dataset collected from running microservices that was provided by the

collaborating organization. The data was collected for a duration of approximately 6

months from June 2019 to December 2019. As discussed in the previous chapter, the

tracing events were grouped into 5-minutes interval, processed and key performance

indicator such as Average response time and other features were used for building a

detector model to forecast the future average response time of service and further predict

anomalies using forecast and actual data using the proposed approach. In this section we

discuss the conducted experiments, present their results and findings.

7.1 Program Libraries

The proposed approach was implemented in the Python programming language using

various libraries as described in Table 6.1. The experiments were conducted on a personal

computer with following specifications: Processor Intel(R) Core(TM) i5-7200U CPU @

2.50GHz, 2712 Mhz, 2 Core(s), 4 Logical Processor(s),8GB RAM, 1TB HDD and also on

Google Colaboratory (Colab) that runs on Google Cloud server providing GPU.

Library Name Purpose Description

pandas

 ▪pandas.io.json:

json_normalize

 ▪DataFrame

 ▪read_csv

 ▪concat

 ▪pandas.tseries.holiday:

USFederalHolidayCalendar

Pre-processing pandas offer data structures and operations

for manipulating numerical tables and time

series. It is free software released under the

three-clause BSD license.

numpy Pre-processing NumPy is adding support for large, multi-

dimensional arrays and matrices, along

with a large collection of high-level

mathematical functions to operate on these

arrays.

78

sklearn

 ▪preprocessing:

MinMaxScaler, StandardScaler,

LabelEncoder

 ▪sklearn.metrics:

mean_squared_error,

confusion_matrix,

accuracy_score,

classification_report,

accuracy_score, precision_score,

recall_score, f1_score,

roc_auc_score,

confusion_matrix

 ▪sklearn.cluster: KMeans

 ▪model_selection:

train_test_split

 ▪sklearn.ensemble:

IsolationForest

 ▪sklearn.svm: OneClassSVM

Evaluation, Data

Modelling

Scikit-learn is a free software machine

learning library for the Python

programming language. It features various

classification, regression, and clustering

algorithms. It also includes matrices and

preprocessing operations for the dataset

json Data Handling JSON (JavaScript Object Notation)

encoder and decoder

urllib3 Internet Protocols

and Support

urllib3 is a powerful HTTP client for

Python

requests Internet Protocols

and Support

Requests verify SSL certificates for

HTTPS requests

certifi Internet Protocols

and Support

Certifi is a selected collection of Root

Certificates, extracted from the Requests

project, to validate the trustworthiness of

SSL certificates verify TLS hosts' identity

smtplib

 ▪ SMTPException

Internet Protocols

and Support

Used to send mail to any Internet machine

with an SMTP or ESMTP listener daemon

by defining an SMTP client session object.

pickle Data Persistence Used to serialize and de-serialize Python

object structure

elasticsearch Data Access

Protocol

Used to access ElasticSearch system using

python

time Time access and

Conversions

Provides various time-related functions

datetime

 ▪ datetime, date, timedelta

Data Types Provides classes to manipulate dates and

times

dateutil.parser Data Types Used to parse most known formats to

represent a date and/or time

pydrive

 ▪pydrive.auth

 ▪pydrive.drive

Internet Protocols

and Support

PyDrive is a wrapper library of google-api-

python-client used to simplify Google

Drive API tasks

google.colab Protocol Colab is cloud service offered by Google

to run notebooks on its server. It offers

GPU for free.

79

os Generic Operating

System Services

Provides a portable way of using operating

system dependent functionality such as

reading a file

matplotlib

 ▪pyplot: plot, show

Data

Visualization

To create interactive visualizations in

Python

keras

 ▪models: Sequential

 ▪layers: LSTM, Dense,

Dropout

 ▪callbacks: EarlyStopping

 ▪optimizers

Neural Network Keras is an open-source library or high-

level neural networks APIs, written in

Python and supports multiple back-end

neural network computation engines

(TensorFlow, Microsoft Cognitive

Toolkit, R, Theano, or PlaidML).

networkx Directed Acyclic

Graph

Visualization

NetworkX is a Python package used to

create, manipulate complex graphs and

networks.

pyod

 ▪ pyod.models.iforest: IForest

 ▪ pyod.models.knn: KNN

 ▪ pyod.models.lof: LOF

 ▪ pyod.models.lscp: LSCP

Data Modelling pyod is python toolkit for outlier detection

and provides various individual

algorithms, Outlier Ensemble and

Detector Combination Frameworks

Table 7.1: List of Libraries used

7.2 Exploratory Data Analysis

After the data is pre-processed, it is examined to check the patterns in it visually through

graphical representations. A subset of data is visualized graphically in order to understand

the behavior and nature of data such as the request arrival pattern during weekdays and

weekends as shown in Figure 7.1.a) and processing time for those requests as shown in

Figure 7.1.b).

80

Figure 7.1: a) Total number of Requests for every minute interval captured for over a

month (top plot), b) Total Duration taken by GraphQL service to process those requests

(middle plot), c) Average Response time of GraphQL service for the total number of

requests and its processing time (bottom plot).

As shown in Figure 7.1.a), we observe the pattern of the total number of requests that the

GraphQL service receives. It follows a periodic seasonality or repeated patterns (weekly).

There are fewer requests during the weekends (such as the lower spikes on 21st & 22nd

September 2019) compared to the weekdays. And for a given day, there is a large number

of requests during the daytime compared to the night as shown in Figure 7.2.a). The number

of requests fluctuates with an increasing trend throughout the day reaching a peak around

the afternoon which continues to decrease further towards the end of the day.

81

Figure 7.2: a) Total Number of Requests in a day (top plot), b) Total Number of Requests

for a day of the week (leftmost middle plot), c) Total Number of Requests for a time of

the day (rightmost middle plot), d) Total Number of Requests for an hour of the week

(bottom plot)

The number of requests is plotted against the day of the week where ‘0’ indicates Monday,

‘1’ as Tuesday and so on, as shown in Figure 7.2.b) depicting a low number of requests

during weekends. In Figure 7.2.c), the total number of requests feature is plotted against

‘time of the day’ where values (1-6) are denoted as follows:

1 - Midnight: 12 am to 4 am

2 - Early morning: 4 am-7 am

82

3 - Morning: 7 am-12 pm

4 - Afternoon: 12 pm-4 pm

5 - Evening: 4 pm-7 pm

6 - Night: 7 pm-12 am

As per Figure 7.2.c), we observe that GraphQL receives a large number of requests during

the afternoon between 12 pm to 4 pm and least during midnight from 12 am to 4 am, which

can also be seen in Figure 7.2.d). Once, the data is explored visually to understand the

pattern, the next step is to accordingly use the data in an appropriate manner to build the

model. Data Analysis is crucial to understand how to split the series data into input and

target sequences, and its consequences while training the LSTM time series model. The

lookback and future_steps parameter provided to the model is highly dependent on the

nature of the dataset, hence it is visually explored and analyzed beforehand to understand

its temporal behaviour.

7.3 Experiments on Detection Module

The summary data (Total Requests, Total Duration) generated from the Extraction module

is pre-processed in the Data Pre-processing module, which generates new features

(Average Response time, weekday/weekend, day of the week, etc.) and normalizes the data

before it is fed to the Detection module. The dataset consisted of 53,410 samples from June

2019 till December 2019. By samples, we mean the traces or transactions processed by the

GraphQL layer. For the first set of experiments on Anomaly detection, the last half portion

of the data (from 21st September 2019) was considered. We conducted two main

experiments by modeling two variants of LSTM: Univariate LSTM and Multivariate

LSTM. Each of these two models was tested for different prediction lengths: Single-Step

and Multi-Step. The details for these experiments are described as follows:

7.3.1 Experiment 1: Univariate LSTM + Unsupervised Ensemble

For experiment 1, univariate data is used to build the LSTM model. In univariate, only one

feature is considered, which in our case was ‘Average Response Time’, ordered in a timely

fashion using timestamp feature. The dataset used for the experiment is from 21st

September to 30th October 2019, resulting in 11521 samples, which is divided into a 62:38

ratio for training and testing purposes. The data used for training is assumed to not have

83

any sort of anomalies and thus is selectively taken from 21st September until 15th October

2019 and the remaining 38% until 30th October is used for testing the model. Each of the

training and testing samples is converted into respective formats of input and target

sequences required by the LSTM time-series model using the parameters – ‘lookback’ and

‘future_steps’. The model uses ‘lookback’ number of time steps as its input to predict

‘future_steps’ number of time steps. The model is tested for various combinations of input

length and prediction length. Input length or a ‘lookback’ of 12, 24, 48, 288 is chosen,

which for a 5-minute interval of data represents the usage of the previous 1 hour, 2 hours,

4 hours, 24 hours values as lookbacks respectively.

7.3.1.1 Experiment 1.1 - Single Step

For experiment 1.1, lookback of 12 and prediction length of 1 was used. An LSTM model

with 5 recurrent layers in total with a decreasing number of neurons [64, 48, 32, 16, 8] from

top to bottom layer followed by a dense output layer with the number of neurons the same

as prediction length(future_steps) was built as given in Table 7.2. The first layer with 64

neurons accepts input samples with a lookback of 12 timesteps and its output is fed to the

next recurrent layer after a drop out of 20%. Each recurrent layer is followed by a drop out

layer which stochastically reduces the number of neurons while training to prevent

overfitting of the model. The prediction model was trained using Adam optimizer with a

learning rate of 0.0001 and the default values of beta_1 as 0.9, beta_2 as 0.999, epsilon as

1e-08, decay as 0.0, using Mean Squared Error as loss function and a batch size of 30. The

model was trained for 100 epochs and during each epoch, 20% of the training samples were

used for validation purposes. The trained model is evaluated using test data as shown in

Figure 7.3.

Experiments Model

Architecture

Optimizer Epochs Batch

Size

Lookback Future

Steps

RMSE

Experiment 1 LSTM (64)

Dropout (0.2)

LSTM (48)

Dropout (0.2)

LSTM (32)

Dropout (0.2)

LSTM (16)

Dropout (0.2)

LSTM (8)

Dense

Adam:

learning

rate=0.0001
beta_1=0.9
beta_2=0.999
epsilon=1e-08
decay=0.0

100 30 12 1 Train Score:

88.63 RMSE

Test Score:

145.47

RMSE

Table 7.2: LSTM Model details for lookback 12 and prediction length 1

84

Figure 7.3: LSTM Training and Prediction. The model predicted average response time

values for the training set (in blue) and the testing set (in red) is plotted overlapping on

top of actual or expected average response time values (in black).

After forecasting, the forecast errors computed using actual and predicted values were

modeled using gaussian distribution. Mahalanobis distance measure was used to calculate

the distances of each error vector point from its distribution using mean and covariance

variables of the errors. The error points which are far away from the distribution indicates

that those points as anomalies.

Figure 7.4: The bottom plot shows the Actual Average Response Time values (testing

set). The top plot shows the Mahalanobis distance values of prediction error points from

its distribution.

As shown in Figure 7.4, the points with higher Mahalanobis distance values, shaded in

purple, indicates the existence of anomalies in that region. This is plotted against actual

85

values where we observe that the shaded region in the bottom plot at the same spots as the

corresponding top plot shows higher average response time values, which are nothing but

the anomalies. Hence, a higher Mahalanobis distance value indicates a larger prediction

error which in turn reflects the corresponding data point as an anomaly.

To identify the outlying Mahalanobis distance (m_dist) values for anomaly detection, these

distance values were fed to 3 different types of unsupervised learning techniques: Isolation

Forest, One-Class SVM, and LSCP methods. Apart from the proposed approach, an

existing threshold-based approach was experimented using two different values of

threshold (5, 10) to detect the anomalies and compare its results with the proposed

approaches.

For the proposed approaches, the following hyper-parameters were used as follows. An

Outlier fraction of 0.01 was used for all the 3 techniques to check which error points were

far away from the Gaussian distribution, i.e., outlying Mahalanobis distance values. For

the ‘LSTM + LSCP’ ensemble method, 4 different variations of LSCP ensemble methods

were used. In ‘LSCP-1’ ensemble method, LOF with 10 neighbors and 0.01 contamination

as parameters, and KNN with default parameters were used as base detectors. In the

‘LSCP-2’ ensemble, three LOFs each with neighbors 12, 24, 48, and 0.01 contamination

parameters respectively were used as base detectors along with KNN. In the ‘LSCP-3’

ensemble method, four LOFs each with neighbors 12, 24, 48, 60, and 0.01 contamination

as parameters respectively were used along with KNN. In the ‘LSCP-4’ ensemble, the

outlier fraction was set to 0.009 instead of 0.01, unlike previous ensembles and four LOFs

with neighbors 12, 24, 36, 48, and 0.01 contamination along with KNN using neighbors 12

as parameters were used.

Comparison of results by ‘LSTM + Isolation Forest’, ‘LSTM + One-Class SVM’, ‘LSTM

+ LSCP’ and ‘LSTM + Existing Threshold’ approaches are shown below.

86

Figure 7.5: Anomalies detected using a threshold of Mahalanobis distance > 10.

In Figure 7.5, the black dots in the top plot represents the Mahalanobis distance values of

prediction errors greater than the cut-off value of 10. The bottom plot shows the actual

‘average response time’ values (testing set) with anomalies (red dots) detected when a

threshold of m_dist or Mahalanobis distance greater than 10 is applied. Similarly, the black

dots in the top plot of Figures 7.6 and 7.7 denote the outlying distance values of forecast

errors detected by LSCP-4 and OC-SVM respectively. Their bottom plot shows the actual

average response time values with anomalies detected when its corresponding m_dist

values were detected as outliers by LSCP-4 and OC-SVM respectively.

Figure 7.6: Anomalies detected using LSTM + LSCP-4 ensemble approach

87

Figure 7.7: Anomalies detected using LSTM + One-Class SVM ensemble approach.

The data points or peaks falling in the red shaded region of the bottom plots are considered

as anomalies. These individual data points detected as anomalies can be termed as point

anomalies. Also, since we group the requests into a 5-minute interval, these anomalies fall

under the category of collective anomalies as well. This region has been identified as the

anomaly zone area by the validation experts from the collaborating organization for

detecting and alerting the points falling in this region as anomalies.

We have detected anomalies for the testing data and captured their results for all the

mentioned ensemble approaches as given in Table 7.3 and Table 7.4 which is discussed

below. As per the anomaly zone identified by the domain experts, we labeled the test data

manually under their supervision.

Apart from validating the results visually through graphs for all the individual dates of test

data, the manually labeled data was used to generate a confusion matrix for each of the

tested approaches and metrics such as precision, recall, F1-score, specificity, and accuracy

were calculated. In unsupervised learning, where the data is unlabeled, the results are not

validated by such techniques and are not appropriate either. But we leveraged the label

information to validate the unsupervised methods like any other supervised method under

the guidance of domain experts.

