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Abstract

The increasing use of electronic platforms in healthcare has resulted in the generation of
unprecedented amounts of data in recent years. The amount of data available to clinical
researchers, physicians, and healthcare administrators continues to grow, which creates an
untapped resource with the ability to improve the healthcare system drastically. Despite the
enthusiasm for adopting electronic health records (EHRS), some recent studies have shown
that EHR-based systems hardly improve the ability of healthcare providers to make better
decisions. One reason for this inefficacy is that these systems do not allow for human-data
interaction in a manner that fits and supports the needs of healthcare providers. Another
reason is the information overload, which makes healthcare providers often misunderstand,
misinterpret, ignore, or overlook vital data. The emergence of a type of computational system
known as visual analytics (VA), has the potential to reduce the complexity of EHR data by
combining advanced analytics techniques with interactive visualizations to analyze,
synthesize, and facilitate high-level activities while allowing users to get more involved in a
discourse with the data. The purpose of this research is to demonstrate the use of
sophisticated visual analytics systems to solve various EHR-related research problems. This
dissertation includes a framework by which we identify gaps in existing EHR-based systems
and conceptualize the data-driven activities and tasks of our proposed systems. Two novel
VA systems (VISA_M3R3 and VALENCIA) and two studies are designed to bridge the
gaps. VISA_M3R3 incorporates multiple regression, frequent itemset mining, and interactive
visualization to assist users in the identification of nephrotoxic medications. Another
proposed system, VALENCIA, brings a wide range of dimension reduction and cluster
analysis techniques to analyze high-dimensional EHRs, integrate them seamlessly, and make
them accessible through interactive visualizations. The studies are conducted to develop
prediction models to classify patients who are at risk of developing acute kidney injury (AKI)
and identify AKI-associated medication and medication combinations using EHRs. Through
healthcare administrative datasets stored at the ICES-KDT (Kidney Dialysis and
Transplantation program), London, Ontario, we have demonstrated how our proposed

systems and prediction models can be used to solve real-world problems.
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Summary for Lay Audience

Advances in healthcare technology have resulted in the generation of large amounts of
electronic data in the form of electronic health records (EHRs). Adoption of EHR makes it
easy to organize, access, and store medical records through computerized data management
tools. Despite the potential benefits, healthcare professionals continue to report difficulty in
adopting EHR-based systems. One of the main reasons for this problem is the complicated
and improperly designed user interfaces in these systems, which often makes healthcare
providers overlook vital information. The purpose of this research is to prove the use of
visual analytics (VA) to solve various EHR-related problems. VA combines automated
analysis with interactive visualizations for effective reasoning, understanding and decision
making based on complex data. Through a literature survey and proposed framework, we
first analyze the existing EHR-based systems and understand why they fail to fulfill the
computational demand of EHRs. Two novel VA systems (VISA_M3R3 and VALENCIA)
and two studies are designed to demonstrate how the VA approach can be used to overcome
the challenges of EHRs. VISA_M3R3 is designed to assist healthcare providers in the
identification of medications that may associate with a higher risk of developing acute kidney
injury (AKI). VALENCIA provides users with the ability to explore high-dimensional EHRs
using a number of dimension reduction and cluster analysis algorithms. The studies are
conducted to identify AKI-associated medication and medication combinations and predict
the risk of developing AKI using EHRs. Through healthcare administrative datasets stored at
the ICES-KDT (Kidney Dialysis and Transplantation program), we have shown how our

proposed approach can be used to solve real-world problems.
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Chapter 1

1 Introduction

1.1 Motivation

The increasing use of electronic platforms in healthcare has produced unprecedented
amounts of data in recent years. In the healthcare industry, as a part of modernizing their
operations, the medical organizations are adopting electronic health records (EHRs) and
deploying new information technology systems that generate, collect, digitize, and
analyze their data (Caban and Gotz, 2015). This data includes, but is not limited to,
medical and demographic records of patients, hospital and emergency room records, and
results of laboratory tests. The amount of information available to clinical researchers,
physicians, healthcare administrators, and policymakers continues to grow, which creates
an untapped resource with the ability to drastically improve the healthcare system
(Kamal, 2014; Murdoch and Detsky, 2013). While initially created for archiving patient
records and supporting healthcare administrative tasks such as billing, many researchers
have observed the secondary use of EHRs for clinical research purposes (Shickel et al.,
2018). Healthcare providers use modern systems to diagnose patients (Graber et al.,
2017), detect hidden patterns and trends, study the effects of medications (Feng et al.,
2019), determine the effectiveness of treatments (Cowie et al., 2017), monitor patient
improvement (Doupi, 2012), reduce medical errors (Agrawal, 2009), and ultimately
improve quality of care (Ali et al., 2007; Christensen and Grimsmo, 2008; Tang and
McDonald, 2006). Despite the growing interest in adopting EHRS, some studies have
shown that EHR-based systems hardly improve the ability of healthcare providers to
make better decisions (Heisey-Grove et al., 2014; Lau et al., 2012). One of the main
reasons for this inefficacy is that these systems do not allow for human-data interaction in
a manner that supports and fits the needs of healthcare providers (Himmelstein et al.,
2010; Rind, 2013). Another reason is the information overload that arises when the

number of data items exceeds the limit of human cognition (Halford et al., 2005). The



users often misunderstand, misinterpret, ignore, or overlook vital data because of
information overload. In the healthcare domain, information overload often leads to an
incorrect diagnosis, wrong interpretation of patient conditions, and erroneous treatment
decisions (Caban and Gotz, 2015). For example, in a survey about the efficacy of
electronic health records (EHRS) in the U.S., of over 500 primary-care physicians, only
66% of physicians were somewhat satisfied with existing EHR systems. Many physicians
still continue to report problems. About 40% of physicians thought that there are more
challenges with existing EHR-based systems than benefits. These physicians suggested
that these systems’ user interfaces were not designed well. They found this more
important than the incorporation of analytics capabilities that support diagnosis,
management, and prevention. Of those surveyed, 72% wanted improved user interfaces in
these systems; whereas 43% believed that predictive analytics would improve the
efficacy of EHR-based systems (EHRIntelligence, 2018). Thus, it seems that there is a
growing demand for computational systems that integrates automated analysis techniques
with user interfaces that facilitate interaction with visualizations of data (i.e., interactive

visualizations).

Interactive visualizations can be defined as computational systems that store and process
data and use visual representations to amplify human cognition (Proctor and Vu, 2012;
Sedig and Parsons, 2016). They have the potential to boost the utilization of data in
healthcare by providing a means to access the EHR data at various levels of granularity
and abstraction. Interactive visualizations enable users to explore the underlying data,
modify the representation, and change different visual elements to achieve their goals.
For the last two decades, several EHR-based visualization systems have been developed
to support healthcare providers to perform various data-driven activities (Rind et al.,
2013). However, there are some gaps in support for certain types of higher-level activities
and tasks supported by these systems for a number of reasons. Firstly, some of the
visualizations are not capable of dealing with fast-paced data generated by different
healthcare organizations (Cybulski et al., 2015; Zhang et al., 2012). Secondly, some

improperly designed visualizations encode too much information at once, which often



overwhelm the cognitive abilities of users and limit users’ ability to make time-sensitive
decisions (Pike et al., 2009; Tominski, 2015). Finally, most of these systems can only
represent a limited number of attributes and relationships within the data (Aimone et al.,
2013; Faisal et al., 2013; Kosara and Miksch, 2002; Lavado et al., 2018). When working
with high dimensional healthcare data, it is important to analyze hidden, non-explicit, and
unknown relationships among the attributes. Thus, even the complex visualization
systems are often inadequate to fulfill the computational demand of EHRS because they
do not incorporate analytical processes, which is essential for recognizing hidden patterns

and trends.

