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Abstract 

A worldwide increase in demand for renewable fuels has revived interest in fermentatively 

produced butanol. However, butanol fermentation suffers from low product yields and 

productivity. The work presented in this thesis addresses part of these research and 

development needs at three levels: innovative fermentation process design; genetic 

manipulation for strain enhancement; and the development of a new tool for anaerobic 

process characterization and optimization. 

Product yield could be increased through traditional fermentation engineering. Co-

fermentation of butyric acid with glycerol increased the butanol yield from 0.45 mol/mol 

(mols C in butanol / mol C in substrates) to 0.51 mol/mol. In building on this concept, and 

capitalizing on the unique metabolism of Clostridium pasteurianum, an optimized glycerol to 

molasses (co-substrate) ratio was identified. C. pasteurianum produces butyric acid from the 

molasses sugars for later re-assimilation when consuming glycerol, resulting in a final 

product yield of 0.48 mol/mol. 

A sample of C. pasteurianum putative mutants was obtained from a collaborating researcher, 

who had generated the sample using random mutagenesis techniques. The growth and 

product profiles were characterized, displaying higher growth rates and an altered product 

profile when compared to the wild-type strain. The DNA was isolated and sequenced, which 

confirmed that it is a novel mutant population, and will allow for directed mutagenesis 

techniques to be used to replicate and characterize the mutations. 

Finally, it was found that the gas production of the fermentation yielded valuable data only 

observed at the reactor scale, and not during screening in shake flasks. To remedy this gap in 

data acquisition, a novel screening device was developed which collected off gas data from 

multiple shake flasks operating in parallel. The fermentations conducted at the shake flask 

scale matched previously reported results at the reactor level. 

In conclusion, this thesis shows possible ways to increase butanol yields through 

fermentation engineering, and to increase butanol production rates through strain 

development. It further led to development of a highly flexible screening device suitable to 

further optimization of this or other anaerobic fermentation processes. 
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Summary for Lay Audience 

While the most commonly known biofuel is currently ethanol, research has been ongoing to 

develop ways to produce another biofuel known as butanol. Butanol is similar to ethanol in 

that it is also an alcohol; however, butanol is a far more suitable biofuel for use with current 

engines and fuel infrastructure. In order to produce butanol in an environmentally friendly 

fashion, most research has turned to using bacteria to convert inexpensive wastes through 

fermentation. This approach comes with several obstacles though, as butanol fermentations 

will generally be slow, taking a long time to convert the waste to butanol, and require 

extremely large amounts of raw material in order to make the process worthwhile. 

The research conducted for this thesis addressed these shortcomings in two different ways: 

increasing how much butanol can be made from the wastes by adding specific compounds to 

the fermentation, and by using mutant strains of the bacteria that can produce butanol at a 

faster rate. For the first, an acid was added in small amounts to the fermentation, which had 

the effect of “pushing” the bacteria towards making more butanol and less by-products. 

Butyric acid from various sources was used to find a possible inexpensive source for the 

process. Regardless of the source, the presence of the acid increased how much butanol was 

produced. For the second shortcoming, a sample of bacteria was obtained from a 

collaborating researcher, who attempted to mutate the bacteria to create a population with 

faster growth in the fermentation. To prove these were indeed mutants, DNA sequencing was 

done to pinpoint where the mutations happened, and attempt to explain why they improved 

the bacteria. 

For both of these approaches, many test fermentations were conducted. To help with this, a 

new device was created that allowed for multiple tests to be conducted simultaneously, using 

small flasks containing a small amount of materials while still collecting large amounts of 

data. This prevented the need for large, expensive tests to be done one-at-a-time, and greatly 

increased the rate at which tests were conducted. 
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Chapter 1 

1) Introduction 

1.1) Background 

The overwhelming majority of current transportation infrastructure is dependent on 

petroleum-based fuels (Fulton et al. 2015). Advancements in battery technology have made 

electric vehicles a more viable option in the future, but in the intermediate timeframe a 

solution to move away from petroleum-based transportation fuels being used in internal 

combustion engines must be found. Currently, the most widely used biofuel is ethanol, for 

use blended with gasoline (Azadi et al. 2017). However, butanol is a superior biofuel when 

compared to ethanol, and can be produced via fermentation using inexpensive feedstocks 

such as glycerol and the microorganism Clostridium pasteurianum (Gautam and Martin 

2000; Biebl 2001). Fermentation of glycerol to butanol could serve as an effective method 

for butanol production for use either as a platform chemical or biofuel. 

Fermentative production of butanol was traditionally conducted using sugars as the carbon 

source, but even with switching to glycerol as a substrate, the process still suffers from 

several complications, primarily low productivity and unwanted by-products reducing the 

butanol yield. One strategy to overcome these complications is the addition of butyric acid 

directly to the fermentation medium, resulting in increased metabolic flux towards butanol 

production (Regestein et al. 2015). This butyric acid could be chemically pure, or in an effort 

to reduce costs, butyric acid could be generated by a different fermentative organism also 

using an inexpensive carbon source (Zhu and Yang 2004). This could allow for increased 

productivity and yield while avoiding costly pure substrates and chemicals. 

An alternate strategy that could achieve similar goals would be to utilize the natural 

metabolism of C. pasteurianum in a dual-substrate fermentation, first producing butyric acid 

from one substrate subsequently using that butyric acid when fermenting glycerol (Sabra et 

al. 2014; Kao et al. 2013). When fermenting sugars, C. pasteurianum produces butyric acid 

as the main product rather than butanol. It is possible to have a small amount of sugars to 

introduce butyric acid into the fermentation medium, which is then subsequently taken up by 

the cells (Sabra et al. 2014; Kao et al. 2013). This strategy would eliminate the need to use 
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chemically pure butyric acid, or even the requirement for introduction of chemicals to a 

process already under way, thus reducing the cost and operational complexity of butanol 

fermentations while raising the butanol yield and productivity. However, such a system 

would require a delicate ratio between the substrates in order to prevent excess butyric acid 

from being produced and inhibiting the later fermentation. 

The interest in butanol fermentation with C. pasteurianum has resulted in mutagenic work to 

be undertaken, either using random mutagenesis and selection, or directed mutagenesis to 

target genes within the glycerol-butanol metabolic pathway (Pyne, Sokolenko, et al. 2016; 

Gallardo, Alves, and Rodrigues 2017; T. Ø. Jensen et al. 2012). Random mutagenesis can 

produce highly productive strains with a mutation in a metabolic pathway previously not 

thought to have a significant effect on the product profile (Sandoval et al. 2015). Directed 

mutagenesis allows for specific investigation of the consequences of knocking out genes 

along the glycerol-butanol pathway, as well as confirmation of effects seen in randomly 

generated mutants (Pyne, Sokolenko, et al. 2016).  

Investigations with the goal of optimization or screening fermentation conditions will require 

a high number of fermentations to be conducted to determine conditions with highest yield 

and productivity. To this end, many initial screening experiments will be conduced in shake 

flasks, to limit the amount of material required while allowing ease of handling. However, 

this also limits the amount of online monitoring possible, notably in the gas phase (Payne, 

Davison, and Tate 1990). Online off-gas analysis allows for directly following the 

fermentation progress, and often will reflect fermentation conditions such as substrate or 

product inhibition, oxygen limitation, substrate limitation (Anderlei et al. 2004). 

Unfortunately, the majority of small scale off gas analysis systems are not suited for anerobic 

fermentations like those using C. pasteurianum. This lack of online signals results in certain 

phenomena not being detected until fermentations have been scaled up to the reactor scale, or 

missed completely if the fermentation is not scaled up. 
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1.2) Literature Review 

1.2.1) Butanol as a biofuel and platform chemical 

Interest in producing chemicals using renewable resources and environmentally friendly 

methods has increased dramatically in recent years, largely due to concerns regarding climate 

change and volatility of petroleum products (Ranjan and Moholkar 2012). Butanol is both a 

promising biofuel alternative and a valuable industrial chemical. As a biofuel, butanol has 

many superior qualities over the current most common biofuel, ethanol. Butanol is a 4-

carbon chain alcohol, which gives a higher heating value over ethanol, a 2-carbon alcohol. 

As well, butanol is less volatile and corrosive when compared to ethanol, and can be used in 

both gasoline and diesel (30% butanol 70% diesel blend) powered vehicles without 

modification to the engine (Campos-Fernández et al. 2012; Rakopoulos et al. 2010; Dernotte 

et al. 2010).  

Butanol is also used as an industrial solvent and platform chemical, allowing for butanol to 

be sold at a higher price than when sold as a fuel (Durre 2008). Butanol is a precursor for 

butyl acrylate, used in adhesives and paper and textile finishes to the scale that in 2008 

almost half of butanol produced worldwide was converted into acrylates (Zeng, Kuo, and 

Chien 2006; Durre 2008). Other industrial uses for butanol range from polymer production 

for surface coatings to flocculants (Durre 2008). 

The main industrial method for production of butanol has evolved since production began. 

Originally conducted via the Weizmann process in the early 1900’s, the process converted 

starch substrates into acetone and butanol using Clostridia acetobutylicum, known as 

Acetone-Butanol-Ethanol (ABE) fermentation (Weizmann and Rosenfeld 1937). The 

Weizmann process was second only to ethanol fermentation in terms of industrial importance 

at the beginning of the 20th century. However, the availability of cheap petrochemical by-

products allowed for chemical methods to become the economically superior method of 

butanol production (Rose 1961). Initially, condensation of acetaldehyde, and subsequent 

dehydration/hydration steps was used to produce butanol. However, development of the oxo 

synthesis, in which propene is upgraded to butyrlaldehyde (or isobutyrlaldehyde), and 

subsequently hydrogenated to butanol (and isobutanol), allowed for this process to become 

dominant for butanol production (Uyttebroek, Van Hecke, and Vanbroekhoven 2015). In 
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previous decades, the volatility of the petrochemical market has led to a renewed interest in 

the biological production of butanol, as the price of butanol is directly impacted by the price 

of crude oil (Green 2011b). In 2012, the worldwide market was approximately 350 million 

gallons of butanol sold per year, with the international price being approximately $4 per 

gallon (Ranjan and Moholkar 2012). The renewed interest in biological butanol production 

has resulted in multiple areas of study being developed to increase the productivity and 

selectivity of butanol fermentation processes (Ranjan and Moholkar 2012; Kießlich et al. 

2017; Groeger et al. 2017). In addition, China has heavily invested in producing butanol by 

biological means, with several plants having opened in order to attempt to reach 1 million 

tons butanol produced per year (Ni and Sun 2009). Mainly, research explores how to 

overcome ABE fermentation complications like high substrate costs and low fermentative 

productivity. 

1.2.2) Traditional Acetone-Butanol-Ethanol fermentations 

As mentioned in Section 1.2.1, butanol has historically been produced using ABE 

fermentation. Organisms such as C. beirerinckii, and C. saccharobutyrilcum have been used 

in addition to C. acetobutylicum in ABE fermentation processes. However, ABE 

fermentations suffer from major obstacles for high production such as product (butanol) 

inhibition of the fermentative organisms, and displaying a biphasic growth patterns that limit 

the range of fermentation strategies which can be employed (Zhang et al. 2013). Biphasic 

growth begins with an initial growth phase which is acidogenic and produces compounds 

such as acetic, butyric, and lactic acid. The second growth phase is solventogenic, in which 

these acids are assimilated into the cells and the main products are butanol, ethanol, and 

acetone (Buendia-Kandia et al. 2018). The eventual drop in pH (pH < 5) from the acid 

production signals the beginning of the solventogenic phase. This biphasic growth creates 

novel difficulties when attempting to operate a continuous fermentation, and can generally 

limit the use of ABE fermentations to batch or fed-batch operations unless the cells have 

been fixed to a support (Friedl, Qureshi, and Maddox 1991). Most plants operate in a semi-

continuous manner, using several large fermenters simultaneously. At the end of the 

fermentation, the products are distilled to recover acetone, butanol, and ethanol in an 

approximately 3:6:1 ratio (Green 2011b). 
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The second major obstacle for fermentatively produced butanol is product inhibition due to 

the toxicity of the butanol itself to the microorganism (Bowles and Ellefson 1985). Due to 

this, most fermentations without active butanol removal reach close to 13 g/L butanol as a 

final concentration. At higher butanol concentrations, cells lose the ability to uptake sugars 

from the medium (Jones and Woods 1986). Due to its hydrophobic nature, butanol increases 

membrane fluidity, which destabilizes it and disrupts the effectiveness of the membrane 

bound proteins (Jones and Woods 1986).  

These two major obstacles for ABE fermentation require process modifications to overcome 

which can increase the overall cost of the processes, and as a result, using an inexpensive 

carbon feedstock is critical to keep costs low. 

1.2.3) Butanol Fermentations on cellulose derived sugars 

 

 

Figure 1.1: Molecular structure of cellulose (adapted from O’Sullivan 1997) 

Considerable research has been done, and continues to be done, on developing methods 

which utilize inexpensive lignocellulosic-derived sugars as the carbon source for ABE 

fermentations (Jang et al. 2012; Gottumukkala, Haigh, and Görgens 2017; Nasib Qureshi and 

Ezeji 2008). Deriving sugars from the lignocellulosic biomass has proven difficult, as the 

products are mixed with inhibitory compounds, as well as difficulty splitting the β1-4 link 

between glucose monomers found in cellulose (Figure 1.1). A brief overview of some work 

using sugars extracted from various biomass substrates, using various methods of extraction 

and further treated by enzymatic saccharification summarized in Table 1.1. 
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As can be seen in Table 1.1, the results of ABE fermentations using lignocellulosic sources 

can vary significantly in productivity and butanol yield. For example, Wang and Chen 

matched the sugar composition extracted from corn stover with chemically pure sugars, and 

were able to compare the fermentation products between the lignocellulosic sugars and the 

chemically pure sugars (Wang and Chen 2011). When fermentations were conducted using 

C. acetobutylicum and the model solution (30 g/L dextrose, 15 g/L xylose, and 5 g/L 

cellobiose) the fermentation produced 10.9 g/L total solvents and 4.13 g/L total acids (Wang 

and Chen 2011). However, when the hydrolysate mixture was used, the presence of the lignin 

compounds produced an inhibitory effect on the organism, slowing growth and reducing the 

solvent production in favour of acid production. At the conclusion of the fermentation, 

significantly less of the sugars were consumed (only 62% of dextrose was consumed), and 

only 3.71 g/L total solvents were produced, with 7.25 g/L acids. 

Table 1.1: Sample of ABE fermentations using sugars obtained from lignocellulosic sources 

with various pretreatments  

  

 

Organism Substrate 
Biomass 

Pretreatment 

Total 
Sugars 
(g/L) 

Final butanol 
concentration 

(g/L) 

Solvent 
Productivity 

(g/L/h) 
Reference 

C. beijerinckii P260 Barley Straw Dilute H2SO4 58.8 4.0 0.1 

(Nasib 
Qureshi, 

Saha, Dien, 
et al. 2010) 

C. beijerinckii P260 Switchgrass Dulute H2SO4 60.0 0.97 0.01 

(Nasib 
Qureshi, 

Saha, 
Hector, et 
al. 2010) 

C. saccharobutylicum DSM 
13864 

Corncobs 
Dilute NaOH 
/ autoclaving 

55.3 12.36 0.34 
(Gao and 
Rehmann 

2014) 

C. saccharoperbutylacetonicum 
N1-4 

Eucalyptus 
Steam 

explosion 
48.9 8.16 0.07 

(Zheng et 
al. 2015) 

C. acetobutylicum SE-1 Corncob 
Wet Disk 
Milling 

39.7 9.0 0.13 
(Zhang et 
al. 2013) 

C. acetobutylicum ATCC 824 Corn Stover 
Steam 

Explosion 
53.0 0.36 0.005 

(Wang and 
Chen 2011) 
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The pretreatment of the lignocellulosic biomass can result in inhibitory compounds being 

produced, resulting in significant reduction in productivity and growth rates (Gao et al. 

2014). These inhibitors are generally broken into two categories, those from the degradation 

of carbohydrates (furan aldehydes, aliphatic acids) and those from lignin (phenolic 

compounds) (Jönsson, Alriksson, and Nilvebrant 2013). These inhibitors and their effects 

continue to be a major obstacle for ABE fermentations using sugars from lignocellulosic 

biomass sources (Baral and Shah 2014; Yujia Jiang et al. 2019). 

While utilizing sugars from biomass sources allows for use of inexpensive feedstocks, the 

variability of lignocellulosic biomass requires several expensive and time-consuming 

processing steps, which limits the feasibility of these processes. In addition, the presence of 

inhibitory compounds resulting from the processing steps can have unpredictable effects (N 

Qureshi et al. 2012; Baral and Shah 2014; Jönsson, Alriksson, and Nilvebrant 2013).  

Research is continuing into addressing the complications of using sugars derived from 

lignocellulosic biomass, and work is also being conducted into finding alternate inexpensive 

carbon sources for butanol fermentations. 

1.2.4) Butanol fermentation from glycerol using Clostridium pasteurianum 

A carbon source which is becoming increasingly abundant and has been used successfully for 

fermentations is glycerol (Ciriminna et al. 2014; D. T. Johnson and Taconi 2007). The 

increase in worldwide biodiesel production has inevitably led to an increase in the 

availability of the main by-product of waste glycerol. Glycerol is produced as a by-product 

from the transesterification of fatty acids in biodiesel production, accounting for 10% wt of 

the total biodiesel produced (Figure 1.2) (Ziyai et al. 2019). However, this glycerol, often 

referred to as either ‘waste glycerol’ or ‘biodiesel-derived waste glycerol’ contains impurities 

from the biodiesel production process that are costly to remove. The saturation of the market 

with this waste glycerol has impacted the prices of chemically pure (or ‘technical grade’) 

glycerol as well, making purifying the waste glycerol a revenue negative stream (Ziyai et al. 

2019). In 2012, it was estimated that technical grade glycerol sold for approximately 

$0.20/lb, and biodiesel-derived waste glycerol for $0.02 – 0.05/lb, with the result that direct 
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combustion was one of the more economically viable options for the waste glycerol produced 

(Roberts 2012). 

 

 

Figure 1.2: Flow diagram overview of a standard conversion of oil and fats to biodiesel 

 

Many organisms used in ABE fermentations are unable to utilize glycerol as the sole carbon 

source for butanol production, which has led to a considerable amount of research into 

organisms capable of metabolizing glycerol to valuable products (Sestric et al. 2014; Munch 

et al. 2015; Dabrock, Bahl, and Gottschalk 1992; Biebl 2001). The ability to metabolize 

glycerol as the sole carbon source is found in multiple anaerobic organisms, including 

Klebsiella pneumoniae and K. oxytoca, Enterboacter aerogenes, and several species within 

the Clostridia genus (Petrov and Stoyanov 2012; Metsoviti et al. 2013; Chatzifragkou et al. 

2011; Yadav et al. 2014). These glycerol metabolizing organisms also share several proteins 

with high degrees of similarity (Pyne, Liu, et al. 2016). As glycerol is a small, uncharged 

molecule its passage through the cell membrane can happen passively, though Clostridia 

species contain the gene for an integral membrane protein which can selectively diffuse 

glycerol into the cell (glycerol facilitator (GlpF)) (Fu et al. 2000). 
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In C. pasteurianum, glycerol is among many substrates that can be metabolized (Mitchell et 

al. 1987). The substrate has a significant effect on the products of the fermentation. In the 

case of glycerol, it can be metabolized both oxidatively and reductively, while not displaying 

any biphasic growth patterns typical of ABE fermentations (da Silva, Mack, and Contiero 

2009; Pyne, Liu, et al. 2016). The reductive pathway is a conversion of glycerol to 1,3 

propanediol (1,3 PDO), which is believed to serve as a method for balancing the reducing 

equivalents within the cell (Pyne, Liu, et al. 2016). While the central metabolism is redox-

neutral, glycerol is more reduced than cell mass, leading to an imbalance. The reductive 

metabolic pathway serves to consume excess NADH and allow the cell to maintain redox 

homeostasis (Pyne, Liu, et al. 2016). When the genes required for the reduction of glycerol to 

1,3 PDO were knocked out, the resulting mutant cultures were unable to grow in minimal 

medium with only glycerol as the carbon source (Schwarz et al. 2017). 

 
 

Figure 1.3: Overview of glycerol metabolism in Clostridium pasteurianum. Text in red 

highlights genes of interest controlling aspects of the metabolism. 3-HPA: 3-

hydroxypropionaldehyde. 1,3-PDO: 1,3-propanediol. DHA: dihydroxyacetone. (Figure 

adapted from (Gallardo, Alves, and Rodrigues 2017) and (E. Johnson et al. 2016)) 
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The oxidative metabolism of glycerol by C. pasteurianum initially converts the glycerol to 

CO2, H2, reducing equivalents (NADH), and pyruvate. Following the conversion to pyruvate, 

the metabolism becomes highly branched and able to produce several different alcohols and 

acids, depending on the fermentation conditions (Moon et al. 2011a). Under most 

circumstances, the main product is butanol, though yield can vary depending on fermentation 

conditions. Variation of the iron, the nitrogen source, and the amount of yeast extract can 

favour 1,3-PDO over butanol production (Moon et al. 2011a; Dabrock, Bahl, and Gottschalk 

1992). Initial pH of the medium was also found to be an important condition in pH-

uncontrolled batch studies, while the process pH during pH-controlled studies was found to 

have a significant effect on product yields (Khanna, Goyal, and Moholkar 2013; Erin 

Johnson and Rehmann 2016). This high degree of variation allows optimization for each 

process using a different carbon source, medium, and fermentation strategy (Sarchami, 

Johnson, and Rehmann 2016b; Sarchami and Rehmann 2014). 

 

1.2.5) Economics of butanol and glycerol over time 

Worldwide demand for butanol has been increasing steadily the past several years, with a 

corresponding increase in the selling price (N-Butanol Market by Application and Region - 

Global Forecast to 2022). The overall market is expected to reach a value of 5.58 billion 

USD by 2022, largely driven by expansion of industries which use butanol as a solvent or 

intermediate substrate (construction, textile, agrochemical, or pharmaceutical industries). 

While the price of butanol is largely tied to the petroleum market, and the economy overall, 

the price has recovered from economic fluctuations such as the 2008 Great Recession to 

return to a high selling price (Figure 1.4). Diversification of butanol use to include the 

increasing demand for biofuels and ‘green’ solvents will further expand the market, and 

could result in more processes becoming economically viable due to the higher and more 

stable market and demand.  