Confusion Matrix: [[TN FP] [FN TP]]

88

Table 7.3: Experiment – 1.1 Results: Confusion Matrix of all the tested approaches

Method Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.643 1.000 0.995 0.783 0.995 20 + 0 = 20

LSTM + Threshold 10 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + LSCP1 0.795 0.972 0.998 0.875 0.998 9 + 1 = 10

LSTM + LSCP2 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP3 0.795 0.972 0.998 0.875 0.998 9 + 1 = 10

LSTM + LSCP4 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + Isolation Forest 0.837 1.000 0.998 0.911 0.998 7 + 0 = 7

LSTM + One-Class SVM 0.359 0.389 0.994 0.373 0.989 25 + 22 = 47

Table 7.4: Experiment-1.1 Results: Using Evaluation Metrics

Given the fact that in an anomaly detection problem, there is a large proportion of normal

points and very few outliers in the dataset, we consider the metrics such as precision, recall,

and F1-score rather than the accuracy metric to evaluate the models for such imbalanced

datasets. As per the results tabulated in Table 7.4, ‘LSTM + LSCP-4’ and ‘LSTM +

Threshold10’ has achieved a higher precision score of 87.5%, followed by LSTM +

Isolation Forest’ with a precision score 83.7% respectively. In terms of recall metric,

‘LSTM + Isolation Forest’ and ‘LSTM+Threshold-5’ has achieved 100%, followed by

‘LSTM + LSCP-1’, ‘LSTM + LSCP-3’, ‘LSTM + LSCP-4’ and ‘LSTM + Threshold-10’

all with 97.2% respectively.

➢ 87.5% Precision (~
7

8
 fraction) signifies that out of every 8 anomalies detected by

the ‘model’, 7 of them are identified correctly by the model.

➢ 100% Recall signifies that the model identifies all the anomalies present in the

‘system’. If there are 10 anomalies in the system, the model identifies all the10.

Since it is important to ‘correctly’ identify anomalies (Precision) and also to identify ‘all’

anomalies (Recall), we calculate the F1-score which gives equal weightage to both

precision and recall in order to compare the performance of different models.

89

As shown in Table 7.4, ‘LSTM + LSCP-4’ and ‘LSTM + Threshold-10’ has a higher F1-

score of 92.1% followed by ‘LSTM + Isolation Forest’ and LSTM + LSCP-3’ with F1-

scores of 91.1% and 87.5% respectively. Among all the ensembles, ‘LSTM+OC-SVM’ has

the lowest F1-score of 37.3%.

As per the F1-Score measure, with 92.1% score, the ‘LSTM + LSCP-4’ and ‘LSTM +

Threshold-10’ models are the best models for this experiment.

Dual Validation - To reiterate, the dataset was split into training and testing set to train

the LSTM model to learn the patterns in the data, further predictions were made using the

test set. The prediction errors/distance values of error points were fed to the second module

of unsupervised outlier detection methods (LSCP/OC-SVM/IF) to detect the anomalies

present in the test set. Here, the unsupervised techniques in the second module were

directly fit and tested on the same test set. Hence, to evaluate the generality of the second

module, the entire combination of LSTM and unsupervised outlier detection ensemble was

evaluated as a whole for another sample of data. The data tested previously was a subset

of historical data. Hence, for the secondary validation of the whole proposed combination,

a very small sample of data from 16th to 18th December 2019 shown in Figure 7.8, was

used for evaluation.

This data was also extracted in the same way as the previous dataset from September to

October for every 5-minutes interval. The dataset was chosen for specific dates, which are

around 2 months ahead of the previous dataset, to test the generalization and applicability

of the proposed ensemble detection model throughout months without requiring re-

training. Secondly, the length of data is cut short to 2 days rather than using a large dataset

so as to check the capability of the proposed approach on short term data as opposed to a

historical large set. For the ‘LSTM + LSCP-4’ method used in experiment 1.1, a dual

validation was conducted wherein the ‘LSCP-4' in the second module got evaluated for

unseen data, thus validating the whole ensemble, ‘LSTM + LSCP-4’, a second time. The

results are captured for this data as given in Figure 7.9.

90

Figure 7.8: Average Response Time and Total number of Requests for GraphQL from

16th - 18th December 2019.

Figure 7.9: Anomalies Detected by the ‘LSTM + LSCP-4' method for data from 16th -

18th December 2019.

7.3.1.2 Experiment 1.2 - Multi-Step

For experiment 1.2, the prediction lengths used is more than 1, i.e., a value of multiple time

steps ahead is predicted rather than a single time step. Lookback and prediction lengths of

(lookback, future steps) = (12,12), (24,24) and (48,48) are used for multi-step models. The

LSTM model had 5 recurrent layers in total with a decreasing number of neurons [512,

256, 128, 64, 32] from top to bottom followed by a dense output layer with the number of

neurons the same as prediction length (future_steps). A drop out of 20% is used after each

recurrent layer. For experiments under multistep predictions, Adam optimizer with

91

different learning rates was used as given in Table 7.5, and the default values of beta_1 as

0.9, beta_2 as 0.999, epsilon as 1e-08, decay as 0.0, Mean Squared Error as loss function

and a batch size of 1024 were used. The model was trained for 200 epochs and during each

epoch, 20% of the training samples were used for validation purposes. The detection

procedure has the same steps as mentioned in the previous experiment 1.1. The forecast

errors are fed to the second module with different unsupervised outlier detection

approaches forming ensembles: ‘LSTM + Isolation Forest’, ‘LSTM + One-Class SVM’,

‘LSTM + LSCP’ and ‘LSTM + Static Threshold’.

For experiments 1.2.1, 1.2.2, and 1.2.3, in LSCP-1 ensemble method, LOF with 10

neighbors and 0.01 contamination, and KNN with default parameters were used as base

detectors. In the LSCP-2 ensemble, three LOFs each with neighbors 12, 24, 48, and 0.01

Experiments Model

Architecture

Optimizer Epochs Batch

Size

Lookback Future

 Steps

RMSE

Experiment

1.2.1

LSTM (512)

Dropout (0.2)

LSTM (256)

Dropout (0.2)

LSTM (128)

Dropout (0.2)

LSTM (64)

Dropout (0.2)

LSTM (32)

Dense

Adam:

learning

rate=0.001

beta_1=0.9

beta_2=0.999

epsilon=1e-08

decay=0.0

200 1024 12 12 Train

Score:

84.61

RMSE

Test

Score:

131.60

RMSE

Experiment

1.2.2

LSTM (512)

Dropout (0.2)

LSTM (256)

Dropout (0.2)

LSTM (128)

Dropout (0.2)

LSTM (64)

Dropout (0.2)

LSTM (32)

Dense

Adam:

learning

rate=0.0001

beta_1=0.9

beta_2=0.999

epsilon=1e-08

decay=0.0

200 1024 24 24 Train

Score:

86.28

RMSE

Test

Score:

121.74

RMSE

Experiment

1.2.3

LSTM (512)

Dropout (0.2)

LSTM (256)

Dropout (0.2)

LSTM (128)

Dropout (0.2)

LSTM (64)

Dropout (0.2)

LSTM (32)

Dense

Adam:

learning

rate=0.0001

beta_1=0.9

beta_2=0.999

epsilon=1e-08

decay=0.0

200 1024 48 48 Train

Score:

88.98

RMSE

Test

Score:

134.74

RMSE

Table 7.5: LSTM Model details for Multistep univariate data

92

contamination parameters respectively were used as base detectors along with KNN. In the

LSCP-3 ensemble method, four LOFs each with neighbors 12, 24, 48, 60, and 0.01

contamination as parameters respectively were used along with KNN. In LSCP-4

ensemble, outlier fraction was set to 0.009 instead of 0.01 unlike previous ensembles as a

measure of tuning the hyperparameter to reduce false positives and false negatives, and

four LOFs with neighbors 12, 24, 36, 48, 60 with 0.01 contamination, and KNN using

neighbors 12 as parameters were used.

Figure 7.10: Experiment 1.2.1 Detection results for ‘LSTM+LSCP-4’ensemble

Table 7.6: Experiment - 1.2 Results: Confusion Matrix of all models for all the

experiments

93

Experiment 1.2.1

Methods Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.600 1.000 0.994 0.750 0.995 24 + 0 = 24

LSTM + Threshold 10 0.875 0.972 0.999 0.921 0.999 5 + 1 = 6

LSTM + LSCP1 0.409 0.500 0.994 0.450 0.990 26 + 18 = 44

LSTM + LSCP2 0.727 0.889 0.997 0.800 0.996 12 + 4 = 16

LSTM + LSCP3 0.818 1.000 0.998 0.900 0.998 8 + 0 = 8

LSTM + LSCP4 0.900 1.000 0.999 0.947 0.999 4 + 0 =4

LSTM + Isolation Forest 0.818 1.000 0.998 0.900 0.998 8 + 0 = 8

LSTM + One-Class SVM 0.341 0.389 0.994 0.364 0.989 27+22 = 49

Table 7.7: Experiment - 1.2.1 Results: Using Evaluation Metrics

As per the results for experiment 1.2.1 given in Table 7.8, ‘LSTM + LSCP-4’ has

performed better than all other approaches with higher precision and recall scores of 90%

and 100% respectively, resulting in F1-Score of 94.7%, highest among other tested

approaches.

➢ 90% Precision indicates that out of 10 Anomalies detected by the “model”, 9 of

them are identified correctly.

➢ 100% Recall indicates that the model identifies all the anomalies present in the

“system”. If there are 10 anomalies in the system, the model identifies all the 10.

‘LSTM + Threshold10’ method has achieved an F1-Score of 92.1% followed by ‘LSTM +

Isolation forest’ and ‘LSTM + LSCP-3’ both with an F1-Score of 90%. ‘LSTM + OC-

SVM’ performed poorly with an F1-Score of 36.4%. With the highest F1-Score of 94.7%,

LSTM+LSCP-4 is the best model for this experiment.

Experiment 1.2.2

Methods Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.416 0.889 0.990 0.566 0.989 45 + 4 = 49

LSTM + Threshold 10 0.593 0.889 0.995 0.711 0.994 22 + 4 = 26

LSTM + LSCP1 0.409 0.500 0.994 0.450 0.990 26 + 18 = 44

LSTM + LSCP2 0.523 0.639 0.995 0.575 0.992 21 + 13 = 34

LSTM + LSCP3 0.545 0.667 0.995 0.600 0.993 20 + 12 = 32

LSTM + LSCP4 0.725 0.806 0.997 0.763 0.996 11 + 7 = 18

LSTM + Isolation Forest 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + One-Class SVM 0.289 0.361 0.993 0.321 0.987 32 + 23 = 55

Table 7.8: Experiment - 1.2.2 Results: Using Evaluation Metrics

94

In experiment 1.2.2, ‘LSTM + LSCP-4’ has achieved a higher F1-Score of 76.3% followed

by ‘LSTM + Isolation Forest’ and ‘LSTM + Threshold10’ with F1-Scores of 75% and

71.1% respectively. ‘LSTM + OC-SCM’ and ‘LSTM + Threshold-5’ have performed

poorly with lowest F1-Scores of 32.1% and 56.6% respectively as displayed in Table 7.8.

Experiment 1.2.3

Method Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.459 0.944 0.991 0.618 0.990 40 + 2 = 42

LSTM + Threshold 10 0.744 0.889 0.997 0.810 0.997 11 + 4 = 15

LSTM + LSCP1 0.455 0.556 0.994 0.500 0.991 24 + 16 = 40

LSTM + LSCP2 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP3 0.682 0.833 0.997 0.750 0.995 14 + 6 = 20

LSTM + LSCP4 0.750 0.917 0.997 0.825 0.997 11 + 3 = 14

LSTM + Isolation Forest 0.727 0.889 0.997 0.800 0.996 12 + 4 = 16

LSTM + One-Class SVM 0.357 0.417 0.994 0.385 0.989 27 + 21 = 48

Table 7.9: Experiment - 1.2.3 Results: Using Evaluation Metrics

As per the results in Table 7.9 for experiment 1.2.3, ‘LSTM + LSCP-4’ has the highest

F1-Score of 82.5% followed by ‘LSTM + Threshold-10’ and ‘LSTM + Isolation Forest’

with F1-Scores of 81% and 80% respectively. ‘LSTM + OC-SCM’ has the lowest F1-Score

of 38.5%.

7.3.2 Experiment 2: Multivariate LSTM + Unsupervised Ensemble

For experiment 2, multivariate data is used to build the LSTM model. In contrast to

univariate, where only one feature is considered (‘Average Response Time’) multivariate

uses more than one feature for building the model. In our case, apart from the ‘Average

response time’ feature, we used other features that were engineered out of timestamps

during the data pre-processing stage. These features include the day of the week, time of

the day, daylight, hours of the day, Weekday or weekend, holiday or not, average response

time 5 minutes back, an hour back, and a day back from the current timestamp. Though

LSTM is a time-series model in itself, capturing the temporal characteristics of the data,

we wanted to experiment with how explicit inclusion of features engineered out of

timestamps creates a difference in model learning and its prediction.

95

The dataset used for the experiment is from 21st September to 30th October 2019, resulting

in 11521 samples, the same as experiment 1. The data is divided into 62:38 for training and

testing the model. Both the training and testing samples were converted into respective

formats of input and target sequences required by the LSTM time-series model using the

parameters - lookback and future_steps inclusive of all the features. Input length or

lookback of 12, 24 is chosen, and for a 5-minute interval data, these values indicate usage

of previous 1 hour, 2 hours values as lookbacks respectively.

7.3.2.1 Experiment 2.1 - Single Step

For experiment 2.1, lookback of 12 and prediction length of 1 is used. The LSTM model

had 7 recurrent layers in total with a decreasing number of neurons [512, 256, 128, 64, 32,

16, 8] from top to bottom followed by a dense output layer with the number of neurons

same as prediction length (future_steps = 1). Each recurrent layer is followed by a 20 %

drop out layer. We trained the prediction model using Adam optimizer with a learning rate

of 0.00001, used Mean Squared Error for loss function, and a batch size of 256. The model

was trained for 400 epochs and during each epoch, 20% of the training samples were used

for validation. Like all previous experiments, the forecast errors are fed to different

unsupervised outlier detection techniques.

Experiments Model

Architecture

Optimizer Epochs Batch

Size

Lookback Future

 Steps

RMSE

Experiment

2.1

LSTM (512)

Dropout (0.2)

LSTM (256)

Dropout (0.2)

LSTM (128)

Dropout (0.2)

LSTM (64)

Dropout (0.2)

LSTM (32)

Dropout (0.2)

LSTM (16)

Dropout (0.2)

LSTM (8)

Dense

Adam:
learning

rate=0.00001
beta_1=0.9
beta_2=0.999
epsilon=1e-08
decay=0.0

400 256 12 1

Train

Score:

103.86

RMSE

Test

Score:

147.13

RMSE

Table 7.10: LSTM Model details for Single-Step Multivariate data.

For experiment 2.1, all the unsupervised techniques with outlier fraction 0.01 were used

similar to experiment 1.2.1. In the ‘LSCP-1’ ensemble method, LOF with 10 neighbors,

96

and KNN with default parameters were used as base detectors. In the ‘LSCP-2’ ensemble,

three LOFs each with neighbors 12, 24, 48 were used as base detectors along with KNN.

In the ‘LSCP-3’ ensemble method, four LOFs each with neighbors 12, 24, 48, 60

respectively were used along with KNN. In LSCP-4 ensemble, outlier fraction was set to

0.009, and four LOFs with neighbors 12, 24, 36, 48, and KNN with neighbors 12 were used

in LSCP 4 method. For all the LOFs, for the above four LSCPs, contamination of 0.01 was

used.

