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Abstract 

The length-tension relationship of the triceps surae (TS) can be altered by changing the knee joint 

position, ankle joint position or both. However, studies exploring the effect of muscle length on triceps 

surae (TS) neuromuscular properties have focused only on changes in knee joint position, affecting only 

two of the three muscle components of the TS. Thus, the purpose of this study is to compare the 

neuromuscular properties of the three TS muscles during plantar flexion contractions at two ankle joint 

positions, 20° dorsiflexed (DF) and 20° plantar flexed (PF). Maximal isometric voluntary strength (MVC), 

voluntary activation, and evoked contractile properties of the ankle plantar flexors were compared 

between both ankle joint positions. Additionally, motor unit discharge rates (MUDRs) of the soleus, 

medial (MG) and lateral (LG) gastrocnemii were sampled during plantar flexion contractions at 25, 50, 75 

and 100% MVC using indwelling tungsten electrodes. Peak twitch torque and MVC were lower by ~70% 

and 61%, respectively, whereas maximal rate of torque relaxation was 39% faster in the PF compared 

with the DF position. Voluntary activation (~95%) was unaffected by changes in ankle joint position. LG 

MUDRs showed no differences between ankle joint positions, regardless of contraction intensity. 

Submaximal MG and soleus MUDRs showed no differences between the two ankle joint positions, 

however at 100% MVC both muscles had 9% and 20% higher rates in the DF position, respectively.  
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Lay summary 

The muscles of the calf region of the leg serve a major role in the successful completion of daily 

tasks, such as standing, walking and running. During walking, these muscles undergo constant 

changes in length with rotations of the knee and ankle joints. These length changes are associated 

with different nerve signaling rates, which can increase or decrease muscle activity, affecting 

how much force the muscles produce and ultimately the successful completion of these daily 

tasks. This thesis explores how muscle length changes affect muscle contractile properties and 

nerve signaling rates to the calf muscles in young adults (~24 years of age). The findings in this 

thesis indicate that the rate of nerve signaling was faster in two of the three muscles of the calf 

when they were at a longer compared with a shorter length. In the other muscle, there was no 

difference in the rate of nerve signaling between the two different muscle lengths. This work 

provides further information regarding the underlying mechanisms of the interaction between 

nervous system control and muscle function during contractions at different joint configurations, 

which mimic everyday movements.  
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Chapter 1 

1 Literature Review 

1.1 Skeletal muscle properties and architecture   

Skeletal muscle is composed of up to thousands of muscle fibres. Each muscle fibre is an 

elongated, multinucleated cell comprised of a number of myofibrils arranged in parallel. Within 

each myofibril are sarcomeres, the basic functional unit of muscle contraction, arranged in-

series. Mammalian skeletal muscle fibres are commonly classified into three main types based on 

the myosin heavy chain (MyHC) isoform present in the fiber (I, IIA and IIX) with MyHC I being 

the slowest and MyHC IIX the fastest. Examination of fibre type proportions of each muscle has 

revealed that muscles with a predominantly postural function such as the soleus and tibialis 

anterior have a high percentage of Type I fibres, whereas muscles with predominantly phasic 

activity such as the orbicularis oculi and triceps brachii have a high percentage of Type II fibres 

(Johnson et al., 1973). However, more recent work has found that muscle fibers can express 

combinations of these isoforms and as such muscle fiber types are not so discrete, but rather are 

on a continuum (Heckman & Enoka, 2012).  

Skeletal muscle architecture has been defined as the arrangement of muscle fibres within a 

muscle relative to the axis of force generation (Lieber, 1992). Different muscles within an 

individual demonstrate variability in architecture which strongly affects the function of the 

respective muscle. The main architectural features described in the literature are pennation angle, 

muscle fibre length and physiological cross-sectional area (PCSA). Pennation angle is defined as 

the fibre angle relative to the force-generating axis of the muscle (Lieber & Jan Friden, 2000). 

Cadaveric studies have shown that most muscles fall into the multi-pennate category meaning 

that their fibres are oriented at different pennation angles. Fascicle length, which is an estimate 

of muscle fibre length, is defined as the length of a line coincident with the fascicle between the 

deep and superficial aponeurosis of a muscle (Lieber & Jan Friden, 2000). The pennation angle 

and muscle fibre length measurements can be used to estimate the PCSA, which theoretically 

represents the sum of the cross-sectional areas of all the muscle fibres within a muscle (Lieber & 

Jan Friden, 2000). The PCSA is the only architectural parameter directly proportional to the 
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maximum tetanic tension generated by a muscle – the greater the PCSA, the greater the tension a 

muscle can produce.  

1.2 Voluntary limb movement  

In humans, voluntary limb movement is initiated in the pre-motor cortices of the brain ~100 ms 

prior to muscle activation (Chen et al., 1998). Electro-chemical signals, referred to as action 

potentials, travel from the brain through the corticospinal tract, ultimately acting upon an alpha 

motor neuron in the spinal cord (Liddell & Sherrington, 1925). The spinal motor neuron is 

composed of dendrites, a cell body, an axon and the axon terminal branches. The dendrites of an 

alpha motor neuron receive signals from the central nervous system and sensory neurons from 

the peripheral nervous system. If the net excitatory inputs are higher than the overall inhibitory 

inputs, the resting membrane potential of the cell body (-70 mV) will depolarize. If this 

depolarization reaches a certain threshold (-55 mV), an all-or-none action potential is generated 

from the axon hillock of the motor neuron (Enoka, 2006). The action potential travels to the axon 

terminals where it opens calcium channels leading to an influx of the ion into the neuron. This 

causes stored packets of acetylcholine to be released into the neuromuscular junction identified 

as the space between the neuron and the muscle fibres it innervates. The acetylcholine attaches to 

its receptors on the muscle fibre membrane, thus increasing the muscle fibre’s permeability of 

sodium and potassium (Enoka, 2006). With sufficient activation of these post-synaptic receptors 

the muscle fibre is depolarized which initiates the excitation-contraction (EC) coupling cycle. 

Electrical impulses travel along the muscle plasma membrane into the T-tubules. Stored calcium 

is then released from the sarcoplasmic reticulum and binds to troponin, which then slides off the 

tropomyosin allowing the actin and myosin contractile filaments to bind. Once the myosin 

releases the adenosine diphosphate and inorganic phosphate bound to it, a jerk is created causing 

the myosin head to pull on the actin thus shortening the sarcomere by bringing the Z-lines 

together. The cross-bridge cycling of the actin-myosin complex results in the sarcomere 

shortening. The additive effect of many sarcomeres being shortened acts to shorten the muscle 

which transfers the force onto bone through the musculotendinous junction producing angular 

joint rotation (Enoka, 2006). 
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1.3 The motor unit  

The motor unit is the smallest functional component of the neuromuscular system. It consists of 

the motor neuron and all the muscle fibres it innervates. Each muscle is comprised of a 

population of motor units that vary in number (from a few tens to several hundred) and 

innervation ratio (number of muscle fibres innervated by one motor neuron) (McNeil et al., 2005; 

Boe et al., 2006; Stevens et al., 2013). The cell bodies of motor neurons that innervate a single 

muscle are arranged in a longitudinal cluster in the spinal cord or brainstem known as a motor 

neuron pool. The muscle fibres that make up a given motor unit are uniform in their 

histochemical and biochemical properties, although these vary considerably among motor units 

(Bigland-Ritchie et al., 1998). Motor units are usually classified into three different types based 

on their contractile speed and sensitivity to fatigue: slow, fatigue resistant, fast but fatigue 

resistant and fast fatigable (Bigland-Ritchie et al., 1998).  

