
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-9-2020 2:30 PM

A Hybrid Approach to Procedural Dungeon Generation A Hybrid Approach to Procedural Dungeon Generation

Mathias Paul Babin, The University of Western Ontario

Supervisor: Dr. Michael Katchabaw, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Mathias Paul Babin 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Babin, Mathias Paul, "A Hybrid Approach to Procedural Dungeon Generation" (2020). Electronic Thesis and
Dissertation Repository. 7129.
https://ir.lib.uwo.ca/etd/7129

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F7129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F7129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7129?utm_source=ir.lib.uwo.ca%2Fetd%2F7129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
This thesis presents a novel approach to the Procedural Content Generation (PCG) of both

maze and dungeon environments. The solution we propose in this thesis borrows techniques
from both Procedural Content Generation via Machine Learning as well as Constructive PCG
methods. The approach we take involves decomposing the problem of level generation into a
series of stages which begins with the production of macro-level functional structures and ends
with micro-level aesthetic details; specifically, we train a Deep Convolutional Neural Network
to produce high-quality mazes, which in turn, are transformed into the rooms of larger dungeon
levels using a constructive algorithm. For our dungeon’s micro-level details, we use a context-
free grammar for the instantiation of interactable puzzle elements, and an n-gram model for
decorating our dungeon’s entrance rooms. This unique combination of methods successfully
generates a large number of visually impressive game levels without compromising on any
desirable PCG metrics such as speed, reliability, controllability, expressivity, or believability.

Keywords: Procedural Content Generation, Video Games, Machine Learning, Evolution-
ary Strategies, Context-Free Grammar, N-gram Model

i

Lay Summary
This work presents a method for generating video game maze and dungeon levels. We refer
to the production of any video game music, graphics, levels, or rules by a computer algorithm
as Procedural Content Generation (PCG). Many popular video games today rely on PCG in
order to lower development costs through a reduction in the number of artists and level design-
ers needed for projects as well as increase player satisfaction through vastly more substantial
replay value. In terms of the system presented in this work, we use a novel combination of
PCG methods found within academic literature such as machine learning models as well as
human-controllable algorithms inspired by games found in the commercial games industry.
The advantage to using a blend of various PCG strategies is that it allows us to carefully select
when and where each method is used in order to leverage their respective strengths while si-
multaneously circumventing their inherent weaknesses; In particular, our aim was to develop
a system which can ensure the playability of each newly created game level, as well as maxi-
mize how fast the generator can produce levels, how much control the developers have over the
generator’s final output, how many different levels the generator can produce, and how well the
final product can fool a player into believing that it was designed by a fellow human as opposed
to a computer. A system which possesses all of these desirable traits is extremely important
if we wish to have commercial game developers adopt the approaches we are providing, as
they are the ones driving the video game industries’ ever-increasing relevance. We view this
work as a step towards expanding the possible set of practical methods both game developers
and PCG practitioners have at their disposal by demonstrating a novel PCG system which is
capable of generating a nearly infinite number of distinct 3D game levels.

ii

Contents

Certificate of Examination i

Abstract i

Lay Summary ii

List of Figures vi

List of Tables ix

List of Appendices x

List of Acronyms xi

1 Introduction 1
1.1 Procedural Content Generation in Video Games 1
1.2 Desirable Properties of a PCG System . 2
1.3 Problem Statement . 3
1.4 Motivations of our Approach . 4
1.5 Contributions . 6
1.6 Remaining Chapters . 7

2 Related Works 8
2.1 Stage 1 - PCG via Machine Learning . 8

2.1.1 Dungeons via Bayes Nets . 8
2.1.2 Generative Adversarial Networks . 9

2.2 Stage 2 - Constructive Approach to PCG . 10
2.2.1 Spelunky . 10
2.2.2 Deadcells . 11
2.2.3 Minecraft . 11
2.2.4 Wave Function Collapse . 12

2.3 Stage 3 - Level Generation through Grammars 13
2.3.1 Context-Free Grammars . 14
2.3.2 Grammatical Evolution . 14
2.3.3 Grammars for Puzzle Generation . 14

2.4 Stage 4 – Markov Models in PCGML . 15
2.4.1 Markov Chains . 15

iii

2.4.2 The N-Gram Model . 15

3 Proposed Solution 17
3.1 Maze and Dungeon Overview . 17

3.1.1 Mazes . 17
3.1.2 Dungeons . 18

Hallways . 18
Puzzle Rooms and Chambers . 19
Entrances . 20
Puzzle Floors and Subfloors . 20

3.2 Example Game Description . 21
3.2.1 Gameplay Objectives and Mechanics 21
3.2.2 Solving Puzzles . 22
3.2.3 Battling Enemies . 23

3.3 PCG Approaches to Mazes and Dungeons . 24
3.3.1 Stage 1 - DCNN for Maze Generation 25
3.3.2 Stage 2 - Constructive Algorithm for Dungeon Generation 26
3.3.3 Stage 3 - Context-Free Puzzle Grammars 26
3.3.4 Stage 4 - Markov Models for Dungeon Decoration 28

3.4 Desirable Properties in our Solution . 29
3.4.1 Speed . 29
3.4.2 Reliability . 30
3.4.3 Controllability . 31
3.4.4 Expressivity . 32
3.4.5 Creativity/Believability . 32

4 Methods and Implementation 33
4.1 Stage 1 – Maze Production . 33
4.2 Stage 2 – Dungeon Production . 36
4.3 Stage 3 – Puzzle Production . 39
4.4 Stage 4 – Decorative Pass . 41

5 Results and Evaluation 44
5.1 Exploration of Latent Space . 44
5.2 Expressive Range . 45

5.2.1 Expressive Range of Stage 1 Mazes 45
5.2.2 Expressive Range of Stage 2 Dungeons 46

5.3 Evaluation of the Stage 3 Grammar . 47
5.4 Evaluation of Stage 4 N-grams . 47
5.5 Analysis of our System’s Desirable Properties 49

5.5.1 Speed . 49
5.5.2 Reliability . 50
5.5.3 Controllability . 50
5.5.4 Expressivity . 51
5.5.5 Creativity/Believability . 51

iv

6 Concluding Remarks 52
6.1 Conclusion . 52
6.2 Contributions . 52
6.3 Future Works . 53

Bibliography 56

A Supplemental Material 59

B Dungeon Elements 61

Curriculum Vitae 63

v

List of Figures

1.1 An overview of the four-stage approach to dungeon generation presented in
this work. 5

2.1 A side-by-side comparison of this work’s dungeon environments and [18]’s
infinite city environments. 13

3.1 Three example mazes generated using our Stage 1 DCNN. 17
3.2 An example hallway with corresponding start/orb/exit tiles from their source

maze template. The Hallway Padding p of this room is 0. 18
3.3 An example puzzle room containing two puzzle chambers associated with the

orb, and exit tiles of the source maze as depicted by the 4x5 rectangular rooms. 19
3.4 A example entrance room with no adjoining hallways or puzzle rooms. 20
3.5 A dungeon featuring two stacked puzzle rooms, both on the west side of the

entrance room. The pair of right-most images present a profile shot of the
dungeon, where the top image is rendered with walls, and the bottom without. . 21

3.6 The player starting in the entrance room of a newly generated dungeon. 22
3.7 The player in front of each of our game’s lift types: Normal, Enemy, Lock/Key,

and Plate. Additional figures examining our game’s lifts and locking mecha-
nisms are provided in B.1, and B.2 of Appendix B. 23

3.8 The player engaging our game’s three enemy types: Tower, Shield Tower, and
a basic Cube enemy. An additional figure examining our game’s enemy types
is provided in B.3 of Appendix B. 24

3.9 A reproduction of Figure 1.1 from Chapter 1: An overview of the four-stage
approach to dungeon generation presented in this work. 24

3.10 A puzzle represented by the string “(b)p[k]r”. Weight b, key k, and reward r
are contained in puzzle chambers 1, 2, and 3 respectively. Pressure plate p is
combined with weight b to unlock Chamber 2, and key k is combined with the
lock on Chamber 3’s lift. 26

3.11 Four examples of the decorative elements placed in Stage 4 of our solution:
pillars, rubble, carpets, and chandeliers; only pillars, rubble, and carpets are
placed directly by Stage 4’s Markov model, chandeliers are simply placed di-
rectly above carpets. 28

3.12 An example of how a horizontal slice w3 is chosen based on the previous slices
w1, and w2 using the conditional probability P(w3 |w1,w2). Rubble tiles R are
highlighted in yellow; pillar tiles P, red; carpet tiles N, blue; while floor tiles F
remain unhighlighted. 29

vi

3.13 Example mazes generated using the same control graph, with Hallway Padding
value p at value of 0, 1, 2, and 5 (from left to right). 31

4.1 The network architecture used for producing mazes. 33
4.2 A modification of the scenario presented in [28] where an agent’s goal is to first

search the maze for an orb tile (2) before navigating to an alter/exit tile (3). . . . 34
4.3 Two example solution paths with vectors indicating the direction of the agent’s

path. Non-linearity is measured by the sum of the angles between these vectors. 35
4.4 Training results from left to right report the average reward of all five network

variants, the average non-linearity (labelled as Avg. Linearity) of each variant,
and the average solution length of each variant. 36

4.5 The three graphs used during the evaluation of this system. Graph a is referred
to as the small control graph, b as medium, and c as large. 37

4.6 Example levels built using each of our three control graphs using a seed of
0. Dungeon builts using the small graph take approximately 15 to 20 minutes
to complete; medium dungeons, approximately 20 to 30 minutes; and large
dungeons, approximately 30 to 40 minutes. 37

4.7 The process for building a dungeon using medium control graph B. The graph is
traversed using a depth-first scheme, with rooms labelled using a concatenation
of the edges followed to reach its respective node. For example, following edge
A leads to hallway room A, then edge B to maze room AB. 38

4.8 The profile of a dungeon rendered without walls to display the contents of the
two floors and subfloors. 39

4.9 The production rules used to generate the dungeon’s puzzles. The phase that
each rule belongs to is marked with a coloured indicator, and a legend for
the terminal symbols’ corresponding in-game objects is provided. Generation
begins with nonterminal symbol ”S” and progresses with nonterminals ”M”,
”Mw”, and ”Mk”, where superscripts ”w” and ”k” stand for weights and keys
respectively. Finally puzzles end with nonterminals ”A” and ”B”, where the
items needed to unlock the lifts of puzzle chambers ”B” are provided in ”A”. . 39

4.10 An example dungeon demonstrating puzzles from all three phases of produc-
tion. Puzzle Room 1 uses the puzzle string ”()(m)(r)”, Puzzle Room 2 uses
”(k)(eo)(er)”, and Puzzle Room 3 uses ”()bp[teo]pp[sr]”. A numbered solution
through the entire dungeon is provided. 40

4.11 Example of entrance data used for the training of Stage 4’s n-gram model.
Indicated in the colors of yellow, red, and blue are the hand-decorated elements
representing rubble, pillar, and carpet/chandelier tiles respectively. 41

4.12 An example level generated using a trigram model, with a slice length L of 6.
Decorative elements placed by this model are indicated using the same color
scheme as Figure 4.11: yellow for rubble, red for pillars, and blue for carpets. . 42

5.1 Example mazes obtained by interpolating between two randomly selected points
in latent space. The mazes on either end of the diagram are those produced by
our Stage 1 DCNN at each of these points. Purple tiles represent the floor;
yellow tiles, pits; and green tiles, walls. 44

vii

5.2 The heatmap generated for the linearity vs. solution length gathered from 1000
mazes produced by our Stage 1 generator. 45

5.3 Heatmaps generated for the surface area, solution length, and spread from
dungeons produced using our small, medium, and large control graphs; each
producing 1000 levels. Surface area counts the number of floor tiles in the
dungeon, solution length sums the length of the optimal solution path of each
hallway and maze room, and spread reports the surface area of the smallest
rectangle which can encapsulate the entirety of the dungeon. 46

5.4 A dungeon decorated using a trigram trained with slices of length L ranging
from 1 to 6. 48

5.5 A dungeon decorated with an L of 6, using a unigram, bigram, and trigram model. 48

A.1 A List of all start/orb/altar tile coordinates used for training the maze generator. 59

B.1 The 4 lift types featured in our example game: Normal, Lock/Key, Enemy, and
Plates. 61

B.2 The 4 interactable objects required to unlock a lift. A weight a can be combined
with pressure plate b, and likewise, key c can be combined with lock d. 61

B.3 The 3 enemies types in our game: 4x basic Cube enemies, Tower, and Shield
Tower. 62

B.4 The 3 reward types in our game: optional reward, map reward, powerup/upgrade
reward. 62

viii

List of Tables

5.1 The mean, min, max, and SD for the combined generation times of all four
stages of our solution using a small, medium, and large control graph. All
values are listed in seconds. 49

A.1 Solution Length, and Linearity measured for 1000 maze levels. 59
A.2 Surface Area, Spread, Solution Length measured for 1000 dungeon levels gen-

erated using a small control graph. 59
A.3 Surface Area, Spread, Solution Length measured for 1000 dungeon levels gen-

erated using a medium control graph. 60
A.4 Surface Area, Spread, Solution Length measured for 1000 dungeon levels gen-

erated using a large control graph. 60

ix

List of Appendices

Appendix A Supplemental Material . 59
Appendix B Dungeon Elements . 61

x

List of Acronyms

ANN Artificial Neural Network . 34

BFS Breadth-First Search . 34, 39

BFT Breadth-First Traversal . 37

BNF Backus-Naur Form . 14

BSP Binary-Space Partition . 5

CFG Context-Free Grammar . 13, 14, 26, 50, 51, 55

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy . 9

DCNN Deep Convolutional Neural Network . . . 2, 6, 9, 10, 13, 17, 26, 30, 31, 33, 36, 38, 44,
52–55

DFT Depth-First Traversal . 37, 38

ES Evolutionary Strategies . 2, 6, 25, 26, 33, 52, 53, 55

GAN Generative Adversarial Network 6, 9, 10, 25, 26, 31, 33, 44, 53, 54

GE Grammatical Evolution . 14

LoZ The Legend of Zelda . 6, 8, 11, 21, 25

ML Machine Learning . 1, 4, 6, 8, 33, 55

PCA Principal Component Analysis . 8, 9

PCG Procedural Content Generation . 1–8, 11, 13, 15, 29–32, 44, 51–53

PCGML PCG via Machine Learning 2, 4–8, 15, 16, 25, 29–31, 52, 53, 55

SD standard deviation . 45, 49

Slerp spherical linear interpolation . 44

SMB Super Mario Bros. 6, 8, 9, 14–16, 25, 28, 44, 55

WFC Wave Function Collapse . 12, 13, 54, 55

xi

Chapter 1

Introduction

Over the past several years, the influence of the electronic video game industry has experienced
unprecedented growth. In the United States alone, 65% of adults play video games, with 75%
of households reporting at least one gamer amongst them [1]. Based on global sales figures
[35], we can see that the interest in video games is a global phenomenon. As of 2019, the video
game industry generated over $120 billion in global revenue and is projected to reach over 200
billion by 2022. These figures have surpassed the combined revenue of both the film and music
industry as early as 2016. With an industry this large, it should come as no surprise that the
development of commercial video games has become highly competitive, leading both small-
and large-scale studios to search for methods that reduce development time and costs, while
simultaneously aiming to improve the game’s quality and overall player satisfaction. This has
led to the emergence of several new fields of research which focus on the improvement of
games and their development.

One of the most popular and well-publicized roles for video games in academic research
is to provide an environment for the study of AI models and methods. As a recent example,
significant advancements in Machine Learning (ML) have been made by researchers at OpenAI
and DeepMind training computer-based agents to play games such as DOTA 2 [37], and Go;
and while the importance of video games as applications for AI models and methods cannot
be overstated, it is equally important to recognize the value these methods can bring to the
development of the video games themselves. In this thesis, we will present how methods from
various disciplines of Computer Science can be used for the procedural generation of video
game dungeon environments, and as such, view this work as one which contributes to the
emerging field of Procedural Content Generation (PCG) in games.

1.1 Procedural Content Generation in Video Games

PCG refers to the generation of any game content, both functional and non-essential, through
an algorithm that requires limited to no human input [28]. It can be used to generate both
functional game content such as levels, rules, and interactable objects, as well as non-essential
elements such as music, textures, meshes, and narrative. The latter of these examples are con-
sidered to be “non-essential” as the removal of these elements from any popular game genre
would still render them as playable in some diminished capacity; however, removing of any of

1

2 Chapter 1. Introduction

the game’s functionally critical elements, such as the map or world, would compromise funda-
mental aspects of gameplay, thus leaving it in an unplayable state. In today’s commercial game
development, PCG is commonly used to lower development costs through a reduction in the
number of artists and level designers needed for a project as well as increase player satisfaction
through vastly more substantial replay value. Academic research in the field has contributed
solutions to many of these problems, but also explores how PCG can generate content which
adapts to the player’s behaviour [20]. This work will be contributing to the most common
form of PCG found in both academic research and modern commercial game development:
the generation of novel game environments. In particular, we will be presenting a multi-stage
approach to the procedural generation of both maze and dungeon environments. Our solution
draws inspiration from methods found in both PCG via Machine Learning (PCGML; [33]) as
well as constructive PCG [28], which are two fields that have garnered the attention of both
academic researchers and commercial game developers.

