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Abstract

We investigate portfolio optimization, risk management, and derivative pricing for a factor

stochastic model that considers the 4/2 stochastic volatility on the common/systematic factor

as well as on the intrinsic factor. This setting allows us to capture stochastic volatility and

stochastic covariation among assets. The model is also a generalization of existing models in

the literature as it includes the mean reverting property and spillover effect to capture wider

types of financial assets. At a theoretical level we identify conditions for well-defined changes of

measure. A quasi-closed form solution within a 4/2 structured model is obtained for a portfolio

optimization problem. In the numerical section, a sensitivity analysis reveals a substantial impact

on the implied volatility surface and risk measures level due to small changes in the 3/2 component

b. In addition, commonality loading, spillover effect, and dependency among common factors are

also influential with regards to implied volatility and risk measures.

Keywords – Stochastic covariance, 4/2 model, portfolio optimization, option pricing, implied

volatility, risk measure
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Lay Summary

A Factor model is a financial model that employs some correlated factors or characteristics to

explain or calculate a financial variable. In mathematical finance, factor models are widely used to

model the relationship between asset returns and underlying risk factors. The goal of the model is

to measure the expected return and forecast/manage security risk. Our model decomposes the

risk across the market into common factors and intrinsic factors in a clear manner. Specifically,

the common factors are exogenous (observable or not) variables explaining the systematic risk in

the market, while the intrinsic factors relate to companies’ or assets’ inherent risks. Moreover,

each factor follows a 4/2 structured volatility process, which is a superposition of the well-known

1/2 Heston process and the 3/2 process brought up by Grasselli (2017). This setting allows

us to capture stochastic volatility and stochastic covariation among assets. The model is also

a generalization of existing models in the literature as it includes the mean reverting property

and spillover effect to capture wider types of financial assets. In this thesis, we investigate

portfolio optimization, risk management, derivative pricing, and sensitivity analysis on important

parameters within this generalized 4/2 factor model.
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Nomenclature

Xt asset price
Yt logarithm of asset Xt

P real-world probability measure
Q putable risk-neutral measure
EQ
x,v,t[.] = EQ[.t = x, vt = v] conditional expectation

n number of assets
p number of common factors
L mean reverting level
c driver of excess return from common factor
c̃ driver of excess return from intrinsic factor
F a set of common factor
F̃ intrinsic factor
a common factor loading
b 3/2 component within the 4/2 structure
Z, W , W̃ , B standard Brownian motion
ρ, ρ̃ correlations between Brownian motions
v, ṽ CIR processes
α, α̃ mean reverting speed of CIR process
θ, θ̃ mean reverting level of CIR process
ξ, ξ̃ volatility of CIR process
β spillover effect
V common variance
Ṽ intrinsic variance
r risk-free rate
C(t,K) option price
K strike price
T time to maturity
σ implied volatility
Mt risk-free asset
Pt wealth
πt proportion of wealth investing in risky asset
Θ driver of correlation among assets

Table 0.1: Nomenclature Table
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1 INTRODUCTION

1 Introduction

In this thesis, we introduce and study a multivariate 4/2 stochastic volatility factor model that

combines, on each factor component, the well-known 1/2 Heston type process (Heston, 1993)

and the 3/2 process (Platen, 1997) for the modeling of the factor’s volatility. This combination

was brought up by Grasselli (2017) to model stock prices with stochastic volatility and named

4/2 stochastic process due to its superposition of 1/2 and 3/2 processes. Our model describes a

factor representation of a given stock assuming the risk of the stock can be explained by a set of

common factors and an intrinsic factor. Our idea is to utilize the 4/2 models as underlying on a

factor structure for asset prices, and we also allow for a mean-reverting structure on the assets.

This helps in modelling other asset classes like multiple commodity behavior or multiple volatility

indexes.

The remaining parts of the introduction are structured as follows: we firstly give a brief review of

the most commonly studied factor models in literature and illustrate the connection to our factor

model. The reason we formulate our model in a factor representation can be evidenced by the

advantage of factor analysis. Then, we introduce our model framework based on factor analysis,

together with stochastic volatility and an advanced 4/2 structure on each factor. Moreover, we

present some flexibilities that can be incorporated to our model. Furthermore, a summary of the

contributions of this thesis is discussed. Finally, the agenda of this work is presented.

In mathematical finance, factor models are quite popular in modelling the relationship between

asset returns and underlying, market-driven risk factors. These models resolve the deficiencies of

requiring large samples of historical data to produce precise analyses, in principle, one can get

more accurate risk estimates assuming a small set of common factors to explain the risk across

the market. For instance, the capital asset pricing model (CAPM) is a one-factor model where

only a systematic risk (a market index) is used in explaining cross-section stock returns. Another

popular example is the Fama and French Three-Factor Model (Fama and French, 1993), which

was developed based on CAPM by considering two more common factors, the size risk (effect of

market capitalization) and value risk (book-to-price ratio). These factor models assume that all

the variation in financial assets’ expected return can be decomposed and explained by a set of

common risk factors (systematic) and a residual. All of the factors in CAPM and Fama and French

model fit beautifully in our factor model as our common factors. The residual is further interpreted

as intrinsic factor in our model, which captures asset’s specific/inherent risk (non-systematic).

The factor structured models also lead to a highly structured covariance matrix among assets.

1



1 INTRODUCTION

That is, the systemic/common risk factors are the same for each asset, and a higher marginal

variance can either be caused by higher loading of one of the common risk factors or higher intrinsic

risk. More importantly, factor models reduce the dimension of the parametric space, and keep

the “curse of dimensionality” under control. For example, assume there are n assets, a standard

constant covariance model would require n(n+ 1)/2 parameters, on the other hand in a factor

model, if p � n, then one would require n(p + 1) parameters (linear rather than quadratic on

dimensionality). The factor model can be very appealing by its simple explanation and fewer

parameters requirement. The factors depend on the asset classes and the objectives of the modeler.

There is a rich literature dedicates to selecting factors that can encompass the variation in the

market, such as The Barra Risk Factor Analysis (Bender and Nielsen, 2012), which incorporates

over 40 data metrics to identify and measure risk factors in terms of industry risk, investment

theme risk, and company specific risk.

The formulation of our model decomposes the risk across the market into common factors and

intrinsic factors in a clear manner. The independence of the common and the intrinsic factors,

each with its own stochastic volatility process, enables a straightforward economics interpretation

and also facilitates the statistical analysis. As mentioned before, in our model, the common factors

are exogenous (observable or not) variables explaining the systematic risk in the market, while

the intrinsic factors relate to companies’ or assets’ inherent risks. Note, most continuous-time

models in the literature work directly with the covariance matrix, i.e. no insightful decomposition

of it. For example, if you have two assets, you can take data and estimate the covariance of these

two assets. Another alternative to our factor approach could be principal component analysis

(PCA). PCA aims at finding components that explain most of the variance, and it splits the total

variance into different components. Similarly to latent factors, the component/factor may not have

economic interpretation. Therefore, our model has a more straightforward economics interpretation

compared to estimating covariance directly or PCA. Moreover, compared to estimating covariance

directly, when the number of risk factors is much smaller than that of financial assets, the risk of

financial instruments can be efficiently computed through the chosen risk factors using a smaller

parametric space. Thus, the setting of our model also facilitates statistical analysis.

Our model applies the setting of CAPM to get a decomposition of the covariance explained by

common factors and variance explained by intrinsic factors, and each factor follows the advanced

4/2 stochastic volatility process. The benefits and necessity of considering a stochastic model can

be shown by its capacity to capture established stylized facts. Nevertheless, both CAPM and

Fama and French model do not entertain stochastic volatility on the factors, and they assume

2



1 INTRODUCTION

the factors are as simple as Gaussian processes. In this regard, our model fills an important gap

in economic literature and mathematical literature by considering stochastic volatility on each

factor as well. Therefore, our model can capture stochastic volatility, highly structured stochastic

covariation among assets (Engle, 2002), multiple factors in the volatility (Heston et al., 2009), as

well as leverage effect. To see this, note that in a factor decomposition, advanced processes for the

individual common factors and the intrinsic factors lead, thanks to the commonality loadings, to

advanced covariance and variance processes for the underlying assets.

Furthermore, in our model, since the volatility of each factor follows the 4/2 framework, the

volatility of an asset follows a combination of independent p+1 (p common factors and one intrinsic

factor) 4/2 models. The superiority of the 4/2 structure has been analyzed quite comprehensively

in Grasselli (2017). For example, the 1/2 process and the 3/2 process predict differently when

the instantaneous volatility increases: the 1/2 process forecasts the implied volatility flattening

skews whereas the 3/2 model predicts steepening skews, both present in implied volatilities

evolutions. Additionally, when there is a sudden increase in stock price, the 1/2 process requires

high volatility-of-volatility parameter to comply with this change, and thus has a high risk in

violating the Feller condition. On the other hand, the 3/2 model admits extreme paths with

spikes in instantaneous volatility. Therefore, the author claims that the two processes complement

each other and they can reproduce both "smile" and "skew" pattern of the implied volatility

surface. Factors are usually assets/indexes themselves, therefore they should follow 4/2 structured

processes.

Another flexibility of this model is that we can easily transform the mean reverting model into a

non mean reverting one by setting the long term mean reverting level equal to risk-free interest

rate and the mean reverting speed to zero. Thereby, assets, such as equity, can also be studied

under this structure of factor decomposition and 4/2 structured instantaneous volatility. Another

generalization provided in our model is allowing interdependence of the drift between assets,

namely the spillover effect.

The main contributions of this work are: firstly, we identify a set of conditions that produce

well-defined changes of measure and avoids local martingales for a multivariate factor 4/2 model;

hence, it can be used for risk-neutral pricing purposes involving multiple assets. Note that we are

dealing with incomplete market. We assume that we know the equivalent martingale measure we

need to pick for option pricing among infinitely many. A proper Euler-based simulation setting is

also implemented. Secondly, a quasi-closed form solution for a portfolio optimization problem

in the context of Expected Utility Theory is obtained within a 4/2 structured model. We also

3



1 INTRODUCTION

identify situations where the solution can be presented in fully closed-form.

Thirdly, in a one factor model, we develop sensitivity analyses of implied volatility surface and

important risk measures with respect to common factor loading a and the newly 3/2 component

b, this is done for both a mean reverting and a non mean reverting one common factor model.

In terms of implied volatility surface, for a mean reverting model, we found an increase of up to

91.7% due to the presence of the 3/2 component b and an increase of up to 55% due to common

factor loading a. In terms of risk measures, there is an increase of 28.6% in value at risk and

an increase of 36.6% in expected shortfall due to the presence of the 3/2 component b, while

there is a jump of 35.3% in value at risk resulting from considering stochastic correlation between

assets. In general, it can be observed that the impact from the 3/2 component and the common

factor loading can be crucial with different underlying processes for common and intrinsic factors.

Moreover, the sensitivity analysis for a non mean reverting model is consistent with that on a

mean reverting model. Further, we compare the value of risk implied by our model with respect

to important parameters under two forms of market price of risk, one is proportional to a 4/2

structured volatility process while the other one is proportional to a 1/2 structured volatility

process. It turns out that the 1/2 structured market price of risk persistently shows higher impacts

on risk compared to the 4/2 structured market price of risk.

Fourthly, inspired by the importance of the presence of the 3/2 component and the necessity of

considering multiple factors, we extend the implied volatility and risk measure sensitivity analyses

to a two factor model. For a mean reverting model, we examine the impact of the spillover effects

β, driver of correlation among assets Θ, and the 3/2 component b. Specifically, the impact of

the spillover effects on implied volatility surface varies with its sign. For instance, changing the

spillover from the other asset from negative to positive can lead to a 50% increase in value at risk

and a 36.3% increase in expected shortfall. Also, a very small value of the 3/2 component b can

have a jump of 36% on asset’s expected return and an increase of 18.12% on its variance of return.

Meanwhile, a stabilization effect can be evidenced by its decreasing variation in implied volatility

surface from 11% to 3.9% if no spillover effect, and from 100% to 50% in the presence of spillover

effect. Another observation is that the driver of correlation among assets Θ changes the leverage

effect. Furthermore, for a non mean reverting model, a very small value of the 3/2 component b

can result in a 33.03% increase in asset’s expected return and 41% increase in its return’s variance.

In addition, we study the parameters from the underlying CIR process with different driver of

correlation among assets Θ to have a more comprehensive insight. The analysis shows that the

impact of κ, θ, and ξ differs for different choices of correlation Θ. In general, the mean reverting

4



1 INTRODUCTION

level θ can change the trend of implied volatility surface, and volatility of volatility ξ infuses more

variance as we would expect.

This work is organized as follows: in section 2, we specify the model, describe the simulation,

and identify a set of conditions that produce well-defined changes of measure. In section 3, a

portfolio optimization problem is considered within a 4/2 structured model. A one common

factor and one intrinsic factor case is studied under a mean reverting and a non mean reverting

model respectively in section 4. In particular, the impacts from commonality loading a, the 3/2

component b, and different market prices of risk are examined. In section 5, a two common factors

case is investigated in terms of implied volatility surface and risk measures. In section 6, a more

advanced model is defined and discussed. The conclusions are given in section 7.

5



2 MODEL SPECIFICATION

2 Model Specification

In this section, we first define and introduce our generalized 4/2 structured factor model under

measure P followed by a description of model simulation. Also, the possible change of measure

under specified market price of risk is discussed. The necessary conditions on parameters are

provided to ensuring well-defined changes of measure. Later on, we extract implied volatilities

from an exponential OU process and a Gaussian process for comparison. For the convenience

of the presentation and discussion of the model, a compilation of notation is provided in the

Nomenclature section that prior to the content.

2.1 Model specification

Suppose Xt = (X1(t), ..., Xn(t))′ is a vector of assets. Assume a probability space (Ω, F , {Ft}t∈[0,T ],

P) where {Ft}t∈[0,T ] is a right-continuous information filtration generated by the involving standard

Brownian motions, then the dynamics for single asset Xi(t) under P-measure is defined as

dXi(t)

Xi(t)
=

Li −
n∑
j=1

βijln(Xj(t))

 dt+

p∑
j=1

aij
dFj
Fj

+
dF̃i

F̃i
, (2.1)

where Li is the long term average of asset Xi(t), aij and βij are arbitrary constants.

Here the processes Fj, j = 1, ..., p represent independent common factors and can be interpreted

as the regressors on a Fama and French d-factor capital asset pricing model (Fama and French,

2015) or simply as the latent factor in a factor analysis. In this setting, the parameters aij for

asset Xi, j = 1, ..., p, can be explained as either the "betas" in a regression or the factor loadings

from a factor analysis. This provides a framework to interpret and estimate these parameters.

The process F̃i represents the intrinsic factor that is related to asset Xi. Further, each common

factor Fj or the intrinsic factor F̃i is assumed to follow a 4/2 stochastic volatility process,

dFj
Fj

=

(
cj(
√
vj(t) +

bj√
vj(t)

)2

)
dt+ (

√
vj(t) +

bj√
vj(t)

)dW P
j (t),

dF̃i

F̃i
=

(
c̃i(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

)
dt+ (

√
ṽi(t) +

b̃i√
ṽi(t)

)dW̃ P
i (t),

dvj(t) = αj(θj − vj(t))dt+ ξj

√
vj(t)dB

P
j (t), j = 1, ..., p

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃

P
i (t), i = 1, ..., n

(2.2)

with quadratic variation structure
〈
dBP

j (t), dW P
j (t)

〉
= ρjdt,

〈
dB̃P

i (t), dW̃ P
i (t)

〉
= ρ̃idt, and zero
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2 MODEL SPECIFICATION 2.1 Model specification

otherwise. Additionally, cj and c̃i are arbitrary constants. The terms
(
cj(
√
vj(t) +

bj√
vj(t)

)2

)
and(

c̃i(
√
ṽi(t) + b̃i√

ṽi(t)
)2

)
represent the premia/excess return associated with the Brownian risks

from common factors and intrinsic factor, respectively.

In the language of factor decomposition, the variance of the underlying asset is categorized into

two sources: the commonality or systematic variances, that captures co-variation of asset returns,

are driven by Vj(t) = (
√
vj(t) +

bj√
vj(t)

)2 for j = 1, ..., p (in matrix form Λn×p = Adiag
(
V

1
2 (t)
)
);

while the remaining intrinsic variance, that explains the variance of asset itself, corresponds to

Ṽi(t) = (
√
ṽi(t) + b̃i√

ṽi(t)
)2 with Ψ = diag

(
Ṽ (t)

)
. In matrix form, a factors decomposition of the

quadratic variation of asset prices can be expressed as

Σ(t)dt = (ΛΛ′ + Ψ) dt =
(
Adiag(V (t))A′ + diag(Ṽ (t))

)
dt

where (aij)n×p is the ijth entry of a possibly orthogonal matrix A (assume n = p if necessary),

which determines the dependency or correlation structure among risky assets. In this vein, the

constants cj and c̃i drives the risk premium (excess return) of asset Xi(t) associated with the

volatility risk from the common factors and the volatility risk from the intrinsic factors respectively.

In addition, the randomness driving commonality volatility vj and the asset-related randomness

ṽi follow standard CIR processes, which means αj, θj, and ξj are positive constants satisfying

αjθj ≥
ξ2j
2
(Feller condition). Similarly, α̃i, θ̃i, and ξ̃i are positive constants satisfying α̃iθ̃i ≥ ξ̃2i

2
.

Note that the Feller condition in CIR model guarantees that the process remains positive. Thus,

it is a popular model for volatility due to its positiveness and mean-reverting properties.

Furthermore, βij is the modification of the mean reverting level of asset i due to changes in asset

j. It captures the interdependence in the drift between assets Xi(t) and Xj(t). In other words,

when i 6= j, the model allows asset j to influence the mean/trend of asset i. This is known as

the spillover of asset Xj on asset Xi on the level of expected return. When j = i, it is the mean

reverting speed of asset Xi. Additionally, if βij = 0, the process of asset price follows a generalized

Geometric Brownian motion with stochastic drift and volatility.

Based on the quadratic variation relationship defined in this model, if we assume BP
j , BP

j (t)⊥,

B̃P
i (t), B̃P

i (t)⊥ are independent Brownian motions with 0 ≤ ρj ≤ 1 and 0 ≤ ρ̃i ≤ 1, then it follows

dW P
j (t) = ρjdB

P
j (t) +

√
1− ρ2

jdB
P
j (t)⊥

dW̃ P
i (t) = ρ̃idB̃

P
i (t) +

√
1− ρ̃2

i dB̃
P
i (t)⊥.

(2.3)
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2.2 Model Simulation 2 MODEL SPECIFICATION

By observing the form of the dynamics followed by the asset price, it is easy to consider the

logarithmic form. The dynamics of log price Yi(t) = ln(Xi(t)) under P-measure is then given by

dYi(t) =

{
Li + (ci −

1

2
)

n∑
j=1

a2
ij(
√
vj(t) +

bj√
vj(t)

)2 −
n∑
j=1

βijYj(t) + (c̃i −
1

2
)(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

}
dt

+
n∑
j=1

aij(
√
vj(t) +

bj√
vj(t)

)(ρjdB
P
j (t) +

√
1− ρ2

jdB
P
j (t)⊥)

+ (
√
ṽi(t) +

b̃i√
ṽi(t)

)(ρ̃idB̃
P
i (t) +

√
1− ρ̃2

i dB̃
P
i (t)⊥),

dvj(t) = αj(θj − vj(t))dt+ ξj

√
vj(t)dB

P
j (t), j = 1, ..., n

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃

P
i (t), i = 1, ..., n

where ci =
∑n

j=1 cj =
∑n

j=1

(
ρjλj +

√
1− ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i . Note that λj, λ⊥j , λ̃i,

and λ̃⊥i are the rates/derives that featuring individual independent risk factors.

2.2 Model Simulation

In this subsection, we depict the Euler approximation method in a general way first. Then by

applying it to simulate our model, a possible issue of negative values for CIR processes is discussed

and a proper correction is further provided.

2.2.1 Review of Euler Method

For a general diffusion process (SDE),

dX(t) = a(X(t), t)dt+ σ(X(t), t)dW (t),

where a(X(t), t) is the drift term, σ(X(t), t) is the diffusion term, and W (t) is a Brownian motion.