Voluntary action is achieved through the regulation of multiple motor units within each muscle’s 

motor neuron pool in coordination with other muscles. There are two mechanisms through which 

motor units grade force: 1) temporal regulation and 2) spatial regulation (Adrian & Bronk, 1928). 

Temporal regulation, referred to as rate coding, involves modulating the rate at which the motor 

neuron transmits action potentials to the muscle. The discharge rates required to elicit a given 

force from each unit depend critically on the contractile speed of the motor unit in question: slow 

units generate more relative force at low excitation rates than do fast ones (Bigland-Ritchie et al., 

1998). When first recruited during voluntary contractions, human motor units fire at 6 – 8 Hz 

(Bigland-Ritchie et al., 1998). The upper limit of motor unit discharge rates is different in human 

muscles, with maximal discharge rates of 16 Hz in the soleus (Dalton et al., 2009), 22 Hz in the 

gastrocnemii (Graham et al., 2016; Kirk et al., 2016), 23 Hz in the hamstrings (Kirk & Rice, 

2017), 25 Hz in the quadriceps (Kamen & Knight, 2004) 47 Hz in the superior trapezius (Kirk et 

al., 2019). Maximal motor unit discharge rates within a muscle differ under different conditions 

such as fatigue length and adapted states such as training, aging and disease (Bigland-Ritchie et 

al., 1998; Kirk & Rice, 2017). Spatial regulation, referred to as motor unit recruitment, involves 

increasing or decreasing the number of active motor units within a muscle. According to the 

Henneman’s size principle, the order in which motor units are recruited is determined by the 

motor unit’s size: smaller motor units are recruited before larger motor units. (Henneman et al., 
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1964). Low threshold, slow type motor units have lower innervation ratios and longer 

contraction times as compared with higher threshold, fast type motor units. This finding is 

supported by reports from the first dorsal interosseous (Moritz et al., 2005), biceps brachii 

(Gydikov & Kosarov, 1974), soleus (Oya et al., 2009), gastrocnemii (Hali et al., 2019) and elbow 

extensors (Harwood et al., 2013), in which low threshold motor units showed lower motor unit 

discharge rates than the later recorded higher threshold motor units. The relative contribution of 

rate coding and recruitment in muscles is known to vary depending on the muscle and its 

function.  For example, the upper limit of recruitment for hand muscles is ~50–75% of MVC 

(Kukulka & Clamann, 1981; Thomas et al., 1986; Moritz et al., 2005), whereas the biceps 

brachii, tibialis anterior, soleus and gastrocnemii have motor units that are recruited at ~75% 

MVC or above (Kukulka & Clamann, 1981; Van Custem et al., 1997; Oya et al. 2009; Hali et al. 

2019). In theory, to achieve maximal voluntary force within a muscle, complete recruitment of 

all motor units with each being activated at its highest absolute discharge rate would occur.  

 

 

Figure 1. Diagram of three motor units (MU). (Adapted from 

http://www.saptstrength.com/blog/2014/10/27/rate-of-force-development-what-it-is-and-why-

you-should-care) 
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1.4 Proprioception  

Proprioception is the sense of position and movement of body parts relative to one another 

(Macefield & Knellowlf, 2018). This awareness is achieved through sensory input provided by 

various sources in the peripheral nervous system. Joint receptors contribute to proprioception 

mostly at the extreme ends of the normal range of motion (Burgess & Clark 1969; Clark & 

Burgess 1975). The sense of muscle tension is largely attributed to Golgi tendon organs which 

respond to the force a muscle produces (Houk & Henneman, 1967). Muscle spindles, which are 

stretch-sensitive mechanoreceptors found in all limb skeletal muscle, provide a significant 

contribution to proprioception (Macefield & Knellowlf. 2018). The spindle’s function as a length 

detector comes from its anatomical relationship with the muscle it belongs to. Spindles consist of 

a bundle of intrafusal muscle fibres that lie parallel to the extrafusal muscle fibers. As such, 

when the length of the muscle fibre is altered, so is the length of the spindle intrafusal fibres and 

this change is detected by the sensory receptors in the spindle. This stretch is then transduced 

into action potentials from the muscle spindle (Bewick & Banks, 2015). The central nervous 

system provides motor innervation to muscle spindles via gamma motor neurons which actively 

modulate the spindle’s stretch sensitivity. This contraction does not make a significant 

contribution to the overall force the muscle produces due to the small cross-sectional area of the 

intrafusal fibres, yet it is sufficient to deform the sensory terminals of the spindle which provide 

sensory information regarding muscle length (Kuffler et al., 1951). Despite the lack of 

contribution to force, feedback from the contracting intrafusal spindle fibers provides a 

significant contribution to the contracting motor neuron pool as demonstrated in the literature. 

These studies report that discharge rates of motor axons with deprived spindle feedback reach 

~2/3 of those with intact sensory feedback (Gandevia et al., 1990; Gandevia et al., 1993).  

1.5 Electromyography  

Surface electromyography (EMG) is a non-invasive technique used to assess global muscle 

activity over the surface of the skin. This technique is affected by multiple factors such as 

thickness of subcutaneous tissue and inter-electrode distance among other factors (Farina, 2006). 

For this reason, more invasive techniques have been developed to record individual motor unit 

properties. The fine-wire technique is used to record single motor unit activity by insertion of 
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electrodes into the muscle. Each electrode contains two stainless steel wires threaded and hooked 

at the tip of a hypodermic needle which is inserted into the muscle and slowly withdrawn leaving 

the wire electrodes in the muscle. When the signal-to-noise ratio is high, this technique can 

follow motor units throughout the full range of contraction intensities. However, it often has a 

very low yield, because once the wires have been hooked on to the muscle, the experimenter 

cannot adjust their position to increase the number of motor units recorded. The monopolar 

tungsten needle electrode can also be used to record motor unit activity in the muscle. This 

technique allows the experimenter to continuously move the electrode in the muscle during a 

contraction in order to sample a larger range of motor units. The inherent limitation of this 

technique is not being able to follow recruitment and derecruitment of individual motor units. 

For the purpose of this thesis, we used a monopolar tungsten needle to record motor unit trains. 

This allowed us to create a motor unit discharge rate profile for each subject at all contraction 

intensities including maximal voluntary contraction. Despite small electrode movements, offline 

analysis has shown that active motor unit trains can be identified for short contraction durations.  

1.6 The effect of muscle length on force production and 

motor unit properties  

In order for a maximally activated muscle to generate the greatest active isometric force, its 

sarcomeres must be at a length which allows for optimal overlap of myofilaments (Blix, 1984). 

