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Abstract 

Reinforcement learning (RL) has helped improve decision-making in several applications. 

However, applying traditional RL is challenging in some applications, such as rehabilitation of 

people with a spinal cord injury (SCI). Among other factors, using RL in this domain is difficult 

because there are many possible treatments (i.e., large action space) and few patients (i.e., 

limited training data). Treatments for SCIs have natural groupings, so we propose two 

approaches to grouping treatments so that an RL agent can learn effectively from limited data. 

One relies on domain knowledge of SCI rehabilitation and the other learns similarities among 

treatments using an embedding technique. We then use Fitted Q Iteration to train an agent that 

learns optimal treatments. Through a simulation study designed to reflect the properties of SCI 

rehabilitation, we find that both methods can help improve the treatment decisions of 

physiotherapists, but the approach based on domain knowledge offers better performance. 
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Summary for Lay Audience 

Reinforcement learning (RL) is a field of study that aims to build decision-making systems that 

base their decisions on the current and past state of the world, the previous actions undertaken, 

and the actions that may be taken in the future, and has been very successful in improving 

decision-making in several applications. Despite the successes of RL, applying traditional RL is 

challenging in some applications, such as the rehabilitation of people with a spinal cord injury 

(SCI). Among other factors, using RL to aid in decision-making for SCI treatment is difficult 

because there are many possible treatments (i.e., a large action space) and few patients (i.e., a 

limited training dataset). However, the treatments for SCIs have structure to them such that they 

can be grouped, facilitating learning about a treatment even if that treatment was not selected. In 

this work, we propose two approaches to grouping treatments so that an RL agent can learn 

effectively from limited data. One relies on domain knowledge of SCI rehabilitation and the 

other learns similarities among treatments using treatment embedding (inspired by word 

embedding). We then use Fitted Q Iteration, an iterative algorithm that estimates the value of 

each action in every patient state (e.g., unable to sit independently to full walking capacity), to 

learn which treatments are best in each state. Through a simulation study designed to reflect the 

properties of SCI rehabilitation, we find that both methods can be used to improve the treatment 

decisions of physiotherapists, but the approach based on domain knowledge offers better 

performance.
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Chapter 1  

1 Introduction 

Reinforcement learning (RL) is a field of study that aims to build decision-making systems that 

base their decisions on the current and past state of the world, the previous actions undertaken, 

and the actions that may be taken in the future. In RL, the goal is to train a learner/decision-

maker, known as the agent, to act intelligently (ideally, optimally) in its environment. The 

environment is everything outside of the agent with which the agent interacts. The current 

situation in the environment is described by its state. The agent interacts with its environment by 

selecting an action according to its policy, which is a mapping from states to actions. After 

selecting an action, the agent receives from the environment both a reward and information 

about the new state. A function of the rewards, known as the return, captures the long-term 

success of the agent; the return can be defined to place more or less weight on near-term versus 

long-term success. The expected value of this return is the quantity that the agent attempts to 

maximize with its actions. 

RL has been very successful in improving decision-making in several applications, such 

as playing the game Go. In recent years, Google Deepmind’s AlphaGo [1] has defeated the 

world’s top Go players [2]. AlphaGo learned how to play through using supervised learning on 

games played by human experts and using RL to play against previous iterations of itself 

thousands of times. However, in some applications, we are not afforded the luxury of learning 

from such huge amounts of data. Obtaining accurate estimates of the value of each action in each 

situation is much more difficult with limited data to learn from. When the number of possible 

actions is large and actions are selected simultaneously, these issues compound and create a very 

difficult RL problem. The intersection of these phenomena is not uncommon, particularly in 
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healthcare. In this study, we focus on the rehabilitation of people with a spinal cord injury (SCI). 

From an RL perspective, this application can be characterized by the following criteria: 

• Limited training data is available (i.e., training data is expensive) 

• The action space (number of possible actions) is very large 

• Actions are selected simultaneously (multi-action selection) 

• The training data is obtained in advance through the decisions of an intelligent 

agent (the physiotherapists), but the policy followed is unknown 

• The actions are structured in a manner such that they can be grouped 

To our knowledge, RL has yet to be applied to physiotherapy. In general, problems with a 

very large action space and problems with multi-action selection are relatively unstudied in the 

RL field. In this study, we primarily focus on addressing the large action space through the 

development of methods that mitigate its negative effect. We leave it to further studies to 

develop methods that explicitly consider the multi-action component of this problem. 

The methods we develop in this study are designed to take advantage of the structure of 

the actions in our application domain. We propose two methods that place the actions into 

groups, allowing the agent to learn about an action from data about related actions. This 

mitigates the impact of the large action space. In SCI rehabilitation, there is a known structure to 

the actions (treatments), which facilitates grouping the actions using physiotherapists’ domain 

knowledge. However, this grouping can be a time-consuming process and requires expertise in 

SCI rehabilitation; people with this expertise are in short supply, so we also propose grouping the 

actions using a representation learning approach inspired by word embedding. 
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 Using data to drive decision-making in physiotherapy is a new endeavour and, 

consequently, the data available is currently very limited. Based on the data currently available, 

we develop a simulator that is designed to imitate the rehabilitation process for people with an 

SCI. The use of a simulator also facilitates the evaluation of the methods through treating 

simulated patients using the decision support methods, which would not be possible using real 

data. 

The main contributions of this thesis are 1) new methodology for RL in large action 

spaces with prior information and 2) a simulator for such data that mimics the properties of data 

obtained from SCI rehabilitation. Chapter 2 provides a detailed background of RL, representation 

learning, related works, and SCI rehabilitation; Chapter 3 describes the simulator we develop to 

imitate the rehabilitation process; Chapter 4 details the methods used for learning an optimal 

policy; Chapter 5 illustrates a special case of this application where all patients are assumed to 

return to unimpaired mobility; Chapter 6 discusses the results and possible next steps; and 

Chapter 7 provides the conclusions from this study.  
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Chapter 2  

2 Background 

2.1 Reinforcement Learning (RL) 

This background on RL is largely based on the Tabular Solution Methods part of a book co-

authored by Richard Sutton (one of the founding fathers of RL), Reinforcement Learning: An 

Introduction [3]. RL is a relatively new field of study, with modern RL dating back only to the 

late 1980s. RL aims to build decision-making systems that base their decisions on the current and 

past state of the world, the previous actions undertaken, and the actions that may be taken in the 

future. Along with supervised learning (e.g., regression, classification) and unsupervised learning 

(e.g., clustering), it is a subfield within the field of machine learning. However, the framework of 

an RL problem differs from that of either supervised or unsupervised learning. In a supervised 

learning problem, labeled training data is used to train a model so that predictions can be made 

on unseen data. An unsupervised learning problem involves finding structure within unlabeled 

training data. In RL, the goal is to train a learner/decision-maker, known as the agent, to interact 

with its environment in an “optimal” fashion (where “optimal” is defined using a numerical 

reward system). Figure 1 illustrates the general framework of an RL problem. 

 

Figure 1: The general framework of a reinforcement learning problem. 
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 In an RL framework, the environment is everything outside of the agent with which the 

agent interacts. The current situation in the environment is described by its state. For example, if 

the environment is a room in a house, the state might involve features such as the type of room 

(bedroom, living room, etc.), whether or not there are people in the room, the temperature in the 

room, and whether or not the lights are on. The agent interacts with its environment by selecting 

an action. Continuing with the example, the agent’s candidate actions may include changing the 

temperature in the room or turning the lights on or off. After selecting an action, the agent 

receives from the environment both a reward and information about the new state. A function of 

the rewards, known as the return, can be constructed in order to place less value on rewards 

obtained further along in the future. The expected value of this return is the value that the agent 

attempts to maximize with its actions. 

 Markov decision processes (MDPs) are commonly used for modelling RL problems 

because they can formalize the agent-environment interaction. Consider discrete time points, 𝑡 = 

0, 1, 2, … At each time 𝑡, the agent receives information about the state, 𝑆𝑡, from the set of all 

possible states, 𝑆, and chooses an action, 𝐴𝑡, from the set of all possible actions, 𝐴. It then 

receives a reward, 𝑅𝑡+1, and information about the environment’s new state, 𝑆𝑡+1. The transition 

to 𝑆𝑡+1 occurs based on 𝑇, a function that defines the probability of transitioning to 𝑆𝑡+1 given 𝑆𝑡 

and 𝐴𝑡. For each time step 𝑡, the data collected takes the following form: (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1). 

This process can either continue indefinitely or until an end state is reached. In cases where an 

end state is reached, the process is known as an episode. 

The agent chooses its actions based on the current state according to a policy, which is a 

mapping from states to actions. Through experience, the goal is to learn a policy that maximizes 



6 
 

 

the expected return, called an optimal policy. Finding an optimal policy is not as simple as 

choosing the action that maximizes the expected immediate reward; some actions may not yield 

a large immediate reward, but instead cause a transition to a new state with a large expected 

reward (or cause a transition to a new state that will eventually lead to another state with a large 

expected reward). For this reason, it is necessary to have some way of assessing the value of 

being in each state in 𝑆. A state value function is a function that estimates the expected return 

achieved by following a given policy starting from a given state. Alternatively, a state-action 

value function can be used. For each state-action pair (𝑠, 𝑎) in 𝑆 × 𝐴, the state-action value 

function estimates the expected return from taking action 𝑎 in state 𝑠 and following a given 

policy thereafter. State value functions must satisfy the following, known as the Bellman 

equation, which expresses the relationship between the value of a state and the value of its 

successor states. 

𝑣𝜋(𝑠) =  ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′,  𝑟|𝑠,  𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠′)]𝑠′, 𝑟𝑎  for all 𝑠 𝜖 𝑆 

where 𝜋(𝑎|𝑠) is the probability of selecting action 𝑎 while in state 𝑠 under policy 𝜋, 

𝑝(𝑠′,  𝑟|𝑠,  𝑎) is the probability of receiving reward 𝑟 and moving to state 𝑠′ given action 𝑎 was 

chosen while in state 𝑠, 𝛾 is a discount factor between zero and one, and 𝑣𝜋(𝑠′) is the expected 

future return given policy 𝜋 is followed from state 𝑠′. 