In 2015, it was calculated that while the petrochemical production route was less expensive 

($1.52/kg n-butanol via upgrading petrochemical products vs. $1.87/kg n-butanol produced 

via ABE fermentation), the potential feedstocks and carbon utilization yield for ABE 
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fermentation was far superior to petrochemical feedstocks (Yu Jiang et al. 2015). While the 

instability of the petroleum market could allow for periods of time when petrochemical 

precursors are reduced in price, utilization of an abundant and inexpensive feedstock could 

allow fermentatively produced butanol to compete with petrochemical means, regardless of 

the condition of the economy or the price of crude oil. 

 

 

Figure 1.4: Prices of butanol over a ten-year span encompassing the Great Recession of 

2008 and subsequent recovery (Figure obtained online: Tecnon OrbiChem – Chemical 

market insight and foresight; n-butanol). 

 

As mentioned in Section 1.2.4, the price of glycerol, as well as the availability, has made it 

an attractive possible carbon source for butanol production via fermentation. As can be seen 

in Figure 1.5, the global glycerol production has followed similar patterns as the global 

biodiesel production, resulting in a significant increase (Nomanbhay, Hussein, and Ong 

2018; OECD-FAO Agricultural Outlook 2015 2015). As a result of this excess of glycerol, 

the price steadily decreased over time. A brief plateau in the drop of glycerol prices is 

observed corresponding to the 2008 economic recession mirrors a decrease observed in 

butanol prices; however, the subsequent increase in production furthered the decrease in 
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glycerol prices. The recovery of butanol prices, and the further decrease of glycerol prices, 

following the 2008 recession indicates that this specific market pairing (butanol from 

glycerol) could be well-suited for stability despite disruption of external markets. 

 

Figure 1.5: Production of biodiesel and glycerol over time, compared with the price of 

glycerol over the same period (Nomanbhay, Hussein, and Ong 2018; OECD-FAO 

Agricultural Outlook 2015). 

Large scale production of butanol via ABE fermentation has been largely conducted in 

China, where the 2008 economic downturn resulted in the closure of several of the existing 

butanol production plants using ABE fermentation (Yu Jiang et al. 2015). However, the 

butanol market recovered, and existing plants were re-fitted and resumed production, and 

new butanol production plants were created outside of China. Two such plants which were 

proposed and begun in the early-2010’s, when crude oil had reached over $100/barrel, were 

The Saudi Butanol Company (Saudi Arabia) and Butamax (North America) (Kujawska et al. 

2015). These plants were planned to capitalize on the high price of petroleum and the high 

demand for butanol in China. However, only a few years following construction, these 
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companies are no longer active in butanol production after their parent companies decided 

against continuing in the butanol market, as the high production costs prevented the process 

from becoming economically viable. 

An advantage afforded to ABE fermentations using glycerol as the carbon source could be 

the proximity to existing infrastructure. Glycerol is currently largely produced as a by-

product for biodiesel production, meaning that an ABE fermentation plant could be designed 

as an ‘add-on’ to the existing biodiesel plant. Such an arrangement would eliminate 

transportation costs associated with gathering the carbon feedstock (as is the case for ABE 

plants using first- or second-generation cellulosic biomass), and allow the butanol produced 

to be handled and distributed using the existing infrastructure for biodiesel. This would allow 

any existing biodiesel plant to potentially turn a value-negative stream (waste glycerol 

disposal) into a value-positive stream (waste glycerol conversion to butanol) without the 

construction of a new processing plant – merely the modification of and addition to existing 

plants. 

1.2.6) Work conducted with waste glycerol and C. pasteurianum 

This now abundant carbon source has attracted significant research for its use in 

fermentations, despite the impurities present in the waste glycerol having negative effects on 

the organism, most often affecting the productivity of the fermentation (Sarchami et al. 

2016). Analysis of these impurities and their effects on C. pasteurianum have been 

conducted by groups looking to determine the precise effect of each inhibitor commonly 

found in biodiesel-derived waste glycerol  (T. O. Jensen et al. 2012; Venkataramanan et al. 

2012). Venkataramanan et al. found that the presence of free fatty acids in the waste glycerol 

contributed the most to inhibition effects observed, with inhibitory effect increasing with the 

degree of saturation (Venkataramanan et al. 2012). It was also determined that the presence 

of excess salt and trace methanol had no negative effect on the fermentation. When the free 

fatty acids were removed from the waste glycerol, glycerol consumption and butanol yields 

increased to be comparable to those observed with pure glycerol. When completely 

unpurified waste glycerol was used as the carbon source, the fermentation time increased 

from 4 days with pure or partially-purified waste glycerol to 14 – 24 days, and the yield was 

the lowest (0.21 g/g, compared to 0.28 g/g with pure glycerol) (Venkataramanan et al. 2012). 
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Another investigation into the effect of the impurities, and comparing different treatment 

strategies to remove the impurities, found that with effective treatment there was no 

significant difference between treated waste glycerol and technical grade (T. O. Jensen et al. 

2012). Four treatment methods were tested: carbonization (precipitating calcium carbonate 

which removes impurities as well), electrodialysis (exposing the crude glycerol to 

anion/cation exchange membranes), activated stone carbon (adding activated carbon directly 

to crude glycerol and allowing to incubate at room temp), and storage (storing for 10 months 

at 20oC). Ultimately, a combination of the activated stone carbon with long-term storage was 

found to have the most significant effect on increasing the yield and cell dry weight, 

increasing the glycerol consumed at high initial concentrations, though the glycerol 

consumption rate was still 16% lower than observed on technical grade glycerol. The effect 

of the activated carbon may be attributed to its acting as an adhesion surface for C. 

pasteurianum, and providing some form of physical protection from external inhibitors (T. 

O. Jensen et al. 2012). 

While the availability and price point of biodiesel-derived waste glycerol make it an 

attractive option as a carbon source, the inhibitory effect will have to be eliminated in a cost-

effective manner in order to allow for an economically viable fermentation to be designed. 

1.2.7) Optimization studies with C. pasteurianum 

The highly branched and substrate dependent metabolism of C. pasteurianum has allowed for 

a variety of substrates and conditions to be used during fermentations (Mitchell et al. 1987; 

Biebl 2001). This variation requires optimization for the conditions in order to maximize 

yield and productivity, and as each change in substrate can have a significant effect on the 

process, each individual C. pasteurianum fermentation should undergo optimization.  

A straightforward optimization of conditions would be one factor at a time, as displayed by 

Gallardo et al. or by Johnson and Rehmann (Gallardo, Alves, and Rodrigues 2017; Erin 

Johnson and Rehmann 2016). Gallardo et al. first analyzed the effect of iron concentration by 

adding 0, 0.6, 2, 10, and 20 mg/L of iron in the form of FeSO4●H2O to the medium and 

analyzed the effect.  It was found that supplementing the medium with 2 mg/L of iron 

increased butanol production by 163% over the medium with no additional iron (Gallardo, 
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Alves, and Rodrigues 2017). Iron is necessary for the function of the pyruvate:ferredoxin 

oxidoreductase enzyme, which oxidizes pyruvate to acetyl-CoA. The reduced form of 

ferredoxin is subsequently oxidized by Hydrogenase while producing H2 and restoring the 

oxidized state of the ferredoxin, allowing for another round of oxidation of pyruvate. Too 

low a concentration of iron in the medium does not allow for function of ferredoxin, while 

too high a concentration can have inhibitory effects (Lee et al. 2001). Next the group 

examined the effect of inoculum age on the overall fermentation, inoculating with precultures 

which had varying incubation times. It was found that 12 hours (the shortest incubation time) 

was the optimal age for the preculture, resulting in faster growth and higher productivity, 

though results involving preculturing timing are highly subjective on several factors unique 

to each laboratory setup. Johnson and Rehmann altered the pH of C. pasteurianum 

fermentations and found that the product profile altered significantly when the fermentation 

is held at pH values between 4.7 and 5.9, finding that as pH values increased, the amount of 

butanol produced would decrease (Erin Johnson and Rehmann 2016). Here, it was 

determined that the pH of 5.0 produced the highest yield of butanol and lowest amount of 

1,3-PDO.  

While this approach has indeed led to increased butanol yields and productivity, other groups 

have chosen more robust statistical methods to account for interactive effects of multiple 

factors (Sarchami, Johnson, and Rehmann 2016a; Sarchami and Rehmann 2014; Moon et al. 

2011a; Sarchami and Rehmann 2019). Using Response Surface Methodology, a fermentation 

can be optimized taking into account several factors and interactions simultaneously. Moon 

et al. initially attempted a one-factor-at-a-time approach, but found that in fermentations with 

the same glycerol concentration the product pattern differed when other medium components 

were altered (Moon et al. 2011a). By investigating the effects of the buffer, co-factors, and 

yeast extract, the investigators were able to identify that the significant factors were 

FeSO4●7H2O, (NH4)2SO4, and yeast extract, and the concentrations favoring butanol 

production differed significantly from those favoring production of 1,3-PDO. Fermentations 

conducted at optimized conditions for butanol production increased productivity from 0.71 

g/L/h in the unoptimized medium to 1.01 g/L/h, showing that there is indeed an optimal 

point, and that the concentration of the medium components has a highly significant effect on 

the products and productivity of the fermentation (Moon et al. 2011a). 
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Sarchami et al. used response surface methodology to optimize the butanol productivity with 

a waste stream of glycerol from biodiesel production (Sarchami, Johnson, and Rehmann 

2016a). The factors investigated did not involve the medium components, but rather the 

fermentation conditions (inoculum age, initial cell density, initial pH, and fermentation 

temperature). The initial concentration of glycerol in the medium was found to not be a 

significant factor in this model. The optimum point with an initial glycerol concentration of 

50 g/L was found to have an inoculum age of 16 hours, a cell density of 0.4 g dry cell 

weight/L, an initial pH of 6.8, and a temperature of 30oC (Sarchami, Johnson, and Rehmann 

2016b). These conditions resulted in a fermentation with a molar yield of 0.34 mols butanol / 

mol waste glycerol consumed.  

In a similar study, Sarchami and Rehmann used statistical methods to optimize a dual-

substrate fermentation using two inexpensive waste substrates – Jerusalem artichokes, as a 

source of fermentable sugars, and biodiesel-derived crude glycerol (Sarchami and Rehmann 

2019). The fermentation of sugars by C. pasteurianum primarily produces butyric acid, and 

the effect it can have on glycerol fermentation is discussed in further detail in Section 1.2.9. 

This study found the optimized amounts of the two substrates to be 54 g/L glycerol and 12 

g/L total sugars in the medium (Sarchami and Rehmann 2019). This ratio increased the 

butanol productivity and yield, and was the first reported instance of utilizing two waste 

carbon streams in a co-substrate butanol fermentation with high efficiency.  

1.2.8) Genes controlling butanol fermentation 

The central glycerol metabolism (both the oxidative and reductive pathways) of C. 

pasteurianum have been described as unique in nature, as it combines metabolic pathways 

usually found elsewhere and independent of one another in other Clostridia species (Pyne, 

Liu, et al. 2016).  

As mentioned in Section 1.2.4, the reductive pathway to produce 1,3 PDO is necessary for 

the growth of C. pasteurianum on glycerol. The conversion begins when glycerol 

dehydratase, encoded by the gene dhaBCE, coet nverts glycerol to 3-

hydroxypropionaldehyde, which is subsequently reduced to 1,3 PDO by 1,3-propanediol 

dehydrogenase (dhaT) (Luers et al. 1997). Both of these enzymes are located on a single 



17 
 

regulon, which differs in organization from other glycerol consuming organisms in that the 

regulon is completely read in the same direction (Sun et al. 2003). These two enzymes are 

also highly conserved between other glycerol consuming organisms and C. pasteurianum, 

sharing up to 81% similarity with enzymes found in species of Citrobacter and Klebsiella 

(Sun et al. 2003). 

The oxidative pathway begins with the conversion of glycerol first to dihydroxyacetone, and 

then to dihydroxyacetone phosphate, where it subsequently follows the standard glycolytic 

pathway (Pyne, Liu, et al. 2016). The enzymes for these steps are glycerol dehydrogenase 

and dihydroxyacetone kinase, encoded by the genes dhaD and dhaK, respectively (Pyne et al. 

2013). It is interesting that the C. pasteurianum genome contains 5 putative genes for dhaD, 

which may be responsible for the organisms ability to tolerate high glycerol concentrations 

with little to no inhibition (Dabrock, Bahl, and Gottschalk 1992; Pyne, Liu, et al. 2016). The 

metabolism continues until the glycerol has been fully converted to pyruvate, at which point 

the metabolism becomes highly branched. 

The pyruvate is converted first to acetyl-CoA via pyruvate:ferredoxin oxidoreductase, which 

couples this oxidation with a reduction of the protein ferredoxin, which subsequently gets 

oxidized (in order to repeat the redox reaction) by hydrogenase. The protein ferredoxin has 

become a model electron transfer protein, was first isolated in C. pasteurianum, and is 

controlled in part by the gene hydA which encodes for ferredoxin dehydrogenase (Schwarz et 

al. 2017). This step results in a molecule of acetyl-CoA being produced, along with the 

evolution of H2 gas and, if iron is not limited, an oxidized form of ferredoxin ready to oxidize 

another pyruvate molecule. In order to continue the production of butanol, the four-carbon 

intermediate butyryl-CoA must be generated by condensing together two aceteyl-CoA 

molecules. The initial step is catalyzed by the enzyme Thiolase, which condenses two 

aceteyl-CoA molecules into a single acetoacetyl-CoA molecule (Meng and Li 2006). This 

condensation reaction is followed by redox reactions which ultimately produce one butyryl-

CoA molecule and the oxidation of two NADH molecules from the two acetyl-CoA 

molecules (Pyne, Liu, et al. 2016). 

The butyryl-CoA intermediate is of considerable interest for the fermentative production of 

butanol from glycerol, as this is a branching point between the products of butyric acid and 
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butanol (Figure 1.3). Two genes control the conversion from butyryl-CoA to butyric acid, 

and are located on a single operon, and the corresponding proteins are highly similar 

(between 73% and 80%) to those found in C. acetobutylicum (Pyne, Liu, et al. 2016). The 

reaction catalyzed is reversable under standard conditions, and allows for the butyric acid to 

be converted directly to butanol when in the presence of an external carbon source (Regestein 

et al. 2015). 

The further reduction of butyryl-CoA to butanol begins with further dehydrogenation of 

butyryl-CoA to butyraldehyde, then finally butanol. This step is catalyzed by alcohol 

dehydrogenase enzymes, of which there are several encoded within the C. pasteurianum 

genome (Pyne, Liu, et al. 2016).  These enzymes have been shown to play a direct role in 

butanol formation in C. acetobutylicum, and knock-out mutations with C. acetobutylicum 

have identified the gene adhE as having the highest impact on butanol formation (Cooksley 

et al. 2012; Walter, Bennett, and Papoutsakis 1992). While a perfect homolog to the adhE 

gene is not present in C. pasteurianum, there are at least four protein products produced by 

C. pasteurianum with similarities to the AdhE protein product in C. acetobutylicum (Pyne et 

al. 2013).  

1.2.9) Mutagenesis and DNA recombination  

Genetic manipulation of C. pasteurianum has become an area of research following the 

sequencing of the genome (Poehlein et al. 2015). The highly branched nature of the 

metabolism, with each branch having its own distinct genetic controls, allows for a variety of 

possible gene targets for manipulation (Pyne, Liu, et al. 2016). Multiple tools have been 

developed for manipulation, including electrotransormation, gene deletion and integration, 

antisense RNA gene knockdown, and recently a successful transformation using a Clustered 

Regularly Interspaced Short Palindromic Repeat (CRISPR) system (Pyne, Liu, et al. 2016; 

Pyne et al. 2013; Schwarz et al. 2017; T. Ø. Jensen et al. 2012; Malaviya, Jang, and Lee 

2012; Pyne et al. 2014; Pyne, Bruder, et al. 2016). 

1.2.9.1) Work using random mutagenesis to improve butanol fermentation 

Prior to the development of these targeted genetic tools, the mutagenic work was conducted 

via random mutagenesis (Pyne et al. 2014). Using ethane methyl sulfonate, a well-known 
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mutagen, Jensen at al. were able to produce a mutant strain of C. pasteurianum which 

displayed increased tolerance to biodiesel-derived crude glycerol (up to 105 g/L), and had an 

increased butanol productivity of 1.8 g/L/h vs. 1.3 g/L/h in the wild-type strain (T. Ø. Jensen 

et al. 2012). Two different groups have reported using N-methyl-N’-nitro-N-nitrosoguanidine 

to introduce random mutations to a population of C. pasteurianum, and subsequently select 

for highly productive mutants, while another has reported using N-Ethyl-N-nitrosourea as the 

mutagen (Malaviya, Jang, and Lee 2012; Sandoval et al. 2015; Gallardo, Alves, and 

Rodrigues 2017). 

Malaviya et al. produced a mutant strain which increased the productivity from 0.25 g 

butanol / g glycerol with the wild-type organism to 0.30 g butanol / g glycerol, as a result of 

decreased production of by-products (Malaviya, Jang, and Lee 2012). Unfortunately, the 

highly productive mutant was not sequenced, and as such the genotypic cause of the 

productive phenotype was not determined. Similar work was conducted by Gallardo et al. 

who used the mutagen N-Ethyl-N-nitrosourea to create randomly generated mutants of C. 

pasteurianum (Gallardo, Alves, and Rodrigues 2017). They were able to optimize a process 

with the mutant, and the result of the optimized conditions increased the butanol production 

by 22% and the yield by 17% over the wild-type strain in identical conditions, and both 

strains consumed similar amounts of glycerol over the course of the fermentation. The 

mutant strain was also able to tolerate higher concentrations of butanol in the medium, up to 

10 g/L butanol added to the medium, while the parent strain was unable to grow at 5 g/L 

(Gallardo, Alves, and Rodrigues 2017). This work mirrors similar work that showed between 

5 and 7.5 g/L of added butanol to an culture will cause complete inhibition (Munch et al. 

2020a). 

However, Sandoval et al. took the work a step further, and were able to determine the 

mutation which resulted in the highest producing variant in a population of cells growing on 

biodiesel-derived crude glycerol following treatment with the mutagen (Sandoval et al. 

2015). The mutant, designated M150B, showed higher glycerol consumption and butanol 

production when compared to the wild-type organism, regardless if grown on biodiesel-

derived or pure glycerol. Subsequent genetic analysis showed a deletion mutation which 

resulted in complete inactivation of the gene which controls sporulation, SpooA (Sandoval et 
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al. 2015). The phenotype was re-created via deletion of 200 base pairs within the SpooA 

gene, including the start codon and ribosomal binding site of the gene, indicating that the 

deletion genotype was responsible for the increase in productivity. It was speculated that 

while the SpooA gene may not directly influence butanol production, alteration to growth-

related genes can have a significant effect. This work highlighted that while the majority of 

genetic manipulation would focus on the genes directly responsible for glycerol metabolism 

(Figure 1.3), there are many possible avenues to increase the productivity of butanol 

fermentation.  

1.2.9.2) Work using directed mutagenesis to improve butanol fermentations 

In contrast to using random mutagenesis, highly specific transformation tools have been 

developed for use with C. pasteurianum (Schwarz et al. 2017; Pyne et al. 2013). Pyne et al. 

have developed several tools specifically for use with C. pasteurianum (Pyne et al. 2013; 

Pyne, Liu, et al. 2016; Pyne et al. 2014). A protocol to allow for high level of DNA transfer 

into C. pasteurianum via  electrotransformation with methylate plasmid DNA resulted in an 

increase of three orders of magnitude successful transformants per µg of plasmid DNA (Pyne 

et al. 2013). The same group also produced a mutant C. pasteurianum which eases metabolic 

engineering by removing processing requirements of the plasmid DNA to be introduced 

(Pyne et al. 2014). They then used this method to create a knock out mutant lacking a 

functional dhaT gene, which codes for the enzyme 1,3-propanediol dehydrogenase, 

responsible for catalyzing the conversion from 3-hydroxypropionaldehyde to 1,3-PDO (Pyne, 

Sokolenko, et al. 2016). The result was that the reductive pathway which results in 1,3-PDO 

production was nearly completely eliminated, and the selectivity of butanol increased from 

0.51 g butanol / g total solvents produced (total solvents was the combined amount of 

butanol, ethanol, 1,2-PDO and 1,3-PDO) in the wild-type to 0.83 g butanol / g total solvents 

in the mutant (Pyne, Sokolenko, et al. 2016). Interestingly, the production of 1,2-propanediol 

was significantly increased in the mutant strain, indicating that the mutant utilized a 

secondary metabolic pathway in order to balance the reducing equivalents in the absence of 

the 1,3-PDO pathway (Pyne, Sokolenko, et al. 2016). 

In similar work, Schwarz et al. introduced specific knockout plasmids to C. pasteurianum in 

a targeted technique known as Allele-Coupled Exchange, where the desired traits (knocked 
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out gene or selection marker) are put onto a plasmid and electroporated into the cells 

(Schwarz et al. 2017). This technique was used to knock out the entire dhaBCE operon 

(encoding for glycerol dehydratase), which resulted in the elimination of 1,3-PDO, but did 

not have a significant effect on the production of other solvents (Schwarz et al. 2017). The 

same group also used this technique to knock out the hydA gene, thus removing a functional 

ferredoxin dehydrogenase. The result was a mutant which produced higher amounts of 

acetate, lactate, and ethanol, and less butyrate and 1,3-PDO compared to the wild-type, 

though there was only a modest increase in butanol titer (Schwarz et al. 2017). These results 

agree with a previous report which used anti-sense RNA mediated repression of hydA gene 

expression, though this report used dextrose as the carbon source in the medium, preventing a 

direct comparison (M. Pyne et al. 2015). 

1.2.10) Addition of butyric acid to glycerol fermentations 

When grown on glycerol as the sole carbon source, C. pasteurianum produces organic acids 

in addition to alcohols. An interesting acid which is produced in small amounts is butyric 

acid, which plays a role in the production of butanol (Regestein et al. 2015; Lin et al. 2015). 