This can be explained by the sliding filament and cross-bridge theories which state that active 

force of an isometric contraction depends on the number of myosin heads that can bind with 

actin and contribute to force generation (Huxley, 1957). Thus, active force decreases when a 

contraction is performed at lengths shorter or longer than that which allows for optimal actin-

myosin overlap. In addition, studies report that the time course of a muscle twitch is lower when 

the muscle is in a shortened compared with a lengthened position (Marsh et al. 1981; Bigland-

Ritchie et al., 1992). Furthermore, when stimulating human muscles such as the tibialis anterior, 

abductor digiti minimi and hamstrings, higher rates of stimulation are needed to reach tetanic 

fusion in a shortened compared with a lengthened position (Gandevia & McKenzie, 1988; Marsh 

et al., 1981; Kirk et al., 2017).  Theoretically, this suggests that motor unit discharge rates in a 

short muscle should be higher compared with a lengthened muscle in order for torque fusion to 
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occur. Several studies have explored the changes in muscle activity with alterations in muscle 

length and have reached conflicting conclusions.  

Using surface EMG, both increases (Heckathorne et al., 1981; Lunne et al., 1981) and decreases 

(Fugl-Meyer et al., 1979; Cresswell et al., 1995) in the level of EMG have been reported in 

response to muscle length changes. More invasive techniques have also been used to assess the 

effect of muscle length on motor unit properties. In the tibialis anterior, low threshold (<10% 

maximal voluntary contraction) motor unit discharge rates are higher in a shortened compared 

with a lengthened position (Vander Linden et al., 1991; Pasquet et al., 2005) whereas maximal 

motor unit discharge rates (100% maximal voluntary contraction) show no change (Bigland-

Ritchie et al., 1992), in a shortened compared with a lengthened muscle. Motor unit discharge 

rates have been reported to be higher in the shortened position in the biceps brachii (Christova et 

al., 1988) and hamstrings (Kirk et al., 2017), whereas no change has been reported in the triceps 

brachii (Del Valle et al., 2004). The reasons for these discrepancies remain unclear, however 

they can include the different EMG recording techniques used, the relative amount of shortening 

experienced by each muscle and task specificity likely varies among the different muscles. 

1.7 The triceps surae  

The triceps surae muscle group is comprised of the soleus and the medial (MG) and lateral (LG) 

gastrocnemii which contribute ~ 60, 25, and 15% of the total physiological cross-sectional area 

of the triceps surae, respectively (Morse et al., 2005). The soleus crosses the ankle joint 

contributing only to plantar flexion. It is composed of ~85% type I muscle fibres (Johnson et al. 

1973) and is engaged chronically during any postural adjustments (Héroux et al., 2014). The 

gastrocnemii cross both the knee and ankle joints, thus contributing to plantar flexion and knee 

flexion. The MG and LG are composed of ~50% type I muscle fibres (Johnson et al., 1973) and 

are predominantly active during fast, explosive movements (Herzog et al., 1993). The soleus has 

a muscle spindle density ~2.5 fold greater than that of the gastrocnemii (Voss, 1971; Banks, 

2006) and receives greater spindle feedback (Tucker & Türker, 2004). The soleus, MG and LG 

account for ~70, 20, and 10% of the plantar flexion torque produced by the triceps surae, 

respectively (Fukunaga et al., 1992). Furthermore, these muscles display differences in muscle 

fibre length and pennation angle regardless of knee or ankle joint position (Kawakami et al., 

1996).  
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The gastrocnemii display higher maximal steady-state motor unit discharge rates (~23 Hz) 

compared with the soleus (~16 Hz) (Bellemare et al., 1983; Dalton et al., 2009; Graham et al., 

2016; Kirk et al., 2016). The soleus, MG and LG recruit motor units up to ~ 100%, ~90% and 

~90% MVC during voluntary contractions, respectively (Oya et al., 2009; Hali et al., 2019). It 

has been reported that the heads of the gastrocnemii demonstrate different activation patterns 

when participants perform a balancing task, with motor unit recruitment thresholds of the LG 

being up to 20 times higher than that of the MG (Héroux et al., 2014). This recruitment strategy 

remains the same during voluntary plantar flexion contractions (Hali et al., 2019). These studies 

suggest that the triceps surae demonstrates a preferential activation of motor units from muscles 

contributing most to plantar flexion torque, with the soleus being recruited first followed by the 

MG and then the LG.  

Interestingly, the gastrocnemii are the only muscles that demonstrate decreased motor unit 

discharge rates when placed in a shortened position by flexing the knee joint (Kennedy & 

Cresswell, 2001; Hali et al. 2019). Additionally, other work has proposed a reciprocal activation 

of the gastrocnemii and the soleus where a flexed knee joint position decreases gastrocnemii 

activation but increases soleus activation to compensate for the compromised torque producing 

capability of the gastrocnemii compared with an extended knee joint position (Kennedy & 

Cresswell, 2001; Lauber et al., 2014). However, work from our lab has shown that there is no 

change in soleus motor unit discharge rates during plantar flexion contractions with the knee 

joint in a flexed compared with an extended position (Hali et al., 2019). It remains unknown how 

the motor unit discharge rates of the triceps surae muscle group are affected by a change in ankle 

joint position, which would affect the length of the soleus and the gastrocnemii. 
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Figure 2. Anatomical view of the triceps surae (Adapted from https://westcoastsci.com/general-

blog/2018/6/4/soleus) 

1.8 Purpose and hypothesis 

The purpose of this study was to compare neuromuscular properties of the MG, LG and soleus at 

two ankle joint positions during the common task of plantar flexion throughout a range of 

submaximal and maximal contraction intensities. For this, maximal voluntary strength, 

contractile properties, voluntary activation and submaximal and maximal motor unit discharge 

rates of the triceps surae muscles were recorded at two ankle joint positions: 20° dorsiflexed 

(lengthened) and 20° plantar flexed (shortened). Given the faster contractile properties of the 

shortened triceps surae (Sale et al., 1982), it was hypothesized that MG, LG and soleus motor 

unit discharge rates would be higher in the PF compared with the DF position. The interpolated 

twitch technique was used to assess maximal voluntary activation at both joint positions. 

Tungsten microelectrodes were used to record motor unit discharge rates from each muscle 

during separate steady state 3-10 s isometric plantar flexion contractions at 25, 50, 75, and 100% 

maximal voluntary contraction at each ankle joint position. Participants visited the lab multiple 

times to repeat the intervention in order to sample from many motor units. 
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Chapter 2 

2 Effect of ankle joint position on triceps surae motor unit 

discharge rates 

2.1 Introduction  

The length-tension relationship indicates that the maximal voluntary isometric force produced by 

a muscle depends on the length of the muscle (Gordon et al. 1966). This can be explained by the 

sliding filament and cross-bridge theories which state that the force produced during an isometric 

contraction depends on the number of myosin heads that bind to actin and contribute to force 

generation (Huxley, 1957). Thus, force decreases when a contraction is performed at lengths 

shorter or longer than that which allows for optimal actin-myosin overlap. Studies exploring 

muscle length changes in humans report that the time course of a muscle twitch is longer when 

the muscle is in a shortened compared with a lengthened position (Marsh et al. 1981; Bigland-