The Euler approximation of the general diffusion process is then given by

X(tk+1) = X(tk) + a(X(tk), tk)∆t+ σ(X(tk), tk)
√

∆tZ,

where the discretize size ∆t = tk+1 − tk = T
N

for k = 0, ..., N − 1, the discretize points are

0 = t0 < t1 < ... < tN = T on time interval [0, T ], and the initial value is X(t0) = X(0) = X0.

Since ∆W is a Brownian motion, such that ∆W ∼ N(0,∆t). So we can replace ∆W as
√

∆tZ

where Z is a standard normal.
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2 MODEL SPECIFICATION 2.2 Model Simulation

2.2.2 Euler Approximation

Now, let us apply Euler method to approximate our generalize 4/2 factor model. The discretization

of vj(t), ṽi(t) and Yi(t) for simulations looks as follow: Firstly, discretize vj and ṽi processes, given

the initial value vj(t0) = vj(0) for all j, and ṽi(t0) = ṽi(0) for all i:

vj(tk) = vj(tk−1) + αj(θj − vj(tk−1))∆t+ ξj

√
vj(tk−1)∆Bj(tk−1),

ṽi(tk) = ṽi(tk−1) + α̃i(θ̃i − ṽi(tk−1))∆t+ ξ̃i
√
ṽi(tk−1)∆B̃i(tk−1).

Here, we need to notice that although the CIR process itself is guaranteed to be positive, the

Euler discretization has a nonzero probability of becoming negative in the next time step. In

practice, there are two corrections for this problem (Lord et al., 2010): absorption and reflection.

Absorption means simply ignores the negative values, and take them as zero instead. Reflection

means taking absolute values. However, absorption can not be applied with regard to our asset

processes because it may drive volatility of the underlying asset to infinity due to the flipped CIR

term bj√
vj(tk)

. Thus, we opt for the reflection method in the simulation scheme for vj(tk) and ṽi(tk),

this means

v̂j(tk) = vj(tk−1) + αj(θj − vj(tk−1))∆t+ ξj

√
vj(tk−1)∆Bj(tk−1),

vj(tk) = |v̂j(tk)|

ˆ̃vi(tk) = ṽi(tk−1) + α̃i(θ̃i − ṽi(tk−1))∆t+ ξ̃i
√
ṽi(tk−1)∆B̃i(tk−1),

ṽi(tk) = |ˆ̃vi(tk)|.

Diop (2004) has proven that the Euler discretization with the reflection fix for the Heston has a

weak convergence of order 1 in the time step. Specifically, for a scheme that converges weakly with

order p, Duffie et al. (1995) has proven that for the optimal combination of the number of path N

and discretization size ∆t, the root mean square error (RMSE) for a European call under Heston

has O(N−p/(2p+1)) convergence. To be more clear, RMSE is defined as
√

bias(Ĉ)2 + variance(Ĉ),

where Ĉ is a Monte Carlo estimator of European option prices.

Next, given the initial value Yi(t0) = Yi(0) and the quadratic variation relationships in (2.3), the

9



2.3 Change of Measure 2 MODEL SPECIFICATION

discretization of process Yi(t) follows

Yi(tk+1) = Yi(tk) +

[
Li + (ci −

1

2
)

n∑
j=1

a2
ij(
√
vj(tk) +

bj√
vj(tk)

)2 −
n∑
j=1

βijYj(tk)

+ (c̃i −
1

2
)(
√
ṽi(tk) +

b̃i√
ṽi(tk)

)2

]
∆t

+
n∑
j=1

aij(
√
vj(tk) +

bj√
vj(tk)

)(ρj∆Bj(tk) +
√

1− ρ2
j∆Bj(tk)

⊥)

+ (
√
ṽi(tk) +

b̃i√
ṽi(tk)

)(ρ̃i∆B̃i(tk) +
√

1− ρ̃2
i∆B̃i(tk)

⊥).

Moreover, we can replace ∆B(tk) as
√

∆tZk, where Zk’s are iid standard normal for k = 0, ..., N−1.

Given iid standard normal vector Z⊥k , Z̃k, and Z̃⊥k , similarly replacement for ∆B(tk)
⊥, ∆B̃(tk),

∆B̃(tk)
⊥. Thus, for asset i = 1, ..., n, we will have:

vj(tk) = vj(tk−1) + αj(θj − vj(tk−1))∆t+ ξj

√
vj(tk−1)

√
∆tZk−1, j = 1, ..., n;

ṽi(tk) = ṽi(tk−1) + α̃i(θ̃i − ṽi(tk−1))∆t+ ξ̃i
√
ṽi(tk−1)

√
∆tZ̃k−1;

Yi(tk+1) = Yi(tk) +

[
Li + (ci −

1

2
)

n∑
j=1

a2
ij(
√
vj(tk) +

bj√
vj(tk)

)2 −
n∑
j=1

βijYj(tk)

+ (c̃i −
1

2
)(
√
ṽi(tk) +

b̃i√
ṽi(tk)

)2

]
∆t

+
n∑
j=1

aij(
√
vj(tk) +

bj√
vj(tk)

)(ρj
√

∆tZk−1 +
√

1− ρ2
j

√
∆tZ⊥k−1)

+ (
√
ṽi(tk) +

b̃i√
ṽi(tk)

)(ρ̃i
√

∆tZ̃k−1 +
√

1− ρ̃2
i

√
∆tZ̃⊥k−1).

2.3 Change of Measure

Our focus is on using asset prices under the 4/2 generalized factor model to price European call

option and extract implied volatilities from it, so the risk-neutral process is required. Therefore,

in this section, we study the possible changes of measure for our model by specifying the market

price of risk. Let (Ω, F , {Ft}t∈[0,T ], Q) denote the probability space under measure Q, and BQ
j ,

BQ
j (t)⊥, B̃Q

i , B̃
Q
i (t)⊥ are Brownian motions under Q.

Excess return/risk premium is the return that in excess of the risk-free rate. In order to be

comparable to Geometric Brownian motion, we should think of Li −
∑n

j=1 βijYj(t) as r if we

are dealing with mean reverting model under risk-neutral world. Then, the excess return of
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2 MODEL SPECIFICATION 2.3 Change of Measure

common/intrinsic factor follow

excess return of Fj = cj(
√
vj(t) +

bj√
vj(t)

)2

excess return of F̃i = c̃i(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

where cj = ρjλj +
√

1− ρ2
jλ
⊥
j and c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i . In this representation, λj, λ⊥j , λ̃i, and

λ̃⊥i are drivers of the change of measure for each individual independent risk factors/Brownian

motions. Then, for each risk factor/Brownian that composes Fj or F̃i, its market price of risk is

the ratio of its excess return to its volatility, such as

MPRBP
j

=
ρjλj(

√
vj(t) +

bj√
vj(t)

)2

(
√
vj(t) +

bj√
vj(t)

)
, MPRBP

j
⊥ =

√
1− ρ2

jλ
⊥
j (
√
vj(t) +

bj√
vj(t)

)2

(
√
vj(t) +

bj√
vj(t)

)
for j = 1, ..., n

MPRB̃P
i

=
ρ̃iλ̃i(

√
ṽi(t) + b̃i√

ṽi(t)
)2

(
√
ṽi(t) + b̃i√

ṽi(t)
)

, MPRB̃P
i
⊥ =

√
1− ρ̃2

i λ̃
⊥
i (
√
ṽi(t) + b̃i√

ṽi(t)
)2

(
√
ṽi(t) + b̃i√

ṽi(t)
)

for i = 1, ..., n

That is, the Radon-Nikodym derivative for each risk factor/Brownian follows

dQBP
j

dPBP
j

= exp

(
− 1

2
ρ2
jλ

2
j

∫ t

0

(
(
√
vj(t) +

bj√
vj(t)

)2

)
du+ ρjλj

∫ t

0

(
(
√
vj(t) +

bj√
vj(t)

)dBP
j (t)

))
dQB̃P

i

dPB̃P
i

= exp

(
− 1

2
ρ̃2
i λ̃

2
i

∫ t

0

(
(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

)
du+ ρ̃iλ̃i

∫ t

0

(
(
√
ṽi(t) +

b̃i√
ṽi(t)

)dB̃P
i (t)

))

The RN derivative for Brownians BP
j (t)⊥ and B̃P

i (t)⊥ for all i, j = 1, ..., n, are similar.

To be more specific, combining the quadratic variation relationship in equation 2.3, the above

RN derivatives imply a change of measure where the excess return of the underlying asset is

proportional to its variance, i.e.,
dBQ

j (t) = λj

(√
vj(t) +

bj√
vj(t)

)
dt+ dBP

j (t), dBQ
j (t)⊥ = λ⊥j

(√
vj(t) +

bj√
vj(t)

)
dt+ dBP

j (t)⊥

dB̃Q
i (t) = λ̃i

(√
ṽi(t) + b̃i√

ṽi(t)

)
dt+ dB̃P

i (t), dB̃Q
i (t)⊥ = λ̃⊥i

(√
ṽi(t) + b̃i√

ṽi(t)

)
dt+ dB̃P

i (t)⊥

Denote this form of market price of risk as MPR1. As pointed out by Grasselli (2017), a risk-neutral

measure may not exist in a 4/2 model, which is a feature inherited from having a 3/2 model (e.g.
1√
v(t)

) (see also Platen and Heath (2006) and Baldeaux et al. (2015)). This failure may cause the

discounted asset price process to be a strict Q-local martingale, and not a true Q-martingale that
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equivalent to the historical measure P. In the next propositions we entertain the above changes of

measure for asset i with constants λj, λ⊥j , λ̃i, and λ̃⊥i then identifying the parametric conditions

needed for the existence of a valid risk-neutral measure Q for this family of market price of risk.

Proposition 1. The change of measure described above is well defined for pricing purposes under

the following conditions:

ξ2
j ≤ 2αjθj − 2ξj max

{
|bjλj| ,

∣∣bjλ⊥j ∣∣ , |bja1jρj| , |bjanjρj|
}

(2.4)

ξ̃2
i ≤ 2α̃iθ̃i − 2ξ̃i max

{∣∣∣b̃iλ̃i∣∣∣ , ∣∣∣λ̃⊥i b̃i∣∣∣ , ∣∣∣b̃iρ̃i∣∣∣} (2.5)

max
{
|λj| ,

∣∣λ⊥j ∣∣} <
αj
ξj

(2.6)

max
{∣∣∣λ̃i∣∣∣ , ∣∣∣λ̃⊥i ∣∣∣} <

α̃i

ξ̃i
(2.7)

Moreover, if βij = 0 for i, j = 1, .., n, then the following must also be satisfied:

Li = r, ci =
n∑
j=1

(
ρjλj +

√
1− ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i (2.8)

See proof in A1.

The mean-reverting 4/2 generalized factor model provides the flexibility in capturing the mean-

reverting property of some financial assets, such as commodities and volatility indices. At the

same time, by setting β = 0, and long term average of the underlying asset L = r, we can use the

4/2 factor model in a broad class of financial instruments as well. In this work, we will study both

non-mean reverting and mean reverting 4/2 factor model to see how critical parameters a, b affect

the implied volatility under one common factor model and two common factors model respectively.

Based on Girsanov’s theorem, the dynamics for asset Xi(t) under Q-measure is defined as

dXi(t)

Xi(t)
=

{
Li −

n∑
j=1

βijln(Xj(t))

}
dt

+
n∑
j=1

aij(
√
vj(t) +

bj√
vj(t)

)dWQ
j (t) + (

√
ṽi(t) +

b̃i√
ṽi(t)

)dW̃Q
i (t),

dvj(t) = (αjθj − aijbjλjξj − (αj + aijλjξj)vj(t)) dt+ ξj

√
vj(t)dB

Q
j (t), j = 1, ..., n

dṽi(t) =
(
α̃iθ̃i − λ̃iξ̃ib̃i − (α̃i + λ̃iξ̃i)ṽi(t)

)
dt+ ξ̃i

√
ṽi(t)dB̃

Q
i (t), i = 1, ..., n

Note that if it is non-mean reverting, the drift term is set to be the risk-free rate of return r.
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2 MODEL SPECIFICATION 2.3 Change of Measure

However, the 4/2-liked structure of the instantaneous volatility is not trivial, and so is the structure

of the excess return and the market price of risk. In addition, the 4/2-liked structure of market

price of risk may lead to mathematical difficulties in other problems, i.e., finding an analytical

solution in portfolio optimization. Therefore, we advocate another form of market price of risk that

is proportional to the square root of v(t) (namely MPR2) instead of the instantaneous volatility of

underlying asset, i.e.,
(√

v(t) + b√
v(t)

)
, this is,

dB
Q
j (t) = λj

√
vj(t)dt+ dBP

j (t), dBQ
j (t)⊥ = λ⊥j

√
vj(t)dt+ dBP

j (t)⊥

dB̃Q
i (t) = λ̃i

√
ṽi(t)dt+ dB̃P

i (t), dB̃Q
i (t)⊥ = λ̃⊥i

√
ṽi(t)dt+ dB̃P

i (t)⊥

Proposition 2. The change of measure under the second form of market price of risk described

above is well-defined for pricing purposes under the following conditions:

ξ2
j ≤ 2αjθj − 2 |aijρjbj| ξj, i, j = 1, ..., n (2.9)

ξ̃2
i ≤ 2α̃iθ̃i − 2

∣∣∣ρ̃ib̃i∣∣∣ ξ̃i, i = 1, ..., n (2.10)

max
{
|λj| ,

∣∣λ⊥j ∣∣} <
αj
ξj

(2.11)

max
{∣∣∣λ̃i∣∣∣ , ∣∣∣λ̃⊥i ∣∣∣} <

α̃i

ξ̃i
(2.12)

Moreover, if βij = 0 for i, j = 1, .., n, then the following must also be satisfied:

Li = r, ci =
n∑
j=1

(
ρjλj +

√
1− ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i (2.13)

See proof in A1.

In line with this form of market price of risk, the dynamic for asset Xi(t) under P-measure evolves

as

dXi(t)

Xi(t)
=

{
Li + ci

n∑
j=1

a2
ij(vj(t) + bj)−

n∑
j=1

βijln(Xj(t)) + c̃i(ṽi(t) + b̃i)

}
dt

+
n∑
j=1

aij(
√
vj(t) +

bj√
vj(t)

)dW P
j (t) + (

√
ṽi(t) +

b̃i√
ṽi(t)

)dW̃ P
i (t),

dvj(t) = αj(θj − vj(t))dt+ ξj

√
vj(t)dB

P
j (t), j = 1, ..., n

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)B̃

P
i (t), i = 1, ..., n

(2.14)
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2.4 Implied Volatility 2 MODEL SPECIFICATION

with 〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃P

i (t), dW̃ P
i (t)

〉
= ρ̃idt.

Under measure Q, while the underlying asset follows the same type of process with both forms of

market price of risk, the underlying CIR for of the common factor and the intrinsic factor exhibit

different mean reverting levels,

MPR1


dvj(t) =

(
αjθj − bjλjξj − (αj + λjξj)vj(t)

)
dt+ ξj

√
vj(t)dB

Q
j (t), j = 1, ..., n

dṽi(t) =

(
α̃iθ̃i − λ̃iξ̃ib̃i − (α̃i + λ̃iξ̃i)ṽi(t)

)
dt+ ξ̃i

√
ṽi(t)dB̃

Q
i (t), i = 1, ..., n

(2.15)

MPR2


dvj(t) =

(
αjθj − (αj + λjξj)vj(t)

)
dt+ ξj

√
vj(t)dB

Q
j (t), j = 1, ..., n

dṽi(t) =

(
α̃iθ̃i − (α̃i + λ̃iξ̃i)ṽi(t)

)
dt+ ξ̃i

√
ṽi(t)dB̃

Q
i (t), i = 1, ..., n

(2.16)

Here are some documented properties about the parameters: negatively priced in volatility risk has

been well-documented in Bakshi and Kapadia (2003), Chernov and Ghysels (2000), and Escobar

et al. (2015), this means, λj and λ̃i < 0. The underlying asset’s risk premium driver ci and c̃i

should be positive, which is evidenced by Aït-Sahalia et al. (2007) and Escobar et al. (2015),

whereas the correlation should be negative (ρj and ρ̃i < 0) reasoned by the negative correlation

between asset return and volatility (the "leverage effect") in Aït-Sahalia et al. (2007). Also,

parameter a and 3/2 component b are positive.

2.4 Implied Volatility

Given the dynamic of the underlying asset, we can price a European call option on asset Xi for a

specified strike price K and an expiry date T , such that

C(T,K) = e−rTEQ[(Xi(T )−K)+], (2.17)

where Xi(T ) is approximated using Euler, and r is the risk-free interest rate.

Moreover, the implied volatility can be extracted by matching Black-Scholes option price formula

with obtained simulated call prices and solve for volatility parameter, which is treated as a constant.

In particular, if there is no mean reverting feature and β = 0, we take all sources of randomness

as a constant, and denote it as σ with a Brownian motion W ∗(t), the dynamic of the risky asset

14



2 MODEL SPECIFICATION 2.4 Implied Volatility

becomes

dYi(t) = (r − 1

2
σ2)dt+ σdW ∗(t) (2.18)

It follows that

C(Xi(0), K) = Xi(0)N(d1)−Ke−rTN(d2), (2.19)

where,

d1 =
lnXi(0)

K
+ (r + 1

2
σ2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t

That is, the simulated European call option prices are used as the left-hand side of BS formula

(2.19) for some strike price K and the initial price of underlying asset Xi. On the other side,

knowing the time to maturity and the risk-free interest rate, the implied volatility σ is the only

unknown parameter to be solved for.

Note that when β 6= 0, the process has the mean-reverting property, and we need to treat the

dynamics of Yi(t) as an O-U process instead,

dYi(t) = (Li −
1

2
σ2 − βYi(t))dt+ σdW ∗(t). (2.20)

Further, we are dealing with matching call prices for Xi(t) with a formula based on exponential

O-U process. Fortunately, Detemple and Osakwe (2000) derived call option price formula for Xi(t)

with strike price K and maturity T such that

C(Xi(0), K) = e−rT

[
Xi(0)φT exp

{
θ(σ)

β
(1− φT ) +

1

2
a2
T

}
N(d+ aT )−KN(d)

]
, (2.21)

where,

φT = e−βT , θ(σ) = Li −
1

2
σ2, aT =

σ√
2β

(1− φ2
T )

1
2 ,

d =
1

aT
(φT ln(Xi(0))− ln(K) +

θ(σ)

β
(1− φT ))

That is, the implied volatility σ for a mean reverting process can be obtained similarly by matching

15



2.4 Implied Volatility 2 MODEL SPECIFICATION

the simulated call option prices to the O-U formula (2.21) provided above.
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3 PORTFOLIO OPTIMIZATION

3 Portfolio Optimization

In this section, we study the 4/2 model with respect to dynamic portfolio optimization within

expected utility theory. We assume that interest rate is constant and the financial market is

composed of one risk-free asset and one risky asset. The risky asset follows a 4/2 structured

volatility and it can be traded continuously. The objective of the investor is to maximize the

expected utility of terminal wealth in the finite horizon. Assume that risk preference of the investor

is described by constant relative risk averse (CRRA) utility. The method of dynamic programming

was used to obtain the Hamilton-Jacobi-Bellman (HJB) equation. By directly conjecturing the

form of the solution to the HJB equation in the CRRA utility framework, a quasi-closed form

solution is found under the 4/2 stochastic model. Besides, an analytical solution is available when

we conjecture the solution to the HJB equation following an exponential affine form under a

special setting. This chapter is a particular case of our generalized model by setting β = 0 and no

intrinsic factor.

3.1 Problem setting

Let all the stochastic processes introduced below defined on a complete probability space

(Ω,F ,P, {Ft}t∈[0,T ]), where {Ft}t∈[0,T ] is a right-continuous information filtration generated by the

involving standard Brownian motions. The price process of the risk-free asset (Money Market) Mt

evolves according to

dMt = Mtrdt ,M0 = 1 (3.1)

where the interest rate r is assumed to be constant.

The price process Xt of the risky asset follows

dXt = Xt

[
µtdt+ (a

√
vt +

b
√
vt

)dWt

]
, X(0) = X0 > 0 (3.2)

dvt = κ (θ − vt) dt+ σ
√
vtdZ1t, v(0) = v0 > 0 (3.3)

where vt is the variance driver, which follows a CIR with mean-reversion rate κ > 0, long-run mean

θ > 0 and volatility of volatility σ > 0. The Feller condition, i.e., 2κθ ≥ σ2, is also imposed to keep

the process vt strictly positive. These two standard Brownian motions Wt and Z1t are correlated

with parameter ρ ∈ [−1, 1], hence for convenience we will write dWt = ρdZ1t+
√

1− ρ2dZ2t, where

Z2t is another standard BM and independent of Z1t.