In biphasic Clostridia species, it has been demonstrated that addition of butyric acid to the 

initial medium can increase butanol productivity throughout the fermentation, even during 

the acidogenesis phase (Tashiro et al. 2004). It has been suggested that butyric acid is a 

precursor for the formation of butanol in many ABE fermentative organisms, signaling the 

metabolic change from acidogenesis to solventogenesis, though the effect is not consistent 

(Zigová and Šturdík 2000). With C. pasteurianum, which does not exhibit biphasic behavior, 

addition of low concentrations of butyric acid to the fermentation medium can increase the 

yield of butanol, while addition of higher concentrations (greater than ~6 g/L) will cause 

inhibition (Regestein et al. 2015; Tashiro et al. 2004; Kao et al. 2013; Heyndrickx et al. 

1991). 

Regestein et al. determined that in order to ease the uptake of butyric acid into the cells, the 

acid must be in its completely protonated form (Regestein et al. 2015). As the pKa of butyric 

acid is 4.82, a pH value of 5.3 was selected, as this allowed for 25% of the butyric acid to be 

in the fully protonated form, while also preventing pH inhibition of C. pasteurianum. Using 

this strategy, Regestein et al. achieved a yield of 0.38 g butanol / g glycerol + g butyric acid 
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with the addition of 4 g/L butyric acid to a fermentation containing 30 g/L glycerol, an 

increase from a yield of 0.31 g butanol / g glycerol + g butyric acid in fermentations without 

additional butyric acid added. The uptake of butyric acid was found to only occur in the 

presence of a carbon source. With higher concentrations of glycerol present in the medium, 

higher uptake of butyric acid was observed. Increasing the initial glycerol available from 30 

g/L to 45 g/L, with 4 g/L butyric acid in the medium as well, the uptake was increased from 

0.8 g/L butyric acid to 2.8 g/L. However, the increased uptake did not result in increased 

butanol yield, resulting in only 0.34 g butanol / g glycerol + butyric acid. It was also 

determined that higher concentrations of butyric acid in the presence of lower glycerol 

concentrations resulted in inhibition (Regestein et al. 2015).   

Lin et al. incorporated butyric acid addition to a C. pasteurianum fermentation with vacuum 

membrane distillation as an in situ butanol removal system, creating a fermentation system 

which simultaneously increased the butanol productivity and prevented product inhibition 

(Lin et al. 2015). The conditions selected (temperature, pH, glycerol concentration, butyric 

acid addition, and medium composition) were initially optimized via response surface 

methodology, though the vacuum membrane distillation was not factored into the 

optimization. The optimized starting butyric acid concentration was determined to be 6 g/L, 

which is significantly higher than the highest concentration used by Regestein et al. (4 g/L) 

(Lin et al. 2015; Regestein et al. 2015). However, Lin et al. used a starting glycerol 

concentration of 100 g/L, more than double that used by Regestein et al., as well as the 

vacuum membrane system, making a direct comparison between the systems difficult. The 

effect of the added butyric acid was still evident, as its addition increased butanol yield from 

0.24 mol butanol / mol glycerol to 0.39 mol butanol / mol glycerol, though this number does 

not include the butyric acid taken up by the cells as a carbon source (Lin et al. 2015).  

It must also be noted that these studies used chemically pure butyric acid, which would be 

prohibitively expensive for large scale industrial production of butanol. In order to make an 

economically viable process utilizing butyric acid to increase butanol yield, expensive pure 

chemicals would need to be avoided in lieu of lower cost chemicals and substrates. 
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1.2.11) Microbial production of butyric acid 

A possible source of inexpensive butyric acid for use in butanol fermentations could be from 

microbial fermentations. When produced using chemical synthesis, butyric acid is production 

uses the same precursors as butanol production – butyraldehyde produced by upgrading 

propene (Green 2011). Also similar to butanol production, the use of fermentatively derived 

butyric acid would decouple butyric acid production from the volatility of the petroleum 

market by providing a stable and possibly renewable source. 

Several organisms are capable of producing butyric acid, some which are potentially 

dangerous to humans and thus not a strong choice for large-scale processes, like Butyrivibrio 

species (Ha et al. 1991; Kopecny et al. 2003). However, C. tyrobutyricum has emerged as a 

possible organism for butyric acid production from C5 and C6 sugars (Figure 1.6) (Baroi et 

al. 2015).  

 

 

Figure 1.6: Overview of xylose and glucose metabolism in C. tyrobutyricum. Figure adapted 

from H. Luo et al. 2018. 
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C. tyrobutyricum has been used to produce butyric acid from both dextrose and xylose, which 

has opened an avenue for butyric acid production using lignocellulosic or other waste 

sources. Several lignocellulosic carbon sources, for example corn fibers or Jerusalem 

artichokes, have been used following acid hydrolysis pretreatments with success to produce 

butyric acid (Zhu, Wu, and Yang 2002; Huang et al. 2011). Both substrates were tested with 

a fed-batch fermentation, resulting in productivities of 2.91 and 1.14 g/L/h and yields of 0.47 

and 0.38 g/g yield, respectively, indicating that C. tyrobutyricum can convert both dextrose 

and xylose efficiently to butyric acid effectively when both substrates are present. The low 

concentrations of secondary products (acetate, lactate, and ethanol) could allow for ease of 

recovery for use in a second butanol producing fermentation, if separation is needed at all. 

1.2.12) Co-culture fermentations 

The idea of a microbial co-culture, in which one organism makes use of a carbon source 

inaccessible to a second organism, and converting it into a compound usable by that second 

organism, has been explored previously (Chen 2011; Hanly and Henson 2011; Bader et al. 

2010). In anaerobic co-cultures, a highly explored co-culture utilizes an organism capable of 

degrading cellulose into sugars, which can then be used by a second organism (Geng et al. 

2010). Other work has been conducted to explore using a microbial co-culture to provide 

butyric acid for butanol producing organisms (Lin Li et al. 2013). In this study, a co-culture 

of C. tyrobutyricum and C. beijerinckii was used to increase the productivity of butanol. 

What was of interest was that the fermentations were operated in a continuous manner, with 

the cells immobilized in separate reactors and the medium circulating between the two 

reactors using a peristaltic pump. The overall butanol productivity was increased, reaching 

0.96 g/L/h, compared to 0.10 g/L/h using only C. beijerinckii with no additional butyric acid 

or co-culture (Lin Li et al. 2013). Though both organisms were grown in individual reactors, 

this work shows the possibility of using a co-culture to increase butanol productivity by 

providing butyric acid in the medium.  

However, for butanol production using C. pasteurianum, options for co-culturing are limited. 

The work conducted with C. pasteurianum as a part of co-cultures or consortiums has been 

focused on biohydrogen production rather than butanol (Masset et al. 2012; Hsiao et al. 

2009; Ozmihci and Kargi 2011). The specific condition requirements for C. pasteurianum for 
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high butanol productivity limit the range of organisms capable of growing and producing 

butyric acid under identical conditions. The most likely candidate for use is C. tyrobutyricum, 

as it is capable of converting xylose (which C. pasteurianum is unable to metabolize) to 

butyric acid while C. pasteurianum consumes glycerol (which C. tyrobutyricum is unable to 

use). However, C. tyrobutyricum requires a much higher pH for butyric acid production than 

C. pasteurianum requires for high butanol production (Zhu and Yang 2004; Erin Johnson and 

Rehmann 2016). This discrepancy would require extensive genetic or process engineering to 

allow for a process in which C. tyrobutyricum and C. pasteurianum will grow in the same 

fermentation vessel. However, this does not prevent use of C. tyrobutyricum to produce the 

butyric acid which can be added to the C. pasteurianum fermentations with little to no 

processing. 

1.2.13) Dual substrate fermentations with C. pasteurianum 

An interesting component of the metabolism of C. pasteurianum is that when sugars are the 

carbon source the primary product is butyric acid (Dabrock, Bahl, and Gottschalk 1992). 

Combined with the knowledge that small amounts of butyric acid can increase butanol 

productivity and yield, this has led to work exploring a dual-substrate strategy for butanol 

production using dextrose and glycerol. In such a strategy, a single C. pasteurianum culture 

can use the dextrose to initially produce butyric acid, then subsequently re-assimilate the 

butyric acid with the glycerol, thus increasing the butanol yield and productivity without 

using chemically pure butyric acid (Sabra et al. 2016, 2014; Kao et al. 2013).  

This strategy has been used by Kao et al., who initially repeated the work of Lin et al. and 

reached a similar conclusion, that with 100 g/L glycerol at the onset of the fermentation, 6 

g/L of butyric acid addition resulted in yield increasing from 0.200 mol butanol / mol 

glycerol to 0.307 mol/mol (Kao et al. 2013). Subsequent work in this study investigated the 

use of a dual-substrate strategy to avoid the need for chemically pure butyric acid. Initially, a 

sequential carbon source addition strategy was attempted, in which 40 g/L dextrose was first 

used, and upon its depletion, 100 g/L glycerol was added to the medium. When consuming 

the dextrose, the primary product was butyric acid, with smaller amounts of acetate produced 

(Kao et al. 2013). Upon the addition of the glycerol, a significant lag phase was observed 

before glycerol was consumed. No butyric acid uptake was observed, and the overall 
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productivity rate was lower than observed with pure butyric acid, which was 0.14 g/L/h. In 

order to attempt to limit the lag phase during the substrate switch, and subsequently increase 

the productivity, a strategy in which both substrates were added at the beginning of the 

fermentation was utilized. A ratio of 20:60 g/L dextrose to glycerol in order was found to 

result in the highest yield, and increase the butanol yield from 0.22 mol butanol / mol 

glycerol in a fermentation with only glycerol, to a yield of 0.38 mol butanol / mol glycerol 

(Kao et al. 2013). The productivity of this dual substrate strategy was 0.19 g/L/h, which was 

higher than both productivities from the sequential addition and pure butyric acid strategies. 

However, it must be noted that the yield calculated here only takes into account the carbon 

from the glycerol consumed, not accounting for the dextrose present, which was completely 

consumed and would represent a significant amount of carbon towards the yield calculation. 

This work also used sugars derived from lignocellulosic biomass and crude glycerol as the 

carbon sources, which resulted in a yield of 0.33 mol butanol / mol glycerol and a 

productivity of 0.14 g/L/h, which were still high, though once again the yield calculation did 

not include the carbon from the sugars present from the biomass (Kao et al. 2013).  

In a similar study, Sabra et al. first studied the effect of direct addition of butyric acid to the 

initial medium, and found that concentrations higher than 5 g/L butyric acid resulted in 

greatly diminished cell growth (Sabra et al. 2014). However, adding butyric acid later in the 

fermentation, or added continuously to a pH-controlled (pH = 6) fermentation with 75 g/L 

glycerol as the carbon source, which resulted in some uptake of the butyric acid, and 

increased butanol/1,3-PDO ratio. The authors of this study tested multiple ratios of dextrose 

and glycerol to find the most effective ratio to have the highest amount of butanol produced 

at the end of the fermentation (ratios tested were 1:0, 4:1, 1:1, and 1:4 dextrose:glycerol). 

The ratio of 1:1 dextrose to glycerol (50 g/L of each) achieved an extremely high final 

concentration of butanol of 21.1 g/L, the highest concentration reported (without any in situ 

product removal) in literature to date (Sabra et al. 2014).  However, despite the high final 

concentration reported, the process had a yield of only 0.286 mol butanol / mol glycerol + 

dextrose, which would need to be increased to be considered for large scale production. The 

same study also used a fermentation strategy using biomass hydrolysate from spruce tree 

biomass to provide the sugars, and pure glycerol in a 1:1 ratio at 50 g/L each. The 
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hydrolysate sugars and pure glycerol resulted in in a titer 17 g/L butanol, lower than with 

pure substrates but still higher than observed with only pure glycerol (Sabra et al. 2014).  

These studies show that while there is considerable optimization work to be undertaken 

before a fermentation involving butyric acid derived from sugars in the medium could be a 

viable option for increasing yield and productivity when producing butanol from glycerol. 

However, the need for an inexpensive source of sugars is vital for the economic viability of 

the process. 

 

Table 1.2: Studies using glycerol and dextrose to increase yield and productivity of butanol 

fermentations with C. pasteurianum. 

Substrate 
Glycerol 

utilized 

Time to 

completion 

(h) 

Max butanol 

yielda 

(mol/mol) 

Butanol 

Productivity 

(g/L/h) 

Reference 

Glycerol (100 

g/L) 
70% 80 0.220 0.13 

(Kao et al. 

2013) 

Glycerol + 

Dextrose (60 + 

20 g/L) 

71.6% 80 0.380b 0.19 
(Kao et al. 

2013) 

Waste glycerol 

+ Biomass 

hydrolysate (60 

+ 25 g/L) 

69.8% 80 0.330b 0.14 
(Kao et al. 

2013) 

Glycerol + 

Dextrose (ratio 

1:1) 

91.7 g/L 50 0.286 0.69 
(Sabra et al. 

2014) 

Glycerol + 

Biomass 

Hydrolysate 

87 g/L N/A 0.248 0.62 
(Sabra et al. 

2014) 

aYield calculated based on glycerol consumed 
bYields were calculated based solely on the glycerol consumed, not including dextrose 

 

A possible source of inexpensive sugars for use in fermentations, that does not require 

enzymatic digestion like lignocellulosic biomass, is molasses. Molasses is a by-product of 

sugar production, containing sucrose, fructose, and dextrose that does not precipitate to be 

sold as pure sugar. Molasses has been used as a substrate for butyric acid production using C. 
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tyrobutyricum (L. Jiang et al. 2009), butanol production using C. saccharobutylicum (Ni, 

Wang, and Sun 2012), and hydrogen production (Hsiao et al. 2009). To the best of the 

authors knowledge, no research using molasses as a carbon source for C. pasteurianum has 

been yet conducted. The inexpensive carbon source could be well-suited for use in a dual-

substrate fermentation, using high amounts of glycerol as the second (primary) carbon source 

for butanol production. 

1.2.14) Online process monitoring of fermentations 

Online monitoring of fermentative processes allows for real-time measurements of important 

parameters for the productivity and yield of the process, and can provide a powerful tool for 

the optimization, control, and assessment of a process (Cervera et al. 2009). This can include 

monitoring the health of fermentations, identify times for sampling, and identify periods of 

metabolic changes in the population indicating exhaustion of a nutrient or an imbalance in 

population (Cervera et al. 2009). For example, in anaerobic biomass digestion, a balance 

between the consortium of organisms is required to prevent digestor collapse and maintain a 

high yield of methane (Rudnitskaya and Legin 2008). However, the process conditions are 

difficult to monitor without resorting to time-consuming laboratory tests requiring skilled 

personnel. To combat this, advanced techniques such as near-infrared spectroscopy, a non-

invasive light based technique which can provide valuable information without requiring 

sampling (Rudnitskaya and Legin 2008).  

Near-infrared spectroscopy is one of many tools used for measuring multiple parameters 

during a fermentation in a multi-sensor system. Common parameters monitored, using probes 

and other sensors not necessarily based on optics or near-infrared principles, are optical 

density, pH, temperature, and gasses produced (Ge, Zhao, and Bai 2005; Herweg et al. 

2018). Recent work has been conducted to allow estimates of individual biomass levels for 

each species in a co-culture fermentation by analyzing the scattered light spectrum of the co-

culture, and using statistical methods to determine the individual biomass from the collective 

spectra (Geinitz et al. 2020). This work was conducted using microtiter plates, creating a 

powerful screening device for aerobic fermentations. In a larger, more industrial application 

of online monitoring using spectroscopic techniques, fluorescent spectroscopy was used at 

multiple stages of Bordetella pertussis vaccine production, and was able to successfully 
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correlate the fluorescence data obtained during production with the protein content in the 

final product (Zavatti et al. 2016). 

However, many fermentation online monitoring methods generally suffer from two major 

drawbacks: first, they generally require a large or complicated fermentation vessel, such as a 

bioreactor, and second, they are generally applied to aerobic fermentations (Meissner et al. 

2015; Wewetzer et al. 2015). The probes for pH, redox, optical density, and temperature are 

subject to drift and require recalibration during extended fermentations, while the same can 

be true for several off-gas sensors. Regardless, the off-gasses can give extremely important 

information regarding the fermentation, including effects such as oxygen limitation, pH 

inhibition, substrate limitation, and product inhibition (Anderlei and Büchs 2001; Munch et 

al. 2020b). Combining these tools with smaller fermentation vessels, such as shake flasks, 

would allow for robust data collection while keeping the demands for space and materials 

low. 

1.2.15) Online monitoring of shake flask fermentations 

Online analysis of off-gasses often requires large sensors and high volumes of gasses 

produced, necessitating the use of bioreactors in lieu of the more simple and economic shake 

flask model (Anderlei et al. 2004). As a method to address the lack of off-gas analysis 

available at the shake-flask scale, a device has been developed which allows for the online 

monitoring of off-gasses in multiple parallel shake flasks (Anderlei and Büchs 2001; 

Wewetzer et al. 2015). This device is known as the Respiratory Activity Monitoring System 

(RAMOS), and has become a robust tool for screening fermentations at the small scale while 

still obtaining the maximum amount of data possible. The RAMOS allows for eight parallel 

flasks to be operated simultaneously, with each flask operating under the same conditions 

(temperature, shaking rate, air flow) and collecting off-gas data from each individual flask. 

Each flask can hypothetically test a different condition, such as presence of vitamins, excess 

carbon, or varying concentration of inhibitors, while keeping the physical conditions between 

flasks constant. The RAMOS utilizes specialized flasks, for which the volume has been 

accurately determined, that allow for the sterile flow of gasses through the headspace 

(Anderlei and Büchs 2001). Over the course of the fermentation, the RAMOS uses control of 

the airflow by opening and closing inlet and outlet valves in a repeating pattern (Anderlei et 
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al. 2004). The majority of the fermentation will have the air flow through the headspace at a 

defined rate, allowing free transfer of gasses. This is referred to as the ‘rinse phase’. At 

defined times, the flow of gasses through the headspace is stopped by closing the inlet and 

outlet valves. During this time, referred to as the ‘measurement phase’, oxygen sensors 

placed on each flask record the amount of oxygen consumed, while a pressure sensor on the 

outlet records the change in the total pressure within the headspace (Anderlei et al. 2004). 

Assuming a linear change in the partial pressures of the gasses, the oxygen and carbon 

dioxide transfer rates can be calculated (Anderlei et al. 2004). Following the measurement 

phase, the inlet and outlet valves are opened and the headspace is purged of accumulated 

gasses, and free respiration resumes. This device has become an invaluable tool in 

fermentation research, and has been used in several studies (Meissner et al. 2015; Anderlei 

and Büchs 2001; Anderlei et al. 2004; Herweg et al. 2018; Buchenauer et al. 2009; 

Wewetzer et al. 2015). 

However, though the RAMOS has advanced significantly since it’s construction, a similar 

device for anaerobic fermentations is still lacking. At the shake flask level, anaerobic 

fermentations are currently conducted in sealed flasks with no constant gas transfer, which 

allows for gas measurements by sampling in a gas chromatograph, and could lead to build-up 

of pressure or headspace gasses, or in shake flasks in anaerobic chambers, which allow for 

gas exchange with the chamber atmosphere but no measurement of the gasses produced 

(Munch et al. 2020a). Some devices measure the total gasses produced over the course of the 

fermentation in the shake flask by measuring the number of discrete bubbles through tubing 

with a measured diameter, but are unable to differentiate the gasses produced. Addressing 

this gap in screening technology would allow for increased data to be collected at the shake-

flask scale in anaerobic fermentations, reducing the need for more expensive and 

cumbersome bioreactor experiments.  

1.3) Identified gaps in literature 

The previous section outlined a portion of the work done in the area of fermentation, butanol 

production, strain and process development, and online process monitoring. Throughout this 

review, the need for further development of butanol fermentations has been identified. While 

there has been success using butyric acid or dual-substrate strategies, the current reports have 
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focused on high concentrations of butanol with little regard for the yield of the process. The 

development of a process focusing on yield would provide valuable information for the 

advancement of butanol production by limiting the waste of the carbon substrate. Further, use 

of mutagenic compounds and spontaneous mutations has allowed for improvement of 

butanol fermentation through strain improvement. However, the possible improvements 

through random mutagenesis have not yet been exhausted, and could still yield improved 

strains for butanol production and yield. Finally, while online monitoring of anaerobic 

fermentations has allowed for off-gas data collection in fermentations operating at the 

benchtop reactor scale, fermentations in shake flasks lack the ability to collect off-gas data. 

Development of a device for off-gas data collection from shake flasks would create a 

powerful medium-throughput screening device for anaerobic fermentations. 

1.4) Research Objectives  

1.4.1) General Objective 

The overall objective of this research was to increase the productivity of butanol 

fermentations using glycerol as the primary carbon source and develop online off-gas 

monitoring capabilities for anaerobic fermentations at the shake-flask scale. 

1.4.2) Specific Objectives 

Objective 1: Increase selectivity for butanol by addition of butyric acid to glycerol 

fermentation to maximize butyric acid uptake and butanol yield 

Butyric acid was used to increase the selectivity for butanol during glycerol fermentations via 

addition in the initial medium, and delayed addition to the fermentation medium. The initial 

addition resulted in slight increase in selectivity, but an inhibitory effect was observed. 

Delaying the addition of butyric acid increased the uptake of butyric acid while limiting any 

inhibitory effect. Chemically pure butyric acid was used in parallel with sterilized exhausted 

medium from a fermentation in which the main product being butyric acid. 
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Objective 2: Increase butanol yield in glycerol fermentations by optimizing addition of 

a sugar substrate 

The metabolism of C. pasteurianum can be used to produce butyric acid when fermenting 

sugars. This was utilized to create a dual-substrate fermentation strategy in which sugars 

were initially consumed to produce butyric acid, which was subsequently re-assimilated by 

the cells during consumption of glycerol, increasing the selectivity for butanol. The ratio 

between the substrates was optimized for high levels of butyric acid re-assimilation and 

butanol selectivity.  

Objective 3: Investigate a highly productive mutant of C. pasteurianum to determine 

locations of variants by DNA sequencing analysis 

A putative mutant strain of C. pasteurianum that displayed a phenotype with higher 

productivity than the original wild-type strain was generated by and obtained from E. 

Johnson. The DNA for the putative mutant was isolated, sequenced, and compared to both 

the laboratory wild-type stock strain and a published reference genome. The mutations were 

found and located on an annotated genome, giving insight into the product of the gene 

containing the mutation. 