Data analytics is the process of investigating raw data to gain both deeper and novel
insights on associations within the data (Koh and Tan, 2005). Data analytics includes
algorithms, techniques, and methods from different fields, such as statistics, machine
learning, and data mining, to assist users in informed decision-making (Han and Kamber,
2011). There are several systems developed in recent years that employ different
analytics techniques to predict patient outcomes, enable disease diagnosis and prognosis,
make treatment-related decisions, and discover relationships between risk factors (Yoo et
al., 2012). Although these systems are designed to analyze large amounts of data, they
often fail to build trust with healthcare providers. One of the main reasons lies in their
lack of transparency and interpretability. The intermediary steps, adjustment of the
configuration parameters, and theoretical assumptions are kept hidden from end-users,
which limits their application in healthcare settings (Yoo et al., 2012). In addition, most
of the analytics systems are not capable of efficiently managing ill-defined problems
because they do not consider human judgment in the decision-making process (Ola and
Sedig, 2014). In order to address these issues, analytical processes need to be made

accessible through visualizations.

Despite the advantages, both interactive visualization systems, with compelling
interaction and representation techniques and data analytics systems, with their powerful
computational capabilities, fall short in fulfilling the computational and cognitive



demands of EHRs. Thus, it seems that a combined approach may be needed—that is,
combining analytical processes with interactive visualizations. Visual analytics (VA) has
the potential to address the needs of EHRs by combining the strengths and alleviate the
limitations of both types of systems mentioned above (Ola and Sedig, 2014). VA
manages the complexity of EHRs and supports visuo-analytical reasoning in such a way
that the initially overwhelming scale of data becomes a treasured asset (Kamal, 2014). It
enables users to analyze, synthesize, and facilitate high-level cognitive activities while at
the same time get more involved in the discourse with the data (D. Keim et al., 2010a;
Thomas and Cook, 2006). Although the VA approach conceivably supports different
EHR-driven activities (e.g., exploration of patient history and identification of patients at
risk), to date, healthcare falls behind other sectors in the development of VA systems.
The design of such systems is not straightforward, which requires designers to take into
consideration users’ activities and tasks, human factors, and the structure of the data. A
number of complicated decisions need to be made by the designers. For instance, when
choosing an analysis technique, it is important to consider which algorithm to use, which
samples and features to incorporate, and what granularity to seek for a specific task.
Similarly, when developing visualizations, one needs to determine how to encode and
organize data elements and how to support users’ tasks. Consequently, integrating
analysis techniques with visualizations results in a more complicated challenge. Thus,
there is a lack of direction and confusion over how to design effective VA systems for
EHRs (Carroll et al., 2014; Folorunso and Shawn Ogunseye, 2008; Turner et al., 2008).

The goal of this dissertation is to demonstrate how VA systems can be designed for
EHRs. To begin with, we conducted a systematic literature survey to examine the design
of existing EHR-based systems. Since there were not too many VA systems that are
designed for EHRs, we included the EHR-based interactive visualization systems as well
in the survey. We then presented a framework to analyze and evaluate EHR-data-driven
tasks and activities of these systems. The framework helped us to identify gaps in the
existing systems and conceptualize the data-driven activities and tasks of EHR-based VA

systems. In light of this, we designed and developed two novel VA systems



(VISA_M3R3 and VALENCIA) and conducted two independent studies. The systems
and studies in this dissertation were mainly focused on acute kidney injury (AKI) because
they were designed to assist the clinicians, epidemiologists, and analysts at the ICES-
KDT program. ICES is an independent, non-profit, world-leading research organization
that uses population-based health and social data to produce knowledge on a broad range
of healthcare issues. KDT refers to the Kidney Dialysis and Transplantation

program located in London, Ontario, Canada. We demonstrated the usefulness of these
systems by investigating the process of analyzing the health administrative datasets
housed at ICES to gain novel insights into the data and fulfill the tasks at hand. The
tasks included, but are not limited to, predicting AKI, identifying AKI-associated
medication, examining the synergistic effects of AKI-associated medication

combinations, and identifying risk-factors for AKI.

One of the main contributions of this dissertation is the conceptualization and design of
human- and activity-centered computational systems for healthcare. There are several
challenges that designers might face when developing a computational system for
healthcare providers. These challenges include, but are not limited to, providing busy
physicians timely information in the precise format, visualizing comparative-
effectiveness and casual relationships, facilitating data-driven decision-making, and
characterizing and understanding similarity among information items. This dissertation
describes how these challenges can be addressed using a combination of statistical
methods, data mining algorithms, machine learning techniques, and information
visualization. This dissertation also demonstrates how VA systems can be designed in a
systematic way. It describes different components of VA in a structured manner and
explains the design decisions that need to be made while developing a VA system. This
dissertation then illustrates how different design choices can lead to the development of
an optimized VA system for healthcare. Finally, this dissertation demonstrates how
healthcare providers' abilities to interact with data mining and machine learning processes
can be improved by using well-designed VA systems. Through the development of two

novel VA systems, this dissertation offers the healthcare domain with evidence of the



efficacy of VA for analyzing EHRs. This research has implications for other domains

that require their data to be made accessible and analyzable through VA.

1.2 Structure of this dissertation

The rest of this dissertation is divided into six chapters, as follows:

In Chapter 2, we present a framework to identify and analyze EHR-data-driven tasks and
activities in the context of interactive visualization systems—that is, all the activities,
sub-activities, tasks, and sub-tasks that are and can be supported by EHR-based systems.
We conducted a systematic literature survey to analyze the researches that describe the
design, implementation, and/or evaluation of these systems. The survey includes an
overview of their goals, a short description of their visualizations, and an analysis of how
sub-activities, tasks, and sub-tasks combine and blend to accomplish their higher-level
activities. Our proposed framework reveals gaps in support of some higher-level
activities supported by these systems. This chapter provides background for the
dissertation.

In Chapter 3, we describe how VA systems can be designed to utilize the prescription
data stored in EHRs. To achieve this, we propose and describe VISA_M3R3, a novel VA
system designed to assist healthcare providers in identifying medications and medication
combinations that associate with a higher risk of AKI. By integrating multiple logistic
regression models, data visualization, frequent itemset mining, and human-data
interaction mechanisms, VISA_M3R3 allows users to explore complex relationships
between medications, medication combinations, and AKI in such a way that would be
difficult without the aid of a VA system.

In Chapter 4, we present a population-based retrospective cohort study to test the
hypotheses generated from the VISA_M3R3 and understand the synergistic effect of
AKI-inducing medication combinations. By integrating multivariable logistic regression,
frequent itemset mining, and stratified analysis, this study is designed to explore complex

relationships between medications and AKI. We demonstrate that our results are



consistent with previous studies through an electronic literature search and a consultation

with a nephrologist in this chapter.

In Chapter 5, we present another novel VA system, called VALENCIA, to address the
challenges of high-dimensional EHRs in a systematic way. VALENCIA brings together a
wide range of cluster analysis and dimension reduction techniques, integrate them
seamlessly, and make them accessible to users through interactive visualizations. It offers
a balanced distribution of processing load between users and the system to facilitate the
performance of high-level cognitive activities. Through a case study, we demonstrate
how VALENCIA can be used to analyze the healthcare administrative dataset stored at
ICES. During the cluster analysis of ICES datasets using VALENCIA, we identify
several risk factors that may associate with AKI by investigating the characteristics of
clusters where AKI is common. This motivated us to conduct a separate study on

predicting AKI, which is described in chapter 6.