In the first of our four stages, we use a Deep Convolutional Neural Network (DCNN) to
produce a wide variety of simple mazes trained using Evolutionary Strategies (ES; [26]). ES
is an alternative to backpropagation for the training of deep neural networks and is found to be
useful when the problem involves non-differentiable elements in the network’s architecture or
loss function. We use this network to produce a corpus of simple maze levels, which in turn are
used for constructing more complex dungeon-like environments in the following three stages,
the first of which is an algorithm that builds these larger structures by chaining sections of these
mazes together, while the second is a generative grammar which is responsible for instantiating
simple puzzles within them. Finally, we populate a dungeon’s entrance with decorative objects
using a probabilistic model trained on a small corpus of hand-decorated levels. This model
was inspired by the n-gram probabilistic language model, which is often used to predict the
next word in a sentence; however, in this work, it is used to predict a sequence of characters
representing a horizontal strip of decorative tiles.

While it is common for a piece of PCG literature to only focus on one of these four ap-
proaches, we deliberately chose to explore a combination of methods in hopes of addressing
several of the PCG evaluation metrics outlined in [28]: speed, reliability, controllability, ex-
pressivity, and creativity. In our view, the most critical facet of our problem statement is the
requirement for our system to satisfy all of these metrics without compromise; moreover, we
believe that this is a difficult task to accomplish without making use of several techniques span-
ning the lexicon of PCG literature. The following sections of this chapter will introduce these
metrics as a precursor to the definition of our problem statement and the motivations behind
it; we will conclude this chapter with the novel contributions of this work as well as a brief
outline of the contents and structure of the thesis remaining.

1.2 Desirable Properties of a PCG System
Before specifying the exact problem we are attempting to solve with this work, we must first
have an understanding of the properties a procedural content generator can possess and how
these specific properties manifest themselves while defining most PCG problems. Consider
a scenario that calls for content to be generated during gameplay, at its core, this problem
is asking for a generator to possess the property of fast generation speeds as a fundamental

1.3. Problem Statement 3

aspect of its design. [28] outlines several desirable metrics that are used to evaluate procedural
generators which include:

• Speed, referring to how fast a generator can produce its content.

• Reliability, describing how consistently a generator can produce high-quality content.
When referring to the generation of game levels, high-quality content typically refers to
environments which are both beatable, and provide a sufficient level of challenge.

• Controllability, specifying how much control is allotted to an external algorithm or hu-
man designer over the resulting content. This quality is useful in systems that need to
adapt to the player’s behavior dynamically.

• Expressivity, describing the diversity of content produced by the generator.

• Creativity/Believability, referring to how well a generator’s content resembles that of a
human designer; this may refer to the placement of aesthetic elements as well as the
clever functional design of interactable gameplay elements such as puzzles.

As a clarification of language, when we refer to these metrics as a property, we are simply in-
dicating that a generator’s performance captures that specific metric sufficiently well. Most of
the contributions made to this field have tackled problems which allow for trade-offs between
these desirable properties to be made; for example, problems that focus on only maximizing
reliability and creativity will often lead to solutions which forgo speed as a consequence, often
relying on methods such as genetic algorithms to generate high-quality content at the cost of
long generation times. This trend of sacrificing one aspect of a generator’s performance in
order to maximize another’s is common amongst PCG research [28], and leads to some impor-
tant questions which must be answered during the formation of our problem statement, such as
which properties are best to try and capture in our solution? Is it possible for a procedural con-
tent generator not to make any concessions and simply possess all of these properties at once?
The most significant component of this work’s problem statement will involve outlining which
of these properties must be considered while designing our system as well as the motivations
behind why these properties must be captured for our solution to be deemed meaningful in
respect to existing PCG literature and commercial applications.

1.3 Problem Statement
The general problem being addressed in this work is the procedural level generation of dun-
geons and mazes; however, we are also undertaking the task of designing a PCG system which
possess all of the desirable attributes outlined in Section 1.2. This means in order to define the
entirety of this problem, we must not only state each of these properties as they pertain to both
our generator and its resulting levels but also the specific gameplay elements and structural
features that constitute the dungeon environments themselves. For the purposes of this thesis,
we will specify our dungeons as containing exactly one entrance room stemming into a series
of hallways and puzzle rooms which house a modest range of interactable elements including
keys, pressure plates, weights, and enemies. For these dungeons to be considered feasible,

4 Chapter 1. Introduction

there must be at least one valid solution that requires the navigation of all the rooms generated.

With this specification of a dungeon in mind, we state that the purpose of this work is to
present a solution to the problem of designing a modifiable procedural level generator
for the production of a diverse range of high-quality dungeon environments in an online
context.

In terms of PCG problems, the most ambitious aspect of this specific problem is the neces-
sity to capture all of the desirable properties we have discussed so far; specifically, the property
of speed will be necessary for delivering online content generation which, in the context of
PCG literature, does not refer to the production of content in a networked environment but
rather to content that is generated during gameplay. The desire for modifiability refers to the
controllability of the system; expressivity is captured in the need for a diverse range of content,
and both reliability and creativity in the high-quality dungeons which are expected from our
solution. We acknowledge the subjectivity of what it means for a generated artifact to be of
”high-quality”, so to both clarify the term as well as place it within the context of this work, we
consider any game level which displays an aesthetic consistency in its visual components along
with a reasonable degree of non-random construction amongst its interactable game elements
as high-quality; of course, any level which does not offer the player an opportunity to beat it
successfully, that is, it offers no valid solutions, is considered to be both infeasible and not of
sufficient quality.

1.4 Motivations of our Approach
The problem of generating game levels finds itself to be a popular subject amongst academic
researchers due to the breadth of valid solutions that span the many disciplines of Computer
Science. PCG methodologies can be classified into four major categories, including search-
based, solver-based, constructive, and PCGML methods [28, 33, 41]. These categories help
organize the wildly varying PCG solutions to the same general problem of procedurally gener-
ating game levels; however, what we also see from these different categories is their tendency
to display certain generative properties in lieu of others—the alleged trade-offs made between
the desirable properties of a generator. Generally speaking, search and solver-based methods
produce high-quality content at the expense of slow generation times due to their method of
production involving a search through content space for levels which maximize a fitness func-
tion in the case of search-based methods, or a set of rules and constraints in the case of solver-
based methods [28]. PCGML attempts to alleviate this issue by confining the optimization
process to a training phase, which by its end, yields a fully trained model that can instanta-
neously generate levels. The issue with the levels produced by these ML models is reliability,
as there is no guarantee that it is actually playable without performing an additional evaluation
phase.

The most apparent commonality shared by these three categories is their generate-and-test
approach to producing content which involves a two-step loop that first has the system produce
a set of candidate levels before assessing them via a quality measure such as a fitness or objec-
tive function; conversely, constructive PCG involves producing content within a fixed number

1.4. Motivations of our Approach 5

of steps while assuming that any generated artifact will be of sufficient quality. Techniques in
constructive PCG have a tendency to rely on highly controllable and predictable modes of gen-
eration such as generative grammars, or Binary-Space Partition (BSP) trees. A major drawback
to their mode of generation is their lack of flexibility. It is often the case that the constructive
method designed to generate levels for a specific game cannot be used for another; for example,
Chapter 3 of [28] describes how dungeons can be easily generated using a BSP tree, and while
this solution works well for dungeons, it is difficult to imagine how it might be used for any
other genre of game.

While academic contributions are still being made to all four of these major categories of
PCG, the commercial games industry almost only makes use of constructive PCG methods;
specifically, some of the most popular games, which feature procedurally generated levels, use
a nearly identical constructive method. The environments of Spelunky [22], Deadcells [23],
and the towns of Minecraft [24] are all comprised of many small human-authored templates
systematically placed by an algorithm. What makes this approach to level generation interest-
ing is that it does not suffer from the aforementioned lack of flexibility as almost any game
environment can be represented using a collection of pre-authored segments; however, the is-
sue that arises with the use of these templates is the mechanism for their authorship, which
in most cases, is a human designer. In general, the presence of any human-authored content
in the resulting artifacts of a generator goes against the purpose of using a PCG system in the
first place. This issue aside, an important observation is that this method successfully manages
to simultaneously possess all of the desirable qualities we are concerned with as generation
times are fast and reliable, content is believable and of high-quality, and a fair degree of con-
trollability can be achieved through the specific template-placing algorithm being used; in fact,
one would be hard-pressed to find many modern commercially-released video games which
features procedurally generated levels that do not attempt to capture all five of these quality
metrics. From this, we draw the conclusion that for any solution we present to the general
problem of procedurally generating video game levels to be acceptable within a real-world
application, we must strive to develop an approach which does not compromise on speed, re-
liability, controllability, expressivity, or creativity; furthermore, we are motivated to present a
solution which is not only feasible for commercial use but also broadens the scope of practi-
cal PCG approaches which finds itself circumscribed by that of constructive methods by also
integrating ideas from PCGML.

Figure 1.1: An overview of the four-stage approach to dungeon generation presented in this
work.

6 Chapter 1. Introduction

This ultimately leads us to the four-stage approach taken in this work, where a pair of
PCGML methods in Stages 1 and 4 bookend a pair of constructive methods in Stages 2 and
3. Figure 1.1 presents a diagram of the specific methods used in each stage, as well as the
content they responsible for generating. Stage 1 is responsible for generating small dataset of
maze environments using a DCNN. Stage 2 uses a constructive algorithm to build a high-level
dungeon topology using the mazes generated in Stage 1. Stage 3 uses a context-free grammar
to place puzzles in each of the dungeon’s maze rooms. Finally, Stage 4 uses an n-gram model
to place decorative elements in the dungeon’s entrance. In the later chapters of this thesis,
we will further explain how each stage of our solution complements the others such that any
inherent weakness in one is supplemented by the next.

1.5 Contributions
While we cite speed, reliability, controllability, expressivity, and creativity as being crucial to
the design of any commercially-viable procedural level generator, we find that many works
in modern PCG literature do not seem to concern themselves with this idea; instead, many
of these works experiment with the novel application of new models and methods presented
in other fields of Computer Science with the most recent example being the application of
Generative Adversarial Networks (GANs) as a means of procedural level generation [9, 33,
39]. In this thesis, we make use of [26]’s ES as the training method of choice for our Stage 1
maze generator. To our knowledge, there has been no other works in PCGML which has used
this optimization method in the training of their ML models, making this the first work to do so.
In Chapters 3, 4, and 5, we discuss how we successfully use this method to overcome most of
the issues experienced by GANs in the production of video game environments; in particular,
the use of this method allows us to involve game-playing agents directly in the training process
of our maze generator. This is important when we are attempting to solve what we view is
a major problem faced by many PCGML methods including GANs, which is their process of
extracting key structural features from sample environments without any consideration towards
the playability of the level itself.

The second contribution we believe our solution presents is a novel combination of con-
structive and PCGML methods. Constructive approaches are commonly used in commercial
game releases, while PCGML methods find themselves to be the primary focus of academic lit-
erature alone. As stated in the previous section, one of this work’s goals is to broaden the scope
of commercially viable PCG methods by demonstrating how the introduction of PCGML meth-
ods such as DCNNs and Markov models can enhance the generative algorithms used by these
successful game franchises. What we find is that these two approaches to content generation
complement each other well and ultimately produce what we consider to be very high-quality
dungeon environments.

In order to demonstrate this work’s novel approach to 3D dungeon generation, an applica-
tion was developed using the Unity game engine. While we acknowledge that it is customary
for most PCG works to present their approaches using a familiar game franchise such as Super
Mario Bros. (SMB; [21]), or The Legend of Zelda (LoZ; [29]), a minor goal of this application
was to test our solution on a more modern 3D environment; however, this is not to say that our
solution could not be applied to these classic examples. A definition for this work’s dungeon

1.6. Remaining Chapters 7

environments is provided in Chapter 3, with a detailed description of our example game in
Section 3.2.

1.6 Remaining Chapters
The purpose of this chapter was to introduce both the problem and solution being presented in
this thesis, as well as the motivations behind what makes our problem of procedurally gener-
ating game levels without compromising on speed, reliability, controllability, expressivity, or
creativity an interesting one to solve. This chapter also provided a brief overview of the impor-
tant concepts discussed in modern PCG literature, as well as the most common approach taken
to procedural level generation in commercial game titles. Chapter 2 will build on these con-
cepts by analyzing the related works found in both constructive and PCGML. The discussion
around these related works will frequently reference the five desirable PCG properties outlined
in this introduction, as will Chapter 3, which describes the specifics of our proposed solution
and hopefully justifies how each of its individual stages contributes to the success of the system
as a whole. Chapter 4 focuses on the implementation details of our system, including specifics
on the training process for both of our ML models in Stages 1 and 4, the details of our con-
structive algorithm in Stage 2, and the production rules which constitute the grammar being
used in Stage 3. Chapter 5 will present the methods we use to evaluate our generator, as well
as an analysis of the results. Finally, Chapter 6 summarizes the work presented in this thesis
and introduces some areas of future improvement.

Chapter 2

Related Works

This chapter contains a review of current PCG research as it pertains to the topics of construc-
tive and PCGML methods. Each of the subsections in this chapter represents one of the four
stages of our solution and will present the works which are most related to that particular stage,
including any background information necessary to understanding them. We will also discuss
any major differences between each of the related works and our own solution.

2.1 Stage 1 - PCG via Machine Learning
Traditionally, ML models have found great success training on large datasets of texts, images,
audio, and the like; however, issues arise for researchers trying to apply these models to video
game levels as no two games use an identical level representation. A survey of modern PCGML
methods is presented in [33], which outlines the most common map representations and train-
ing methods found in academic PCGML research. Of the games featured, Super Mario Bros.
(SMB) is by far the most popular due to the flexibility of its level representation. As a 2D Plat-
former, SMB has the player moving linearly from left to right, allowing its representation to
be easily interpreted as a graph, grid, or sequence; By contrast, Action-Adventure games such
as LoZ are often only interpreted as a grid. Because the topic of this thesis is the generation
of dungeon environments similar to those in LoZ, we will look for PCGML methods that lend
themselves to the production of levels using a grid representation.

2.1.1 Dungeons via Bayes Nets

In [34], a method for generating LoZ dungeons using Bayes Nets for the high-level topological
structure and Principal Component Analysis (PCA) for generating individual rooms is pre-
sented. The first portion of this work trained a Bayes Net on 38 levels comprised of 1031
rooms in order to learn the topological structure of these dungeons. The resulting network
learned a variety of high-level features such as the number of rooms in the dungeon or the
length of the optimal solution path, as well as low-level features such as room types and door
types. A common issue encountered by all PCGML methods, which was addressed in this
work, is reliability. In this case, the topology produced by the Bayes Net may infrequently
produce levels that do not provide a valid solution due to missing critical room types or objects

8

2.1. Stage 1 - PCG viaMachine Learning 9

such as keys. The authors resolve this issue by looping through all of the non-critical rooms in
the dungeon and replacing the one with the highest log-likelihood of being the missing room
type. With the high-level structure in place, individual rooms are constructed by simply inter-
polating between two rooms of the desired type found in the training set. To help decide which
two rooms should be chosen, PCA was used to reduce the feature set of a room by a factor of
6, from 120 down to a weight vector of 20, followed by a k-means clustering step to ensure
the two rooms selected are already remotely similar. Once again, there is no guarantee that
a room generated in this manner will be playable, so another evaluation pass is performed on
each of these rooms such that any critical objects such as keys are not blocked from the player.
Should any room be deemed unplayable, it is simply discarded, and a new room is generated
and re-evaluated in its place.

2.1.2 Generative Adversarial Networks
Both [39] and [9] make use of GANs in order to produce levels for SMB and Doom [11] respec-
tively. GANs have become a popular machine learning approach for generating photorealistic
images [14, 19, 25] and function using two DCNNs: A Generator, which produces content, and
a Discriminator, which classifies whether a sample was produced by the Generator or belongs
to a dataset of real examples. Typically, the Generator will accept Gaussian noise as input,
and through a series of fractionally-strided convolutional layers, it will produce an image of
the same dimensionality as those found in the training dataset. The training process of a GAN
involves the Generator network passing the samples it produces to the Discriminator network
for evaluation, and once received, the Discriminator’s role is to determine if the sample is real
or fake. The aim of the Discriminator is to minimize the number of misclassifications it makes,
and contrary to this, the Generator’s goal is to gradually learn how to produce samples which
maximizes the Discriminator’s number of misclassifications. By the end of the training pro-
cess, the discriminator network is often discarded, and the Generator network should be able
to produce novel content that resembles those found in the original dataset.

In the instance of [39], a GAN was trained to produce levels for SMB using a training set
consisting of 173 images gathered from sliding a 28x14 window left across a single level of the
game one tile at a time. The cropped dimensions of the output images from the Generator were
10x28x14, where 28x14 matches the width and height of the window ran across the original
level, and 10 represents the number of tile types that can be found in a level. In order to interpret
this output as a SMB level, the authors take a one-hot encoding for each of the tile positions,
ultimately yielding a map of size 28x14. Like [34], there is no guarantee that any of the levels
produced by the network will be playable, and to resolve this issue, an A* agent provided by
the Mario AI competition framework [13], evaluates the level for both playability and difficulty.
Finally, a Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is used to search for
the latent vectors of levels that either maximize or minimize agent-centric performance metrics
such as the number of jumps performed as well as some static level properties such as the
number of ground tiles present.