Table 7.11: Experiment- 2.1 Results: Confusion Matrix of all the tested approaches for

anomaly detection on the test data

Experiment 2.1

Methods Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.357 0.926 0.990 0.515 0.990 45 + 2 = 47

LSTM + Threshold 10 0.490 0.926 0.994 0.641 0.994 26 + 2 = 28

LSTM + LSCP1 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + LSCP2 0.511 0.889 0.995 0.649 0.994 23 + 3 = 26

LSTM + LSCP3 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + LSCP4 0.649 0.889 0.997 0.750 0.997 13 + 3 = 16

LSTM + Isolation Forest 0.532 0.926 0.995 0.676 0.995 22 + 2 = 24

LSTM + One-Class SVM 0.298 0.519 0.993 0.378 0.990 33 + 13 = 46

Table 7.12: Experiment - 2.1 Results: Using Evaluation Metrics

In experiment 2.1, ‘LSTM + LSCP-4’ has achieved a higher F1-Score of 75% followed

by LSTM + Isolation Forest’ , ‘LSTM + LSCP-1’ and ‘LSTM + LSCP-3’ all with an F1-

Score of 67.6% respectively. F1-Score of ‘LSTM + Threshold10’ is 64.1% which is quite

low compared to the ‘LSTM + LSCP-4’ as given in Table 7.12. ‘LSTM + OC-SCM’ and

‘LSTM + Threshold-5’ yet again performed poorly with lowest F1-Scores of 37.8% and

51.5% respectively.

97

7.3.2.2 Experiment 2.2 - Multi-Step

For the multi-step multivariate LSTM model, a prediction length of 12 is used for a

lookback of 12 steps. The LSTM model had 5 recurrent layers in total with a decreasing

number of neurons [512, 256, 128, 64, 32], a dropout of 20%, and trained using Adam

optimizer with 0.0001 learning rate, and a batch size of 1024 for 300 epochs, as given in

Table 7.13. The forecast errors were further fed to the mentioned unsupervised outlier

detection approaches.

Experiments Model

Architecture

Optimizer Epochs Batch

Size

Lookback Future

 Steps

RMSE

Experiment

2.2

LSTM (512)

Dropout (0.2)

LSTM (256)

Dropout (0.2)

LSTM (128)

Dropout (0.2)

LSTM (64)

Dropout (0.2)

LSTM (32)

Dense

Adam:
learning

rate=0.0001
beta_1=0.9
beta_2=0.999
epsilon=1e-08
decay=0.0

300 1024 12 12 Train

Score:

101.42

RMSE

Test

Score:

141.08

RMSE

Table 7.13: LSTM Model details for Muti-Step Multivariate data.

For experiment 2.2, all the unsupervised techniques with outlier fraction 0.01 were used.

The configurations of LSCP-1, LSCP-2, and LSCP-3 were the same as the previous

experiments (2.1, 1.2) except for LSCP-4. In LSCP-4 ensemble, outlier fraction was set to

0.009 and five LOFs each with neighbors 12, 24, 36, 60, 72 respectively, KNN with 48

‘neighbors’ parameter and Isolation forest with 0.01 contamination were used in

Experiment 2.2.

Table 7.14: Experiment - 2.2 Results: Confusion Matrix of all the tested approaches for

anomaly detection on the test data

98

Experiment 2.2

Methods Precision Recall Specificity F1-Score Accuracy

Number of

Misclassified

Points

(FP + FN)

LSTM + Threshold 5 0.253 0.704 0.988 0.373 0.986 56 + 8 = 64

LSTM + Threshold 10 0.340 0.630 0.993 0.442 0.991 33 + 10 = 43

LSTM + LSCP1 0.170 0.296 0.991 0.216 0.987 39 + 19 = 58

LSTM + LSCP2 0.213 0.370 0.992 0.270 0.988 37 + 17 = 54

LSTM + LSCP3 0.277 0.481 0.993 0.351 0.990 34 + 14 = 48

LSTM + LSCP4 0.405 0.556 0.995 0.469 0.993 22 + 12 = 34

LSTM + Isolation Forest 0.362 0.630 0.993 0.459 0.991 30 + 10 = 40

LSTM + One-Class SVM 0.102 0.185 0.990 0.132 0.986 44 + 22 = 66

Table 7.15: Experiment- 2.2 Results: Using Evaluation Metrics

As per results for experiment 2.2 in Table 7.15, all the models have performed poorly,

indicating that multistep prediction for multivariate data is not suitable for the detection

process. The reason could be an increase in the complexity of the model due to the

sequencing of multiple features for multiple time steps. On comparing the F1-Scores of

models for this approach, the ranking for the F1-Scores of all the approach goes as follows:

‘LSTM + LSCP-4’ > ‘LSTM + Isolation Forest’ > ‘LSTM + Threshold10’ > ‘LSTM +

Threshold5’ > ‘LSTM + LSCP-3’ > ‘LSTM + LSCP-2’ > ‘LSTM + LSCP-1’ > ‘LSTM

+ OC-SCM’.

7.4 Experiments on the Localization Module

As discussed in Chapter 6, the localization module consists of a mapper and three detectors

for each of the GraphQL’s spans or sub-components - POST, GET and Cache respectively

to detect performance anomalies for these spans. The spans corresponding to GraphQL

data are extracted, pre-processed, and fed to each of its respective detectors as discussed in

the previous chapter. The mapper receives the anomaly results from the Detection Module

(for GraphQL), the three individual detectors (for each of GraphQL sub-components:

POST, GET, Cache), and maps the timestamps of GraphQL anomalies with sub-

component anomalies to identify the sub-component that is responsible for degrading

GraphQL service’s performance.

99

For this experiment, we considered the data from 18th June to 13th August 2019 to perform

both the GraphQL anomaly detection (Section 7.3) by feeding the GraphQL data to the

Detector module and perform localization by feeding GraphQL spans’ data to the Localizer

module. As per the experiments on the Detector module (Section 7.3), we chose the ‘LSTM

+ LSCP-4’ ensemble approach to detect the performance anomalies of GraphQL data

(average response time of GraphQL) as shown in Figure 7.11. Multivariate data is used for

building the Single-Step model as explained in experiment 2.1. The data was split into

training and testing sets, where data from 18th June - 15th July 2019 was used for training

and remaining data for testing the model. 20% of the training data was used as a validation

set.

Figure 7.11: Anomalies for GraphQL’s average response time data detected by Detector

Module

Simultaneously, the spans of GraphQL data are fed to their respective individual detectors

to detect performance anomalies for sub-components (POST average response time, GET

average response time, Cache average response time). The three individual detectors also

use the same ‘LSTM + LSCP’ approach, but with different configurations to forecast the

expected average response time and detect anomalies when the actual value deviates from

the expected baseline for each of the sub-components respectively using the unsupervised

outlier detection method. The anomalies detected for each of the sub-components are

shown in Figures 7.12, Figure 7.13, and Figure 7.14.

100

Figure 7.12: Anomalies for POST average response time data detected by detector 1

Figure 7.13: Anomalies for GET average response time data detected by detector 2

Figure 7.14: Anomalies for CACHE average response time data detected by detector 3

101

The detected anomalies for GraphQL service from the Detector module and the detected

anomalies for each of the 3 sub-components from detectors in localizer module is fed to a

mapper function which uses a simple logic of mapping the timestamps of GraphQL

anomalous points with the timestamps of each of the anomalous points of POST, GET and

Cache, to identify which of the sub-components is responsible for degrading the

performance of the GraphQL service by comparing the time of occurrence of anomalies.

The identified causal components by the mapper are later sent as a report to the alert

management system for further action. The report includes the list of anomalous intervals

of GraphQL service along with the details of root-cause which are described using a

directed graph or DiGraph representations using the networkx library in python as

displayed below in Figure 7.15.

Figure 7.15: Mapper generated report which consists of details of GraphQL anomalous

interval, i.e., the time interval at which anomaly occurred along with DiGraphs

representation by highlighting the root-cause or causal components in red color.

As shown in Figure 7.15, the causal components for GraphQL performance anomalies are

highlighted in red. There could be a single causal component or more than one component

102

responsible for GraphQL performance issues as shown in the results above. Based on our

experiments, we observed a few results from the mapper, where the reason or root-cause

for the GraphQL anomaly was not known, as depicted in Figure 7.16. There could be a few

reasons such as:

i) Either the GraphQL anomaly detected by the Detector Module might be a

false anomaly (not a real anomaly) hence, none of the sub-components were

highlighted as the root-cause.

ii) The GraphQL anomaly detected by the Detector Module could be a true

anomaly, but the detector for sub-components might have failed to detect

all of its true anomalies and hence, none of the sub-components were

identified as a root-cause by the mapper, or

iii) Both the GraphQL anomaly from detector Module and anomalies detected

for sub-components could be accurate, but the root-cause could be an

external factor other than its sub-components (POST, GET, Cache).

Figure 7.16: Mapper results where the root-cause of GraphQL anomaly is unknown (left).

7.5 Information Module

As discussed in Chapter 6, the Information module allows the user to access information

about tracing events. This module provides 3 options:

i) Trace Graph: generates directed acyclic graphs (DAG) for a given

transaction or trace ID along with the details of the parent-child relationship

between the spans.

103

ii) Trace JSON: generates trace events in JSON format similar to how it is

stored in the ES system.

iii) Summary of Trace: provides detailed information of a transaction such as

when the transaction happened, number of nodes or spans involved, their

IDs and the time taken by each of spans, how nodes are interconnected by

describing its parent-child relationship.

Figure 7.17 and Figure 7.18 displays the output of different options provided by the

Information Module. In Figure 7.17, the directed acyclic graph includes nodes or spans

starting from Datalayer(cyan colored node) followed by GraphQL(red node) with requests

later propagating to POST (blue node), GET(green node), Cache (purple node)

components. Figure 7.18 shows the output of the Trace JSON option and provides a

summary of the transaction.

104

Figure 7.17: Trace Graph option generates DAG for the entered transaction ID.

105

Figure 7.18: Output for Summary of Trace and Trace JSON options of

Information Module.

7.6 Comparison with Related Work

The detection approach in our proposed system is a novel combination of LTSM and the

unsupervised algorithms: (i) LSCP, (ii) Isolation Forest, and (iii) OC-SVM. The output of

LSTM, i.e., forecast errors, was fed to the three unsupervised outlier detection algorithms

to detect the outlying distance of error points from its distribution to further detect the

anomalous data points, rather than explicitly setting a threshold on the ‘m-dist’ distance

value. Many existing approaches (identified in Table 7.16) have used such static thresholds

irrespective of any algorithms (statistical/ supervised/unsupervised) they choose as

discussed in Chapter 3 where the details of the existing approaches and the gaps are

identified.

The static thresholding approach requires timely updates to its cut-off value as the input

data changes over time. This might be even more tedious and time-consuming if there are

various detection modules for every service. If there are hundreds and thousands of

services, then keeping track of static threshold or cut-off values of detection modules for

each service will make the monitoring system inefficient. In contrast, by using our

106

approach of the combination of LSTM and (i) LSCP, (ii) Isolation forest, and (iii) OC-

SVM, there is no need to explicitly set the threshold on m_dist value instead it dynamically

identifies the outlying m_dist values in order to identify its corresponding anomaly data

points thus making the system entirely automated.

Author

Proposed

Model/Framework

Name

Methods in

Algorithms Type of Learning Data Used

Vallis et. Al [48] AdVec Algorithm

EDS + Statictical

method + Piecewise

approximation Unsupervised

System Metrics and

Application

Metrics

Imam et. al [44]

Microsoft ML time

series algorithm

 ARTXP algorithm

+ ARIMA

algorithm +

Anomaly Index

threshold Unsupervised

Application Log

Files

Sasho et al. [47] -

Variational

Autoencoders +

Probability-based

dynamic error

thresholding Unsupervised Distributed traces

Haowen et al. [50] Donut

Dimensionality

reduction +

Variational Auto-

Encoder (VAE) +

Threshold Unsupervised

Application

Metrics

Malhotra et al. [49] -

LSTM + Likelihood

estimation Unsupervised

ECG,

Space shuttle,

power demand, and

multi-sensor engine

dataset.

Chen et al. [51] SeqVL

Sequential VAE (+

Threshold) + LSTM Unsupervised

KPI dataset and

Yahoo dataset

Leandro et al. [52] MULDER

Surprise Metric +

(10th & 90th)

Percentiles + 3-

Standard deviation

test Unsupervised

NAB dataset

(univariate)

Bikash et al. [36] Cloud PD

HMM + Correlation

Analysis, KNN Statistical Method

 System and

application metrics

Daniel et. al [43] -

SVM + Moving

Average Supervised AWS dataset

Tian et al. [53], Tao

et al. [54] - LOF Unsupervised

Cloud applications

[53], Workload

patterns [54]

Sauvanaud et. al

[46]

ADS (Anomaly

Detection System)

Random Forests,

Neural Networks,

Nearest Neighbors,

and Naive Bayes Supervised

CPU, Memory,

Disk, and Network

performance data

Samir et al., in [60]

DLA (Detection and

Localization System for

Anomalies)

Hierarchical Hidden

Markov Models

(HHMM) +

Correlation

Analysis Statistical Method

Performance data

of (services,

containers,

nodes ’VM’)

107

Qingfeng et al. [45]

ADS (Anomaly

Detection System)

DTW + (SVM,

Naïve Bayes,

Nearest Neighbors,

and Random forests

)algorithm Supervised

Performance data

of microservice

containers

Mohsen et al [56] DeepAnt

CNN + Euclidean

Distance Unsupervised

Yahoo dataset,

NAB dataset

Gu et al.[32] ,Tan

et al.[31] -

Markov Chain

model + Bayesian

Classifier Statistical Method

James et. al in [58],

and Kanishka et. Al

in [59]. Breunig et

al., in [55] - KNN Unsupervised

Xiao et al., in [61] TaskInsight Clustering Unsupervised

System-level

metrics, such as

CPU and memory

utilization

Table 7.16: List of existing approaches discussed in Chapter 3

A comparison of the performance of the three proposed novel combination approaches and

existing static threshold approach was made for every experiment as described in Section

7.3 (see Table 7.4, Table 7.7, Table 7.8, Table 7.9, Table 7.12, Table 7.15). A summary of

three topmost approaches has been tabulated as given below in Table 7.17. The results

show that the proposed novel ‘LSTM + LSCP-4’ hybrid variant detector performs detection

better with a higher F1-score than the existing static error threshold technique and other

ensemble approaches across all the experiments.