An optimal state value function, or optimal state-action value function, gives each state, 

or state-action pair, the largest possible expected return for any policy. The Bellman equation for 

the optimal state value function, 𝑣∗, is known as the Bellman optimality equation and can be 

written as follows: 

𝑣∗(𝑠) =  𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′,  𝑟|𝑠,  𝑎)[𝑟 + 𝛾𝑣∗(𝑠′)]𝑠′, 𝑟  for all 𝑠 𝜖 𝑆, 
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where 𝑝(𝑠′,  𝑟|𝑠,  𝑎) is the probability of receiving reward 𝑟 and moving to state 𝑠′ given action 𝑎 

was chosen while in state 𝑠, 𝛾 is a discount factor between zero and one, and 𝑣∗(𝑠′) is the 

expected future return given an optimal policy is followed from state 𝑠′. In theory, if the 

transition and reward distributions are known, the system of |𝑆| equations with |𝑆| unknowns can 

be solved for 𝑣∗. Then, once the optimal state value function is known, it is relatively easy to find 

an optimal policy. However, in practice, iterative solution methods are typically used to 

approximate 𝑣∗. 

 Iterative policy evaluation is a method that uses an update rule to approximate 𝑣∗. Policy 

improvement refers to the method used to improve upon an existing policy in order to move 

towards an optimal policy (based on the current estimate of 𝑣∗). Consider a policy 𝜋 that selects 

action 𝑎 in state 𝑠. If it is better to select a different action 𝑏 and follow 𝜋 from that point 

onwards than it is to follow 𝜋 from the beginning, then an improvement to 𝜋 has been found, so 

𝜋 is adjusted to take action 𝑏 in state 𝑠 rather than action 𝑎. The repeated process of performing 

policy evaluation and policy improvement in order to gradually move towards an optimal state 

value function and optimal policy is known as policy iteration. Adjustments to these processes 

have been used in order to achieve faster convergence; see [3] for more information. 

 In the policy evaluation step, different update rules can be used. Below, a few common 

techniques and their update rules are discussed. 

• Dynamic Programming (DP): DP is a very general algorithmic framework; in the context 

of RL, DP describes the method used to compute an optimal policy when we have a 

model of the environment (i.e., reward function and transition function). The Bellman 
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equation is used as its update rule. These updates are called expected updates because the 

update averages over all possible state transitions and rewards. 

• Monte Carlo (MC): Unlike DP, MC methods do not use a model of the environment. 

They learn from sample experience recorded as an agent interacts with the environment, 

rather than the expected updates of DP. MC methods wait until the end of an episode 

before performing an update. Accordingly, the MC update rule is as follows: 

𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) +  𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)], 

where 𝑉(𝑆𝑡) is the estimated value of state 𝑆𝑡, 𝐺𝑡 is the actual return following time 𝑡, 

and 𝛼 is a constant step-size parameter. 

• Temporal-Difference (TD) Learning: TD learning combines the ideas from DP and MC 

methods. Like DP, updates are made before the final outcome is known, and like MC 

methods, TD learning uses sample experience. The following is the update rule for one-

step TD learning: 

𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) +  𝛼[𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)], 

where 𝑉(𝑆𝑡) is the estimated value of state 𝑆𝑡, 𝑅𝑡+1 is the actual reward following time 𝑡, 

and 𝛼 is a constant step-size parameter. 

DP is known as a model-based policy evaluation algorithm because it makes use of the 

transition and reward distributions in order to estimate the value of each state, while MC and TD 

learning are model-free policy evaluation algorithms because they use recorded experience in 

place of a model. It should be noted that state value functions alone cannot be used to compute 

an optimal policy, thus the transition and reward distributions are still needed in order to 

compute an optimal policy under the framework shown. However, the model-free algorithms can 
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be adjusted to compute the optimal state-action value function instead of the optimal value 

function. Using the optimal state-action value function, it is trivial to determine an optimal 

policy. 

In the “traditional” RL framework, the agent chooses actions as it learns. In other words, 

one of the above methods is used for policy evaluation, policy improvement is performed in 

order to move towards an optimal policy, actions are selected according to this policy, and the 

process repeats. This is called on-policy learning. In on-policy learning, the actions typically are 

not selected entirely based on the current estimate of the optimal policy. The reason for deviating 

from the best estimate of the optimal policy is that it is important for the agent to explore 

alternative actions in order to learn about them. The exploration-exploitation trade-off is a unique 

feature of RL compared to other forms of machine learning. In order to perform well, the agent 

should exploit its knowledge so that it selects the best actions. However, in order to learn which 

actions are the best, it must explore actions that it currently believes are suboptimal. 

 In some cases, the estimate of the best policy is not used at all in action selection. The 

training data in such cases is generated according to some other policy, known as the behaviour 

policy, and the target policy (i.e., the optimal policy) is learned from this data. This is called off-

policy learning. A common off-policy technique is Q-Learning, which directly approximates the 

optimal state-action value function. Q-Learning’s update rule is as follows: 

𝑄(𝑆𝑡,  𝐴𝑡) = 𝑄(𝑆𝑡,  𝐴𝑡) + 𝛼[𝑅𝑡+1 +  𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1,  𝑎) − 𝑄(𝑆𝑡,  𝐴𝑡)] , 

where 𝑄(𝑆𝑡,  𝐴𝑡) is the estimated value of taking action 𝐴𝑡 in state 𝑆𝑡, 𝑅𝑡+1 is the reward 

received after taking that action, 𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1,  𝑎) is the estimated maximum value of any action 

in state 𝑆𝑡+1, and 𝛼 is a constant step-size parameter. 
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All of the methods above are used for online learning. That is, the updates are performed 

as we continue to generate more data. In some cases, the data is generated in advance and the 

goal is to compute an optimal policy based on this data. This is known as batch learning and is 

common in situations where training data is very expensive to obtain. An advantage of batch 

learning is that its solutions are relatively stable compared to online learning [4]. One example of 

an off-policy batch learning algorithm is Fitted Q Iteration [5]. Its implementation is shown 

using the pseudocode below: 

 

Figure 2: The Fitted Q Iteration algorithm is shown in pseudocode. The predict function (line 9) 

takes a model and its inputs and generates a predicted output. 

 

Fitted Q Iteration is an iterative process whereby a new training dataset is created and a 

regression model is fit to the data, directly estimating the state-action value function of the 

optimal policy. In each iteration, the estimated state-action value function from the previous 
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iteration is used to create the new training dataset. The algorithm terminates when the criterion 

for convergence is met. 

2.2 Representation Learning 

In statistical modelling tasks, it is common to transform the input variables (also known as 

features or predictors) in some way in order to improve the model. For example, if there appears 

to be a quadratic relationship between an input and the output, then the second order term for that 

input would be incorporated into the model. However, in some cases, it may be infeasible to 

manually transform the input variables appropriately; the appropriate transformation may be 

non-trivial to identify or there may be too many input variables to consider. Representation 

learning, also called feature learning, is a set of techniques used to generate new features by 

transforming the original input. Autoencoding, principal component analysis, word embedding, 

and clustering are all forms of representation learning. The most relevant representation learning 

methods for our task are word embedding and clustering. 

Word embeddings are a way of representing words in vector space in such a way that 

similar words should be close to each other. GloVe [6] is a popular model used to generate word 

embeddings using a corpus of training data. It makes use of a co-occurrence matrix, which is a 

representation of the number of times words occur together within a context window. A context 

window is the number of words we consider to the left and right of the context word. An 

example is shown in the table below, where the bolded word is the context word and a context 

window of size two is used. Words within the context window are underlined. 
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Example Text Document Co-occurrence Pairs 

He spiked the ball over the net. (he, spiked); (he, the) 

He spiked the ball over the net. (spiked, he); (spiked, the); (spiked, ball) 

He spiked the ball over the net. (the, he); (the, spiked); (the, ball); (the, over) 

He spiked the ball over the net. (ball, spiked); (ball, the); (ball, over); (ball, net) 

 

Table 1: An illustration of the co-occurrence pairs resulting from an example text document with 

a window of size two. The context word is bolded and the words within the context window are 

underlined. 

 

GloVe generates word vectors by minimizing the following objective function: 

∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑢𝑗 +  𝑏𝑤,𝑖 +  𝑏𝑢,𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)2𝑉

𝑖,𝑗=1 , 

where 𝑉 is the size of the vocabulary (i.e., number of words), 𝑋 is the co-occurrence matrix, 𝑤𝑖 

is a word vector, 𝑢𝑖 is a context word vector, 𝑏𝑤,𝑖 and 𝑏𝑢,𝑗 are the biases associated with the word 

vector and context word vector respectively, and 𝑓() is a weighting function of the following 

form, with 𝑥𝑚𝑎𝑥 representing the chosen maximum number of co-occurrences to consider and 𝛼 

another chosen parameter with a default value of 0.75: 

𝑓(𝑥) =  {
(𝑥/𝑥𝑚𝑎𝑥)𝛼 𝑖𝑓 𝑥 < 𝑥𝑚𝑎𝑥

        1             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

When 𝑋 is symmetric, the model creates two sets of word vectors that differ only due to their 

random initialization. The final vector representation of the words is the sum of the two sets of 

word vectors. 

Clustering is an unsupervised learning approach used to identify similar observations and 

place them into groups. There are several different clustering algorithms, including single 
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linkage, max linkage, and K-means. As discussed by Ben-David [7], each of these algorithms 

emphasizes different requirements, so the choice of clustering algorithm must be made with the 

application in mind. Linkage clustering begins with each observation forming its own cluster 

(i.e., each cluster is a singleton). In each iteration of the algorithm, a union is performed between 

the two clusters that are nearest to one another. For single linkage, the distance between two 

clusters is the minimum distance between any pair of observations (that are not part of the same 

cluster) within the two clusters. For max linkage, the distance between two clusters is the 

maximum distance between any pair of observations within the two clusters. Single linkage 

prioritizes placing similar points in the same cluster over ensuring that all observations within a 

cluster are similar, while max linkage prioritizes the opposite. Both do not place any importance 

on the relative size of each cluster. K-means clustering begins with K randomly generated points. 

Each observation is placed into the group associated with the point to which it is nearest. The 

mean of each group replaces the K points and each observation is placed into the group 

associated with the mean to which it is nearest. This process continues until none of the 

observations change to a new group from one iteration to the next. Unlike the linkage algorithms, 

K-means clustering prioritizes that each group is composed of a similar number of observations.  