Ritchie et al., 1992). When electrically stimulating human muscles, higher rates of stimulation 

are required to reach tetanic fusion in a shortened compared with a lengthened muscle (March et 

al. 1981; Gandevia & Mckenzie, 1988; Kirk & Rice, 2017). Thus, in principle, motor unit 

discharge rates (MUDRs) should be higher in a shortened compared with a lengthened muscle in 

order for optimal torque fusion to occur. However, studies exploring MUDRs across different 

muscle lengths have reported conflicting results. Submaximal MUDRs have been reported to be 

higher in the shortened biceps brachii (Christova et al., 1998) whereas no change has been found 

when comparing submaximal MUDRs between two different muscle lengths in the triceps 

brachii (Del Valle & Thomas, 2004). In the tibialis anterior, submaximal MUDRs were higher 

when the muscle was shortened (Vander Linden 1991; Pasquet et al., 2005) whereas maximal 

MUDRs at maximal voluntary contraction forces showed no difference between muscle lengths 

(Bigland-Ritchie et al., 1992). In the hamstrings, both submaximal and maximal MUDRs were 

higher in the shortened compared with a lengthened position (Kirk & Rice, 2017). The 

A version of this chapter has been submitted to Experimental Brain Research. Hali, K., Zero, 

A.M. & Rice, C.L. (2020) Effect of ankle joint position on triceps surae contractile properties 

and motor unit discharge rates.  
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gastrocnemii are the only muscles that demonstrated decreased MUDRs when placed in a 

shortened position by flexing the knee joint (Hali et al., 2019; Kennedy & Cresswell, 2001) 

The bi-articular medial (MG) and lateral (LG) gastrocnemii together with the mono-articular 

soleus form the triceps surae muscle group. The length-tension relationship of the triceps surae 

can be altered by changes in the angle of the knee joint, ankle joint, or both. Flexion of the knee 

joint leads to shortened gastrocnemii with no length changes in the soleus (Lauber et al., 2014). 

It has been proposed from surface electromyography (sEMG) recordings that when the knee joint 

is flexed, there is an increase in soleus activity and a decrease in gastrocnemii activity  (Kennedy 

& Cresswell, 2001). Studies exploring individual motor unit properties demonstrated a decrease 

in submaximal gastrocnemii MUDRs and increased motor unit recruitment thresholds in the 

shortened compared with the lengthened gastrocnemii (Hali et al., 2019; Kennedy & Cresswell, 

2001; Lauber et al., 2014). However, no change in soleus MUDRs was found during plantar 

flexion contractions in a flexed compared to an extended knee joint position (Hali et al., 2019). It 

remains unclear how a change in ankle joint position, which affects the length of all components 

of the triceps surae (MG, LG and soleus) affects the neuromuscular properties of this muscle 

group. 

Thus, the purpose of this study is to compare neuromuscular properties of the MG, LG and 

soleus at two ankle joint positions during the common task of plantar flexion throughout a range 

of submaximal and maximal contraction intensities. For this, we recorded maximal voluntary 

strength, contractile properties, voluntary activation and submaximal and maximal MUDRs of 

the triceps surae muscles at two ankle joint positions: 20° dorsiflexed (lengthened) and 20° 

plantar flexed (shortened). Given the faster contractile properties of the shortened triceps surae 

(Sale et al., 1982), we hypothesized that MG, LG and soleus MUDRs will be higher in the PF 

compared with the DF position. The interpolated twitch technique was used to assess maximal 

voluntary activation at both joint positions. Tungsten microelectrodes were used to record 

MUDRs from each muscle during separate steady state 3-10 s isometric plantar flexion 

contractions at 25, 50, 75, and 100% maximal voluntary contraction at each ankle joint position. 

Participants visited the lab multiple times to repeat the intervention in order to sample from 

many motor units. 
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2.2 METHODS 

Participants 

Ten males (24 ± 3 years old, 81 ± 7 kg, 181 ± 5 cm) volunteered for the study. All participants 

were considered healthy, recreationally active, and free of neuromuscular disease. All 

participants gave oral and written consent prior to the testing. The study was approved by the 

local University’s Review Board for Health Sciences Research Involving Human Participants. 

Experimental arrangement  

Participants were seated upright in an isometric dynamometer used to record plantar flexion 

torque (Marsh et al 1981). All tests were conducted on the non-dominant (left) leg with the hip 

and knee joint angles positioned at 90°. The ankle joint angles tested were 20° dorsiflexion (DF; 

lengthened triceps surae muscles) and 20° plantar flexion (PF; shortened triceps surae muscles). 

The foot was secured to the dynamometer using two inelastic straps across the toes and dorsum 

of the foot and one at the ankle. A metal C-shaped bar pressing firmly against the distal aspect of 

the thigh minimized extraneous leg and hip movement during the contractions. Plantar flexion 

torques were transmitted through a rigid footplate and strain gauge mounted at the joint axis of 

rotation. Torque was recorded from the dynamometer, analog-to-digitally converted (Power 

1401, Cambridge Electronic Design), and sampled at 500 Hz (Spike2, Cambridge Electronic 

Design, Cambridge, UK). Real-time torque production was displayed on a computer screen ~ 1 

m away from the participant for visual feedback.  

All electrically stimulated properties were evoked via stimulation of the tibial nerve at the distal 

popliteal fossa using a stimulator (Model DS7AH; Digitimer, Welwyn Garden City, UK) with a 

200 microsecond square wave pulse delivered at 400 V. Current intensity was adjusted until 

there were no further increases in twitch amplitude, and then increased 20% to ensure 

supramaximal stimulation (60 – 120 mA). 

Electromyography  

Surface EMG (sEMG) from the triceps surae and tibialis anterior were recorded through  self-

adhering (GE Healthcare, resting ECG electrodes) electrodes arranged in a monopolar setup. For 

a global triceps surae sEMG measure, the active electrode was placed on the border separating 
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the MG, LG and soleus with the reference electrode placed over the calcaneal tendon. For 

antagonist coactivation measures, the active electrode was placed over the muscle belly of the 

tibialis anterior and the reference electrode over its tendon at the ankle. All sEMG signals were 

pre-amplified (100x), filtered between 10 Hz and 10 kHz (Neurolog, NL844, Digitimer, Welwyn 

Garden City, UK), and sampled at 2 kHz (Spike2, Cambridge Electronic Design).   

Intramuscular EMG recordings were obtained with custom-made insulated tungsten 

microelectrodes (123 micrometers in diameter and 45 mm length; Frederick Haer Company Inc, 

Bowdoin, ME, USA). The insertion sites were cleansed with 70% isopropyl-alcohol by swabbing 

the skin surface over the muscle bellies. Two sterile microelectrodes (connected to separate 

channels) were individually inserted by two operators. The microelectrode EMG signals were 

pre-amplified (100x), filtered between 10 Hz and 10 kHz (Neurolog; NL844, Digitimer, Welwyn 

Garden City, UK) and each channel sampled at 20 kHz (Spike2, Cambridge Electronic Design). 

Reference surface electrodes for the tungsten intramuscular electrodes were placed on the medial 

and lateral malleoli. A common ground electrode for both sEMG and intramuscular EMG was 

positioned over the patella. Audio and visual feedback were provided to each operator 

independently.  

Experimental procedure 

The starting ankle joint position was randomly chosen prior to initiation of the testing session. 