Objective 4: Create a screening device to obtain off-gas data from anaerobic shake flask 

fermentations 

The lack of online off-gas monitoring for anaerobic fermentations at the shake flask scale 

resulted in missed phenomena and sampling points of interest. This technological gap was 

addressed by modifying equipment for aerobic fermentation off-gas monitoring to work 

anaerobically, collecting online data for CO2 and H2 gas transfer rates. This allowed for 

several fermentations to operate in parallel while online data collection for each individual 

fermentation was conducted, identifying key phenomena in the fermentations such as 

inhibition and exhaustion of substrates. 
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Chapter 2 

Increasing selectivity for butanol in Clostridium pasteurianum fermentations using 

butyric acid or a dual substrate fermentation 

Garret Munch, Justus Mittler, Lars Rehmann 

This chapter explores the effect that butyric acid can have on glycerol fermentations by C. 

pasteurianum. Addition of butyric acid in the medium has been shown previously to have an 

effect on the selectivity for butanol, though its presence from the onset of the fermentation 

can also have an inhibitory effect on the organism (Regestein et al. 2015). In this study, the 

addition of butyric acid to the fermentation medium was delayed to various timepoints 

following inoculation in order to increase the uptake and minimize the inhibitory effect. 

Chemically pure butyric acid was used in parallel with the process fluid from a butyric acid 

producing fermentation (xylose fermentation by C. tyrobutyricum). This allowed direct 

comparison of a possible low-cost source of butyric acid with chemically pure to assess any 

effects of other compounds present in the process fluid. 

Additionally, a dual-substrate fermentation was optimized using molasses sugars (as a 

possible low-cost carbohydrate source) and pure glycerol. The initial metabolization of the 

sugars resulted in butyric acid production, which was subsequently taken up by the cells 

when consuming glycerol in a manner similar to pure and fermentation-derived butyric acid 

added directly to the medium. The ratio of molasses to glycerol required optimization to 

ensure the proper amount of butyric acid was produced: too high a concentration would result 

in inhibition and lack of uptake, and too low a concentration would result in no significant 

effect on butanol yield and selectivity. The optimized conditions resulted in the highest molar 

yield of carbon being utilized to produce butanol, 0.4 mol carbon consumed / mol carbon 

butanol. This yield was higher than observed with either the fermentation derived or the 

chemically pure butyric acid. 

The study described in this chapter fulfilled the first two of the four objectives of this thesis. 

The delayed addition of butyric acid, regardless of the source or presence of additional 

fermentation products, increased the yield of butanol from all carbon substrates. Achieving 

this objective demonstrated the efficacy of delaying the addition of butyric acid in increasing 
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yield while avoiding inhibition. The second objective built on the first, using molasses as the 

sugar source, allowing C. pasteurianum to produce butyric acid, which was subsequently 

taken back up by the cells. The ratio of glycerol to molasses was optimized to allow high 

butyric acid uptake, and subsequent high butanol yield. 

Abstract: Volatility of the petroleum market has renewed research into butanol as an 

alternate fuel. In order to increase the selectivity for butanol during glycerol fermentation 

with Clostridium pasteurianum, butyric acid can be added to the medium. In this manuscript, 

different methods of extracellular butyric acid addition are explored, as well as self-

generation of butyric acid fermented from sugars in a co-substrate strategy. Molasses was 

used as an inexpensive sugar substrate, and the optimal molasses to glycerol ratio was found 

to allow the butyric acid to be assimilated into the cells and increase the productivity of 

butanol from all carbon sources. When butyric acid was added directly into the medium, 

there was no significant difference between chemically pure butyric acid, or butyric acid rich 

cell free medium from a separate fermentation. When low concentrations of butyric acid (1 

or 2 g/L) were added to the initial medium, an inhibitory effect is observed, with no influence 

on the butanol selectivity. However, when added later to the fermentation, over 1 g/L butyric 

acid was taken into the cells and increased the relative carbon yield from 0.449 to 0.519 mols 

carbon in product / mols carbon in substrate. An optimized dual substrate fermentation 

strategy in a pH-controlled reactor resulted in the relative carbon yield rising from 0.439 

when grown on solely glycerol, to 0.480 mols C product / mols C substrate with the dual 

substrate strategy. An additional benefit is the utilization of a novel source of sugars to 

produce butanol from C. pasteurianum. The addition of butyric acid, regardless of how it is 

generated, under the proper conditions can allow for increased selectivity for butanol from all 

substrates. 

2.1) Introduction 

The increasing costs of fossil fuels, and the volatility of the petroleum market has led to 

increased worldwide research into renewable sources of fuels and platform chemicals. 

Butanol, a 4-carbon alcohol, has attracted interest due to its superior fuel properties when 

compared to the current most widespread biofuel, ethanol (J. Lee et al. 2012; S.-M. Lee et al. 

2008). In addition, butanol is a valuable chemical in many industrial applications.  
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Butanol was originally produced at a large scale via fermentation using Clostridium 

acetobutylicum in the early 1900’s, with the main products of the fermentation being acetone, 

butanol, and ethanol (Jones and Woods 1986). The petroleum boom provided access to 

inexpensive precursor chemicals allowing for butanol to be produced from these petroleum 

industry by-products. However, environmental and economic considerations have resulted in 

a renewed interest in fermentatively produced butanol using renewable or waste carbon 

sources (Sarchami, Johnson, and Rehmann 2016b; Gallardo, Alves, and Rodrigues 2014). 

Work has been conducted using various Clostridium species, including C. acetobutylicum, C. 

beijerinckii, and C. pasteurianum (W. Luo et al. 2018; Hou et al. 2017; Sarchami, Johnson, 

and Rehmann 2016a; Erin Johnson and Rehmann 2016). 

In particular, C. pasteurianum has attracted considerable attention due to its ability to rapidly 

metabolize glycerol to butanol, 1,3 propanediol (1,3 PDO), and ethanol, with only trace 

amounts of the by-products (Sabra et al. 2014; Biebl 2001; Gallazzi et al. 2015; Regestein et 

al. 2015; Erin Johnson and Rehmann 2016). More importantly, when grown on glycerol C. 

pasteurianum doesn’t exhibit the typical biphasic growth patterns seen with other 

Clostridium species. Work has been done to enhance the selectivity or productivity of this 

process by altering the conditions of the fermentation (Dabrock, Bahl, and Gottschalk 1992; 

Moon et al. 2011a; Sarchami, Johnson, and Rehmann 2016a). 

Interestingly, when C. pasteurianum is grown with sugars as the main carbon source, the 

main product is butyric acid (Kao et al. 2013). This metabolic pathway has been explored as 

a possible method to increase the selectivity of butanol in C. pasteurianum fermentations 

using glycerol as the carbon source through the addition of butyric acid to the medium 

(Regestein et al. 2015; Gallardo, Alves, and Rodrigues 2014; Sabra et al. 2014; Kao et al. 

2013). Regestein et al (2015) added chemically pure butyric acid to the fermentation medium 

to increase the butanol yield from 0.31 to 0.38 g butanol / g substrate, though an inhibitory 

effect on the fermentation was observed (Regestein et al. 2015). It was also determined that 

the uptake of butyric acid from the fermentation medium required the presence of an external 

carbon source. The inhibition effect, when combined with the high cost of chemically pure 

butyric acid, makes this strategy for enhancing butanol production not economically viable. 
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For increased clarity, for the remainder of the manuscript we will be referring to the 

combined butyrate and butyric acid solely as butyric acid. 

Work has been done to utilize the metabolism of C. pasteurianum when grown in a dual-

substrate fermentation on sugars and glycerol (Sabra et al. 2016, 2014; Kao et al. 2013; 

Dabrock, Bahl, and Gottschalk 1992). The initial consumption of the sugars allows 

production of butyric acid, which can be beneficial to production of butanol from glycerol. 

Kao et al. used high concentrations of both glucose and glycerol (20 and 60 g/L, 

respectively) to achieve a molar yield of 0.38 mol butanol / mol glycerol, though this 

calculations does not include the glucose consumed (Kao et al. 2013). Sabra et al. used 

another glucose and glycerol dual fermentation (50 g/L of each) to produce a high 

concentration of butanol of 21 g/L, and while the final concentration of butanol is high, the 

overall molar yield from both substrates remains low (Sabra et al. 2014). While both of these 

fermentation strategies were successful in producing high amounts of butanol, the amount of 

substrate required would prevent the process from becoming economically viable. 

In this chapter, the different strategies for the addition of butyric acid to enhance the 

selectivity of butanol during glycerol fermentations by C. pasteurianum are outlined. As an 

alternative to chemically pure butyric acid, the supernatant from a separate fermentation 

using C. tyrobutyricum, a butyric acid producing bacteria capable of consuming xylose, was 

used in parallel with experiments using pure butyric acid. Finally, a dual-substrate 

fermentation using molasses and glycerol was optimized to result in significantly increased 

selectivity for butanol from all carbon sources. 

2.2) Materials and Methods 

2.2.1) Chemicals 

Yeast extract, peptone, ammonium sulfate, KH2PO4, K2HPO4, and glycerol were purchased 

from Fischer Scientific. Beef extract was obtained from BD-Becton, Dickinson and 

Company (New Jersey, USA). Xylose, butyric acid, soluble starch, sodium acetate, resazurin, 

and thiamine were purchased from Alfa Aesar (Massachusetts, USA). Dextrose was from 

Amresco (Ohio, USA) and CaCl2 was from EMD Millipore (Massachusetts, USA). 

(NH4)2SO4, MgSO4·7H2O, MnSO4·H2O, were purchased from Caledon (Ontario, Canada). 
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Pure glycerol, FeSO4·7H2O, NaCl and l-cysteine were obtained from BDH (Georgia, USA). 

Commercially available molasses was purchased and diluted to a working concentration of 

200 g/L using ddH2O before use. All other chemicals were purchased from Sigma-Aldrich. 

2.2.2) Organisms and Media 

Clostridium pasteurianum (DSM 525) and Clostridium tyrobutyricum (DSM 2637) were 

purchased from the DSMZ German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany).  Cultures were revived using Reinforced Clostridium medium 

(RCM) containing (per liter): 10 g peptone, 10 g beef extract, 3 g yeast extract, 10 g dextrose, 

5 g NaCl, 1 g soluble starch, 0.5 g l-cysteine, and 4 ml resazurin, at pH 6.8 until reaching a 

high density, before 1 mL aliquots were stored at -80oC with 20% v/v glycerol added to the 

medium. 

2.2.2.1) C. pasteurianum preculturing and fermentation conditions 

For preculturing C. pasteurianum, thawed 1 mL aliquots were added to 9 mL fresh RCM and 

incubated at 35oC for 20 hours in 10 mL sterile tubes. Following this, 10% v/v inoculum was 

added to fresh RCM containing 10 g/L pure glycerol as the carbon source in a 150 mL 

Erlenmeyer flask closed with a cotton plug and wrapped in aluminum foil. Cultures were 

grown for 8 hours before being used for inoculation of experimental flasks if being used for 

fermentations at the shake flask scale. Experiments investigating the effects of butyric acid 

addition to fermentations were inoculated with a starting culture volume of 10% v/v. 

Experiments conducted for the RSM model creation and validation were inoculated with a 

specific volume to result in an initial OD of 0.02. For reactor scale experiments, the culture 

was transferred once again at 10% v/v to fresh RCM with 10 g/L pure glycerol in a 1 L glass 

bottle. Pre-cultures were allowed to grow another 8 hours before being used for inoculation 

of a 7 L reactor (Labfors, Infors, Quebec, Canada) containing 4.5 L uninoculated medium 

and 500 mL of inoculum. Reactor temperature control was conducted through water jacket, 

and equipped with Rushton impellers and baffles for agitation. 

Fermentations were conducted using a modified medium published by Biebl (2001) and 

containing in g/L (unless stated otherwise): glycerol, 20; KH2PO4, 0.5; K2HPO4, 0.5; 

(NH4)2SO4, 5; MgSO4·7H2O, 0.2; CaCl2·2H2O, 0.02; FeSO4, 0.05; yeast extract, 1.0. 2 mL of 
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trace element solution was added per liter of medium, the trace element solution containing 

(in g/L): FeCl2·4H2O, 1.5, dissolved in 25% HCl solution; CoCl2·6H2O, 0.19; MnCl2·4H2O, 

0.1; ZnCl2, 0.07; H3BO3, 0.062; Na2MoO4·2H2O, 0.036; NiCl2·6H2O, 0.024; CuCl2·2H2O, 

0.017. All experiments had an initial pH of 5.3, adjusted using 5 M H2SO4 or 5 M KOH. 

Experiments done in flasks used 0.05 M citric acid buffer to maintain the pH in this region, 

while experiments at the reactor scale maintained the pH at 5.3 using 5 M H2SO4 and 5 M 

KOH. 

2.2.2.2) C. tyrobutyricum preculturing and fermentation conditions 

All preculturing steps were conducted in an anaerobic chamber at 35oC (environment 10% 

CO2, 5% H2, rest N2), on a shaking plate at 200 RPM with a 50 mm shaking diameter, as 

described in Section 2.2.2.1 when discussing preculturing of C. pasteurianum. A 

concentrated solution of xylose was filter sterilized using a 0.22 micron-filter and diluted in 

sterile water to a final concentration of 150 g/L. 

A 1 mL Clostridium tyrobutyricum stock sample was added to 9 mL of fresh RCM 

containing 10 g/L dextrose and allowed to grow for 24 hours. A 10% v/v aliquot of actively 

growing culture was transferred to 45 mL of fresh RCM in a 125 mL flask containing 10 g/L 

xylose and grown for 19 hours. This was subsequently transferred to 450 mL of fresh RCM 

containing 10 g/L xylose, and allowed to grow for 15 hours before being used to inoculate 

4.5 L fermentation medium. 

The fermentation strategy to produce butyric acid was described by Zhu and Yang (2004). 

The medium was described by Huang et al (1998). The medium contained the following (per 

liter):  40 mL of solution A; 40 mL of solution B; 10 mL of trace metals solution; 10 mL of 

vitamin solution; 10 mL of 0.005% NiCl·6H2O; 1 mL of 0.2% FeSO4·7H2O; 0.5 mL of 0.1% 

resazurin; 2 g of trypticase; 2 g of yeast extract. The pH was controlled at 6.3 using 5 M 

H2SO4 and 5 M KOH. 

Solution A contained 7.86 g/L K2HPO4·3H2O. Solution B contained (per liter):  6 g of 

K2HPO4; 6 g of (NH4)2SO4; 12 g of NaCl; 2.5 g of MgSO4·7H2O; 0.16 g of CaCl2·2H2O. The 

trace metal solution contained (per liter):  1.5 g of nitrilotriacetic acid; 0.1 g of FeSO4·7H2O; 

0.5 g of MnSO4·2H2O; 1.0 g of NaCl; 0.1 g of CoCl2; 0.1 g of CaCl2·2H2O; 0.1 g of 
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ZnSO4·5H2O; 0.01 g of CuSO4·5H2O; 0.01 g of AlK(SO4)2; 0.01 g of H3BO3; 0.01 g of 

Na2MoO4·3H2O. The vitamin solution contained (per liter):  5 mg of thiamine‐HCl; 5 mg of 

riboflavin; 5 mg of nicotinic acid; 5 mg of capantothenate; 0.1 mg of vitamin B12; 5 mg of p‐

aminobenzoic acid; 5 mg of lipoic acid. Concentrated xylose was added to result in a final 

concentration of 30 g/L xylose in the medium. 

Fermentations were conducted in a 7 L reactor (Labfors 4, Infors HT, Switzerland), with a 5 

L filling volume. Sampling and analytics conducted identically to those described in Section 

2.2.2.1 

Fermentations were monitored via off gas emission, and once the CO2 began to decrease, 

indicating exhaustion of the available xylose, 500 mL of 150 g/L xylose solution was added 

to the reactor. Upon the exhaustion of this second quantity of xylose, the fermentation was 

terminated. The process fluid was centrifuged in 500 mL aliquots for 30 minutes at 2739 x g 

in a Sorvall ST 40R centrifuge (Thermo Scientific). The supernatant was collected and 

autoclaved before being stored at 4oC prior to analysis and use. 

2.2.3) Experiments with Butyric Acid 

Experiments were conducted in 150 mL Erlenmeyer flasks containing 30 mL combined 

medium and preculture. Butyric acid was added to the initial medium prior to autoclaving for 

use in experiments requiring butyric acid to be present from the onset of fermentation. 

Experiments requiring the delayed addition of pure butyric acid used a concentrated (100 

g/L) stock that had been adjusted to a pH of 5.3 before autoclaving. Experiments requiring 

the supernatant from the xylose fermentation using C. tyrobutyricum used supernatant that 

had been adjusted to a pH of 5.3 before autoclaving. For all experiments using butyric acid, 

the concentrations were confirmed via high performance liquid chromatography prior to use. 

All flask experiments were conducted in an anaerobic chamber (Plas-Labs, Michigan, USA, 

model: 855-ACB-EXP) in which an anoxic environment was confirmed prior to the 

beginning of each experiment. 
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2.2.4) Statistical Methodology and Analysis 

A central composite design was designed using the carbon sources of glycerol and molasses 

as the two factors in order to establish the optimal ratio resulting in high butanol selectivity. 

The uncoded values [low star point, low central point, central point, high central point, high 

star point] for glycerol were [10.34 12 16 20 21.66] and for molasses were [3.76 5 8 11 

12.24], in g/L. The experimental design was developed using Design Expert 8.0.7.1 

(Statease, Inc., Minneapolis, MS, USA) and resulted in 8 conditions, plus 5 center points. 

Conditions were tested in duplicate, and the resulting 26 conditions were randomized. 

Linear regression analysis was used to fit the experimental data with a second-order model. 

Experimental data was analyzed using Design Expert 8.0.7.1 (Statease, Inc., Minneapolis, 

MS, USA). Each term was tested for significance using analysis of variance (ANOVA). The 

significance of the main effects, the interaction effect, and quadratic effects was determined 

based on a α of 0.05 using the F-test. The adequacy of the model was evaluated using normal 

probability plots, R2 and adjusted R2, and lack of fit. Design Expert was determined the 

optimal ratio of substrate for maximum butanol selectivity, and the optimal point was 

validated by triplicate experiment at the predicted optimum. 

2.2.5) Substrate Screening and Scale-up 

Fermentations for defining and validating the model were conducted in 150 mL flasks with a 

filling volume of 30 mL, as outlined in Section 2.2. Molasses and glycerol were added from 

separate stock solutions (200 g/L each) to allow precise addition of the carbon sources. 

Experiments were conducted in an anaerobic chamber (Plas-Labs, Michigan, USA, model: 

855-ACB-EXP) at 35oC, and performed on a shaking plate with a shaking frequency of 200 

rpm and 50 mm shaking diameter (Multitron, Infors HT, Switzerland). Samples (1 mL) were 

taken at regular intervals, and centrifuged at 16 300 x g, before being stored at -20oC until 

analysis according to Section 2.6. 

Reactor scale experiments were conducted in a 7 L stirred tank reactor (Labfors 4, Infors HT, 

Switzerland) with a filling volume of 5 L. The agitation rate was set to 200 rpm. The flow 

rate for nitrogen purging was kept constant at 0.6 L / h using high purity nitrogen gas.  
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2.2.6) Analytical Methods 

High performance liquid chromatography (HPLC) was used to determine the components 

within the fermentation broth. Liquid samples were filtered through 0.2 µm cellulose acetate 

filters, before being diluted with mobile phase to within the operational range of the HPLC. 

A Breeze™ 2 HPLC System from Waters was used (Waters Corp. Milford, USA), including 

an autosampler (Waters model 2707), a refractive index detector (Waters model 2414) and an 

isocratic pump (Waters model 1515). The method used a combination with the Hi-Plex-H 

guard and column from Agilent Technologies, Santa Clara, USA. The injection volume was 

30 µL, column temperature was 50oC and the refractive index detector temperature was 

35oC. The flow rate was 0.45 mL/min using 5 mM H2SO4 as the mobile phase. 

In reactor fermentations, the pH was monitored using a pH probe (Hamilton, Reno, USA). 

The redox potential was measured using a redox probe (Mettler-Toledo, Delaware, USA). 

Off-gas analysis was done using a BlueSens BlueVary  (Herten, Germany) equipped with 

CO2 and H2 sensors (Sensor ID: CO2 – 30783; H2 – 31068). Biomass measurements were 

conducted by filtering 5 mL sample through a cellulose filter (VWR CA28333-129) which 

had been previously dried and weighed. Following filtration, samples were rinsed with 10 

mL H2O before being dried (temperature of 80oC) until a constant weight was achieved. 

Biomass samples were taken in duplicate for every sample. 

2.3) Results and Discussion 

2.3.1) Generation of butyric acid rich process fluid using xylose and C. tyrobutyricum 

To generate the fermentation-derived butyric acid, a fed-batch fermentation was conducted 

using xylose as the carbon source, which resulted in a process fluid containing 23.5 g/L 

butyric acid and 3.8 g/L acetic acid (Figure 2.1). HPLC analysis showed no other detectable 

products in the supernatant. These results agree with similar published experiments using C. 

tyrobutyricum and xylose (Zhu and Yang 2004). The lack of any significant products other 

than butyric acid should allow for the process fluid to be used following sterilization only, 

without extraction and purification of the butyric acid. It is also possible that the 

concentration could be increased further with subsequent xylose feeding steps, which could 
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further reduce the number of times this secondary fermentation needs to be conducted while 

still supplying butyric acid for enhancing butanol fermentations. 

Unfortunately, the pH required for high selectivity for butyric acid from xylose with C. 

tyrobutyricum is 6.3, significantly higher than the pH value at which C. pasteurianum 

produces high amounts of butanol (Johnson and Rehmann, 2015). This difference in pH 

prevents the adoption of a co-culture fermentation strategy between these two organisms. 

 

Figure 2.1: Xylose consumption and product formation in a fed-batch fermentation strategy 

of C. tyrobutyricum to produce butyric acid rich supernatant. Culture was grown in a 7L 

reactor with a 5L initial filling volume, and maintained at a pH of 6.3 to select for butyric 

acid production. Final values for detectable products were (in g/L): butyric acid = 23.5; acetic 

acid = 3.8. 