In Chapter 6, we employ a number of machine learning techniques to identify older
patients who are at risk of developing AKI within 90 days after they are discharged from
the hospital or emergency department. The records of one million patients are included in
this study who visited the hospital or emergency department in Southwestern Ontario
between 2014 and 2016. We developed sixteen prediction models based on combinations
of four machine learning techniques and four ensemble-based methods along with a cost-
sensitive logistic regression model. These models are evaluated through 10-fold cross-
validation and compared based on the AUROC metric. We also validate features that are
most relevant in predicting AKI with a healthcare expert through a participatory design

process to improve the performance and reliability of the models.

In Chapter 7, we outline the conclusions drawn from the research presented in the
preceding chapters, explain the contributions of this work to the broader scientific

community, and discuss some areas of future research.



It is important to note that the chapters of this dissertation are self-sufficient and can be
read individually or sequentially. Chapters 2,3, 4, and 5 have been published; Chapters 6
has been accepted for publication. This dissertation is written in an integrated article

format, so Chapters 2 through 6 are self-contained.



Chapter 2

2  Data-Driven Activities Involving Electronic Health
Records: An Activity and Task Analysis Framework for
Interactive Visualization Tools

This chapter has been published as N. Rostamzadeh, S.S. Abdullah, and K. Sedig, “Data-
Driven Activities Involving Electronic Health Records: An Activity and Task Analysis
Framework for Interactive Visualization Tools” in the Multimodal Technologies Interact.
Journal, 4(1), 7; February 2020. We changed the format to match the general format of
the dissertation. Figure, Table and Section numbers specified herein are relative to the
chapter number. For example, “Table 17 corresponds to Table 2-1; “Figure 17
corresponds to Figure 2-1; and “Section 1.1” corresponds to Section 2.1.1. Moreover,

when the term “paper”, “research”, or "work" is used, it refers to this specific chapter.

2.1 Introduction

An electronic health record (EHR) contains patient data, such as demographics,
prescriptions, medical history, diagnosis, surgical notes, and discharge summaries.
Healthcare providers use EHRs to make critical decisions, study the effects of treatments,
determine the effectiveness of treatments, and monitor patient improvement after a
particular treatment. In addition to these benefits, EHRs can potentially aid clinical
researchers in detecting hidden trends and missing events, revealing unexpected
sequences, reducing the incidence of medical errors, and establishing quality control
(Christensen and Grimsmo, 2008; Tang and McDonald, 2006). Recently, several
healthcare organizations have used systems that incorporate EHR data to improve the
quality of care; these systems are intended to replace traditional paper-based medical
records (Boonstra et al., 2014). However, a few studies reveal that these EHR-based
systems hardly improve the quality of care. One of the reasons for this is that they do not
allow for human—data interaction in a manner that fits and supports the needs of
healthcare providers (Himmelstein et al., 2010; Rind et al., 2013). A set of technologies
and techniques that can improve the efficacy and utility of these EHR-based systems can
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be found in information visualization (Rind et al., 2013), or broadly speaking interactive

visualization tools (IVTSs).

IVVTs can be defined as computational technologies that use visual representations (i.e.,
visualizations) to amplify human cognition when working with data (Sears and Jacko,
2007; Sedig and Parsons, 2016). IVTs can help people who use them gain better insight
by providing the means to explore the data at various levels of granularity and
abstraction. An important feature of IVTs that makes them suitable for the exploration of
EHRs is the ability to show relevant data quickly by mapping it to visualizations (Rind et
al., 2013). Another feature is interaction. Making the visualization interactive allows
healthcare providers to perform various data-driven tasks and activities. Interaction helps
users accomplish their overall goals by dynamically changing the mapping, view, and
scope of EHR data. In recent years, a number of EHR-based IVTs have been developed

and deployed to support healthcare providers in performing data-driven activities.

To provide a clear and systematic approach in examining EHR-based I\VVTs for clinical
decision support, this paper provides a framework for analyzing tasks and activities
supported by these tools. To do so, we will first provide a brief survey of some of the
existing IVTs that support the exploration and querying of EHR data and examine overall
patterns in these tools. This survey does not include EHR-based IVTs that are designed

for clinical documentation, administration, and billing processes.

There are a few studies that review EHR-based 1VTs and their applications. Rind et al.
(Rind et al., 2013) reviewed and compared state-of-the-art information visualization tools
that involve EHR data using four criteria: (1) data types that they cover, (2) support for
multiple variables, (3) support for one versus multiple patient records, and (4) support for
user intents. Lesselroth and Pieczkiewicz (Lesselroth and Pieczkiewicz, 2011) surveyed
different visualization techniques for EHRs. They cover a large number of visualization
tools (e.g., Lifelines, MIVA, WBIVS, and VISITORS). Their survey is organized into
five sections: (1) multimedia, (2) smart dashboards to improve situational awareness, (3)
longitudinal and problem-oriented views to tell clinical narratives, (4) iconography and
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context links to support just-in-time information, and (5) probability analysis and
decision heuristics to support decision analysis and bias identification. Combi et al.
(Combi et al., 2010) reviewed a few visualization tools (e.g., IPBC, KHOSPAD, KNAVE
I1, Paint Strips, and VISITORS) and described them based on the following features:
subject cardinality (single/multiple patients), concept cardinality (single/multiple
variables), abstraction level (raw data, abstract concepts, knowledge), and temporal
granularity (single, single but variable, multiple). Finally, in a book chapter, Aigner et al.
(Aigner et al., 2008) described strategies to visualize (1) clinical guidelines seen as plans
(e.g., GEM Cutter, DELT/A), (2) patients’ data seen as multidimensional information
space (e.g., Midgaard, VIE-VISU, Gravi++), and (3) patients’ data related to clinical
guidelines (e.g., Tallis Tester, CareVis).

A careful examination of the above surveys shows that a systematic analysis of IVTs with
a focus on how they support EHR-data-driven tasks and activities is lacking. The purpose
of the current paper is to fill this gap. Here, we present a framework for analyzing how
IVTs can support different EHR-based tasks and activities. The framework can help
designers and researchers to conceptualize the functionalities of EHR-based IVTs in an
organized manner. In addition, this paper is suggestive of how this framework can be
used to evaluate existing EHR-based IVTs and design new ones systematically. This
paper also leads to the development of best practices for designing similar frameworks in

similar areas.