2.3 Related Works 

Yu, Liu, and Nemati [8] provide a thorough summary of the uses of RL in healthcare. One of the 

most common applications is the creation of dynamic treatment regimes, which are RL policies 

used to aid in the treatment of chronic conditions such as cancer [9]-[25], diabetes [26]-[40], 

anemia [41]-[51], HIV [52]-[61], and mental illnesses [22], [62]-[87], as well as critical care 

[88]-[116]. Other applications of RL in healthcare include automated medical diagnosis, health 

resource scheduling, optimal process control, and drug discovery and development [8]. 
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 In some of these works, expert domain knowledge is used in conjunction with the RL 

agent in order to make treatment decisions. Sadati et al. [112] incorporate the opinions of 

anesthesiologists to select appropriate initial doses of anesthesia and ensure that the doses remain 

within a safe range. Gaweda et al. [43]-[45] also use domain knowledge in order to improve the 

treatment of anemia. Anemia is caused by an inability to adequately produce endogenous 

erythropoietin (EPO), and consequently red blood cells. Patients can be given doses of EPO in 

order to keep their hemoglobin levels within a healthy range. The appropriate dose varies from 

person to person, making RL a useful tool to aid in individualized treatment. The applicable 

domain knowledge in the treatment of anemia was outlined by Yu et al. [8]: 

“[F]or all patients, the dose-response curve of HGB versus EPO is monotonically non-increasing. 

Therefore, if a patient’s response is evaluated as insufficient for a particular dose at a particular 

state, then the physician knows that the optimal dose for that state is definitely higher than the 

administered one.” 

Incorporating this domain knowledge into model development facilitates the creation of RL 

models more suitable to the problem than models from traditional methods. 

The problems associated with a large discrete action space have received limited 

consideration in the RL literature. A related, more regularly studied issue in RL is the problem of 

having a large state space. Commonly, data-driven feature selection and feature learning are used 

in such problems. For a detailed summary of incorporating feature learning in batch RL, see 

[117]. Although less commonly studied, there are some works that have dealt with the issue of a 

large action space. Pazis and Parr [118] propose a generalized value function that facilitates more 

efficient action selection from a large set of actions. However, their work does not address the 

issues involved with learning a value function in the presence of a large action space. Laber et al. 
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[119] study the optimal allocation of treatment in terms of space and time for treating an 

infectious disease. Resources are limited such that a limited number of locations, 𝑁, can be 

treated, so their method assigns priority scores to each location and locations are treated until the 

resources are depleted. Due to spatial interference, the priority score for each location is 

dependent on the treatment decision for the other locations. With many possible treatment 

locations, jointly optimizing across all possible locations is infeasible, so the authors use a 

greedy batch updating algorithm as described below: 

1. The first 𝑛 (𝑛 ≤ 𝑁) locations for treatment are chosen assuming that no other 

location receives treatment. 

2. The priority scores of the remaining locations are updated to account for the 

treatment of the chosen locations. 

3. Based on the priority scores computed in Step 2, another batch of 𝑛 (or 𝑁 − 𝑛 in 

the case 2𝑛 > 𝑁) locations are chosen for treatment. 

4. Steps 2 and 3 are repeated until 𝑁 locations are chosen for treatment. 

 Dulac-Arnold, Evans, et al. [120] propose an actor-critic approach that uses a method 

similar to word embedding, where all of the actions are mapped to vector space. Given a state, 

the actor chooses some proto action (i.e., some value in vector space). It must be noted that this 

proto action is unlikely to be one of the candidate actions. Based on Euclidean distance, the 𝑘 

actions nearest the proto action are kept as candidates for action selection. From these 𝑘 actions, 

the critic then chooses the action with the highest state-action value. The training of both the 

actor and the critic is performed in the continuous action space with multi-layer neural networks 

using Deep Deterministic Policy Gradient [121]. 
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Some past work in RL has involved hierarchies of actions [122]-[124]. Dietterich et al. 

[125] propose a model-based action refinement method whereby the models of the transition and 

reward distributions for an action in a given state are smoothed by other related actions (i.e., 

actions within the same group according to the part of the hierarchy one level up). They 

demonstrated that this smoothing across actions can dramatically reduce the amount of training 

data needed in order to learn an effective policy. Learning a policy according to grouped actions, 

as we propose in this work, is a specific case of this smoothing. 

2.4 Spinal Cord Injury Rehabilitation 

In 2012, Noonan et al. [126] estimated that 85 556 people in Canada were living with an 

SCI. Depending on the severity of the injury, an SCI can cause loss of various voluntary muscle 

movements and sensation, complete paralysis of limbs [127], and loss of autonomic functions 

such as bowel or bladder control [128]. Treatment for SCI includes physiotherapy such as sitting, 

standing, and balance training, strength activities, gait re-training, the use of orthoses/braces, 

function stimulation, patterned electrical stimulation, and walking. The goal of SCI rehabilitation 

is generally to regain functions that are common in everyday life, such as balance and walking 

[127], but may also include patient-specific goals such as being able to play a favourite sport 

again. 

The Lawson Health Research Institute (LHRI) is the research institute of London Health 

Sciences Centre and St. Joseph’s Health Care London in London, Ontario. LHRI’s Research 2 

Practice (R2P) team’s goal is to optimize treatment for patients with either an SCI or acquired 

brain injury. This team has been collecting data that captures the experience of an SCI patient in 

their care through their Health Sciences Research Ethics Board (HSREB) approved project 

(HSREB #108848). The following section describes at a high level the process undertaken in the 
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treatment of an SCI inpatient at Parkwood Institute (PI) (part of the LHRI), with a focus on the 

data that they have been collecting. 

Upon admission, the patient is assessed and assigned to one of 12 states, ranging from 

being unable to sit independently to full walking capacity, according to the SCI Standing and 

Walking Assessment Tool (SWAT) [129]. In general, patients that have more serious injuries are 

provided more rehabilitation and longer inpatient hospital stays. Physiotherapists select 

treatments from a myriad of candidate treatments and, on a weekly basis, document the 

treatments that were performed. These treatments have similarities, facilitating their placement 

into groups. Figure 3 shows the treatment classification model developed by the Parkwood 

Rehabiliation Innovations in Mobility Enhancement (PRIME) project team. They have grouped 

treatments together based on the properties of the treatments such as the treatment’s purpose 

(impairment management, priming, task specific, functional), the patient’s orientation (lying, 

sitting, kneeling, standing), the level of movement involved (static, dynamic), and the patient’s 

level of independence (assisted, independent). It should be noted that a treatment may be placed 

in more than one group; depending on the situation, some treatments can be used to serve 

different purposes. However, the methods we propose in this thesis place each individual 

treatment into exactly one group. 
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Figure 3: An illustration of the system developed by the Parkwood Rehabilitation Innovations in 

Mobility Enhancement (PRIME) project team to classify individual physiotherapy treatments 

into groups. Functional Electronic Stimulation is represented by “FES”. 
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Chapter 3  

3. Simulator 

In order to facilitate the development of reinforcement learning (RL) methods for spinal cord 

injury (SCI) treatment selection, we create a simulator to imitate the rehabilitation process for a 

patient. This simulator was constructed from a combination of existing SCI data and extensive 

input from physiotherapists1 from the Research 2 Practice (R2P) team, Parkwood Institute (PI), 

Lawson Health Research Institute (LHRI). Although existing data was used to guide parameter 

choices for the simulator, the focus when creating the simulator was placed on the properties of 

SCI rehabilitation. Thus, while the simulator generally reflects the internal characteristics of SCI 

rehabilitation, it is not necessarily an accurate representation of SCI rehabilitation in its entirety. 

There are two main benefits of using a simulator in this study. First, although it is 

anticipated that SCI treatment data will accrue through the R2P team’s project, the amount of 

real data currently available is limited, so much so that it may not be reasonable to expect to be 

able to reliably train an agent. Secondly, the use of a simulator facilitates evaluation of the 

methods in a way that would not be possible with real data; the same set of simulated patients 

can be treated using different treatment selection processes and the results from each process can 

be compared to one another. The simulator is implemented in R version 3.5.1 [130]. 

3.1 Environment 

In the case of SCI treatment, the environment is the patient. The states reflect the current health 

status as relevant for treatment and the actions correspond to treatment choices. 

 
1 We thank Dr. Dalton Wolfe, Stephanie Marrocco, Stephanie Cornell, Melissa Fielding, Deena Lala, 

Patrick Stapleton, Bonnie Chapman, Heather Askes, Rozhan Momen, and the rest of the physiotherapists 

from the spinal cord injury and acquired brain injury rehabilitation programs at Parkwood Institute. 
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3.1.1  States 

The state that each patient is in is defined by two components, their stage and the number of 

weeks remaining in their rehabilitation. 

3.1.1.1 Stages 

There are 12 stages ranging from zero, the most impaired, to eleven, a terminal state indicating 

unimpaired mobility (i.e., no standing or walking impairment). These stages are chosen to 

represent the 12 stages of the SCI Standing and Walking Assessment Tool (SWAT) [129]. 

3.1.1.2 Number of Weeks Remaining 

Each patient has a limited number of weeks of treatment. Based on their initial stage, they are 

afforded a maximum number of treatment weeks according to the following formula: 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 = 𝑓𝑙𝑜𝑜𝑟[1.25(11 − 𝑠𝑡𝑎𝑔𝑒)] 

This formula was chosen to reflect the grouping methodologies used by hospitals and other 

health care facilities [131] and to facilitate a mean length of inpatient stay that approximates the 

mean stay in the data obtained from PI. At PI, they use the Rehabilitation Patient Grouping 

Methodology. After each week of treatment, a patient’s remaining number of weeks is 

decremented by one. It should be noted that the formula we use in the simulator is a 

simplification of the actual methodologies used in practice; however it could easily be 

substituted with the formula used in a particular health care system/setting. 