Participants performed two ~3 s isometric dorsiflexion maximal voluntary contractions (MVCs) 

to record maximal tibialis anterior activity for the coactivation sEMG normalization (details 

below). This was followed by two ~3 s isometric plantar flexion MVCs in order to establish the 

baseline maximal plantar flexion torque. If the difference between the first two dorsiflexion or 

plantar flexion MVC attempts was greater than 5%, participants performed a third MVC. All 

maximal efforts were separated by at least 3 min to avoid fatigue. All participants were provided 

with strong verbal encouragement and visual feedback during the MVC attempts. In order to 

assess plantar flexion voluntary activation, a supramaximal electrical square pulse was delivered 

1s prior to, at the plateau region and 1s following the plantar flexion MVC. Once baseline MVC 

values were determined, participants performed 3 – 10 s steady state contractions at four 

different contraction intensities (25, 50, 75 and 100% MVC) in a pseudo-randomized order with 

30 s (after 25% MVC contractions) to 180 s (after 100% MVC contractions) rest periods 
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between contractions to minimize fatigue. The ankle joint was placed in a neutral position (0°) 

during the rest periods to avoid the effects of prolonged stretch or shortening on the muscles of 

the leg (Guissard et al., 1988; Trajano et al., 2014). Prior to the subsequent contraction, the ankle 

joint was returned to the testing position and the contraction was performed ~5 s after the change 

in ankle joint position. Motor units (MU) were sampled during the plateau region of the 

contractions. To ensure collection of as many MU as possible, each microelectrode was 

manipulated and advanced slowly during the contraction (Dalton et al. 2009; Kirk & Rice, 2017). 

During one session, MU were recorded from each muscle during all contraction intensities. 

Several attempts were made at each contraction intensity until an MVC contraction was reduced 

to 95% of the baseline MVC, likely indicating fatigue and the session ended. Participants 

returned to the lab a minimum of 4 times in order to acquire a representative number of motor 

units from all three triceps surae muscles creating an adequate profile of MUDRs of their MU 

pools 

Data acquisition and analyses.  

Analysis was performed offline using Spike2 (Cambridge Electronic Design). For contractile 

properties of the evoked plantar flexion twitch, the following measurements were made: peak 

twitch amplitude, twitch time-to-peak tension, one-half relaxation time, contraction duration and 

peak rates of torque development and relaxation. Voluntary activation was calculated using the 

interpolated twitch technique as previously described (Todd et al., 2004). To measure maximal 

tibialis anterior neuromuscular activation, sEMG root-mean-squared (RMS) amplitude was 

calculated for a 1 s epoch at the plateau phase of a dorsiflexion MVC. This value was used to 

normalize equivalent epochs of tibialis anterior RMS sEMG for all other plantar flexion 

contraction intensities in order to assess coactivation. Submaximal (25, 50, 75% MVC) triceps 

surae sEMG RMS was calculated for a 1 s epoch at the plateau phase of the plantar flexion 

contractions and normalized to a 1 s epoch at the plateau phase of a plantar flexion MVC in the 

same ankle joint position.  

A template shape algorithm facilitated the process for the MU analysis, but visual inspection by 

an experienced operator was required to confirm spike allocation to each specific MU train. 

Inclusion criteria for MUs included: consistent shape as viewed in a sequential overlay of MU 

potentials, and a minimum of five contiguous action potentials per MU train with an interspike 
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interval coefficient of variation equal or less than 30% (Fuglevand et al. 1993). For statistical 

comparisons, the MU trains were grouped into four bins based on torque level: 25% bin 

containing torque levels 12.5 - 37.5 MVC; 50% bin containing torque levels 37.5 - 62.5% MVC; 

75%  MVC bin containing torque values between 62.5 – 87.5 % MVC; 100% MVC bin 

containing torque levels between 87.5 - 100% of MVC.   

 

 

 

Figure 3. Example of motor unit (MU) action potential trains recorded at 100% maximal 

voluntary contraction with the ankle joint in the plantar flexed position. a: voluntary isometric 

torque. b: intramuscular electromyography recorded using a tungsten intramuscular electrode 

into the medial gastrocnemius. c: surface electromyography recorded from the triceps surae. d: 

surface electromyography recorded from the tibialis anterior muscle for coactivation . e: overlay 
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of motor unit 1 (MU1; 22 interspike intervals; motor unit discharge rate 23.2 Hz) and motor unit 

2 (MU2; 15 interspike intervals; motor unit discharge rate 27.3 Hz) action potentials. 

Statistical analysis 

Analysis was performed in R (version 3.4.3). A paired two-tailed t-test was used to compare 

voluntary activation, MVC torque and twitch characteristics between the PF and DF ankle joint 

positions. A three-way Analysis of Variance (ANOVA) was used to compare the normalized 

sEMG for the triceps surae and tibialis anterior (coactivation) across all plantar flexion 

contraction intensities between the two ankle joint positions. A Tukey Post Hoc significance test 

was used to assess where the differences in coactivation exist. These data are reported as mean ± 

standard deviation.  

For MUDR comparisons, a mixed linear model was constructed using the lme4 package (Bates, 

Maechler & Bolker, 2012). In this model, we included MUDRs as the dependent variable with 

ankle joint position (DF and PF) and contraction intensity (25, 50, 75, 100% MVC) as fixed 

effects. We accounted for the inter-subject and day-to-day variability in MUDRs by including 

participants, MVC and day of testing as random effects. The statistical significance of the fixed 

effects (ankle joint position and contraction intensity) was tested by fitting the model with 

restricted maximum likelihood (REML) and deriving degrees of freedom via Satterthwaite 

approximation using the lmerTest package (Kuznetsova et al., 2017). When significance was 

found, we contrasted the estimated marginal means of the levels of significant effects with Tukey 

adjustments for multiple comparisons using the emmeans package (updated version of lsmeans 

in Lenth, 2016). The MUDRs recorded from each muscle (MG, LG and soleus) were analyzed 

separately. These data are reported in the text and displayed as least square means (95% 

confidence intervals). Alpha was set at 0.05.  
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2.3 Results 

Strength, voluntary activation, and contractile properties.  

Despite no difference in voluntary activation between the DF and PF ankle joint positions (p = 

0.33), plantar flexion MVC torque was 61% lower in the PF compared with the DF position (p < 

0.001). Similarly, peak twitch torque was 70% lower in the PF compared to the DF position (p < 

0.001). Half relaxation times (HRT) were ~37% slower in the DF compared with the PF ankle 

joint positions (p < 0.001) , whereas time-to-peak torque (TPT) was ~5% slower in the DF 

compared with the PF position (p = 0.16). Thus, overall contraction duration (TPT + HRT) was 

significantly lower in the PF compared with the DF position (p < 0.001). Normalized maximal 

rate of torque development and maximal rate of torque relaxation (s-1) were calculated by 

dividing the peak rate of torque development and peak rate of torque relaxation (Nm/s) by the 

twitch peak torque (Nm), respectively. Normalized maximal rate of torque development was not 

statistically different between the two positions (p = 0.34), whereas normalized maximal rate of 

torque relaxation was significantly faster in the PF compared to the DF position (p < 0.001) 

(Table 1). 