The rest of this paper is organized as follows. Section 2 discusses how the proposed
framework is formed and examines the relationships among the three concepts of
activities, tasks, and low-level interactions in the context of the framework. Section 3
presents our strategy for searching relevant literature and explains our selection criteria.
Section 4 provides a brief survey of a set of IVTs and outlines their main goal(s). In this
section, using the proposed analytical framework, we identify the tasks and activities that
IVTs support. Finally, Section 5 discusses how the framework can be used to evaluate the
surveyed EHR-based IVTs.
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2.2 AProposed Activity and Task Analysis Framework

In the context of IVVTs, user-tool interaction can be conceptualized as actions that are
performed by users and consequent reactions that occur via the tool’s interface. This bi-
directional relationship between the user and the tool supports the flow of information
between the two. Interaction allows for human—information discourse (Ola and Sedig,
2018). Furthermore, it allows users to adjust different features of the IVT to suit their
analytical needs. Interaction can be characterized at different levels of granularity (Sedig
and Parsons, 2016, 2013). As displayed in Figure 1, an activity can be conceptualized at
the highest level, where it is composed of multiple lower-level tasks (e.g., ranking,
categorizing, and identifying) that work together to accomplish the activity's overall goal.
An activity and a task can consist of multiple sub-activities and sub-tasks, respectively.
At the lower level, tasks can be considered to have visual and interactive aspects; tasks
that are supported by visual processing are called visual tasks. For instance, consider a
scenario in which a user is working with a stacked bar chart that aggregates laboratory
test results. The user needs to understand the distribution of a specific test of a collection
of patients after surgery over time. Some of the visual tasks that the user may need to
perform can include detecting the time when the test is at its peak and observing the
average test result at different times. Interactive tasks require users to act upon
visualizations. For instance, in the example above, the user may want to cluster the test
results based on different time granularities (e.g., over an hour, over a day, or over a
month). Each interactive task is made up of a number of lower-level actions (i.e.,
interactions) that are carried out to complete the task.

In most complex situations, activities, sub-activities, tasks, and sub-tasks are combined to
support users in accomplishing their overall goal. It is important to note two perspectives
from which we can view human-—data discourse. From a top-down perspective, users’
goals flow from higher-level activities that need to be accomplished. From here, we go
down to a number of tasks and sub-tasks (visual and interactive), and then to a set of low-
level interactions. From a bottom-up perspective, the performance of a series of low-level

interactions that users perform with visual representations gives emergence to tasks.
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Similarly, the performance of a sequence of tasks gives emergence to activities all the

way up until an overall goal is accomplished.

In this paper, we present an activity and task analysis framework for examining EHR-
based IVTs (i.e., ones that involve EHRs as their main source of data with which users
perform data-driven tasks and activities). To identify what activities, sub-activities, tasks,
and sub-tasks are supported in EHR-based IVTs, we have examined a number of such
tools that have been developed by different researchers and have been reported in the
literature (see Wang et al. (Wang et al., 2008); Wongsuphasawat et al. (Wongsuphasawat
et al., 2011); Wongsuphasawat and Gotz (Wongsuphasawat and Gotz, 2012); Malik et al.
(Malik et al., 2014); Fails (Fails et al., 2006); Klimov et al. (Klimov et al., 2010);
Wongsuphasawat (Wongsuphasawat, 2009); Monroe et al. (Monroe et al., 2013);
Brodbeck et al. (Brodbeck et al., 2005); Chittaro et al. (Chittaro et al., 2003); Rind et al.
(Rind et al., 2011a); Plaisant et al. (Plaisant et al., 1998); Faiola and Newlon (Faiola and
Newlon, 2011); Pieczkiewicz et al. (Pieczkiewicz et al., 2007); Bade et al. (Bade et al.,
2004); Hinum et al. (Hinum et al., 2005); Rind et al. (Rind et al., 2011b); and Ordonez et
al. (Ordonez et al., 2012); Gresh et al. (Gresh et al., 2002); Horn et al. (Horn et al.,
2001)). To conceptualize and develop the elements of the framework, our focus is the
identification of activities and tasks that are independent of any specific technology or
platform. To be consistent, we re-interpret how activities and tasks are named by the
authors of the afore-listed sources in light of the unified language of our proposed
framework. The activity and task terms we use might differ from the language of the
existing literature since the authors have described their tools using their own vocabulary.
Unfortunately, the language that different authors use is not consistent. Such
inconsistency makes it difficult to analyze how well and comprehensively such tools
support EHR-based tasks and how they can be improved. In the next section, we define
and categorize the higher-level activities that result from interaction and combination of

different sub-activities, tasks, and sub-tasks.
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2.2.1  Higher-Level Activities: Interpreting, Predicting, and
Monitoring
After reviewing numerous papers, we have concluded that, broadly speaking, all EHR-
data-driven healthcare activities can be organized under three main categories:
interpreting (Auffray et al., 2016; Groves et al., 2003; Komaroff, 1979; Kumar et al.,
2007; Lag et al., 2014), predicting (Amarasingham et al., 2014; Cohen et al., 2014;
Kankanhalli et al., 2016; Raghupathi and Raghupathi, 2014; Allan F. Simpao et al., 2014;
Wang et al., 2018), and monitoring (Anderson et al., 2015; Hauskrecht et al., 2013; Kho
etal., 2007; Li and Wang, 2016; Saeed et al., 2002; Tia Gao et al., 2005). Interpreting
refers to the activity of detecting patterns from patients’ medical records and making
sense of the relationships among different features. Predicting refers to the activity of
anticipating patient outcomes and creating new hypotheses by analyzing patient history
and status (Siegel, 2013). Lastly, monitoring refers to the activity of repetitive testing
with the aim of adjusting and guiding the management of recurrent or chronic diseases
(Glasziou et al., 2005).
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Figure 2-1: Relationships among activities, tasks, and interactions. Top-down view:
activity is made up of sub-activities, tasks, sub-tasks, and interactions. Bottom-up
view: activity emerges over time, through performance of tasks and interactions.

Visualizations are depicted as Vis and reactions as Ry. Source: adapted from (Sedig

and Parsons, 2016).

2.2.2  Hierarchical Structure of Activities, Sub-Activities, Tasks,
and Sub-Tasks

In this section, we identify sub-activities, tasks, and sub-tasks that blend and combine

together to give rise to the three activities of interpreting, predicting, and monitoring.

Interpreting, as a higher-level activity, can be comprised of four sub-activities: (i)

understanding (e.g., gaining insight into patient medical records), (ii) discovering (e.g.,

finding patients with interesting medical event patterns), (iii) exploring (e.g., observing

patient data in different temporal granularities), and (iv) overviewing (e.g., providing
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compact visual summaries of all event sequences found in the data). Likewise, predicting
can be comprised of two sub-activities: (i) learning (e.g., generating new hypotheses
from the data), and (ii) discovering (e.g., recognizing the deterioration of the disease).
Finally, monitoring is composed of (i) investigating (e.g., examining the development of
a patient after treatment), (ii) analyzing (e.g., studying the aggregated event sequences for
quality assurance), and (iii) evaluating (e.g., assessing the quality of care based on

clinical parameters).
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Figure 2-2: Overview of the proposed activity and task analysis framework. The

visual tasks are represented as blue and interactive tasks are represented as yellow.
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At the next level of the hierarchy, as shown in Figure 2, each sub-activity can be
composed of a number of visual (e.g., specifying, recognizing, and detecting) as well as
interactive tasks (e.g., locating, ordering, querying, and clustering). Moreover, as shown
in Table 1, each task consists of different sub-tasks; for instance, ordering can be carried
out by a combination of sub-tasks such as ranking, aggregating, identifying, and

classifying.

Table 2-1: Shows the breakdown of the interactive and visual tasks.