Like [39], [9] makes use of GANs to produce levels for Doom. The training set used for
this work consisted of 1000 levels in WAD format, which store topological data such as the
position of floor tiles and the vertexes/connecting vectors which constitute walls. These files
were processed into six grayscale images used for training the Discriminator: a FloorMap,

10 Chapter 2. RelatedWorks

WallMap, HeightMap, ThingsMap, TriggerMap, and RoomMap. The unique aspect of this
work’s approach involves training and comparing two GANs: an unconditional GAN which
receives a vector of Gaussian noise as input, and a conditional GAN whose Generator receives
a vector of features extracted from the training set as input. For feature selection, the authors
choose features that correlated well visually with their respective levels, and were not going to
be heavily influenced by noise generated by the network, ultimately settling on seven features:
equivalent diameter, major axis length, minor axis length, solidarity, number of rooms, and two
wall distance skewness metrics. The results for both networks show a high degree of structural
detail in the image maps produced, yet no results are shown as to how these maps would be
recompiled into WAD files and rendered in-game. Due to the noisiness of the resulting image
maps, one would expect levels with missing geometry in the floors and walls to be frequent;
moreover, unlike [39] and [34], there is no mention of how this unreliability problem could be
addressed.

The three works discussed in this subsection are most closely related to the first stage of our
solution which uses a DCNN to produce simple maze environments using a grid representation;
in fact, our network architecture is most similar to the Generator network found in [39], and
like this work, we too produce 3D images which are reduced to 2D maps by taking a one-
hot encoding at each tile position of our grid. Where our solution differs the most from these
three works is our approach to training. We train our network using a weighted sum of various
structural properties of the maze’s design and update the network’s parameters using an ES.
This approach means that we do not need a dataset of pre-existing maze levels in order to train
our generator. This becomes especially important when working in the domain of producing
video game content as other mediums such as text or images have massive datasets made
available to them, datasets for video game levels are not only rare but also game-specific.

2.2 Stage 2 - Constructive Approach to PCG
Spelunky, Deadcells, and Minecraft are three well-known commercially released games which
feature procedurally generated levels. The constructive method used by all four of these games
is remarkably similar, as each of them simply connects a series of human-authored level tem-
plates together in order to form larger topological structures. The only major difference in their
strategies is in the mechanisms which inform the algorithm on what template should be chosen.

2.2.1 Spelunky
Spelunky is a 2D action platformer developed by Mossmouth. In a 2013 blog post [16], the
level generation algorithm used for each of Spelunky’s levels was revealed. Generation is split
into two phases: a macro-level phase which outlines the placement of specific room types and
the player’s expected solution path through the level, and a micro-level phase which populates
each room with traps, treasures, enemies, and the like. Generation begins by populating a 4x4
grid with rooms belonging to one of four types. Each room type is defined by the location of
entrances/exits along its outer walls, which will connect it to the other rooms on the grid. The
algorithm follows a series of constraints to place rooms such that there is always a solution
path through the level. These rooms and constraints are defined as:

2.2. Stage 2 - Constructive Approach to PCG 11

• Room 0: Does not have any guaranteed exits; it will not occur on the solution path.

• Room 1: Guaranteed to contain both a left and a right exit.

• Room 2: Guaranteed to contain a left, right, and bottom exit. It will also contain a top
exit if another type 2 room is placed on top of it.

• Room 3: Guaranteed to contain a left, right, and top exit.

With these room types specified, generation begins in the top row of the grid and randomly
works its way to the bottom row, making sure to only place room types that align with the
entrances and exits of those already placed. By this point, a complete solution path must
exist through all of the rooms, and the algorithm can move on to its final step of macro-level
construction, in which all unfilled positions on the grid are populated with non-critical rooms of
type 0. Next, the micro-level construction of each room is accomplished by randomly choosing
from a template depending on the room type; each of these templates contains both static and
random elements. Each room is represented as an 8x10 grid and values can be represented
by either static elements such as ladders or random ones represented by the probability that
certain tile will appear: for example, a “1” for 100% percent chance a block will appear, or
“2” meaning only a 50% chance. There is also a chance that a template may contain Obstacle
tiles, which instantiate a 5x3 predefined structure the player will need to navigate in order to
progress.

2.2.2 Deadcells
Deadcells is a Roguelike-Metroidvania developed by Motion Twin which handles its level gen-
eration in a very similar way to Spelunky, with the only major difference being in how its room
templates are selected. Instead of Spelunky’s approach to choosing room templates based on
a set of rules and constraints, Deadcells uses a graph unique to each level which informs the
PCG algorithm which room styles it should instantiate, what objects a room should contain,
and how each of these rooms should be connected. This is a similar approach to [34] which
first learned the high-level topological structure to LoZ dungeons, then on a lower-level, at-
tempted to generate new rooms by interpolating between two human-authored examples; The
only difference is that the developers of this game felt it was sufficient to explicitly declare
their level topologies using a graph, then supplied a massive corpus of predesigned room tem-
plates which are stochastically placed without any alterations made to their interiors. The only
other difference between this approach and Spelunky’s is the shape and dimension of each of
the room templates the algorithm can choose from. Spelunky’s rooms are all rectangular and
placed on a 4x4 grid, while Deadcells’ can be any irregular polygon and placed based solely
on the previous piece’s exit location. This could potentially lead to a substantial number of
conflicts, which according to [2], is resolved simply by exhaustively searching the corpus of
room templates until one does not conflict with the rest of the map.

2.2.3 Minecraft
Minecraft is an open-world sandbox game that is famous for procedurally generating its entire
world. Generation begins by constructing the world’s base-layer geometry using 3D Perlin

12 Chapter 2. RelatedWorks

noise. The next step is to add a network of caves to the world using a naive path-walking algo-
rithm which simply tunnels in random directions, occasionally placing special rooms along its
path. In the final stage of generation, the algorithm places all of the map’s resources, foliage,
and villages. Resources and foliage are placed randomly based on a predefined distribution
set for each biome type, while villages are constructed using a scheme we have already seen
in Deadcells’. Like the room templates in Deadcells, Minecraft uses a collection of precon-
structed buildings and roads which pertain stylistically to the biome in which the town will be
built; but unlike the graph used in Deadcells, Minecraft uses a simple generative grammar [30]
to capture the familiar structure of a village with the following production rules:

• Town Center −→ Street
• Street −→ Street
• Street −→ House
• Street −→ Decoration
• House −→ Animals
• House −→ Villager

This grammar uses a Town Center as its starting symbol with Streets and Houses as non-
terminals, and Decoration, Animals, and Villagers as terminals. The production rules of this
grammar not only controls how the village is structured but also ensures there is an appropriate
assignment of Villagers and Animals to Houses. One may notice that this grammar is capable
of producing infinitely large towns by recursively calling its Street −→ Street production rule;
however, developers have addressed this issue by halting generation once a specific village
depth has been reached, which in this case, measures how many pieces beyond the Town Center
have been placed.

2.2.4 Wave Function Collapse
The Final constructive method we would like to acknowledge is a constraint satisfaction al-
gorithm called Wave Function Collapse (WFC). [15] describes WFC as “an example driven
image generation algorithm recently developed by gamedeveloper Maxim Gumin”. Unlike
any of the constructive algorithms we have examined thus far, WFC learns a set of constraints
from a sample image, and uses them to construct similar images of any size. What makes this
algorithm so exciting is its flexibility in representation, as applications range from 2D images
to full 3D game environments. A recent example of this algorithm’s use in a commercially
released title can be seen in the game Bad North [3].

The WFC algorithm begins by scanning a sample gameworld such that for each game object
encountered, a list of all possible neighbouring objects in each direction is recorded. This list
will inform the algorithm on what objects are allowed to be placed next to one another. Next,
for each position in either a 2D or 3D grid, the algorithm will attempt to select the object
that not only adheres to the constraints of its neighbours, but is also the most likely to appear
based on what it has observed in the original sample. The process of choosing a specific
object at a given position is called collapsing, as the number of possible objects that could have
been placed is collapsed down into only a single option. Once a position in the grid has been
collapsed, the algorithm performs a constraint propagation step where the possible objects in all

2.3. Stage 3 - Level Generation through Grammars 13

neighbouring positions of the recently collapsed object are reduced down to only those which
conform with the current state of the grid. This step functions much like a Sudoku puzzle,
as once a number as been written onto the grid—it has been collapsed—all of the vertical
and horizontal grid positions that intersect with it can not longer possibly be that number—
you have propagated the constraint. This process of collapsing grid positions and propagating
constraints continues until all positions have been collapsed or until a conflict occurs. Should
the algorithm encounter a position where no object satisfies all neighbouring constraints, i.e.
there is a conflict, one has to decide whether to backtrack to a point in the algorithm where
there were no conflicts, or simply restart and try generation from the beginning.

Figure 2.1: A side-by-side comparison of this work’s dungeon environments and [18]’s infinite
city environments.

While the generative algorithm used in the second stage of our solution does not use WFC,
we include it as a topic of discussion because of the striking similarities between our dungeons
and the infinite city levels produced using the WFC algorithm in [18]. Figure 2.1 provides a
side-by-side comparison of one of our dungeons versus a city from [18]. From these images,
some immediate structural similarities between our levels are apparent, more so than any other
example we have or will discuss in this work.

And while our dungeons appear to have come from an algorithm like WFC, our actual
mode of generation bears a more heavy resemblance to the system used in Deadcells, as we
too make use of graphs to instruct our algorithm on the types of rooms and connections that
should be placed. The only difference in this work is the source of the room templates being
placed by the algorithm. In Spelunky, Deadcells, and Minecraft, large databases of content are
provided by human artists, while in this work, content is being provided by the DCNN in Stage
1; This means instead of only a finite set of templates, our approach has the potential to access
the full distribution of maze levels the network is capable of producing.

2.3 Stage 3 - Level Generation through Grammars
Another interesting approach to constructive level generation involves the use of generative
grammars. The works of [27] and [36] both use grammars for the production of 2D Platformer
levels. Both of these works use Context-Free Grammar (CFG) whose production rules consist
of a combination of terminal and non-terminal symbols. For a CFG, these production rules
must contain exactly one non-terminal on the left-hand side and any number of terminals and
non-terminals on the right. Assuming we begin with a starting non-terminal symbol, strings
can be formed by following the grammar’s production rules for replacing non-terminals until
none remain. This process yields a string of terminals symbols which, in the context of PCG,

14 Chapter 2. RelatedWorks

can be interpreted as a 2D Platformer level by mapping predesigned level chunks to each of
them.

2.3.1 Context-Free Grammars
Sure Footing [8] is a 2D Platformer which uses this approach to generate infinitely long lev-
els. [36] outlines the details of this game’s CFG, as well as the predesigned pieces placed by the
system. This works novel contribution comes from a cost penalty assigned to each piece based
on the difficulty designers felt the player would experience when encountering it. This cost
parameter allows for control over how level generation will unfold as each piece placed by the
grammar would consume a finite budget assigned for the level. This system allows gameplay
to dynamically adjust to the skill of the player by simply modulating the budget to spike the
difficulty of a level if a player is progressing too easily. Unlike the work presented in [27], each
of this system’s predesigned level chunks can be placed independently of others, meaning that
there are no concerns towards the playability of any sequence generated by the grammar.

2.3.2 Grammatical Evolution
[27] presents an approach to the procedural level generation of SMB levels using Grammatical
Evolution (GE). In this work, a CFG in Backus-Naur Form (BNF) is used by the GE evolve
levels which are both playable and aesthetically pleasing. In this grammar, non-terminals re-
quire a set of integers specifying the object’s x and y position as well as height h, or width w
if necessary. The process of generating a level using GE involves producing a variable-length
vector of integers and mapping it to a set of production rules from the grammar in a syntacti-
cally correct manner. The fitness function used to evaluate these levels is the weighted sum of
the difference between the number of chunks placed by the system and a target threshold by
the authors, minus the number of conflicting chunks found in the level. The authors’ claim that
their levels can ensure playability by restricting the height and width of specific platforms and
gaps such that the player will always be able to navigate them.

2.3.3 Grammars for Puzzle Generation
In the third stage of our solution, we use a CFG for the production of puzzles. This differs
greatly from these two works as their focus was on the generation of an entire level, while
ours is only concerned with one small facet; this said, the motivation for using a grammar for
puzzles is much the same as that of a 2D Platformer as both are solved by the player performing
a specific sequence actions. In our case, we define our grammar’s production rules such that
puzzle elements will be dispersed amongst multiple rooms which must be visited in a specific
order to have the items necessary to progress further.

Finally, we would like to briefly acknowledge [17], which presents an extensive survey of
procedurally generated puzzles. Of the 32 works surveyed, only 4 appear to use a grammar-
based systems [5, 6, 7, 38]. Of these works, [6] presents a system for procedurally generating
quests for Massively-Multiplayer Online Role-Playing Games (MMO-RPGs) using a CFG. A
majority of this paper was spent analyzing the domain specifics of MMO-based questing, with
the resulting solution being a CFG in BNF. An interesting consideration made in this work is

2.4. Stage 4 – MarkovModels in PCGML 15

the selection of production rules based on the state of the game such that the quest and the
reward that the players receive is consistent with the scenario in which it is being presented.
Ultimately, our own Stage 3 puzzle generation system takes a very similar approach to this, as
it too includes a system for selecting production rules such that puzzles reflect the state of our
player and the abilities they have at their disposal.

2.4 Stage 4 – Markov Models in PCGML
The final PCGML method discussed in this work is the generation of content through Markov
models. Like their namesake, Markov models assume the Markov property wherein future
states of a system depend only on their current state and not those which came before it. This
property is used to define Markov chains, a system where the probability of transitioning from
one state to another depends only on the current state. Markov models have found to be useful
in probabilistic language modeling for word prediction and sentence generation. An n-gram
is an n-token sequence of words used to provide additional context to these predictive models
and can be viewed as a Markov model of order n-1, while others will refer to them as examples
of Markov chains [12]. In the context of PCG, both [4] and [32] make use of Markov models
for the production of SMB levels. Like generative grammars, Markov models lend themselves
well to the production of sequential content, making an excellent fit for 2D Platformers.

2.4.1 Markov Chains
[32]’s approach to generating levels for SMB makes use of 2D Markov chains to construct the
level in rows, starting in either the top-left or bottom-left corner. Their model learns several
3x3 dependency matrices where the bottom right-hand corner is always the tile being generated,
and a combination of neighboring tiles are used for context. The authors of this work decided
to train a total of six dependency matrices, each requiring less context than the one before
it. During generation, the system will attempt to use the most contextually sensitive matrix
possible until it reaches an unknown state; should this occur, the system can fall back to a
simpler matrix which hopefully has learned a probability distribution for transitioning out of
that state. As we have seen with other PCGML methods, reliability is a concern. Using the
same A* agent as [39], 25 levels were evaluated, with only 56% of them being playable in the
best case; and while the author’s do claim issues with the agent’s inability to complete some
beatable levels, we can still draw the conclusion that this method cannot guarantee playability.

2.4.2 The N-Gram Model
The authors of [4], have decided to also generate levels for SMB, but have opted to use an
n-gram model instead of a 2D Markov chain. For training, 15 levels from the original game are
processed into a series of one tile wide vertical slices which the system uses for learning n-slice
long sequences; that is, it obtains the unigram, bigram, and trigram counts of these slices, and
uses them for the production of new SMB levels. The core idea behind generating a level using
the n-gram model is that given n previous slices, the Markov property allows them to obtain
probabilities for generating each of the next possible slices in the sequence. With this model,

16 Chapter 2. RelatedWorks

the size of n dictates how much context is used for determining which slice should be chosen;
for example, if n is equal to 1, the system will place slices completely at random. What we
should see is an increase in the size of n correlates to an increase in reliability, but a decrease
in expressivity as the system will increasingly produce levels that resemble significant portions
of those found in the training corpus. For this work, the authors decided on constructing levels
with values of n at 1, 2, and 3. Results for trigram-based generation show a remarkable amount
of aesthetic consistency and playability. This is likely due to the fact that the early levels in the
original SMB this method trained on are extremely simple and likely do not need more than
3 slices of content in order to navigate, thus guaranteeing playable levels in this specific case.
In general, we suspect that this method’s reliability could not be maintained for more complex
level structures, and like all of the other PCGML methods we have discussed, it would require
a separate evaluation phase in order to judge level playability.

The final stage of our solution has an n-gram model similar to [4]. The only difference
being, we use our model to place decorative objects in a pre-existing level as opposed to gen-
erating a brand new level from scratch. We train our model using horizontal slices gathered
from a small training corpus of hand-decorated entrance rooms, then using a trigram model,
place stylistic elements in any level our system generates in the future. By choosing to only
place decorative elements, we can effectively ignore any of the reliability issues typically en-
countered by these models.

Chapter 3

Proposed Solution

The purpose of this work is to provide a solution for the problem of designing a modifiable
procedural level generator which is capable of producing a diverse range of high-quality dun-
geon environments in an online context. In Chapter 1, we stated several desirable properties
we wish our level generator to possess, including speed, reliability, controllability, expressivity,
and creativity. The goal of this chapter is to provide the rationale behind the choices made in
each step of our proposed solution’s design, saving many of its implementation details for the
next chapter. Since this work will not be generating levels for a familiar game franchise, we
will first describe the environments we will be generating in detail as a precursor to the more
technical elements of our approach.

3.1 Maze and Dungeon Overview
As it is not obvious, this work views dungeons and mazes as two distinct structures. This
section will clarify these two terms as well as provide a high-level overview of the dungeon
environments presented in our example game.

3.1.1 Mazes

Figure 3.1: Three example mazes generated using our Stage 1 DCNN.

When discussing mazes, we are simply referring to the 2D tile grids produced by the DCNN
in the first stage of our solution. These mazes are later processed in Stages 2 and 3 where they

17

18 Chapter 3. Proposed Solution

are used as individual room templates in the construction of our larger dungeon structures.
Figure 3.1 provides examples of three such mazes, with a further explanation on how these are
generated in Subsection 3.3.1, and the technical aspects of their design presented in Section
4.1 of Chapter 4. And while we will not go into the details of how these mazes are designed
now, we will discuss how one should navigate them as this is an important concept necessary to
understanding how they are utilized when constructing our larger dungeons in Stages 2 and 3.
In each of Figure 3.1’s mazes, we see a start, orb, and exit tile, and we consider a valid solution
to these mazes as one where the player begins on the start tile, navigates to the orb tile, then
finally works their way towards the exit tile. During the construction of our dungeons, we will
make use of these three critical tiles as well as the solution path which connects them.