17



3.1 Problem setting 3 PORTFOLIO OPTIMIZATION

We assume the natural form of market price of risk, such thatλ1(vt) = λ̄1
√
vt

λ2(vt) = λ̄2(a
√
vt + b√

vt
)

(3.4)

where λ1(vt) is the market price of risk with respect to Z1t, and λ̄1 is a constant. Similarly, λ2(vt)

is the market price respect to Z2t, and λ̄2 is a constant. This choice of market price of risk is

preferable because it makes the ratio of excess return relative to each risk factor proportional to

its volatility. In other words, the excess return of the stock-driving risk factor is proportional to

the variance of the underlying process (Heston, 1993) while the excess return of vt is proportional

to itself. Then, the stock dynamics can be rewritten as

dXt = Xt

[(
r + [ρλ1(vt) +

√
1− ρ2λ2(vt)][a

√
vt +

b
√
vt

]

)
dt+ (a

√
vt +

b
√
vt

)(ρdZ1t +
√

1− ρ2dZ2t)

]

(3.5)

Substituting in the market price of risk, the dynamic of risky asset evolves as

dXt = Xt

[(
r + λ̄1ρ(avt + b) + λ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)]
dt

+Xt

[
(a
√
vt +

b
√
vt

)(ρdZ1t +
√

1− ρ2dZ2t)

] (3.6)

By investing a proportion πt of wealth into risky asset and the remaining proportion (1− πt) of

wealth into risk free asset, the wealth process for this investor in the historical measure evolves

according to:

dPt
Pt

= πt
dXt

Xt

+ (1− πt)
dMt

Mt

=

[
r + πt

(
λ̄1ρ(avt + b) + λ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)]
dt

+ πt

[
(a
√
vt +

b
√
vt

)(ρdZ1t +
√

1− ρ2dZ2t)

]
, P (0) = x0 > 0.

(3.7)

where x0 is the initial wealth. Note that this is a self-financing portfolio. An investor who aims at

maximizing utility from terminal wealth at time T with CRRA risk preference follows a power

utility function, such as

u(x) =
xγ

γ
, (3.8)

where γ < 1 and x ≥ 0. In addition, the power utility function has a well-defined limit when
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3 PORTFOLIO OPTIMIZATION 3.2 Mathematical solution

γ → 0. From L’Hôspital’s rule, we have

lim
γ→0

xγ

γ
= lim

γ→0

xγlnx

1
= lnx, (3.9)

which is an important special case of logarithmic utility. That is, we can obtain the optimal

strategies of a log-utility investor as the limit of the optimal strategies of the general CRRA

investor as γ → 0.

The goal/objective of the investor is to find an investment strategy that maximizes the terminal

utility at time T. Mathematically, the objective function can be expressed as

J(x, v, t) = sup
π∈U

Ex,v,t [u(PT )]

where J(x, v, t) is the value function and U denotes the space of admissible strategies.

Definition 1. An investment strategy πt is said to be admissible if the following conditions are

satisfied:

1) π is progressively measurable.

2) For all (x0, v0) ∈ R+×R+ and t ∈ [0, T ], the SDE 3.7 has a pathwise unique solution {P π
t }t∈[0,T ]

under measure Q and

EQ
x0,v0,t0 [u(Pt)] <∞

where EQ
x,v,t[.] = EQ[. | Pt = x, vt = v] denote the conditional expectation.

3.2 Mathematical solution

According to the principles of dynamics programming, the Hamilton-Jacobi-Bellman (HJB)

equation for such problem should satisfy:

0 = supπ

{
Jt + x

(
r + πλ̄1ρ(avt + b) + πλ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)
Jx + κ(θ − v)Jv

+
1

2
x2π2(a

√
vt +

b
√
vt

)2Jxx +
1

2
σ2vJvv + πx(avt + b)σρJxv

} (3.10)

where Jx, Jv, Jxx, Jvv, and Jxv are first and second partial derivatives of function J . The function

J should satisfy the boundary condition J(x, v, T ) = xγ

γ
.
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3.2 Mathematical solution 3 PORTFOLIO OPTIMIZATION

Proposition 3. The solution to the HJB problem has the structure:

J(x, v, t) =
xγ

γ
h(t, v), (3.11)

where h(t,v) satisfy the following equation, with terminal condition h(T,v)=1:

0 = ht + κ(θ − v)hv +
1

2
σ2vhvv + rhγ

− σρ2λ̄1v
γhv
γ − 1

− σλ̄2ρ
√

1− ρ2(av + b)
γhv
γ − 1

− 1

2
vσ2ρ2 γh2

v

(γ − 1)h

− 1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

]2
γh

γ − 1

(3.12)

In this setting the optimal allocation in risky asset satisfies the equation:

π∗ =

√
vσρhv

(a
√
vt + b√

vt
)(1− γ)h

+
λ̄1ρ
√
v

(a
√
vt + b√

vt
)(1− γ)

+
λ̄2

√
1− ρ2

(1− γ)
(3.13)

Proof. Separating out the terms that involves π in equation (3.10) and denoting it as a function

g(π):

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + supπ

{
x

(
r + πλ̄1ρ(avt + b) + πλ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)
Jx

+
1

2
x2π2(a

√
vt +

b
√
vt

)2Jxx + πx(avt + b)σρJxv

}
(3.14)

That is,

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + supπ

{
g(π)

}
(3.15)

The first order condition for finding the optimal investment strategy π∗ is g′(π) = 0, where

g′(π) = x

(
λ̄1ρ(avt + b) + λ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)
Jx

+ x2π(a
√
vt +

b
√
vt

)2Jxx + x(avt + b)σρJxv

(3.16)
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3 PORTFOLIO OPTIMIZATION 3.2 Mathematical solution

Solving for the candidate π∗:

π∗ =
−x(avt + b)σρJxv − x

(
λ̄1ρ(avt + b) + λ̄2

√
1− ρ2(a

√
vt + b√

vt
)2
)
Jx

x2(a
√
vt + b√

vt
)2Jxx

=
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
vt + b√

vt
)Jx

x(a
√
vt + b√

vt
)Jxx

(3.17)

Substituting equation (3.17) back to the HJB Equation (3.10) and eliminating the "sup"

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + x

(
r + π∗λ̄1ρ(avt + b) + π∗λ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)
Jx

+
1

2
x2(π∗)2(a

√
vt +

b
√
vt

)2Jxx + πx(avt + b)σρJxv

(3.18)

That is,

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + rxJx

+ x
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
vt + b√

vt
)Jx

x(a
√
vt + b√

vt
)Jxx

(
λ̄1ρ(avt + b) + λ̄2

√
1− ρ2(a

√
vt +

b
√
vt

)2

)
Jx

+
1

2
x2

[
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
vt + b√

vt
)Jx

x(a
√
vt + b√

vt
)Jxx

]2

(a
√
vt +

b
√
vt

)2Jxx

+
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
vt + b√

vt
)Jx

x(a
√
vt + b√

vt
)Jxx

x(avt + b)σρJxv

(3.19)

Further simplifications leads to:

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + rxJx

+
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
v + b√

v
)Jx

Jxx

(
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

)
Jx

+
1

2

[
−
√
vσρJxv − (λ̄1ρ

√
v + λ̄2

√
1− ρ2(a

√
v + b√

v
))Jx

]2

Jxx

+
−
√
vσρJxv − λ̄1ρ

√
vJx − λ̄2

√
1− ρ2(a

√
v + b√

v
)Jx

Jxx

√
vσρJxv

(3.20)
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Canceling out and grouping terms,

0 = Jt + κ(θ − v)Jv +
1

2
σ2vJvv + rxJx −

√
vσρ

(
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v + b√

v
)
)

Jxx
JxvJx

− 1

2

vσ2ρ2

Jxx
J2
xv −

1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v + b√

v
)
]2

Jxx
J2
x

(3.21)

Assuming

J(x, v, t) =
xγ

γ
h(t, v), (3.22)

where h(T, v) = 1, ∀v. Thereby, it follows that

Jt =
xγ

γ
ht, Jv =

xγ

γ
hv, Jx = xγ−1h

Jvv =
xγ

γ
hvv, Jxv = xγ−1hv, Jxx = (γ − 1)xγ−2h

Substituting the corresponding partial derivatives back into equation (3.21):

0 =
xγ

γ
ht + κ(θ − v)

xγ

γ
hv +

1

2
σ2v

xγ

γ
hvv + rxγh− σρ2λ̄1v

xγhv
γ − 1

− σλ̄2ρ
√

1− ρ2(av + b)
xγhv
γ − 1

− 1

2
vσ2ρ2 xγh2

v

(γ − 1)h
− 1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

]2
xγh

γ − 1

(3.23)

Multiplying term γ
xγ

on both sides:

0 = ht + κ(θ − v)hv +
1

2
σ2vhvv + rhγ

− σρ2λ̄1v
γhv
γ − 1

− σλ̄2ρ
√

1− ρ2(av + b)
γhv
γ − 1

− 1

2
vσ2ρ2 γh2

v

(γ − 1)h

− 1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

]2
γh

γ − 1

(3.24)

We show next that this problem is not solvable under a conjecture of an exponential affine form of

function h.

Corollary 0.1. The solution in equation (3.10) does not follow an exponential affine structure of
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the form:

J(x, v, t) =
xγ

γ
exp

{
A(T − t) +B(T − t)v

}
(3.25)

where the functions A(τ) and B(τ) are only time dependent with time horizon τ(t) = T − t.

However, if ρ = 1, the problem is solvable with expressions for A, B as follows:

A(τ(t)) = γrτ +
2θκ

k2

ln

(
2k3e

k1+k3
2

τ

2k3 + (k1 + k3) (ek3τ − 1)

)
, (3.26)

B(τ(t)) =
k0

(
ek3τ − 1

)
2k3 + (k1 + k3) (ek3τ − 1)

, (3.27)

This leads to the explicit form of the optimal strategy,

π∗ =
−
√
vσB

(a
√
v + b√

v
)(γ − 1)

− λ̄1

√
v

(a
√
vt + b√

vt
)(γ − 1)

, (3.28)

where the auxiliary parameters k0, k1, k2, k3 satisfy k2
1 − k0k2 > 0, and are defined as follow:

k0 :=
γλ̄2

1

1− γ
(3.29)

k1 :=

(
κ− λ̄1

γσρ

1− γ

)
(3.30)

k2 :=

(
σ2 +

γσ2

1− γ

)
(3.31)

k3 :=
√
k2

1 − k0k2 (3.32)

Proof. Assume that h(t, v) is of exponentially affine form as well, such that

h(t, v) = exp(A(τ(t)) +B(τ(t))v) , (3.33)

with time horizon τ(t) = T − t and therefore boundary conditions

h(T, v) = 1∀v ⇒ A(0) = A(τ(T )) = 0,

B(0) = B(τ(T )) = 0.
(3.34)

This leads to

ht = (−A′ −B′v)h, hv = Bh, hvv = B2h,
h2
v

h
=
B2h2

h
= B2h = hvv
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Substituting into π∗ (3.17), it can be expressed as

π∗ =
−
√
vσρB

(a
√
v + b√

v
)(γ − 1)

− λ̄1ρ
√
v

(a
√
vt + b√

vt
)(γ − 1)

− λ̄2

√
1− ρ2

(γ − 1)
(3.35)

Substituting into equation (3.12), then

0 = (−A′ −B′v)h+ κ(θ − v)Bh+
1

2
σ2vB2h+ rhγ

− σρ2λ̄1v
γBh

γ − 1
− σλ̄2ρ

√
1− ρ2(av + b)

γBh

γ − 1
− 1

2
vσ2ρ2 γ

γ − 1
B2h

− 1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

]2
γh

γ − 1

Cancelling h:

0 = (−A′ −B′v) + κ(θ − v)B +
1

2
σ2vB2 + rγ

− σρ2λ̄1v
γB

γ − 1
− σλ̄2ρ

√
1− ρ2(av + b)

γB

γ − 1
− 1

2
vσ2ρ2 γ

γ − 1
B2

− 1

2

[
λ̄1ρ
√
v + λ̄2

√
1− ρ2(a

√
v +

b√
v

)

]2
γ

γ − 1

(3.36)

Regrouping and separating out v:

0 = −A′ + κθB + rγ − σρ2λ̄1b
γB

γ − 1
− [abλ̄2

2(1− ρ2) + λ̄1λ̄2ρ
√

1− ρ2b]
γ

γ − 1

+ v

[
−B′ − κB +

1

2
σ2B2 − σρ2λ̄1

γB

γ − 1
− σλ̄2aρ

√
1− ρ2

γB

γ − 1
− 1

2
σ2ρ2 γ

γ − 1
B2

− 1

2
(λ̄2

1ρ
2 + 2λ̄1λ̄2ρ

√
1− ρ2a+ a2λ̄2

2(1− ρ2))
γ

γ − 1

]
− 1

v

[
1

2
λ̄2

2(1− ρ2)b2 γ

γ − 1

] (3.37)

The term 1/v can not be eliminated and this is why the solution can not be as prescribed. However,

if ρ = 1:

0 = −A′ + κθB + rγ − σλ̄1b
γB

γ − 1

+ v

[
−B′ + 1

2

(
σ2 − γσ2

γ − 1

)
B2 − (κ+ σλ̄1

γ

γ − 1
)B − 1

2
λ̄2

1

γ

γ − 1

] (3.38)

We end up with a term that is linear in v, but both coefficients are linear differential equations.
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3 PORTFOLIO OPTIMIZATION 3.2 Mathematical solution

Both of them have to be zero to satisfy the equation and boundary condition of h,

A′ = κθB + γr (3.39)

B′ =
1

2

(
σ2 +

γσ2

1− γ

)
︸ ︷︷ ︸

k2

B2 −
(
κ− σλ̄1

γ

1− γ

)
︸ ︷︷ ︸

k1

B +
1

2

γλ̄2
1

1− γ︸ ︷︷ ︸
k0

(3.40)

The equation (3.40) is a so called Riccati equation with auxiliary parameters ki, i ∈ {0, 1, 2}, which

can be solved. Let A(τ), B(τ) be two time dependent functions satisfying the equations

A′(τ) = κθB(τ) + γr (3.41)

B′(τ) =
1

2
k2B(τ)2 − k1B(τ) +

1

2
k0 (3.42)

and the boundary conditions A(0) = 0, B(0) = 0 with constants k0, k1, k2 satisfying k2
1 − k0k2 > 0.

Define k3 :=
√
k2

1 − k0k2 . The right hand side of equation (3.42) has roots

B1,2 =
k1 ±

√
k2

1 − k0k2

k2

=
k1 ± k3

k2

where k3 :=
√
k2

1 − k0k2, which is well-defined due to the assumption made. Dissecting factors

leads to

B′(τ) =
dB(τ)

dτ
=
k2

2

(
B(τ)− k1 + k3

k2

)(
B(τ)− k1 − k3

k2

)
. (3.43)

Integrating yields

∫ B(τ)

0

1(
β(τ)− k1+k3

k2

)(
β(τ)− k1−k3

k2

)dβ =

∫ τ

0

k2

2
dt

k2

2k3

[
ln

(
β(τ)− k1 + k3

k2

)
− ln

(
β(τ)− k1 − k3

k2

)]B(τ)

0

=
k2

2
τ

ln
B(τ)− k1+k3

k2

B(τ)− k1−k3
k2

− ln
k1 + k3

k1 − k3

= k3τ

B(τ)− k1+k3
k2

B(τ)− k1−k3
k2

=
k1 + k3

k1 − k3

ek3τ

B(τ)

(
1− k1 + k3

k1 − k3

ek3t
)

=
k1 + k3

k2

(
1− ek3τ

)
,
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where we implicitly assumed that B(τ) 6= k1+k3
k2

and B(τ) 6= k1−k3
k2

. We finally obtain

B(τ) =
(k1 + k3)

(
1− ek3τ

)
k2

(
1− k1+k3

k1−k3 e
k3τ
) =

(k2
1 − k2

3)
(
1− ek3τ

)
k2 (k1 − k3 − (k1 + k3)ek3τ )

=
k0

(
1− ek3τ

)
k1 − k3 − (k1 + k3)ek3τ

= k0
ek3τ − 1

(k1 + k3)ek3τ − k1 + k3

=
k0

(
ek3τ − 1

)
2k3 + (k1 + k3) (ek3τ − 1)

. (3.44)

This leads to the following for A(τ),

A(τ) =γrτ +

∫ τ

0

θκB(t)dt

=γrτ + θκ

∫ τ

0

k0

(
ek3t − 1

)
2k3 + (k1 + k3) (ek3t − 1)

dt

With z(t) = 2k3 + (k1 + k3) (ek3t − 1), i.e., t = 1
k3

ln( z−2k3+k1+k3
k1+k3

) = 1
k3

ln( z+k1−k3
k1+k2

) and dt =

1
k3(z+k1−k3)

dz, we obtain

A(τ) =γrτ + θκ

∫ z(τ)

z(0)

k0

(
z+k1−k3
k1+k3

− 1
)

z

1

k3(z + k1 − k3)
dz

=γrτ + θκ
k0

k3

∫ z(τ)

z(0)

(
z+k1−k3
k1+k3

− 1
)

z(z + k1 − k3)
dz

=γrτ + θκ
k0

k3

(∫ z(τ)

z(0)

1

z(k1 + k3)
dz −

∫ z(τ)

z(0)

1

z(z + k1 − k3)
dz

)

Note: 1
z(z+a)

= C
z

+ D
z+a

= C(z+a)+Dz
z(z+a)

= Ca+(C+D)z
z(z+a)

⇔ Ca = 1, C + D = 0 ⇔ Solve for C,D to

dissect factors. Here, a = k1 − k3, C = 1
k1−k3 , D = − 1

k1−k3 . It follows that

A(τ) =γrτ + θκ
k0

k3

(∫ z(τ)

z(0)

1

z(k1 + k3)
dz −

∫ z(τ)

z(0)

1

z(k1 − k3)
dz +

∫ z(τ)

z(0)

1
k1−k3

z + k1 − k3

dz

)

=γrτ + θκ
k0

k3

([ ln z

k1 + k3

]z(τ)

z(0)
+
[ ln( z+k1−k3

z
)

k1 − k3

]z(τ)

z(0)

)

=γrτ + θκ
k0

k3

([ ln z

k1 + k3

]z(τ)

z(0)
−
[ ln z

k1 − k3

]z(τ)

z(0)
+
[ ln(z + k1 − k3)

k1 − k3

]z(τ)

z(0)

)
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Note: k0
k3

= k0k2
k3k2

=
k21−k23
k3k2

= (k1+k3)(k1−k3)
k3k2

, where k2
3 = k2

1 − k0k2

A(τ) =γrτ +
θκ

k3k2

(
(k1 − k3)

[
ln z
]z(τ)

z(0)
+ (k1 + k3)

[
ln(

z + k1 − k3

z
)
]z(τ)

z(0)

)
=γrτ +

θκ

k3k2

(
(k1 − k3)

[
ln z
]z(τ)

z(0)
−
[
(k1 + k3) ln z

]z(τ)

z(0)
+ (k1 + k3)

[
ln(z + k1 − k3)

]z(τ)

z(0)

)
=γrτ +

θκ

k3k2

(
−2k3

[
ln z
]z(τ)

z(0)
+ (k1 + k3)

[
ln(z + k1 − k3)

]z(τ)

z(0)

)
Take 2k3 out, we get

A(τ) =γrτ +
2θκ

k2

((
k1 + k3

2k3

)[
ln(z + k1 − k3)

]z(τ)

z(0)
−
[

ln z
]z(τ)

z(0)

)

Note: z(t) + k1 − k3 = k1 + k3 + (k1 + k3)(ek3t − 1) = (k1 + k3)(1 + ek3t − 1) = (k1 + k3)ek3t and

z(0) + k1 − k3 = 2k3 − k3 + k1 = k3 + k1, then

A(τ) =γrτ +
2θκ

k2

((
k1 + k3

2k3

)
ln

(
(k1 + k3)ek3t

k1 + k3

)
−
[

ln z
]z(τ)

z(0)

)
=γrτ +

2θκ

k2

((
k1 + k3

2k3

)
ln
(
ek3τ

)
− ln

(
2k3 + (k1 + k3) (ek3τ − 1)

2k3

))
=γrτ +

2θκ

k2

(
ln
(
e
k1+k3

2
τ
)
− ln

(
2k3 + (k1 + k3) (ek3τ − 1)

2k3

))
=γrτ +

2θκ

k2

ln

(
2k3e

k1+k3
2

τ

2k3 + (k1 + k3) (ek3τ − 1)

)
.