Task Sub-tasks
Ordering Aggregating, Classifying, Identifying, Ranking
Locating Aggregating, Aligning, Classifying, Identifying, Ranking
Querying Classifying, Identifying, Ranking,
.GZJ Organizing Aggregating, Classifying, Identifying, Highlighting
g Summarizing Aggregating, Classifying, Identifying
E Clustering Classifying, Identifying, Ranking
Observing Aggregating, Aligning, Identifying, Ranking
Recognizing Aggregating, Aligning, Classifying, Identifying, Ranking
§ Specifying | Aggregating, Aligning, Classifying, Identifying, Highlighting, Ranking
> Detecting Classifying, Identifying, Ranking
2.3 Methods

2.3.1  Search Strategy

We conducted an electronic literature search in order to collect the research papers that
describe the design, implementation, or evaluation of EHR-based IV Ts. In order to assure
a comprehensive document search, we included all the keywords that are relevant to the
goal of the research and also covered all the synonyms and related terms, both for EHRs
and visualization tools. We further broadened our search by adding an * to the end of a
term to make sure the search engines picked out different variations of the term. We also

added quotation marks around phrases to ensure that the exact sequence of words is
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found. To ensure that relevant papers were not missed in our search, we used a relatively
large set of keywords. We used two categories of keywords. The first category concerned
visualization tools and included the following terms: “visualization*”, “visualization
tool*”, “information visualization*”, “interactive visualization*”, “interactive
visualization tool*”, “visualization system*”, and “information visualization system*”’.
For the second category, EHR, we used the following terms: “Health Record*”,
“Electronic Health Record*”, “EHR*”, “Electronic Patient Record*”, “Electronic
Medical Record*”, “Patients Record*”, and “Patient Record*”. As we were looking for

papers about EHR-based visualization tools, we used the keywords shown in Table 2.

We used the following search engines based on their relevance to the field: PubMed, the
ACM Digital Library, the IEEE Library, and Google Scholar. We also looked for relevant
papers in two medical informatics journals (International Journal of Medical Informatics
and Journal of the American Medical Informatics Association). Furthermore, additional
papers were collected in conference proceedings (e.g., IEEE Conference on Visual
Analytics Science and Technology (VAST), HCIL Workshop 2015, and IEEE VisWeek
Workshop on Visual Analytics in Health Care) that were published in 2007 and later. We
then manually reviewed the reference lists of the papers that met the selection criteria to
find other relevant studies that had not been identified in the database search. All the
studies included in this survey were published from 1998 until 2015. We reviewed all of
the abstracts, removed the duplicates, and shortlisted abstracts for a more detailed

assessment.

Table 2-2: Overview of the search terms used.

Terms Used

“Visualization*” +“Health Record*”

“Visualization*” + “Electronic Health Record*”

“Visualization*” + “EHR*”

“Visualization*” + “Electronic Patient Record*”

“Visualization*” + “Electronic Medical Record*”
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“Visualization*” + “Patients Record*”

“Visualization*” + “Patient Record*”

“Visualization tool*” +“Health Record*”

“Visualization tool*” + “Electronic Health Record*”

“Visualization tool*” + “EHR*”

“Visualization tool*” + “Electronic Patient Record*”

“Visualization tool*” + “Electronic Medical Record*”

“Visualization tool*” + “Patients Record*”

“Visualization tool*” + “Patient Record*”

“Information visualization*” +*“Health Record*”

“Information visualization*” + “Electronic Health Record*”

“Information visualization*” + “EHR*”

“Information visualization*” + “Electronic Patient Record*”

“Information visualization*” + “Electronic Medical Record*”

“Information visualization*” + “Patients Record*”

“Information visualization®*” + “Patient Record*”

“Interactive visualization*” +“Health Record*”

“Interactive visualization*” + “Electronic Health Record*”

“Interactive visualization*” + “EHR*”

“Interactive visualization*” + “Electronic Patient Record*”

“Interactive visualization*” + “Electronic Medical Record*”

“Interactive visualization*” + “Patients Record*”

“Interactive visualization*” + “Patient Record*”

“Interactive visualization tool*” +“Health Record*”

“Interactive visualization tool*” + “Electronic Health Record*”

“Interactive visualization tool*” + “EHR*”

“Interactive visualization tool*” + “Electronic Patient Record*”
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“Interactive visualization tool*” + “Electronic Medical Record*”

“Interactive visualization tool*” + “Patients Record*”

“Interactive visualization tool*” + “Patient Record*”

“Visualization system*” + “Health Record*”

“Visualization system*” + “Electronic Health Record*”

“Visualization system*” + “EHR*”

“Visualization system*” + “Electronic Patient Record*”

“Visualization system*” + “Electronic Medical Record*”

“Visualization system*” + “Patients Record*”

“Visualization system*” + “Patient Record*”

“Information visualization system*”” + “Health Record*”

“Information visualization system*” + “Electronic Health Record*”

“Information visualization system*” + “EHR*”

“Information visualization system*” + “Electronic Patient Record*”

“Information visualization system*” + “Electronic Medical Record*”

“Information visualization system*” + “Patients Record*”

“Information visualization system*” + “Patient Record*”

2.3.2 Selection Criteria

Out of all the studies that survived the initial filtering, we only included those that
described an interactive visualization tool and provided a detailed description of the
tool’s visualization and its interaction design in order to analyze how the tool can support
different EHR-data-driven tasks and activities. All the papers related to the visualization
of any administrative tasks with patient data, medical guidelines, genetics data, and
syndromic surveillance were excluded from our survey as we only focused on clinical
EHR data. We also excluded the studies that were solely focused on the visualization of
free text (e.g., the patient’s progress notes) and medical images (e.g., magnetic resonance

imaging, and X-ray images).
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2.3.3 Results

A total of 912 articles were identified from our initial search of electronic databases. A
search of the gray literature and manually searching references from articles resulted in
an additional 34 papers. We removed a total number of 205 duplicates that were included
in the 946 articles, both within and between search engines. We then reviewed all the
abstracts and excluded 685 further articles. Next, we read the full text of 56 remaining
articles and excluded the ones that did not meet the selection criteria. Finally, 24 studies
remained for the analysis. The results of the selection procedure are displayed in the flow

diagram in Figure 3.

2.4 Survey of the Interactive Visualization Tools

In this section, we provide a survey of 19 IVTs that are described in the chosen articles
and use our proposed activity and task framework to analyze them. The survey includes
an overview of the goal of the IVVT, a brief description of its visualization, and an analysis
of how sub-activities, tasks, and sub-tasks blend and combine to accomplish the tool's
main higher-level activities of interpreting, predicting and, monitoring. A very
important criterion to differentiate IVTs is whether they support activities that involve
multiple patient records or exploration of an individual patient. We divide our survey into
two different types of IVTs based on this criterion: population-based tools and single-
patient tools. Initially, studies were focused on single-patient tools, but since 2010, most
of the IVTs are developed to support large numbers of patient records. Our survey
includes more population-based tools, as it seems that these are more prevalent than
single-patient tools. For the first type, we survey 14 tools, and, for the second type, we

survey five tools.



Articles identified Articles identified
through database through other
search sources
(n=912) (n=34)
Y
Articles identified through all
sources
(n=946)
Duplicate articles
> removed
(n=205)
Y
Articles screened
(n=741)

Articles excluded
il based on initial
>

assessment
(n=683)
Y
Articles included for
further assessment
(n=36)

Articles excluded
| Dbased on selection
> :

criteria
(n=32)
Y
Articles included in
the survey
(n=24)

Figure 2-3: Search results and how we selected the 24 articles that described 19
IVTs.

2.4.1 Population-Based Tools

Population-based IVTs support data-driven activities that involve multiplicity of patient
records in aggregate form and simultaneously. Although these types of tools display
fewer details about a particular patient, they provide users with the ability to recognize
patterns, detect anomalies, find desired records, and cluster and aggregate records into

different groups. In this section, we survey fourteen population-based IVTs.