3.1.2 Dungeons
We refer to a dungeon as the high-level structure being navigated by the players of our game.
Unlike mazes, they make use of a 3D grid representation, and are composed of several smaller
rooms including entrances, hallways, and puzzle rooms. Stage 2 of our solution is responsible
for interpreting the mazes generated in Stage 1 as certain rooms and populating our dungeon
such that they are spread across two main floors. Stage 3 further expands our dungeons by
generating additional puzzle chambers that can be found on separate subfloors. The following
will describe each of these room types in detail as well as provide a thorough explanation on
how a dungeon’s floors are defined and populated.

Hallways

Figure 3.2: An example hallway with corresponding start/orb/exit tiles from their source maze
template. The Hallway Padding p of this room is 0.

Hallways are meant to serve as connectors between the dungeon’s entrance and puzzle
rooms. They are constructed by simply rendering the solution path of a given source maze,
resulting in a considerably linear structure; however, one may wish for a more complex room
which more closely resembles that of the original maze, in which case, we provide access to
a parameter we refer to as Hallway Padding. This value renders an additional p neighboring
floor tiles away from each one on the solution path. This means for a value of p at 1, only the
direct neighbors of each tile on the solution path will be additionally rendered, whereas a p
of 16 would render the entire maze (assuming a source maze of size 16x16). This additional

3.1. Maze and Dungeon Overview 19

rendering will only run until it is one tile away from conflicting with other preexisting rooms
before halting. An example of this Hallway Padding parameter p at various values can be seen
later in Figure 3.13 when we discuss the advantages of including this parameter in our system.

Aside from acting as connectors, hallways can support access to additional hallways and
puzzle rooms, providing branching pathways through our dungeons. When deciding where
a room should connect to a hallway, we will look to place them in the direction of the most
available space according to the layout of the current floor’s grid; that is to say, hallways do
not lead to higher floors of the dungeon, and only produce access points that face north, south,
east, and west.

In Figure 3.2 we see an example of a hallway room with a Hallway Padding p of 0, meaning
that only the solution path of the source maze is being rendered as indicated by the linear route
of grey floor tiles connecting the start, orb, and exit tiles. The right-most image shows how
this hallway is connected to the first floor of the dungeon’s entrance.

Puzzle Rooms and Chambers

Figure 3.3: An example puzzle room containing two puzzle chambers associated with the orb,
and exit tiles of the source maze as depicted by the 4x5 rectangular rooms.

Unlike hallways, puzzle rooms represent the entirety of the source mazes produced in Stage
1. These are the only rooms in the dungeon which contain interactable elements such as puz-
zles, enemies, and rewards that are held in at most three separate puzzle chambers and whose
entrances correspond to the start, orb, and exit tiles of their source maze. As previously stated,
puzzle rooms occupy the dungeon’s main floors while puzzle chambers are found in subfloors
either above or below them. In Figure 3.3, we see an example of a puzzle room containing two
rectangular puzzle chambers: the first above the orb tile, and the second above the exit tile.
And while it is not seen in this example, it is possible to have a third puzzle chamber placed
above the start tile as well, but in this case, the third stage of our system generated a puzzle
which only requires two chambers.

The right-most image of this figure depicts the exit tile puzzle chamber which is shown to
be a large rectangular room containing a single reward for the player. For this application, we
arbitrarily limit these chambers to a size of 4x5 as to not have them overlap with one another
should their entrance tiles be placed too close together. We acknowledge that generating small
rectangular rooms is a simplistic approach to the problem of constructing these chambers,
however for the purposes of housing a small set of interactable objects, a simple solution such
as this does suffice.

20 Chapter 3. Proposed Solution

The final difference between these puzzle rooms and those of entrances and hallways, is
the number of possible rooms that they can be connected to is limited to one: they must be
at the end of a hallway or entrance room. Once again, this decision only impacts our specific
scenario, and is not a restriction of the methods we are proposing. It would certainly be possible
to implement these structures to support multiple entrance and exits points just has hallways
do, but from a game design perspective, we view the role of a hallway as that which connects
several rooms together, and having puzzle rooms possibly serve the same function as hallways
would diminish their usefulness and identity within our game.

Entrances

Figure 3.4: A example entrance room with no adjoining hallways or puzzle rooms.

A dungeon’s entrance room serves as a starting location for the player, providing access to
the dungeon’s two main floors via a central staircase. In our game, we limit a dungeon to only
have a single entrance room which all other rooms (hallways, and puzzles) are connected; they
are also the only rooms that do not require a source maze in order to be generated, instead,
we construct our entrances by simply rendering a rectangle of odd width and height such that
there is a guaranteed centre line that the staircase object can be placed on. This can be seen
in the right-most image of Figure 3.4. Once this first level is instantiated, we render a balcony
which covers the entire north-edge of the room and runs a random length down both the west
and east-edges as seen in the overhead view of the example in Figure 3.4.

In our example game, we choose to construct all of our entrance rooms on the first floor
of the dungeon, with its staircase acting as the only point of access to the dungeon’s second
floor, and from here, we can connect a single room to the west and east-edges of each level,
for a total of four possible connections. Like many of the decisions made when designing our
dungeons, this could be revised to support any number of rooms, but as an initial proof of
concept, we view four rooms spread across two floors sufficiently demonstrates the capabilities
of our solution.

Puzzle Floors and Subfloors

During the prior introduction of our dungeons’ rooms types we briefly alluded to how they are
placed on various floors and subfloors. We will now conclude this section by clarifying the
difference between floors and subfloors, and examine how they are spatially organized within
our dungeons.

3.2. Example Game Description 21

Figure 3.5: A dungeon featuring two stacked puzzle rooms, both on the west side of the en-
trance room. The pair of right-most images present a profile shot of the dungeon, where the
top image is rendered with walls, and the bottom without.

Figure 3.5 provides an example dungeon featuring two puzzle rooms stacked on-top of one
another, both connected to the west-edge of the entrance room. In this diagram, we see that
floor tiles have been coloured to represented their respective floor or subfloor number: puzzle
chambers on Subfloor 0 (red) are associated with the puzzle room on Floor 1 (Purple), and
puzzle chambers on Subfloor 3 (green) are associated with the puzzle room on Floor 2 (blue).
As a general rule, the dungeon’s entrance will always be placed on the dungeon’s first floor,
and its balcony will always be on the second floor. Rooms such as hallways, and puzzle rooms
can be placed on either of these two main floors. This leaves subfloors above (Subfloor 3), and
below (Subfloor 0) for puzzles chambers. Whenever a puzzle room requires that a chamber
be placed, it simply places it below itself if it is on the first floor, or above itself if it is on the
second floor. From Figure 3.5, we can see how these floors and subfloors are organized by
looking at the two profile shots of the dungeon.

Our motivation for using subfloors to house these puzzle chambers is twofold: the first
reason was to introduce large spaces into our dungeons without compromising the layout of
the source mazes used to generate their parent rooms. An additional benefit to isolating these
chambers on different levels from their parents is the control we gain over when the player
can access them. This feature is especially important when we are designing puzzles with
sequential solutions; a topic we will discuss in-depth in the following section which focuses on
the player’s goals and possible interactions with our example game.

3.2 Example Game Description
This section outlines the goals, rules, and major mechanics of our example game. Here, we
will be presenting both the major components and interactions within our game, as well as an
exhaustive list of all of our game’s interactable elements.

3.2.1 Gameplay Objectives and Mechanics
The inspiration for our example game’s dungeons draws heavily from the LoZ franchise. As
in these games, our dungeons contain enemies to combat, puzzles to solve, and treasures to
collect. In order to successfully complete our dungeons, players will have to follow a pattern

22 Chapter 3. Proposed Solution

Figure 3.6: The player starting in the entrance room of a newly generated dungeon.

of exploring rooms in search of helpful items, solve puzzles, defeat enemies that impede their
progress, and collect upgrades that allow them to interact with new sections of the dungeon.
Depending on the length of the dungeon, the player may be engaged in a loop of this pattern
for several iterations until no puzzle remains unsolved, at which point, most action-adventure
style games would force the player to confront a final boss before collecting their ultimate
prize; unfortunately, we have omitted any form of a boss chamber within our own game as its
inclusion would only serve as a redundant application of our Stage 2 constructive algorithm’s
ability to place rooms such as the hallways and puzzle rooms we have already discussed.

As seen in Figure 3.6, when a player first begins one of our dungeons, they will be placed
at the front of the dungeon’s sole entrance room with the option to enter any of its adjoining
hallways or puzzle rooms. The player’s goal at this point is to explore the dungeon until they
encounter a puzzle which they are equipped to solve; should the player lack the necessary
upgrades to solve this room’s puzzle completely, they will be forced to continue exploring
until they encounter a puzzle which can be solved in their current state. Players initially start
with no abilities, but can obtain two upgrades throughout their exploration of the dungeon:
shoot, and magnet. The shoot powerup allows the player to combat enemies, while the magnet
powerup allows the player to push and pull metallic objects such as weights. Players obtain
these upgrades with each puzzle they solve, giving them the ability to progress further into the
dungeon until they reach their final reward at the end of the last puzzle. We intentionally leave
this final reward undefined as this item would presumably be critical to the game’s narrative as
one being searched for in the protagonist’s overarching quest, in which our game has none.

3.2.2 Solving Puzzles

In Section 3.1, we discussed how our game’s puzzles are relegated to puzzle rooms, and how
many of their interactable elements are stored within separate puzzle chambers. Because we
wish for the solution to these puzzles to be sequential, we restrict access to some of these
chambers until others have been completed first. In essence, our puzzles simply require the
player to access all of a puzzle room’s chambers in a specific order. To accomplish this, we
define a set of special elevator tiles we will refer to as lifts, most of which are inaccessible
without the possession of special items such as keys, or weights which the player must find in
earlier chambers. Once a lift is activated, it will carry the player to its accompanying puzzle
chamber on either Subfloor 0 or 3 depending on the floor number of its parent puzzle room—

3.2. Example Game Description 23

Figure 3.7: The player in front of each of our game’s lift types: Normal, Enemy, Lock/Key,
and Plate. Additional figures examining our game’s lifts and locking mechanisms are provided
in B.1, and B.2 of Appendix B.

either 1 or 2 respectively. In image a of Figure 3.7, we see the player standing in front of a
chamber whose lift has no locking mechanism; we refer to this style of lift as a normal lift,
and because these do not have any items or upgrades in order to use them, we typically reserve
their use for the beginning of a puzzle when the player should not yet have any powerups in
their possession.

Unlike normal lifts, lock/key, plate, and enemy lifts possess a locking mechanism which
must be opened before they can be used. The lift depicted in image c of 3.7 requires the player
to obtain a key from a previous chamber in order to remove its lock. Keys can be collected
regardles of the player’s state, i.e., their collection is not predicated on whether or not the
player has obtained any form of upgrade, while the lifts shown in images b, and d do require
upgrades in order to interact with the objects necessary to unlock them. First in b, enemy
lifts require the player to destroy all of the enemies guarding it before it will be activated;
the ability to fight these enemies requires the shoot upgrade and as a consequence, puzzles
involving these lifts cannot be solved until the player has discovered this powerup as a reward
at the end of a different puzzle room. Likewise, in d we see a plate lift, which requires the
player to drag weighted metal spheres onto pressure plates using the magnet upgrade before it
will be activated.

3.2.3 Battling Enemies
Battling enemies is a common feature is most action-adventure games. In our game, we include
three enemy types: Tower, Shield Tower, and a basic Cube enemy. The player can only combat
these enemies once they have obtained the shoot upgrade, at which time, they will be able to
lock onto enemies and shoot at them using small orange projectiles. In image c of Figure 3.8,
we see the player engaging a Cube enemy. The orange circle encompassing this enemy serves
as a visual indication that it being targeted by the player for attack. This style of enemy is used
to guard chambers, and as previously discussed, can be destroyed in order to unlock a certain
style of lift.

24 Chapter 3. Proposed Solution

Figure 3.8: The player engaging our game’s three enemy types: Tower, Shield Tower, and a
basic Cube enemy. An additional figure examining our game’s enemy types is provided in B.3
of Appendix B.

The remaining two enemy types are Towers and Shield Towers as seen in images a and
b of Figure 3.8 respectively. Tower enemies shoot a laser from an eye that tracks the players
movement. Upon destroying a Tower, the player is rewarded with weight object which can
be moved using the magnet upgrade. A variation of the Tower enemy is the Shield Tower
enemy, which features a protective barrier that makes it invulnerable to attack, and as such,
cannot be destroyed in order to obtain a weight. We include this additional enemy type simply
as a means of injecting some variety into our pool of potential enemies, and from a design
perspective, this enemy serves as a persistent obstacle the player must be careful to avoid due
to its indestructibility.

3.3 PCG Approaches to Mazes and Dungeons

Figure 3.9: A reproduction of Figure 1.1 from Chapter 1: An overview of the four-stage ap-
proach to dungeon generation presented in this work.

With our example gameplay scenario outlined, we now provide the conceptual details of
how we plan to generate our dungeons, reserving its technical details for Chapter 4. We provide
a reproduction of Figure 1.1 from Chapter 1 in Figure 3.9 to serve as a visual aid during the
discussion of our four-stage approach.

3.3. PCG Approaches toMazes and Dungeons 25

3.3.1 Stage 1 - DCNN for Maze Generation

While a majority of our related works discussed the generation of 2D Platformers, specifically
SMB, we saw in the production of LoZ dungeons, how dungeon levels could be represented
using a grid [34]; furthermore, we saw how GANs are a popular choice for the production of
any game level which uses this representation, making them a logical starting point for the gen-
eration of our environments. Most PCGML methods excel at quickly producing a wide-variety
of high-quality content, yet struggle with properties such as reliability, and controllability. We
have already seen an excellent example of controllability in [36] which presented an approach
to dynamically controlling the difficulty of 2D Platformer levels by assigning a cost penalty to
the pieces being placed by a generative grammar. Luckily, GANs can also address this issue
of controllability by mapping their output to points in latent space. We saw in [39] how an
ES was used to search latent space for levels which maximized a certain criteria set by the
authors, and in theory, one could use this same approach to gather a set of latent vectors which
produce levels with any number of properties we wish to reproduce during gameplay. This can
be accomplished by either interpolating between two latent vectors such that their individual
properties are mixed together or by adding a small amount of Gaussian noise to a single vector
in order to obtain a random level with properties similar to the original. The solution in this
work does not take this approach, instead, leaving it as an area of future improvement.

The approach taken in this work saves randomly generated mazes along with their optimal
solution paths into a finite dataset. As we will discuss shortly, this decision was originally
made to help the runtime of our Stage 2 constructive algorithm; however, it also comes with
the consequence of hampering the expressivity of the maze generator in this stage as we are
now only storing a finite set of mazes instead of having direct access to its entire distribution.
This trade-off between expressivity and speed extends into the decision of how many mazes
should be stored in our dataset. A large number of samples would yield greater expressivity
at the cost of longer execution times, and conversely, a smaller dataset would produce faster
runtimes with less variation in the types of levels being produced. Ultimately, we choose to use
an extremely small dataset of only 16 sample mazes as we choose to prioritize short generation
speeds over a wider range of content. Fortunately, results presented in Chapter 5 show even
with an extremely small amount of maze templates, the expressive range [31] of the entire
system is remarkably high.

The last important aspect of our maze generator is how we train it. All of the PCGML
methods examined in this work learn level representation from an existing dataset; however,
we have discussed in Chapter 2 how these datasets are both rare and game-specific, and from
an industry perspective, hiring level designers to create a corpus of levels for the purpose
of training a level generator is a mostly redundant exercise. Now, turning our attention to
the process of training a GAN, we find that the discriminator is evaluating these levels as
if they are images, looking at whether or not one resembles those found in the training set.
While this approach could prove logical for evaluating a level’s aesthetic properties, but in
regards to its structural features, it would be more useful if the discriminator could assess the
level by actually playing it. In order to accomplish this, we would likely need to replace the
discriminator’s objective function with one that involves a gameplaying agent. The problem
with this theorized approach is that many of its elements may be non-differentiable, a major
problem if we are planning to train the network using backpropagation. From this, we arrive

26 Chapter 3. Proposed Solution

at a solution wherein we abandon the notions of both a training dataset and a discriminator
network (and thus the training process of GANs entirely), instead opting for an ES as a means
of network optimization. Originally presented in [26], ES is an optimization method that
can train a network’s parameters using a fitness function regardless of whether or not it is
differentiable, making it the training method of choice for our maze generator.