We are currently exploring other market prices of risk and potential closed-form solutions to a

portfolio optimization problem within a 4/2 framework. Once this is achieved, then we can explore

the multidimensional case of factor models.
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4 ONE COMMON FACTOR MODEL

4 One Common Factor Model

We assume there are two assets, namely X1(t) and X2(t), with one common stochastic volatility

component, and one intrinsic stochastic volatility factor each. The 4/2 generalized model is

investigated under mean reverting and non mean reverting respectively. It is known that financial

instruments, such as commodities, volatility index (VIX), foreign exchange rates and interest rates,

etc., are characterized by a mean reverting property. In this regard, we use the novelty of 4/2

stochastic processes together with the stylized fact of mean-reverting to explore the impacts of

common factor loading a and the 3/2 component b.

Moreover, under the consideration of two forms of market price of risk, i.e., proportional to

the instantaneous volatility of the underlying asset and proportional to the square root of the

underlying CIR process, we explore the impact on implied volatility due to variations on parameters

of the model through the Absolute Relative Change (ARC) in implied volatility (IV), defined as

ARC = |IVθ+∆θ − IVθ

IVθ

|

where θ is a parameter of interest, this could be the mean reverting level of the common factor’s

underlying CIR process, and ∆θ stands for the variation in θ per se. Further, we explore the

impact of risk premiums/excess returns’ driver c under different forms of market price of risk with

respect to value at risk and expected shortfall. Also, how different forms of market price of risk

react to zero correlation (ai = 0) and stochastic correlation (ai 6= 0) among assets are studied

in terms of risk measures (i.e., VaR and ES). The impacts of presence and absence of the 3/2

component b on VaR and ES are measured under different forms of market price of risk as well.

In this chapter, we will study two scenarios, i.e., Scenario A and Scenario B corresponding to a

mean reverting model and a non mean reverting model respectively. For each model, we will firstly

study the impact of the 3/2 parameters b1, b̃1 and commonalities loading a1 on implied volatility

for asset X1. To be more specific, the impacts from these parameters on implied volatility are

visualized in a three-dimensional plot where the x-axis is strike prices, the y-axis is the targeted

parameter, and the z-axis is the implied volatility while time to maturity is assumed to be 1 year.

This sends a direct message about the influence of each one of the key parameters in the model.

Then risk measures, value at risk (VaR) and expected shortfall (ES), are assessed with respect to

the common factor loading a and the 3/2 component b for a portfolio investing on both underlying

X1 and X2.
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4 ONE COMMON FACTOR MODEL

In the case of one common factor and one intrinsic factor each, we state a few theoretical features

about the implied covariance of asset returns. Denote V1 =
(√

v1 + b1√
v1

)2

as the common factor

variance, and Ṽi =
(√

ṽi + b̃i√
ṽi

)2

for i = 1, 2 as the intrinsic factors variance. Then, for asset Xi

and Xj, the instantaneous quadratic variation between assets is given by

Σijdt =

〈
dXi

Xi

,
dXj

Xj

〉
= (aiajV1(t)) dt (4.1)

The instantaneous quadratic variation of asset Xi is given by

Σiidt =

〈
dXi

Xi

,
dXi

Xi

〉
=
(
a2
iV1(t) + Ṽi(t)

)
dt (4.2)

Applying Ito’s lemma, we have

dΣii = d

(
a2
i

(√
v1 +

b1√
v1

)2
+
(√

ṽi +
b̃i√
ṽi

)2
)

=

{
a2
i

[v2
1 − b2

1

v2
1

α1

(
θ1 − v1

)
+
b2

1

v3
1

ξ2
1

]
+
[ ṽ2

i − b̃2
i

ṽ2
i

α̃i
(
θ̃i − ṽi

)
+
b̃2
i

ṽ3
i

ξ̃2
i

]}
dt

+ a2
i

[v2
1 − b2

1

v2
1

]
ξ1dB1 +

[ ṽ2
i − b̃2

i

ṽ2
i

]
ξ̃idB̃i

(4.3)

Therefore, the correlation process between the assets X1 and X2 then follows

ρ =
Σ12√

Σ11Σ22

= Corr

(
dX1

X1

,
dX2

X2

)
= Corr

(
dlnX1, dlnX2

)

=
a1a2V1(t)√(

a2
1V1(t) + Ṽ1(t)

)(
a2

2V1(t) + Ṽ2(t)
) (4.4)

Note that the correlation between assets is stochastic whenever ai 6= 0; otherwise, the two assets

are uncorrelated.

Further, the leverage effect that refers to negative correlation between volatility and returns (Black,

1976; Christie, 1982; Heston et al., 2009), is defined as

leverage = Corr

(
dlnXi, < dlnXi >

)
= Corr

(
dXi

Xi

, dΣii

)

=
a3
i

(√
v1 + b1√

v1

)(
v21−b21
v21

)
ρ1 +

(√
ṽi + b̃i√

ṽi

)(
ṽ2i−b̃2i
ṽ2i

)
ρ̃i√(

a2
i

(√
v1 + b1√

v1

)2

+
(√

ṽi + b̃i√
ṽi

)2
)(

a4
i

(
v21−b21
v21

)2

+
(
ṽ2i−b̃2i
ṽ2i

)2
) (4.5)
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4 ONE COMMON FACTOR MODEL

Initial values

X1(0) = 18, X2(0) = 100, r = 0.06, Schwartz (1997)
v1(0) = θ1, ṽ1(0) = θ̃1, ṽ2(0) = θ̃2
Commodity Drift, Schwartz (1997)
β11 = 0.301, β12 = 0, β21 = 0, β22 = 0.369
L1 = 3.09β11 = 0.93, L2 = 4.85β22 = 1.79

Commodity St. Volatility, Heston (1993) and Schwartz (1997). Scenario A
α1 = α̃1 = α̃2 = 2

θ1 = 0.01, θ̃1 = 0.0753, θ̃2 = 0.0124

ξ1 = ξ̃1 = ξ̃2 = 0.1
ρ1 = ρ̃1 = ρ̃2 = −0.5

Commodity St. Volatility, Heston et al. (2009) and Schwartz (1997). Scenario B
α1 = α̃1 = α̃2 = 0.2098

θ1 = 0.1633, θ̃1 = 0.0685, θ̃2 = 0.0689

ξ1 = ξ̃1 = ξ̃2 = 0.1706
ρ1 = ρ̃1 = ρ̃2 = −0.9

New parameters
c1 = c2 = c̃1 = c̃2 = 0
a1 = a2 = 0.75

b1 = b̃1 = b̃2 = 0.008

Table 4.1: Baseline Parametric values

Table 4.1 gives a baseline parameter set for the one common factor, two dimensional 4/2 factor

model to be used in the coming sections. The choice of parameters in scenario A come from

combining the seminal work of Schwartz (1997) (Oil and Copper, Tables IV and V) and Heston

(1993). Scenario B combines Schwartz (1997) (Oil and Copper, Tables IV and V) with Heston et al.

(2009). In both cases we assume a simple market price of risk structure (c1 = c2 = c̃1 = c̃2 = 0).

In addition, when we investigate the non mean reverting model, we assumed a constant risk-free

interest rate of 0.06, which was approximately the average interest rate over the period considered

for Oil and Copper in Schwartz (1997).

It is worth mentioning that the mean reverting level of intrinsic factor θ̃i, i = 1, 2 in the table are

set to match the long term volatility estimated in Schwartz (1997) for each commodity, which are

0.334 for Oil (Table IV), and 0.233 for Copper (Table V):

E

a2
1

(√
v1(t) +

b1√
v1(t)

)2

+

(√
ṽ1(t) +

b̃1√
ṽ1(t)

)2


= a2
1

(
2α1b

2
1

2α1θ1 − ξ2
1

+ 2b1 + θ1

)
+

2α̃1b̃
2
1

2α̃1θ̃1 − ξ̃2
1

+ 2b̃1 + θ̃1 = (0.334)2

This explain the values of θ̃i in the table.
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4.1 Mean Reverting

The asset prices with the mean reverting property in the 4/2 generalized factor model follow the

system of SDE for i = 1, 2, such that

dYi(t) =

(
Li −

2∑
j=1

βijYj(t)

)
dt

+

(
(ci −

1

2
)a2
i (
√
v1(t) +

b1√
v1(t)

)2 + (c̃i −
1

2
)(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

)
dt

+ai

(√
v1(t) +

b1√
v1(t)

)
dW1(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

dv1(t) = α1(θ1 − v1(t))dt+ ξ1

√
v1(t)dB1(t)

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t)

with quadratic variation relationship 〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1;

and i = 1, 2.

In order to ensure that the choice of parameters lead to reasonable assets behavior, we report

the expected return, variance of return for each asset, as well as the correlation between two

assets and the leverage effects in Table 4.2, Table 4.3 and Table 4.4, Table 4.5 under scenario A

and scenario B for various choices of b and a respectively. Here we simulate 500, 000 paths with

dt = 0.1 and consider the following scenarios for b: b1 = 0.008, b̃1=b̃2=0 ; b1 = 0, b̃1=b̃2 = 0.008;

b1 = b̃1 = b̃2 = 0 and b1 = b̃1=b̃2 = 0.008. That is, under scenario 1, only the common factor is

assumed to follow 4/2 structure; under scenario 2, only the intrinsic factor is assumed to follow

4/2 structure; under scenario 3, the common factor and the intrinsic factor are both assumed to

be Heston-like; and under scenario 4, both common factor and intrinsic factor follow a 4/2-liked

instantaneous volatility structure.

Table 4.2: First four moments for scenarios on 3/2 component (b). Scenario A

b1 =0.008, b̃i=0 b1 = 0, b̃i=0.008 b1=b̃i=0 b1 = b̃i=0.008

E[X1(T )−X1(0)
X1(0)

] 0.0495 0.0501 0.0509 0.0495
E[X2(T )−X2(0)

X2(0)
] 0.0770 0.0778 0.0781 0.0767

V[X1(T )−X1(0)
X1(0)

] 0.0686 0.0694 0.0626 0.0756
V[X2(T )−X2(0)

X2(0)
] 0.0386 0.0402 0.0330 0.0481

Corr(dlnX1(T ) , dlnX2(T )) 0.3484 0.0921 0.1069 0.4888
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4385 -0.4707 -0.4617 -0.3926
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4195 -0.4650 -0.4608 -0.3492
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Table 4.3: First four moments for scenarios on 3/2 component (b). Scenario B

b1 =0.008, b̃i=0 b1 = 0, b̃i=0.008 b1=b̃i=0 b1 = b̃i=0.008

E[X1(T )−X1(0)
X1(0)

] 0.0514 0.0505 0.0528 0.0497
E[X2(T )−X2(0)

X2(0)
] 0.0773 0.0768 0.0787 0.0756

V[X1(T )−X1(0)
X1(0)

] 0.0354 0.0660 0.0242 0.0988
V[X2(T )−X2(0)

X2(0)
] 0.0354 0.0725 0.0244 0.0750

Corr(dlnX1(T ) , dlnX2(T )) 0.7488 0.0098 0.4650 0.0145
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.5843 -0.2882 -0.7517 -0.0386
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.5823 -0.0575 -0.7441 -0.3260

Similarly, the key statistics under scenarios a1 = a2 = 0; a1 = 0.75, a2 = 0; a1 = 0, a2 = 0.75; and

a1 = a2 = 0.75 are evaluated for commonalities loading a. To be more precise, under scenario 1,

the common factor and thus the stochastic correlations between assets are ignored with ai = 0;

under scenario 2 and 3, one of the two asset ignores the common factor and only considers the

intrinsic factor follows a 4/2 structure; and under scenario 4, both common factor and intrinsic

factor follow a 4/2-liked instantaneous volatility structure for each asset.

Table 4.4: First four moments for scenarios on commonalities (a). Scenario A

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T )−X1(0)
X1(0)

] 0.0505 0.0499 0.0502 0.0502
E[X2(T )−X2(0)

X2(0)
] 0.0777 0.0780 0.0766 0.0763

V[X1(T )−X1(0)
X1(0)

] 0.0674 0.0761 0.0675 0.0755
V[X2(T )−X2(0)

X2(0)
] 0.0382 0.0381 0.0484 0.0478

Corr(dlnX1(T ) , dlnX2(T )) 0.0011 -0.0001 -0.0010 0.3208
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4703 -0.2840 -0.4695 -0.4441
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4679 -0.4680 -0.3758 -0.4162
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Table 4.5: First four moments for scenarios on commonalities (a). Scenario B

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T )−X1(0)
X1(0)

] 0.0514 0.0496 0.0512 0.0500
E[X2(T )−X2(0)

X2(0)
] 0.0768 0.0772 0.0756 0.0752

V[X1(T )−X1(0)
X1(0)

] 0.0420 0.0733 0.0420 0.0857
V[X2(T )−X2(0)

X2(0)
] 0.0507 0.0564 0.0746 0.0719

Corr(dlnX1(T ) , dlnX2(T )) 0.0004 -0.0000 -0.0005 0.0039
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.1126 -0.0047 -0.3203 -0.2634
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.1600 -0.2544 -0.0164 -0.0111

4.1.1 Pricing Option

In this section, we price the European call option on the asset X1 based on the mean reverting 4/2

structured one common factor and one intrinsic factor model. We explore the implied volatility

surface with strike prices K: 15, 16.4, 17.8, 19.2, 20.6, 22 and expiry date T=1.0. By choosing

these strike prices, we take into account in-the-money, at-the-money, and also out-of-the-money

given the initial asset price is 18. Then, for each strike price and the expiry date, we can firstly

get a simulated call option price by equation 2.17. Then, following the procedure of extracting

the implied volatility, we match the exponential O-U option price formula in equation 2.21 with

simulated call prices and solve for the volatility parameter σ in the dynamics of Y (t) such that:

dY1(t) = (L1 −
1

2
σ2 − β11Y (t))dt+ σdW ∗(t).

4.1.2 Sensitivity Analysis

In this subsection, we analyze the effects of the common factor loading a, the 3/2 parameter b

from common factor and b̃ from intrinsic factor on implied volatility in scenario A and scenario

B respectively. The purpose of investigating two scenarios of the parameter is that we can

observe how the implied volatility reacts to the underlying CIR process driving common and

intrinsic volatilities. In other words, whether the parameter a, b, and b̃ affect the implied volatility

differently with respect to v or ṽ.

In the study of parameter b, which represents the size of the 3/2 component on the common factor,

the implied volatility surfaces are shown in terms of b1 changing in the interval (0, 0.008) while b̃i

equals to zero and 0.008. See Figure 4.1 for scenario A and Figure 4.2 for scenario B.
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4.1 Mean Reverting 4 ONE COMMON FACTOR MODEL

In scenario A, Figure 4.1 illustrates that even small changes in the common factor 3/2 component

b1 (from 0 to 0.008) can lead to a 10.37% and a 5.3% difference in implied volatility (from 0.27

to 0.298, and 0.285 to 0.3) respectively. In general, it can be observed that the overall shapes of

implied volatility surfaces are similar whether the intrinsic factor contains the 3/2 component or

not. The relative change declines by almost half due to the presence of the 3/2 component in the

intrinsic factor. Besides, the joint effect of the common and intrinsic 3/2 components (b1 and b̃1)

can be obtained by combining those two figures leading to a 15.9% change (from 0.27 to 0.313) in

the presence of relatively small values of b’s.

(a) b̃i=0, b1 between (0, 0.008) (b) b̃i=0.008, b1 between (0, 0.008)

Figure 4.1: Impact of b1 (common factor, 3/2 component) on implied volatility. Scenario A

In scenario B, we observe that the impact of the intrinsic factor on volatility surface is more

significant than that in Scenario A. There is about 31% (from 0.145 to 0.19) increase in implied

volatility with the 3/2 component only in the common factor, while only half of the increase,

13.5% (from 0.245 to 0.278), can be observed in the presence of a 3/2 component in the intrinsic

factor as well. In addition, a volatility "smile" can be seen in Figure 4.2b when the 3/2 component

plays a role in both common factor and intrinsic factor. Similar to what we observe in scenario A,

adding another ingredient into the intrinsic factor surely increases the level of the implied volatility

surface. However, as a consequence of adding a 3/2 component in intrinsic factor, the stabilization

effect in implied volatility is more transparent. This stabilization effect may result from the 3/2

component’s feature of quickly mean-reverting when the process gets large. Moreover, the joint

effect of the common and intrinsic 3/2 components in this case is 91.7% (0.145 to 0.278).
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(a) b̃i=0, b1 between (0, 0.008) (b) b̃i=0.008, b1 between (0, 0.008)

Figure 4.2: Impact of b1 (common factor, 3/2 component) on implied volatility. Scenario B

Combining scenario A and scenario B, on the one hand, the presence of 3/2 component b can

improve the implied volatility level but also stabilize it. On the other hand, comparing these two

scenarios, given different underlying CIR process for common and intrinsic factors, the impact of

the 3/2 component can be crucial.

Next, the impact of the weight a on the common factor is explored for scenarios A and B

respectively. Note that when ai = 0, the correlation between assets is zero. Figure 4.3a and Figure

4.3b display significant increases in implied volatility due to the commonality loading. Specifically,

the change in implied volatility can increase up to 10.7% (from 0.28 to 0.31) in scenario A and up

to 55% (from 0.2 to 0.31) in scenario B. It implies that, if we wrongly allocate the weight on the

common factor or assumes wrong dependence between assets, it could result in huge differences in

the implied volatility.

(a) a1 between (0, 1). Scenario A (b) a1 between (0, 1). Scenario B

Figure 4.3: Impact of commonality (a1) on implied volatility
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4.1.3 Risk Measures

In this section, we look at the impact of b and a on important risk measures, in particular value

at risk (VaR) and expected shortfall (ES). Value at risk is defined as a measure of loss in an

investment. It is an assessment of the amount of capital needed to cover the potential loss. With

respect to a portfolio, value at risk is the maximum loss with a certain confidence level within

a certain time frame. For example, if a bank’s 3-day 99% VaR is $1 million, they have about

1% chance that losses will exceed $1 million in 3 days. Further, ES is known as a conditional or

average VaR, which is an expected return of the portfolio in the worst α% cases. In other words,

VaR answers the question about "what is the value of our portfolio at risk if things go bad", while

ES further gives the estimate of the expected loss if things did go bad. For clarity and the purpose

of our calculations, these measures are defined as follows:

α = P (X(T ) ≤ −V aRα) (4.6)

ES = − 1

α

∫ α

0

V aRγdγ (4.7)

where, for simplicity, X(T ) = ω1(X1(T ) − X1(0)) + ω2(X2(T ) − X2(0)) is the profit and loss

portfolio with equal weights (w1 = w2 = 1/2). The rational is from DeMiguel et al. (2009) that,

the simple and relatively low cost of implementing the 1/N naive-diversification rule can serve as a

natural benchmark to assess the performance of more complex asset-allocation rules. Recall that

the initial value of asset X1 is $18, and the initial value of asset X2 is $100. Hence, the initial

budget for the equal weight portfolio is $59. We will let α varies from 0.001 to 0.2 with a discretize

size of 200.

We first study the impact of b1 and b̃i on VaR and ES for a fixed α = 0.01. For scenario A, Figures

4.4a and 4.4b display a substantial increase in VaR, from $16 (all b set to zero) to $19.5 (all b set

to 0.008), this is a 21% increase (α = 0.01) due to the presence of b. That is, an investor would

have to place 21% more capital aside in the presence of 3/2 components. Similarly ES increases

from -$21 in the presence of 3/2 components to -$18.5 in the absence of it, this is a 13.5% increase

in the average VaR.
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(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.4: Impact of 3/2 components (b) on Risk measures. Scenario A

For scenario B, Figure 4.5a and Figure 4.5b also display a substantial increase in VaR, from $17.5

(all b set to zero) to $22.5 (all b set to 0.008), this is a 28.6% increase (α = 0.01) due to the

presence of b. In other words, 28.6% more capital is required in the presence of 3/2 components.