2.3.2) Effect of butyric acid addition when added to the initial medium 

The initial experiments were conducted to compare the effects of both chemically pure and 

xylose-derived butyric acid on the fermentation of glycerol to butanol. The volume of butyric 

acid rich supernatant was added to result in the desired final concentration of butyric acid in 

the experimental flask, without consideration of any additional compounds present. 
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When added in low concentrations (1 and 2 g/L) to the medium prior to inoculation, the 

butyric acid did not have a large effect on butanol selectivity. The ratio of mols carbon 

butanol / mols carbon consumed substrate for the sample without any butyric acid added was 

0.449 mols C / mols C. For samples with 1 g/L butyric acid added, the ratios were 0.465 mols 

/ mols C with pure butyric acid, and 0.448 mols C / mols C when using xylose-derived 

butyric acid. For samples in which 2 g/L butyric acid was added, the ratio was 0.454 mols C / 

mols C when using pure butyric acid, and 0.433 when using xylose-derived butyric acid. 

However, a distinct inhibitory effect on glycerol consumption and butanol production was 

observed, which increased with increasing concentrations of butyric acid. When no butyric 

acid was added to the medium, there was a small amount of butyric acid re-uptake (0.262 

g/L); however, there was no observable uptake of butyric acid when added to the initial 

medium. Regestein et al found that the uptake of butyric acid occurred late in fermentations 

containing 30 and 45 g/L starting glycerol (Regestein et al. 2015). Similar results were 

reported by Gallardo et al (2014), with butyric acid uptake occurring only in samples 

containing 35 and 50 g/L crude glycerol, and a maximum of 28.18 g/L glycerol was 

consumed (Gallardo, Alves, and Rodrigues 2014). It is possible the lower starting glycerol 

concentration of only 20 g/L did not provide sufficient carbon to allow uptake of butyric 

acid. 
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Figure 2.2: Growth of C. pasteurianum in medium containing differing amounts (0, 1 or 2 

g/L) of chemically pure butyric acid (solid lines, filled symbols) or butyric acid rich 

supernatant from xylose fermentation (dotted lines, unfilled symbols). Blue line = substrate 

concentration; Orange line = butanol concentration. C-source: 20 g/L glycerol, T = 35oC, Vl 

= 30 mL, 0.05 M Citric Acid buffer added, pHo=5.3. All conditions were tested in duplicate 

with the mean of the results presented. Deviation from the mean was less than 10% for all 

samples. 

2.3.3) Effect of delayed addition of butyric acid to fermentation 

As has been previously demonstrated in the literature, butyric acid uptake occurs at late 

stages in the fermentation providing an external carbon source is present (Regestein et al. 

2015; Gallardo, Alves, and Rodrigues 2014). To that end, experiments were conducted in 

which butyric acid, either chemically pure or in the process fluid from xylose fermentation, 

was added at different times during fermentation of 20 g/L glycerol as a proof-of-concept for 

later experiments using delayed addition strategies. 

When butyric acid was added while the concentration of glycerol in the fermentation 

remained high (approximately 16 and 13 g/L glycerol remaining), the butyric acid was not 

observed to be taken up by the cells (Figure 2.3). The concentration of butyric acid was 

actually observed to continue increasing after the addition of 1 or 2 g/L butyric acid, 

indicating that the cells continued to produce the acid despite the increased concentrations 

appearing in the medium. As there was no uptake of the butyric acid, the effect on the ratio of 

mols C product to mols C substrate consumed was minimal. When the butyric acid was 

added with 16 g/L glycerol remaining, samples with 1 g/L butyric acid added had ratios of 

0.421 mols / mols C with pure butyric acid, and 0.427 mols C / mols C when using xylose-

derived butyric acid. For samples in which 2 g/L butyric acid was added, the ratio was 0.447 

mols C / mols C when using pure butyric acid, and 0.405 when using xylose-derived butyric 

acid. When the butyric acid was added at 18 hours PI, for all samples with 1 g/L butyric acid 

added, the ratios were 0.439 mols / mols C with pure butyric acid, and 0.439 mols C / mols C 

when using xylose-derived butyric acid (Table 2.1). For samples in which 2 g/L butyric acid 

was added at 18 hours post inoculation, the ratio was 0.430 mols C / mols C when using pure 

butyric acid, and 0.417 when using xylose-derived butyric acid. The difference between the 
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pure and xylose-derived butyric acid effects indicate that the xylose-derived butyric acid has 

a greater effect on the yield ratio, possibly due to the additional compounds present in the 

process fluid from the xylose fermentation with C. tyrobutyricum. As well, the presence of 

the added butyric acid reduced the amount of butyric acid produced by the cells when 

compared to samples without any added butyric acid, especially when 2 g/L xylose-derived 

butyric acid was added. 

When butyric acid was when the glycerol concentration had reached approximately 8 g/L and 

the fermentation was well-established, uptake of the butyric acid was observed. Samples in 

which 1 g/L butyric acid was added resulted in just over 1 g/L butyric acid being taken up 

(1.03 when pure butyric acid added, and 1.07 when supernatant from xylose fermentation 

was added), leaving only small amounts of butyric acid (0.20 and 0.28 g/L) remaining in the 

medium. The ratio of mols carbon in butanol / mols carbon in consumed substrate was 

increased to 0.518 mols C / mols C when pure butyric acid was used, and 0.515 mols C / 

mols C when xylose-derived butyric acid was used. The amount of carbon found in the 

butyric acid taken up by cells was added to the mols of carbon in the substrate, in order to 

demonstrate the overall effect of increased carbon being metabolized to butanol. Samples in 

which 2 g/L butyric acid was added showed slightly increased acid uptake (1.22 and 1.21 g/L 

of pure and xylose derived butyric acid, respectively), with some butyric acid remaining in 

the medium at the end of the fermentation. This lack of complete uptake could be explained 

by depletion of the primary carbon source. The carbon ratios for each sample were 0.516 and 

0.498 mol C / mol C (pure butyric acid and xylose-derived, respectively).  
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Table 2.1: Comparison of the butyric acid production/consumption, butanol production, and relative carbon yield following addition of 

butyric acid to fermentations at different points in the fermentation. 

 Glycerol consumed in fermentation prior to B.A. addition 

(g/L) 

 
4 7 12 

 

1 g/L 

Pure 

B.A. 

added 

1 g/L 

ferm. 

B.A. 

added 

2 g/L 

Pure 

B.A. 

added 

2 g/L 

ferm. 

B.A. 

added 

1 g/L 

Pure 

B.A. 

added 

1 g/L 

ferm. 

B.A. 

added 

2 g/L 

Pure 

B.A. 

added 

2 g/L 

ferm. 

B.A. 

added 

1 g/L 

Pure 

B.A. 

added 

1 g/L 

ferm. 

B.A. 

added 

2 g/L 

Pure 

B.A. 

added 

2 g/L 

ferm. 

B.A. 

added 

B.A. Produced / 

Consumed 

(g/L) 

1.002 0.962 0.923 0.499 1.011 1.082 1.103 0.689 -0.916 -0.935 -1.22 -1.084 

Butanol Produced 

at end of 

fermentation 

(g/L) 

5.134 5.021 4.527 4.414 4.893 5.117 4.802 4.706 6.761 6.723 6.668 6.525 

Relative Carbon 

Yield 

(mols C product / 

mols C substrate 

consumed) 

0.421 0.427 0.447 0.405 0.439 0.439 0.430 0.417 0.518 0.515 0.516 0.498 

B.A.: Butyric Acid 

Ferm.: Fermentation-derived 

Negative value: Indicating net uptake of butyric acid



47 
 

 

Figure 2.3: Comparison of the amount of butyric acid produced or consumed when added 

during fermentation with differing amounts of remaining glycerol. 

2.3.4) Optimization of glycerol and molasses ratio 

Direct addition of butyric acid, even produced using fermentation of waste xylose sources, 

could still result in high costs for butanol fermentation either from expensive materials or 

having to run a preliminary fermentation to create the butyric acid in a separate vessel. A 

preferred method would be for a single-vessel fermentation without a requirement for dosed 

addition of chemicals, which could be achieved through the introduction of an additional 

substrate to the fermentation. Dual-substrate fermentations have been conducted in which C. 

pasteurianum is grown on a mixture of sugar and glycerol, allowing the cells to first produce 

the butyric acid from the sugar, and subsequently uptake the acid to aid butanol productivity 

and selectivity (Sabra et al. 2014, 2016). Here, we utilized sugar beet molasses as a low-cost 

source of the sugars, rather than pure dextrose. An optimal ratio of molasses to glycerol is 
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required, as too much molasses results in inhibitory concentrations of butyric acid being 

produced, and too little would not significantly affect the relative carbon yield of butanol. 

The ratio of carbon available from glycerol and molasses was chosen based on a central 

composite design, and the actual values for the variables, and the measured responses, are 

given in Table 2.2. Each run was conducted in duplicate and the averages are reported here. 

Table 2.2: Relative Carbon Yield under conditions determined for identification of an 

optimum ratio. All conditions were tested in duplicate and the average values are reported 

here. Deviation from the mean was less than 10% for all samples. 

Run Glycerol Molasses Butanol 
Relative 

Carbon Yield 

1 16 8 6.108 0.458 

2 16 8 6.089 0.458 

3 16 8 6.231 0.463 

4 20 5 6.588 0.445 

5 16 3.75736 5.107 0.429 

6 12 11 4.227 0.342 

7 16 12.2426 6.211 0.389 

8 16 8 6.122 0.457 

9 21.6569 8 8.063 0.431 

10 20 11 7.494 0.413 

11 12 5 3.663 0.329 

12 10.3431 8 3.537 0.296 

13 16 8 6.101 0.453 

 

As observed from these results, the selectivity for butanol is affected by the ratio between 

glycerol and molasses within the range of the variables.  

The complete dataset was used with a fitted quadratic model, the results of which are in 

Table 2.3. The model constraints were to maximize both the final butanol concentration as 

well as the relative carbon yield. The F value of the model is 202.58, indicating the model is 

highly significant. The parameter coefficient for both glycerol and molasses, the interaction 

effect between glycerol and molasses, and the quadratic effects of glycerol and molasses had 

p-values below 0.05 and were all significant.  
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Table 2.3: ANOVA table of model for relative carbon yield. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F-Value p-value Comment 

Model 0.0378 5 0.0050 202.58 < 0.0001 significant 

A-Glycerol 0.0179 1 0.0110 478.55 < 0.0001 significant 

B-Molasses 0.0007 1 0.0002 19.13 0.0033 significant 

AB 0.0005 1 0.0004 13.57 0.0078 significant 

A² 0.0161 1 0.0111 432.32 < 0.0001 significant 

B² 0.0045 1 0.0037 120.30 < 0.0001 significant 

       

R-squared 0.993      

Adj-squared 0.988      

Adeq Precision 39.3      

 

Based on this model, the quadratic model including all significant and non-significant 

factors, with actual values for the factors, for the Relative Carbon Yield is: 

Relative Carbon Yield = -0.777 + 0.116●Glycerol + 0.057●Molasses – 0.003●Glycerol2 – 

0.003●Molasses2 

Residuals can be judged as normally distributed on a normal probability. 

A surface plot of the effects of the concentrations of glycerol and molasses on the relative 

carbon yield for this system is shown in Figure 2.4. The plots indicate that an optimum exists 

within the observable design space between these two variables. 
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Figure 2.4: Surface and residual plots of effects of amount of glycerol and molasses in 

starting medium on the relative carbon yield. 

2.3.5) Model Validation 

Based on this model, numerical optimization was used to determine the ratio of glycerol and 

molasses that would result in the highest relative carbon yield as well as the highest butanol 

concentration. The optimum starting concentrations given were 19.32 g/L glycerol and 8.02 

g/L molasses.  

Experiments were conducted using these concentrations, and compared to the predicted 

values for the relative carbon yield. The final butanol concentration for these fermentations 

was on average 7.15 g/L, with 1.90 g/L butyric acid produced early in the fermentation from 

the consumption of molasses sugars. Butyric acid was taken back up by the cells, and the 

final concentration was 0.11 g/L butyric acid, meaning 1.80 g/L was taken back up between 

12 and 24 hours Post-Inoculation (Figure 2.5). The results of these validations were within 

the bounds of the prediction interval, and were in close agreement with the predicted mean 

(0.460 mol C substrates / mol C butanol predicted vs. 0.459 mol C substrate / mol C butanol 

observed) and can be seen in Table 2.4. 
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Figure 2.5: Fermentation products at the optimum glycerol:molasses ratio. Butyric acid is 

produced from the sugars present, then subsequently taken back up by the cells to increase 

the productivity of butanol. Conditions were tested in triplicate with the mean of the results 

presented. Error bars represent standard deviation from the mean. 

 

Table 2.4: Comparison of the predicted and observed relative carbon yield at the optimum 

ratio point 

 
Predicted 

Mean 

Observed 

Mean 

95% PI 

low 

95% PI 

high 

Relative Carbon Yield 0.460 0.459 0.449 0.471 

 

2.3.6) Testing dual-substrate at reactor scale with pH control 

Following validation of the model, fermentation at the reactor scale was conducted to allow 

analysis of the gaseous products and greater process control, primarily control of the pH. The 

effects of pH on C. pasteurianum fermentations using glycerol as the carbon source have 
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been shown to alter the product profile observed (Johnson and Rehmann 2016). The pH was 

held at 5.3, as that would allow 25% of the butyric acid to be fully protonated and thus 

facilitate assimilation by the cells (Regestein et al. 2015). 

The fermentation progressed in a similar fashion to fermentations conducted at the shake 

flask scale. The molasses sugars were consumed and converted largely to butyric acid in the 

first 8 hours PI (Figure 2.6), reaching a maximum concentration of 2.48 g/L. The butyric acid 

produced was subsequently taken up by the cells, reaching a final concentration of 0.172 g/L, 

an uptake of 2.3 g/L. The resulting final butanol concentration was 7.82 g/L, corresponding 

to a relative carbon yield of 0.480 mols C butanol / mols C substrate. This value is even 

greater than predicted, indicating that control of the pH throughout the fermentation had an 

overall positive effect. The fermentation time was shorter when compared to shake flask, 

with fermentations in the reactor being complete in 20 hours compared to those in flasks, in 

which not all the glycerol had been consumed after 24 hours. This can be attributed to 

growing pH inhibition within the flasks as the fermentation proceeds (Erin Johnson and 

Rehmann 2016). An identical fermentation at the reactor scale using only 20 g/L glycerol as 

the carbon source and no molasses sugars had a final butanol concentration of 5.62 g/L, and a 

relative carbon yield of only 0.439 mols C butanol / mols C substrate.  

Off-gas analysis showed distinct decreases in the gas production at the depletion of the 

molasses sugars, followed by an increase of the CO2 while the H2 remained significantly 

lower. This decoupling behavior has been seen previously, and could be attributed to the 

downregulation of two non-ferredoxin-dependent hydrogenases following depletion of the 

sugars (Munch et al. 2020b; Sabra et al. 2016). 
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Figure 2.6: Top: Off gas (CO2 and H2) of the molasses/glycerol fermentation with C. 

pasteurianum. First drop in gas production corresponds to depletion of fructose, while second 

drop corresponds to depletion of dextrose. Bottom: Products of fermentation over time. 

Butyric acid is produced initially from metabolizing the sugars available, then subsequently 

taken back up to increase butanol productivity. Conditions were tested in duplicate, with the 

mean of the results presented. Deviation from the mean was less than 5% for all samples. 
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Table 2.5: Comparison of the relative carbon yield for dual-substrate fermentations (ratio of 

carbon in the available substrates over the carbon in the main product, butanol) 

 

Mols sugar 

substrate 

consumed 

Mols glycerol 

consumed 

Mols butanol 

produced 

Relative carbon 

Yield (mols C 

consumed / mols C 

butanol) 

Kao et al. 0.11 0.65 0.18 0.274 

Sabra et al. 0.28 0.54 0.28 0.344 

This work 0 0.23 0.076 0.439 

This work 0.04 0.23 0.11 0.480 

 

2.4) Conclusions 

The effects of additional butyric acid from various sources increased the selectivity for 

butanol in fermentations using C. pasteurianum and glycerol as the main carbon source. 

When added in low concentrations (1 or 2 g/L), the effect was time-dependent. Early addition 

resulted in inhibition of the fermentation, without a large effect on the relative carbon yield. 

Addition at 24 hours post-inoculation resulted in the highest uptake of the butyric acid, and 

an increase in yield to a maximum of 0.512 mols carbon butanol / mols carbon substrate on 

average. This effect was consistent for both chemically pure butyric acid, as well as butyric 

acid rich supernatant from a separate fermentation. A dual-substrate fermentation strategy in 

which C. pasteurianum produced butyric acid using molasses in order to increase selectivity 

for butanol when glycerol was consumed was optimized. This system resulted in a calculated 

yield of 0.480 mols carbon butanol / mols carbon substrate, an increase from 0.425 mols 

carbon butanol / mols carbon substrate when using only glycerol as the carbon source, and a 

higher yield when compared to other dual-substrate fermentations in literature. Using a dual 

substrate process, centered around the production and re-uptake of butyric acid, could be 

used to create a highly selective butanol fermentation strategy and utilize a novel carbon 

source previously unused for butanol production with C. pasteurianum.  
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Chapter 3 

Characterization and sequencing of highly productive Clostridium pasteurianum mutant 

cultures. 

Garret Munch, Erin Johnson, Lars Rehmann 

Portions of this research chapter appear in the successful Genomic Applications Partnership 

Program titled “Strain development for butanol process addition to existing biodiesel plants”, 

a partnership between researchers at the University of Western Ontario, Genome Canada, and 

World Energy Hamilton. 

This chapter describes work using a putative mutant strain of C. pasteurianum that was 

generated in the lab via random mutagenesis in a continuous fermentation by E. Johnson in 

2015. Batch fermentations were conducted to allow direct comparisons between the putative 

mutant and wild-type. The putative mutant displayed advantageous properties when 

compared to the wild-type C. pasteurianum, such as increased butanol productivity, faster 

growth rates, and a product profile more directed towards butyric acid and butanol 

production.  

DNA was extracted from the putative mutant samples and the wild-type stock strain in the 

laboratory for comparison. The DNA was sequenced and analyzed to attempt to identify 

mutations of interest which could explain the advantageous phenotype of the putative mutant. 

DNA comparison between the putative mutant, the laboratory stock wild-type, and published 

reference genomes revealed clusters of mutations which were common between the putative 

mutants sampled and not found in either the laboratory wild-type or the published reference 

genome.   

The research described in this chapter fulfills the third objective of this thesis. The growth 

behavior of the organisms was compared when grown in identical conditions in a bioreactor. 

The DNA was isolated, and variants on the mutants genomes were located and their products 

(where available) were identified.  

Abstract: Novel genetic tools allow mutagenic work to be done to improve the performance 

of fermentative organisms. Work with Clostridium pasteurianum has produced mutants with 
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higher growth rates, increased butanol yield, increased glycerol uptake, and other beneficial 

characteristics superior to those found in the wild-type organism. A previous study conducted 

by E. Johnson resulted in a potential mutant strain of C. pasteurianum which displayed 

higher butanol production in continuous culture, with no synchronized oscillating 

metabolism (E. Johnson, personal communication, 2018).  Samples of the putative mutant 

population was obtained from E. Johnson, and the growth characteristics of the culture was 

determined in batch fermentations. DNA was isolated for sequencing and identification of 

variants between the putative mutant and the wild-type. Growth characterization of the 

putative mutants showed increased growth rate and selectivity towards the butyric 

acid/butanol fermentative pathway. Variant analysis showed 29 common variants in the 

samples sequenced compared to the wild-type, with several unique variants being present in 

each sample. This non-homogeneity indicates that the samples are not of a pure culture, but 

of a community of genotypes, some of which display beneficial phenotypes. 

3.1) Introduction 

While butanol production from glycerol by Clostridium pasteurianum suffers from notable 

challenges, namely low productivity and yield, several strategies are under investigation to 

overcome these issues (Dabrock, Bahl, and Gottschalk 1992; T. Ø. Jensen et al. 2012; 

Khanna, Goyal, and Moholkar 2013; Zheng et al. 2013; Moon et al. 2011a). Research has 

been conducted into both up and downstream processes which can address the low overall 

productivity of the fermentation process. One upstream strategy to increase the productivity 

or yield of butanol production by C. pasteurianum previously and currently under 

investigation is via mutagenesis (Malaviya, Jang, and Lee 2012; T. Ø. Jensen et al. 2012; 

Pyne et al. 2013; Schwarz et al. 2017). Several studies have been conducted using either site-

directed or random mutagenesis to create highly productive and selective strains of C. 

pasteurianum (Luers et al. 2006, 1997; Sun et al. 2003).  

Malaviya et al. used non-specific mutagenesis via N-methyl-N′-nitro-N-nitrosoguanidine to 

produce a several mutant strains of C. pasteurianum, which were then screened for 

heightened for increased butanol production (Malaviya, Jang, and Lee 2012). The most 

improved strain produced 10.8 g/L butanol compared to 7.6 g/L from the parent strain, when 

grown in batch culture on 80 g/L glycerol. This strain was also used for 710 hours in a 
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continuous fermentation, producing high amounts of butanol with little by-products, and 

displayed no strain degradation (Malaviya, Jang, and Lee 2012). Another study using ethane 

methyl sulfonate to induce random mutagenesis developed a strain which was better able to 

tolerate impurities found in biodiesel derived crude glycerol than the parent strain (T. Ø. 

Jensen et al. 2012; T. O. Jensen et al. 2012). In addition to this improved tolerance, the 

mutated strain displayed a higher butanol productivity compared to the parent strain in a 

continuous fermentation (1.80 g/L/h vs. 1.30 g/L/h, respectively). 

In contrast to random mutagenesis, other studies have used targeted genetic methods in order 

to specifically target genes which are directly involved with the conversion of glycerol to 

butanol. These studies take advantage of the publication of the complete C. pasteurianum 

genome to find these gene sequences and create tools for altering them (Poehlein et al. 2015; 

Pyne et al. 2013; Pyne, Liu, et al. 2016).  Pyne et al. recently provided an extremely detailed 

breakdown of the metabolism of C. pasteurianum, with identification of Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) loci (Pyne, Liu, et al. 2016). Targeted gene 

deletion used by Schwarz et al. allowed for a complete knock-out of the 1,3 PDO pathway in 

C. pasteurianum, which ultimately resulted in poor growth of the mutant (Schwarz et al. 

2017). However, by manipulating genes encoding for redox-dependent proteins, the authors 

were able to produce mutants which had widely different behavior and product ratios. Other 

genetic work has focused on increasing the hydrogen production through manipulation of a 

hydrogenase enzyme (Sarma et al. 2019). This same work also increased the glycerol uptake 

rates of C. pasteurianum by overexpressing two specific genes (dhaD1 and dhaK – encoding 

glycerol dehydrogenase and dihydroxyacetone kinase, respectively), a phenotype that would 

be of interest in butanol production as well. 