22
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2.4.1.1 Lifelines2

Lifelines2 (Wang et al., 2009, 2008) enables users to explore and analyze a set of
temporal categorical patient records interactively. As shown in Figure 4, each record is
represented by a horizontal strip containing patient ID and multiple events in patient
history that occur at various times. Each event shows up as a color-coded triangle icon on
a horizontal timeline. Lifelines2 allows the detection of temporal patterns and trends
across EHRs to facilitate hypothesis generation and identify cause-and-effect

relationships between patient records.

This tool supports the activity of interpreting by allowing users to get a better
understanding of clinical problems and discovering patients with interesting medical
event patterns. It also supports monitoring by investigating the impact of hospital
protocol changes in patient care. It allows for temporal ordering of event sequences,
observing the distribution of temporal events, and locating records with particular event
sequences. These tasks (ordering, observing, locating) are supported by sub-tasks such as

ranking, aggregating, and identifying.
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Figure 2-4: Lifelines2: Interactive visualization tool for temporal categorical data.

Source: Image courtesy of the University of Maryland Human—Computer

24.1.2

Lifeflow

Interaction Lab, http://hcil.umd.edu.

Lifeflow (Guerra Gémez et al., 2011; Wongsuphasawat et al., 2011) provides a visual

summary of the exploration and analysis of event sequences in EHR data. While in

Lifelines2, due to limited screen space, it is not possible to see all records simultaneously;

Lifeflow gives users the ability to answer questions that require an overview of all the

records. To convert from Lifelines2 view to Lifeflow, a data structure called “tree of

sequences’ is created by aggregating all the records. This structure is then converted into

a Lifeflow view with each node representing an event bar. Figure 5 shows Lifeflow
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visualization where all the records are vertically stacked on the horizontal timeline and all

the events are represented using color-coded triangles.

In this IVT, the sub-activities of exploring and overviewing medical events support the

activity of interpreting, while analyzing aggregated event sequences for quality

assurance supports the activity of monitoring. Recognizing patterns and temporal

ordering of aggregated event sequences are two tasks that enable Lifeflow to support

exploring, overviewing, and analyzing sub-activities. Finally, sub-tasks such as

aggregating, identifying, and classifying work together to accomplish higher-level tasks.
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Figure 2-5: Lifeflow: Interactive visualization tool that provides an overview of

event sequences. Source: Image courtesy of the University of Maryland Human—

Computer Interaction Lab, http://hcil.umd.edu.
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2.4.1.3 Eventflow

Eventflow (Monroe et al., 2013) provides users with the ability to query, explore, and
visualize interval data interactively. It allows pattern recognition by visualizing events in
both a timeline that displays all individual records and an aggregated overview that
shows common and rare patterns. As displayed in Figure 6, all the records are shown on a
scrollable timeline browser. On the horizontal timeline, point-based events are displayed
as triangles, while interval events are represented by the connected rectangles. In the
center, an aggregated display gives users an overview of all event sequences in EHR data.
The aggregation method works exactly like the one in Lifeflow, but it has been extended
to work for interval events in the Eventflow. All the records with the same event
sequence are aggregated into a single bar and the average time between two events

among the records in the group is represented by the horizontal gap between two bars.

This tool supports interpreting by providing an overview of all event sequences found in
the data and exploring medical events (point-based events as well as interval events). The
overviewing and exploring sub-activities can be accomplished by recognizing temporal
patterns and simplifying temporal event sequences. Monitoring can be accomplished by
investigating aggregated event sequences. The investigating sub-activity is supported by
detecting anomalies in the data. Eventflow supports predicting by learning new
hypotheses where this sub-activity can be carried out by tasks such as specifying temporal
patterns and simplifying temporal event sequences. Aggregating, identifying, classifying

are the lowest-level sub-tasks for Eventflow.

2.4.1.4 Caregiver

Caregiver (Brodbeck et al., 2005) is an IVT that supports therapeutic decision making,
intervention, and monitoring. As displayed in Figure 7, the tool has three different views
where the upper view displays the duration and size of the patient groups that are chosen

by physicians to receive interventions. A common timeline for each patient is shown in
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the lower view of the chosen attributes. Caregiver allows users to create new cohorts

from the search results based on a combination of values of any number of variables.

In this tool, the activity of interpreting can be accomplished by discovering trends,
critical incidents, and cause—effect relationships. Caregiver also supports predicting by
allowing users to learn about the deterioration in the status of a disease. It supports these
sub-activities (discovering and learning) by specifying temporal relationships and
clustering. Specifying and clustering can be carried out by sub-tasks such as identifying,

classifying, and ranking.
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Figure 2-6: Eventflow: Interactive visualization tool for analysis of event sequences
for both point-based and interval events. Source: image courtesy of the University of

Maryland Human-Computer Interaction Lab, http://hcil.umd.edu.

24.15 CoCo

CoCo (Malik et al., 2015, 2014) is an IVT for comparing cohorts of sequences of events
recorded in EHRSs. It provides users with overview and event-level statistics of the chosen

dataset along with a list of available metrics to generate new hypotheses. It consists of a


http://hcil.umd.edu/

file manager pane, a dataset statistics pane, an event legend, a list of available metrics,

28

the main window, and options for filtering and sorting the results (as shown in Figure 8).

The summary panel includes high-level statistics containing the total number of records

and events in each record.

CoCo supports the activity of interpreting by allowing users to explore and investigate

two groups of temporal event sequences simultaneously. The activity of predicting can

be accomplished by learning new hypotheses from the statistical analysis while

comparing the event sequences (i.e., detecting differences among groups of patients).

Ranking, classifying, and identifying are the lowest-level sub-tasks in CoCo.
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Figure 2-7: Caregiver: Interactive visualization tool for visualization of categorical

and numerical data. Source: Image courtesy of Dominique Brodbeck.
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2.4.1.6 Similan

Similan (Wongsuphasawat, 2009) is a tool that provides users with the ability to discover
and explore similar records in the temporal categorical dataset. Records are ranked by
their similarity to a target record that can be either a reference record or a user's specified
sequence of events. The similarity measure considers the transposition of events,
addition, removal, and temporal differences of matching to estimate the similarity of
temporal sequences. Simian lets users to visually compare the selected target with a set of
records and rank those records based on the matching score, as shown in the left side

middle panel in Figure 9.

In this IVT, interpreting can be carried out by exploring and discovering similar records
in temporal categorical data where these sub-activities themselves are supported by
detecting (calculating similarity measure among records) and recognizing similarity
among records. Predicting is accomplished by discovering patients with similar
symptoms to a certain target patient. The sub-activity discovering can be carried out by
tasks such as temporal ordering and dynamic query. Finally, sub-tasks such as ranking,
identifying, and classifying work together to accomplish higher-level tasks.
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Figure 2-8: CoCo: Interactive visualization tool for comparing cohorts of event
sequences. Source: image courtesy of the University of Maryland Human-Computer

Interaction Lab, http://hcil.umd.edu.