Similarly ES increases from -$27.5 with the 3/2 components to -$20.5 in the absence of it, this is

a 36.6% increase in the average VaR.

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.5: Impact of 3/2 components (b) on Risk measures. Scenario B

Combining scenario A and scenario B, the presence of a 3/2 component has a considerable impact

on quantifying risk. Missing the 3/2 component or underestimating it would lead to wrongly

calculating the value in the portfolio under risk, hence mistakenly evaluating the potential expected

loss in worst-case scenarios.

A similar analysis is performed with respect to the commonality a, in the presence of stochastic

volatility (in the common factor) versus in the absence of it. In other words, we are assessing the
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impact from a per se and the impact of the stochastic correlation produced by the 4/2 model.

Figure 4.6a demonstrates an increase in VaR, from $16 to $18.5, this is a 15.6% increase (α = 0.01)

due to the stochastic correlation between assets. At the same time, Figure 4.6b indicates a jump

from $17 to $23, which results in a 35.3% increase in the value at risk at α = 0.01. It implies that

ignoring the stochastic correlation between assets can make a huge difference in measuring risk,

and the impact depends on the different underlying processes.

(a) Value at Risk vs. α, various a. Scenario
A

(b) Value at Risk vs. α, various a.
Scenario B

Figure 4.6: Impact of commonality (a) on Value at Risk.

4.1.4 Alternative Market Price of Risk

For a more direct comparison on how much effect the choice of the market price of risk makes on

implied volatility, we investigate the absolute value of relative change (ARC) in implied volatility

due to changes in the mean reverting level of the CIR process θj in the common factor.

Under scenario A, the mean reverting level of common factor volatility v1 is 0.01, the ARC

explored values of ∆θ1 from 0.01 to 0.1 in mean reverting levels; on the other hand, the mean

reverting level of v1 is 0.1633 under scenario B, thus a range of 0.1 to 0.5 for variation ∆θ1 is

considered.

From Figure 4.7, the difference in the absolute relative changes in implied volatility under different

underlying processes is substantial. For example, in scenario A, the change in implied volatility

due to changes in the θ1 is minor (a variation of 1.2% from 0.002 to 0.014), and it increases with

the strike price. In contrast, in scenario B, the absolute relative change in implied volatility due

to different mean reverting level is significant, and it is indifferent with respect to strike prices.

Specifically, changes in θ1 can result in an increase of 19% in the implied volatilities for all types

of moneyness options.
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(a) ARC in mean reverting model.
Scenario A

(b) ARC in mean reverting model.
Scenario B

Figure 4.7: ARC in mean reverting model. Scenario A and B

In terms of risk measures, by comparing the two scenarios in Figure 4.8 and Figure 4.9, it can be

seen that the market price of risk MPR2 always leads to a higher VaR and ES for the portfolio.

In particular, if the driver of risk premium ci or c̃i is relatively high, the change in risk measure is

more significant. To be more precise, when ci = c̃i = 2, and α = 0.01, there is a 15.4% (from $13

to $15) difference in scenario A with respect to VaR compared to ci = c̃i = 0.5, while a 17.6%

(from $17 to $20) difference in scenario B can be observed. At the same time, there is a 9.4%

(from $-16 to $-17.5) difference in scenario A with respect to ES caused by choice of market price

of risk, while a 12.5% (from $-20 to $-22.5) difference in scenario B can be found. This is telling

us that choice of market price of risk can make a significant difference in relevant risk measures,

especially with a higher driver of excess return.

(a) Value at Risk vs. α, various c (b) Expected Shortfall vs. α, various c

Figure 4.8: Impact of c on Risk measures, mean reverting model. Scenario A
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(a) Value at Risk vs. α, various c (b) Expected Shortfall vs. α, various c

Figure 4.9: Impact of c on Risk measures, mean reverting model. Scenario B

Figure 4.10 and Figure 4.11 present the impact of the common factor loading a with different

forms of market price of risk on risk measures. Specifically, for each market price of risk, we

consider no covariance (ai = 0) and stochastic covariance (ai = 0.75) among assets respectively.

When there is no correlation between assets, it always demonstrates lower value at risk and ES

than the stochastic covariance case with both forms of market price of risk. For example, with

MPR1, there is an increase of 7.7% (from $13 to $14) and 28% (from $12.5 to $16) in value at

risk for scenario A and B respectively. Also, an increase of 14.3% (from -$14 to -$16) and 20%

(from -$15 to -$18) in ES can be observed for scenario A and B respectively. On the other hand,

with MPR2, there is an increase of 18.5% (from $13.5 to $16) and 38.5% (from $13 to $18) in

value at risk for scenario A and B. Likewise, there is an increase of 20% (from -$15 to -$18) and

28.6% (from -$17.5 to -$22.5) in ES for scenario A and B respectively. That is, different forms of

market price of risk impact risk measures differently depending on the common factor loading and

covariance between assets. Furthermore, by following market price of risk in the form of MPR2, it

exhibits a larger variation in risk measures if one ignored the stochastic correlation between assets.
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(a) Value at Risk vs. α, various a (b) Expected Shortfall vs. α, various a

Figure 4.10: Impact of a on Risk measures, mean reverting model. Scenario A

(a) Value at Risk vs. α, various a (b) Expected Shortfall vs. α, various a

Figure 4.11: Impact of a on Risk measures, mean reverting model. Scenario B

Figure 4.12 and Figure 4.13 present impact of the 3/2 component b with different forms of market

price of risk in relevant risk measures. When there is no 3/2 component, the risk measures behave

similarly in both scenario A and B since MPR1 and MPR2 are identical. On the other hand,

under the presence of the 3/2 component in both common factor and intrinsic factor, there is a

difference of 15.4% (from $13 to $15) in value at risk and a difference of 12.5% (from -$16 to -$18)

in the expected shortfall in scenario A. Meanwhile, there is a difference of 12.5% (from $16 to

$18) in value at risk and a difference of 18.4% (from -$19 to -$22.5) in the expected shortfall in

scenario B. Thus, it can be evidenced that different forms of market price of risk gauge the risk

differently, in particular, the MPR2 exhibits more sensitive to risk than the other.
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(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.12: Impact of b on Risk measures, mean reverting model. Scenario A

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.13: Impact of b on Risk measures, mean reverting model. Scenario B

In summary, there is a difference arising from the choice of market price of risk in risk measures.

The significance of the difference depends on the driver of risk premium c, the common factor

loading a, and the 3/2 component b. In particular, between the two choices of market price of

risk, the MPR2 constantly shows its higher sensitivity than MPR1 in quantifying risk.
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4.2 Non Mean Reverting

We assume two assets, i.e., X1(t) and X2(t), with one common factor, and one intrinsic factor

each. The asset prices without reverted mean thereby follow the system of SDE for i = 1, 2:

dYi(t) =

(
r + (ci −

1

2
)a2
i (
√
v1(t) +

b1√
v1(t)

)2 + (c̃i −
1

2
)(
√
ṽi(t) +

b̃i√
ṽi(t)

)2

)
dt

+ai

(√
v1(t) +

b1√
v1(t)

)
dW1(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

dv1(t) = α1(θ1 − v1(t))dt+ ξ1

√
v1(t)dB1(t)

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t)

with 〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1; i = 1, 2.

In this section, the baseline parameter set is assumed to be compatible with that of the mean

reverting model. Under this assumption, it should be interpreted as modelling stocks that do not

possess the mean reverting character. Therefore, here we study the impact from common factor

loading a and the 3/2 component b or b̃ for assets with non mean reverting patterns.

4.2.1 Pricing Option

In this section, we price European call options on the asset X1 via Monte Carlo simulations.

We explore the implied volatility surface with strike prices K: 15, 16.4, 17.8, 19.2, 20.6, 22 and

expiry date T=1 year. These strike prices take into account in-the-money, at-the-money, and

also out-of-the-money given the initial asset price is 18. Then, for each strike price and expiry

date, we can get a simulated call option price by equation 2.17. Then, following the procedure of

extracting the implied volatility, we match the Black-Scholes option price formula in equation 2.19

with simulated call prices and solve for the implied volatility in the dynamics of Y (t) such that:

dY1(t) = (r − 1

2
σ2)dt+ σdW ∗(t).

4.2.2 Sensitivity Analysis

In this subsection, the sensitivity analysis on the implied volatility surface in terms of commonality

loading a, and the 3/2 component parameter b or b̃ will be performed.

In order to ensure that the choice of parameters lead to reasonable assets behavior, we report the
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expected return, variance of return for each asset, as well as the correlation between two assets

and the leverage effects in Tables 4.6, Table 4.7 and Table 4.8, Table 4.9 under scenario A and

scenario B respectively.

Here we simulate 500, 000 paths with dt = 0.1 and consider the following scenarios for b: b1 = 0.008,

b̃1=b̃2=0 ; b1 = 0, b̃1=b̃2 = 0.008; b1 = b̃1 = b̃2 = 0 and b1 = b̃1=b̃2 = 0.008. Whenever b or b̃i is set

to zero, its associated volatility factor would not have the 3/2 component and depend only on the

squared CIR underlying process.

Table 4.6: First four moments for scenarios on 3/2 component (b). Scenario A

b1 =0.008, b̃i=0 b1 = 0, b̃i=0.008 b1=b̃i=0 b1 = b̃i=0.008

E[X1(T )−X1(0)
X1(0)

] 0.0608 0.0617 0.0618 0.0615
E[X2(T )−X2(0)

X2(0)
] 0.0613 0.0625 0.0619 0.0620

V[X1(T )−X1(0)
X1(0)

] 0.0870 0.0886 0.0783 0.0977
V[X2(T )−X2(0)

X2(0)
] 0.0500 0.0528 0.0415 0.0643

Corr(dlnX1(T ) , dlnX2(T )) 0.3593 0.0952 0.1134 0.5102
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4506 -0.4830 -0.4754 -0.3960
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4357 -0.4813 -0.4786 -0.3561

Table 4.7: First four moments for scenarios on 3/2 component (b). Scenario B

b1 =0.008, b̃i=0 b1 = 0, b̃i=0.008 b1=b̃i=0 b1 = b̃i=0.008

E[X1(T )−X1(0)
X1(0)

] 0.0613 0.0616 0.0620 0.0616
E[X2(T )−X2(0)

X2(0)
] 0.0614 0.0625 0.0620 0.0621

V[X1(T )−X1(0)
X1(0)

] 0.0455 0.0882 0.0301 0.1607
V[X2(T )−X2(0)

X2(0)
] 0.0456 0.1045 0.0302 0.1163

Corr(dlnX1(T ) , dlnX2(T )) 0.7641 0.0089 0.4686 0.0164
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.5947 -0.2908 -0.7882 -0.0442
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.5955 -0.0585 -0.7892 -0.3457

Similarly we will consider the following scenarios for a: a1 = a2 = 0; a1 = 0.75, a2 = 0; a1 = 0,

a2 = 0.75 and a1 = a2 = 0.75. Table 4.8 and Table 4.9 present the key statistics for asset returns.

Notice that when ai is set to zero, it means that the ith asset ignores the stochastic common

factor and the stochastic covariance among assets.
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Table 4.8: First four moments for scenarios on commonalities (a). Scenario A

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T )−X1(0)
X1(0)

] 0.0618 0.0619 0.0615 0.0622
E[X2(T )−X2(0)

X2(0)
] 0.0621 0.0624 0.0619 0.0615

V[X1(T )−X1(0)
X1(0)

] 0.0855 0.0986 0.0856 0.0976
V[X2(T )−X2(0)

X2(0)
] 0.0496 0.0495 0.0648 0.0641

Corr(dlnX1(T ) , dlnX2(T )) 0.0009 -0.0000 -0.0008 0.3317
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4826 -0.2735 -0.4818 -0.4536
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4834 -0.4835 -0.3921 -0.4319

Table 4.9: First four moments for scenarios on commonalities (a). Scenario B

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T )−X1(0)
X1(0)

] 0.0617 0.0613 0.0615 0.0618
E[X2(T )−X2(0)

X2(0)
] 0.0617 0.0620 0.0619 0.0615

V[X1(T )−X1(0)
X1(0)

] 0.0559 0.0993 0.0558 0.1165
V[X2(T )−X2(0)

X2(0)
] 0.0694 0.0759 0.1027 0.0965

Corr(dlnX1(T ) , dlnX2(T )) 0.0003 -0.0001 -0.0005 0.0041
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.1147 -0.0044 -0.3400 -0.2688
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.1834 -0.2696 -0.0166 -0.0128

In order to study the 3/2 component b on the common factor, the implied volatility surfaces are

shown in terms of b1 changing in the interval (0, 0.008) while b̃i either equals to zero or 0.008 in

Figure 4.14 for scenario A and Figure 4.15 for scenario B.

In scenario A, Figure 4.14 shows that when the common factor 3/2 component b1 varies from 0 to

0.008, there is a 5.8% difference in implied volatility (from 0.258 to 0.273) in the absence of 3/2

component in intrinsic factor, while a 5.47% difference in implied volatility in the presence of b̃i

(from 0.274 to 0.289). The joint effect of the 3/2 component from common factor and intrinsic

factor is 12% (from 0.258 to 0.289).
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(a) b̃i=0, b1 between (0, 0.008) (b) b̃i=0.008, b1 between (0, 0.008)

Figure 4.14: Impact of b1 (common factor, 3/2 component) on implied volatility. Scenario A

In scenario B, similar to what we find in the mean reverting model, it can be observed that the

impact of intrinsic factor’s 3/2 component on implied volatility surface is more significant than

that of Scenario A (Figure 4.15 versus 4.14). Further, when there is no 3/2 component in the

intrinsic factor, a 27.6% (from 0.145 to 0.185) increase in implied volatility can be seen. When

there is a 3/2 component in the intrinsic factor, only an increase of 12.9% (from 0.239 to 0.27)

is observed, nevertheless the presence of b̃i substantially shifts the implied volatility surface to a

higher level (comparing Figure 4.15a to 4.15b). It is worth mentioning that the joint effect of the

3/2 component from the common factor and the intrinsic factor can be as large as 86.2% (from

0.145 to 0.27).

Moreover, by observing the impact of the 3/2 component under a non mean reverting model to a

mean reverting model, the shape and the relative change on the implied volatility surfaces can be

compared. In general, the mean reverting model leads to higher surfaces in all scenarios. That is,

if one ever ignored the mean reverting property in modelling assets, it may lead to underestimating

the associated implied volatility.
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(a) b̃i=0, b1 between (0, 0.008) (b) b̃i=0.008, b1 between (0, 0.008)

Figure 4.15: Impact of b1 (common factor, 3/2 component) on implied volatility. Scenario B

The study of the weight on the common factor a under a non mean reverting model is present in

Figure 4.16a and Figure 4.16b. Specifically, the change in implied volatility can increase up to

11% (from 0.27 to 0.3) in scenario A and up to 50% (from 0.2 to 0.3) in scenario B. Hence, the

common factor loading a per se and the stochastic covariation among assets have a vital influence

on implied volatility.

(a) a1 between (0, 1). Scenario A (b) a1 between (0, 1). Scenario B

Figure 4.16: Impact of commonality (a1) on implied volatility

In short, there are similarities in the sensitivity analysis for the mean reverting and non mean

reverting model: firstly, the joint impacts from the 3/2 component b, b̃ and commonality loading

a are non-negligible and substantial; secondly, these two types of the model indicate that a large

impact comes from variation in the parameters in the underlying CIR process. Further, if we

wrongly model mean-reverting assets as non mean reverting, there would be a large difference in

implied volatility. More importantly, there is a profound difference in the interpretation between
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the mean reverting model and the non mean reverting model. Thus, it is critical to choose or

develop a model that captured the stylized facts of a certain asset class.

4.2.3 Risk Measures

This section investigates the impact of b and a on risk measures of value at risk (VaR) and expected

shortfall (ES) for the non mean reverting model. As per the mean reverting setting before, the

risk measures are performed on the profit or loss of the portfolio with equal weights, such that

X(T ) = ω1(X1(T )−X1(0)) +ω2(X2(T )−X2(0)) where X1(0) = $18, X2(0) = $100 and the initial

budget is $59. In addition, the risk measures are produced by letting α vary from 0.001 to 0.2

with a discretization size of 200.

Firstly, we study the impact of b1 and b̃i on VaR and ES for a fixed α = 0.01. For scenario A,

Figures 4.17a and 4.17b display a notable increase in VaR, from $18 (all b set to zero) to $22.5

(all b set to 0.008), this is a 25% increase (α = 0.01) due to the presence of b. That is, an investor

would have to place 25% more capital aside in the presence of 3/2 components. Similarly ES

increases from -$24 in the presence of 3/2 components to -$21 in the absence of it, this is a 14.3%

increase in the average/conditional VaR.

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.17: Impact of 3/2 components (b) on Risk measures. Scenario A

For scenario B, Figure 4.18a and Figure 4.18b demonstrate an increase in VaR, from $17.5 (all b

set to zero) to $23 (all b set to 0.008), this is a 31.4% increase (α = 0.01) due to the presence of

b. Equivalently, 31.4% more capital is required in the presence of 3/2 components. Similarly ES

increases from -$30 with the 3/2 components to -$22.5 in the absence of it, this is a 33% increase

in the average VaR.

Combining these two scenarios, the 3/2 component b exhibits a greater impact in scenario B

48



4 ONE COMMON FACTOR MODEL 4.2 Non Mean Reverting

than in scenario A. That is, similar to mean reverting model, with different underlying processes

for common and intrinsic factors, the influence from the 3/2 component b can be different and

significant.

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.18: Impact of 3/2 components (b) on Risk measures. Scenario B

A similar analysis is performed with respect to the commonality loading a, which evaluates the

impact of stochastic correlation among assets. Figure 4.19a demonstrates an increase in VaR, from

16 to 18, this is a 12.5% increase (α = 0.01) due to elaborate the stochastic correlation (when

ai 6= 0). At the same time, 4.19b indicates a jump from 17 to 22.5, which results in a 32.3%

increase in the value at risk at a confidence level of 99%. Thus, ignoring the stochastic correlation

between assets can make a big difference in estimating risk under both the non mean reverting

and the mean reverting model. Also, the significance of the impact depends on the underlying

CIR process.

(a) Value at Risk vs. α, various a. Scenario
A

(b) Value at Risk vs. α, various a.
Scenario B

Figure 4.19: Impact of commonality (a) on Value at Risk.
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4.2.4 Alternative Market Price of Risk

Here we study the impact of different forms of market price of risk on implied volatility. We use

the absolute value of relative changes (ARC) in implied volatility associated with the variation in

the underlying process’s parameters to measure such impact.

Under scenario A, the mean reverting level of volatility v1 is 0.01, thus, the ARC in 4.20 explores

values of ∆θ1 from 0.01 to 0.1; similarly, the mean reverting level of v1 is 0.1633 under scenario

B, thus a range of 0.1 to 0.5 for the variation in the underlying process’s mean reverting level is

considered in Figure 4.20b.

(a) ARC in non mean reverting model.
Scenario A

(b) ARC in non mean reverting model.
Scenario B

Figure 4.20: ARC in non mean reverting model. Scenario A and B

It can be seen from Figure 4.20 that the absolute relative changes in implied volatility exhibit very

diverse shapes for different market prices of risk. For scenario A, the change in implied volatility

due to the variation in θ1 is as small as 1%, and it increases with the strike price as well. On the

contrary, for scenario B, the absolute relative change in implied volatility due to θ1 is substantial,

up to 16%. However, it does not vary with the strike price.

50



4 ONE COMMON FACTOR MODEL 4.2 Non Mean Reverting

(a) Value at Risk vs. α, various c (b) Expected Shortfall vs. α, various c

Figure 4.21: Impact of risk premium on Risk measures, non mean reverting model. Scenario A

(a) Value at Risk vs. α, various c (b) Expected Shortfall vs. α, various c

Figure 4.22: Impact of risk premium on Risk measures, non mean reverting model. Scenario B

In terms of risk measures, by looking at the two scenarios in Figure 4.21 and Figure 4.22, it is easy

to find that the market price of risk MPR2 always leads to larger VaR and ES for the portfolio.