Previous attempts at establishing a continuous, steady state fermentation had only been 

achieved under conditions not desirable for industrial application (low glycerol feed 

concentration). Other conditions resulted in a self-synchronized oscillatory metabolism as 

shown by the  off-gas production (CO2 and H2) and the redox potential during on-line 

monitoring in continuous fermentation (E. E. Johnson and Rehmann 2020).   Samples of a C. 

pasteurianum population, following a mutagenesis in the continuous reactor was provided by 

E. Johnson for work conducted in this thesis (E. Johnson, personal communication, 2018).  
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Further study of this putative C. pasteurianum mutant was conducted, beginning with a direct 

comparison of the growth characteristics and product profile, and a complete sequencing of 

the genomes of the putative mutant and lab stock wild-type strain for identification of 

variations in the genomes. Sequences were also compared to the published reference genome. 

3.2) Materials and Methods 

3.2.1) Chemicals 

Yeast extract, peptone, ammonium sulfate, KH2PO4, K2HPO4, and glycerol were purchased 

from Fischer Scientific. Beef extract was obtained from BD-Becton, Dickinson and 

Company (New Jersey, USA). Soluble starch, sodium acetate, resazurin, and thiamine were 

purchased from Alfa Aesar (Massachusetts, USA). Dextrose was from Amresco (Ohio, USA) 

and CaCl2 was from EMD Millipore (Massachusetts, USA). (NH4)2SO4, MgSO4·7H2O, 

MnSO4·H2O, were purchased from Caledon (Ontario, Canada). Pure glycerol, FeSO4·7H2O, 

NaCl and l-cysteine were obtained from BDH (Georgia, USA). All other chemicals were 

purchased from Sigma-Aldrich. 

3.2.2) Organism and Medium 

Clostridium pasteurianum DSM 525 was originally purchased from the DSMZ German 

Collection of Microorganisms and Cell Cultures (Braunschweig, Germany).  Cultures were 

revived using Reinforced Clostridium medium (RCM) containing (per liter): 10 g peptone, 

10 g beef extract, 3 g yeast extract, 10 g dextrose, 5 g NaCl, 1 g soluble starch, 0.5 g l-

cysteine, and 4 ml resazurin, at pH 6.8 until reaching a high density before 1 mL aliquots 

were stored at -80oC with 20% v/v glycerol added to the medium. All samples of the putative 

mutant C. pasteurianum strain were provided by E. Johnson for use in this work. 

For preculturing both the putative mutant and wild-type strains of C. pasteurianum, thawed 1 

mL aliquots were added to 9 mL fresh RCM and incubated at 35oC for 20 hours in 10 mL 

sterile tubes. Following this, 10% v/v inoculum was added to fresh RCM containing 10 g/L 

pure glycerol as the carbon source in a 150 mL Erlenmeyer flask. Cultures were grown for 8 

hours before being transferred once again at 10% v/v to fresh RCM with 10 g/L pure glycerol 
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in a 1 L glass bottle with a 500 mL total volume. Pre-cultures were allowed to grow another 

8 hours before being used for inoculation of 4.5 L medium in a 7 L fermenter. 

3.2.3) Sequencing of putative mutant and laboratory wild-type strain 

Four putative mutant samples were prepared for sequence in parallel with four laboratory 

wild-type cryogentic stocks. The putative mutant samples were denoted E53J_2 and E53J_3 

(samples isolated by E. Johnson in July 2016) and E53D_1 and E53D_3 (samples isolated by 

E. Johnson in December 2015), while the wild-type samples were designated WT_1 through 

WT_4. Samples were revived according to Section 2.2.2.1, however following the 20- hour 

initial growth, 5 mL of pre-culture was used to inoculate 45 mL fresh RCM containing 20 

g/L dextrose as the carbon source, taking samples regularly in order to perform a cell count. 

Once the count reached approximately 2x109 cells / mL, the samples were centrifuged and 

the DNA extracted.  

DNA extractions were conducted using an Invitrogen Purelink Genomic DNA minikit 

(ThermoFisher Scientific), following the protocol as outlined for gram positive bacteria. In 

brief, the cells were lysed using the lysozyme digestion buffer (25 mM Tris-HCL, pH 8.0, 2.5 

mM EDTA, 1% Triton X-100, 20 mg/mL lysozyme) at 37oC for 30 minutes. Proteinase K 

and the Genomic Lysis buffer were then added, and the mixture was incubated at 55oC for 30 

minutes before 100% ethanol was added and the solution was vortexed. The mixture was 

then added to a PureLink Spin Column and centrifuged at 10 000 x g for 1 minute to bind the 

DNA to the column. The bound DNA was washed twice, then the DNA was eluted into a 

sterile and DNAse-free microcentrifuge tube. Eluted DNA samples were stored at 4oC. Prior 

to sequencing, the DNA was precipitated using 0.5x DNA sample volume of 7.5 M 

ammonium acetate and 2.5x sample volume of 100% ethanol, and chilling at -20oC 

overnight. The samples were then centrifuged at 12 000 x g for 30 minutes at 4oC, 

supernatant discarded, and the pellet washed twice with 80% v/v ethanol (centrifuging once 

again after washes). The final washed pellet was allowed to air-dry and resuspended in 

DNA/RNAse free water. 

DNA was sequenced using a NextSeq Mid Output 150 cycle kit (Illumina, San Diego, USA) 

and the libraries were prepared using a Nextera XT DNA Library Preparation Kit (Illumina, 
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San Diego, USA). This work was conducted with the London Regional Genomic Centre, a 

part of the Robarts Research Institute. Completed genome sequences were uploaded to 

Illumina BaseSpace Sequence Hub until required for further analysis. 

3.2.4) Analysis and comparison of Genomes 

Genome sequences were uploaded to the analysis software Partek Flow (Partek, St. Louis, 

USA) for comparison. Sequences were aligned using BWA-MEM aligner (version 0.7.12) 

using the published reference genome (NZ_CP009268.1) and subsequently the selected 

variant caller used was SamTools (version 1.4.1). The annotation model used was 

CP009268.1. Each putative mutagenic genome was compared to the laboratory wild-type 

genomes and searched for variants, with the subsequent genomic information being provided 

by the annotated genome. 

3.2.5) Characterization of growth kinetics and product profile 

Characterization experiments were conducted at the reactor scale in a 7 L stirred tank reactor 

(Labfors 4, Infors HT, Switzerland) with a filling volume of 5 L. The stirring rate was set to 

200 rpm. The flow rate for aeration was kept constant at 0.6 L / h using high purity nitrogen 

gas. Pre-culturing was conducted as described in Section 3.2.2 

Fermentations were conducted using a modified medium published by Biebl (2001) and 

containing in g/L (unless stated otherwise): glycerol, 30; KH2PO4, 0.5; K2HPO4, 0.5; 

(NH4)2SO4, 5; MgSO4·7H2O, 0.2; CaCl2·2H2O, 0.02; FeSO4, 0.05; yeast extract, 1.0. 2 mL of 

trace element solution was added per liter of medium, the trace element solution containing 

(in g/L): FeCl2·4H2O, 1.5, dissolved in 25% HCl solution; CoCl2·6H2O, 0.19; MnCl2·4H2O, 

0.1; ZnCl2, 0.07; H3BO3, 0.062; Na2MoO4·2H2O, 0.036; NiCl2·6H2O, 0.024; CuCl2·2H2O, 

0.017. All experiments maintained the pH of 5.3, adjusted using 5 M H2SO4 or 5 M KOH. 

3.2.6) Numerical analysis of growth kinetics 

Growth associated product formation and constant yield coefficients were assumed for the 

conversion of glycerol to new cell mass and butanol. The formation and possible re-uptake of 

by-products and intermediates was not considered in the numerical analysis. The growth was 
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assumed to follow simple Monod kinetics and product inhibition was assumed not to be 

present over the investigated concentration range. 

Hence substrate consumption, cell and product formation could be described using the 

following coupled differential equations: 

𝑑𝑆

𝑑𝑡
= −

1

𝑌𝑋
𝑆

𝑑𝑋

𝑑𝑡
       (3.1) 

𝑑𝑋

𝑑𝑡
= 𝑋

µ𝑚𝑎𝑥𝑆

𝐾𝑆+𝑆
       (3.2) 

𝑑𝑃

𝑑𝑡
= −𝑌𝑃

𝑆

𝑑𝑆

𝑑𝑡
       (3.3) 

 

Where S = glycerol (g/L), X = cell mass (g/L), P = butanol (g/L), YX/S and YP/S are the cell 

mass and butanol yield coefficients (g/g), µmax (h
-1) is the maximum specific growth rate and 

KS (g/L) the half-saturation constant. Equations 3.1-3.3 were solved numerically for the 

initial conditions X0, S0 and P0 at t=0 based on the conditions in the respective reactor 

(ode23, Mathworks, MA). The yield coefficients were calculated based on the final values 

for X, S, and P while µmax and KS were estimated via non-linear regression of the time course 

data versus the numerical ODE solutions using the Levenberg–Marquardt algorithm (fit, 

Mathworks, MA). 

 

 

3.2.7) Analytical Methods 

High performance liquid chromatography (HPLC) was used to determine the components 

within the fermentation broth. Liquid samples were filtered through 0.2 µm cellulose acetate 

filters, before being diluted with mobile phase to within the operational range of the HPLC. 

A Breeze™ 2 HPLC System from Waters was used (Waters Corp. Milford, USA), including 

an autosampler (Waters model 2707), a refractive index detector (Waters model 2414) and an 

isocratic pump (Waters model 1515). The method used a combination with the Hi-Plex-H 
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guard and column from Agilent Technologies, Santa Clara, USA. The injection volume was 

30 µL, column temperature was 50oC and the refractive index detector temperature was 

35oC. The flow rate was 0.45 mL/min using 5 mM H2SO4 as the mobile phase. 

In reactor fermentations, the pH was monitored using a pH probe (Hamilton, Reno, USA). 

The redox potential was measured using a redox probe (Mettler-Toledo, Delaware, USA). 

Off-gas analysis was done using a BlueSens BlueVary  (Herten, Germany) equipped with 

CO2 and H2 sensors (Sensor ID: CO2 – 30783; H2 – 31068). Biomass measurements were 

conducted by filtering 5 mL sample through a cellulose filter which had been previously 

dried and weighed. Following filtration, samples were rinsed with 10 mL H2O before being 

dried until a constant weight was achieved. Biomass samples were taken in duplicate for 

every sample. 

3.3) Results and Discussion 

3.3.1) End-product differences between putative mutant and wild-type 

A comparison of the growth and products formed between the putative mutants and the 

laboratory wild-type strain was conducted in batch fermentations. The desired behavior for 

the putative mutant was faster growth and a product profile that was more heavily weighted 

to the production of butanol. 

Both of the putative mutants tested (E53J and E53D) displayed differences in the soluble 

products produced when grown in an identical batch fermentation to the laboratory wild type 

(Table 3.1). Of note, while the amount of butanol produced by the wild-type was higher on 

average compared to the putative mutants (9.133 g/L vs 8.780 g/L, respectively), the final 

amount of butyric acid produced differed significantly (0.224 g/L vs. 1.563 g/L). This shows 

a marked change in the metabolism, with increased flux of carbon towards the 

butanol/butyric acid pathway and less carbon being used for by-products. As described in 

Chapter 1 and elsewhere in literature, butyric acid can be converted to butanol, indicating 

that the overall butanol concentration could be further increased under the proper conditions 

(Sabra et al. 2016; Kao et al. 2013; Regestein et al. 2015). All other products were produced 

in similar amounts, with the exception of biomass being slightly higher in fermentations 

using the putative mutant. 
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Table 3.1: Comparison of the soluble products of wild-type and putative mutant strains of C. 

pasteurianum 

 Wild-Type 1 Wild-Type 2 E53J E53D 

Acetic Acid (g/L) 0.394 0.413 0.541 0.542 

1,3 PDO (g/L) 0.807 0.987 0.894 0.957 

Ethanol (g/L) 0.503 0.396 0.37 0.31 

Butyric Acid (g/L) 0.242 0.206 1.463 1.662 

Butanol (g/L) 9.223 9.043 8.928 8.631 

Time to fermentation 

completion (h) 
18 16.5 15.5 13.5 

Biomass (g/L) 2.81 2.84 3.05 2.96 

 

3.3.2) Growth kinetics of putative mutant and wild-type  

A comparison of the growth profiles for the two wild-type samples (WT 1 and 2) and the 

putative mutant strains (E53 J and D) is presented in Figure 3.1. From the offline data, the 

mutant strains seem to show a faster growth rate, based on the complete consumption of the 

glycerol present in the medium. The datasets were combined into two datasets, one for the 

wild-type samples and one for the putative mutant strains, and the solid line in the Figures is 

the best fit result using equations 3.1 – 3.3. As shown in the figure, the model fits the data 

very well, with an adjusted R2 of 0.998 for the putative mutant dataset and 0.995 for the wild-

type data. The parameters estimated by the model (with the 95% confidence bounds in 

brackets) are for the wild-type strain: KS = 27.60 (-55.27, 110.71) and µmax = 0.6749 (-

0.7129, 2.063) and for the mutant strain: KS = 11.1 (-4.51, 26.7) and µmax = 0.3816 (0.115, 

0.648). Based on this dataset, the mutant strains have the lower specific growth rate. 

However, it must be noted that batch fermentations are not suitable for estimations of Monod 

parameters. The parameters KS and µmax are highly correlated and are best estimated in 

specifically design experiments in continuous culture, in which the dilution rate is equal to 

the specific growth rate. By gradually increasing the dilution rate until washout of cells 

occurs, the maximum specific growth rate can be determined. The influence of the parameter 

KS is only observed at substrate concentrations of similar and lower values than KS, which is 
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typically <<1 g/L. Such low substrate concentrations only occur at the end of a batch 

fermentation, when the overall rates are high, due to large amounts of cell mass. Therefore, 

off-line data acquired every few hours, as in this data-set is typically not suitable to estimate 

KS, and consequently, are not suitable to estimate µmax. The large confidence bound of the 

values shown above is a direct result of the high correlation between the two parameters. As 

a result, the data presented here cannot be used for a direct comparison between the strains.  

 

 

 

Figure 3.1: Glycerol consumption, butanol and cell biomass production over time of reactor-

scale fermentations using two C. pasteurianum wild-type samples (top, graphs A and B) and 

two putative mutant samples (bottom, C and D). Solid lines are the best fit results for the 

consumption of glycerol and production of butanol and cell biomass. 
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The bioreactors used for the fermentations displayed in Figure 3.1 were also equipped with 

off-gas analyzers, allowing for further comparison of the gaseous products of the two strains. 

In addition to differences noted in the soluble products, differences in the CO2 production 

rates were observed. The putative mutant strains (E53J1 an E53D1) displayed a 11.8% 

increase in the maximum CO2 production rate over the wild-type strain (Original A and B) 

(Figure 3.2). As the formation of gasses is associated with butanol fermentation (see 

metabolic pathway in Figure 1.3), this increase in CO2 production can be considered to 

reflect the metabolic rates of the organisms in the fermentations, and would reflect an 

increase in the glycerol consumption and butanol production rates (Munch et al. 2020b). 

Experiments in which a carbon balance could be performed in order to compare the 

efficiency of the two strains (yield of butanol per glycerol consumed) would also be 

beneficial as a determinant for which strain to use in further works. 

As a result of the increased CO2 production rates, a continuous fermentation strategy would 

hypothetically have higher overall productivity when using the putative mutant strain over 

the laboratory wild type. This, along with the behavior observed with the glycerol 

consumption and butanol formation rates, is further evidence that the putative mutant will 

have a faster growth rate and product production rate in continuous fermentation. 
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Figure 3.2: Comparison of the CO2 production rates between the wild type Clostridium 

pasteurianum (Original A and B) and two different isolates of a putative mutant strain 

(E53J1 and E53D1). 

 

 

 

The profile of the byproducts formation (butyric acid, 1,3-PDO, ethanol, and acetic acid) re-

enforces that the mutant strains have higher production rates when compared to the wild-type 

strains. The wild-type strains demonstrated the butyric acid re-assimilation discussed in 

Chapter 2, which was not observed as significantly in the putative mutants (Figure 3.3). 

However, even prior to the re-assimilation phase of the fermentation, the mutant samples had 

produced higher amounts of butyric acid while still producing similar other by-products. This 

could indicate a change in the redox homeostasis of the organism allowing for greater 

butanol/butyric acid production from glycerol. 
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Figure 3.3: By-product formation for two wild-type C. pasteurianum fermentations and two 

fermentations using putative mutant samples. Solid blue line is the best fit for glycerol 

consumption using data displayed in Figure 3.1.  

3.3.3) Whole genome sequence comparisons 

The full gene sequences of the putative mutants were compared to sequences of the wild-type 

C. pasteurianum to locate the variants between the genomes to possibly explain the 

phenotypic differences observed. There were between 31 and 35 total variants detected in 

each of the four putative mutant samples, of which 29 were common amongst all samples 

(Figure 3.4). This non-uniform distribution of variants across samples could indicate that the 

microbial population is not homogenous, making determination of the genetic causes for the 

mutants altered growth rate and product profile difficult. The 29 common variants are listed 

and described in Table 3.2.  

While the 29 common variants were found to not be located on genes directly related to the 

glycerol – butanol pathway (Figure 1.2), the mutations nonetheless had a positive effect on 
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the behavior of C. pasteurianum in the increased metabolic rates observed and increased 

carbon allocated to the butyric acid/butanol pathway. The lack of variants along the 

glycerol:butanol metabolic pathway indicate the phenotype results from changes in a 

different metabolic pathway, similar to results observed by Sandoval et al. upon deletion of 

the SpooA gene. In addition, the heterogeneity of the variants detected (each sample having 

variants not found in the other samples) indicate that the microbial culture in the fermentation 

is similarly heterogenous, with multiple phenotypes with increased growth rates and higher 

butanol production being displayed simultaneously in the fermentation. For future work, 

single colonies of the mutant will need to be isolated and cultivated to obtain homogenous 

cultures of mutants with advantageous phenotypes for further genetic analysis and study. 

This type of screening has been seen successes with other previous work with C. 

pasteurianum in identifying single phenotypes from a mixed population (Sandoval et al. 

2015). 

 

 

Figure 3.4: Overview of the unique and overlapping variants found in the found mutant 

samples 
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Table 3.2: Details of each gene, type of mutation, and possible product for each of the 29 

common variants in all 4 sequenced mutant samples 

 

Gene Symbol 

Type of 

mutation 

(# of each 

type 

detected) 

Product 

Immediate 

Downstream 

Product (if 

promotor for 

protein) 

Protein ID 
Gene 

Coordinates 

Variant 

ranges 

rna-

CLPA_RS00045 
Promotor 

23S 

ribosomal 

RNA 

N/A N/A 
9688 - 

11200 
 

gene-

CLPA_RS02500 

Nonsense 

(2) 

Missense 

(2) 

Hypothetical 

protein 
N/A WP_034830280.1 

555786 - 

555980 

555828 

- 

555930 

gene-

CLPA_RS03660 

Promotor 

(13) 

Hypothetical 

protein 

tRNA nuclease 

WapA 
WP_003446352.1 

837986 - 

838333 

838054 

- 

838308 

gene-

CLPA_RS04330 

Promotor 

(1) 

flavodoxin 

family 

protein 

N/A WP_003447094.1 
970941 - 

971327 
 

gene-

CLPA_RS20040 

Promotor 

(6) 

Hypothetical 

protein 

SAM-dependent 

methyltransferase 
WP_051803905.1 

983131 - 

983310 

983141 

- 

983229 

gene-

CLPA_RS20055 

Missense 

(4) 

Hypothetical 

protein 
N/A WP_051803906.1 

1249022 - 

1249594 

1249276 

- 

1249444 
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3.4) Conclusions and future recommendations 

The oxidative treatment with K3FE(CN)6 of C. pasteurianum in a continuous fermentation 

resulted in 29 common mutations in 6 different genes for all sequenced samples. Each 

sample also possessed unique variants, indicating the cultures were a non-homogenous 

population of mutants displaying phenotypes beneficial to the growth rate and carbon 

selectivity for butanol. The batch fermentations conducted with the wild-type strain and the 

mutant strains showed, by virtue of the off-gas data, that the mutant strains are more likely to 

have higher growth rates. The product profile also shows an increase metabolic flux towards 

the butanol/butyric acid pathway with reduced by-products, possibly as a result of a change 

in redox homeostasis mechanisms in the mutant strains. 

Future work to isolate individual phenotypes should begin with selective plating and isolation 

of single phenotypes in a colony. These colonies should be screened in a manner to 

determine which exhibit the higher metabolic rate, as described by the higher CO2 production 

displayed in Figure 3.2, and the higher carbon selectivity for the glycerol-butanol metabolic 

pathway. Fermentations which display one or both of these features should be sequenced for 

identification of the mutations which result in these phenotypes. 

In addition to this screening, further investigation into the genes in which variants were 

found in the E53D and E53J samples should be conducted. Using plasmid-based approaches 

to introduce these variants into wild-type C. pasteurianum will allow observation of changes 

in behavior and products as a result. As many of the variants are located in promoter regions, 

introduction of these mutations as a plasmid should result in the overexpression of genes, 

resulting in increased metabolic activity and butanol/butyric acid selectivity. Should no 

difference in behavior over the wild-type strain be observed, then these regions can be 

eliminated from future consideration and mutagenic work. 

  



71 
 

Chapter 4 

Online measurement of CO2 and total gas production in parallel anaerobic shake flask 

cultivations 

Selected data presented in this chapter is part of a journal article authored by Garret Munch, 

Andreas Schulte, Marcel Mann, Robert Dinger, Lars Regestein, Lars Rehmann, and Jochen 

Büchs. 

The information in this chapter has been slightly altered to meet formatting requirements. 