Single Step Experiment 1.1 91.70% 91.10% 92.10%

Experiment 1.2.1 94.70% 90.00% 92.10%

Experiment 1.2.2 76.30% 75.00% 71.10%

Experiment 1.2.3 82.50% 80.00% 81.00%

Single Step Experiment 2.1 75.00% 67.60% 64.10%

Multi Step Experiment 2.2 46.90% 45.90% 44.20%

LSTM +

Threshold-10

F1-Score

Prediction

Steps

Multi Step

Data Experiments

Univariate

Data

Multivariate

Data

LSTM +

LSCP4

F1-Score

LSTM +

Isolation

Forest

F1-Score

Table 7.17: Summary of results across all experiments for the top 3 ensemble methods

As shown in Table 7.17, for the Univariate Single-Step experiment, the ‘LSTM-LSCP-4’

hybrid achieved an F1-Score of 91.7% and for Multi-Step experiments of 12, 24, 48

prediction time steps, the ensemble model performed detection with an F1-Score outcome

108

of 94.7%, 76%, 82.5% respectively. For Multivariate Single-Step, the ‘LSTM-LSCP4’

model achieved a moderate F1-Score of 75% whereas, for Multi-Step experiment of 12

prediction length, it scored comparatively less with an F1-Score of 46.9%, which was still

higher than the F1-Scores of other tested ensembles. The ensemble methods: ‘LSTM +

Isolation Forest’ and ‘LSTM-Threshold10’ performed moderately with a decent score of

F1-Score metric whereas ‘LSTM + OC-SVM’ hybrid performed consistently bad resulting

in low F1-Score measures.

The average scores of precision, recall, and F1-score measures were calculated for the top

three models that we used across all the experiments under univariate data as described in

Section 7.3.1 (see Experiment 1.1, 1.2.1, 1.2.2, 1.2.3).

Method F1-Score

Average

Precision

Average

Recall

Average

LSTM+Threshold 10
84.08% 77.17% 93.06%

LSTM+LSCP4 86.30% 82.29% 90.97%

LSTM+Isolation

Forest 84.03% 76.61% 93.06%

Table 7.18: Average of the metric scores across all the Univariate experiments

The average F1-Score of the ‘LSTM+LSCP4’ ensemble approach is the highest compared

to the existing static thresholding – ‘LSTM+Threshold-10’ and the ‘LSTM+Isolation’

ensemble methods as shown in Table 7.18.

7.6.1 Experiment on Numenta Anomaly Benchmark (NAB) dataset

1

Since the above experiments were conducted on the third-party cloud system’s dataset, we

also evaluated the performance of our approach by experimenting on the Numenta

Anomaly Benchmark (NAB) Dataset. NAB [108] platform provides access to real-world,

labeled data files across multiple domains and is used by various researchers to validate the

performance of their detection models. We used Numenta’s “ec2_cpu_utilization_825cc2”

dataset on our proposed approach to detect the anomalies and compared them with

Numenta’s results. The detection results of the proposed ‘LSTM + LSCP-4’ and ‘LSTM +

109

Isolation Forest’ hybrid methods results are shown in Figure 7.19 and Figure 7.20

respectively.

Figure 7.19: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB ‘ec2 CPU

utilization’ dataset.

Figure 7.20: Detection results for ‘LSTM + Isolation Forest’ on NAB ‘ec2 CPU

utilization’ dataset.

110

Based on Numenta’s standard scores [109], Numenta’s HTM model results in the following

TP, TN, FN, and FP as shown in Figure 7.21.

Figure 7.21: Detection results for Numenta’s HTM model on NAB ‘ec2 CPU utilization’

dataset.

Method Precision Recall Specificity F1-Score Accuracy

LSTM + Isolation Forest 0.743 0.076 0.997 0.138 0.905

LSTM + LSCP4 0.657 0.067 0.996 0.122 0.903

Numenta's HTM model 0.889 0.023 0.999 0.045 0.902

Table 7.19: Results for NAB ‘ec2 CPU utilization’ dataset.

On comparing, the results for the proposed combinations and Numenta’s HTM benchmark

scores as given in Table 7.19, we observe that the proposed novel combination for anomaly

detection performs better than the Numenta’s standard scores, where ‘LSTM + Isolation

forest’ has higher F1-score of 13.8% followed by ‘LSTM + LSCP-4’ with F1-Score of

12.2%, whereas Numenta’s HTM model results in a low F1-score of 4.5%.

111

7.6.2 Experiment on Numenta Anomaly Benchmark (NAB) dataset

2

We conducted another experiment on a different dataset from the NAB platform –

“elb_request_count_8c0756” dataset. The detection results of the proposed ‘LSTM +

LSCP-4’ and ‘LSTM + Isolation Forest’ hybrid methods results are shown in Figure 7.22

and Figure 7.23 respectively.

Figure 7.22: Detection results for ‘LSTM + LSCP-4’ hybrid method on NAB

‘elb_request_count_8c0756’ dataset

112

Figure 7.23: Detection results for ‘LSTM + Isolation forest’ hybrid method on NAB

‘elb_request_count_8c0756’ dataset.

Based on Numenta’s standard scores [109], Numenta’s HTM model results in the following

TP, TN, FN, and FP as shown in Figure 7.24.

Figure 7.24: Detection results for Numenta’s HTM model on NAB

‘elb_request_count_8c0756’ dataset.

Method Precision Recall Specificity F1-Score Accuracy

LSTM + Isolation Forest 0.441 0.037 0.994 0.069 0.882

LSTM + LSCP4 0.5 0.051 0.993 0.093 0.881

Numenta's HTM model 0.75 0.007 1 0.015 0.883

Table 7.20: Results for NAB ‘elb_request_count_8c0756’ dataset

113

On comparing, the results for the proposed combinations and Numenta’s HTM benchmark

scores as given in Table 7.20, we observe that the proposed novel combination for anomaly

detection performs better than the Numenta’s standard scores, where ‘LSTM + LSCP’ has

higher F1-score of 9.3% followed by ‘LSTM + Isolation forest’ with F1-Score of 6.9%,

whereas Numenta’s HTM model results in a low F1-score of 1.5%.

The experiments on both the NAB datasets show that our approaches resulted in low F1-

scores, but it does perform better than the standard benchmark score of the Numenta HTM

model.

7.7 System development and Testing

In this section, we describe the approach towards the development and testing of our

proposed system. All the modules of the proposed system were developed individually as

separate python programs. The development and testing for an individual module were

performed simultaneously. For example, in the data extraction process (refer Section 6.2.2)

the 5 steps were developed as a separate program where each script (say Step 2) was

executed after the successful execution of another (Step 1). Unit testing was carried out for

each program (steps 1-5) in the data extraction module, followed by Integration testing of

all the programs (steps 1-5) within the extraction module. Similarly, the unit testing and

integration testing was carried out for all the modules.

 In the post-development phase, we conducted the verification and validation procedure for

each of the scripts. Verification is an internal process to evaluate whether or not a product,

service, or system complies with a requirement or specifications. Validation is an assurance

that a product, service, or system meets the user’s expectations.

Data Extraction Phase Verification: The TraceID collection and Get Trace Information step

(see Section 6.2.2) was verified by comparing the number of transactions or trace IDs

fetched by our program script with the total number of trace IDs that were shown in the

ElasticSearch system of the third-party cloud system. Summary information (Total

requests, Total Duration) was verified by comparing the graphical representations of the

114

features collected by our programs with the graphical representation for that dataset on the

Kibana tool (visualization tool for ES).

Data Pre-processing Phase Verification: Post feature scaling the dataset was plotted and

compared with the data in third-party through visualization plots in Kibana for the

verification process.

The Detection process was verified using the visual plots and evaluation metrics such as

F1-Score by making use of the label information. The detection results were validated by

domain experts visually. The proposed novel approach for anomaly detection was also

evaluated on two different benchmark datasets available on the NAB platform as shown in

Sections 7.6.1 and 7.6.2.

7.8 Summary

In this chapter, we discuss tools and libraries used in the experiments, its implementation

details, and their results for the proposed prediction-based automated hybrid anomaly

detection and localization system.

In the experiments described in Section 7.3, the detector module of the system was

implemented using the proposed novel hybrid approach, and the existing static error

thresholding technique to compare the effectiveness of the proposed detection

methodology. For time-series prediction, both univariate and multivariate data were used

for the experiments. For both the variations of data, two different versions of the time-

series LSTM models: Single-step and Multi-step LSTM, were built to perform prediction-

based anomaly detection and then combined with the three unsupervised outlier detection

algorithms to detect the outlying distance of error points from its distribution to further

detect the anomalous data points. A total of 8 different hybrid models were tested: four

LSTM with LSCP ensemble models, one LSTM with Isolation Forest, LSTM with One-

Class SVM, and two LSTM with Static thresholding methods.

The implementation details of the localization module were also described and

demonstrated to show how the root-cause of detected anomalies were identified for the

115

given dataset (see Section 7.4), and further, the functionality of the Information module

was also described in Section 7.5.

A comparison of the proposed detection approach with the related study is described in

Section 7.6, where the proposed novel detection approach is also tested on a benchmark

dataset (NAB) and its results are compared with existing Numenta’s HTM results, followed

by the next section describing the System development and testing carried out in our work.

116

Chapter 8

8 Discussion, Conclusion and Future Work

In this chapter, we discuss the challenges, impact of our work, and different threats to

validity. We conclude the thesis and describe future work that we plan to explore.

8.1 Discussion

In this section, we discuss the results and impact of our proposed system, the challenges

that we encountered in our work, and the different aspects that we could have explored.

8.1.1 Impact of our proposed system

The proposed automated anomaly detection and localization system: (i) detects

performance anomalies of a microservice through monitoring the performance metric data

extracted from the tracing events using a novel approach of a prediction-based anomaly

detection technique which combines a time-series model and unsupervised learning

algorithms - LSCP, Isolation forest, and One-Class SVM, and (ii) locates the causal

components for the detected anomalies. By using the proposed combination of LSTM and

an unsupervised learning algorithm, there is no need to explicitly set the threshold

on m_dist value. Instead, it dynamically identifies the outlying m_dist values in order to

identify its corresponding anomaly data points by using an unsupervised outlier detection

technique such as LSCP or Isolation Forest, thus making the system entirely automated,

unlike the static rule-based thresholding approaches (see Table 7.16) which can be

inefficient when the data or load varies over time, as discussed in Chapter 3 and Section

4.3. The proposed detection ensemble identifies point anomalies and also collective

anomalies since we group the data into 5-minute intervals.

The output of the system is an anomaly report that consists of the time-interval of the

occurrence of the anomaly and a directed acyclic graph highlighting its causal component,

as shown in Figure 7.15.

117

The proposed system is not limited to GraphQL service as shown in the demonstration of

our work but can be adapted to other services as well for time-series anomaly detection.

In a microservices-based cloud environment where multiple instances of all the

microservices need to be monitored at once, which requires to check the logs of multiple

services and track one user request through multiple systems, the proposed system is quite

capable to handle such cases while easing the monitoring process compared to the existing

framework (see Section 4.2) which might not be as reliable or simple.

In a microservices-based cloud system with numerous microservices and its multiple

instances, the proposed system helps to in locating the root cause of an anomaly and

overcomes the challenges of SREs in manually analyzing and tracking the root-cause or

faulty microservice/component.

8.1.2 Challenges

The biggest challenge that we faced during our work was the absence of label information.

The availability of labeled data and benchmark datasets is a major issue in the field of

anomaly detection research in general. Many research works [45, 46] have dealt with this

issue by training a model on normal data and then injecting artificial anomalies in the

dataset and further verify if the trained model detects the injected anomalies or not. The

problem with this approach is that anomalies are uncertain and might have different

patterns due to which the trained model might not be effective for a real-world dataset. In

our case, we used the real-world production data from a third-party cloud microservices,

but the problem was the absence of label information.

Based on our exploratory data analysis, we observed the presence of anomalies in our data

which is quite obvious, given the fact that the data was extracted from a production

environment. As a result, it was challenging to train a model using production data as there

were chances that the model would learn the anomaly patterns along with the normal data

and later identify an anomaly as a normal data point. To mitigate this effect, we collected

data for a long duration (six months) in order to identify the portion of data which seemed

118

normal and sufficient enough for training a deep learning model, under the guidance of

domain experts.

8.1.3 Alternate analysis/aspects for consideration

As far as the localization technique is considered, the list of possible root-causes is limited

only to its calls to sub-components or child nodes. For example, for GraphQL service the

localization module limits the causal components to POST, GET, and Cache, but there

might be other external factors that could be a reason for degrading GraphQL service’s

performance such as an outage for a certain interval of time might result in lower peaks or

even ‘0’ requests, causing the average response time of GraphQL to drop to ‘0’ during that

interval. With no further requests propagated to its sub-components, this might show the

response times for them (POST, GET, and Cache) to be ‘0’. In such cases, as per the logic

used by the mapper, the causal component for GraphQL’s performance degradation issue

will either be POST/GET/Cache or all of them respectively, but the actual root-cause here

tends to be an overall cloud outage. Similarly, there could be other external factors that are

responsible for GraphQL downtime apart from its dependency on sub-components -

POST/GET/Cache.

The proposed detection technique was tested on datasets that exhibited additive

seasonality. However, an alternative could be to test the proposed hybrid model on datasets

with multiplicative seasonality or different kind of trend patterns in a time-series, such as

the exponential trend in the rise of COVID-19 cases.

Also, apart from creating a baseline for the ‘average response time’ feature, a baseline for

the ‘total number of requests’ (request arrival pattern) and ‘error rate’ pattern for each of

the response codes could be generated and used for analysis to verify how such patterns

could help improve the detection accuracy. The proposed detection ensemble identifies

point anomalies and also collective anomalies since we group the data into 5-minute

intervals. The detection technique can also consider other contextual or external factors to

detect the contextual anomalies.

119

8.2 Threats to validity

1. The data used in our experiments are specific to GraphQL service and hence, the

results will vary for other services’ data. The data feature used for our experiments

is Average response time and other time-related features in case of multivariate data

and hence the model should be reconfigured and tuned for different services and

other metrics such as CPU, memory usage, as input features.

2. The data used for our experiment lies between June to December 2019. There was

a notable change in the data from June to September 2019 due to various factors

like production deployment, system configurations, etc., during that period. Hence,

the model was configured for the last portion of the data. It is assumed that there

will not be a huge notable difference in the average response time feature of the

data based on our testing (Dual Validation in Section 7.3.1.1).

3. The model seems capable and promising for real-time anomaly detection, but it

should be deployed in the production environment and tested for real-time

streaming data for better assessment. The speed of the data extraction as 5-minutes

interval and pre-processing stages might be slow and result in delays during real-

time detection and might require optimization to speed up the process.

4. The proposed work assumes that the causal components are directly dependent on

the GraphQL service, which are basically its spans or sub-components. As

discussed in the previous section, there could be external factors degrading the

GraphQL service’s performance.

5. The proposed detection method is capable of detecting point-based anomalies and

collective anomalies, but not contextual anomalies.

8.3 Conclusion

In this thesis, we developed an automated prediction-based anomaly detection and

localization system, (i) which detects performance anomalies using a time-series deep

learning model and an ensemble of unsupervised learning techniques that can handle a

huge volume of data generated from each of the individual microservices and avoid the

burden of static thresholding approach that is used in the existing monitoring framework

120

and other literature works as discussed in Chapter 3 and 4, and (ii) identifies the casual

components of the detected anomalies.

The motivation behind this research is to make the performance anomaly detection along

with the localization process of the root causes smooth and accurate with no intervention

required by the operations team. This idea is not a contribution to a specific service or

product or cloud-based systems but to all fields from different domains where the data is

time-series related data. Unlike existing techniques, our proposed system doesn’t require

any static thresholds or cut-offs for scoring the anomalies and is completely automated.

