
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

7-15-2020 10:30 AM 

Visual Analytics of Electronic Health Records with a focus on Visual Analytics of Electronic Health Records with a focus on 

Acute Kidney Injury Acute Kidney Injury 

Sheikh S. Abdullah, The University of Western Ontario 

Supervisor: Kamran Sedig, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Computer Science 

© Sheikh S. Abdullah 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Databases and Information Systems Commons, Data Science Commons, and the Health 

Services Research Commons 

Recommended Citation Recommended Citation 
Abdullah, Sheikh S., "Visual Analytics of Electronic Health Records with a focus on Acute Kidney Injury" 
(2020). Electronic Thesis and Dissertation Repository. 7086. 
https://ir.lib.uwo.ca/etd/7086 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/816?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/816?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7086?utm_source=ir.lib.uwo.ca%2Fetd%2F7086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

The increasing use of electronic platforms in healthcare has resulted in the generation of 

unprecedented amounts of data in recent years. The amount of data available to clinical 

researchers, physicians, and healthcare administrators continues to grow, which creates an 

untapped resource with the ability to improve the healthcare system drastically. Despite the 

enthusiasm for adopting electronic health records (EHRs), some recent studies have shown 

that EHR-based systems hardly improve the ability of healthcare providers to make better 

decisions. One reason for this inefficacy is that these systems do not allow for human-data 

interaction in a manner that fits and supports the needs of healthcare providers. Another 

reason is the information overload, which makes healthcare providers often misunderstand, 

misinterpret, ignore, or overlook vital data. The emergence of a type of computational system 

known as visual analytics (VA), has the potential to reduce the complexity of EHR data by 

combining advanced analytics techniques with interactive visualizations to analyze, 

synthesize, and facilitate high-level activities while allowing users to get more involved in a 

discourse with the data. The purpose of this research is to demonstrate the use of 

sophisticated visual analytics systems to solve various EHR-related research problems. This 

dissertation includes a framework by which we identify gaps in existing EHR-based systems 

and conceptualize the data-driven activities and tasks of our proposed systems. Two novel 

VA systems (VISA_M3R3 and VALENCIA) and two studies are designed to bridge the 

gaps. VISA_M3R3 incorporates multiple regression, frequent itemset mining, and interactive 

visualization to assist users in the identification of nephrotoxic medications. Another 

proposed system, VALENCIA, brings a wide range of dimension reduction and cluster 

analysis techniques to analyze high-dimensional EHRs, integrate them seamlessly, and make 

them accessible through interactive visualizations. The studies are conducted to develop 

prediction models to classify patients who are at risk of developing acute kidney injury (AKI) 

and identify AKI-associated medication and medication combinations using EHRs. Through 

healthcare administrative datasets stored at the ICES-KDT (Kidney Dialysis and 

Transplantation program), London, Ontario, we have demonstrated how our proposed 

systems and prediction models can be used to solve real-world problems. 
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Summary for Lay Audience 

Advances in healthcare technology have resulted in the generation of large amounts of 

electronic data in the form of electronic health records (EHRs). Adoption of EHR makes it 

easy to organize, access, and store medical records through computerized data management 

tools. Despite the potential benefits, healthcare professionals continue to report difficulty in 

adopting EHR-based systems. One of the main reasons for this problem is the complicated 

and improperly designed user interfaces in these systems, which often makes healthcare 

providers overlook vital information. The purpose of this research is to prove the use of 

visual analytics (VA) to solve various EHR-related problems. VA combines automated 

analysis with interactive visualizations for effective reasoning, understanding and decision 

making based on complex data. Through a literature survey and proposed framework, we 

first analyze the existing EHR-based systems and understand why they fail to fulfill the 

computational demand of EHRs. Two novel VA systems (VISA_M3R3 and VALENCIA) 

and two studies are designed to demonstrate how the VA approach can be used to overcome 

the challenges of EHRs. VISA_M3R3 is designed to assist healthcare providers in the 

identification of medications that may associate with a higher risk of developing acute kidney 

injury (AKI). VALENCIA provides users with the ability to explore high-dimensional EHRs 

using a number of dimension reduction and cluster analysis algorithms. The studies are 

conducted to identify AKI-associated medication and medication combinations and predict 

the risk of developing AKI using EHRs. Through healthcare administrative datasets stored at 

the ICES-KDT (Kidney Dialysis and Transplantation program), we have shown how our 

proposed approach can be used to solve real-world problems. 
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Chapter 1  

1 Introduction 

1.1 Motivation 

The increasing use of electronic platforms in healthcare has produced unprecedented 

amounts of data in recent years. In the healthcare industry, as a part of modernizing their 

operations, the medical organizations are adopting electronic health records (EHRs) and 

deploying new information technology systems that generate, collect, digitize, and 

analyze their data (Caban and Gotz, 2015). This data includes, but is not limited to, 

medical and demographic records of patients, hospital and emergency room records, and 

results of laboratory tests. The amount of information available to clinical researchers, 

physicians, healthcare administrators, and policymakers continues to grow, which creates 

an untapped resource with the ability to drastically improve the healthcare system 

(Kamal, 2014; Murdoch and Detsky, 2013). While initially created for archiving patient 

records and supporting healthcare administrative tasks such as billing, many researchers 

have observed the secondary use of EHRs for clinical research purposes (Shickel et al., 

2018). Healthcare providers use modern systems to diagnose patients (Graber et al., 

2017), detect hidden patterns and trends, study the effects of medications (Feng et al., 

2019), determine the effectiveness of treatments (Cowie et al., 2017), monitor patient 

improvement (Doupi, 2012), reduce medical errors (Agrawal, 2009), and ultimately 

improve quality of care (Ali et al., 2007; Christensen and Grimsmo, 2008; Tang and 

McDonald, 2006). Despite the growing interest in adopting EHRs, some studies have 

shown that EHR-based systems hardly improve the ability of healthcare providers to 

make better decisions (Heisey-Grove et al., 2014; Lau et al., 2012). One of the main 

reasons for this inefficacy is that these systems do not allow for human-data interaction in 

a manner that supports and fits the needs of healthcare providers  (Himmelstein et al., 

2010; Rind, 2013). Another reason is the information overload that arises when the 

number of data items exceeds the limit of human cognition (Halford et al., 2005). The 
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users often misunderstand, misinterpret, ignore, or overlook vital data because of 

information overload. In the healthcare domain, information overload often leads to an 

incorrect diagnosis, wrong interpretation of patient conditions, and erroneous treatment 

decisions (Caban and Gotz, 2015). For example, in a survey about the efficacy of 

electronic health records (EHRs) in the U.S., of over 500 primary-care physicians, only 

66% of physicians were somewhat satisfied with existing EHR systems. Many physicians 

still continue to report problems. About 40% of physicians thought that there are more 

challenges with existing EHR-based systems than benefits. These physicians suggested 

that these systems’ user interfaces were not designed well. They found this more 

important than the incorporation of analytics capabilities that support diagnosis, 

management, and prevention. Of those surveyed, 72% wanted improved user interfaces in 

these systems; whereas 43% believed that predictive analytics would improve the 

efficacy of EHR-based systems (EHRIntelligence, 2018). Thus, it seems that there is a 

growing demand for computational systems that integrates automated analysis techniques 

with user interfaces that facilitate interaction with visualizations of data (i.e., interactive 

visualizations). 

Interactive visualizations can be defined as computational systems that store and process 

data and use visual representations to amplify human cognition (Proctor and Vu, 2012; 

Sedig and Parsons, 2016). They have the potential to boost the utilization of data in 

healthcare by providing a means to access the EHR data at various levels of granularity 

and abstraction. Interactive visualizations enable users to explore the underlying data, 

modify the representation, and change different visual elements to achieve their goals. 

For the last two decades, several EHR-based visualization systems have been developed 

to support healthcare providers to perform various data-driven activities (Rind et al., 

2013). However, there are some gaps in support for certain types of higher-level activities 

and tasks supported by these systems for a number of reasons. Firstly, some of the 

visualizations are not capable of dealing with fast-paced data generated by different 

healthcare organizations (Cybulski et al., 2015; Zhang et al., 2012). Secondly, some 

improperly designed visualizations encode too much information at once, which often 
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overwhelm the cognitive abilities of users and limit users’ ability to make time-sensitive 

decisions (Pike et al., 2009; Tominski, 2015). Finally, most of these systems can only 

represent a limited number of attributes and relationships within the data (Aimone et al., 

2013; Faisal et al., 2013; Kosara and Miksch, 2002; Lavado et al., 2018). When working 

with high dimensional healthcare data, it is important to analyze hidden, non-explicit, and 

unknown relationships among the attributes. Thus, even the complex visualization 

systems are often inadequate to fulfill the computational demand of EHRs because they 

do not incorporate analytical processes, which is essential for recognizing hidden patterns 

and trends. 

Data analytics is the process of investigating raw data to gain both deeper and novel 

insights on associations within the data (Koh and Tan, 2005). Data analytics includes 

algorithms, techniques, and methods from different fields, such as statistics, machine 

learning, and data mining, to assist users in informed decision-making (Han and Kamber, 

2011). There are several systems developed in recent years that employ different 

analytics techniques to predict patient outcomes, enable disease diagnosis and prognosis, 

make treatment-related decisions, and discover relationships between risk factors (Yoo et 

al., 2012). Although these systems are designed to analyze large amounts of data, they 

often fail to build trust with healthcare providers. One of the main reasons lies in their 

lack of transparency and interpretability. The intermediary steps, adjustment of the 

configuration parameters, and theoretical assumptions are kept hidden from end-users, 

which limits their application in healthcare settings (Yoo et al., 2012). In addition, most 

of the analytics systems are not capable of efficiently managing ill-defined problems 

because they do not consider human judgment in the decision-making process (Ola and 

Sedig, 2014). In order to address these issues, analytical processes need to be made 

accessible through visualizations.  

Despite the advantages, both interactive visualization systems, with compelling 

interaction and representation techniques and data analytics systems, with their powerful 

computational capabilities, fall short in fulfilling the computational and cognitive 
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demands of EHRs. Thus, it seems that a combined approach may be needed—that is, 

combining analytical processes with interactive visualizations. Visual analytics (VA) has 

the potential to address the needs of EHRs by combining the strengths and alleviate the 

limitations of both types of systems mentioned above (Ola and Sedig, 2014). VA 

manages the complexity of EHRs and supports visuo-analytical reasoning in such a way 

that the initially overwhelming scale of data becomes a treasured asset (Kamal, 2014). It 

enables users to analyze, synthesize, and facilitate high-level cognitive activities while at 

the same time get more involved in the discourse with the data (D. Keim et al., 2010a; 

Thomas and Cook, 2006). Although the VA approach conceivably supports different 

EHR-driven activities (e.g., exploration of patient history and identification of patients at 

risk), to date, healthcare falls behind other sectors in the development of VA systems. 

The design of such systems is not straightforward, which requires designers to take into 

consideration users’ activities and tasks, human factors, and the structure of the data. A 

number of complicated decisions need to be made by the designers. For instance, when 

choosing an analysis technique, it is important to consider which algorithm to use, which 

samples and features to incorporate, and what granularity to seek for a specific task. 

Similarly, when developing visualizations, one needs to determine how to encode and 

organize data elements and how to support users’ tasks. Consequently, integrating 

analysis techniques with visualizations results in a more complicated challenge. Thus, 

there is a lack of direction and confusion over how to design effective VA systems for 

EHRs (Carroll et al., 2014; Folorunso and Shawn Ogunseye, 2008; Turner et al., 2008).    

The goal of this dissertation is to demonstrate how VA systems can be designed for 

EHRs. To begin with, we conducted a systematic literature survey to examine the design 

of existing EHR-based systems. Since there were not too many VA systems that are 

designed for EHRs, we included the EHR-based interactive visualization systems as well 

in the survey. We then presented a framework to analyze and evaluate EHR-data-driven 

tasks and activities of these systems. The framework helped us to identify gaps in the 

existing systems and conceptualize the data-driven activities and tasks of EHR-based VA 

systems. In light of this, we designed and developed two novel VA systems 
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(VISA_M3R3 and VALENCIA) and conducted two independent studies. The systems 

and studies in this dissertation were mainly focused on acute kidney injury (AKI) because 

they were designed to assist the clinicians, epidemiologists, and analysts at the ICES-

KDT program. ICES is an independent, non-profit, world-leading research organization 

that uses population-based health and social data to produce knowledge on a broad range 

of healthcare issues. KDT refers to the Kidney Dialysis and Transplantation 

program located in London, Ontario, Canada. We demonstrated the usefulness of these 

systems by investigating the process of analyzing the health administrative datasets 

housed at ICES to gain novel insights into the data and fulfill the tasks at hand. The 

tasks included, but are not limited to, predicting AKI, identifying AKI-associated 

medication, examining the synergistic effects of AKI-associated medication 

combinations, and identifying risk-factors for AKI.  

One of the main contributions of this dissertation is the conceptualization and design of 

human- and activity-centered computational systems for healthcare. There are several 

challenges that designers might face when developing a computational system for 

healthcare providers. These challenges include, but are not limited to, providing busy 

physicians timely information in the precise format, visualizing comparative-

effectiveness and casual relationships, facilitating data-driven decision-making, and 

characterizing and understanding similarity among information items. This dissertation 

describes how these challenges can be addressed using a combination of statistical 

methods, data mining algorithms, machine learning techniques, and information 

visualization. This dissertation also demonstrates how VA systems can be designed in a 

systematic way. It describes different components of VA in a structured manner and 

explains the design decisions that need to be made while developing a VA system. This 

dissertation then illustrates how different design choices can lead to the development of 

an optimized VA system for healthcare. Finally, this dissertation demonstrates how 

healthcare providers' abilities to interact with data mining and machine learning processes 

can be improved by using well-designed VA systems. Through the development of two 

novel VA systems, this dissertation offers the healthcare domain with evidence of the 
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efficacy of VA for analyzing EHRs.  This research has implications for other domains 

that require their data to be made accessible and analyzable through VA. 

1.2 Structure of this dissertation 

The rest of this dissertation is divided into six chapters, as follows:  

In Chapter 2, we present a framework to identify and analyze EHR-data-driven tasks and 

activities in the context of interactive visualization systems—that is, all the activities, 

sub-activities, tasks, and sub-tasks that are and can be supported by EHR-based systems. 

We conducted a systematic literature survey to analyze the researches that describe the 

design, implementation, and/or evaluation of these systems. The survey includes an 

overview of their goals, a short description of their visualizations, and an analysis of how 

sub-activities, tasks, and sub-tasks combine and blend to accomplish their higher-level 

activities. Our proposed framework reveals gaps in support of some higher-level 

activities supported by these systems. This chapter provides background for the 

dissertation. 

In Chapter 3, we describe how VA systems can be designed to utilize the prescription 

data stored in EHRs. To achieve this, we propose and describe VISA_M3R3, a novel VA 

system designed to assist healthcare providers in identifying medications and medication 

combinations that associate with a higher risk of AKI. By integrating multiple logistic 

regression models, data visualization, frequent itemset mining, and human-data 

interaction mechanisms, VISA_M3R3 allows users to explore complex relationships 

between medications, medication combinations, and AKI in such a way that would be 

difficult without the aid of a VA system. 

In Chapter 4, we present a population-based retrospective cohort study to test the 

hypotheses generated from the VISA_M3R3 and understand the synergistic effect of 

AKI-inducing medication combinations. By integrating multivariable logistic regression, 

frequent itemset mining, and stratified analysis, this study is designed to explore complex 

relationships between medications and AKI. We demonstrate that our results are 
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consistent with previous studies through an electronic literature search and a consultation 

with a nephrologist in this chapter.  

In Chapter 5, we present another novel VA system, called VALENCIA, to address the 

challenges of high-dimensional EHRs in a systematic way. VALENCIA brings together a 

wide range of cluster analysis and dimension reduction techniques, integrate them 

seamlessly, and make them accessible to users through interactive visualizations. It offers 

a balanced distribution of processing load between users and the system to facilitate the 

performance of high-level cognitive activities. Through a case study, we demonstrate 

how VALENCIA can be used to analyze the healthcare administrative dataset stored at 

ICES. During the cluster analysis of ICES datasets using VALENCIA, we identify 

several risk factors that may associate with AKI by investigating the characteristics of 

clusters where AKI is common. This motivated us to conduct a separate study on 

predicting AKI, which is described in chapter 6. 

In Chapter 6, we employ a number of machine learning techniques to identify older 

patients who are at risk of developing AKI within 90 days after they are discharged from 

the hospital or emergency department. The records of one million patients are included in 

this study who visited the hospital or emergency department in Southwestern Ontario 

between 2014 and 2016. We developed sixteen prediction models based on combinations 

of four machine learning techniques and four ensemble-based methods along with a cost-

sensitive logistic regression model. These models are evaluated through 10-fold cross-

validation and compared based on the AUROC metric. We also validate features that are 

most relevant in predicting AKI with a healthcare expert through a participatory design 

process to improve the performance and reliability of the models.  

In Chapter 7, we outline the conclusions drawn from the research presented in the 

preceding chapters, explain the contributions of this work to the broader scientific 

community, and discuss some areas of future research.   
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It is important to note that the chapters of this dissertation are self-sufficient and can be 

read individually or sequentially. Chapters 2,3, 4, and 5 have been published; Chapters 6 

has been accepted for publication. This dissertation is written in an integrated article 

format, so Chapters 2 through 6 are self-contained. 
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Chapter 2  

2 Data-Driven Activities Involving Electronic Health 
Records: An Activity and Task Analysis Framework for 
Interactive Visualization Tools 

This chapter has been published as N. Rostamzadeh, S.S. Abdullah, and K. Sedig, “Data-

Driven Activities Involving Electronic Health Records: An Activity and Task Analysis 

Framework for Interactive Visualization Tools” in the Multimodal Technologies Interact. 

Journal, 4(1), 7; February 2020. We changed the format to match the general format of 

the dissertation. Figure, Table and Section numbers specified herein are relative to the 

chapter number. For example, “Table 1” corresponds to Table 2-1; “Figure 1” 

corresponds to Figure 2-1; and “Section 1.1” corresponds to Section 2.1.1. Moreover, 

when the term “paper”, “research”, or "work" is used, it refers to this specific chapter. 

2.1 Introduction 

An electronic health record (EHR) contains patient data, such as demographics, 

prescriptions, medical history, diagnosis, surgical notes, and discharge summaries. 

Healthcare providers use EHRs to make critical decisions, study the effects of treatments, 

determine the effectiveness of treatments, and monitor patient improvement after a 

particular treatment. In addition to these benefits, EHRs can potentially aid clinical 

researchers in detecting hidden trends and missing events, revealing unexpected 

sequences, reducing the incidence of medical errors, and establishing quality control 

(Christensen and Grimsmo, 2008; Tang and McDonald, 2006). Recently, several 

healthcare organizations have used systems that incorporate EHR data to improve the 

quality of care; these systems are intended to replace traditional paper-based medical 

records (Boonstra et al., 2014). However, a few studies reveal that these EHR-based 

systems hardly improve the quality of care. One of the reasons for this is that they do not 

allow for human–data interaction in a manner that fits and supports the needs of 

healthcare providers (Himmelstein et al., 2010; Rind et al., 2013). A set of technologies 

and techniques that can improve the efficacy and utility of these EHR-based systems can 
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be found in information visualization (Rind et al., 2013), or broadly speaking interactive 

visualization tools (IVTs). 

IVTs can be defined as computational technologies that use visual representations (i.e., 

visualizations) to amplify human cognition when working with data (Sears and Jacko, 

2007; Sedig and Parsons, 2016). IVTs can help people who use them gain better insight 

by providing the means to explore the data at various levels of granularity and 

abstraction. An important feature of IVTs that makes them suitable for the exploration of 

EHRs is the ability to show relevant data quickly by mapping it to visualizations (Rind et 

al., 2013). Another feature is interaction. Making the visualization interactive allows 

healthcare providers to perform various data-driven tasks and activities. Interaction helps 

users accomplish their overall goals by dynamically changing the mapping, view, and 

scope of EHR data. In recent years, a number of EHR-based IVTs have been developed 

and deployed to support healthcare providers in performing data-driven activities. 

To provide a clear and systematic approach in examining EHR-based IVTs for clinical 

decision support, this paper provides a framework for analyzing tasks and activities 

supported by these tools. To do so, we will first provide a brief survey of some of the 

existing IVTs that support the exploration and querying of EHR data and examine overall 

patterns in these tools. This survey does not include EHR-based IVTs that are designed 

for clinical documentation, administration, and billing processes. 

There are a few studies that review EHR-based IVTs and their applications. Rind et al. 

(Rind et al., 2013) reviewed and compared state-of-the-art information visualization tools 

that involve EHR data using four criteria: (1) data types that they cover, (2) support for 

multiple variables, (3) support for one versus multiple patient records, and (4) support for 

user intents. Lesselroth and Pieczkiewicz (Lesselroth and Pieczkiewicz, 2011) surveyed 

different visualization techniques for EHRs. They cover a large number of visualization 

tools (e.g., Lifelines, MIVA, WBIVS, and VISITORS). Their survey is organized into 

five sections: (1) multimedia, (2) smart dashboards to improve situational awareness, (3) 

longitudinal and problem-oriented views to tell clinical narratives, (4) iconography and 
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context links to support just-in-time information, and (5) probability analysis and 

decision heuristics to support decision analysis and bias identification. Combi et al. 

(Combi et al., 2010) reviewed a few visualization tools (e.g., IPBC, KHOSPAD, KNAVE 

II, Paint Strips, and VISITORS) and described them based on the following features: 

subject cardinality (single/multiple patients), concept cardinality (single/multiple 

variables), abstraction level (raw data, abstract concepts, knowledge), and temporal 

granularity (single, single but variable, multiple). Finally, in a book chapter, Aigner et al. 

(Aigner et al., 2008) described strategies to visualize (1) clinical guidelines seen as plans 

(e.g., GEM Cutter, DELT/A), (2) patients’ data seen as multidimensional information 

space (e.g., Midgaard, VIE-VISU, Gravi++), and (3) patients’ data related to clinical 

guidelines (e.g., Tallis Tester, CareVis). 

A careful examination of the above surveys shows that a systematic analysis of IVTs with 

a focus on how they support EHR-data-driven tasks and activities is lacking. The purpose 

of the current paper is to fill this gap. Here, we present a framework for analyzing how 

IVTs can support different EHR-based tasks and activities. The framework can help 

designers and researchers to conceptualize the functionalities of EHR-based IVTs in an 

organized manner. In addition, this paper is suggestive of how this framework can be 

used to evaluate existing EHR-based IVTs and design new ones systematically. This 

paper also leads to the development of best practices for designing similar frameworks in 

similar areas. 

The rest of this paper is organized as follows. Section 2 discusses how the proposed 

framework is formed and examines the relationships among the three concepts of 

activities, tasks, and low-level interactions in the context of the framework. Section 3 

presents our strategy for searching relevant literature and explains our selection criteria. 

Section 4 provides a brief survey of a set of IVTs and outlines their main goal(s). In this 

section, using the proposed analytical framework, we identify the tasks and activities that 

IVTs support. Finally, Section 5 discusses how the framework can be used to evaluate the 

surveyed EHR-based IVTs. 
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2.2 A Proposed Activity and Task Analysis Framework 

In the context of IVTs, user-tool interaction can be conceptualized as actions that are 

performed by users and consequent reactions that occur via the tool’s interface. This bi-

directional relationship between the user and the tool supports the flow of information 

between the two. Interaction allows for human–information discourse (Ola and Sedig, 

2018). Furthermore, it allows users to adjust different features of the IVT to suit their 

analytical needs. Interaction can be characterized at different levels of granularity (Sedig 

and Parsons, 2016, 2013). As displayed in Figure 1, an activity can be conceptualized at 

the highest level, where it is composed of multiple lower-level tasks (e.g., ranking, 

categorizing, and identifying) that work together to accomplish the activity's overall goal. 

An activity and a task can consist of multiple sub-activities and sub-tasks, respectively. 

At the lower level, tasks can be considered to have visual and interactive aspects; tasks 

that are supported by visual processing are called visual tasks. For instance, consider a 

scenario in which a user is working with a stacked bar chart that aggregates laboratory 

test results. The user needs to understand the distribution of a specific test of a collection 

of patients after surgery over time. Some of the visual tasks that the user may need to 

perform can include detecting the time when the test is at its peak and observing the 

average test result at different times. Interactive tasks require users to act upon 

visualizations. For instance, in the example above, the user may want to cluster the test 

results based on different time granularities (e.g., over an hour, over a day, or over a 

month). Each interactive task is made up of a number of lower-level actions (i.e., 

interactions) that are carried out to complete the task.  

In most complex situations, activities, sub-activities, tasks, and sub-tasks are combined to 

support users in accomplishing their overall goal. It is important to note two perspectives 

from which we can view human–data discourse. From a top-down perspective, users’ 

goals flow from higher-level activities that need to be accomplished. From here, we go 

down to a number of tasks and sub-tasks (visual and interactive), and then to a set of low-

level interactions. From a bottom-up perspective, the performance of a series of low-level 

interactions that users perform with visual representations gives emergence to tasks. 
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Similarly, the performance of a sequence of tasks gives emergence to activities all the 

way up until an overall goal is accomplished.  

In this paper, we present an activity and task analysis framework for examining EHR-

based IVTs (i.e., ones that involve EHRs as their main source of data with which users 

perform data-driven tasks and activities). To identify what activities, sub-activities, tasks, 

and sub-tasks are supported in EHR-based IVTs, we have examined a number of such 

tools that have been developed by different researchers and have been reported in the 

literature (see Wang et al. (Wang et al., 2008); Wongsuphasawat et al. (Wongsuphasawat 

et al., 2011); Wongsuphasawat and Gotz (Wongsuphasawat and Gotz, 2012); Malik et al. 

(Malik et al., 2014); Fails (Fails et al., 2006); Klimov et al. (Klimov et al., 2010); 

Wongsuphasawat (Wongsuphasawat, 2009); Monroe et al. (Monroe et al., 2013); 

Brodbeck et al. (Brodbeck et al., 2005); Chittaro et al. (Chittaro et al., 2003); Rind et al. 

(Rind et al., 2011a); Plaisant et al. (Plaisant et al., 1998); Faiola and Newlon (Faiola and 

Newlon, 2011); Pieczkiewicz et al. (Pieczkiewicz et al., 2007); Bade et al. (Bade et al., 

2004); Hinum et al. (Hinum et al., 2005); Rind et al. (Rind et al., 2011b); and Ordonez et 

al. (Ordonez et al., 2012); Gresh et al. (Gresh et al., 2002); Horn et al. (Horn et al., 

2001)). To conceptualize and develop the elements of the framework, our focus is the 

identification of activities and tasks that are independent of any specific technology or 

platform. To be consistent, we re-interpret how activities and tasks are named by the 

authors of the afore-listed sources in light of the unified language of our proposed 

framework. The activity and task terms we use might differ from the language of the 

existing literature since the authors have described their tools using their own vocabulary. 

Unfortunately, the language that different authors use is not consistent. Such 

inconsistency makes it difficult to analyze how well and comprehensively such tools 

support EHR-based tasks and how they can be improved. In the next section, we define 

and categorize the higher-level activities that result from interaction and combination of 

different sub-activities, tasks, and sub-tasks. 
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2.2.1 Higher-Level Activities: Interpreting, Predicting, and 
Monitoring 

After reviewing numerous papers, we have concluded that, broadly speaking, all EHR-

data-driven healthcare activities can be organized under three main categories: 

interpreting (Auffray et al., 2016; Groves et al., 2003; Komaroff, 1979; Kumar et al., 

2007; Låg et al., 2014), predicting (Amarasingham et al., 2014; Cohen et al., 2014; 

Kankanhalli et al., 2016; Raghupathi and Raghupathi, 2014; Allan F. Simpao et al., 2014; 

Wang et al., 2018), and monitoring (Anderson et al., 2015; Hauskrecht et al., 2013; Kho 

et al., 2007; Li and Wang, 2016; Saeed et al., 2002; Tia Gao et al., 2005). Interpreting 

refers to the activity of detecting patterns from patients’ medical records and making 

sense of the relationships among different features. Predicting refers to the activity of 

anticipating patient outcomes and creating new hypotheses by analyzing patient history 

and status (Siegel, 2013). Lastly, monitoring refers to the activity of repetitive testing 

with the aim of adjusting and guiding the management of recurrent or chronic diseases 

(Glasziou et al., 2005). 
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Figure 2-1: Relationships among activities, tasks, and interactions. Top-down view: 

activity is made up of sub-activities, tasks, sub-tasks, and interactions. Bottom-up 

view: activity emerges over time, through performance of tasks and interactions. 

Visualizations are depicted as Vis and reactions as 𝐑𝐱. Source: adapted from (Sedig 

and Parsons, 2016). 

2.2.2 Hierarchical Structure of Activities, Sub-Activities, Tasks, 
and Sub-Tasks 

In this section, we identify sub-activities, tasks, and sub-tasks that blend and combine 

together to give rise to the three activities of interpreting, predicting, and monitoring. 

Interpreting, as a higher-level activity, can be comprised of four sub-activities: (i) 

understanding (e.g., gaining insight into patient medical records), (ii) discovering (e.g., 

finding patients with interesting medical event patterns), (iii) exploring (e.g., observing 

patient data in different temporal granularities), and (iv) overviewing (e.g., providing 
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compact visual summaries of all event sequences found in the data). Likewise, predicting 

can be comprised of two sub-activities: (i) learning (e.g., generating new hypotheses 

from the data), and (ii) discovering (e.g., recognizing the deterioration of the disease). 

Finally, monitoring is composed of (i) investigating (e.g., examining the development of 

a patient after treatment), (ii) analyzing (e.g., studying the aggregated event sequences for 

quality assurance), and (iii) evaluating (e.g., assessing the quality of care based on 

clinical parameters). 

 

Figure 2-2: Overview of the proposed activity and task analysis framework. The 

visual tasks are represented as blue and interactive tasks are represented as yellow. 
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At the next level of the hierarchy, as shown in Figure 2, each sub-activity can be 

composed of a number of visual (e.g., specifying, recognizing, and detecting) as well as 

interactive tasks (e.g., locating, ordering, querying, and clustering). Moreover, as shown 

in Table 1, each task consists of different sub-tasks; for instance, ordering can be carried 

out by a combination of sub-tasks such as ranking, aggregating, identifying, and 

classifying.  

Table 2-1: Shows the breakdown of the interactive and visual tasks. 

 Task Sub-tasks 

 

Ordering Aggregating, Classifying, Identifying, Ranking 

Locating Aggregating, Aligning, Classifying, Identifying, Ranking 

Querying Classifying, Identifying, Ranking,  

Organizing Aggregating, Classifying, Identifying, Highlighting 

Summarizing Aggregating, Classifying, Identifying 

Clustering Classifying, Identifying, Ranking 

Observing Aggregating, Aligning, Identifying, Ranking 

 

Recognizing Aggregating, Aligning, Classifying, Identifying, Ranking 

Specifying Aggregating, Aligning, Classifying, Identifying, Highlighting, Ranking 

Detecting Classifying, Identifying, Ranking 

2.3 Methods 

2.3.1 Search Strategy 

We conducted an electronic literature search in order to collect the research papers that 

describe the design, implementation, or evaluation of EHR-based IVTs. In order to assure 

a comprehensive document search, we included all the keywords that are relevant to the 

goal of the research and also covered all the synonyms and related terms, both for EHRs 

and visualization tools. We further broadened our search by adding an * to the end of a 

term to make sure the search engines picked out different variations of the term. We also 

added quotation marks around phrases to ensure that the exact sequence of words is 
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found. To ensure that relevant papers were not missed in our search, we used a relatively 

large set of keywords. We used two categories of keywords. The first category concerned 

visualization tools and included the following terms: “visualization*”, “visualization 

tool*”, “information visualization*”, “interactive visualization*”, “interactive 

visualization tool*”, “visualization system*”, and “information visualization system*”. 

For the second category, EHR, we used the following terms: “Health Record*”, 

“Electronic Health Record*”, “EHR*”, “Electronic Patient Record*”, “Electronic 

Medical Record*”, “Patients Record*”, and “Patient Record*”. As we were looking for 

papers about EHR-based visualization tools, we used the keywords shown in Table 2.  

We used the following search engines based on their relevance to the field: PubMed, the 

ACM Digital Library, the IEEE Library, and Google Scholar. We also looked for relevant 

papers in two medical informatics journals (International Journal of Medical Informatics 

and Journal of the American Medical Informatics Association). Furthermore, additional 

papers were collected in conference proceedings (e.g., IEEE Conference on Visual 

Analytics Science and Technology (VAST), HCIL Workshop 2015, and IEEE VisWeek 

Workshop on Visual Analytics in Health Care) that were published in 2007 and later. We 

then manually reviewed the reference lists of the papers that met the selection criteria to 

find other relevant studies that had not been identified in the database search. All the 

studies included in this survey were published from 1998 until 2015. We reviewed all of 

the abstracts, removed the duplicates, and shortlisted abstracts for a more detailed 

assessment. 

Table 2-2: Overview of the search terms used. 

Terms Used 

“Visualization*” +“Health Record*” 

“Visualization*” + “Electronic Health Record*” 

“Visualization*” + “EHR*” 

“Visualization*” + “Electronic Patient Record*” 

“Visualization*” + “Electronic Medical Record*” 
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“Visualization*” + “Patients Record*” 

“Visualization*” + “Patient Record*” 

“Visualization tool*” +“Health Record*” 

“Visualization tool*” + “Electronic Health Record*” 

“Visualization tool*” + “EHR*” 

“Visualization tool*” + “Electronic Patient Record*” 

“Visualization tool*” + “Electronic Medical Record*” 

“Visualization tool*” + “Patients Record*” 

“Visualization tool*” + “Patient Record*” 

“Information visualization*” +“Health Record*” 

“Information visualization*” + “Electronic Health Record*” 

“Information visualization*” + “EHR*” 

“Information visualization*” + “Electronic Patient Record*” 

“Information visualization*” + “Electronic Medical Record*” 

“Information visualization*” + “Patients Record*” 

“Information visualization*” + “Patient Record*” 

“Interactive visualization*” +“Health Record*” 

“Interactive visualization*” + “Electronic Health Record*” 

“Interactive visualization*” + “EHR*” 

“Interactive visualization*” + “Electronic Patient Record*” 

“Interactive visualization*” + “Electronic Medical Record*” 

“Interactive visualization*” + “Patients Record*” 

“Interactive visualization*” + “Patient Record*” 

“Interactive visualization tool*” +“Health Record*” 

“Interactive visualization tool*” + “Electronic Health Record*” 

“Interactive visualization tool*” + “EHR*” 

“Interactive visualization tool*” + “Electronic Patient Record*” 
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“Interactive visualization tool*” + “Electronic Medical Record*” 

“Interactive visualization tool*” + “Patients Record*” 

“Interactive visualization tool*” + “Patient Record*” 

“Visualization system*” + “Health Record*” 

“Visualization system*” + “Electronic Health Record*” 

“Visualization system*” + “EHR*” 

“Visualization system*” + “Electronic Patient Record*” 

“Visualization system*” + “Electronic Medical Record*” 

“Visualization system*” + “Patients Record*” 

“Visualization system*” + “Patient Record*” 

“Information visualization system*” + “Health Record*” 

“Information visualization system*” + “Electronic Health Record*” 

“Information visualization system*” + “EHR*” 

“Information visualization system*” + “Electronic Patient Record*” 

“Information visualization system*” + “Electronic Medical Record*” 

“Information visualization system*” + “Patients Record*” 

“Information visualization system*” + “Patient Record*” 

2.3.2 Selection Criteria 

Out of all the studies that survived the initial filtering, we only included those that 

described an interactive visualization tool and provided a detailed description of the 

tool’s visualization and its interaction design in order to analyze how the tool can support 

different EHR-data-driven tasks and activities. All the papers related to the visualization 

of any administrative tasks with patient data, medical guidelines, genetics data, and 

syndromic surveillance were excluded from our survey as we only focused on clinical 

EHR data. We also excluded the studies that were solely focused on the visualization of 

free text (e.g., the patient’s progress notes) and medical images (e.g., magnetic resonance 

imaging, and X-ray images). 
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2.3.3 Results 

A total of 912 articles were identified from our initial search of electronic databases. A 

search of the gray literature and manually searching references from articles resulted in 

an additional 34 papers. We removed a total number of 205 duplicates that were included 

in the 946 articles, both within and between search engines. We then reviewed all the 

abstracts and excluded 685 further articles. Next, we read the full text of 56 remaining 

articles and excluded the ones that did not meet the selection criteria. Finally, 24 studies 

remained for the analysis. The results of the selection procedure are displayed in the flow 

diagram in Figure 3. 

2.4 Survey of the Interactive Visualization Tools 

In this section, we provide a survey of 19 IVTs that are described in the chosen articles 

and use our proposed activity and task framework to analyze them. The survey includes 

an overview of the goal of the IVT, a brief description of its visualization, and an analysis 

of how sub-activities, tasks, and sub-tasks blend and combine to accomplish the tool's 

main higher-level activities of interpreting, predicting and, monitoring. A very 

important criterion to differentiate IVTs is whether they support activities that involve 

multiple patient records or exploration of an individual patient. We divide our survey into 

two different types of IVTs based on this criterion: population-based tools and single-

patient tools. Initially, studies were focused on single-patient tools, but since 2010, most 

of the IVTs are developed to support large numbers of patient records. Our survey 

includes more population-based tools, as it seems that these are more prevalent than 

single-patient tools. For the first type, we survey 14 tools, and, for the second type, we 

survey five tools. 
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Figure 2-3: Search results and how we selected the 24 articles that described 19 

IVTs. 