  
Parameter DF PF 

MVC (Nm) 284.8 ± 65 112.7 ± 31.1* 

VA (%) 94.5 ± 5.1 95.6 ± 6.4 

Pt (Nm) 39.5 ± 12.5 11.9 ± 4.8* 

TPT (ms) 109.2 ± 10.7 103.5 ± 11.0 

HRT (ms) 100.9 ± 7.2 64.2 ± 7.7* 

CD (ms) 210.1 ± 12.5 167.7 ± 10.3* 

NMRTD (s-1) 16.2 ± 1.0 16.9 ± 2.1 

NMRR (s-1) -12.2 ± 1.3 -7.5 ± 0.4* 

 

Table 1. Mean plantar flexion maximal voluntary contraction (MVC) torque, voluntary activation (VA) and twitch 

contractile properties (Pt = peak twitch torque; HRT = half relaxation time; TPT = time to peak torque; CD = 

contraction duration (TPT + HRT); NMRTD = normalized maximal rate of torque development; NMRR = 
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normalized maximal rate of torque relaxation) at two different ankle joint positions. PF refers to a plantar flexed 

ankle joint at 20°. DF refers to a dorsiflexed ankle joint 20°. Values are reported as mean ± standard deviation. * 

signifies the value is significantly different between positions (p < 0.05). 

Electromyography 

A significant interaction was detected between muscle x contraction intensity x joint position for 

the normalized sEMG values. No differences were detected for triceps surae normalized sEMG 

at 25 (p = 0.98), 50 (p = 0.37) and 75% MVC (p = 0.75) between the two ankle joint positions. 

Tibialis anterior coactivation normalized sEMG showed no significant differences during 25% 

MVC plantar flexion contractions in the DF (10.0 ± 3.6%) compared to the PF (18.1 ± 8.1 %) 

position (p = 0 .72), however it was significantly lower at 50 (p = 0.03), 75 (p < 0.001) and 100 

(p < 0.001) % MVC plantar flexion contractions in the DF (18.0 ± 6.0%; 27.8 ± 8.9% and 47.3 ± 

18.2% respectively) compared with the PF (34.3 ± 15.3 %, 52.8 ± 20.2 % and 82.0 ±  28.0% 

respectively) ankle joint position. 

A total of 2273 motor units were recorded from the three muscles of the triceps surae combined 

including both ankle joint positions (1144 in DF and 1129 in PF). The numbers of MG, LG and 

soleus motor units identified from each muscle across all four contraction intensities is given in 

Table 2. The MUDRs mixed linear models identified a significant interaction between 

contraction intensity and ankle joint position in the MG (p = 0.007) and soleus (p < 0.001), but 

not in the LG (p = 0.21). In the MG, MUDRs showed no differences between the ankle joint 

positions at 25 (p = 0.74), 50 (p = 0.12) and 75% MVC (p = 0.64), but at 100% MVC were ~9% 

higher in the DF compared with the PF position (p = 0.001). In the soleus, MUDRs showed no 

significant differences between the ankle joint positions at 25 (p = 0.36), 50 (p = 0.63) and 75% 

MVC (p = 0.73), but at 100% MVC were ~20%  higher in the DF compared with the PF position 

(p < 0.001). All three muscles showed a significant increase in MUDRs with contraction 

intensity (p <0.001) in both ankle joint positions (Figure 4). 
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Parameter Muscle Contraction intensity bins 
  

25% MVC 50% MVC 75% MVC 100% MVC 

  
DF PF DF PF DF PF DF PF 

 
MG 

        

# of MU 
 

149 129 129 118 91 85 44 63 

MU/person 6.1 ± 2.8 5.6 ± 2.5 5.5 ± 2.9 5.7 ± 2.8 5.1 ± 2.7 6.2 ± 2.7 6.5 ± 2.3 6.1 ± 2.8 

# of ISI 8.2 ± 4.6 8.2 ± 4.7 7.2 ± 4.4 7.5 ± 4.1 6.9 ± 4.2 6.7 ± 3 6 ± 1.9 6.3± 4 

CoV 9.3 ± 4.2 10.2 ± 4.6 10.2 ± 5 10.8 ± 4.8 10.7 ± 4.8 12.3 ± 5.1 13.8 ± 5.5 14 ± 5.8 

MVC%  23.4 ± 2.6 24.0 ± 1.9 47.7 ± 2.9 47.7 ± 2.2 72.9 ± 3.8  72.7 ± 3.4 97.6 ± 2.8 98.4 ± 4.5 
 

LG 
        

# of MU  134 118 89 96 51 60 28 43 

MU/person 5.8 ± 2.7 6.1 ± 2.7 5.9 ± 2.6 6.4 ± 3.1 5.9 ± 2.8 6.0 ± 2.7 6.6 ± 2.7 6.2 ± 2.9 

# of ISI 8.6 ± 5.1 7.8 ± 5.2 7.5 ± 4.6 8.8 ± 5.2 5.9 ± 2.4 6.3 ± 3 5.8 ± 2.2 6.3 ± 3 

CoV 10.3 ± 5.8 10.1 ± 5 11.7 ± 5.8 12.1 ±  4.3 11 ± 5.4 13.1 ± 5.6 12.1 ± 4.9 13.3 ± 6.3 

MVC%  24.1 ± 1.8 24.2 ± 1.9 48.6 ± 1.5 48.3 ± 2.1 72.3. ± 3.1 73.8 ± 3.1 97.5 ± 3.2 99.5 ± 5.4 
 

Soleus 
        

# of MU  191 178 126 106 58 64 54 45 

MU/person 5.8 ± 2.9 6.4 ± 2.6 5.6 + 3.3 6.3 ± 2.8 6 + 2.9 6.1 ± 2.6 5.3 ± 2.9 6.3 ± 2.4 

# of ISI 7 ± 3.3 7.9 ± 4.9 7.4 ± 5.3 7 ± 3.5 7.1 ± 6 6.4 ± 3 5.7 ± 3.0 6.6 ± 3 

CoV 8.6 ± 4.1 9 ± 4.7 9.7 ± 5.1 10.2 ± 4.6 10.2 ± 4.7 11.8 ± 5.2 12.1 ± 5 11.8 ± 5.7 

MVC%  24.2 ± 3.3 23.9 ± 2.1 48.3 ± 3.2 47.8 ± 2.1 72.0 ± 3.9 73.1 ± 3.5 97.1 ± 3.3 98.7 ± 5.0 

Table 2. Parameters of motor unit trains identified from the medial gastrocnemius (MG), lateral gastrocnemius (LG) 

and soleus at the two ankle joint positions for each contraction intensity binned as a percentage of the maximal 

voluntary contraction (MVC) plantar flexion torque. DF refers to a dorsiflexed ankle joint. PF refers to a plantar 

flexed ankle joint. The 25% MVC bin contains torque levels 12.5 - 37.5 MVC. The 50% MVC bin contains torque 

levels 37.5 - 62.5% MVC. The 75% MVC bin contains torque values between 62.5 – 87.5 % MVC. The 100% MVC 

bin contains torque levels between 87.5 - 100% of MVC.  # of MU refers to the total number of motor units 

collected. MU/person refers to the mean number of motor units identified from each individual. # of ISI refers to the 

mean number of interspike intervals used to assess the discharge rate of a motor unit train. CoV refers to the 

coefficient of variation in the interspike intervals used to assess the discharge rate of a motor unit train. MVC% 

refers to the plateau torque at which the motor units were collected. Values are reported as mean ± standard 

deviation.  
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Figure 4. Motor unit discharge rates from the medial gastrocnemius (MG), lateral gastrocnemius (LG) and soleus 

across two ankle joint positions for each contraction intensity set based on plantar flexion maximal voluntary 

contraction (MVC) torque. DF refers to a dorsiflexed ankle joint. PF refers to a plantar flexed ankle joint. The 25% 

MVC bin contains torque levels 12.5 - 37.5 MVC. The 50% MVC bin contains torque levels 37.5 - 62.5% MVC. 