This work is substantially as it appears in Biochemical Engineering Journal, January 2020, 

Volume 153, (DOI: https://doi.org/10.1016/j.bej.2019.107418) 

This chapter describes the work to develop a device which can simultaneously measure the 

off-gases production rates in several anaerobic fermentations in parallel shake flasks. This 

work builds on previous developments for monitoring the oxygen consumption and CO2 

production rates in aerobic shake flask fermentations (Anderlei et al. 2004). The device 

operates on a repeating pattern in which nitrogen is continuously flowing through the 

headspace of the flasks, maintaining an anaerobic atmosphere. At set intervals, the inlet and 

outlet valves close, sealing each flask completely, allowing for the changes in the headspace 

gas composition to be measured. The change to anaerobic fermentations required several 

modifications to the base design. The addition of a recirculation loop to continuously pull 

headspace gasses from the flask allowed for online analysis of the gasses as they passed over 

a nondispersive infrared CO2 sensor without compromising the anaerobic atmosphere.  

This device was first used to determine its ability to maintain conditions suitable for 

anaerobic fermentations outside of an anaerobic chamber. Following this success, the device 

was tested to determine how closely fermentations conducted matched similar fermentations 

conducted at the reactor scale. Next, fermentations with increasing concentrations of butanol 

in the initial medium were conducted to determine how the off-gas transfer rates would 

respond to increasing inhibitor present. Finally, a dual substrate (dextrose and glycerol) 

fermentation was conducted to assess the response to a complex fermentation, and how well 

the results in the shake flask match those at reactor scale. This device allowed for 
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fermentations to be screened using small volumes and multiple fermentations in parallel 

without a loss in accuracy. 

The work described in this chapter satisfies the fourth objective of this thesis, with the 

successful development of an anaerobic screening device capable of obtaining off-gas 

transfer rates from fermentations conducted in shake flasks. The fermentations had similar 

product profiles and gas transfer rates as those observed at the reactor scale. 

Abstract: Online measurements of off-gas streams are often crucial for studying 

bioconversion processes. However, for anaerobic processes, options for online off-gas 

analysis are typically restricted to lab-scale bioreactors or larger systems, while gas 

measurements at smaller scales typically do not discriminate between different gases. In this 

work, a method for online measurement of CO2 and total gas production in anaerobic 

fermentations at the shake flask scale is described, extending capabilities of a previously 

reported device developed for aerobic processes to anaerobic bioprocesses. The novel design 

allows anaerobic fermentations to be performed in multiple parallel vessels, all of which 

collect online gas signals. The online gas signals are used to calculate the transfer rates, 

allowing near real-time visualization of the progress of eight fermentations operating in 

parallel. Conditions such as carbon source depletion, inhibition of growth, and exhaustion of 

a single carbon source in a dual-substrate fermentation can all be clearly distinguished. The 

combination of online signals and offline analysis allowed for carbon balances to be 

performed with high degrees of closure. The new design allows for higher throughput 

screening of anaerobic bioprocesses, an area lacking in small-scale options with off-gas 

analysis capabilities. 

4.1) Introduction 

The necessity of strictly oxygen-free conditions causes difficulties in the application of 

several online measurement techniques in anaerobic bioconversion processes (Z. Liu et al. 

2011; Beutel and Henkel 2011; Leu, Libra, and Stenstrom 2010; Marques et al. 2016), 

especially on the small-scale level (Schäpper et al. 2009). However, the benefits of online 

signals for screening and process characterization are numerous (Kensy, Engelbrecht, and 

Büchs 2009; Clementschitsch et al. 2005; Buchenauer et al. 2009; Maskow et al. 2008; 
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Eliasson Lantz et al. 2010; Pohlscheidt et al. 2013). Small-scale anaerobic biotransformation, 

especially screening or optimization for operating conditions or biocatalysts are often 

conducted in simple serum bottles (Hyun, Young, and Kim 1998; Battersby and Wilson 

1988; Yeh, Pennell, and Pavlostathis 1998; Sarchami, Johnson, and Rehmann 2016b; 

Regestein et al. 2015). Unfortunately, no commercial online measurement technique is 

known for anaerobic cultivations in serum bottles which incorporates active gas flow through 

the bottle. Using closed serum-bottles results in differences between the experimental 

conditions compared to stirred tank reactors, as the build-up of product gasses in the head 

space can alter the fermentations product profile (L Li, Wang, and Li 2019; Y. Liu and Wang 

2017). Performing screening experiments directly in stirred tank reactor is normally not an 

option due to the low experimental throughput (Kensy, Engelbrecht, and Büchs 2009). 

As a bridge between fermenter and shake flask scale, the Respiratory Activity Monitoring 

System (RAMOS) was developed for aerobic processes in 2001 and has been used 

extensively since (Anderlei and Büchs 2001; Anderlei et al. 2004; Herweg et al. 2018; 

Meissner et al. 2015; Wewetzer et al. 2015). This device allows for monitoring rates of 

oxygen consumption and carbon dioxide production of a microbial culture over time, known 

as the oxygen and carbon dioxide transfer rates (OTR and CTR), respectively. These 

measurements accurately reflect the metabolic activity of the fermentation over time, while 

the small scale allows for multiple conditions to be examined in parallel (Anderlei and Büchs 

2001; Anderlei et al. 2004). Based on the off-gas measurements, effects such as oxygen 

limitation, pH inhibition, substrate limitation, and depletion of the carbon source can be 

identified (Anderlei and Büchs 2001). In addition, gas transfer rates are essential parameters 

for successful scale-up of several processes (Anderlei et al. 2004). 

The predominant gasses being produced or consumed in anaerobic respiration and 

fermentation processes are CO2, CO, H2 and CH4 (Weiland 2010; Thauer, Jungermann, and 

Decker 1977). Analogously to measuring the OTR, biological phenomena as discussed above 

should be identifiable during anerobic fermentations by measuring a given transfer rate of 

one or multiple gasses. Carbon dioxide is a commonly monitored parameter when working 

anaerobically, as it allows for carbon balance closure and indirect monitoring of the 

microbial metabolic activity (Saucedo-Castañeda et al. 1994; Boe et al. 2010). However, 
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most current technology for online measurement of CO2 production requires fermentations at 

the reactor scale. Many existing flask-scale devices designed for use with anaerobic 

fermentation measure the total gasses produced and do not distinguish between the types of 

gasses. Others require direct sampling through a stopper using syringes. Some commercial 

products are able to measure specific types of gasses in shake flasks; however, they currently 

lack active sparging of the headspace, which could cause product inhibition via the buildup 

of product gasses or alter the product profile (Walker et al. 2009). Expanding the off-gas 

analysis capabilities for anaerobic fermentations at the shake flask scale would allow for 

collection of significant data. The ability to operate multiple flasks with differing medium, 

organisms, or inoculation conditions in parallel will also reduce the amount of time to screen 

different conditions.  

There are many anaerobic bacteria currently under study for their application in a wide range 

of industries, particularly the production of alcohols (Saxena, Adhikari, and Goyal 2009). 

One organism of interest is Clostridium pasteurianum, a spore-forming gram-positive 

anaerobe capable of efficient conversion of glycerol to butanol (Biebl 2001; Erin Johnson 

and Rehmann 2016; Sarchami, Johnson, and Rehmann 2016b; Regestein et al. 2015). C. 

pasteurianum is a robust and rapidly growing organism which releases the gasses CO2 and 

H2 as part of the product pathway. It also displays well-known product inhibition due to the 

toxicity of butanol (Sabra et al. 2014; Xue et al. 2013; Dabrock, Bahl, and Gottschalk 1992).  

This work describes the adaptation of the RAMOS device to support anaerobic 

fermentations, and the use of dynamic CO2 (directly) and H2 (indirectly) transfer rates to 

track metabolism and metabolic changes at the shake flask scale. 

4.2) Materials and Methods 

4.2.3) Description of anaerobic Respiratory Activity Monitoring System 

The anaerobic Respiratory Activity MOnitoring System (anaRAMOS) was designed by 

modifying the existing RAMOS technology to support anaerobic respiration and 

fermentation processes. Detailed descriptions of the operation of the RAMOS device have 

been previously given (Anderlei and Büchs 2001; Anderlei et al. 2004), as well as 

applications in aerobic microbial cultivation (Meissner et al. 2015; Herweg et al. 2018).  
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For use with anaerobic fermentations, several modifications had to be made to the RAMOS 

device (Figure 4.1). High-purity nitrogen was sparged through the headspace of each flask at 

a rate of 10 mL/min to maintain an anaerobic atmosphere (corresponding to a sparging rate 

of approximately 2.4 vol/hr). A CO2 sensor (sensor type MSH-P-CO2, Dynamex, UK) was 

installed in a custom-designed stainless-steel sensor block. The sensor block was designed to 

house the CO2 sensor in a manner that allowed for gasses to pass through while maintaining 

an air-tight seal to prevent oxygen contamination of the fermentation. A pressure sensor 

(Type 26PCA, Honeywell Inc.) was used to ensure that each individual flask and sensor unit 

was completely sealed when inlet and outlet valves were closed prior to beginning 

fermentations, and to measure the pressure changes during measurement phase during the 

fermentation (allowing to quantify a total gas transfer rate). A microfluidic piezo membrane 

pump (Bartels Mikrotechnik) was used to continuously move the headspace gas through a 

recirculation loop, from the headspace of the flask through the sensor block, over the sensor, 

and back into the flask, in a similar fashion as outlined by Takahashi and Aoyagi (2018) 

(Takahashi and Aoyagi 2018).  
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Figure 4.1: A) Schematic overview of the anaRAMOS system and details on single 

flask/sensor arrangement. 1: Computer controlling valves and logging CTR data. 2: 

Heating/shaking unit containing 8 anaerobic flasks in a parallel system with RAMOS 

circuitry board installed. 3: Gas inlet control valve. 4: Pressure sensor 5: anaRAMOS flask 

with culture. 6: CO2 sensor connected to central circuitry. 7: Micropump. 8: Gas outlet 

control valve. 

B) Illustrative graph demonstrating the principle of anaRAMOS operation via repeated 

phases. Phase 1: Measurement phase with no gas flow through flasks allowing fermentation 

gasses to accumulate in the headspace and be measured. Phase 2: Rinse phase with active 

sparging of nitrogen through the headspace. Black line represents the total pressure of gasses 

produced, measured via pressure sensor. Grey line represents the CO2 measured directly via 

NDIR sensor. 

 

The CTR was calculated using the CO2 partial pressure in the headspace of the flask 

according to Equation 4.1:  

    (4.1) 

Where 𝑛𝐶𝑂2
 is the moles of CO2 (mmol), Vl  is the liquid filling volume of the anaRAMOS 

flask (L), t is time (h), ∆𝑝𝐶𝑂2
is the partial pressure drop of CO2 (bar) during the measuring 

phase, ∆𝑡 is the duration of the measuring phase (h), 𝑉𝑔 is the volume of the gas in the 

CTR (
mmol

L ·  h
) =  

𝑛𝐶𝑂2

𝑉𝑙  · 𝑡 
=

∆𝑝𝐶𝑂2

∆𝑡
∙

𝑉𝑔

𝑅 ∙ 𝑇 ∙ 𝑉𝑙
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anaRAMOS flask (L), R is the standard gas constant (8.314 J/mol/K), and T is temperature 

(K). The amount of CO2 production can be obtained by integrating CTR over time. The total 

gas transfer rate (TGTR), a measurement of all the gasses produced during the measurement, 

is calculated according to Equation 4.2: 

    (4.2) 

While the remaining gas transfer rate (RGTR) is calculated by subtracting the CTR from the 

TGTR. 

RGTR = TGTR − CTR         (4.3) 

 

Due to the established metabolism of C. pasteurianum when grown on glycerol, the RGTR 

can be assumed to be a result of hydrogen gas production, and as such will be referred to as 

the Hydrogen Transfer Rate (HTR) [32,38]. 

The total amount of CO2 and H2 produced at a time t can then be estimated by numerically 

integrating the measured CTR/HTR data. 

     (4.4) 

4.2.2) Organism and Medium 

Clostridium pasteurianum DSM 525 was purchased from the DSMZ (Braunschweig, 

Germany) and revived following instructions. All cryogenic stocks and pre-cultures were 

prepared using Reinforced Clostridium Medium (RCM) containing the following (in g/L): 

peptone, 10 (Roth); beef extract, 10 (BD); yeast extract, 3 (Roth); dextrose, 5; NaCl, 5; 

soluble starch, 1 (Merck); sodium acetate, 1; pH adjusted to 6.8. For fermentations, a 

modified medium described by Biebl (Biebl 2001) was used. It contained (unless stated 

otherwise) in g/L: glycerol, 20; KH2PO4, 0.5; K2HPO4, 0.5; (NH4)2SO4, 5; MgSO4·7H2O, 

TGTR (
mmol

L ·  h
) =  

𝑛𝑡𝑜𝑡𝑎𝑙 𝑔𝑎𝑠

𝑉𝑙  · 𝑡 
=

∆𝑝𝑡𝑜𝑡𝑎𝑙 𝑔𝑎𝑠

∆𝑡
∙

𝑉𝑔

𝑅 ∙ 𝑇 ∙ 𝑉𝑙
 

CO2,𝑒𝑠𝑡 (𝑚𝑚𝑜𝑙/𝐿) =  ∫ 𝐶𝑇𝑅
𝑡

0

 𝑑𝑡  

H2,𝑒𝑠𝑡  (𝑚𝑚𝑜𝑙/𝐿) =  ∫ 𝐻𝑇𝑅
𝑡

0

 𝑑𝑡;  
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0.2; CaCl2·2H2O, 0.02; FeSO4, 0.05; yeast extract, 1.0 (Roth). Citric acid buffer was added in 

a concentration of 0.05 M to maintain pH in the range of 5 – 5.8, and 0.25 g/L L-cysteine 

hydrochloride was added to reduce the medium. 2 mL of trace element solution was added 

per liter of medium, the trace element solution containing (in g/L): FeCl2·4H2O, 1.5, 

dissolved in 25% HCl solution; CoCl2·6H2O, 0.19; MnCl2·4H2O, 0.1; ZnCl2, 0.07; H3BO3, 

0.062; Na2MoO4·2H2O, 0.036; NiCl2·6H2O, 0.024; CuCl2·2H2O, 0.017. All cultures were 

grown in flasks with a 250 mL nominal filling volume, and cultivated on a shaker with a 

shaking diameter of 50 mm. Cultures were grown in a 2-step preculturing method: 1 mL of 

frozen glycerol stock culture was added to 9 mL RCM and incubated undisturbed in an 

anaerobic chamber for 16 – 18 hours. 3 mL of this culture was added to 27 mL of fresh RCM 

and incubated in the anaRAMOS at 35oC and 100 rpm until the CTR reached a minimum 

level of 10 mmol CO2/L/h (approx. 5 hours). Once this point has been reached, the flask was 

returned to the anaerobic chamber where a small aliquot was removed to determine the OD 

of the preculture. For all experiments, the main cultures were inoculated with a volume 

resulting in a starting OD (600 nm) of 0.1, and the flasks had a working volume of 30 mL. 

4.2.3) Experimental Growth 

Three different experimental conditions were examined to demonstrate the efficacy of the 

anaRAMOS for tracking changes in anaerobic fermentations using the CTR and HTR, as 

well as replicate yields and behaviors previously reported at the fermenter scale. All 

experiments used the flasks, shaker, preculturing steps, and medium as stated above, with 

temperature set at 35oC, shaking at 100 rpm, and a filling volume of 30 mL. For every 

experiment, each condition was performed in duplicate, and experiments were repeated at 

least twice to demonstrate reproducibility of results. Values are given as the average of the 

duplicate flasks and repeated experiments. The first set of experiments imitated conditions 

reported by Johnson and Rehmann (2016), and was conducted with varying amounts of 

glycerol (5 g/L, 10 g/L, and 20 g/L). The second investigated differences in growth rate due 

to inhibition of the starting culture. For this, varying amounts of butanol (0, 2.5, 5, and 7.5 

g/L butanol) were added to the starting culture, all of which contained 20 g/L glycerol. The 

third used mixed carbon sources (dextrose and glycerol) in a dual-substrate fermentation 

strategy. The concentration of glycerol was kept constant at 20 g/L for all fermentations, 

while 0, 1, 2.5, and 5 g/L of dextrose was added to the starting fermentation medium. 
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4.2.4) Analytical Methods 

Liquid samples were collected from the flask in 5 mL aliquots, placed into pre-weighed 15 

mL falcon tubes and centrifuged at 4000 rpm (18000 x g) for 10 minutes. Supernatant was 

kept for subsequent analysis, while the cell pellet was washed with 5 mL distilled water, 

centrifuged again at 4000 rpm for 10 minutes, the water discarded, and the pellet placed in an 

80oC oven until a constant weight was achieved. Supernatant was stored at -20oC until it 

could be analyzed by High Pressure Liquid Chromatography (HPLC) using a Dionex HPLC 

system with an organic acid resin column (300 x 8 mm, CS-Chromatography) at 60oC, with 5 

mM H2SO4 as the mobile phase at a flow rate of 0.8 mL/min. Carbon balances were 

performed including the measured amounts of butanol, butyric acid, ethanol, acetate, 1,3-

PDO, CO2, and biomass. A previously reported molecular formula to account for the carbon 

in biomass, C4H7O2N (101.1 g/mol) was used (Erin Johnson and Rehmann 2016). 

4.3 Results and Discussion 

4.3.1) Gas transfer rates of shake flask cultivations with C. pasteurianum 

The following experiments were conducted to demonstrate the ability of the anaRAMOS to 

accurately reflect the condition of an anaerobic fermentation via monitoring the CTR and 

HTR, and to replicate product profiles of fermentations reported in literature at the bench 

scale. C. pasteurianum was selected to demonstrate the anaRAMOS capabilities as only CO2 

and H2 are formed via the main glycerol metabolic pathway (E. Johnson et al. 2016; Biebl 

2001). Fermentation conditions were kept as close to those reported by Biebl (2001) and 

Johnson and Rehmann (2016) as possible, to allow for limited comparison between 

fermentations performed in the anaRAMOS and those at the fermenter scale (Biebl 2001; 

Erin Johnson and Rehmann 2016). Figure 4.2 shows an example of the online data (CTR) the 

anaRAMOS can collect in a single experiment (single flask). To match the CTR with offline 

data (glycerol, butanol, etc.), replica flasks were sacrificed at discrete time points for analysis 

of the liquid phase. The figure clearly show that online and offline data are in agreement. The 

CTR increases with the rate of substrate consumption and identified the point of substrate 

depletion. Subsequent fermentations therefore use online data only to enable parallel 

experiments to visualize the capability of the anaRamos to conveniently study effects of 

substrate concentration, product inhibition and dual-substrate consumption. Different initial 
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amounts of glycerol were used to visualize the depletion of the carbon source in the medium 

at various time points using the gas transfer rates, as well as to visualize the effect of a higher 

culture density and activity on the gas transfer rates using the anaRAMOS. 

 

Figure 4.2: Example data from single run of the anaRAMOS demonstrating combination of 

online and offline signals obtained at the shake flask scale. Fermentation volume was 30 mL, 

which initially contained 20 g/L glycerol and was incubated at 35oC at 100 RPM. 

 

By examining the CTR and HTR, changes with respect to fermentation time and glycerol 

exhaustion are clearly visible (Figure 4.3, top). A sharp drop indicates the depletion of 

glycerol in the medium, and as a result, a cessation of metabolic activity and the end of the 

fermentation. As the amount of initial glycerol was increased, both the duration of the 

fermentation as well as the maximum CTR and HTR increased (11.6, 20.5, and 35.6 

mmol/L/h and 12.7, 23.8, and 36.8 mmol/L/h, respectively). Both gas transfer rates increased 

at similar rates, matching previous reports and the understanding of the glycerol metabolic 

pathway (Groeger et al. 2017; Erin Johnson and Rehmann 2016; Biebl 2001). The HTR was 

slightly higher than the CTR for all three conditions, however the HTR and CTR followed 
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the same patterns and had very similar values throughout the course of the fermentation. This 

behavior indicated that in this case the HTR was closely linked to the CTR, as expected 

based on the reported glycerol metabolic pathway (Sarchami et al. 2016). By numerically 

integrating the CTR curve, the amount of CO2 produced per volume of medium can be 

estimated (Figure 4.3, bottom). As expected, the estimated amounts of CO2 emitted was 

higher for samples containing higher initial glycerol concentrations. The samples containing 

5, 10, and 20 g/L initial glycerol emitted 35.9, 73.2, and 169.7 mmol/L, respectively, which 

correspond to a 2.0x CO2 increase between 5 and 10 g/L glycerol sample, and a 2.3x increase 

between 10 and 20 g/L glycerol. This could indicate a change in the metabolism as the 

fermentation continues (initial effects of toxicity of accumulating butanol), though the total 

amount of H2 increased in a similar fashion. Another possible explanation is changes in the 

fermentation pH’s, as the final pH’s for the 5, 10 and 20 g/L glycerol samples were 5.49, 

5.27, and 5.05, respectively. Changes in pH have been shown to have an effect on the amount 

of CO2 produced during a similar fermentation at the reactor scale (Erin Johnson and 

Rehmann 2016). 
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Figure 4.3: Top: CTR and HTR profiles of fermentation with C. pasteurianum in medium 

containing 5, 10, and 20 g/L glycerol as the carbon source.  

Bottom: Total CO2 and H2 produced over the course of the fermentations. Fermentation 

volume was 30 mL, which initially contained 5, 10, or 20 g/L glycerol and incubated at 35oC 

at 100 RPM. 

Of particular interest are the products of the fermentation. C. pasteurianum is a well-

documented consumer of glycerol and producer of butanol (Ahn, Sang, and Um 2011; 

Venkataramanan et al. 2012; Gallazzi et al. 2015; Regestein et al. 2015). Offline sampling 

shows that consumption of glycerol matches the gas production and the overall time of  

fermentation was comparable to that found at the reactor scale (Erin Johnson and Rehmann 

2016). However, a direct comparison to results with active pH control is not possible, as all 

shake flask experiments were pH buffered systems. The product profiles and carbon balance 

closures at the end of the fermentations shown in Figure 3 are summarized in Table 4.1. Of 

note, samples containing only 5 g/L initial glycerol saw a nearly equal amount of butanol and 
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butyric acid produced (0.65 and 0.72 g/L, respectively), which follows patterns previously 

reported for C. pasteurianum when grown on low amounts of carbon source (Gallardo, 

Alves, and Rodrigues 2014; Biebl 2001). 