2.4.1 Population-Based Tools 

Population-based IVTs support data-driven activities that involve multiplicity of patient 

records in aggregate form and simultaneously. Although these types of tools display 

fewer details about a particular patient, they provide users with the ability to recognize 

patterns, detect anomalies, find desired records, and cluster and aggregate records into 

different groups. In this section, we survey fourteen population-based IVTs. 
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2.4.1.1 Lifelines2 

Lifelines2 (Wang et al., 2009, 2008) enables users to explore and analyze a set of 

temporal categorical patient records interactively. As shown in Figure 4, each record is 

represented by a horizontal strip containing patient ID and multiple events in patient 

history that occur at various times. Each event shows up as a color-coded triangle icon on 

a horizontal timeline. Lifelines2 allows the detection of temporal patterns and trends 

across EHRs to facilitate hypothesis generation and identify cause-and-effect 

relationships between patient records. 

This tool supports the activity of interpreting by allowing users to get a better 

understanding of clinical problems and discovering patients with interesting medical 

event patterns. It also supports monitoring by investigating the impact of hospital 

protocol changes in patient care. It allows for temporal ordering of event sequences, 

observing the distribution of temporal events, and locating records with particular event 

sequences. These tasks (ordering, observing, locating) are supported by sub-tasks such as 

ranking, aggregating, and identifying. 
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Figure 2-4: Lifelines2: Interactive visualization tool for temporal categorical data. 

Source: Image courtesy of the University of Maryland Human–Computer 

Interaction Lab, http://hcil.umd.edu. 

2.4.1.2 Lifeflow  

Lifeflow (Guerra Gómez et al., 2011; Wongsuphasawat et al., 2011) provides a visual 

summary of the exploration and analysis of event sequences in EHR data. While in 

Lifelines2, due to limited screen space, it is not possible to see all records simultaneously; 

Lifeflow gives users the ability to answer questions that require an overview of all the 

records. To convert from Lifelines2 view to Lifeflow, a data structure called “tree of 

sequences” is created by aggregating all the records. This structure is then converted into 

a Lifeflow view with each node representing an event bar. Figure 5 shows Lifeflow 

http://hcil.umd.edu/
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visualization where all the records are vertically stacked on the horizontal timeline and all 

the events are represented using color-coded triangles.  

In this IVT, the sub-activities of exploring and overviewing medical events support the 

activity of interpreting, while analyzing aggregated event sequences for quality 

assurance supports the activity of monitoring. Recognizing patterns and temporal 

ordering of aggregated event sequences are two tasks that enable Lifeflow to support 

exploring, overviewing, and analyzing sub-activities. Finally, sub-tasks such as 

aggregating, identifying, and classifying work together to accomplish higher-level tasks. 

 

Figure 2-5: Lifeflow: Interactive visualization tool that provides an overview of 

event sequences. Source: Image courtesy of the University of Maryland Human–

Computer Interaction Lab, http://hcil.umd.edu. 

http://hcil.umd.edu/
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2.4.1.3 Eventflow  

Eventflow (Monroe et al., 2013) provides users with the ability to query, explore, and 

visualize interval data interactively. It allows pattern recognition by visualizing events in 

both a timeline that displays all individual records and an aggregated overview that 

shows common and rare patterns. As displayed in Figure 6, all the records are shown on a 

scrollable timeline browser. On the horizontal timeline, point-based events are displayed 

as triangles, while interval events are represented by the connected rectangles. In the 

center, an aggregated display gives users an overview of all event sequences in EHR data. 

The aggregation method works exactly like the one in Lifeflow, but it has been extended 

to work for interval events in the Eventflow. All the records with the same event 

sequence are aggregated into a single bar and the average time between two events 

among the records in the group is represented by the horizontal gap between two bars. 

This tool supports interpreting by providing an overview of all event sequences found in 

the data and exploring medical events (point-based events as well as interval events). The 

overviewing and exploring sub-activities can be accomplished by recognizing temporal 

patterns and simplifying temporal event sequences. Monitoring can be accomplished by 

investigating aggregated event sequences. The investigating sub-activity is supported by 

detecting anomalies in the data. Eventflow supports predicting by learning new 

hypotheses where this sub-activity can be carried out by tasks such as specifying temporal 

patterns and simplifying temporal event sequences. Aggregating, identifying, classifying 

are the lowest-level sub-tasks for Eventflow. 

2.4.1.4 Caregiver 

Caregiver (Brodbeck et al., 2005) is an IVT that supports therapeutic decision making, 

intervention, and monitoring. As displayed in Figure 7, the tool has three different views 

where the upper view displays the duration and size of the patient groups that are chosen 

by physicians to receive interventions. A common timeline for each patient is shown in 
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the lower view of the chosen attributes. Caregiver allows users to create new cohorts 

from the search results based on a combination of values of any number of variables.  

In this tool, the activity of interpreting can be accomplished by discovering trends, 

critical incidents, and cause–effect relationships. Caregiver also supports predicting by 

allowing users to learn about the deterioration in the status of a disease. It supports these 

sub-activities (discovering and learning) by specifying temporal relationships and 

clustering. Specifying and clustering can be carried out by sub-tasks such as identifying, 

classifying, and ranking. 

 

Figure 2-6: Eventflow: Interactive visualization tool for analysis of event sequences 

for both point-based and interval events. Source: image courtesy of the University of 

Maryland Human–Computer Interaction Lab, http://hcil.umd.edu. 

2.4.1.5 CoCo 

CoCo (Malik et al., 2015, 2014) is an IVT for comparing cohorts of sequences of events 

recorded in EHRs. It provides users with overview and event-level statistics of the chosen 

dataset along with a list of available metrics to generate new hypotheses. It consists of a 

http://hcil.umd.edu/
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file manager pane, a dataset statistics pane, an event legend, a list of available metrics, 

the main window, and options for filtering and sorting the results (as shown in Figure 8). 

The summary panel includes high-level statistics containing the total number of records 

and events in each record. 

CoCo supports the activity of interpreting by allowing users to explore and investigate 

two groups of temporal event sequences simultaneously. The activity of predicting can 

be accomplished by learning new hypotheses from the statistical analysis while 

comparing the event sequences (i.e., detecting differences among groups of patients). 

Ranking, classifying, and identifying are the lowest-level sub-tasks in CoCo. 

 

Figure 2-7: Caregiver: Interactive visualization tool for visualization of categorical 

and numerical data. Source: Image courtesy of Dominique Brodbeck. 
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2.4.1.6 Similan 

Similan (Wongsuphasawat, 2009) is a tool that provides users with the ability to discover 

and explore similar records in the temporal categorical dataset. Records are ranked by 

their similarity to a target record that can be either a reference record or a user's specified 

sequence of events. The similarity measure considers the transposition of events, 

addition, removal, and temporal differences of matching to estimate the similarity of 

temporal sequences. Simian lets users to visually compare the selected target with a set of 

records and rank those records based on the matching score, as shown in the left side 

middle panel in Figure 9.  

In this IVT, interpreting can be carried out by exploring and discovering similar records 

in temporal categorical data where these sub-activities themselves are supported by 

detecting (calculating similarity measure among records) and recognizing similarity 

among records. Predicting is accomplished by discovering patients with similar 

symptoms to a certain target patient. The sub-activity discovering can be carried out by 

tasks such as temporal ordering and dynamic query. Finally, sub-tasks such as ranking, 

identifying, and classifying work together to accomplish higher-level tasks. 
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Figure 2-8: CoCo: Interactive visualization tool for comparing cohorts of event 

sequences. Source: image courtesy of the University of Maryland Human–Computer 

Interaction Lab, http://hcil.umd.edu. 

2.4.1.7 Outflow 

Outflow (Wongsuphasawat and Gotz, 2012, 2011) is a graph-based visualization that 

shows the eventual outcome across the event sequences in patient records. It aggregates 

and displays event progression pathways and their corresponding properties, such as 

cardinality, outcomes, and timing. The tool allows users to interactively analyze the event 

sequences and detect their correlation with external factors (e.g., beyond the collection of 

event types that specify an event sequence). The tool is a state transition diagram, which 

is represented by a directed acyclic graph. The states (nodes) are unique combinations of 

patient symptoms that are mapped to rectangles, where the height of each rectangle is 

proportional to the number of patients. The graph is divided into different layers 

vertically, where layer i consists of all states in the graph with i symptoms. These layers 

are arranged from left to right, displaying patient history from past to future. Edges 

display transitions among symptoms where each edge encodes the number of patents that 

http://hcil.umd.edu/
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are involved in the transition and the average time interval between different states. The 

end state that is represented by a trapezoid followed by a circle is used to mark points 

where the patient paths have ended. Finally, the color of the edges and end states 

represents the average outcome for the corresponding group of patients.  

 

Figure 2-9: Similan: interactive visualization tool for the exploration of similar 

records in the temporal categorical data. Source: image courtesy of the University of 

Maryland Human–Computer Interaction Lab, http://hcil.umd.edu. 

In this tool, sub-activities of exploring and overviewing event sequences work together to 

accomplish the activity of interpreting. Outflow also supports predicting by allowing 

users to discover the progression of temporal event sequences. The sub-activities of 

exploring, overviewing, and discovering can be accomplished by summarizing temporal 

event sequences, specifying temporal relationships, and detecting patterns from statistical 

http://hcil.umd.edu/
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summaries. Finally, aggregating, identifying, and classifying are the lowest-level sub-

tasks. 

2.4.1.8 IPBC 

IPBC (Chittaro et al., 2003) (interactive parallel bar charts) is an interactive 3D 

visualization of temporal data. IPBC applies visual data mining to a real medical problem 

such as the management of multiple hemodialysis sessions. It provides users with the 

ability to make various decisions regarding such things as therapy, management, and 

medical research. Each time series is displayed as a 3D bar chart where one of the 

horizontal axes shows time and the vertical axis represents the value, as displayed in 

Figure 10. Lined up bar charts on the second horizontal axis enable users to view all the 

series simultaneously. 

IPBC supports interpreting by allowing users to explore patient data interactively. 

Monitoring can be carried out by evaluating the quality of care based on certain clinical 

parameters. The sub-activities of exploring and evaluating are supported by specifying 

temporal relationships and recognizing similar patterns where these tasks themselves can 

be accomplished by sub-tasks such as identifying, classifying, and ranking. 

2.4.1.9 Gravi++ 

Gravi++ (Hinum et al., 2005) allows users to explore and analyze multiple categorical 

variables using interactive visual clustering. This tool uses a spring-based layout to place 

both patient and variable icons across the visualization, where the value of a variable for 

a patient identifies the distance between that patient's icon and the variable’s icon. 

Gravi++ provides users with the ability to detect clusters since patients with similar 

values are placed together on screen. In order to visualize the exact values of each 

variable for each patient, the tool shows each patient’s value as a circle around variables. 

The patient icons are represented by spheres while the variable icons are encoded by 

squares. Moreover, the tool can encode different patient attributes using patient icons; for 
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instance, the size of the sphere can be mapped to the body mass index of the patient and 

its color can encode the patient’s gender or therapeutic outcome. 

 

Figure 2-10: IPBC: 3D visualization tool for analysis of numerical data from 

multiple hemodialysis sessions. Source: reprinted from Journal of Visual Languages 

& Computing, 14, Chittaro L, Combi C, Trapasso G, Data mining on temporal 

data: a visual approach and its clinical application to hemodialysis, 591-620, 

Copyright (2003), with permission from Elsevier. 

This tool supports the activity of interpreting by allowing users to explore patient data 

and discover clusters of similar patients. Monitoring can be accomplished by 

investigating the development of a patient after a certain treatment. The sub-activities of 

exploring, discovering, and investigating are supported by tasks such as recognizing 
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patterns and specifying temporal relationships. Finally, identifying and classifying are the 

lowest-level sub-tasks that are supported by the tool. 

2.4.1.10 PatternFinder 

PatternFinder (Fails et al., 2006) is a query-based tool for data visualization and visual 

query that can help users search and discover temporal patterns within multivariate 

categorical data. PatternFinder allows users to specify queries for temporal events with 

time span and value constraints and enables them to look for temporally ordered 

events/values/trends as well as the existence of events. Also, users can set a range of 

possible time spans among the events to specify how far apart the events are from each 

other. The tool has two main panels: the pattern design and query specification panel and 

the result visualization panel. The leftmost part of the pattern design panel is the 

Person/People panel that enables users to limit the types of patients by name, by choosing 

from a list of patients, or by typing a text string. Any modifications that are done in this 

panel are dynamic queries that lead to an immediate update of the results in the result 

visualization panel. The temporal panel that is placed to the right of the Person/People 

panel enables users to form temporal pattern queries by chaining the events together. 

Users are able to search for the presence of events, the temporal sequence of events (e.g., 

an emergency doctor's visit followed by a hospitalization), the temporal sequence of 

values (e.g., 200 or below cholesterol followed by 240 or higher), and the temporal value 

patterns (e.g., monotonically decreasing). The result visualization panel displays a 

graphical table of all the matches where each row shows a single pattern match for one 

patient. Pattern matches are represented as a timeline in a "ball-and-chain" visualization 

fashion where the event points are shown as circles and time spans are displayed by blue 

bars between the events. The color of the event point in the result visualization panel 

matches the color of the associated event in the query specification panel. All the events 

that match the query pattern specified by users are linked together by horizontal lines. 

In this tool, the activity of interpreting is supported by discovering patterns and exploring 

patient data dynamically, where these sub-activities themselves can be carried out by 
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tasks such as specifying temporal relationships and issuing dynamic queries. Identifying 

and ranking are the two low-level sub-tasks that work together to support the 

aforementioned tasks. 

2.4.1.11 TimeRider 

TimeRider (Rind et al., 2011a) offers an animated scatter plot to help users discover 

patterns in irregularly sampled patient data covering several time spans. As shown in 

Figure 11, time is represented by either traces or animation in TimeRider. Color, shape, 

and size of marks are used to encode up to three additional variables. Users can compare 

patient records of different time spans by synchronizing patients' age, calendar date, and 

the start and end of the treatment. 

 

Figure 2-11: TimeRider: Interactive visualization tool for pattern recognition in 

patient cohort data. Source: reprinted by permission from Springer Nature: 
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Springer, Ergonomics and Health Aspects of Work with Computers, Visually 

Exploring Multivariate Trends in Patient Cohorts Using Animated Scatter Plots, 

Rind A, Aigner W, Miksch S, et al., copyright (2011). 

This tool supports interpreting by allowing users to detect trends, clusters, and 

correlations and providing them with an overview to visually compare patient data in 

parallel. The sub-activities of detecting and overviewing can be carried out by tasks such 

as specifying temporal relationships, clustering, and recognizing patterns. Identifying and 

aligning are the sub-tasks that work together to support the aforementioned tasks. 

2.4.1.12 VISITORS 

VISITORS (Klimov et al., 2010) is an IVT that allows for exploration, analysis, and 

retrieval of raw temporal data. The tool uses raw numerical data (e.g., white blood cell 

counts) across time to derive temporal abstractions (e.g., durations of low, normal, or 

high blood-cell-count levels for patients). It then uses lower-level temporal abstractions 

in conjunction with raw data to generate higher-level abstractions. Finally, patient 

groups’ values are aggregated and displayed. Figure 12 shows this tool’s visualization 

environment, where raw numerical data is represented by line charts, whereas categorical 

data is displayed as tick marks or bars on a horizontal zoomable timeline. 

In this tool, the activity of interpreting is supported by exploring patient data in different 

temporal granularities. The sub-activity of exploring can be carried out by tasks such as 

specifying relationships, observing the distribution of aggregated values of a group of 

patients, and locating records based on specific time and value constraints. VISITORS 

supports the activity of monitoring by sub-activities, such as investigating treatment 

effects, clinical trial results, and quality of clinical management processes. The latter sub-

activity, investigating, can be carried out by the task of recognizing patterns as well as all 

the other tasks needed to support the activity of interpreting. Finally, aggregating, 

classifying, aligning, and identifying are the lowest-level sub-tasks that are supported by 

this tool. 
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Figure 2-12: VISITORS: Interactive visualization tool for the exploration of 

multiple patient records. (A) displays lists of patients. (B) displays a list of time 

intervals. (C) displays the data for a group of 58 patients over the current time 

interval. Panel 1 shows the white blood cell raw counts for the patients, while Panels 

2 and 3 display the states of monthly distribution of platelet and haemoglobin in 

higher abstraction, respectively. Abstractions are encoded in medical ontologies 

displayed in panels (D). Source: reprinted from Journal of Artificial Intelligence in 

Medicine, 49, Klimov D, Shahar Y, Taieb-Maimon M, Intelligent visualization and 

exploration of time-oriented data of multiple patients, 11-31., copyright (2010), with 

permission from Elsevier. 

2.4.1.13 Prima 

Prima (Gresh et al., 2002) is a population-based IVT that allows users to explore the 

categorical and numerical data by constructing different linked views. This helps users to 

not only understand the large set of patient records but also discover patterns and trends 

in the dataset. The aggregated window provides an overview of the categorical variables 
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by showing the proportions of patients in each category for those variables using stacked 

bar charts. This window enables users to filter patients by applying a color “brush”. It 

also displays correlations among different categorical variables through interactive 

coloring. Another view displays a histogram of numerical variables. The data can also be 

explored with a 2D scatter plot. Another view of the data is called multiple category 

tables. It shows the values of either a single variable or multiple categories. Finally, the 

tool incorporates the Kaplan–Meier curve to estimate the survival function from the 

patient data.  

Prima supports the activity of interpreting by allowing users to explore patient data 

interactively, where this sub-activity itself can be accomplished by recognizing patterns 

and specifying temporal relationships. Finally, aggregating and ranking are the lowest-

level sub-tasks that are supported by the tool. 

2.4.1.14 WBIVS 

WBIVS (Pieczkiewicz et al., 2007) is a web-based interactive tool that visualizes 

numerical and categorical variables for lung transplant home monitoring data. Numerical 

variables are displayed in line plots, while categorical variables are visualized in matrix 

plots. The tool visualizes ten variables in total. When a data point gets selected, all the 

other data points that belong to the same time period will get highlighted in the other 

charts. Moreover, users can find details about the last two chosen data points on the right 

part of the graph. 

This tool supports the interpreting activity by allowing users to explore patient data 

interactively and discover patterns. Monitoring is supported by investigating treatment 

effects. The exploring and discovering sub-activities can be accomplished by tasks such 

as specifying temporal relationships among data points and organizing data for pattern 

recognition. These tasks can be composed of lowest-level sub-tasks, such as identifying, 

classifying, and highlighting. 
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2.4.2 Single-Patient Tools 

Single-patient IVTs provide visualizations of one single-patient record at a time. These 

tools enable users to overview a given patient’s historical data, detect important events in 

the patient’s history, and recognize trends. In this section, we survey five single-patient 

IVTs. 

2.4.2.1 Midgaard 

Midgaard (Bade et al., 2004) allows for exploration of the intensive care units’ data at 

different levels of abstraction from overview to details. It uses visualizations to display 

numerical variables of treatment plans. It incorporates a complex semantic zoom method 

for numerical variables by calculating their categorical abstractions based on the 

available screen area and zoom level. Midgaard provides users with the ability to switch 

between different views such as a colored background, colored bars, area charts, or 

augmented line charts based on the level of details. The tool can progressively switches 

to a more detailed view to display all the individual data points when users zoom in or 

switch back to more compact graphical elements when they zoom out.  

Midgaard can also visualize medical treatment plans using colored bars where each bar 

can contain further bars displaying sub-plans. It allows users to navigate and zoom by 

interacting with two time axes that are placed below the visualization area. The bottom 

axis displays a temporal overview of the patient record while the middle axis allows users 

to see specific time intervals in more detail.  

The activity of interpreting is supported by exploring patient data at different levels of 

abstraction, where this sub-activity itself can be accomplished by tasks such as 

recognizing fluctuations in data. Identifying and classifying are the two sub-tasks that are 

supported by this tool. 
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2.4.2.2 MIVA 

MIVA (Faiola and Newlon, 2011) (Medical information visualization assistant) is a tool 

that transforms and organizes biometric data into temporal resolutions to provide 

healthcare providers with contextual knowledge. It allows users to prioritize and 

customize visualizations based on specific clinical problems. It visualizes the data using 

point plots to display temporal changes in numerical values, where each variable is 

represented by a separate plot, as shown in Figure 13. MIVA enables users to detect 

changes in multiple physiological data points over time for faster and more accurate 

diagnosis. Users can control the data source, time resolutions, and time periods to narrow 

down the assessment of a patient’s condition.  

 

Figure 2-13: MIVA: Interactive visualization tool to show the temporal change of 

numerical values where each variable is represented by an individual point plot. 

Source: image courtesy of Antony Faiola. 

This tool supports the activity of interpreting by enabling users to carry out sub-activities 

such as exploring longitudinal relationships in patient data where this sub-activity can be 
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accomplished by tasks such as specifying temporal relationships and recognizing patterns. 

At the level of sub-tasks, this tool supports identifying as well as classifying. 

2.4.2.3 VIE–VISU 

VIE–VISU (Horn et al., 2001) uses a set of glyphs to display changes in a patient's status 

over time in intensive care. Each glyph’s geometrical shape and color encodes categorical 

variables, while the numerical variables are represented by size of the glyph's elements. 

Every glyph can encode 15 variables that are classified by physiological systems. For 

instance, the respiratory parameters are mapped to a rectangle in the middle of the glyph; 

circulatory parameters are mapped to a triangle on top of the glyph, and the fluid balance 

parameters are shown by two smaller rectangles at the bottom of the glyph. By default, 

the tool displays 24 glyphs, one per hour.  

The activity of interpreting can be accomplished by overviewing a patient’s status, where 

this sub-activity is supported by tasks such as recognizing patterns. This tool supports 

monitoring by evaluating changes in patient’s status over time. The task of identifying 

temporal relationships supports the sub-activity of evaluating. Finally, aggregating and 

classifying are two sub-tasks that can be carried out by the tool. 

2.4.2.4 Lifelines 

Lifelines (Plaisant et al., 1998) offers a visualization environment to show patient history 

on a zoomable timeline, where a patient's medical record is displayed by a set of events 

and lines. Episodes and events in a patient record are represented by a set of multiple line 

segments as shown in Figure 14. Color can be used to encode the states of categorical 

variables. This IVT provides an overview of a patient history to recognize trends, specify 

important events, and detect omissions in data. 

The activity of interpreting is supported by understanding patient’s status where this sub-

activity itself can be carried out by tasks such as recognizing patterns and specifying 

temporal relationships. The tool supports monitoring by allowing users to carry out sub-

activities such as investigating trends and anomalies in patient data. The investigating 
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sub-activity is supported by outlining and summarizing the patient data. Finally, 

aggregating, classifying, and identifying are the sub-tasks that are supported by the tool. 

 

Figure 2-14: Lifelines: interactive visualization tool that displays patient’s medical 

histories on a timeline. Source: image courtesy of the University of Maryland 

Human–Computer Interaction Lab, http://hcil.umd.edu. 

2.4.2.5 VisuExplore 

VisuExplore (Pohl et al., 2011; Rind et al., 2011b) displays patient data in different views 

aligned with a horizontal timeline, where each view shows multiple variables. This IVT 

uses common visualization techniques that make it easy to use and learn. In this tool, 

numerical data are displayed using bar charts and line plots, whereas categorical data are 

represented using event charts and timeline charts, as shown in Figure 15. 

http://hcil.umd.edu/
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Figure 2-15: VisuExplore: interactive visualization tool that displays patient data in 

various views on a timeline. Source: reprinted by permission from Springer Nature: 

Springer, Human–Computer Interaction, Patient Development at a Glance: An 

Evaluation of a Medical Data Visualization, Pohl M, Wiltner S, Rind A, et al., 

copyright (2011). 

In this tool, the activity of interpreting is supported by exploring temporal data of 

patients with chronic diseases, where this sub-activity can be carried out by tasks such as 

specifying temporal relationships. Finally, aligning and identifying are two sub-tasks that 

can be carried out by the tool. 

2.5 Discussion and Limitations 

In this paper, we have presented and proposed a framework to identify and analyze EHR-

data-driven tasks and activities in the context of IVTs—that is, all the activities, sub-

activities, tasks, and sub-tasks that are supported by EHR-based IVTs. Using a survey of 
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19 EHR-based IVTs, we demonstrate how these IVTs support activities by identifying 

the combination of sub-activities, tasks, and sub-tasks that work together to help users 

carry out the three higher-level activities as displayed in Table 3. Interpreting is 

supported by all IVTs surveyed in this paper. Eventflow, Similan, CoCo, Outflow, and 

Caregiver are the only IVTs that support predicting, whereas Lifelines2, Lifeflow, 

Eventflow, Gravi++, IPBC, TimeRider, VISITORS, WBIVS, VIE-VISU, Lifelines, 

CoCo, and Visu-Explore are the tools that facilitate monitoring. Going down from high-

level activities, recognizing patterns and specifying temporal relationships are the most 

common sub-activities that help users with the activity of interpreting in most of the 

IVTs. The existing EHR-based IVTs support predicting by giving users the ability to 

perform sub-activities such as learning new hypotheses, discovering patients with similar 

symptoms to a target patient, and detecting early deterioration of a disease. Finally, the 

most common sub-activities that facilitate monitoring are evaluating the quality of care 

and investigating the development of a patient's status after treatment. 

Our proposed framework can offer a number of benefits for designers, researchers, and 

evaluators of EHR-based IVTs. Firstly, the framework can help the designer to 

conceptualize activities, tasks, and sub-tasks of EHR-based IVTs systematically. 

Secondly, it can assist researchers in making sense of IVTs by providing them with all 

the activities that can be accomplished by carrying out different sets of sub-activities, 

tasks, and sub-tasks. Thirdly, this framework can be used by evaluators to identify the 

gaps in support of higher-level activities supported by existing IVTs. It appears that 

almost all existing IVTs focus on the activity of interpreting, while only a few of them 

support predicting despite the importance of this activity in supporting users to find the 

patients that are at high risk and identify the risk factors of various diseases. Also, some 

of the EHR-based IVTs do not pay enough attention to monitoring, even though this 

activity is beneficial in investigating the quality of clinical management processes. All 

these higher-level activities should be an integral part of a properly designed EHR-based 

IVT since healthcare providers use such tools to (1) better understand patients' condition, 

(2) anticipate the course of a specific disease, and (3) track patients' condition after 
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treatment. Most of the tools surveyed in this paper can only satisfy a certain aspect of 

users' needs. According to a recent survey in the US, 40% of the clinicians are not 

satisfied with the existing EHR-based system (EHRIntelligence, 2018). Therefore, a 

framework is needed to guide the designer of an IVT in choosing which activities, tasks, 

and sub-tasks the tool should support. Using questions such as, "What activities can users 

accomplish by executing a set of tasks?" or "What tasks should be supported to provide 

users with the ability to perform their activities?", we demonstrate how the proposed 

framework can be used by designers of EHR-based IVTs to systematically conceptualize 

and design the tasks and activities of such tools. Given the framework, all designers need 

to know is, which low-level sub-tasks, tasks, and sub-activities to select and how to blend 

and combine them to support higher-level activities and allow users to accomplish their 

overall goal. For instance, if a designer wants to design an IVT to monitor an infant's 

condition in the neonatal intensive care unit, they can choose different sets of sub-

activities, such as investigating the effect of a specific treatment or evaluating changes in 

infant's status over time. Then, the designer selects a combination of tasks such as the 

temporal ordering of event sequences or displaying the distribution of temporal events to 

support the chosen sub-activities. Finally, a set of sub-tasks, such as ranking, 

aggregating, and identifying, are chosen to support the selected tasks. 

We believe a successful EHR-based tool should be capable of doing more than just 

storing, retrieving, and exchanging patient data. It should support more complex 

activities, tasks, and sub-tasks to allow healthcare providers to accomplish their goals. 

Our proposed framework promises a new means for designers of EHR-based IVTs to 

understand the effectiveness of incorporating such activities, tasks, and sub-tasks in their 

tool. The use of our framework in EHR-based IVTs will also help physicians to make 

better treatment decisions and track changes in a patient's condition over time.  

This paper has three key limitations. First, we do not investigate the completeness and 

accuracy of the data sources that IVTs are using as our survey relies on the descriptions 

of the IVTs found in publications and video tutorials. Second, as the main goal of this 
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paper is the analysis of EHR-based IVTs, we exclude tools that are mainly dependent on 

statistical and machine learning methods. Finally, we do not consider commercial tools in 

this paper. This is because online descriptions of such tools do not systematically and 

thoroughly cover the features of these tools, i.e., their visualizations, interactions, and 

results.  

The findings of this paper will lead to the development of best practices for creating 

similar frameworks in other domains. A possible area of future research involves 

developing frameworks for visual analytics tools that incorporate automated analysis 

techniques along with interactive visualizations to support the increasingly large and 

complex datasets in EHRs.  

Table 2-3: Evaluation summary of the 19 existing tools based on the proposed 

framework. 
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Lifelines 2 

Sub-activity 
discovering, 

understanding,  
no investigating 

Tasks 

locating, observing, 

ordering 

n/a 

locating, 

observing, 

ordering 

Sub-tasks 

aggregating, identifying, 

ranking 

n/a 

aggregating, 

identifying, 

ranking 

Lifeflow 

Sub-activity exploring, overviewing no analyzing 

Tasks ordering, recognizing n/a 
ordering, 

recognizing 

Sub-tasks 
aggregating, classifying, 

identifying 
n/a 

aggregating, 

classifying, 

identifying 

Eventflow Sub-activity exploring, overviewing learning investigating 
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Tasks 
recognizing, 

summarizing 

specifying, 

summarizing 
detecting 

Sub-tasks 
aggregating, classifying, 

identifying 

aggregating, 

classifying, 

identifying  

aggregating, 

classifying, 

identifying 

Similan 

Sub-activity discovering, exploring discovering no 

Tasks detecting, recognizing ordering, querying n/a 

Sub-tasks 
identifying, classifying, 

ranking 

identifying, 

classifying, ranking 
n/a 

CoCo 

Sub-activity exploring learning investigating 

Tasks detecting detecting detecting 

Sub-tasks 
classifying, identifying, 

ranking 

identifying, 

classifying, ranking 

identifying, 

classifying, 

ranking 

Outflow 

Sub-activity exploring, overviewing discovering no 

Tasks 

detecting, specifying, 

summarizing 

detecting, 

specifying, 

summarizing 

n/a 

Sub-tasks 
aggregating, classifying, 

identifying 

aggregating, 

classifying, 

identifying 

n/a 

Caregiver 

Sub-activity discovering learning n/a 

Tasks specifying 
clustering, 

specifying 
n/a 

Sub-tasks 
classifying, identifying, 

ranking 

classifying, 

identifying, 

ranking 

n/a 

Gravi++ Sub-activity discovering, exploring no investigating 
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Tasks recognizing, specifying n/a 
recognizing, 

specifying 

Sub-tasks classifying, identifying n/a 
classifying, 

identifying 

IPBC 

Sub-activity exploring no evaluating 

Tasks recognizing, specifying n/a 
recognizing, 

specifying 

Sub-tasks 
classifying, identifying, 

ranking 
n/a 

classifying, 

identifying, 

ranking 

Pattern 

Finder 

Sub-activity discovering, exploring no no 

Tasks specifying, querying n/a n/a 

Sub-tasks identifying, ranking n/a n/a 

Prima 

Sub-activity exploring no no 

Tasks recognizing, specifying n/a n/a 

Sub-tasks aggregating, ranking n/a n/a 

Timerider 

Sub-activity detecting, overviewing no investigating 

Tasks 
clustering, recognizing, 

specifying 
n/a recognizing 

Sub-tasks aligning, identifying n/a n/a 

VISITORS 

Sub-activity exploring no investigating 

Tasks 
locating, observing, 

specifying 
n/a 

locating, 

observing, 

recognizing, 

specifying 

Sub-tasks 
aggregating, aligning, 

classifying 
n/a 

aggregating, 

aligning, 

classifying, 

identifying 
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WBIVS 

Sub-activity discovering, exploring no investigating 

Tasks organizing, specifying  n/a 
organizing, 

specifying 

Sub-tasks 
classifying, highlighting, 

identifying 
n/a 

classifying, 

highlighting, 

identifying 
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Midgard 

Sub-activity exploring no no 

Tasks recognizing n/a n/a 

Sub-tasks classifying, identifying 
  

MIVA 

Sub-activity exploring no no 

Tasks recognizing, specifying n/a n/a 

Sub-tasks classifying, identifying 
  

VIE-Visu 

Sub-activity overviewing no evaluating 

Tasks recognizing n/a specifying 

Sub-task aggregating,classifying n/a 
aggregating, 

classifying 

Lifelines 

Sub-activity understanding no investigating 

Tasks recognizing, specifying n/a 
outlining, 

summarizing 

Sub-tasks 
aggregating, classifying, 

identifying 
n/a 

aggregating, 

classifying, 

identifying 

VisuExplo

re 

Sub-activity exploring no evaluating 

Tasks specifying n/a recognizing 

Sub-tasks aligning, identifying n/a identifying 
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Chapter 3  

3 Multiple regression analysis and frequent itemset 
mining of electronic medical records: A visual analytics 
approach using VISA_M3R3 

This chapter has been published as S.S. Abdullah, N. Rostamzadeh, K. Sedig, A.X. Garg, 

and E. McArthur, “Multiple regression analysis and frequent itemset mining of electronic 

medical records: A visual analytics approach using VISA_M3R3” in the Data 

Journal, 5(2), 33; March 2020. We changed the format to match the general format of the 

dissertation. Figure, Table and Section numbers specified herein are relative to the 

chapter number. For example, “Table 1” corresponds to Table 3-1; “Figure 1” 

corresponds to Figure 3-1; and “Section 1.1” corresponds to Section 3.1.1. Moreover, 

when the term “paper”, “research”, or "work" is used, it refers to this specific chapter. 

3.1 Introduction 

As part of modernizing their operations, healthcare and medical organizations are 

adopting electronic medical records (EMRs) and deploying new information technology 

systems that generate, collect, digitize, and analyze their data (Caban and Gotz, 2015). 

With the development of EMRs and the extensive use of computerized provider order 

entry tools, patients’ medication profile data is now accessible and processable for 

secondary reuses (Abramson et al., 2011; Delamarre et al., 2015). The amount of 

prescription data available to clinical researchers, pharmaceutical scientists, and 

clinician-scientists continues to grow, creating an analyzable resource for generating 

insights that can help improve the healthcare system (Kamal, 2014; Murdoch and Detsky, 

2013). Healthcare providers use modern EMR-based systems to identify adverse drug 

events (Hannan, 1999; Honigman et al., 2001), study medication-medication interactions 

(Rinner et al., 2015), investigate medication effects on particular medical conditions 

(Gruchalla, 2000; Tandon et al., 2015), and ultimately prevent medication errors 

(Agrawal, 2009; Gildon et al., 2019; Singer and Duarte Fernandez, 2015).  
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A common problem in clinical medicine which may lead to development of acute kidney 

injury (AKI) is medication-induced nephrotoxicity (Assadi and Ghane Shahrbaf, 2015; 

Fusco et al., 2016; Khan et al., 2017). AKI can be defined as a sudden loss of kidney 

function over a short period of time (Porter et al., 2014; Nicholas M. Selby et al., 2012). 

The rate of medication-induced AKI can be as high as 60 percent (Gandhi et al., 2000; 

Kaufman et al., 1991; Nash et al., 2002; Schetz et al., 2005). Many prior studies have 

assessed the impact of individual nephrotoxic medications on AKI (Alexander et al., 

2017; Moffett and Goldstei, 2011; Ryan M. Rivosecchi et al., 2016). The combination of 

multiple medications can further increase the risk of AKI through synergistic or 

accumulative nephrotoxicity (Schetz et al., 2005). For each additional nephrotoxic 

medication, the chance of developing AKI may increase by 53 percent (Cartin-Ceba et 

al., 2012). Rivosecchi et al., through an exhaustive literature search, further emphasize 

the need for a comprehensive understanding of how medication combinations alter the 

risk of AKI (Ryan M. Rivosecchi et al., 2016). According to a Center for Disease Control 

report, as of 2017, there were more than 5,000 medications in the market and 1,000 

adverse medication effects known in the literature. So, for drug-drug interactions there 

may be 125 billion possible adverse medication effects between all possible pairs of 

medications (Collins, 2018; Zitnik et al., 2018). An individual clinical study is often 

required to test the nephrotoxicity of each medication or medication combination. 

Therefore, it is impossible to comprehensively assess medication-induced AKI through 

this number of clinical studies.  

Data analytics can offer a solution to this problem by employing algorithms, methods, 

and techniques from different fields, such as data mining, statistics, and machine learning 

(Han and Kamber, 2011). Data analytics is the investigation of raw data to gain both 

novel and deeper insights on associations within the data (Koh and Tan, 2005). There are 

several tools designed and developed in recent years that employ advanced machine 

learning techniques to improve drug-safety science, predict adverse drug reactions, and 

identify drug-drug interactions (Basile et al., 2019; Dey et al., 2018; Lysenko et al., 2018; 

Munsaka, 2017; Schmider et al., 2019; Vamathevan et al., 2019). While most clinical 
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machine learning tools are designed to incorporate large amounts of data, they are not 

capable of efficiently managing ill-defined problems that need human judgment. The 

main challenge of using machine learning techniques lies with their lack of 

interpretability and transparency, hence limiting their application in healthcare settings 

(Vamathevan et al., 2019).  

Interactive visualizations have the potential to address this challenge by providing a 

means to access the data at various levels of granularity and abstraction (Rind et al., 

2011b). They can be defined as computational systems that store and process data and 

use visual representations to amplify human cognition (Sedig and Parsons, 2016; Wilson, 

2014). Interactive visualizations allow users to explore the underlying data, modify 

representations, and change different visual elements to achieve their goals. In recent 

years, several EMR-based systems have been developed to interactively visualize patient 

prescription history (Ozturk et al., 2014), potential adverse medication events (Duke et 

al., 2010), and prescription behaviors (Van der Corput et al., 2014). Most of these 

systems only represent a limited number of attributes and relationships within the data 

(Faisal et al., 2013; Kosara and Miksch, 2002; Lavado et al., 2018; A Rind et al., 2011). 

When working with high-dimensional EMR data, it can be useful to analyze hidden, non-

explicit, and unknown relationships among all the data attributes (Lee and Yoon, 2017; 

Perer et al., 2015). One of the main issues with traditional data visualization systems is 

that they do not incorporate analytical processes, which are essential for recognizing 

hidden patterns and trends in the data. Therefore, interactive data visualization systems, 

alone and without data analytics components, fall short of satisfying the computational 

needs and requirements of users. 