3.3.2 Stage 2 - Constructive Algorithm for Dungeon Generation
With our method for generating our mazes in place, we can now discuss possible approaches
to expanding these rooms into larger dungeon structures. In Chapter 2, we discussed how our
second stage of generation was heavily influenced by the one used in Deadcells, in that we use
a graph-informed algorithm to connect a series of pre-authored room templates together. At
the time, we also mentioned that the only significant difference in these approaches was the
room templates sources; Deadcells used human-designed rooms, while ours are generated by
the DCNN in Stage 1. We argued in that chapter as well as this one that our approach has
the advantage of direct access to the full distribution of mazes produced by this generator, and
while this is true, we also alluded to the fact that storing a finite set of levels may actually
be beneficial for this stage of generation. Once again, the motivation for this decision stems
from the desire to maintain reliability. Our logic is as follows, given that each graph has
atleast one valid configuration of rooms, a finite set of rooms can be exhaustively searched in
a fixed amount of time such that, in the worst case, the only map generated by that specific
graph is its one valid configuration; however, issues arise when we substitute the finite set
for an unknown distribution of rooms from our DCNN, as we can no longer guarantee that a
valid combination of random mazes will yield a valid solution within a fixed number of steps;
in other words, performing an exhaustive search across a finite set is much easier than over
the entire distribution of a DCNN’s output. With all of this considered, we trust that there are
satisfactory solutions to this issue, and will discuss this topic further in the future improvements
subsection of Chapter 6.

3.3.3 Stage 3 - Context-Free Puzzle Grammars

Figure 3.10: A puzzle represented by the string “(b)p[k]r”. Weight b, key k, and reward r
are contained in puzzle chambers 1, 2, and 3 respectively. Pressure plate p is combined with
weight b to unlock Chamber 2, and key k is combined with the lock on Chamber 3’s lift.

For the generation of our interactable puzzle elements, we choose to use a CFG due to their
flexibility and reliability. Given only a small number of production rules, grammars allow for

3.3. PCG Approaches toMazes and Dungeons 27

the formation of a relatively large range of puzzles. For our game, we use a grammar comprised
of 20 production rules which is capable of generating 99 unique puzzle strings—a complete
list of these rules is provided in Chapter 4, Section 4.3. In general, we limit our puzzles to a
maximum of three steps, with each interactable puzzle element isolated to its own unlockable
chamber. As discussed in Section 3.1 of this chapter, this limitation of having a maximum of 3
puzzle chambers per puzzle room is a result of an implementation detail to align each of them
with the start, orb, and exit tiles of their respective source maze; however, it is important to
recognize that this a self-imposed limitation of our specific scenario and not a consequence of
using a grammar, as a different set of production rules could be capable of producing puzzles
of any length.

Figure 3.10 provides an example of a puzzle represented by the string “(b)p[k]r”. This
string describes a puzzle with a unique three step solution: First, the player starts by finding an
unlocked chamber which contains a movable weight “b” as described by the substring “(b)”.
Next, “p[k]” describes a pressure plate “p” which unlocks a chamber containing a key “k”
using the weight from step 1. Finally, the player unlocks the last chamber “r” using their re-
cently obtained key from step 2 and receiving their reward “r” for this segment of the dungeon.
As shown through this example, we denote interactable objects such as keys, weights, and
pressure plates using lowercase terminal symbols and use well-formed parathesis to signify
the beginning and end of a chamber as well as its locking mechanism. In general, we wrote
all of our production rules such that any puzzle string generated would follow no more than
four replacements. This means that all of our rules are simply variations of the same generic
template:

• S −→ a(t)S’
• S’ −→ b(B)c(C)
• B −→ t
• C −→ t

Here, terminals “a”, “b”, and “c” represent objects that are bound to their respective cham-
ber’s locking mechanism, such as pressure plates or enemy guards. We use “t” to denote any
set of objects that can be obtained within a chamber, including weights, keys, or treasures.

Although [17] presented many possible approaches to procedural puzzle generation, only a
hand-full were stated to be useful in an online context, and amongst these works, the amount of
time taken for their systems to arrive at a solution appears questionable by this work’s standards
for an online generator. For example, [40] presents an approach involving the use of a genetic
algorithm to generate puzzle levels for a game called KGoldRunner [10] and states that their
solution can “find a dynamically solvable level in a matter of seconds [. . .], and a good level
can be found in a few minutes.” For this work, we will only consider online generation times
as those who are no longer than several seconds as any more time than this would begin to
negatively impact the player’s experience. We choose to use a context-free grammar for this
portion of our work because it is a fast, reliable, and controllable method of generating puzzles.
We can guarantee speed and reliability due to the fixed number of replacements in our generic
four-step production rule template, and achieve a reasonable degree of controllability through
grouping our rules based on the player’s state. In this game, the player has access to two major
abilities: shoot, which can damage enemies, and magnet, which can push and pull magnetic

28 Chapter 3. Proposed Solution

objects such as weights. By simply restricting which production rules can be chosen during
generation, we can guarantee that the solution to our puzzles will only require power-ups that
the player already has access to.

3.3.4 Stage 4 - Markov Models for Dungeon Decoration

Figure 3.11: Four examples of the decorative elements placed in Stage 4 of our solution: pillars,
rubble, carpets, and chandeliers; only pillars, rubble, and carpets are placed directly by Stage
4’s Markov model, chandeliers are simply placed directly above carpets.

The final stage of our solution uses a 3
rd

-order Markov model to generate decorative ele-
ments for our dungeon entrance rooms. We chose to only decorate entrances as these rooms
will provide the player with their first impressions of our levels. The model presented in this
section could certainly be extended to other rooms of the dungeon and will be a topic of future
improvement. The model we use in this stage could be viewed as a trigram model trained
on horizontal slices of hand-decorated entrances in a method similar to [4]. In order for this
model to not impact level playability, we only allow it to place objects which do not impact the
player’s navigation of the level, such as pillars, rubble, carpets, and chandeliers. Figure 3.11
provides examples of each of these objects. Objects such as pillars and rubble are designed
such that they do not take up an entire tile as to not impede the player’s ability to traverse the
level.

A major difference between our use of Markov models, and those found in our related
works, is the context-sensitive nature in which new slices are being placed. For example, [4]
generated SMB levels using an n-gram model to generate vertical slices of tiles learned from the
original game. In this case, generation always started with an empty level and began to populate
it from left to right. And while our approach is very similar to this, we begin generation with
a map that is already built, making the model responsible for choosing decorative slices that
not only fit within the context of the previous two (a trigram) but must also conform to the
undecorated level topology already presented. This issue is resolved by first calculating the
probability distribution of all potential slices regardless of the context in which they will be
placed, and then with all of these potential slices found, we construct a second distribution
which only includes the slices which conform to the current topology in which they would be
placed.

Like the Markov models discussed in [4], our model decorates our dungeon’s entrances by
stacking rows of tiles starting at the bottom of the room. Using a similar naming convention

3.4. Desirable Properties in our Solution 29

Figure 3.12: An example of how a horizontal slice w3 is chosen based on the previous slices
w1, and w2 using the conditional probability P(w3 |w1,w2). Rubble tiles R are highlighted in
yellow; pillar tiles P, red; carpet tiles N, blue; while floor tiles F remain unhighlighted.

as [4], we will refer to these rows as horizontal slices. In Figure 3.12, we show how the third
horizontal slice w3 is chosen using the conditional probability P(w3 |w1,w2). In this example,
empty floor tiles are represented by symbol F, pillars by P, rubble by R, and carpets/chandeliers
sharing symbol N. For convenience, the length of the horizontal slices used in this example is
7 to match the width of the room. In addition to a thorough explanation of how this condi-
tional probability is calculated in Section 4.4 of Chapter 4, Section 5.4 of Chapter 5 will show
experimental results for varying horizontal slice lengths.

We view many of the methods found in PCGML as those which excel at generating content
that structurally resemble those found in a training set and yet understandably struggle at cap-
turing the playability aspect of levels, making them excellent candidates for the generation of
purely aesthetic content. Of these models, we selected the n-gram model because of its overall
simplicity. As our results in Chapter 5 will show, we obtain very visually pleasing results using
a model that takes only several seconds to train.

3.4 Desirable Properties in our Solution

We will conclude this chapter with a summary of the methods used and the desirable PCG
qualities possessed by each. We would like to draw attention to how each stage of our solution
complements the others such that any inherent weakness in one is supplemented by the next.

3.4.1 Speed

Speed is an attribute that must be possessed by all stages of our solution such that a bottle-
neck in generation times does not occur. In our discussion of our Stage 3 grammar, we stated
that any generation time longer than several seconds would not be considered acceptable as
any amount of time spent beyond that would negatively impact the player’s experience with
the game. We acknowledge that this statement is both ambiguous in terms of duration as well
as ignores any consideration towards system hardware specs; however, any further precision
given to an acceptable amount of generation time will still be purely qualitative, and any minor
discrepancies in performance observed from variances in modern personal computer hardware

30 Chapter 3. Proposed Solution

should be negligible. We say that our system successfully possesses this quality by choos-
ing PCG methods that avoid a generate-and-test approach to content generation. Typically we
would require methods from PCGML to undergo a testing phase to check for content playabil-
ity, however, we strategically chose to use these methods in scenarios that do not require these
secondary evaluation phases and thus do not inhibit our generation times.

During the first stage of generation, we use our DCNN to produce maze rooms, storing
them in a small dataset for use by the constructive algorithm in Stage 2. This stage is obviously
performed offline, and therefore will have no impact on the system’s speed. As we discussed
early in this chapter, the decision behind this finite dataset allows for an exhaustive search to
be performed by our constructive algorithm in Stage 2. Because this search is guaranteed to
halt after a finite number of steps, and having only observed relatively short execution times
during the gathering of our results, we would say this stage too possesses the quality of speed.
Similarly to this algorithm, Stage 3 is a constructive method with a finite number of steps. This
stage of our solution uses a context-free grammar to produce puzzles and guarantees its fast
production times by limiting its number of non-terminal replacements to a maximum of four.
Our final stage is another PCGML method that does not require the use of a time-consuming
generation/evaluation loop. In this stage, we use an n-gram model to place decorative elements
in our dungeons’ entrance rooms, and because these elements are only decorative, we do not
need to worry about running any form of evaluation phase to test whether or not they will
impact the level’s playability.

3.4.2 Reliability
Speed is a quality that often suffers in the pursuit of reliability, as many common methods
for ensuring the playability of a level require a generate-and-test loop to search for sufficient
content in an indeterminate amount of time. With the exception of Stage 4, we require all
of our other stages of generation to be reliable as each will impact the level’s topology and
interactable elements. During the production of the dataset in Stage 1, we do perform an
evaluation phase that tests each maze generated by the DCNN for playability, discarding any
level which does not contain a valid solution path. The reliability of this stage carries into Stage
2 which is careful to stitch these mazes together into larger structures without compromising
their integrity as playable structures. In short, we accomplish this by including the entirety of
the selected maze’s solution into the hallway or puzzle room it is generating, and therefore,
maintain its playability.

Stage 3 guarantees valid puzzle solutions through the production rule template outlined in
Section 3.3.3 and by carefully considering the terminal symbols we place in each rule. During
the definition of a new production rule, we are careful to only select terminal symbols that
represent objects that lead to exactly one valid solution. As an example, we are careful to only
ever add as many weights to a puzzle as is necessary such that the final chamber of our solution
cannot be accessed prematurely.

Finally, because the last stage of our system is introduced for purely aesthetic reasons,
it does not impact the player’s ability to complete the dungeon, and as a result, we are not
necessarily concerned with any failures it experiences; that said, we still want for our system
to perform consistently well as to not impact believability. To achieve this, Chapter 5 outlines
various experimental parameters such as slice length L and the size of the contextual window

3.4. Desirable Properties in our Solution 31

n which appear to produce visually appealing entrances on a reliable basis.

3.4.3 Controllability
While not as important as a quality like speed or reliability, we would like as much controllabil-
ity over as many of our stages as possible. Between all of the methods found in PCG, PCGML
methods are the toughest to control, while constructive are amongst the simplest. During our
discussion of GANs in Section 3.3, we stated that the fact that a possible control mechanism
for this model may involve the use of latent vectors to control the specific outputs we receive
from the system, and this is indeed the case. During this discussion, we also mentioned that the
DCNN in the first stage of this solution does not take this approach, and instead, simply stores
randomly generated levels. One reason why generating content based on a combination of la-
tent vectors does not make sense for this specific work, is the lack of distinguishable structural
features being produced in our mazes. Unlike the faces shown in [25], the mazes produced
in this work are only of size 16x16, and as such, are too small to contain many identifiable
structural characteristics. This makes it extremely unlikely that the interpolation between the
latent vectors of two mazes would yield many interesting results.

Fortunately, our other PCGML model in Stage 4 has more opportunities for interaction.
As described above, our n-gram model has two adjustable parameters: slice length L, and the
size of the contextual window n. Adjusting either of these two parameters radically changes
the results of the system, yet disappointingly, in ways which do not always add to the overall
aesthetic benefit of the level. For example, all of the hand-decorated levels in our training
corpus feature a series of carpet tiles running down the center of the room. As the size enough
for L decreases, multiple horizontal slices per row begin to appear, each misplacing carpet tiles
outside of the room’s centerline. Although we could technically define these parameters as
control mechanisms, there appears to be very few scenarios in which we would ever adjust
their values. Experimental results for changes made to these parameters will be presented in
Figure 5.5 of Chapter 5.

Figure 3.13: Example mazes generated using the same control graph, with Hallway Padding
value p at value of 0, 1, 2, and 5 (from left to right).

Unlike these PCGML methods, our constructive methods give us excellent control mech-
anisms that vary based on the level being generated or the player’s progression through the
dungeon. First, designers have control over the navigational difficulty of hallways through the
Hallway Padding parameter, which for sufficiently large values of p, can make the dungeons
more closely resemble sprawling labyrinth structures as seen in Figure 3.13 with the dungeon
generated using a p value of 5.

32 Chapter 3. Proposed Solution

Finally, the generation of our dungeon topologies is controlled by a graph. This graph
dictates how many rooms appear in the level, what type of room is being placed, and how these
rooms are connected to one another. In addition to this, each maze room can accept a list of
production rules used for generating its puzzles as well as the reward the player receives for
completing it. This means that designers can define a progression order to their dungeons as
a whole, making sections of the dungeon unsolvable until the player obtains the reward at the
end of another puzzle room.

3.4.4 Expressivity
Expressivity is a measure that is best captured by the structural variance of our mazes and
dungeons in Stages 1 and 2 and not necessarily by puzzles and decorative elements in Stages
3 and 4. This is because the solution to many of our dungeons’ puzzles require the navigation
of the maze room in which they are held, and thus most of the game’s challenge and interest is
expressed by the complexity of the room’s solution path.

Our decision to limit our pool of generated mazes down to a small finite set, should greatly
impact the expressivity of our constructive algorithm as it will often choose the same mazes
repeatedly in order to construct our dungeons. Luckily, results in Chapter 5 show how the
expressive range of our Stage 2 dungeon structures is remarkably diverse, despite only having
access to such a small pool of mazes. Expressive range [31] is the most common metric used
by PCG practitioners to capture the expressivity of a system. This metric plots two variables of
a level on a heatmap to visualize how diverse a set of randomly generated levels can be across
those two variables. Chapter 5 presents the expressive range for both our maze generator in
Stage 1, as well as the dungeons produced in Stage 2.

3.4.5 Creativity/Believability
Creativity/Believability is a metric that describes how well a system’s content resembles that
of a human designer’s; that is to say, it is a metric that speaks to the overall level of quality in
the resulting content. Of the quality metrics we have discussed so far in this work, creativity
is mentioned the least; this is because it is a metric that is qualitative and difficult to design
methods of evaluation for. Commercial titles such as those discussed in Chapter 2, all feature
some form of human-authored content. Specifically, in the case of Deadcells, the game’s lead
designer admitted that human-authored room templates were included to ease the rising skep-
ticism of their PCG system from fans of Metroidvania style games, who favor the meticulously
designed level typically featured in this genre. With such an apparent appetite for believable
levels, we feel an obligation to address it in some regard, especially because it is a trait that is
not often considered by many other academic works in the field. Our inclusion of a final deco-
rative pass in Stage 4 is an attempt to raise the believability of our entire solution by delivering
a significant improvement to the overall aesthetic appeal of our entrances, as these will be the
player’s first impression of our dungeons. Finally, an aspect of training our maze structures in
Stage 1, includes a penalty to wall tiles placed without any adjoining neighbors. This penalty
was introduced to promote more coherent wall structures that would eventually constitute the
entirety of our dungeon’s final topology.

Chapter 4

Methods and Implementation

This chapter focuses on the implementation details of our system, including specifics on the
training process for both of our ML models in Stages 1 and 4, the details of our constructive
algorithm in Stage 2, as well as the production rules and symbols which constitute the context-
free grammar being used in Stage 3.

4.1 Stage 1 – Maze Production

Figure 4.1: The network architecture used for producing mazes.

Production of mazes in this stage involves training a DCNN using an ES. Figure 4.1 pro-
vides the network’s architecture, which is inspired by the generator network found in GANs.
The first layer of this network accepts a vector of 100 random samples gathered from a distri-
bution of Gaussian noise with a mean of 0 and a variance of 1. Next, a linear transformation
is performed down to a layer size of 64. This step is for the convenience of the fractionally-
strided convolutional layers which double in width and height but halve in depth. We will take

33

34 Chapter 4. Methods and Implementation

this time to acknowledge that the parameters in this first linear transformation are likely not
learning any relevant information, and future works could likely begin with a noise vector of
size 64. The last of our convolutional layers is of size 16x16x3, with 16x16 representing the
width and height of our mazes, and 3 representing the possible tiles in our mazes: walls, floors,
and pits. We reshape our maze and perform an argmax operation to determine the type of tile in
each position of our final maze. Again, it is likely that we are performing a redundant reshape
in the third last operation of this network, and the network could have simply performed the
argmax operation on the 16x16x3 convolutional layer. Finally, we include a ReLU activation
function and batch normalization after each convolutional layer.