In particular, the higher the driver of risk premium ci or c̃i, the larger the difference between

these two forms of market price of risk. For instance, when ci = c̃i = 2, and α = 0.01, there is

a 12.5% (from $16 to $18) difference in scenario A with respect to VaR caused by the choice of

market price of risk, while a 18.4% (from $19 to $22.5) difference in scenario B can be observed.

At the same time, there is a 10.5% (from $-19 to $-21) difference in scenario A with respect to

ES caused by choice of market price of risk, while there is a 13.6% (from $-22 to $-25) difference

in scenario B. Hence, the choice of market price of risk can make a difference in relevant risk

measures, especially as the driver of risk premium is large.
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(a) Value at Risk vs. α, various a (b) Expected Shortfall vs. α, various a

Figure 4.23: Impact of a on Risk measures, non mean reverting model. Scenario A

(a) Value at Risk vs. α, various a (b) Expected Shortfall vs. α, various a

Figure 4.24: Impact of a on Risk measures, non mean reverting model. Scenario B

Figure 4.23 and Figure 4.24 present impact of the common factor loading a with different forms of

market price of risk on risk measures. When there is no correlation between assets (ai = 0), it

reveals smaller VaR and ES than stochastic covariance case, i.e., ai = 0.75, with both forms of

market price of risk. For example, with MPR1, there is an increase of 21.4% (from $14 to $17)

and 26.7% (from $15 to $19) in value at risk for scenario A and B by taking stochastic covariance

into account. Also, an increase of 15.6% (from -$16 to -$18.5) and 25.7% (from -$17.5 to -$22) in

ES can be seen for scenario A and B respectively. On the other hand, with MPR2, there is an

increase of 20% (from $15 to $18) and 31.3% (from $16 to $21) in value at risk for scenario A

and B after consideration of stochastic covariance. Likewise, there is an increase of 16.7% (from

-$18 to -$21) and 23.8% (from -$21 to -$26) in ES for scenario A and B respectively. That is,

MPR2 shows higher impact on risk compared to MPR1. In addition, both forms of market price

of risk demonstrate that ignoring the stochastic covariance among assets will result in mistakenly
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underestimating the value at risk and the expected loss.

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.25: Impact of b on Risk measures, non mean reverting model. Scenario A

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4.26: Impact of b on Risk measures, non mean reverting model. Scenario B

Figure 4.25 and Figure 4.26 present the impact of the 3/2 component b with different forms of

market price of risk in VaR and ES. It is easy to see that when there is no 3/2 component, the

risk measures behave similarly under different forms of market price of risk in scenario A and B.

However, under the presence of the 3/2 component in risk factors, there is a difference of 8.6%

(from $17.5 to $19) in value at risk and a difference of 15.8% (from -$19 to -$22) in the expected

shortfall in scenario A. Meanwhile, there is a difference of 22.2% (from $18 to $22) in value at risk

and a difference of 16% (from -$22.5 to -$26) in the expected shortfall in scenario B. Thus, it can

be concluded that different forms of market price of risk combined with the 3/2 component cause

larger variations in risk measures. Also, the MPR2 exhibits more sensitive to risk than the other

in the presence of the 3/2 component b.
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5 Two Common Factors Model

From last chapter, we assume one common factor with loading a to be 0.75, which means 75%

systematic variance can be captured by the single common factor. Equivalently, there still a 25%

systematic variance cannot be interpreted by that common factor. It is intuitive and reasonable

as the systematic variance in the financial market is almost impossible to be captured by only

one variance factor. Also, according to Heston et al. (2009), a stochastic volatility model with

two factors is likely to capture most variation in data and it is a better representation of the data

than a single factor model. Therefore, it motivates us to consider a two common factor model

in this chapter. Assume two assets are considered, i.e. X1(t) and X2(t), for i = 1, 2. We further

denote Y1(t) = lnX1(t), and Y2(t) = lnX2(t). Assume there are two common variance drivers, i.e.,

v1(t) and v2(t) for j = 1, 2, and one intrinsic variance driver for each asset, i.e., ṽ1(t) and ṽ2(t).

Further, in this chapter, the model is generalized in incorporating the spillover effect. Specifically,

we investigate the 4/2 generalized model with two common factors under a mean reverting model

and a non mean reverting model respectively. For each model, we examine the impact of spillover

effects and the dependency between common factors/assets in the presence and absence of the 3/2

component b with respect to implied volatility surface and important risk measures respectively.

Note that we compare results within section, but not among sections.

Our model follows

dY1(t) =


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with two common factor drivers v1, v2, and one intrinsic factor driver ṽ1, ṽ2 for each asset, that

evolve according to:

dv1(t) = α1(θ1 − v1(t))dt+ ξ1

√
v1(t)dB1(t), dv2(t) = α2(θ2 − v2(t))dt+ ξ2

√
v2(t)dB2(t);

dṽ1(t) = α̃1(θ̃1 − ṽ1(t))dt+ ξ̃1

√
ṽ1(t)dB̃1(t), dṽ2(t) = α̃2(θ̃2 − ṽ2(t))dt+ ξ̃2

√
ṽ2(t)dB̃2(t);

〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt, for j = 1, 2; i = 1, 2.

For the purpose of demonstrating a few theoretical features of covariance of asset returns, we

denote Vj =
(√

vj +
bj√
vj

)2

for j = 1, 2 and Ṽi =
(√

ṽi + b̃i√
ṽi

)2

for i = 1, 2. Then, for asset Xp

and Xq, the instantaneous quadratic variation between assets is given by

Σpqdt =

〈
dXp

Xp

,
dXq

Xq

〉
= (ap1aq1V1(t) + ap2aq2V2(t)) dt (5.1)

The instantaneous quadratic variation of asset Xi is given by

Σppdt =

〈
dXp

Xp

,
dXp

Xp

〉
=
(
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dt (5.2)

Applying Ito’s lemma, we have
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(5.3)

Therefore, the correlation process between the assets X1 and X2 then follows

ρ =
Σ12√

Σ11Σ22

=
a11a21V1(t) + a12a22V2(t)√(

a2
11V1(t) + a2

12V2(t) + Ṽ1(t)
)(

a2
21V1(t) + a2

22V2(t) + Ṽ2(t)
) (5.4)
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Further, the leverage effect is defined as
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(5.5)

To be in line with this stylized fact, in our model, the correlations ρ and ρ̃ should ensure negative

correlations between asset return and its variance. In other words, if the asset is more risky (more

volatile), then the price of that asset would be lower.

Moreover, in a factor decomposition perspective, the commonality loading matrix A is a 2 × 2

orthogonal matrix in this two common factor setting. We further assume the parametrization of

A in the form of

A =

cos(Θ) −sin(Θ)

sin(Θ) cos(Θ)

 , (5.6)

where Θ is the driver of correlation among assets, and it captures exactly the loadings.

Table 5.1 presents the baseline parameters employed in the following subsections. The parameter

set is inspired by Graselli’s numerical example (Grasselli, 2017). Then, by Euler approximation

method, we can get a plot of the two assets X1 and X2 in Figure 5.1.

Table 5.1: Baseline Parameter Set for Two Common Factor Model

i j L c c̃i Θ A
2 2 [0.02 0.02] [0 0] [0 0] π

5 [0.8 -0.6;0.6 0.8]

b β Y v(0) ṽ(0) b̃ ρ
[0.008 0.005] [0.12 -0.06; -0.1 0.06] [log(100) log(100)] [0.04 0.04] [0.04 0.04] [0.008 0.005] [-0.7 -0.7]

α θ ξ α̃ θ̃ ξ̃ ρ̃
[1.8 1.8] [0.04 0.04] [0.2 0.2] [5 4] [0.06 0.09] [0.4 0.3] [-0.7 -0.7]

T n dt
1 50,000 0.01
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Figure 5.1: One Path of Asset Price under Two Common Factor Model

5.1 Pricing Options

In this section, we price a European call option based on our two common factors and one intrinsic

factor 4/2 structured generalized factor model. Assume we take asset X1 from our two-dimension

example as the underlying asset of the European call option with risk-free interest rate 2%. Further,

by letting β12 6= 0, we price a European call option of asset X1 by considering the impact of asset

X2 on X1’s long-term average return. In addition, we explore the implied volatility by plotting

implied volatility surface, which is a three-dimensional plot with strike prices as X-axis, time to

maturity as Y-axis, and corresponding implied volatility as Z-axis.

We assume the value of parameters follow the baseline parameter table 5.1, and the strike prices K

are 90, 94, 98, 102, 106, 110 and expiry dates T are 0.2, 0.36, 0.52, 0.68, 0.84, 1.0 year. By choosing

these strike prices, we take into account in-the-money, at-the-money, and also out-of-the-money

given the initial asset price is 100. Then, for each strike price and each expiry date, we can get a

simulated call price by Monte Carlo simulation as we described before.

5.2 Implied Volatility

Now, we can extract the implied volatility following the procedure of matching Black-Scholes

option price formula with simulated call prices and then solving for the corresponding volatility,

which is assumed to be constant. In the two common factor model, the method basically converts

the three source of randomness explaining variance into a constant, denoted σ with a BM W ∗(t).

To be more specific, we need to find σ such that we can match call prices on the model for X1
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with call prices for the model of Y presented next:

C(X1(0), K) = e−rT

[
X1(0)φT exp

{
θ(σ)

β11

(1− φT ) +
1

2
a2
T

}
N(d+ aT )−KN(d)

]
, (5.7)

where,

φT = e−β11T , θ(σ) = L1 −
1

2
σ2, aT =

σ√
2β11

(1− φ2
T )

1
2 ,

d =
1

aT
(φT ln(X1(0))− ln(K) +

θ(σ)

β11

(1− φT ))

Next, we explore whether the presence of b makes a difference by looking at the implied volatility

surface for a mean reverting and a non mean reverting model respectively. Note that, except

for the targeted parameter, the rest of the parameters follow the baseline setting. In addition,

the expected return, the variance of return, as well as the correlation between two assets and

the leverage effects are given in the table followed by each figure. There is no doubt that more

reasonable key statistics can help us get a more reliable conclusion on the effects of the examined

variable.

5.3 Mean Reverting

In this section, we investigate the presence and absence of the 3/2 component b on implied

volatilities. For each case, the impacts of correlation Θ (thus matrix A), the spillover effect βij,

and the 3/2 component b itself are explored.

5.3.1 Absence of b

In this subsection, we assume the structure of risk factors does not have the 3/2 component and

follow a Heston-liked volatility process. Equivalently, when there is no presence of 3/2 parameter b
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in a mean reverting model, the dynamics of our underlying asset Xi(t) under measure Q becomes

d(lnX1(t)) = dY1(t) =

[
L1 −

1

2

(
a2

11v1(t) + a2
12v2(t) + ṽ1(t)

)
− β11Y1(t)− β12Y2(t)

]
dt

+ a11

√
v1(t)dW1(t) + a12

√
v2(t)dW2(t) +

√
ṽ1(t)dW̃1(t)

d(lnX2(t)) = dY2(t) =

[
L2 −

1

2

(
a2

21v1(t) + a2
22v2(t) + ṽ2(t)

)
− β21Y1(t)− β22Y2(t)

]
dt

+ a21

√
v1(t)dW1(t) + a22

√
v2(t)dW2(t) +

√
ṽ2(t)dW̃2(t)

dvj(t) = αj(θj − vj(t))dt+ ξj

√
vj(t)dBj(t), j = 1, 2

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t), i = 1, 2

where 〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1, 2; i = 1, 2.

Figure 5.2 displays the implied volatility surfaces with various β, and Figure 5.3 shows the implied

volatility surface with various Θ’s. The corresponding statistics of expected return, variance of

return, the correlation between two assets, as well as the leverage effects are provided in the Table

5.2 and Table 5.3 respectively.

Figure 5.2: Two Common Factor Model, mean reverting, change β
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Table 5.2: Statistics for Two Common Factor Model, mean reverting, change β

β [0.12 -0.06;-0.1 0.06] [0.12 0.06;0.1 0.06] [0.1 0;0 0.1] [0.1 0.1;0.1 0.1]

E[X1(T )−X1(0)
X1(0)

] 0.0579 0.0574 0.0581 0.0596
E[X2(T )−X2(0)

X2(0)
] 0.1615 0.1642 0.1563 0.1583

V[X1(T )−X1(0)
X1(0)

] 0.1356 0.1349 0.1353 0.1397
V[X2(T )−X2(0)

X2(0)
] 0.4767 0.4868 0.4576 0.4673

Corr(dlnX1(T ) , dlnX2(T )) 0.0718 -0.0645 -0.0008 0.0944
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.6300 -0.6221 -0.6209 -0.6169
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.6151 -0.6161 -0.6138 -0.6136

In order to study the spillover effect βij, we consider the same mean reverting speed in cases 1

and 2 with negative and positive spillover effects respectively. In addition, we explore whether the

existence of spillover effect has an impact on implied volatilities in cases 3 and 4 with the same

mean reverting speed. In Figure 5.2, it can be seen that the spillover effect from the other asset

displays a significant impact on the shape and the level of implied volatility surface. On the one

hand, by comparing case 3 and case 4, the implied volatility surface changes from a decreasing

shape (no spillover effect) into an increasing pattern by considering a positive spillover effect of

asset X2 on the current underlying asset X1 of the option. However, with a spillover effect, the

deviation in implied volatilities increased distinctly. To be more precise, the implied volatilities

changes from 0.2 to 0.19 at maturity T = 1 without spillover effect, whereas it changes from 0.1 to

0.17 with spillover effect. On the other hand, by looking at case 1 and case 2, a negative influence

from the other asset leads to downward implied volatilities while a positive influence from the

other asset leads to increasing implied volatilities. However, negative spillover effects shows much

higher implied volatilities (from 0.32 to 0.42 at maturity T = 1) than positive spillover effect (from

0.12 to 0.15 at maturity T = 1). Thereby, the impact of the spillover effect on implied volatilities

is prominent and may depend on the positiveness of the spillover from the other asset.
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Figure 5.3: Two Common Factor Model, mean reverting, change Θ

Table 5.3: Statistics for Two Common Factor Model, mean reverting, change Θ

Θ -π/2 0 π/4 π

E[X1(T )−X1(0)
X1(0)

] 0.0902 0.0928 0.0561 0.0911
E[X2(T )−X2(0)

X2(0)
] 0.1212 0.1231 0.1645 0.1209

V[X1(T )−X1(0)
X1(0)

] 0.2268 0.2349 0.1312 0.2305
V[X2(T )−X2(0)

X2(0)
] 0.3252 0.3344 0.4897 0.3296

Corr(dlnX1(T ) , dlnX2(T )) 0.0741 0.0762 0.0811 0.0664
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4044 -0.6644 -0.5994 -0.1641
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4591 -0.6643 -0.5771 -0.2026

The impact from correlation Θ is explored for the cases −π
2
, 0, π

4
, and π respectively. From

Figure 5.3, by varying the driver of correlation between assets, the level of the surface only slightly

changes. In other words, the shape of the implied volatility surfaces does not change much in

the correlation between assets but it changes the magnitudes of implied volatilities. Besides, as

changes in Θ also variate the common factors’ loading, as expected, the expected return and the

variance of return can be different. Nevertheless, it can be noticed from Θ = 0 and Θ = π that

returns and variance of returns are very similar, the leverage effects change from -0.1641 to -0.6644

for asset X1 and from -0.2026 to -0.6643 for asset X2. Thus, the variation in the correlation

between assets has a significant impact on the leverage effect.
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5.3.2 Presence of b

In this subsection, the 3/2 component is considered on both common and intrinsic factors. That

is, we allow all the explained factors to add a 3/2 component and thereby follow a 4/2 structured

stochastic volatility process. Sensitivity analysis with regards to the 3/2 component b itself, the

spillover effect βij, as well as the correlation between assets are implemented.

Figure 5.4, Figure 5.5, and Figure 5.6 display the implied volatility surface with changes in b, β,

and Θ respectively. Moreover, Table 5.4, 5.5, and 5.6 report the associated statistics in expected

return, variance of return, correlation, and leverage effect.

Figure 5.4: Two Common Factor Model, mean reverting, change b

Table 5.4: Statistics for Two Common Factor Model, mean reverting, change b

b1 = b̃1 = 0.008 bi = 0.01 bi = 0 bi = 0

b2 = b̃2 = 0.005 b̃i = 0 b̃i = 0.01 b̃i = 0

E[X1(T )−X1(0)
X1(0)

] 0.0740 0.0568 0.0791 0.0582
E[X2(T )−X2(0)

X2(0)
] 0.2057 0.2143 0.1877 0.1589

V[X1(T )−X1(0)
X1(0)

] 0.1789 0.1319 0.1951 0.1364
V[X2(T )−X2(0)

X2(0)
] 0.6646 0.7044 0.5870 0.4649

Corr(dlnX1(T ) , dlnX2(T )) 0.0821 0.0814 0.0745 0.0788
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.6356 -0.6354 -0.6202 -0.6313
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.6069 -0.5839 -0.6273 -0.6156

In studying the impact from the 3/2 component b, we consider 4 cases: case 1 assumes both the
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common factor and the intrinsic factor follow 4/2 structure, case 2 assumes only common factors

follow 4/2 structure, case 3 assumes only intrinsic factors follow 4/2 structure, and case 4 assumes

all the factors to be Heston-like. Figure 5.4 reveals that the 3/2 component does not make an

evident difference in shaping the implied volatility surfaces by comparing cases 1, 2, 3 to case

4. Nevertheless, by adding a 3/2 component into factor structure, both expected return and the

variance from asset return can be influenced even with a very small b. For example, while b̃1

changes from 0 to 0.01, the expected return of X1 jumps up by 35.91% and its variance has an

increase of 18.12%. In addition, by observing case 2 and case 3, the impact of adding the 3/2

component in the intrinsic factor is greater than adding it in common factors.

Figure 5.5: Two Common Factor Model, mean reverting with b, change β

Table 5.5: Statistics for Two Common Factor Model, mean reverting, with b, change β

β [0.12 -0.06;-0.1 0.06] [0.12 0.06;0.1 0.06] [0.1 0;0 0.1] [0.1 0.1;0.1 0.1]

E[X1(T )−X1(0)
X1(0)

] 0.0740 0.0746 0.0766 0.0781
E[X2(T )−X2(0)

X2(0)
] 0.2057 0.2049 0.1977 0.1932

V[X1(T )−X1(0)
X1(0)

] 0.1789 0.1804 0.1881 0.1909
V[X2(T )−X2(0)

X2(0)
] 0.6646 0.6606 0.6314 0.6062

Corr(dlnX1(T ) , dlnX2(T )) 0.0821 -0.0671 0.0039 -0.0959
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.6356 -0.6173 -0.6296 -0.6186
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.6069 -0.6004 -0.6029 -0.6000

The variation in β shown in Figure 5.5 has a similar impact on implied volatility surface as that of
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Figure 5.2 where there is no presence of 3/2 component b. That is, the positiveness of the spillover

effect among assets has an impact on the trend of the implied volatility surfaces. Moreover, in case

3, when there is no spillover effect and all the other parameters stay the same, the 3/2 component

brings an increase of 31.8% and 26.5% (from 0.0581 to 0.0766 for asset X1 and from 0.1563 to

0.1977 for X2) in the expected return of asset X1 and X2; while an 39% (from 0.1353 to 0.1881 for

X1) and 38% (from 0.4576 to 0.6314 for X2) increase in the variance of assets’ return respectively.

Also, the 3/2 component b enlarges implied volatilities but a stabilization effect can be observed.

For instance, when there is no spillover effect (case 3), a 11% (from 0.18 to 0.2) variation of

implied volatility surface in the absence of b while a 3.9% (from 0.23 to 0.239) deviation of implied

volatility surface with the 3/2 component b. When there is spillover effect (case 2), a 100% (from

0.01 to 0.14) variation of implied volatility surface without b while a 50% (from 0.12 to 0.18)

deviation of implied volatility surface with b. That is, the 3/2 component b shows its capability in

stabilizing the implied volatility surface.