While beneficial, both data analytics systems, with their advanced computational 

capabilities and interactive visualization systems, with powerful interaction and 

representation mechanisms, when used individually, prove inadequate in certain 

situations. The emergence of a type of computational system known as visual analytics 

(VA) has the potential to reduce the complexity of EMR data by combining the strengths 
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and alleviate the limitations of both aforementioned systems (Parsons et al., 2015; Saffer 

et al., 2004; A. F. Simpao et al., 2014). VA can improve the capabilities of users to 

perform complex data-driven tasks by analyzing EMRs in such a way that would be 

difficult or sometimes even impossible to do otherwise. Even though VA is suitable for 

different healthcare activities (e.g., prediction of diseases, exploration of patient history, 

and identification of adverse medication events), to date, healthcare environments lag 

behind other sectors in the development of such systems (Amarasingham et al., 2014; 

Caban and Gotz, 2015; Feng et al., 2019).  

The purpose of this study is to demonstrate how VA systems can be designed in a 

systematic way: 1) to examine the association between medications and AKI, in 

particular, and 2) to support other clinical investigations involving EMRs, in general. To 

this end, we present a novel system that we have developed, called VISA_M3R3—

VISual Analytics, VISA for Multiple Regression analyses and fRequent itemset Mining 

of electronic Medical Records, M3R3. VISA_M3R3 is intended to assist clinicians and 

healthcare researchers at the ICES-KDT (Kidney Dialysis and Transplantation), located 

in London, Ontario, Canada. We demonstrate VISA_M3R3 by investigating the process 

of identifying medications and medication combinations that associate with a higher risk 

of AKI using ICES health administrative data. To our knowledge, no prior VA system 

has been designed to examine how different medications affect kidney function and 

increase the risk of developing AKI. While few VA systems have been developed for 

other areas in healthcare (Basole et al., 2015; Bernard et al., 2015; Gotz et al., 2012; 

Huang et al., 2015; Klimov et al., 2015; Mittelstädt et al., 2014; Ninkov and Sedig, 2019; 

Perer et al., 2015; A. F. Simpao et al., 2014), VISA_M3R3 is novel in that it integrates 

multiple regression models (i.e., multivariable logistic regression), frequent itemset 

mining (i.e., Eclat algorithm), data visualization, and human-data interaction mechanisms 

in an integrated fashion. As such, the design concept of VISA_M3R3 can be generalized 

for the development of other EMR-based VA systems that apply multivariable regression 

and frequent itemset mining to gain novel and deep insights into massive clinical data 

that exist for different health conditions (e.g., diabetes and heart failure, to name a few). 
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The rest of this paper is organized as follows. Section 2 provides an overview of the 

terminological and conceptual background to understand the design of VISA_M3R3. 

Section 3 describes the methodology employed for the design of the proposed VA 

system. Section 4 presents VISA_M3R3 by providing a description of its structure, 

components, and results. Finally, Section 5 discusses the usefulness and limitations of the 

proposed system and some future areas of application. 

3.2 Background 

This section presents the necessary background concepts and terminology for 

understanding the design of VISA_M3R3. VA systems fuse the strengths of automated 

analysis and interactive visualizations to allow users to explore data interactively, identify 

patterns, apply filters, and manipulate data to achieve their goals. This process is more 

complicated than an automated internal analysis coupled with an external visualization to 

show the results. It is both data-driven and user-driven and requires re-computation when 

users manipulate data through visual representations. VA not only relies on 

computational techniques and analytics but also supports human-in-the-loop mechanisms 

that allow users to employ human judgment to reach evidence-based conclusions. To 

understand the concepts of VA, we discuss the spatial structure and different modules of 

VA systems in this section. 

3.2.1 Spatial Structure of Visual Analytics 

To conceptualize the spatial structure of VA, Sedig et al. (Sedig et al., 2012; Sedig and 

Parsons, 2016) proposed its processing load to be divided into at least 5 spaces: 

information space, computing space, representation space, interaction space, and mental 

space. The information space represents bodies of data that come from different sources. 

Data may come from abstract spaces (e.g., treatment plans) or concrete spaces (e.g., 

prescriptions). Data is then processed in the computing space, which may include (1) pre-

processing techniques such as data cleaning, filtering, fusion, integration, and 

normalization and (2) data processing and transformation techniques such as data mining, 

mathematical procedures, and statistical methods. Since the underlying processing is 
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carried out in the computing space, users of the VA system ideally do not need to be 

concerned with any computational work of this space. Resulting data items are then 

encoded into perceptible visual forms in the representation space. In order to achieve 

their goals through a visually perceptible interface, users can choose actions from a set of 

available options (i.e., the interaction space) to act upon existing visualizations in the 

representation space. Finally, the mental space refers to users perceiving and processing 

changes in the interface through carrying out mental operations such as apprehension, 

induction, deduction, judgment, and memory encoding. 

In healthcare settings, it is important for the designer to find a balanced distribution of the 

processing load among the above five spaces. VA systems can offer such a balanced 

distribution of processing load through a proper integration of advanced analytics 

techniques (i.e., data mining, statistics, and machine learning) with visual representations 

to facilitate high-level cognitive activities and tasks while at the same time allowing users 

to get more involved in interactive conversation with the data through its manipulation, 

analysis, and synthesis (D. Keim et al., 2010b; Ola and Sedig, 2018; Thomas and Cook, 

2006). 

3.2.2 Modules of Visual Analytics Systems 

The information processing load in a VA system is distributed between the user and the 

main components of the VA system—namely, the analytics and the interactive 

visualization modules (Cui, 2019; Jeong et al., 2015; D. Keim et al., 2010b; Ola and 

Sedig, 2014; Parsons and Sedig, 2014; Sedig and Parsons, 2013). The data analytics 

module encompasses the computing space and deals with the analysis of data from the 

information space. The interactive visualization module encompasses representation and 

interaction spaces. 

3.2.2.1 Data Analytics Module 

Human cognition has limitations when engaged in data-intensive mental tasks, especially 

when the data is large and complex (Green and Maciejewski, 2013; Ola and Sedig, 2014). 
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The analytics module of the VA system supports user cognition by carrying out most of 

the computational load. It provides users with the ability to make time-critical decisions 

by placing the majority of the processing load in the computing space. In a VA system, 

data analytics should not be solely controlled by the system. Instead, users should be 

involved in controlling the parameters, settings, and intermediary steps of the processing 

stage. The primary responsibility of the analytics module is to store, prepare, analyze, 

transform, and perform computerized analysis of the raw data. In the context of VA, the 

analytics process can be divided into three main stages: data pre-processing, data 

transformation, and data analysis (Ola and Sedig, 2014). 

The raw data from the information space gets processed in the pre-processing stage. Data 

often contains errors, exceptions, noise, and/or uncertainty. There are several possible 

reasons for having inaccurate data in EMRs. For instance, problems might arise from 

confusing data collection manual, faulty instruments, or incorrect data entry. The data 

analytics module might derive incorrect patterns if the data is noisy or erroneous. 

Therefore, it is very important to pre-process raw EMR data retrieved from a variety of 

sources. Data pre-processing includes cleaning, integration, and reduction (Han et al., 

2011). 

The pre-processed data is then transformed into forms appropriate for data analytics 

algorithms. The quality of information, knowledge, and insight extracted from a dataset 

can be improved by its transformation (Kusiak, 2001). Strategies for data transformation 

may include smoothing, attribute construction (i.e., feature generation), aggregation, 

normalization, and discretization (Han and Kamber, 2011). 

Finally, data analysis is the stage to uncover previously undetected relationships among 

data items and extract the implicit, previously unknown, and possibly useful information 

from data (Agrawal et al., 1993; Sahu et al., 2008). The data analysis process includes, 

but is not limited to, frequent itemset mining, regression, classification, and clustering. 

Usually, these techniques allow analysis of limited types of variables and do not support 

heterogeneous data (D. Keim et al., 2010b). VA systems overcome this limitation by 
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incorporating interactive visualizations and human reasoning in the decision-making 

loop. 

3.2.2.2 Interactive Visualization Module 

Interactive visualization is an integral part of VA for organizing data items in the 

information space and mapping them to visual structures. Interactive visual 

representations provide users with the ability to change and modify the displayed data 

and to guide the analysis process. This, in turn, will set off a chain of internal reactions 

that lead to the execution of additional data analysis processes. Interactive visualizations 

can potentially bridge the gap between the internal mental representation of the user and 

the external representations of the system by allowing the information processing load to 

be distributed between the user and the system. 

Design of visualizations is straightforward when dealing with simple tasks. As tasks 

require completion of one or more subtasks, they become more complex. As tasks 

become more complex, design becomes less apparent, particularly when dealing with 

massive amounts of heterogeneous data (Heer and Kandel, 2012; Sedig and Parsons, 

2013). To support complex, EMR-driven tasks, visualizations require some initial 

analysis (D. Keim et al., 2010b). For instance, the task of identifying high-risk 

medications for a certain medical condition includes sub-tasks such as finding association 

between the medical condition and medications (through data analysis), observing their 

relationships (through visual representations), and filtering medications that are 

associated with the medical condition (through analysis and visualization). Furthermore, 

because external structures of data affect how users perform tasks, another challenge 

involves determining how to organize a large number of data items in the visual 

representations. To support the performance of complex tasks, VA combines advanced, 

behind-the-scene analytics techniques with interactive external visualizations that 

organize data items (Kehrer and Hauser, 2013; Keim et al., 2008). 
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3.2.3 Visual Analytics and Analytical Reasoning 

User-triggered actions, consequent reactions, and discourse with information are essential 

in a VA system whose function is to facilitate users' analytical reasoning activities—

activities that refer to both rational and logical analysis of data as well as evaluation of 

results. Such activities also involve analogical, deductive, and inductive reasoning to 

reach conclusions (Sedig and Parsons, 2013), and emerge from a series of lower-level 

tasks (e.g., developing hypotheses or identifying relationships among data elements) 

(Heuer, 1999; Thomas and Cook, 2006). In order to reach a conclusion, some of these 

lower-level tasks take place in an iterative and non-linear manner depending on cognitive 

needs and overall goals of the user (Sedig and Parsons, 2013). Generally speaking, 

analytical reasoning can be viewed as transforming given data into information, 

knowledge, and insight (Gilhooly, 2004; Sedig and Parsons, 2013). This derived 

knowledge and insight serves as a foundation for other cognitive activities such as 

decision-making or problem-solving (Han et al., 2011; Leighton, 2004). 

EMRs contain large bodies of complex data, and, oftentimes, EMR-driven tasks are ill-

defined. Thus, users have to rely on their experience, knowledge, and judgement to 

perform complex activities (i.e., decision-making and problem-solving) in a healthcare 

setting (Varga and Varga, 2016). Human-in-the-loop mechanisms involving interaction 

with the visual and analytical modules of VA systems can thus help healthcare activities 

(Green and Maciejewski, 2013). 

3.3 Materials and Methods 

This section describes the methodology we have employed to design the proposed VA 

system, namely VISA_M3R3. For our EMR-based data, we use Ontario’s healthcare 

databases housed in the ICES facility to illustrate how VISA_M3R3 can be used to 

identify AKI-associated medications and medication combinations among older patients. 

In Section 3.1, we provide an overview of the design process and participants. We then 

describe data sources and cohort entry criteria in Sections 3.2 and 3.3, respectively. 

Section 3.4 explains the implementation details of our VA system. Finally, in Section 3.5, 
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we introduce the components of VISA_M3R3 and briefly describe how the overall 

system works, which is also discussed more extensively in Section 4. 

3.3.1 Design Process and Participants 

Healthcare tasks usually include both well- and ill-defined problems. The well-defined 

tasks have specific goals, clear expected solutions, and, oftentimes, a single solution path. 

On the contrary, ill-defined tasks do not have clear goals, expected solutions, or solution 

paths (Arifin et al., 2017).  

To help us understand how healthcare practitioners perform real-world tasks, and to help 

us conceptualize and design VISA_M3R3, we adopted a participatory design approach. 

Participatory design is a co-operative approach that involves all stakeholders (e.g., 

partners, end-users, or customers) in the design process to ensure the end product meets 

their needs (Muller, 2007).  A clinician-scientist, a statistician, an epidemiologist, data 

scientists, and computer scientists were involved in the design and evaluation process of 

VISA_M3R3. During the initial stage in the participatory design process, we realized that 

healthcare experts solve ill-defined problems in many different ways. It is difficult and 

sometimes impossible to determine a single correct problem-solving strategy (i.e., 

analytics and/or visualization techniques) for ill-defined tasks. Different techniques have 

their strengths and weaknesses, and there are different criteria to find out which technique 

is more appropriate for a specific problem. As such, we asked experts to provide us with 

1) a list of varying real-world, EMR-driven tasks that they perform, 2) analytics 

techniques they usually rely on to accomplish those tasks, 3) visualization techniques 

with which they are familiar, and 4) formative feedback on design decisions. In our 

collaboration with experts, we recognized two high-level tasks to consider in designing 

VISA_M3R3 system. 1) They would like to study the relationships between prescribed 

medications and AKI; 2) They would like to identify commonly prescribed medication 

combinations and understand the impact of different combinations on AKI. We were told 

that healthcare experts usually use different regression techniques to accomplish these 

types of tasks. Since the system has been designed to assist clinicians and healthcare 



60 

 

 

 

researchers at the ICES-KDT program, we decided to incorporate the analytical and 

visualization techniques with which they are more familiar. This was essential to build 

trust between the proposed system and its end-users. 

3.3.2 Data Sources 

For the particular version of VISA_M3R3, we are primarily interested in analyzing 

medications prescribed to older hospitalized patients in Ontario. Accordingly, we 

obtained patient characteristics, prescriptions, and hospital admission data from 5 health 

administrative databases. We used the Ontario Drug Benefit Program database to get 

medication use data. We acquired patient characteristics data from the Registered Persons 

Database, which contains demographic data on all Ontario residents who have ever been 

issued a health card. We obtained hospital admissions and emergency department (ED) 

visit data from the Canadian Institute for Health Information Discharge Abstract 

Database and National Ambulatory Care Reporting System, respectively. International 

Classification of Diseases, ninth (pre-2002), and tenth revision (post-2002) codes was 

used to identify the baseline comorbidities and incidence of AKI from ED visit and 

hospital admission data. 

3.3.3 Cohort Entry Criteria 

We developed a cohort of individuals aged 65 years or older who were admitted to 

hospital or who visited the ED between April 1, 2014 and March 31, 2016. The ED visit 

date or hospital admission date served as the index (cohort entry date). If an individual 

had multiple ED visits or hospital admissions, we selected the first incident. Individuals 

with an invalid healthcare number, age, and/or sex were excluded from the cohort. A 

120-day look-back window from the index date was used to capture the associated 

medication use data. We used a 5-year look-back window to identify relevant baseline 

comorbidities. 
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3.3.4 Implementation Details 

The current VISA_M3R3 system is implemented in HTML, JavaScript library D3, 

standard PHP programming language, and R packages. R was used to develop the 

Analytics module. Html and D3 were used to create various external representations in 

the Visualization module. The communication between these two modules is 

implemented using PHP and JavaScript.  

Most of the data analytics components were developed in R (version-3) because it 1) 

provides extensive support for carrying out data mining operations such as regression and 

frequent itemset mining, 2) is available in ICES workstations, 3) has a vast array of 

libraries, 4) is a platform-independent tool, 5) is an open-source tool, and 6) is constantly 

growing and providing updates whenever new features are available. 

We used D3 to implement external representations of the Visualization module because 

of the following reasons. 1) D3 offers a data-driven approach to help users attach their 

data to the DOM (Document Object Model) element. 2) It allows users to get access to 

full capabilities of modern web-browsers. 3) D3 uses a functional style that enables users 

to reuse JavaScript code and add functionalities. 4) It is compatible with other 

programming languages and platforms that have been used in this system. And 5) D3 is 

free and open-source software. 

3.3.5 Workflow 

As shown in Figure 1, VISA_M3R3 has three modules: Analytics, Visualization, and 

Interaction. The Analytics module is composed of two components: 1) single-medication 

analyzer and 2) multiple-medications analyzer. The Visualization module is composed of 

five views: 1) single-medication view, 2) multiple-medications view, 3) frequent-itemsets 

view, 4) covariates view, and 5) medication-hierarchy view. The Interaction module 

provides users with six main actions: 1) arranging, 2) drilling, 3) filtering, 4) searching, 

5) selecting, and 7) transforming. The basic workflow of the system is as follows. 
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First, an integrated dataset is created from different EMR databases stored at ICES. Next, 

the inclusion and exclusion criteria are applied to build the final cohort. The variables in 

the comorbidity and prescription data are then encoded and transformed into forms 

appropriate for analysis. After applying pre-processing techniques, we split the dataset 

into two groups. One contains the single medication data, and the other contains 

medication combination data; the latter is generated from the frequent itemset mining 

algorithm. We develop a number of multivariable regression models on both groups of 

data. The models are then validated through Bonferroni correction and mapped into 

respective visual representations. We developed five views to represent data items 

created from different analysis techniques. The output of the single-medication and 

multiple-medications analyzers are encoded into two scatter plots in the single-

medication and multiple-medications views, respectively. The frequent-itemsets view 

represents the result of the frequent itemset mining algorithm using a chord diagram. The 

covariates view allows users to control the information presented in other views though 

sliders. The medication-hierarchy view includes a data table to display additional 

information about data elements from the original dataset. Users are allowed to perform a 

number of actions on the visual representations to manipulate data items. For instance, 

users can highlight and/or filter out certain items and drill down into the details of the 

selected data elements in different views. 
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Figure 3-16: Workflow diagram of VISA_M3R3. Different colors are used to show 

the separation of the three main modules. 
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3.4 Design of VISA_M3R3 and Results 

In this section, we describe the three main components of VISA_M3R3 as well as some 

results. Section 4.1 (Analytics module) explains how the data is processed and offers a 

summary of its results. Section 4.2 (Visualization module) describes VISA_M3R3's 

interfaces and discusses how the system helps users in interpreting results. Finally, 

Section 4.3 (Interaction module) illustrates how users can interact with the displayed 

data. 

3.4.1 Analytics Module 

We use VISA_M3R3 to analyze ICES' EMRs to identify individual medications and 

medication combinations that are associated with AKI. Our system aims to facilitate 

understanding of relationships among medications, medication combinations, and AKI. 

The Analytics module of VISA_M3R3 performs an individual and group analysis using 

logistic regression and frequent itemset mining to achieve this goal. 

3.4.1.1 Single-Medication Analyzer   

Single-medication analyzer includes the regression models created to identify the 

association between each medication and AKI. In order to capture an accurate 

association, we include the demographic and comorbidity variables as potential 

covariates in the models. For demographics (i.e., the study of a population based on 

certain non-medical factors), we include the following variables in the models: age, sex, 

income quintile, rural location, and long-term care. For comorbidity (commonly defined 

as any distinct additional disease or condition that has existed during the clinical course 

of a patient who has the first disease or condition under observation), we include the 

following variables in the models: diabetes mellitus, hypertension, heart failure, coronary 

artery disease, cerebrovascular disease, peripheral vascular disease, chronic liver disease, 

chronic kidney disease, major cancers, and kidney stones. We obtain the medication 

prescription data from the Ontario Drug Benefit Program database. This database 

includes medication name, medication dose, date filled, and route-of-administration of 
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the prescriptions. We identify 595 different medications by analyzing prescriptions that 

have been filled 120 days before the index date. Thus, we create 595 binary variables to 

record the medication use data for each medication and each patient. We also gather the 

class and subclass information of these medications from the literature.  

We combine data from different sources into a single dataset. The combined dataset 

contains 5 demographic, 10 comorbidity, and 595 medication variables for each patient 

included in the cohort. In total, there are 926,005 unique patients in the dataset. Next, we 

apply the necessary pre-processing and transformation techniques on the combined 

dataset to make it ready for the regression analysis. We use the “glm” function in R 

packages to develop separate multivariable logistic regression models (Williams et al., 

1984) for each medication in the dataset. Thus, the regression formula includes AKI as 

the response variable and medication, demographics, and comorbidities as predictor 

variables. The “family” argument in the “glm” formula is set to “binomial”. We use the 

“summary” function to obtain the estimate, p-value, standard error, and z-score for each 

coefficient. In addition, the “confit” function is used to compute 95 percent confidence 

intervals and odds ratio.  

VISA_M3R3 provides users with the ability to compare regression models based on their 

odds ratios, confidence intervals, p-values, and standard errors. Odds ratio measures the 

association between medication and AKI. A high odds ratio for a specific medication 

indicates a stronger positive association between that medication and AKI. A list of 

statistically significant medications is created by filtering models based on the p-value of 

the medication variable’s coefficient. A small p-value indicates that it is unlikely that an 

observed relationship between the predictor (i.e., medication) and response variable (i.e., 

AKI) is due to chance. Out of 595, we find 55 medications that are strongly associated 

with AKI. In order to avoid false positives when comparing multiple independent models, 

we make the alpha value lower based on the Bonferroni correction to account for the 

number of comparisons being done. A p-value less than 8.4e-5 (divide 0.05 by 595) is 

considered to be statistically significant in this context. Next, we calculate the frequency 
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of each medication in the list. Data items produced through the single-medication 

analyzer include odds ratios, confidence intervals, p-values, standard errors, and usage 

frequencies of 55 medications. Users of VISA_M3R3 can explore and manipulate these 

data items to make sense of how an individual medication can affect AKI. Users’ 

sensemaking tasks include, but are not limited to, identifying medications with high odds 

ratio and lower p-value, understanding the comparative risk of medications, assessing the 

behavior of medication class or subclass, and exploring data items at various levels of 

abstraction. 

3.4.1.2 Multiple-Medications Analyzer   

In order to identify the medication combinations that are associated with AKI, we first 

prepare a dataset of frequently prescribed medications. Since we have 595 individual 

medications, the total number of combinations is a large number. Therefore, we use the 

Eclat algorithm (Agrawal et al., 1993) to obtain frequent combinations with a support of 

0.07%. Eclat is a frequent itemset mining algorithm that employs a depth-first search to 

discover groups of items that frequently occur in a transaction database. An itemset that 

appears in at least a pre-defined number of transactions is called a frequent itemset. At 

this stage, a total of 24,212 frequent itemsets (i.e., medication groups) are produced from 

595 individual medications. 

A number of binary variables are created to record the usage of the mediation groups. We 

set the value of a particular medication group for a patient when that patient has been 

dispensed all medications within the group within 120 days before the index date (at least 

once per medication). Next, we apply a multivariable logistic regression model on each 

medication group to identify potential accumulative nephrotoxicity. The formula includes 

group variables, individual medication variables that belong to the group, demographic 

variables, and comorbidities as predictors. Statistically significant medication groups are 

identified by filtering the models based on a Bonferroni-corrected alpha value (divide 

0.05 by the number of medication groups). We also calculate the usage frequency of 78 

medication groups that are found to be statistically significant.  
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In the multiple-medications analyzer, we employ a combination of frequent itemset 

mining and logistic regression to generate data items such as frequent medication 

combinations, statistically significant medication groups, p-values, odds ratios, 

confidence intervals, and standard errors. These data items allow users to understand the 

synergistic effect of a combination of different medications on AKI. Users’ sensemaking 

tasks include, but are not limited to, identifying medication groups with high impact on 

AKI, understanding the comparative risk of medications within a group, and exploring 

data items at various levels of abstraction. VISA_M3R3 organizes data items in different 

visual representations to allow users to perform these tasks. 

3.4.2 Visualization Module 

VISA_M3R3 (Figure 2) is composed of five main views: single-medication view, 

multiple-medications view, covariates view, medication-hierarchy view, and frequent-

itemsets view. These views are supported by a number of selection controls, such as 

search bar and collapsible tree structure. Each of these visualizations represents an 

important aspect of the Analytics module. In this section, we discuss how data items 

generated in the Analytics module are encoded as visual representations to allow users 

perform the activities and tasks mentioned in the previous section. 

3.4.2.1 Single-Medication View  

Single-medication view uses a scatter plot to represent the results of individual regression 

models for all the medications, as displayed in Figure 3. The generated scatter plot 

displays each model in proximity to each other based on their p-value and odds ratio. A 

linear scale is used for the vertical axis (odds ratio), whereas a log scale is used for the 

horizontal axis (p-value) since the p-value is exponential. Medications that are plotted 

closer together affect the risk of developing AKI in a similar manner. The regression 

model for each medication is encoded as a glyph where horizontal lines on both sides of 

each circle represent the confidence interval, and the vertical line shows the standard 

error of the model. The single-medication view enables users to identify high-risk 

medications that are associated with AKI and understand the comparative risk of these 
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medications. For instance, the glyph in the top-right corner with a p-value of 1e-45 and 

an odds ratio of 2.4 represents Metolazone. These values suggest that the odds of 

developing AKI for a patient using this medication are more than two times higher than a 

patient with similar conditions who is not using it. 

 

 

Figure 3-17: The Visualization module of VISA_M3R3 is composed of five views: 

(A) single-medication view, (B) multiple-medications view, (C) covariates view, (D) 

medication-hierarchy view, and (E) frequent-itemsets view. 
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Figure 3-18: Scatter plot of single-medication view. 

3.4.2.2 Multiple-Medications View  

The multiple-medications view, displayed in Figure 4, uses another scatter plot to 

represent the results of the regression analysis of groups that are created by the frequent 

itemset mining algorithm. Each glyph in this scatter plot encodes a medication group 

model. Similar to the single-medication view, horizontal lines on both sides of each circle 

in the glyph represent the confidence interval, and the vertical line shows the standard 

error of the model. We map the p-value and odds ratio to the x- and y-axis, respectively. 

The multiple-medications view provides users with the ability to detect medication 

groups that are associated with AKI. For instance, through frequent itemset mining 

analysis, we find that the pair of Gabapentin and Furosemide medications are frequently 

prescribed together. As shown in Figure 4, this pair appears to be associated with AKI 

with a p-value of 1e-26. 
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Figure 3-19: Scatterplot of multiple-medications view. 

3.4.2.3 Frequent-Itemsets View  

Frequent-itemsets view represents the result of the frequent itemset mining analysis by 

showing all possible combinations of the most frequent items using a chord diagram. As 

shown in Figure 5, medications are mapped to nodes along the circumference of the 

circle. Each node consists of an individual circle and a text field showing the name of the 

medication. Each chord (link) connects two nodes (medications) if they co-occur in the 

dataset within a certain timeframe. For instance, as shown in Figure 5, there are links 

between Moxifloxacin Hcl and three other medications (Furosemide, Allopurinol, and 

Amlodipine besylate) because these three medications have been prescribed with 
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Moxifloxacin Hcl more than a certain number of times (0.07 percent of the total 

population) within 120 days prior to the index date.  

The size of the circle of each node displays the frequency of the medication in the 

dataset. Higher usage frequency of a certain medication results in a larger radius for the 

circle representing that medication. This allows users to visually compare medications 

based on their use frequency. For instance, a relatively large radius of the circle 

representing Ramipril indicates that it is one of the frequently prescribed medications in 

Figure 5-B. 

The nodes that belong to the same subclass are placed close to each other separated by 

spaces. This enables users to visually identify the nodes that share common 

characteristics (i.e., belong to the same subclass). For instance, users can detect that 

Furosemide, Hydrochlorothiazide, Metolazone, Indapamide, and Chlorthalidone are all 

Diuretics; therefore, they are placed in the same group (Figure 5-A). The frequent-

itemsets view also reveals subclasses that are composed of a higher number of AKI-

associated medications. It can be observed from Figure 5 (C-1 and C-2) that there are two 

subclasses (Angiotensin and Beta-blockers) that contain six medications that are 

associated with AKI. 
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Figure 3-20: Chord diagram showing the results of the frequent itemset mining 

analysis in the frequent-itemsets view. 

3.4.2.4 Covariates View 

The covariates view is composed of several sliders that filter data items with respect to 

different covariates involved in the regression model. The number of sliders depends on 
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the number of covariates that are found to be statistically significant based on the result 

of the regression analysis. As displayed in Figure 6, six sliders are generated to create 

control for cancer, diabetes, hypertension, heart failure, coronary artery disease, and 

coronary liver disease.  

Each slider included in the covariates view has three components (a rectangle, vertical 

lines, and two arc-shaped handles). The rectangle contains the other two components in 

it. The length of the rectangle represents a linear or log scale, depending on the type of 

variable it is representing. A linear scale is used when the slider represents the odds ratio 

of a covariate. We use a log scale to represent the p-value of a covariate. All sliders are 

generated based on the p-value of the covariates. The vertical lines in the rectangles 

represent the regression models of both single-medication and multiple-medications 

analyzers. The placement of the line on the horizontal axis depends on the p-value or 

odds ratio of the covariate in the corresponding model. For instance, in the slider 

representing diabetes (second from the top in Figure 6), most of the models are densely 

clustered in the right corner. This indicates that diabetes has a high impact on the 

association between medications and AKI. Two arc-shaped handles are placed on both 

ends of the rectangle to allow users to choose a range of values on the horizontal axis. 

3.4.2.5 Medication-Hierarchy View 

The medication-hierarchy view contains a data table to provide a list of medications that 

have been selected through other views, as displayed in Figure 7. The table has three 

sortable columns for medications, subclasses, and higher-level classes. Each subclass 

contains a set of medications that share common chemical structures and mechanisms of 

action, and/or are used to treat similar diseases. A class contains medication subclasses 

that can be grouped together because of their similarity. 
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Figure 3-21: Six sliders representing different covariates in the covariates view. 

 

 

Figure 3-22: The medication-hierarchy view shows the list of medications and their 

classes and subclasses. 
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3.4.3 Interaction Module 

The Interaction module of VISA_M3R3 is intended to support human-in-the-loop 

processes of VA. Using the many interactions provided by this module, users can gain 

insight into the data and manipulate the incorporated data analysis techniques. In this 

section, we will explore these interactions and discuss how they assist users in identifying 

high-risk medications and understanding the association between medication groups and 

AKI. We describe interactions that can be performed in each of the views discussed in the 

previous section. These interactions not only affect displayed data at the selected view 

but also change the representation of the data in other views. 

3.4.3.1 Single-Medication View Interactions 

As shown in Figure 8, the glyphs representing regression models of individual 

medications are placed very close to each other in the scatter plot. It is sometimes 

difficult for users to distinguish between models when the glyphs are densely clustered. 

In order to address this issue, we use the Cartesian fisheye distortion technique on both 

axes of the scatter plot. Fisheye distortion enables users to zoom in on small areas of the 

plot without losing sense of its overall structure. Users can apply fisheye distortion by 

moving their mouse pointer over the grey rectangular areas on both axes of the scatter 

plot. Fisheye distortion magnifies the local region around the mouse continuously. Users 

have the ability to enable and disable the fisheye distortion action by clicking on the grey 

rectangular areas. The color of the rectangular area gets lighter when the fisheye 

distortion action is disabled. As shown in Figure 8, fisheye on the top-left scatter plot is 

disabled (light grey rectangles) and bottom-left scatter plot is enabled (relatively dark 

grey rectangles). 

The model selection interaction of the single-medication view affects all the other views. 

Using this interaction (Figure 8), users can highlight a single medication model 

throughout VISA_M3R3 in order to 1) determine positions of group models that include 
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the selected medication in the multiple-medications view, 2) detect the position of the 

selected medication in the covariates view, 3) observe the class and subclass of the 

selected medication in the medication-hierarchy view, and 4) identify other medications 

that are frequently prescribed with the selected medication in the frequent-itemsets view. 

The selected medication is highlighted using the red color in the top-left scatter plot in 

Figure 8. The glyphs representing corresponding groups in the bottom-left scatter plot, 

vertical lines representing the medication in the covariates view, and links between 

selected medication and other frequently used medications in the frequent-itemsets view 

are all highlighted using the amber color. The utility of this interaction is when users are 

interested in learning more about a medication that is strongly associated with AKI. They 

would select a glyph at the top-right corner of the scatter plot, whereupon VISA_M3R3 

would highlight and display the relevant information associated with that glyph. Another 

interaction supported by this view is hovered drilling. This interaction enables users to 

drill into scatter plot glyphs and get additional information about their corresponding 

model (Figure 3). 

 

Figure 3-23: Overview of interactions in the single-medication view. 
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3.4.3.2 Multiple-Medications View Interactions 

We designed the interactions of the multiple-medications view in a similar manner to the 

interactions of the single-medication view. The only difference is how we have designed 

the selection interaction. The group model selection interaction affects all the other 

views. Using this interaction (Figure 9), users can highlight a group model throughout the 

system in order to 1) identify the position of single models included in the selected group 

in the single-medication view, 2) determine the position of the selected group in the 

covariates view, 3) observe the class and subclass of medications included in the selected 

group in the medication-hierarchy view, and 4) highlight the nodes and links representing 

the group in the frequent-itemsets view. To maintain consistency across all views, the 

color scheme of the multiple-medications view is similar to the single-medication view. 

This interaction can be used when users want additional information about a specific 

group model; they can select the corresponding glyph and observe whether medications 

included in the selected group are associated with AKI individually in the single-

medication view. 

 

Figure 3-24: Overview of interactions in the multiple-medications view. 
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3.4.3.3 Covariates View Interactions 

The single-medication and multiple-medications analyzers produce a set of regression 

models. These models can be described by a certain number of common attributes (e.g., 

p-value and odds ratio of each covariate) because all of them include the same set of 

demographic and comorbidity variables as their covariates. The value of an attribute 

changes based on how each covariate affects the model. It is essential to understand the 

impact of covariates on both single and group models.  

Users can create complex queries composed of several simpler queries related to 

attributes of different covariates. In each simple query, users apply a filter to the models 

by selecting a specific range in each slider. Figure 10 shows an example of a complex 

query involving p-value of six covariates. Users can drag both ends of the given sliders to 

choose a certain range. The color of the range selector changes from green to red when a 

slider is active. The color of the vertical line representing the model changes from grey to 

amber when the corresponding model satisfies the criteria of the complex query. Also, 

the medication-hierarchy view displays the list of models that meet the criteria of the 

complex query. 

 

Figure 3-25: Overview of interactions in the covariates view. 
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In many situations, users struggle to choose appropriate ranges for the sliders. As a result, 

the query might produce an empty or a limited result set. In order to address this issue, 

we implemented a sensitivity encoding mechanism in VISA_M3R3 (Spence, 2002). The 

sliders are set to their maximum and minimum ranges by default. In this case, the color of 

the glyphs in both scatter plots is set to green because all models satisfy the query. The 

color of the glyph in the scatter plots encodes the number of simple queries its 

corresponding model satisfies in the covariates view, as shown in Table 1 and Figure 10. 

Table 3-4: Sensitivity encoding using color coding of glyphs. 

Number of 

satisfied 

filters 

Color of the 

glyphs 

6 Green 

5 Black 

4 Blue 

3 Cyan 

2 Purple 

1 Grey 

0 Yellow 

3.4.3.4 Frequent-Itemsets View Interactions 

The selection interaction of the frequent-itemsets view affects the single-medication 

view, covariates view, and medication-hierarchy view. Using this action (Figure 11), 

users can select a single medication from the chord diagram by clicking on its 

corresponding node in order to 1) identify other medications that are frequently 

prescribed with the selected medication in the frequent-itemsets view, 2) understand the 

association between the selected medication and AKI in the single-medication view, 3) 

determine the position of the selected medication in the covariates view, and 4) observe 

the class and subclass of the selected medication in the medication-hierarchy view. 

Figure 11 shows an example of this interaction. Selecting Moxifloxacin Hcl would 

highlight the links and the names of the other medications (i.e., Furosemide, Allopurinol, 

and Amlodipine besylate) that are frequently consumed with Moxifloxacin Hcl. 
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3.4.3.5 Medication-Hierarchy View Interactions  

Medication-hierarchy view supports two interactions as shown in Figure 12. Users can 

sort the table based on medication name, subclass, or class by clicking on the 

corresponding column header. For instance, if they click on “Medication”, medication 

names in the table get sorted alphabetically. They can also sort in the opposite order by 

clicking on the same header again. In addition, users can click on any row in the table to 

select the corresponding medication or medication groups. Selected medications get 

highlighted in all other views. 

 

Figure 3-26: Overview of interactions in the frequent-itemsets view. 

3.4.3.6 Selection Controls  

Selection controls include a search bar, a collapsible tree structure, and several buttons to 

control the information displayed in different views (top-right corner of Figure 12). If 

users are interested in learning about a specific medication, they can enter the name of 

that medication (or part of the name) in the search bar and the information related to that 

medication gets displayed in the medication-hierarchy view. Users can expand the tree 
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structure by clicking on the “+” icon at the top-right corner to get a menu of medication 

subclasses. Each item in the menu is linked to a checkbox. It is possible to limit data 

items displayed in other views by selecting these checkboxes. For instance, as shown in 

Figure 12, users have selected a number of subclasses such as Iron preparations, 

Vasodilator antihypertensive, and Antiemetics & Antinauseants in the collapsible tree 

structure to limit the number of data items shown in the scatter plots, data table, and 

chord diagram. 

 

Figure 3-27: Overview of interactions in the medication-hierarchy view and 

selection controls. 