This network is trained using the ES presented in [26]. It describes as a black-box opti-
mization method that optimizes a function f (w) with respect to w, the parameters of a network.
The authors refer to it as a black-box method because the algorithm does not need to know the
specifics of f (w) in order to optimize it, only that it accepts the parameters of the network as
input and returns a reward r. The idea is, by finding the parameters w which optimize this func-
tion, we have effectively trained an Artificial Neural Network (ANN) to perform whatever task
is being performed by f (w). The specifics of this process involves duplicating the parameters
of a network n times, with each being adjusted by a small amount of Gaussian noise. Next,
each of the n variants of the network is evaluated using f (w) with their rewards standardized
to have a Gaussian distribution. Finally, the parameters of the network are updated by taking
a weighted sum of the n variants such that each of these is weighted proportionally to their
reward r. This means that the update which is performed on the original parameters w is most
heavily influenced by the variants which performed best in terms of f (w).

Figure 4.2: A modification of the scenario presented in [28] where an agent’s goal is to first
search the maze for an orb tile (2) before navigating to an alter/exit tile (3).

The function f (w) in our solution generates a maze using input parameters w and evaluates
it using a modification of a scenario presented in Chapter 8 of [28]. Figure 4.2 presents the
modified version of this scenario used within this work. In the original, mazes contained a
randomly placed start tile (0), orb/midpoint tile (1), and an altar/exit tile (2) as well as floor
and wall tiles. The goal of the game was for a Breadth-First Search (BFS) agent starting on tile
0 to first navigate to the orb tile, then find a way to deliver it to the altar tile. In our modified
version, we added an additional pit tile, which can be jumped across so long as there is a floor
tile waiting on the other side.

4.1. Stage 1 – Maze Production 35

To evaluate these levels more consistently, we define a set of possible positions for the start,
orb, and exit tiles and create 26 combinations of them to be used for training—a list of these
combinations is provided in A.1 of Appendix A. What is interesting about this approach is that
these three tiles are being placed post maze generation, and therefore, the network has no idea
where they may be. This means that our network learns to produce mazes which are general
enough to support multiple configurations of these three tiles. The decision to train using 26 of
these configurations could be viewed as a medium between having so few combinations that
a likely collapse to the generator’s expressivity would occur due to the predictability of these
tiles’ placement, and a number so large that the placement of these tiles would move towards
being complete randomization; in which case, we suspect the production of trivially simple
mazes due to the generator compensating for the unpredictability of these tiles’ locations.

Next, we ensure a more faithful representation of the generator’s performance by testing a
total of 96 levels and averaging their results. We generate 32 mazes using the network and test
each of them with the same 3 randomly selected start/orb/exit combinations. The idea is that
we do not want to evaluate a generator based solely on a single maze, instead choosing 32 as
a decent representation of its performance, however, we must also guarantee that we are not
judging these mazes only on a single set of start/orb/exit positions as we expect our mazes to
be general enough to support multiple combinations of these; hence why we choose test each
of our 32 mazes against 3 randomly selected start/orb/exit positions.

The reward function being used to evaluate a maze is the weighted sum of three metrics:
non-linearity, wall isolation, and number of pit tiles. We imagine our ideal mazes as those
with a modest number of pit tiles, walls which form purposeful structures, and whose solution
path is complex enough to force the player into taking a non-linear route through the maze.
Ultimately, the reward we return from this f (w) evaluation function is the average of the 96
rewards we calculate using the following weighted sum:

Reward = 0.80*Non-Linearity – Wall Isolation - Number of Pits

Here, non-linearity is a measure that reflects both the length of the optimal solution path
as well as how non-linear it is. This metric simply sums the turn angles taken by the agent
during its traversal of the level. This means that longer solution paths will have more angles
contributing to the sum, and maps with non-linear solutions will provide higher degree turns,
resulting in a higher score. Figure 4.3 provides an example of two sample paths, the first with
an extremely linear solution with a non-linearity value of 0 and the second with a far less linear
path with a value of 225.

Figure 4.3: Two example solution paths with vectors indicating the direction of the agent’s
path. Non-linearity is measured by the sum of the angles between these vectors.

36 Chapter 4. Methods and Implementation

In the reward function, we attempt to maximize this non-linearity measure but found that
scaling it by 0.8 allowed for the other two metrics to have more of a presence in the resulting
mazes. The first metric we are trying to minimize is wall isolation: a count of the number of
wall tiles with no neighbors to the north, south, east, or west of it. We penalize the reward func-
tion for each occurrence of these isolated walls with the intention of rewarding the generator
for producing mazes with coherent, well-formed wall structures.

Finally, we penalize the generator for each pit tile it places in hopes of reducing the amount
to a handful per maze. Of course, if this training process ran for enough iterations, we would
expect to see almost zero pits placed; however, we end training before this occurs. If this
became a concern, we could simply replace this metric with the distance to a target number of
pits instead. Each of these three metrics is normalized to a value between 0 and 1 as to give
each an equal representation in the reward function. To do this, we simply divide each of them
by their maximum possible value. This is easy for walls and pits because we know that our grid
contains 256 possible positions, but it is more difficult for non-linearity. Our solution to this
problem was to hand-design levels with extremely non-linear paths and recorded the maximum
non-linearity scores amongst them. As it turns out, our trained generator found solutions with
more complex solution paths than our human-designed levels as the average reward was above
a theoretical maximum of 0.8 (0.8*1 maximum non-linearity – 0 isolated walls – 0 pits).

Figure 4.4: Training results from left to right report the average reward of all five network
variants, the average non-linearity (labelled as Avg. Linearity) of each variant, and the average
solution length of each variant.

Figure 4.4 presents results for this training process, which ran for 175 iterations with a
population size of five network variants, a noise standard deviation σ of 0.1, and a learning
rate α of 0.01. These results show a dramatic increase in the average reward per iteration with
slight positive trends for the networks’ average non-linearity and solution lengths.

The dataset of source maze levels used in the next stage of generation is comprised of only
16 maps. We organize these maps by their solution length and store the 16x16 maze as well as
a list of coordinates for its optimal solution path.

4.2 Stage 2 – Dungeon Production
The graph-informed constructive algorithm used to produce our dungeons searches a small
corpus of maze levels produced using the DCNN described in the previous section. The process
of building a dungeon begins with defining a control graph for the algorithm to follow. We

4.2. Stage 2 – Dungeon Production 37

purposely chose to restrict our generation to a maximum of three puzzle rooms per graph as
this is the maximum number of rewards the player can receive in our game, these being a shoot
powerup, a magnet powerup, and a final treasure for completing the dungeon. Like many of
the limitations presented in this work, the decision to restrict our solution to three puzzle rooms
per graph is a reflection of our specific game’s design and is by no means a constraint of our
proposed solution. Figure 4.6 provides example levels built using each of our three control
graphs presented in Figure 4.5. In these figures, dungeon A appears to only have two maze
rooms even though its control graph specifies three. This is an extremely rare case where two
identical mazes on the west wing of the dungeon were selected, one of which is on Floor 1 and
the other on Floor 2.

Figure 4.5: The three graphs used during the evaluation of this system. Graph a is referred to
as the small control graph, b as medium, and c as large.

Figure 4.6: Example levels built using each of our three control graphs using a seed of 0. Dun-
geon builts using the small graph take approximately 15 to 20 minutes to complete; medium
dungeons, approximately 20 to 30 minutes; and large dungeons, approximately 30 to 40 min-
utes.

While building a dungeon, the system is guided by a Depth-First Traversal (DFT) of these
control graphs. We chose a depth-first scheme because if the system fails to instantiate a
room after trying all possible permutations of our source mazes, the algorithm jumps back and
regenerates the last room, which for a DFT will either be the parent or a sibling node in the
control graph; however, if we would have used a Breadth-First Traversal (BFT), it is possible
that we would jump back to an unrelated node in a completely different sub-tree than the one
experiencing issues. This process of searching for room permutations differs depending on
the room type; for mazes, this involves choosing a random source maze from our dataset and
rotating it until its starting tile lines up with its parent’s connection tile, and for hallways,
this process is similar except we allow for either the start/orb/exit tiles to connect with the
previous room. If the room placed is either an entrance or a hallway, we instantiate a number

38 Chapter 4. Methods and Implementation

of connection tiles based on the number of children nodes in the graph. For hallways, these
points are found along any of the outermost floor tiles and face in the direction of most available
space. While for entrances, these connection points are based on the label of an outbound edge,
for example, edge A will place a connection point on Floor 1 of the west side of the room, while
B is also on Floor 1 but on the east side of the room. Connection points C and D are similar,
except they are placed on the second floor of the dungeon.

Figure 4.7: The process for building a dungeon using medium control graph B. The graph is
traversed using a depth-first scheme, with rooms labelled using a concatenation of the edges
followed to reach its respective node. For example, following edge A leads to hallway room A,
then edge B to maze room AB.

Entrance rooms themselves are always the first rooms placed as they are at the root of our
graphs, these rooms are always rectangular in shape, and have random dimensions with the
smallest being 7x5 and the largest being 9x13. We also force the dimensions of these rooms to
be odd numbers such that there is always a centerline for the staircase to follow. These rooms
have the player spawn at the south end with a staircase placed at the north end. This staircase
leads to a one tile wide balcony section which runs along the entire north face of the room
and a random ways down its west and east faces, serving as a means of access to the upper
floors of the dungeon. Figure 4.7, illustrates the construction of a dungeon using the medium
control graph starting with the entrance, then proceeds down the branches of the graph using a
Depth-First Traversal (DFT) starting on left most branch labeled A.

When instantiating hallways, our algorithm follows the solution path included in the map
file. If any value greater than 0 is set for the hallway padding parameter p, the algorithm will
also instantiate any neighboring floor tiles a distance of p away from each tile on the solution
path. We prematurely stop the spread of hallway padding if it is about to intersect with another
room. The intention behind this was to preserve the original solution path of puzzle rooms
that may become compromised by a neighboring hallway. This is an artifact from an early
stage of design where instead of all the dungeon’s rooms being accessible from the beginning,
certain wings of the dungeon would have been locked behind doors that the player would
have to unlock by obtaining keys from other wings. If this were still the case, any additional
routes into a puzzle room introduced by the unrestricted spread of hallway padding would have
undermined the purpose of having a locked door, but with this feature never realized, more
interesting dungeon structures may emerge by removing this check.

The instantiation of puzzle rooms is very similar to that of hallways as they follow the same
process, with the exception that they do not simply follow the optimal solution path outlined
in the source map file, but rather the entire maze as it was originally produced by the DCNN

4.3. Stage 3 – Puzzle Production 39

Figure 4.8: The profile of a dungeon rendered without walls to display the contents of the two
floors and subfloors.

in Stage 1. For these dungeons, we chose to ignore pit tiles from the original maze generation
scenario as we did not feel that their inclusion would add any meaningful contributions to
our dungeons’ design. Finally, as discussed in Chapter 3, puzzle rooms also include lifts to
the puzzle chambers. We place access to these chamber at the start, orb, and exit tiles with
the intention of having the player trace the solution path taken by our BFS agent during the
creation of these original source mazes. Also mentioned in Chapter 3, in order to have these
chambers not interfere with the rest of the map, we place them on Subfloors 0 and 3. Puzzles
rooms on Floor 1 have their puzzle chambers placed below them on Subfloor 0, and puzzle
rooms on Floor 2 have their chambers placed above them on Subfloor 3. These chambers are
simple 4x5 rectangular rooms that are placed such that their bottom left-hand corner is one tile
above their respective start/orb/exit tile. Figure 4.8 presents the profile of a dungeon with two
puzzle rooms generated to the right of the dungeon’s entrance. In this figure, the two puzzle
chambers on Subfloor 3 (green) are associated with the puzzle room on Floor 2 (blue), and the
three chambers on Subfloor 0 (red) are associated with the puzzle room on Floor 1 (purple).

4.3 Stage 3 – Puzzle Production

Figure 4.9: The production rules used to generate the dungeon’s puzzles. The phase that each
rule belongs to is marked with a coloured indicator, and a legend for the terminal symbols’
corresponding in-game objects is provided. Generation begins with nonterminal symbol ”S”
and progresses with nonterminals ”M”, ”Mw”, and ”Mk”, where superscripts ”w” and ”k” stand
for weights and keys respectively. Finally puzzles end with nonterminals ”A” and ”B”, where
the items needed to unlock the lifts of puzzle chambers ”B” are provided in ”A”.

40 Chapter 4. Methods and Implementation

The placement of the dungeon’s puzzle elements is closely related to the algorithm in the
second stage of production as it is responsible for instantiating all the dungeon’s interactable
objects. In fact, whenever the algorithm successfully places a maze room in the dungeon, a
puzzle string is generated using a set of production rules specified by the control graph. We
mentioned in Chapter 3 that we separate our production rules into three phases that should
reflect the abilities obtained by the player. The first set of production rules generates puzzles
which the player can solve without the ability to shoot or move weights and rewards them with
the shoot powerup; the second set introduces enemies that the player can now fight with their
newly obtained shoot powerup, rewarding them with the magnet powerup; and the final set
introduces weights that the player can manipulate to receive their final reward for completing
the dungeon. These rules, along with their respective phases, are outlined in Figure 4.9.

As shown in the right-most legend of Figure 4.9, our puzzles include 9 interactable objects.
Denoted by “b”, weights are placed onto pressure plates “p” to unlock elevators denoted by
“[. . .]”. Keys “k” are used to unlock plate lifts denoted by “<. . .>”. Enemies “e” can be
defeated to unlock enemy lifts “{. . . }”. “t” and “s” are used to represent tower enemies, and
when destroyed, produce a weight object “b”. Map “m” is only awarded to the player in the
second chamber of phase 1, providing them with a tool for studying the dungeon’s structure and
the areas that they already explored. Optional reward “o” is a replacement for the map phases
2 and 3, this treasure would typically be a non-crucial reward such as currency, weapons, or
potions. Finally, the left-most legend of Figure 4.9 reiterates which reward “r” is obtained at
the end of each stage in the third and final chamber of each puzzle.

Figure 4.10: An example dungeon demonstrating puzzles from all three phases of production.
Puzzle Room 1 uses the puzzle string ”()(m)(r)”, Puzzle Room 2 uses ”(k)(eo)(er)”, and Puzzle
Room 3 uses ”()bp[teo]pp[sr]”. A numbered solution through the entire dungeon is provided.

Figure 4.10 provides an example dungeon containing a puzzle string generated for each of
our three phases. The first puzzle room simply requires the player to collect the dungeon’s map,
and shoot powerup. The second puzzle chamber has the player collect a key, and an optional
treasure from the first two chambers before unlocking the third and final chamber containing

4.4. Stage 4 – Decorative Pass 41

the magnet powerup. Finally, the player progresses to the third puzzle room, here, they unlock
the first of two chambers by pushing a block onto a pressure plate to unlock the lift. Inside this
chamber, players retrieve an optional treasure, defeat some enemies, as well as a Tower enemy.
With the destruction of the Tower, the player obtains a second weight. To gain access to the
dungeon’s final chamber, the player places both weights on the chamber’s two accompanying
pressure plates were they encounter the dungeon’s final reward.

4.4 Stage 4 – Decorative Pass

Figure 4.11: Example of entrance data used for the training of Stage 4’s n-gram model. In-
dicated in the colors of yellow, red, and blue are the hand-decorated elements representing
rubble, pillar, and carpet/chandelier tiles respectively.

As discussed in Chapter 3, the process of decorating our dungeon entrances involves the use
of an n-gram model to place rows of decorative elements such as pillars, rubble, carpets, and
chandeliers in order to style the pre-existing empty floor tiles. Figure 4.11 provides an example
of the data used to train our model accompanied by a legend of possible tile types. From this
data, we see the characters R, P, N , and F to denote rubble, pillar, carpet, and empty floor tiles
respectively (recall that chandeliers share the same character N as carpets). We train our model
to learn unigrams, bigrams, and trigrams, using 40 of these hand-decorated examples. We train
our model to learn horizontal slices of the entrance that are 6 characters in length. We chose
this value based solely on observation, as it seems to give the most consistent results across
most entrance rooms regardless of their size—experimental results for other word lengths are
provided in Chapter 5.

In order to select which slice to place, our model uses the probability of each slice given the
previous two, a trigram. The likelihood of each slice appearing next in the sequence is based
on the conditional probability:

P(w3|w1,w2) ≈
count(w1,w2,w3)

count(w1,w2)

42 Chapter 4. Methods and Implementation

Figure 4.12: An example level generated using a trigram model, with a slice length L of 6.
Decorative elements placed by this model are indicated using the same color scheme as Figure
4.11: yellow for rubble, red for pillars, and blue for carpets.

Unlike traditional n-gram models, our slices are being placed into pre-existing, immutable
structures. This means that we must discard any slice which does not fit the current context in
which we are attempting to place it. For example, if the current room segment we are trying
to dress is “0FFcFFF”, then we only will accept possible slices of the form “0xxcxxx” such
as “0FRcFFR” or “0RRcFRF”, where “x” represents a mutable tile position. This constraint
ensures that our map’s topology is not altered in any way by this process; additionally, we
place a second constraint on the system such that any of the slices which appear to fit the
current context but also contain 0’s in any mutable position “x” are also discarded so that floor
tiles are not accidentally replaced with empty spaces. For example, if we accept slices of
the form “0xxcxxx”, “0RRcF0F” would be discarded because it alters the map’s topology by
introducing an empty space in position 5. A consequence of discarding possibilities in this
manner is that we will no longer have a proper distribution that sums to 1. This problem can
be easily addressed by constructing a new distribution using the trigram counts of only the
slices found to be feasible for the current context. This distribution is captured in the following
modification to the previous equation:

Where I is the set of all infeasible slices,

P(w3|w1,w2) ≈
count(w1,w2,w3)

count(w1,w2) −
∑

wi∈I count(w1,w2,wi)

or alternatively, where F is the set of all feasible slices,

P(w3|w1,w2) ≈
count(w1,w2,w3)∑

w f ∈F count(w1,w2,w f)

The problem with the original distribution is that the bigram counts in the denominator still
account for the number of times they occurred before a contextually infeasible word. What

4.4. Stage 4 – Decorative Pass 43

we are doing in this new calculation is temporarily excluding these infeasible bigram counts,
and only considering those which were followed by feasible slices w3. Figure 4.12 provides an
example level decorated using a trigram model with a slice length L of 6. In this example, we
can see how the model has learned to follow a structure similar to that of the example file in
Figure 4.11 where carpets follow the room’s centerline, pillars are evenly placed on eitherside
of this line, and rubble is scattered around these elements.