Table 4.1: Products and carbon balances of fermentations conducted in the anaRAMOS with 

differing initial glycerol concentrations. Values shown correspond to end-point of 

fermentations displayed in Figure 4.3. 

Initial 

Glycerol 

Concentration 

(g/L) 

Butanol 

(g/L) 

1,3 PDO 

(g/L) 

Ethanol 

(g/L) 

Butyric 

Acid 

(g/L) 

Biomass 

(g/L) 

CO2 

(mmoles/L) 

Carbon 

Balance 

Closure 

(%) 

5 0.65 0.62 0.47 0.73 0.65 35.9 92.8 

10 1.58 0.96 0.51 1.15 1.33 73.2 94.7 

20 3.75 1.46 0.58 1.60 1.98 169.7 94.9 

 

4.3.2) Visualization of inhibition using the gas transfer rates  

The second set of experiments were conducted to test the ability of the anaRAMOS to 

discern differences in growth rates due to inhibiting effects. Butanol was selected as the 

inhibitor due to its relevance as a fermentation end-product and its known inhibitory effect on 

the growth of C. pasteurianum. Butanol was added in increasing concentrations (0, 2.5, 5, 

and 7.5 g/L butanol) to the culture medium immediately prior to inoculation. The effects of 

the inhibition are clearly reflected by the CTR and HTR (Figure 4.4, top). 
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Figure 4.4: Top: CTR and HTR of inhibited C. pasteurianum fermentation due to increasing 

concentrations of butanol added (I0) to medium at time of inoculation.  

Bottom: Total CO2 and H2 emitted over the course of the fermentations. Fermentation 

volume was 30 mL, which initially contained 20 g/L glycerol and 0, 2.5, or 5 g/L butanol, 

and incubated at 35oC at 100 RPM. 

 

The addition of butanol had an immediate and pronounced effect on the metabolism of C. 

pasteurianum. The addition of 2.5 g/L butanol reduced the maximum CTR from 32.0 

mmol/L/h with no butanol added to 17.3 mmol/L/h, and extended the fermentation time from 

13 to 18.5 hours. The HTR was decreased from 30.8 to 13.9 mmol/L/h, indicating that the 

inhibitory effect of the added butanol had a stronger effect on the H2 formation. Increasing 

the amount of butanol further to 5 g/L reduced the maximum CTR to 11.0 mmol/L/h, the 



85 
 

HTR to 8.4 mmol/L/h, and the fermentation time was extended to over 24 hours. During the 

solventogenic pathway CO2 and H2 are formed at equimolar ratio during the pyruvate to 

acetyl-CoA step (Biebl 2001). The additional CO2 must therefore be formed differently, 

likely connected to required maintenance energy in order to address the solvent stress. In this 

particular case, the online signal can therefore be used to identify conditions under which 

carbon is deviated from the desired fermentation product. When 7.5 g/L of butanol was 

added, complete inhibition of the cultures was observed, and no glycerol was consumed (data 

not shown). It should be noted that while many previously reported studies show C. 

pasteurianum fermentations remaining active in the presence of butanol at concentrations 

higher than 7.5 g/L (Moon et al. 2011b; Gallazzi et al. 2015; Ahn, Sang, and Um 2011; Biebl 

2001; Erin Johnson and Rehmann 2016), an important distinction is the time of exposure. In 

this current setup, C. pasteurianum was exposed to high butanol concentrations while at low 

cell density, and being transferred from rich butanol free medium to a minimal medium with 

high solvent concentrations. The data clearly demonstrates the effectiveness of monitoring 

inhibition of fermentations via the CTR and HTR, and the ability to monitor multiple gassed 

gives further insight into the biochemical process. 

The total CO2 produced (Figure 4, bottom) by the fermentations decreased as the amount of 

butanol in the fermentation medium increased, indicating a change in the metabolism of the 

cells due to the inhibition. Samples grown with no butanol added produced 169.8 mmol/L, 

similar to what was previously demonstrated. However, flasks containing 2.5 g/L butanol 

produced only an estimated 151.6 mmol/L, despite a longer fermentation time. Flasks 

containing 5 g/L butanol produced even less CO2, an estimated 143.2 mmol/L in total. 

HPLC analysis showed the glycerol to be completely consumed at the time of the drop in the 

gas transfer rates for all samples, with the exception of the sample initially containing 7.5 g/L 

butanol, which showed no change in the glycerol concentration (data not shown). The carbon 

balances for 2.5 g/L initial butanol closes at ~ 92%, similar to the data shown in Table 1. The 

data becomes unreliable at 5 g/L initial butanol, likely due to increased evaporative loss of 

butanol at elevated concentration. 
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4.3.3) Using CTR and HTR to monitor dual-substrate consumption 

Finally, a dual-substrate fermentation was performed to demonstrate the ability of the 

anaRAMOS to reflect changes in the uptake of different substrates, and demonstrate that 

changes in metabolism can be reflected by the change in the rates of the gasses produced. 

Dextrose and glycerol were used as the carbon sources for C. pasteurianum. Previous work 

by Sabra et al. has shown that C. pasteurianum is capable of consuming dextrose and 

glycerol simultaneously (Sabra et al. 2014). When grown with dextrose as the sole substrate, 

C. pasteurianum produces increased concentrations of butyric acid and less butanol 

compared to when grown solely on glycerol (Dabrock, Bahl, and Gottschalk 1992). As well, 

when C. pasteurianum is grown in the presence of extracellular butyric acid, a reversible 

metabolic pathway utilizes the butyric acid to increase the butanol production rate (Regestein 

et al. 2015; Gallardo, Alves, and Rodrigues 2014). For this reason, a fermentation using both 

dextrose and glycerol as carbon sources with C. pasteurianum has been of previous interest 

at the reactor scale (Sabra et al. 2014). Similar fermentation conditions were selected for the 

anaRAMOS to determine the effects of the dual substrate on the CTR and HTR. Specifically, 

it is of interest whether the gas transfer rates can indicate the point of depletion of dextrose, 

and if the product profile is similar to those found at the reactor scale in previously reported 

studies. 

The gas transfer rates indicate clearly the point of dextrose depletion in the medium by a 

sharp decrease and subsequent increase as the cells begin metabolizing the remaining 

glycerol (Figure 4.5). For the lowest dextrose concentration (1 g/L added dextrose) the 

decrease in the transfer rates occurs at 4.5 hours post inoculation with a small but noticeable 

decrease in the CTR from 7.6 to 7.1 mmol/L/h, and a drop in the HTR from 9.3 to 9.0 

mmol/L/h. Following this slight decrease, the transfer rates resumes increasing until glycerol 

is exhausted and the gas transfer rates reach 0 mmol/L/h, signaling the end of the 

fermentation. The HTR does not reach as high a peak as the CTR prior to the end of the 

fermentation, only reaching 25.2 mmol/L/h, compared to a peak of 31.9 mmol/L/h when no 

dextrose was added. Initially adding 2.5 g/L dextrose resulted in a later decrease in the CTR 

at 6 hours post inoculation, as well as a more pronounced decrease in the CTR from 16.7 to 

10.0 mmol/L/h and the HTR decreased from 17.5 to 10.9 mmol/L/h. The HTR once again did 

not demonstrate as pronounced an increase as the CTR following the depletion of the 
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dextrose in the medium (Figure 4.5). These trends continued when adding 5 g/L dextrose, 

causing the gas transfer rates to decrease at 7.5 hours post inoculation, though this decrease 

occurred over a period of 1.5 hours before beginning to rise again, and was extremely 

pronounced for both gasses. The CTR decreased from 21.9 to 8.5 mmol/L/h, while the HTR 

decreased from 19.2 to 9.6 mmol/L/h. As well, in the 5 g/L dextrose sample the CTR did not 

increase at the same rate as with lower dextrose samples, the CTR plateaued with a peak at 

16.5 mmol/L/h. The lower CTR peak and plateau is similar to those observed in 

fermentations in the presence of inhibitory conditions. This inhibition was most likely due to 

a decrease in the pH. Samples taken at the time of the CTR drop showed that the pH in the 5 

g/L dextrose sample had dropped to values between 4.9 and 5.0, despite the presence of 

buffer in the medium. Previous research has shown increasingly delayed growth and activity 

for C. pasteurianum as pH values fall further below a value of 5.9, which aligns with the 

results demonstrated here (Erin Johnson and Rehmann 2016). Interestingly, the HTR 

remained plateaued in the range of 9.6 mmol/L/h until the end of the fermentation, indicating 

a marked shift in the metabolism when compared to samples containing lower initial dextrose 

concentrations. Previous reports have indicated that an increase in butyric acid production 

alters the redox balance for C. pasteurianum, requiring less hydrogen to be produced as a 

means of balancing the reducing equivalents, which could explain the decrease in the HTR 

observed (Groeger et al. 2017; Sabra et al. 2016, 2014). This disparity in the CTR and HTR 

at certain time periods during the fermentation allows for identification of times when the 

metabolic balance has been altered from an established baseline.  

Offline analysis was conducted both at the point of the sudden decrease in the gas transfer 

rates, indicating dextrose depletion, and the second CTR decrease indicating the end of the 

fermentation (Table 2). HPLC analysis demonstrated that the fermentation had proceeded as 

expected according to previously reported results for dual-substrate growth with C. 

pasteurianum (Sabra et al. 2014). Specifically, that C. pasteurianum was able to 

simultaneously consume both the dextrose and the glycerol present in the medium. The 

product profile had changed when compared to fermentations with solely glycerol. The initial 

growth, where dextrose was present, resulted in higher butyric acid and biomass production 

over butanol, especially when compared to fermentations containing solely glycerol. 

However, when 5 g/L of dextrose was added to the initial medium, the concentration of 
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butyric acid detected at the end of the fermentation was lower than in samples taken at the 

depletion of dextrose in the medium. Similar behavior has been previously reported, showing 

that C. pasteurianum grown on both dextrose and glycerol will produce initially high 

concentrations of butyric acid, and subsequently use that butyric acid to aid the formation of 

butanol (Sabra et al. 2014). However, these previous reports were conducted at the reactor 

scale, while the results presented in this study use a filling volume of only 30 mL in a shake 

flask. 

 

 

Figure 4.5: CTR, HTR, CO2 production, and H2 production over the course of C. 

pasteurianum fermentations containing 20 g/L glycerol and varying amounts of dextrose in 

the starting medium.  Sharp decrease in CTR and HTR indicate time of dextrose depletion in 

medium. Lines marked with an x are the CTR and CO2, lines marked with open circles are 
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the HTR and H2. Fermentation volume was 30 mL, which initially contained 20 g/L glycerol 

and 0, 1, 2.5, or 5 g/L dextrose, and incubated at 35oC at 100 RPM. 

The total CO2 produced displayed interesting behavior patterns as the dextrose concentration 

was increased. The reference fermentation containing no additional dextrose produced 164.9 

mmol CO2/L, again matching previous experiments. The addition of 1 g/L dextrose resulted 

in a moderate increase, up to 171.6 mmol CO2/L, which does not greatly differ from samples 

with no additional dextrose. However, addition of 2.5 g/L dextrose saw an increase of the 

total CO2 to 195.3 mmol/L, a more pronounced increase over previous samples, while the 

addition of 5 g/L dextrose resulted in 205.5 mmol/L. The additional carbon from dextrose 

increased the overall amount of CO2 produced, however the increase in CO2 produced does 

not appear directly correlated with the amount of dextrose added. In a complex fermentation 

using multiple substrates, a large number of biological factors could result in the observed 

changes in products. However, online monitoring of the gas transfer rates allows for reliable 

monitoring of the fermentation, assessing degrees of inhibition, and identifying specific time 

ranges in which the metabolism of the cells has changed to allow for targeted sampling, such 

as when a carbon source has been depleted. 

Table 4.2: Comparison of products between dual-substrate fermentations containing dextrose 

and glycerol. Samples were taken either when the CTR indicated depletion of dextrose, or 

when CTR indicated completion of the fermentation. 

 
Analysis when dextrose 

depleted 

Analysis when fermentation complete 

 

1 g/L 

dextrose 

added 

2.5 g/L 

dextrose 

added 

5 g/L 

dextrose 

added 

No 

added 

dextrose 

1 g/L 

dextrose 

added 

2.5 g/L 

dextrose 

added 

5 g/L 

dextrose 

added 

Ethanol (g/L) 0.23 0.32 0.41 0.61 0.48 0.65 0.63 

1,3 PDO (g/L) 0.17 0.39 0.39 1.3 1.5 1.4 1.6 

Butyric acid 

(g/L) 
0.74 1.3 2.5 1.4 1.6 1.6 1.6 

Butanol (g/L) 0.12 0.39 0.6 3.5 3.9 4.5 5.6 

Biomass (g/L) 1.3 2.8 3.1 2.0 3.1 3.2 3.3 

CO2 (mmols/L) 27.6 51.5 81.3 164.9 171.6 195.3 205.5 
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4.3.4) Visualization of changing metabolism by plotting CTR vs. HTR 

The disparity in the CTR and HTR at certain time ranges during the fermentation allows for 

identification of times when the metabolic balance has been altered. As mentioned, a 

fermentation using C. pasteurianum consuming glycerol will produce both CO2 and H2 in 

roughly equal volumes and rates (H Biebl 2001; Sabra et al. 2016). However, changing 

conditions can alter this balance in a manner that can be visualized using the CTR and HTR. 

Plotting the CTR vs. the HTR highlights the times in the fermentation which are different 

from the standard fermentation containing only glycerol (Figure 4.6). 

 

Figure 4.6: CTR vs. HTR of C. pasteurianum fermentations containing only glycerol as the 

carbon source (dark squares) or a mix of glycerol and dextrose. The 0 g/L dextrose sample 

shows the ratio of CTR/HTR remaining consistent through the course of the fermentation. 

The 5 g/L dextrose initially follows a similar trend (0 to 5 hours), however following the 

depletion of dextrose in the medium (10 to 15 hours) the CTR/HTR trend differs greatly.    

Glycerol 

remaining (g/L) 
18.8 16.4 15.6 0 0 0 0 

Carbon balance 

closure 
90.8% 90.4% 93.7% 93.8% 87.0% 90.3% 90.8% 
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A fermentation containing only 20 g/L glycerol follows a consistent pattern throughout the 

fermentation, in this case with slightly higher HTR than CTR, however the two increase in a 

near linear manner. However, when 5 g/L dextrose is added to the initial fermentation 

medium, there becomes two distinct patterns identifiable. At the onset of the fermentation (0 

to 5 hours following inoculation) the CTR/HTR values are similar to those from 

fermentations without additional dextrose. However, following the depletion of the dextrose 

in the medium, the CTR/HTR values begin to differ as the CTR rose and the HTR plateaued. 

This could be attributed to previously reported behavior from C. pasteurianumin which 

butyric acid production resulted in lowered H2 production (Sabra et al. 2016). By 

maintaining an online monitoring of the CTR/HTR ratio values, it will be possible to have 

another tool in identifying conditions that deviate from an established norm ratio in 

fermentations, possibly identifying times of interest for further investigation, or to indicate 

the depletion or utilization of cofactors and components in the medium. 

4.4) Conclusions 

This work demonstrates the capabilities of the RAMOS device to be successfully adapted to 

allow the cultivation of anaerobic organisms. The adapted device termed anaRAMOS allows 

for online off-gas analysis of fermentations at the shake flask scale, allowing for multiple 

fermentation conditions to be analyzed in parallel. Monitoring the evolved gasses allows for 

the calculation of the CTR and the HTR (in this particular case), which are an accurate 

representation of the metabolic activity of the fermentation. The anaRAMOS device allows 

for smaller fermentation volumes to be used, and more conditions to be screened in parallel, 

while emulating larger reactor scales. Future improvements to the device can extend 

capabilities to directly monitor other off-gasses than CO2, such as H2, as well as monitor 

fermentations with other anaerobic organisms. 
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Chapter 5 

Conclusions, Contributions, and Recommendations 

This chapter outlines the main conclusions from this thesis, the contributions to the field, and 

outlines some recommendations for future work. 

5.1) Conclusions 

The experimental results outlined in this thesis demonstrate the efficacy of using butyric acid, 

regardless of source, to increase butanol yield from glycerol fermentations with C. 

pasteurianum. In addition, a population of mutants generated previously by E. Johnson via 

random mutagenesis has been sequenced and compared to wild-type strains to locate specific 

mutations. Finally, a novel screening device capable of online monitoring off-gas production 

in shake flasks during anaerobic fermentations was developed. 

The addition of butyric acid at the onset of the fermentation resulted in inhibition of the 

fermentation and had no discernable effect on the butanol yield. However, delayed addition, 

specifically once the fermentation has become well established, saw significant uptake of the 

butyric acid and a yield increase from 0.449 mol carbon butanol / mol carbon substrate to 0.519 

mol carbon butanol / mol carbon substrate. The source of the butyric acid had a small effect, 

with xylose-derived butyric acid (process fluid from xylose fermentation by C. tyrobutyricum) 

having a lesser effect when compared to chemically pure. 

Using molasses as a potential source of inexpensive sugar substrates as part of a dual-substrate 

strategy allowed C. pasteurianum to produce butyric acid early in the fermentation and 

subsequently re-assimilate the acid during later glycerol metabolism. Optimization of the 

initial molasses to glycerol ratio resulted in 1.9 g/L butyric acid being produced and 1.8 g/L 

butyric acid being re-assimilated, with a ratio of 0.459 mol carbon butanol / mol carbon 

substrate being achieved. Scaling up to reactor scale with the addition of pH control increased 

this ratio further to 0.480 mol carbon butanol / mol carbon substrates, while utilizing a substrate 

which did not previously lead to butanol production from C. pasteurianum. 

The DNA isolated from the putative mutants showed several areas with mutations, signifying 

that the putative mutant is indeed a novel mutant strain. The locations of the mutations were 
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not among the glycerol – butanol metabolic pathway as may have been expected, indicating 

that the mutations may be having a secondary effect on the cells which is beneficial to the 

glycerol metabolism. 

A screening device which allowed for off-gas analysis of multiple parallel shake flask 

fermentations was developed and employed to analyze glycerol fermentations by C. 

pasteurianum. The anaRAMOS was able to accurately replicate fermentations conducted at 

the reactor scale in shake flasks while still collecting valuable off-gas data, allowing for carbon 

balances to be conducted. The gas transfer rates obtained by the anaRAMOS reflected the 

presence of inhibitory compounds in the medium, as well as a complex dual-substrate 

fermentation using both dextrose and glycerol.  

5.2) Contributions 

The work conducted in this thesis will contribute to the field of fermentation science and 

biobutanol production in three primary ways. The first is the highly effective use of molasses 

sugars in a dual substrate fermentation with C. pasteurianum. While previous work has shown 

the ability to produce large amounts of butanol with a similar strategy, the work outlined here 

was able to design a strategy which resulted in a substantially higher yield of butanol from the 

carbon sources by optimizing the ratio of glycerol to molasses. This type of strategy could 

allow for more efficient processes to be developed in which molasses and glycerol are used 

simultaneously and minimize the amount of unutilized substrate. The second contribution was 

the characterization in batch fermentation and DNA analysis of mutant strains of C. 

pasteurianum generated by E. Johnson that displayed high productivity and superior product 

profiles. This work will help to develop a highly productive process using one of the isolates, 

or help guide the development of designed mutant strains with increased productivity. Finally, 

the design of the anaRAMOS will help bridge the gap between shake flask and reactor 

experiments and allow for more data collection while reducing material cost and time for 

experiments. The design could be used in both laboratory and industrial settings to expediate 

the screening and scale-up process. 
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5.3) Future Recommendations 

The results of this work allow for recommendations for future work to be made to build upon 

the work done. This section details the recommendations. 

Chapter 2 demonstrated the possible efficacy of delayed butyric acid addition to glycerol 

fermentations by C. pasteurianum, regardless of the source of butyric acid or the presence of 

residual fermentation by-products. Further optimization of this addition to identify the optimal 

time for addition based on a measurable metric, such as the optical density of the culture, would 

increase the reproducibility of this process. Further studies can use this strategy to add butyric 

acid in a slow, continuous manner to fed-batch or chemostat fermentations. This work can 

further explore the possibility of using butyric acid in process fluid from xylose fermentations 

using C. tyrobutyricum as a low-cost source. In addition, this work could explore using 

biodiesel-derived waste glycerol as the main glycerol source to further reduce substrate costs. 

Finally, Chapter 2 identified an optimum ratio of glycerol to molasses to allow high amounts 

of butyric acid re-assimilation, thus increasing the yield of butanol in batch fermentations. This 

principal can also be applied to a chemostat fermentation, in which both molasses and glycerol 

are continuously added to the fermentation. This work will require additional optimization to 

ensure sufficient resident time for butyric acid production and re-assimilation. Waste carbon 

sources, from molasses production and biodiesel-derived waste glycerol, can be explored as 

low-cost substrates. 

In Chapter 3, the DNA of a putative mutant strain of C. pasteurianum, previously generated 

by E. Johnson, was sequenced and compared to the wild-type laboratory stock and published 

reference genomes. Several clusters of mutations were identified, the locations of which were 

not homogenous amongst the samples sequenced, indicating the population was equally non-

homogenous and contained several variants. Future work should be conducted, beginning with 

plating and isolating single colonies of the mutant population. Subsequent screening for 

enhanced butanol production with an established mono-culture will allow for more accurate 

isolation and sequencing of highly productive mutants. Once the highly productive mutants 

have been sequenced, mutations in regions of interest can be replicated in wild-type C. 

pasteurianum using DNA-editing techniques. This will allow identification of the mutations 

resulting in increased butanol yield, and their effect on the overall metabolism of the organism. 
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Finally, in Chapter 4, a screening device was developed to monitor the off-gasses of several 

parallel anaerobic fermentations in shake-flasks. The off-gas analysis capabilities can be 

expanded by the addition of additional sensors to the sensor blocks, allowing for gas transfer 

rates of gasses other than CO2 and H2 to be monitored. The phase length and nitrogen sparging 

rates can be modified to allow slower growing organisms to be cultivated in the anaRAMOS. 

Additional flasks undergoing identical phase cycles, but without the sensor data, can be 

incorporated to the anaRAMOS. This will allow offline sampling of the fermentation without 

the requirement of sacrificing a flask collecting off-gas data. Conversely, updating the 

anaRAMOS data processing to accommodate changes in the volume of the flask due to 

sampling could be explored as a possible method to allow sampling without compromising the 

integrity of the off-gas data. 
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