3.1.2 Treatments 

In clinical practice, there are a myriad of potential treatments (from 10s to 100s depending on 

how treatments are classified), but they can be grouped in a meaningful way in terms of their 
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appropriateness for patients with different health statuses (for example, by using the 

classification scheme outlined in Figure 3). In the simulator, we chose to have 110 treatments 

numbered 1 to 110, each placed into one of 11 groups. The first group is composed of treatments 

1 to 10, the second group is composed of treatments 11 to 20, and so on. For each stage each 

group is assigned a ranking (lower is better), indicating how useful treatments from these groups 

are expected to be if applied to a patient in that stage. As an example, for Stage Four patients, 

treatments 41 to 50 (the fifth group) are given a ranking of one, treatments 31 to 40 and 51 to 60 

(groups four and six, respectively), are given a ranking of two, and the remaining treatments are 

given a ranking of three. Table 1 shows the ranking of each treatment group for Stage Four. 

Using this approach, each stage has 10 actions expected to be the best, 20 actions expected to be 

second to these top 10 actions, and another 80 actions expected to be inferior to the top 30. In 

order to maintain this distribution of actions for the edge stages (zero and 10, since 11 is 

terminal), the two groups nearest the group ranked first are both given a ranking of two. 

Group 1 2 3 4 5 6 7 8 9 10 11 

Ranking 3 3 3 2 1 2 3 3 3 3 3 

Table 2: This table outlines the ranking (lower is better) of each treatment group for a patient in 

Stage Four. 

 

In order to simulate the effectiveness of treatments, it is necessary to have some method for 

differentiating one treatment from another. It is unreasonable to assume that every treatment 

from each group is equally useful for each stage. For this reason, we use the idea of a treatment 

benefit to provide a numerical value indicating the usefulness of each treatment in each stage. In 

practice, these treatment benefits are unobservable, so they are used only to simulate experience 

and are not involved in the process of learning an improved policy. 
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3.1.2.1 Actual Treatment Benefits 

Each treatment has 11 associated treatment benefits, one for each non-terminal stage. The 

treatment benefits are generated from a normal distribution with mean and standard deviation set 

based on the treatment’s ranking. The table below shows the mean and standard deviation 

associated with each treatment ranking. The standard deviations increase with treatment ranking 

because we assume that treatment benefits vary more for treatments that are not specifically 

intended for the given stage. The actual treatment benefits are randomly generated once, at the 

beginning of the simulation, and are constant for the entire simulation. 

Treatment Ranking Mean Standard Deviation 

1 7.0 0.75 

2 5.5 1.25 

3 4.0 1.50 

 

Table 3: The actual treatment benefits are simulated from a normal distribution using the 

parameters associated with their treatment ranking. This table shows the parameters associated 

with each rank. 

 

3.1.2.2 Perceived Treatment Benefits 

In order to simulate the presence of domain knowledge about different treatments, we introduce 

the idea of a perceived treatment benefit. Perceived treatment benefits represent a 

physiotherapist’s opinion on the benefit of each treatment for each stage. Since physiotherapists 

are knowledgeable about these treatments, the perceived treatment benefits are designed to be 

correlated with the actual treatment benefits. They are generated from a conditional normal 

distribution, conditioned on the actual treatment benefits. The correlation and unconditional 

mean and standard deviation for each treatment ranking are shown in Table 4. With 𝜌 
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representing the correlation and 𝐴𝑇𝐵 representing the actual treatment benefit, the conditional 

mean and standard deviation are computed as follows: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑒𝑎𝑛

= 𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑒𝑎𝑛 

+  𝜌(𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)/(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐴𝑇𝐵)(𝐴𝑇𝐵

− 𝑀𝑒𝑎𝑛𝐴𝑇𝐵) 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √(1 − 𝜌2)(𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

Like with the actual treatment benefits, the perceived treatment benefits vary more for treatments 

that are not specifically intended for the given stage. Unlike the actual treatment benefits, 

perceived treatment benefits are generated for each iteration of the simulation, representing 

differences in individual physiotherapists’ opinions. 

Treatment Ranking Correlation 
Unconditional 

Mean 

Unconditional 

Standard Deviation 

1 0.8 7.0 1.00 

2 0.7 5.5 1.50 

3 0.5 4.0 1.75 

 

Table 4: The perceived treatment benefits are simulated from a conditional normal distribution 

based on the actual treatment benefits. The correlation between the perceived treatment benefits 

and the actual treatment benefits and the unconditional mean and standard deviation for each 

treatment ranking are shown in this table. 

 

The scatter plot in Figure 4 shows the actual treatment benefits in Stage Zero and the associated 

perceived treatment benefits that a physiotherapist may have. This plot clearly shows that the 

treatments with a larger rank exhibit a much weaker correlation between actual and perceived 

treatment benefits. 
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Figure 4: A scatter plot of the perceived treatment benefit versus actual treatment benefit for a 

patient in Stage Zero, categorized by their treatment ranking. 

 

3.1.2.3 Aggregate Treatment Benefit 

For a given treatment period, a physiotherapist selects multiple treatments to use. The aggregate 

treatment benefit refers to the sum of the individual treatment benefits of the selected treatments. 

3.1.3 Transition Function 

From a stage x, there are only two possible next stages, x and x+1. The probability of a transition 

from x to x+1 is conditioned only on the aggregate treatment benefit of the selected treatments. 

The probability, 𝑝, of a transition to the next stage is computed using the formula shown below 

and is visualized in Figure 5: 

𝑝 =
2

3
[

1

1 + 𝑒−(0.2339304−13.49396(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡))
] 
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Figure 5: The probability of a patient’s transition to the next stage as a function of their 

aggregate treatment benefit. 

 

This transition function is designed to meet three criteria: 

• In accordance with the data received from the R2P team, PI, LHRI, the mean probability 

of transition using the physiotherapists’ treatment selections should be in the range of 

0.25-0.30. Note that this range is a coarse estimate, as it is based on the cumulative 

improvement in stage from admission to discharge for all patients divided by the 

cumulative number of weeks of treatment. Under simulated physiotherapist treatment 

selection, the mean transition probability is approximately 0.253. 

• The transition probability should be very small, but non-zero, when treatments are 

selected uniformly randomly. Uniform random treatment selection results in a mean 

transition probability of approximately 0.008. 

• Regardless of the treatments chosen, the transition probability should never approach 1 

because the body requires time to heal. With this transition function, the transition 

probability cannot exceed 0.667. 
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For the first two criteria, it must be noted that transition probabilities are dependent on the set of 

actual treatment benefits and that these mean transition probabilities have been computed across 

these sets. Thus, the mean transition probabilities under a single realization of a set of actual 

treatment benefits (which is what is used in this study) are not necessarily the values stated. 

3.2 Generating Experience Data 

The experience data is generated using episodes. An episode is a patient’s entire treatment 

period. 

3.2.1 Episode Initialization 

An episode begins with the random selection of a non-terminal stage. Based on the data obtained 

from the R2P team, PI, LHRI, the initial stage is sampled from a distribution where Stage Zero is 

selected with a probability of  
2

7
. The remaining ten non-terminal stages each account for 

1

14
 of the 

distribution’s probability mass. 

3.2.2 Treatment Selection 

A set of perceived treatment benefits is generated for the given stage. From this, a treatment plan 

is created, representing a course of treatment that a physiotherapist might plan for a week. The 

treatment plan is composed of the eight treatments with the highest perceived treatment benefit. 

3.2.3 Episode Termination 

An episode terminates when a patient either reaches the final (fully healthy stage) or after their 

allocated number of weeks has elapsed. The figure below shows six possible patient trajectories 

through state space. An episode ends upon reaching either the horizontal (out of time) or vertical 

(unimpaired mobility) dashed line. 
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Figure 6: Possible trajectories through the state space for six simulated patients. The start and 

end of the episodes are represented by a square and circle respectively.  
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Chapter 4  

4. Learning an Optimal Policy 

In this study, we focus on what we believe to be the characteristic of spinal cord injury (SCI) 

rehabilitation that most dramatically limits the effectiveness of reinforcement learning (RL) as a 

decision support tool: the very large action space. We use three different methods designed to 

learn an optimal policy, with each one handling the action space in a different manner. However, 

all three methods share the same reward function and return. 

4.1 Reward Function and Return 

A reward of zero is given for each step until the final week of treatment. At this point, the reward 

is the final stage reached by the patient. A discount factor of one (i.e., undiscounted) is used, so 

the return is simply the reward given at the end of the treatment period. 

4.2 Baseline Approach 

First, we attempt to learn an optimal policy using an approach that does not group the actions. 

4.2.1 Defining State-Action Pairs 

One baseline approach would be to consider each unique joint action as a different action, and 

not to generalize across these. However, this would induce an action space of size (110
8

), which is 

larger than 400 billion, so a plausibly-sized dataset would have many unobserved joint actions 

and possibly zero joint actions with more than one observation. Hence, this naïve approach 

would make learning and generalization impossible. 

We therefore provide an alternative baseline learning method for comparison that 

assumes that the impact of any given action choice is unrelated to any other action choices made 
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at the same timepoint. To be clear, this assumption is not plausible, but represents the simplest 

possible way of handling the multi-action component of the problem. The original data has eight 

actions in each row of data. Based on the aforementioned assumption, each row of data is 

mapped to eight rows, so that each action is represented by a single row and the stage, number of 

weeks remaining, reward, and next stage are the same for all eight rows. An example is shown 

below: 

Original Data: 

Stage No. of Weeks 

Remaining 

Actions Reward Next Stage 

3 2 24, 26, 33, 34, 

38, 39, 42, 50 

0 3 

 

Adjusted Data: 

Stage No. of Weeks 

Remaining 

Action Reward Next Stage 

3 2 24 0 3 

3 2 26 0 3 

3 2 33 0 3 

3 2 34 0 3 

3 2 38 0 3 

3 2 39 0 3 

3 2 42 0 3 

3 2 50 0 3 

 

Table 5: Table 5a (top) shows a possible row from the simulated data in its original format. Table 

5b (bottom) shows the transformation of that row into eight rows in the adjusted dataset. 
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4.2.2 Estimating the Optimal State-Action Value Function 

We use the treatment experiences of 1000 simulated patients in order to estimate the optimal 

state-action value function. The Research 2 Practice (R2P) team, Parkwood Institute (PI), 

Lawson Health Research Institute (LHRI) has collected data from the treatment of approximately 