We developed the proposed system which consists of five modules: Data Extraction, Data

Pre-processing, Anomaly Detection module, Localization module, and Information

module. The novelty of the proposed system lies in the anomaly detection process of the

Detection module that uses a novel combination of LSTM and unsupervised learning

algorithms: (i) LSCP, (ii) Isolation forest, (iii) One-Class SVM, which avoids static

thresholding to score the anomaly and follows a dynamic approach using the unsupervised

learning algorithms. Another aspect of novelty in this work is using the LSCP model for

univariate data, which hasn’t been tested in the existing work previously.

We conducted experiments on a real-world time-series dataset of microservices from the

production environment and the Numenta Anomaly Benchmark dataset. Based on our

results on production dataset, we conclude that the proposed novel combination of ‘LSTM

+ LSCP’ and ‘LSTM + Isolation Forest’ are effective anomaly detectors with average F1-

scores 86% and 84%, average precision scores of 82 % and 77%, and average recall scores

of 91% and 93% respectively. They use the concept of prediction-based automated

anomaly detection without having to explicitly set any thresholds or cut-offs for scoring

anomalies and instead use unsupervised outlier detection ensemble – LSCP, Isolation forest

for identifying anomalies. The localization module was also experimented using data from

a third-party cloud system.

We wanted to experiment how the ensemble performs when LSTM includes additional

features (day of the week, weekday/weekend, holiday/non-holiday, etc.,.) extracted out of

timestamps as input even though LSTM is a time-series model in itself which learns

121

complex dynamics within the temporal ordering of input sequences. Based on our results,

it shows that the ensemble experimented using multivariate data for both single-step and

multi-step LSTM models did not perform as good as ensembles using univariate LSTM

models. This concludes that the inclusion of timely features to an LSTM does not improve

the performance of the LSTM model.

In our work, the production data used was specific to GraphQL service and its sub-

components – POST, GET, Cache. However, our proposed system is not limited to

GraphQL and its spans alone and can be used for any time-series data in a microservices-

based cloud environment.

8.4 Future Work

Here, we list several future work items:

1. The main problem in the anomaly detection field is the absence of label information

which creates a problem in determining the effectiveness of the approach. Labeling

the data manually in order to evaluate the detection technique is a challenging task.

Hence, to generate label information, a feedback loop can be implemented where a

domain expert would send feedback regarding the detected anomalies if the

detected anomalies are true or false. Based on domain experts' input the model can

retrain using the feedback and learn the behavior of the data to predict anomalies

during its encounter in the real-time production environment.

2. Further, the nature of data varies with time. Hence, the model requires an update or

re-training. But doing this manually on a regular basis would be tedious and hence

automatic re-training will be required which can be done when the label

information is available.

3. Also, one can test the proposed system for real-time anomaly detection by

implementing it in a production environment once the set-up and system integration

are done. The proposed detection technique can be tested on different varieties of

benchmark time-series datasets.

4. The data related to contextual or external factors responsible for anomalies in the

localization module can be collected for future analysis and features such as error

122

rates, not considered in the current version of our proposed system, can be taken

into account.

123

References

1. V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM

Computing Surveys.41(3), pp. 1-72, DOI: 10.1145/1541880.1541882, July 2009.

2. Tahir Mehmood, Helmi B Md Rais. Machine Learning Algorithms in Context of

Intrusion Detection. 3rd International Conference on Computer and Information

Sciences (ICCOINS), 2016.

3. Expert System team. “What is Machine Learning? A definition”.

https://expertsystem.com/machine-learning-definition/, March 2017. Accessed

2020-01-10.

4. Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

5. https://en.wikipedia.org/wiki/Semi-supervised_learning. Accessed: 2020-01-10.

6. Sciforce. "Anomaly Detection, A Key Task for AI and Machine Learning,

Explained". https://www.kdnuggets.com/2019/10/anomaly-detection-

explained.html, October 2019. Accessed 2020-01-10.

7. Louis Columbus, “State Of Enterprise Cloud Computing,

2018”. https://www.forbes.com/sites/louiscolumbus/2018/08/30/state-of-

enterprise-cloud-computing-2018/#5cde816265e3. Accessed: 2020-01-10.

8. Tom Huston, “Monitoring microservices”.

https://smartbear.com/learn/performance-monitoring/monitoring-microservices/.

Accessed: 2020-01-16

9. Kamal Jacob, “The Significance of Microservices in Cloud Computing”.

https://www.manipalprolearn.com/blog/significance-microservices-cloud-

computing/. Accessed: 2020-01-16.

10. Romana Gnatyk, “Microservices vs Monoliths: which architecture is the best

choice for your business?” https://www.n-ix.com/microservices-vs-monolith-

which-architecture-best-choice-your-business/, October 2018. Accessed: 2020-01-

16.

11. Vinod KeshaoraoPachghare. Microservices Architecture for Cloud Computing.

Journal of Information Technology and Sciences. Volume 2 Issue 1, 2016.

12. “The Future of Application Development and Delivery Is Now”.

https://www.nginx.com/resources/library/app-dev-survey/. Accessed: 2020-01-16.

13. Dave Swersky, “The Hows, Whys and Whats of Monitoring Microservices”.

https://thenewstack.io/the-hows-whys-and-whats-of-monitoring-microservices/,

2018. Accessed: 2020-01-16.

14. Apurva Dave and Loris Degioanni, “The five principles of monitoring

microservices”. https://thenewstack.io/five-principles-monitoring-microservices/,

September 2016. Accessed: 2020-01-16.

15. H. Malik and E. M. Shakshuki, “Classification of Post-deployment Performance

Diagnostic Techniques for Large-scale Software Systems,” Procedia Computer

Science, vol. 37, pp. 244–251, 2014.

16. Olumuyiwa Ibidunmoye, "Performance Anomaly Detection and Resolution for

Autonomous Clouds", December 2017.

https://expertsystem.com/machine-learning-definition/
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://www.kdnuggets.com/2019/10/anomaly-detection-explained.html
https://www.kdnuggets.com/2019/10/anomaly-detection-explained.html
https://www.forbes.com/sites/louiscolumbus/2018/08/30/state-of-enterprise-cloud-computing-2018/#5cde816265e3
https://www.forbes.com/sites/louiscolumbus/2018/08/30/state-of-enterprise-cloud-computing-2018/#5cde816265e3
https://smartbear.com/learn/performance-monitoring/monitoring-microservices/
https://www.manipalprolearn.com/blog/significance-microservices-cloud-computing/
https://www.manipalprolearn.com/blog/significance-microservices-cloud-computing/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.nginx.com/resources/library/app-dev-survey/
https://thenewstack.io/the-hows-whys-and-whats-of-monitoring-microservices/
https://thenewstack.io/five-principles-monitoring-microservices/

124

17. Kaya Ismail, “7 Tech Giants embracing microservices”.

https://www.cmswire.com/information-management/7-tech-giants-embracing-

microservices/, August 2018. Accessed 2020-01-17.

18. Joseph Tsidulko, “The 10 Biggest Cloud Outages of 2019 (so far)”.

https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2019-so-

far-/4, July 2019. Accessed: 2020-01-23.

19. Debjani Chaudhury, “Strange Cloud Outages that shook up the tech world in 2019”.

https://enterprisetalk.com/featured/strange-cloud-outages-that-shook-up-the-tech-

world-in-2019/, December 2019. Accessed: 2020-01-23.

20. Syed Yousaf Shah, ZengwenYuany, Songwu Luy, Petros Zerfos. Dependency

Analysis of Cloud Applications for Performance Monitoring using Recurrent

Neural Networks. IEEE International Conference on Big Data (BIGDATA), 2017.

21. Beepa Bose, Joy Dutta, Subhasish Ghosh, Pradip Pramanick and Sarbani Roy.

D&RSense : Detection of Driving Patterns and Road Anomalies. In 2018 3rd

International Conference On Internet of Things: Smart Innovation and Usages (IoT-

SIU). DOI: 10.1109/IoT-SIU.2018.8519861, February 2018.

22. Michael Walton, Maurice Ayache, Logan Straatemeier, Daniel Gebhardt, and

Benjamin Migliori. Unsupervised Anomaly Detection for Digital Radio Frequency

Transmissions. In 2017 16th IEEE International Conference on Machine Learning

and Applications. DOI: 10.1109/ICMLA.2017.00-54, January 2018.

23. Haya Al-Thani, Hanadi Hassen, Somaya Al-maadeed, Noora Fetais, Ali Jaoua.

Unsupervised Technique for Anomaly Detection in Qatar Stock Market. In 2018

International Conference on Computer and Applications (ICCA). DOI:

10.1109/COMAPP.2018.8460282, September 2018.

24. Vincent Vercruyssen,WannesMeert, Gust Verbruggen, Koen Maes, Ruben

Bäumer, Jesse Davis. Semi-supervised Anomaly Detection with an Application to

Water Analytics. In 2018 IEEE International Conference on Data Mining (ICDM).

DOI: 10.1109/ICDM.2018.00068, December 2018.

25. Laurikkala, J., Juhola1, M., and Kentala., E. Informal identification of outliers in

medical data. In Fifth International Workshop on Intelligent Data Analysis in

Medicine and Pharmacology. 20-24, 2000.

26. Suzuki, E., Watanabe, T., Yokoi, H., and Takabayashi, K. Detecting interesting

exceptions from medical test data with visual summarization. In Proceedings of the

3rd IEEE International Conference on Data Mining. 315-322, 2003.

27. Blender, R., Fraedrich, K., and Lunkeit, F. Identification of cyclone-track regimes

in the North Atlantic. Quarterly Journal of the Royal Meteorological Society 123,

539, 727-741, 1997.

28. Escalante, H. J. A comparison of outlier detection algorithms for machine learning.

In Proceedings of the International Conference on Communications in Computing.

2005.

29. O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance Anomaly

Detection and Bottleneck Identification. ACM Computing Surveys, vol. 48, no. 1,

pp. 4:1–4:35, July 2015.

30. Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. FChain: Toward

black-box online fault localization for cloud systems. In Proceedings of the IEEE

https://www.cmswire.com/information-management/7-tech-giants-embracing-microservices/
https://www.cmswire.com/information-management/7-tech-giants-embracing-microservices/
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2019-so-far-/4
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2019-so-far-/4
https://enterprisetalk.com/featured/strange-cloud-outages-that-shook-up-the-tech-world-in-2019/
https://enterprisetalk.com/featured/strange-cloud-outages-that-shook-up-the-tech-world-in-2019/

125

33rd International Conference on Distributed Computing Systems (ICDCS’13).

IEEE, 21–30. 2013.

31. Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,

and Deepak Rajan. Prepare: Predictive performance anomaly prevention for

virtualized cloud systems. In Proceedings of the IEEE 32nd International

Conference on Distributed Computing Systems (ICDCS’12). IEEE, 285–294.

2012.

32. Xiaohui Gu and Haixun Wang. Online anomaly prediction for robust cluster

systems. In Proceedings of the IEEE 25th International Conference on Data

Engineering (ICDE’09). IEEE, 1000–1011. 2009.

33. Hui Kang, Xiaoyun Zhu, and Jennifer L. Wong. DAPA: diagnosing application

performance anomalies for virtualized infrastructures. In Presented as part of the

2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and

Enterprise Networks and Services. 2012.

34. Lingyun Yang, Chuang Liu, Jennifer M. Schopf, and Ian Foster. Anomaly detection

and diagnosis in grid environments. In Proceedings of the 2007 ACM/IEEE

Conference on Supercomputing. IEEE, 1–9. 2007.

35. Joao Paulo Magalhaes and Luis Moura Silva. Detection of Performance Anomalies

in Web-based Applications. In 9th IEEE International Symposium on Network

Computing and Applications (NCA). IEEE, pp. 60–67. 2010.

36. Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R. Das.

CloudPD: Problem determination and diagnosis in shared dynamic clouds. In

Proceedings of the 43rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’13). IEEE, 1–12. 2013.

37. Manjula Peiris, James H. Hill, Jorgen Thelin, Sergey Bykov, Gabriel Kliot, and

Christian Konig. PAD: Performance anomaly detection in multi-server distributed

systems. In Proceedings of the 7th IEEE International Conference on Cloud

Computing (CLOUD’14). IEEE. 2014.

38. Lizhe Wang, Samee U. Khan, Dan Chen, Joanna Kołodziej, Rajiv Ranjan, Cheng-

zhong Xu, Albert Zomaya. Energy-aware parallel task scheduling in a cluster.

Future Generation Computer Systems., vol. 29, no. 7, pp. 1661-1670. 2013.

39. R. Ahad, E. Chan, and A. Santos, “Toward Autonomic Cloud: Automatic Anomaly

Detection and Resolution,” in International Conference on Cloud and Autonomic

Computing (ICCAC). IEEE, pp. 200– 203. 2015.

40. O. Ibidunmoye, F. Hernandez-Rodriguez, and E. Elmroth. Performance Anomaly

Detection and Bottleneck Identification. ACM Computing Surveys, Vol. 48, No. 1,

Article 4, p. 1-35, ACM. September 2015.

41. D. Sun, M. Fu, L. Zhu, G. Li, and Q. Lu. Non-intrusive anomaly detection with

streaming performance metrics and logs for devops in public clouds: A case study

in aws. In IEEE Transactions on Emerging Topics in Computing, vol. 4, no. 2, pp.

278–289. June 2016.

42. G. M. Abdelrahman and M. M. Nasr. Detection of Performance Anomalies in

Cloud Services: A Correlation Analysis Approach. International Journal of

126

Mechanical Engineering and Information Technology, vol. 4, no. 9, pp. 1773–1781.

2016.

43. Daniel Sun, Min Fu, Liming Zhu, Guoqiang Li, Qinghua Lu. Non-Intrusive

Anomaly Detection With Streaming Performance Metrics and Logs for DevOps in

Public Clouds: A Case Study in AWS. In IEEE Transactions on Emerging Topics

in Computing, vol. 4, no. 2, DOI: 10.1109/TETC.2016.2520883. IEEE. 2016.

44. Imam Yagoub, Muhammad Asif Khan, Li Jiyun. IT Equipment Monitoring and

Analyzing System for Forecasting and Detecting Anomalies in Log Files Utilizing

Machine Learning Techniques. In 2018 International Conference on Advances in

Big Data, Computing and Data Communication Systems (icABCD), DOI:

10.1109/ICABCD.2018.8465400. IEEE. 2018.

45. Qingfeng Du, TiandiXie, Yu He. Anomaly Detection and Diagnosis for Container-

Based Microservices with Performance Monitoring. In International Conference on

Algorithms and Architectures for Parallel Processing (ICA3PP'18),

DOI:10.1007/978-3-030-05063-4_42. 2018.

46. C. Sauvanaud, M. Kaaniche, K. Kanoun, K. Lazri, and G. Da Silva Silvestre.

Anomaly detection and diagnosis for cloud services: Practical experiments and

lessons learned. In Journal of Systems and Software, vol. 139, pp. 84–106. 2018.

47. SashoNedelkoski TU Berlin, Jorge Cardoso, Odej Kao. Anomaly Detection and

Classification using Distributed Tracing and Deep Learning. In 2019 19th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID), DOI: 10.1109/CCGRID.2019.00038, IEEE. 2019.