3.5 Discussion 

In this paper, we have shown how VA systems can be designed to address the challenges 

of prescription data stored in EMRs in a systematic way. To achieve this, we have 

reported the development of VISA_M3R3, a VA system designed to assist medical 

researchers at ICES’ KDT program. VISA_M3R3 incorporates three main components: 

an Analytics module, made up of single-medication analyzer and multiple-medications 
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analyzer; a Visualization module, made up of five views: single-medication view, 

multiple-medications view, covariates view, frequent-itemsets view, and medication-

hierarchy view; and an Interaction module, made up of a set of different human-data 

interactions. VISA_M3R3 is unique in the manner in which it combines multivariable 

regression with Eclat to support underlying processing in the computing space and 

implements fisheye and sensitivity encoding to provide support for the representation and 

interaction spaces. It offers a balanced distribution of processing load through a proper 

integration of analytics techniques (i.e., regression and frequent itemset mining in the 

Analytics module) with visual representations (i.e., different interactive views in the 

Visualization module) to facilitate high-level cognitive tasks. Some of the main tasks 

commonly performed by researchers, and which VISA_M3R3 is designed to support, 

include: 1) compare multiple regression models, 2) understand the relationship between 

different predictors and a response variable, 3) identify the frequent itemsets from items 

of interest, and 4) interpret multivariable regression models. VISA_M3R3 is primarily 

designed as a research tool for the medical researchers at ICES’ KDT program, and it is 

up to them to decide how this system will be applied within the healthcare system. A 

number of training materials have been prepared to assist new users who are not familiar 

with the analytics and visualization techniques incorporated in VISA_M3R3 to use the 

system effectively. 

We have demonstrated how VISA_M3R3 can be used to detect AKI-associated 

medications among older patients who visited the hospital or emergency department in 

Ontario between 2014 to 2016 using ICES health administrative data. We have seen that 

VISA_M3R3 allows healthcare researchers to generate hypotheses, understand the 

relationships among data elements (e.g., medications and diseases), and recognize 

patterns and trends that would be otherwise difficult to identify. About 9% of all the 

medications that are prescribed to the older patients have been found to be associated 

with AKI. Using VISA_M3R3, we detect 55 medications (Furosemide, Allopurinol, 

Hydrochlorothiazide, Atorvastatin, Spironolactone, Olmesartan Medoxomil, to name a 

few) and 78 medication combinations (Furosemide & Oseltamivir Phosphate, Allopurinol 
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& Metolazone, Celecoxib & Quetiapine, and so on) that are associated with an increased 

risk of AKI. In general, medications belong to Angiotensin Receptor Blockers, Diuretics, 

Nonsteroidal Anti-inflammatory, and Xanthine Oxidase Inhibitors classes are found to be 

strongly associated with AKI. Moreover, some combinations of medication classes such 

as Anti-inflammatory & Antidepressants and Diuretics & Antiviral Agents have been 

identified with the evidence for increased risk of developing AKI. The lists of 

medications and medication combinations have been reviewed by a nephrologist to 

validate the results. Most of these medications are already known to be nephrotoxic in the 

existing literature, which confirms the accuracy of our findings through VISA_M3R3 

(Chao et al., 2015; Kwok M. Ho and Power, 2010; Perez-Ruiz, 2017; Pierson-

Marchandise et al., 2017; Verdoodt et al., 2018; Wu et al., 2014). 

In terms of the extensibility and scalability of VISA_M3R3, we have designed it in a 

modular way so that it can easily accept new data sources, data types, and analysis 

techniques. VISA_M3R3 can be used to investigate many other clinical problems, such 

as identifying risk factors associated with hypertension, and understanding the 

relationship between dietary habits and diabetes. To test the applicability of the system in 

different healthcare areas, we have used VISA_M3R3 to detect hospital admission codes 

(i.e., reasons for hospitalization) that are associated with AKI using healthcare utilization 

database housed at ICES. We detected 8,543 itemsets by analyzing the hospital admission 

codes that co-occur frequently. Using VISA_M3R3 to analyze this data, 185 individual 

codes and 215 group codes are found to be statistically significant. The top few reasons 

for hospitalization (representing admission codes associated with AKI) include 1) 

Essential hypertension, 2) Malignant neoplasm of bladder, 3) Non-follicular (diffuse) 

lymphoma, 4) Mycosis fungoides, 5) Iron deficiency anemia, and 6) Chronic obstructive 

pulmonary disease. This result also aligns with what has already been known from the 

literature, which more generally and comprehensively proves the efficacy of 

VISA_M3R3's design (Anderson et al., 2010; Da’as et al., 2001; Kandler et al., 2014; 

Malbrain et al., 1994; Martines et al., 2013). 
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There are four key limitations to the development of VISA_M3R3. The first one is that it 

reports the regression analysis result of the group models but does not consider how 

individual items within the group are affecting the outcome. For instance, in the study 

with medications, VISA_M3R3 reveals that the combination of Furosemide and 

Metoprolol increases the risk of AKI. However, it does not explain the additive risk of 

using Metoprolol with or without Furosemide and vice versa. This issue can be resolved 

by incorporating a stratified analysis on each item available in at least one group. The 

second limitation is that, even though we have had a participatory design and medical 

experts have evaluated VISA_M3R3 and have found it very useful and usable, we have 

not conducted any formal experimental usability studies to evaluate its performance, nor 

the efficacy of its human-data discourse mechanisms. The third one is that VISA_M3R3 

incorporates a limited number of analytics techniques. Although there are more advanced 

machine learning algorithms in the literature, we decided to design the system based on 

techniques that are more interpretable to our end-users (i.e., clinicians and healthcare 

researchers). Fourth, the preparation of the dataset for VISA_M3R3 could be labor-

intensive in some situations, depending on the data source and problem at hand. 

However, there are a number of readily available libraries and packages available to 

assist users with the data cut and preparative work. 

3.6 Conclusion 

The purpose of this study is to demonstrate how VA systems can be designed in a 

systematic way to support EMR-driven tasks and investigation of different clinical 

problems. We report the development of a VA system (called VISA_M3R3) and 

demonstrate how it can be used to help medical practitioners and researchers identify 

medications and medication combinations that associate with a higher risk of AKI. 

VISA_M3R3's novelty stems from its design: it incorporates multivariable regression, 

frequent itemset mining, data visualization, and human-data interaction mechanisms in an 

integrated fashion to support ill-defined, complex EMR-driven tasks. Using 

VISA_M3R3, we analyzed ICES health administrative data. Through this analysis, 55 

medications and 78 medication groups, strongly associated with AKI, were identified. 
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Although, through clinical studies, a number of these AKI-associated medications and 

medication groups are known by medical researchers, some of them have never been 

studied before. VISA_M3R3 can alert and raise physicians' awareness of such potentially 

AKI-associated medications. This, in turn, can prompt healthcare providers to conduct 

further clinical investigations to improve healthcare research outcomes. Finally, 

VISA_M3R3's design concepts are generalizable. They can be used to systematically 

develop any VA system whose goal is to support medical tasks involving analysis of 

EMR data using multiple regression models and frequent itemset mining. Applications of 

such VA systems can lead to the emergence of best practices for developing similar VA 

systems in other medical domains. 
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Chapter 4  

4 Machine Learning for Identifying Medication-Associated 
Acute Kidney Injury   

This chapter has been published as S.S. Abdullah, N. Rostamzadeh, K. Sedig, D. J. 

Lizotte, A.X. Garg, and E. McArthur, “Machine Learning for Identifying Medication-

Associated Acute Kidney Injury” in the Health Section of the Informatics 

Journal, Volume 7; May 2020. We changed the format to match the general format of the 

dissertation. Figure, Table, and Section numbers specified herein are relative to the 

chapter number. For example, “Table 1” corresponds to Table 4-1; “Figure 1” 

corresponds to Figure 4-1; and “Section 1.1” corresponds to Section 4.1.1. Moreover, 

when the term “paper”, “research”, or "work" is used, it refers to this specific chapter. 

4.1 Introduction 

Acute kidney injury (AKI), defined as a sudden loss of kidney function over a short 

period of time, affects approximately 10% of patients admitted to hospitals worldwide 

(Porter et al., 2014; Selby et al., 2012). It is associated with increased mortality, 

morbidity, and estimated incremental health care costs of more than $200 million in 

Canada annually (Collister et al., 2017). Medication-induced nephrotoxicity is very 

common in clinical practice. It accounts for 19% of cases of AKI in a hospital setting 

(Collister et al., 2017; Gandhi et al., 2000; Kaufman et al., 1991; Miyahara, 1978; Nash et 

al., 2002; Uchino et al., 2005) and is associated with increased healthcare expenditure 

(Choudhury and Ahmed, 2006; Collister et al., 2017). For instance, using the medication 

utilization data in Canada for 2013, Morgan et al. (2016) have reported an estimated 

healthcare cost of $419 million due to inappropriate prescriptions (Morgan et al., 2016). 

Over the last two decades, the incidence rate of AKI has increased in Canada (Liu et al., 

2010; Mehrabadi et al., 2014), the United States (Nadkarni et al., 2016; Xue et al., 2006), 

and the United Kingdom (Kolhe et al., 2016). The increasing occurrence of AKI is 

related to the changing spectrum of diseases. There is a growing body of evidence 
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showing that patients with multiple comorbidities and extrarenal complications are at a 

higher risk of developing AKI (Mehta et al., 2004; Siddiqui et al., 2012). For instance, 

Aikar et al. (Waikar et al., 2006) have shown that the high comorbidity rate, measured by 

the Deyo-Charlson comorbidity index, is associated with AKI. In a study of 681 AKI 

patients who are admitted to the intensive care unit, the occurrence of comorbid 

conditions is high: 37% have coronary artery disease, 30% have chronic kidney disease, 

29% have diabetes mellitus, and 21% have chronic liver disease (Mehta et al., 2004). As 

a patient's number of comorbid conditions grow, there is a rise in associated 

hospitalizations, physician visits, prescriptions, and expenses (Zulman et al., 2014), 

ultimately leading to an increase in medication intake. Patients admitted to hospitals, 

particularly critically ill patients with multiple comorbidities, often take several 

medications, with up to 25% of these medications having nephrotoxic potential 

(Choudhury and Ahmed, 2006). A study in 2005 has revealed that out of 7 million 

adverse medication event reports, 2.7% include an incidence of AKI, of which 16% are 

known nephrotoxins, 18% are possible nephrotoxins, and the rest are new potential 

nephrotoxins (Uchino et al., 2005). 

 The use of nephrotoxic medications is associated with 16-25% of all AKI cases in the 

adult population (Pannu and Nadim, 2008; Uchino et al., 2005). Few studies have been 

conducted to identify medications that are commonly associated with AKI. Most of these 

studies have been limited in assessing the impact of known nephrotoxic medications 

(Alexander et al., 2017; Moffett and Goldstei, 2011; Rivosecchi et al., 2016). In addition, 

information on medication combinations that can cause AKI lacks in the literature. It is 

important to identify those combinations because a combination of multiple nephrotoxins 

may result in synergistic or accumulative nephrotoxicity, thus increasing the chance of 

renal failure (Schetz et al., 2005). For example, the risk of developing AKI increases by 

53% for each additional nephrotoxic medication used by a patient (Cartin-Ceba et al., 

2012). Hence, it is important to identify not only nephrotoxic medications but also 

medication combinations that affect the risk of AKI. Rivosecchi et al., through an 

exhaustive literature search, further emphasize the need for a comprehensive 
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understanding of how medication combinations alter the risk of AKI (Rivosecchi et al., 

2016). According to a CDC report in 2017, there are about 1,000 known adverse 

medication effects and 5,000 medications available in the pharmacies (FastStats - 

Therapeutic Drug Use), making for approximately 125 billion possible adverse 

medication effects between all possible pairs of medications (Zitnik et al., 2018). Thus, it 

is impossible to assess medication-induced AKI through this number of clinical trials 

comprehensively. Moreover, conducting a trial to determine whether to prescribe or not 

prescribe a potentially harmful combination would likely never receive research ethics 

board approval. 

Data analysis has the potential to address this challenge by employing methods and 

techniques from different fields, such as data mining, statistics, and machine learning to 

accomplish various data-driven tasks (Han and Kamber, 2011). It can be used to 

investigate clinical data to gain both novel and deep insights to help healthcare providers 

examine medication-induced nephrotoxicity. Recently, several studies have been 

conducted to identify drug-drug interactions, improve drug-safety science, and predict 

adverse drug reactions using machine learning techniques (Vamathevan et al., 2019). For 

instance, Kandasamy et al. (2015) have developed a prediction model to identify drug-

induced nephrotoxicity using human induced pluripotent stem cells and random forest 

(Kandasamy et al., 2015). In addition, Dey et al. (2018) have presented a deep learning 

framework to predict adverse drug reactions and detect molecular substructures 

associated with them (Dey et al., 2018). An automatic method of processing adverse 

event reports using artificial intelligence and robotics is presented in (Schmider et al., 

2019). Lysenko et al. (2018) have incorporated Mashup (Cho et al., 2016) and a gradient-

boosted tree to predict drug toxicity using biological network data (Lysenko et al., 2018). 

Although these studies are designed to deal with large bodies of data to solve different 

medication-related problems, the relationship between medications and AKI has not been 

studied before through automated data analysis. Automated data analysis techniques 

allow an incorporation of large quantities of data that creates an opportunity to include 

additional information to more comprehensively study individual medications and their 
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combinations. It is essential to consider comorbidities while studying the effect of 

medications since it is not clear whether the underlying comorbidities or medications 

increase the risk of developing AKI. In addition to comorbidity data, demographics data 

such as age, sex, and region, are also considered as risk factors for AKI (K. D. Liu et al., 

2019; Siew et al., 2016). Therefore, any complete study that investigates nephrotoxic 

medications or combinations should include demographic and comorbidity data in the 

analysis. Up until now, there is a lack of well-designed studies that consider demographic 

and comorbidity data while assessing the risk of developing AKI with the use of single or 

multiple medications. Even though the identification of nephrotoxic medications is 

crucial for improved patient care, it has not been studied thoroughly through machine 

learning techniques. 

 The purpose of this study is to identify individual medications associated with AKI in 

hospitalized patients using an automated machine learning approach. We also identify 

AKI-associated medication combinations and investigate whether the use of multiple 

medications results in multiplicative effects on the risk of developing AKI. Finally, we 

investigate how our findings are consistent with data in the existing literature. Our study 

differs from other studies in three ways: (1) we consider all the frequently used 

medications in the study, whether they have been known to be nephrotoxic or not; (2) we 

use a frequent itemset mining algorithm to identify frequent medication combinations and 

multivariable logistic regression to investigate the association between medication 

combinations and AKI; and (3) we incorporate the patient's demographic and 

comorbidity features as potential covariates in the regression models. 

4.2 Materials and Methods 

This section describes the methodology we have employed to conduct the study. We 

describe the design process, study setting, workflow, data sources, cohort entry criteria, 

input features, outcome, analysis processes, and tools. 
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4.2.1 Design Process and Participants 

To help us understand how healthcare providers perform automated analysis, and to help 

us conceptualize and design our study, we adopted a participatory design method. It is a 

co-operative method that involves all stakeholders (e.g., designers, intermediary-users, 

and end-users) in the design process to ensure the output of the analysis meets their needs 

(Muller, 2007). A statistician, a clinician, an epidemiologist, and several computer 

scientists were involved in the design and evaluation process of this study. During the 

initial stage in the designing process, we realized that healthcare providers usually 

perform medication-safety related studies in many ways. It is difficult to determine a 

single correct analytics technique for these tasks because different techniques have their 

strengths and weaknesses. As such, we interviewed healthcare experts to identify the 

data-driven tasks and analytics techniques with which they are familiar. We identified 

four data-driven tasks to consider in designing this study through our collaboration with 

healthcare experts at the ICES-KDT (ICES - an independent, non-profit, world-leading 

research organization that uses population-based health and social data to produce 

knowledge on a broad range of healthcare issues; KDT - Kidney Dialysis and 

Transplantation program), located in London, Ontario, Canada. 1) Studying the 

relationships between prescribed medications and AKI. 2) Identifying commonly 

prescribed medication combinations to older patients. 3) Examining the effect of a 

medication combination on AKI. 4) Investigating if a certain medication is associated 

with an increased risk of developing AKI when used with another medication. We came 

to know that healthcare experts usually rely on different regression techniques to 

accomplish such tasks. Thus, we decided to employ multivariable regression in this 

study. We also invited healthcare experts to provide us with formative feedback on 

design decisions and results. 

4.2.2 Design and Setting 

We performed a population-based retrospective cohort study in older adults from April 

2014 to March 2016 in Ontario, Canada, using administrative health databases located at 



91 

 

 

 

ICES. These datasets were linked using unique encoded identifiers and analyzed at ICES. 

The use of data in this project was authorized under section 45 of Ontario’s Personal 

Health Information Protection Act, which does not require review by a Research Ethics 

Board. 

Ontario has a population of approximately 13 million residents with universal access to 

hospital care and physician services, including 1.9 million people aged 65 years or older 

who have universal prescription drug coverage (14% of the population). We suppressed 

our results in cells with five or fewer patients to comply with privacy regulations and 

minimize the chance of re-identification of patients. 

4.2.3 Workflow 

Figure 1 illustrates the basic workflow of the study presented in this paper. In the first 

stage, we created an integrated dataset from different health administrative databases 

stored at ICES. The data sources are explained in Section 2.4. Next, we applied the 

inclusion and exclusion criteria presented in Section 2.5 to build the final cohort. The 

demographic and comorbidity features were then encoded and transformed into 

appropriate forms for analysis in Section 2.6. Section 2.7 describes the outcome (i.e., 

AKI) and how we identified the incidence of AKI. A brief description of the cohort is 

presented in Section 2.8. After that, we performed individual and combination analysis, 

which are discussed in Section 2.9 and 2.10, respectively. The results from both analyses 

were then validated and presented in Tables 2 and 3. 

4.2.4 Data Sources 

We ascertained patient characteristics, drug prescriptions, and outcome data from 5 

health administrative databases (Appendix A). The datasets were linked using unique, 

encoded identifiers derived from health card numbers, and patient-level data were 

analyzed at ICES. We obtained vital statistics from the Ontario Registered Persons 

Database, which contains demographic data on all Ontario residents who have ever been 

issued a health card. We used the Ontario Drug Benefit Program database to identify 
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prescription drug use. This database contains highly accurate records of all outpatient 

prescriptions dispensed to older patients, with an error rate of less than 1% (Levy et al., 

2003). We identified hospital admissions, baseline comorbidity data, and emergency 

department visits from the National Ambulatory Care Reporting System (ED visits) and 

the Canadian Institute for Health Information Discharge Abstract Database 

(hospitalizations). We used the International Classification of Diseases, tenth revision 

(post-2002) codes to assess baseline comorbidities. Baseline comorbidity data were also 

obtained from the Ontario Health Insurance Plan database, which includes claims for 

physician services. Coding definitions for comorbidity data are represented in Appendix 

B. 

 

Figure 4-28: Workflow diagram of the study presented in this paper. Different 

colours are used to show the separation of three main parts (pre-processing, 

individual analysis and combination analysis). 
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4.2.5 Cohort Entry Criteria 

We identified a cohort of individuals aged 65 years or older who were admitted to 

hospital or visited the emergency department (ED) between 1st April 2014 and 31st 

March 2016. The ED visit date or hospital admission date served as the index or cohort 

entry date. If an individual had multiple ED visits or hospital admissions, we selected the 

first incident. Individuals with invalid data regarding the health card number, age, and sex 

were excluded. We also exclude: (1) patients who previously received dialysis or a 

kidney transplant as AKI is often no longer relevant once a patient develops end-stage 

kidney disease (diagnosis codes for exclusion criteria are shown in Appendix C); and (2) 

patients who left the hospital against medical advice or without being seen by a 

physician.  

4.2.6 Baseline Covariates 

There were a total of 5 demographic, 10 comorbidity, and 595 medication features in the 

cohort, which serve as input for the analysis. Demographic information included age, sex, 

residency status (urban and rural), long term care, and socioeconomic status (income 

quintile according to Statistics Canada). We used a 5-year look-back window to identify 

relevant baseline comorbidities, including diabetes mellitus, hypertension, heart failure, 

coronary artery disease, cerebrovascular disease, peripheral vascular disease, chronic 

liver disease, chronic kidney disease, major cancers, and kidney stones.  

All of the features in the cohort were categorical. We converted the comorbidity features 

into binary forms. For instance, if a patient had a particular comorbid condition, its 

corresponding value was taken as "1." We set the value for sex and residency status 

features if a patient was male and resided in urban areas. The income feature took an 

integer value ranged between 1 to 5 to represent the income quintile of a particular 

patient. All these features from different data sources were integrated using the encoded 

identifiers derived by ICES. Finally, the features in the cohort were transformed into a 

format and scale that were suitable for the analysis. For each feature in the cohort, we 

recorded the last value before the index date. Thus, we aggregated multiple values (rows) 
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of a single feature into one by considering the latest values of that feature for each 

patient. 

4.2.7 Outcome: Identification of AKI 

AKI was the outcome variable for all the regression models in this study. We identified 

the incidence of AKI in the first visit to the ED or hospital admission between 1st April 

2014 and 31st March 2016. The incidence of AKI was captured using the National 

Ambulatory Care Reporting System and the Canadian Institute for Health Information 

Discharge Abstract Database based on the International Classification of Diseases (ICD), 

Tenth Revision (ICD-10-CA) "N17" diagnostic codes. We considered the first incidence 

in case of multiple episodes of AKI for a patient. We set the value of the outcome 

variable if a patient was diagnosed with AKI. We recorded the first incidence of AKI in 

case there were multiple episodes.  

4.2.8 Cohort Characteristics 

A total of 924,533 participants were included in the derivation cohort, of which 25,084 

(2.7%) had AKI during their hospital or ED encounter. Selected characteristics of this 

cohort are shown in Table 1. The mean age was 70 years, and 56% were women. Sixteen 

percent of the patients resided in rural areas, and 6% of them were in long term care. The 

pre-existing comorbidities were hypertension (88%), diabetes (38%), coronary artery 

disease (25%), major cancer (16%), heart failure (14%), cerebrovascular disease (3%), 

peripheral vascular disease (2%), chronic liver disease (4%), chronic kidney disease 

(9%), and kidney stones (1%). 

Table 4-5: Baseline characteristics of patients admitted to the hospital or who visited 

the emergency department (ED). 

Characteristics Patients admitted to hospital or visited ED 

 Total Patients AKI  No AKI  

Cohort size 924,533 25084 (3%) 899449 (97%) 

Age, yr, mean (SD)  

65 to <70 192,678 2522 (1.3%) 190156 (98.7%) 

70 to <80 382,989 7946 (2.1%) 375043 (97.9%) 

80 to <90 274,842 10370 (3.8%) 264472 (96.2%) 
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>=90 74,024 4246 (5.7%) 69778 (94.3%) 

Women 516,175 12139 (2.4%) 504036 (97.6%) 

Year of cohort entry (index date)  

2014-2015 605,244 16689 (2.8%) 588555 (97.2%) 

2015-2016 319,289 8395 (2.6%) 310894 (97.4%) 

Rural residence 151,323 2097 (1.4%) 149226 (98.6%) 

Long-term care 43,351 3118 (7.2%) 40233 (92.8%) 

Income Quintile  

1 180,227 5466 (3%) 5466 (3%) 

2 192,686 5515 (2.9%) 5515 (2.9%) 

3 182,957 4909 (2.7%) 4909 (2.7%) 

4 186,407 4829 (2.6%) 4829 (2.6%) 

5 182,256 4365 (2.4%) 4365 (2.4%) 

Comorbid conditions  

Hypertension 814,604 24209 (3%) 790395 (97%) 

Diabetes 358,472 13837 (3.9%) 344635 (96.1%) 

Heart failure 125,136 7623 (6.1%) 117513 (93.9%) 

Coronary artery disease 239,437 8392 (3.5%) 231045 (96.5%) 

Chronic liver disease 33,359 1245 (3.7%) 32114 (96.3%) 

Cancer 145,286 4253 (2.9%) 141033 (97.1%) 

Chronic kidney disease 86,442 7759 (9%) 78683 (91%) 

Kidney stones 12,457 391 (3.1%) 12066 (96.9%) 

Peripheral vascular disease 13,197 660 (5%) 12537 (95%) 

Cerebrovascular disease 25,835 1180 (4.6%) 24655 (95.4%) 

4.2.9 Individual Medication Analysis 

We identified a total of 595 unique medications prescribed to about 1 million patients in 

the Ontario Drug Benefit Program database. The database includes medication name, 

medication dose, date filled, and route-of-administration of the prescriptions. We 

generated 595 binary features to record the use data for each medication and each patient. 

We set the value of a specific medication feature for a patient when the medication was 

administered to that patient in the 120 days prior to hospital presentation. When patients 

take a drug, it affects them differently based on body composition and metabolism. 

However, most physicians are not able to consider all of these factors when prescribing a 

medication. Thus, to investigate the association between medications and AKI, we 

intended to identify signals that affect a large population. If a particular signal is common 

in a large number of people (i.e., a population of one million patients), then the 

possibility of the existence of an association is very high. Our goal was to identify 

potential interactions that are not yet understood or perhaps known. We considered this as 

an information retrieval problem, such that our models were designed to discover the 

possible relationships between each medication and AKI. We developed a multivariable 
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logistic regression model to predict AKI based on the demographic, comorbidity, and 

medication data and observed the attribute representing medication to understand the 

relationships between a particular medication and AKI. Logistic regression is a special 

type of regression technique used to predict the outcome of a binary dependent feature 

from one or several predictors. We developed separate regression models for each 

individual medication (i.e., 595 models). For each model, the regression coefficient and 

p-value of the medication attribute were analyzed to identify potential associations. It is 

important to mention that formal clinical studies are required to confirm such 

interactions. The study was designed to assist healthcare experts at the ICES-KDT 

program in choosing potential candidates for their future drug-safety studies.     

The "glm" function in R packages was employed to implement multivariable logistic 

regression models (Williams et al., 1984). Model covariates included demographic 

features and baseline comorbidities. Thus, the formula in R included AKI as the response 

and comorbidities, demographics, and medication as predictor variables. The value for 

the "family" argument in the "glm" function was set to "binomial." We used the 

"summary" function to get the estimate, p-value, z-score, and standard error for each 

coefficient in the model. In addition, the "confit" function was used to compute the 

confidence interval and odds ratio. 

In order to avoid type I error in comparing multiple independent regression models, we 

lowered the alpha value based on the Bonferroni correction to account for the number of 

comparisons being performed. We considered a Bonferroni-corrected p-value less than 

8.4e-5 (divided 0.05 by the number of individual medications) as statistically significant 

for regression models with each medication. 

4.2.10 Medication Combination Analysis 

In order to identify the medication combinations that are associated with AKI, we first 

prepared the medication combinations data. Since the number of individual medications 

is 595, the total number of combinations is a large number. Hence, we used a data mining 
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technique named Eclat (Agrawal et al., 1993) to select the frequent combinations that 

included prescription data of at least 0.07% of the total number of prescriptions. Eclat is a 

frequent itemset mining algorithm that uses a depth-first search to discover groups of 

items that frequently occur in a transaction database. An itemset that appears in at least a 

pre-defined number of transactions is called a frequent itemset.  Each frequent 

medication combination was annotated with its support. The support of a medication 

combination was how many times it appeared in the medication database 

We only included combinations of two medications in this analysis and identified 7,748 

unique medication combinations. Then, we created binary features to record the presence 

of these combinations. We set the value of a specific combination feature for a patient 

when that patient had been dispensed all medications within the combination in the 120-

day period before the index date. Similar to the individual medication analysis, we 

applied a multivariable logistic regression on each medication combination. The baseline 

covariates, such as demographics and comorbidities, and medication combination 

features were included as potential covariates in the models. We developed separate 

regression models for each medication combinations identified using frequent itemset 

mining analysis (i.e., 7,748 models). The regression coefficient and p-value of the 

medication combination attribute were analyzed to identify combinations that are 

associated with AKI. We then performed a stratified analysis to examine potential 

medication-medications interactions further. We created a subset of medication 

combinations based on their significance in the regression models. Statistically 

significant combinations were detected by filtering the regression models based on a 

Bonferroni-corrected alpha value, 6.5e-6 (divided 0.05 by the number of medication 

combinations). 

Stratified analyses were conducted on each medication available in one or more 

combinations in the above subset. To do this, we created a list of unique medications (i.e., 

base medications) from the chosen subset of medication combinations. Then for each 

medication in the list, we identified the other medication that holds a combination with 
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the base medication. In the next stage, we prepared two sub-cohorts. The first one 

includes both medications in the combination (base and other), and the second one 

excludes the other medication in the combination. Finally, we applied multivariable 

logistic regression on each sub-cohort that included the combination and/or base 

medication feature along with the baseline covariates. The same process was followed for 

each medication available on the list. 

In this analysis, for each unique medication combination, we obtained two models for the 

sub-cohorts. In order to help us to assess how the other medication affects the outcome of 

the base medication, we compared the odds ratio of the combination attribute in the first 

model with the odds ratio of the base medication attribute in the second model. We tested 

the significance of all models in the stratified analysis using a Bonferroni-corrected alpha 

value. We calculated the percentage change in odds ratios to report the result of this 

analysis. 

4.2.11 Tools and Technologies 

SAS was used to cut and prepare the dataset because ICES administrative databases were 

stored in the SAS server (“SAS Enterprise BI Server,” n.d.). In addition, we used R 

packages (“RStudio | Open source & professional software for data science teams,” n.d.) 

to conduct the necessary statistical and machine learning analyses in this study. R was 

chosen because it 1) provides widespread support for carrying out data mining operations 

such as frequent itemset mining and multivariable regression, 2) is available on the ICES 

workstations, 3) has a rich array of libraries, 4) is platform-independent and open-source, 

and 5) is continuously growing and providing updates with new features. 

4.3 Results 

This section describes the results of the study. The results are divided into two 

subsections. The results of the individual medication analysis and medication 

combination analysis are discussed in Subsection 3.1 and 3.2, respectively.  
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4.3.1 Individual Medication and AKI 

Some of the commonly prescribed medications in the 120 days before the ED visit were 

Atorvastatin Calcium (24%), Rosuvastatin Calcium (22%), Hydrochlorothiazide (20%), 

Amlodipine Besylate (19%), and Metformin Hcl (16%). A binary logistic regression 

model was fit to each medication, where demographic and comorbidity features were 

included as potential risk factors in the model to test the research hypothesis regarding 

the relationship between the likelihood of developing AKI and specific medications. 

Table 2 shows the full list of medications with their p-values, odds ratios, confidence 

intervals, and standard errors. The medication classes are shown in brackets with 

medication names. We sorted medications based on the odds ratio of the medication 

feature in each model. Out of 595 medications, 55 of them were found to be strongly 

associated with AKI (i.e., statistically significant after Bonferroni correction). Among 

these 55 medications, six of them were Diuretics, four were Beta-blockers, three of them 

belonged to Oral Anti-Glycemic, three of them were Prostatic Hyperplasia medications, 

and the rest of them belonged to 33 other medication classes.  

Among demographics, age, sex, residency status, and long-term care attributes have 

shown statistically significant relationships with the probability of AKI. The fitted 

models revealed that keeping all other attributes constant, the odds of getting diagnosed 

with AKI for males over females varied between 1.35 to 1.38. The odds for older age 

groups (i.e., 80 to <90 and >=90) was higher. The odds for rural residents were 24-28% 

lower than the odds for urban residents. Similarly, the odds for patients in long term care 

were 41-45% higher. By analyzing the comorbidity attributes in the models, we identified 

that AKI was more likely to be associated with chronic kidney disease, hypertension, 

diabetes, and heart failure, and chronic liver disease. Among these attributes, chronic 

kidney disease, hypertension, and diabetes have shown very strong associations. The 

average odds ratios for chronic kidney disease, hypertension, and diabetes patients were 

1.81, 1.64 and,1.41, respectively. 
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4.3.2 Medication Combinations and AKI 

A medication combination was chosen for this analysis if it has been used by at least 700 

patients during the study period using the eclat algorithm. The most frequent medication 

combinations were Amlodipine Besylate-and-Atorvastatin Calcium (7%), Atorvastatin 

Calcium-and-Metformin Hcl (6%), Atorvastatin Calcium-and-Ramipril (5%), 

Amlodipine Besylate-and-Hydrochlorothiazide (5%), Atorvastatin Calcium-and-

Hydrochlorothiazide (5%), Metformin Hcl-and-Rosuvastatin Calcium (5%), and 

Hydrochlorothiazide-and-Rosuvastatin Calcium (4%). 

In the next stage, we applied multivariable logistic regression on each selected 

combination. We filtered the combinations based on the p-value of the medication feature 

in each model. We found 78 combinations that were found to be strongly associated with 

AKI among 7,748 combinations. Then, we performed a stratified analysis on the strongly 

associated combinations and reported the percentage change in the odds ratio. We 

identified 37 cases where a second medication is associated with increasing the risk of 

developing AKI when used with another medication. Table 3 contains a filtered list of 

combinations with a percentage change of more than 40%. 

Table 3 shows the medication names with classes, odds ratios of models with and without 

the second medication, and percentage change in odds ratios. In the stratified analysis, we 

found 16 and 27 distinct classes representing the first (Base Medication column) and 

second (Other Medication in Combination column) medications, respectively. The 

percentage change in odds ratio had increased by 80% when Indapamide was used with 

Clavulanic acid potassium or Amoxicillin. The combination of Allopurinol with 

Venlafaxine Hcl or Morphine Sulfate was associated with a possible increase in the odds 

of 55%. The odds of getting diagnosed with AKI increases if Alprazolam, Trandolapril, 

Metformin, Clonidine Hcl, Acetaminophen & Oxycodone Hcl, or Cefuroxime Axetil is 

used in combination with Furosemide. When Celecoxib, Pregabalin, or Atenolol was 

used with one of the Antipsychotic medications (Quetiapine), the average change in odds 

ratio was about 65%. It is interesting to note that Celecoxib (Anti-Inflammatory) was not 
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found to be associated with AKI (Table 2) when used individually but appeared to be 

AKI-associated when used with Mirtazapine (Antipsychotic) or Quetiapine Fumarate 

(Antidepressants). 

The relationship between AKI and potential covariates (i.e., demographics and 

comorbidities) in the combination models resembled the relationship of individual 

models. By analyzing the regression coefficients of the combination models, we 

identified patients with AKI were more likely to be men, resided in urban areas, lived in 

long-term care, had chronic kidney disease, hypertension, diabetes, and heart failure. AKI 

was less likely to be associated with income quintile, peripheral vascular disease, chronic 

liver disease, and cerebrovascular disease. 

Table 4-6: List of the individual medications sorted based on their odds 

ratios. 

Medication P-value Odds ratio (OR) Std. error OR’s 95% CI 

Sunitinib Malate (Antineoplastic Miscellaneous) 1.6e-09 4.59 0.25 2.72 - 7.37 

Lenalidomide (Immunosuppressive Agents) 9.4e-17 3.58 0.15 2.62 - 4.79 

Abiraterone Acetate (Not Identified) 1.7e-10 2.61 0.15 1.92 - 3.48 

Metolazone (Diuretics) 1.3e-60 2.38 0.05 2.14 - 2.63 

Cyclosporine (Immunosuppressive Agents) 4.0e-06 2.18 0.17 1.54 - 3 

Megestrol Acetate (Progesteron Analogues) 2.6e-07 2.08 0.14 1.56 - 2.72 

Lithium Carbonate (Antimanic Agents) 4.7e-12 2.04 0.1 1.66 - 2.48 

Atropine Sulfate & Diphenoxylate Hcl (Antidiarrhea) 3.4e-10 2 0.11 1.6 - 2.46 

Furosemide (Diuretics) 2.6e-133 1.93 0.02 1.87 - 2 

Prochlorperazine Maleate (Antiemetics And Antinauseants) 9.1e-26 1.93 0.06 1.7 - 2.17 

Spironolactone (Diuretics (Potassium-Sparing)) 2.6e-112 1.87 0.03 1.77 - 1.97 

Methyldopa (Centrally Acting Antiadrenergic) 4.9e-06 1.84 0.13 1.4 - 2.37 

Hydralazine Hcl (Vasodilator Antihypertensive Drugs) 1.5e-26 1.76 0.05 1.58 - 1.95 

Dexamethasone (Corticosteroids, Plain) 2.4e-19 1.74 0.06 1.54 - 1.96 

Ondansetron Hcl (Antiemetics And Antinauseants) 9.1e-13 1.69 0.07 1.46 - 1.94 

Clonidine Hcl (Centrally Acting Antiadrenergic) 3.9e-06 1.69 0.09 1.4 - 2.02 

Allopurinol (Xanthine Oxidase Inhibitor) 1.2e-81 1.51 0.02 1.45 - 1.57 

Linagliptin (Unclassified Therapeutic Agents) 4.1e-24 1.5 0.04 1.38 - 1.62 

Loperamide (Antidiarrhea) 1.4e-09 1.47 0.06 1.29 - 1.66 

Glyburide (Oral Anti-Glycemic) 1.3e-12 1.46 0.04 1.34 - 1.58 

Chlorthalidone (Diuretics) 1.2e-18 1.42 0.06 1.25 - 1.59 

Atenolol (Beta Blockers) 1.23e-08 1.4 0.02 1.06 - 1.47 

Acetylsalicylic Acid & Dipyridamole (Adenosine Diphosphate Inhibitors) 2.9e-07 1.36 0.06 1.21 - 1.53 

Olmesartan Medoxomil (Angiotensin Ii Antagonist) 7.9e-13 1.35 0.04 1.24 - 1.46 

Iron Ferrous Fumarate (Iron Preparations) 1.9e-39 1.34 0.02 1.29 - 1.4 

Quetiapine Fumarate (Antipsychotic Agents) 4.4e-06 1.34 0.03 1.26 - 1.43 

Nortriptyline Hcl (Tricyclic Antidepressant) 7.2e-19 1.34 0.06 1.18 - 1.51 

Mirtazapine (Antidepressants: Miscellaneous) 2.1e-15 1.33 0.04 1.24 - 1.43 

Iron Ferrous Gluconate (Iron Preparations) 8.2e-16 1.33 0.04 1.24 - 1.43 

Terazosin (Alpha Adrenergic Blocking Agents) 1.5e-07 1.33 0.05 1.19 - 1.48 

Olanzapine (Antipsychotic Agents) 8.5e-07 1.33 0.06 1.18 - 1.48 

Fenofibrate (Antilipemic: Fibrates) 3.6e-08 1.32 0.05 1.19 - 1.46 

Carvedilol (Beta-Blockers) 5.1e-09 1.31 0.05 1.19 - 1.43 

Doxazosin Mesylate (Alpha Adrenergic Blocking Agents) 6.6e-07 1.3 0.05 1.17 - 1.43 

Folic Acid (Vitamin B Complex) 6.9e-09 1.28 0.04 1.18 - 1.39 

Trimethoprim (Sulfonamides, Trimetroprim And Combination) 8.5e-12 1.27 0.03 1.19 - 1.36 

Indapamide (Diuretics) 3.9e-08 1.26 0.03 1.19 - 1.33 

Sulfamethoxazole (Anti-Bacterial Sulfonamide) 2.1e-14 1.26 0.03 1.18 - 1.35 

Moxifloxacin Hcl (Fluoroquinolones) 1.8e-10 1.24 0.04 1.15 - 1.34 
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Nifedipine (Calcium Blockers) 3.3e-06 1.21 0.03 1.14 - 1.28 

Lisinopril (Ace Inhibitors) 5.1e-06 1.21 0.04 1.12 - 1.31 

Gabapentin (Gamma-Aminobutyric Acid (Gaba) Derivatives) 7.6e-09 1.2 0.03 1.13 - 1.27 

Oseltamivir Phosphate (Antiviral Agents - Influenza Virus Specific) 1.1e-10 1.2 0.04 1.11 - 1.3 

Metoprolol (Beta-Blockers) 6.4e-11 1.19 0.03 1.12 - 1.25 

Donepezil Hcl (Cholinesterase Inhibitors) 1.9e-08 1.18 0.03 1.11 - 1.25 

Gliclazide (Oral Anti-Glycemic) 3.7e-11 1.17 0.03 1.12 - 1.23 

Hydrochlorothiazide (Diuretics) 1.9e-18 1.16 0.02 1.12 - 1.2 

Metoprolol Tartrate (Beta-Blockers) 1.7e-21 1.16 0.02 1.11 - 1.21 

Amlodipine Besylate (Calcium Blockers) 2.4e-06 1.15 0.02 1.12 - 1.19 

Valsartan (Angiotensin Ii Antagonist) 3.1e-11 1.15 0.03 1.09 - 1.21 

Digoxin (Digitalis Preparations) 1.85e-06 1.15 0.03 1.09 - 1.22 

Bisoprolol Fumarate (Beta-Blockers) 9.9e-08 1.14 0.02 1.1 - 1.18 

Senna (Cathartics and Laxatives) 1.7e-09 1.14 0.02 1.08 - 1.19 

Ramipril (Ace Inhibitors) 9.7e-15 1.13 0.02 1.09 - 1.17 

Metformin Hcl (Oral Anti-Glycemic) 1.8e-11 1.1 0.02 1.06 - 1.14 

Table 4-7: List of the medication combinations sorted based on their 

percentage change in odds ratios. 