Chapter 5

Results and Evaluation

This chapter presents the methods used to evaluate the various phases of our generator. While
the majority of this work attempted to convey sufficient evidence that the design of our PCG
system adequately considers qualities such as speed, reliability, controllability, and creativity,
much of the discussion concerning the expressivity of our solution has been deferred to this
chapter, as much of our results focus on this criteria.

5.1 Exploration of Latent Space

Figure 5.1: Example mazes obtained by interpolating between two randomly selected points in
latent space. The mazes on either end of the diagram are those produced by our Stage 1 DCNN
at each of these points. Purple tiles represent the floor; yellow tiles, pits; and green tiles, walls.

The GAN architecture is well-known for its ability to map input vectors to resulting images
it produces. These input vectors are usually sampled from a Gaussian distribution and have no
particular significance until assigned one by training the GAN. Through this training process,
the GAN learns to map its output to corresponding inputs. By the end of training, we will be
able to explore this distribution in what is called latent space. As we saw in [39], the latent
space of the author’s SMB level generator was searched for levels that maximized a series of
performance metrics. What’s interesting about latent space is that the interpolation between
two points yields a smooth transition between the images produced by the model [25].

In this work, we trained a DCNN whose architecture resembles that of a GAN’s generator
network using an ES and examine the resulting latent space by choosing two random vectors
and perform a spherical linear interpolation (Slerp) to obtain eight intermediate vectors. Re-
sults are shown in Figure 5.1, where the two mazes other either end of the diagram do slowly

44

5.2. Expressive Range 45

transition between each other. In Chapter 3, we discussed how this could be used to find levels
that have a combination of interesting structural features; unfortunately, as our mazes are only
16x16, we fear that they are too simple to contain any identifiable characteristics which warrant
this approach for the time being.

5.2 Expressive Range

Expressive range is a popular method for measuring the expressivity of a generator’s content
by plotting two separate evaluation metrics on a heatmap. The goal is to visualize the range
of potential content that can be expressed by a procedural content generator [31] as well as
identify any biases it may possess through regions of especially high intensity. Using this
method, we will evaluate the expressivity of both our mazes produced in Stage 1, as well as the
dungeons produced in Stage 2.

5.2.1 Expressive Range of Stage 1 Mazes

Figure 5.2: The heatmap generated for the linearity vs. solution length gathered from 1000
mazes produced by our Stage 1 generator.

To test the expressive range of this generator, we plot linearity vs. solution length, with
results shown in Figure 5.2 and a table providing the max, min, mean, and standard deviation
(SD) for these two metrics provided in A.1 of Appendix A.

Based on the spread of data found in this plot, we would say that this generator does indeed
produce a reasonably diverse range of mazes with very little bias towards generating any of
a specific kind as there are no regions of significantly high intensity. As an example of what
this bias could look like and what it would signify in terms of our generator, imagine if a
pocket of yellow/orange points were present in the bottom left-hand corner of the plot, we
could conclude that the generator is biased towards producing mazes with short linear solution
paths. While in actuality, there are a some of these high-intensity points on this plot, we do not
view these regions as large enough to consider them a source of biased behavior. This said, it
is disappointing, but not entirely unexpected, that these two features are so highly correlated.

46 Chapter 5. Results and Evaluation

It appears reasonable to say that less linear solutions—those with a high linearity measure—
would also have longer solution lengths as the measure of a maze’s linearity is the sum of all
turn angles in the agent’s solution path: longer solution paths lead to more turns taken, and as
a result, lead to higher linearity values. While it is not a major source for concern, we would
ideally like to see all kinds of mazes represented, such as those with a high linearity and a low
solution length. We suspect that our decision to generate mazes without notifying the generator
as to where start/orb/exit tiles will be placed is impacting its expressivity as it is reasonable for
the generator to compensate for this by designing more generic mazes that support multiple
solution paths. In the future works of Chapter 6, we will discuss the potential benefits of
including a mechanism for notifying the generator on the position of these three critical tiles as
this improvement would likely provide even better results both in terms of content quality and
expressivity.

5.2.2 Expressive Range of Stage 2 Dungeons

Figure 5.3: Heatmaps generated for the surface area, solution length, and spread from dungeons
produced using our small, medium, and large control graphs; each producing 1000 levels.
Surface area counts the number of floor tiles in the dungeon, solution length sums the length of
the optimal solution path of each hallway and maze room, and spread reports the surface area
of the smallest rectangle which can encapsulate the entirety of the dungeon.

5.3. Evaluation of the Stage 3 Grammar 47

For the expressive range of the dungeon generator in Stage 2, we choose to measure surface
area, solution length, and spread. The surface area metric counts the number of floor tiles,
solution length sums the length of the optimal solution path of each hallway and maze room,
and spread reports the surface area of the smallest rectangle which can encapsulate the entirety
of the dungeon. Like in Stage 1, we produce 1000 sample dungeons, but this time, for each of
the three control graphs: small, medium and large. Figure 5.3 presents heat maps comparing
surface area vs. solution length, surface area vs. spread, and solution length vs. spread for each
of the three control graphs, with Tables A.2, A.3, and A.4 of Appendix A providing the max,
min, mean, and SD for each of these metrics.

Based on the results presented in Figure 5.3, we would say that this generator undoubtedly
produces a wide variety of dungeon environments, as all 9 of the heatmaps show a wide variety
of levels produced with very little bias shown towards any particular feature. We do see some
signs of bias towards levels with a medium-amount of surface area and spread, particularly for
the small and large control graphs, but like with our mazes, these high-intensity regions are not
dense enough for us to consider this generator to be overly biased towards any specific type of
dungeon. What is encouraging about these results is that these dungeons are built using a very
small set of 16 mazes as room templates, meaning that any shortcomings in that generator’s
expressivity can easily be recouped by this one’s. Initially, this small corpus of 16 mazes was
chosen to help with the exhaustive search being performed in Stage 2’s constructive algorithm,
as we feared that a large number of mazes would have taken too long to search through.

5.3 Evaluation of the Stage 3 Grammar
Compared to every other stage, the evaluation of our puzzle generating grammar in Stage 3 is
the most basic as we will only be reporting the size of the languages described by our three
sets of production rules. We view this as a simple evaluation of our grammar’s expressivity. As
a reminder, we divide our grammar’s production rules into three phases which guarantees to
only produce puzzles that reflect the abilities currently possessed by the player. Figure 4.9 of
Chapter 4 presents each of these production rules and their respective phases. Phase 1 assumes
the player does not possess either the shoot or magnet power-up and contains 8 production
rules that produce a total of 6 unique puzzles. Phase 2 assumes the player has possession of the
shoot power-up and contains 12 production rules that can produce 15 unique puzzles. Finally,
phase 3 assumes the player possesses both the shoot and magnet power-ups and contains 18
production rules which can produce 60 unique puzzles. Assuming each dungeon contains one
puzzle from each of these three phases, there will be exactly 5,400 possible combinations.

5.4 Evaluation of Stage 4 N-grams
The evaluation of our Stage 4 n-gram model is purely qualitative as we will only be judging the
stylistic qualities of the entrance rooms it decorates. We base our evaluation on adjustments
made to both the length L of its horizontal slices as well as n in the n-gram. Recall that in Stage
4 of our solution, we train an n-gram model using rows of characters representing the different
decorative elements of our dungeon’s entrances (pillars, rubble, and carpets/chandeliers) which

48 Chapter 5. Results and Evaluation

Figure 5.4: A dungeon decorated using a trigram trained with slices of length L ranging from
1 to 6.

we refer to as horizontal slices. The process of decorating our entrances involves the n-gram
model stacking these slices starting at the south end of the room, using previously placed slices
as the only context for which should be placed next. We let L represent the number of characters
in each of these slices, while n refers to how many previous slices are used as context by the
n-gram model.

Figure 5.4 presents an entrance decorated using a trigram model with L ranging from 1 to 6.
Because this is a trigram model, we are determining which slice to place using only the previous
2. From this figure, we can observe that an L of 4 or higher produces satisfactory results as
there is a series of carpet tiles which follows the room’s centerline with evenly spaced pillars
running down both sides of the room. When L is less than 4, we can see blatant violations
to the symmetry we are trying to achieve, with carpet tiles straying beyond the bounds of
the centerline, and pillars scattered on either side of the room. Through observing dozens of
entrances, we find that a value for L of around 6 works best in most cases.

Figure 5.5: A dungeon decorated with an L of 6, using a unigram, bigram, and trigram model.

When observing entrances decorated with a unigram, bigram, and trigram models, we find
that the trigram model is best at maintaining the spatial relationships of elements such as carpets
and pillars. As seen in Figure 5.5, the unigram model places decorative slices with too much
irregularity, as the spacing between pillars is too large in some sections and too small in others.
The bigram model makes many of these same mistakes, but overall does perform considerably
better than the unigram model. Finally, the trigram model appears to not make any mistakes
in this instance, spacing the carpets and pillars appropriately apart. Of course, it is not a

5.5. Analysis of our System’s Desirable Properties 49

coincidence that the trigram model would perform the best out of these three, as the space
between pillars and carpets in our training data is exactly two tiles apart, aligning perfectly
with the contextual window of a trigram.

5.5 Analysis of our System’s Desirable Properties
While much of this chapter focused on metrics such as expressivity, we will now conclude
this chapter with a discussion which frames our results in terms of all of the desirable prop-
erties including: speed, reliability, controllability, expressivity, and creativity/believability in a
manner similar to that of Section 3.4. With the exception of subsection 5.5.1, we will not be
introducing any new forms of evaluation, but instead, we highlight and review how many of
these desirable properties have already been discussed in the earlier findings of this chapter.

5.5.1 Speed

Small Medium Large
Mean 0.078 0.086 0.296
Min 0.061 0.071 0.128
Max 0.254 0.277 23.268
SD 0.010 0.009 0.883

Table 5.1: The mean, min, max, and SD for the combined generation times of all four stages of
our solution using a small, medium, and large control graph. All values are listed in seconds.

For much of this work, we have discussed and analyzed each of our solution’s four stages
individually, but for a property like speed, we will judge the totality of our system by report-
ing the combined generation times of all four stages using the same 3000 dungeons gathered
for Figure 5.3. In this case, we generated 1000 dungeons from our small, medium, and large
control graphs and recorded their average generation times in Table 5.1 along with their min.
times, max. times, and SD. It is important that our solution runs using consumer-grade hard-
ware as this is the target destination for many, if not all, video games; we provide a list of
hardware specifications below:

• RAM: 16.0 GB

• Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

• GPU: NVIDIA GeForce GTX 1070 with Max-Q Design

• OS: Windows 10 64-Bit

In Subsection 3.3.3 of Chapter 3 we stated that “we will only consider online generation
times as those who are no longer than several seconds”, as we view any amount of generation
time beyond this as an inconvenience to the player. From the results presented in Table 5.1,

50 Chapter 5. Results and Evaluation

we would say that we succeeded in producing a rather fast generation method as our average
generation times were less than 1 second for all three control graphs. The only point of concern
would be the 23 second outlier that occurred while generation dungeons using the large control
graph. And while we expect the generation times of dungeons to increase with the number of
nodes present in the control graph, this extraordinary long time was undoubtedly caused by
backtracking many times until a valid solution was found. Based on this, we conclude that a
future improvement to this system would be to simply restart generation in such cases where
too many conflicts occur.

5.5.2 Reliability
In previous sections of this work we have discussed how, in theory, each of our stages should
only be capable of producing playable content. It is the reason we chose to use a finite set of
mazes in Stage 1, a constructive algorithm for Stage 2, a CFG in Stage 3, and a decorative pass
in Stage 4 which makes use of tiles that cannot possibly impede the player’s progress; however,
in practice, it is nearly impossible to know for sure that all of the dungeon’s our system can
produce are indeed solvable without generating and testing each one for ourselves. For now,
the only quantitative results we have for reliability, are based on the fact that the 3000 dungeons
generated for Figure 5.3 did in fact generate without a single failure.

5.5.3 Controllability
Unlike speed and reliability, controllability in most cases only enhances a player’s experience
with a game, and very rarely detracts from it. Controllability is mostly used for player adaptive
systems, which custom-tailor levels to fit a specific player’s profile; and unlike the playability
or generation times, a complete disregard for controllability over a system could still result in
excellent content that the player would enjoy. In this way, we do not need to focus on maximiz-
ing controllability in every stage of our approach as we see no such thing as a controllability
bottleneck. This said, throughout this work we have discussed ways in which our various
stages could be controlled. We have already seen and discussed how our Stage 1 mazes could
be controlled using the interpolation of feature vectors, or how our Stage 2 control graphs al-
low for a designer to directly influence the topological structure of a dungeon; furthermore, a
great deal of control over our Stage 3 puzzles are offered through the use of a CFG, and how
manipulation of L and n do provide some influence over Stage 4’s n-gram model.

In this subsection, we would like to highlight the potential effects of our Stage 2 control
graphs, as these mechanisms were deliberately included for the sake of controllability over
major structural features of our dungeons. Beyond simply controlling the layout of a dungeon,
what we are also able to observe is how the size of these graphs effect the magnitude of certain
emergent properties such as those discussed in Section 5.2. By once again comparing the
expressive range heatmaps presented in Figure 5.3, we can see how the magnitude of metrics
such as spread, surface area, or solution length change based solely on the size of the control
graph. This can be observed by comparing the change in any of these three metrics’ distribution
across any two control graphs. For example, the solution length of dungeons generated by the
small control graph ranges from approximately 40 to 160; then in medium, from 80 to 260;
and finally in large, from 270 to 540. This shows how much influence these graphs have over

5.5. Analysis of our System’s Desirable Properties 51

the resulting dungeons being generated. While currently, the three control graphs evaluated in
this work only differ in size, the influence of a graph’s configuration could have a meaningful
impact on these three metrics. An experiment that warrants future investigation would involve
the comparison of these three metrics, but this time, in levels produced by control graphs which
contain the same number and type of nodes, but differ in their configuration of them.

5.5.4 Expressivity
With much of this chapter’s earlier analysis focussing on expressivity, we will not contribute
much more now. We will take this time to reiterate the importance of expressivity as it is
perhaps the best indication of a generator’s success as a PCG system. Without the ability to
produce multiple unique and interesting pieces of content, there is very little reason to use of
PCG in the first place. In our earlier evaluation of Section 5.2, we saw how expressive range is
used to help visual the expressivity of our Stage 1 and 2 mazes/dungeons, where we concluded
that our dungeons do indeed exhibit a great deal of variety based on their heatmaps which not
only indicate that our system is capable of producing a wide variety of levels, but that it is also
relatively unbiased towards any particular type of dungeon. Finally, in Section 5.3 we show
how our CFG is capable of generating a vast number of possible puzzles using only a small
number of production rules. What we saw is our grammar was capable of producing 6 puzzle
strings in phase 1, 15 in phase 2, and 60 in phase 3 for a total of 5400 unique puzzles assuming
our dungeons contained one puzzle string from each of the 3 phases.

5.5.5 Creativity/Believability
The purpose of including Stage 4’s decorative pass was to increase our dungeons’ overall level
of believability and, as discussed in Section 5.4, such an evaluation is purely qualitative. Based
on the results provided in Figures 5.4 and 5.5 we concluded that a Trigram model with a
horizontal slice length L of 6 provided the most consistent and realistic appearance to our dun-
geon’s entrances as the model learned to only place carpet/chandelier tiles down the entrance’s
center-line with symmetrical rows of evenly spaced pillars on either side.

Chapter 6

Concluding Remarks

In this final chapter, we will summarize the contents of this thesis as well as discuss its novel
contributions and future improvements.

6.1 Conclusion
In this thesis, we provide a solution to the problem of designing a procedural content gener-
ator for the production of video game dungeon environments. We stipulate that our solution
must possess the five major quality metrics of speed, reliability, controllability, expressivity,
and creativity in order for it’s methods to find use outside of academia. To accomplish this, we
present a multi-stage approach which uses methods found in both PCGML, and constructive
PCG. First, we train a maze generator using [26]’s ES. The advantage to this method of opti-
mization is that we can involve non-differentiable elements such as gameplaying agents in the
training of our models. We show our this approach successfully trains a DCNN to produce a
wide range of maze environments. We further expand on these mazes by combining them into
larger dungeon structures using a constructve PCG algorithm similar to one found in Dead-
cells. Results in Chapter 5 show how this algorithm adds a substantial degree of expressivity,
and controllibility to the level generation process. With the dungeon’s macro-level structures
in place, we turn our attention towards micro-level details. We use a context-free grammar to
produce a series of puzzles, and an n-gram model to place decorative elements in our dungeon’s
entrances. Both of these stages add to the dungeon’s overall creativity/believability, a property
that is commonly overlooked in most PCG works. Ultimately, we would say that this work’s
goal was to move PCGML methods forward by not only applying a new approach to training,
but also by demonstrating a practical application of these methods by using them within an
appropriate context.