90 patients over the last few years, so we consider 1000 patients a reasonable upper bound on the 

number of patients from which treatment data can be collected before we require that the agent is 

able to learn something meaningful. Since the training data is obtained in advance through 

following a less than optimal policy, we use an off-policy batch learning algorithm, Fitted Q 

Iteration, to estimate the optimal state-action value function. Our requirement for convergence is 

that none of the coefficients of the following regression model change by more than 0.0001 from 

one iteration to the next: 

𝑄(𝑠, 𝑎, 𝑁𝑜. 𝑜𝑓 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)

=  𝛽0 +  𝛽1(𝑁𝑜. 𝑜𝑓 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)

+  ∑ 𝛽𝑎𝑐𝑡𝑖𝑜𝑛𝐼(𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑎) +

𝑎𝑐𝑡𝑖𝑜𝑛

∑ 𝛽𝑠𝑡𝑎𝑔𝑒𝐼(𝑠𝑡𝑎𝑔𝑒 = 𝑠)

𝑠𝑡𝑎𝑔𝑒

+ ∑ 𝛽𝑎𝑐𝑡𝑖𝑜𝑛,𝑠𝑡𝑎𝑔𝑒𝐼(𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑎)𝐼(𝑠𝑡𝑎𝑔𝑒 = 𝑠)

𝑎𝑐𝑡𝑖𝑜𝑛,𝑠𝑡𝑎𝑔𝑒

 

4.2.3 Results 

We find that the estimated state-action values for the optimal policy under this methodology are 

far too optimistic. For an incoming patient beginning at Stage Zero, the minimum state-action 

value is 7.98, despite the fact that the median Stage Zero patient from the training data reaches 

Stage Three and no Stage Zero patient reaches Stage Eight. The estimates of the optimal state-

action value function for Stage 10, the last non-terminal stage, have a very high variance because 
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some actions are selected very few times at this stage, even after 1000 episodes. Consequently, 

some state-action value estimates for actions in Stage 10 are very high. In turn, this results in 

other actions also having an optimistic state-action value estimate in Stage 10 because the agent 

believes that, even if the patient does not reach unimpaired mobility immediately, it will be able 

to select actions next week that will help the patient reach unimpaired mobility. This optimism 

percolates to the state-action value estimates in Stage Nine, then Stage Eight, and so on, all the 

way down to Stage Zero. As a result, the agent trained using individual actions is not useful. 

4.3 Using Groups of Actions 

As discussed in Section 4.2.3, the state-action value estimates from the baseline approach have a 

large variance because the number of samples is small. As in regularized regression like lasso 

regression [132] and ridge regression [133], it can be beneficial to use a model with more bias in 

order to reduce the variance of the parameter estimates. With this in mind, we propose grouping 

the actions since it is known that there is some structure to the actions in SCI rehabilitation. With 

an infinite amount of data, models using grouped data would be less effective than the traditional 

approach because of their relatively high bias. However, the reduced variance in the models with 

grouped actions should allow the agent to learn faster, facilitating its ability to learn something 

meaningful from the limited amount of data available. 

We present two approaches to grouping actions that make use of knowing the actions are 

structured in some manner. The first approach requires an explicit mapping of actions to groups. 

In other words, the domain knowledge must be so extensive that the structure of the actions is 

completely known. The second approach requires less domain knowledge; under the assumption 

that actions are selected intelligently, the action selections in the data can provide guidance with 

regards to the grouping of the actions. Similar actions (i.e., actions that should belong to the 
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same group) should be used in similar situations. In this case, explicit domain knowledge 

regarding the grouping of actions is not needed. 

4.3.1 Domain Knowledge Based Grouping (DKBG) 

Using their knowledge of SCI rehabilitation, physiotherapists can group treatments together 

based on characteristics such as orientation (lying, sitting, standing, etc.), level of movement 

(static vs. dynamic), purpose (priming, impairment management, etc.), and level of independence 

(assisted vs. independent). To reflect this idea in the simulator, the actions are placed into 11 

groups of 10 actions. We represent the physiotherapists grouping SCI treatments using their 

knowledge by using the known 11 groups of actions. For the remainder of this paper, we will 

refer to the agent that groups actions in this way as the DKBG agent. 

4.3.2 Treatment Embedding Based Grouping (TEBG) 

Both time and domain expertise are needed in order to be able to formulate an action grouping 

system as described in Section 4.3.1. It is possible that it may be infeasible to create such a 

system. For this reason, we suggest an alternative approach that groups the actions using 

representation learning. Since the training data is generated through an intelligent behaviour 

policy (the physiotherapists’ decisions), we can assume that the treatments that are commonly 

selected simultaneously are similar to one another. 

Inspired by word embedding, we propose mapping each of the individual treatments to a 

point in vector space (i.e., treatment embedding). The training data obtained from SCI 

rehabilitation is structured in a similar way to a corpus used to generate word vectors; each 

weekly treatment plan is analogous to a text document and the treatments themselves are 

analogous to the words. Using the package text2vec [134], we generate treatment vectors by 
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implementing the GloVe [6] modeling framework using 50 epochs and an x_max argument 

(discussed in Section 2.2) of 10. In order to create the co-occurrence matrix needed to train the 

model, we use an infinite context window since the ordering of treatments within the same 

treatment plan is arbitrary. An example of some of the co-occurrence pairs generated from a 

treatment plan are shown below. The bolded treatment is the context treatment and the 

treatments within the context window (all other treatments) are underlined. Note that a treatment 

plan is a set, so the order of the treatments is unimportant. 

Example Treatment Plan Co-occurrence Pairs 

24, 26, 33, 34, 38, 39, 42, 50 

(24, 26); (24, 33); (24, 34); (24, 38); 

(24, 39); (24, 42); (24, 50) 

24, 26, 33, 34, 38, 39, 42, 50 

(26, 24); (26, 33); (26, 34); (26, 38); 

(26, 39); (26, 42); (26, 50) 

24, 26, 33, 34, 38, 39, 42, 50 

(33, 24); (33, 26); (33, 34); (33, 38); 

(33, 39); (33, 42); (33, 50) 

24, 26, 33, 34, 38, 39, 42, 50 

(34, 24); (34, 26); (34, 33); (34, 38); 

(34, 39); (34, 42); (34, 50) 

 

Table 6: An illustration of some of the co-occurrence pairs resulting from an example weekly 

treatment plan. The context treatment is bolded and treatments within the context window are 

underlined. 

 

 After each treatment is represented as a vector, the treatments can be grouped using a 

clustering algorithm. In the simulator, each of the action groups is composed of 10 treatments. 

Since K-means clustering is sensitive to imbalance in the number of treatments in each group, we 

choose to use this approach. The treatments are grouped into 11 groups (the same number of 
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groups as created using domain knowledge) using the kmeans function [135] with the number of 

initial configurations and the maximum number of iterations both set to 1000. For the remainder 

of this paper, we will refer to the agent that groups actions in this way as the TEBG agent. 

4.3.3 Defining State-Action Pairs with Grouped Actions 

In order to facilitate an agent learning from the grouped data, the original data needs to be 

converted to data that indicates the action groups selected in a treatment plan, rather than the 

individual treatments themselves. For each treatment selected, its action group is stored in the 

data instead. Even after using action groups rather than the individual treatments, there are still 

thousands of unique joint actions. Consequently, as done in the baseline approach, we assume 

that the impact of any given action group is unrelated to any other action group choices made at 

the same timepoint. An example illustrating a mapping of the original data to the grouped data 

used to train the agent is shown in Table 7. 
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Original Data: 

Stage No. of Weeks 

Remaining 

Actions Reward Next Stage 

3 2 24, 26, 33, 34, 

38, 39, 42, 50 

0 3 

 

Mapping of Action to Action Group: 

Action Action Group 

24 3 

26 3 

33 4 

34 4 

38 4 

39 4 

42 5 

50 5 

 

Grouped Data: 

Stage 
No. of Weeks 

Remaining 
Action Group Reward Next Stage 

3 2 3 0 3 

3 2 3 0 3 

3 2 4 0 3 

3 2 4 0 3 

3 2 4 0 3 

3 2 4 0 3 

3 2 5 0 3 

3 2 5 0 3 

 

Table 7: Table 7a (top) shows a possible row from the simulate data in its original format, Table 

7b (middle) shows the mapping of each applicable action to its action group, and Table 7c 

(bottom) shows the transformation of the original row into eight rows in the adjusted dataset 

using the grouping of actions. 
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4.3.4 Estimating the Optimal State-Action Value Function 

Like with the baseline approach, we use Fitted Q Iteration to estimate the optimal state-action 

value function. Again, our requirement for convergence is that none of the coefficients of the 

regression model change by more than 0.0001 from one iteration to the next. The model is shown 

below: 

𝑄(𝑠, 𝑎𝑔, 𝑁𝑜. 𝑜𝑓 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)

=  𝛽0 +  𝛽1(𝑁𝑜. 𝑜𝑓 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)

+  ∑ 𝛽𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝐼(𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝 = 𝑎𝑔) +

𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝

∑ 𝛽𝑠𝑡𝑎𝑔𝑒𝐼(𝑠𝑡𝑎𝑔𝑒 = 𝑠)

𝑠𝑡𝑎𝑔𝑒

+ ∑ 𝛽𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝,𝑠𝑡𝑎𝑔𝑒𝐼(𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝 = 𝑎𝑔)𝐼(𝑠𝑡𝑎𝑔𝑒 = 𝑠)

𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝,𝑠𝑡𝑎𝑔𝑒

 

4.3.5 Testing the Agents 

We simulate the rehabilitation process for 1000 patients, choosing their treatments using various 

selection processes.  In order to facilitate meaningful evaluation of the agents’ decision-making 

and their effectiveness in improving the treatment selection for people with an SCI, we select 

treatments using the four policy definitions below: 

1. 𝜋𝑃𝑇: Treatments are selected according to their perceived treatment benefit. This 

treatment selection process is identical to the treatment selection process used to generate 

the training data and is intended to reflect the approach taken by physiotherapists. 

2. 𝜋𝐴𝑔𝑒𝑛𝑡: Treatments are selected using the agent’s estimated state-action values. However, 

the actions represented by this model are the grouped actions, not individual treatments. 