Base Medication Other Medication in Comb. 
Base Odds 

Ratio 

Comb Odds 

Ratio 

%Chg in 

Odds Ratio 

Indapamide (Diuretics) Clavulanic Acid Potassium (Penicillins) 1.24 2.22 79.00 

Indapamide (Diuretics) Amoxicillin (Penicillins) 1.24 2.21 78.27 

Furosemide (Diuretics) Alprazolam (Benzodiazepine Derivatives) 1.86 3.27 75.86 

Donepezil Hcl (Cholinesterase 

Inhibitors) 
Indapamide (Diuretics) 1.16 2.00 72.77 

Mirtazapine (Antidepressants: 

Miscellaneous) 

Celecoxib (Non-Steroidal Anti-Inflammatory: Non-

Asa Base) 
1.31 2.27 72.41 

Quetiapine Fumarate (Antipsychotic 

Agents) 

Celecoxib (Non-Steroidal Anti-Inflammatory: Non-

Asa Base) 
1.32 2.26 70.79 

Nortriptyline Hcl (Tricyclic 

Antidepressant) 

Acetaminophen & Oxycodone Hcl (Analgesics And 

Antipyretics: Miscellaneous) 
1.27 2.13 67.49 

Doxazosin Mesylate (Alpha 

Adrenergic Blocking Agents) 
Perindopril Tert.Butylamine (Ace Inhibitors) 1.22 2.02 66.03 

Metoprolol Tartrate (Beta-Blockers) Amitriptyline Hcl (Tricyclic Antidepressant) 1.15 1.90 65.96 

Iron Ferrous Fumarate (Iron 

Preparations) 
Bupropion Hcl (Antidepressants) 1.33 2.21 65.63 

Nortriptyline Hcl (Tricyclic 

Antidepressant) 
Lorazepam (Benzodiazepine Derivatives) 1.25 2.06 64.85 

Furosemide (Diuretics) Trandolapril (Ace Inhibitors) 1.86 3.01 61.77 

Indapamide (Diuretics) Donepezil Hcl (Cholinesterase Inhibitors) 1.24 2.00 61.77 

Allopurinol (Xanthine Oxidase 

Inhibitor) 

Venlafaxine Hcl (Selective Serotonin Reuptake 

Inhibitors - Other) 
1.49 2.41 61.65 

Terazosin (Alpha Adrenergic Blocking 

Agents) 
Irbesartan (Angiotensin Ii Antagonist) 1.27 2.03 59.84 

Fenofibrate (Antilipemic: Fibrates) Candesartan Cilexetil (Angiotensin Ii Antagonist) 1.27 2.02 58.17 

Terazosin (Alpha Adrenergic Blocking 

Agents) 
Pantoprazole Sodium (Proton Pump Inhibitors) 1.25 1.97 57.23 

Lithium Carbonate (Antimanic 

Agents) 
Atorvastatin Calcium (Antilipemic: Statins) 1.84 2.86 55.79 

Spironolactone (Diuretics (Potassium-

Sparing)) 
Clonazepam (Benzodiazepine Derivatives) 1.85 2.81 52.26 

Allopurinol (Xanthine Oxidase 

Inhibitor) 
Morphine Sulfate (Narcotics: Opiate Agonists) 1.50 2.26 50.77 

Iron Ferrous Fumarate (Iron 

Preparations) 

Meloxicam (Non-Steroidal Anti-Inflammatory: Non-

Asa Base) 
1.33 2.01 50.75 

Folic Acid (Vitamin B Complex) Hydrochlorothiazide (Diuretics) 1.22 1.82 49.59 

Dexamethasone (Corticosteroids, 

Plain) 

Gabapentin (Gamma-Aminobutyric Acid (Gaba) 

Derivatives) 
1.67 2.49 49.42 

Quetiapine Fumarate (Antipsychotic 

Agents) 
Pregabalin (Anticonvulsants: Miscellaneous) 1.32 1.95 47.67 

Dexamethasone (Corticosteroids, 

Plain) 
Ramipril (Ace Inhibitors) 1.69 2.48 46.97 

Metoprolol (Beta-Blockers) Omeprazole (Proton Pump Inhibitors) 1.17 1.71 46.70 

Ondansetron Hcl (Antiemetics And 

Antinauseants) 
Ranitidine Hcl (Histamine H2 Receptor Antagonist) 1.62 2.37 46.49 

Furosemide (Diuretics) Metformin (Oral Anti-Glycemics) 1.86 2.69 44.56 

Quetiapine Fumarate (Antipsychotic 

Agents) 
Atenolol (Beta-Blockers) 1.32 1.90 43.70 
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Iron Ferrous Fumarate (Iron 

Preparations) 
Metformin (Oral Anti-Glycemics) 1.34 1.91 43.05 

Spironolactone (Diuretics (Potassium-

Sparing)) 
Candesartan Cilexetil (Angiotensin Ii Antagonist) 1.84 2.62 42.47 

Spironolactone (Diuretics (Potassium-

Sparing)) 
Enalapril Sodium (Ace Inhibitors) 1.86 2.61 40.83 

Furosemide (Diuretics) 
Acetaminophen & Oxycodone Hcl (Analgesics and 

Antipyretics: Miscellaneous) 
1.85 2.60 40.35 

Spironolactone (Diuretics (Potassium-

Sparing)) 
Dabigatran Etexilate (Anticoagulants Miscellaneous) 1.85 2.60 40.22 

Furosemide (Diuretics) Clonidine Hcl (Centrally Acting Antiadrenergic) 1.86 2.61 40.11 

Furosemide (Diuretics) Cefuroxime Axetil (Cephalosporin) 1.86 2.61 40.02 

4.4 Discussion 

In this study, we demonstrated how machine learning techniques could help with the 

identification of potentially nephrotoxic medications using administrative health 

databases housed in ICES. Nephrotoxic medications are responsible for about 20% of 

episodes of AKI, and the rate of medication-induced nephrotoxicity leading to AKI 

among older patients is approximately 66% (Kohli et al., 2000; Peres and da Cunha, 

2013). We have presented methods for identifying medications and medication 

combinations that are associated with AKI using regression and frequent itemset mining 

algorithms. We found that 9% of all the prescribed medications were possibly associated 

with AKI by analyzing the medication data of one million older patients included in our 

study. Our analysis identified Angiotensin II Receptor Blockers, Antibacterial Agents, 

Diuretics, Iron Preparations, Nonsteroidal Anti-inflammatory Drugs, and Xanthine 

Oxidase Inhibitors as medication classes that were significantly associated with AKI. In a 

recent study of the French national pharmacovigilance database, Pierson-Marchandise et 

al. (2017) found that the majority of cases of medication-induced AKI were related to 

Antibacterial Agents, Antineoplastic Agents, Diuretics, Anti-inflammatory Drugs, and 

agents acting on the Renin-angiotensin system (Pierson-Marchandise et al., 2017). A 

similar conclusion was reached by a study of nursing home residents where Ace 

Inhibitors, Angiotensin II receptor Blockers, Antibiotics, and Diuretics were identified as 

the primary medication classes responsible for developing AKI.  

Our study aimed to investigate how individual medication analysis results were 

consistent with what has been found in previous studies. We first reviewed the results 

with a nephrologist and learned that most of the statistically significant medications 
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(Table 2) were already known to be associated with AKI, which confirmed the accuracy 

of our findings. We also conducted an electronic literature search to find the research 

papers that studied the relationships between these medications and AKI. To ensure that 

relevant papers were not missed in our search, we used a relatively large set of keywords. 

We used two sets of keywords. The first set represented the medication, and the second 

was concerned with AKI. For the second set, we used the following terms: "AKI", "acute 

kidney injury", " acute renal failure", "acute phosphate nephropathy", "acute prerenal 

failure", and "anuria". All the studies included in this literature search were published 

from 1995 till 2019. We found evidence through the literature search that confirmed the 

association between 38 individual medications (among 55 statistically significant 

medications) and AKI, which more comprehensively proved the efficacy of our study.  

To explain the results of individual medication analysis, we divided the identified 

medications into two main groups— known and likely-confounded. The medications that 

belong to the first group were already known to be associated with AKI. The 

relationships between AKI and these medications have previously been studied in the 

literature. The likely-confounded group contained medications that were not yet proven 

to be AKI-inducing. They were used to treat conditions that are associated with AKI, 

included in studies with kidney function, or not studied before. There is a lack of 

evidence regarding the association between AKI and some of these medications, such as 

Prochlorperazine Maleate and Terazosin. The complete list of medications that are 

divided into these groups is shown in Table 4. Out of 55 medications, there were 38 

medications in the known group and 17 medications in the likely-confounded group. The 

key finding of the individual medication analysis was the list of medications included in 

the likely-confounded group. These medications can be suitable candidates for clinical 

drug-safety studies to investigate this potential association. 
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Table 4-8: The list of statistically significant medications from individual analysis 

divided into three groups. 

Known Likely-confounded 

Furosemide(Bove et al., 2018; K. M. Ho and Power, 2010) Hydralazine Hcl(Sari, 2019) 

Allopurinol (Alirezaei et al., 2017; Perez-Ruiz, 2017) Ondansetron Hcl(Aamdal, 1992) 

Amlodipine(Pierson-Marchandise et al., 2017; Saruta et al., 1995) Lithium Carbonate(Sari, 2019) 

Hydrochlorothiazide (Pierson-Marchandise et al., 2017). Bisoprolol Fumarate(J. Liu et al., 2019) 

Iron Ferrous Fumarate (Leaf and Swinkels, 2016) Abiraterone Acetate(Neyra et al., 2015) 

Spironolactone(Juncos and Juncos, 2016) Sunitinib Malate(Jha et al., 2013) 

Bisoprolol(Pierson-Marchandise et al., 2017) Carvedilol(Dupont, 1992) 

Atenolol(Fleet et al., 2014) Donepezil Hcl(Erbayraktar et al., 2017) 

Metoprolol (Fleet et al., 2014) Acetylsalicylic Acid (Sari, 2019) 

Valsartan(Lopau et al., 2001) Mirtazapine(Dev et al., 2014) 

Indapamide(Pierson-Marchandise et al., 2017). Loperamide(Mackowski et al., 2015) 

Nifedipine(Mishima et al., 2017) Doxazosin Mesylate(Mori et al., 2001) 

Iron Ferrous Gluconate(Leaf and Swinkels, 2016) Senna(Vanderperren et al., 2005) 

Quetiapine(Yamada et al., 2018) 
Megestrol Acetate(Boccanfuso et al., 

2000; Rammohan et al., 2005) 

Gabapentin (Miller and Price, 2009) Nortriptyline(Dawlilng et al., 1981) 

Linagliptin(Nandikanti et al., 2016) Terazosin 

Glyburide (McCoy et al., 2010) Prochlorperazine Maleate 

Lenalidomide(Lipson et al., 2010) 

 

Trimethoprim(Pierson-Marchandise et al., 2017). 

Olmesartan Medoxomil(Georgaki-Angelaki et al., 2009) 

Ramipril(Pierson-Marchandise et al., 2017). 

Gliclazide(Pierson-Marchandise et al., 2017). 

Atropine Sulfate (Pierson-Marchandise et al., 2017). 

Folic Acid(Gupta et al., 2012) 

Chlorthalidone(Peskoe et al., 1978) 

Clonidine Hcl(Allison, 2015) 

Fenofibrate(Pierson-Marchandise et al., 2017). 

Dipyridamole(Puri et al., 2016) 

Olanzapine(Hwang et al., 2014) 

Digoxin(Pierson-Marchandise et al., 2017).  

Lisinopril(Pierson-Marchandise et al., 2017). 

Methyldopa(Perazella, 2015) 

Oseltamivir Phosphate(Watanabe et al., 2014) 

Metolazone(Sean M. Bagshaw et al., 2007; Rp, 2019; Shulenberger et al., 

2016) 

Cyclosporine(Bennett, 2013) 

Dexamethasone(Jacob et al., 2015; Kumar et al., 2009) 

Moxifloxacin Hcl(Bird et al., 2013) 

Sulfamethoxazole(Pierson-Marchandise et al., 2017) 

Through the medication combination analysis, we found that out of 25 thousand patients 

with AKI in our dataset, about 85% were prescribed multiple medications within 120 

days prior to the index date. The incidence rate of developing AKI is usually higher 

among patients who are prescribed multiple medications. For instance, in a study of 

38,782 adverse drug reaction events, out of 1,254 reported AKI cases, about 66% 
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included two or more concomitantly prescribed medications (Pierson-Marchandise et al., 

2017). Another study suggested that there were statistically significant associations 

between the duration of simultaneous medication use and the development of AKI 

(Chang et al., 2012). Similarly, a study of Taiwan's National Health Insurance system 

showed that the concurrent use of certain medication classes (such as Diuretics, Beta 

Blockers, Calcium Channel Blockers, Alpha Blockers, Ace Inhibitors, Digoxin, and 

Platelet Aggregation Inhibitors) was strongly associated with the development of AKI 

(Chao et al., 2015). In order to compare our findings with the existing literature, we 

discussed the results of medication combination analysis using medication classes since 

most of the previous studies presented their results this way. As shown in Table 3, some 

of the AKI-associated combinations are Alpha Adrenergic Blocking Agents-and-Ace 

Inhibitors, Corticosteroids-and-Ace Inhibitors, Diuretics-and-Ace Inhibitors, Potassium-

Sparing Diuretics -and-Ace Inhibitors, Diuretics-and-Analgesics and Antipyretics, 

Tricyclic Antidepressant-and-Analgesics and Antipyretics, Alpha Adrenergic Blocking 

Agents-and-Angiotensin II Antagonist, and Antilipemic: Fibrates-and-Angiotensin II 

Antagonist. We have identified that using a combination of Diuretics with some specific 

medication classes are associated with increasing the risk of developing AKI. In line with 

our findings, the effect of using Diuretics with Renin Angiotensin Aldosterone System 

Agents, Ace inhibitors, or Penicillin on AKI has been investigated in several research 

studies (Adhiyaman et al., 2001; Audia et al., 2008; Fournier et al., 2014, 2012; Loboz 

and Shenfield, 2005; Steinhäuslin et al., 1993; Wu et al., 2014). 

In order to verify the results of the medication combination analysis, we compared our 

findings with a recent study (Rivosecchi et al., 2016). In their study, Rivosecchi et al. 

identified 76 unique combinations of medication classes that were associated with AKI 

by assessing 2,139 citations. Overall, 73.7% of selected medication classes were 

categorized as very low quality, 15.8% were of low quality, and 10.5% were considered 

medium quality. We found that our results are consistent with the studies included in this 

literature review. It is important to note that there were 19 medications in our study that 

were not statistically significant individually but were found to be strongly associated 
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with AKI when used with another medication (Table 2 and Table 3). There are also a few 

combinations of medication classes in our study, such as Antipsychotic Agents and Anti-

inflammatory, Diuretics and Xanthine Oxidase Inhibitor, to name a few, which have been 

studied individually but there is a lack of evidence in the literature on how these 

combinations are associated with AKI (Dixit et al., 2010; Gois et al., 2016; Jiang et al., 

2017; Karajala et al., 2009; Zhang et al., 2017). Clinical drug-safety studies need to be 

conducted to confirm these medication-medication interactions. 

The main strength of the study presented in this paper was its exhaustive analysis of 

medication usage patterns of the one million hospitalized patients within a 120-day look-

back window. It is noteworthy that all the patients were elderly (65 years or older), 

suffering from multiple diseases and taking several potentially nephrotoxic medications. 

We included most of the frequently prescribed medications and investigated all possible 

combinations among these medications in our study. Next, to assess the true impact of 

medications on AKI, we incorporated the patients' demographic and comorbidity features 

as covariates in the regression analysis. In addition, we performed a stratified analysis to 

investigate the synergistic effect of medication combinations on AKI, which made our 

study more comprehensive and unique in comparison to other studies. To our knowledge, 

this study introduced a novel analysis technique by integrating frequent itemset mining, 

regression, and stratification to identify medications and combinations that can 

potentially be associated with AKI.  

This research also demonstrates how machine learning can be used to address a well-

known problem in the medical domain. It highlights what needs to be considered when 

designing studies that are intended to incorporate machine learning techniques to support 

data-driven tasks using health administrative datasets. 

4.5 Limitations 

Our study has some limitations. First, our results can only be generalized to the elderly, 

as we only had complete medication data on those aged 65 and older. Second, our study 
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population might have included clinically unstable patients who were admitted to the 

hospital or emergency department. This could be a confounding factor as clinically 

unstable patients are more likely to take multiple concomitant medications, increasing 

their chances of developing AKI. Third, our findings can only be generalized to the 

population of Ontario since the models were derived and validated in cohorts from 

hospitals in Ontario. Lastly, there could be multiple reasons for which a patient is 

prescribed with medication, and these reasons may lead to the development of AKI rather 

than the medication itself. The study was designed to assist healthcare researchers at the 

ICES-KDT program in identifying potential candidates for their future medication-safety 

studies. This is not a confirmatory analysis, and proper clinical studies are required to 

confirm the findings. 

4.6 Conclusion 

Medication-induced nephrotoxicity is one of the major causes of AKI worldwide. In the 

present study of the ICES database, we identify the individual medications and 

medication combinations that are potentially associated with AKI by applying a 

combination of regression and frequent itemset mining techniques to this field for the 

first time. We have shown that our results are consistent with previous studies throughout 

this paper. Although most of the medications that we identify are already known to be 

associated with AKI, some of them have not been thoroughly studied yet. Our findings 

would raise awareness to conduct clinical research on these potentially nephrotoxic 

medications. Attention should be directed at avoiding nephrotoxic treatments when an at-

risk situation is identified to reduce the chance of patients developing AKI. This requires 

not only careful monitoring by prescribers but also comprehensive studies on these 

medications. Ongoing research in this field might provide us with more reliable methods 

in the detection of potentially nephrotoxic medications and their combinations, thus 

allowing timely intervention to prevent AKI. This research will help machine learning 

researchers to understand what needs to be considered when designing studies that are 

intended to incorporate machine learning methods to accomplish various data-driven 

tasks using healthcare datasets. 
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Chapter 5  

5 Visual Analytics for Dimension Reduction and Cluster 
Analysis of High Dimensional Electronic Health 
Records 

This chapter has been published as S.S. Abdullah, N. Rostamzadeh, K. Sedig, A.X. Garg, 

and E. McArthur, “Visual Analytics for Dimension Reduction and Cluster Analysis of 

High Dimensional Electronic Health Records” in the Health Section of the Informatics 

Journal, Volume 7; May 2020. We changed the format to match the general format of the 

dissertation. Figure, Table, and Section numbers specified herein are relative to the 

chapter number. For example, “Table 1” corresponds to Table 5-1; “Figure 1” 

corresponds to Figure 5-1; and “Section 1.1” corresponds to Section 5.1.1. Moreover, 

when the term “paper”, “research”, or "work" is used, it refers to this specific chapter. 

5.1 Introduction 

The increasing use of EHR-based (Electronic Health Record) systems in healthcare has 

resulted in generating data at an unprecedented rate in recent years (Caban and Gotz, 

2015; Murdoch and Detsky, 2013). EHR data includes, but is not limited to, medical and 

demographic records, healthcare administrative records, and results of laboratory tests 

(Cowie et al., 2017). The complex, diverse, and growing information available in EHRs 

creates promising opportunities for the healthcare providers to drastically improve the 

healthcare system (Kamal, 2014; Murdoch and Detsky, 2013). It is often challenging for 

healthcare providers to keep pace with the large volumes of heterogeneous data stored in 

EHRs (Rind et al., 2019). Automated data analysis techniques based on data mining and 

machine learning hold great promise to fulfill the computational requirements of EHRs 

(Marlin et al., 2012; Wetzel, 2001). There are currently a variety of efforts underway to 

organize, analyze, and interpret EHRs using unsupervised machine learning techniques 

such as clustering (Estiri et al., 2019; Foguet-Boreu et al., 2015; Haraty et al., 2015; 

Khalid et al., 2018; Liao et al., 2016; Marlin et al., 2012).  



110 

 

 

 

Cluster analysis (CA) can be used to discover hidden patterns in EHRs by grouping 

entities (e.g., patients, medications) with similar features into homogenous groups (i.e., 

clusters) while increasing heterogeneity across different groups (Dilts et al., 1995; 

McLachlan, 1992). It divides data into meaningful, useful, and natural groups without 

prior knowledge of the labels or nature of the groupings. With the large amount of 

unlabeled data stored in EHRs, CA has the potential to characterize medical records into 

meaningful groupings. Several studies have been conducted that employ different 

clustering techniques to identify multimorbidity patterns (Foguet-Boreu et al., 2015), 

implausible clinical observations (Estiri et al., 2019), and risk factors for a disease (Doust 

and Walsh, 2011). Despite the effectiveness of using CA in analyzing EHRs, it suffers 

from a problem which has been referred to as the “curse of dimensionality”. This 

problem arises when the dataset is high-dimensional (i.e., has more than 1000 features), a 

very common occurance in EHRs (Ruan et al., 2019). In such situations, the output of CA 

is not reproducible and meaningful since variances among data elements become sparse 

and large (Adachi, 2017; Ronan et al., 2016). One solution is to employ dimensionality 

reduction (DR) techniques that can potentially reduce the number of features to a 

manageable size before using CA (Mitsuhiro and Yadohisa, 2015). 

DR refers to the transformation of the original high-dimensional dataset into a new 

dataset with reduced dimensionality without loss of much information (Siwek et al., 

2013). DR techniques are developed based on the idea that most high-dimensional 

datasets contain overlapping information (Wilke, 2019). DR techniques can be used to 

improve the performance of CA by removing multicollinearity and creating a small-

volume dataset. Many recent studies have combined techniques from both CA and DR to 

find similarity among data elements and form meaningful groups (Wenskovitch et al., 

2018). Despite the fact that a combination of DR and CA can result in efficient 

processing time and better interpretability, a number of complicated decisions need to be 

made when using techniques from both families (i.e., CA and DR) (Sembiring et al., 

2011). For instance, when applying CA, it is important to consider which technique and 

distance measure to use, which features and samples to include, and what granularity to 
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seek (Demiralp, 2017). Similarly, one needs to determine the optimal values for the 

configuration parameters when using a DR technique (Halpern et al., 2012). 

Consequently, combining these techniques results in more complicated problems. Given 

a wide range of techniques for DR and CA, determining which combination of techniques 

of CA and DR techniques leads to the desired results is not straightforward (Wenskovitch 

et al., 2018). Moreover, the intermediary steps of the analysis processes of CA and DR 

are often hidden from users, making it difficult to choose optimal values for the 

configuration parameters (Yoo et al., 2012). Therefore, one of the challenges of using 

these techniques lies with their lack of transparency and interpretability, hence limiting 

their application in EHR-based systems. 

In order to address this issue, analysis processes can be made accessible to users through 

interactive visualizations. Interactive visualizations provide users with an overview of the 

data while at the same time enabling them to access, restructure, and modify the amount 

and form of displayed information (D. A. Keim et al., 2010; Thomas and Cook, 2005). 

They allow exploration of the visualized data to answer user-initiated queries (Sedig and 

Parsons, 2013). In recent years, several EHR-based visualization systems have been 

developed to support healthcare providers in performing various user-driven activities 

(Rind et al., 2011b). Although users are often good at visually perceiving the overall 

structure of the data, it is difficult for them to extract meaningful patterns from 

visualization systems when the data is large and high-dimensional. Most of these systems 

can only represent a limited number of features within the data due to the limited real 

estate space on display devices (Aimone et al., 2013; Faisal et al., 2013; Kosara and 

Miksch, 2002; Lavado et al., 2018). Another issue with visualization systems is that they 

do not incorporate analytical processes, hence falling short in fulfilling the computational 

demands of EHRs. Thus, an integrated approach may be needed in which automated 

analysis techniques (i.e., DR and CA) and user interfaces that facilitate interaction with 

visualizations of data (i.e., interactive visualizations) are coupled together.  
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Visual analytics fuses the strengths of analysis techniques and interactive visualizations 

to allow users to explore data interactively, identify patterns, apply filters, and manipulate 

data as required to achieve their goals (Parsons et al., 2015; Saffer et al., 2004; A. F. 

Simpao et al., 2014). This process is more complicated than an automated internal 

analysis coupled with an external visual representation to show the results of the analysis. 

It is both data-driven and user-driven and requires re-computation when users manipulate 

the data through the visual interface (Ola and Sedig, 2014).  

The purpose of this study is to demonstrate how visual analytics systems can be designed 

in a systematic way to analyze the large-scale high-dimensional data in EHRs. To this 

end, we present a novel system that we have developed, called VALENCIA—Visual 

Analytics for Cluster Analysis and Dimension Reduction of High Dimensional Electronic 

Health Records. VALENCIA is intended to assist healthcare providers at ICES-KDT 

(ICES - an independent, non-profit, world-leading research organization that uses 

population-based health and social data to produce knowledge on a broad range of 

healthcare issues; KDT - Kidney Dialysis and Transplantation program), located in 

London, Ontario, Canada. This visual analytics system allows users to choose from 

multiple DR and CA techniques with different configuration parameters, combine these 

techniques, and compare analysis results through interactive visualizations. We 

demonstrate the usefulness of this system by investigating the process of analyzing the 

health administrative data housed at ICES to gain novel and deep insights into the data 

and tasks at hand while at the same time identifying the most appropriate combination of 

analysis techniques. While few visual analytics systems have been developed for 

different areas in healthcare (Choo et al., 2013; Demiralp, 2017; Klimov et al., 2015; 

Ninkov and Sedig, 2019; Stasko et al., 2008; Wise, 1999), VALENCIA is novel in that it 

integrates a number of DR and CA techniques, real-time analytics, data visualization, and 

human-data interaction mechanisms in a systematic way. As such, the design concepts of 

VALENCIA can be generalized for the development of other visual analytics systems 

that deal with high-dimensional datasets in other domains (e.g., insurance, finance, and 

bioinformatics, to name a few). 
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The rest of this paper is organized as follows. Section 2 provides an overview of the 

conceptual and terminological background to understand the design of VALENCIA. 

Section 3 briefly describes other visual analytics systems that are related to VALENCIA. 

Section 4 explains the methodology employed for the design of the proposed system by 

describing its structure and components. Section 5 presents a usage scenario of 

VALENCIA to illustrate the usefulness of the system. Finally, Section 6 discusses 

conclusions and some future areas of application. 

5.2 Background 

This section presents the necessary terminology and concepts for understanding the 

design of VALENCIA. First, we describe the components of visual analytics. Afterwards, 

we briefly describe the processes of DR and CA. Finally, the healthcare stakeholders 

subsection introduces intended users of the system. 

5.2.1 Visual Analytics 

Visual analytics combines advanced analytics techniques with visual representations to 

analyze, synthesize, and facilitate high-level cognitive activities while allowing users to 

get more involved in discourse with the data (D. A. Keim et al., 2010; Thomas and Cook, 

2006). The information processing load of visual analytics is distributed between users 

and the main components of the system—namely, the analytics and interactive 

visualization engines (Cui, 2019; Jeong et al., 2015; D. Keim et al., 2010b; Ola and 

Sedig, 2014; Parsons and Sedig, 2014; Sedig and Parsons, 2013). The analytics engine 

deals with the analysis of the data and carries out most of the computational load. The 

interactive visualization engine incorporates visual representations to amplify human 

cognition when working with the data (Sears and Jacko, 2007; Sedig and Parsons, 2016). 

Human cognition is limited when confronted with data-intensive tasks, especially when 

the data is high-dimensional and complex (Green and Maciejewski, 2013; Ola and Sedig, 

2014). The analytics engine of the system incorporates techniques from different fields 

such as statistics, machine learning, and data mining to support human cognition in such 
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situations. Although the analytics engine carries out the majority of the computational 

load of the system, users are responsible for controlling the configuration parameters and 

internal steps of the analysis. The main responsibility of the analytics engine is to store, 

pre-process, transform, and analyze the data. This process can be divided into three 

stages: data pre-processing, data transformation, and data analysis (Ola and Sedig, 2014). 

The pre-processing stage is responsible for preparing raw data from different sources, 

which includes procedures such as cleaning, integration, and reduction (Han et al., 2011). 

Next, in the transformation stage, the pre-processed data is transformed into forms 

suitable for analysis (Kusiak, 2001). The transformation stage includes procedures such 

as smoothing, aggregation, feature generation, discretization, and normalization (Han and 

Kamber, 2011). Finally, in the data analysis stage, various statistical and machine 

learning techniques are applied to the transformed data to discover hidden patterns among 

data items and extract implicit, novel, and useful information (Agrawal et al., 1993; Sahu 

et al., 2008). Most of these techniques are intended for users with significant experience 

and do not allow proper exploration of the intermediary steps and computed results. 

Visual analytics addresses these issues by incorporating interactive visualization in the 

human-in-the-loop process.  

The interactive visualization engine provides users with the ability to change the 

displayed data, filter the subset of the information displayed, tune the configuration 

parameters of the analysis techniques, and control the intermediary steps of the analytics 

engine. This, in turn, sets off a chain of reactions that will result in the execution of 

additional data analysis processes. Despite the benefits of interactive visualizations in 

enhancing the cognitive needs of users, they prove inadequate when faced with problems 

requiring heavy computations (Ola and Sedig, 2014). Another challenge is to determine 

how to organize a large number of data items in visual representations, especially when 

the data is high-dimensional. Therefore, an integrated approach that combines data 

analysis with interactive visualizations through visual analytics is more suitable for a 

comprehensive exploration of high-dimensional EHR data (Kehrer and Hauser, 2013; 

Keim et al., 2008). 
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5.2.2 Dimension Reduction 

Most of the high-dimensional EHR datasets consist of multiple correlated features that 

offer overlapping data (e.g., most of the diabetes patients use similar medications). DR 

techniques can be used on such datasets to reduce dimensions without losing much 

information. This has long been one of the leading research topics in statistics, data 

mining, and machine learning (Sorzano et al., 2014). In addition to data analysis, DR 

techniques have been widely used in visualization research due to their ability to 

represent high-dimensional datasets in a low-dimensional space (Cook et al., 2007, p. 1; 

Fujiwara et al., 2020; Hege et al., 2009; Xin Geng et al., 2005). For instance, it is possible 

to transform a high-dimensional comorbidity dataset into a dataset with reduced 

dimensions to represent it in a scatter plot where relative positions among coordinates 

indicate the pairwise relationships among the transformed dimensions. 

 There are many DR techniques in the literature. Each DR technique has its own set of 

parameters, optimization criteria, and behaviours, which in turn affects data types and 

tasks that the technique supports. Different DR techniques should be represented using 

different types of visual representations because the internal mechanisms of these 

techniques are dissimilar. DR techniques can be broadly categorized into two groups: 

supervised and unsupervised (Cunningham, 2008). Most of the unsupervised DR 

techniques only consider the pairwise relationships among data items. Thus, the 

generated lower-dimensional projection can be represented in a cartesian-coordinate-

based visualization. On the other hand, supervised techniques take into account additional 

information about the cluster structure of the data items. Therefore, supervised DR 

techniques require the class labels associated with cluster structure to obtain a low-

dimensional projection of the original data. 

 In many existing visual analytics systems, DR techniques have been used as a 

preprocessing step to prepare the data for traditional machine learning methods that work 

well with a lower number of features (Mitsuhiro and Yadohisa, 2015; Obaid et al., 2019; 

Yan et al., 2006). A number of DR techniques are incorporated in our proposed system to 
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help users understand the high-dimensional EHR data better and prepare the data for CA. 

Since the cluster structure and/or class labels are not available at the initial stage, we only 

incorporate unsupervised DR techniques in VALENCIA. 

5.2.3 Cluster Analysis 

CA can be instrumental in retrieving the cluster structure information from the 

transformed dimensions. It is a machine learning method that partitions data items with 

similar characteristics into groups called clusters. When CA is applied on a dataset 

containing comorbidities data, it creates different patient groups/clusters each having 

similar comorbid conditions. The groups formed by CA offer valuable insights into the 

data. In the above example, if a patient with an unknown comorbidity profile belongs to a 

cluster where diabetes and hypertension are common, there is a high chance for that 

patient to have those conditions. Moreover, CA results can be used to create an additional 

categorical feature to improve the performance of the data mining methods. Furthermore, 

CA has the potential to add significant value to visual analytics systems by offering a 

visual understanding of natural groupings of data items in the dataset (Choo et al., 2013; 

Demiralp, 2017). 

The overall goal of CA is to determine the similarity between data items. There are 

different ways to measure similarity. Accordingly, CA techniques can be divided into 

four categories: connectivity, centroid, distribution, and density techniques 

(Kameshwaran and Malarvizhi, 2014). When data items are placed in a data space, 

connectivity techniques assume that items closer to each other exhibit more similarity 

than items that are farther away. Centroid techniques determine the similarity of data 

items by measuring closeness to the centroids using an iterative approach. Distribution 

techniques are based on the assumption that all data items in the same cluster share a 

common distribution (e.g., normal, gaussian, to name a few). Finally, density-based 

techniques analyze the density of the data items in a data space and group different 

density regions into clusters.  
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Each CA technique has its own set of configuration parameters, optimization criteria, and 

behaviours, which affects its performance for different datasets. Our goal in the design of 

VALENCIA is to assist users explore high-dimensional EHR data from different 

perspectives and identify the best CA technique that fits their needs. Thus, we incorporate 

at least one CA technique from each category (i.e., connectivity, centroid, distribution, 

and density) in our proposed system. 

5.2.4 Healthcare Stakeholders 

For the purposes of this study, we characterize stakeholders as those people who are 

integrally involved in the healthcare system to provide different services, such as medical 

practitioners, clinical researchers, and so on. With the growth of healthcare organizations, 

the interrelationship among healthcare stakeholders is getting complex (Davis, 2019). 

Irrespective of their field of expertise, stakeholders interact with EHRs at some level to 

perform numerous tasks to achieve novel healthcare solutions. For instance, medical 

practitioners use the historic treatment plan data to forecast the progress of treatments 

(Soyiri and Reidpath, 2013), or clinical researchers develop frameworks to discover 

temporal knowledge from healthcare administrative data (Klimov et al., 2015). To 

support complex, data-driven tasks, EHR data require some initial analysis to allow 

healthcare stakeholders to get insight into the distribution of the data and understand 

relationships among data items. The initial analysis may include preprocessing and 

compression of high-dimensional data to make it ready for other machine learning and 

statistical methods. Because of their lack of support for interactive visualizations, 

particularly when dealing with high-dimensional data, it is often difficult to do the above-

mentioned task with conventional data analysis systems (i.e., R, SAS, Weka, to name a 

few). VALENCIA is designed to assist healthcare stakeholders at the ICES-KDT 

program (i.e., clinicians, scientists, epidemiologists, and analysts) to be able to explore 

and analyze healthcare administrative data housed at ICES. 
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5.3 Related work 

In this section, we discuss some of the available visual analytics systems. There are not 

too many EHR-based systems that adopt DR and/or CA techniques. Thus, we include any 

visual analytics systems that incorporate DR and/or CA techniques in this section. In 

addition, we provide a brief overview of visual analytics systems that are designed for 

EHRs, whether they are tied to DR/CA or not. This section is divided into four parts: 

ones using DR, CA, both DR and CA, and EHR. 