The 75%  MVC bin contains torque values between 62.5 – 87.5 % MVC. The 100% MVC bin contains torque levels 

between 87.5 - 100% of MVC. Data are reported as means (95% confidence interval).  * signifies the value is 

significantly different between positions (p < 0.05).  
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Chapter 3 

3 Discussion and summary 

3.1 Discussion  

The purpose of this study was to compare the neuromuscular properties of the three components 

of the triceps surae between two ankle joint positions: 20 degrees PF (shortened triceps surae 

muscles) and 20 degrees DF (lengthened triceps surae muscles). Plantar flexion maximal 

voluntary torque was lower in the PF position, despite no changes in voluntary activation of the 

plantar flexors between the two ankle joint positions. Additionally, peak twitch torque was lower 

and half-relaxation time, contraction duration and normalized maximal rate of torque relaxation 

were faster in the PF position. Normalized sEMG showed significantly higher tibialis anterior 

coactivation during plantar flexion contractions in the PF compared with the DF position, 

whereas no changes were detected in triceps surae normalized sEMG between the two ankle joint 

positions. Finally, MG and soleus MUDRs were higher in the DF compared with the PF position 

only at 100% MVC, whereas there were no differences in LG MUDRs between the two ankle 

joint positions. In all three muscles, mean MUDRs increased with contraction intensity.  

Maximal plantar flexion torque was 61% lower in the PF compared with the DF position, despite 

plantar flexion voluntary activation showing no differences between the two ankle joint 

positions. Previous reports looking at the voluntary activation of plantar flexors (Kluka et al., 

2016), abductor digiti minimi, elbox flexors and tibialis anterior (Gandevia & Mckenzie, 1988) 

across different muscle lengths have also reported maximal voluntary activation levels 

independent of muscle length and a lower maximal torque in the shortened position. Peak twitch 

torque was also lower when the triceps surae muscles were shortened as has been previously 

reported in the literature (Sale et al., 1982; Landin et al., 2015; Kluka et al. 2016). Our findings 

provide further evidence that the central nervous system is capable of fully activating the ankle 

plantar flexors maximally regardless of ankle joint position. The differences in strength between 

the two positions can be explained by the suboptimal overlap of actin and myosin due to the 

shortening of the triceps surae components in the PF compared with the DF position, as indicated 

by the cross-bridge theory of contraction (Huxley, 1957). In this study we did not make direct 

measurements of muscle fiber lengths, but have assumed muscle length changes due to 
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alterations of the ankle joint position. In support of this assumption, previous work exploring 

muscle length changes has reported shorter MG, LG and soleus muscle fiber lengths when the 

ankle joint is placed in a PF compared with a DF position with the knee joint flexed at 90° 

(Kawakami et al., 1998). In addition to a decrease in twitch torque, plantar flexion contractile 

properties were faster when the muscles were in the shortened (PF) position. Similar findings 

have been previously reported in single isolated frog muscle fibers (Edman & Flitney, 1982), 

isolated cat muscle (Rack & Westbury, 1969) and in human muscles such as the tibialis anterior 

(Bigland-Ritchie et al., 1992), abductor digiti minimi, elbox flexors (Gandevia & Mckenzie, 

1988), hamstrings (Kirk & Rice, 2017) and ankle plantar flexors (Marsh et al. 1981; Sale et al., 

1982). The slowing of supramaximal twitch contractile properties and higher electrical 

stimulation rates required to reach tetanic torque fusion at shorter muscle lengths (Gandevia & 

McKenzie; 1988; Marsh et al. 1981; Kirk & Rice, 2017) suggest that higher maximal MUDRs 

may be required to generate a maximal voluntary contraction at a shorter muscle length. 

In agreement with other studies (Bigland-Ritchie et al., 1992; Del Valle & Thomas, 2004; Kirk et 

al. 2017), mean MUDRs were higher at greater levels of contraction intensity in the MG, LG and 

soleus during plantar flexion contractions at both ankle joint positions (Figure 4).  Therefore, rate 

coding appears to be a contributing mechanism throughout the range of isometric contractile 

intensity. For contraction intensities up to 75% MVC no differences in MUDRs were detected 

between the two joint positions, but at 100% MVC MUDRs in the MG and soleus were greater 

in the DF position. Previous work reports either no differences in maximal MUDRs between the 

lengthened and shortened tibialis anterior (Bigland-Ritchie et al., 1992) or higher maximal 

MUDRs in the shortened compared with the lengthened hamstrings (Kirk & Rice, 2017). In these 

studies, the muscles tested remained in the stretched or shortened position throughout the entire 

experimental procedure. It has been previously reported that static stretch of the muscle causes 

an inhibition of the motor neuron pool (Guissard, Duchateau, & Hainaut, 1988) and a decrease in 

maximal neural drive (Trajano et al., 2014). As such, recorded MUDRs could have been 

inhibited due to the prolonged stretch demonstrating no change (Bigland-Ritchie et al., 1992) or 

a decrease (Kirk & Rice, 2017) in the lengthened compared with the shortened muscle. In order 

to mitigate the effects of prolonged passive stretching of the triceps surae muscles in this study, 

the ankle joint was placed in a neutral position (0°) during the rest periods between subsequent 

contractions. Our data show that MG and soleus maximal MUDRs are higher when the muscles 
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are at a lengthened compared with a shortened position. It has been previously reported that the 

persistent inward current amplitude, which serves to amplify the synaptic input received at the 

motor neuron dendrites, was higher when the ankle was in a flexed compared with an extended 

position in the triceps surae motor neurons of the adult cat (Hyngstrom et al., 2007). When the 

antagonist (tibialis anterior and extensor digitorum longus) tendons were cut, the persistent 

inward current amplitude showed no difference between the different ankle joint positions. This 

provides evidence that Ia reciprocal inhibition from the antagonist muscle group has a 

fundamental role in modulating persistent inward current, thus affecting motor neuron 

excitability across different ankle joint positions (Hygstrom et al. 2007). In accordance with 

these findings, our data show that tibialis anterior coactivation was higher during plantar flexion 

contractions in the PF position, which leads to increased Ia inhibitory input from the antagonist 

to the triceps surae motor neuron pool, thus decreasing MUDRs in the shortened triceps surae 

muscles. This increased inhibition may serve an important role in modulating the motor neuron 

excitability of the triceps surae during the swing phase of gait, which begins with the ankle in the 

PF position, where these muscles are shortened. It is worth noting that there is a wide range of 

afferent feedback affecting a motor neuron pool. Muscle spindles are composed of neurons that 

are sensitive to both dynamic and static stretch, with the latter exerting an effect on both the 

primary (type Ia) and secondary (type II) afferents (Matthews 1962). Furthermore, muscle 

tension is detected through Golgi tendon organ feedback (Houk and Henneman 1967). Finally, 

joint receptors also contribute to the sense of joint positions (Mountcastcle and Powerll 1959). 