Figure 5.6: Two Common Factor Model, mean reverting with b, change Θ
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Table 5.6: Statistics for Two Common Factor Model, mean reverting, with b, change Θ

Θ -π/2 0 π/4 π

E[X1(T )−X1(0)
X1(0)

] 0.1161 0.1268 0.0704 0.1247
E[X2(T )−X2(0)

X2(0)
] 0.1502 0.1448 0.2085 0.1429

V[X1(T )−X1(0)
X1(0)

] 0.3093 0.3436 0.1682 0.3358
V[X2(T )−X2(0)

X2(0)
] 0.4270 0.4102 0.6798 0.4070

Corr(dlnX1(T ) , dlnX2(T )) 0.0713 0.0758 0.0762 0.0653
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.2664 -0.6225 -0.4740 -0.0799
Corr(lndX2(T ) , < dlnX2(T ) >) -0.3677 -0.6421 -0.5643 -0.0505

Figure 5.6 illustrates that the change in the correlation of assets does not have a strong effect in the

overall shape of implied volatility surfaces. This observation is similar to what we obtained from

Figure 5.3. Similarly, adding the 3/2 component, creates little variation in the implied volatility

surface, although the expected return and the variance of asset return are clearly increased.

Moreover, it is easy to notice that Θ can impact the leverage effects from -0.0505 (X2 from case 4)

to -0.6421 (X2 from case 2) while not causing much change in the expected return or variance of

asset’s return.

In summary, the spillover effect impacts the shape of the implied volatility and it can revert the

trend of the surface. The 3/2 parameter b has a great impact on the implied volatility surface as a

stabilizer. Further, the driver of correlation between assets Θ does not show much influence on

the implied volatility surface, but it has a strong effect on leverage effects.

5.3.3 Risk Measures

This section investigates how parameter β, Θ and 3/2 component b make a difference on important

risk measures, i.e., the value at risk (VaR) and the expected shortfall (ES). The mathematically

definition of VaR and ES are given in equation 4.6 and equation 4.7. Similarly, the risk measures

are evaluated over the profit or loss of an equal weights portfolio X(T ) = ω1(X1(T )−X1(0)) +

ω2(X2(T )−X2(0)), where X1(0) = X2(0) = $100, and the initial budget of this portfolio is $100.

Besides, the risk measures are examined under the probability of gain/loss, i.e., α, varying from

0.001 to 0.2.

We firstly look at the influence from β on risk measures in Figure 5.7a and Figure 5.7b. As we

know from implied volatility surfaces, β’s variation can bring a remarkable change in the shape

of it, this great influence can also be noticed in VaR and ES. Specifically, the existence of the

spillover effect has a distinct reflection on risk measures. For example, when α = 0.01 and the

mean reverting speed is 0.1, there is a 16.9% (from $65 to $76) increase in VaR by having a positive
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effect from the other asset on the drift of current asset. That is, 16.9% more capital is required for

potential losses. Also, if the undesirable scenario happens, there is a 14.7% more loss in the capital

on average. Furthermore, keeping the mean reverting speed the same, a positive impact from the

other asset may incur in larger VaR than that in the case of negative spillover. For instance, an

increase of 50% (From $50 to $75) in VaR from negative spillover effect (β12 = −0.06) to positive

spillover (β12 = 0.06), and a 36.3% (from -$55 to -$75) increase in ES can be witnessed.

(a) Value at Risk vs. α, mean reverting,
various β

(b) Expected Shortfall vs. α, mean
reverting, various β

Figure 5.7: Impact of β on Risk measures

Secondly, the impact from the driver of assets’ correlation Θ on risk measures are shown in Figure

5.8a and Figure 5.8b. For instance, the case of Θ = π/4 results in larger VaR and ES compare to

other cases. In other words, ignoring correlations among common factors or wrongly assigning it

will possibly underestimate the risk exposures and mistakenly assess the expected losses.

(a) Value at Risk vs. α, mean reverting,
various Θ

(b) Expected Shortfall vs. α, with b,
various Θ

Figure 5.8: Impact of the Θ on Risk measures
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Next, a similar analysis is performed with respect to the 3/2 component b in Figure 5.9a and

Figure 5.9b. It is clear to realize that in the presence of the 3/2 component b, VaR and ES indicate

higher risk compared to no b component. Specifically, Figure 5.9a demonstrates an 13% increase in

VaR (from $46 to $52) at α = 0.01 and Figure 5.9b indicates a 7.8% (from -$51 to -$55) increase

in the ES. Therefore, the presence of the 3/2 component b has a certain impact in measuring risk.

(a) Value at Risk vs. α, mean reverting,
various b

(b) Expected shortfall vs. α, mean
reverting, various b

Figure 5.9: Impact of 3/2 component b on Risk measures

5.4 Non Mean Reverting

In this section, a non mean reverting model with two common factors and one intrinsic factor for

each asset is studied. Specifically, the impacts from the presence of 3/2 component b, and the

driver of correlation Θ among assets have been considered respectively. In addition, inspired by

the one common factor example that different underlying processes (i.e., scenario A and scenario

B) can exhibit different effects on implied volatility, a sensitivity analysis on parameters from

underlying CIR process is included.
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5.4.1 Absence of b

When we are under a non mean reverting model without presence of the 3/2 component b, the

dynamic of underlying asset Xi(t) under measure Q becomes

d(lnXi(t)) = dYi(t) =

[
r − 1

2

(
a2
i1v1(t) + a2

i2v2(t) + ṽi(t)
) ]
dt

+ ai1
√
v1(t)dW1(t) + ai2

√
v2(t)dW2(t) +

√
ṽi(t)dW̃i(t)

dvj(t) = αj(θj − vj(t))dt+ ξj

√
vj(t)dBj(t), j = 1, 2

dṽi(t) = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t), i = 1, 2

where 〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1, 2; i = 1, 2.

The analysis of implied volatility surfaces with respect to changes in α, θ, ξ subject to different

correlation Θ is presented in Figure 5.10 and Figure 5.11. In addition, Figure 5.12 shows how Θ

has an impact on the implied volatility surface. Similarly, the corresponding statistics for each

figure are provided.

Figure 5.10: Two Common Factor Model Case, non mean reverting, Θ = π/5, change α, θ, ξ
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Table 5.7: Statistics for Two Common Factor Model, non mean reverting, change α, θ, ξ

α = [1.8, 1.8] α = [5, 4] θ = [0.01, 0.01] θ = [0.08, 0.08] ξ = [0.05, 0.05] ξ = [0.5, 0.5]

E[
X1(T )−X1(0)

X1(0)
] 0.0651 0.0637 0.0651 0.0644 0.0623 0.0743

E[
X2(T )−X2(0)

X2(0)
] 0.1720 0.1735 0.1357 0.2262 0.1738 0.1719

V[
X1(T )−X1(0)

X1(0)
] 0.1561 0.1516 0.1557 0.1539 0.1476 0.1818

V[
X2(T )−X2(0)

X2(0)
] 0.5283 0.5284 0.3804 0.7830 0.5247 0.5364

Corr(dlnX1(T ) , dlnX2(T )) 0.0038 0.0016 0.0070 0.0064 0.0044 0.0038
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.6304 -0.6705 -0.6438 -0.6193 -0.6857 -0.5055
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.6114 -0.5941 -0.6430 -0.6085 -0.5351 -0.6004

Figure 5.10 is obtained by employing the baseline correlation Θ = π
5
. The impacts from the mean

reverting speed of the underlying process α are explored by comparing the baseline with a higher

reverting speed, i.e., α = [5, 4]. The shape of the implied volatility does not change too much, but

there is a slight decrease in the level of the implied volatility surface. Further, a small increase in

the mean reverting level of the underlying process θ (from 0.01 to 0.08) is capable of turning the

trend of the implied volatility from increasing in time to maturity to decreasing in it. Moreover,

as we would expect, higher volatility of volatility ξ increases the implied volatility and makes it

"less frown".

Figure 5.11: Two Common Factor Model, non mean reverting, Θ = −π, change α, θ, ξ
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Table 5.8: Statistics for Two Common Factor Model, non mean reverting, change α, θ, ξ

α = [1.8, 1.8] α = [5, 4] θ = [0.01, 0.01] θ = [0.08, 0.08] ξ = [0.05, 0.05] ξ = [0.5, 0.5]

E[
X1(T )−X1(0)

X1(0)
] 0.1013 0.1039 0.0854 0.1232 0.1039 0.1027

E[
X2(T )−X2(0)

X2(0)
] 0.1299 0.1282 0.1078 0.1497 0.1292 0.1278

V[
X1(T )−X1(0)

X1(0)
] 0.2629 0.2688 0.2158 0.3356 0.2710 0.2763

V[
X2(T )−X2(0)

X2(0)
] 0.3576 0.3536 0.2800 0.4352 0.3525 0.3619

Corr(dlnX1(T ) , dlnX2(T )) -0.0080 -0.0057 -0.0004 -0.0018 -0.0014 0.0063
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.1660 -0.3184 -0.2908 -0.0463 -0.4374 -0.0976
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.2121 -0.3337 -0.3198 -0.0939 -0.4732 -0.0530

In Figure 5.11, we assume the correlation Θ = −π and similar variations on κ, θ, and ξ as that of

in Figure 5.10, the changes due to mean reverting speed α does not show too much influence on

the implied volatility surface. Additionally, changes in the mean reverting level θ not only have a

significant impact on the level of the implied volatility surface, but also change the trend of the

surface from downward sloping to an increasing sloping with regards to time to maturity. Besides,

the increase in volatility of volatility changes a slightly downward implied volatility surface into a

"smile" one in terms of strike price K.

By comparing the impact of κ, θ, and ξ under a different choice of correlation Θ, we observe that

different driver of correlation Θ among assets produce very different shapes of implied volatility

surface. In particular, the lesser changes come from the mean reverting speed α, while the mean

reverting level θ is a "game-changer" in turning around the trend of the implied volatility surface.

As for volatility of volatility ξ, it clearly infuses more variance in the asset and thus in implied

volatility as well.
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Figure 5.12: Two Common Factor Model, non mean reverting, change Θ

Table 5.9: Statistics for Two Common Factor Model, non mean reverting, change Θ

Θ -π/2 0 π/4 π

E[X1(T )−X1(0)
X1(0)

] 0.1037 0.1059 0.0637 0.1012
E[X2(T )−X2(0)

X2(0)
] 0.1291 0.1303 0.1754 0.1281

V[X1(T )−X1(0)
X1(0)

] 0.2701 0.2811 0.1513 0.2630
V[X2(T )−X2(0)

X2(0)
] 0.3524 0.3592 0.5336 0.3562

Corr(dlnX1(T ) , dlnX2(T )) -0.0056 -0.0029 0.0093 0.0079
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4218 -0.6727 -0.6007 -0.1575
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.4382 -0.6654 -0.5851 -0.2137

The analysis of the impacts from changing the driver of correlation among assets Θ is displayed

in Figure 5.12. To be more specific, we consider correlations of −π
2
, 0, π

4
, and π respectively. It

can be observed that as Θ varies, the implied volatility surface appears differently in shapes and

levels. In particular, there is a volatility "frown" in case 3 as Θ = π
4
, while a volatility "skew" can

be observed in other cases. Also, when Θ = π
4
, its implied volatility level deviates between 0.19

and 0.21, while all the others have a deviation of 0.28 to 0.31. By looking at Table 5.9, it can

be noticed that changes in Θ are powerful in controlling the leverage effects. For instance, when

Θ = 0, the leverage effect of asset X1 and X2 can be -0.6727 and -0.6654; when Θ = π, they can

end up with -0.1575 and -0.2137 respectively.
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5.4.2 Presence of b

Here, we consider both the common factor and the intrinsic factor follow 4/2 structure. The

dynamics of our underlying asset Xi(t) is

d(lnXi(t)) = dYi(t) =

[
r − 1

2

(
a2
i1(
√
v1(t) +

b1√
v1(t)

)2 + a2
i2(
√
v2(t) +

b2√
v2(t)

)2

+ (
√
ṽi(t) +

b̃i√
ṽi(t)

)2

)]
dt+ ai1(

√
v1(t) +

b1√
v1(t)

)dW1(t)

+ ai2(
√
v2(t) +

b2√
v2(t)

)dW2(t) + (
√
ṽi(t) +

b̃i√
ṽi(t)

)dW̃i(t)

Figure 5.13: Two Common Factor Model, non mean reverting, change b

Table 5.10: Statistics for Two Common Factor Model, non mean reverting, change b

b1 = b̃1 = 0.008 bi = 0.01 bi = 0 bi = 0

b2 = b̃2 = 0.005 b̃i = 0 b̃i = 0.01 b̃i = 0

E[X1(T )−X1(0)
X1(0)

] 0.0866 0.0649 0.0873 0.0651
E[X2(T )−X2(0)

X2(0)
] 0.2189 0.2301 0.1961 0.1730

V[X1(T )−X1(0)
X1(0)

] 0.2167 0.1552 0.2194 0.1554
V[X2(T )−X2(0)

X2(0)
] 0.7405 0.7880 0.6182 0.5252

Corr(dlnX1(T ) , dlnX2(T )) 0.0055 0.0022 0.0086 0.0006
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.6352 -0.6391 -0.6172 -0.6333
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.6045 -0.5895 -0.6332 -0.6224
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The 3/2 component b is studied in Figure 5.13. To be more specific, we consider four cases, the

presence of 3/2 component in both common factor and intrinsic factor, presence of 3/2 component

only in common factor, presence of 3/2 component only in intrinsic factor, as well as no presence

of 3/2 component in the factor structure respectively. By comparing cases 1 and 4 in Figure 5.13,

the presence of the 3/2 component results in a 33.03% and a 26.53% increase in the expected

return of asset X1 and X2 respectively. This is accompanied by an increase of 39.45% and 41% in

the variance of assets’ return with a very small value of b or b̃. On the other hand, by comparing

cases 2 and 3 in Figure 5.13, the impact from adding a 3/2 component to the intrinsic factor

is greater than that of adding it to the common factor. It can be evidenced from the statistic

table, i.e., Table 5.10, that assigning the same weight on b or b̃ makes a difference of -0.3% (from

0.0651 to 0.0649) and 34.1% (from 0.0651 to 0.0873) respectively compared to the absence of 3/2

component, in the expected returns of X1. Also, a change of -0.13% (from 0.1544 to 0.1552) and

41.18% (from 0.1554 to 0.2194) in the variance of asset X1’s return can be observed.

Figure 5.14: Two Common Factor Model, non mean reverting, change Θ
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Table 5.11: Statistics for Two Common Factor Model, non mean reverting, change Θ

Θ -π/2 0 π/4 π

E[X1(ti+1)−X1(ti)
X1(ti)

] 0.1645 0.1750 0.1088 0.1722
E[X2(ti+1)−X2(ti)

X2(ti)
] 0.1353 0.1302 0.1961 0.1249

V[X1(ti+1)−X1(ti)
X1(ti)

] 0.4864 0.5304 0.2865 0.5268
V[X2(ti+1)−X2(ti)

X2(ti)
] 0.3763 0.3588 0.6230 0.3395

Corr(dlnX1(T ) , dlnX2(T )) 0.0031 0.0035 0.0067 0.0073
Corr(dlnX1(T ) , < dlnX1(T ) >) -0.4668 -0.6748 -0.6259 -0.2401
Corr(dlnX2(T ) , < dlnX2(T ) >) -0.3716 -0.6708 -0.5549 -0.0971

The investigation of the influence of assets’ correlation driver Θ on implied volatility surface is

shown in Figure 5.14. Similar to what we observe from the sensitivity analysis on Θ in the absence

of b, changes in Θ have a significant impact on leverage effects among all the other parameters.

For example, when Θ = 0, the leverage effect of asset X1 and X2 can be -0.6748 and -0.6708; when

Θ = π, they can end up with -0.2401 and -0.0971 respectively. On the other hand, adding the 3/2

component b to risk factors increases the implied volatilities, while the shapes and the levels of

the surface are more persistent with variations in correlation Θ.

In conclusion, parameters from the underlying CIR process can have an important influence

on implied volatility, especially the mean reverting level θ, which can change the trend of the

implied volatility surface. Further, the 3/2 component b plays a role in affecting implied volatility,

especially if included in the intrinsic factor. Moreover, the correlation Θ among assets have the

advantage of charging the leverage effect.

5.4.3 Risk Measures

In this section, important risk measures are evaluated as functions of the correlation among assets

Θ and the 3/2 component b respectively in the two common factors and one intrinsic factor 4/2

structured non mean reverting model. In the same fashion, we focus on the value at risk (VaR)

and the expected shortfall (ES) as we mathematically defined in equation 4.6 and equation 4.7.
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(a) Value at Risk vs. α, non mean
reverting, various Θ

(b) Expected Shortfall vs. α, non mean
reverting various Θ

Figure 5.15: Impact of θ on Risk measures

In line with what we found out before, correlation among assets Θ dominates the leverage effects,

and it has a little effect on asset prices or their expected returns. By looking at the correlation

between assets X1 and X2,

ρ =
a11a21V1(t) + a12a22V2(t)√(

a2
11V1(t) + a2

12V2(t) + Ṽ1(t)
)(

a2
21V1(t) + a2

22V2(t) + Ṽ2(t)
)

=
cos(Θ)sin(Θ)V1(t)− sin(Θ)cos(Θ)V2(t)√(

cos(Θ)2V1(t) + sin(Θ)2V2(t) + Ṽ1(t)
)(

sin(Θ)2V1(t) + cos(Θ)2V2(t) + Ṽ2(t)
)

=
cos(Θ)sin(Θ) (V1(t)− V2(t))√(

cos(Θ)2V1(t) + sin(Θ)2V2(t) + Ṽ1(t)
)(

sin(Θ)2V1(t) + cos(Θ)2V2(t) + Ṽ2(t)
) ,

(5.8)

which is very small. Thus, both VaR and ES only show a slight difference for various Θ as shown

in Figure 5.15. However, by looking at the expected loss, the case of ignoring correlation among

assets, i.e., Θ = 0, always hurts more compared to all others.

75



5.4 Non Mean Reverting 5 TWO COMMON FACTORS MODEL

(a) Value at Risk vs. α, non mean
reverting, various b

(b) Expected Shortfall vs. α, non mean
reverting, various b

Figure 5.16: Impact of the of 3/2 components b on Risk measures

The impact from the 3/2 component b on risk measure VaR and ES is explored in Figure 5.16. It

is easy to notice that even for very small values of b, the presence of 3/2 component can cause

a 6.8% (from $48 to $44) increase in VaR. That is a 6.8% more capital need to be prepared for

possible losses. Further, a 10.6% (from -$52 to -$47) increase in average value at risk can also be

evidenced due to the presence of b.
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6 Advanced Model

In this section, we assume a more advanced model by employing different underlying processes

on the 1/2 and the 3/2 components underlying the 4/2 structured common factors and intrinsic

factors. That is, the 4/2 variance follows (
√
vj(t) +

bj√
σj(t)

) instead of (
√
vj(t) +

bj√
vj(t)

) in our

proposed more advanced model, where vj(t) and σj(t) are two different CIR processes with

potential correlations. This separation of the 1/2 and 3/2 components was mentioned in Grasselli

(2017) without further study. Note that, the model in Grasselli (2017) is embedded by assuming

a perfect correlation between the 1/2 component and the 3/2 component. Here both of the

components are driving from CIR underlying process. The advanced model is a generalization not

only by separating the underlying CIR processes of the 1/2 and the 3/2 component but also due

to incorporating the mean reverting property, the spillover effect and multi-factor structure.

This section lays out as follows: we firstly define and specify the model. Secondly, a two-dimensional

example is presented. Then, the implied volatility surfaces are explored aiming at reproducing

various shapes.

6.1 Define the Model

The process of asset price change in the more advanced model under P is given by

dXi(t)

Xi(t)
=

 Li + ci
∑n

j=1 a
2
ij

(
vj(t) +

b2j
σj(t)

+ 2ρjj
bj
√
vj(t)√
σj(t)

)
+c̃i

(
ṽi(t) +

b̃2i
σ̃i(t)

+ 2ρ̃ii
b̃i
√
ṽi√
σ̃i

)
−
∑n

j=1 βij(t)Yi(t)

 dt

+
n∑
j=1

aij

(√
vj(t)dWj(t) +

bj√
σj(t)

dZj(t)

)
+

(√
ṽi(t)dW̃i(t) +

b̃i√
σ̃i(t)

dZ̃i(t)

)

dvj = αj(θj − vj(t))dt+ ξj

√
vj(t)dBj(t)

dσj = αjs(θjs − σj(t))dt+ ξjs

√
σj(t)dBjs(t)

dṽi = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t)

dσ̃i = α̃is(θ̃is − σ̃i(t))dt+ ξ̃is
√
σ̃i(t)dB̃is(t)

〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt

〈dBjs(t), dZj(t)〉 = ρjsdt,
〈
dB̃is(t), dZ̃i(t)

〉
= ρ̃isdt

〈dZj(t), dWj(t)〉 = ρjjdt,
〈
dZ̃i(t), dW̃i(t)

〉
= ρ̃iidt
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where ci and c̃i are the drivers in the risk premiums of the commonality factors and the intrinsic

factors respectively. Li is the mean reverting level of risky asset Xi. β determines the mean

reverting speed of asset Xi if j = i; otherwise, βij reflects asset Xj’s impact on current asset Xi’s

expected return, namely the spillover effects among assets.