48. O. Vallis, J. Hochenbaum, and A. Kejariwal. A novel technique for long-term

anomaly detection in the cloud. In Proceedings of the 6th USENIX Conference on

Hot Topics in Cloud Computing, ser. HotCloud’14. Berkeley, CA, USA: USENIX

Association, pp. 15-15. 2014.

49. P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short term memory networks

for anomaly detection in time series. In ESANN 2015 proceedings, European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning, Bruges (Belgium), pp. 89-94. 2015.

50. Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying

Liu, Youjian Zhao, Dan Pei and Yang Feng, Jie Chen, Zhaogang Wang, Honglin

Qiao. Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal

KPIs in Web Applications. In WWW 2018: The 2018 Web Conference, April 23–

27, 2018, Lyon, France. ACM, New York, NY, USA, 12 pages.

https://doi.org/https://doi.org/10.1145/3178876.3185996. 2018.

51. Run-Qing Chen, Guang-Hui Shi, Wan-Lei Zhao, Chang-Hui Liang. Sequential

VAE-LSTM for Anomaly Detection on Time Series. ArXiv, abs/1910.03818. 2019.

52. Leandro von Werra, Lewis Tunstall, Simon Hofer. Unsupervised Anomaly

Detection for Seasonal Time Series. In 2019 6th Swiss Conference on Data Science

(SDS), DOI: 10.1109/SDS.2019.00036. IEEE. 2019.

53. Tian Huang, Yan Zhu, Qiannan Zhang, Yongxin Zhu, Dongyang Wang,

MeikangQiu, and Lei Liu. An LOF-based adaptive anomaly detection scheme for

https://doi.org/https:/doi.org/10.1145/3178876.3185996

127

cloud computing. In Proceedings of the IEEE 37th Annual Computer Software and

Applications Conference Workshops (COMPSACW’13). IEEE, pp. 206–211.

2013.

54. Tao Wang, Wenbo Zhang, Jun Wei, and Hua Zhong. Workload-aware online

anomaly detection in enterprise applications with local outlier factor. In

Proceedings of the IEEE 36th Annual Computer Software and Applications

Conference (COMPSAC’12). IEEE, 25–34. 2012.

55. M. M. Breunig, H.-P. Kriegel, RRaymond T. Ng, and J. Sander. LOF: Identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD

international conference on Management of data, pp. 93–104,

https://doi.org/10.1145/342009.335388. 2000.

56. Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, Sheraz Ahmed.

DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in

Time Series. In IEEE Access, Vol. 7, DOI: 10.1109/ACCESS.2018.2886457. 2018.

57. Lazarevic A, Ertoz L, Kumar V., Ozgur A, Srivastava J. A comparative study of

anomaly detection schemes in network intrusion detection. In Proceedings of the

2003 SIAM International Conference on DataMining, San Francisco, CA, USA,

Vol. 3, pp. 25–36. 2003.

58. James M. Keller, Michael R. Gray, James A. Givens. A fuzzy k-nearest neighbor

algorithm. In IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15,

no. 4, 1985.

59. Kanishka Bhaduri, Kamalika Das, and Bryan L. Matthews. Detecting abnormal

machine characteristics in cloud infrastructures. In Proceedings of the IEEE 11th

International Conference on Data Mining Workshops (ICDMW’11). IEEE, pp.

137–144, DOI: 10.1109/ICDMW.2011.62. 2011.

60. Areeg Samir, Claus Pahl. DLA: Detecting and Localizing Anomalies in

Containerized Microservice Architectures Using Markov Models. In 2019 7th

International Conference on Future Internet of Things and Cloud (FiCloud). DOI:

10.1109/FiCloud.2019.00036. IEEE. 2019.

61. Xiao Zhang, Fanjing Meng, Pengfei Chen, Jingmin Xu. TaskInsight: A Fine-

Grained Performance Anomaly Detection and Problem Locating System. In 2016

IEEE 9th International Conference on Cloud Computing (CLOUD). DOI:

10.1109/CLOUD.2016.0136, IEEE. 2016.

62. Uzziah Eyee. "Microservices Observability with Distributed Tracing".

https://medium.com/swlh/microservices-observability-with-distributed-tracing-

32ae467bb72a, 2019. Accessed 2020-02-21.

63. Matthew McKenzie. "Complexity in Context: Microservices and Distributed

Tracing [Video]". https://blog.newrelic.com/product-news/complexity-context-

microservices-distributed-tracing-video/, 2019. Accessed 2020-02-21.

64. Open Tracing, “What is Distributed Tracing?”.

https://opentracing.io/docs/overview/what-is-tracing/. Accessed 2020-02-21.

65. Lightstep, “Lightstep Distributed Tracing”. https://lightstep.com/distributed-

tracing/. Accessed 2020-02-21.

https://doi.org/10.1145/342009.335388
https://medium.com/swlh/microservices-observability-with-distributed-tracing-32ae467bb72a
https://medium.com/swlh/microservices-observability-with-distributed-tracing-32ae467bb72a
https://blog.newrelic.com/product-news/complexity-context-microservices-distributed-tracing-video/
https://blog.newrelic.com/product-news/complexity-context-microservices-distributed-tracing-video/
https://opentracing.io/docs/overview/what-is-tracing/
https://lightstep.com/distributed-tracing/
https://lightstep.com/distributed-tracing/

128

66. Rtfpessoa. Understanding microservices with distributed tracing.

https://blog.codacy.com/understanding-microservices-with-tracing/, 2019.

Accessed 2020-02-21.

67. OpenCensus, “Tracing”. https://opencensus.io/tracing/. Accessed 2020-02-21.

68. RAN RIBENZAFT. Microservices: Using Distributed Tracing for Monitoring &

Troubleshooting. https://cloudacademy.com/blog/microservices-using-distributed-

tracing-monitoring-troubleshooting/, 2019. Accessed 2020-02-21.

69. SignalFx, “APM PG Instrumentation Overview”.

https://docs.signalfx.com/en/latest/apm/apm-instrument/apm-instr-overview.html.

Accessed 2020-02-21.

70. Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,

Manoj Plakal, Donald Beaver, Saul Jaspan, Chandan Shanbhag. Dapper, a Large-

Scale Distributed Systems Tracing Infrastructure. Google Technical Report dapper-

2010-1, Google, Inc., 2010. [Online]. Available:

https://research.google.com/archive/papers/dapper-2010-1.pdf

71. Juraci Paixão Kröhling. A guide to the open source distributed tracing landscape.

https://developers.redhat.com/blog/2019/05/01/a-guide-to-the-open-source-

distributed-tracing-landscape/, 2019. Accessed 2020-02-21.

72. RedHat, “What is Jaeger?”. https://www.redhat.com/en/topics/microservices/what-

is-jaeger. Accessed 2020-02-21.

73. Gerred Dillon, “Intro to OpenTracing and OpenCensus for Distributed Tracing”.

https://blog.appoptics.com/intro-to-opentracing-and-opencensus-for-distributed-

tracing/, 2018. Accessed 2020-02-21.

74. Juraci Paixão Kröhling, “Distributed tracing in a microservices world”.

https://opensource.com/article/18/9/distributed-tracing-microservices-world,

2018. Accessed 2020-02-21.

75. https://en.wikipedia.org/wiki/Neural_network. Accessed 2020-02-21.

76. Akash Singh. Anomaly detection for temporal data using long short-term memory

(lstm), 2017.

77. PathMind, “A Beginner's Guide to Neural Networks and Deep Learning”.

https://pathmind.com/wiki/neural-network. Accessed 2020-02-26.

78. TutorialsPoint, “Artificial Neural Network - Basic Concepts”,

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_networ

k_basic_concepts.htm. Accessed 2020-02-26.

79. Oleksii Trekhleb. https://github.com/trekhleb/machine-learning-

octave/blob/master/neural-network/README.md. Accessed 2020-02-26.

80. Deval Shah, “Activation Functions”. https://towardsdatascience.com/activation-

functions-in-neural-networks-58115cda9c96, April 2017. Accessed 2020-02-26.

81. MissingLink, “7 Types of Neural Network Activation Functions: How to Choose?”.

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-

activation-functions-right/. Accessed 2020-02-26.

https://blog.codacy.com/understanding-microservices-with-tracing/
https://opencensus.io/tracing/
https://cloudacademy.com/blog/microservices-using-distributed-tracing-monitoring-troubleshooting/
https://cloudacademy.com/blog/microservices-using-distributed-tracing-monitoring-troubleshooting/
https://docs.signalfx.com/en/latest/apm/apm-instrument/apm-instr-overview.html
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://developers.redhat.com/blog/2019/05/01/a-guide-to-the-open-source-distributed-tracing-landscape/
https://developers.redhat.com/blog/2019/05/01/a-guide-to-the-open-source-distributed-tracing-landscape/
https://www.redhat.com/en/topics/microservices/what-is-jaeger
https://www.redhat.com/en/topics/microservices/what-is-jaeger
https://blog.appoptics.com/intro-to-opentracing-and-opencensus-for-distributed-tracing/
https://blog.appoptics.com/intro-to-opentracing-and-opencensus-for-distributed-tracing/
https://opensource.com/article/18/9/distributed-tracing-microservices-world
https://en.wikipedia.org/wiki/Neural_network
https://pathmind.com/wiki/neural-network
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concepts.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concepts.htm
https://github.com/trekhleb/machine-learning-octave/blob/master/neural-network/README.md
https://github.com/trekhleb/machine-learning-octave/blob/master/neural-network/README.md
https://towardsdatascience.com/activation-functions-in-neural-networks-58115cda9c96
https://towardsdatascience.com/activation-functions-in-neural-networks-58115cda9c96
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

129

82. David Fumo, “A Gentle Introduction To Neural Networks Series — Part 1”.

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-

part-1-2b90b87795bc, August 2017. Accessed 2020-02-26.

83. Jordi TORRES.AI, “Learning process of a neural network”.

https://towardsdatascience.com/how-do-artificial-neural-networks-learn-

773e46399fc7, September 2018. Accessed 2020-02-26.

84. Mahendran Venkatachalam, “Recurrent Neural Networks”,

https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce,

February 2019. Accessed 2020-02-26.

85. Aditi Mittal, “Understanding RNN and LSTM”.

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e,

October 2019. Accessed 2020-02-28.

86. Pranjal Srivastava, “Essentials of Deep Learning: Introduction to Long Short Term

Memory”. https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-

learning-introduction-to-lstm/, December 2017. Accessed 2020-02-28.

87. SuperDataScience Team, “Recurrent Neural Networks (RNN) - The Vanishing

Gradient Problem”. https://www.superdatascience.com/blogs/recurrent-neural-

networks-rnn-the-vanishing-gradient-problem, August 2018. Accessed 2020-03-

04.

88. Christopher Olah. “Understanding LSTM Networks”.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/, August 2015.

Accessed 2020-03-04.

89. Devby RayRay, “GraphQL (microservices) architecture by Apollo”.

https://itnext.io/graphql-microservices-architecture-by-apollo-8b6eb557c5e2,

January 15. Accessed 2020-03-07.

90. HOWTOGRAPHQL, “GraphQL is the better REST”.

https://www.howtographql.com/basics/1-graphql-is-the-better-rest/. Accessed

2020-03-07.

91. Zhao Yue, Nasrullah Zain, Hryniewicki Maciej, Li Zheng. LSCP: Locally Selective

Combination in Parallel Outlier Ensembles. 2019.

92. Vadim Smolyakov, “Ensemble Learning to Improve Machine Learning Results”.

https://blog.statsbot.co/ensemble-learning-d1dcd548e936, August 2017. Accessed

2020-03-10

93. Tin Kam Ho, J.J. Hull, S.N. Srihari. Decision Combination in Multiple Classifier

Systems. In IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol

16, no 1, DOI: 10.1109/34.273716. Jan 1994.

94. Singh, Archana & Yadav, Avantika & Rana, Ajay. K-means with Three different

Distance Metrics. International Journal of Computer Applications. Vol. 67 no. 10,

pp 13-17, DOI:10.5120/11430-6785. 2013.

95. GeeksforGeeks, “Elbow Method for optimal value of k in KMeans”.

https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/.

Accessed 2020-03-16.

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7
https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem
https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://itnext.io/graphql-microservices-architecture-by-apollo-8b6eb557c5e2
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/

130

96. Venkatesh Umamaheswaran, “Comprehending K-means and KNN Algorithms”.

https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-

c791be90883d, November 2018. Accessed 2020-03-16.

97. https://pyod.readthedocs.io/en/latest/. Accessed 2020-03-16.

98. Manojit Nandi, “LOCAL OUTLIER FACTOR – PART 1”.

https://blog.stealthbits.com/local-outlier-factor-part-1. Accessed 2020-03-16.

99. Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jorg Sander. LOF:

identifying density-based local outliers. In ACM sigmod record, Vol 29, pp 93-104.

2000.

100. Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou. Isolation Forest. In 2008

Eighth IEEE International Conference on Data Mining. DOI:

10.1109/ICDM.2008.17. 2008.

101. Hyunsu Kim, "Isolation Forest Step by Step".

https://medium.com/@hyunsukim_9320/isolation-forest-step-by-step-

341b82923168, January 2019. Accessed 2020-03-16.

102. Schölkopf Bernhard, Williamson Robert, Smola Alex, Shawe-Taylor John,

Platt John. Support Vector Method for Novelty Detection. In NIPS'99: Proceedings

of the 12th International Conference on Neural Information Processing Systems.

1999.

103. V.K. Chouksey. Automatic selection of outlier detection techniques. 2018.

104. https://en.wikipedia.org/wiki/Cloud_computing

105. "Cloud Computing Technologies: A Global Outlook".

https://www.businesswire.com/news/home/20190708005357/en/Cloud-

Computing-Technologies-Global-Outlook-2019--

106. https://stats.stackexchange.com/questions/282987/hidden-markov-model-

vs-recurrent-neural-network. Accessed 2020-05-19.

107. https://www.codecademy.com/articles/normalization. Accessed 2020-05-

19.

108. https://numenta.com/machine-intelligence-technology/numenta-anomaly-

benchmark/. Accessed 2020-03-01.

109. https://github.com/numenta/NAB/blob/master/results/numenta/numenta_st

andard_scores.csv. Accessed 2020-05-23.