6.2 Contributions
During our review of PCG methods, we did not encounter any works that made use of the
same ES presented in [26], and it is possible that this work is the first to do so. The paper
which originally outlined this approach to training was published in September of 2017, and
a survey of PCG methods [33] published in May of 2018 makes no reference to any works

52

6.3. FutureWorks 53

which use this approach to training. We realize that these two works were published very close
to one another, and at the time, ES were too new for any PCG works to make use of it before
the survey’s release; but since then, much of the focus of PCG approaches has shifted solely
towards GANs, seemingly leaving the potential of ES untapped. To reiterate a point made
in Chapter 3, we view this ES as a solution to a major problem faced by GANs in that their
evaluation of game levels as images does not coincide with the requirements of the medium:
games cannot be fully experienced through passive sight, but rather, only through active play. In
the first stage of our solution, we use a DCNN architecture inspired by the generator of a GAN,
but instead of training it using a discriminator network and a dataset of pre-existing levels, we
train it purely on the minor structural characteristics of the level, and more importantly, on the
solution path taken by a game-playing agent.

The second contribution we believe our solution presents is a combination of methods
which bridges the divide between those PCG methods typically seen in academic literature,
and the constructive methods commonly used in commercial game releases. Our motivation
behind designing a generator which possesses speed, reliability, controllability, expressivity,
and creativity, is directly influenced by the fact that almost any modern commercially-released
games which feature procedurally generated levels attempts to capture all five of these desirable
qualities, while many academic contributions do not. Our solution to this problem is to create
a multi-stage generator that combined two methods from both PCG and constructive PCG. The
two main deficiencies of PCG methods would certainly be reliability, as we can not guarantee
that a level produced by these models will always be playable, and controllability as there
are often very few opportunities to interact with a fully-trained ML model outside of its input
space.

Our solution addresses both of these issues by using a constructive algorithm inspired by
those found in Spelunky, Deadcells, and Minecraft. This algorithm allows us to reliably pro-
duce large dungeon structures using only a finite set of mazes produced by our maze generator.
We also showed in our results of Chapter 5 how controllable this algorithm is using a graph
to inform the algorithm on how to construct the dungeon’s macro-level topology in a similar
fashion to Deadcells. We view our final two stages of generation as supplementary to those in
Stages 1 and 2, as their purpose was to simply increase the overall creativity or believability
of the system. And while it is important that Stage 3 adds the actual game-specific elements
to our dungeons, we view Stage 4 as a more interesting topic of discourse as its application of
an n-gram model—a PCG method—was used within a context where its unreliable behavior
would be of no overall consequence to the system at large; that, of course, being the production
of decorative elements.

6.3 Future Works
Throughout each of our Chapters, we were careful to take note of some areas of future improve-
ment. Specifically, Chapter 3 raised a number of issues, these being the lack of controllability
in our Stage 1 approach, the restricted access our dungeon generator has to only a finite set
of maze levels, the potential for long generation times due to backtracking, and the limited
implementation of our n-gram model.

While discussing the lack of controllability of most PCGML systems throughout this work,

54 Chapter 6. Concluding Remarks

we also acknowledge that a benefit to GANs is that they can be trained to map arbitrary points
from a Gaussian distribution to output images. We saw in [25, 39] how this latent space could
be explored and presented results for our exploration of our Stage 1 DCNN. Yet, we do not
actually utilize this feature of our network in our solution. In Chapter 3, we proposed that
one could gather a set of latent vectors mapped to a variety levels which display interesting
qualities or characteristics, then interpolate between them such that their individual properties
are mixed together. Alternatively, if we wish to obtain a random level with properties similar to
another’s, we could simply add a small amount of Gaussian noise to the original’s latent vector
in order to receive a random variation of it. The reason this system was never implemented
was tied to the exhaustive search in Stage 2 which can be more easily performed on a finite
set as opposed to the entire latent space of our DCNN. Ideally, we could obtain a random level
directly from our maze generator, quickly test it for playability, and, if it passes, place it in our
level. The problem with this approach is that we can no longer guarantee that generation can
be performed in a fixed number of steps while searching the entirety of a network’s latent space
like we can with a finite set. One simple, yet likely naı̈ve, solution to this problem would be to
simply try to generate a dungeon using random mazes sampled from our DCNN, and should
generation fail after an arbitrary number of times, fallback to a finite set of levels and proceed
with generation.

The expressive range of this Stage 1 DCNN is presented in Subsection 5.2.1 of Chapter 5,
where we suggest that this generator would likely produce a wider variety of high-quality con-
tent if it was informed on the positions of the start/orb/exit tiles used during training. Currently
this network is responsible for generating mazes based solely on a vector of Gaussian noise,
with the start/orb/exit tiles being placed without its knowledge during a post-generation step.
While we are relatively pleased with the results of this method, we suspect even better results
might be attained through notifying the network where these points will be placed during the
generation process itself. Ideally, any modifications to the network’s architecture would not
remove the Gaussian noise at the input layer, as we would still like to maintain the benefits
that latent vectors have to offer; instead, we propose that the introduction of these three tile’s
positional information be inserted elsewhere, such as one of the network’s hidden layers. We
are not suggesting that this is the only place for possible modifications to be made, but rather
as a potential starting point worthy of consideration.

Another issue raised in Chapter 5 was the occurrence of slow generation times due to back-
tracking. In Subsection 5.5.1 we observed an abnormally long generation time of 23 seconds
for a dungeon built using our large control graph which we attributed to the algorithm back-
tracking until it found a successful configuration of rooms. Considering the average generation
time for dungeons using this graph was 296 milliseconds, it certainly would be faster to sim-
ply restart generation from the beginning with a different random set of rooms. In fact, many
games which use the WFC algorithm first discussed in Chapter 2 frequently encounter similar
issues with conflicts with many choosing to forgo backtracking just as we are considering.

We mentioned in Chapter 3 that we would only be using our n-gram model to decorate the
entrances of our dungeon. Ideally, this model would be extended to the entire level. For the
purposes of this work, we decided that entrances be the most appropriate application for this
model due to their large rectangular shape. A potential issue with this model is the selection
of slice length L. During a discussion of this model’s results in Chapter 5, we mentioned that
an L of size of 6 seemed to produce the best results in our entrances. We believe that this is

6.3. FutureWorks 55

due to the fact that our entrance has a fixed number of possible widths, in which a slice of
length 6 happens to coincide well with. Perhaps, a more interesting and flexible model would
abandon one-dimensional slices all together in lieu of a 2D window as we saw in [32] or opt for
a completely different method and attempt to use the WFC algorithm. A possible advantage to
WFC over these ML models is the size of training data required for them to function properly.
In our application we managed to obtain satisfactory results with 40 hand-decorated example
entrances. An advantage to WFC over these methods is that it would only require one sample
entrance in order to create an infinite number of them in the future.

Finally, while this work focused on presenting how our four-stage approach could be ap-
plied to dungeon environments, we would like to address how this method could be adapted to
other genres. To do this, it is important to understand the role each stage plays in the system
as a whole. In Stage 1, we trained a DCNN to produce mazes, but more generally we can view
these as small level fragments that can be combined to form larger structures in the later stages
of our system. In practice, changing the ES’ reward function as well as its game-playing agent
could result in the generation of fragments for any number of game genres, for example, using
the agent from [13] and a new reward function that perhaps still focuses on the non-linearity
of the agent’s solution path, the generator could be trained to build level fragments for 2D
Platformers similar to SMB. Next, the role of Stage 2 is to combine these fragments into larger
environments. It is likely that any changes to this stage would involve the control mechanism
responsible for deciding which fragments are both chosen and connected to one another; for
this work, we chose to use a control graph similar to that of Deadcells to both place and connect
our hallways and maze rooms together, however, it was also shown how a grammar was used
in the case of Minecraft in order to build small villages, or a simple set of rules and constraints
in the case of Spelunky to build large cavern systems. In general, we view Stages 1 and 2 as
those which are responsible for building the level’s topology, and reserve the instantiation of
any objects the player is meant to interact with for Stage 3. In this stage, we made use of a
CFG to place game-critical objects such as enemies, puzzle elements, and rewards, but in other
genres of games this may include NPC characters, collectibles, or quest items. Finally in Stage
4, developers are given an opportunity to include any decorative elements they wish to include
in their levels. As previously mentioned we had chosen to only decorate our game’s entrance
rooms, but this system could be trained to decorate the entire level. While we were careful to
maintain reliability by using a constructive PCG method in Stage 3, during Stage 4 we pur-
posely train a PCGML method to learn how to copy the structure of decorative objects from a
training set and apply them to our newly generated environments with the understanding that
these systems do make mistakes on occasion; as a result, it is best that any objects placed in this
stage be designed such that, even when placed incorrectly, they not interfere with the player’s
ability to navigate the level.

Ideally, future applications of this work would not only address each of the concerns we
have noted during this discussion but also apply them to a new genre of game in an attempt
to not only show the flexibility of this approach but to hopefully expose any other areas of
improvement that can potentially benefit it as a whole.

Bibliography

[1] Entertainment Software Association. 2019 essential facts about the computer and video
game industry, 2019.

[2] Sebastien Benard. Building the level design of a procedurally generated metroidvania: a
hybrid approach, 2017.

[3] Plausible Concept. Bad north. Digital, 2018.

[4] Steve Dahlskog, Julian Togelius, and Mark J. Nelson. Linear levels through n-grams. In
Proceedings of the 18th International Academic MindTrek Conference on Media Busi-
ness, Management, Content & Services, pages 200–206, 2014.

[5] Isaac Dart and Mark J. Nelson. Smart terrain causality chains for adventure-game puzzle
generation. In 2012 IEEE Conference on Computational Intelligence and Games (CIG),
pages 328–334, 2012.

[6] Jonathon Doran and Ian Parberry. A prototype quest generator based on a structural
analysis of quests from four mmorpgs. In Proceedings of the 2nd International Workshop
on Procedural Content Generation in Games, pages 1–8, 2011.

[7] Clara Fernández-Vara and Alec Thomson. Procedural generation of narrative puzzles in
adventure games: The puzzle-dice system. In Proceedings of the The third workshop on
Procedural Content Generation in Games, page 12, 2012.

[8] Table Flip Games. Sure footing. Digital, 2018.

[9] Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. Doom level generation
using generative adversarial networks. In 2018 IEEE Games, Entertainment, Media Con-
ference (GEM), pages 316–323, 2018.

[10] Marco Krüger Ian Wadham. Kgoldrunner. Digital, 2003.

[11] Adrian Carmack Kevin Cloud Tom Hall John Carmack, John Romero. Doom. [CD-
ROM], 1993.

[12] Daniel Jurafsky and James H. Martin. Speech and Language Processing. 2006.

[13] S. Karakovskiy and J. Togelius. The mario ai benchmark and competitions. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(1):55–67, 2012.

56

BIBLIOGRAPHY 57

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-
erative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, pages 1–1, 2020.

[15] Isaac Karth and Adam M. Smith. Wavefunctioncollapse is constraint solving in the
wild. In Proceedings of the 12th International Conference on the Foundations of Dig-
ital Games, page 68, 2017.

[16] Darius Kazemi. Spelunky generator lessons, 2013.

[17] Barbara De Kegel and Mads Haahr. Procedural puzzle generation: A survey. IEEE
Transactions on Games, pages 1–1, 2019.

[18] Marian Kleineberg. Infinite procedurally generated city with the wave function collapse
algorithm, 2019.

[19] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In 2015 IEEE International Conference on Computer Vision (ICCV), pages
3730–3738, 2015.

[20] Ricardo Lopes, Elmar Eisemann, and Rafael Bidarra. Authoring adaptive game world
generation. IEEE Transactions on Computational Intelligence and AI in Games,
10(1):42–55, 2018.

[21] Takashi Miyamoto, Shigeru; Tezuka. Super mario bros. [Game Cartridge], 1985.

[22] Mossmouth. Spelunky. [Digital], 2008.

[23] Twin Motion. Deadcells. [Digital], 2017.

[24] Jens; McManus Stephen Persson, Markus; Bergensten. Minecraft. [Digital], 2011.

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In ICLR 2016 : International
Conference on Learning Representations 2016, 2016.

[26] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evo-
lution strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

[27] Noor Shaker, Miguel Nicolau, Georgios N. Yannakakis, Julian Togelius, and Michael
O’Neill. Evolving levels for super mario bros using grammatical evolution. In 2012 IEEE
Conference on Computational Intelligence and Games (CIG), pages 304–311, 2012.

[28] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content Generation in
Games. 2016.

[29] Takashi Tezuka Shigeru Miyamoto. The legend of zelda. [Game Cartridge], 1986.

[30] slicedlime. How villages are generated in minecraft 1.14, 2019.

58 BIBLIOGRAPHY

[31] Gillian Smith and Jim Whitehead. Analyzing the expressive range of a level generator. In
Proceedings of the 2010 Workshop on Procedural Content Generation in Games, page 4,
2010.

[32] Sam Snodgrass and Santiago Ontañón. Experiments in map generation using markov
chains. In FDG, 2014.

[33] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgard, Amy K.
Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation
via machine learning (pcgml). IEEE Transactions on Games, 10(3):257–270, 2018.

[34] Adam James Summerville and Michael Mateas. Sampling hyrule: Multi-technique prob-
abilistic level generation for action role playing games. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference, 2015.

[35] A Nielsen Company SuperData. 2019 year in review, 2020.

[36] T Thompson. Scalable level generation for 2d platforming games. 2016.

[37] Valve. Dota 2. Digital, 2013.

[38] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. Procedural generation of
dungeons. IEEE Transactions on Computational Intelligence and AI in Games, 6(1):78–
89, 2014.

[39] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam Smith, and Sebastian
Risi. Evolving mario levels in the latent space of a deep convolutional generative adver-
sarial network. In Proceedings of the Genetic and Evolutionary Computation Conference
on, pages 221–228, 2018.

[40] David Williams-King, Jörg Denzinger, John Aycock, and Ben Stephenson. The gold
standard: automatically generating puzzle game levels. In AIIDE’12 Proceedings of the
Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
pages 191–196, 2012.

[41] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. 2018.

Appendix A

Supplemental Material

[[[1,1],[14,1],[7,1]], [[1,4],[14,4],[7,14]], [[1,7],[14,7],[7,11]], [[1,11],[14,11],[7,4]],
[[1,14],[14,14],[7,4]], [[1,1],[14,14],[7,7]], [[1,4],[14,14],[7,11]], [[1,7],[7,14],[7,4]],
[[1,11],[7,1],[7,4]], [[1,14],[7,1],[14,14]], [[14,1],[1,1],[7,14]], [[14,4],[1,4],[7,14]],

[[14,7],[1,7],[14,11]], [[14,11],[1,11],[14,4]], [[14,14],[1,14],[7,14]], [[14,14],[1,1],[7,1]],
[[14,14],[1,4],[7,1]], [[7,14],[1,7],[14,14]], [[7,1],[1,11],[14,4]], [[7,1],[1,14],[7,14]],

[[14,1],[7,1],[1,14]], [[14,4],[7,4],[1,14]], [[14,7],[7,7],[7,14]], [[14,11],[7,11],[14,14]],
[[14,14],[7,14],[1,1]], [[1,1],[7,14],[7,1]]]

Figure A.1: A List of all start/orb/altar tile coordinates used for training the maze generator.

Solution Length Linearity
Mean 34.10 1.75
Min 13.0 0.0
Max 85.0 9.42
SD 11.88 0.95

Table A.1: Solution Length, and Linearity measured for 1000 maze levels.

Surface Area Spread Solution Length
Mean 658.87 1121.66 100.34
Min 535.0 602.0 39.0
Max 760.0 1833.0 159.0
SD 35.84 204.30 23.20

Table A.2: Surface Area, Spread, Solution Length measured for 1000 dungeon levels generated
using a small control graph.

59

60 Chapter A. SupplementalMaterial

Surface Area Spread Solution Length
Mean 714.57 1560.79 169.57
Min 607.0 814.0 80.0
Max 843.0 2451.0 261.0
SD 40.56 271.50 29.90

Table A.3: Surface Area, Spread, Solution Length measured for 1000 dungeon levels generated
using a medium control graph.

Surface Area Spread Solution Length
Mean 956.78 2443.86 403.13
Min 817.0 1600.0 268.0
Max 1109.0 3660.0 535.0
SD 46.72 359.73 44.25

Table A.4: Surface Area, Spread, Solution Length measured for 1000 dungeon levels generated
using a large control graph.

Appendix B

Dungeon Elements

Figure B.1: The 4 lift types featured in our example game: Normal, Lock/Key, Enemy, and
Plates.

Figure B.2: The 4 interactable objects required to unlock a lift. A weight a can be combined
with pressure plate b, and likewise, key c can be combined with lock d.

61

62 Chapter B. Dungeon Elements

Figure B.3: The 3 enemies types in our game: 4x basic Cube enemies, Tower, and Shield
Tower.

Figure B.4: The 3 reward types in our game: optional reward, map reward, powerup/upgrade
reward.

Curriculum Vitae

Name: Mathias Babin

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees: 2013 - 2017 B.Sc.

Honours and The Western Scholarship of Distinction
Awards: 2013

Dean’s Honor List x4
2014-2017

Western Science Entrance Scholarship
2018

Ontario Graduate Scholarship (OGS) x2
2018-2021

Related Work Teaching Assistant
Experience: The University of Western Ontario

2018 - 2020

63

	A Hybrid Approach to Procedural Dungeon Generation
	Recommended Citation

	tmp.1596814736.pdf.Ko5YT