5.3.1 DR-Based Visual Analytics Systems 

GGobi19 (Cook et al., 2007) is a visual analytics system that uses a DR technique called 

grand tour (Asimov, 1985) to represent encoded high-dimensional data. The advantage of 

this technique in comparison with other DR techniques is that it supports exploration of 

the high-dimensional space by allowing users to continuously modify the basis vectors 

into which data items are mapped. However, the grand tour technique can only be used 

when the data is not very high-dimensional. Because of this limitation, the application of 

GGobi19 is restricted when dealing with a very large number of dimensions which is 

often the case in EHRs. Another visual analytics system that uses a DR technique 

(specifically, PCA) to represent high-dimensional data is iPCA (Hege et al., 2009). The 

use of DR on high-dimensional data often results in significant information loss. iPCA 

offers a solution to this problem by introducing the idea of reducing the dimensions to an 

intermediary size and visualizing them using parallel coordinates plot. Thus, iPCA allows 

exploration of reduced dimensional data without loss of much information from the 

original dataset. It can also help users get a better understanding of the role of the reduced 

dimensions by visualizing the PCA basis vectors. Praxis (Cavallo and Demiralp, 2018) is 

another system that allows users to change the input and output of DR techniques 

dynamically and observe these changes through interactive visualizations. Praxis 

implements PCA and a number of autoencoder-based DR techniques. TimeCluster (Ali et 

al., 2019) is another system that incorporates DR, deep convolutional auto-encoder, 

scatter plot, and time-series graph to analyze large time-series data. It allows users to 
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compare the results of multiple DR techniques visually. Although most of these systems 

are designed to assist users in exploring high-dimensional data using DR, they only 

include a limited number of DR techniques. Moreover, some of these systems, such as 

GGobi19 and iPCA do not support exploration of very high-dimensional data because 

they visualize the features of the original data along with the results of DR. 

5.3.2 CA-Based Visual Analytics Systems 

The Hierarchical Clustering Explorer (HCE) (Seo and Shneiderman, 2003) allows users 

to explore the results of CA of gene expression data using dendrograms and heatmaps. 

Although it enables users to visually compare the results of CA, it only supports 

hierarchical clustering techniques. Similar to the HCE, Matchmaker (Lex et al., 2010) 

allows users to arrange and compare multiple clusters simultaneously using heatmaps and 

parallel coordinates. It shows raw data along with the clustering results. ClusterSculptor 

(Nam et al., 2007) is a visual analytics system that uses k-means as the clustering engine 

to aid users in the derivation of classification hierarchies. Although it allows users to tune 

the configuration parameters through an interactive visual interface, it does not support 

any other clustering techniques. iGPSe (Ding et al., 2014) is another system that is 

designed to visually compare the results of clustering of different expression data types 

using parallel sets. It allows users to investigate which features are shared between 

multiple clusters from two different CA techniques. Both iGPSe and HCE have 

interpretability problems for large datasets because of having too many crossing lines. 

CComViz (Zhou et al., 2009) resolves this issue by rearranging clusters and their items to 

minimize visual clutter between features. XCluSim (L’Yi et al., 2015) also supports the 

comparison of several CA results of gene expression datasets using a force-directed 

layout, dendrogram, and parallel sets. XCluSim offers a better understanding of the 

characteristics of each CA technique and its parameters along with results. Although 

most of the abovementioned visual analytics systems are designed to compare multiple 

CA results, they often suffer from lack of interpretability when dealing with large 

datasets. A combination of the CA with DR can resolve this issue, especially when the 

data is high-dimensional. 
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5.3.3 DR and CA-Based Visual Analytics Systems 

IN-SPIRE (Wise, 1999) is a visual analytics system for processing text documents; it 

incorporates both CA, DR, and interactive visualizations. It uses a bag-of-words model to 

encode the documents as high-dimensional vectors and then applies k-means with a 

specific number of clusters. Although it is equipped to deal with a large amount of data, it 

offers only a limited number of interactions to alter the analysis techniques and their 

configurations. Another system that utilizes both CA and DR for analyzing documents 

and their entities is Jigsaw (Stasko et al., 2008). To reduce the number of keywords in the 

vocabulary, Jigsaw implements an automatic named-entity extraction technique. It then 

uses k-means to display related documents and their keywords through visualization. 

Similar to IN-SPIRE, Jigsaw supports a limited number of interactions and does not 

allow users to change the CA technique. Testbed (Choo et al., 2013) is another system 

that addresses these limitations by incorporating seventeen DR and four CA techniques to 

analyze large-scale high-dimensional datasets. It allows users to apply any combinations 

of these techniques to visually compare their results. Another system for interactive 

exploration of high-dimensional data is Clustrophile (Demiralp, 2017); this system 

incorporates six DR and two CA techniques. It allows users to tune different 

configuration parameters and observe the changes through several interactive 

visualizations such as a heatmap and a scatter plot. Despite the advantages, both Testbed 

and Clustrophile allow users to apply clustering on the original dataset, which can be 

very high-dimensional. Some CA and visualization techniques may not perform well in 

those situations due to the “curse of dimensionality”. 

5.3.4 EHR-Based Visual Analytics Systems 

MatrixFlow (Perer and Sun, 2012) is a visual analytics system that assists users in 

discovering subtle temporal patterns across patient cohorts stored in EHRs. It integrates 

an advanced network modeling framework (i.e., Orion (Heer and Perer, 2014)) with 

interactive visualizations to represent networks of clinical events as a temporal flow of 

matrices. Another visual analytics system is VisualDecisionLinc (Mane et al., 2012) that 
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facilitates the interpretation of large amounts of clinical data by providing overviews of 

treatment options and patient outcomes in an interactive dashboard. It enables clinicians 

to identify patient subpopulations that share similar medical characteristics to help them 

in the decision-making process. Simpao et al. (Simpao et al., 2015) developed a 

dashboard to facilitate the monitoring of medication alerts in EHRs to reduce irrelevant 

alerts and improve medication safety. It assists clinicians in exploring not only 

medication alerts but also alert types and patient characteristics. Visual Temporal 

Analysis Laboratory (ViTA-Lab) (Klimov et al., 2015) is an interactive and data-driven 

framework that is designed for the investigation of temporal clinical data. It combines 

query-driven visualizations with longitudinal data mining techniques to assist users in 

discovering temporal patterns within time-oriented clinical data. Another visual analytics 

system is Care Pathway Explorer (Perer et al., 2015) that enables users to discover 

common clinical event sequences and helps them to study how these event sequences are 

associated with patient outcomes. In order to achieve this, it integrates a frequent 

sequence mining technique with an interactive user interface. PHENOTREE (Baytas et 

al., 2016) allows interactive exploration of patient cohorts and interpretation of 

hierarchical phenotypes by integrating sparse principal component analysis with an 

interactive visual interface. VISA_M3R3 (Abdullah et al., 2020) is a recent visual 

analytics system that incorporates multiple regression, frequent itemset mining, and 

interactive visualization to assist users in the identification of nephrotoxic medications 

using EHRs. Although most of these systems incorporate complex visualization and 

enable users to interactively explore EHR data, they only include a limited number of 

analytics techniques. Moreover, some of these systems do not allow users to access and 

modify the analytics engine through visualization, which is an essential aspect of visual 

analytics. 

5.4 Methods 

This section describes the methodology we have employed to design the proposed visual 

analytics system, namely VALENCIA. In Section 4.1, we provide an overview of the 

design process and participants. We then describe task analysis and design criteria in 
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Sections 4.2. Then, in Section 4.3, we introduce the components of VALENCIA and 

briefly describe how the overall system works, also discussed more extensively in 

Section 4.4, 4.5, and 4.6. Finally, Section 4.7 outlines the implementation details of 

VALENCIA. 

5.4.1 Design Process and Participants 

Healthcare stakeholders usually deal with both well- and ill-defined tasks to solve various 

research problems. The well-defined tasks have clear expected solutions, specific goals, 

and, oftentimes, a single solution path. Unlike well-defined tasks, ill-defined tasks do not 

have a solution path (Varga and Varga, 2016). To help us understand how healthcare 

stakeholders perform real-world tasks, and to help us conceptualize and design 

VALENCIA, we adopted a participatory design approach. It is a co-operative approach 

that involves all stakeholders in the design process to ensure the output meets their 

requirements (Leighton, 2004). The system was primarily designed to assist the 

healthcare experts at the ICES-KDT program located in London, Ontario, Canada. A 

clinician-scientist, an epidemiologist, a data scientist, and two computer scientists were 

involved in the conceptualization, design, and evaluation process. They were from the 

computer science and epidemiology department of Western University. Participants were 

identified and contacted through the ICES-KDT. During the primary stage of the design 

process, we discerned that exploring EHR through DR, CA, and interactive visualization 

is not a straightforward task. It is often difficult to understand which analytics technique 

produces the desired result for a given dataset, which visualization technique is more 

suitable for the analysis results, or which interaction techniques are more appropriate to 

meet the requirements of the user. It becomes an ill-defined problem when analytics and 

interactive visualizations are combined in a VA system. In order to make appropriate 

design decisions, we interviewed healthcare experts in our team (i.e., a clinician-scientist 

and epidemiologist) to understand 1) data-driven tasks they perform with EHRs 2) 

analytics techniques they rely on to accomplish those tasks, and 3) visualizations with 

which they are familiar. We negotiated with healthcare experts the possibility of using 

several semi-structured interviews, which allowed new concepts to be brought up during 
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the process. We conducted these interviews in person at the ICES-KDT center. Typical 

stakeholders of the system are involved in assessing and suggesting features towards 

similar systems regularly. In our collaboration with experts, we first finalized the 

analytics techniques that could allow them to accomplish data-driven tasks they would 

like to perform with the system. We then created several horizontal prototypes to narrow 

down the visualization design possibilities and selected appropriate visualization 

techniques for the data, analytics, and users. We performed formative evaluations 

continuously at every stage of the design and development process. This process was 

essential to build trust between the proposed system and its end-users. 

5.4.2 Task Analysis and Design Criteria 

In our collaboration with the healthcare stakeholders, we recognized four high-level tasks 

to consider in designing VALENCIA. 

5.4.2.1 Displaying an Overview of the Data 

Users would like to explore the features of the dataset so that they can decide which 

features to incorporate in the analysis. For instance, they would like to see frequencies of 

distinct categories for the categorical variables. Since some analysis techniques work best 

with specific data types, it is important to understand the characteristics of the features 

and their distributions. 

5.4.2.2 Allowing Iteration Over DR Techniques 

Choosing the appropriate DR technique is not a straightforward task. Users have to make 

several decisions such as which technique to use, which values for the configuration 

parameters are appropriate, and how many transformed dimensions to retain, to name a 

few. After the initial selection, users would like to refine their decisions in an iterative 

manner. 
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5.4.2.3 Allowing Iteration Over CA Techniques 

Users would like to explore the data using different CA techniques with various 

parameter settings. They want to investigate how the clusters are formed and verify the 

results. Users would like to refine their decisions by going through the CA process 

iteratively. 

5.4.2.4 Facilitating Reasoning about DR and CA 

Users often would like to understand which features of the dataset are affecting the 

transformed dimensions, which dimensions are essential in identifying a given cluster, 

and how different selections of features, dimensions, techniques, and/or parameters 

influence the results. Since clustering is performed on the transformed data, users would 

like to know the summary statistics of different features and identify which feature 

groups or features are more important within each cluster. 

5.4.3 Workflow 

As shown in Figure 1, VALENCIA has two modules: the analytics engine and the 

interactive visualization engine. The analytics engine is composed of two components: 1) 

DR engine and 2) CA engine. The interactive visualization engine is composed of two 

views: 1) DR view, and 2) CA view. The DR view has four subviews: 1) raw-data 

subview, 2) projected-features subview, 3) association subview, and 4) variance subview; 

it supports eight interactions: selecting, drilling, filtering, annotating, arranging, 

searching, and transforming. The CA view is composed of three subviews: 1) hierarchical 

subview, 2) frequency subview, and 3) projected-observation subview; it supports six 

interactions: selecting, drilling, filtering, arranging, searching, and transforming. 
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Figure 5-29: Basic workflow of VALENCIA. The backgrounds of the components 

are color-coded to show the similarity between processes.    

The basic workflow of VALENCIA is as follows. Once the data is loaded, it gets 

preprocessed and encoded via the default encoding scheme. Users can then interactively 

explore the dataset through the raw-data subview to choose their features of interest. 

Next, upon selection of the DR technique and configuration parameters, the subset of the 

data containing the chosen features is analyzed in the DR engine. The system updates the 

projected-features, association, and variance subviews when the data items are generated 

in the DR engine. Users can observe representation of the categories of different features 

in proximity to each other based on their values in the projected dimensions through the 

projected-features subview. The association subview allows users to understand which 

features are most significantly associated with different dimensions. Users can observe 

the amount of variation retained by each projected dimension from the variance subview. 

This subview also allows users to select the dimensions to be analyzed through the CA 
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engine. Users can observe the hierarchical structure of the CA result through the 

hierarchical subview. After selecting the dimensions, when users click the submit button, 

they get to the CA view. Upon selection of the CA technique and configuration 

parameters, the CA engine generates data items to be represented in the hierarchical, 

frequency, and projected-observation subviews. The frequency subview displays the 

distribution of features in each subset of the data selected through the hierarchical 

subview. The projected observation subview allows users to explore the positions of the 

observations in the dataset with respect to the projected dimensions. The association 

subview is shared between both the DR and CA views; however, the data in this subview 

gets filtered in the CA view based on the selection through the variance subview. Finally, 

users can export the output of the analysis using the export button in the CA view.  

5.4.4 Encoding and Preprocessing 

VALENCIA accepts input files in the JSON (JavaScript Object Notation) format and 

enables output to be exported in the same format. It has a built-in preprocessing 

procedure to encode the categorical features. The system enables users to select multiple 

features within a group (e.g., diabetes and hypertension in comorbidities group), all 

features of a group (e.g., all comorbidities or medications) or all features in all groups. A 

collapsible tree structure is implemented to support this operation in VALENCIA. The 

subset of the data containing selected features are then transferred to the analytics engine 

for further processing. 

5.4.5 Analytics Engine 

The analytics engine of VALENCIA has two main components: 1) the DR engine (a sub-

engine of the analytics engine) that transforms the EHR data from the high-dimensional 

space to a space of lower dimensions, and 2) the CA engine (a sub-engine of the analytics 

engine) that organizes objects in low-dimensional space into meaningful groups whose 

members share similar characteristics in some way. Several techniques belonging to both 

families are incorporated in VALENCIA. Users are able to analyze the inputted dataset 

using DR, CA, or a combination of both techniques. Some studies in the literature have 
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identified several limitations of combining some specific DR and CA techniques (e.g., 

(Arabie, 1994; De Soete and Carroll, 1994; Mitsuhiro and Yadohisa, 2015; Rocci et al., 

2011; Timmerman et al., 2010; Vichi and Kiers, 2001)). For instance, DR techniques that 

rely on probability distribution (e.g., t-distributed stochastic neighbour embeddings) are 

not suitable for distance or density-based CA techniques. VALENCIA overcomes these 

limitations by providing users with the ability to choose a combination from a number of 

DR and CA techniques and verify the results of the analysis with both original and low-

dimensional data through interactive visualizations. This analysis process is iterative, 

which allows users to go through any number of combinations until an optimal solution is 

found.  

5.4.5.1 DR Engine 

In analytical activities, it is often challenging for users to choose a DR technique among 

an abundance of available algorithms. There is no single solution to the problem of 

recognizing which technique is appropriate for a particular dataset. The choice of a DR 

technique primarily depends on the nature of the data. It also depends on the domain 

knowledge of users and the problem at hand. Linear DR techniques such as 

correspondence analysis (Hirschfeld, 1935), classical multidimensional scaling (CMDS) 

(Torgerson, 1958), principal component analysis (PCA) (F.R.S, 1901; Hotelling, 1933), 

multiple correspondence analysis (MCA) (Greenacre and Blasius, 2006), and multiple 

factor analysis (MFA) (Escofier and Pagès, 1994) are better at representing the global 

structure of the data. On the other hand, nonlinear techniques such as t-Stochastic 

neighbour embedding techniques (t-SNE) (Maaten and Hinton, 2008) and nonmetric 

multidimensional scaling (NMDS) (Kruskal, 1964; Shepard, 1962) are better at 

representing and preserving local interactions. VALENCIA incorporates eight linear and 

nonlinear DR techniques to allow users to analyze high-dimensional EHR data. Some of 

the well-known DR techniques that are implemented in VALENCIA include PCA, MCA, 

MFA, and t-SNE.  
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PCA uses variance to obtain principal components (i.e., orthogonal vectors) in the feature 

space that accounts for the maximum variance in the data. Although PCA is originally 

designed for continuous features, a special version of PCA, categorical principal 

component analysis (princals), can be used for categorical features (De Leeuw, 2005; 

Gifi, 1990). VALENCIA uses R libraries "PCA" and "princals" to implement PCA. On 

the other hand, MCA is a correspondence analysis technique for compressing and 

visualizing datasets with multiple categorical features. It is a generalization of PCA when 

the features to be analyzed are categorical instead of continuous (Abdi and Williams, 

2010). To implement MCA, VALENCIA uses the "MCA" function from the 

"FactoMineR" package in R. In addition, MFA is a multivariate analysis technique to 

summarize or visualize complex datasets where observations are described by multiple 

sets of features structured into different groups. The distance between observations is 

defined based on the contribution of all active groups. To implement this technique, we 

use the "MFA" function in the "FactoMineR" package in R.  

Unlike PCA, t-SNE is a nonlinear dimensionality reduction technique that can deal with 

more complex patterns in multidimensional space (Maaten and Hinton, 2008). It relies on 

the probability distribution of observations in the high-dimensional space to calculate the 

probability in the corresponding low-dimensional space. This technique is implemented 

using the "Rtsne'' package in VALENCIA. NMDS is another nonlinear dimensionality 

reduction technique that uses rank-orders to collapse data from high-dimensional space 

into a limited number of dimensions. VALENCIA uses the "vegan" package to 

implement NMDS. 

Determining the suitable number of new dimensions in the lower-dimensional space is a 

challenging task. The optimal number of dimensions to keep for CA mainly depends on 

the dataset. Users are often interested in particular signals in the dataset, and the choice of 

dimensions also depends on whether the signal of interest is captured within the 

dimensions in the reduced space. Thus, choosing the appropriate dimensions is crucial in 

VALENCIA because the DR engine is used to prepare the data for CA. It is also 
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important to reduce the number of dimensions to an appropriate size because of the 

limitation of the screen space, especially when users want to visually explore the high-

dimensional data. For instance, in the case of principal component analysis with a high-

dimensional dataset, the first two or three principal components may describe a small 

fraction of variance of the dataset and/or may not capture the variation of interest (i.e., the 

signal of interest can be a confounding factor). In those situations, users may need to 

explore higher-order components through visualization and select a combination of low- 

and higher-order components to preserve the desired variance. VALENCIA allows users 

to explore the projected dimensions produced through different DR techniques using 

interactive visualizations. Users have the ability to adjust not only the number of 

dimensions but also different configuration parameters of a particular DR technique. It is 

important for users to find the optimal values of configuration parameters to get their 

desired results from the DR engine. Some arguments are adjusted automatically by the 

system based on the type of features in the dataset. The data items for the visual 

representations are produced based on the values of different arguments in the DR 

engine. 

5.4.5.2 CA Engine 

It is often difficult to interpret and visualize the results of CA when the data is high-

dimensional. To address this issue, VALENCIA employs DR techniques to lower the 

dimension from possibly thousands to a manageable size, making it possible not only to 

apply different CA techniques on the projected data but also to incorporate different 

visualization techniques. It also offers the flexibility of analyzing a dataset containing 

mixed features because some CA techniques might not work well in such situations 

(Mitsuhiro and Yadohisa, 2015). Similar to DR, there is no single CA technique that suits 

every dataset and/or problem. Moreover, the configuration parameters of CA techniques 

need to be adjusted for different problems to find an optimal solution. There are several 

CA algorithms in the literature, and new algorithms are often introduced to solve 

different problems. Many of these algorithms are problem- and data-specific. Since there 

is no globally optimal CA technique, VALENCIA incorporates a number of CA 
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techniques from different methods (i.e., connectivity, centroid, distribution, and density) 

that work together with a number of DR techniques. Through the integration of DR and 

CA, it allows users to identify patterns and groups in low-dimensional space and discover 

knowledge in multidimensional data.  

One of the widely used CA techniques is k-means (Hartigan and Wong, 1979; Jain, 

2010), a centroid-based method that partitions the data into clusters. It defines clusters in 

such a way that the total within-cluster (i.e., intra-cluster) variation is minimized. In 

general, this algorithm first selects k observations as initial centers or centroids from the 

dataset. Then, all remaining observations are assigned to their closest centroid using a 

distance function. Next, the new mean value of each cluster and its centroid are 

calculated. All the observations are reassigned based on the updated cluster means. These 

steps are repeated until convergence is achieved. To implement this technique in 

VALENCIA, we use the "kmeans" function in the "stats" package in R. 

Unlike k-means, hierarchical clustering (Nielsen, 2016) does not require users to specify 

the number of clusters initially. It comes in two forms: agglomerative and divisive 

(Rokach and Maimon, 2005). Agglomerative clustering works in a "bottom-up" manner. 

Observations are initially considered as single clusters, and similar clusters are then 

combined to create new clusters with multiple observations. This process is repeated until 

all observations are grouped in a single cluster. On the contrary, divisive clustering works 

in a "top-down" manner where observations are combined or divided based on a 

similarity measure. We use the "dist()" function in R to compute distances between 

observations. Agglomerative and divisive techniques are implemented using "hclust()” in 

“stats" and “diana()” in “cluster” packages, respectively, to generate hierarchical trees in 

VALENCIA. 

The density-based clustering (Ester et al., 1996) can be used to identify clusters of 

different sizes and shapes from the data. Each cluster must contain a minimum number of 

observations. It seeks the regions in the data space that have a high density of 

observations, which are separated by low-density regions. VALENCIA uses the "dbscan" 
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function in the "fpc" package in R to provide support for density-based clustering. Users 

can define the radius of the neighbourhood around an observation by choosing "eps" 

argument and the minimum number of observations within a specified radius using 

"MinPts" argument.  

Model-based clustering (Fraley and Raftery, 2002) assumes that the data is generated by 

an original model and tries to recover that model based on certain criteria. The recovered 

model is then used to define the clusters. Unlike other techniques mentioned above, 

model-based techniques implement a soft assignment, where each observation is assigned 

with a probability of belonging to a cluster. One of the well-known criteria to determine 

the model parameters is maximum likelihood. VALENCIA uses the "mclust" package in 

R to provide support for model-based clustering. This package uses maximum likelihood 

to fit different models, which can be compared based on their Bayesian information 

criterion score.  

There are several ways to assess the quality of CA, each of which has limitations relating 

to the subjective quality of individual evaluations (Feldman and Sanger, 2007). 

VALENCIA allows users to develop a feedback loop with the system through a series of 

interactions. Users adjust different configuration parameters to observe their effects on 

features of interest to evaluate the performance of a particular CA technique. In order to 

find the optimal CA technique for a dataset, users can try several configuration settings. 

For example, when working with k-means, the "centers" argument can be modified to 

control the number of initial cluster centroids, and "iter.max" can be tuned to regulate the 

maximum number of iterations. While users have the flexibility to adjust some 

arguments, many arguments are adjusted automatically by the system. Despite the 

ubiquitous use of DR and CA techniques in the literature, their combination can be 

difficult to interpret, especially in relation to the features of the original dataset. To 

overcome this issue, the data items produced through the CA engine are made available 

to users through a number of visualizations. These visualizations represent the 
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distribution of clustered observations in both high- and low-dimensional space, allowing 

users to verify the results and avoid misinterpretation. 

5.4.6 Interactive Visualization Engine 

VALENCIA is composed of two main views: DR and CA. The DR view is composed of 

4 subviews: raw-data, projected-features, association, and variance. The CA view is 

composed of 3 subviews: hierarchical, frequency, and projected-observations. These 

views are supported by several selection controls, such as collapsible tree structure, drop-

down menu, search bar, and checkbox. Each of these views represents an important 

aspect of the analytics engine. In this section, we describe how data items generated in 

the analytics engine are mapped onto visual representations to allow healthcare 

stakeholders to achieve the tasks mentioned in Section 4.2. 

5.4.6.1 DR View 

The components in the DR view allow healthcare stakeholders to import raw data, 

explore features, select features of interest, apply DR techniques, adjust configuration 

parameters, analyze DR results, and generate data items for the CA engine. This section 

describes four main subviews of the DR view (Figure 2). 

5.4.6.1.1 Raw-data Subview 

The raw-data subview is composed of a collapsible tree structure, bar chart, and data 

table. Upon selection of an input file, VALENCIA maps the hierarchical features of the 

preprocessed data into a collapsible tree structure. Users can expand the tree structure 

multiple times by clicking on the “+” icon in each level; this reveals groupings of the 

features in that level. The lowest level of the tree contains the actual feature names.  

The grouping or feature name at each level of the tree structure has a checkbox, allowing 

users to select not only a specific feature but also a group of features. The list of selected 

features and relevant information is shown in a data table. Moreover, users can hover the 

mouse over any feature in the tree structure to see the distribution of that feature through 
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a bar chart. The data table and bar chart are on the right side of the tree structure, as seen 

in the top-middle section of Figure 2. 

 

Figure 5-30: The DR view containing (A) raw-data subview, (B) projected-features 

subview, (C) association subview, and (D) variance subview. 

5.4.6.1.2 Projected-Features Subview 

The projected-features subview includes a scatter plot, collapsible tree structure, search 

bar, and several drop-down menus. Initially, users select a DR technique, relevant 

configuration parameters, and the number of projected dimensions to engage with the DR 

engine. Upon these selections, the coordinates of the chosen features (selected through 

the raw-data subview) are mapped onto a scatter plot. The scatter plot displays glyphs 

representing categories of each feature in proximity to each other based on their values in 

the projected dimensions. All the categories of a specific feature are encoded with the 

same color and all the features belonging to the same group are represented by a specific 

shape (e.g., triangle, rectangle, star, to name a few). Each category can also be 

represented by its corresponding label. Both the glyph and label can be turned on/off via 
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two separate checkboxes. In the scatter plot, a linear scale is used for both horizontal and 

vertical axes to represent the selected dimensions. Users can interactively adjust the 

dimensions corresponding to the axes via two drop-down menus. The displayed 

information in the scatter plot can be filtered using a collapsible tree structure. This tree 

structure shows the list of chosen features through the raw-data subview. It allows users 

to select features of interest to observe their positions in the scatter plot. The tree 

structure is accompanied by a search bar that enables users to look for a specific group 

and/or feature.  

Users can click on a glyph representing a category of a specific feature to observe the 

position of other glyphs and labels belonging to that feature. This interaction filters out 

all other glyphs to make it easy for users to investigate the feature of interest. Users can 

drill the glyphs for additional information by hovering the mouse over them. It is 

sometimes difficult for users to distinguish between glyphs when they are densely 

clustered in the scatter plot. In order to address this issue, VALENCIA provides scrolling 

to allow users to zoom in/out on the scatter plot. While zooming, users may wish to see 

glyphs that are not visible in the visual representation of the scatter plot. In such 

situations, users can navigate through the scatter plot by selecting any region within the 

representation (with the mouse) and dragging it to the desired location. These interactions 

are useful for exploring high-dimensional and heavily-categorized datasets. 

5.4.6.1.3 Association Subview 

Once the DR technique is applied, the correlation coefficient between each feature and 

projected dimension is shown in a heatmap in the association subview. The heatmap 

visualizes the magnitude and direction of the correlations through variations in coloring. 

It allows users to cross-examine multivariate data, through placing features in the 

columns and projected dimensions in the rows. Users can identify patterns by examining 

variance across multiple features and dimensions through this subview. They can also 

detect similarities between both features and dimensions and observe if any correlations 

exist between them. Only the significantly correlated (i.e., filtered by p-value) 
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coefficients are included in the heatmap, leaving the unassociated cells empty. Each cell 

in the heatmap contains a color-coded numerical value representing the relationship 

between the feature and dimension in the connecting row and column. The color-coding 

is based on a color scale that blends from one particular color to another, to show the 

difference between low and high values. In order to assist users in interpreting the 

heatmap, a legend is included in the association subview. The legend contains a gradient 

scale, which is created by blending dark brown and navy blue.  

Users can sort the heatmap based on either a feature or dimension by clicking on the 

corresponding row or column header. This allows users to observe which dimensions best 

represent each feature and how different features affect each dimension. Users can drill to 

obtain the actual value of the coefficient by hovering the mouse over the corresponding 

cell. Users may face difficulty while exploring this subview because of the limited screen 

space, especially when the dataset is high-dimensional. To address this issue, 

VALENCIA supports selecting any region of the subview with the mouse (left-click) and 

dragging it to the desired position. It also allows users to zoom in/out on the heatmap by 

scrolling the mouse within the region specified for this subview. These interactions make 

it possible for users to observe all the elements of the heatmap and investigate features of 

interest more closely. 

5.4.6.1.4 Variance Subview 

The variance subview includes a line-column chart and checkboxes that correspond to 

each projected dimension. The line-column chart combines a line graph and column chart 

by using a common x-axis. The column chart encodes each projected dimension in a 

vertical bar, allowing users to compare the proportion of variance retained by that 

dimension using the eigenvalues measure. The line chart encodes the cumulative 

percentage, obtained by adding the successive variances to calculate the running total. 

This subview supports drilling (mouse over) by displaying both actual and cumulative 

variance. Users can select a dimension by clicking on its corresponding checkbox. This 

allows users to choose a subset of projected dimensions so that it can be analyzed with 
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the CA engine. In practice, users tend to look for a minimum number of projected 

dimensions that cover maximum variance in the dataset. 

5.4.6.2 CA View 

The components in this view allow users to apply different CA techniques, adjust 

configuration parameters, analyze the output, and export the final result (Figure 3). This 

view shares a common subview (i.e., association subview) with the DR view. The three 

main subviews of the CA view are described in this section. 

 

Figure 5-31: The CA view containing (A) association subview, (B) projected-

observations subview (C) hierarchical subview, and (D) frequency subview. 

5.4.6.2.1 Hierarchical Subview 

Upon selection of a CA technique and relevant configuration parameters, the hierarchical 

structure of the clustered data is displayed in a zoomable treemap in the hierarchical 
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subview. The space in the visual representation of the treemap is divided into nested 

rectangles. The set of rectangles in the first, second, and third levels represents clusters, 

groups within a particular cluster, and features within a particular group, respectively. 

There are several algorithms in the literature that can be used to determine the size of the 

rectangles in a treemap. VALENCIA determines the size of the rectangles based on the 

impact of each feature on a particular cluster. The algorithm to compute the size is 

presented in Procedure 1. For hierarchies, the size of a rectangle that contains other 

rectangles is determined by the sum of areas of the contained rectangles. All the 

rectangles representing groups and features within a cluster are encoded with the same 

color. VALENCIA automatically assigns colors to different clusters. The sets of 

rectangles in the first and second levels are transparent, showing the contained rectangles 

in the background. The varying sizes, colors, and nested structures of the rectangles allow 

users to identify patterns that would be difficult to detect otherwise. 

Procedure 5-1: Compute the size of the rectangles  (1) 

Require: Raw dataset with cluster labels (2) 

compute the number of features in each group in number_of_groupfeatures [] (3) 

compute max_groupfeatures = maximum value in number_of_groupfeatures [] (4) 

compute frequency of each feature in the dataset (5) 

divide the dataset based on each cluster (6) 

for each cluster C in the dataset (7) 

   for each feature F in the dataset (8) 

 compute relative frequencies of feature F in cluster C (9) 

 feature_weight = (relative frequencies / frequency [F]) * 100 (10) 

 adjusted_feature_weight [C,F] = (max_groupfeatures / number_of_groupfeatures [F]) * 

feature_weight 
(11) 

return adjusted_feature_weight [][] (12) 

Initially, the set of rectangles belonging to the first level (i.e., clusters) is visible in the 

representation of the treemap. Users can navigate through the rectangles in different 
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levels by clicking on a rectangle representing a cluster or group. The top-left corner of 

the treemap contains a button and navigation links. The button allows users to get back to 

the previous level from particular levels (i.e., second or third). The navigation links get 

updated dynamically as users navigate through the treemap. These links allow users to 

jump into any level by clicking on them. Users can hover the mouse over a rectangle to 

bring out the label of the corresponding rectangle. When a rectangle is hovered, it 

becomes highlighted (black) to help users understand which rectangle will be selected if 

they click on it. 

5.4.6.2.2 Frequency Subview 

The frequency subview includes a parallel set, collapsible tree structure, search bar, and 

checkbox. Parallel Sets (Kosara, 2010) is a visualization technique that is developed 

mainly for interpreting categorical data. For each feature or cluster, horizontal bars are 

displayed for possible categories in the frequency subview. The width of the bar encodes 

the frequency (i.e., number of matches) of that category. Starting with the first feature, 

each of its corresponding categories is connected to the categories of the next feature, 

which reveals how that category is subdivided. This subdivision process gets repeated 

recursively, which creates a tree of “ribbons”. The relationship between horizontal bars 

and ribbons helps users understand the distribution of combinations of categories. The 

horizontal bars and ribbons are color-coded based on the categories of the first feature. 

VALENCIA assigns colors to different categories automatically to make sure they are 

visually distinguishable. 

The data items displayed in the parallel sets can be controlled through a collapsible tree 

structure and an interaction with the treemap in the hierarchical subview. Users can select 

checkboxes of features in the collapsible tree structure to include them in the parallel sets. 

Features are organized into groups to make them easy to find. A search bar is also 

included to find a specific feature. The interaction with the tree structure helps users to 

investigate the distribution of features of interest in different clusters. The displayed 

information in the parallel sets can also be controlled by selecting a rectangle 
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representing a cluster, group, or feature in the treemap. Initially, a common set of features 

along with clusters are shown in the parallel sets for the entire dataset. As users interact 

with the treemap, the subset of data belonging to the contained rectangles in the treemap 

is shown in the parallel sets. For instance, if users click on a rectangle representing a 

cluster in the treemap, only the data items belonging to that cluster are displayed in the 

parallel sets. This process continues until users reach the last level in the treemap. 

Whenever users interact with either the tree structure or the treemap, the parallel sets gets 

updated based on the latest interaction. 

To get additional information, users can move their mouse over the components of the 

parallel sets to highlight them and bring out tooltips. The tooltip of each horizontal bar 

displays the frequency and percentage (as a fraction of the entire dataset) of its 

corresponding category. When users move their mouse over a horizontal bar, all the bars 

and ribbons connected to that particular bar get highlighted. The tooltip of a ribbon 

displays the combination of criteria (categories) that the ribbon represents along with the 

frequency and relative percentage. When users hover over a ribbon, all other connected 

ribbons get highlighted. Users can drag any features and categories to reorder them. The 

mouse pointer changes to help users understand which components are draggable. The 

features and categories can be dragged vertically and horizontally, respectively. This 

helps users to rearrange components of the parallel set and choose which feature should 

be used to color the ribbons. 

5.4.6.2.3 Projected-Observations Subview 

Projected-observations subview includes a scatter plot matrix and histograms. The 

scatterplot matrix is used to show the projected observation from the DR and CA 

analyses. It can be seen as a collection of scatterplots organized into a matrix where each 

scatterplot displays the relationship between a pair of projected dimensions. While each 

off-diagonal cell in the matrix maps a pair of distinct dimensions, there is no logical 

mapping for the diagonal cells. Therefore, VALENCIA incorporates histograms in the 

diagonal cells of the matrix. Histograms plot the frequency of observations in each 
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projected dimension. The observations are color-coded based on their corresponding 

cluster. The same color scheme is used for both the treemap, scatter plot matrix, and 

parallel sets. The scatter plot matrix helps users determine the linear correlation between 

multiple dimensions and detect patterns in the distribution of the clustered observations 

using projected dimensions. Users can observe each histogram to visually detect the 

median, outlier, and distribution (e.g., normal, skewed, to name a few) of the 

observations.  

When users apply brushing to select a region in any scatter plot, all observations outside 

the brushed region get grayed out in the scatter plot matrix. This interaction helps users 

investigate a set of observations in the region of interest. The mouse pointer changes 

when users move the mouse over any region that can be brushed. Several buttons are 

generated to filter observations displayed in the scatter plots and histograms. The number 

of buttons depends on the number of clusters. Each button and its corresponding cluster 

share the same color to help users understand the mapping. These buttons can be turned 

on/off by clicking on them. Each button can be used to filter observations of its 

corresponding cluster. 

5.4.7 Implementation Details 

The VALENCIA system is implemented using standard PHP programming language, R 

packages, JavaScript library D3, Ajax, JavaScript library jQuery, SAS, and standard 

HTML. D3, jQuery and HTML were used to develop the front end of the system, which 

includes all the external representations (i.e., interactive visualization engine). A number 

of packages in R were used to develop the analytics engine of the system. Since ICES 

data is stored in the SAS server, we used SAS to cut the data and integrate data from 

different sources. The communication between analytics and visualization engines is 

implemented using AJAX and PHP. 
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We used R to develop the components of the analytics engine because it 1) offers various 

packages to perform DR and CA, 2) is a platform-independent open-source tool, and 3) is 

available in the ICES working environment. 

We chose D3 to develop various external representations mainly because it 1) offers a 

data-driven approach to attach data to the Document Object Model elements. 2) provides 

users with the ability to get access to the full capabilities of modern web-browsers, 3) is 

an open-source library, and 4) is compatible with other programming languages that have 

been used in our system. 

5.5 Usage Scenario 

In this section, we demonstrate how VALENCIA can assist healthcare stakeholders at the 

ICES-KDT program in the investigation and exploration of high-dimensional EHR data. 

The datasets include demographics, comorbidities, hospital admission codes, medication 

profiles, and procedures, all linked using unique identifiers derived from health card 

numbers. We describe multiple scenarios to demonstrate how intended users perform 

numerous tasks to achieve their goals in finding appropriate DR and/or CA techniques 

and optimal configuration settings. Throughout this process, users get an overall 

understanding of relationships among data items in the EHRs. 