110. https://www.synextra.co.uk/evolution-cloud-computing/. Accessed 2020-

05-27.

https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-c791be90883d
https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-c791be90883d
https://pyod.readthedocs.io/en/latest/
https://blog.stealthbits.com/local-outlier-factor-part-1
https://medium.com/@hyunsukim_9320/isolation-forest-step-by-step-341b82923168
https://medium.com/@hyunsukim_9320/isolation-forest-step-by-step-341b82923168
https://en.wikipedia.org/wiki/Cloud_computing
https://www.businesswire.com/news/home/20190708005357/en/Cloud-Computing-Technologies-Global-Outlook-2019--
https://www.businesswire.com/news/home/20190708005357/en/Cloud-Computing-Technologies-Global-Outlook-2019--
https://stats.stackexchange.com/questions/282987/hidden-markov-model-vs-recurrent-neural-network
https://stats.stackexchange.com/questions/282987/hidden-markov-model-vs-recurrent-neural-network
https://www.codecademy.com/articles/normalization.%20Accessed%202020-05-19
https://www.codecademy.com/articles/normalization.%20Accessed%202020-05-19
https://numenta.com/machine-intelligence-technology/numenta-anomaly-benchmark/
https://numenta.com/machine-intelligence-technology/numenta-anomaly-benchmark/
https://github.com/numenta/NAB/blob/master/results/numenta/numenta_standard_scores.csv.%20Accessed%202020-05-23
https://github.com/numenta/NAB/blob/master/results/numenta/numenta_standard_scores.csv.%20Accessed%202020-05-23
https://www.synextra.co.uk/evolution-cloud-computing/

131

Appendix A

A.1 Data Extraction Algorithms

A.1.1 Algorithm to extract Trace IDs from Elasticsearch system

#!/usr/bin/env python
import urllib3
import certifi
import pandas as pd
import pickle
import json
import time
from datetime import datetime, date, timedelta
from elasticsearch import Elasticsearch

def datetime_range(start, end, delta):
 current = start
 while current < end:
 yield current
 current += delta

dts = [dt.strftime('%Y-%m-%dT%H:%M:%S') for dt in
 datetime_range(datetime(2019, 8, 30, 23, 55), datetime(2019, 9, 2, 0),
 timedelta(minutes=5))]
credentials = ""
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
es = Elasticsearch(['https://priyanka.naikade@****.com:******@bss-*******-
p00.compose.direct:15117/'], verify_certs=False)

#get trace IDs of all the graphql requests. max len will be 10,000 due to size
parameter
traceinfolist = []
trIDs = []

for i in dts:
 from_time = i
 to_time = datetime.strptime(i, '%Y-%m-%dT%H:%M:%S') +
timedelta(minutes=5)
 res3 = es.search(index="cloud-datalayer*", body = {
 'size' : 10000,
 'query': {
 'bool': {

132

 'filter': [
 {
 'range': {
 'date': {
 'from': from_time,
 'to': to_time
 }
 }
 },
 {
 'term': {
 'name.keyword': {
 'value': '/datalayer/graphql'
 }
 }
 }
]
 }
 }
 })

 for doc in res3['hits']['hits']:
 trIDs.append(doc['_source']['traceId'])

 picklefilename = "trIDs"+str(to_time)+".pickle"
 pickle_out = open(picklefilename,"wb")
 pickle.dump(trIDs, pickle_out)
 pickle_out.close()
 print("*****************************")
 time.sleep(5)
 traceinfolist = []
 trIDs = []
 print("\n\n------------------------------------end--")

133

A.1.2 Algorithm to get trace information for the collected Trace IDs

#!/usr/bin/env python
import urllib3
import certifi
import pandas as pd
import pickle
import json
import time
#import simplejson
import time
from datetime import datetime, date, timedelta
import os
from elasticsearch import Elasticsearch
import smtplib
from smtplib import SMTPException

start = time.time()
credentials = ""
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
es = Elasticsearch(['https://priyanka.naikade@****.com:******@bss-
*******p00.compose.direct:15117/'], verify_certs=False)

#Slicing list of trace IDs for max size limit issue while fetching data from
Elasticsearch
def slicelist(listdata, num):
 avg = len(listdata) / float(num)
 print(avg)
 outlistset = []
 last = 0.0
 while last < len(listdata):
 outlistset.append(listdata[int(last):int(last + avg)])
 last += avg
 return outlistset

Get the directory path from the user where all the input files are present
dirpath = "/home/priyanka/thesis/ESdata/tidfiles/"
files = os.listdir(dirpath)
Looping through every file present in the folder and storing its information in a
list
for each_file in files:
 new_filename = "Info" + each_file

134

 #get trace IDs of all the graphql requests. max len will 10,000 due to size
parameter
 traceinfolist = []
 trIDs = []

 filepath = "/home/priyanka/thesis/ESdata/tidfiles/" + each_file
 pickle_trlist = open(filepath,"rb")
 trlist_orig = pickle.load(pickle_trlist)
 transactions_dict = {}
 trans_list = []
 troutlist = slicelist(trlist_orig,20)
 tinf =[]

 for trlist in troutlist:
 data = es.search(index="cloud-datalayer*", body = {
 'size' : 10000,
 'query': {
 'bool': {
 'filter': [
 {
 'terms':{
 'traceId.keyword': trlist

 }
 }
]
 }
 }})

 ''',
 'sort': [
 { 'traceId.keyword': { "order": "asc" }}
]'''

 for doc in data['hits']['hits']:
 tinf.append((doc['_source']))
 key = doc['_source']['traceId']
 if key in transactions_dict.keys():
 #parent already present so appendd child values to the existing key in the
dictionary")
 transactions_dict[key].append((doc['_source']))
 else:
 #new parent so add in the dictionary")
 transactions_dict[key] = [(doc['_source'])]

135

 print("\n writing to files\n")
 pickle_out = open(new_filename,"wb")
 pickle.dump(transactions_dict, pickle_out)
 pickle_out.close()
 print(new_filename,"done writing")

end = time.time()
ttaken = end - start
print("\n time taken:",ttaken)

#Send an email notification
to = 'priyanka*****@gmail.com'
gmail_user = 'priyanka*****@gmail.com'
gmail_pwd = '******'
smtpserver = smtplib.SMTP("smtp.gmail.com",587)
smtpserver.ehlo()
smtpserver.starttls()
smtpserver.ehlo
smtpserver.login(gmail_user, gmail_pwd)
header = 'To:' + to + '\n' + 'From: ' + gmail_user + '\n' + 'Subject: ES files extracted
\n'
#print(header)
msg = header + '\n Trace Info Objects from ES extracted \n\n time taken : ' +
str(ttaken)
smtpserver.sendmail(gmail_user, to, msg)
print('done!')
smtpserver.close()

136

A.1.3 Algorithm to get request summary information

#Get requests Summary from ES files along with response codes
import os
import pickle
import json
import requests
import time
from datetime import datetime, date, timedelta
from dateutil.parser import parse

dirpath = '/mnt/c/Users/Priyanka Naikade/trinfoES/'
tags = ('traceId','date','duration')
newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp',
'duration','http.host','http.status_code')
files = os.listdir(dirpath)
graphql_time = {}
v ={}
cd={}
graphql_timelist = []
codes=[]

Looping through every file present in the folder and storing its information in a
list
for each_file in files:
 c=0
 total = 0
 codes = []
 filepath = dirpath + each_file
 pickle_trinf = open(filepath,"rb")
 trinfo = pickle.load(pickle_trinf)
 for t in trinfo:
 #t is key trace ID, trinfo list
 #for every transaction we need only certain fields like ID, parentID, duration for
graph creation
 #so removed some key fields from the inner dictionary
 for span in trinfo[t]:
 #print(span['name'],":",span['duration'])
 if(span['name'] == '/datalayer/graphql'):
 #graphql_time[span['name']] = span['duration']
 t = span['duration']/1000
 total = total + t

 #get all response codes in list

137

 for tagname in span['tags']:
 #tagname - tagnames
 if(tagname == 'http.status_code'):
 #print(span['tags']['http.status_code'])
 codes.append(span['tags']['http.status_code'])

 #get count for every distinct response code
 cde=0
 for i in set(codes):
 for rc in codes:
 if i == rc:
 cde=cde+1

 cd[i] = cde
 cde = 0

 #print(each_file,":",total)
 date = (each_file[9:28])
 graphql_time["k"]= date
 v["count"]= len(trinfo)
 v["duration"]=total
 graphql_time["v"]=v
 graphql_time["rescodes"]=cd
 graphql_timelist.append((graphql_time))
 graphql_time = {}
 v ={}
 cd ={}

pickle_out = open("/home/priyanka/ESrequestSummarywithcodes2.pickle","wb")
pickle.dump(graphql_timelist, pickle_out)
pickle_out.close()
print("end")

138

A.1.4 Algorithm to get Individual summary information

import os
import requests
import json
import pickle

#get Individual Summary --> requests, total duration of cache, get, post, every 5mins
interval
dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/"
tags = ('traceId','name', 'id', 'parentId','date','timestamp', 'duration','tags')
newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp',
'duration','http.host','http.status_code')

files = os.listdir(dirpath)
IndividualSummary = {}
v={}
IndividualSummarylist =[]
Looping through every file present in the folder and storing its information in a
list
for each_file in files:
 t, ct, pt, gt, ot, total = 0,0,0,0,0,0
 tgraph, GRAPH, CACHE, tcache, POST, tpost, tget, GET ,othercategory, tother=[],[
],[],[],[],[],[],[],[],[]
 cacheduration, cacherequests, postduration, postrequests, getduration,
getrequests, graphqlduration, otherduration,otherrequests = 0,0,0,0,0,0,0,0,0
 filepath = dirpath + each_file
 pickle_trinf = open(filepath,"rb")
 trinfo = pickle.load(pickle_trinf)
 for t in trinfo:
 #t is key trace ID, trinfo list
 #for every transaction we need only certain fields like ID, parentID, duration for
graph creation
 #so removed some key fields from the inner dictionary
 for span in trinfo[t]:
 #print(span['name'],":",span['duration'])
 if(span['name'] == '/datalayer/graphql'):
 #graphql_time[span['name']] = span['duration']
 t = span['duration']/1000
 tgraph.append(t)
 elif(span['name'].startswith('CACHE')):
 ct = span['duration']/1000

139

 tcache.append(ct)
 elif(span['name'].startswith('POST')):
 pt = span['duration']/1000
 tpost.append(pt)
 elif(span['name'].startswith('GET')):
 gt = span['duration']/1000
 tget.append(gt)
 else:
 ot = span['duration']/1000
 tother.append(ot)

 GRAPH.extend(tgraph)
 CACHE.extend(tcache)
 POST.extend(tpost)
 GET.extend(tget)
 othercategory.extend(tother)
 graphduration= sum(GRAPH)
 graphrequests = len(GRAPH)
 cacheduration = sum(CACHE)
 cacherequests = len(CACHE)
 postduration = sum(POST)
 postrequests = len(POST)
 getduration = sum(GET)
 getrequests = len(GET)
 otherduration = sum(othercategory)
 otherrequests = len(othercategory)

 date = (each_file[9:28])
 IndividualSummary["k"]= date
 v["graphRequests"]= graphrequests
 v["graphDuration"]= graphduration
 v["cacheRequests"]= cacherequests
 v["cacheDuration"]= cacheduration
 v["postRequests"]= postrequests
 v["postDuration"]= postduration
 v["getRequests"]= getrequests
 v["getDuration"]= getduration
 v["otherRequests"]= otherrequests
 v["otherDuration"]= otherduration
 IndividualSummary["v"]=v
 IndividualSummarylist.append((IndividualSummary))
 IndividualSummary = {}
 v ={}

pickle_out = open("/home/priyanka/IndividualSummarylist2.pickle","wb")
pickle.dump(IndividualSummarylist, pickle_out)

140

pickle_out.close()

A.1.5 Algorithm to get all dates of Traces

import requests
import os
import pickle
import json

dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/"
files = os.listdir(dirpath)
Looping through every file present in the folder and storing its information in a
list
Date_traceIDs = {}
for each_file in files:
 filepath = dirpath + each_file
 pickle_trinf = open(filepath,"rb")
 trinfo = pickle.load(pickle_trinf)
 fname = each_file[9:-7]
 traces = []
 for t in trinfo:
 traces.append(t)
 Date_traceIDs[fname]=traces

pickle_out = open("/home/priyanka/AllDate_traceIDs2.pickle","wb")
pickle.dump(Date_traceIDs, pickle_out)
pickle_out.close()

print("End")

141

A.2 Localization Module – Mapper Function

def mapper(df_test, cachedf_test, postdf_test, getdf_test):

 df_test.loc[df_test['lscpoutlier_3']==1, 'Date'].tolist()

 graphqlanomalies = []

 graphqlanomalies = df_test.loc[df_test['lscpoutlier_3']==1, 'Date'].tolist()

 cacheanomalies = []

 cacheanomalies = cachedf_test.loc[cachedf_test['lscpoutlier_more']==1,

'Date'].tolist()

 postanomalies = []

 postanomalies = postdf_test.loc[postdf_test['lscpoutlier_more']==1, 'Date'].tolist()

 getanomalies = []

 getanomalies = getdf_test.loc[getdf_test['lscpoutlier_more']==1, 'Date'].tolist()

 cdict = {}

 cano = []

 for i in graphqlanomalies:

 if i in cacheanomalies:

 print(i)

 cano.append(i)

 cdict['cache'] = cano

 pdict = {}

 pano = []

 for i in graphqlanomalies:

 if i in postanomalies:

 #print(i)

 pano.append(i)

 pdict['post']= pano

 gedict = {}

 geano = []

 for i in graphqlanomalies:

 if i in getanomalies:

 #print(i)

 geano.append(i)

 gedict['get']= geano

 anodict = {}

 for i in graphqlanomalies:

 if (i in cacheanomalies) & (i in postanomalies) & (i in getanomalies):

 print(i)

 anodict[i] = ['cache','post','get']

 elif (i in cacheanomalies) & (i in postanomalies) & (i not in getanomalies):

 #print(i)

 anodict[i] = ['cache','post']

142

 elif (i in cacheanomalies) & (i not in postanomalies) & (i not in

getanomalies):

 anodict[i] = ['cache']

 elif (i not in cacheanomalies) & (i in postanomalies) & (i in getanomalies):

 anodict[i] = ['post','get']

 elif (i not in cacheanomalies) & (i not in postanomalies) & (i in

getanomalies):

 anodict[i] = ['get']

 elif (i not in cacheanomalies) & (i in postanomalies) & (i not in

getanomalies):

 anodict[i] = ['post']

 elif (i in cacheanomalies) & (i not in postanomalies) & (i in getanomalies):

 anodict[i] = ['cache','get']

 elif (i not in cacheanomalies) & (i not in postanomalies) & (i not in

getanomalies):

 anodict[i] = ['none']

 #generate color request flow graph for each anomalous interval and visualize

using graphs

 for key,val in anodict.items():

 print("\nAnomalous Interval:",key,"\nCausal Component red-highlighted

in graph")

 G = nx.DiGraph()

 map(G.add_node, range(6))

 #Add all nodes along with their color information.