This study is unable to differentiate between the different sources of afferent feedback regulating 

the changes in MUDRs between the two ankle joint positions. It is most reasonable to assume 

that these changes are a result of an interplay of all afferent feedback sources affecting the triceps 

surae motor neuron pool.  

The higher maximal MUDRs in the lengthened MG and soleus may serve as a compensatory 

mechanism for the higher susceptibility of muscles to fatigue, as demonstrated by a greater 

decrease in muscle torque, when placed in a lengthened compared with a shortened position 

(Fitch & McComas, 1985; McKenzie & Gandevia, 1987)). As such, given the previously 

reported decrease in MUDRs during a sustained 100% MVC task (Bigland‐Ritchie et al., 1983; 

Dalton et al., 2010) and the higher susceptibility to fatigue at a longer muscle length (Fitch & 

McComas, 1985; McKenzie and Gandevia, 1987), higher MUDRs in the DF position may serve 
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to counteract the muscle’s susceptibility to fatigue in this position compared with a PF position. 

This may also explain why the differences in MG and soleus MUDRs between the two ankle 

joint positions were only evident during 100% MVC contractions and triceps surae normalized 

submaximal sEMG showed no differences between the two ankle joint positions. During 

sustained submaximal contractions, muscle EMG increases which can be explained by the 

recruitment of additional motor units to compensate for the fatigue in those initially activated 

(Fitch & McComas, 1985; Fuglevand et al., 1993; Weir et al., 2000; Griffin et al., 2001; 

Davidson et al., 2010). Previous studies have shown that the soleus, MG and LG are able to 

recruit motor units up to 100, 90 and 90% MVC, respectively (Hali et al., 2020; Oya, Riek, & 

Cresswell, 2009). For this reason, it may not be necessary to compensate for the increased 

fatiguability of the muscles in the lengthened position during submaximal (<100% MVC) 

contractions, as this can be done through recruitment of additional motor units.  

Surprisingly, we found no differences in LG maximal MUDRs between the DF and PF positions. 

Previous work has shown that the LG demonstrates higher motor unit recruitment thresholds 

compared with the MG and soleus when participants perform a balancing task (Héroux et al. 

2014) and during voluntary plantar flexion contractions (Hali et al. 2020), suggesting that the LG 

is comprised of higher threshold motor units compared to the other muscles of the triceps surae. 

An inverse relationship exists between Ia afferent feedback and the size of a motor neuron, 

meaning that lower threshold, small type motor neurons receive stronger Ia feedback compared 

with higher threshold, larger motor neurons (Windhorst & Kokkoroyiannis, 1991). Given the 

lack of a muscle length effect on LG MUDRs, our findings provide further support for the 

speculation that higher threshold motor neurons innervate this muscle. Another factor to consider 

is that all contractions in this study were performed in a flexed knee joint position. This has been 

suggested to lead to functionally insufficient gastrocnemii muscle fiber lengths compared with an 

extended knee joint position, which then results in the inhibition of the MG and LG motor 

neuron pools, as demonstrated by lower MUDRs and higher motor unit recruitment thresholds 

(Kennedy & Cresswell, 2001; Lauber et al. 2014; Hali et al. 2019). It is possible that the LG 

muscle fiber length in the DF position remains insufficient, leading to increased inhibition of its 

motor neuron pool at both ankle joint positions.  
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3.2 Conclusions  

This study compared the effect of the ankle joint position on the neuromuscular properties of the 

triceps surae muscle group. Consistent with previous results, we report a decreased strength, 

twitch torque and faster contractile properties when the triceps surae muscles were shortened. 

Our results demonstrate that maximal MUDRs are higher in the MG and soleus at a lengthened 

compared with a shortened muscle length. This may be a result of the increased Ia inhibitory 

inputs from the antagonist muscles and may serve as a compensatory mechanism for the greater 

susceptibility to neuromuscular fatigue of muscles in a lengthened position.  Lastly, our findings 

indicate that LG MUDRs are similar at both ankle joint positions, providing further support for a 

differential activation between gastrocnemii heads.   

3.3 Limitations  

A benefit of the tungsten microelectrode technique is the ability to record from a large sample of 

motor units during high intensity contractions. However, this technique does not allow the 

investigator to record from the same motor unit throughout multiple different contractions and 

therefore did not provide direct information about recruitment and derecruitment thresholds. 

Furthermore, recording from the same motor unit during contractions at two different ankle joint 

positions may have provided more concrete evidence of how motor unit discharge rates are 

modulated with changes in ankle joint position. This is challenging due to the difficulty of 

following the same motor unit during multiple contractions at two different muscle lengths using 

indwelling fine wire. 

In this study, muscle fibre length or pennation angle were not measured at the two ankle joint 

positions. The relative change in these architectural properties may affect how MUDRs are 

modulated in each individual muscle. Additionally, there were no direct measures of afferent 

feedback to the motor neuron pool. For this reason, the underlying mechanism behind the 

differences in MUDRs when compared between the two ankle joint positions may not be 

attributed solely to one source of afferent feedback. 

The wide range of neuromuscular strategies used to perform plantar flexion contractions was 

evident during our experimental sessions. An example is the relatively low medial and lateral 

gastrocnemii involvement in some participants during low intensity (<50% MVC) plantar flexion 
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contractions, especially at the plantar flexed (shortened muscles) position. Furthermore, we only 

tested young, healthy males in this study as an initial look into how the triceps surae component 

MUDRs are affected by a change in ankle joint position. This homogenous sample was chosen to 

minimize the potential confounding effect of sex or age in this modest sample size. For these 

reasons, findings should not be generalized to other populations.  

3.4 Future directions  

The triceps surae is a unique muscle group owing to the fact that it is composed of the biarticular 

gastrocnemii and the mono-articular soleus. As such, the length-tension relationship of this 

muscle group is affected by both changes in knee and ankle joint positions. Previous work has 

reported that the greatest changes in MG and LG length are found when comparing a fully 

extended knee joint and dorsiflexed ankle joint combination to a flexed knee joint and plantar 

flexed ankle joint combination (Kawakami et al., 1998). Therefore, it would be interesting to 

compare maximal MG and LG discharge rates between the two different length extremes.  

Using intramuscular fine-wire electromyography, the same motor unit can be recorded during 

plantar flexion ramp contractions in both ankle joint positions. Although the motor unit yield 

may be low, multiple testing sessions may allow for a reasonably-sized data set. This subset of 

motor units recorded from each muscle at both ankle joint positions will provide more direct 

evidence of how the motor neuron pool excitability of these three muscles is affected by the 

ankle joint position through measures of motor unit recruitment and derecruitment thresholds, 

and MUDRs at recruitment and during plateau contractions. 

It appears that there are many discrepancies in the literature regarding the effect of muscle length 

on MUDRs, with increases, decreases and no changes reported when comparing lengthened with 

shortened muscles (Christova et al., 1988; Vander Linden  et al., 1991; Bigland-Ritchie et al., 

1992; Kennedy & Cresswell, 2001; Del Valle et al. 2004; Pasquet et al., 2005; Lauber et al. 

2014; Kirk et al., 2017; Hali et al., 2019). As such, a study recording MUDRs during 

contractions at different muscle lengths in multiple muscles from the same individuals may be 

necessary in order to get a better understanding of how muscle length affects motor unit 

discharge rates.   
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