2.4.1.7 Outflow

Outflow (Wongsuphasawat and Gotz, 2012, 2011) is a graph-based visualization that
shows the eventual outcome across the event sequences in patient records. It aggregates
and displays event progression pathways and their corresponding properties, such as
cardinality, outcomes, and timing. The tool allows users to interactively analyze the event
sequences and detect their correlation with external factors (e.g., beyond the collection of
event types that specify an event sequence). The tool is a state transition diagram, which
is represented by a directed acyclic graph. The states (nodes) are unique combinations of
patient symptoms that are mapped to rectangles, where the height of each rectangle is
proportional to the number of patients. The graph is divided into different layers
vertically, where layer i consists of all states in the graph with i symptoms. These layers
are arranged from left to right, displaying patient history from past to future. Edges

display transitions among symptoms where each edge encodes the number of patents that
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are involved in the transition and the average time interval between different states. The
end state that is represented by a trapezoid followed by a circle is used to mark points
where the patient paths have ended. Finally, the color of the edges and end states

represents the average outcome for the corresponding group of patients.
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Figure 2-9: Similan: interactive visualization tool for the exploration of similar
records in the temporal categorical data. Source: image courtesy of the University of
Maryland Human-Computer Interaction Lab, http://hcil.umd.edu.

In this tool, sub-activities of exploring and overviewing event sequences work together to
accomplish the activity of interpreting. Outflow also supports predicting by allowing
users to discover the progression of temporal event sequences. The sub-activities of
exploring, overviewing, and discovering can be accomplished by summarizing temporal

event sequences, specifying temporal relationships, and detecting patterns from statistical


http://hcil.umd.edu/

32

summaries. Finally, aggregating, identifying, and classifying are the lowest-level sub-

tasks.

24.1.8 IPBC

IPBC (Chittaro et al., 2003) (interactive parallel bar charts) is an interactive 3D
visualization of temporal data. IPBC applies visual data mining to a real medical problem
such as the management of multiple hemodialysis sessions. It provides users with the
ability to make various decisions regarding such things as therapy, management, and
medical research. Each time series is displayed as a 3D bar chart where one of the
horizontal axes shows time and the vertical axis represents the value, as displayed in
Figure 10. Lined up bar charts on the second horizontal axis enable users to view all the

series simultaneously.

IPBC supports interpreting by allowing users to explore patient data interactively.
Monitoring can be carried out by evaluating the quality of care based on certain clinical
parameters. The sub-activities of exploring and evaluating are supported by specifying
temporal relationships and recognizing similar patterns where these tasks themselves can
be accomplished by sub-tasks such as identifying, classifying, and ranking.

2.4.19 Gravi++

Gravi++ (Hinum et al., 2005) allows users to explore and analyze multiple categorical
variables using interactive visual clustering. This tool uses a spring-based layout to place
both patient and variable icons across the visualization, where the value of a variable for
a patient identifies the distance between that patient's icon and the variable’s icon.
Gravi++ provides users with the ability to detect clusters since patients with similar
values are placed together on screen. In order to visualize the exact values of each
variable for each patient, the tool shows each patient’s value as a circle around variables.
The patient icons are represented by spheres while the variable icons are encoded by

squares. Moreover, the tool can encode different patient attributes using patient icons; for
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instance, the size of the sphere can be mapped to the body mass index of the patient and

its color can encode the patient’s gender or therapeutic outcome.

Tene

Figure 2-10: IPBC: 3D visualization tool for analysis of numerical data from

multiple hemodialysis sessions. Source: reprinted from Journal of Visual Languages

& Computing, 14, Chittaro L, Combi C, Trapasso G, Data mining on temporal
data: a visual approach and its clinical application to hemodialysis, 591-620,
Copyright (2003), with permission from Elsevier.

This tool supports the activity of interpreting by allowing users to explore patient data
and discover clusters of similar patients. Monitoring can be accomplished by
investigating the development of a patient after a certain treatment. The sub-activities of

exploring, discovering, and investigating are supported by tasks such as recognizing
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patterns and specifying temporal relationships. Finally, identifying and classifying are the

lowest-level sub-tasks that are supported by the tool.

2.4.1.10 PatternFinder

PatternFinder (Fails et al., 2006) is a query-based tool for data visualization and visual
query that can help users search and discover temporal patterns within multivariate
categorical data. PatternFinder allows users to specify queries for temporal events with
time span and value constraints and enables them to look for temporally ordered
events/values/trends as well as the existence of events. Also, users can set a range of
possible time spans among the events to specify how far apart the events are from each
other. The tool has two main panels: the pattern design and query specification panel and
the result visualization panel. The leftmost part of the pattern design panel is the
Person/People panel that enables users to limit the types of patients by name, by choosing
from a list of patients, or by typing a text string. Any modifications that are done in this
panel are dynamic queries that lead to an immediate update of the results in the result
visualization panel. The temporal panel that is placed to the right of the Person/People
panel enables users to form temporal pattern queries by chaining the events together.
Users are able to search for the presence of events, the temporal sequence of events (e.g.,
an emergency doctor's visit followed by a hospitalization), the temporal sequence of
values (e.g., 200 or below cholesterol followed by 240 or higher), and the temporal value
patterns (e.g., monotonically decreasing). The result visualization panel displays a
graphical table of all the matches where each row shows a single pattern match for one
patient. Pattern matches are represented as a timeline in a "ball-and-chain" visualization
fashion where the event points are shown as circles and time spans are displayed by blue
bars between the events. The color of the event point in the result visualization panel
matches the color of the associated event in the query specification panel. All the events

that match the query pattern specified by users are linked together by horizontal lines.

In this tool, the activity of interpreting is supported by discovering patterns and exploring
patient data dynamically, where these sub-activities themselves can be carried out by
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tasks such as specifying temporal relationships and issuing dynamic queries. Identifying
and ranking are the two low-level sub-tasks that work together to support the
aforementioned tasks.

2.4.1.11 TimeRider

TimeRider (Rind et al., 2011a) offers an animated scatter plot to help users discover
patterns in irregularly sampled patient data covering several time spans. As shown in
Figure 11, time is represented by either traces or animation in TimeRider. Color, shape,
and size of marks are used to encode up to three additional variables. Users can compare
patient records of different time spans by synchronizing patients' age, calendar date, and

the start and end of the treatment.
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Figure 2-11: TimeRider: Interactive visualization tool for pattern recognition in

patient cohort data. Source: reprinted by permission from Springer Nature:
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Springer, Ergonomics and Health Aspects of Work with Computers, Visually
Exploring Multivariate Trends in Patient Cohorts Using Animated Scatter Plots,
Rind A, Aigner W, Miksch S, et al., copyright (2011).

This tool supports interpreting by allowing users to detect trends, clusters, and
correlations and providing them with an overview to visually compare patient data in
parallel. The sub-activities of detecting and overviewing can be carried out by tasks such
as specifying temporal relationships, clustering, and recognizing patterns. Identifying and

aligning are the sub-tasks that work together to support the aforementioned tasks.

2.4.1.12 VISITORS

VISITORS (Klimov et al., 2010) is an IVT that allows for exploration, analysis, and
retrieval of raw temporal data. The tool uses raw numerical data (e.g., white blood cell
counts) across time to derive temporal abstractions (e.g., durations of low, normal, or
high blood-cell-count levels for patients). It then uses lower-level temporal abstractions
in conjunction with raw data to generate higher-level abstractions. Finally, patient
groups’ values are aggregated and displayed. Figure 12 shows this tool’s visualization
environment, where raw numerical data is represented by line charts, whereas categorical

data is displayed as tick marks or bars on a horizontal zoomable timeline.