For this reason, rather than directly using the state-action values to inform treatment 
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selection, we use an alternate value that is the product of two entities. The first entity is 

the proportion of selections for each action in the given stage relative to the number of 

selections for its action group in the given stage. The second entity is the standardized 

value of each action’s action group, computed as follows: 

[𝑄(𝑠, 𝑎𝑔) − 𝑚𝑒𝑎𝑛𝑎𝑔
(𝑄(𝑠, 𝑎𝑔))] /𝑚𝑎𝑥𝑎𝑔

[𝑄(𝑠, 𝑎𝑔) − 𝑚𝑒𝑎𝑛𝑎𝑔
(𝑄(𝑠, 𝑎𝑔))] 

For brevity, let 𝑠 represent the entire state (i.e., both the stage and the number of weeks 

remaining). 𝑎𝑔 represents an action group. We call the product of these two entities the 

standardized state-action value contribution (SSAVC) and select the treatments according 

to this product. 

3. 𝜋𝑀𝑖𝑥𝑒𝑑: Treatments are selected through a combination of the first and second policy 

definitions, represented by the following expression: 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 + 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑆𝑆𝐴𝑉𝐶, 

where 𝑤𝑒𝑖𝑔ℎ𝑡 is a parameter used to alter the value placed on the agent’s opinion. We 

consider integer weights from one to 20. 

4. 𝜋𝑂𝑝𝑡𝑖𝑚𝑎𝑙: Treatments are selected according to their actual treatment benefit, which 

always results in the highest probability of transitioning to the next stage and hence 

maximizes the return. In practice, choosing treatments in this manner is not possible, but 

using this process facilitates comparing our other treatment selection processes to the 

optimal process. 

 

 



38 
 

 

4.3.6 Varying the Training Data 

For 𝜋𝐴𝑔𝑒𝑛𝑡, the agents are trained using 1000 patients of training data. Again, we consider 

1000 patients of training data a reasonable upper bound on the number of patients because the 

R2P team, PI, LHRI has approximately 90 patients of data from the few years they have been 

collecting data. 

However, since the process of obtaining training data is ongoing, it is also of interest to 

see the impact of the size of the training dataset on the usefulness of the treatment selection 

processes. This is of particular interest for 𝜋𝑀𝑖𝑥𝑒𝑑, which is how we expect a decision support 

system would be used in practice. Changing the size of the training set using this policy 

definition facilitates examining the change in the weight that should be given to the agent as the 

amount of training data increases. We use training set sizes of 100 patients up to 1000, using 

increments of 100. When increasing the size of the training set, we do not create an entirely new 

dataset; instead, we add 100 patients to the previous training set. 

In order to assess the variability of these treatment selection processes, we run this entire 

simulation process 100 times using SHARCNET2, changing only the training data each time. 

4.3.7 Results 

Figure 7 shows violin plots for the average return using 𝜋𝐴𝑔𝑒𝑛𝑡 with the DKBG agent and the 

TEBG agent. The black dots represent the mean average return and the horizontal line shows the 

average return under 𝜋𝑃𝑇. For both agents, the distributions are approximately symmetric, so 

 
2 This research was enabled in part by support provided by Compute Ontario (www.computeontario.ca) 

and Compute Canada (www.computecanada.ca). 
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their medians are very similar to their means. On average, the DKBG agent outperforms the 

physiotherapists and the TEBG agent performs only slightly worse than the physiotherapists. 

 

Figure 7: Violin plots of the average return under 𝜋𝐴𝑔𝑒𝑛𝑡 using the domain knowledge based 

grouping (DKBG) agent and the treatment embedding based grouping (TEBG) agent. The 

horizontal line represents the average return under 𝜋𝑃𝑇 and the black dots represent the mean 

average return. 

 

 Since the simulator is designed such that a patient can only improve by one stage at a 

time, the transition probabilities provide another way of assessing the effectiveness of the 

methods. For each of the 100 simulations, the transition probability in each stage is calculated for 

the DKBG and TEBG agents’ treatment selections. Table 8 shows the average of these transition 

probabilities for each stage, using a remaining number of weeks of treatment that corresponds to 

a patient that just began their treatment3. Except for Stage Zero and Stage 10, the DKBG agent 

outperforms the TEBG agent. It’s possible that the grouping procedure used in the TEBG 

approach performs particularly well in the edge stages, but further investigation is needed to 

determine if this is the cause of the TEBG agent’s relatively strong performance for these stages. 

 
3 It should be noted that the number of weeks remaining has no impact on the transition probability in 

each stage. Nonetheless, a value must be chosen in order to compute a probability. 
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The performance of both agents deteriorates as the stage increases, which is expected because 

there is less training data for these stages. For comparison, the mean transition probability for 

each stage under 𝜋𝑃𝑇 is also shown. Note that the physiotherapist treatment selections are 

designed such that the mean transition probability under 𝜋𝑃𝑇 is 0.253 for every stage, so the 

observed differences are due to randomness. The agents both outperform the physiotherapists in 

general for the earlier stages, but perform worse in the later stages. 

Stage 
Mean Transition Probability 

Physiotherapist DKBG TEBG 

0 0.286 0.266 0.340 

1 0.220 0.326 0.261 

2 0.264 0.377 0.375 

3 0.244 0.380 0.265 

4 0.246 0.290 0.252 

5 0.278 0.300 0.216 

6 0.121 0.201 0.148 

7 0.341 0.244 0.145 

8 0.336 0.233 0.231 

9 0.183 0.164 0.118 

10 0.203 0.121 0.160 

 

Table 8: Mean transition probabilities for each stage under 𝜋𝑃𝑇 (physiotherapist) and 𝜋𝐴𝑔𝑒𝑛𝑡, 

using the domain knowledge based grouping (DKBG) and treatment embedding based grouping 

(TEBG) agents. 

 

The two surface plots shown in Figure 8 illustrate the mean average return for 𝜋𝑀𝑖𝑥𝑒𝑑. 

The left and right surfaces are created using the DKBG and TEBG agents, respectively. These 

surfaces show the relationship between the weight given to the agent, the number of training 

episodes, and the average return. The values of these features have been standardized, so only the 

shape of the surfaces should be considered (i.e., individual points on the left and right surfaces 

are incomparable). To illustrate this point, at 100 training episodes and a weight of one, the 
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visualizations make it look like using the DKBG agent is inferior to using the TEBG agent, but 

this is not the case; their average returns are 6.034 and 6.023, respectively. 

 

Figure 8: Surface plots of the mean average return obtained under 𝜋𝑀𝑖𝑥𝑒𝑑 with the domain 

knowledge based grouping (DKBG) (left) agent and treatment embedding based grouping 

(TEBG) (right) as a function of the number of training episodes used for training and the weight 

given to the agent. Note that these plots are standardized so they cannot be compared to one 

another. 

 

For relatively few training episodes, both surfaces have an inverted U-shape, where 

medium-sized weights perform the best. At 100 training episodes and a weight of 20, using the 

DKBG and TEBG agents leads to average returns of 5.796 and 5.538, respectively; both agents 

negatively impact performance in this case, as the physiotherapists alone achieved an average 

return of 5.949. In at least one case, the fit of the regression model was rank-deficient. Although 

this is not particularly troubling when we are interested in prediction (as opposed to inference), it 

does indicate that the amount of data is insufficient. As the number of training episodes 

increases, both the optimal weight given to the agents and the mean average return increase as 

well. The maximum mean return using the DKBG and TEBG agent are 6.876 and 6.608 

respectively, achieved with weights of 15 and 12 respectively. This indicates that the inverted U-

shape shown for relatively few training episodes is still present with 1000 training episodes, 



42 
 

 

albeit less clearly. In both cases, the maximum mean average return obtained is much larger than 

the mean average return the agents achieve on their own, shown in Figure 7. 

In Figure 9, a cross-section from each of the two surfaces in Figure 8 is shown. Unlike in 

Figure 8, the two selection processes, one using the DKBG agent and the other using the TEBG 

agent, can be directly compared. The cross-section shown is the part of the surfaces where the 

weight is 11. This weight is chosen to strike a balance between reasonable effectiveness with 

relatively few training episodes and maximizing the use of the agent with relatively many 

training episodes. The darker shaded areas represent 95% confidence intervals and the lighter 

shaded areas are the areas within the fifth and 95th quantiles of the simulation results. For 

reference, the average return achieved under 𝜋𝑃𝑇 and 𝜋𝑂𝑝𝑡𝑖𝑚𝑎𝑙 are shown. Clearly, the process 

using the DKBG agent performs better than the approach using the TEBG agent, although both 

can be used to improve treatment selection. After 1000 training episodes, the DKBG and TEBG 

approaches reach mean average returns of 6.853 and 6.608 respectively, which corresponds to 

eliminating 54.1% and 39.4% of the gap between optimal treatment selection and physiotherapist 

treatment selection. 
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Figure 9: A plot of the mean average return under 𝜋𝑀𝑖𝑥𝑒𝑑 (with a weight of 11) versus the 

number of episodes used to train the agent for both the domain knowledge based grouping 

(DKBG) and treatment embedding based grouping (TEBG) agents. The darker shaded areas 

represent 95% confidence intervals and the lighter shaded areas are the areas within the fifth and 

95th quantiles of the simulation results. The horizontal lines show the average return under 𝜋𝑃𝑇 

(no decision support) and 𝜋𝑂𝑝𝑡𝑖𝑚𝑎𝑙. 
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Chapter 5  

5. A Special Case: All Patients Reach Unimpaired Mobility 

In general, it is not reasonable to assume that all people with a spinal cord injury (SCI) will 

return to a state of unimpaired mobility (i.e., full walking capacity). However, there may be some 

subset of the population where this is a reasonable assumption. If we consider only this subset of 

the population, then the reward function and return outlined in Section 4.1 will not help the 

reinforcement learning (RL) agent learn, as the return would be the same after every episode. 

Instead, negative rewards can be used to encourage faster recovery. With a discount factor of one 

(i.e., undiscounted), we use a reward of -0.25 for each non-terminal step and a reward of 11 upon 

reaching unimpaired mobility. In addition to the aforementioned changes to the reward function, 

a few other changes are made to the process outlined in Chapter 3 and Chapter 4: 

• The maximum number of weeks of treatment is not used (in order to facilitate all patients 

reaching unimpaired mobility). 