Further, it can be easily observed that the correlation between the 1/2 component and the 3/2

component is governed by ρjj in the common factors and ρ̃ii in the intrinsic factors. That is,

instead of prescribing
√
v(t) (or

√
ṽ(t)) perfectly correlated with 1√

σ(t)
(or 1√

σ̃(t)
), they can have

the flexibility in their dependency, as well as their mean reverting speed, mean reverting level and

volatility of volatility in terms of their own CIR process. Besides, the Feller condition is assumed

to be satisfied by each CIR process in the model.

In the language of factor decomposition, the variance of the underlying asset is explained by

two sources: the commonality or systematic variances that captures co-variation of asset returns

are given by Vj(t) =

(
vj(t) +

b2j
σj(t)

+ 2ρjj
bj
√
vj(t)√
σj(t)

)
for j = 1, ..., p, while the remaining intrinsic

variance that explains the variance of asset itself corresponds to Ṽi(t) =
(
ṽi(t) +

b̃2i
σ̃i(t)

+ 2ρ̃ii
b̃i
√
ṽi√
σ̃i

)
for i = 1, ..., n. In addition, (aij)n×p is the ijth entry of an orthogonal matrix A (assume n = p if

necessary), and it determines the dependency or correlation structure among risky assets.

Applying Ito’s lemma, the stochastic process of lnXi(t)=Yi(t) is in the form of

dYi(t) =

 Li + (ci − 1
2
)
∑n

j=1 a
2
ij

(
vj(t) +

b2j
σj(t)

+ 2ρjj
bj
√
vj(t)√
σj(t)

)
+(c̃i − 1

2
)
(
ṽi(t) +

b̃2i
σ̃i(t)

+ 2ρ̃ii
b̃i
√
ṽi√
σ̃i

)
−
∑n

j=1 βij(t)Yi(t)

 dt

+
n∑
j=1

aij

(√
vj(t)dWj(t) +

bj√
σj(t)

dZj(t)

)
+

(√
ṽi(t)dW̃i(t) +

b̃i√
σ̃i(t)

dZ̃i(t)

)

In the spirit that ci and c̃i are drivers of risk premiums of the commonality factors and the intrinsic

factors respectively, the dynamic of underlying assets under risk-neutral measure Q can be tracked

by eliminating the excess returns, such that

dXi(t)

Xi(t)
=

(
Li −

n∑
j=1

βij(t)Yi(t)

)
dt

+
n∑
j=1

aij

(√
vj(t)dWj(t) +

bj√
σj(t)

dZj(t)

)
+

(√
ṽi(t)dW̃i(t) +

b̃i√
σ̃i(t)

dZ̃i(t)

)

Moreover, if there is no mean reverting property, i.e., βij = 0, the process of underlying asset
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under measure Q evolves as:

dXi(t)

Xi(t)
= rdt+

n∑
j=1

aij

(√
vj(t)dWj(t) +

bj√
σj(t)

dZj(t)

)
+

(√
ṽi(t)dW̃i(t) +

b̃i√
σ̃i(t)

dZ̃i(t)

)

6.2 Two-dimension Example

In this subsection, the example of a two dimensional case with two common factors and one

intrinsic factor each under a non mean reverting setting is presented. Firstly, the dynamic of asset

price Xi for i = 1, 2 is given by

dYi(t) =

 Li + (ci − 1
2
)

[
a2
i1

(
v1(t) +

b21
σ1(t)

+ 2ρ11
b1
√
v1(t)√
σ1(t)

)
+ a2

i2

(
v2(t) +

b22
σ2(t)

+ 2ρ22
b2
√
v2(t)√
σ2(t)

)]
+(c̃i − 1

2
)
(
ṽi(t) +

b̃2i
σ̃i(t)

+ 2ρ̃ii
b̃i
√
ṽi√
σ̃i

)
−
∑2

j=1 βij(t)Yi(t)

 dt

+ai1

(√
v1(t)dW1(t) +

b1√
σ1(t)

dZ1(t)

)
+ ai2

(√
v2(t)dW2(t) +

b2√
σ2(t)

dZ2(t)

)

+

(√
ṽi(t)dW̃i(t) +

b̃i√
σ̃i(t)

dZ̃i(t)

)

with

dvj = αj(θj − vj(t))dt+ ξj

√
vj(t)dBj(t), dσi = αjs(θjs − σj(t))dt+ ξjs

√
σj(t)dBjs(t), j = 1, 2

dṽi = α̃i(θ̃i − ṽi(t))dt+ ξ̃i
√
ṽi(t)dB̃i(t), dσ̃i = α̃is(θ̃is − σ̃i(t))dt+ ξ̃is

√
σ̃i(t)dB̃is(t), i = 1, 2

〈dBj(t), dWj(t)〉 = ρjdt,
〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt, i, j = 1, 2

〈dBjs(t), dZj(t)〉 = ρjsdt,
〈
dB̃is(t), dZ̃i(t)

〉
= ρ̃isdt

〈dZj(t), dWj(t)〉 = ρjjdt,
〈
dZ̃i(t), dW̃i(t)

〉
= ρ̃iidt

Note the correlations must be such that the full correlation matrix is

definite positive. Here we are dealing with a 16-dimensional vector:

(W1, Z1, B1, B1s,W2, Z2, B2, B2s, W̃1, Z̃1, B̃1, B̃1s, W̃2, Z̃2, B̃2, B̃2s), but the correlation matrix

can be easily written in block form (4 blocks) as shown below. This matrix is symmetric, so we

only write the upper triangle, and those entries without specifying in the upper triangle are zeros.
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

W1 Z1 B1 B1s W2 Z2 B2 B2s W̃1 Z̃1 B̃1 B̃1s W̃2 Z̃2 B̃2 B̃2s

1 ρ11 ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 ρ1s

1 0

1

1 ρ22 ρ2 0

1 0 ρ2s

1 0

1

1 ρ̃11 ρ̃1 0

1 0 ρ̃1s

1 0

1

1 ρ̃22 ρ̃2 0

1 0 ρ̃2s

1 0

1


Also, one simulated path of assets X1 and X2 under the advanced model is shown in Figure 6.1

using Euler approximation. The employed parameters in producing Figure 6.1 are given in Table

6.1.

Table 6.1: Baseline Parameter Set for Advanced Model

i j L c c̃ A v0
2 2 [0.02 0.02] [0 0] [0 0.5] [1 0;0 1] [0.04 0.04]

ṽ0 b β Y(0) σ0 σ̃0 b̃
[0.04 0.04] [0.008 0.005] [0.12 -0.06;-0.1 0.1] [log(100) log(100)] [0.04 0.04] [0.04 0.04] [0 0]

ρj ρjs ρjj ρ̃i ρ̃is ρ̃ii α
[−0.7 − 0.8] [-0.7 -0.9] [0.5 1] [-0.9 -1] [-0.9 -1] [-0.1 -1] [1.8 16]

θ ξ αs θs ξs α̃ θ̃
[0.04 0.04] [0.2 0.15] [5 15] [0.4 0.04] [0.4 0.02] [0 0] [0 0]

ξ̃ α̃s θ̃s ξ̃s dt n
[0 0] [0 0] [0 0] [0 0] 0.001 100,000
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Figure 6.1: One Path of Asset Price under Advanced Model

6.3 Pricing Option and Implied Volatility

In this section, we price a European call option on an asset X with one common factor and no

intrinsic factor under a non mean reverting model, i.e.,

dY (t) =

[
r + (c1 −

1

2
)a2

11

(
v1(t) +

b2
1

σ1(t)
+ 2ρ11

b1

√
v1(t)√
σ1(t)

)]
dt

+a11

(√
v1(t)dW1(t) +

b1√
σ1(t)

dZ1(t)

)
dv1 = α1(θ1 − v1(t))dt+ ξ1

√
v1(t)dB1(t)

dσ1 = α1s(θ1s − σ1(t))dt+ ξ1s

√
σ1(t)dB1s(t)

where r is the risk free rate, 〈dZ1(t), dW1(t)〉 = ρ11dt, and B1 ⊥ B1s.

The intention of considering this special case is to see whether this simple setting can make use of

the flexibility provided in our model in reproducing the volatility "smile" or "skew". Note that we

set the parameter a11 a little different compared with Graselli’s model where a11 has an impact on

both
√
v1(t) and b1√

σ1(t)
. Therefore, we will not consider a11 = 0, which will make the process not

random at all.

We explore the implied volatility surface with strike prices K: 90, 94, 98, 102, 106, 110 and expiry

dates T : 0.2, 0.36, 0.52, 0.68, 0.84 and 1 year. By choosing these strike prices, we take into

account in-the-money, at-the-money, and out-of-the-money as well given the initial asset price is

$100. Then, for each strike price and the expiry date, we can firstly get a simulated call option
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price by equation 2.17 with X(t) under risk-neutral measure Q,

dX(t)

X(t)
= rdt+ a11

√
v1(t)dW1(t) +

a11b1√
σ1(t)

dZ1(t)

Analogously, following the procedure of extracting the implied volatility, we match the Black-

Scholes option price formula in equation 2.19 with simulated call prices and solve for the implied

volatility in the dynamics of Y (t) such that:

dY (t) = (r − 1

2
σ2)dt+ σdW ∗(t),

where the risk free interest rate r = 0.02. To be more detailed, we take all the randomness as a

constant, such that

σdW ∗(t) = a11

(√
v1(t)dW1(t) +

b1√
σ1(t)

dZ1(t)

)
.

It follows that

σ2dt = a2
11

(
v1(t) +

b2
1

σ1(t)
+ 2ρ11

b1

√
v1(t)√
σ1(t)

)
dt

Next figures explore the implied volatility surface under a parameterization of a11 and b1 inspired

by Grasselli (2017). That is, parameter a11 is predetermined and parameter b1 is found by holding

constant value of a11

(√
v1(0) + b1√

σ1(0)

)
to
√
v1(0) =

√
σ1(0)=

√
0.04. Moreover, we assume the

CIR process for the 3/2 component, i.e., σ1, follows high volatility of volatility and high mean

reverting speed relative to the CIR process for the 1/2 component, i.e., v1. On the one hand, the

advance for allowing different CIR processes in the constitution of 4/2 structured risk factor can be

showed; on the other hand, the quick reverting as the process gets high in the 3/2 process can be

utilized with the high volatility of volatility. Further, in order to make a comparison, the implied

volatility surface under a one factor generalized 4/2 model that does not possess the advanced

feature is presented as well. The following Table 6.2 shows the parameter set used to simulate the

implied volatility surfaces in Figure 6.2.
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Table 6.2: Parameter Set

j r Y a11 b v0 σ0
1 0.02 log(100) -0.4, -0.1, 0.5, 1 ... 0.04 0.04

ρ1 ρ1s ρ11 α θ ξ αs
-0.7 -0.7 1 1.8 0.04 0.2 18

θs ξs dt n
0.04 2 0.01 50,000

(a) Advance model with various a (b) Original model with various a

Figure 6.2: Implied volatility surface from changing a11

Figure 6.2 shows that with the 1/2 component and the 3/2 component following different underlying

CIR processes, the volatility "smile" can be obtained in the advanced model when a11 = −0.1 and

a11 = 0.5. That is, the advanced model can deliver richer variation in the implied volatility surface.

Also, a higher volatility of volatility and mean reverting speed of the 3/2 process can change the

implied volatility surface in both shapes and variations significantly. For example, as a11 = −0.4,

the implied volatilities lie between (0.4, 0.45), which is clearly higher than in the original model

(case 1 in Figure 6.2b); as a11 = −0.1. they are within (0.02, 0.12), which is apparently below

the original model (case 2 in Figure 6.2b). It implies that the effect of allowing a different CIR

process for the 3/2 component is distinct and one should assign the parameters of the underlying

process properly in order to capture the implied volatility.
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7 Conclusion

This work proposed and investigated a generalized 4/2 factor model by considering systematic

risk factors from the market and an independent risk factor from assets themselves in portfolio

optimization, risk management, and option pricing. We generalized the model by allowing for

mean reverting and spillover effects to make it compatible with a wider class of assets. We provided

conditions on parameters that ensure well-defined changes of measure. In the context of EUT,

a quasi closed-form solution of the optimal investment strategy was obtained, while analytical

solution were available for special cases. The impact of the 3/2 component b and commonality

loading a were explored with respect to implied volatility surface and two important risk measures

in a setting of one common factor case. Besides, two forms of the market price of risk were

compared in the context of implied volatility surfaces and risk measures. Further, a two common

factor case was studied with respect to the correlation among assets Θ, the spillover effect β, as

well as the 3/2 component b. Lastly, a more advanced model was defined and shown to capture

richer volatility surfaces.

In the sensitivity analysis of the 4/2 factor model, we found that even small values in the 3/2

component b can lead to over 90% change in implied volatility and over 1/3 changes in risk

measures. We also realized that ignoring the commonality loading that captures the dependency

or covariance among assets would result in underestimating the value in the portfolio under risk.

Another observation was that given different underlying CIR process for common and intrinsic

factor, the impact of common factor loading a, the 3/2 component b, and the choice of market

price of risk can be different and significant. The comparison of two types of market price of risk

demonstrated that the one proportional to a 1/2 structure persistently shows higher impact on

risk compared to a MPR proportional to a 4/2 structure. By examining both, mean reverting

model and non mean reverting model, these findings are consistent. Furthermore, in the two

common factor example, we captured the correlation among assets through Θ and realized its

influence in also controlling the leverage effect. In addition, the spillover effect β showed its ability

in changing the pattern of implied volatility surfaces.

Finally, we recognize many limitations in this study. Future research can help answer many

open questions as for instance: univariate and multivariate 4/2 structures that allow for closed-

form solutions in the context of EUT; estimation and calibration of our factor models to real

data to confirm the importance of individual parameters and their impact on derivative pricing,

risk measures and portfolio decisions; study the further the viability of decoupling 1/2 and 3/2
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components within the 4/2 model.
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Appendix

A1 Change of measure conditions

Proof. Proof of Proposition 1.

The first step is to ensure the change of measure is well-defined and for this we use Novikov’s

condition, i.e. generically

E

exp

1

2

∫ T

0

λ2

(√
ν(t) +

b√
ν(t)

)2

ds

 = eλ
2bTE

[
exp

(
λ2

2

∫ T

0

ν(s)ds+
λ2b2

2

∫ T

0

1

ν(s)
ds

)]
<∞.

From Grasselli, in order for this expectation to exist, we need two conditions:

−λ
2

2
> − α2

2ξ2
=⇒ |λ| < α

ξ
(.1)

and

−λ
2b2

2
≥ −(2αθ − ξ2)2

8ξ2
=⇒ |λ| ≤ 2αθ − ξ2

2|b|ξ
=⇒ ξ2 ≤ 2αθ − 2|λ||b|ξ (.2)

The latter condition (.2) implies, in particular, that our volatility processes satisfy Feller’s condition

under P and Q, in other words, it ensures all our CIR processes stay away from zero under both

measures.

Applying equation .2 to our setting leads to (i, j = 1, .., n):

ξ2
j ≤ 2αjθj − 2ξj max

{
|λjbj| ,

∣∣λ⊥j bj∣∣} (.3)

ξ̃2
i ≤ 2α̃iθ̃i − 2ξ̃i max

{∣∣∣λ̃ib̃i∣∣∣ , ∣∣∣λ̃⊥i b̃i∣∣∣} (.4)

Now we apply equation .1 producing two extra set of conditions (i, j = 1, .., n):

max
{
|λj| ,

∣∣λ⊥j ∣∣} <
αj
ξj

(.5)

max
{∣∣∣λ̃i∣∣∣ , ∣∣∣λ̃⊥i ∣∣∣} <

α̃i

ξ̃i
(.6)

The second step applies to the case βij = 0 for i, j = 1, .., n and it is to ensure the drift of the
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A1 Change of measure conditions

asset price equal the short rate:

Li = r, ci =
n∑
j=1

(
ρjλj +

√
1− ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i

For the most general case (βij 6= 0 for some i or j), the second step which should be adapted to

any particular prescribed drift structure under the Q-measure.

The third step is to ensure the drift-less asset price process is a true Q-martingale and not just a

local Q-martingale:

dXi(t)

Xi(t)
= (.) dt+

n∑
j=1

aij

(√
vj(t) +

bj√
vj(t)

)
dWQ

j (t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃Q

i (t)

Here we test the martingale property using the Feller nonexplosion test for volatilities, hence

considering the following n2 + n changes of Brownian motion for the volatility processes and

checking the processes do not reach zero under the various measures:

dBQ
ij (t) = aijρj

(√
vj(t) +

bj√
vj(t)

)
dt+ dBP

j (t), dB̃Q
i (t) = ρ̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt+ dB̃P

i (t)

This leads to the following conditions:

ξ2
j ≤ 2αjθj − 2 |aijρjbj| ξj, i, j = 1, ..., n (.7)

ξ̃2
i ≤ 2α̃iθ̃i − 2

∣∣∣ρ̃ib̃i∣∣∣ ξ̃i, i = 1, ..., n (.8)

We can combine the first and third steps .3, .7, .4 and .8 into the final conditions.

Proof. Proof of Proposition 2.

The first step is to ensure the change of measure is well-defined and for this we use Novikov’s

condition, i.e. generically

E
[
exp

(
1

2

∫ T

0

λ2
(√

ν(t)
)2

ds

)]
= E

[
exp

(
λ2

2

∫ T

0

ν(s)ds

)]
<∞.

From Grasselli, in order for this expectation to exist, we need next condition:

−λ
2

2
> − α2

2ξ2
=⇒ |λ| < α

ξ
(.9)
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A1 Change of measure conditions

Now we apply equation .9 producing two extra set of conditions (i, j = 1, .., n):

max
{
|λj| ,

∣∣λ⊥j ∣∣} <
αj
ξj

(.10)

max
{∣∣∣λ̃i∣∣∣ , ∣∣∣λ̃⊥i ∣∣∣} <

α̃i

ξ̃i
(.11)

Then, to ensure our volatility processes satisfy Feller condition under P and Q. It ensures our

CIR processes stay away from zero under both measures:

ξ2
j ≤ 2αjθj (.12)

ξ̃2
i ≤ 2α̃iθ̃i (.13)

The second step applies to the case βij = 0 for i, j = 1, .., n and it is to ensure the drift of the

asset price equal the short rate:

Li = r, ci =
n∑
j=1

(
ρjλj +

√
1− ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1− ρ̃2

i λ̃
⊥
i

For the most general case (βij 6= 0 for some i or j), the second step which should be adapted to

any particular prescribed drift structure under the Q-measure.

The third step is to ensure the drift-less asset price process is a true Q-martingale and not just a

local Q-martingale:

dXi(t)

Xi(t)
= (.) dt+

n∑
j=1

aij

(√
vj(t) +

bj√
vj(t)

)
dWQ

j (t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃Q

i (t)

Here we test the martingale property using the Feller nonexplosion test for volatilities, hence

considering the following n2 + n changes of Brownian motion for the volatility processes and

checking the processes do not reach zero under the various measures:

dBQ
ij (t) = aijρj

(√
vj(t) +

bj√
vj(t)

)
dt+ dBP

j (t), dB̃Q
i (t) = ρ̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt+ dB̃P

i (t)

This leads to the following conditions:

ξ2
j ≤ 2αjθj − 2 |aijρjbj| ξj, i, j = 1, ..., n (.14)

ξ̃2
i ≤ 2α̃iθ̃i − 2

∣∣∣ρ̃ib̃i∣∣∣ ξ̃i, i = 1, ..., n (.15)
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A1 Change of measure conditions

We can combine the first and third steps .12, .14, .13 and .15 into the final conditions.
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