In this tool, the activity of interpreting is supported by exploring patient data in different
temporal granularities. The sub-activity of exploring can be carried out by tasks such as
specifying relationships, observing the distribution of aggregated values of a group of
patients, and locating records based on specific time and value constraints. VISITORS
supports the activity of monitoring by sub-activities, such as investigating treatment
effects, clinical trial results, and quality of clinical management processes. The latter sub-
activity, investigating, can be carried out by the task of recognizing patterns as well as all
the other tasks needed to support the activity of interpreting. Finally, aggregating,
classifying, aligning, and identifying are the lowest-level sub-tasks that are supported by

this tool.
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Figure 2-12: VISITORS: Interactive visualization tool for the exploration of
multiple patient records. (A) displays lists of patients. (B) displays a list of time
intervals. (C) displays the data for a group of 58 patients over the current time

interval. Panel 1 shows the white blood cell raw counts for the patients, while Panels
2 and 3 display the states of monthly distribution of platelet and haemoglobin in
higher abstraction, respectively. Abstractions are encoded in medical ontologies
displayed in panels (D). Source: reprinted from Journal of Artificial Intelligence in
Medicine, 49, Klimov D, Shahar Y, Taieb-Maimon M, Intelligent visualization and
exploration of time-oriented data of multiple patients, 11-31., copyright (2010), with

permission from Elsevier.

2.4.1.13 Prima

Prima (Gresh et al., 2002) is a population-based IVT that allows users to explore the
categorical and numerical data by constructing different linked views. This helps users to
not only understand the large set of patient records but also discover patterns and trends

in the dataset. The aggregated window provides an overview of the categorical variables
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by showing the proportions of patients in each category for those variables using stacked
bar charts. This window enables users to filter patients by applying a color “brush”. It
also displays correlations among different categorical variables through interactive
coloring. Another view displays a histogram of numerical variables. The data can also be
explored with a 2D scatter plot. Another view of the data is called multiple category
tables. It shows the values of either a single variable or multiple categories. Finally, the
tool incorporates the Kaplan—Meier curve to estimate the survival function from the

patient data.

Prima supports the activity of interpreting by allowing users to explore patient data
interactively, where this sub-activity itself can be accomplished by recognizing patterns
and specifying temporal relationships. Finally, aggregating and ranking are the lowest-

level sub-tasks that are supported by the tool.

2.4.1.14 WBIVS

WBIVS (Pieczkiewicz et al., 2007) is a web-based interactive tool that visualizes
numerical and categorical variables for lung transplant home monitoring data. Numerical
variables are displayed in line plots, while categorical variables are visualized in matrix
plots. The tool visualizes ten variables in total. When a data point gets selected, all the
other data points that belong to the same time period will get highlighted in the other
charts. Moreover, users can find details about the last two chosen data points on the right
part of the graph.

This tool supports the interpreting activity by allowing users to explore patient data
interactively and discover patterns. Monitoring is supported by investigating treatment
effects. The exploring and discovering sub-activities can be accomplished by tasks such
as specifying temporal relationships among data points and organizing data for pattern
recognition. These tasks can be composed of lowest-level sub-tasks, such as identifying,

classifying, and highlighting.
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2.4.2  Single-Patient Tools

Single-patient IVTs provide visualizations of one single-patient record at a time. These
tools enable users to overview a given patient’s historical data, detect important events in
the patient’s history, and recognize trends. In this section, we survey five single-patient

IVTs.

2.4.2.1 Midgaard

Midgaard (Bade et al., 2004) allows for exploration of the intensive care units’ data at
different levels of abstraction from overview to details. It uses visualizations to display
numerical variables of treatment plans. It incorporates a complex semantic zoom method
for numerical variables by calculating their categorical abstractions based on the
available screen area and zoom level. Midgaard provides users with the ability to switch
between different views such as a colored background, colored bars, area charts, or
augmented line charts based on the level of details. The tool can progressively switches
to a more detailed view to display all the individual data points when users zoom in or

switch back to more compact graphical elements when they zoom out.

Midgaard can also visualize medical treatment plans using colored bars where each bar
can contain further bars displaying sub-plans. It allows users to navigate and zoom by
interacting with two time axes that are placed below the visualization area. The bottom
axis displays a temporal overview of the patient record while the middle axis allows users

to see specific time intervals in more detail.

The activity of interpreting is supported by exploring patient data at different levels of
abstraction, where this sub-activity itself can be accomplished by tasks such as
recognizing fluctuations in data. Identifying and classifying are the two sub-tasks that are

supported by this tool.
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2422 MIVA

MIVA (Faiola and Newlon, 2011) (Medical information visualization assistant) is a tool
that transforms and organizes biometric data into temporal resolutions to provide
healthcare providers with contextual knowledge. It allows users to prioritize and
customize visualizations based on specific clinical problems. It visualizes the data using
point plots to display temporal changes in numerical values, where each variable is
represented by a separate plot, as shown in Figure 13. MIVA enables users to detect
changes in multiple physiological data points over time for faster and more accurate
diagnosis. Users can control the data source, time resolutions, and time periods to narrow

down the assessment of a patient’s condition.

\
D 0
New Patient = .jj d AJJQ R K | ﬁjd‘? - New Notation
2 X X
Patient Name: 80+ /1 U
Faiola, AJ [0 [ S 5 3 - P |
Patient ID 6o RS AR . . !
FAssoosssar2 o O ABP
Admitting Physician R I |
Smith, JT ;! 1
Attending Physician 50+ . 3. M O 2 |
Brown, AD 404 1 . ¢ i R esects
Bl 1 ] . . O e I e
204 |
— 15 10 5 -1
Display Sets *
70-. . 1 1 £} 4 2 . ? 1 P SN SR T JURC P A . ol eeeririiiininn.
. 60+ r y
D Cardiovascular 50 | | *
m— 15 10 5
Default Set 504
40+ . .
S 30+ . .
204 0l 4
| [i0s the b L L oL oL L L] [k
| I8 5 40 5 4
©ow I O U I 0 A A O 1O A A O v e B =
‘ O RAP s s § %
1 @ we
[ I T T

Figure 2-13: MIVA: Interactive visualization tool to show the temporal change of
numerical values where each variable is represented by an individual point plot.

Source: image courtesy of Antony Faiola.

This tool supports the activity of interpreting by enabling users to carry out sub-activities

such as exploring longitudinal relationships in patient data where this sub-activity can be
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accomplished by tasks such as specifying temporal relationships and recognizing patterns.

At the level of sub-tasks, this tool supports identifying as well as classifying.

24.2.3 VIE-VISU

VIE-VISU (Horn et al., 2001) uses a set of glyphs to display changes in a patient's status
over time in intensive care. Each glyph’s geometrical shape and color encodes categorical
variables, while the numerical variables are represented by size of the glyph's elements.
Every glyph can encode 15 variables that are classified by physiological systems. For
instance, the respiratory parameters are mapped to a rectangle in the middle of the glyph;
circulatory parameters are mapped to a triangle on top of the glyph, and the fluid balance
parameters are shown by two smaller rectangles at the bottom of the glyph. By default,

the tool displays 24 glyphs, one per hour.

The activity of interpreting can be accomplished by overviewing a patient’s status, where
this sub-activity is supported by tasks such as recognizing patterns. This tool supports
monitoring by evaluating changes in patient’s status over time. The task of identifying
temporal relationships supports the sub-activity of evaluating. Finally, aggregating and
classifying are two sub-tasks that can be carried out by the tool.

2.4.2.4 Lifelines

Lifelines (Plaisant et al., 1998) offers a visualization environment to show patient history
on a zoomable timeline, where a patient's medical record is displayed by a set of events
and lines. Episodes and events in a patient record are represented by a set of multiple line
segments as shown in Figure 14. Color can be used to encode the states of categorical
variables. This IVT provides an overview of a patient history to recognize trends, specify

important events, and detect omissions in data.

The activity of interp