• The number of training episodes begins at 25 and increases up to 250 with increments of 

25. Under the simulated physiotherapists’ treatment, the average training episode with all 

patients reaching unimpaired mobility is roughly four times as long as the average 

training episode with a maximum number of weeks of treatment. 

• The convergence requirement for the Fitted Q Iteration algorithm is that none of the 

coefficients of the regression model change by more than 0.001 from one iteration to the 

next (as opposed to 0.0001). 

 In Figure 10, kernel density estimates are shown for the average return under 𝜋𝐴𝑔𝑒𝑛𝑡 

using both the domain knowledge based grouping (DKBG) and treatment embedding based 
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grouping (TEBG) agents. Both methods have very long left tails, indicating that there are cases 

where the methods perform very poorly. These long left tails are not present for either method in 

the results shown in Section 4.6.7, but there is an important difference between the two cases; the 

results shown in Section 4.6.7 are bounded below by 3.93, the mean of the stage initialization 

distribution, while these results do not have a lower boundary. 

 

Figure 10: Kernel density estimates of the average return under 𝜋𝐴𝑔𝑒𝑛𝑡 with the domain 

knowledge based grouping (DKBG) and treatment embedding based grouping (TEBG) agents 

when patients are treated until they reach a fully healthy state. 

 

In the violin plots shown in Figure 11, the worst 10 cases have been removed for both 

methods. The black and red points represent the mean and median respectively of each method 

prior to removing the worst 10 cases. The horizontal line represents the average return under 

𝜋𝑃𝑇. The DKBG agent outperforms the TEBG agent, but both are outperformed by the 

physiotherapists. Even after the removal of the worst 10 cases, the TEBG agent still exhibits a 

very long left tail. 
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Figure 11: Violin plots of the average return under 𝜋𝐴𝑔𝑒𝑛𝑡 for the domain knowledge based 

grouping (DKBG) agent and the treatment embedding based grouping (TEBG) agent when 

patients are treated until they reach a fully healthy state. The horizontal line represents the 

average return under 𝜋𝑃𝑇 and the black dots represent the mean average return. The 10 worst 

cased have been removed for both methods. 

 

 The methods can be assessed by examining the transition probabilities under their 

treatment selection. Table 9 shows the average transition probability for each stage under both 

treatment selection processes, computed by averaging across the individual transition 

probabilities from each of the 100 simulations. Unlike in the original framework, both agents 

perform better as the stage increases. Since every patient eventually reaches unimpaired 

mobility, the agents have more data to learn from in the later stages than the earlier stages, so this 

is an intuitive result. Like in Table 8, the mean transition probability for each stage under 𝜋𝑃𝑇 is 

also shown. Of the eleven stages, the DKBG and TEBG agents outperform the physiotherapists 

in six and four stages respectively. The DKBG agent’s overall performance is dramatically hurt 

by its performance in Stage Zero. 
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Stage 
Mean Transition Probability 

Physiotherapist DKBG TEBG 

0 0.286 0.109 0.141 

1 0.220 0.219 0.202 

2 0.264 0.289 0.271 

3 0.244 0.293 0.193 

4 0.246 0.257 0.206 

5 0.278 0.274 0.185 

6 0.121 0.233 0.173 

7 0.341 0.292 0.219 

8 0.336 0.287 0.235 

9 0.183 0.303 0.224 

10 0.203 0.321 0.279 

 

Table 9: Mean transition probabilities for each stage under 𝜋𝑃𝑇 (physiotherapist) and 𝜋𝐴𝑔𝑒𝑛𝑡, 

using the domain knowledge based grouping (DKBG) and treatment embedding based grouping 

(TEBG) agents, when patients are treated until they reach a fully healthy state. 

 

Figure 12 shows the mean average return under 𝜋𝑀𝑖𝑥𝑒𝑑. The DKBG and TEBG agents 

are shown on the left and right respectively. These surfaces illustrate the relationship between the 

weight given to the agent, the number of training episodes, and the average return. Only the 

shape of these surfaces can be compared, as the values of the features have been standardized. 

For relatively few training episodes, both surfaces have an inverted U-shape, but the TEBG agent 

has a much steeper decline in performance as the weight given to the agent increases. With few 

training episodes, at least one model fit was rank-deficient. As mentioned in Section 4.3.7, even 

though we are interested in prediction, not inference, this is still troubling because it indicates 

that the training dataset is not adequately large. As the number of training episodes increases, 

both the optimal weight given to the agents and the mean average return increase as well. 
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Figure 12: Surface plots of the mean average return obtained using 𝜋𝑀𝑖𝑥𝑒𝑑 with the domain 

knowledge based grouping (DKBG) (left) agent and treatment embedding based grouping 

(TEBG) (right) as a function of the number of training episodes used for training and the weight 

given to the agent. Note that these plots are standardized so they cannot be compared to one 

another. 

 

A cross-section from each of the surfaces in Figure 12 is shown in Figure 13. The cross-

section is the part of the surface where the weight is eight, chosen to balance the performance of 

the methods with relatively few and relatively many training episodes. The darker shaded areas 

represent 95% confidence intervals and the lighter shaded areas are the areas within the fifth and 

95th quantiles of the simulation results. For reference, the average return achieved under 𝜋𝑃𝑇 and 

𝜋𝑂𝑝𝑡𝑖𝑚𝑎𝑙 are shown. Using the DKBG clearly results in better outcomes compared to using the 

TEBG agent, but both provide improvement upon the baseline treatment selection. After 250 

training episodes, the DKBG and TEBG procedures obtain mean average returns of 5.887 and 

5.379 respectively, which corresponds to making up for 66.0% and 52.7% of the gap between 

optimal treatment selection and physiotherapist treatment selection. Despite some models 

performing extremely poorly (shown by the extremely long left tails in Figure 10), both methods 

can be used in conjunction with the knowledge of physiotherapists to improve treatment 

selection. 
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Figure 13: A plot of the mean average return using 𝜋𝑀𝑖𝑥𝑒𝑑 (with a weight of eight) versus the 

number of episodes used to train the agent for both the domain knowledge based grouping 

(DKBG) and treatment embedding based grouping (TEBG) agents. The darker shaded areas 

represent 95% confidence intervals and the lighter shaded areas are the areas within the fifth and 

95th quantiles of the simulation results. The horizontal lines show the average return using 𝜋𝑃𝑇 

(no decision support) and 𝜋𝑂𝑝𝑡𝑖𝑚𝑎𝑙. 

 

  



50 
 

 

Chapter 6  

6. Discussion 

6.1 Interpreting the Results 

The very large action space associated with spinal cord injury (SCI) rehabilitation poses a 

challenge for the effective training of a reinforcement learning (RL) agent, especially given the 

limited training data available for SCI treatment. As discussed in Section 4.2.3, training an agent 

that considers each action independently is ineffective, as the variance of the state-action value 

estimates are too high (resulting in optimistic state-action value estimates) even after 1000 

training episodes. However, the results shown in Section 4.3.7 and Chapter 5 show that it is 

possible for an RL agent to learn something meaningful in this domain by grouping the actions. 

The results indicate that both agents we train using grouped data, the domain knowledge based 

grouping (DKBG) agent and the treatment embedding based grouping (TEBG) agent, can be 

used to augment SCI treatment selection. The DKBG agent clearly outperforms the TEBG agent 

on average in all cases. Thus, if possible, using domain knowledge to group the actions seems 

preferable to grouping the actions using representation learning. If this is not practical, the TEBG 

agent can still be used to improve treatment selection, albeit to a lesser degree. 

 For both agents, using the agent to independently select treatments (𝜋𝐴𝑔𝑒𝑛𝑡) is clearly less 

effective than combining the agent with the domain knowledge of the simulated physiotherapists 

(𝜋𝑀𝑖𝑥𝑒𝑑). In practice, it is expected that the system would be used in this way (i.e., a combination 

of the knowledge of the physiotherapists and the agent, albeit in a less explicit, numerical 

format), both because it has been shown to be the most effective in this work and because 

individual patients will have specific needs or limitations that are not incorporated into their 

state. For example, if a patient has a broken foot, a standing exercise may not be possible, even 
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though it may be the optimal treatment for this patient given the state of their SCI. The 

physiotherapist would know of this patient’s limitation, but in its current state, the RL agent 

would not. 

 The results in Chapter 5 indicate that the grouping approaches that we propose may be 

applicable to other forms of rehabilitation as well. In some situations, for example the case of a 

professional athlete with an injury, it is known that the person will make a full recovery and the 

goal is simply to minimize the amount of time until that recovery is reached. Sprained or torn 

ligaments are a common injury for professional athletes that are treated using physiotherapy and, 

like SCI rehabilitation, may also have a large action space. Another possible application is the 

rehabilitation of people with an addiction to drugs and/or alcohol. 

6.2 Limitations in Interpreting the Results 

RL methods are typically used in situations where some actions may be beneficial in the long 

term, but not the short term. For example, a situation could arise where choosing action 𝑎 results 

in an immediate reward (and no further future rewards), but choosing action 𝑏 results in a larger, 

delayed reward (through transitioning to a new state where this reward is obtainable). With a 

discount factor of one, action 𝑏 is preferable even though it does not yield an immediate reward. 

RL approaches are designed to account for this delayed reward in order to maximize the long 

term return. However, in our case, the simulator is structured in such a way that maximizing the 

long term return is achieved simply by selecting the treatments that maximize the probability of 

transitioning to the next stage; actions cannot contribute to a good long term outcome without 

causing a good short term outcome. We assume that in SCI rehabilitation this is actually not the 

case, but using this simplified framework facilitates evaluating the methods on a stage-by-stage 

basis, as shown in Table 8 and Table 9. Although the simulator is set up in such a way that 
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actions that contribute to a good long term outcome also cause a good short term outcome, the 

RL techniques used to learn from the data do not make use of this information. Thus, setting up 

the simulator in this way facilitates a useful way of assessing the techniques without giving the 

techniques an unrealistic advantage. 