5.5.1 Data Sources 

We ascertained patient characteristics, drug prescription, and healthcare utilization data 

from 5 health administrative databases housed at ICES. We obtained vital statistics from 

the Ontario Registered Persons Database that contains demographic data on all residents 

of the Province of Ontario who have a valid health card. We used the Ontario Drug 

Benefit program database to get the prescription drug use data. This database records all 

outpatient prescriptions dispensed to patients aged 65 years or older, with a very low 

error rate (Levy et al., 2003). We ascertained hospital admission, procedure, baseline 

comorbidity, and emergency department visit data from the National Ambulatory Care 

Reporting System (i.e., ED visits) and the Canadian Institute for Health Information 
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Discharge Abstract Database (i.e., hospitalizations). Baseline comorbidity data were also 

obtained from the Ontario Health Insurance Plan database, containing claims data for 

physician services. 

5.5.2 Cohort Creation 

For this analysis, we created a cohort of patients who visited an ED or hospital between 

April 1st, 2014 and March 31st, 2016. The hospital admission date or ED visit date 

served as the cohort entry date (i.e., index date). If a patient had multiple hospital 

admissions or ED visits, we chose the first incident. Patient records with invalid data 

regarding age, sex, and health-care number were excluded from the cohort. We captured 

the hospital admission diagnosis and procedural information on the index date. We 

applied a 5-year look-back window to obtain relevant baseline comorbidity data and 120 

days look-back window to obtain prescription data. We used the International 

Classification of Diseases, tenth revision (post-2002) codes to identify baseline 

comorbidities. 

5.5.3 Cohort Description 

There were a total of 47 unique features and about 1 million patients in the cohort. The 

results of the analysis are suppressed to comply with the privacy regulations for reducing 

the possibility of patient reidentification. Therefore, the data points shown in the 

projected-observation subview are suppressed in cells with five or fewer patients. The 

cohort includes eleven comorbidities—namely, acute kidney injury, cerebrovascular 

disease, chronic kidney disease, chronic liver disease, coronary artery disease, diabetes 

mellitus, heart failure, hypertension, kidney stones, major cancers, and peripheral 

vascular disease. It contains four demographics features, including age, sex, income 

quintile, and location.  There are thirteen features representing drug classes of ACE-

inhibitors, alpha-adrenergic blocking agents, angiotensin II receptor blockers, beta-

blockers, calcium blockers, potassium-sparing diuretics, other diuretics, antipsychotic 

agents, fluoroquinolones, macrolides, immunosuppressive agents, nonsteroidal anti-

inflammatory agents, and oral anti-glymetics. The cohort contains three features to 
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represent the procedures—namely, angiograms, angioplasty stent, and transluminal 

angioplasty. Finally, it contains sixteen hospital admission diagnosis codes, including 

fluid disorders, delirium, atrial fibrillation, mycoplasma, anemia, valve disorders, femur 

fracture, chronic ischemia, volume depletion, paralytic ileus, chronic pulmonary, 

septicemia, abnormal function, hyperplasia of prostate, dementia, and glomerular 

disorders. 

All the patients in the cohort are aged over 64 years, and the mean age is 70 years. About 

56% of the patients are female, and 16% are from rural locations. The pre-existing 

comorbidities are hypertension (88%), diabetes (38%), coronary artery disease (25%), 

heart failure (14%), major cancer (16%), chronic kidney disease (9%), cerebrovascular 

disease (3%), peripheral vascular disease (2%), and kidney stones (1%). Some of the 

commonly prescribed drug classes are ace-inhibitors or angiotensin II receptor blockers 

(60%) and diuretics (57%). The most frequent diagnosis codes associated with AKI were 

chronic pulmonary (3%), atrial fibrillation (3%), chronic anaemia (2%), and ischaemic 

(2%). 

5.5.4 Case Study 

VALENCIA can be used in an iterative manner. This allows users to move freely among 

different stages, skipping some stages if needed, especially after going through the 

process of choosing a DR or CA technique once. In this study, we explain the process of 

using the system in a sequential manner to make it easier for readers to follow.  

First, users import the data file by clicking on the “Browse Files” button in the DR view. 

The data file gets preprocessed by the system automatically.  

Intended users can be interested in selecting a number of features from different feature 

groups. The imported dataset has five feature groups (i.e., demographics, comorbidities, 

hospital admission codes, procedures, and medications). Let us assume that a user 

analyzes the features using the raw-data subview and chooses fifteen features from 

hospital admission codes, twelve features from medications, and all features from 
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procedures, demographics, and comorbidities through the collapsible tree structure 

(Figure 4-A). As shown in Figure 4-B, the user has the option to observe the description 

of each feature while choosing them. The selected features are displayed in a scrollable 

data table for verification as shown in Figure 4-C. 

 

Figure 5-32: The raw-data subview containing (A) collapsible tree structure, (B) bar 

chart, and (C) data table. 

The user has the option to choose the DR technique and set the configuration parameters 

for that technique. Let us assume that the user selects “MCA” as the DR technique and 

sets the method and number of dimensions to “indicator” and “6”, respectively. The DR 

engine then automatically sets indices for quantitative and categorical supplementary 

features. Upon these selections, the DR engine applies the selected technique with the 

specified configurations on the chosen features. 

   

(A) (B) (C) 

Figure 5-33: Showing an overview of the projected-features subview, which includes 

(A) all glyphs with respect to dimensions one and two, (B) some selected glyphs and 

labels with regard to dimensions three and four, and (C) all the glyphs and labels 

representing age upon drilling. 
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Then, VALENCIA updates the projected-features, association, and variance subviews 

when the data items are generated. As shown in Figure 5-A, the projected-features 

subview displays the coordinates of features relative to the dimensions. The first two 

dimensions (i.e., dimension one and two) are shown by default as axes of the scatter plot. 

In Figure 5-B, the user can change the X- and Y-axes from default to dimensions three 

and four. Initially, the scatter plot displays all the glyphs corresponding to all feature 

categories. As shown in Table 1, the shapes of the glyphs are chosen automatically by the 

system based on different groups of features such as comorbidities, demographics, and so 

on. The user is interested in investigating a few specific features, and thus they select age 

from demographics, diabetes mellitus and hypertension from comorbidities, and anemia 

from the hospital admission codes using the collapsible tree structure in the projected-

features subview (Figure 5-B). Since the glyphs displayed in the scatter plot belong to 

different groups (i.e., demographics, comorbidities, and admission codes), they are 

encoded by different shapes and colors. However, all the categories belonging to a 

feature (e.g., male and female categories for feature sex) are represented by the same 

shape and color. The user selects the checkbox to observe the label of each glyph in 

Figure 5-B. They click on the glyph representing age to observe the position of other 

glyphs and labels (i.e., different categories of age) belonging to that feature (Figure 5-C). 

Table 5-9: Showing the shapes of the glyphs based on different groups of features. 

Group Shape 

Demographics      (Plus) 

Comorbidities ★ (Star) 

Hospital admission codes ▲ (Triangle) 

Procedures ■ (Rectangle) 

Medications ♦ (Diamond) 

Although the chosen features in Figure 5-B contribute to the definition of dimension four, 

they are not well represented in dimension three. This makes the user interested in 
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investigating which features contribute most to dimension three using the heatmap in the 

association subview. As shown in Figure 6-A, the heatmap displays the correlation 

between features and dimensions. There are six columns to represent six dimensions and 

44 rows to represent the features. The positive relationships between features and 

dimensions are encoded with colors ranging from light blue to dark blue, whereas 

negative ones range from light brown to dark brown. The cells are empty when the 

correlation between a specific row and column is not significant (e.g., between income 

and dimension two). In order to find the features that are related to dimension three, the 

user can click on “Dim3” column header once to sort the features in a descending order. 

This reveals that “income”, “volume depletion”, “delirium”, “mycoplasma”, and 

“dementia” are positively correlated to dimension three (Figure 6-B). Then the user can 

select these features in the projected-features subview to investigate these correlations 

more closely. 

After going through the above-mentioned process iteratively, the user finalizes the 

number of features, DR technique, and configuration parameters. At the final stage of the 

DR view, the user chooses the dimensions to be included in the CA engine by observing 

the line-column chart in the variance subview. This helps the user to understand the 

amount of variation retained by each dimension. Let us assume that the user selects 

checkboxes for dimension one, two, and three after analyzing them thoroughly, as shown 

in the bottom-left corner of Figure 2. Upon clicking the “submit” button, the system takes 

the user to the CA view. 
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(A) (B) 

Figure 5-34: Showing an overview of the association subview, which includes (A) a 

heatmap representing the association between six dimensions and 44 features and 

(B) a heatmap where all the features are sorted in a descending order based on 

dimension three. 

Once the CA view is loaded, the user chooses a CA technique and relevant configuration 

parameters to activate the CA engine. Let us assume that the user selects “kmeans” as 

their desired CA technique and sets the number of clusters and maximum number of 

iterations to “3” and “100”, respectively. Upon these selections, when the data items are 

generated based on the results of CA, VALENCIA updates the hierarchical, frequency, 

and projected-observations subviews. As shown in Figure 7-A, the projected-

observations subview displays the clustered observations in the low-dimensional space. 

The user can verify the output of the chosen CA technique by observing the distribution 
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of observations that are color-coded based on different clusters. For instance, the user can 

observe that the clusters are more distinguishable from each other in the scatter plots 

between dimensions one and two (Figure 7-A). In order to understand the distribution of 

the observations better and detect outliers, the user applies brushing on a region in a 

scatter plot (between dimensions one & two). This helps the user to investigate how the 

observations in the selected region are distributed in other scatter plots (Figure 7-B). As 

shown in Figure 7-C, when the user clicks on button “C-3”, the system removes all the 

observations belonging to cluster three.  

  

 

(A) (B) (C) 

Figure 5-35: Showing the overview of the projected-observation subview, which 

displays (A) all the observations color-coded based on clusters, (B) the brushing 

interaction, and (C) observations in cluster-1 and cluster-2 because cluster-3 is 

filtered out. 

This allows the user to compare the remaining clusters more easily. If the user becomes 

interested in getting additional information about the dimensions (e.g., which features are 

associated with these dimensions), they can use the association subview. Although this 

subview is also available in the DR view, it is included in the CA view to allow the user 

to retrieve such information without switching between views. As shown in the left 

corner of Figure 3, the association subview within the CA view contains information of 

the first three dimensions based on the user’s selection in the DR view. Next, if the user 
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is interested in exploring the hierarchical structure of the clustered data in high-

dimensional space (raw data), they can refer to the hierarchical subview.  

 
  

(A) (B) (C) 

  

(D) (E) 

Figure 5-36: Showing the overview of the hierarchical subview, which displays (A) 

all the clusters, (B) feature groups within cluster-1, (C) feature groups within 

cluster-2, (D) feature groups within cluster-3, and (E) features within the 

comorbidity group in cluster-3. 

The hierarchical subview allows the user to detect which clusters cover the maximum 

amount of variation of the data (Figure 8-A). The user clicks on a rectangle representing a 

cluster (i.e., cluster-1, cluster-2, and cluster-3) in this subview to observe how different 

feature groups contribute to the variance of a particular cluster. For instance, 

demographics, medications, and comorbidities have the highest contributions to cluster-1, 

cluster-2, and cluster-3, respectively (as shown in Figure 8-B, 8-C, and 8-D). Then, the 

user can click on the rectangle representing comorbidities within cluster-3, which reveals 
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that diabetes mellitus (DIAB) and hypertension (HYP) are the dominating features in this 

group (Figure 8-E).  

The user can consult the frequency subview to get the frequency distribution of clusters 

and features. As shown in Figure 9-A, 32%, 59%, and 9% of the patients are assigned to 

cluster one, two, and three, respectively. About 82% of these patients are aged between 

65 and 85, and most of them are assigned to the first two clusters. Upon interacting with 

the hierarchical subview, the frequency subview gets updated dynamically to allow the 

user to get additional information at every level. For instance, Figure 9-B displays the 

frequencies of the comorbidities when the user selects the “cluster-3”->“comorbidities” 

rectangles (Figure 8-E) in the hierarchical subview. The user can observe that 93% of the 

patients in cluster-3 have hypertension. In order to change the color of the ribbons based 

on the outcome of the heart failure feature (HF), they can reorder the horizontal bars by 

dragging hypertension (HYP) to the top.  

The user can also observe the distribution of all other comorbidity features within cluster-

3. Next, let us assume the user becomes interested in checking how the patients who have 

heart failure, diabetes mellitus, anemia, and delirium are subdivided into different 

clusters. The user can activate the collapsible tree structure by clicking on particular 

checkboxes corresponding to these features to filter the displayed information. Figure 9-C 

shows how patients in different clusters are subdivided into these features and vice versa. 

It is possible to explore the interrelationship between not only the clusters and features 

but also different features in this manner. For example, the user can observe that most of 

the patients belonging to cluster-1 have diabetes. In order to investigate this relationship 

more closely, the user can change (i.e., from clusters to feature) the ordering and color-

coding by moving diabetes mellitus (DIAB) to the top. The color scheme for clusters in 

the frequency, hierarchical, and projected-observations subviews are identical; this makes 

it easy for the user to visually perceive the connection between these subviews (Figure 

3).  
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(A) (B) (C) 

Figure 5-37: Showing the overview of the frequency subview, which shows the 

distribution of (A) different clusters and demographics, (B) all the comorbidities 

within a particular cluster, and (C) clusters and some user-selected features. 

At any stage of the analysis in the CA view, the user can click the “Back” button to 

navigate back to the DR view. They can switch between the DR and CA views as many 

times as is required. After going through this iterative process of applying different CA 

techniques, tuning configuration parameters, and analyzing results with different 

subviews, the user exports the resulting dataset by clicking on the “Export” button. The 

output dataset contains all the data elements along with cluster labels for each patient.  
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5.6 Conclusion 

In this study, we have shown how visual analytics systems can be designed to address the 

challenges of high-dimensional data stored in EHRs in a systematic way. To achieve this, 

we have reported the development of VALENCIA, a visual analytics system designed to 

assist healthcare stakeholders at the ICES-KDT program. VALENCIA incorporates two 

main components: an analytics engine, made up of two sub-engines: the DR engine and 

the CA engine; and an interactive visualization engine, made up of the DR view and the 

CA view. The main contribution of VALENCIA is to bring a wide range of state-of-the-

art and traditional analysis techniques, integrate them seamlessly, and make them 

accessible through interactive visualizations. VALENCIA offers a balanced distribution 

of processing load between users and the system through a proper integration of analytics 

techniques (i.e., the DR and CA engines) with visual representations (i.e., different 

interactive views in the interactive visualization engine) to facilitate the performance of 

high-level cognitive tasks. Through a real case study, we have demonstrated how 

VALENCIA can be used to analyze the healthcare administrative dataset of older patients 

who visited the hospital or emergency department in Ontario between 2014 to 2016. 

Through the formative evaluations conducted during the participatory design process, we 

have seen that VALENCIA assists healthcare experts in 1) exploring datasets using 

different DR and CA techniques, 2) generating hypotheses, 3) identifying relationships 

among data items, 4) evaluating results of the analysis, and 5) recognizing patterns and 

trends that would be otherwise difficult to identify without such a system. A number of 

training materials have been prepared to assist new users in getting familiar with the 

system. Users at the ICES-KDT program were able to identify suitable analysis 

techniques and configuration settings for their health administrative datasets. They got 

familiar with different analytics techniques quickly while exploring them through 

VALENCIA, although they never worked with those techniques before. They also have 

reported that the interactive visual interface makes it easy for them to explore the analysis 

results. 
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In terms of the scalability and extensibility of VALENCIA, we designed it in a modular 

way so that it can easily accept new data sources and analysis techniques (both DR and 

CA). VALENCIA can be used to analyze high-dimensional datasets in many other 

domains, such as insurance, biotechnology, finance, and image processing.  

The study should be evaluated with respect to four limitations. The first one is that, as the 

size of the dataset grows, its computational time for the DR and CA techniques increases; 

this limits the real-time functionality of the interactive visualizations. The second 

limitation is that, even though we have had a participatory design and healthcare experts 

have evaluated VALENCIA and have found it helpful and usable, we have not conducted 

any formal studies to assess its performance, nor the efficiency of its human-data 

discourse mechanisms. Third, since the system has been designed for a healthcare 

organization, we have not tested the performance of the system on any other domain 

except healthcare. Fourth, some subviews of the system may not function properly if the 

number of features in the dataset gets too large due to limitations of screen space and 

computational resources. 
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Chapter 6  

6 Predicting Acute Kidney Injury: A Machine Learning 
Approach using Electronic Health Records 

This chapter is accepted for publication as S.S. Abdullah, N. Rostamzadeh, K. Sedig, 

A.X. Garg, and E. McArthur, “Predicting Acute Kidney Injury: A Machine Learning 

Approach using Electronic Health Records” in the Information Journal, July 2020. We 

changed the format to match the general format of the dissertation. The Figure, Table, 

and Section numbers specified herein are relative to the chapter number. For example, 

“Table 1” corresponds to Table 6-1; “Figure 1” corresponds to Figure 6-1; and “Section 

1.1” corresponds to Section 6.1.1. Moreover, when the term “paper”, “research”, or 

"work" is used, it refers to this specific chapter. 

6.1 Introduction 

Acute kidney injury (AKI) is common among patients admitted to hospitals, affecting 

approximately 10% of hospitalized patients and more than 25% of patients in the 

intensive care unit (Porter et al., 2014; Selby et al., 2012). AKI is defined as an abrupt 

loss of kidney function over a short period of time [2].  AKI may lead to prolonged 

hospital stays, lower chance of survival, and a higher risk of developing chronic kidney 

disease. Over the last 10-15 years, the incidence rate of AKI has increased in the United 

States (Nadkarni et al., 2016; Wu et al., 2014), the United Kingdom (Kolhe et al., 2016), 

and Canada (Liu et al., 2010; Mehrabadi et al., 2014). The growing incidence rate of AKI 

is associated with the changing spectrum of diseases. There is an increasing body of 

evidence proving that patients with extrarenal complications and multiple comorbidities 

are at a greater risk of developing AKI (Mehta et al., 2004; Siddiqui et al., 2012). Aikar et 

al. (Waikar et al., 2006) have shown that the high comorbidity rate, measured by the 

Deyo-Charlson comorbidity index, is associated with AKI. As a patient's number of 

comorbid conditions grows, there is a rise in associated physician visits, healthcare 

utilization, medication intake, and hospitalizations (Zulman et al., 2014), ultimately 

leading to an increase in healthcare expenditure. Given the associated risk and expense, a 
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promising strategy is required to improve the care for AKI patients. However, a UK-

based report published in 2009 demonstrated significant under-recognition of AKI, 

leading to delayed recognition, inadequate treatment, and ineffective monitoring (Ali et 

al., 2007; Bagshaw et al., 2007). 

Thus, there is a rising demand for techniques that can be used for the detection of AKI. 

However, the complex pathophysiology and etiology of AKI make the diagnosis and 

management of this disease challenging. There are different guidelines such as RIFLE 

(Eriksen et al., 2003), AKIN (Palevsky et al., 2013), WRF (Gottlieb et al., 2002) and 

KDIGO (Clinical Practice Guideline, 2012) for AKI diagnosis. Most of these guidelines 

rely on a rise in serum creatinine (i.e., a laboratory test) alone as the gold standard. 

However, serum creatinine-based guidelines are often not ideal for the diagnosis of AKI 

among older patients because the age-related deteriorations in glomerular filtration rates 

affect the baseline measure (Kate et al., 2016). Another limitation of this measurement is 

due to the fact that serum creatinine may vary with muscle mass since it is a product of 

muscle catabolism (Delanaye et al., 2017). In addition, serum creatinine-based guidelines 

require a premorbid serum creatinine value to be used as a baseline creatinine, which may 

not be available for all patients (Mohamadlou et al., 2018). Although some guidelines 

also rely on urine output to diagnose AKI, it is only monitored for patients with reduced 

kidney function (Kate et al., 2016). Despite these challenges, even if AKI can be 

diagnosed properly, the clinicians often fail to intervene due to a lack of time and 

treatment options. The treatments of AKI are primarily focused on avoiding nephrotoxic 

medications and administering supportive care (Clinical Practice Guideline, 2012). 

Although more advanced treatments are identified in recent years, their effectiveness has 

not been proven in clinical trials yet (Pozzoli et al., 2018). Thus, interventions often have 

poor performance if a patient has developed AKI already (Lieske et al., 2014; Mehta, 

2011). So, it is more effective to predict AKI prior to its diagnosis. A number of recent 

studies have shown that AKI is predictable and avoidable if early risk factors can be 

identified using Electronic Health Records (EHRs).  For instance, Kate et al. (2016) have 
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revealed that it is possible to predict up to 30 percent of AKI cases in the hospital settings 

using the patient data stored in EHRs (Kate et al., 2016).  

EHR contains patient medical records, such as comorbid conditions, medications, 

laboratory test results, diagnosis codes, demographics, and discharge summaries, which 

can be used for the risk profiling of patients (Mohamadlou et al., 2018; Rostamzadeh et 

al., 2020). With the evolution of EHRs and the widespread use of information technology 

systems, these medical records are available nowadays for subsequent reuses (Abdullah 

et al., 2020a, 2020b; Abramson et al., 2011; Delamarre et al., 2015). EHRs offer an 

opportunity to employ machine learning techniques to recognize risk factors associated 

with AKI and identify patients at risk of developing AKI. Several clinical decision 

support systems have been developed in recent years for earlier detection of AKI using 

machine learning techniques (Abdullah et al., 2020c; Cheng et al., 2017; Davis et al., 

2017; Gameiro et al., 2020; Ibrahim et al., 2019; Rashidi et al., 2020; Tran et al., 2019). 

However, many of these systems suffer from various performance and design related 

issues such as lack of predictive power, substantial trade-offs between sensitivity and 

specificity, a limited number of machine learning techniques, small population size, lack 

of predictors, and limited patient populations (Gameiro et al., 2020; Mohamadlou et al., 

2018).  

This study is designed to predict AKI among hospitalized and emergency department 

patients using machine learning techniques. We incorporate ICES' healthcare 

administrative datasets containing one million older patients' medical records who visited 

the hospital or emergency department between 2014 and 2016. We developed 31 

prediction models based on different combinations of two sampling techniques, three 

ensemble methods, and eight classifiers. Our study differs from other studies in several 

ways: (1) we developed prediction models for patients who are at risk of developing AKI 

within 90 days timeframe after being discharged from hospital or emergency department; 

(2) we included a large number of predictors to train the models; and (3) we validated the 

important features of each model with healthcare experts through formative evaluations 
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to improve the performance and reliability of the models. The rest of this study is 

organized as follows. Section 2 describes the methodology employed for the design of the 

study. Section 3 presents the experimental results. Finally, Section 4 includes the 

discussion, and Section 5 describes the limitations of the study. 

6.2 Materials and Methods 

We discuss the data sources and methodology in this section that includes the design 

process, settings, design flow, data integration, cohort entry criteria, input features, 

outcomes, and proposed machine learning techniques. 

6.2.1 Design Process and Participants 

As a part of continuing clinical research, medical experts usually conduct clinical trials 

and case studies in their areas of expertise. In many situations, the result of these clinical 

studies is not reproducible due to limited and specific population size. Machine learning 

can help healthcare experts evaluate the relevance of such studies and explore more 

complicated relationships among data elements. Despite the advantages, one significant 

drawback of the machine learning approach is a general lack of interpretability. Thus, it is 

underexplored in clinical studies as most of the healthcare experts often find it difficult to 

understand these models and results (Spasic and Nenadic, 2020). On the other hand, 

although computer science experts are more experienced in working with machine 

learning techniques, they are not familiar with clinical terms. It becomes difficult for 

them to interpret and validate the analysis results without the help of domain experts. To 

address this issue, we adopted a participatory design approach to conceptualize and 

design our study. It is a co-operative approach that includes all stakeholders (e.g., users, 

designers, and evaluators) in the process to make sure the result of the analysis meets 

their needs (Muller, 2007). A clinician, a statistician, an epidemiologist, and several data 

scientists participated in the conceptualization, design and evaluation process of this 

study. During the primary stage of the design process, we came to know that healthcare 

experts perform studies to predict diseases in many different ways. There is no single 

correct analysis technique because different techniques have their strengths and 
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weaknesses, and the selection of an appropriate technique for a task is not 

straightforward. As such, we invited healthcare experts in our team to provide us with a 

list of analysis techniques, which they usually practice. We decided to employ both 

traditional and state-of-art analysis techniques to build trust with end-users and, at the 

same time, allow them to explore complex relationships in the dataset. 

6.2.2 Study Design and Setting 

We conducted a population-based retrospective cohort study in older patients who visited 

a hospital or emergency department between April 1st, 2014 and March 31st, 2016, using 

health administrative databases stored at ICES. These datasets were connected using 

unique encoded identifiers and analyzed at ICES.  

Ontario has a population of about 13 million residents with universal access to physician 

services and hospital care, which includes 1.9 million people aged 65 years or older. We 

suppressed the results of this study in cells with five or fewer patients to comply with 

ICES privacy regulations and minimize the possibility of reidentification of patients. 

6.2.3 Workflow 

Figure 1 shows the basic workflow of the study described in this paper. In the first step, 

we created an integrated dataset from five different health administrative databases. The 

data sources are discussed in Section 2.4. Next, we describe the inclusion and exclusion 

criteria in Section 2.5. The features in the comorbidity, prescription, demographic, and 

hospital admission codes data were encoded and transformed into suitable forms for the 

analysis in the preprocessing stage, which is discussed in Section 2.8. The analysis 

techniques and results are presented in Section 2.9 and 3, respectively. 
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Figure 6-38: Workflow diagram of the presented study where different colours are 

used to represent three main parts (data integration and preprocessing, analysis and 

validation). The figure shows how different combinations are formed using two 
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sampling techniques (i.e., under sampling and SMOTE), three ensemble methods 

(i.e., boosting, bagging, and XGBoost), and eight machine learning classifiers. 

6.2.4 Data Sources 

We ascertained patient characteristics, drug prescriptions, outcome and medical history 

data from 5 administrative databases (as shown in Appendix A). These datasets are linked 

using a unique identifier, which is derived from health card numbers. We collected vital 

statistics from the Ontario Registered Persons Database, which includes demographic 

data of all residents in Ontario who have a valid health card. We utilized the Ontario 

Drug Benefit Program database to get prescription medication use data. Ontario Drug 

Benefit Program holds all the outpatient prescription records dispensed to older patients, 

which has an error rate of less than 1% (Levy et al., 2003). We ascertained baseline 

comorbidity, emergency department visit, and hospital admission data from the National 

Ambulatory Care Reporting System (i.e., for the emergency department) and the 

Canadian Institute for Health Information Discharge Abstract Database (i.e., for hospital 

admissions). We applied the ICD-10 (i.e., International Classification of Diseases, post-

2002) codes to identify baseline comorbidities within the look-back window. In addition, 

Baseline comorbidity data were acquired from the Ontario Health Insurance Plan 

database, which holds claim records for physician services. ICES Physician Database was 

used to obtain the demographic, education, practice, and specialty information on all 

physicians. All the coding definitions for the comorbidity databases are provided in 

Appendix B. 

6.2.5 Cohort Entry Criteria 

We identified a cohort of individuals aged 65 years or older who visited the emergency 

department or were admitted to hospital between 2014 and 2016 (Figure 2). The hospital 

admission or emergency department discharge dates were taken as the cohort entry or 

index date. If a patient had multiple hospital admissions and emergency department 

visits, we chose the first incident. We excluded patients with invalid or missing age, sex, 

and health card number. In addition, we excluded patients who: (1) previously underwent 
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a kidney transplant or dialysis treatment as AKI is usually no longer relevant once 

patients develop end-stage kidney disease; (2) left the emergency department or hospital 

without being seen by a physician or against medical advice; and (3) developed AKI 

during emergency department visit or hospital admission as they are already under 

observation. The diagnosis codes for the exclusion criteria are presented in Appendix C. 

 

Figure 6-39: Provides an overview of data creation plan and how we prepared the 

final cohort. 

6.2.6 Input Features 

We used the Chi-Square test for feature selection and then filtered the selected features 

with a healthcare expert. The final cohort included about one million patients and a total 

of 86 unique features. The cohort contained eleven comorbidity features—namely, 

chronic kidney disease, diabetes mellitus, cerebrovascular disease, coronary artery 

disease, hypertension, chronic liver disease, major cancers, peripheral vascular disease, 

heart failure, and kidney stones. We applied a 5-year look-back window to detect these 

baseline comorbidities. There were four demographics features—namely, sex, age, 

region, and income quintile. We included 55 medications that were prescribed to the 

patients within 120 days before the first hospital admission or emergency department 

visit. These medications belonged to thirteen distinct drug classes—namely, ACE-

inhibitors (blood pressure and heart failure), beta-blockers (blood pressure), alpha-

adrenergic blocking agents (blood pressure), angiotensin-receptor blockers (blood 

pressure), calcium blockers (blood pressure), macrolides (antibiotics), fluoroquinolones 

(antibiotics), potassium-sparing diuretics (weak diuretic), other diuretics,  nonsteroidal 
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anti-inflammatory agents (pain relievers),  oral hypoglycemic (diabetes mellitus), and 

immunosuppressive agents (immune system activity). 

The cohort also included sixteen ICD-10 diagnosis codes that were identified during the 

index hospitalization or emergency department visit. The codes were related to delirium, 

mycoplasma pneumoniae, disorders of fluid, electrolyte and acid-base balance (e.g., 

hyperosmolality and hypernatraemia, hypo-osmolality and hyponatraemia, acidosis, 

alkalosis, mixed disorder of acid-base balance, hyperkalaemia, hypokalaemia, fluid 

overload, and other disorders of electrolyte and fluid balance), atrial fibrillation, anemia, 

femur fracture, valve disorders, atherosclerotic cardiovascular disease, diseases of the 

digestive system (e.g., paralytic ileus, intussusception, volvulus, gallstone ileus, other 

impaction of intestine, intestinal adhesions with obstruction, and other and unspecified 

intestinal obstruction ileus), Certain infectious and parasitic diseases (e.g., sepsis due to 

Staphylococcus aureus, other specified Staphylococcus, Haemophilus influenzae,  

Escherichia coli, Pseudomonas, Serratia marcescens, other gram-negative organisms, 

gram-negative Septicaemia, and Enterococcus), dehydration and other volume depletion, 

abnormal function (e.g., abnormal results of function tests of central nervous system, 

peripheral nervous system and special senses, pulmonary function tests, cardiovascular 

function tests, kidney function tests, liver function tests, thyroid function tests, other 

endocrine function tests, and electrocardiogram suggestive of ST-segment elevation 

myocardial infarction , abnormal cardiovascular function tests, and other abnormal results 

of cardiovascular function tests), chronic pulmonary (e.g., chronic obstructive pulmonary 

disease with acute lower respiratory infection and acute exacerbation and other specified 

chronic obstructive pulmonary disease), dementia, glomerular disorders (e.g., glomerular 

disorders in infectious and parasitic diseases, neoplastic diseases, blood diseases and 

disorders involving the immune mechanism, diabetes mellitus, other endocrine, 

nutritional and metabolic diseases, and systemic connective tissue disorders), and 

hyperplasia of prostate. 



163 

 

 

 

6.2.7 Outcome: Identification of AKI 

Machine learning models were built to predict AKI within 90 days after being discharged 

from the hospital or emergency department. Positive cases were those in which patients 

revisited hospital or emergency department with AKI within 90 days after being 

discharged, and negative cases were the ones when hospitalizations or emergency 

department visits with AKI never took place. There was a total of 899,449 negative and 

5,993 positive cases in the dataset. There were no recurrent AKI examples (i.e., excluded 

25,084 patients) in the data because we excluded the cases where AKI or dialysis was 

acquired during the index hospital stay or emergency department visit.  

The incidence of AKI was detected using the Canadian Institute for Health Information 

Discharge Abstract Database and National Ambulatory Care Reporting System based on 

the ICD-10 (International Classification of Diseases - Tenth Revision) diagnostic codes 

(i.e., ICD-10 code of AKI is "N17"). 

6.2.8 Data Preprocessing 

For each feature described in Section 2.5, the last recorded value before the first hospital 

admission or emergency department visit was captured. Medication, diagnosis code, and 

comorbidity features were set to either "Y" or "N." If a patient had a certain comorbid 

condition or was prescribed a medication, then its corresponding value was taken as "Y." 

Instead of reporting individual ages, we calculated age group features for the patients. If a 

patient's age laid within the specified range of an age group, we set the value to "1" for 

that corresponding feature. The sex feature took either "M" or "F" if the information is 

available in the dataset. Patients with invalid age or sex were removed from the cohort. 

The region feature took either "R" or "U" to represent rural and urban, respectively. The 

income feature took an integer value ranged between 1 to 5 to represent the income 

quintile of a particular patient.  

All these features from different data sources were integrated using the encoded 

identifiers derived by ICES using patient health card numbers. The features in the cohort 
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were transformed into a format and scale that was suitable for the machine learning 

techniques. For each patient, we aggregated multiple values (rows) of a single feature 

into one by considering the latest values of that feature. 

6.2.9 Analysis using Machine Learning Techniques 

We employed both traditional and state-of-art analysis techniques to build trust with end-

users and, at the same time, allow them to explore complex relationships in the dataset. 

We developed 31 AKI prediction models based on combinations of eight classifiers—

namely, classification and regression tree (CART) (Wilkinson, 2015), C5.0 (Quinlan, 

2014), naïve Bayes (NB) (Lewis, 1998), logistic regression (Bahnsen et al., 2014), and 

support vector machine (SVM) with four different kernels (linear, polynomial, sigmoid, 

and radial) (Cristianini and Shawe-Taylor, 2000), two sampling techniques—namely, 

under sampling and SMOTE, and three ensemble methods—namely, Boosting, Bagging, 

and XGBoost. These techniques are chosen for several reasons: 1) They each represent 

different types of machine learning methods. For example, the decision tree is a rule-

based, regression is a statistical, and naïve Bayes is a probability-based method. 2) Each 

of these methods has its own set of advantages and limitations. For instance, decision tree 

models are more human-interpretable but often fail to represent complex relationships 

among data elements. On the contrary, SVM is equipped to model complex non-linear 

relationships using different kernels but difficult to interpret. 3) Medical experts are more 

familiar with regression than other machine learning algorithms, which convinced us to 

include regression in this analysis. 

6.2.9.1 Ensemble-Based Methods 

Since the number of negative cases was significantly higher than the number of positive 

cases, we considered the dataset as highly imbalanced. Traditional machine learning 

techniques that are designed to optimize the overall accuracy tend to achieve poor 

performance in this class imbalanced learning scenario. An ensemble method offers a 

solution to this problem by combining several classification models to obtain better 

performance than the base classifiers (Dietterich, 2000). To deal with the class imbalance 
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issue in this study, we incorporated four different combinations of ensemble and 

sampling methods—namely, SMOTEBoost, SMOTE-Bagging, UnderBagging, and 

RUSBoost that are available in the "embc" package of R (Barandela et al., 2003; Freund 

and Schapire, 1997; Wang and Yao, 2009). The RUSBoost was implemented using the 

"rus" function in the "ebmc" package. The weak learners in RUSBoost are trained on 

random under-sampled datasets (Seiffert et al., 2010). Those learners are then combined 

to generate the final ensemble model. We used the "sbo" function to implement 

SMOTEBoost. SMOTE (Synthetic Minority Oversampling Technique) is a sampling 

technique that synthesizes new instances for the minority class using the k-nearest-

neighbours algorithm (Chawla et al., 2002). SMOTEBoost returns several weak learners 

that are trained on SMOTE-generated datasets along with their error estimations (Galar et 

al., 2012). The "sbag" function was used to implement SMOTEBagging, which combines 

SMOTE and random over-sampling to rebalance the dataset [44]. We used the "ub" 

function to implement the UnderBagging method. Unlike other ensemble methods 

discussed above, UnderBagging only incorporates random under-sampling to reduce the 

instances of the majority class in each bag to rebalance the class distribution. We 

configured this function in such a way that the amount of majority instances became 

equal compared to the minority instances (i.e., imbalance ratio = 1). We used NB, SVM, 

CART, and C50 as weak learners for the ensemble methods, which are discussed in the 

following subsections. 

6.2.9.1.1 Support Vector Machine 

The objective of the SVM is to find an optimal separating hyperplane in a multi-

dimensional space (i.e., depending on the number of features) that distinctly divides the 

instances of different classes. Although SVM models are often not human-interpretable, 

it has been proven to work well on prediction tasks involving a large number of features 

[18]. It has become popular in healthcare research recently because it is more effective in 

analyzing high dimensional EHRs. In addition, the regularisation parameters of SVM 

kernels help users avoid over-fitting. Since the performance of the models widely varies 

depending on the selection of the kernel (Tomar and Agarwal, 2013) and kernels are 



166 

 

 

 

quite sensitive to over-fitting (Cawley and Talbot, 2010), one of the main challenges is to 

select an appropriate kernel. Thus, we tested the performance of four well-known kernel 

functions in this study—namely, linear, polynomial, sigmoid, and radial. 

6.2.9.1.2 Decision Tree 

A decision tree is the representation of possible outcomes of a decision depending on 

certain conditions (Quinlan, 2014). It is similar to a flowchart where every non-leaf node 

represents a test for a specific feature, and the leaf node represents a particular outcome. 

Decision tree reduces the ambiguity of complicated clinical decisions and requires 

reduced effort for data preparation compared to other techniques. It can be an effective 

technique to analyze datasets with missing values because the tree-building process is not 

affected by the missing data (Niuniu and Yuxun, 2010). We choose the decision tree 

mainly because it is easy to interpret and understand. Despite the advantages, decision 

tree models are often volatile, meaning that a minor alteration in the training data may 

cause a massive change in the structure of the tree. To overcome this issue, we included 

other types of base classifiers along with decision tree and verified the structure of the 

generated tree with a healthcare expert. We incorporated two different algorithms to 

develop decision tree models in this study. The classification and regression tree (CART) 

were implemented using “rpart” package (Wilkinson, 2015), and the C5.0 classifier was 

implemented using the “C50” package in R (Quinlan, 2014). 