 #Datalayer-black, graphql-green, Cache- Blue, POST-cyan, GET- red

 k = ['Dashboard','Datalayer','GraphQL','POST','GET','CACHE']

 G.add_node('Dashboard',pos=(1,3),color='yellowgreen')

 G.add_node('Datalayer',pos=(2,3),color='yellowgreen')

 G.add_node('GraphQL',pos=(3,3),color='yellowgreen')

 if val == ['none']:

 G.add_node('POST',pos=(4,3),color='yellowgreen')

 G.add_node('GET',pos=(4,4),color='yellowgreen')

 G.add_node('CACHE',pos=(4,2),color='yellowgreen')

 elif val == ['cache','post','get']:

 G.add_node('POST',pos=(4,3),color='red')

 G.add_node('GET',pos=(4,4),color='red')

 G.add_node('CACHE',pos=(4,2),color='red')

 elif val == ['cache','post']:

 G.add_node('POST',pos=(4,3),color='red')

 G.add_node('GET',pos=(4,4),color='yellowgreen')

 G.add_node('CACHE',pos=(4,2),color='red')

 elif val == ['cache']:

 G.add_node('POST',pos=(4,3),color='yellowgreen')

143

 G.add_node('GET',pos=(4,4),color='yellowgreen')

 G.add_node('CACHE',pos=(4,2),color='red')

 elif val == ['post','get']:

 G.add_node('POST',pos=(4,3),color='red')

 G.add_node('GET',pos=(4,4),color='red')

 G.add_node('CACHE',pos=(4,2),color='yellowgreen')

 elif val == ['post']:

 G.add_node('POST',pos=(4,3),color='red')

 G.add_node('GET',pos=(4,4),color='yellowgreen')

 G.add_node('CACHE',pos=(4,2),color='yellowgreen')

 elif val == ['get']:

 G.add_node('POST',pos=(4,3),color='yellowgreen')

 G.add_node('GET',pos=(4,4),color='red')

 G.add_node('CACHE',pos=(4,2),color='yellowgreen')

 elif val == ['cache','get']:

 G.add_node('POST',pos=(4,3),color='ywllowgreen')

 G.add_node('GET',pos=(4,4),color='red')

 G.add_node('CACHE',pos=(4,2),color='red')

 G.add_edge('Dashboard','Datalayer')

 G.add_edge('Datalayer','GraphQL')

 G.add_edge('GraphQL','POST')

 G.add_edge('GraphQL','GET')

 G.add_edge('GraphQL','CACHE')

 pos=nx.get_node_attributes(G,'pos')

 red_nodes=[n for n,d in G.nodes(data=True) if d['color']=='red'] #graphql

 yellowgreen_nodes=[n for n,d in G.nodes(data=True) if

d['color']=='yellowgreen'] #cache

 #draw respective color category nodes

 nx.draw(G,pos,alpha=0.7,nodelist=yellowgreen_nodes,node_color='yellowgreen',

node_size=4500,node_shape='s')

 nx.draw(G,pos,alpha=0.7,nodelist=red_nodes,node_color='red',node_size=4500,n

ode_shape='s')

 nx.draw_networkx_labels(G,pos,font_color='b')

 nx.draw_networkx_edges(G,pos, width=1,arrowsize=10)

 plt.figure(figsize=(30, 20))

 plt.show(block=False)

mapper(df_test, cachedf_test, postdf_test, getdf_test)

144

A.3 Algorithm for Information Module

To display Summary of a transaction, request flow diagram for a given trace ID

entered by the user

#code to fetch information/summary for the input trace ID - option 4
def GenerateListsforSingleTrace(SingleTraceInfoList):
 tags = ('date','timestamp','traceId','http.status_code','http.host')
 #includedtags = ('id','parentId','duration')
 #for every transaction we need only certain fields like ID, parentID, duration for
graph creation
 #so removed some key fields from the inner dictionary
 original_list=SingleTraceInfoList
 new_list = [{k: v for k, v in d.items() if k not in tags} for d in original_list]
 #overwrite dictionary value i.e value for trace ID
 SingleTraceInfoList=new_list

 #create a list of dictinaries which has info of individual spans [ID1 : parent,
duration, ID2: parent, duration..]
 spans_list = []
 eachspan ={}
 #Get total number of nodes involved in a transaction and their IDs
 listofnodes=[]
 listofnodes2 =[]
 #Get Node & their duration given in json objects which included chil's duration as
well
 Id_Duration_given = {}

 #Modified list ---looping through the list of spans within the transaction
 for s in SingleTraceInfoList:
 listofnodes.append(s['id'])
 listofnodes.append(s['parentId'])
 eachspan[s['id']]=s
 Id_Duration_given[s['id']]=s['duration']

 spans_list.append(eachspan)

 NumofNodes = len(list(set(listofnodes)))
 #print("ID-duration:",Id_Duration_given)

 #Iterate through spans_list

145

 #Create a dictionary for graph -- {parent1:[child1, child2], parent2: [child1]}
 parentchild = {}
 for spans in spans_list:
 #looping through the list of spans within the transaction
 for each in spans:
 #print(each) #each is key-ID, spans[each]=values -duration,parentID
 #print("Parent",spans[each]['parentId'],":","ID",each)
 pkey = spans[each]['parentId']
 child = each
 #if key/parent ID doesn't exist
 if pkey in parentchild.keys():
 #parent already present so appendd child values to the existing key in the
dictionary")
 parentchild[pkey].append(child)
 else:
 #new parent so add in the dictionary")
 parentchild[pkey] = [child]
 return NumofNodes,list(set(listofnodes)), spans_list, parentchild,
Id_Duration_given

#Get the individual node's duration because the json adds up the duration of child
node & CPU to the parent node
#This has considered only child nodes duration and has ignored the CPU/network
duration or time gaps between the spans
def GetIndividualNodesDuration(Id_Duration_given,parentchild):
 #loop through ID-duration because it starts from graphql node and not the nodes
before graphql/which calls graphQl
 ID_individual_duration = {}
 total_child_duration = 0
 for idd in Id_Duration_given:
 #print(idd,Id_Duration_given[idd])
 #check if the node has any child --i.e., check if it's a parent/key in parentchild
dictionary
 if idd in parentchild.keys():
 #check how many childs and calculate the sum of duration of all its childrens
 #print(parentchild[idd])
 for c in parentchild[idd]:
 total_child_duration += Id_Duration_given[c]

 pduration = Id_Duration_given[idd] - total_child_duration
 # add to dictionary
 ID_individual_duration[idd]=pduration/1000

 else:

146

 #Set the given duration as it's individual duration since it doesn't have any
child
 ID_individual_duration[idd]=Id_Duration_given[idd]/1000

 return ID_individual_duration

#call the respective functions for every transaction information

def GetSingleTransactionInfo(single_transaction):
 NumofNodes, listofnodes, spans_list, parentchild, Id_Duration_given =
GenerateListsforSingleTrace(single_transaction)
 ID_individual_duration =
GetIndividualNodesDuration(Id_Duration_given,parentchild)

 return NumofNodes, listofnodes, spans_list, parentchild,
Id_Duration_given,ID_individual_duration

def CreateCategoryBuckets(ID_individual_duration, spans_list):
 #creating buckets to append timestamps of graphql, chache, post
 # use spanlist, ID_individual_duration list to get the names&time for grouping into
respective buckets
 # ID_individual_duration is adictionary
 tCACHE = []
 tPOST = []
 tGRAPHQL = []
 tGET = []
 tothercategory = []
 nodedict = {}
 nodecolors = {}
 for kid, v in ID_individual_duration.items():
 #print(kid,v)
 for s in spans_list:
 for i in s:
 if (kid == i):
 #print("\n name of kid:",i,":",s[i]['name'])

 if(s[i]['name'] == '/datalayer/graphql'):
 namepart = "GraphQL-"
 nodecolors[kid] = "red"
 elif(s[i]['name'].startswith('CACHE')):
 namepart = "CACHE-"
 nodecolors[kid] = "purple"
 elif(s[i]['name'].startswith('POST')):
 namepart = "POST-"

147

 nodecolors[kid] = "blue"
 elif(s[i]['name'].startswith('GET')):
 namepart = "GET-"
 nodecolors[kid] = "green"
 else:
 namepart = ""
 nodecolors[kid] = "cyan"

 nodedict[namepart+kid] = v

 #print("\n nodedict:", nodedict)
 for k,v in nodedict.items():
 if(k.startswith('CACHE')):
 tCACHE.append(v)
 elif(k.startswith('POST')):
 tPOST.append(v)
 elif(k.startswith('GET')):
 tGET.append(v)
 elif(k.startswith('GraphQL')):
 tGRAPHQL.append(v)
 else:
 tothercategory.append(v)

 return nodedict, tCACHE, tPOST, tGET, tGRAPHQL, tothercategory,nodecolors

def drawrequestflowgraph(NumofNodes,parentchild,nodecolors):
 G = nx.DiGraph()
 map(G.add_node, range(NumofNodes))

 #Add all nodes along with their color information.
 #Datalayer-cyan, graphql-red, POST- Blue, CACHE-purple, GET- green
 for k,v in nodecolors.items():
 G.add_node(k,color = v)
 #Datalyer node is absent in nodecolors dictionary. hence mention black for the
root node explicitly
 for p in parentchild:
 if(p not in nodecolors.keys()):
 G.add_node(p,color='cyan')

 #iterate through list to find edges between nodes (from parent to child)
 for p in parentchild:
 print(p)
 for c in parentchild[p]:
 G.add_edge(p,c)

148

 pos = nx.spring_layout(G)
 pos2 = nx.kamada_kawai_layout(G)
 #G.nodes is a dictionary with keys: node name and color
 red_nodes=[n for n,d in G.nodes(data=True) if d['color']=='red'] #graphql
 purple_nodes=[n for n,d in G.nodes(data=True) if d['color']=='purple'] #cache
 blue_nodes=[n for n,d in G.nodes(data=True) if d['color']=='blue'] #POST
 green_nodes=[n for n,d in G.nodes(data=True) if d['color']=='green'] #GET
 cyan_nodes=[n for n,d in G.nodes(data=True) if d['color']=='cyan'] #Datalayer
root

 #draw respective color category nodes
 nx.draw_networkx_nodes(G,pos,nodelist=red_nodes,node_color='red',alpha=0.7)

nx.draw_networkx_nodes(G,pos,nodelist=purple_nodes,node_color='purple',alpha=
0.7)

nx.draw_networkx_nodes(G,pos,nodelist=blue_nodes,node_color='blue',alpha=0.7)

nx.draw_networkx_nodes(G,pos,nodelist=green_nodes,node_color='green',alpha=0.7
)

nx.draw_networkx_nodes(G,pos,nodelist=cyan_nodes,node_color='cyan',alpha=0.7)

 nx.draw_networkx_edges(G,pos)
 #nx.draw_networkx_labels(G,pos,font_color='w')
 plt.figure(figsize=(25, 15))
 plt.show(block=False)

 #draw respective color category nodes
 nx.draw_networkx_nodes(G,pos2,nodelist=red_nodes,node_color='red',alpha=0.7)

nx.draw_networkx_nodes(G,pos2,nodelist=purple_nodes,node_color='purple',alpha
=0.7)

nx.draw_networkx_nodes(G,pos2,nodelist=blue_nodes,node_color='blue',alpha=0.7)

nx.draw_networkx_nodes(G,pos2,nodelist=green_nodes,node_color='green',alpha=0.
7)

nx.draw_networkx_nodes(G,pos2,nodelist=cyan_nodes,node_color='cyan',alpha=0.7
)

 nx.draw_networkx_edges(G,pos2)
 #nx.draw_networkx_labels(G,pos,font_color='w')

149

 plt.figure(figsize=(25, 15))
 plt.show(block=False)

def lookupfortraceID(inputTraceID):
 traces = open("AllDate_traceIDs.pickle","rb")
 #traces = open("/home/priyanka/Date_traceIDs.pickle","rb")
 datetrace = pickle.load(traces)
 #s="9e82268b99b44ebc92d117ae73481fa8"
 checkdate = ""
 dictdata = {}
 listofdictdata = []
 for k,v in datetrace.items():
 #print(k,":",v)
 for i in range(len(v)):
 if(v[i]==inputTraceID):
 print(inputTraceID," present in", k)
 checkdate = k
 return checkdate

def lookupfortraceIDInfo(inputTraceID,checkdate):
 #dirpath = "/mnt/c/Users/Priyanka Naikade/trinfoES/"
 tags = ('traceId','name', 'id', 'parentId','date','timestamp', 'duration','tags')
 newtags = ('traceId','name', 'id', 'parentId','date', 'timestamp',
'duration','http.host','http.status_code')

 #files = os.listdir(dirpath)
 trinfocnt = {}
 tinfc = []
 trinfocount = []
 #trfilename = "InfotrIDs" + checkdate + ".pickle"

 pickle_trinf = open("InfotrIDs2019-06-27 13 10 00.pickle","rb")
 trinfo = pickle.load(pickle_trinf)
 for t in trinfo:
 if(t == inputTraceID):
 #t is key trace ID, trinfo list
 #for every transaction we need only certain fields like ID, parentID, duration
for graph creation
 #so removed some key fields from the inner dictionary
 original_list=trinfo[t]
 new_list = [{k: v for k, v in d.items() if k in tags} for d in original_list]
 for d in new_list:
 for tg in tags:
 if tg not in d.keys():

150

 d[tg] = ""

 for d in new_list:
 if 'tags' in d.keys():
 if ('http.host') in d['tags'].keys():
 d['http.host']= d['tags']['http.host']
 else:
 d['http.host']= ""
 if ('http.status_code') in d['tags'].keys():
 d['http.status_code']= d['tags']['http.status_code']
 else:
 d['http.status_code']= ""

 new_list = [{k: v for k, v in d.items() if k in newtags} for d in new_list]

 #overwrite dictionary value i.e value for trace ID
 trinfo[t]=new_list
 singletraceinfo = trinfo[t]
 NumofNodes, listofnodes, spans_list, parentchild,
Id_Duration_given,ID_individual_duration =
GetSingleTransactionInfo(singletraceinfo)
 nodedict, tcache, tpost, tget, tgraphql, tothercategory,nodecolors =
CreateCategoryBuckets(ID_individual_duration, spans_list)

 return original_list, NumofNodes, parentchild, nodedict,nodecolors

topt = input("Choose the below options: \n1.Get Trace Information \n2.Go Back\n")
 if topt == "1":
 traceid = input("Enter trace ID:\n")
 checkdate = lookupfortraceID(traceid)
 if(checkdate == ""):
 print("Trace ID not found. Please enter a valid trace ID")
 else:
 original_list, NumofNodes, parentchild, nodedict,nodecolors =
lookupfortraceIDInfo(traceid,checkdate)
 while True:
 traceopt = input("Choose the below options: \n1.Trace Graph \n2.Trace
JSON \n3.Summary of Transaction \n4. Go Back \n")
 if traceopt == "1":
 print("Request Flow Graph for the entered trace ID:",traceid,"\n")
 print("\nParent-Child:", parentchild)
 drawrequestflowgraph(NumofNodes,parentchild,nodecolors)
 elif traceopt == "2":
 print("JSON for Trace ID:",traceid,"\n",original_list)
 elif traceopt == "3":

151

 print("\n***************************Summary of every single
transaction**")
 print("\nTransaction ID:",traceid,"Number of Nodes in
transaction:",NumofNodes)
 print("\nNodes and Time Taken by Nodes (in ms):\n",nodedict)
 print("\nParent-Child:", parentchild)
 elif traceopt == "4":
 break;
 else:
 print("Please enter a valid option!")
 elif topt == "2":
 break;

152

Curriculum Vitae

Name: Priyanka Naikade

Post-Secondary

Education and Degrees:

SASTRA University

Thanjavur, Tamil Nadu, India

2010 - 2014

B.Tech. - Information and Communication Technology

The University of Western Ontario

London, Ontario, Canada

2018 - 2020

Master of Science - Computer Science

Honours and Awards: Western Graduate Research Scholarship

2018 – 2019

Related Work

Experience:

Graduate Research Assistant & Teaching Assistant

(Computer Science Department)

The University of Western Ontario

2018 - 2020

Software Developer Intern

IBM Software Lab

2019

Systems Engineer

Tata Consultancy Services

2014 - 2018

	Automated Anomaly Detection and Localization System for a Microservices Based Cloud System
	Recommended Citation

	tmp.1596221873.pdf._iMHn