The RL techniques do not have a known unrealistic advantage in the simulation relative to 

practice, but the improvement in patient outcomes as a result of using decision support may be 

different in practice from what we observe in the simulation. Although the simulator is designed 

to reflect SCI rehabilitation, we focus more on reflecting the properties of SCI rehabilitation 

rather than the parameters. The true actual treatment benefits of each treatment are unknown in 

practice, as is the correlation between the physiotherapists’ perceived treatment benefits to the 

actual treatment benefits and the transition function. All of these impact the improvement in 

patient outcome that we might see in practice. However, based on the results of using decision 

support for simulated patients, it is reasonable to conclude that these techniques can be used to 

improve treatment selection for SCI rehabilitation; the magnitude of this improvement in practice 

just cannot be estimated using the simulation results. 

6.3 Possible Adjustments to the RL Methods 

The RL methods that we have developed in this work may need to be adjusted slightly for 

use in practice. For the TEBG agent, K-means clustering is used to create the groups of actions. 

Recall that K-means clustering is chosen because all of the action groups in the simulator are the 

same size and K-means clustering is sensitive to imbalance in the group sizes. However, in 

practice, the number of actions in each group may vary considerably, so K-means clustering may 

not be an appropriate choice of clustering algorithm; single linkage clustering, max linkage 
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clustering, or some other clustering algorithm may be a better choice; see [7] for a discussion on 

the suitability (or lack of suitability) of these clustering algorithms for various tasks. 

There also may be interactions between the actions, which could be present in various forms. 

It is possible that using a pair of actions simultaneously (in the same treatment plan) may provide 

more benefit to the patient than the sum of the benefits that the actions provide the patient 

individually. The opposite effect could also be possible if treatments provide similar types of 

benefits (i.e., using both treatments is redundant). Interactions between action groups can be 

incorporated into the model, but this would require adjusting the data in a different way than we 

have in this study. Also, when selecting actions, it then may be necessary to use a batch updating 

algorithm akin to the one used by Laber et al. [119]. Another form of interaction that may be 

present is that some actions may act as primers for other treatments. For example, selecting 

action 𝑎 in one week may transition the patient from their current state to another state (without 

transitioning to a new stage) where selecting action 𝑏 now provides a great benefit. In this case, 

the interaction between patients can be represented as part of the state through keeping track of 

the patient’s recent treatment history (e.g., the treatments from the previous week). In order to 

keep the state space a manageable size, it may be necessary to use a coarse representation of 

treatment history such as the most common treatment group from the previous week. 

Another aspect that could be improved upon is the reward function, which is based on the 

SCI Standing and Walking Assessment Tool (SWAT) [129]. Musselman et al. [136] studied the 

validity and use of SWAT, finding that physiotherapists felt that the ordering of the SWAT 

stages are appropriate, but that the spacing between the stages is inconsistent. Since we assess 

the methods based on the average return, our assessment of the methods’ effectiveness is skewed 

by the unequal spacing between stages. 
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6.4 Bayesian Approach 

Based on the results, it is clear that an appropriate combination of the physiotherapists’ 

knowledge and an RL agent is more effective than either decision-maker acting independently. 

However, the appropriateness of the combination is dependent on the weight given to the agent, 

especially when there are relatively few (e.g., 100) training episodes. The surface plots in Figure 

8 and Figure 12 indicate that the weight given to the agents should increase as the agents have 

more training data to learn from. However, Table 8 and Table 9 show that the performance of the 

agents is based on the amount of training data available for each state, so the weight given to an 

agent should be based on a more refined scale than the number of training episodes; it should be 

based on the number of training observations in the current stage. In practice, assigning a weight 

to an agent in this manner is non-trivial. Using confidence intervals for the state-action values 

would provide a way of determining the weight to give to the agent, since tight confidence 

intervals indicate that the agent is confident in its assessment of that state-action value and thus 

indicate that we should give a large weight to the agent’s opinion. However, Laber et al. [137] 

show that standard bootstrapping, the typical approach for computing confidence intervals for a 

value with an unknown distribution, does not yield a reasonable confidence interval for our 

situation (even ignoring the grouping aspect, which further complicates the problem). 

Another interesting aspect to consider for use in practice is balancing the exploration-

exploitation trade-off. Although the agent will already be trained using the original dataset 

generated using only the physiotherapists’ treatment selections, the agent can (and should be) 

continually trained as more data becomes available. The exploration aspect of this problem is 

unique due to the selection of multiple actions in each time step. The probability of transitioning 

to the next stage is dependent on all of the actions selected in each week; thus, for an action 𝑎 in 
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stage 𝑠, the estimated state-action value, 𝑄(𝑠, 𝑎), is dependent on the actions selected with 𝑎 

while in 𝑠. For this reason, the exploration component may include selecting a subset of actions 

while consciously choosing not to use another subset of actions. 

Bayesian reinforcement learning (BRL) is an RL approach that has two distinct, relevant 

advantages over other forms of RL; for a detailed review, see [138]. BRL provides a natural way 

to both incorporate prior knowledge and optimize the exploration-exploitation trade-off. For 

these reasons, BRL seems like an excellent fit as a decision support tool for SCI treatment 

selection. However, there are practical limitations to its use in this domain. 

BRL incorporates prior knowledge in different ways, depending on whether the algorithm 

used is a model-based or model-free algorithm. In either case, BRL works by starting with a 

prior distribution over some entity and updating it based on the experience in order to obtain a 

posterior distribution, which then becomes the new prior in the next iteration of the algorithm. 

For model-based and model-free BRL algorithms, we start with a prior distribution of the 

transition function and state-action value function respectively and update our beliefs as we 

experience more data. These prior distributions would have to be based on the knowledge of the 

physiotherapists, but knowing these prior distributions and knowing which treatments are best 

for each stage of SCI are two very different things; the physiotherapists may not be able to 

provide reasonable prior distributions. BRL methods can still work with inaccurate initializations 

of the prior distribution, but this will slow down learning and, due to the limited amount of 

training data, learning quickly is an important requirement that must be satisfied by the RL 

method(s) used. 

Although BRL seems like an intuitive choice for a problem such as this one that incorporates 

prior knowledge, it is not clear that BRL is an appropriate choice at this time given the current 
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states of the domain knowledge in SCI rehabilitation. However, this may be a promising 

approach for future decision support efforts in SCI rehabilitation. In addition, in practice it may 

be appropriate to take an implicit Bayesian approach when using the decision support proposed 

in this work. Bain [139] outlines arguments both for and against the idea that humans think in a 

Bayesian manner. Although it is by no means proven that humans think in a Bayesian manner, 

the fact that it is a debated topic indicates that people can, to some degree, think in a manner that 

seems to be approximately Bayesian. In practice, it may be most appropriate to initially use the 

decision support system in cases with clinical equipoise (i.e., when the physiotherapists are 

uncertain of which treatments are most suitable). In such cases, the agent could choose between 

the candidate treatments considered by the physiotherapist, which implicitly corresponds to 

applying a very small weight to the agent’s opinions. Over time, the physiotherapists could 

increasingly consider the opinion of the decision support system (i.e., increasing the weight 

applied to the agent). Intuitively, physiotherapists should behave in this way naturally; as they 

observe that the treatment selections of the decision support system are effective, they should 

trust its opinions more and more. 

6.5 Working in a Continuous Action Space 

In this study, we have used grouped actions to facilitate learning from limited data in a domain 

with a large action space. An alternative approach would be to work in a continuous action 

space. Rather than grouping the treatments after creating the treatment embeddings, we could 

work in the continuous action space, learning the state-action values and performing action 

selection in a fashion similar to the one proposed by Dulac-Arnold, Evans, et al. [120]. 

 A second approach that uses the continuous action space may address the multi-action 

component of this problem. In this approach, the treatment groups would be formed exactly as 
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done in this work. From there, each row of the original data (which has multiple 

treatments/actions) is mapped to a new format that represents how many times an action from 

each group was chosen. In vector space, each group can be represented by a point, the centroid of 

the vector representations of the actions in the group. Using a weighted function (based on the 

number of times each group was selected) of these centroids, each joint action (now based on 

action groups) can be mapped to a point in vector space. Then, an approach similar to the one 

proposed by Dulac-Arnold, Evans, et al. [120] can be used to learn about these joint actions in 

the continuous space. However, this approach may require more data than the approaches 

outlined in this work in order to be successful. In addition, this approach would not select 

individual treatments, so it may need to be combined with another treatment selection 

methodology (possibly the one used in this work). 
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Chapter 7  

7. Conclusion 

The main contributions of this thesis are 1) new methodology for reinforcement learning (RL) in 

large action spaces with prior information and 2) a simulator that mimics the properties of data 

obtained from spinal cord injury (SCI) rehabilitation. We have proposed two methods that group 

the actions using prior information. Domain knowledge based grouping (DKBG) explicitly uses 

domain knowledge to group the actions, while treatment embedding based grouping (TEBG) 

makes use of the intelligent treatment (action) selections made by the physiotherapists when 

treating a patient, grouping the treatments based on the frequency with which treatments are used 

together. We train two RL agents, each using one of the grouping approaches, and we find that 

when used in conjunction with the prior knowledge of the physiotherapists, both are able to 

augment treatment selection for simulated SCI patients. Although both techniques improved 

treatment selection, the DKBG agent consistently outperformed the TEBG agent. However, this 

approach requires much more time and domain knowledge than the TEBG approach. 

 This work is only a first step in using RL for physiotherapy, and in particular SCI 

rehabilitation. Developing techniques that more elegantly handle the multi-action selection 

component of this problem may lead to further improvements in performance. In the coming 

years, the data obtained from the study at Parkwood Institute (PI) should be used to develop a 

decision support system that can be used in practice. This will come with its own challenges not 

present in this study; physiotherapy data is notoriously messy and incomplete and consequently 

will require substantial preprocessing before it can be used. Once this decision support system is 

developed, a considerable challenge will be weighing the knowledge of the physiotherapists and 

the agent in an optimal (or near optimal) manner for treatment selection. Of particular interest is 
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the element of exploration, since RL agents continue to learn through exploring actions currently 

believed to be non-optimal through incorporating an element of randomness in their action 

selection. However, in the domain of SCI rehabilitation, it may be costly to use certain 

treatments in various stages and possibly an intolerable risk in some cases, thus a random 

component that facilitates selection of any treatment may be unacceptable. Formalizing the 

balance between the desired treatment choices of the physiotherapists and the agent (especially 

when it comes to exploring treatments) in a safe, effective manner will require further 

collaboration between physiotherapists and computer scientists.  
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