6.2.9.1.3 Naïve Bayes 

NB is a simple probabilistic classifier established on Bayes theorem (Lewis, 1998), which 

is exceptionally fast to train compared to other complex techniques (Tomar and Agarwal, 

2013). Classification of the new data using this technique only requires mathematical 

operations based on the feature probability. We choose NB mainly because it is less 

sensitive to missing data. However, since this technique is designed based on the 

assumption of feature independence, the performance may deteriorate when features in 

the training data are related. We used the "naive Bayes" package to implement the NB 

algorithm in this study (McCallum and Nigam, 1998). 
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6.2.9.2 Logistic Regression 

Logistic regression draws a separating line among the classes using the training dataset 

and then applies that line to classify the unknown data points. It is used to analyze the 

relationships between one dependent feature and one or more independent features. 

Logistic regression models are informative as they reveal the association among features 

in terms of odds ratios. Over the last decades, logistic regression techniques have become 

very popular in healthcare studies (Ismail and Anil, 2014). Although logistic regression 

models are not designed to support imbalanced classification directly, they can be 

modified to work with skewed distributions. In order to adjust the regression coefficients 

while training with the imbalance data, we implemented a cost-sensitive regression 

model. We adjusted the weight of the minority class based on the cost of its 

misclassification compared to the cost of misclassifying the majority class. We used 

internal 10-fold cross-validation during training to determine the appropriate weight for 

the minority class. 

6.2.9.3 XGBoost 

XGBoost (i.e., eXtreme Gradient Boosting) is an advanced implementation of gradient 

boosted decision trees that can be used for ranking, regression, and classification 

problems (Chen and Guestrin, 2016). One of the main advantages of XGBoost is that it 

supports parallel computation, which makes it faster than other implementations of 

gradient boosting. Because of its time complexity and performance superiority, it has 

been widely used in healthcare research, such as analysis of EHRs (C. Wang et al., 2018) 

and cancer diagnosis (C.-W. Wang et al., 2018). We used the "xgboost" package to 

implement XGBoost in R. Since this implementation of XGBoost only works with 

numeric data, we converted the categorical features in our dataset into numerical vectors. 

The "xgboost" package includes both a tree learning algorithm and linear model solver. 

We implemented both algorithms to compare their performance. This package has a 

built-in mechanism to control the balance of positive and negative weights as well. To 

train the models with unbalanced data, we adjusted the "scale_pos_weight" parameter 
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based on the ratio of the negative class to the positive class (Wang et al., 2019). We 

performed a grid search on the parameters of XGBoost and tuned the regularization 

parameters using the best parameters from the grid search. 

6.2.10 Tools and Technologies 

We primarily used two different data analysis software: SAS and R. SAS was used to cut 

and process the cohort because ICES health administrative databases were stored in a 

SAS server (“SAS Enterprise BI Server,” n.d.). We used SAS programming, SQL, and 

predefined macros to prepare data for analysis. Then we loaded the preprocessed dataset 

in R packages (“RStudio | Open source & professional software for data science teams,” 

n.d.) for additional analysis using machine learning techniques. We chose R mainly 

because it 1) is installed on the ICES workstations already, 2) has a rich array of machine 

learning libraries, 3) is open-source and platform-independent, and 4) is continuously 

providing updates with new libraries. 

6.3 Results 

This section presents the results of this study. We divided the results into two 

subsections. First, we provide an overview of the dataset in Subsection 3.1. The results of 

predictive models are presented in Subsection 3.2. 

6.3.1 Cohort Characteristics 

A total of 905,442 participants were included in the derivation cohort, of which 5,993 had 

AKI during their hospital admission or emergency department visit after being 

discharged from the index encounter. We excluded 25,084 patients who developed AKI 

during the index hospitalization or emergency department visit. Selected characteristics 

of the derivation cohort are presented in Table 1.  
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Table 6-10: Baseline characteristics of patients in the cohort who were admitted to 

the hospital or visited the emergency department between 2014 and 2016. 

Characteristics Patients admitted to hospital or visited ED 

 
Total Patients AKI No AKI 

Cohort size 905,442 5993 899,449 

Age, yr, mean (SD)  

65 to <70 181,088 (20%)  589 180,499 

70 to <80 371,231 (41%) 1911 369,320 

80 to <90 269,147 (30%) 2485 269,147 

>=90 81,489 (9%) 1008 80,481 

Sex  

Women 507,047 (56%) 2901 504,146 

Year of cohort entry (index date)  

2014-2015 588,537 (65%) 3987 584,550 

2015-2016 316,904 (34%) 2006 314,898 

Location  

Rural residence 144,870 (16%) 501 144,369 

LTC  

Long-term care 36,217 (4%) 745 35,472 

Income Quintile  

1 (lowest) 172,035 (19%) 1,306 170,729 

2 189,143 (21%) 1,318 187,825 

3 182,588 (20%) 1,173 181,415 

4 181,086 (20%) 1,154 179,932 

5 (highest) 180,590 (20%) 1,043 179,547 

Comorbid conditions (by codes)  

Hypertension 814,604 (88%) 5784 808,820 

Diabetes 358,472 (38%) 3306 355,166 

Heart failure 125,136 (14%) 1821 123,315 

Coronary artery disease 239,437 (26%) 2005 237,432 

Chronic liver disease 33,359 (4%) 297 33,062 

Cancer 145,286 (16%) 1016 144,270 

Chronic kidney disease 86,442 (9%) 1854 84,588 

Kidney stones 12,457 (1%) 93 12,364 

Peripheral vascular disease 13,197 (2%) 158 13,039 

Cerebrovascular disease 25,835 (3%) 282 25,553 

Hospital Diagnosis Codes  

Disorders of fluid, electrolyte and 

acid-base balance (E87) 
13563 (1%) 962 12601 

Delirium (F05) 4996 (1%) 342 4654 

Atrial fibrillation (I48.91) 34120 (4%) 1978 32142 

Mycoplasma pneumoniae (B96) 6197 (1%) 434 5763 

Anaemia (D64.9) 11814 (1%) 791 11023 

Valve disorders (I35) 1261 (1%) 186 1075 

Fracture of femur (S72) 7263 (1%) 231 7032 

Atherosclerotic cardiovascular 

disease (I25.10) 
21472 (2%) 1256 20216 

Volume depletion (E86.9) 3739 (1%) 240 3499 

Diseases of the digestive system 

(K00-K95) 
4552 (1%) 264 4288 

Abnormal functions of organs and 

systems (R94.8) 
11348 (2%) 725 10623 

Chronic pulmonary (J81.1) 24217 (3%) 971 23246 
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Hyperplasia of prostate (N40.1) 5047 (1%) 153 4894 

Certain infectious and parasitic 

diseases (A00-B99) 
1191 (1%) 105 1086 

Dementia (F03. 90) 8714 (1%) 390 8324 

Glomerular disorders (N08) 3988 (1%) 569 3419 

All the patients in the cohort were aged 65 years or older, where the mean age was 70 

years. Among the participants, about 56% were women. About six percent of patients 

were in long term care, and sixteen percent were from rural areas. The pre-existing 

comorbidities were diabetes (38%), hypertension (88%), major cancer (16%), coronary 

artery disease (25%), cerebrovascular disease (3%), heart failure (14%), chronic kidney 

disease (9%), kidney stones (1%), and peripheral vascular disease (2%). Some of the 

commonly prescribed medications were rosuvastatin calcium (22%), atorvastatin calcium 

(24%), amlodipine besylate (19%), metformin hcl (16%), and hydrochlorothiazide (20%). 

6.3.2 Classification Results 

We evaluated all of the machine learning models using 10-fold cross-validation 

(Japkowicz and Shah, 2011). The cohort was divided into ten equal groups, where nine 

groups were used for training, and the tenth group was used for testing. We repeated this 

process ten times, using different parts for training and testing, and assessed the 

performance of the models for each fold. We then combined the results of these folds to 

calculate the evaluation scores. We measured the validity of the tests in terms of 

sensitivity and specificity. Sensitivity is the capacity of a test to classify an individual as 

“at-risk” correctly. It represents the probability of a test being positive when “AKI” is 

present. On the contrary, specificity refers to the ability to classify an individual as “risk- 

free” correctly. Since predicting AKI was a binary classification problem (i.e., AKI or 

Non-AKI), all of the machine learning techniques were capable of providing a confidence 

score along with the output. The trade-off between sensitivity and 1-specificity was 

achieved by altering the threshold on the confidence scores, generating the receiver 

operating characteristic (ROC) curve. We used the ROC space to compare the 

performances of alternative tests in terms of 1-specificity and sensitivity. Thus, we 

computed and reported sensitivity, specificity, and area under the receiver operating 
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characteristic curve (AUROC). The AUROC ranged from 0.61 to 0.88 for predicting AKI 

among 31 machine learning models. The average AUROC values of ensemble methods 

were higher than the cost-sensitive logistic regression model. Among the sampling-based 

ensemble methods, the performances of the UnderBagging and RUSBoost methods were 

better than the SMOTE. We achieved the best result of AUROC 0.88 with 1) a 

combination of RUSBoost and SVM using a sigmoid kernel and 2) XGBoost using a tree 

learning algorithm. The AUROC of the linear boosting algorithm (XGBoost) was 0.84, 

which was higher than the cost-sensitive logistic regression but lower than the tree 

learning algorithm (XGBoost). Since it is a disease prediction problem, high sensitivity 

was more useful than specificity. The highest sensitivity was 0.90, which was achieved 

using SVM-sigmoid and SVM-radial kernels with RUSBoost and SMOTE-Bagging, 

respectively. The complete list of performance measures is presented in Table 2. 

Table 6-11: Performances of the machine learning techniques grouped by four 

ensemble-based methods and results of XGBoost and cost-sensitive regression 

analysis. 

Ensemble-Based Methods Machine Learning Techniques Sensitivity Specificity AUROC 

NA Logistic Regression 0.79 0.72 0.77 

SMOTEBoost 

CART 0.77 0.69 0.74 

C5.0 0.84 0.78 0.83 

NB 0.61 0.89 0.75 

SVM (linear) 0.84 0.74 0.79 

SVM (polynomial) 0.78 0.82 0.81 

SVM (sigmoid) 0.76 0.85 0.84 

SVM (radial) 0.70 0.83 0.82 

SMOTE-Bagging 

CART 0.60 0.71 0.68 

C5.0 0.62 0.84 0.79 

NB 0.69 0.73 0.72 

SVM (linear) 0.76 0.84 0.81 

SVM (polynomial) 0.82 0.73 0.80 

SVM (sigmoid) 0.84 0.71 0.81 

SVM (radial) 0.90 0.74 0.86 

UnderBagging 

CART 0.71 0.83 0.79 

C5.0 0.88 0.76 0.85 

NB 0.58 0.72 0.61 

SVM (linear) 0.77 0.84 0.83 

SVM (polynomial) 0.85 0.71 0.84 

SVM (sigmoid) 0.89 0.71 0.85 

SVM (radial) 0.79 0.90 0.86 

RUSBoost 

CART 0.78 0.74 0.76 

C5.0 0.84 0.77 0.82 

NB 0.68 0.72 0.71 
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SVM (linear) 0.84 0.78 0.83 

SVM (polynomial) 0.74 0.85 0.82 

SVM (sigmoid) 0.90 0.79 0.88 

SVM (radial) 0.71 0.87 0.85 

XGBoost 
Tree boosting 0.89 0.81 0.88 

Linear boosting 0.86 0.77 0.84 

6.4 Discussion  

In this study, we demonstrated how machine learning techniques could help with the 

prediction of AKI using administrative health databases stored at ICES. Several machine 

learning-based models have been developed in recent studies to predict AKI among 

patients in ICU and post-operative (Abdullah et al., 2020c; Cheng et al., 2017; Davis et 

al., 2017; Gameiro et al., 2020; Ibrahim et al., 2019; Rashidi et al., 2020; Tran et al., 

2019). However, most of these models only focus on a specific medical condition and 

consider the risk factors associated with that condition. For instance, Go et al. (2010) 

examined how AKI affects the risk of chronic kidney disease, cardiovascular events, and 

other patient-related outcomes in hospital settings (Go et al., 2010). The earlier AKI can 

be predicted, the better the chances are to prevent AKI and its associated cost. The 

features that have been used in most of the existing studies work better in predicting AKI 

if their values are recorded closer to the timing of AKI onset. However, it may not be 

beneficial to detect AKI close to its onset because clinicians will not have enough time to 

intervene. Thus, there is a trade-off between accuracy and usefulness, which can be 

optimized using information available in EHRs. Although some studies have developed 

risk stratification models for AKI using EHRs (Kane-Gill et al., 2015; Matheny et al., 

2010), they can only predict hospital-acquired AKI and do not consider patients who are 

at risk of developing AKI after being discharged. To our best knowledge, there are no 

previous studies in the literature that predict the risk of AKI after being discharged from 

the hospital using both the historical and healthcare utilization data. Thus, this study is 

not only novel but also clinically relevant because it provides clinicians with the ability to 

intervene and treat patients before AKI cause irreversible damage.  

We analyzed all AKI events that took place within 90 days after being discharged from 

the hospital or emergency department and developed prediction models to identify high-
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risk patients. We decided to choose 90 days timeframe for following up because 1) out of 

all AKI cases within six months after discharge, about 85 percent were acquired within 

this timeframe; and 2) it was a reasonable timeframe considering the trade-off between 

the models’ usefulness (from a clinical point of view) and predictive power (from a 

machine learning point of view). Table 3 shows how many AKI acquired cases were 

identified within different time intervals. The machine learning models presented in this 

study can be adapted to make predictions at any other timeframes if needed. 

We incorporated eight different machine learning classifiers and three ensemble methods, 

and two sampling techniques to develop 31 prediction models. Although each 

combination of machine learning techniques and ensemble-based methods performed 

reasonably well, the performance of SVM with sigmoid kernel and tree-based XGBoost 

produced better results than other techniques in general. The performance of all of the 

ensemble-based methods were consistent and produced similar results for different base 

classifiers. The results shown in Table 2 indicate that the models agreed with each other. 

Table 6-12: The number of AKI cases are grouped into six time periods. 

Intervals Readmission with AKI 

1-3 days 415 

4-7 days 534 

8-14 days 888 

15-30 days 1517 

31-60 days 3579 

61-90 days 1499 

To understand the models better, we explored the features that are important in each 

prediction model. We analyzed this information with a nephrologist to confirm the 

correctness of the models. We observed the odds ratio and p-value of the features in the 

regression model, feature importance in decision tree and XGBoost models, and 

coefficients in the SVM-linear models to understand the association between different 

features and AKI. The features included in this study can be divided into four 

categories—namely, demographics, comorbidities, medications, and diagnosis codes.  
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In general, features from comorbidities and hospital diagnosis codes were more 

associated with AKI. Although the importance of the features varied based on the 

machine learning techniques, most of the features that stood out were common among 

these models. For instance, diabetes mellitus, hypertension, coronary artery disease, heart 

failure, major cancers, chronic liver disease, peripheral vascular disease, and chronic 

kidney disease were the comorbidity features that were important in most of the 

prediction models. These comorbid conditions are already known to be associated with 

AKI in the literature (Dylewska et al., 2019; Girman et al., 2012; Hsu and Hsu, 2016; 

Olsson et al., 2013; Rydén et al., 2014). The medication features that contributed to the 

higher risk of AKI include furosemide, allopurinol, hydrochlorothiazide, atorvastatin, 

metolazone, sunitinib malate, spironolactone, dexamethasone, chlorthalidone, atenolol, 

dexamethasone and oseltamivir phosphate. These medications are known to be 

nephrotoxic (Chao et al., 2015; Ho and Power, 2010; Perez-Ruiz, 2017; Pierson-

Marchandise et al., 2017; Verdoodt et al., 2018; Wu et al., 2014). Delirium, anaemia, 

mycoplasma, fluid disorders, atrial fibrillation, atherosclerotic cardiovascular disease, 

mycoplasma pneumoniae, hyperplasia of prostate, glomerular disorders, and valve 

disorders were the features belonging to the diagnosis codes that were associated with 

increasing the risk of AKI in the prediction models. Several studies in the literature 

associate these medical conditions with AKI (Carrara et al., 2017; Godin et al., 2013; Ng 

et al., 2016; Siew et al., 2017; Zaleska-Kociecka et al., 2019). Among the demographic 

features, age, sex, location (i.e., urban or rural residence), and long-term care were found 

to be associated with AKI in most of the prediction models. Similar to comorbidity, 

medication, and diagnosis code, these demographic features are already known to be 

associated with AKI (Evans et al., 2017; Neugarten and Golestaneh, 2018; Yokota et al., 

2018) in the literature, which more conclusively proves the correctness of the prediction 

models. Through a comprehensive analysis of ICES' healthcare administrative datasets, 

this study shows that AKI is predictable using EHRs. Successful implementation of these 

prediction models in a healthcare setting can potentially reduce the risk of AKI among 

older patients.  
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6.5 Limitations and Future Work 

The study should be evaluated with respect to several limitations. First, our models were 

trained and tested on a cohort of older patients (65 years or older), which limits the 

generalizability of the models. Second, we excluded patients with missing or invalid 

demographics information. This may affect the performance of the models if the 

excluded data includes any interesting or rare cases. Third, the models are based on a 

cohort containing Ontario patients only, which limits this study to a specific geographic 

location. Fourth, the proposed prediction models are trained and tested on a specific 

patient cohort. It is essential to test the models' performance with real-time medical data 

before applying them in a clinical setting. Fifth, since we developed 31 prediction 

models, and many of them have different mechanisms to identify feature importance, the 

interrelationships produced by these models are very complex. This study only identifies 

the most significant predictors but does not incorporate any rankling system for 

predictors. Finally, we identified the episode of AKI using ICD-10 codes, which may not 

include undetected cases in hospital settings. Moreover, since AKI was identified using 

the diagnosis code, this study does not consider the severity of AKI. Our future work 

concerns a deeper analysis of severe AKI that requires dialysis. 

6.6 Conclusion 

AKI is characterized by a sharp decline in renal function and associated with increased 

health-related costs and mortality. AKI is avoidable and may be preventable through an 

earlier prediction using risk factors available in EHRs. This study is designed to identify 

older patients who are discharged from the hospital or emergency department and at risk 

of developing AKI within 90 days after discharge. We employ eight traditional and state-

of-art machine learning classifiers along with two sampling techniques, and three 

ensemble methods to build AKI prediction models. The performances of these models 

were consistent, and a maximum AUROC of 0.88 was achieved through 10-fold cross-

validation. We analyzed the models with a healthcare expert and identified features that 

are most relevant in predicting AKI. Most of these features are already known to be AKI-
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associated, which proves the correctness and feasibility of the prediction models. This 

study predicts the risk of AKI for a patient after being discharged from the hospital or 

emergency department, which provides healthcare providers enough time to intervene, 

monitor them more carefully, and avoid prescribing nephrotoxic medications for such 

patients. 
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Chapter 7  

7 Conclusion 

This dissertation has discussed several aspects relating to the design of VA for EHRs. 

First, a systematic literature survey has been conducted to analyze the design and 

implementation of existing EHR-based systems. We then presented a framework to 

evaluate EHR-data-driven tasks and activities in the existing systems. The gaps that we 

identified during the analysis with the framework motivated us to design new EHR-based 

VA systems. Therefore, we designed and developed two novel VA systems—namely, 

VISA_M3R3 (VISual Analytics, VISA for Multiple Regression analyses and fRequent 

itemset Mining of electronic Medical Records, M3R3) and VALENCIA (Visual 

Analytics for Cluster Analysis and Dimension Reduction of High Dimensional Electronic 

Health Records). We also conducted two independent population-based retrospective 

cohort study to test the hypothesis and ideas generated from the VA systems. These 

systems and studies are designed to assist the healthcare researchers at the ICES-KDT 

program. We demonstrated the effectiveness of the proposed systems by investigating the 

process of analyzing the health administrative data housed at ICES to solve different 

AKI-related problems.  

This chapter, which serves as a conclusion of the dissertation, is divided into three 

sections: 1) a review of the chapters and some of their contributions, 2) general 

contribution of this dissertation to the scientific literature, and 3) some future research 

areas. 

7.1 Dissertation Summary 

In Chapter 2, we have presented a framework to examine EHR-data-driven activities and 

tasks in the context of interactive visualizations. Using a literature survey of 19 EHR-based 

existing systems, we demonstrated how different combinations of sub-tasks, tasks, and sub-

activities work together to help users achieve their overall goals in the system. The 

proposed framework can help 1) designers to conceptualize activities, sub-activities, tasks, 
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and sub-tasks of new systems, 2) researchers to understand the design concepts in a 

systematic way, and 3) evaluators to assess existing EHR-based interactive visualization 

systems.  

In Chapter 3, we described how VA systems could be designed systematically to support 

EHR-driven tasks and investigate complex clinical problems. We developed VISA_M3R3 

that integrates multiple statistical and machine learning techniques with interactive 

visualization to identify potentially nephrotoxic medications. VISA_M3R3 has shown to 

assist healthcare researchers in 1) comparing multiple logistic regression models, 2) 

understanding the relationships among predictors and response variable, 3) identifying 

frequent itemsets from items of interest, and 4) interpreting regression results. 

VISA_M3R3 can also be used to develop an alert system to raise physicians’ awareness of 

AKI-associated medications. This, in turn, will prompt healthcare providers to carry out 

additional clinical investigations on these high-risk medications.  

VISA_M3R3 only visualizes regression models of medication combinations but do not 

investigate how individual medications within combinations are affecting AKI. In Chapter 

4, we presented a population-based retrospective cohort to overcome this limitation and 

understand the synergistic effect of AKI-inducing medication combinations more 

comprehensively. Through an investigation of prescription records of one million adult 

patients stored in the ICES datasets, we identified 55 AKI-inducing medications among a 

total of 595 medications and 78 AKI-inducing medication combinations among a total of 

7,748 frequent medication groups. We also identified 37 cases where a medication is 

associated with increased risk of developing AKI when combined with another medication. 

Finally, we performed an electronic literature search and consulted with a nephrologist to 

verify the findings of this study. Although many of the medications and medication 

combinations that we detected are already known to be nephrotoxic, some of them have 

not been investigated before. This study will assist healthcare researchers in identifying 

candidates for future drug-safety studies. 
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In Chapter 5, we explained how VA systems could be designed to address the challenges 

of high-dimensional EHRs. We introduced VALENCIA that integrates a wide range of 

traditional and state-of-the-art analysis techniques with several interactive visualizations to 

provide a deeper understanding of the structure of data, results, control parameters, and 

analytical processes. We have demonstrated the utility of VALENCIA using a case study. 

Through a number of formative evaluations, we have found that VALENCIA assists 

healthcare providers in 1) exploring EHRs using different dimension reduction and 

clustering techniques, 2) identifying relationships among different features, 3) generating 

hypotheses, and 4) comparing results of different analysis techniques.  

We identified multiple risk factors of AKI while performing a cluster analysis of the ICES 

dataset using VALENCIA, which motivated us to design another study for predicting AKI. 

In Chapter 6, we employed a number of machine learning techniques to develop prediction 

models to identify patients who were at risk of developing AKI within 90 days after they 

were discharged from the emergency department or hospital. We included demographics, 

comorbid conditions, medications, and hospital diagnosis codes as predictor variables. A 

total of sixteen prediction models based on combinations of four machine learning 

techniques and four ensemble-based methods, along with a cost-sensitive logistic 

regression model, were developed for this study. The performances of these models were 

consistent, and we achieved an AUROC of 0.88 through ten-fold cross-validation.  

7.2 General Contributions 

As described in Chapter 1, the broad concern of this research surrounds the design of 

visual analytics for EHRs. Currently, there is a scarcity of research in this field, and 

therefore, we intended to bridge the gap through this work. This dissertation presents the 

design process of human- and activity-centered computational systems for healthcare. It 

is often challenging to fulfill the computational and cognitive demands of healthcare 

providers when designing such systems. This dissertation also describes how different 

EHR-related challenges can be addressed by combining statistical methods, data mining 

algorithms, machine learning techniques, and information visualization. It demonstrates 
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how VA systems can be designed systematically and how healthcare providers' 

capabilities to interact with machine learning processes can be improved by VA. In 

addition, this dissertation offers the healthcare domain with evidence of the effectiveness 

of VA for managing EHRs. This research has suggestions for other domains that require 

their data to be made accessible and analyzable through VA. 

Through a systematic survey in Chapter 2, this dissertation provides a detailed analysis of 

the EHR-data-driven tasks and activities supported by the existing interactive 

visualization systems, which was lacking in the literature. Moreover, the proposed 

activity and task analysis framework is helpful for the designer and evaluators of any 

EHR-based visualization system. This framework will lead to the development of best 

practices for designing related frameworks in other domains.  

Another contribution of this dissertation is the VA systems, VISA_M3R3 and 

VALENCIA, that are discussed in Chapters 3 and 5. To help us learn how healthcare 

providers perform real-world tasks, and to help us design and develop these systems, we 

adopted a participatory design approach. We performed formative evaluations at every 

step of the design and development process with the stakeholders at the ICES-KDT 

program. Through these evaluations, the healthcare experts found the systems useful and 

sophisticated. The systems would benefit not only healthcare researchers across the globe 

but also designers of EHR-based VA systems. These systems are also scalable and can be 

reconfigured to work with other forms of data.  

Other contributions emerge from the population-based studies presented in Chapters 4 

and 6. Chapter 4 presented an automated approach to identify AKI-associated medication 

and medication combinations. The drug-safety studies in clinical settings are usually 

costly and time-consuming. The proposed approach can help healthcare researchers to 

prepare a short list of suitable candidates for clinical studies, which not only saves money 

and time but also supports the identification of potentially unknown nephrotoxic 

medication combinations. In addition, the study in Chapter 6 demonstrates how machine 

learning can be used to predict AKI using EHRs. Most of the existing AKI prediction 
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models are designed for a specific medical condition and predict AKI close to its onset. 

To the best of our knowledge, Chapter 6 presents the first study that predicts the risk of 

AKI for patients who are discharged from the hospital or emergency department, which 

provides enough time for clinicians to intervene. 

7.3 Limitations and Future Work  

The systems and studies presented in this dissertation lay a foundation for the usefulness 

of VA tools in healthcare. Through the activity and task analysis framework, we 

identified that there are a limited number of interactive visualization systems that support 

higher-level activity, “predicting” and “monitoring.” The proposed systems are primarily 

designed to support “interpreting” and “predicting.” More research is needed to explore 

how EHR-based VA systems can be extended to support the activity, “monitoring.”  

This dissertation reports the development of two VA systems—namely, VISA_M3R3 

and VALENCIA. We described the data sources, input, output, stakeholders, interface, 

design criteria, levels of abstraction and different subsystems of these systems in 

Chapters 3 and 5. Although we included workflow diagrams to describe the systems' 

design, the architectures of these systems are not described thoroughly. The description 

was mainly focused on the conceptual challenges but did not consider the practical 

difficulties of these complex systems. For instance, we did not investigate how many 

users can be supported by the systems simultaneously or the systems’ capability of 

interacting with other systems. Since both VISA_M3R3 and VALENCIA were 

developed to process sensitive patient records in an access-restricted offline setting, it 

was not required to create web services or implement any adapter (i.e., software that 

connects two systems and reconciles the distinctions between them). 

Another limitation of these systems lies in their ability to increase their functionalities 

and capacity based on users’ demand. The description of these systems does not describe 

the challenges regarding scalability and extensibility. Scalability refers to methods that 

guarantee that the functionality and quality of a system are maintained as the number of 
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users goes up or the complexity of the data increases. On the other hand, extensibility 

refers to a system's ability to adapt to new interfaces, functionalities, data, and input. We 

employed multiple programming languages, platforms, and servers for developing these 

systems. The current VISA_M3R3 and VALENCIA systems were implemented using 

HTML, JavaScript library D3, standard PHP programming language, SAS, and R 

packages. The datasets were stored in the SAS server. R server was incorporated to 

perform all the underlying processing. Web server (PHP) was used to host the HTML 

files to maintain communication with the R server. Since different technologies are 

combined to develop these systems, it is easy to incorporate new analysis algorithms 

(e.g., using a new library or package in R), additional features in the interface (e.g., 

modifying D3 functions), and supplementary data (e.g., incorporating new datasets). 

However, we were not able to determine the scalability of these systems. Since we 

developed them in an access-restricted virtual machine, we did not get a chance to access 

the systems' scalability. We will evaluate these systems more comprehensively in the 

future. 

Although healthcare experts have evaluated VISA_M3R3 and VALENCIA during the 

design process and found it useful, we have not conducted formal studies to assess their 

performances, nor the efficiency of their human-information discourse mechanisms. 

Thus, additional studies can help ascertain the effectiveness of these systems for both 

expert and non-expert users. 

Both systems presented in this dissertation are implemented and tested using ICES-KDT 

datasets. Studies that assess the effectiveness of these systems with different datasets and 

settings will provide a better understanding of the efficacy of the systems. 
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Appendices 

Appendix A: List of databases held at ICES. 

Data Source Description Study Purpose 

Canadian Institute for Health 

Information Discharge 

Abstract Database and 
National Ambulatory Care 

Reporting System 

 

The Canadian Institute for Health Information Discharge Abstract 

Database and National Ambulatory Care Reporting System collect 

diagnostic and procedural variables for inpatient stays and ED visits, 
respectively. Diagnostic and inpatient procedural coding use the 10th 

version of the Canadian Modified International Classification of Disease 

system 10th Revision (after 2002). 

Cohort creation, 

description, exposure, 
and outcome 

estimation 

Ontario Drug Benefits 

The Ontario Drug Benefits database includes a wide range of outpatient 

prescription medications available to all Ontario citizens over the age of 

65. The error rate in the Ontario Drug Benefits database is less than 1%. 

Medication 

prescriptions, 

description, and 
exposure 

Registered Persons Database 

 

The Registered Persons Database captures demographic (sex, date of 

birth, postal code) and vital status information on all Ontario residents. 

Relative to the Canadian Institute for Health Information Discharge 
Abstract Database in-hospital death flag, the Registered Persons 

Database has a sensitivity of 94% and a positive predictive value of 

100%. 

Cohort creation, 

description, and 

exposure 

Ontario Health Insurance 

Plan 

The Ontario Health Insurance Plan database contains information on 

Ontario physician billing claims for medical services using fee and 

diagnosis codes outlined in the Ontario Health Insurance Plan Schedule 
of Benefits. These codes capture information on outpatient, inpatient, 

and laboratory services rendered to a patient. 

Cohort creation, 
stratification, 

description, exposure, 

and outcome 

Appendix B: Coding definitions for co-morbid conditions. 

Variable Database Code Set Code 

Major cancer 

Canadian Institute for 
Health Information 

Discharge Abstract 

Database 

International Classification of 
Diseases 9th Revision 

150, 154, 155, 157, 162, 174, 175, 185, 203, 

204, 205, 206, 207, 208, 2303, 2304, 2307, 

2330, 2312, 2334 

International Classification of 

Diseases 10th Revision 

971, 980, 982, 984, 985, 986, 987, 988, 989, 

990, 991, 993, C15, C18, C19, C20, C22, C25, 

C34, C50, C56, C61, C82, C83, C85, C91, C92, 
C93, C94, C95, D00, D010, D011, D012, D022, 

D075, D05 

Ontario Health Insurance 

Plan 
Diagnosis 

203, 204, 205, 206, 207, 208, 150, 154, 155, 

157, 162, 174, 175, 183, 185 

Chronic liver 
disease 

Canadian Institute for 

Health Information 
Discharge Abstract 

Database 

International Classification of 
Diseases 9th Revision 

4561, 4562, 070, 5722, 5723, 5724, 5728, 573, 

7824, V026, 571, 

2750, 2751, 7891, 7895 
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International Classification of 

Diseases 10th Revision 

B16, B17, B18, B19, I85, R17, R18, R160, 

R162, B942, Z225, E831, E830, K70, K713, 
K714, K715, K717, K721, K729, K73, K74, 

K753, K754, K758, K759, K76, K77 

Ontario Health Insurance 

Plan 

Diagnosis 571, 573, 070 

Fee code Z551, Z554 

Coronary artery 

disease 
(excluding 

angina) 

Canadian Institute for 

Health Information 

Discharge Abstract 
Database 

Canadian Classification of 
Diagnostic, Therapeutic and 

Surgical Procedures 

4801, 4802, 4803, 4804, 4805, 481, 482, 483 

Canadian Classification of 

Health Interventions 
1IJ50, 1IJ76 

International Classification of 

Diseases 9th Revision 
412, 410, 411 

International Classification of 
Diseases 10th Revision 

I21, I22, Z955, T822 

Ontario Health Insurance 
Plan 

 

Diagnosis 410, 412 

Fee code 

R741, R742, R743, G298, E646, E651, E652, 

E654, E655, Z434, 

Z448 

Diabetes 

 

Canadian Institute for 

Health Information 
Discharge Abstract 

Database 

International Classification of 

Diseases 9th Revision 
250 

International Classification of 
Diseases 10th Revision 

E10, E11, E13, E14 

Ontario Health Insurance 

Plan 

Diagnosis 250 

Fee code Q040, K029, K030, K045, K046 

Heart failure 

Canadian Institute for 

Health Information 
Discharge Abstract 

Database 

 

Canadian Classification of 

Diagnostic, Therapeutic and 

Surgical Procedures 

4961, 4962, 4963, 4964 

 

Canadian Classification of 

Health Interventions 

1HP53, 1HP55, 1HZ53GRFR, 1HZ53LAFR, 

1HZ53SYFR 

International Classification of 
Diseases 9th Revision 

I500, I501, I509, I255, J81 

International Classification of 

Diseases 10th Revision 
I21, I22, Z955, T822 

Ontario Health Insurance 
Plan 

Diagnosis 428 

Fee code R701, R702, Z429 

Hypertension 
Canadian Institute for 

Health Information 

International Classification of 

Diseases 9th Revision 
401, 402, 403, 404, 405 



222 

 

 

 

 

Discharge Abstract 

Database International Classification of 

Diseases 10th Revision 
I10, I11, I12, I13, I15 

Ontario Health Insurance 
Plan 

Diagnosis 401, 402, 403 

Kidney stones 

Canadian Institute for 

Health Information 
Discharge Abstract 

Database 

 

International Classification of 

Diseases 9th Revision 

5920, 5921, 5929, 5940, 5941, 5942, 5948, 

5949, 27411 

International Classification of 
Diseases 10th Revision 

N200 , N201 , N202 ,  N209 ,  N210 ,  N211 ,  
N218 ,  N219 , N220 , N228 

Peripheral 

vascular disease 

 

Canadian Institute for 

Health Information 

Discharge Abstract 
Database 

 

Canadian Classification of 

Diagnostic, Therapeutic and 

Surgical Procedures 

5125, 5129, 5014, 5016, 5018, 5028, 5038, 

5126, 5159 

Canadian Classification of 

Health Interventions 

1KA76, 1KA50, 1KE76, 1KG50, 1KG57, 
1KG76MI, 1KG87, 1IA87LA, 1IB87LA, 

1IC87LA, 1ID87LA, 1KA87LA, 1KE57 

International Classification of 
Diseases 9th Revision 

4402, 4408, 4409, 5571, 4439, 444 

International Classification of 

Diseases 10th Revision 
I700, I702, I708, I709, I731, I738, I739, K551 

Ontario Health Insurance 
Plan 

 

Fee code 

R787, R780, R797, R804, R809, R875, R815, 

R936, R783, R784, R785, E626, R814, R786, 

R937, R860, R861, R855, R856, R933, R934, 
R791, E672, R794, R813, R867, E649 

Cerebrovascular 

disease (stroke 

or transient 
ischemic attack) 

 

Canadian Institute for 

Health Information 

Discharge Abstract 
Database 

 

International Classification of 

Diseases 9th Revision 
430, 431, 432, 4340, 4341, 4349, 435, 436, 3623 

International Classification of 

Diseases 10th Revision 

I62, I630, I631, I632, I633, I634, I635, I638, 

I639, I64, H341, I600, I601, I602, I603, I604, 

I605, I606, I607, I609, I61, G450, G451, G452, 
G453, G458, G459, H340 

Chronic kidney 

disease 

Canadian Institute for 

Health Information 

Discharge Abstract 
Database 

 

International Classification of 

Diseases 9th Revision 

4030, 4031, 4039, 4040, 4041, 4049, 585, 586, 

5888, 5889, 2504 

International Classification of 

Diseases 10th Revision 

E102, E112, E132, E142, I12, I13, N08, N18, 

N19 

Ontario Health Insurance 
Plan 

Diagnosis 403, 585 

Appendix C: Diagnostic codes for exclusion criteria. 

Variable Database Code Set Code 

Dialysis 
Canadian Institute 

for Health 

Information 

Canadian 
Classification of 

Diagnostic, 

5127, 5142, 5143, 5195, 6698 
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Discharge Abstract 

Database 

Therapeutic and 

Surgical Procedures 

Canadian 
Classification of 

Health Interventions 

1PZ21, 1OT53DATS, 1OT53HATS, 1OT53LATS, 1SY55LAFT, 
7SC59QD, 1KY76, 1KG76MZXXA, 1KG76MZXXN, 1JM76NC, 

1JM76NCXXN 

International 
Classification of 

Diseases 9th Revision 

V451, V560, V568, 99673 

International 
Classification of 

Diseases 10th 

Revision 

T824, Y602, Y612, Y622, Y841, Z49, Z992 

Ontario Health 

Insurance Plan 
Fee code 

R850, G324, G336, G327, G862, G865, G099, R825, R826, R827, 
R833, R840, R841, R843, R848, R851, R946, R943, R944, R945, 

R941, R942, Z450, Z451, Z452, G864, R852, R853, R854, R885, 

G333, H540, H740, R849, G323, G325, G326, G860, G863, G866, 
G330, G331, G332, G861, G082, G083, G085, G090, G091, G092, 

G093, G094, G095, G096, G294, G295 

Kidney 

transplant 

Canadian Institute 
for Health 

Information 

Discharge Abstract 
Database 

Canadian 

Classification of 

Health Interventions 

1PC85 

Ontario Health 

Insurance Plan 
Fee code S435, S434 
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